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Abstract

The power utility industry has become highly volatile with a deregulated market 

on the horizon and with enormous profit and loss swings in the energy trading market. 

Electricity, in particular, has become a commodity that is bought and sold at market 

prices, where load forecasting plays a crucial role in the composition of those prices. 

Public and private utilities must contend with the fact that a small error in an electric load 

forecast can create a large financial loss for the company. For example, underpredicting 

electric loads frequently results in an expensive purchase from the spot market that can 

eventually lead to a utility’s demise. Overpredicting their system loads causes an 

unnecessary use of generation units, increased operating costs, and the loss of an 

opportunity to sell bulk power profitably. On the other hand, a small reduction of error in 

a load forecast can prove to be highly profitable for the utility. Hence, improving the 

accuracy of electricity load forecasts has become necessary for the long-term viability of 

all power utilities.

Weather has a significant impact on load demand and load forecasting. However, 

the weather-load relationship is unknown at the substation-level -  mostly because 

substation-level load data have rarely been available to those outside the corporate 

infrastructure. Equally as important, most utilities have made inconsistent and antiquated 

use of weather data.

This study used electric load data from four substations in Oklahoma and 

concurrent weather observations from co located Oklahoma Mesonet sites to: (1)

determine the interrelationships between weather variables and electric load demand; (2) 

determine the impact of weather on the consumption of electricity by different customer

xvii



classes (e.g., residential, commercial, industrial); (3) establish thresholds of temperature 

associated with changes in the patterns of the use of electricity; and (4) produce load 

model simulations to quantify the improvements in the accuracy of a load forecast. This 

study also links a much improved, high-resolution numerical weather prediction model to 

a neural network load model to quantify the economic value of improved accuracy in 

load forecasts. In the end, this dissertation determined that a comprehensive 

understanding of the relationship between weather variables and electricity demand will 

improve the accuracy of load forecasting. The results of this study can save a small 

utility in excess of $0.5 million annually. If the results are applied to the larger power 

companies around the United States, a decrease in operating costs could exceed millions 

of dollars.
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Chapter 1: Introduction

Electricity is a natural force that has always existed but has not always been able 

to be used. To use electricity we need to make it. In 1831, Englishman Michael Faraday 

became the first to generate electricity. He placed a magnet inside of a coil of wire and 

slowly rotated the magnet and immediately detected a current. This method, on a much 

larger scale, is still used to generate electricity today. As a result of this profound 

breakthrough and because of the technological advances since that time, we expect that, 

upon entering our driveway after a long day at work, motion lights in front of our homes 

will automatically turn on and garage doors will open with a click of a button. Once 

inside our homes, the flip of a switch or two illuminates the house. Another push of a 

button and the Nightly News appears on the television. We open our refrigerators to find 

cold drinks and leftover food that can be heated in just minutes using electrical power and 

a microwave oven. We have come to expect that electricity is available for our use 

whenever desired. We even tend to get irritated when our electrical service is interrupted, 

even if only for a few seconds. Western society has become fully dependent on 

electricity and perhaps spoiled by the continuous service which, if interrupted, severely 

limits our ability to function.

To achieve reliable electric utility service at all locations across the United States, 

research, planning, operating proficiency and risk on the part of the provider have been 

required. The continuous supply of electricity to our homes or businesses involves a 

three-step process -  generation, transmission and distribution (Fig. 1.1; Appendix A). 

Larger utilities normally house each component, while smaller companies usually focus

1



on generation and transmission (G&T) or solely on distribution. Because consumers 

(e.g., residents, businesses, schools, hospitals, and factories) rely on continuous, 

affordable electric service for day-to-day functions, utility companies have had to 

develop a power system that operates at maximum effîciency. Failure to do so has a 

negative economic impact for the utility, the consumer, and ultimately the nation at large.

Electric Power System (Greatly Simplified)

Step-down
Transformer

Distribution
Transformer

Step-up 
Transformer

Generating Station 

I — GENERATION-

Transmission Line Substation Distribution Line Service

I . Customer 
------------ DISTRIBUTION-----------

FIG. 1.1 An illustration of the three components involved to provide electricity to 
customers (illustration provided by WFEC).

Lack of efficiency in any component of the three-step process (to provide 

electricity) is costly to both the supplier and the consumer. As a consequence, heavy 

economic penalties result for the supplier due to increased operating costs. This 

economic impact is passed to the customer in the form of rate hikes or fuel adjustment 

charges. In addition, nationwide deregulation of the generation of electricity may be on 

the horizon in the not-so-distant future. By 1 January 2004, Oklahoma will allow the 

electrical customer to choose their generation supplier^ In other words, choosing our

' O.A.E.C (Oklahoma Association of Electric Cooperatives), 2001: O.A.E.C 2001-2002 Directory of 
Member Systems. 95 pp. [Available from O.A.E.C., P.O. Box 54309, Oklahoma City, OK 73111]



electricity provider will be similar to choosing a long-distance telephone provider^. 

Hence, to survive in a deregulated market, utility companies must offer continuous 

electric service at competitive rates. To do so, they must keep overhead costs to a 

minimum (i.e., they must operate efficiently). Finally, environmental issues such as air 

and water quality -  out of necessity -  must be incorporated into research and 

development for all utilities.

In the United States, electricity is generated primarily from the combustion of 

fossil fuels, namely, coal, natural gas, and oil. However, fossil fuels represent 

nonrenewable energy resources that eventually will be depleted. Rather than being 

forced into a reactive position caused by the depletion of fossil fuels, utilities must 

become proactive and prepare to incorporate renewable resources in their electricity 

generation (without sacrificing efficiency). The Renewable Energy Policy Project 

(REPP) has indicated that “ ...a 10% renewable base energy supply would lower the 

nation’s energy bill by $15 billion per year by 2020 compared to a heavily fossil based 

supply mix”'\ Wind energy, hydroelectric power, and nuclear power are among 

alternative generation methods being considered.

While the demand for electricity originates at the consumer level, meeting that 

energy demand is the sole responsibility of the utility companies. To meet these demands 

efficiently, utilities must predict accurately the electric load demand by their customers. 

In particular, short-term load forecasts, on the order of one hour to one day, have the 

most widespread implications for utilities and hence command much of the research

 ̂Good Energy, 2002: http://www.goodenergy.com/electricity_deregulation/deregulation.asp 

 ̂Sterzinger, George, REPP Testimony to Subcommittee on Energy Policy, June 17, 2002

http://www.goodenergy.com/electricity_deregulation/deregulation.asp


compared to all other time scales (Choueiki et al. 1997; Charytoniuk and Olinda 1998). 

The timeliness and accuracy of these forecasts have significant economic impacts to the 

operation and production costs at any utility. Thus, short-term load forecasts must 

provide critical information concerning the commitment of generation units, fuel 

allocation, real-time prices, economic allocation between plants, maintenance scheduling, 

load interruption and available transmission capability. For example, system dispatchers 

must anticipate their daily load patterns to generate sufficient electricity to meet the 

expected demand. Simultaneously, due to uncertainty inherent in the electrical forecast, 

an adequate amount of spinning reserve power must be available. The cost of accessing 

reserve power on demand is high because the electrical units in reserve are not 

necessarily operating at maximum efficiency at the time of an unexpected demand (Gross 

and Galiana 1987). Thus, a more accurate peak load forecast will reduce the need to 

access reserve power. Moreover, any error in a load forecast can have significant 

economic implications on operating costs. Overprediction of the load demand results in 

the unnecessary start-up of generation units and an increase in unused reserve power, 

which, in turn, increases operating costs. Furthermore, underprediction of the load 

demand often results in the purchase of power from the spot market which has unusually 

high costs. Hobbs et al. (1998) stated that, “A conservative estimate is that a 1% 

reduction in forecasting error for a 10,000 MW utility can save up to $1.6 million 

annually.”

An accurate short-term load forecast (STLF) requires an understanding of the 

factors that cause fluctuations in the consumption of electricity. Typical load curves are 

well documented for the residential, commercial and industrial customer (Rastogi and



Roulet 1994). However, a major factor that creates deviations from these patterns, and 

hence presents difficulty in achieving accurate load predictions, is the day-to-day 

weather. It is well-known that weather is responsible for significant errors in load 

forecasts. The peak loads of most utilities have a large weather-sensitive component due 

to, for example, air conditioning units, space heating, agricultural irrigation and industrial 

demands. While forecasting the weather is a daunting task, using a weather forecast and 

its uncertainty to predict human behavior (electricity consumption) in response to that 

forecast is an enormous and complex challenge. Douglas et al. (1998) concluded that 

errors in a temperature forecast have a huge impact on the accuracy of a final load 

forecast. Therefore, accurate meteorological tools available to load forecasters should 

achieve a more efficient operation.

This study presents a unique research opportunity because it integrates hourly, 

proprietary load data at the substation level from a rural electric cooperative with nearby 

hourly weather data from a state-of-the-art meteorological observation network. The 

weather data available includes all of the parameters that may be important to load 

forecasting (e.g., temperature, humidity, wind speed, and solar radiation). Yet, many of 

these parameters have not been evaluated extensively in load models. Bunn and Farmer 

(1985) compared several models for electrical forecasting and recommended that:

“It would probably be useful to study the use patterns of residential, commercial, 
and industrial users separately...To implement this, however, requires that actual 
hourly load data for each user class he available. Is it? Could it?”

Charytoniuk et al. (2000) proposed the same approach. This study will address their

recommendation because substation-level data are available in three consumer categories.

While the base load for electricity has been determined for each consumer class, the



effect of weather, which significantly alters the base load, is still unknown to the 

scientific literature.

This dissertation will evaluate whether a comprehensive understanding of the 

relationship between weather variables and electricity demand will improve the accuracy 

of load forecasting. The evaluation of this hypothesis will require an extensive analysis 

of weather variables using data from the Oklahoma Mesonet (Brock et al. 1995) and 

electric load data from Western Farmers Electric Cooperative (WFEC) for the period of 

1998, 1999, and 2000. Subsequently, the economic value of these results will be 

quantified using a load forecast model based upon a neural network architecture.

Chapter 2 will overview the history of numerical weather prediction and the 

history of load forecasting and its relationship to weather variables. The data used in the 

study will be described in Chapter 3. Chapter 4 will document the (a) variations in the 

climate of Oklahoma during 1998, 1999, and 2000 and (b) the diumal/monthly/seasonal 

variations of electric load demand for the same period. The interrelationship between 

weather variables and load data will be discussed in Chapter 5. Chapter 6 will present 

modeling studies, including a neural network, that incorporate results from Chapter 5 to 

quantify any improvement over the traditional load-modeling techniques. Any economic 

value from these potential improvements will be discussed as well. A summary of the 

results are presented in Chapter 7.



Chapter 2: Literature Survey

2.1 The Importance of Weather

Weather is an essential part of short-term load forecasting, no matter which 

approach to load forecasting is used. Several weather variables have been tested to 

determine which have the greatest impact on load demand. Variables such as 

temperature, humidity, wind speed, cloud cover, precipitation, visibility, and 

heating/cooling degree days have been used in various techniques. The essence of the 

work documented in more than five decades of research is that temperature has the 

greatest influence on load demand. Other variables associated with the variation in 

electric load demand are humidity in the summer and wind speed in the winter 

(Charytoniuk et al. 1998). However, with the arrival of competitive, possibly deregulated 

energy markets, load forecasters should begin to incorporate as much useful weather data 

as possible without losing parsimony in the load models.

2.2 The Meteorologist View

Meteorologists have a forecasting task, just as complex as that of load forecasters. 

Weather forecasters are responsible for predicting a multitude of weather variables (e.g., 

temperature, wind, relative humidity, precipitation) and storms across several time scales 

(e.g., one hour, one day, one week, one decade). Meteorological forecasts (and 

warnings) are disseminated to the public primarily for the purpose of protecting lives and 

property. The forecasts also provide a service to the public for the planning of work, 

travel, recreation and commerce.



Weather forecasts result from solving nonlinear, partial-differential equations that 

define the dynamics, thermodynamics, mass continuity, and moisture conservation of the 

atmosphere; these equations are known as the primitive equations of motion (Dutton 

1986). Thus far, an analytical solution to the full governing equations has not been 

found. Two alternatives to this problem do exist. One option is to find an exact solution 

to a simplified form of the equations of motion. This task involves making assumptions 

and/or parameterizations for some of the unknown processes. This other method is to 

determine an approximate numerical solution to the full governing equations. This 

approach entails use of a computer to give an approximate answer to a complicated, 

nonlinear problem.

The origins of weather forecasting extend more than 100 years (Table 2.1). The 

earliest forecast methodologies included mapping weather variables and storms onto 

sequential charts to track the movement and acceleration/deceleration of various 

phenomena. The initial weather predictions were based mostly on persistence and trends, 

similar to the early methodologies used in load forecasting. Not surprisingly, the skill 

scores of weather forecasts which used persistence and trends proved to be nearly 

worthless. Subsequently, weather forecasting advanced during the 20*'' century with the 

introduction of numerical weather prediction (NWP) and many technological 

innovations.



Table 2.1 Significant milestones in the development of NWP.

DATE
1888 H. von Helmholtz formulated the primitive equations for fluid mechanics
1904 Vilhem Bjerknes first recorded the idea of NWP by discussing the 

application of physical laws (and primitive equations from Helmholtz) to 
the problem of predicting the atmosphere

1922 Lewis Fry Richardson published the first numerical weather forecast
1950 Chamey produce a successful 24-hour forecast using a single-level 

barotropic model run on the new ENIAC
1955 Chamey’s Princeton three-level model was programmed for the IBM 701 

and run on an operational schedule -  ultimately provided little useful 
information

1958 Operational Barotropic model at NMC using objective analysis initial 
conditions and improved numerics

1962 First baroclinie model (3-level quasi-geostrophic model) became operational
1966 6-layer primitive equation (PE) model became operational due to major 

computer advancements; NWP was regarded as a useful forecasting tool
1971 LFM model (first regional model) implemented at NMC, remained in use for 

20 years and became the basis for MOS
1980 Global spectral model (GSM) become operational
1985 Implementation of first comprehensive package of physical parameterization 

on GSM from Geophysical Fluid Dynamics Laboratory (GFDL)
1991 First operational 3D-Var (improvements in data assimilation methods)
1992 Ensemble forecasts became operational; improvements in 1994 and 2000
1993 First operational implementation of the Eta Model at NMC for North 

America at 80-km and 38-layer resolution twice daily
1994 RUC implemented for continental United States, with 3-hourly 01 updates at 

60-km resolution and 25 hybrid vertical levels
1996 Meso Eta model introduced with 29-km and 50-layers and improved model 

physics
1998 RUC upgraded to 40-km and 40 levels with extensive physics upgrades

2.2.1 History o f Numerical Weather Prediction (NWP)

Through use of computing power, the goal of NWP is to provide weather 

forecasts beyond a few hours. NWP is an initial value problem (IVP) such that given an 

estimate of the present state of the atmosphere, the computer model simulates its



evolution. In order to make a skillful forecast for an IVP, it is required that the computer 

model be a realistic representation of the atmosphere and the initial conditions be known 

accurately (Kalnay 2003). The following NWP discussion is adapted from Shuman 

(1978), Shuman (1989), Kalnay et al. (1998), and Kalnay (2003).

In 1888, H. von Helmoltz of Germany formulated the primitive equations for fluid 

mechanics. Sixteen years later, Vilhelm Bjerknes of Norway suggested that those 

equations could be applied to the atmosphere. During World War I, Lewis Fry 

Richardson in England produced the first numerical weather forecast by performing a 

comprehensive numerical integration of the full primitive equations using hand 

calculators. Unfortunately, his forecast of surface pressure was in error by an order of 

magnitude mostly because the initial conditions were not balanced (i.e., they included 

fast-moving gravity waves with the slower weather-related oscillations). To no one’s 

surprise, further (immediate) attempts were discouraged.

In 1945, electronic computers were invented, and one year later, John von 

Neumann organized the Electronic Computer Project at the Institute for Advanced Study 

(IAS) at Princeton University. Its purpose was to design and build the most powerful 

electronic computer to date. In 1948, Jule Chamey created the Meteorology Group 

within that project -  which included John von Neumann and renowned theoretical 

meteorologists Carl Rossby, Amt Eliassen, and George Platzman -  whose goal was to 

apply dynamic laws to the problem of weather forecasting. Within a year, Chamey and 

Eliassen attempted to solve the problems Richardson encountered in his first prediction 

by doming filtered equations of motion based on pressure fields alone. These equations
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were based on quasi-geostrophic balance which “filtered” out the faster gravity and sound 

waves.

In 1949, the electronic numerical integrator and computer (ENIAC) was 

developed at the University of Pennsylvania and recognized as the first general-purpose 

electronic computer. Chamey developed a single-level barotropic model (Chamey et al. 

1950) using the ENIAC and produced a “historic first” one-day weather forecast. This 

simple model was unable to convert potential energy to kinetic energy and explicitly 

predict storm development. Even so, the results of the first forecasts were encouraging as 

a pattem correlation existed between the forecasted and observed 24-hour pressure field 

changes, unlike Richardson’s forecast attempt. It was after this successful use of a 

filtered model that Chamey realized, to Richardson’s credit, that significantly more 

progress in NWP would come from the use of the full primitive equations of motion. 

Chamey also recognized the need for objective analysis of meteorological data to 

estimate initial conditions, replacing the labor- and time-intensive task of manual 

interpolation of available observations to grid points. In current models, this process has 

been improved through use of data assimilation techniques which uses short-term 

forecasts and observations to compute a sequence of initial conditions.

In 1953, IBM announced specifications for a new commercial computer, the IBM 

702. The U. S. Weather Bureau (now known as the National Weather Service; NWS), 

the Air Weather Service of the U. S. Air Force, and the Naval Weather Service acquired 

an IBM 702 to launch a numerical weather prediction service. On 1 July 1954, the three 

agencies formed the Joint Numerical Weather Prediction Unit (JNWPU), under the 

authority of the Joint Meteorological Committee (JMC), to implement their strategy. The
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JNWPU decided to use Chamey’s Princeton three-level model, a model that permitted 

the conversion of potential to kinetic energy and predicted the development of the 

Thanksgiving Day storm in 1950 over the northeastern United States (though, not in real 

time). Unfortunately, the numerical predictions could not compete with forecasts 

produced manually. Though the disappointment was great, this effort catapulted JMC to 

carefully attack the problems encountered and to focus on the accuracy and timeliness of 

forecasts for the operational community.

By 1958, research at the JNWPU and JMC lead to an automatic analysis system 

and automatic data handling. As a result, skillful, timely numerical forecasts were 

delivered to centrally-located forecasters. A single-level barotropic model was used to 

produce 500-mb forecasts across a limited domain (roughly North America and adjacent 

waters). These forecasts were more skillful (Fig. 2.1) than past modeling attempts (i.e., 

the mean-squared error of the forecasts had been reduced). Soon thereafter, the JNWPU 

was split into three organizations: the National Meteorological Center (NMC), the 

Global Weather Central (U. S. Air Force), and the Fleet Numerical Oceanography Center 

(U.S. Navy).

Ninety-five percent of the products produced by NMC were automated by 1960. 

In addition, the quality of products from NWP began to supercede those produced by 

manual methods. It was realized, though, that the model only had a single layer and was 

not able to predict the development of mid-latitude cyclones. This substantial problem 

was addressed using the three-level filtered-equation model which Cressman (1963) 

made operational at NMC. This baroclinie (multi-layered) model incorporated (Shuman 

1989): (1) Chamey’s three-level model, (2) an additional term to account for the
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FIG. 2.1 (a) Historic evolution of the operation forecast skill of the NCEP models over 
North America (500 hPa). The SI score measures the relative error in the horizontal 
pressure gradient, averaged over the region of interest. The values 81 = 70% and 51 = 
20% were empirically determined to correspond respectively to a “useless” and a 
“perfect” forecast when the score was designed. Note that the 72-hr forecasts are 
currently as skillful as the 36-h were 10-20 years ago (data courtesy of C. Vlcek, NCEP). 
(b) Same as (a) but showing SI scores for sea level pressure forecasts over North 
America (data courtesy C. Vlcek, NCEP). It shows results from global (AVN) and 
regional (LFM, NOM and Eta) forecasts. The LFM model development was “frozen” in 
1986 and the NOM was frozen in 1991. (Figure and caption from Kalnay 2003)
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advection of vorticity by the divergent component of the wind, (3) use of the balance 

equation, and (4) attention to detail in the formation of finite difference schemes and 

other numerical procedures to prevent a systematic accumulation of truncation error. The 

first baroclinie model became operational in 1962. The skill and usefulness of the 

forecasts at 500-mb continued to increase (Fig. 2.1). Thus, the model domain was 

expanded to include the entire Northern Hemisphere.

By 1963, the advancements in computer power and the discovery of relatively 

stable finite difference forms of the primitive equations allowed for the development of 

the six-layer primitive equation (PE) model. On 6 June 1966, the six-layer PE model at 

NMC became operational. As a result, the magnitude of the forecast errors clearly began 

to decrease (Fig. 2.1). Not long thereafter, the six-layer PE model became the first NWP 

model to produce a useful prediction at sea level. These forecasts were more skillful than 

those produced by manual methods. Finally, NWP had begun to be regarded as a 

valuable forecasting tool.

2.2.2 Types o f  NWP Models

Two types of models are used for NWP -  global models and regional models 

(Kalnay 2003). Global models are typically used for guidance in medium-range forecasts 

(e.g., out to 16 days) as well as climate simulations. The horizontal domain of a global 

model is the entire earth, so these models usually cannot be run at high resolution. If a 

more detailed forecast is needed, it is necessary to increase the resolution and thus reduce 

the domain size. In that, regional models can be used. Regional models are run with a
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resolution of 2 or more times higher than that of the global model and are used for 

shorter-range forecasts (e.g., 1-3 days). Regional models have an advantage over global 

models of higher accuracy along with the ability to resolve smaller-scale phenomena such 

as fronts, squall lines and orographic forcing. The disadvantage to regional models is that 

they require lateral boundary conditions at the borders of their horizontal domain, a 

problem that the global models do not encounter. To avoid this problem, regional models 

are often “nested” within more coarse models, whose forecasts can provide the necessary 

boundary conditions.

A further partitioning of NWP is hydrostatic versus nonhydrostatic models. A 

hydrostatic approximation regards the vertical accelerations in the vertical equation of 

motion negligible relative to the gravitational acceleration. This is an accurate 

approximation as long as the horizontal scales of motion (e.g., ~100 km) are much larger 

than the vertical scales of motion. The primary advantage to the hydrostatic assumption 

is that it filters sound waves (except those propagating horizontally) which allows the use 

of larger time steps and subsequent more timely completion of the forecast. On the other 

hand, the nonhydrostatic equations allow representation of smaller-scale phenomena such 

as convective clouds whose vertical accelerations cannot be neglected relative to 

buoyancy forces. Nonhydrostatic models with an efficient treatment of sound waves, 

however, are computationally competitive with hydrostatic models.

Beginning in 1963, Lorenz realized that NWP needed to account for the stochastic 

nature of the evolution of the atmosphere. Because the atmosphere has inherent 

instabilities, the growth of error due to the instabilities implies that a minute imperfection 

in a forecast model or the slightest error in initial conditions will inevitably lead to
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depletion of skill in weather forecasts over a finite forecast period -  Lorenz called this the 

“limit of weather predictability”. To address the uncertainty of atmospheric model 

predictions, the concept of ensemble forecasting was implemented operationally in 1992. 

The ensemble forecast is one in which several model forecasts are performed by 

introducing small perturbations in the initial conditions or in the models themselves. The 

main achievements of ensembles were: (1) to provide an ensemble average forecast that, 

beyond the first few days, is more accurate than individual forecasts that occurred 

because the components of the forecast that were most uncertain tended to be averaged 

out; (2) to provide forecasters with a indication of the reliability of the forecast which 

changes from day to day and from region to region; and (3) to provide a quantitative basis 

for probabilistic forecasting. Several methods of ensemble forecasting have been 

developed since its inception.

From the 1970s to the present, several new numerical models were developed. 

These models included the Limited-area Fine-mesh Model (LFM), Nested Grid Model 

(NOM), Global Spectral Model (GSM), Aviation Model (AVN), Medium-Range 

Forecast Model (MRF), Rapid Update Cycle (RUC), and Eta Model. All contributed to 

the gradual reduction of forecast errors and provided more reliable details in the forecasts 

they produced.

2.2.2.I Nested Grid Model (NOM) and Model Output Statistics (MOS)

Growth in computer power and gradual improvements in forecast quality have 

always gone hand-in-hand. As technology advanced, the models became more complex 

through the addition of more vertical layers, a finer mesh of grid points in the horizontal.
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a fully global domain, detailed topography, and landscape characteristics, 

Parameterizations of physical processes such as radiation, clouds, precipitation and 

turbulence also improved (Stull 1995). In 1971, limited-area fine-mesh model (LFM) 

was created from the six-layer PE model at NMC. The Nested-Grid model (NOM) was 

created in 1979. Refinements were made through the 1980s until the model development 

was frozen. The NOM was developed as a grid-point model with 16 vertical levels and a 

horizontal resolution of 80 km for its inner grid and 160 km for its outer grid. The NOM 

also was a hydrostatic model that used a sigma coordinate system (a terrain-following 

coordinate system in which the ground is always at the lower coordinate surface).

Klein et al. (1959) introduced a statistical method of forecast refinement called 

the “prefect prog” method (PPM). The PPM used a best-fit multiple regression technique 

to develop a concurrent statistical relationship between the input fields (predictors) and 

the output fields (predictands). Observations were used for both the predictors and the 

predictands. As a result, an advantage of the PPM is that it does not depend on any 

particular forecast model and can be used immediately upon changing forecast models. 

On the other hand, the PPM produces the optimal predictand only in the rare event that 

the model produces perfect predictors (Stull 1995).

The PPM paved the way for its replacement, known as model output statistics 

(MOS; Glahn and Lowry 1972). MOS consisted of determining a statistical relationship 

between model forecast fields (predictors) and local weather observations (predictands), 

primarily through a multiple or stepwise regression technique (Jacks et al. 1989). The 

LFM was first used to develop MOS equations. An advantage to the MOS approach is 

that systematic model errors can be offset by the statistical regression. A disadvantage to
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MOS is that a multi-year set of model output must be archived and statistically fit before 

the ensuing regression can be used for future forecasts (Stull 1995).

Consequently, an NGM-based MOS could not be developed until at least two 

years of model output data from a version of the NGM, which was not in a state of 

constant evolution, were available. In 1989, an NGM MOS package was implemented on 

a twice daily basis. This package included equations for maximum and minimum 

temperature, probability of precipitation (PoP), cloud amount and surface wind (e.g., 

parameters not directly predicted by the models). The myriad of predictors included 

NGM forecasts, surface observations, and climatological data.

The accuracy of the MOS guidance is strongly dependent upon the accuracy and 

consistent performance of the numerical model. Though the MOS technique is able to 

discern systematic errors in a model, it cannot resolve features that are below the 

resolution of the model. However, routine biases are accounted for via the MOS 

technique. Though statistical techniques can predict extreme events, MOS guidance 

tends to produce conservative forecasts and has often failed to forecast extreme events. 

As the forecast lead time increases, MOS produces guidance that trend toward the 

climatological value of a predictand. This tendency reflects the decreasing forecast 

accuracy that all numerical weather models suffer from as lead time increases.

2.2.2.2 Eta Model

The late 1980s and early 1990s brought an effort to increase the resolution (i.e., 

finer horizontal grid spacing and more vertical levels) of numerical models. The 

downscaling of these models provided forecasters with details on mesoscale weather
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features which could not be resolved by synoptic-scale numerical models like the NGM 

or the AVN. In 1993, an early edition of the regional Eta model was implemented by 

NMC which replaced the LFM. The Eta model is a hydrostatic, grid-point mesoscale 

model that provides forecast guidance over North America (Black 1994). At that time, 

the horizontal and vertical resolution of the Eta was 80 km with 38 vertical levels. A new 

Eta coordinate system was defined to remove or reduce errors that occurred when 

computing the pressure gradient force, advection, or horizontal diffusion over steeply- 

sloped terrain. Each Eta surface is quasi-horizontal everywhere because it is normalized 

by a constant value of sea level pressure (instead of station pressure which varies greatly 

across mountainous terrain). Thus, the Eta coordinate system permits a more accurate 

calculation of the horizontal pressure gradient because errors caused by elevation changes 

between adjacent grid points were eliminated. Models that used sigma coordinates often 

produced unrealistic pressure gradients near sloped terrain because temperature changes 

on sigma surfaces were, in part, the result of an elevation change rather than an actual 

horizontal temperature change. Because temperature changes are much larger in the 

vertical compared to those in the horizontal, the vertical temperature gradient dominated 

pressure gradient calculations. Thus, the Eta model was developed to improve forecast 

guidance on the mesoscale, especially in areas with widely varying topography. The Eta 

guidance began with twice daily runs out to 36 hours.

During the late 1990s, the horizontal grid spacing of the hydrostatic Eta model 

was reduced significantly. In 1996, the National Centers for Environmental Prediction 

(NCEP; formerly NMC) introduced the Meso Eta model. This version had a horizontal 

resolution of 29 km with 50 vertical levels. NCEP continues to refine its Eta model -  the
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current operational version has a 12 km horizontal resolution with 60 vertical levels, 

issued every 6 hours.

2.2.2.3 Rapid Update Cycle (RUC)

Due to numerous observations obtained from the automated reporting by 

commercial aircraft and a demonstration network of wind profilers, the Forecast Systems 

Laboratory' (FSL) developed an analysis and data assimilation system known as the 

Mesoscale Analysis and Prediction System (MAPS); its forecasts were produced at 3- 

hour intervals. In 1994, NMC implemented an operational version of MAPS known as 

the Rapid Update Cycle (RUC). The first version of the RUC (RUC-1) had a horizontal 

grid spacing of 60 km and 25 vertical levels. The RUC produced three-dimensional (3- 

D) analyses and short-range forecasts out to 12 hours, every three hours. The analyses 

were based on a combination of observations (at asynoptic times) and a background field 

usually from the previous 3-hour RUC forecast.

The RUC uses a hybrid isentropic-sigma coordinate system. The isentropic 

coordinates are used for most of the atmosphere except near the ground where the terrain- 

following sigma coordinates are used. An isentropic coordinate system uses potential 

temperature (theta) as its vertical coordinate. When the atmospheric processes are 

adiabatic, air flows along isentropic surfaces. The isentropic coordinates also add 

resolution near frontal zones and the tropopause where theta surfaces are tightly packed. 

However, in regions where non-adiabatic processes occur (mixed layer; boundary layer), 

the same value of potential temperature may occur at more than one level above ground.

' FSL is a division of the National Oceanic and Atmospheric Administration/Office of Oceanic and 
Atmospheric Research (NOAA/OAR)
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Under these circumstances, the sigma coordinate system provides the best solution for an 

NWP model.

On 6 April 1998, NCEP replaced RUC-1 with RUC-2, and improved the 

resolution to 40 km horizontally and 40 levels vertically. The RUC-2 produced 12-hour 

forecasts every 3 hours, and 3-hour forecasts every hour (i.e., the model runs become an 

hourly assimilator of observations). The RUC-2 expanded its domain east and west to 

cover 50% more area than did the RUC-1. The goal was to improve forecasts near 

coastal areas. Other improvements to RUC-2 eliminated known weaknesses in RUC-1 

(Benjamin et al. 1998). On 17 April 2002, a major revision of the RUC was 

implemented, and the RUC20 (Benjamin et al. 2002) replaced the RUC-2. The RUC20 

has a 20 km horizontal resolution and 50 vertical levels. Improvements included physics 

to better process moisture and better use of observations in the analysis. As with the Eta, 

improvements are continual.

2.2.2.4 Multi-Scale Models

The Penn State University (PSU) /  National Center for Atmospheric Research 

(NCAR) mesoscale model (MM5) is a limited-area, compressible, nonhydrostatic, sigma- 

coordinate model developed to predict mesoscale and regional-scale atmospheric 

circulations. The MM5 is capable of real-data simulations on any scale, and the model is 

limited only by data quality, data resolution, and computer resources (Dudhia 1993). The 

MM5 is widely used for numerical weather prediction, air quality studies, and 

hydrological studies (Chen and Dudhia 2001) as well as for studies involving mesoscale
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convective systems, fronts, land-sea breezes, mountain-valley circulations, and urban 

heat islands^.

The Advanced Regional Prediction System (ARPS) is another multi-scale, 

atmospheric prediction system developed by the Center for Analysis and Prediction of 

Storms (CAPS) at the University of Oklahoma. It was primarily developed to serve as a 

prototype system for stormscale numerical weather prediction and has since extended its 

application to a multitude of idealized studies, operational analyses, and real-time 

forecasting^.

2.3 Introduction to Electrical Load Forecasting

Electrical load forecasting is of paramount importance to the cost-effective 

operation and the day-by-day planning in the complex realm of managing electric power 

systems. The lead times of a load forecast can range from a few minutes to several 

decades (Hippert et al. 2001; Gross and Galiana 1987). This expansive time period is 

broadly divided into three main categories for power systems (Choueiki et al. 1997), and 

weather plays an important role in all three. One is long-term (econometric) forecasting 

with a lead time of 5 to 40 years. This forecast category is used for planning new 

systems, purchasing generation units, and building power plants or transmission lines. 

The second is the short-term load forecast with predictions that range from one day to 

one week. In this study, the short-term forecast will mainly refer to electrical load 

forecasts on the order o f one day. The applications for short-term forecasts include fuel 

allocation, scheduling for generator and line maintenance, optimal commitment of

 ̂www.mmm.ucar.edu/mm5/mm5-home.html 
 ̂http://www.caps.ou.edu/ARPS/index_flash.html
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generator units, and buying/selling power. Third, very short-term load forecasts are on 

the order of minutes to an hour. Economic (load) dispatch is the sequence in which 

available generating units are called upon to serve the minute-by-minute fluctuations in 

load such that the cost of an operation is minimized. In addition, the very short-term 

forecast is used to monitor the security of the total power system, which includes proper 

channeling of electricity through transmission circuits and pinpointing potential 

overloads of the system during peak use periods.

Though the three categories of load forecasting are essential components in 

managing an electric power system, this study will focus on short-term load forecasting 

(STLF) and the meteorology that is involved. The STLF is critical in the day-to-day 

decisions required to operate an electric utility and the economic consequences of these 

decisions to consumers. Thus, STLFs have been the center of attention in the electrical 

engineering and power utility communities for several decades in a massive effort to 

improve the accuracy of operational decisions (IEEE Committee 1980). The short-term 

electric load is primarily dependent on nonlinear combinations of variables that have 

been classified by their dependence on weather, social and seasonal factors. The most 

important weather variable is temperature -  past, current and future (Gross and Galiana 

1987). Social impacts involve home, work, school, industry, and special events. 

Seasonal variations result from load growth, population growth and seasonal weather 

changes. Because of these factors and an apparent randomness to the load demand, short

term load forecasting remains an elusive challenge.
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2.4 Short-term Load Forecasting Methods

A multitude of techniques have been used and are still being developed to solve the 

STLF problem. The early load forecast models were generally regression studies of load 

and weather data (Davies 1958; Heinemann et al. 1966; Matthewman and Nicholson 

1968). Advanced time series techniques, such as autoregressive moving averages and the 

Box-Jenkins method, were soon incorporated into STLF methodologies (Gupta 1971; 

Galiana et al. 1974; Poysti 1984; Hagan and Behr 1987). Other methods surfaced in the 

1980s that are still in use today. They include knowledge-based expert systems (Rahman 

and Bhatnagar 1988; Ho et al. 1990; Rahman and Hazim 1993), the state space method 

and the use of Kalman filters (Abu-El-Magd and Sinha 1981; Irisarri et al. 1982), and 

neural networks (Lee et al. 1992; Lu et al. 1993; Lamedica et al. 1996; AlFuhaid et al. 

1997; Darbellay and Slama 2000).

Because no two power companies have identical load demands and load capacities, 

the methods used are often tailored to the needs and the computing power of the 

company. However, in developing a loose taxonomy for the different forecasting 

methods, three characteristics were identified (Bunn and Farmer 1985). Apart from other 

specific factors, applied short-term forecasting of electric load differs according to 

whether use is made of a standard load curve, how weather variables are used, and 

whether or not the load data are minute-by-minute spot data or data integrated over a 

period of time. It also is important to note that systems for forecasting electric load are 

divided into those which use on-line predictors versus those which use off-line predictors. 

This discrimination often dictates the type of method used. Systems that use on-line 

procedures adjust to the minute-by-minute evolution of the most current telemetered
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demands and typically use time-series methods to forecast the load minutes in advance. 

On the other hand, systems that use off-line techniques are often applied to scheduling 

plant functions 2 - 7  days in advance. The off-line component typically employs 

regression models that use exogenous variables, such as meteorological factors.

2.5 Standard Load Curve Models

One popular forecasting tool is the standard load curve, often referred to as a 

‘nominal’, ‘base’, or ‘reference’ load curve (Gupta and Yamada 1972; Papalexopoulos 

and Hesterberg 1990; Barakat and Al-Qasem 1998). The standard load curve is 

produced once per day and is based on a long history of seasonal and daily patterns. A 

basic equation to estimate the load using this method is:

L(t,d) = S(t,d) + R(t,d), (1)

where L(t,d) is the actual load for the time t of the day d, S(t,d) is the standard load, and 

R(t,d) is the residual. The standard load curve needs re-scaling across specified time 

intervals; hence, the residual term is important. The standard load approach explicitly 

seeks to provide a daily series of residuals, which are adaptively tracked and forecasted. 

Thus, the conceptual idea is to update the standard load curve each day and update the 

residual every minute or so. Two types of load-shape models exist: (1) time-of-day 

models and (2) dynamic models.

2.5.1 Time-of-Day Models

The time-of-day models describe the load, z(t), at each discrete sampling time, t, 

over the duration of the forecast period, T, by a time series:
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{z(t), t=  1, 2, ... ,T}.

In its simplest form, this model stores T load values based on observed load behavior, 

where T is the duration of the forecast period. The past load behavior might be from the 

previous week or from a set of load curves for typical weeks of the year or typical 

weather patterns. The most common time-of-the day model takes the form of:

N

z(t) = i(t) + £(t), t e  X (2)
i=i

where z(t) is the load at time t and is considered to be the sum of a finite number of 

explicit time functions, f(t), which are often sinusoids with periods of 24 to 168 hours 

depending on the forecast lead time (Gross and Galiana 1987). The coefficient, a, is a 

slow-varying time constant while e(t) represents the modeling error, or white noise. The 

model is assumed to be valid over the time interval, t, which must represent the recent 

past, the present, and a future time period otherwise known as the lead time. When 

explicit time functions, such as sinusoids are predetermined, the coefficients (aO are 

estimated through simple linear regression or exponential smoothing applied to a set of 

past load observations (Christiaanse 1971; Lijesen and Rosing 1971; Brubacher and 

Tunnicliffe Wilson 1976). Thus, these time series models essentially make use of 

historical load data for extrapolation to obtain the future load demands.

Structurally, these types of models are straightforward such that their parameters 

and the forecast can be updated easily through recursive algorithms as new load data are 

measured. On the other hand, these models do not represent the random nature of the 

load process or its relationship to weather variables. Thus, when an abrupt change in the 

weather occurs, the coefficients for the longer lead times create accuracy problems in the 

load forecast. Further, these models assume the trend is stationary and regard abnormal
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data points as bad data. Abnormalities include labor strikes, major television events, or a 

temporary plant closure, all of which impact the load demand and should not be ignored.

Spectral decomposition is the basis for another time-of-day model. Here, the time 

functions, f(t), represent the eigenfunctions corresponding to the autocorrelation function 

of the load time series, once the regular patterns have been extracted (Farmer and Potton 

1968; Pickles 1975). Residual values represent perturbations about the seasonal average 

due to changes in the local conditions, which in turn, impact the load demand. This 

method is more theoretically sound than the previous method due to its optimal choice of 

the time function. However, the spectral method is computationally expensive because it 

involves solving an eigenvalue problem (not necessarily an efficient operation when used 

in a real-time recursive algorithm). Finally, this method is susceptible to errors when 

weather conditions change rapidly because these influences are not explicitly modeled.

2.5.2 Dynamic Models

Dynamic load models recognize that, not only is the load dependent upon the time 

of day, it also depends on the most recent behavior of the load, on weather variables and 

on random inputs. Thus, dynamic models have, in essence, replaced the pure time-of- 

day models. Two basic types of dynamic models are pertinent to load forecasting: 

autoregressive moving average (ARMA) and state space models.

2.5.2.1 Autoregressive Moving Averages (ARMAs)

A  general form of the ARMA(p,q) model for a stationary process y(t) with zero 

mean (Box et al. 1994) can be expressed as:
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(p(B)y(t) = 0(B)a(t) (3)

where cp and 0 are the parameters of the model for the autoregressive term of order p and 

the moving average term of order q, respectively, B is the backward shift operator, and 

a(t) is the white noise with zero mean and an unknown variance at equally spaced times, 

t. Many models are simply modifications of the ARMA (Moghram and Rahman 1989). 

If the process y(t) is not stationary, it can be transformed into a stationary process using a 

differencing transformation. The differenced, and now stationary, time series can be 

modeled as an autoregressive integrated moving average (ARIMA). The ARIMA(p,q,d) 

has an additional order term, d, denoting the number of times the series needs to be 

differenced to become stationary. Furthermore, if the process y(t) exhibits periodic 

behavior, which is common to power system processes, it can be removed using a 

seasonal difference operator. Thus far, the ARMA expresses y(t) in terms of its history 

and a white noise. However, if other factors, such as weather, impact the value of y(t), 

then a transfer function can be used to account for these variables in the model (Abu-El- 

Magd and Sinha 1982).

A number of methods used in STLFs identify the autoregressive and moving 

average parameters in Eq. (3). Though these methods are computationally expensive 

relative to the time-of-day models, they are more robust models which incorporate 

dynamic, weather and random processes. Ultimately, the ARIMA approach requires less 

parameter tuning which leads to more accurate load forecasts. One method of parameter 

identification is the use of the Yule-Walker equations in a recursive scheme, applied to 

the ARMA (Vemuri et al. 1973; Keyhani and El-Abiad 1975; Keyhani et al. 1975). This 

method involves obtaining a set of linear equations for the autoregressive parameters in
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terms of the autocorrelations (of the stationary autoregressive process). The maximum- 

likelihood method (Gertler and Banyasz 1974; Hagan and Klein 1978), basically a 

nonlinear regression algorithm, is used to estimate the parameters. Once the parameters 

are determined, they must be updated. For ARMA models, daily updating is sufficient. 

Once the load data from the previous 24-hour period is free of anomalous behavior, it is 

added to the data set and data from the oldest 24-hour period are removed.

2.S.2.2 State Space Models and Kalman Filter

Because state space models can be converted into an ARMA model and vice 

versa, fundamental differences between the two do not exist (Ljung and Soderstrom 

1983). Hence, only the basis of this model will be discussed. The state space model 

introduces the periodic component of the load as a random process. The load is modeled 

as a state variable using the state space representation which is comprised of two 

equations: the state (transition) equation and the observation (measurement) equation 

(Box et al. 1994). In its most general form, the state equation contains an unobservable 

state vector that summarizes the state of the dynamic system through time, and the 

measurement equation which indicates that observations consist of linear combinations of 

the state variables corrupted by white noise. The Kalman filter (Park et al. 1991; Infield 

and Hill 1998) is a popular and convenient method to estimate the state vector. The 

filtering procedure has a recursive “prediction-correction” or “updating” form and is 

attractive for on-line use. The difficulty in this process is that the noise covariance 

matrices are not easily obtained.
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2.5.3 Knowledge-Based Expert System (KBES) Approach

Statistical techniques discussed thus far have shown that the methods require 

updating with changing conditions, such as weather and load demand. In some cases, 

new models must be developed when the dynamic of load management changes 

sufficiently. The knowledge-based expert system (KBES) approach (Rahman and 

Bhatnagar 1988; Ho et al. 1990; Rahman and Hazim 1993) represents a load forecast 

model built upon knowledge about the load forecast domain using human experts in the 

field. Once relevant knowledge about the forecast domain is extracted and built into the 

model, the facts are presented in an IF-THEN format as a “set of rules”. This method 

uses a pairwise comparison technique (Saaty 1980) to prioritize and categorize the 

variables. For example, an algorithm has been developed that was based on the logical 

and syntactical relationship between the weather and the daily load shapes which have 

been converted to a set of rules. A rule-base was established to develop relationships 

between changes in the system load and changes in natural and forced condition factors, 

which in turn, create variation in electricity consumption (Moghram and Rahman 1989). 

Expert systems are responsive to changing conditions in its knowledge base which are 

easily expanded as new data becomes available. Fortunately, updates are fairly 

straightforward.

2.5.4 Artificial Neural Networks (NNs)

Artificial neural networks (referred to as neural networks; NNs) have undoubtedly 

received the most attention of all STLF techniques. This attention is mainly because NNs 

can learn complex and nonlinear relationships that often are difficult to model with other
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statistical techniques. Using historical load and weather data, NNs are able to model 

correlations between factors that include weather conditions, day of the week, time of the 

day, and past usage patterns. Though several have enjoyed success with the use of NNs 

(AlFuhaid et al. 1997; Khotanzad et al. 1998; Drezga and Rahman 1998), skeptics believe 

that they do not outperform traditional load forecasting methods (Adya and Collopy 

1998; Darbelly and Slama 2000).

Neural networks refer to a computing system which can mimic a biological neural 

network (Mehrotra et al. 1997). Its basic unit is the neuron, which receives information 

through a number of input nodes, processes it internally, and produces a response (Fig.

2.2). Within the NN, it should be noted that several stochastic techniques previously 

mentioned are used. The off-line component of the neural network involves a training 

(process of parameter estimation) algorithm based upon historical load and weather data. 

The on-line component uses the multilayer feed-forward technique for the forecasting 

application.

Zhang et al. (1998) formally demonstrated that NNs were able to approximate any 

continuous function to an acceptable level of accuracy. Thus, NNs model complex 

nonlinear relationships better than conventional nonlinear (or linear) models. In addition, 

researchers do not have to postulate their models and estimate parameters, for NNs are 

data-driven and are able to automatically map a relationship between a given sample of 

inputs and outputs (Hippert et al. 2001). Thus, because of the architecture, NNs are well 

suited to extract patterns from past events and to extrapolate into the future, a necessity in 

load forecasting.
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FIG. 2.2 An artificial neuron where the piS are the four inputs, b is the bias term, and the 
W|S are the weights (weight matrix), all of which are combined and fed into a function, f, 
to produce an output, a = f(WiPi + b).

It is noteworthy to mention two points of contention among skeptics. Because 

hourly data are necessary in short-term load forecasting, in several cases the NN 

architecture appeared to be too large for the data samples they intended to model. 

Consequently, instead of learning general relationships within the training data set, the 

NN tends to memorize the training data. The result is an overfitted data set that, in 

principle, would not produce accurate forecasts when independent data were used. 

Previous NN tests in electric load forecasting did not compare results with standard 

benchmarks of accuracy and did not make use of available graphical and statistics tools. 

While possible overfitting of the training set and lack of standard comparisons did not 

confirm that forecasts using NNs were less accurate than traditional methods, skeptical
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reviewers still question the myriad of papers (Chen et al. 1992; AlFuhaid et al. 1997; 

Choueiki et al. 1997) which reported increased accuracy in load forecasts using NNs.

2.5.4.1 Neural Network Architecture

Neural networks, in a forecasting capacity, are extremely flexible models that can 

adequately model complex behavior and nonlinear relationships exhibited in the STLF 

problem (Choueiki et al. 1997). Because of its flexibility, the design and construction of 

NNs are far from trivial. Four basic tasks are required to design a neural network; (1) 

data preprocessing; (2) designing the NN; (3) training the NN; and (4) validating the NN. 

Each task, however, has components that may overlap with another.

The purpose of data preprocessing is to get a handle on the forecasting problem. 

It may be needed to reduce the dimension of the input vectors (i.e., avoid the “curse of 

dimensionality”), to clean/filter the data, and/or to classify the input data to keep the 

model as simple as possible. Preprocessing also is used to determine the shape of the 

load profile. Load profiles, typically a series of 24 hourly loads, basically are partitioned 

into weekday and weekend/holiday profiles. Poor results occur when the distinction is 

not made between these two categories (Lu et al. 1993). Other classes are sometimes 

made for days of the week, seasons and regularly occurring events (e.g.. Super Bowl 

Sunday). The next most important factor that impacts the load profile is weather. Thus, 

days may be classified according to weather conditions by using a statistical relationship.

The completion of the preprocessing provides useful information when 

considering the design of the neural network. Selecting the appropriate “workhorse” for 

the NN architecture is the first step in the design process. The most popular workhorse
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for forecasting problems is the fully-connected, feed-forward, multilayer perceptron (Fig,

2.3). Nonfully connected networks (Chen et al. 1992) and recurrent, or feedback 

networks (Vermaak and Botha 1998) also have been used, but those methods are not as 

popular and will not be discussed. Fully-connected means that every node is connected 

to every node in the network. A feed-forward network implies that there is no feedback 

between the layers. The multilayer perceptron (MLP) leaves the designer to determine 

the number of output nodes, the number of input nodes, the number of neurons in the 

hidden layer, and the number of hidden layers. Selecting the number of output nodes 

requires a decision of what is to be forecasted. The first option is the one-output NN, 

which produces one-step ahead forecasting for the next day’s peak load, the next day’s

Inputs First L.ayerr Second Layer Third Layer
r

a' = f ' (Wp+bO a* = f *(W2a'+b») a' = f)(WW+b3)
a» = f Ï (WJf Î (WJf ' (Wip+b')+b2)+bJ)

FIG. 2.3 A 3-layer network where each layer has its own weight matrix w, bias vector b, 
net input vector n, and output vector a. The first and second layers are the hidden layers, 
while the third layer is the output layer. (Figure from Hagan et al. 1996)
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total load, or the next hour’s load (i.e., given the load series up to hour h, forecast the 

load at hour h+I). The second option is the multi-output NN, which produces a load 

profile (e.g., 24 outputs -  one for each hour of the day). Selecting the number of input 

nodes is the next step for which there is very little theoretical assistance. The designer 

must have some a priori knowledge about the behavior of the system and the factors that 

impact the system being studied. The most popular inputs are the load itself, the load 

from the past day or the past two days, and temperature data (or some statistical 

relationship between temperature and load). The last and perhaps most difficult step in 

the design process is choosing the number of hidden neurons. Again, the theoretical basis 

for this choice is very limited. Thus, trial and error often determines the number of 

hidden neurons. Note, though, that too few neurons will not be able to accurately model 

the load, and too many neurons will cause the network to memorize the training data. 

Thus, selection of the number of neurons is an important issue in optimal network design. 

Simulations are done and the number of hidden layers is chosen from the run with the 

best fitting performance, keeping in mind that too many hidden layers affect the training 

time.

Once the MLP is designed, the NN must be trained using a training algorithm. 

The most common choice of training algorithms is the backpropagation (BP) learning 

rule. The BP algorithm is a generalization of the least mean-squared algorithm that 

adjusts the weights to minimize the mean squared error between the desired and actual 

outputs of the network (Mehrotra et al. 1997). The BP method uses supervised learning 

where the network is trained using data for which the desired input and outputs are 

known. In other words, the output produced by the NN in response to the inputs is
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repeatedly compared with the known (correct) answer. After each iteration, the weights 

are adjusted towards the correct answer by backpropagating the error at the output layer 

through the NN according to the steepest descent method. (The steepest descent has the 

advantage of being simple and only requires the evaluation of the gradient of the 

function.) Because the training step is an iterative process, however, the criterion that 

stops the iteration must be defined. The criterion can be defined by selecting a fixed 

number of iterations or choosing a specified tolerance level for the errors. However, this 

step of the procedure introduces overfitting which implies one of two things: (1) a model 

has fit the data so well that it ends by including random error which creates poor forecasts 

for independent data sets; or (2) the model was overparameterized or excessively 

complex. The first problem can be overcome by cross-validation (Khotanzad et al. 1998) 

or by regularization techniques (Hippert et al. 2001). The second is solved by reducing 

the number of neurons or eliminating some of the connections to form a less complicated 

model.

Finally, the NN must be validated by comparing error statistics with those from 

standard forecasting techniques. Often though, when comparing the NN to a regression 

model, as much effort is required to fit the regression model as is required to fit the MLP. 

Nonetheless, to determine whether or not the NN should be considered as a “well- 

accepted” method, it must be validated by statistical measures such as a cumulative 

distribution of errors, mean-squared errors, percentiles of errors, mean absolute percent 

errors, or serial correlations of errors through graphical means (e.g., scatterplots).

The NN architecture, like any other model, requires a complete understanding of 

the problem before the model should be developed. Because NNs are so flexible, several
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factors should be considered in the design. The NN technique is attractive in the load 

forecasting process because it adequately handles nonlinear relationships, such as the 

temperature-load relationship, and allows the designer to choose the nature of the inputs 

and outputs without completely creating a new network.

2.S.4.2 Neural Networks and Meteorological Forecasting

NWP models provide guidance that help predict various weather parameters. 

When the forecasts contain systematic errors or biases, postprocessing of the output data 

can improve the raw output. Many statistical methods have been used for postprocessing 

meteorological data. For example, the “prefect prog” technique (Klein et al. 1959) was 

among the first; it was later replaced by MOS guidance (Glahn and Lowry 1972). These 

multiple regression methods used model output and converted it into sensible weather 

forecasts. Hall et al. (1999) applied the neural network scheme to develop a precipitation 

forecasting tool. Though NNs are relatively new to weather forecasting, the NN 

produced an acceptable forecast for the PoP and the quantitative precipitation forecast 

(QPF). Kuligowski and Barrros (1998) had similar results for a QPF that used an NN.

Thus, it is possible that NNs could become a useful tool for application to various 

meteorological forecast problems. While NNs are not in widespread use among the 

meteorological community compared to its use in the electrical engineering community, 

the early results are encouraging. For example, the improved forecast of thunderstorms 

(McCann 1992), tornadoes (Marzban and Stumpf 1996), and snowfall (Roebber et al. 

2002) are early success stories.
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2.5.5 STLFs Using Weather-Load Models

The fact that volatility in electric load demand is, in part, attributable to weather 

has been acknowledged for more than half of a century (Davies 1958; Bunn 2(X)0). 

However, the use of weather information and the recognition of its importance in short

term load forecasting has varied during the past several decades. Yet, most STLF 

techniques include weather data in some form -  historical, explicitly or via a weather

load model.

Many ARMA models include weather as an input variable (Van Meeteren and 

Van Son 1979; Hagan and Behr 1987). Those that do not include weather usually update 

various parameters automatically to take into account the impact of meteorological 

variations on the load. However, this inept approach creates an unsatisfactory load 

forecast under rapidly changing weather conditions (even as the load process is assumed 

to be stationary). Those techniques that do account for weather either use it as an explicit 

input variable (Keyhani and Miri 1983; Poysti 1984) or they rely on a heuristic approach 

whereby the load process is corrected for the influence of weather prior to applying the 

ARMA model (Emoult and Mattatia 1984). Yet, knowledge-based expert systems are 

as heavily dependent on weather data - both historical and forecasted - as are the systems 

built around neural networks.

Some power system forecasters use an explicit weather-load or a weather 

sensitive model as part of their STLF regime. Gupta and Yamada (1972) and Van 

Meeteren and Van Son (1979) began with a stochastic model to relate future and past 

loads. The decomposition of the hourly load, Z(i, j), at hour (j) and day (i) had three 

components which were initialized off-line:
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Z(i, j) = T(i, j) + WC(i, j) + X(i, j) (4)

where T(i, j) is the basic component of the load at hour (j) and day (i) which more or less 

is considered to be constant everyday; WC(i, j) is the weekly cycle (or the day-of-the- 

week effect) component of the load at hour (j) and day (i) which is slowly changed to 

represent the weekly pattern of hourly loads; and X(i, j) is the residual component which 

contains the effect of weather variations. Accordingly, this third component represents a 

rapidly changing component and reflects hour-to-hour variations in the load due to 

random factors. This weather-sensitive component is typically modeled using an 

autoregressive technique. Heinemann et al. (1966), Stanton and Gupta (1970), and Gupta 

and Yamada (1972) went a step further and incorporated a linear weather-load model to 

forecast the peak load of the day. This approach to modeling has a basic load component 

(of the peak load), a weekly load component, a weather-sensitive component and a 

random component. (A nonlinear transformation of the temperature variable was needed 

to formulate the linear load model.)

2.6 Merging Load Forecasting and NWP

Meteorologists and load forecasters have been aware for several decades that 

variations in temperature and humidity impact both the peak load and the total load for 

particular power systems (McQuigg et al. 1972). Though traditional methods of load 

forecasting are still in use, the neural network seems capable of integrating statistical 

methods from NWP models of the 21** century, nonlinear relationships, and exogenous 

variables. The offline component requires historical hourly load and actual weather data 

to train the model, which are available from the National Climatic Data Center.
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However, to develop the best statistical relationships between weather and electric load 

data, the time and spatial scales must be consistent between the two data sets. In 

addition, the time scale should not have a resolution less than one hour to avoid abrupt 

changes which can occur in the load and the weather conditions. Otherwise, errors could 

accumulate in training the NN and ultimately affect the online forecasting module.

The load forecast from an online component of the NN could be improved if the 

careful attention was given to the choice of the weather forecasting tool. While NWP 

models have rapidly improved in recent years, several electric companies and many load 

modelers have failed to keep pace with the rapidly evolving NWP models capable of 

producing storm-scale forecasts. Utility companies typically receive their weather 

forecasts from private firms, use older forms of MOS guidance, or generate weather 

forecasts internally. Furthermore, only temperature data have been routinely applied 

because little else existed (Hippert et al. 2001). The standard operating procedures 

remained tied to traditional synoptic-scale models and dated forms of MOS guidance to 

generate load forecasts. Yet, Khotanzad et al. (1997) documented that the weather 

forecast introduces approximately 1% additional error to the load forecast out to i  - 2  

days ahead. The load forecast errors are even greater when they are tied to long-lead 

weather forecasts. Because a small error in temperature forecasts can waste thousands of 

dollars per day, this dissertation will provide evidence that modem day NWP models can 

be coupled into the short-term load forecasting process and improve the economic value 

of the load forecast.
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Chapter 3: Data and Sites

Two types of historical data were used in this study; hourly observations of 

weather variables and electric load data. Hourly electric load data from the three-year 

period of 1998, 1999, and 2000 were obtained from four substations owned by Western 

Farmers Electric Cooperative. Hourly meteorological data for same three-year period 

were obtained from four Oklahoma Mesonet sites in close proximity to the four 

substations. This chapter provides relevant details about the two data sets, the geography 

of Oklahoma, and an overview of each of the four testbed sites.

3.1 Weather Variables

Through a collaborative effort by many scientists in Oklahoma and a partnership 

between the University of Oklahoma and Oklahoma State University, the Oklahoma 

Mesonet (Brock et al. 1995) was developed. The Oklahoma Mesonet is an automated 

meteorological network of 115 evenly spaced stations -  with at least one site in each of 

the 77 counties of Oklahoma (Fig. 3.1). This densely-spaced network was designed to 

provide research-quality data on a time and space scale appropriate to detect mesoscale' 

weather phenomena. Each station measures air temperature and relative humidity both at

1.5 m and 9 m, wind speed and direction both at 2 m and 10 m, barometric pressure, solar 

radiation, rainfall, and soil temperature at several depths. These measurements are 

acquired in real time in five-minute intervals. The Mesonet began recording nearly 1 

million observations per day on 1 January 1994. The Oklahoma Climatological Survey

' Mesoscale refers to weather events that range from a few kilometers to a few hundred kilometers in space 
and several minutes to several hours in time.
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(OCS) has the responsibility to collect the observations, provide data quality assurance, 

and share the data with the public and private sectors.

The meteorological data used in this study were obtained from four Mesonet sites: 

Norman, Woodward, Altus, and Broken Bow. Based upon the scientific literature, the 

predominant weather parameters deemed important to predict electric load demand are: 

temperature, relative humidity and wind speed. Thus, hourly values of air temperature 

(°F, °C) and relative humidity (%) at 1.5 m, wind speed (mph, ms ') at 2 m, and solar 

radiation (Wm'^) were acquired for each day during the three-year study period (1998, 

1999, and 2000).
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FIG 3.1. The Oklahoma Mesonet sites.
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3.2 Electric Load Data

Western Farmers Electric Cooperative (WFEC) is a generation and transmission 

(G&T) cooperative (co-op) headquartered in Anadarko, Oklahoma. WFEC is owned by 

its 19 Oklahoma member distribution co-ops, all of which are members of the 

Touchstone Energy Alliance of electric cooperatives. WFEC also is responsible for the 

electricity supply to Altus Air Force Base. WFEC owns three generation plants in 

Oklahoma. The Hugo plant, located near Fort Towson, operates a 400 megawatt (MW) 

coal-fired generation unit. The Anadarko plant operates three Combined Cycle units for 

a total of 300 MW of generating capacity. The Combined Cycle units add efficiency to 

the generation process by combining natural gas and power from a steam turbine to turn 

its generator. The Anadarko Plant also operates three natural gas units that often are on 

standby. Finally, the Mooreland Plant operates three natural-gas-fired units that have a 

combined output of 304 MW. In total, WFEC has a power supply capacity (including 

generating units and hydro power allocation) of 1,300 MW. The transmission facilities of 

WFEC include over 3,400 miles (5,472 km) of transmission lines and more than 225 

substations.

WFEC is responsible to its customers for generating or purchasing wholesale 

power, whichever is cheaper, and for transmitting that power to their various substations 

for distribution to homes and businesses. WFEC sells this power to its member 

distribution cooperatives, which have exclusive responsibility for the power once it 

leaves a substation. Hence, high voltage power sent to each substation uses transmission 

lines owned by WFEC. At the substation, the power flows into a transformer box, is 

powered down, and sent as low voltage power through the distribution lines owned by
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the distribution co-ops. The distribution co-ops sell/distribute electricity in the WFEC 

system to its individual customers.

The second category of data in this study is the hourly electric load from each 

substation within the distribution cooperatives. In other words, the electrical data are the 

number of kilowatt hours (kWh) that WFEC sold the distribution co-ops for distribution 

to homes and businesses. A kWh is a unit of electrical energy which is equivalent to 

1000 watts of power used for one hour. For example, an average household will 

consume between 800-1300 kWh per month^ (Appendix C). It is important to note that 

the number of kilowatt hours sold by WFEC to the distribution co-ops normally exceeds 

the sum of the kilowatt hours read from individual meters of consumers. This inequity is 

created by line loss (i.e., energy loss and capacity loss from moving power through 

conductors or related equipment). Line loss results primarily from core loss within the 

transformers (heat loss from coils), trees near power lines that bleed power from the 

system, or dishonest meter readers. The distribution co-ops attempt to minimize this loss. 

Even so, the co-ops recoup this loss by adjusting rates. Thus, WFEC considers these 

small but important issues when forecasting the electrical load for its system.

The available combination of hourly, substation-level electrical load data and 

hourly weather parameters from co-located weather towers is unparalleled in the 

scientific literature. Because of the complicated issue of deregulation and increased 

competition between utilities and energy traders, electric load data remains proprietary. 

However, in the interest of learning more about the relationship between weather and 

electric load demand, WFEC agreed to share their load information for research purposes 

only. Furthermore, because stations in the Oklahoma Mesonet are spaced at a resolution

■ WFEC Glossary of Terms: www.wfec.com/glossary

44

http://www.wfec.com/glossary


of -12 miles (19 km), quality-assured meteorological data were within -4.3 miles (6.9 

km) of each substation. Most customers are within -15 miles (24 km) of each substation. 

Hence, the combined data set represents a unique opportunity to better understand the 

habits of localized customers and determine how they respond to changing weather 

conditions.

3.3 Geography of Oklahoma

The characteristics of each Mesonet site and substation are dependent upon their 

location in the state. The diverse but natural environment of Oklahoma has been divided 

into ten regions based on the physical characteristics (Fig. 3.2) within each region (Wikle 

1991). While Figures 3.3-3.8 provide supplemental information about these features, 

attention is focused on those regions that include the four sites used in this study.

P h y s io g r a p h ic  R e g io n s

1. High Plains
2. Gypsum Hills
3.  Wichita Mountains
4. Red Bed Pla ins
5. Arbuckle Mountains
6. S a n d s t o n e  Hills
7. Prairie Plains
8. Ozark P la te au
9.  Ouachi ta  Mountains  

10.  Red River Pla ins

Source: Oklohomo G eography 1954

FIG 3.2. The physiographic regions of Oklahoma as described by Wikle (1991).
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The plains of Oklahoma -  in particular, the High Plains (Great Plains), the Red 

Bed Plains (Osage Plains), the Prairie Plains (Eastern Lowlands), and the Red River 

Plains (Coastal Plains) -  are located in Regions 1,4,7, and 10, respectively. Though the 

Great Plains and Coastal Plains are characterized by a relatively flat, monotonous 

landscape, they are quite different. Region 1 has an average elevation of nearly 2000 feet 

above sea level, whereas Region 10 contains the lowest terrain in Oklahoma at 287 feet 

above sea level (Morris 1977). The minimum rainfall occurs across the Great Plains 

while the maximum rainfall and the most subtropical region in Oklahoma are found in the 

Coastal Plains. When water is available, the Great Plains have productive soils; thus, 

many Oklahoma crops are produced in northwest Oklahoma (Fig. 3.3). The ratio of farm 

income to total income in Figure 3.4 also confirms this characteristic of the Great Plains. 

However, more people live in southeast Oklahoma than live in the Oklahoma Panhandle 

(Fig. 3.5).

The Red Bed Plains of Region 4 is home to four major Oklahoma urban centers in 

the WFEC distribution area (Oklahoma City, Enid, Lawton and Altus); these centers are 

the most densely populated regions of Oklahoma (Figs. 3.5 and 3.6). Winter wheat is the 

major cash crop in this region. Soils are relatively productive compared to other sections. 

As a result, extensive farmlands and relatively high rural income are common.

Grasslands dominate (Fig. 3.7) Regions 2 and 6 (known as the Gypsum Hills and 

Sandstone Hill, respectively). The region becomes more arid and the entire landscape 

opens up due to low humidity (and less cloud cover) creating “the big skies of the West” 

(Spath et al. 1998). A portion of the winter wheat belt lies in Regions 2 and 6. The hills 

of Region 6 are forested areas relative to those in Region 2 (Fig. 3.8).
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Agricultural Regions
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FIG 3.3. As in Fig. 3.2 except the agricultural regions are shown.
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FIG 3.4. The ratio of farm income to total income by county in Oklahoma as described 
by Spath (1998).
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FIG 3.5. The population per county in Oklahoma as described by Spath (1998).
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FIG 3.6. The percentage of each county in Oklahoma that is urban (versus rural) as 
described by Spath (1998).
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FIG 3.7. The various grasses and trees found across Oklahoma are displayed as 
described by Spath (1998).
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FIG 3.8. The forested areas found across Oklahoma are displayed as described by Wikle 
(1991).
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Because Oklahoma has a diverse landscape, climate, and population, the diversity 

between the regions makes Oklahoma a unique study area to investigate the impact of 

climate/weather patterns on the demand for electricity by different groups of people. The 

four WFEC substations and co-located Mesonet sites chosen for this study are located in 

Regions 2 ,4  and 10 of Figure 3.2.

3.4 Description of Data Sites

Four Mesonet sites and the nearest four WFEC substations were chosen to provide 

data for this study (Table 3.1; Fig. 3.9). The West Norman substation and the Norman 

Mesonet site are referred to as “Norman” in this study. Likewise, the Woodward 

substation and the Woodward Mesonet site serve Woodward. Altus AFB is served by 

the Altus Mesonet site and the Altus AFB substation. Finally, Dominance is an industrial 

location near the Broken Bow Mesonet site and the Dominance substation. These sites 

were chosen based on the type of electrical customer, geographical location, load demand 

(Table 3.2), the regional climatology, and the availability of data.

Table 3.1 The four Mesonet sites and substations used in this study, and their separation 
distances.

Mesonet Site Substation Separation Distance

Norman West Norman 1.94 mi (3.12 km)
Woodward Woodward 1.64 mi (2.64 km)

Altus Altus AFB 5.23 mi (8.42 km)
Broken Bow Dominance 8.52 mi (13.71 km)
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FIG. 3.9 Four data sites used in this study; 1 - Norman Mesonet site / West Norman 
substation; 2 - Woodward Mesonet site / Woodward substation; 3 - Altus Mesonet site 
/ Altus AFB substation; 4 - Broken Bow Mesonet site / Dominance substation.

Table 3.2. The site name, type of customer, average annual load, and the annually peak 
load value for each substation (based on 20(X) load data).

Substation Primary Customer 
Served

Average Annual 
Load (kWh)

Annual Peak Load 
Value (kWh)

Norman Urban/Residential 7392 18229
Woodward Rural/Residential 5298 10392
Altus AFB Air Force Base 8488 15044
Dominance Industrial 3866 6482
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3.4.1 Norman Site

Norman is located in Region 4 and is home to the University of Oklahoma. It is 

largely an urban community (Fig. 3.6) with thousands of single family dwellings, a large 

student population (28%), and several dozen apartment complexes. A sizeable group of 

Norman residents commute to work in Oklahoma City during the week.

Ninety-two percent of customers of the Oklahoma Electric Cooperative (OEC), 

which provides electricity to Norman and the surrounding communities, are residential 

while remaining customers are commercial. OEC has 90 miles (145 km) of distribution 

lines to service over 1800 customers (Table 3.3). Of the four study sites, Norman is the 

most densely populated per square mile. Distribution lines from the Norman substation 

extend approximately 1 mile (1.6 km) towards the west, 3 miles (4.8 km) towards the 

north, and 7 miles (11.3 km) toward the southeast.

Norman is located in central Oklahoma where the average annual temperature is 

~60.1°F (15.6°C), and the mean annual precipitation amount of 37.6”.

Table 3.3. The number of customers served each year (for the 3 year study period) 
and the miles of distribution line needed to reach these customers.

Substation
Number o f 
Customers 

in 1998

Number o f 
Customers 

in 1999

Number o f  
Customers 

in 2000

Miles o f 
Distribution 

lin e

Customers 
per mile o f 

Une

Norman 1809 1874 1855 90 20.6
Woodward 1897 1929 1965 300 6.43
Altus AFB 1 1 1 - -

Dominance 1 1 1 0.057 -
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3.4.2 Woodward Site

Woodward is located east and slightly south of the Oklahoma Panhandle (Region 

2). Woodward is primarily a residential community like Norman, but smaller in 

population (Fig. 3.6), larger in land area, and more rural in nature. This region is 

characterized by rural residential areas, farmland, and oil Held businesses. Woodward is 

a major center for oil- and gas-field services, equipment repair, and well-drilling 

employment.

The Northwestern Electric Cooperative (NEC) services Woodward and the 

surrounding communities. The electrical load from the Woodward substation is 

consumed by customers that are 75% residential and 25% commercial. The distribution 

lines from this substation extend 30 miles (48.3 km) to the south and east. More than 300 

miles (482.8 km) of overhead and underground distribution lines are required to serve the 

1937 customers of this NEC substation, -  3 times more power lines than are required in 

Norman to serve only -100 more customers.

The average annual temperature is ~60°F (15.6°C), the average rainfall is 23”, and 

the average snowfall is 17”. Relative to the remainder of Oklahoma, the climate in 

Woodward is cooler and drier.

3.4.3 Altus/Altus AFB Site

Altus is located in Region 4 of Oklahoma. It is home to Altus Air Force Base 

(AFB), which employs about 4800 people. Altus AFB is an Air Education and Training 

Command (AETC) base and is the only strategic Airlift and Air Refueling Training 

Center in the U.S. Air Force. During the day, Altus AFB consumes electricity similar to
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that of a typical commercial/business entity (i.e., primarily between 7 AM -  4 PM). 

However, during the evening hours (i.e., 6 PM -  10 PM) the load profile for the AFB 

resembles that of a residential load profile reflecting its military base housing (i.e., 8000 

family units and 400 dormitories). If necessary, this base can be converted into an 

operational facility for combat in a matter of days.

WFEC treats Altus AFB like one of its 19 distribution cooperatives (e.g., OEC 

and NEC). However, Altus AFB is different in that it has one substation which supplies 

power to only Altus AFB, whereas the other distribution co-ops distribute electricity from 

several substations to a multitude of customers in their respective service areas. Thus, 

Altus AFB is a single-customer substation of WFEC.

Altus has an average temperature of ~63.2°F (17.3°C) -  the warmest average 

temperature of all four study sites. It receives 24” of rain and 8” of snow annually.

3.4.4 Broken Bow Site/Dominance

Broken Bow, which is home to the Dominance substation and the Broken Bow 

Mesonet site, is a rural community located in southeast Oklahoma (Region 10). Tyson 

Foods, Inc., the Weyerhaeuser Company, and Pan Pacific Products employ over 3000 

people in Broken Bow. Farmers in this region combine cattle, poultry, tree farming and 

field crops into their operations.

Choctaw Electric Cooperative (CEC) distributes electricity in the Broken Bow 

area, some of which is delivered by the Dominance substation. The Dominance 

substation is provides electricity to only one (industrial) customer -  Pan Pacific Products. 

This company manufactures wood products such as particleboard and components for the
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door and moulding industry. Their electrical demand is different from most residential 

customers or commercial entities.

The average temperature is ~62°F (16.7°C), slightly warmer than the Norman and 

Woodward sites. Because the average annual precipitation is 55.1”, Broken Bow is much 

more vegetated and humid than the other three sites.
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Chapter 4: Analysis of Data

This scientific literature has established the fact that weather and climate are 

important in load forecasting. Hence, it is appropriate to understand the diverse weather 

patterns and climate across Oklahoma. Section 4.1 highlights the climatology of 

Oklahoma based on the last three decades of meteorological observations. In addition, 

the weather patterns that occurred during the three data-years used in this study (1998, 

1999, and 2000) are reviewed. The focus is on the four regions of Oklahoma from which 

the Mesonet and load data were acquired. Significant differences in meteorological 

features between the 30-year climatology and those in the three-year data set are noted. 

Finally, the electric load data are presented for the same three-year period.

4.1 Climatology of Oklahoma

Climate is defined as a statistical accumulation of daily and/or seasonal weather 

events over a long period of time. Climatology is a study of the climate of a particular 

location, which results in “normals” of various weather parameters. A “normal” daily 

temperature, for example, is computed by averaging the mean daily temperature observed 

on each day of the year during a 30-year period*. Because the averaging technique tends 

to smooth extremes and other smaller-scale fluctuations, climatological temperature 

patterns applied to a demand for electricity, have a minimal impact. Yet, climatological 

trends offer load forecasters a reasonable starting point from which they can assess the 

load demand for each service area during monthly, seasonal, and annual periods.

Oklahoma Climatological Survey (CCS): hltp://k I2.ocs.ou.edu/teachers/lessons/accuracyofclimate.html
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However, for STLFs, details that were smoothed during the climatological averaging 

process represent important pieces of information that better define a peak load. Thus, 

climatological data are often used for long-term load forecasting and as an assessment 

tool for short-term forecasts.

Oklahoma’s climate is said to be “fundamentally transitional” (Spath et al. 1998). 

This terminology means weather in Oklahoma is a transition zone between the arid 

western United States and the humid eastern United States (in terms of precipitation). 

The Oklahoma climate also is transitional in terms of temperature between the cold of the 

north during winter and the heat of the south in the summer.

To illustrate diversity of the Oklahoma climate. Figure 4.1 presents the nine climate 

divisions established by the predecessor to the Climate Prediction Center during the mid- 

1950s. The nine divisions are: 1 -  Panhandle, 2 -  North Central, 3 -  Northeast, 4 -  

West Central, 5 -  Central, 6 -  East Central, 7 -  Southwest, 8 -  South Central, and 9 -  

Southeast. The boundaries of these climate divisions were defined using a balance of 

drainage basins, crop diversity, temperature and precipitation averages, heating and 

cooling degree days, and drought indexes (Guttman and Quayle 1996). Although the 

divisions do not always enclose areas of climatological homogeneity, the size of each 

division also was based upon an array of criteria including crop-growing belts, electric 

power grids, water resources and numerical grids. From a larger perspective, states like 

New Mexico, Arizona, and California have only seven climate divisions to represent 

complex interactions between climate and the native vegetation.
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Oklahoma Climate Divisions
1> Panhandle 
2- Nonh Central 
3> Northeast
4- VMest Central
5- Central
6- East Central
7- Southwest
S- South Central 
9- Southeast

O 2000 OWahomw 8ur»«v >Ui hgf#» «•«rvad

FIG. 4.1 The nine climate divisions of Oklahoma.

Temperature is the weather parameter that has the most significant impact on 

electric load demand. During any given month across Oklahoma, a wide range of 

temperatures can be observed; these features are even evident in a 30-year (i.e., 1971 -  

2000) climatology. During the winter months, Oklahoma is warmest in its southeast 

quadrant and gradually becomes colder toward the northwest and into the panhandle (Fig. 

4.2). From the standpoint of electricity demand, a load forecaster can deduce from this 

climatology that the heating demand may be large in northwest Oklahoma.

During the spring transitional months, not only do temperatures warm, but the 

highest observed temperatures shift into southern Oklahoma (Fig. 4.3). The frequent 

intrusion of cooler air is most evident in the panhandle section of the state. Springtime 

temperatures are comfortable compared to other seasons. Thus, from an energy demand
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point-of-view, the climatological patterns suggest that electricity consumption is minimal 

during this transitional season.
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FIG. 4.2 The average temperature for Febmary based upon data from 1971-2000.
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FIG. 4.3 As in Fig. 4.2, except for May.
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Warm temperatures dominate a majority of the state during the summer months 

(Fig. 4.4). The large gradient of temperature observed during the winter is not present 

during summer. This climatological pattern represents “big picture” guidance to load 

forecasters, especially to those who deal with generation decisions.

As autumn approaches, the temperature gradient across Oklahoma begins to 

resemble the winter pattern; warmer temperatures are confined to the southeast and 

cooler ones to the northwest (Fig. 4.5). The beginning of fall, much like spring, brings 

comfortable temperatures to most Oklahomans. Further into the fall season, 

climatological temperatures decrease quickly (~0.5°F) with each passing day. Thus, 

heating becomes a necessity for comfort. Load forecasters must be aware that abrupt 

changes in temperature during the transitional seasons create load demands that are more 

difficult to forecast.

I I
79 74 75 71 77 79 79 81 e t  92 «9 

deg Fahrenheit
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FIG. 4.4 As in Fig. 4.2, except for August.
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FIG. 4.5 As in Fig 4.2, except for November.
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4.2 Oklahoma Weather During the Study Period

Because the actual load data and concurrent, co-located meteorological data 

represent pillars that underpin this work, it seemed appropriate to document the weather 

patterns that occurred during the study period^. Overall, the weather patterns were 

similar from year to year. Important details from each of the four study regions described 

in Chapter 3 are documented below. Table 4.1 displays the climatic and the observed, 

annually-averaged temperatures. Significant events that occurred during the study period 

(e.g., heat waves, cold spells, and major precipitation events) will be addressed.

 ̂The Oklahoma Annual Climate Summary, produced by the Oklahoma Climatological Survey, provided a 
concise summary of the weather across Oklahoma during 1998, 1999 and 2000.

61



Table 4.1 Climatological normal temperatures (F) and annually-averaged temperatures 
observed at four sites during the study period.

Location Climate
Division

Nomud
Temperature

Average
1998

Temperature

Average
1999

Temperature

Average
2000

Temperature

Norman 5
(Central) 60.1 62.96 61.81 60.64

Woodward 2
(N. Central) 56.5 59.86 59.75 58.77

Altus

Broken

7
(Southwest)

9

61.8 63.75 62.78 61.87

Bow (Southeast) 60.7 63.39 61.85 61.26

4.2.1 Oklahoma Weather-1998

The statewide-averaged temperature for 1998 was 62.3°F (16.8°C), 2.0°F (1.1°C) 

warmer than normal. During the year, the 4"' warmest autumn and the S"' warmest 

summer occurred based upon temperature records that date to 1892. Each month except 

March and April recorded warmer than normal temperatures. At Altus Air Force Base, a 

daily maximum of 113°F (45°C) occurred on 1 June. By mid-June, most of western and 

southern Oklahoma labored under oppressively hot and dry conditions. These conditions 

spread statewide by month’s end. From July through September, the sweltering 

temperatures caused 24 heat-related deaths in Oklahoma.

Record-breaking droughts, concentrated in the west central, southwest and south 

central climate divisions, plagued Oklahoma from April through September. Yet, 1998 

ended with statewide-averaged precipitation that was above normal due to large amounts 

of precipitation during other seasons in other parts of the state. The state was wet and 

warm during January. Annual precipitation in the climate divisions which included
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Norman, Broken Bow and Woodward were above normal for the year while Altus 

reported below normal precipitation.

4.2.2 Oklahoma Weather -1999

Mild weather during the cold months and a wet spring created a warmer and 

wetter year than normal. The above normal temperatures at the end of 1998 persisted 

through the winter of 1999 and created an anomaly that was 3.8°F above normal for the 

winter. Yet, springtime temperatures registered 1.3°F below normal. In addition, the 

most significant snow storm of the year occurred in March. Much like the features which 

occurred during 1998, the summer was hot and dry across the entire state. A heat wave 

in late July caused 8 deaths across Oklahoma. Each day in August, the temperatures 

reached triple digits somewhere in the state. Some relief came in September when 

average temperatures for the month were lower than normal across Oklahoma. Yet, 

temperatures for the fall season ended warmer than normal by 1.3°F. December followed 

the same warm trend. The four study sites ended the year 1°F above normal.

Greater than normal precipitation occurred in January while February was drier 

than normal. The precipitation in April was much greater than normal across the state 

except for a small area in extreme south central and southeast Oklahoma. In fact, January 

through June recorded the 7'*’ greatest 6-month precipitation in the history of Oklahoma. 

The infamous 3 May 1999 tornado also occurred, which was the most expensive tornado 

(i.e., an estimated $1 billion in damage) recorded to date in our nation’s history^. While 

summer precipitation was near normal, dry conditions continued into September for 

western and southeastern Oklahoma. Locally heavy rainfall occurred in other areas to

 ̂http://www.srh.noaa.gov/oun/stonns/19990503/may3faqs.html
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create near-normal rainfall for the month. As much as 10” of snow occurred near 

Woodward in early December. Near mid-December, snow and sleet occurred in many 

areas followed by heavy rains and relatively warm temperatures. The weather of 1999 

provided an interesting contrast. Norman, Woodward, and Altus were a few inches 

above normal for their annual precipitation while Broken Bow was 10” below normal.

4.2.3 Oklahoma Weather - 2000

On average, the year 2000 was a warmer and wetter year than normal. However, 

the year also was filled with erratic temperature swings, droughts, flash floods, and 

winter storms. Several climatological records were set as well. The year began with 

temperatures that were 4.5“F (2.5°C) above normal (continuing the persistent warm 

pattern from December). In fact, the winter of 1999-2(X)0 was the 9“’ warmest on record. 

The average springtime temperature was only 0.7“F (0.4°C) above normal, even with a 

record-setting 1 lOT (43.3®C) in Altus. Daytime highs exceeded 100“F (37.8“C) during 

May for one-third of the month. The summer season recorded slightly above normal 

temperatures that resulted in two heat-related deaths. The fall season displayed 

capricious temperature swings and more record-setting conditions. During the first week 

in October, triple digit temperatures were recorded about the state, with a 106“F (41.1°C) 

record set in southeast Oklahoma. By late-week in October, the first widespread freeze 

occurred across most of the state. In fact, high temperatures plummeted more than 50“F 

in just three days. This event was followed by the coldest November-December period 

on record (i.e., 7.6°F [4.2°C] below normal). During December alone, three destructive 

winter storms occurred. The 25-27 December ice storm destroyed 38,030 distribution
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poles, 1086 transmission structures, 109 miles of transmission line, and 2113 miles of 

distribution lines to businesses and homes. Additionally, twenty-two deaths occurred 

between Christmas Day and New Year’s Day as a result of the horrid weather conditions.

Though a severe drought occurred during 2000, the statewide-averaged annual 

precipitation was 2.55” above normal. The beginning of the year was rather dry. March 

became the first month to record above normal precipitation. After two more months of 

below average precipitation, the skies opened in June and produced the 7th wettest June 

on record (i.e., 3,24” greater than normal). August began a recording-setting warm 

season drought. These dry conditions persisted through September and proved costly and 

damaging (e.g., poor crop yields and destructive wildfires) for Oklahoma. The remaining 

three months of the year brought above normal precipitation (i.e., 3,41”, 1.16”, and 0.32” 

above normal, respectively). In addition, three of the four study sites reported above 

normal annual precipitation. Altus was the only site that recorded precipitation below the 

climatological normal.

4.3 Electric Load Demand

An electric utility serves many customers, all of whom have different electric load 

demands which peak at different times during the day. For example, rural utilities serve 

residential, commercial, industrial (or large commercial), and street lighting customers 

(Rastogi and Roulet 1994). Each customer class has a unique base load profile (Fig. 4.6). 

Residential customers consume electricity using household appliances, lights, television, 

and heat/cooling units. The peak load for residential customers occurs during the 

evening hours with a secondary peak during the early morning hours. Commercial
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customers include schools, hospitals, restaurants, hotels, shopping malls, and office 

buildings. The commercial load profile typically peaks late in the morning and again 

during the evening. On the other hand, the industrial load demand parallels the work 

shifts of a company with the load profile remaining constant during each shift. The street 

lighting load, or municipal load, is constant from dusk to dawn and zero at other times.
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FIG. 4.6 Typical load profiles for the customers of rural electric cooperatives. (Figure 
from Rastogi and Roulet 1994)

Typical load profiles are commonly known as the “base demand” or “base load” 

for each customer class. The base demand reflects a long-term average behavior of that 

customer and is considered to be constant with time or change very slowly.
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Superimposed on this base load is a variable component of the total load demand which 

is highly attributable to fluctuations in daily weather conditions. Changes in weather -  

seasonally, daily or hourly -  cause changes in the use of electricity, thus altering the 

shape and magnitude of the base load profile. Other changes in load are caused by a 

change in human habits from weekdays to weekends and vice versa, holidays, and special 

events.

The four study sites were chosen to reflect a specific customer base. Norman and 

Woodward represent the residential urban and residential rural customers, respectively. 

Altus AFB characterizes the commercial customer while Dominance represents the pure 

industrial customer. Because changing weather impacts each customer class in a 

different fashion, the four unique customer classes will open the door to investigations 

that have never been attempted.

4.3.1 Average Load Profiles -  Norman

Norman is primarily a residential community. The typical load profile illustrated 

in Figure 4.6 for residential customers reaches its peak around 7 PM, with a secondary 

peak occurring at 8 AM as residential customers prepare for their day. The annually- 

averaged hourly loads for Norman during the study period (Fig. 4 .7 / resembled the 

profile of a residential hourly load (Fig. 4.6). However, when the load profile is analyzed 

on smaller time scales (e.g., seasonally, monthly, or daily), peaks in the load profile 

become better defined. Additionally, when the averaged load profiles combine weekdays 

and weekends/holidays into one graph, an otherwise significant morning peak observed

* Only 1998 and 1999 are shown in Figure 4.7 because the load consumption doubled at the Norman 
substation in 2000. This increased load consumption occurred because the capacity of the transformer was 
increased. The 2000 load profile had the same shape but its magnitude was twice that of 1998 and 1999.
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during the winter, fall and spring seasons is masked (discussed with Fig. 4.12). Finally, 

and most importantly, changes in the weather can alter the magnitude of the peak values 

in the load profile and the shape of the profile. These characteristics were investigated.

Seasonally-averaged load profiles for Norman during the study period are shown 

in Figures 4.8 - 4.11. (The scale on the y-axis of the plots in the following sections was 

varied to retain the maximum detail possible in each load profile.) The shape of the 

winter load profile (Fig. 4.8) is similar to that of base load profile for a residential 

community. The time of the winter peak load during all three years occurred at ~8 PM, 

while the peak load values during the winter differed from year to year. During the study 

period, the peak load ranged from 3200 kWh -  3500 kWh. While weekend and
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FIG. 4.7 Annually-averaged load profiles from Norman during the study period.
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weekday loads were combined in all profiles shown thus far, the secondary load peak at 

~8 AM was better defined in the winter load profile than in the annually-averaged load 

profiles. Cold mornings associated with the winter season often caused residents to 

increase their use of electricity. The average winter load was in excess of 2500 kWh for 

18 hours in 1998 and 10 hours in 1999. (This difference is attributable to a warmer than 

normal winter in 1999.)

Winter Load Profiles 
Norman: 21 Dec - 22 Mar
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FIG. 4.8 Average hourly electric load profiles from Norman during the winters of the 
study period.

The springtime load profiles (Fig. 4.9) were different from the annual profile in 

that they had a broad evening peak that spanned ~3 hours (6 PM -  8 PM). During the 

study period, the springtime peak values ranged from 3000 to 3400 kWh. The annually-
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averaged and spring load profiles were similar in that the secondary peak near 8 AM was 

ill-defined compared to that which was readily apparent in the winter profiles. Because 

the morning temperatures during transition seasons are more comfortable for humans 

(than, for example, during the winter season) less electricity is required. The average 

load consumption during the spring exceeded 2500 kWh for 11-12 hours throughout the 

afternoon and evening.
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FIG. 4.9 As in Fig. 4.8, except for spring.

The summer profile (Fig. 4.10) rose steadily between 6 AM and 6 PM. 

Summertime peak values range from 4800 kWh to 6100 kWh, and only during the 

morning hours in 1998 did average load dip below 2500 kWh. The secondary peak
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identified in the annually-averaged winter, was damped in the spring load profiles and 

was absent from the summer profile Furthermore,. The reason for the absence of this 

feature is explored in Chapter 5.

Summer Load Profiles 
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FIG. 4.10 As in Fig. 4.8, except for summer.

The load profiles for the fall season (Fig. 4.11) regained part of the shape detected 

in the winter and annual profiles from the study period. Peak load values ranged from 

3400 to 5CXK) kWh, slightly higher than the peak values observed during the spring and 

winter season. The average load in 1998 exceeded the 2500 kWh threshold for 11 hours 

while the 1999 load was above 2500 kWh all day on an average day. Thus, the shape of 

the Norman load profiles for the winter, spring, and fall seasons mirrored the idealized
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base load curve, in spite of the fact that the curves shifted (up or down) due to varying 

weather conditions. Only during the summer seasons did the load curves have a different 

morning trend and shift up or down due to changes in the weather.

Fall Load Profiles 
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FIG. 4.11 As in Fig. 4.8, except for fall.

4.3.2 Weekdays, Weekends, and Holidays - Norman

The shape of the load profile varied dramatically when weekdays and weekends 

are analyzed separately (Fig. 4.12) because customers consume electricity differently on 

weekends than they do on weekdays. During the week, the load curve sharply increases 

between 5 AM and 8 AM, which suggested customers were preparing for work or school 

and using more electricity in the process. After 8 AM, the use of electricity decreased
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slightly before increasing to the evening peak load that occurred between 7-8 PM. On 

weekends, nearly the same amount of electricity was consumed as on weekdays. 

However, the morning load curve on an average weekend reflected a reduced 

consumption of 15% between 5-8 AM and a 5-9% increase in consumption between 10 

AM and 5 PM. Consumers appeared to remain at home on the weekends, which 

increased their electricity consumption during the midday hours. By evening (7-8 PM), 

the peak loads for weekday and weekend use of electricity were approximately the same. 

As midnight approached, the load demand on weekdays and weekends decreased 

dramatically.

Annually^Averaged Weekend vs. Weekday Load Profiles 
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FIG. 4.12 Annually-averaged load profiles from Norman in 1998 that illustrate the 
differences in the weekday versus weekend load.
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Holidays, especially those that occur on a weekday, significantly impacted the 

idealized load. Load profiles for the four Mondays in February 1998 (16 February 1998 

was President’s Day, a federally observed holiday) are illustrated in Figure 4.13. While 

three Mondays exhibited similar patterns and peak times, the holiday Monday resembled 

a weekend profile more than it did a weekday profile. The difference resulted from the 

fact that residential customers seemed not to follow their routine when Monday was a 

holiday. Some customers observed the holiday, while others possibly did not (e.g., The 

University of Oklahoma). The weekday before a holiday period begins also may 

experience similar changes to the load profile when individuals choose to extend their 

holiday weekend.

Daily Load Profiles for the Mondays In February 1998 
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FIG. 4.13 Daily load profiles for the four Mondays in February 1998 for Norman. The 
holiday Monday (President's Day) produced an electrical load with a different pattern 
than was observed on non-holiday Mondays.
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The daily load profiles (Fig. 4.13) from the winter of 1998 illustrate the different 

holiday pattern and exemplify the drastic morning peak (on non-holidays) which, clearly, 

was masked in the annually- and seasonally-averaged load profiles. Furthermore, the 

differences between the three non-holiday Mondays illustrate the impact of weather. For 

example, the average wind chill temperatures (Appendix D) during the 7 AM -  9 AM 

peak, were 34°F (1.1°C), 37.2°F (2.9°C), and 38.1°F (3.4°C) on 2 February, 9 February, 

and 23 February, respectively. The coldest morning temperature (2 February) also had 

paralleled the greatest morning peak load. As the temperature increased during the day, 

the peak load decreased. It is noteworthy that the average wind chill temperature 

between 7 AM -  9 AM for 16 February, the holiday Monday, was 37.3°F (2.9°C) -  the 

same average temperature that occurred on 9 February. However, the load during the 

holiday period was significantly different from loads on the non-holiday Mondays due to 

different societal habits on holidays.

4.3.3 Average Load Profiles -  Woodward

Woodward is a residential community, similar to Norman, but more rural in 

nature. Based upon the base load profile for a residential community (Fig. 4.6) and those 

created for the Norman site (Fig. 4.7), classical features included a rapid increase in 

electrical use towards an inflection around 8 AM followed by a steady increase toward a 

large evening peak. The annually-averaged load profiles for Woodward (Fig. 4.14)
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during the study period^ were not much different. However, analyses on smaller time 

scales revealed critical details in the profiles.

Annually-Averaged Load Profiles 
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FIG. 4.14 Annually-averaged load profiles from Woodward during the study period.

Seasonally-averaged profiles for the Woodward site are shown in Figures 4.15 -  

4.18. The shape of the winter profiles (Fig. 4.15) clearly define a very significant 8 AM 

peak as most residents prepared to leave home for the day, and an 8 PM peak which 

indicated that most residents had returned home and settled into their evening routine. 

These features were not clearly defined in the annually-averaged plots. The post-sunrise 

section of the load curve increased by 1300 kWh in just 3 hours to reach the 8 AM peak 

of -5600 kWh. During the day (i.e., 8 AM -  4 PM), the electric load steadily 

decreased until 4 PM.

The study period for Woodward is May 1998 -  December 1998, 1999, and 2000. Because electric load 
data were corrupt for the first four months of 1998, neither the annual load profile nor the winter and spring 
load profiles will be shown.
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FIG. 4.15 Average hourly electric load profiles from Woodward during the winters of 
the study period.

Another sharp increase in electrical usage occurred between 4 PM and 8 PM. 

Even so, the 8 PM peak fell shy of the morning peak by -100 kWh. Yet, considerably 

more electricity was needed to meet the morning power demand relative to the evening 

peak (e.g., ~6 hours above 50(K) kWh prior to midday versus 4+ hours above 5000 kWh 

during the evening). The shape of the winter load profile to seemed result from 

predictable routines by customers rather than from human responses to extreme winter 

weather conditions. Peak values of the profile, however, were very sensitive to weather 

conditions.

The spring load profiles (Fig. 4.16) increased steadily from 5 AM to a broad peak 

at 5 PM. The load consumption increased rapidly during the period from 5 AM to 8 AM, 

but the increased use of electricity occurred at a slower rate after mid-moming. The
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average early-evening peak was -5300 kWh, approximately 300 kWh lower than the 

winter peaks. Yet, usage exceeded 5000 kWh for -7  hours. This decrease in peak load 

demand from winter to spring can be attributed to warmer, more comfortable 

temperatures that occurred during the springtime months relative to the winter months.
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FIG. 4.16 As in Fig. 4.15, except for spring.

The summer load profiles (Fig. 4.17) climbed steadily from 5 AM (e.g., the 

profile minimum) to the 5 PM peak. All but 6 hours of the 24-hour day had an average 

load demand that exceeded 5000 kWh. The large amplitude of this summer pattern was 

masked in the annually-averaged load profile as was the extended period of high demand 

(i.e., 18 summer hours when the load exceeded 5000 kWh versus only 9 hours when the 

entire year was considered). The load profile during the summer months is especially 

important to the generation of electricity because this season is when utilities companies 

often operate at maximum capacity and sometimes must obtain electricity through other
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sources to meet the customer demand. The 5 PM peak averaged 8500 kWh, almost 3000 

kWh higher than the springtime peak. This greater demand was a direct result of the 

higher, often unpleasant temperatures experienced during the summer months.
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FIG. 4.17 As in Fig. 4.15, except for summer.

The bimodal structure (morning and afternoon peak) of the typical residential load 

demand (Fig. 4.6) returned in the fall load profiles (Fig. 4.18) as temperatures returned to 

more comfortable levels. A sharp incline in the load profile occurred between 5 AM and 

8 AM. The use of electricity after 8 AM held steady until mid-afternoon, after which a 

gentle increase resumed to the 7 PM peak of -5400 kWh. The average evening peak was 

about 500 kWh more than the average morning peak. Average loads were in excess of 

50(X) kWh for -4-6 hours during the evening hours of 1998-1999, but exceeded this 

threshold for 16 hours during the dry fall of 20(X).
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FIG. 4.18 As in Fig. 4.15, except for fall.

4.3.4 Weekdays, Weekends, and Holidays - Woodward

As illustrated in the load profiles from the Norman site (Fig. 4.12), a significant 

difference existed between load profiles from weekdays versus those from weekends. 

The rural community served by the Woodward substation clearly used electricity 

differently on weekdays than on weekends, especially during the morning hours (Fig. 

4.19). As much as a 15% difference in electrical consumption existed between 5 AM and 

6 PM. However, in contrast to electrical consumption in the suburban Norman 

community (Fig. 4.12), data from the Woodward substation revealed electricity 

consumption to be higher on the weekdays than on the weekends (between the hours of 5 

AM -  6 PM). Apparently the residents of this rural community are involved in more 

activities outside the home on weekends than are those in the suburban community of
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Norman. One consistency between these two residential sites was the weekday energy 

surge that occurred between 6 AM -  8 AM. Yet, as observed in Norman, the morning 

section of the weekend load profile from Woodward had a more gradual slope. The 

average load in Woodward exceeded 5000 kWh for 14-16 hours and dropped below 4000 

kWh for only 2-3 hours.

Holidays, when observed, also led to a change in the shape of the load profile and 

the magnitude of the peak. From a residential perspective, an observed holiday implies 

that (employed) residents have a day off from work. While one cannot assume that the 

general population will stay home the entire (holiday) day, it is likely that they would be 

at home during more hours on a holiday than on a workday. To illustrate this point, the 

electrical load was analyzed for the Mondays in September of 1999 (of which 6 

September 1999 was Labor Day; Fig. 4.20). More electricity was consumed on the 

holiday Monday than on any other Monday during the month. Not only was the 

magnitude of the peak 50% greater on the holiday Monday relative to the other Mondays 

during September, but the shape of the holiday profile was different as well. The 

community served by the Woodward substation began their active day later in the 

morning on the holiday Monday than they did on workdays on the other Mondays.

On these Mondays, the maximum afternoon temperatures were: 92“F (33.3"C) on 

6 September, 75®F (23.9®C) on 13 September, 56°F (13.3®C) on 20 September, and 53"F 

(11.7®C) on 27 September. Thus, a 39“F (21.7°C) difference existed among the daily 

maximum temperatures which, no doubt, drastically altered the use of electricity. In a 

four week span, the temperature went from the uncomfortable 90s one week, to the
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FIG. 4.19 Annually-averaged load profiles from Woodward in 1999 that illustrate the 
differences in the weekday versus weekend load.
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FIG. 4.20 Daily load profiles for the four Mondays in September 1999 for Woodward. 
The holiday Monday (Labor Day) produced an electrical load with a much different 
pattern than was observed on the non-holiday Mondays.
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comfortable 70s the next week, to the less-comfortable 50s for the next two weeks. On 

the warm holiday Monday, the hourly load exceeded 5000 kWh for 15 hours of the day 

versus the two coolest Mondays when the load never exceeded 5000 kWh. Thus, some 

difference between the four Monday plots, at least in the magnitude of the peak load, can 

be attributed to large temperature changes between the beginning and middle of the 

month. It is this sort of temperature swing that compounds the difficulty of load 

forecasting.

4.3.5 Average Load Profiles -  Altus AFB

Altus AFB is an education and training facility for the United States Air Force. 

The average load profiles during the study period^ (Fig. 4.21) are similar to that of the 

commercial profile in Fig. 4.6. As expected, the load consumption was elevated like that 

during the typical 8-hour workday of a commercial entity. However, instead of having an 

evening primary peak (Fig. 4.6), the load profile at Altus AFB had a sharp decrease 

between 4 PM to 6 PM. A less rapid decline occurred between 6 PM -  10 PM, primarily 

because the (military) base housing mimicked the evening load peak associated with the 

residential load profile (Fig. 4.6). After 10 PM, the profile sharply decreased towards its 

overnight minimum load observed at dawn. While annually-averaged load reflects a 

general profile of electricity consumption, load profiles on smaller time scales reveal 

important details that allow the impact of weather to be analyzed. Because Altus AFB 

typically operates as a (Monday-Friday, 7 AM -  4 PM) commercial entity, weekdays and 

weekends/holidays were analyzed separately.

* The base had a reduction in military personnel between 1998 and 1999, which is reflected by the large 
reduction in the use of electricity between the 1998 and 1999 load profiles. Thus 1999 and 2000 will be 
considered the “study period” for Altus AFB.
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FIG. 4.21 Annually-averaged load profiles from Altus AFB during the study period.

The seasonally-averaged profiles for Altus AFB are shown in Figures 4.22 -  4.25. 

The winter profiles for 1999 and 2000 (Fig. 4.22) resembled the commercial load profile 

(Fig. 4.6), in that mid-aftemoon and evening peaks existed in the use of electrical. The 

afternoon load curve paralleled that of a typical commercial workday, which was 

followed by a rapid decrease between 4 PM -  6 PM. The load profile during the workday 

ranged between 7000 -  7500 kWh during the study period. Outside of the 7 AM -  4 PM 

workday, the load profile resembled that of a winter, residential load profile (Figs. 4.8 

and 4.15). After 6 PM, Altus AFB becomes a residential community as base operations 

cease for the day and base residents become the primary consumer of electricity until 

early the next morning. At 5 AM, a sharp increase occurred in the load; this feature was 

attributed to the fact that occupants of base housing began their day which included
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housing military personnel arrive at work. The 8 PM winter peak coincided with the 8 

PM peak load observed at substations which serve residential communities.

Winter Load Profiles 
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FIG. 4.22 Average hourly electric load profiles from Altus AFB during the winters of 
the study period.

As temperatures warmed and the season transitioned to spring, the shape of the 

load profile changed dramatically. Beginning at dawn, the springtime load profiles (Fig. 

4.23) rose steadily until a 4 PM peak load was reached, which coincided with the end of 

the workday. The peak loads ranged from 9100 kWh -  9700 kWh during the study 

period. As occurred in the winter profiles, a late afternoon decline in electrical 

consumption was evident. However, between 6 PM and 10 PM a slow decline persisted 

in the profiles (whereas the winter profiles climbed to a secondary evening peak). After 

10 PM, the use of electricity plummeted to its overnight minimum load at dawn. While
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the predawn minimum was -700 kWh greater in spring than occurred during winter, the 

afternoon peak was -2000 kWh greater than its winter counterpart.

Spring Load Profiles 
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FIG. 4.23 As in Fig. 4.22, except for spring.

The shape of the summer load profiles (Fig. 4.24) was very similar to the spring 

profiles. The consumption differences between the two seasons occurred in the 

magnitude of the afternoon peaks and the slope of the profile between 6 AM and 4 PM. 

The afternoon peak load ranged between 12500 kWh and 13100 kWh, 3400 kWh greater 

than the springtime use of electricity. During summer months, -20% more electricity 

was consumed between 6 AM and 4 PM than was used during the spring months (Fig. 

4.24 versus Fig. 4.23). The predawn minimum of -8500 kWh exceeded all peak loads 

that occurred during the winter.
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FIG. 4.24 As in Fig. 4.22, except for summer.

As the temperatures began to decrease with the arrival of a new season, the fall 

load for Altus AFB (Fig. 4.25) re-acquired a double peak structure similar to that from a 

winter profile. Even so, load consumption sharply increased from 6 AM -  8 AM, after 

which the profile had a gentle upward slope toward the 4 PM peak. The use of electricity 

decreased slightly between 4 PM -  6 PM after the typical workday had ended. An 

increase in load occurred from 6 PM -  9 PM, primarily due to residents on the AFB using 

more electricity from their homes; subsequently, a sharp decline occurred in the demand 

for electricity between 9 PM -  5 AM.
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FIG. 4.25 As in Fig. 4.22, except for fall.

4.3.6 Weekdays, Weekends and Holidays -  Altus AFB

For a commercial entity (e.g., operating on an 8-hour, Monday -  Friday 

schedule), it was expected that electricity use on weekends and holidays would be lower 

relative to the weekdays. Thus, weekday and weekend/holiday load profiles for Altus 

AFB were created separately to gain a more detailed understanding of its load 

consumption.

Between the hours of 6 AM and 10 PM, electricity consumption was 30% higher 

during the week than on weekends (Fig. 4.26). It is important to remember that Altus 

AFB has a strong residential component (i.e., electricity consumption by the residents of 

base housing) which contributed to the use of electricity outside of the 8-hour workday. 

For example, while a typical business may cease operations at 5 PM (thereby consuming
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less electricity), Altus AFB experienced an increase in the use of electricity from its 

residential component between 5 PM and 10 PM. A typical commercial entity would not 

undergo this increase in electricity consumption during the late evening hours. The 

weekend profile at Altus AFB closely resembled the weekend load profile from Norman 

(Fig. 4.12) and Woodward (Fig. 4.19), the two residential sites used in this study.

Annually-Averaged Weekday va. Weekend Load Profiles 
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FIG. 4.26 Annually-averaged load profiles from Altus AFB in 1999 that illustrate the 
differences in the weekday versus weekend load.

Holidays that occurred on weekdays also impacted the load consumption at 

commercial entities. Daily load profiles for the four Mondays in February 1999 (15 

February 1999 was President’s Day, a federally observed holiday) are shown in Figure 

4.27. The non-holiday Mondays mirrored the expected load pattern from a typical 

weekday during winter. However, during the workday hours, the use of electricity on 

President’s Day was 30% lower relative to the other Mondays in February. The
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difference was a consequence of Altus AFB closing its operation to observe a federal 

holiday. On a holiday, base residents might stay home, and, as a result, increase this 

component of electricity consumption for the AFB even though the usual weekday base 

activities (e.g., classes and training missions) were suspended. If base housing did not 

contribute to this holiday use of electricity, the load profile likely would have exhibited 

an even lower use of electricity. For load forecasting purposes, knowledge of how 

electricity is used on observed holidays must be incorporated into the load model if the 

accuracy of the load forecast is to be improved.

Dally Load Profiles from the Mondays in February 1999 
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FIG. 4.27 Daily load profiles for the four Mondays in February 1999 from Altus AFB. 
The holiday Monday (President’s Day) produced an electrical load with a different 
pattern than was observed on non-holiday Mondays.

Other load consumption features, evident in the daily load profiles, were masked 

in profiles drawn from larger time scales. For example, in Figure 4.27, the daily plot 

revealed a decrease in the use of electricity during the lunchtime hours. A steep slope in
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the load profile between 6 AM and 8 AM increased at an average rate of 740 kWh per 

hour. To put that rate of increase in perspective, the average difference between the 

minimum and maximum (non-holiday) load on Mondays was -2000 kWh. Thus, almost 

half of the growth in load (consumption) occurred within a 2-hour period (i.e., when 

residential use of electricity at the base was large as residents prepared for their day and 

as base employees arrived at work).

4.3.7 Average Load Profiles -  Dominance

Dominance is the name of the substation that serves electricity to a single 

industrial entity. Pan Pacific Products, located in Broken Bow (southeast Oklahoma). 

The typical load profile for an industrial/large commercial customer (Fig. 4.6) reveals a 

small decrease in load consumption during the lunch hour. Otherwise electricity 

consumption during the period between sunrise and sunset usually is steady, especially 

when compared to other types of customers. Often industrial warehouses and factories 

work in shifts that cover the days, nights, and weekends. More specifically. Pan Pacific 

Products uses 8- and 12-hour shifts; they also observe 9 federally recognized holidays.’ 

However, when their particular market (demand) fluctuates, the work schedule is 

adjusted to meet the demands of their customers. In other words, when the demand for 

their product increases, the company may institute mandatory overtime or may not 

recognize holidays. On the other hand, when the demand for their product decreases, 

they may institute early-release days or close the plant. This type of work schedule is a 

difficult, if not impossible challenge for load forecasters.

 ̂Personal communication with Pan Pacific Products, January 2003
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Figure 4.28 illustrates the annually-averaged load profiles for the Dominance 

substation^. Little variation is evident that relates to a pattern in a residential or 

commercial profile. For example, the average standard deviation in the annually- 

averaged load profiles at Dominance was 100 kWh, while at the residential sites of 

Norman and Woodward, the standard deviation was 800 kWh and 725 kWh, respectively. 

Additionally, the difference between the maximum and minimum values on the annually- 

averaged load profile was 370 kWh at Dominance, whereas both residential substations 

recorded a range in excess of 2000 kWh. Thus, the industrial customer at Dominance did 

not experience a wide range of load values as did the residential community.

Annually-Averaged Load Profiles 
Dominance
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FIG. 4.28 Annually-averaged load profiles from the Dominance substation during the 
study period.

 ̂The study period was 1999 and 2000 because a significant change in electricity consumption occurred 
prior to 1999.
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Seasonal plots for the residential and commercial load revealed details that were 

masked by the process of computing annual averages. While the seasonal plots of the 

industrial customer (Figs. 4.29 -  4.32) were more detailed as well, the features were more 

difficult to explain than were details from load profiles of other customer categories. The 

most noticeable feature in the annually-averaged plot was that less electricity was 

consumed between 6 AM and 6 PM than during other times of an average day. This 

situation reflects the significant overnight use of electricity that was not observed in the 

residential or commercial profile. A reoccurring feature (e.g., consistent time of peak 

load or the magnitude of a peak load) was not evident in the seasonal profiles for 

Dominance. Thus, further analysis was necessary to characterize the profiles in hopes of 

improving the forecasts of electrical load.

The annually-averaged profile for Dominance (Fig. 4.28), along with the summer 

(Fig. 4.31) and fall (Fig. 4.32) seasonal profile indicated that the load consumption during

1999 was significantly greater than the load consumption during 2000. During the winter 

(Fig. 4.29) and spring (Fig. 4.30) seasons, the average hourly load was greater during

2000 than during 1999. Monthly profiles were examined to provide a more detailed 

explanation, but warmer than normal temperatures contributed to some of the load 

differences observed between the two years. The real world is more complicated.

During the first four months of 1999, Pan Pacific Products ceased plant operations 

for a few days up to a week at a time. In response to increased demand for products from 

Pan Pacific, the company began to operate continuously (e.g., 24-hours a day, 7 days a 

week) from May to October. Holidays were not observed (e.g.. Memorial Day or Labor
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FIG. 4.29 Average hourly electric load profiles from the Dominance substation during 
the winters of the study period.
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FIG. 4.30 As in Fig. 4.29, except for spring.
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FIG. 4.31 As in Fig. 4.29, except for summer.
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FIG. 4.32 As in Fig. 4.29, except for fall.
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Day) during this period. During the last two months of 1999, the only downtime 

experienced by the plant was during the Thanksgiving and Christmas holidays.

This demanding work schedule persisted until July 2000 (i.e., the plant was in full 

operation on Easter Sunday and Memorial Day). The only break in operation prior to 

July was a slowdown during the last weekend in January. The opposite scenario 

unfolded during the final 6 months of 2000. A plant closure occurred on the 4‘** of July, 

along with intermittent downtime throughout the month. The plant also was closed for 

16 days in August. From September through December, the plant closed every Sunday 

morning through Tuesday morning in addition to a one-week closing at Thanksgiving and 

at Christmas.

Unlike the electricity demand of the residential and commercial customers, 

electricity use at the Dominance industrial site is dependent almost entirely on the market 

demand for Pan Pacific’s product. When the demand is high, plant operations increase, 

as does the electricity consumption. When the market takes a downward turn, plant 

operations slow or cease intermittently, and electricity use at the plant decreases. In other 

words, a change in seasons -  weather conditions -  does not alter the electricity load near 

as much as it did for the other three study sites.

4.3.8 Weekdays, Weekends, and Holidays - Dominance

Weekend versus weekday load profiles revealed significant differences in 

electricity consumption between residential and commercial customers. However, Pan 

Pacific Products operates just as much on weekends (unless a holiday or plant closure 

occurs), just as it does on weekdays. Thus, a partitioning of load profiles on weekdays
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versus weekends does not add new information for a load forecaster. However, when 

workdays were separated from non-workdays (i.e., a stratification similar to the 

separation of weekdays and weekends for the residential or commercial sites), significant 

differences became clearly evident (Fig. 4.33). Thus, a load forecaster would greatly 

benefit from having knowledge of scheduled “non-workdays”, especially because this 

one substation was dedicated to supplying electricity to Pan Pacific Products.

Annually Averaged Workday vs. Non-Workday Load Profiles 
Dominance: 1999
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FIG. 4.33 Annually-averaged load profile from the Dominance substation in 1999 that 
illustrates load differences in the workday versus non-workday (e.g., when the plant was 
closed, had scheduled downtime, or observed holidays).

Holidays (when observed) created differences in the load profile that stand in 

marked contrast to the use of electricity on normal workdays. Using the load profiles 

from the Thursdays in November 1999 (Fig. 4.34), it was clearly evident when the plant
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closed because the load profile decreased dramatically to a flat-line use of -300 kWh by 

6 AM on Thanksgiving Day. This pattern was observed on all days when the plant 

closed, had scheduled downtime, or observed holidays.

Daily Load Profiles for the Thursdays In November 1999 
Dominance
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FIG. 4.34 Daily load profiles for the four Thursdays in November 1999 from the 
Dominance substation. The holiday Thursday (Thanksgiving Day) produced an electrical 
load with a much different pattern than observed on non-holiday Thursdays.

4.4 Quality Assurance of the Data

Obviously, the quality of all data will have a significant impact on research 

results, validation studies, assessments, and life-saving decisions. Quality can be 

described as a degree of excellence, while assurance is synonymous with certainty. Thus, 

quality assurance (QA) procedures are designed to give users a high degree of confidence
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in their work because the data used were meticulously processed. QA also provides users 

with guidance in how best to use the data by flagging outliers or erroneous data points. 

Because temporary interruptions in data collection (e.g., power outages, failure of 

sensors, and routine maintenance) do occur in automated systems, quality assurance 

procedures and the processing of outliers or missing data is discussed.

4.4.1 Quality Assurance o f Mesonet Data

The Oklahoma Mesonet instituted a comprehensive quality assurance system that 

parallels its efficient data collection and transmission process. The QA procedures 

include four components (Shafer et al, 2000): an instrument laboratory, field visits, 

automated computer routines, and manual inspection of the data by specially trained 

meteorologists. These procedures have been improved and updated as new insights 

became available about past problems in the network.

The archives of hourly data from the three-year study period were nearly 

complete, with only limited gaps. Because the Mesonet collects data with a five-minute 

time resolution, temporal interpolation was used to fill gaps in the hourly data. Spatial 

interpolation (substitution) of data from the next closest station also was used to eliminate 

gaps in this research data set. Both methods alleviated the minor problem of missing 

data.

The Washington Mesonet site is the nearest neighbor to the Norman Mesonet site 

by virtue of being ~17 miles (27 km) to the south southwest of Norman. When 

measurements were unavailable from the Norman site, data from the Washington site 

were used instead. This method was used when data gaps from the Norman site could
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not be filled by temporal interpolation. Otherwise, the hourly data point was tagged as 

“missing”. Data “gaps” (i.e., data interpolated, replaced, or missing) were less than 0.5% 

of the archived files during the study period for the Norman site (see Table 4.2 and 

Appendix E). Data from the Seiling Mesonet site were used in place of any missing data 

from the Woodward Mesonet site. Seiling is ~26 miles (42 km) southeast of Woodward. 

The “gaps” in the data archives for Woodward totaled 0.3%. When data from the Altus 

Mesonet site were missing, data from the Tipton Mesonet site (~15 miles or 24 km 

southeast of Altus) were substituted. Less than 0.3% of the archived files from Altus 

were incomplete during the study period. Finally, the nearest neighbor to the Broken 

Bow Mesonet Site is Idabel, located ~20 miles (32 km) southwest. Broken Bow had 

0.5% of its data unavailable in the archived files.

Table 4.2 The number and percentage of observations interpolated, substituted or 
missing in the Mesonet data sets from the four study sites. Each site had 105,216 
observations. The study data set had 420,864 observations.

Mesonet Site Interpolated
Observations

Subsdtuted
Observations

Missing
Observations

Total
Observations

# % # % # % # %
Norman 92 0.09 271 0.26 88 0.08 451 0.43
Woodward 33 0.03 36 0.03 245 0.23 314 0.29
Altus 50 0.05 125 0.12 96 0.09 271 0.26
Broken Bow 140 0.13 262 0.25 151 0.14 553 0.52
Totals 580 0.07 694 0.16 315 0.14 1589 0.37

The scientific literature has demonstrated how load consumption is sensitive to 

changes in temperature. Thus, the “nearest neighbor” substitution is based on the work of
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Brotzge and Richardson (2003); they determined that data from Mesonet sites up to 100 

km apart were highly, spatially correlated (> 0.5) for the meteorological variables used in 

this study. As distance between the sites decreased, the spatial correlation increased. 

(The site pairs used in this study were 42 km or less apart.) Brotzge and Richardson 

(2003) also determined that air temperature and relative humidity were even more 

strongly correlated when Mesonet sites were aligned along a northwest/southeast or 

north/south axis (i.e., the spatial correlation was not isotropic). The Woodward-Seiling 

sites and the Altus-Tipton sites are favorably aligned along a northwest/southeast axis 

(Fig. 3.1). The Norman-Washington sites have a north/south orientation. The Broken 

Bow site does not have a Mesonet site to its east because of its location near the eastern 

border of Oklahoma. Thus, Idabel was chosen (southwest) because it is the nearest 

neighbor to Broken Bow.

Temperature (°C), relative humidity (%), solar radiation (Wm'^), and wind speed 

(ms ') were collected at five-minute intervals from the four pairs of Mesonet sites during 

2000. A total of 421,632’ observations (i.e., 366 days/year x 24 hours/day x 12 

observations/hour x 4 weather variables) observations were possible from each site. 

Table 4.3 lists the number of valid observations that occurred within ±5 or ±10 (°C, %, or 

ms *) of the neighboring observations (for the same time of day). For example, 99% 

(100%) of the valid temperature observations from the Washington Mesonet site were 

within ±5“C (±10°C) of the temperature observations from the Norman Mesonet site. 

Approximately 69% (91.8%) of the relative humidity values were within ±5% (±10%) of 

the neighboring observations and 99.8% (-100%) of the wind speed values were within

® The year 2000 was chosen to represent the study period. Little variation occurred from year-to-year. The 
year 2000 was a leap year, so there are 768 more observations in this set than non-leap years.
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Table 4.3 The percentage of valid observations that were within ±5 and ±10 (°C, %, and 
ms ‘) of each other when comparing measurements from a pair of neighboring Mesonet 
sites.

(a) Norman Mesonet site and Washington Mesonet site

Norman & Washington 
Mesonet Sites

% of 
Obsetvations 

within ±5

% of 
Observations 
within ±10

Total Number o f 
Valid Observations 

(out o f105,408)
Temperature (°C) 99.8 100 105,356

Relative Humidity (%) 69.0 91.8 105,356

Wind Speed (ms ') 99.8 100 105,361

(b) Woodward Mesonet site and Seiling Mesonet site

Woodward & Seiling 
Mesonet Sites

% of 
Observations 

within ±5

% of 
Observations 
within ± 10

Total Number o f 
Valid Observations 

(out o f105,408)
Temperature (“C) 98.7 99.9 105,207

Relative Humidity (%) 39.7 72.4 105,204

Wind Speed (ms"') 98.9 100 105,207

(c) Altus Mesonet site and Tipton Mesonet site

Altus & Tipton 
Mesonet Sites

% of 
Observations 

within ±5

% of 
Observations 
within ± 10

ToUil Number o f 
Good Observations 

(out o f105,408)
Temperature (°C) 99.4 100 104,629

Relative Humidity (%) 66.8 88.8 104,620

Wind Speed (ms"') 99.6 100 104,631

(d) Broken Bow Mesonet site and Idabel Mesonet site

Broken Bow & Idabel 
Mesonet Sites

% of 
Observations 

within ±5

% of 
Observations 
within ± 10

Total Number o f 
Valid Observations 

(out o f105,408)
Temperature (®C) 98.8 100 104,837

Relative Humidity (%) 54.3 81.7 104,841

Wind Speed (ms"') 98.1 100 104,843
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±5 ms ‘ (±10 ms ') of each other. Similar results were determined using data from the 

other three pair of sites (Table 4.3).

Based upon Table 4.3, the percentage of relative humidity observations that were 

within 5 units (%) of its neighboring site was not as high as those for temperature and 

wind speed (°C, ms '). As shown in Chapter 5, relative humidity is most useful as a 

predictor of load during the summer months. Substitutions for relative humidity were 

used because: (1) only 0.16% of the data set (i.e., data from the four Mesonet sites) 

required the use of a “nearest neighbor”; and (2) a majority of the relative humidity 

differences between neighboring sites were less than 10%. The site pair with the largest 

differences in relative humidity (Woodward and Seiling) required relative humidity 

substitutions on only 9 occasions.

Although solar radiation was useful in this research, an analysis of spatial 

coherency was not performed. Even so, with the close proximity of neighboring Mesonet 

pairs (<42 km), Brotzge and Richardson (2003) determined that solar radiation had the 

least spatial variability of any Mesonet variable. They also determined that solar 

radiation was isotropic across the state, while temperature and relative humidity were not. 

Thus, a careful inspection of data from the four primary Mesonet sites and the four 

neighboring sites revealed that substituting neighboring data for missing or erroneous 

data was a sound decision.

4.4.2 Quality Assurance o f WFEC Electric Load Data

WFEC has archived electric load data at 30 minute intervals for the past decade. 

Prior to 1994, WFEC collected and archived electric load data manually (via a meter
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reader). As a result, few quality control measures were enforced. The data collection 

process has greatly improved at WFEC due to the implementation of new technology 

known as Automated Meter Reading (AMR). AMR revolutionized metering reading, and 

became widespread in the utility community during the 1990s. This technology uses land 

telephones, wireless phones or internet methods to record meter readings. Benefits of 

AMR include gaining access to information on the service needed by consumers, 

customer use patterns, and quality control techniques. More specifically, WFEC uses 

MV-90 software (a widely used AMR software package) which ingests meter data from 

virtually any solid-stategas and electric metering device or data logging system. The 

software contains an interactive validation program that includes a routine to compare 

actual meter readings with the reading expected by MV-90 (i.e., load limits programmed 

by meter engineers at WFEC). Although AMR allowed for meter data to be transmitted 

electronically, the archiving of metered data remained a manual process with few quality 

control measures. This archiving deficiency was solved in 1999. Today, WFEC has a 

more efficient and effective method to receive and archive quality electric load data from 

meters to aid in billing, load forecasting, demand information, and research. Manual 

adjustments may be needed during power outages and data transmission problems.

Unlike Mesonet data, missing load data cannot be replaced using a "nearest 

neighbor” approach to substitute load data from a nearby substation. For example, the 

load demand at Substation A may not be comparable to the load demand for Substation 

B, even if the separation distance was only 10 miles because Substation A may service a 

customer base that is not comparable to those served by Substation B. On the other hand.

A solid state meter is an electronic, multiple-function electric or gas meter that can measure advanced 
metering functions.
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the weather conditions measured at Site A and Site B, separated by the same 10 miles, 

typically would represent similar atmospheric conditions. Thus, if load data were not 

archived, temporal interpolations or spatial substitutions were not made. Tables E.5-E.8 

contain a list of electric load data missing in this data set. In summary, the percentage of 

missing or corrupt load data at the four substations was: 9 % for Norman, 0.1% for 

Woodward, ~0% (only 2 hours) for Altus APB, and 0.15% for Dominance.

Based upon this sound foundation of quality data. Chapter 5 will document the 

interrelationships between weather data and concurrent load data for the study period. 

The purpose of this research is to use meteorological data that reflects changing weather 

patterns and determine the impact of those changes on load demand to improve the 

accuracy of electric load forecasting.
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Chapter 5

Interrelationships Between W eather Variabies And
Eiectric Load Data

The scientific literature has documented how various weather phenomena have a 

significant impact on load demand. However, other than temperature, the literature is 

inconclusive as to which meteorological variables would provide value-added 

information to the immature science of load forecasting. Part of the problem in 

producing accurate load forecasts resides in the inconsistent or inadequate methods to 

incorporate weather data or the inability to even obtain weather data by utility companies. 

This chapter will document which weather variables or combinations thereof prove to be 

most significant in load forecasting. Hourly data from the four Mesonet study sites and 

the four co located substations in the Western Farmers Electric Cooperative system are 

used to define the interrelationships between the variability of weather and the variability 

of electric load. The goal of this chapter is to quantify the weather-load relationship at 

the four study sites.

5.1 Significant Weather Variables

Historically, temperature has proven to be the primary weather variable that 

impacts electric load. It also has been the most readily available weather variable to load 

modelers and load forecasters. However, over time, relative humidity and wind speed 

have been added to the short list of weather variables used in load forecasting because the 

combination of temperature, relative humidity and wind speed greatly impact the daily
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comfort level of humans (Stull 2000). Because the Oklahoma Mesonet has produced a 

rich resource in its data archives, other weather variables were considered during this 

study. However, to achieve parsimony in the load models, one should only use those 

meteorological variables which prove to have an impact on the load forecast. Yet, the 

use of too many exogenous variables can only increase the complexity of prediction 

models with little or no improvement in the resulting load forecasts. For example, too 

many variables given to a NN-based model only increases the size of the network, 

decreases the speed at which training of the model will occur, and results in insignificant 

changes to the load forecast (Charytoniuk and Chen 2000).

While neither humidity nor wind speed have a documented, independent 

relationship with electric load, they can be combined with temperature to form an 

apparent temperature. The apparent temperature (Tapp) takes into account relative 

humidity (RH) during the warmer months (as a heat index) and takes into account wind 

speed (V) during the colder months (as a wind chill). The scientific formulas for heat 

index and wind chill are given in Appendix D. In this study, the apparent temperature is 

defined as;

T =app

Heat Index, if T > 70° F and RH > 30% 

Wind Chill, if T < 50° F and V > 3 mph 
T , in all other situations

Other variables, such as precipitation and cloud cover, have been documented in 

the scientific literature to not provide significant improvements to the short-term load 

forecast. For example, solar radiation has not been an input variable to any load models, 

because the variable (indirectly) reflects cloud cover. However, solar radiation could
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have psychological implications on the electric load during the fall, winter and spring 

months (e.g., the impact of 60°F on a cloudy day versus the impact of 60°F on a sunny 

day.)

Scatter plots of weather variables (i.e., temperature, apparent temperature, relative 

humidity, wind speed and solar radiation) versus load were created on an annual and 

seasonal basis for the three study years (e.g., 1998, 1999 and 2000)' for all four study 

sites. Profiles of monthly load and temperature averaged on various time scales and 

temporal correlation calculations also were used as a means to quantify the weather-load 

relationship at each study site. (Unless otherwise stated, all three years revealed similar 

results. Thus, the following plots were derived from portions o f the study period to 

represent the entire data set.)

5.2 Norman Site

The Norman Mesonet site and the West Norman substation are located in a 

primarily urban, residential community. As the scientific literature has shown, the load 

demand is, in large part, driven by the human response to weather conditions.

5.2.1 Temperature-Load Relationship (Norman)

5.2.1.1 Scatterplots

As clearly indicated in Figure 5.1, a strong nonlinear relationship existed between 

temperature and load. Thus, on an annual scale, the temperature-load relationship is 

more effectively analyzed and modeled when nonlinear methods are used. On a seasonal 

scale, winter, spring and fall also exhibited a nonlinear structure (Figs. 5.2a, b, and d).

' All three study years were used in the analysis unless stated otherwise in Chapter 4.
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During the summer season (Fig. 5.2c), the temperature-load relationship was almost 

linear (e.g., as the temperature increased, the load consumption increased), implying that 

a linear fitting technique could be used. If the load modeling results proved to be 

comparable regardless of which model (for the winter and summer) was used, the simpler 

linear model could represent the summer season while a nonlinear model or neural 

network could represent the more difficult-to-forecast winter and transition months 

(Darbelley and Slama 2000).

Hourly Temperature vs. Hourly Electric Load 
Norman: 1999
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FIG. 5.1 Scatterplot of hourly temperature from the Norman Mesonet site versus hourly 
electric load from the West Norman substation for 1999.
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FIG. 5.2 As in Fig. 5.1 except for (a) winter, (b) spring, (c) summer, and fall of 1999.
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Because the winter of 1999 was relatively mild, the winter load consumption was 

low (Figs. 5.1 and 5.2a). Intuitively, cold winter temperatures should create elevated 

levels of electricity consumption that might be comparable to the summertime peaks. 

However, much of the Norman community uses natural gas as their primary source of 

heat .̂ While central heating units^, space heaters, electric furnaces and heat pumps 

require electricity to operate, more electricity is required to run an air conditioning unit, 

which in turn, creates a higher demand for electricity during the summer. Thus, 

communities which encourage the use of natural gas as a primary source of heat may not 

experience high electrical loads during winter (relative to summer), no matter how frigid 

the temperatures. Overall, the Norman load in winter appeared to have an inverse 

relationship with temperature that weakened as the temperatures increased (Fig. 5.2a), 

especially beyond 45°F (7.2°C).

An obvious division between early spring (e.g., late March‘d and April) and late 

spring (e.g.. May and early June) was reveal in Figure 5.2b. The early spring values in 

the scatterplot mimicked those late in the winter season (Fig. 5.2a), when load seemed 

almost independent of temperature. The warmer spring temperatures and their 

corresponding loads of late spring were similar to those of the summer season (Fig. 5.2c). 

Thus, the scatterplot (Fig. 5.2b) clearly illustrated a transition in load use as customers 

responded to a transition in temperature during the spring season.

As an aside, a mean daily temperature value of 65°F (18.3°C) is used as the base 

temperature to calculate heating and cooling degree days (i.e., a quantitative index 

derived to reflect the demand for energy to heat or cool a residence or business;

 ̂Personal communication, Oklahoma Natural Gas, 2002.
 ̂Electricity is required to operate the fan inside central heating units.

■* Load data at Norman during March 1999 was not available (Table E.5).
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Appendix C). In comparison, ~62®F (16.7°C) seemed to be the benchmark temperature 

when load consumption transitioned into a different pattern for the Norman site during 

1999 (Fig. 5.1). Thus, 62°F (16.7°C) could be considered as the base value from which 

site-specific heating or cooling degree days should be calculated. This threshold 

temperature could also signal a significant change in load demand and the need for load 

forecasters to shift to different forecasting models.

The temperature-load relationship during the summer season (Figs. 5.1 and 5.2c) 

was linear (i.e., as the temperature increased, the load consumption increased). This 

feature resulted from an increase in the use of air conditioners as temperatures warmed to 

uncomfortable levels. The summer season also had the largest variation in load relative 

to other seasons, spanning -8500 kWh.

The load consumption during the fall of 1999 (Figs. 5.1 and 5.2d) appeared to be 

a combination of features from the other three seasons. However, the colder side of the 

plot was peculiar in that for the same (cold) temperature at often the same time of day, 

the load consumption was noticeably higher during the fall than during the winter (Fig. 

5.1). The psychological impact of changing weather could have been a factor. For 

example, the fall season follows the sweltering “dog days” of summer. Further, 

Oklahoma is known for its abrupt temperature swings, especially during the fall season 

(e.g., a temperature drop of 40°F / 22.2°C within a few weeks during the fall of 1999; 

Section 4.3.4). Thus, a short period often exists during which the community acclimates 

to cooler fall temperatures. On the other hand, the winter season follows the 

“transitional” fall season, in which consumers likely experience a series of cold snaps 

prior to onset of winter. Another factor inherent to Norman could have been the fact that
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the University of Oklahoma closed for a few weeks during winter break. As the students 

departed from Norman, the winter load decreased regardless of the weather. At warmer 

temperatures on the scatterplot (Fig. 5.1), early fall values were intertwined with summer 

values, which in turn, created high nonlinearity in the fall load.

5.2.1.2 Line Graphs

Diurnal plots of monthly-averaged temperature and electric load for the Norman 

site were created (Figs. 5.3a-b) to analyze the temperature-load relationship on a smaller 

time scale. Weekdays and weekends/holidays were plotted separately (Figs. 5.3a-b) 

because the weekday load demand is much different than the load demand on 

weekdays/holidays (Christiaanse 1971; AlFuhaid et al. 1997; Khotanzad et al. 1998; 

Charytoniuk and Chen 2000). Weekly data from representative weeks during each of the 

four seasons (Figs. 5.4a-d) also were plotted. The temperature profiles illustrated the 

expected diurnal cycle (Figs. 5.3a-b; Figs. 5.4a-d) and revealed how temperature varied 

during any particular month across the study period.

The monthly load profiles (Figs. 5.3a-b) revealed details about the residential load 

profile that were smoothed out of the residential base load profile (Fig. 4.6). 

Consequently, the summer months were easy to detect because they exhibited a much 

different load profile than those observed during other seasons (Figs. 5.3a-b). Customers 

used more electricity for longer periods throughout the day during the summer relative to 

other seasons (Fig. 5.3a). A well-defined load minimum occurred during the predawn 

hours before most residents awoke for the day. During the next few hours, the sun rose, 

air temperature increased, and residents began their day (e.g., a combination of activities
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that typically increase the load demand). Air temperature increased ~2 hours before the 

steady rise^ in the use of electricity. Thus, hourly load trailed the hourly temperature 

profile by ~2 hours. Further evidence of the 2-hour lag is discussed in subsequent 

sections. After a steady increase of the daily load during the summer months, peak use in 

the August profile occurred at ~7 PM. Thereafter, the load decreased towards its early 

morning minimum such that the load profile and temperature profile had similar 

characteristics during the overnight hours.

During the summer, a difference was observed between the weekday and 

weekend^ load (Fig. 5.3a). Between 6 AM and 9 AM, the weekday load was -15% 

greater than the weekend load even though the average weekday and weekend 

temperature were nearly equivalent (Fig. 5.3a). The morning portion of the two load 

profiles reflected a primary difference in the morning routines of customers on weekdays 

versus on weekends (i.e., people consume more electricity during the morning hours as 

they prepare for work or school, while they begin a weekend morning on a more leisurely 

pace). After 9 AM, the weekend load consumption exceeded the weekday load 

consumption. If temperature is not considered, it appears that Norman residents 

consumed -12% more electricity during the afternoon and evenings on weekends than 

they did on weekdays. It is also possible that Norman residents were home more on the 

weekends than they were on the weekdays.

’ “Steady rise” refers to the time period after 9 AM -  that which is less affected by the morning spurt of 
electricity use as residents prepared for their day.
* Weekends also include federally observed holidays (e.g.. New Year’s Day, Martin Luther King, Jr. Day, 
President’s Day, Memorial Day, Independence Day, Labor Day, Columbus Day, Veteran’s Day, 
Thanksgiving Day, and Christmas Day).

115



M o n th ly - A v e r a g e d  H o u r ly  T e m p e r a t u r e s  a n d  H o u r ly  E le c t r i c  L o a d
N o r m a n :  A u g u s t  1 9 9 8

m ir

fV *1* f,

Weekday Temp Avg 
Weekend Temp Avg

•  Monthly Temp Avg 
A  ■ ■ Weekday Load Avg
♦  - - Weekend Load Avg 
O --M onth ., _ 51$

Hour of the Day (COT)

Monthly-Averaged Hourly Temperatures and Hourly Electric Load 
Norman: March 1998

m m .

•  Monthly Temp Avg 
■ - A  - - Weekday Load Avg 
- - ♦  - -Weekend Load Avg 

O - Monthly Load Avg
20

t AOOO

3500

3000 I

2500

2000

1500

Hour of the Day (CST)

FIG. 5.3 Diurnal plot of hourly temperature and hourly load from Norman averaged 
during weekdays, weekends/holidays, and a month for (a) August 1998 and (b) March 
1998.
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However, when the effect of temperature (Fig. 5.3a) is considered, weekend 

temperatures during August 1998 were greater than the weekday temperatures after 11 

AM. Thus, the weekend load and weekend temperatures were greater than those which 

occurred on weekdays. Was the load difference a result of hourly temperature 

differences, or, was the load difference a result of the fact that people were at home more 

during the day on weekends than they were on weekday? The weekend load exceeded 

the weekday load after 9 AM, prior to any significant hourly temperature differences on 

the weekdays versus weekends. Between 9 AM and 11 AM (e.g., when average weekend 

and weekday temperatures were equivalent), many residents were home on weekends, 

thus consuming more electricity than would the case during this same 2-hour period on 

weekdays. However, the greater use of electricity on the weekend during the afternoon 

likely was a combined affect of higher weekend temperatures and the fact that Norman 

residents likely remained at home more on weekends than they did on weekdays. The 

daytime temperatures peaked at 5 PM while the load peaked at 7 PM, more evidence of a 

~2 hour lag in the load response. Approximately 3 hours after their respective peaks, the 

weekend temperatures and the weekend loads declined at a faster rate than those which 

occurred during the weekdays. While Norman residents may or may not have been home 

more throughout the day on weekends versus on weekdays, temperature differences 

between weekdays and weekends contributed to load differences. In fact, the temperature 

differences after 11 AM may have created much of the load difference that occurred on 

weekdays versus that which occurred on weekends.

During the spring, a bimodal distribution (Fig. 5.3b) existed in the electrical load. 

(A similar load profile was observed during the winter and fall seasons -  not shown.)
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However, the amplitude of the morning peak was not as pronounced during June (e.g., 

the month that included spring and summer) and September (e.g., the month that included 

summer and fall) because these months (not shown) were influenced by temperature and 

load trends associated with the summer season (Fig. 5.3a). This damping effect also is 

evident during May when the onset of summer temperatures occurs or during October 

when the summer temperatures linger into the fall season.

A major evening peak occurred at ~8 PM with the secondary peak at ~8 AM (Fig. 

5.3b). A well-defined secondary morning peak was most evident on the weekday and 

monthly-averaged load profiles, reflecting the morning routine associated with a 

residential community. (The morning spurt of electricity use also occurred during the 

summer months, but the load profile did not level off or decrease after 8 AM as it often 

does during the other three seasons.)

During March 1998, the average weekend temperature was higher than that of the 

weekday for the entire day (Fig. 5.3b). The morning section of the weekday load was 

expected to exceed that of the weekend load regardless of the temperature difference. 

However, after 10 AM, the same scenario unfolded during March as it did during August 

when weekend loads surpassed the weekday load. It was difficult to discern how much 

of the load difference was due to higher weekend temperatures or a larger number of 

residents being home on weekend afternoons. After 6 PM, the weekday load sharply 

increased (i.e., a byproduct of customer habit as residents returned home from work). By 

evening, no difference existed in the electrical loads.

The temperature and electric load profiles plotted on a weekly time scale further 

illustrate their interrelationships. A one-week period from each season during 1999 is
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shown (Figs. 5.4a-d). During the winter, an inverse relationship between the temperature 

and load occurred in the one-week data set (Fig. 5.4a). This inverse relationship was 

most noticeable during the late afternoon hours. As the temperature increased towards its 

maximum daily value, load values decreased to a secondary (afternoon) minimum; the 

primary minimum load value occurred at ~3 AM, an hour during which almost all 

residential customers likely were asleep.

A one-week data set during the spring (Fig. 5.4b), summer (Fig. 5.4c), and fall 

(Fig. 5.4d) seasons revealed a direct relationship between temperature and load (i.e., as 

the average temperature increased between sunrise and sunset, the average load demand 

increased). However, the data revealed the load response to temperature was on average 

2 hours. Additionally, the fall season often exhibited the most dramatic temperature 

swings among the four seasons. For example, a maximum temperature of 53°F (11.7°C) 

on 2 November was followed by 77°F (25°C) on 5 November (e.g., a 24°F difference in 

the daily maximum temperature separated by only 3 days). These rapid temperature 

changes associated with fall caused fluctuations in the load demand as humans adjusted 

to these abrupt temperature changes. Thus, the fall season presents great difficulty to 

load forecasters.
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FIG. 5.4 Hourly temperature and hourly electric load from Norman during a single week 
from the (a) winter, (b) spring, (c) summer, and (d) fall of 1999.
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5.2.1.3 Apparent Temperature-Load Relationship

An analysis of the impact of apparent temperature (Tapp) on load consumption did 

not reveal a significant difference when the scatterplots and profiles of temperature-load 

and Tapp-load were compared (not shown). A scatterplot for Tapp and temperature 

detected only minimal divergence in the scatter and then only at the extreme ends (e.g., at 

the hottest and coldest temperatures) of the plot.

5.2.1.4 Temporal Correlations

To quantify the temperature-load relationships, correlation coefficients (p) were 

calculated for seasonally-averaged, hourly temperature versus seasonally-averaged, 

hourly electric load. Hour-to-hour correlation coefficients between the two data streams 

(Table 5.1a) revealed a strong, positive relationship during the spring (p = 0.7) and 

summer months (p = 0.87). The positive relationship between the two variables was even 

stronger during all seasons (except winter) when the hourly electrical load lagged the 

hourly air temperature by 2 hours. The stronger correlation (with the 2-hour lag) 

reflected two processes: (1) modem homes in Norman are better insulated compared to 

older homes in more rural areas, and (2) the air temperature must rise (fall) above (below) 

a certain threshold before the human discomfort level becomes widespread among 

consumers who receive electricity via the West Norman substation.

The relationship weakened during the fall season (p = 0.29), disappeared and 

became moderately negative (p = -0.32) during winter (i.e., the colder the temperature, 

the greater the demand for electricity). Accordingly, the temperature-load relationship 

during the fall season remained difficult to describe (relative to the other three seasons).
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For completeness, correlation coefficients between the Tapp and the electrical load 

were included in Table 5.1a. The results revealed a relationship that was no stronger than 

the temperature-load relationship, and thus Tapp offered no new information.

Table 5.1 Hour-to-hour correlation coefficients averaged seasonally over the study 
period between load and the following weather variables: temperature, apparent
temperature, relative humidity, and solar radiation. When a higher correlation resulted 
from a timed lag (i.e., the number of hours the load lagged the weather variable) versus a 
zero lag coefficient, the highest correlation coefficient was shown. (The number of hours 
that the load lagged the weather variable is in parentheses.)

(a) Correlation Coefficients (X, Load) -  Norman Site

Variable
Correlated 
with Load Temperature Apparent

Temperature
Relative

Humidity Solar Radiation
(X)

Winter -0.321 -0.338 -0.006 0.397 (7 hrs)

Spring 0.703 (2 hrs) 0.696 (2 hrs) -0.392(1 hr) 0.641 (5 hrs)

Summer 0.867 (2 hrs) 0.850 (2 hrs) -0.741 (1 hr) 0.741 (4 hrs)

Fall 0.294 (3 hrs) 0.258 (2 hrs) -0.277 (3 hrs) 0.562 (6 hrs)

(b) Correlation Coefficients (X, Load) -Woodward Site

Variable
Correlated 
with Load Temperature Apparent

Temperature
Relative

Humidity Solar Radiation
(X)

Winter -0.604 (1-2 hrs) -0.613 (2 hrs) 0.290 (2 hrs) -0.181 (3 hrs)

Spring 0.649 (0-1 hrs) 0.609 -0.307 0.534 (4 hrs)

Summer 0.921 ( 1-2 hrs) 0.907(1 hr) -0.694 0.791 (3 hrs)

Fall -0.250 (2 hrs) -0.255 (l-hr lag) -0.145 0.300 (6 hrs)
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(c) Correlation Coefficients (X, Load) -Altus AFB Site

Variable
Correlated 
with Load Temperature Apparent

Temperature
Relative

Humidity Solar Radiation
(X)

Winter 0.233 0.217 -0.116 0.229

Spring 0.788 0.775 -0.421 0.496 (3  h rs)

Summer 0.857 0.839 -0.664 0.708 (3  h rs)

Fall 0.551 0.521 -0.424 0.454 (3  h rs)

(d) Correlation Coefficients (X, Load) -Dominance

Variable
Correlated 
with Load Temperature Apparent

Temperature
Relative

Humidity Solar Radiation
(X)

Winter 0.072 0.071 0.019 -0.016

Spring -0.112 -0.124 0.020 -0.068

Summer -0.067 -0.054 0.030 -0.035

Fall 0.051 0.047 -0.026 -0.023

5.2.2 Relative Humidity-Load Relationship (Norman)

Other weather variables and their relationship to load were explored. Relative 

humidity is a ratio of the actual amount of water vapor in the air relative to the maximum 

amount that could be held in the air at that temperature. During the warmer months, 

higher relative humidity makes it feel hotter than the actual temperature. Figure 5.5 

represents a scatterplot of the relative humidity-load relationship for 1999. (Scatterplots 

for other years are not shown, but similar results were obtained). Though the diagram 

seemed to show a seasonal stratification, the following inferences could be drawn.
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During the winter season, the load was not responsive to changes in relative humidity 

(minor changes in load but major variations in relative humidity from one extreme to the 

other). The transitional seasons produced similar results. During the summer, as relative 

humidity increased, the load decreased. Because of an inverse relationship between 

temperature and relative humidity during the summers (Fig. 5.6), as temperature 

increased, relative humidity decreased, and the load consumption increased.

The correlation coefficients of relative humidity and load data confirmed this 

inverse relationship (Table 5.1a). Temporal correlations were high (p = -0.74) when the 

load lagged the relative humidity by 1 hour, but only during the summer season. During 

other seasons, the highest correlations resulted when the load lagged relative humidity by 

1-4 hours. The smearing effect created by relatively high correlation values spread over 

several hours helped explain why the Tgpp-load relationship did not yield higher 

correlations than the temperature-load relationship. Perhaps if the strongest correlation 

coefficients for the temperature-load relationship and the relative humidity-load 

relationship occurred at the same lag time, the Tapp-load relationship might have been 

stronger than temperature-load relationship during the summer. Thus, the relative 

humidity offered little independent information for the Norman site.
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FIG. 5.5 Scatterplot of hourly relative humidity from the Norman Mesonet site versus 
hourly electric load from the West Norman substation for 1999.
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FIG. 5.6 Scatterplot of hourly relative humidity versus hourly temperature from the 
Norman Mesonet site for 1999.
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5.2.3 Solar Radiation-Load Relationship (Norman)

Solar radiation is electromagnetic radiation emitted by the sun. Mesonet 

observations of this parameter provide information about how much of the sun’s energy 

strikes a particular location on earth at a particular time. Solar radiation reached it 

maximum value at solar noon. Yet, the peaks in solar radiation occurred hours prior to 

the daily maximum temperatures and the peak loads. Thus, higher correlation 

coefficients occurred when the load lagged solar radiation by several hours. A scatterplot 

of the solar radiation-load relationship (not shown) did not reveal any new insights.

However, the seasonal temporal correlations (Table 5.1a) and seasonal line graphs 

(Figs. 5.7a-d) gave rise to the appropriate lags needed to obtain the strongest relationship 

between solar radiation and load. During the winter, solar radiation peaked at 1 PM and 

the load peaked at 8 PM (Fig. 5.7a); thus, they were best correlated when the load lagged 

solar radiation by 7 hours. The springtime correlations were highest when the load 

lagged solar radiation by 5 hours, as the load peaked at ~6 PM and the solar radiation 

peaked at 1 PM (Fig. 5.7b). The summertime correlations between load and solar 

radiation were the strongest of all seasons. Figure 5.7c revealed a peak load that occurred 

at ~6 PM and a solar radiation peak at 2 PM^ when the entire 1999 season was 

considered. Thus, the lag between load and solar radiation was about ~4 hours.

 ̂Because hourly solar radiation data were used (as opposed to data on a smaller time scale), solar noon 
appeared to occur an hour later during the summer months.
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FIG. 5.7 Seasonally-averaged hourly electric load and hourly solar radiation from the 
West Norman substation and the Norman Mesonet site for (a) winter, (b) spring, (c) 
summer, and (d) fall of 1999.
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Surprisingly, the relationship between solar radiation and load was the strongest 

relationship uncovered during the fall season (p = 0.56) among all weather variables 

correlated with load (Table 5.1a). Evidently, the diurnal cycle of solar radiation is more 

strongly correlated with load than with temperature during the fall season at Norman. 

The load peaked between 7 PM and 8 PM, while the solar noon occurred at 1 PM (Fig. 

5.7d) during the fall season. The correlation coefficients were highest when the load 

lagged solar radiation by ~6 hours.

The relationship between solar radiation and electric load is not trivial, thus the 

lag factor (by season) must be used with care for the data to be useful to load forecasters. 

Overall, temperature has proven to be the most valuable weather variable for predicting 

load. However, the fall season has proven to be the most difficult season for load 

forecasting because the correlation between load and weather is weak. Thus, the use of 

solar radiation data could provide valuable information to load forecasters, especially 

during fall season.

5.2.4 Wind Speed-Load Relationship (Norman)

The analysis of the wind speed-load relationship did not produce strong 

relationships during any season. Accordingly, the correlation (not shown) between 

variables was inconsistent and was not apparent. While the wind chill value (e.g., a 

temperature measure calculated using air temperature and wind speed) seemed significant 

in defining the apparent temperature-load relationship during the winter seasons, the 

independent use of wind speed appeared to be of no value to load forecasters. All sites
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revealed the same relationship between wind speed and load, and thus wind speed will no 

longer be considered in this investigation.

5.3 Woodward Site

Like Norman, Woodward is primarily a residential community. Unlike Norman, 

however. Woodward is much more rural in nature. While the daily activities for most 

residential communities are similar, a few differences between Norman and Woodward 

include: (1) differences in the geographic location of Norman and Woodward; (2) 

differences in how each community heats its homes; and (3) differences in insulation 

between older and more modem homes. Selections from the data set were used for 

illustration purposes to represent the entire data set.

5.3.1 Temperature-Load Relationship (Woodward)

5.3.1.1 Scatterplots

On an annual scale, the relationship between temperature and load at Woodward 

is very nonlinear (Fig. 5.8), exhibiting a ‘U-shaped’ appearance. Seasonal data (Figs. 

5.9a-d) revealed a few characteristics that distinguished the rural residential from the 

urban residential sites.

Although the winter of 1999 was mild, the winter load consumption for 

Woodward (Figs. 5.8 and 5.9a) averaged -50% more per hour (e.g., 2400 kWh) than 

occurred at the Norman site -  even though the Woodward substation served only 20% 

more customers (Table 3.3). One reason that more electricity was used in Woodward 

resulted from its location in northwest Oklahoma (Fig. 3.1) where the climate is cooler
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than near Norman (Figs. 4.2-4.5). Another reason Woodward used more electricity for 

heating resulted from the fact that natural gas is not readily available throughout 

Woodward and some customers appear to favor electricity over natural gas when a choice 

was available. A third reason for greater use of electricity is that homes in rural 

Woodward may not be as well-insulated as are the more modem homes that dominate 

Norman® (the third fastest growing city in Oklahoma). Any combination of these factors 

contributed to a greater load demand in Woodward during the winter. Like Norman, the 

overall temperature-load relationship for Woodward during the winter months was 

nonlinear and inversely related.

Hourly Temperature vs. Hourly Electric Load 
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FIG. 5.8 Scatterplot of hourly temperature from the Woodward Mesonet site versus 
hourly electric load from the Woodward substation for 1999.

Email communication, Oklahoma Natural Gas, 2002
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The spring season in Woodward (Figs. 5.8 and 5.9b) was transitional in the sense 

that the temperature-load relationship reflected a winter pattern when (colder) early 

spring temperatures prevailed and a summer pattern when (warmer) late spring 

temperatures were dominant. This blend created a nonlinear relationship between 

temperature and load (as with Norman) during the spring.

The tightly packed cluster of summertime load values for the Woodward site 

(Figs. 5.8 and 5.9c) illustrated a strong, positive and linear relationship between 

temperature and load. This relationship was stronger for the Woodward site than that 

discovered for Norman. Load values during the summer months in Woodward were 30% 

greater than those observed in Norman, even though Woodward was cooler than Norman 

by an average of only 1.2°F (0.67°C) cooler than Norman. A reason for this disparity 

likely resulted from the fact that houses in Norman are better-insulated on average than 

those in Woodward.

The ‘U-shaped’ appearance of the scatterplot during the fall season for Woodward 

(Figs. 5.8 and 5.9d) was very similar to that from Norman. Because the fall is a 

transitional season, a highly nonlinear relationship between temperature and load was 

created by warm temperatures (hence the need for cooling) during the early fall and cold 

temperatures (hence the need for heating) during the late fall. However, colder 

temperatures during the fall season in Woodward created essentially the same load 

demand that occurred during winter, in stark contrast to the load profile from Norman. 

Norman’s fall season created a higher load demand than occurred during winter, even 

when the same temperatures occurred.
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FIG. 5.9 As in Fig. 5.8 except for (a) winter, (b) spring, (c) summer, and fall of 1999.
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It appeared that ~57°F (13.9°C) was a threshold temperature when the load 

demand changed for Woodward, a cooler threshold than determined for the Norman site 

(i.e., the slope of clusters on the scatterplot changed at the threshold temperature).

5.3.1.2 Line Graphs

Data were analyzed on a monthly scale to gain more insight into the temperature- 

load relationship for a rural, residential community like Woodward. The structure of the 

line graphs for the summer in Woodward (Fig. 5.10a) mimicked those from Norman, in 

that a single evening peak was observed. However, the evening peak for Woodward 

occurred at 5 PM, while the Norman peak occurred at 4 PM. The temperature led the 

load by -1 hour at Woodward during the summer months (versus ~2 hours in Norman). 

The shorter lag time required for temperatures to impact load consumption can be 

attributed to (but not limited to) the lack of well-insulated homes in Woodward relative to 

Norman.

The weekend load was as much as -13% less than the weekday load during the 

morning hours for Woodward in August 2000 (Fig. 5.10a). From noon to 3 PM and from 

6 PM to midnight, the weekend load was slightly greater than (e.g., by < 3% at any given 

hour) the weekday load. The weekend temperatures were greater than those that 

occurred on an average weekday in Figure 5.10a. (This difference occurred during all 

August months of the study period). The greater weekend temperatures increased the 

afternoon load consumption as use of air conditioning increased. Thus, if the weekend 

and weekday temperatures had been equivalent, the weekend load may have been less, 

implying that Woodward residents consume less electricity on average during the
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weekends than they do on weekdays. Unfortunately, identical weekend and weekday 

temperatures did not occur during a summer month of the study period. However, the 

weekend temperatures were lower than the weekday temperatures during July 1999 (Fig. 

5.10b). During this July, the weekend load was significantly lower than the weekday 

load. If temperature is not considered, one might infer that Woodward residents were 

home less on the weekends than on weekdays. When temperatures were considered, and 

given that the citizens of Woodward were home just as much or even more on weekends 

versus on weekdays, the decreased use of electricity on the weekends was a response to 

lower weekend temperatures. Thus, on a monthly scale, a difference in temperatures did 

not change the shape of the load profîle but did influence the amount of load consumed 

(i.e., shifted the load profile up or down on a graph).

Monthly^Averaged Hourly Temperature and Hourly Electric Load 
Woodward: Auguat 2000

13000

11000

A "W eekday Load Avg 
^  '  "Weekend Load Avg

Hour of tiM Day (COT)

137



M o n th ly - A v e r a g e d  H o u r ly T e m p e r a tu r e  a n d  H o u r ly  E le c t r i c  L o a d
W o o d w a r d :  J u l y  1 9 9 9

12000

■ 11000

10000

Weekday Temp Avg 
Weekend Temp Avg 
MonlWyAvg 
Weekday Load Avg 
Weekend Load Avg

O • • Monthly Load Avg

Hour of the Day (COT)

Monthly-Averaged Hourly Temperature and Hourly Electric Load 
Woodward: March 2000

85 •

60 
55 

50 

45 ■

40 

35 •

30 •

25 

20 +♦.

' - ' . "T" -

— a —  Weekday Temp Avg 
— ♦ — Weekend Temp Avg

•  Monthly Avg
♦  -Weekday Load Avg

- ♦  - - Weekend Load Avg f ,. 
- - O - -Monthly Load Avg
-4-:

6500

6000

5500

5000 5,

4500

■ 4000

3500

3000

Hour of tho Day (CST)
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The winter, spring, and fall seasons exhibited a bimodal distribution in their load 

profiles at Woodward just as they did in Norman. Figure 5.10c illustrates this load 

pattern, which was most prominent during the weekdays. However, the early morning 

peak load in Woodward was equal to or greater than the evening peak (mostly during the 

winter months). On the other hand, in Norman, the morning load was always less than 

the evening load. The seasonally-averaged minimum temperature (just before sunrise) in 

Woodward was always colder than it was in Norman (both observed during the study 

period and climatologically). Thus, in response to colder temperatures and a greater 

electrical heating demand, a greater morning peak occurred in Woodward than occurred 

in Norman.

Weeklong profiles were created to represent each season (Figs. 5.11a-d) to study 

the temperature-load relationship on an even smaller time scale. During the winter 

season, an inverse relationship between temperature and load was observed (Fig. 5.11a). 

The secondary load minimum, observed at ~4 PM, occurred within 1-2 hours of the 

afternoon high temperature, but only 1 hour prior to most residents returning home from 

daily activities. The primary minimum in load occurred between 2 AM and 3 AM when 

most residents were asleep and 1-2 hours prior to the normal morning minimum 

temperature. This lull in load consumption was more a result of customer habits than the 

impact of air temperature. This weekly plot from winter revealed a bimodal structure 

observed in the seasonally-averaged winter load profile (Fig. 4.15).

A direct relationship between temperature and load in the weekly plots is clearly 

evident during the spring season (Fig. 5.1 lb). The maximum temperature and peak load 

occurred at the same time each day or within 1 hour of each other (i.e., between 4 PM
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and 5 PM) during the spring months. However, when summer-like temperatures 

occurred during spring season, the early morning (weekday) mode was suppressed and 

the load profiles assumed a single-mode (summertime) appearance. During the spring 

week in May 1999 (Fig. 5,11b), a weak bimodal distribution was observed on Monday- 

Thursday and was mostly damped by Friday. The load profiles on Saturday and Sunday 

did not contain a morning peak because the morning spurt of electricity does not occur on 

weekends.

The summer season exhibited a direct temperature-load relationship as did most 

of the spring season. The one-week plot from the summer of 1999 (Fig. 5.11c) revealed a 

single-peak structure in the load that occurred at ~5 PM, one hour after the daily 

maximum temperature. Thus, at the Woodward site during the summer, the load peak 

lagged the temperature peak by 1 hour, a result consistent with features in the monthly 

summer load profiles (Figs. 5.10a-b).

With the arrival of fall, an inverse relationship developed between temperature 

and load (Fig. 5.1 Id). Temperatures and load were somewhat chaotic during the fall 

season, as observed at the Norman site. For example, the maximum daily temperature 

decreased from 80°F (26.7°C) to 62®F (16.7°C) in one day. As a result, the afternoon 

(secondary) minimum load occurred about 1 hour prior to the daily maximum 

temperature, a feature which nicely illustrates the inverse relationship.
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5.3.L3 Apparent Temperature-Load Relationship

The relationship between Tapp and electric load was not significantly different 

from the temperature-load relationship. Differences were not observed in any scatter plot 

or line graph on any time scale. While apparent temperature could be used in lieu 

temperature in the estimating stage of load modeling, the evidence does not suggest that 

apparent temperature would produce a more accurate load forecast than temperature.

5.3.1.4 Temporal Correlations

Correlation coefficients were calculated (using 0-12 hour lags) to quantify the 

temperature-load relationship and the apparent-temperature load relationship for the 

Woodward site (Table 5.1b). The strongest correlations during the study period at 

Woodward occurred during the summer (p = 0.91), when the temperature led the load by 

1 hour. The Norman site experienced the strongest correlation with a 2-hour lag during 

the summer (p = 0.87). A strong, positive relationship indicated that an increase in 

temperature implied an increase in load consumption. The Tapp-load relationship also 

was strongest during the summer at a lag time of 1 hour (p = 0.91), but the correlation 

values were weaker than those from the temperature-load relationship.

The next highest correlation occurred during the spring months (p = 0.65), except 

that the demand was immediately responsive to changes in temperature (i.e. lag time of 

zero). The temperature-load relationship was stronger than the Tapp-load relationship. In 

addition, zero lags and 1-hour lags produced nearly the same correlations (Table 5.1b). 

Both the winter and fall seasons experienced a negative (positive) correlation between 

load and temperature which meant that the maximum temperature was correlated with the
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afternoon minimum (maximum) load. The Tgpp-load relationship mirrored the 

temperature-load relationship during the two seasons. The winter and fall relationship 

were strongest when ~2 hours was allowed for the load to respond to temperature. 

However, the fall correlation coefficients were the weakest among of all the seasons (p = 

-0.25). Thus, the graphical results and correlation results support the following 

relationships in rural Woodward: (1) use of an apparent temperature did not add new 

information to the temperature-load relationship; (2) the temperature-load relationship 

was strongest during the summer and weakest during the fall; (3) temperature led the load 

by ~2 hours during the winter and the fall seasons; (4) the response time of the load to 

temperature during the summer was reduced to 1 hour; and (5) an immediate load 

response to temperature was observed during the spring season.

5,3.2 Relative Humidity-Load Relationship (Woodward)

Figure 5.12 illustrates the relationship between relative humidity and load during 

1999; it is representative of the entire study period for Woodward. During the winter 

season, a slight, positive relationship existed between relative humidity and load (i.e., as 

the relative humidity increased, so did the load). Perhaps cold, damp conditions during 

winter increased the heating demand. During the transitional seasons (e.g., spring and 

fall), the scatter was so widespread that the load seemed almost independent of relative 

humidity. During the summer months, the load had an inverse relationship with relative 

humidity. Although Norman was slightly more humid than Woodward, the same 

(inverse) /ewiperamre-relative humidity pattern occurred (Fig. 5.13), resulting in an 

increase in load consumption.
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FIG. 5.12 Scatterplot of hourly relative humidity from the Woodward Mesonet site 
versus hourly electric load from the Woodward substation for 1999.
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Woodward Mesonet site for 1999.
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The temporal correlations in Table 5.1b quantify the results above. During the 

winter season, the relationship between relative humidity and load was positive; it was 

stronger when the response time of the load to relative humidity was 2 hours. However, 

the relative humidity-load relationship was weak (p = 0.29). During the spring, summer, 

and fall seasons, the correlations were negative. The strongest relationship (p = -0.69) 

occurred during the summer with an immediate load response to changes in relative 

humidity (i.e., lag time of zero) versus a 1-hour lag detected in Norman. The weakest 

relationship (p = -0.15) occurred during the fall. Thus, use of relative humidity as a 

predictor for electric load modeling may be most valuable during the summer months.

5.3.3 Solar Radiation-Load Relationship (Woodward)

The relationship between solar radiation and load for Woodward was slightly 

stronger (p = 0.79) than observed in Norman, but only during the summer season. 

Correlations were positive for all seasons except winter. Line graphs (Figs. 5.14a-d) 

created to assess the lag between the two data streams and the correlation coefficients 

(Table 5.1b) quantified the strength of this relationship.

As observed in Norman, solar noon occurred at 1 PM during the winter, spring, 

and fall seasons and at 2 PM during the summer season. The solar radiation maxima 

occurred between the primary and secondary peak loads during the winter, spring, and 

fall and occurred hours prior to the single peak load during the summer (Fig. 5.14a-d). 

During the winter season, the load profile peaked twice per day at nearly the same 

magnitude: once at 8 AM and once at 8 PM. As a result, a secondary load minimum 

occurred during the afternoon (e.g., at ~4 PM). The strongest correlation between solar
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radiation and load was negative because a maximum of solar radiation preceded a 

minimum of electrical use by 4 hours (Fig. 5.14a and Table 5.1b). Although the 

correlation was weak, the relationship became weaker when trying to correlate the peak 

load and the solar radiation maximum with the appropriate time lag.

The interrelationship during the spring season was strongest when the maximum 

of solar radiation preceded the maximum load by 4 hours (p = 0.53), the number of hours 

between the load peak at 4 PM and solar noon (Fig. 5.13b, Table 5.1b). Similar results 

were uncovered from the summer season (Fig. 5.13c). The strongest summer relationship 

(p = 0.79) was detected when solar noon led the peak load by 3 hours, the number of 

hours between the load peak (e.g., 5 PM) and solar noon. In general terms for all 

seasons, the load always responded to the weather variable 1 hour sooner in Woodward 

than detected in Norman.

During the fall season for Woodward, the physical relationship for most variables 

were weaker than those detected in Norman (p = 0.29 versus p = 0.56). On the other 

hand, the magnitude of the solar radiation-load correlation for Woodward was stronger (p 

= 0.3) than the temperature-load correlation (p = -0.25), which indicated that solar 

radiation contains more predictive power than the widely used and accepted temperature 

data during the fall season.
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5.4 AltusAFBSite

The Altus AFB site is a commercial entity. This training facility operates on a 

Monday-Friday schedule made up of 8-hour workdays. However, some military 

personnel live on the base and it is that residential use of electricity which sometimes 

skews the use of electricity outside the workday. These relationships between weather 

variables and electric load are examined below.

5.4.1 Temperature-Load Relationship (Altus AFB)

5.4.1.1 Scatterplots

On an annual scale, a nonlinear relationship existed between temperature and load 

at Altus AFB (Fig. 5.15). The trends in the plot were such that, on either side of ~61°F 

(16. l°C), the temperature-load relationship had different characteristics. On the cold side 

of the scatterplot, the relationship was linear. More importantly, the load did not appear 

to have a dependence on temperature (i.e., a horizontal band of load values spanned 

temperatures between 13°F/-10.6°C and 50°F/12.8°C). On the warm side of the plot, the 

relationship appeared linear with an orientation that defined a positive relationship (i.e., 

as the temperature increased, the load increased).

Seasonal scatterplots (Figs. 5.16a-d) revealed more details about the piecemeal 

linear relationship between temperature and load. Temperatures during the winter of 

1999 ranged from 13°F (-10.6°C) to 80°F (26.7°C) while the load varied between 5000 

kWh and 9000 kWh (Fig 5.16a). Because the load appeared independent of temperature, 

other factors must have influenced the small band of electrical load to vary across the 

wide range of temperatures. One factor is the fact that Altus AFB uses natural gas
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(versus electricity) as its primary source of heat. Thus, a decrease in winter temperatures 

does not necessarily increase the consumption of electricity. Because Altus AFB 

operates as a business from Monday through Friday, the weekday loads were separated 

from the weekend and holiday loads (e.g.. New Years Day, Martin Luther King, Jr. Day, 

and President’s Day). The weekdays were further stratified by day (8 AM -  8 PM) and 

by night (9 PM -  7 AM). Although the typical workday at Altus AFB is 8 AM -  4 PM, 

the ‘days’ were extended to 8 PM because of the early evening influence on
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FIG. 5.15 Scatterplot of hourly temperature from the Altus Mesonet site versus hourly 
electric load from the Altus AFB substation for 1999.
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1999.
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electric load from base housing. In other words, the use of electricity started to decline 

after 4 PM, but its use increased sharply between 6 PM and 8 PM as base residents settled 

in for the evening. After 8 PM, the load decreased. After stratifying weekday-days, 

weekday-nights, and weekends/holidays, a clear pattern developed in the scatterplot. 

During the winter, higher loads during the week coincided with the 8-hour workday and 

evening use of electricity. In contrast, smaller load values corresponded to weekends or 

to the overnight period. Clearly, the use of electricity to operate the base during the week 

dwarfed the weekend load consumption, which was created by the housing element.

In a response that was similar to the use of electricity at residential sites, the 

temperature and load values during the transitional spring season became a combination 

of winter-like and summer-like responses. An inspection of Figure 5.16b revealed that 

the March scatter was confined to the cool side of the plot and resembled the horizontal 

structure observed during the winter (Fig. 5.16a). By June, the relationship became linear 

and positive on the warm side of the plot as the data acquired a summertime appearance 

(Figs. 5.15 and 5.16c). The overlap of values was minimal from March to June. A break 

in the linear/nonlinear relationship appeared to occur at ~61°F (16.1°C). The temperature 

and load data from April and May were intermingled throughout the seasonal plot, as the 

spring oscillated back and forth between the cold of early spring and the warmth of late 

spring. With the arrival of summer, the relationship between temperature and load was 

strong, positive, linear, and well defined. Clearly, as temperature increased, the 

consumption of electricity increased.

Because the fall season is one of transition, the temperature-load relationship also 

represented a combination of the relationships from the summer and winter seasons.
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Figure 5.16d exhibited the same nonlinear relationship between temperature and load that 

occurred during the fall months at the residential sites. As with the annual and spring 

plots, the 61°F (16.1°C) isotherm appeared to be the breakpoint temperature whereby the 

temperature-load relationship changed its pattern. The cooler side resembled winter 

scatter while the warmer side resembled the summer scatter. Based upon a monthly 

partitioning of the fall data (Fig.5.16d), a pattern emerged that resembled the spring 

pattern (Fig. 5.16b). The most significant difference between the two plots is that the fall 

plot contained much colder temperatures than did the spring plot which is a consequence 

of the fact that the fall season experienced a wide range of temperatures (e.g., a difference 

of 58°F [32.2°C] between extremes) each month. The large variances of temperature 

during the fall made it the most difficult season to produce electric loads accurately.

The largest contrast between the temperature-load relationships from a 

commercial site and from a residential site occurred during the winter season. The 

images (Fig. 5.16a) clearly revealed that the load consumption at Altus AFB during the 

winter was driven by the day of the week and by the time of day instead of begin 

modulated by air temperature. Norman was more responsive than Altus AFB to winter 

temperatures in that the load increased with colder temperatures (Fig. 5.2a). Woodward, 

the rural residential site, was the most responsive to winter temperatures, as the load 

increased significantly with colder temperatures (Fig. 5.9a).

5.4.1.2 Line Graphs

To analyze the impact of temperature on load consumption for a commercial 

customer, the temperature-load relationship was plotted on a monthly time scale (Figs.
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5.17a-b). During the day while residential customers were at work (e.g., not consuming 

high levels of electricity at their homes), the commercial customer used elevated levels of 

electricity. But, after the workday ended, the commercial customer experienced a 

dramatic decrease in the use of electricity even as the residential customer (on the base) 

increased the use of electricity at home. Thus, the Altus load demand shifted from home 

to the place of business and back to home during a 24-hour day. Because of base 

housing, the load consumption between 8 PM and 10 PM had characteristic profiles that 

resembled residential sites. Furthermore, because residential and commercial customers 

were relatively inactive during the overnight hours (i.e., between 12 AM -  6 AM), both 

customers experienced a load minima.

The weekdays and weekends were plotted separately in the line graphs. Because 

Altus AFB is a weekday operation, the weekday and weekend load profiles were 

divergent in their shape and their magnitude (Figs. 5.17a-b). For Altus AFB, regardless 

of the temperature, the load decreased after the close of business during the week. Each 

late afternoon decline in the consumption of electricity was not evident on weekends. 

For a purely residential customer, the shape of the weekend load profile mirrored that of 

the weekday profile; the difference between the weekday and the weekend load was the 

magnitude of the load, a feature created by temperature differences between the weekday 

and weekends.

Load profiles during summer (Fig. 5.17a) distinguished themselves from those 

during all other seasons at Altus AFB (also observed at residential sites). While in most 

cases the load trends were different between the commercial and residential customers, 

the single-peak appearance in the load profile during summer occurred at Altus AFB,
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Norman, and Woodward (Figs. 5.17a, 5.3a, and 5.10a). The differences in the summer 

profiles between the residential and commercial customers included the time of the peak 

load and the profile structure several hours after the peak. During the summer, the load 

and the temperature peaked at ~4 PM. Thus, the load peaked at the end of the workday 

rather than being modulated totally by the maximum afternoon temperature. However, 

the magnitude of the peak load was influenced by temperature. The summertime peak 

loads at Altus AFB averaged 12800 kWh, which was -5400 kWh greater than peak loads 

during other seasons (Fig 5.17a). After 4 PM, the load curve for Altus AFB decreased 

quickly until 7 PM. If base housing were not a factor, it is probable that the decrease in 

load demand would have continued at a constant rate towards the overnight minimum 

load. However, because of base housing, load consumption increased to a secondary 

peak (e.g., the same hour of peak loads for residential customers at 8 PM). Between 8 

PM and 10 PM, the load consumption decreased gradually. After 10 PM, electricity use 

at Altus AFB decreased rapidly to its overnight minimum -  much like what occurred at a 

substation serving residential users. Thus, base housing added an evening spurt of 

electricity consumption to the profile for Altus AFB, which typical commercial entities 

would not experience.

The weekends during the summer months at Altus AFB produced a slightly 

different load profile, both in magnitude and shape, compared to the weekday load profile 

(Fig. 5.17a). The overnight load minimum occurred at 8 AM on the weekends and at 5 

AM during the week, whereas the low temperature occurred at 7 AM. Because the base 

operations were closed on weekends, the pattern for the load profile was influenced 

primarily by base housing. Thus, the load on weekends primarily responded to changes
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in temperature, much like residential users, as military residents began their day. The 

weekend profile peaked at 4 PM (at the same hour as the weekday profile) when the 

weekend temperature reached its maxima. However, as temperatures decreased, the 

weekend load decreased gradually during the next several hours, and, thereby, exhibited a 

very different behavior than observed in the weekday load profile. Thus, during summer, 

the shape of the weekday load profile was influenced by the workday schedule while the 

shape of the weekend load profile was influenced by the response of military residents to 

changes in temperature. The magnitude of both profiles was also influenced by the 

summertime temperatures.

All seasons (other than summer) exhibited monthly-averaged load profiles like 

those shown in Figure 5.17b. Between 5 AM and 8 AM, a steep increase in the electric 

load occurred during the week. This feature reflected how base residents began a 

morning routine during the weekdays that was like those in residential communities. In 

addition, military personnel may have trickled into work and increased the use of 

electricity. After 8 AM, the load profile continued to increase for the commercial entity, 

but it load decreased in the residential community (Figs. 5.3b and 5.10c). The greatest 

use of electricity occurred during workday hours (i.e., 9 AM -  4 PM), interrupted by a 

small decrease in load during the lunch hour (Fig. 5.17b). The peak load occurred at 3 

PM during March 2000, ~1 hour before the maximum daily temperature. This 

unexpected scenario implied that temperature did not drive the timing of the peak load as 

it did in residential communities. However, the temperature did impact the magnitude of 

the peak load which averaged 7400 kWh during winter, 9400 kWh during spring, 12800 

kWh during summer, and 8500 kWh during fall (Figs. 4.22-4.25). A greater load
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occurred during the warm season while a lesser load occurred during the cold season, as 

the primary source of heat at Altus AFB is natural gas, not electricity.

Weekend load profiles at Altus AFB were less variable than those which occurred 

during the week during all but the summer season (e.g., Fig. 5.17). The only similarity 

between the two load profiles was an 8 PM spike in the use of electricity. Obviously, 

base house residents were at home ~ 8 PM regardless of the day of the week. Otherwise, 

the weekend and weekday load profile diverged during the day. This difference reflected 

changes in the use of electricity due to daily activities of a commercial entity like Altus 

AFB versus the residential community at the base. Thus, for the commercial entity, the 

monthly-averaged load consumption always was significantly greater on weekdays than 

on weekends.

Graphs of weekly temperature and load data for each season (Figs. 5.18a-d) were 

analyzed to undercover detailed information about the use of electricity at Altus AFB 

which was smoothed by the monthly analysis. During the winter week, the load and 

temperature peaked within 1-2 hours of each other except on the weekend when an 

afternoon lull in load consumption coincided with the maximum temperature (Fig. 5.18a). 

The weekend trend reversed the relationship between temperature and load that had been 

observed during the winter. Electricity use on weekdays far exceeded that on the 

weekends.

The weekly plot from the spring (Fig. 5.18b) and summer (Fig. 5.18c) seasons 

maintained a direct relationship between temperature and load. The peak load and 

temperature occurred simultaneously during both seasons. The weekend load demand 

was less than the weekday load demand, even when weekend temperatures exceeded the

160



H o u r ly  T e m p e r a t u r e  a n d  H o u r ly  E le c t r i c  L o a d  D u r in g  W in te r
A l tu s  A F B : 1 F e b  9 9  -  7  F e b  9 9

L I . i 'I*--. .1%

>»•! y ̂

Temperature 

Load |ĵ
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weekday temperatures (e.g., Saturday and Sunday in August [Fig. 5.18a] and Saturday in 

May [Fig. 5.18b]). However, the use of electricity on a weekend was elevated when 

warmer temperatures occurred. In other words, the load demand on weekends would 

have been less when comparable temperatures occurred during the week.

During the fall season (Fig. 5.l8d), a structure similar to that of a winter season 

occurred. A typical fall temperature swing occurred such that the difference between the 

maximum temperature on Monday and that on Tuesday was 16°F (8.9°C). However, 

because the load was unaffected by this temperature swing, the weekday load seems 

much more dependent on the work schedule rather than on air temperature at this 

commercial site.

5.4.1.3 Apparent Temperature-Load Relationship

The use of Tapp did not provide any new information for use in better 

understanding the variation of electrical load to Altus AFB. Because of its strong 

dependence on the schedule for a given work week, the heat index and wind chill 

temperatures did not significantly impact the load any more than did the air temperature.

5.4.1.4 Temporal Correlations

Although the shape of the load profile seemed to depend on the work schedule at 

the AFB instead of temperature, the temperature-load relationship was still strong (p = 

0.6; Table 5.1c). Furthermore, because the peaks load and maximum temperatures 

occurred nearly simultaneously throughout most a given year, a temporal lag between the 

load and temperature did not increase the correlation maxima. While part of the load at
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Altus AFB came from residential users, that fraction of the load did not influence daily 

trends dominated by the weekday work schedule.

The temporal correlation during winter was positive, yet weak (p = 0.23). Both 

residential sites had stronger winter relationships between temperature and load (pNorm = 

-0.32 and pwood = -0.6). During winter, the weekend profiles exhibited a strong inverse 

relationship between temperature and load (Fig. 5.18a). When data containing that 

inverse relationship was merged with the winter data that had a direct relationship from 

the weekday period, the resulting correlation coefficient was weak. The temporal 

correlation during spring and summer were high (p = 0.79 and p = 0.86, respectively) as 

the maximum load and temperature occurred at the same time. The fall season produced 

higher temporal correlations at Altus AFB than occurred at either residential site. The 

load and temperature reached a simultaneous maximum that, in turn, created a strong 

correlation (p = 0.55).

5.4.2 Relative Humidity-Load Relationship (Altus AFB)

A seasonal distribution of relative humidity and load for Altus AFB is shown in 

Figure 5.19. The scatter in this plot resembled that for the residential sites. A negative 

relationship existed between relative humidity and load, especially during the summer 

months. As relative humidity decreased, temperature increased followed by an increase 

in load during the summer months. The correlation was consistent with this inverse 

relationship. In fact, the correlations were strongest during the summer (p = -0.66) and 

weakest during the winter (p = -0.12). The spring and fall temporal correlations ranked 

between those from the summer and winter, as did the seasonal temperature.
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FIG. 5.19 Scatterplot of hourly relative humidity from the Altus Mesonet site versus 
hourly electric load from the Altus AFB substation for 1999.

5.4.3 Solar Radiation-Load Relationship (Altus AFB)

The solar radiation-load relationship at Altus AFB also was investigated. A 

scatterplot of solar radiation and load (not shown) provided inconclusive evidence. Yet, 

the temporal correlation (Table 5.1c) and graphs of seasonally-averaged solar radiation 

and load (Figs. 5.20a-d) reveal a strong relationship. The winter season produced the 

weakest correlation between solar radiation and load (p = 0.23). The multi-scale features 

of the load profile were difficult to reconcile with the well-defined plot of solar radiation. 

Thus, the strongest winter correlation, though weak, occurred at a temporal lag of zero.
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The strongest correlation between solar radiation and load occurred during the 

spring when the sunshine preceded the electrical load using a lag of 3 hours (p = 0.5; Fig. 

5.20b). The peak load at 4 PM trailed solar noon by 2-3 hours but was consistent with the 

time of maximum temperature. During the summer, solar noon at 2 PM preceded the 

peak load at 4 PM (Fig. 5.2c). However, the temporal correlation was strongest when the 

load trailed solar radiation by ~3 hours (p = 0.71). The load declined less rapidly than 

did the solar radiation at the end of each day. The fall season (Fig. 5.20d) produced 

results similar to that of the spring season. Thus, solar radiation may be a valuable 

weather variable used in predicting electrical load at the commercial site and at the 

residential sites.

5.5 Dominance/Broken Bow Site

The Dominance substation supplies electricity to an industrial warehouse that can 

operate 24-hours a day, 7 days a week, or it can shut down for weeks based on market 

demand. Furthermore, employees work either 8- or 12-hour shifts during the day or 

overnight hours. Thus, the load demand at Dominance appeared as random numbers over 

time.

5.5.1 Temperature-Load Relationship (Dominance)

5.5.1.1 Scatterplots

The annual scatterplot for Dominance (Fig. 5.21) had little structure when 

compared with data from the residential and commercial sites. Thus, load was
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independent of temperature at this industrial site, consistent with the seasonal plots (Figs. 

5.22a-d). Additionally, these plots revealed that a majority of plant closures (when the 

load was < 1000 kWh) occurred during the spring and fall seasons of 1999. During 2000 

(not shown), most plant closures occurred during the summer and winter seasons, 

primarily as a result of market demand.
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FIG. 5.21 Scatterplot of hourly temperature from the Broken Bow Mesonet site versus 
hourly electric load from the Dominance substation for year 1999.
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5.5.1.2 Line Graphs

Figures 5.23a-b displays hourly temperature and hourly load averaged over a 

month during a period of normal operation at Dominance (i.e., when the plant was not 

closed). When the warehouse was closed, its load was constant at -1000 kWh each hour. 

The load was erratic during February and April and completely independent of 

temperature. Throughout the study period, no consistent load pattern was observed, even 

when the data were analyzed on a weekly time scale.

5.5.2 Temporal Correlations (Dominance)

Clearly, the load consumption at the industrial site was not influenced by 

temperature. The correlation between load and temperature was near zero (Table 5.1d). 

Other weather variables (e.g., apparent temperature, relative humidity, and solar 

radiation) that influenced the load for residential and commercial customers also had no 

bearing on the load at the industrial site. As a result, temporal lags were irrelevant.

It appears that load forecasting for Dominance would be totally influenced by 

advance notice that a plant closure was about to occur and minimal loads would result. 

Otherwise, in full operation, the variation in load was minimal. Throughout each year in 

the study period, more than 90% of the hourly load values were between 2000 kWh -  

6500 kWh. These load values had no apparent relationship to any weather variable.
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5.6 Summary

Evidence in this chapter was consistent with prior results documented in the 

scientific literature which clearly reveals that temperature is the best predictor of load 

consumption for all types of customers, except industrial. However, on a seasonal time 

scale, other variables proved to be valuable because they had stronger relationships than 

did temperature and load. Perhaps other weather variables, when available, can reduce 

load forecasting errors, and save money for the utility company and its customers. 

Modeling studies in Chapter 6 will test this concept.
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Chapter 6: Applications of Electric Load Modeiing

Two load modeling simulations were performed as another means to evaluate the 

null hypothesis (i.e., to determine if a comprehensive understanding of weather-load 

relationships will improve the accuracy of a load forecast). In other words, the 

interrelationships between weather and load developed in Chapter 5 were incorporated 

into a load model to reduce load forecasting errors. Modeling Study I produced a set of 

day-ahead load predictions for each substation using a neural network (NN) load model 

and a regression-based load model. The goal was to determine which combination of 

weather variables resulted in a more accurate load forecast using two load model 

strategies. The purpose of Modeling Study II was to determine the economic value of 

using a 21-century, high-resolution weather forecast versus an antiquated approach 

known as NGM MOS guidance (the technique used at WFEC).

Accuracy in this study was measured by a reduction in the forecast error which, in 

turn, became economically significant to a small utility like WFEC. The mean absolute 

percentage error (MAPE) was used as a performance index in both modeling studies; it is 

the average of the absolute value of the percentage residuals and is calculated as:

MAPE =

N

I y , - y ,
f=l y,

N
xlOO

where y, is the observed load, y, is the forecasted load, and N  is the number of 

observations in the estimation period, at hour t. MAPE is a common statistical measure
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used by electrical load modelers (Barakat and Al-Qasem 1998; Hobbs et al. 1999; and 

Alves da Silva 2000), in part because the error can be readily converted into an economic 

benefit (e.g., a dollar amount). For example, Hobbs et al. (1999) determined that for a 

5000 MW peak generating system with a $20 mean variable generation cost and a 5% 

annual MAPE, “improved accuracy is worth about S0.6M to 1.6M annually per 1% 

improvement [in MAPE].” Other performance measures (e.g., root mean squared error, 

mean absolute error, and the sum of squared errors) were computed during this study, but 

those results are not discussed.

6.1 MetrixND -  A Load Forecasting Tool

The MetrixND model, chosen for a comparative load forecasting analysis, was 

developed by the Regional Economic Research (recently acquired by Itron, 

Incorporated). MetrixND allows the load forecaster to choose from among the following 

modeling techniques: a neural network, multiple regression, exponential smoothing, and 

ARIMA. This study focused on load forecasts produced by the neural network and 

regression-based models. MetrixND also computes univariate statistics (e.g., means, 

standard deviations, and correlation coefficients for each predictor variable with the 

dependent variable) and a correlation matrix for all variables used in the model. Sample- 

period statistics, forecast statistics and error statistics are provided by MetrixND as well.

6.1.1 The Neural Network Model

The neural network model within MetrixND is an interactive model that provides 

the load forecaster with advanced specification options. The load forecaster also can
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choose to eliminate bad observations, to eliminate observations to calculate forecast test 

statistics, and to place limits on the training period and forecast period. Finally, the NN 

model allows the load forecaster to enter the parameters that control the NN model’s 

training and learning processes. (Specifications of the neural network are shown in 

Appendix F.)

The purpose of the training algorithm is to estimate the unknown parameters (i.e., 

to learn relationships among the variables). Once the variables are defined by the load 

forecaster, an initial set of coefficients is selected by using a random number generator. 

The estimation algorithm automatically adjusts the parameters to reduce the estimation 

(training) error until the process ultimately settles into one of many local optima (because 

it is virtually impossible to find the true global optimum). However, the estimation 

process is not hindered because a majority of the local optima have been shown to work 

well in both testing and forecasting modes. Once the parameters have been estimated by 

the NN model, the time period for a load forecast can be altered as new data become 

available, at which time the model parameters are updated.

In the end, the neural network model produces estimates of its coefficients, the 

predicted and residual values of electric load from the sample period, the predicted load 

values for the forecast period, and residual values of electrical load for the forecast period 

when actual load values become available.

6.1.2 The Multiple Regression Model

The linear (least-squares) regression technique has been used for decades in load 

forecasting. Although more advanced techniques have since been developed, the least-
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squares method still finds its way into load models of today. The linear regression 

model, however, required transformations of weather variables to account for the 

nonlinearity between weather and load data. For example, transformations of 

temperature (e.g., temperature^2 and temperature^]) were used as predictor variables in 

this study. Hence, a clear understanding of the weather-load relationship is necessary 

prior to use of the regression model. In contrast, the neural network had the ability to 

learn complex relationships between variables, and thus, the pre-processing stage was not 

as laborious as occurred with the regression model. However, once the transformations 

were developed, the estimation period during which the regression coefficients were 

calculated was 3 times faster (using the regression model) than was the training period 

using the NN.

Once the variables in the regression model are specified, the coefficients are 

estimated by minimizing the sum of squares of the residuals (e.g., the deviations of the 

observed response from the fitted response) between the load forecasts and the 

observations. Finally, a check is performed for linearly dependent regressors; if 

identified, the parameters and associated statistics are set to zero. Once the estimation is 

complete, the execution of the forecast requires the same amount of time as does the NN.

6J.3 Modeling Specifications

Twenty-four load models (i.e., one for each hour of the day) were built to produce 

day-ahead forecasts for both the NN and regression model. The output from the 24 

models was used either as hourly forecasts during a specified period or they were 

combined to produce a daily load forecast (useful for generation and transmission
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companies like WFEC). This hourly model approach allows the load modeler to choose 

a combination of variables that are inherent to a specific hour of the day. For example, 

solar radiation values are zero during the night. Thus, solar radiation may be eliminated 

as a variable during overnight hours.

Previous scientific works determined that several exogenous factors (e.g., the day 

of the week and holidays) were fundamental to load forecasting. Consequently, these 

variables (Table 6.1) were used in the hourly NNs during the ‘training’ stage to develop 

their coefficients and in the hourly regression models to develop regression coefficients. 

Each hourly model (e.g., the 1 AM regression model and the 1 AM NN model) used the 

same (non-weather related) exogenous variables to isolate the impact of weather. 

However, the variables (non-weather related) used in the 1 AM models were sometimes 

different than the variables used in 3 PM models. Other user-defined model 

specifications for the NN and regression model are listed in Tables 6.2a-b.

6.2 Modeling Study I

A neural network-based model (e.g., a popular yet controversial modeling 

technique) and a multiple regression-based model (e.g., a traditional load modeling 

technique) were chosen to produce load forecasts at each study site using ( 1) temperature 

(LFt), and (2) temperature, relative humidity and solar radiation (LFT,RH.srad)- MAPEs 

were developed over a specified forecast period, and the results from each model were 

compared. Finally, the errors were quantified into their economic impacts.
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Table 6.1 The user-defined, exogenous (non-meteorological) variables used in the hourly 
neural network and regression models.

Exogenous Variables for the NN and the Regression Model

□ Years (1998,1999, and 2000)
□ Seasons (winter, spring, summer, and fall)
□ Months (January, February,..., December)
□ Days of the week (Monday, Tuesday,..., Sunday)
□ Holidays (all federally recognized holidays)
□ Heating Degree Days (calculated using threshold temperatures developed in this 

study)
□ Cooling Degree Days (as calculated by the NWS)_________________________

Table 6.2 The specification list for the (a) neural network and (b) regression model in 
Modeling Study I, including weather variables.

(a) Specification List for the NeUralNetwork

a Single output feedforward neural net
a Linear activation function at the output layer
a Sigmoidal activation function at the hidden layer
□ 3 nodes in the hidden layer
a 3 trials in the training module
a 100 iterations for each trial (training and learning) •
a Convergence criterion for trial is 0.0001
□ Bad spots
a Test periods
a Estimation period
a Forecast period
a Hourly load
a Hourly temperature (T)
a Hourly relative humidity (RH)
a Hourly solar radiation (Srad)
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(b) Specification Ustfor the Regression Model

a Bad spots
□ Test periods
□ Estimation period
□ Forecast period
□ Hourly load
□ Hourly temperature transformations
□ Hourly relative humidity transformations
□ Hourly solar radiation transformations

Results of Modeling Study I

Monthly-averaged MAPEs were computed from hourly load forecasts using the 

NN and regression models. A “good” load forecast by (electric utility) industry standards 

is when the MAPE is less than 5% (Khotanzad et al. 1997; Hobbs et al. 1999). 

Accordingly, the results in this section are “good” by industry standard.

For illustration purposes, one month was chosen to represent each season at each 

of the four study sites (Table 6.3). At the residential and commercial sites, the model 

errors from both simulations were nearly equal or reduced when temperature, relative 

humidity, and solar radiation (compared to using temperature alone) were used in the NN 

and regression load models. The electrical load at the industrial site did not in any way 

resemble a load profile from a residential or commercial site (e.g., the load was not 

dependent on the exogenous variables used in the models); at the Dominance substation, 

the errors were large and inconsistent. The differences in the MAPEs for LFt and 

LFT.RH.srad at all four sites ranged between ~0% - 0.55% for the NN model and between 

-0% - 0.86% for the regression model. In these simulations, 0% implied that the forecast
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Table 6.3 A comparison of the mean absolute percentage errors (MAPEs) of the load 
forecast at the four study sites from the NN and from the regression model using 
temperature (LFt) versus using temperature, relative humidity, and solar radiation 
(LFT.RH.Smd).

NORMAN ■ ■■ M Regression
Feb-99

Temp / Temp, RH, Srad 3.66% / 3.40% 3.46% / 3.22%

Difference 0.26% 0.24%

May-99

Temp / Temp, RH, Srad 5.41%/4.86% 5.63%/4.77%

Difference 0.55% 0 .86%

JuI-99

Temp / Temp, RH, Srad 3.49% / 3.25% 3.45% / 3.02%

Difference 0.24% 0.43%

Oct-99

Temp / Temp, RH, Srad 3.68% / 3.32% 3.49%/3.22%

Difference 0.25% 0.27%

WOODWARD NN Regression
Feb-99

Temp / Temp, RH, Srad 3.73% / 3.68% 3.83% / 2.96%

Difference 0.05% 0.87%

May-99

Temp / Temp, RH, Srad 4.34% / 4.29% 4.26%/4.24%

Difference 0.05% 0 .02%

Jui-99

Temp / Temp, RH, Srad 3.46% / 3.45% 3.43% / 3.43%

Difference 0 .01% 0.00%

Oct-99

Temp / Temp, RH, Srad 3.89% / 3.70% 3.81%/3.77%
Difference 0.19% 0.04%
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ALTU SAFB NN Regression

Feb-99

Temp / Temp, RH, Srad 1.80%/1.66% 1.65%/1.44%

Difference 0.14% 0 .21%

May-99

Temp / Temp, RH, Srad 3.18%/2.88% 3.19%/2.88%

Difference 0.30% 0.31%

JuI-99

Temp / Temp, RH, Srad 2.04%/ 1.91% 2.24% / 2.06%

Difference 0.13% 0.43%

Oct-99

Temp / Temp, RH, Srad 2.44%/2.43% 2.72% / 2.37%

Difference 0 .01% 0.35%

DOMINANCE NN Regression

Feb-99

Temp / Temp, RH, Srad 25.95%/25.91% 25.84%/26.13%

Difference 0.04% -0.29%

May-99

Temp / Temp, RH, Srad 26.34%/26.41% 26.41% / 26.42%

Difference -0.07% -0 .01%

Jui-99

Temp / Temp, RH, Srad 23.54% / 23.63% 23.80%/23.08%

Difference -0.09% 0.72%

Oct-99

Temp / Temp, RH, Srad 21.74%/21.47% 21.99%/21.73%

Difference 0.27% 0.26%
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error was the same regardless of whether using temperature, relative humidity and solar 

radiation served as predictors versus temperature alone.

Statistical significance of the differences between the MAPEs from the two 

forecasts (LFt and LFT.RH.srad) were analyzed using a Student t-test. Each season was 

tested separately (such that the degrees of freedom = the number of days in the season 

minus 2). At Norman, the differences between the means of the MAPEs for LFt and 

LFT.RH.srad were statistically significant 90% of the time. This result occurred for both 

models during all seasons. At Woodward, the only significant differences (at a 95% 

confidence interval) in MAPEs between the two load forecasts (LFt versus LFT.RH.srad) 

occurred during the winter season using the regression model. The regression model also 

produced significant differences at Altus AFB with 90% confidence for all seasons 

except winter. Otherwise, the differences between the MAPEs for the two sets of load 

forecasts were insignificant at Woodward and Altus AFB. Statistical significance was 

not relevant at Dominance because load forecasts were not related to meteorological 

phenomena. Additionally, high values of (i.e., greater than 0.85) were produced by 

the load model simulations all sites except for Dominance'. The bottom line is that a 

small improvement in a load forecast can be economically significant to a utility 

company (Hobbs et al. 1999), which means a decrease in operating costs or an increase in 

operating revenues.

The modeling results revealed that the use of electricity at Norman responded to 

more than one meteorological variable. For example, when the temperature is 60°F

' is an accepted statistical tool to measure ‘goodness of fit’, where values close to 1.0 (0.0) indicate that 
the model explains the majority (very little) of the variation of the dependent variable. Using temperature, 
relative humidity and solar radiation versus using temperature alone was judged to produce an insignificant 
improvement in the value.
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(15.6°C) and the sky is sunny versus the conditions of 60°F (15.6°C) and cloudy skies, 

temperature and solar radiation would model this scenario better than using temperature 

alone. Throughout the 24-hour forecast period, the regression model uncovered a greater 

benefit for using three weather variables than did the NN; in addition, the regression 

model always produced more accurate load forecasts. Seasonally, in both models, the 

smallest errors occurred during the summer month when the weather-load correlations 

were the strongest (p = 0.87). However, the least accurate forecasts occurred during the 

spring month, even though the weather-load relationship was strong (p = -0.7). This 

surprising result was derived from the fact that load data from Norman were missing for 

the months of April 1998, March 1999, and April 1999; hence, the estimation of the 

model coefficients may have suffered, especially during the spring months. Thus, at 

Norman, the load was most effectively modeled using the regression model with 

temperature, relative humidity and solar radiation.

The benefit of including relative humidity and solar radiation data in the load 

models was minimal at Woodward, except when the regression model was used during 

the winter season (Table 6.3). The most accurate load forecast at Woodward occurred 

during the summer in both models when the strongest weather-load relationship occurred. 

However, like Norman, the weakest weather-load correlations occurred during the fall 

season while the least accurate forecast occurred during the spring season. Surprisingly, 

both models learned the weather-load relationship of the fall season more effectively than 

might be implied through the strength of the temporal correlations. From a modeling 

standpoint, the load at Woodward was most accurately predicted by both models using 

temperature as the sole predictor.
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Relative to the other study sites, both models at Altus AFB produced the smallest 

MAPEs. The pattern of electricity use for this commercial entity was effectively 

modeled in both simulations, even though a portion of the Altus load had a residential 

component. The benefit of using additional weather variables occurred throughout the 

forecast period when the regression model was used, but they were insignificant when the 

NN was used. However, the accuracy of load forecasts from both models was 

comparable for each month. Seasonally, the load prediction at Altus AFB was most 

accurate during the winter month, when the weakest weather-load relationships occurred 

(p = -0.23). This surprising result occurred because the heating demand is met by natural 

gas instead of electricity (i.e., the response to colder temperatures was not observed in the 

load demand).

The load forecasting errors at the industrial site were a magnitude greater than 

those at the residential and commercial sites. The poor forecast of load at the Dominance 

substation could not be modeled effectively by use of predictor variables normally used 

for the other customer categories. A purely industrial load like occurred at Dominance 

must be estimated after consideration of the market demand for the product and any 

scheduled closures and downtime at the warehouse. Thus, comparing the differences 

between the MAPEs for LFj and LFT.RH.srad were not relevant for Dominance.

The use of temperature, relative humidity and temperature improved the accuracy 

of the load forecast at Norman no matter which modeling technique was chosen. The 

accuracy of the load forecasts at Altus AFB was improved (using three weather variables) 

during all seasons using the regression model. On the other hand, temperature can be 

used as the sole predictor at Altus AFB when using the NN. Except for Norman, the NN
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apparently “learned” the intricacies of the relationship between temperature and load 

such that other weather variables were not useful to reduce errors in the load forecast. 

However, the accuracy of the load forecasts from the regression model (in most cases) 

benefited from the use of relative humidity and solar radiation. Either model is capable 

of producing an acceptable load forecast. However, the careful choice of weather 

variables in a model can improve the accuracy of a load forecast.

The load forecast at the urban, residential site was most impacted by the use of 

additional weather variables. More importantly, the methods used to improve the load 

forecast for an urban, residential community in Oklahoma are applicable across the 

United States and perhaps worldwide.

6.3 Modeling Study II

Because temperature is essential to an accurate load forecast, the most accurate 

temperature data are required. Modeling Study I used historical weather data, such that 

error in the weather forecasts were not a factor in the load model forecast. However, 

Khotanzad et al. (1997) documented that 1-2 day weather forecasts were responsible for 

~ 1 % additional (MAPE) error in load forecasts. Thus, the purpose of Modeling Study II 

was to determine the value of improved temperature forecasts to a load forecast. Load 

forecasts were compared based upon a high-resolution temperature forecast (20-km Eta 

Model) versus the temperature forecast from NGM MOS.

Spatial interpolation of the Eta Model output was used to produce a temperature 

forecast at Norman (35.24N, 97.47W), whereas the nearest available NGM MOS 

guidance was the Oklahoma City airport site (35.23N, 97.36W). In addition, forecasts
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from the Eta Model are updated every 6 hours while the NGM MOS is issued twice daily. 

Hence, a higher-resolution model with a greater temporal frequency should produce a 

more accurate weather forecast that, in turn, should reduce the MAPE in a load forecast.

The NN model from MetrixND was used to produce hourly forecasts out to 24 

hours at Norman on 4 April 2003 (a typical spring day). Three data sets were used: 

observed, hourly temperature from the NWS Weather Forecast Office in Norman; 

temperature forecasts from the 20-km Eta Model, and temperature forecasts from NGM 

MOS. Because solar radiation forecasts are not available from weather forecast models, 

this study demonstrated the impact of improved temperature forecasts on the accuracy of 

load forecast.

Results of Modeling Study II

Twenty-four hourly NNs were trained with observed hourly, electric load data 

from the West Norman substation and hourly temperature data from the Norman Mesonet 

site from 2001 and 2002. A load forecast was produced at Norman on 4 April 2003 using 

the NWS observed air temperature. This load forecast was considered a “perfect” load 

forecast in that error resulting from an imperfect weather forecast was eliminated from 

the load forecast. Two additional load forecasts were produced; one used temperature 

forecasts from the Eta model and the other used forecast temperatures from NGM MOS. 

The three sets of temperature data are displayed in Figure 6 .1.

Temperature forecasts inherently introduce error into the load forecast model. On 

4 April 2003, Eta Model forecasts had a mean temperature error of 3.4°F (1.9°C) versus a 

6°F (3.3°C) error in temperature forecasts from NGM MOS, when they were compared to
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the observed air temperature. However, a 2.6°F (1.4°C) improvement in the temperature 

forecast (Eta versus NGM MOS) reduced the MAPE of the load forecast by 0.55% at 

Norman. This improvement to the load forecast was clearly dependent on the accuracy 

the temperature forecast for the online component of the load model.

Load forecasts are imperfect even if a perfect weather forecast was available, in 

part due to the stochastic component of the load. In an effort to minimize load errors in 

the face of deregulation or to minimize operating expenses for any company, accurate 

weather forecasts are essential. While high-resolution weather forecasts are not perfect, 

forecasts produced by the Eta and RUC Models, for example, have demonstrated 

significant improvements in skill over forecasts in the NGM MOS guidance (Kalnay 

2003).

Observed Temperature versus Forecast Temperature 
Norman: 4i

I

#

9 AM 12 PM 3P
Hourof tfwDiy(C8T)

FIG. 6.1 Observed air temperature from the Norman WFO, forecast temperature from 
the 20-km Eta Model, and forecast temperature from NGM MOS at Norman on 4 April 
2003.
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6.4 Economie Benefit of Improved Load Forecasts

The impact of the two modeling studies was quantified by calculating a dollar 

amount saved by WFEC if they could reduce the MAPE in their load forecasts. The 

economic benefits to WFEC are unique because of: the size and generation capacity of 

WFEC; the agreements WFEC may have with other electricity generators; and the market 

prices at the time of the study. Thus, based on this study, the impact of weather variables 

on electric load should be transportable across the United States.

WFEC has a generation capacity of 1300 MW. Hugo, the coal-fired plant owned 

and operated by WFEC, can generate an additional -400 MW. Because coal is the least 

expensive generation method available at WFEC, WFEC daily operates the Hugo plant to 

its full capacity. Each day, WFEC must determine the most cost effective method to 

fulfill the remainder of the electricity demand above the generation capacity of Hugo. 

Their choices include whether to generate power using natural gas, to purchase power at 

market prices, or to interchange power with another utility (e.g., Oklahoma Gas and 

Electric).

During 2002, the system load averaged 800 MW (MWh/hour) at WFEC. During 

April of 2003, the cost to generate electricity using coal averaged $ 13/MW and averaged 

$50/MW if natural gas were used^. In addition, the market prices for electricity ranged 

from $12.68 during off-peak hours to $74.60 during peak hours' .̂ In Modeling Study I, 

an average 0.3% reduction of the MAPE was detected at Norman when temperature, 

relative humidity, and solar radiation were used in the load models.

 ̂Prices supplied by WFEC on April 4,2003 (personal communication).
 ̂www.NrgStream.com, an online source for current energy market information
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Suppose this average reduction in MAPE was realizable across the entire WFEC 

system, and that the load system analyst decided to purchase electricity at a market price 

of $45/MW because it was cheaper than generating the power. The use of three weather 

variables in a new-generation load forecast could have saved WFEC nearly $0.5M 

annually (800 MW -  4(X) MW = 4(K) MWh/hour x 24 hours/day x 365 days/year =

3,504,000 MW/year x 0.3% = 10512 MW/year x $45/MW).

The results in Modeling Study II also were quantified. On 4 April, 2003, the 

reduction in MAPE was 0.55% at Norman when an improved temperature forecast was 

used in the load model. The Norman substation distributed 133 MW for the day, which 

would translate into a savings of $16.50/day (provided that half the load was generated 

using coal and the other half was purchased at a market price of $45/MW). However, 

Norman is only one of 225 substations owned by WFEC, and is one of the larger 

substations in the WFEC system. The reduction in error in the load forecast will vary 

throughout the year and vary at each substation across the state as a result of using 

improved the temperature forecasts. Thus, suppose the savings averaged only $6.50/day 

at each substation; this could result in an annual savings of over $500,(X)0 for the WFEC 

system.

Therefore, the value of a comprehensive understanding of the interrelationships 

between weather and load data combined with improved temperature forecasts can save a 

small utility at least $0.5M annually. Larger power companies like Virginia Dominion 

Power and Florida Power and Light generate more than 10 times the amount of electricity 

produced by WFEC and have operating revenues that are more than 4 times that of 

WFEC. If the results are multiplicative and if 100 large electric utilities applied these
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results to their operational decisions, the reduced operating expenses could approach 

$0.25 billion per year. Regardless, the potential improvements in the load forecasts at 

WFEC, if projected to the larger power companies, would create almost astronomical 

reductions in annual operating expenses!
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Chapter 7: Summary and Concluding Remarks

The hypothesis of this dissertation was that a comprehensive understanding o f the 

relationship between weather variables and electricity demand will improve the accuracy 

of a load forecast. It was evaluated using three years of hourly weather variables from 

the Oklahoma Mesonet and hourly electrical load from co-located WFEC substations. 

The two data sets permitted a unique examination of the weather-load relationship. Load 

modeling simulations incorporated the interrelationships established in this study to 

determine the validity of this hypothesis.

This research is unparalleled in that the spatially-dense network offered by the 

Oklahoma Mesonet obtained weather observations which were within -4 miles of each 

substation. In addition, each substation represented four customer classes: urban

residential -  Norman; rural residential -  Woodward; commercial -  Altus AFB; and 

industrial -  Dominance. Previous scientific work focused on the system load of an entire 

utility company (which combined all customer categories and substations) and the 

relationship of those loads with temperature observed at an NWS airport site. 

Unfortunately, the observations used in previous work also were from unmaintained and 

spatially inadequate networks while concurrent forecasts were from antiquated weather 

models. While a few studies were conducted using other weather variables, those studies 

produced inconclusive results. Even though this study focused on the load consumption 

and weather patterns in Oklahoma, the methodology and general results of this analysis 

are transportable to other states.
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An extensive analysis of the relationship between weather variables and 

substation-level load revealed that weather clearly influenced the use of electricity, 

though the impacts varied based on factors such as time of year, time of day, and 

customer class. Principal results about the interrelationships between weather and load 

(excluding the industrial customer) are:

1. Temperature is the most important weather variable to load forecasting. Temporal 

correlations were strongest between temperature and load during summer (p = -0.9) 

for residential and commercial customers. The weakest relationship between 

temperature and load occurred during the fall (p = -0.3) for the residential user and 

during winter (p = 0.2) for the commercial user. Because of the important role of 

temperature as a predictor of load, careful attention must be given to the sources and 

quality of the historical and forecasted temperature data.

2. Solar radiation revealed predictive power for load in the residential community, 

especially during the fall season when the temporal correlation between solar 

radiation and load (p = -0.4) was stronger than that of temperature and load. 

However, the solar radiation-load relationship was weakest during the winter. Solar 

radiation also had a strong relationship with load at the commercial site, but the 

temporal correlations never exceeded those between temperature and load. Because 

the solar radiation-load relationship is not trivial, a comprehensive understanding of 

this relationship is necessary to maximize its potential as a predictor of load. Even 

so, solar radiation is not readily available from weather forecast models; hence its 

ability to improve a load forecast in real-time is unknown.
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3. Relative humidity and load were inversely related (except at Woodward during the 

winter), and their relationship was strongest during summer (p = ~0.7). However, the 

temporal correlations between relative humidity and load were not as strong as those 

using temperature or solar radiation. Thus, relative humidity did not provide new 

independent information for load modeling,

4. While the apparent temperature and load relationship was similar to that for 

temperature and load, the evidence did not suggest that use of apparent temperature 

would produce a more accurate load forecast than one which used only temperature. 

In addition, the use of wind speed appeared to have no value to load modeling.

5. On an annual basis, the weather-load relationship was highly nonlinear. However, a 

seasonal investigation revealed near-linear relationships during winter and summer 

while the relationships during the transitional seasons remained nonlinear. A 

seasonal analysis also revealed that variations in weather impacted the shape and 

magnitude of the load profiles. Within a particular season, fluctuations in weather 

altered the magnitude of load profiles while the shape for that season was 

maintained.

6. Variations in the magnitude and shape of the load profile were observed when 

weekday and weekend loads were compared. For example, a sharp increase in the 

use of electricity occurred during the morning hours of a week, while the increase 

was gradual on weekend mornings. Temperatures influenced the magnitude of the 

morning use of electricity, while the shape was determined by the day of week.

7. The age, building materials, and insulation quality of a home appeared to impact load 

consumption and the response time of electricity use to fluctuations in temperature.
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In particular, older homes responded quickly to temperature changes while new 

construction (with better-quality insulation) delayed the load response to ~2 hours 

following temperature changes.

8. Threshold temperatures were discovered that revealed how the characteristics of the 

load demand changed from the cold side to the warm side of the threshold. On the 

warm (cold) side, the temperature-load relationship mimicked a summer (winter) 

scatterplot. The threshold temperatures were: 62°F (16.7°C) at Norman, 57°F 

(13.9°C) at Woodward, and 61°F (16.1°C) at Altus AFB. These thresholds should 

prove to be a more accurate representation of the true heating and cooling degree 

days instead of the current NWS standard which is based on a daily mean 

temperature of 65°F (18.3°C).

9. The load profile for an industrial user was completely different from residential and 

commercial users and completely different from profiles documented in the scientific 

literature. At Dominance, the load was unaffected by weather or other factors 

deemed appropriate for load forecasting. Instead, the market demand for the 

industrial product drives the plant schedule, which, in turn, dictates the demand for 

electricity. Accordingly, an industrial user like Dominance should be modeled 

separately from the residential and commercial users (which were influenced by 

weather).

Two modeling studies were conducted to determine the economic value of using 

an improved understanding of interrelationships between weather and load to a load 

forecast. A neural network (NN) and a regression-based load model were used to
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produce the load forecasts. The observed weather variables were obtained from the 

Oklahoma Mesonet, while temperature forecasts were acquired from the Eta Model and 

NGM MOS guidance. The key results include:

1. The use of temperature, relative humidity and solar radiation (instead of temperature 

alone) in the two load models improved forecast accuracy at Norman during each 

season. Otherwise, the improvements were statistically insignificant. It was not 

surprising that the commercial and industrial site did not benefit from the additional 

weather variables. However, it was interesting to determine that the load forecasts at 

Woodward and Norman required different predictors for the most accurate load 

forecast.

2. The accuracy of the load forecasts was comparable using the NN and regression 

model. However, the differences between the load modeling techniques were in the 

pre-processing (i.e, obtaining the optimal combination of predictors and 

transformations to achieve the most accurate load forecast) and the required 

computing power. The NN required less pre-processing and more computing power. 

On the other hand, the regression model required less computing power and more 

pre-processing. Thus, the load modeler must determine how much time is available 

for pre-processing and the availability of adequate computing resources.

3. Improved temperature forecasts were tested in a load forecast simulation for the 

Norman substation. The result was an improved load forecast that translated into a 

$16.50/day savings at the Norman substation. However, Norman is only one of 225 

substations in the WFEC system. Because it was the largest substation (2000)’, the

' The Norman substation recorded a yearly peak of nearly 20000 kWh while the yearly peak of the smallest 
substations in the WFEC system averaged -1000 kWh in 2000.
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savings at smaller substations are likely to be less than $16.50/day. Even so, on a 

system-wide basis, improved temperature forecasts could save WFEC in excess of 

$500,000 annually, or a 10-15% improvement to the bottom line of an operating for- 

profit-company. As a result of this study, WFEC is empowered to make smarter 

generation decisions that decrease operating costs, allow profitable sales of bulk 

power, and reduce the number of purchases of power from the spot market.

4. The value o f understanding the interrelationships between weather and load and the 

value o f improved temperature forecasts as explored in this study can save a small 

utility at least $0.5M annually. However, the generation capacity and net margin of 

typical electric cooperatives like WFEC is small (-1000 MW and $3.4M, 

respectively) compared to those of investor-owned powerhouses like Florida Power 

and Light (-19,000 MW and $473M)^. Khotanzad et al. (1998) found that “weather 

forecasts introduce 1% of additional error in load forecasts”, and Hobbs et al. (1999) 

followed with “a conservative estimate is that a 1% reduction in forecasting error can 

save [one utility] up to $1.6 million annually.” Therefore, if these reductions in 

operating expenses are replicated nationwide, it is easy to see how improved weather 

forecasts on the short term can translate into millions o f dollars in annual savings 

for utility companies in the United States.

This dissertation has identified several relationships between weather and load 

that had not been studied due to the fact that substation-level load data is proprietary and

 ̂The generation capacity and net margin for WFEC and Florida Power and Light were obtained from their 
2002 Annual Reports.
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had not been readily available, the weather resources used in practice had been limited, 

and the cooperation between utility corporations and the (scientific) meteorological 

community had occurred on a hit or miss basis. Clearly, an improvement to our 

understanding of the weather-load relationship will help determine parameters that should 

be used to develop load models that produce more accurate forecasts. The methods used 

in this study to improve load forecasts at WFEC are applicable across the United States 

and perhaps worldwide.

A more accurate load forecast allows the generation utilities to produce the 

optimal amount of electricity to meet the load demands of it customers. These generation 

decisions by experienced load forecasters minimize the need to buy electricity on the spot 

market at inflated prices (Hunn 2000) due to an underproduction or to be forced to sell 

electricity at bargain prices due to an overproduction. However, a more accurate load 

forecast requires increased knowledge of the factors which impact the load demand. 

Aside from the typical base load and weekday versus weekend differences, the 

fluctuations in the actual load are primarily caused by rapidly changing the weather -  

especially during transition seasons. Because a load forecast model is only as good as its 

developmental data sets, an improved understanding of the relationship between weather 

and electric load demand are crucial to load forecasting, in that the best combination of 

historical and forecasted information must be used. The hypothesis of this dissertation 

stated that a comprehensive understanding o f the relationship between weather variables 

and electricity demand will improve the accuracy o f load forecasting and have a positive 

economic benefit. Based upon the results described herein, this hypothesis is accepted.
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Appendix A: How Electricity Is Produced

The electric power system is composed of three stages before electricity reaches 

the customer: (1) generation, (2), transmission, and (3) distribution. First, the electricity 

must be produced (Fig. A.1). This is called “generation”. At any power plant, the 

“generator” is the devise that actually makes the electricity. Generators have two main 

parts, a rotor and a stator. The rotor is a long, heavy cylinder-shaped magnet that spins 

inside a housing of coiled copper wire, known as the stator. As the rotor spins, electric 

current is created in each coil. Electricity flows from the coils by other wires and begins 

its trek along various transmission lines.

How Electricity is Produced 
Steam

Turbine

Water

Transmission Lines

Boiler

Waste Heat

♦ ♦ ♦ I M M
Fuel to produce heat

FIG. A.1 A diagram of the system that produces electricity (illustration provided by 
WFEC).
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Getting the rotor to spin requires a lot of power. Most plants generate this power 

using high-pressure steam. Power plants often use coal, natural gas and/or oil to heat 

water until it boils and produces steam. The fire from the burning fuel is contained inside 

a boiler, whose walls are made of hundreds of hollow pipes welded together side-by-side 

and connected on the ends. Water is dispersed inside the boiler walls and the burning 

gas/coal/oil heats the water until it becomes steam.

The steam is piped into the turbine, a windmill or fan-like structure composed of 

many blades tough enough to withstand the hot, high-pressure steam that turns it. The 

steam turbine is covered in a thick steel casing. The steam forces the blades to move very 

rapidly (i.e., the tips of the blades move faster than the speed of sound). As the turbine 

spins, so does the rotor because they are connected by a thick shaft.

Once the turbine is rotating, the steam is piped to a condenser where it is cooled 

and undergoes a phase change back to liquid water. The condenser removes heat from 

the steam by discharging that heat into the air through cooling towers. As the heat rises 

through the cooling tower, large white clouds form above power plants. Meanwhile, the 

resultant liquid water is piped back into the boiler and the process is repeated.

Electricity has been generated and is moving through the transmission lines. This 

step is called transmission (i.e., the transfer of electricity or natural gas from a generation 

plant or pipeline to another facility). The electricity moves through a transformer to 

increase the voltage for a more economical trip to a substation. Switches in a substation 

direct the flow of electricity into the distribution system of member co-ops. Technicians 

and computers determine if the correct amount of electricity is delivered to each 

substation by constantly monitoring the transmission system. When a storm damages a

208



transmission line, WFEC technicians use remote-controlled switches to remove the 

damaged portion of the network from the rest of the system and re-route the electricity to 

the appropriate substation. Each substation is composed of transformers that reduce the 

voltage for the distribution cooperative.

Once the electricity passes into the substation, the distribution process begins. 

Distribution is defined as the delivery of electricity to an end-user through low-voltage 

lines or natural gas through pipeline systems. The voltage transformers on poles near 

businesses reduce the voltage to either 240 or 120 volts so it can be used in machinery or 

appliances. The electricity passes through a user’s meter which records the amount of 

electricity used, then into the member’s own distribution panel and home electrical 

system. At this point, the power is divided into several circuits that serve different 

locations in a facility. For example, when a light switch is turned on, the entire system is 

affected. A little more current flows through the user’s meter from the distribution 

transformer, which was fed by the substation and transmission line from the generator.

To maintain a constant output of current (rate at which electricity flows), the rotor 

must turn at a constant speed. The demand for current makes the rotor slow. To 

maintain its speed more steam must be supplied to the turbine. Computers sense the 

demand for more electricity and open valves that supply fuel to a boiler to maintain the 

speed of a rotor.

Thus, hundreds of people work around the clock to supply power to our homes or 

businesses. Linemen who climb the poles, and substation technicians who work with 

huge transformers, during transmission, risk their lives to repair components that stopped 

flow of electricity.
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Appendix B: Oklahoma Rural Electric Cooperatives

A co-op is a nonprofit utility owned by its members and generally serve rural 

communities. In Oklahoma, co-ops serve 75% of the territorial domain (Fig. B.l). The 

remaining 25% of Oklahoma is served either by Oklahoma Gas and Electric (OG&E) or 

the Public Service Company of Oklahoma (PSO), which are the investor-owned utilities. 

The Oklahoma cooperatives have 106,(XX) miles of distribution lines and serve about

500,000 customers. On the other hand, OG&E and PSO combined have 46,000 miles of 

distribution lines and serve nearly 1.3 million customers. Hence, the electrical rates are 

slightly higher in a co-op versus an investor-owned utility. However, because the 

members/customers of the co-op have ownership in the co-op, any “profit” that is made 

by the company at the end of the year is returned to its members.

WFEC MEMBER SYSTEMS* SERVICE AREA

■ WFEC ractUtlM 
•  Coop<f»t>v H—dquarMfi 
—  Territorial bouniUrles 
A Interchance CWea 
71 Altua Ah’Force Bate

A lr«17A Mr
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FIG B.l A map of WFEC member system’s service area in Oklahoma (illustration 
provided by WFEC).
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Appendix C: Glossary of Electric Utility Terms

Capacity -  The real power output rating of a generator or system, typically in megawatts, 
measured on an instantaneous basis. The amount of electric power delivered or required 
for which a generator, transformer, transmission circuit, station or system is rated by the 
manufacturer. The maximum power that can be produced by a generating resource at 
specified times under specified conditions. Capacity is also used synonymously with 
capability.
Degree day - a quantitative index demonstrated to reflect demand for energy to heat or 
cool houses and businesses. This index is derived from daily temperature observations at 
nearly 200 major weather stations in the contiguous United States. The "heating year" 
during which heating degree days are accumulated extends from July 1st to June 30th and 
the "cooling year" during which cooling degree data are accumulated extends from 
January 1st to December 31st. A mean daily temperature (average of the daily maximum 
and minimum temperatures) of 65°F is the base for both heating and cooling degree day 
computations. Heating degree days are summations of negative differences between the 
mean daily temperature and the 65°F base; cooling degree days are summations of 
positive differences from the same base, (www.cpc.ncep.noaa.gov)
Generating Unit -  any combination of physically connected generator(s), reactor(s), 
boiler(s), combustion turbine(s), or other prime mover(s) operated together to produce 
electric power.

Interruptible Load (interruptible energy) -  Energy flow that can be reduced or 
completely stopped with little or no notice. Interruptible energy is a type of electrical 
service sold to firms that might only be able to operate profitably when energy prices 
remain below a certain level. When interruptible energy is purchased, the purchaser 
voluntarily assumes the risk of loss of access to that energy, which usually occurs only 
during peak demand periods or during periods when market prices rise above the agreed- 
upon rate. Commercial, industrial and agricultural customers tend to be the first affected 
by this type of interruption.

Load -  The amount of electric power delivered or required at any specific point or points 
on a system. The requirement originates at the energy-consuming equipment of the 
consumers. The load of an electric utility system is affected by many factors and changes 
on a daily, seasonal and annual basis, typically following a pattern. System load is 
usually measured in megawatts (MW).

Load Curve -  A curve of power versus time showing the level of a load for each time 
period covered. The horizontal axis is time and the vertical axis is load (kW).

Load Factor -  The ratio of average load to peak load during a specified period of time, 
expressed as a percent. The load factor indicates to what degree energy has been 
consumed compared to maximum demand or the utilization of units relative to total 
system capability. An electric system’s load factor shows the variability in all customer’s 
demands.
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Load Shape -  The variation in the magnitude of the power load over a daily, weekly or 
annual period.

Load Shedding -  blocking of customer access to energy, usually due to temporary 
shortage of supply. Load shedding is rare, and is most commonly applied during times of 
emergency or severe shortage. In most cases, the first loads a utility will shed in these 
conditions are loads required by industrial and commercial customers. Institutional loads 
are typically the last to be shed since public institutions (hospitals, schools, municipal 
lighting authorities, etc.) are considered to be a utility's most essential customers.

Kilowatt (kW) -  A unit of electrical power equal to one thousand watts.

Kilowatt-hour (kWh) -  A unit of electrical energy which is equivalent to one kilowatt of 
power used for one hour. One kilowatt-hour is equal to 1,000 watt-hours. An average 
household will use between 800 - 1,300 kWh per month depending upon geographical 
area.

Peak Load -  Denotes the maximum power requirement of a system at a given time, or 
the amount of power required to supply customers at times when need is greatest. It can 
refer either to the load at a given moment (e.g. a specific time of day) or to averaged load 
over a given period of time (e.g. a specific day or hour of the day).

Real-time Pricing -  electricity pricing based on the actual, fluctuating price of electricity 
at time throughout the day, impacted by demand and weather

Short-term load forecast (STLF) -  Predictions of electric load on the order of one day 
to one week. For this research, STLFs will refer to forecasts on the order o f one day.

Spinning Reserve -  Unused capacity available from units connected to and synchronized 
with the grid to serve additional demand. The spinning reserve must be under automatic 
governor control to quickly (within minutes) respond to system requirements. Spinning 
is derived from hydroelectric and combustion turbine terminology. Reserve generator 
turbines can literally be kept spinning without producing any energy as a way to reduce 
the length of time required to bring them online when needed.

Spot Market -  A market where (electrical) goods are traded for immediate delivery.

Substation -  facility equipment that switches, changes or regulated voltage

Volt -  The unit of measurement of electromotive force. It is equivalent to the force 
required to produce a current of one ampere through a resistance of one ohm. The unit of 
measure for electrical potential. Generally measured in kilovolts or kV. Typical 
transmission level voltages are 69kV or ISSkV.

Watt -  A measurement of real power production or usage equal to one joule per second. 
The rate of energy transfer equivalent to one (1) ampere flowing under a pressure of one 
(1) volt at unity power factor. An electric unit of power or a rate of doing work.

Watt-hour (Wh) -  An electrical energy unit of measure equal to one (1) watt of power 
supplied to, or taken from, an electric circuit steadily for one hour.
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Appendix D: Heat Index and Wind Chiii

Heat Index

The heat index is the temperature a body feels when air temperature and relative 

humidity are combined. Our human bodies dissipate heat through a loss of water from 

the skin and sweat glands because evaporation is a cooling process. During the warmer 

months, high humidity makes the air feel hotter by reducing the evaporation/cooling 

process. The heat index formula is a multiple linear regression equation which combines 

relative humidity and temperature to ascertain a human-perceived temperature:

Heat Index (”F) = -42.379 + 2.04901523*T +10.14333127 *RH 

-0.22475541 *T * RH - 6.83783*10'^ *T^

-5.481717* 10’̂  *RH^ +1.22874* 10 ’ *T^*RH 

+ 8.5282*10'* *T*RH’ -1.99*10* *T’ *RH’ ,

where T is temperature (°F) and RH is relative humidity (%)'.

Wind Chill

Wind chill is a hypothetical air temperature that measures of how cold people and 

animals feel. During the winter, faster winds make the air feel colder because it removes 

heat from our bodies faster than would occur if the winds were calm. This rapid loss of 

heat from the body decreases the skin temperature and ultimately the body’s internal 

temperature. The wind chill formula was derived by modifying the heat transfer equation

http://www.usatoday.com/weather/whutncalc.htin
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for a flux across a surface. The National Weather Service defines the wind chill formula 

as:

Wind Chill (° F) = 35.74 + 0.6215 * T - 35.75 * + 0.4275 * T * ,

where T is temperature (°F) and V is the wind speed (mph)^.

* http://www.crh.noaa.gov/dtx/New_Wind_Chill.htin
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Appendix E: Missing Mesonet and Electric Load Data

Table E.l Gaps in the Mesonet data set from Norman filled by temporal interpolation or 
by substituting data from the Washington Mesonet site. Otherwise, observations were 
labeled as missing.

Date Time 
(24-hour clock)

Interpolated (I) 
Substituted (S) 
Missing (M)

Weather
Variables

15 Jun 1998 0800 I /S T, Wspd, Srad / RH
I7Jun 1998 1800 I T, RH, Wspd, Srad
18 Jun 1998 1200-1500 s T,RH

1600-2400 s RH
19 Jun 1998 0100-1100 s RH

1200 I RH
29Jul 1998 0900,1000 s T, RH, Wspd, Srad
10 Sep 1998 0800-1000 M T, RH, Wspd, Srad
18 Sep 1998 2000 I T, RH, Wspd, Srad
5 Oct 1998 0800-1300 s T, RH, Wspd, Srad
4 Nov 1998 1600 I T, RH, Wspd, Srad

1700-2400 s T, RH, Wspd, Srad
5 Nov 1998 0100-0400 s T, RH, Wspd, Srad

0500-1000 M T, RH, Wspd, Srad
11 Nov 1998 1400, 1500 s T, RH, Wspd, Srad
17 Nov 1998 0500 I T, RH, Wspd, Srad

0600,0700 s T, RH, Wspd, Srad
30 Mar 1999 1200 I T, RH, Wspd, Srad
31 Mar 1999 1200 M RH

1300 s T, RH, Wspd, Srad
1 Apr 1999 0500-1000 I T, RH, Wspd, Srad

3 May 1999 1000, 1100 s T, RH, Wspd, Srad
9 May 1999 1900-2400 s Wspd
10 May 1999 0100-1500 s Wspd
16 May 1999 0800 I T, RH, Wspd, Srad
11 Jun 1999 0900-2400 s Wspd
12 Jun 1999 0100-0500 s Wspd

16-17 Jun 1999 0100-2400 s Wspd
18 Jun 1999 0100-0600 s Wspd

0700-2000 s T, RH, Wspd, Srad
23 Jun 1999 1200-1500 1 T, RH, Wspd, Srad
25 Jun 1999 1700 I T, RH, Wspd, Srad
26 Jun 1999 2300, 2400 s T, RH, Wspd, Srad
27 Jun 1999 0100-1100 s T, RH, Wspd, Srad
27 Jun 1999 1400, 1700 I T, RH, Wspd, Srad
1 Jul 1999 1400 I T, RH, Wspd, Srad

19Jul 1999 0600,0700 s T, RH, Wspd, Srad
1000, 1200 I T, RH, Wspd, Srad

25 Dec 2000 1000-2400 M Wspd
26-27 Dec 2000 0100-2400 M Wspd

28 Dec 2000 0100-1300 M Wspd
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Table E.2 As in Table E .l, except for the Woodward Mesonet Site with substitutions of
data from the Seiling Mesonet Site.

Date Time 
(24-hour dock)

Interpolated (I) 
Substituted (S) 
Missing (M)

Weather
Variables

8 Jul 1998 0300-1900 M T, RH, Wspd, Srad
2000 S T, RH, Wspd, Srad

23 Jul 1998 1000 I Srad
10 Sep 1998 0900-1100 M T, RH, Wspd, Srad
17 0ct 1998 0900-1200 M T, RH, Wspd, Srad
22 Oct 1998 1100 I T, RH, Wspd, Srad
18 Dec 1998 2200 I T. RH, Wspd, Srad
24 Aug 1999 0900-2400 M T, RH, Wspd, Srad
25 Aug 1999 0100 M T, RH, Wspd, Srad
28 Aug 1999 1200 I T, RH, Wspd, Srad
29 Aug 1999 0700 I T, RH, Wspd, Srad
17 Sep 1999 1000, 1100 M T, RH, Wspd, Srad
18 Sep 1999 2100 S T, RH, Wspd, Srad
28 Sep 1999 0500 I T, RH, Wspd, Srad
29 Sep 1999 0800,0900 M T, RH, Wspd, Srad

1000 S T, RH, Wspd, Srad
13 Oct 1999 1600, 1700 S T, RH, Wspd, Srad
19 Oct 1999 0800-1800 M Srad
4 Nov 1999 1100 I T, RH, Wspd, Srad
26 Dec 1999 0800-1700 M Srad
27 Dec 1999 0800-1700 M Srad
28 Dec 1999 0800-1700 M Srad
13Mar2000 1300 1 T, RH, Wspd, Srad
13 Apr 2000 1600 I T, RH, Wspd, Srad
16 Mar 2000 1200-1400 S T, RH, Wspd, Srad
22 Aug 2000 1600 S T, RH, Wspd, Srad
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Table E.3 As in Table E .l, except for the Altus Mesonet Site with substitutions of data
from the Tipton Mesonet Site.

Date Time 
(24-hour clock)

Interpolated (I) 
Substituted (S) 
Missing (M)

Weather
Variables

24 Aug 1999 1400 I T, RH, Wspd, Srad
28 Aug 1999 1200 I T, RH, Wspd
18 Oct 1999 1900 M Srad
19 Oct 1999 0800-1800 M Srad
10 Nov 1999 1000, 1100, 1700 S T, RH, Wspd, Srad
26 Dec 1999 0800-1700 M Srad
27 Dec 1999 0800-1700 M Srad
28 Dec 1999 0800, 1700 M Srad
2 Feb 2000 1200-1600 S T, RH, Wspd, Srad
3 Mar 2000 1200 I T, RH, Wspd, Srad
24Mar2000 1200-1500 S T, RH, Wspd, Srad
26 May 2000 1400-1600 S T, RH, Wspd, Srad
30 Aug 2000 1600, 1700 S T, RH, Wspd, Srad
26 Oct 2000 0600-0800 S RH
20 Nov 2000 0700 M T

S RH, Wspd, Srad
25 Dec 2000 1400-1600 S Wspd

1700-2400 M Wspd
26 Dec 2000 0100-2400 M Wspd
27 Dec 2000 0100-1300 M Wspd
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Table E.4 As in Table E .l, except for the Broken Bow Mesonet Site with substitutions
of data from the Idabel Mesonet Site.

Date Time 
(24-hour clock)

Interpolated (I) 
Substituted (S) 
Missing (M)

Weather
Variables

25 Apr 1999 2000 I T, RH, Wspd, Srad
24 Aug 1999 0900-1300,2000 M /I T, RH, Wspd, Srad
28 Aug 1999 1200 I T, RH, Wspd, Srad
19 Oct 1999 0800-1800 M Srad
2 Nov 1999 1500 I T, RH, Wspd, Srad
7 Nov 1999 1500 I T, RH, Wspd, Srad
26 Dec 1999 0800-1700 M Srad
27 Dec 1999 0800-1700 M Srad
28 Dec 1999 0800-1700 M Srad
10 Feb 2000 1100 I T, RH, Wspd, Srad
21 Jun 2000 1100 I T, RH, Wspd, Srad
23 Jun 2000 1900-2400 S RH

24-27 Jun 2000 0100-2400 S RH
28 Jun 2000 0100-0800, 1300, 

1700- 2400 s RH
0900-1100 M RH
1400-1600 S T, RH, Wspd, Srad

29 Jun -  25 Jul 2000 0100-2400 S RH
26 July 2000 0100-1600 S RH

1700 I/S T, Wspd, Srad/RH
29 Aug 2000 1600-1800 S T, RH, Wspd, Srad
31 Oct 2000 1800-1900 s T, RH, Wspd, Srad
1 Nov 2000 2100 / 2300,2400 I / s T, RH, Wspd, Srad
9 Nov 2000 1600 I T, RH, Wspd, Srad
24 Nov 2000 2300, 2400 s T, RH, Wspd, Srad
25 Nov 2000 0400, 1800, 2000,2300 I T, RH, Wspd, Srad
26 Nov 2000 0100,0200,0700, 0900, 

1200, 2200, 2300 I T, RH, Wspd, Srad
0300-0500,2000 s T, RH, Wspd, Srad

27 Nov 2000 0600, 1000 / 2300,2400 I / s T, RH, Wspd, Srad
28 Nov 2000 1300 I T, RH, Wspd, Srad
29 Nov 2000 0600,0900, 1100, 1200, 

2000-2200/ 1400-1900 I / s T, RH, Wspd, Srad
30 Nov 2000 0100,0500 I T, RH, Wspd, Srad
11 Dec 2000 2100-2400 s Wspd
12 Dec 2000 0100-2400 s Wspd
13 Dec 2000 0100-0600 / 0700-2400 S/M Wspd
14 Dec 2000 0100-1000 M Wspd
25 Dec 2000 1100-2400 M Wspd
26 Dec 2000 0100-2400 M Wspd
27 Dec 2000 0100-0900/ 1000-2400 M /S Wspd
28 Dec 2000 0100-1300 S Wspd
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Table E.5 
substation.

Missing or corrupt electric load data from the data set for the West Norman

Date(s) Hours 
(24-Hour Clock)

Number o f  Missing 
Hourly Ohs

1-30 Apr 1998 0100-2400 720
1 Mar-2 6  Apr 1999 0100-2400 1464

27 Apr 1999 0100-1500 15
1 Apr 2000 0600 1

22 May 2000 1100-2400 11
23-24 May 2000 0100-2400 48

25 May 2000 0100-1500 15

Table E.6 As in Table E.5, except for the Woodward substation.

Date(s) Hours 
(24-Hour Clock)

Number o f  Missing 
Hourly Obs

9 May 2000 0100-2400 24

Table E.7 As in Table E.5, except for the Altus AFB substation.

Date(s) Hours 
(24-Hour Clock)

Number o f  Missing 
Hourly Obs

29 Mar 2000 2300 1
I May 2000 2400 1

Table E.8 As in Table E.5, except for the Dominance substation.

Date(s) Hours 
(24-Hour Clock)

Number o f Missing 
Hourly Obs

12 Feb 1999 1100, 1200 2
28 Mar 2000 0500-2400 20
27 May 2000 2000-2300 4
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Appendix F: Neural Network Specifications of 
MetrixND

Artificial neural networks are flexible nonlinear models which make them 

attractive in forecasting. MetrixND expands upon a general form of a neural network for 

a single-variable forecasting problem function:

y, = F(X,,P) + u,

= Bo + ^ B h  X H(X,,a) + u,

H 1
Bo + X®h X ------   rr + u,

1 + exp -  ah.o+Xah.kXk,
< \  k = l  j j

where y is the dependent variable, X’s are the predictors of the dependent variable, B’s 

are the parameters in the output layer, a’s are the parameters in the hidden layer 

activation functions.

This neural network equation has a few specific properties. First, it is a single

output feedforward neural network. A feedfoward system implies an absence of 

feedbacks between layers and an absence of node-level interactions. Next, this NN 

equation has a single hidden layer with N nodes. Although the hidden layer (i.e., where 

specific algebraic transformations occur) is not explicitly hidden, it is a level of 

computation that has little meaning to the forecaster. Last, logistic (sigmoid) activation 

functions are used in the hidden layer and a linear activation function in the output layer.
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The process of parameter estimation is called training in NN literature. The goal 

of this process is to determine network parameters that result in small model errors. The 

estimation process is more complicated than for a regression model because the model is 

nonlinear and because the objection function is relatively complicated. A conventional 

nonlinear least squares algorithm (Levenberg-Marquat algorithm/lMSL library) is used to 

find optimal parameters.
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