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Abstract

A cloud model ensemble foiecastmg approach is developed to create forecasts 

which describe the range and distribution of thunderstorm lifetimes that may be expected 

to occur on a particular day. Such forecasts are crucial for both anticipating severe weather 

and ensuring the smooth flow of air traffic at busy, hub airports. Storm lifetime is an 

important characteristic to examine because long-lasting storms tend to produce more sig­

nificant weather, and have a  greater impact on air traffic, than do storms with brief life­

times.

Eighteen days distributed over two warm seasons are examined. Soundings valid 

at 1800 UTC, 2100 UTC and 0000 UTC, provided by the 0300 UTC run of the operational 

Mesoeta model from the National Centers for Environmental Prediction, are used to pro­

vide initial conditions for the cloud model ensemble. These soundings are from a 160 x 

160 km square centered over the location of interest and are shown to represent a likely 

range of atmospheric states. A minimum threshold value for maximum vertical velocity 

within the cloud model domain is used to estimate storm lifetime. Forecast storm lifetimes 

are verified against observed storm lifetimes, as derived from the Storm Cell Identification 

and Tracking algorithm applied to WSR-88D radar data from the National Weather Ser­

vice (NWS).

When kernel density estimates are applied to the pooled data set consisting of all 

18 days, a vertical velocity thieshokl of 8 m s'̂  results in a forecast probability density 

function (pdf) of storm lifetime which is closest to the observed pdf. Model results from 

all 18 days also reveal that the storm Itfbtime resulting firom a given input sounding carmot 

be determined by analyzing the bulk sounding parameters, such as convective available

xii



potential energy, bulk Richardson number (BRN), BRN shear, or storm relative helicity: 

Standard 2 x 2  contingency statistics reveal that, under certain conditions, the ensemble 

model displays some skill locating where convection is most likely to occur. Contingency 

statistics also show that when storm lifetimes of at least 60 min are used as a proxy for 

severe weather, the ensemble shows considerable skill at identifying days that are likely to 

produce severe weather. Because the ensemble model appears to have skill in predicting 

the range and distribution of storm lifetimes on a daily basis, the forecast pdf of storm life- 

time is used directly to create probabOistk forecasts of storm lifetime, given the current 

age of a storm. Such a product could funtish useful information to Air Traffic controllers 

by providing guidance about how soon a storm is likely to affect (or cease to affect) air 

traffic at a specific location. Similarly, this product could provide NWS forecasters with 

guidance about how likely it is that a particular cell will affect a given community.

xiu



Chapter 1: Introduction

On any day with thunderstorms, even the fabled, ubiquitous “casual observer" 

notices that thunderstorm types and their associated characteristics are remaricably vari­

able over a small area, ranging Aom ordinary, short-lived cells (Byers and Braham 1949) 

to long-lived supercells (Browning 1964; Houze 1993). Days with longer lived storms 

also are often conducive to organized convective activity on the mesoscale (Emanuel 

1994; Chappell 1986; Weisman and Klemp 1986). When viewed in the broadest sense, an 

accurate forecast of this highly variable behavior is a very difRcult problem.

This variability in thunderstorm types and characteristics is well known by fore­

casters, but there is no way at present for them to know beforehand the range of this vari­

ability or even to know the dominant behavior modes for any given day (Johns and Hart 

1993). This information is only known with certainty after thunderstorms have developed 

and the event is in progress. Without foreknowledge about the dominant behavior modes, 

it is difRcult to anticipate even the most coarse thunderstorm characteristics, hi addition, 

the convective mode can change, altering the severe weather threat this evolution is not 

anticipated, the outcome can be disastrous (Schwartz et al. 1990).

Storm initiation processes are presently under close scrutiny and constitute a fore­

cast problem different from a storm’s behavior once initiated. However, once a storm 

forms, forecasting how it will behave during the immediate future is very important to the 

public and various industries. Forecasters currently use any number of tools and tech­

niques to deal with thunderstorms. Numerous integrated parameters derived Aom either 

modeled or observed soundings, such as Convective Available Potential Energy (CAPE),



Lifted Index (LI), and Bulk Richardson Number (BRN), along with many others, are used 

to anticipate storm behavimr once storms form.

Various ways of using these parameters have been developed. For example, Johns 

and Doswell (1992) oudine a general mediodology for severe storms forecasting. Another 

system, using BRN shear and storm relative helicity (SREH), aids forecasters in differen­

tiating between bow-echo type storms and tomadk supercell storms (Stensrud et al. 

1997). A formal decision tree system can be used to diagnose the likelihood of thunder­

storms and whether or not those storms will be severe, supercell or tomadic (Mills and 

Colquhoun 1998). Some parameters are driven by the thermodynamic structure of the 

atmosphere, others by only the kinematic structure of the atmosphere, and a fisw are com­

binations. While some parameters are applicable only in certain geographk regions, all 

share the drawback that they provide vague, qualitative guidance for the dominant convec­

tive mode.

Shnilarly, various attempts have been made to use radar reflectivity data to quanti­

tatively forecast future storm behavior (Battan 1953; V^son 1966; Dixon and Wiener 

1993; Henry 1993; MacKeen et al. 1999). Most systems are based, in one way or another, 

on persistence. For non-supercell thimderstorms, persistence works well for time scales of 

only a few minutes. Once recognized as such, quasi-steady state supercell thunderstorms 

are, by definition, more amenable to persistence-based forecasts. Unfortunately, parame­

ters derived fiom radar reflectivity are strongly affected by inhomogeneous, range-depen­

dent sampling scales and, to a lesser extent, by range folding and calibration problems. 

Parameters derived from single Doppler radar velocities suffer firom the same drawbacks 

as reflectivity-derived parameters along with velocity folding problems (Wood and Brown



1997). Since only the radial velocity component is detected, inherent ambiguities are pre­

sented by a single Doppler velocity field. In the final analysis, none of the cell-specific, 

trend-based systems perform particularly well because radar detects only die results of 

nonlinear processes integrated over an indeterminate, preceding period.

Cloud or storm-scale numerical weather prediction seems a more refined way to 

quantitatively forecast storm behavior. Since the 19S0’s, numerical weather prediction has 

become integral to large-scale weather forecasting and, since the 1970’s, computing capa­

bility has allowed ever more complicated, higher resolution numerical models to be devel­

oped and implemented. However, storm-scale modeling, as well as mesoscale modeling, 

face fundamentally different problems than does modeling on larger scales. Large-scale 

motions are better understood than are those on smaller scales, and the theory used to deal 

with large scale processes is generally unified within concepts comprising, for example, 

baroclinie instability and quasigeostrophic theory. Similarly elegant and unified theories 

do not exist for either the mesoscale or the cloud scale.

Storm-scale models have been developed primarily as research tools, to help 

understand dynamical processes that lead to certain, noteworthy storm behaviors, such as, 

the dynamic processes that causes storms to split into left- and right-moving cells (Klemp 

and ̂ Afilhehnson 1978). Only during the past few years have storm-scale models been used 

to provide forecast guidance (Kopp and Orville 1994; Brooks et al. 1993; Mlficker et al. 

1997; Wang et al. 1996; Carpenter et al. 1997; Carpenter et al. 1998). Vfith occasional 

exceptions, it remains unclear whether these applications have been wholly successful.

Using storm-scale models to produce forecast guidance has various problems, 

including forecasting the environment, initializing the modeL the model itself, interpreting



the model ou^ut, and communicating that ou^ut to others. Problems also exist with the 

inherent variability in storm type and behavior over a small region. When a storm-scale 

model is used to forecast one individual thunderstorm, to which particular observed thun­

derstorm does it refer? Since observed storm behavior is so variable, how is a single mod­

eled realization verified? When more sophisticated modeling is used, wherein numerous 

individual storms are forecast within a mesoscale time-varying enviromnent, how literally 

should the results be interpreted? And if th ^  are not interpreted literally, how are error 

bounds placed on these results? Unfortunately, diese sticlty questions are deferred to fore­

casters who must subjectively formulate their own interpretations. The important point is 

that deterministic forecasts do not explicitly nor objectively provide guidance on the pos­

sible forecast errors.

Deterministic forecasts ignore the results of Lorenz (1963), where he convincingly 

suggests that even though the atmosphere is intrinsically deterministic, it comprises a cha­

otic system. While the atmosphere is strictly bound by physical laws and processes, its 

inherent deterministic nature carmot be realized. Even if a perfect model of the atmosphere 

became available, the model would display sensitive dependence to its initial conditions. 

Hence, any error or inaccuracy in the initial conditions, no matter how small, ultimately 

results in a forecast that diverges from the actual evolution of the atmosphere. At best, 

then, a single numerical model run provides guidance which represents only one of a mul­

titude of states the atmosphere might attain. To remain within the framework of Lorenz’s 

work, no single model run should he literally interpreted as a forecast

a model run provides only one possible state, then how likely is the atmosphere 

to attain this state? What is the range of other, reasonable states it might also attain? While



no single numerical weather prediction model provides this information, a frameworic 

exists for dealing with this inherent mdeleiminacy (^ ste in  1969; Leith 1974). A carefully 

crafted ensemble of numerical models, each initialized with a different set of initial condi­

tions that are all considered reasonable for the particular situation, should be able to pro­

vide the range as well as the distribution of possible future states of the atmosphere.

Therefore, instead of running a single cloud scale model, it is proposed as a 

hypothesis that an ensemble consisting of many cloud model runs can be created to pro­

vide reliable guidance concerning the nature of the individual thunderstorms which 

develop. In a Monte Carlo fashion, each run is started with different initial conditions. It is 

desired that the set of various initial conditions span those that can reasonably be 

expected. These initial conditions are derived directly from an operational mesoscale 

model over a pre-defined area of interest Using a mesoscale model in this marmer sets a 

bound, which is unique to each day, on the range of initial conditions. This dissertation has 

as its unique objective to determine whether or not ouqmt from a cloud-model ensemble 

forecast can predict the range and distribution of thunderstorm lifetimes for a given day. 

The ensemble output is compared against various environmental parameters extracted 

from the mesoscale model, to determine whether or not the ensemble provides added 

value beyond what is otherwise available.



Chapter 2: Background

2.1 Tfumderstorm forecast applications

The potential for severe weather is of maximum concern when thunderstorms are 

forecast Such concern is especially appropriate for the general public, because severe 

weather preparedness significantly reduces die injuries and fatalities that often accompany 

severe weather. In some cases, various indices are used to anticipate severe weather, but 

their use can lull forecasters into fidse senses of security, especially knowing that weak 

indicators of severe weadier do not necessarily translate into a lack of severe weather 

(Stensrud et al. 1997). The application of an ensemble cloud model helps bound the range 

of possible storm behaviors, and thus, reduces the likelihood that a severe weather event 

catches a forecaster (and hence, the public) by surprise (Brooks et al. 1992).

For weather-sensitive industries, an operational distinction does not exist between 

severe and non-severe thunderstorms. A prime example is aviation, and in particular the 

airline industry. While Federal Aviation Administration (FAA) regulations do not explic­

itly prohibit flight through thunderstorms, all major airiines independently impose such 

regulations. The obvious reason is passenger safety. Aside from damage due to airframe 

overstress that can occur in strong convection, relatively weak convection possesses tur­

bulence that can displace objects in the cabin and possibly injure passengers. Aside firom 

injury, overall passenger comfort is a significant concern (R. Bevington, United Airlines, 

personal communication). Finally, thunderstorm development and evolution represents an 

additional concern for airlines, and the FAA, due to the routing of air traffic into major 

hub anrports.



To understand how weather impacts airiine operations requires an understanding 

of how airiines routinely operate. Most major airiine carriers in the United States utilize 

hub airports, whkh reduces the infrastructure needed at each possible destination. This 

operational strategy imposes very high capacity demands on a few large airports. Recog­

nizing drat some bottlenecks in capacity can be anticipated, the FAA maintains two facili­

ties for traffic management: the Central Flow Control Facility (CFCF) in Washington, 

D C., and the local TrafBc Management Unit (TMU) contained within each Air Route 

Traffic Control Center (ARTCC). The CFCF makes strategic, long-term planning deci­

sions while the TMU makes short-term, tactical decisions in response to weather Each 

morning, the CFCF develops an overall strategic plan for dealing with anticipated capacity 

limits along particular routes and at hub airports, by considering all known limitations to 

system capacity, including weather. Flights are plarmed, rerouted and occasionally can­

celed based on decisions made by both the CFCF and the TMU’s. Adverse weather at a 

single hub airport can easily disrupt airline travel on a national scale.

All major airports utilize similar arrival and departure geometries (Rg. 2.1). 

Departing flights typkally exit the airspace by utilizing a broad area aligned in the cardi­

nal directions. Arriving flights are directed into the immediate airspace over one of four 

possible comer posts, called arrival gates, located about 60 km from the airport At 

roughly 3000 m above ground level (AGL), aircraft are directed through these gates by the 

Terminal Radar Control (TRACON) Facility. Each arrival gate is situated over a Very 

Ifigh Frequency Omnirange (VOR) Station and arrivals must fly directly over these 

VOR’s. This requirement implies that aircraft traverse the arrival gates in single file. Sep­

aration is maintained between flights, not ortly to avoid collisions, but also to avoid walœ



turbuleace. For jet transport aircraft, this separation is typically 8 to 10 km in weather that 

is good enough to support visual approaches. Larger separations are required during 

instrument meteorological conditions, when aircraft cannot see each other. At regular 

intervals during the day, which are unique to each hub airport, the hub airports operate at 

maximum “good-weather” capacity, such that arrivals are directed through all four gates 

at the minimum allowable aircraft separation.

Figure 2.1. Schematic of Dallas/Ft. Worth terminal area traffn flow. The airport is near the center of the 
figure. Blue paths are for arriving flights, red paths are for departing flights, and yellow paths are for flights 
transitioning the terminal area to other destinations. The green cones show the radionavigation fixes that 
define each arrival gate. (J. Plummer, http://web2.airinail.net/chuck/FlowsJitmi 1996)

Jet transport aircraft tend to avoid flight through radar echoes with intensities 

greater than 40 d B ^  (Rhoda and Pawlak 1999). Consequently, if a thunderstorm with

reflectivity above 40 d B ^  is situated over an arrival gate, that gate becomes unavailable,
8

http://web2.airinail.net/chuck/FlowsJitmi


1XBLE2.1

Nature of ProUem Best Estfanate of Coats

Diversion of Domestic Flights $5K/divefsion

Missed Connections $lS(Vpassenger

Flight Cancellations $SK/cancellation

Downstream Delay factor 1.8

TABLE 2.1. Economic costs of weather-reialed opentioaal issues. Values represent best estimates based on 
limited discussions with airline personnel, some of which occurred in 1994 at the conclusion of field demon­
strations for the FAA’s ITWS. Downstream delay factor is based on the mean downstream delay experi­
enced by an air carrier during the remainder of its flying day, which is approximately 80% of the initial 
delay. Alternatively, the net delay for an aucraft over its flying day, due to an initial delay, is approximately 
1.8 times the initial «klay (from Stevenson 1997).

limiting the airport to 75% of its available capacity. Since arriving flights are positioned 

for a particular gate about 200 km from the airport, last minute diversions to different 

gates are not only costly, due to increased maneuvering and flight time, but also inconve­

nient to a wide range of individuals and companws. The difficulties of last-minute flight 

path changes are compounded because diverted flights must enter a traffic flow through an 

arrival gate that had already been planned and established. The costs involved with the 

operational problems created by various weather events are significant (Table 2.1; Steven­

son 1997). Rerouting flights through a different arrival gate can result in late arrivals and 

missed flight connections. Should inclement weather reduce the actual airport capacity to 

something less dum the demanded capacity, significant delays rapidly ensue causing fur­

ther delays at other airports well removed fiom the weather-impacted one (Evans 1997).

Weather-induced problems continue long after die adverse conditions have dissi­

pated. Because of these delays, other aircraft are held at their departing airports to avoid

9



diversions and in-flight holds. These latter flights are held until the weather feature caus­

ing the delay has ended. Such delays result in a lengdiy period when the hub ci^acity is 

available but unused, because no aircraft are en route to the impacted gale before the 

weather threat has ended. The FAA recognizes this shortcoming in current operational 

procedures. As a result, the FAA is funding the Integrated Terminal Weather System 

(I'rWS), a program charged with using weather information to make airport operations as 

efficient and safe as possible (Evans 1997; Wolfson 1997). Given some knowledge of 

when convective weather might be expected to end, flights could be en route so as to 

arrive as soon as the impacted arrival gate becomes available.

If thunderstorms result in delays, probabilistic forecasts of the thunderstorms’ life­

time permit aMine dispatch operations to use cost-loss analyses to determine the most 

economical strategy to deal with the delays. Probabilistic forecasts also may allow the 

TRACON facility to plan for the optimal arrival and departure of flights. The ARTCCs 

would benefit as well, as they could use available airways in an optimal feshion, even 

though some airways are being affected by convective activity. In turn, TMUs could plan 

for optimal traffic flow, while the CFCF could optimize national-scale strategic plans.

2.2 The current state o f short-range thuntUrstorm forecasting

Even though the predictable time scale for thunderstorms is likely to be small, it is 

clear that certain industries, as well as the general public, benefit from improved short- 

range forecasts of storm behavion \lfith abundant radar data digitally available in real 

time, a logical r^roach  to short-range forecasting is to use radar-derived time series of 

storm characteristics to predict storm behavior. Longevity studfes, based upon digital
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radar data, can examine how storm lifetimes are related to various other storm characteris­

tics, such as size, echo intensity and echo top (e.g., Battan 1953; Wilson 1966; Henry 

1993; MacKeen et aL 1999). These characteristics, a subset of the information used to 

make short range thunderstorm forecasts, have lead to new technkiues for "thunderstorm 

nowcastmg" (Wilson et al. 1998).

Thunderstorm nowcasting, and thunderstorm forecasting in general, challenge 

meteorologists daily. The basic characteristics of thunderstorms as observed by radar were 

documented by Battan (1952), who discovered how longer-lived cells are associated with 

the highest radar echo tops. Single-celled storms, that do not merge with other cells during 

their lifetime, typically last 20 min, but tend to last longer as their horizontal extent 

increases, up to 8 km in diameter Rattan 1952, 1953). There is no association between 

diameter and lifetime for storms with diameters greater than 8 km. These historical works 

demonstrated conclusively how radar may serve as a useful tool to predfet thunderstorm 

evolution.

Nowcasts of thunderstorms generally are extrapolations made using two 

approaches: steady state assumptions (where time derivatives are assumed to be zero) and 

intensity/size trending (where tune derivatives are a linear combination of past values and 

assumed to be constant; VWlson et al. 1998). Cross-correlation tracking, (Wilson 1966) is 

based upon steady state assumptions, and results are primarily dependent on the horizontal 

scale of the precipitating area. The steady state assumption is at the heart of the WSR-88D 

algorithm used by the National Weather Service ^fWS), an algorithm that identities and 

tracks storms. It is derived from the algorithm for Storm Cell Identitication and Tracking 

^CTT; Johnson et al. 1998) developed at the National Severe Storms Laboratory (NSSL).
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The SCrr algoridun also uses linear intensity/size trending to extrapolate storm behavior. 

Unfortunately, diese techniques perform poorly when used for forecasting storm charac­

teristics ^ n r y  1993; MacKeen etaL 1999).

For example, a trend-based extrapolation tracker (TITAN; Dixon and Wiener 

1993) is used to examine how storm size and storm volume help forecast the duration of 

an active storm (Le., the "remaining storm lifetime,” Henry 1993). Henry defines storms

as areas with reflectivity exceeding 35 dBZ  ̂and volumes exceeding SO km .̂ Using data 

that are evaluated every 30 min, storms are divided into two categories: 1) complex storms 

that merge or split over their lifetime, and 2) simple storms that do not merge or split over 

their lifetime. Storms deemed supercells are excluded from Henry’s study. For simple 

storms, 85% are short-lived and dissipate in less than 30 min while only 12% of the com­

plex storms dissipate in 30 min. Henry concludes that only large, intense, simple storms

with volumes greater than 400 km^ and reflectivity greater than 55 dBZg, have a mean 

remaining storm lifetime greater than 30 min. Correlations between remaining storm life­

time and storm volume, and remaining storm lifethne and maximum storm reflectivity are 

weak. When the Pearson correlation coefficient (r) is used, the remaining storm lifetime is 

correlated with volume and reflectivity at levels ranging from r  = 0.39 to r=0.52. Hence, 

volume and reflectivity together explain, at most, only 25% of the total variance. Empiri­

cal forecasts of storm evolution fair no better. Even well-trained human forecasters who 

use research-quality Doppler radar to identify and track boundaries, and high resolution 

visual satellite images to characterize boundary layer cloud characteristics, have signifi­

cant problems forecasting storm initiation and placement (Wlson and Mueller 1993).
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b  a similar study, MacKeen et al. (1999) examine 16 different radar-derived storm 

characteristics. These characteristics are: maximum reflectivity, vertically integrated liq­

uid (VIL), cell volume, cell mass, maximum cell area at any height, height of storm top, 

height of storm base, maximum height of Ae 40 dBZg core, minimum height of the 40 

dBZg core, probability of hail, probability of severe hail, maximum hail size, height of 

maximum reflectivity, height of center of mass, core aspect ratio (depthAvidA), and 

reflectivity ratio, defined as the maximum reflectivity/reflectivity at lowest tilt (Johnson et 

al. 1998; Vfitt et al. 1998). Remaining storm lifetime is examined by ̂ plying multivariate 

statistics to Aese 16 characteristics. To be declared a cell by Ae SCIT algorithm, Ae max­

imum reflectivity must be at least 40 dBZg and Ae cell must be wholly contained within 

an armulus between 30 km and 125 km from Ae radar. The temporal daA sampling inter­

val is 6 min (5 min) for Volume Coverage Pattern (VC?) 21 (VCP-11). A shorter temporal 

sampling interval means that MacKeen et al. better resolves short-lived storms than does 

Henry (1993). Storms Aat last less Aan two volume scans are ignored Aus defining a 12 

min (10 min) lower limit for storm lifetimes wiA VCP-21 (VCP-11). MacKeen et al. show 

Aat the best single-characteristic correlation wiA remaining storm lifetime is maximum 

reflectivity (r = 0.36). When all 16 characteristics are combined in a multiple, kast- 

squares, linear regression Ae correlation improves to r=0.43. Thus, wiA all 16 included, 

only 18.5% of Ae total variance is explained. AU correlation coefficients are significant at 

Ae99% level because of Ae large daA set size. MacKeen et al. conclude Aat " ... relation­

ships between storm characteristics and remaining lifetime are not large enough to dis­

criminate between short and long-lived storms.” Thus, the resulting forecast guidance for 

boA Ae public and industry is unacceptable.
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2.3 Cloud-scale numerical modeling

Since radar extrqwladon and trending performance leaves much to be desired, 

thunderstorm forecasting using cloud-scale numerical modeling is a next, logical step. 

Cloud scale models, notorious for the computational resources they consume, have seen 

little ^plication to forecasting on the storm scale. Instead, they have been used primarily 

for simulation purposes, as an aid to understand how storms, particularly supercell storms, 

are organized and maintained. Because cloud models have proven useful for simulations, 

and because they can reproduce storm structures with remarkable fidelity, it is reasonable 

to investigate using them as a forecasting tool.

The first cloud-scale models used the anelastic mass continuity equation so all 

variables could be described by elliptical equations. Elliptical equations are convenient 

because elliptical solvers are very fast, and because acoustic waves are eliminated 

(Schlesinger 1975). Nevertheless, elliptical solvers become ill-conditioned when model 

grids become complex, e.g., grids on complex terrain, vertically stretched grids, and 

nested grids. Furthermore, because elliptical solvers are iterative, the computing resources 

needed to run cloud models are not known beforehand. These numerical difficulties led to 

the development of a more flexible form of the three-dimensional cloud model that uses 

the fully compressible mass continuity equation (Klemp and Wilhelmson 1978).

The fully compressible continuity equation requires explicitly solving the associ­

ated prognostic equations. However; this procedure has an added bonus: the computa­

tional resources needed for rutming the model can be estimated beforehand. Even so, 

explicit solutions exact a price, because the fully compressible equations retam numeri­

cally significant, but physically unmleresting, acoustic waves that quickly destroy the
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model solution. Computer resources are wasted by explicitly solving for sound waves 

because much shorter time steps are needed than for the physically significant modes. 

Hence, the acoustic mode is split away and solved implicitly over shorter time steps. In 

addition, the cloud-scale models that use the fully compressible equations add another 

degree of sophistication by parameterizing subgtid-scale turbulence. The eddy kinetic 

energy equation is introduced as an additional prognostic equation and solved along with 

the other three component equations of motion. This qtproach yields parameterized sub- 

grid-scale turbulence which is solved in a fashion consistent with the other prognostic 

variables. Thus, cloud-scale models represent the state-of-the-art in cloud modeling, and 

almost all of these models are at least partially derived from die original model of Klemp 

and Wilhelmson (1978).

The Collaborative Model for Mesoscale Atmospheric Simulation cloud model is 

used in the present study (COMMAS; V^cker and V ^elm son 1995). It is the same one 

used in Brooks et al. (1993) and Miocker et al. (1997) and is, in principle, identical to the 

Klemp and Wilhelmson (1978) model. However, the code has been rewritten and made 

more amenable to the modem computing environment This rewritten code takes advan­

tage of the increased memory and sophisticated operating systems available on modem 

machines. The COMMAS code also incorporates improved numerical schemes. Improve­

ments include a better advection scheme that is positive definite for moisture variables, 

monotonie for potential temperature advection, and has small numerical difrusion and 

phase errors.

Just as understanding parameterization schemes in mesoscale models help evalu­

ate and use mesoscale model output (Cortinas and Stensrud 1995), understandmg parame-
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terizations peculiar to cloud models is a pieiequisite to impropriate use of their results. 

Unlike mesoscale and larger scale models, cloud models are initialed with an unbalanced 

thermal perturbation (warm bubble) which is almost certainly an unrealistic representation 

of how deep, moist convection is naturally initiated. Previous research investigated inho- 

mogeneously heated boundary layers, but this method is computationally expensive and 

provides results indistinguishable from the warm bubble initiation method (F. Proctor, per­

sonal corrununication). An unbalanced initiation leads to a “spin up” period for the model, 

as the model seeks to restore its own internal balance. Model results are dismissed during 

this period, a practice common with any numerical model that begins with an unbalanced 

initiation. Qoud models also display sensitivity to the initial warm bubble characteristics 

(Fig. 2.2; McPherson 1991; Brooks 1992; Lilly 1990). Such sensitivity can be an issue for 

forecasting purposes because die bubble characteristics needed to initiate deep convection 

arc dependent upon the initial sounding. While not well documented in the literature, it is 

generally felt that as long as initial bubbles are not too far in excess of the strength needed 

to initiate deep convection, the qualitative results e g., supercell vs. multicell modes, are 

generally insensitive to the initial bubble (W cker et al. 1997; F. Proctor, personal commu­

nication).

The dynamical aspects of cloud modeling are substantially complicated by precip­

itation processes. Qoud models must deal explicitly with these aspects, because moist 

processes are the energy source for deep convection. One method of handling moist pro­

cesses is to ignore the ice phase altogether, and invoke a warm-rain scheme that autocon­

verts water vapor to liquid cloud droplets ^Gessler 1969). Once the mixing ratio of the

cloud water exceeds a selected threshold (typically 1 g kg* )̂ at temperatures below 0°C,
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Figure 22 . Evolution of updrafts from three different ARPS tuns using identical soundings but different 
initial bubbles. All bubbles have a 1.4 km vertical radius. Panel a is acontiol run, using a bubble with 10km 
horizontal radius and 4 K potential temperature excess. Panel b uses a bubble with a 10 km a 6 K potential 
temperature excess. Panel c  uses a bubble with a IS km and 4 K potential temperature excess. Stippled and 
hatched areas indicate updrafts > 4m  s^ at4  km AGL. When a cell splits, the left and right moving cells are 
labeled with L and R, respectively. Times (in min) are times into the simulation. Numbers to the right of 
each area are the maximum updraft intensity at the associated time (from McPherson 1991).

these droplets autoconveit to laindiops widt a predefined (Marshall and Palmer 1948) 

drop size distribution, hi the & ssler scheme, latent heat release is accounted for in bulk 

by quantifying the latent heat of condensation of the water mass after it has been autocon­

vened to liquid. The Kessler scheme works as well as any other autoconversion scheme
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(Hooze 1993). Other methods explicitly address the water substance^ce phase process, 

and include: Proctor (1988), Tao et al. (1989), and Kopp and Orville (1994). While these 

latter approaches are more complete, they add consMerable complexity and computational 

expense to the production of a cloud model forecast

Unfortunately, autoconversion schemes ignore the latent heat transfer during phase 

changes that involve ice. This latent heat can be significant: the latent heat of freezing is 

about 13% of that for condensation, while the latent heat of deposition is 113% of that for 

condensation (Johnson et al., 1993). When explicit ice microphysics are invoked, the 

latent heat associated with ice processes is explicitly included in the cloud’s overall heat 

budget Since most precipitation from midlatitude thunderstorms begins as ice, significant 

thermal energy may be absent from model runs that do not consider ice (Rogers 1976, 

Johnson et al., 1993). This latent heat energy may be especially important when modeling 

or forecasting convection associated with low static stability and low relative humWity in 

the boundary layer (\IWcker et al. 1997). hi the extreme case, potential instability that 

depends upon latent heat release from ice processes is not realized. When convection 

depends upon latent heat from k e  processes, autoconversion schemes suppress organized, 

deep convection.

Ignoring ice has other effects. Analyses show Aat 50% of Ae moisture entering Ae 

updraft of a squall line reaches Ae ground, 40% evaporates in downdrafts, and 10% is 

injected into Ae anvil portion of Ae cloud (Cotton and An Acs 1989). The Kessler scheme 

likely produces too much precÿiAtion at Ae surface, and creates a precipiAtion efikkncy 

that is too high, because it does not include k e  processes. Because no water substance is 

converted to ice in a Kessler scheme, Ae excess precipiAtion produced can creaA cold
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outflows too quickly that are too strong, leading to an anomalously short cell lifetime 

(Johnson et al., 1993). At the very least, the Kessler scheme by itself cannot account for 

10% of water mass exiting the storm system through the anvil. Because ice processes pro­

duce less dense hydrometeors than do warm processes, the vertical distribution of precipi­

tation loading is different between results obtained using the Kessler scheme versus 

results obtained using a full ice scheme. As a result, the maximum updraft strength and the 

overall storm structure are affected (Jewitt et al., 1990; Johnson et al., 1993, Straka and 

Rasmussen, 1998). Nevertheless, the characteristics that qualitatively define a supercell 

storm within a cloud scale simulation, e.g., a positive Pearson’s r  correlation between 

w > 0  and vertkal vorticity (Ç) > 0 , are relatively insensitive to whether the mkrophysical 

processes are described by the Kessler scheme or an explicit ice scheme (Klemp and 

helmson 1978; Weisman and Klemp 1982; Weisman and Klemp 1984; V^cker and 

))Mlhelmson 1995; Jewitt et al., 1990; Johnson et al., 1993; Straka and Rasmussen, 1998).

A final, operational consideration remains. Tests with the Advanced Regional Pre­

diction System (ARPS) model show the execution time for runs that include ice parame- 

terizations is 30% to 40% longer than those which use the Kessler scheme QCue et al. 

1995). The COMMAS model suffers similariy extended execution times when ice param- 

eterizations are included (Miocker et al. 1997). Because execution time is an important con­

sideration of ensemble model runs, only the Kessler scheme is used in this work.

2 A  Cloud models used fa r forecasting

Historically, running a cloud model in real time and then interpreting the ou^ut 

requires computational facilities and expertise that are not widely available. As greater 

computational ci^abilities have become more widespread, cloud scale models are run
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mofe often. Yet, assessing and interpieting the real-time cloud model ou^ut remains 

problematic. For example, useftd insight about atmospheric processes can be gleaned 

from synoptic and mesoscale forecasts by examining horizontal cross sections of model 

results. Because conceptual models are available at such scales (quasigeostrophic theory, 

for example), the kinematic structure and dynamic processes at woric at any given time can 

be readily interpreted. Such conceptual frameworks do not exist for examining cloud scale 

model output As a result rarely are cloud models used in forecast applications.

The ARPS is used for real-time forecasting applications, though not as a cloud- 

scale model (Carpenter et al. 1997). When configured for real-time forecasts, the ARPS 

uses a 9 km horizontal grkl spacing, augmented with an adaptively-nested 3 km grid. As a 

consequence of the grid spacing, the ARPS cannot accurately resolve meso-y cloud-scale 

motions or characteristics; yet ARPS can capture many important racso-P characteristics. 

Background fields for model initialization are provided from the NCEP Rapid Update 

Cycle ^ U Q  model enhanced with additional data from the Oklahoma Mesonet, wind 

profilers, upper air data, and various WSR-88Ds. In the three cases presented by Carpenter 

et al., model resolution precludes storm-scale comparisons. Although similarities in meso- 

P scale features are apparent, spatial position errors on the orcfer of one or two counties are 

common as are temporal errors of 1-2 hr. Clearly, in these three cases, the fact that con­

vection occurs anywhere close to the actual location and time is a significant achievement

An additional ARPS case (16-17 June 1997) is examined for sensitivity to initial 

conditions (Carpenter et al. 1998). Here, the model results are signffîcantly altered and 

improved upon by using an initial cloud analysis. To test for further model sensitivity to 

initial conditions, an ensemble of seven ARPS runs is made on this case. The ensemble is
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created using seven different analysis times, two of which use cloud analyses, similar to a 

lagged average forecast (SivOlo et al. 1997). A plot of the ensemble of 30 dBZ^ contours 

at 3 km mean sea level ^ S L , not shown), is used to note where all the contours from all 

runs overlap. Where overk^ exists is where ARPS is relatively insensitive to the initial 

conditions. Where overlap does not exist is where ARPS is sensitive to mitial conditions. 

Because not all runs overlap everywhere, Ae ARPS model displays spatially and tempo­

rally variable sensitivity to initial conditions.

In a different experiment, a 2-D, slab-symmetric, cloud-scale model is applied dur­

ing Ae NorA Dakota Thunderstorm Project The model is used to help forecast when 

storms wiA hail or strong low level wind shear are likely. The model is also used to dis­

criminate between convective and non-convective precipitation (Kopp and Orville 1994). 

The model uses a 200 x  200 m resolution across a 20 km x 20 km domain. The main 

advantage of using a 2-D model is that substantially less computational resources are 

requhed Aan for an equivalent 3-D model. However, 2-D models cannot reproduce 

storms Aat rotate, which are a significant operational concern. In this experiment, an area 

of interest is chosen and Ae observed morning sounding from Ae closest rawinsonde sta­

tion is used to initiate Ae model. To produce convection, a slight amount of random varia­

tion in Ae boundary layer temperature field is imposed and the boundary layer is heated 

by a simple, tune invariant, heat flux technique. Eventually, convection occurs. Addition­

ally, a forecaster subjectively adds an estimated boundary layer convergence value as a 

model input parameter. A 2-D model applkd in this fashion shows some skill, wiA Ae 

particular skill value depending upon the parameter bemg verified: precipitation type, pre­

cipitation occurrence, cloud type, or cloud top height Even so, overall model performance
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is rated mediocre while some forecasts are completely unsatisfactory due to inaccuracies 

and uncertainties in the initial envvonment

hi anodier example, a fully 3-D numerical cloud model is employed in the Storm 

Tÿpe Operational Research Model Test hicluding Predictability Evaluation 

(STORMUPE) project, which is designed to forecast the gross characteristics of storms, 

such as life span and rotation (Brooks et al. 1993; hereafter ST-91; \Mcker and \i^lhelm- 

son 1995). The ST-91 model uses 1500 m horizontal grid spacing and a vertically 

stretched grid. The lowest grid level is 400 m AGL, and the vertical gnd spacing is 600 m 

near top of the model grid. Forecast soundings are created interactively by a human fore­

caster using observations, model forecast soundings, and the forecaster’s best judgement 

The resulting sounding is used to represent a horizontally homogeneous atmosphere as the 

model is initiated. Because the model boundaries are open, modeled storms cannot inter­

act with other storms or widi the mesoscale environment Results indicate that the mod­

eled storm can be quite sensitive to the initial environmental conditions, hi one case, a 

change of only 1 K at 700 hPa makes the difference between no storm developing, and a 

supercell storm evolving. This sensitivity also is shown by Crook (1996), who finds that 

boundary layer temperature differences of ±1 K and/or mixing ratio differences of ±1 g

kg*̂  make operationally significant differences in the modeled storms. Currently, the mea­

surement accuracy for temperature and moisture is ±1 K and ±1 g kg*^ respectively 

d u e lle r et al. 1993). Consequently, even if the cloud model is perfect, the accuracy 

needed for initial conditions is not attainable (Crook 1996; Mueller et al. 1993; Brooks et 

al. 1992,1993).
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A similar experiment (STORMT1PE-9S, hereafter ST-95) uses soundings from the 

Eta model, produced by the National Center for Environmental Prediction (NCEP). The 

goal is to help operational forecasters anticipate stonn behavior Cocker et al. 1997). A 

major difference between ST-95 and ST-91 is that no human forecaster is used to create an 

initial sounding. Rather, based on the 0000 UTC forecast from the 1200 UTC Eta run, a 

humaa forecaster extracts a sounding nearest to the location deemed most likely to pro­

duce severe convection. This sounding is used as input to the cloud model. Another differ­

ence between ST-91 and ST-95 is that ST-95 utilizes two grids: a coarse grid and an 

automatically generated, nested, adaptive high resolution grid that is placed over regions 

in the domain where convection develops. Both the coarse and nested grids use 35 vertical 

levels with 3(X) m vertical spacing near the surface and 7(X) m spacing near the top of the 

model domain. The coarse grid uses 4 km horizontal spacing while the nested grid uses

1.3 km horizontal spacing. Only six cases are examined. When the forecast sounding has 

convective indices similar to those observed, the model demonstrates skill in predicting 

the mode of convection. Thus, ST-95 produces results similar to ST-91. The Eta sound­

ings typically forecast too much convective instability and wind shear to be present at 

0000 UTC. As a result, forecast storms are too intense. Results from both ST-91 and ST- 

95 indicate that a single motkl run is insufiticient for an accurate forecast of convective 

storms because of the model’s sensitivity to variations on the mesoscale. To address the 

influence of environmental variability on convective modes, ST-95 proposes an experi­

ment in which a Monte Cario approach is used to produce a variety of mitial conditions for 

themoctel (as m Brooks etaL 1992).
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While the results outlined above ^ p ear promising, it is not clear that using single 

model luns produce accurate forecast guidance. Certainly, none of the qiproaches 

described provide explicit guidance about Ae range or variability that should be expected 

on any given day. Yet, verification analyses of modelmg results reveal Ae existence of 

profound sensitivity to initial conditions. Verification issues aside, it is clear that, even if 

perfect cloud models existed, Ae required observational accuracy and density are insuffi­

cient for a deterministic forecast Thus, the forecast problem is deterministically intracta­

ble. Because the goal is to create a forecast of Aunderstorm behaviors over a particular 

region on a particular day, a Monte Carlo or ensemble approach is a logical approach to 

investigate. The output of such an ensemble helps create probability forecasts for gross 

convective characteristics, such as lifetime, motion, or even persistent cloud-scale meso- 

cyclones. To date, no attempt has been made to use cloud models in an ensemble to cap­

ture Ae irAerent variability of Aunderstorms over small regions. Doing so requires 

multiple runs of a cloud-scale model initialized wiA a range of conditions considered 

likely for a given day (kieas explicitly mentioned in Brooks et al. 1992; Kopp and Orville 

1994; Crook 1996; Vfickeretal. 1997; and MacKeen et a l 1999).

2.5 Numerical model ensembles

Posing Aunderstorm forecasts in terms of an ensemble explicitly recognizes Ae 

inherent uncertainty. Dr this fnuneworic, Ae question at hand is reduced to: What kind of 

Aurxferstorms are possible at a specific location today? This question is non trivial 

because Aunderstorms are sensitive to processes on scales smaller than can be operation­

ally observed; furthermore, variations in parameters that are significant on the storm scale
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aie obscured by obseivatrônal enors (Brooks et aL 1992; Crook 1996; V^Isou et al. 1997). 

la  addition, knowledge of thunderstonn processes is incomplete, so the governing equa­

tions used to describe them in any model are necessarily incomplete. These considerations 

are compounded by Lorenz’s (1963,1965,1969,1993) findings that the atmosphere con­

stitutes a chaotk system with a finite, scale-dependent, predictable period. Accordingly, 

errors in initial conditions, regardless of how small, impose a limit on how far into the 

future a skillful forecast can be made. For example, large-scale motions have a longer pre­

dictable time scale than do small-scale motions (Lorenz 1969). This predictability limit 

holds even if the governing equations are known exactly.

Recognizing the significance of the results documented by Lorenz (1963, 1965), 

Epstein (1969) addresses predictability in a probabilistic sense using a stochastic dynamic 

forecasting technique. Atmospheric fluid motion is considered to be completely determin­

istic, even though it is patently impossible to observe the atmosphere in sufficient detail or 

with sufficient accuracy to realize this determinism.

Let the equations describing these motions (also considered to be deterministic and 

perfect) be written in vector form as:

X = G(X (t)), (2.1)

where the dot indicates the total derivative with respect to time, G is a nonlinear forecast 

operator, and X is a multivariate, f>-dimensional vector describing each state variable at 

each model grid point The initial condition for X is given by Y, where Y (typically) has a 

lower dimensionality than X. In a deterministic system, an operation, e g., objective anal­

ysis, is applied to Y to yield a “besf ’ first guess of X at time r s  0. If the resulting first

guess field is X ,then
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X = A(Y) (2.2)

wheie A is the analysis operator Then, (2.1) is mtegrated over tune to provide a forecast,

Xf at time r = and

tf
Xf X = |G (X (t))d t. (2.3)

to

An alternative interpretation is that the analyzed observations (X) constitute a 

multivariate probability density function (pdf), q>(X;/o). defined over the entire phase 

space. Here, <p must posses the properties defining a pdf which are: 1) <p ̂  0 for all x and 

r, and 2) JJ...J<p(X;OdX|dx2 ...dx0  = 1. >fisualizing a multidimensional pdf is rela­

tively easy up to three dimensions. For a one dimensional pdf, the integral constraint 

requires that the area beneath the pdf be unity. In two dimensions, the integral constraint 

requires that the volume beneath the pdf be unity and for three dimensions, the integral

constraint requires the contained mass be unity. To use the alternative interpretation, the 

initial analysis (2.2) and die forecast (2.3) must be expressed probabilistkally, each with 

their own pdf’s. Even though it is not explicitly included in the formulations above, q> is 

affected by inaccuracies and parameterizations used in the model equations comprising 

the forecast function, G

When cast as probabilities, the integrand of (2.3) is expressed as

| ?  + V*(Xq» * 0 , (2.4)

which is commonly referred to as the Liouville equation (Ehrendorfer 1994). In Eq. 2.4,

V  is taken over D dhnensions. This equation is based on the principle that the total
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amount of probabiliQr is conservative and equal to one, much like the principle that mass 

can be neither created nor destroyed. So, the probability of all parameters having smne

value is always one. M th  appropriate boundary conditions (such as <p - » 0  as X ^± «> )

and the initial value q>(X;rg), directly integrating (2.4) presents no intrinsic mathematical 

difficulties. If the atmosphere is viewed as a chaotic system displaying sensitive depen­

dence to initial conditions (& ), then the resulting integrated pdf becomes more and more 

diffuse with time (Lorenz, 1993). One interpretation is that, as (tf- ig) increases, any sin­

gle, deterministic forecast becomes less likely to be close to the true atmospheric state at 

tf. However; using Epstein's approach, if D parameters are needed at L  grid pomts, it is

necessary to explicitly solve (2.4) for terms at each time step, assuming no covariance 

exists between the individual variables. Covariances act to reduce the number of indepen­

dent pdf’s, making the effective number of independent parameters something less than D, 

depending on the value of the covariance. Clearly, numerical integration of (2.4) is intrac­

table for a reasonable number of parameters on a grid of any appreciable size. Yet, with 

this approach, Epstein establishes the conceptual firameworic for ensemble forecasting.

Recognizing the computational problems posed by Epstein, Leith (1974) proposes 

the forecast pdf be discretized by using a finite Monte Carlo sample comprised of a set, or 

ensemble, of deterministic forecasts. Each ensemble member uses different, independent, 

identically distributed (equally likely) initial conditions, ff X(^) consists of all ensemble

members, then <p(X;r) is approximated by a cloud of discrete points in D-dhnensional 

phase space which changes shape and becomes more distorted and diffuse with time. The

pdf 4p(X;r) is most easily visualized by viewing the pdf of a single variable as it changes
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in time (Hg. 2.3). For the D-dimensional case, the overall mean position of the cloud 

yields the best estimate of the future state of the atmosphere at time tf. After some time tQ, 

the cloud becomes essentially stationary widt time representing the climate of the ensem­

ble, thus indicating that all predictability (beyond tç^ has been lost

Value 
of

Vorioble
Faecost Time 
into the Future

Figure 2.3. Hypothetical probability distributioii for an arbitrary variable, such as temperature, at a point in 
space. Forecast valid time increases from left to right Note that the width of the distribution generally 
increases as time increases, bi this example, an initially Gaussian distribution ultimately becomes bimodal, 
which could occur due to uncertainty related to a frontal passage (from SivOlo et al. 1997).

With a perfect forecast model, using independent, identically distributed initial 

conditions results in independent, identically distributed forecasts. However; in numerical 

models, small-scale random perturbations are dissipated by processes such as filtering or 

internal gravity waves, and so don’t affect the larger scales. Consequently, the forecasts 

are no longer independent, identically distributed because covariances are created between 

ensemble members. Hence, various techniques have been developed to ensure that the
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resulting forecasts are most fikely to span the range of non-zero <p(X;r) with the fewest 

number of members.

Du et al. (1998) determine that as few as five members account for 65% of the 

improvement in the mean quantitative precipitation forecast compared to a single control 

forecast However, reliable estimates of the ensemble forecast skill carmot he obtained 

with an ensemble this small The ensemble prediction system used at European Centre for 

Medium Range Forecasting (ECMWF) uses up to thir^-two member ensembles. An 

ensemble that consists of thirty-two members provides a reliable bound on the control 

error, depending on the parameter considered, though the amount of improvement in the 

resultant forecast as the number of members is increased depends strongly upon the statis­

tic used to measure the control error (Buizza and Palmer 1998).

Ensemble perturbations can be generated in at least two ways: unconditional or 

Monte Carlo methods, where the perturbations are not dynamically constrained, and 

dynamically conditioned methods, such as the breeding of growing modes (Kalnay and 

Toth, 1993) or singular vectors (Buizza, 1997). Both methods perturb the analysis fields, 

but one Monte Carlo-like method perturbs observations prior to the analysis step 

O^outekamer and Derome, 1995). Dynamic conditioning methods do not necessarily pro­

duce good samples of the forecast probability distribution. Distead, theses methods heavily 

sample the wings of the forecast probability distribution. Hence, dynamically-conditioned 

initial conditions result in ensemble members that span as large a phase space as possible 

in an attempt to use the spread as a predictor of forecast skill (Amferson 1996b). Discus­

sion continues about the merits of dynamically conditioned methods. It is generally 

accepted that, at least for synoptic and hemispheric scale ensembles, perturbations that
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lack dynamic conditioning produce less satisfactory results because many of the resulting 

perturbed modes ate n^klly damped within the models.

The types of perturbation methods discussed highlight that the effort in ensemble 

development has been directed towards hemispheric and synoptic scale ensembles. Much 

less worit has been accomplished regarding how to i^propriately build perturbed initial 

conditions for models that operate on the mesoscale. So far, methods include varying the 

model parameterizations of physical processes (primarily precipitation) and Monte Carlo 

approaches (Du et al. 1997; Stensrud et al. 1999). Apparently, cloud models have not been 

considered ensemble candidates, even though current state-of-the-art cloud models have 

been subject to intense development for more than twenty years (e.g., Klemp and Wil­

helmson 1978; Proctor 1988; 1989; Xue et al. 1995; ^ c k e r  and Wilhelmson 1995). This 

period is nearly as long as mesoscale numerical models have been under development 

Since no woric has addressed cloud model ensembles, how best to perturb initial condi­

tions has not been determined. Certainly for cloud models, Monte Carlo perturbations are 

very attractive; yet a straightforward method does not exist to condition cloud model per­

turbations dynamically.

The discussions of Brooks et al. (1992), where tiiey speculate about how ensemble 

cloud models might be beneficial when used in operational forecasting, inspires the 

present research. Crook (1996), V^cker et al. (1997), and Straka and Rasmussen (1998) 

also speculate that ensemble cloud models may be the next logical step to take. While 

mesoscale ensemble forecasting stixties arc being pursued ((Carpenter et al. 1998; Stensrud 

et al. 1999), none of them provide explicit insight mto the range of behavior for individual 

storm cells. Since the scientific underpinrtings of cloud models are apparently sound, and
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computing advancements aie sufficient for running many cloud models simultaneously, 

the time is right to determhxe whetixer or not cloud model ensembles can provide benefi­

cial insight into convective stonn characteristics.
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Chapter 3: Methods and Techniques

3.1 Introduction

This cluster describes, in some detail, the statistical tools and techniques needed 

to examme the ensemble model o u ^u t Such tools are essential because ensemble models, 

and especially ensemble cloud models, produce Brobdingnagian quantities of ouqmt 

Practical, and certainly operational, considerations dktate that the output data cannot be 

used effectively without some post processing operations. The tools developed in this 

chi^ter also facilitate statistical tests that quantitatively compare the ensemble model out­

put to observations. For example, one stated goal of this study is to produce a forecast of 

the range and distribution of thunderstorm lifetimes. Thus, a way to characterize the range 

and distribution of modeled lifetimes, which are defined by a pdf, is needed. Because there 

is no reason to believe that thunderstorm lifetimes conform to any particular theoretical 

distribution on a day-to-day basis, a method to estimate the parent pdf that produces the 

observed sample must be developed. Because the form or nature of the parent population 

distribution is unknown, the statistical techniques are non-parametric. The modeled and 

observed pdf’s are always different, but are the differences statistically significant? To 

judge, quantitatively, how well the forecast and observed pdf’s compare requires methods 

to statistically compare two different pdf estiinates.

To use a methodology that can be generally applied, the behavior of cells produced 

by the model ensemble needs to be characterized. Significant modes (for example, long- 

vs. short-lived, strong updraft intensif vs. moderate updraft intensif) exist that character­

ize the general evolution of cells in the ensemble. Mediods to extract such modes must be 

developed.
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How well do the forecast soundings, which are used as the initial conditions for dxe 

ensemble model, compare to the best esthnale of the true soundings? "Best esthnate" is 

invoked because no observed soundings are available, tf  there are biases, are the biases 

statistically significant? Do the forecast soundings adequately clôture the best estimate of 

the actual environmental variability? Statistical techniques to answer these, and other, 

related questions, are developed in this chapter. Hence, the final results can be quantita­

tively discussed without parallel discussions that contain details of the analysis technique.

3.2 Generation o f ensemble forecasts

Ensemble techniques generally use a set of initial conditions created by perturbing 

a base state. However, the best procedure for perturbing a base state is unclear when ther­

modynamic and kinematic sounding variability is considered over a relatively small 

region where thunderstorms occur. Consequently, initial conditions for this ensemble are, 

instead, generated using the variability inherent in time and space over a given region. Ini­

tial conditions are provided by soundings extracted from the NCEP Mesoscale Eta fore­

casts (Black 1994). The Mesoeta is provided on the Advanced Weather friteractive 

Processing System (AWIPS) 212 grid. One sounding is used for each ensemble memben 

The AWIPS 212 grid has a 40 km horizontal grid spacmg and a 25 hPa vertical grid spac­

ing. Each ensemble member consists of a 2 h COMMAS cloud model run, initialized 

using a different Mesoeta model sounding. This ensemble worir is centered on two FTWS 

testbed sites: Memphis, TN, (Fig. 3.1) and Dallas-Ft Worth, IX  (Fig. 3.2). Radar data 

from the associated WSR-88Ds (KNQA and KFWS, respectively) are used for verifica-
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Memphis Ensemble Region and Landmarks
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Figure 3.1.The Memphis area ensemble region with landmarks. Heavy blue lines are state boundaries, and 
lighter black lines outline counties. Filled spots are AWIPS 212 grid points from which Mesoeta soundings 
are extracted. Empty circles are AWIPS 212 grid points that are not used. The blue asterisk is the radar loca­
tion, and the magenta symbol with four peripheral tics shows the airport location. Grid points are numbered 
by coordinate pairs, starting with 4,4 in the lower left, 4,8 in the upper left, 8,4 in the lower right and 8,8 in 
the upper right.

don. These sites arc convenient to use because MacKeen et al. (1999) provides a thorough 

analysis of convective cell lifetimes for the days examined.

All initial soundings are extracted from a S x S grid centered on the area of interest, 

and are derived from operational 0300 UTC Mesoeta model runs in 1995 and 1996. While 

forecast fields are available at three hour intervals from the Mesoeta, only the 15 h fore­

cast (valid at 1800 UTC), the 18 h forecast (valid at 2100 UTC), and the 21 h forecast 

(valid a t0000 UTC) are used to create a daily ensemble. In one case (7 June 1996), the 21 

h (0000 UTC), 24h (0300 UTC) and 27 h (0600 UTC) forecasts are used. Soundmgs from 

three adjacent forecast times over the study domain hnplicitly recognizes temporal and
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Dallas-Ft. Worth Ensemble Region and Landmarks
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Figure 32 . Same as Fig. 3.1, but for the Dallas/Ft. Worth ensemble region.

spatial unceitainties in the forecast soundings, hiitial conditions of the ensemble created 

by this method are called Spatial Temporal Atmospheric Sampling (STAS) and are funda­

mentally different from perturbations imposed upon a base state.

At each forecast time, only every other sounding is extracted, so that 13 of the 25 

available soundings are used. Because thirteen soundings are extracted from each of three 

forecast periods, each ensemble consists of thirty-nine separate cloud model runs or mem­

bers. Consequently, the ensemble output is intended to be applicable across the entire 

region over a nine hour period. Because only cases with convection are used, an analysis 

that examines how useful this ensemble might be to determine unconditional probability  ̂

of convection forecasts is precluded.

The ensemble is produced on a ten processor Silicon Graphics Power Challenge

computer. Eight of the ten available processors are used simultaneously, with each proces-
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sor dedicated to a single cloud model run. bistead of running each individual cloud model 

on multiple processors, this method results m perfect scaling for the overall ensemble and 

results in a faster execution time. On average, each cloud model requires about 130 min of 

processor time. Hence, eight cloud model runs can be completed every 130 min. Because 

a maximum of eight processors are used simultaneously, the ensemble is effectively 

divided into five sets. Each set requites the same processing time, so an entire ensemble is 

typically run in 650 min (-11 hr). The 0300 UTC Mesoeta ou^ut is typically available by 

08(X) UTC, so the M l ensemble is complete by 1900 UTC. Thus, even in a non-opera- 

tional environment, the ensemble outyut can be available within an operationally useful 

time frame. Obviously, faster processors, or more processors, will further reduce the over­

all execution time.

3.3 Ensemble output

Each COMMAS run extends to 2 hr, with output available for graphical display 

every 15 min. Because the cloud model is initiated with an unbalanced, warm bubble, non­

physical, transient responses occur early in the model run. To make sure that any resulting 

cells have lifetimes beyond the eddy turnover time, outyut from the first 30 min is ignored. 

Storm lifetimes are based upon data extracted afrer this period. These data are available 

every 63 s, and consist of maximum and minimum values of various parameters, but only 

the maximum vertical velocity, w, and the maximum parameterized reflectivity, in dBZg, 

are retained and analyzed. IKfith these parameters, cell lifetimes are defined as the time 

period over which the values of w or reflectivity exceed a predetermined threshold. For a 

given run, reflectivity and w typically provide different estimates of cell lifetime. Runs
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that do not produce deep convection (i.e., have no parameter value above the predefined 

threshold) are not used to estimate cell lifetimes.

The definition of a cell lifetime implicitly depends upon a domain maximum w or 

reflectivity, which leads to the implicit assumption that only one cell is active at any given 

time. However, it is possible for more than one cell to occur within the domain of a cloud 

model. If outflow from the first cell triggers additional convection serially, such that w

Cell Lifetime Definition
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FIGURE 3.3. Schematic representatioB of how cell lifetime is determined. The data interval is 1 min and is 
shown by grey dots. Solid traces show the period for which cell lifetime is counted, and dotted traces show 
the period for which cell lifetime is not computed. The threshold that defines the existence of a cell shown

by the horizontal dashed line at w^ l O m s ' .  I&rtical short-dashed lines show the time intervals for which 
cell lifetime is counted.

decays below tbe cell-definition tbreshold, and tben recovers to a value above that thresh­

old, twor separate cells are counted, each with separate lifetimes (Fig. 3.3)
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Tbe model dmnam (which is separate firom the study domain) is 70 km x 70 km, 

which is large enough to contain more than one active cell. Errors can result when a 

domain maximum is used to define cell lifetimes and more than one cell is active within a 

single domam. For exampfe, if two cells are shnultaneously active, only the strongest 

counts for Intim e estimates. If a strong, long-lived cell masks a weaker, shorter-lived 

cell, a  Type A error results (Fig. 3.4). This condition violates die one-cell-at-a-time

Type A Error
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Call Otnrmon Tnmahold

InvWUaoall *J •
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T---'—r-i---1—'---1 r
20 30 40 50 60

Time (min)
FIGURE 3.4. An example of a Type A enor, where a strong, long-lived cell obscures a weaker, shorter-lived 
cell.

assumption and tends to bias cell lifetime estnnates to be long. Both cells meet the exist­

ence criteria, but the second is essentially invisible tti the analysis method. Type A errors 

occur in about 10% of the cases in this woric.
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Type B enocs occur when stonns follow each otfier serially in such a way that the 

first storm remains above dueshold long enough for a second storm to intensify above the 

chosen threshold (Hg. 3^). the first cell then decays below the threshold, die lifetime

Type B Error

C«U Defmmon ThrMhoM

30 40 50 60 70 80 90 100
Time (min)

Figure 3^ . Depiction of Type B enor, where two separate cells overlap temporally in such a way that they 
are counted as one, and appear as an anomalously long-lived cell.

estimate is an amalgam of two, separate cells within the same domain, fype B errors can 

lead to a significant overestimate of cell lifethne and are potentially more serious than 

fype A errors. Fortunately, fype B errors are rare, and none affect the storm lifetimes in 

the study data set

3.4 Verification data

Level H archive data from the a^ropriate WSR-88D closest to the regimi of mter-

est are used for verification. This verification data set is a superset o f the data presented in
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MacKeenetaL (1999). fia total, eighteen days with convection aie used, and eight of diese 

aie characterized by some kind of severe weather event Oiail, wind or tornado). One day is 

characterized by a severe squall line, and the rest of the days are characterized by isolated 

convection. As in Mac&en et aL (1999), storms included in the verification data set must 

meet three criteria: 1) their lifetmm is at least 12 min (10 min for VCP 11); 2) the maxi­

mum refiectiviqr must be at least 40 d B ^; and 3) the storm track is wholly contained 

within an armulus of 30 km to 125 km fiom the radar. This range interval is chosen to 

reduce radar sampling problems that can affect the SCTT algorithm when storms are too 

close to or too far fiom the radar. Relative to an airport, weather within this armulus has a 

large impact on airport capacity (MacKeen etal. 1999).

Archive data are replayed through the SCTT algorithm, which identifies cells and 

various parameters associated with them, and writes the derived characteristics to a text 

file (Tohnson et al. 1998). Among other values recorded every volume scan are the cell 

identification number, maximum reflectivity within the cell, cell location (in range and 

azimuth from the radar), and die clock time for each volume scan. Collectively, these val­

ues define the observed cell lifetime for individual cells to be that period over which max­

imum reflectivity is at least 40 dBZy

While parameters of the SCTT algorithm are tuned to reduce mis-association errors 

in these data, such errors still occasionally occur. A mis-association error occurs when 

either a new identification number is assigned to a pre-existing cell or a pre-existing iden­

tification number is carried to a new cell. Because cell lifetimes are KnkeH to cell identifi­

cation numbers, mis-association errors affect the statistics of cell lifetimes when 

spuriously short- and long-lived cells are created. For the parameters of the SCIT algo-
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ndun used in this woric, mis-association eiiois affect about S% of die cells identified by 

die SCIT algorithm. To counteract this source of error, cell tracks are manually verified, 

and cells that are clearly mis-associated are removed from die verification data se t Hence, 

the overall hnpact is negligible because far fewer than 5% of the cells in the vérification 

data set are affected by mis-association errors.

Because cloud model runs are terminated afrer 2 h, the longest storm lifetime that 

can be modeled is constrained to be 90 min. In contrast, observed cell lifetimes have no 

such intrinsic lim it To alleviate this inconsistency, observed storms that last longer than 

90 min are truncated to a maximum lifetime of 90 min, which effectively treats all storms 

equivalently. This decision may not be appropriate for individual storms, because a storm 

that lasts 90 min may or may not be operationally equivalent to one that lasts 180 min. 

Even so, this artifice serves to identify gross characteristics.

Conversely, data are extracted from the model approximately every minute after 

the spin-up period, so the minimum detectable cell lifetime is 1 min. Yet, such a short­

lived storm can not be observed ff the WSR-88D is used as the verification source. Conse- 

quendy, for consistency with observations, a modeled storm must last at least 6 min before 

it is counted. Where appropriate, this storm is assigned a minimum lifetime of 12 min for 

cases verified with VCP-21 data and 10 min for data verified widi VCP-11 data. For 

example, storms with a modeled lifetime of 6 to 12 min are assigned a lifetime of 12 min 

if the verification data is collected in VCP-21.
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3.5 pe^ estimates o f storm lifetime

Ensemble models ^ l i e d  to lacgor spatial scales typically reduce the ensemble 

forecast guidance to a mean of aU the ensemble members, hi contrast, this work attempts 

to forecast the pdf of storm lifetimes. To verify a forecast pdf, an observed pdf is needed. 

While histograms are a way to estimate a pdf, they suffer from many drawbacks. The 

choice of the bin width used to construct a histogram can significantly affect the histo­

gram. Histograms are not continuous fimctions, because derivatives are undefined at each 

bin boundary, and derivatives are zero within the bins. When identical data are used, histo­

grams constructed with different quantization intervals appear radically different This 

characteristic, in particular, can seriously mislead the untrained observer. An example is 

the I min cell lifetime data interval provided by the cloud model and the S or 6 min data 

interval from the WSR-88D. To overcome this limitation, kernel density estimates are 

employed.

Observed and simulated cell lifetimes are transformed into non-parametric pdf’s 

with a Gaussian kernel density estimator (Silverman 1986). The process is outlined here, 

with a more formal development provided in Appendix 1. For cell lifetimes, the true 

domain pdf lies on the interval [0, <» min]. Thus, the domain of the pdf is infinite, yet it 

must be placed on a finite domain for computational purposes. This computational domain 

is [0, 100 min]. It extends to 100 min to avoid problems inherent in density estimators 

when the density is not zero near the end of the domain of the estimated pdf, which is 

called the support interval. The end value of 100 min is an arbitrary choice and primarily 

dependent upon the kernel bandwidth; yet it works well for this analysis.

For this work, the kernel tknsity estimator is:
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where /  (y) is the density estimate atx,

X = location of l-D density estimate (101 locations are used at 1 min intervals),

%(= observation location,

n = number of observations,

<j -  bandwidth in units of standard deviations.

While the optimal bandwidth can be determined from theory, the pdf of the parent 

population must be known (Venables and Ripley 1997). For this study, the bandwidth, o, 

is chosen to be 3 min because the grid upon which the pdf is analyzed is cell lifethne in 

minutes. This choice of bandwidth works well; it smooths most of the insignificant bumps 

and retains the real peaks (Fig. 3.6). If the same kernel density estimator is applied to both 

forecast and observed lifetimes, statistical comparison between the pdfs becomes 

straightforward. A kernel density estimate is nothing more than a unit-area histogram that 

is smoothed with a probability density function. The process is reminiscent of a 1-dimen­

sional, 1-pass Bames analysis ^am es 1964,1973) which uses the number of observations 

allocations analyzed onto grkl points atx.

3.6 Condoling p ^ 's

The difference between two pdTs has no specific definition. Accordingly, this 

woric uses the Euclidean distance (Minkowski L% norm) between two pdTs to characterize 

the difference between them. An norm is preferable to a location metric, such as a
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Histogram and Density Estimate for Ceil Lifetime
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FIGURE 3.6. Cell lifethne histogram and corresponding Gaussian kernel density estimate. Data are observed 
cell lifetimes using WSR-88D and VCP-21 (6 min resolution). Histogram bars are centered on 6 min inter­
vals. Bandwidth for kernel density estimate is 3 min.

mean or median, because the pdf’s are multi-modal if more than one lifetime behavior 

mode exists. More importantly, multi-modal pdfs make location metrics difficult to mter- 

pret the distance between two pdfs is defined as </, then a perfect match between the 

pdfs occurs when d  = 0. Thus, small values of d  indicate that the pdfs are less different 

than do large values of d. Using d  as a test statistic colitises an mherently multidhnen- 

sional problem into a single dimension. The result is a non-unique measure because many 

different pdfs can yield the same value of d. Nevertheless, it is the most tractable way to 

proceed.
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Almost certainly > 0, but how large must d  be before the pdTs are statistically 

different? Preisendorfer and Barnett (1983) discuss this problem. They develop a pool per­

mutation procedure (PPP) and an auto-cross permutation procedure (AIV) to determine 

the significance levels of the difference between two populations. Of these two, the PPP is 

the most qiplicable to the study data.

Tbe general idea behind permutation tests is deceptively simple (Efron and Hbshi- 

rani 1993). Let F  and O be two different pdTs where, for example, F  is the forecast storm 

lifetime pdf, and O is the observed storm lifetime pdf. Let there be n samples fix>m F  and 

m samples from O, for a total of m¥n pooled samples. The null hypothesis, Hq, states that 

the populations are indistinguishable, or simply F  s  O. If the null hypothesis is correct, 

any of the cell lifetimes could have come from either the forecast or the observed popula­

tions with equal probability. To start the PPP, first compute dQ between the two original 

pdf estimates. Then, combine all of the mfn samples and randomly remove a sample of 

size n wifiioat replacement to represent one population, and assign the m values that 

remain to the second population. Compute d  between these two new populations and 

repeat the process a large number of times to create a number of (/values. Once many val­

ues for d  have been computed, calculate the likelihood of achieving a value of d^  (Rg. 

3.7). The achieved significance level (ASL) is the point where d^  intersects the cumula­

tive distribution function (cdf; Efron and libshirani 1993). This is also the probability of 

erroneously rejecting Aq.

Significance levels for permutation tests tend to be more accurate than the straight

bootstnty (Monte Cario) significance levels ^ fron  and Hbshirani 1993). But, as in any

resample technique, the results are somewhat variable. If another set of samples were
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Cumulative Probabiüty and pxO.95 Significance Teat
KNQAU July 1986

1.00 -

0.60-

0.40-
O

0.00
0.00 0.06 0.10 0.15

Figure 3.7. Cumulative density fîinctkm (cdf) of d  values for both w and leflectiviQr thresholds of cell life­
times. The dotted lines and traces ate fbrtefkctivity while the solid lines and traces ate for w. The vertical 
lines show dq. For reflectivity, the ASL = 0SS9, and for w the ASL = 0.492. In one case (reflectivity), do 
intersects the cdf above the p s  055 level (shown by the labeled dashed line). Consequently, the observed 
and forecast pdTs of storm lifetime are distinct with 95% confidence. In the other case (w), do intersects the 
cdf below the p = 0.95 level (shown by the labeled, solid line). Thus, the observed and forecast pdfs of 
storm lifetime are indistinguishable with 95% confidence.

takeo, a slightly dlffereot ASL might lesult To deleimine how variable the ASL is given 

the number of trials, Efron and libsbirani (1993) define a coefficient of variation to be a 

function of the desired significance level and the number of trials:

cv.(A SL, . (3.2)

where A is the desired significance level, B is the number of trials, and cvg(ASL) is the 

Monte Cario error effect on the estimated significance level. This worir uses 5000 trials.
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and provkks cvg(ASL) =0.0032 (0.32%) for p =95%. Hence, if the entire PPP process is 

performed many times, Ae resultant ASL will vary by about ±0.16%. Consequently, a 

high confidence in tbe ASL is warranted.

3.7 Confidence intervals fo r p ^ ’s

Cdll lifetimes firom boA tbe model and tbe observations represent samples from 

two larger, unknown populations. Confidence intervals for these pdf’s, which show how 

well each population pdf is represented, arc created wiA bootstrap resamples (Efion and 

Hbsbirani 1993). Bootstrq> resampling assumes Aat tbe data to be resampled adequately 

represent Ae parent population, because Ae probability of observing a particular value is 

equal to Ae proportion of Ae daA set that contains Aat value (this is Ae sufficiency crite­

rion, Efion and Tlbsbirani 1993).

To create confidence bounds for Ae cell lifiitime pdf, a set of storm lifetimes is res­

ampled, with replacement, and an estimate of Ae kernel density pdf is made using tbe res­

ampled set Each resampled set is Ae same size as Ae original se t Each of Ae resulting 

pdf’s represent a plausible sample fiom the population of cell lifetimes. Storm lifetimes 

are resampled 1000 times, tbe number needed for reliable confidence-interval estimates of 

a statistic (Efiron and Tlbsbirani 1993). Tben, tbe 2.5 and 97.5 percentiles arc established 

at each discrete location of tbe estimated pdf. These confidence limits constitute an enve­

lope that bound the true cell lifetime pdf wiA 95% confidence (Rg. 3.8). When two pdf’s 

are plotted together, tbe pdf’s are indistinguisbable wiA 95% confkknce where their con­

fidence bounds overlap.

47



95% Confidence intentai for Cell Lifetime Kernel Density Estimate
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FK3URE 3.8. Bootstrap confktence intervals for the kernel density estùnate in Fig. 3.6. The heavy dashed line 
is the sample density estimate, provided for comparison. Neither the 2.S peicentBe nor the 97.5 percentile 
constitute a pdf. The true pdf of storm Itfetime, which must enclose a unit area, exists within these limits 
with 95% confidence.

Bootstrap resampling also provides some insight into the stability of the pdf esti­

mate. If the 2.5 percentile boimd extends to zero density, then the original cell lifetime 

sample is not sufficient for reliable bootstrap confidence intervals. In such a case, the pdf 

estimate is not reliable.

3.8 Dominant behavior modes

A forecaster will have a better ttypreciation of how convection might behave if the 

convective modes contained within the ensemble forecast are identified (Anderson 

1996a). modes also are extracted firom observations, then qualitative comparisons
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between forecast and observed stoim behavior Is possible. Each model ensemble member 

is associated with a time series of maximum reflectivity and maximum w values. If these 

time series are arranged in a  data matrix in which each column (variable) represents an 

individual time series, it is possible to perform a principal component analysis (PCA) that 

linearly combines those time series that display common characteristics (Richman 1986). 

To identify modes, whether reflectivity or w, for individual runs that overlay each other is 

more important than whether or not they vary together. To this end. Euclidean distance is a 

useful measure for classifying modes. Although Euclidean distance has not been used pre­

viously in PCA, cluster analysis uses Euclidean distance extensively to identify or group 

data or entities that are similar (Anderberg 1973; Gong and Richman 1994). Therefore, a 

PCA technique based upon Euclkkan distance is developed (Appendix 2).

All of the extracted modes are based upon the apparent “closeness” of the time 

series to each other. Consequently, a group of time series that overiay each other or, put 

visually, that overlap or form a cloud, are lineady combined to form a single tune series 

that represents the collection of similar time series. Hence, a cloud of w time series that 

last for the entire 90 min and have similar amplitude are linearly combined into a single 

mode (Figs. 3.9a and b). Results indicate that this measure is the best choice for identify­

ing shnilar modes of storm behavior (see Appendix 2).

The extracted modes possess an artifact unique to the chosen similarity matrix, 

which is apparent when one mode ends while others remain active. Dr general, when one 

mode ends, at least one remaining mode shows an upward perturbation (Fig. 3.9b). This 

occurs because the similarity matrix is built with a distance-based measure and the 

retained modes explain as much of dre total ^stance as possible. When one mode ends,
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Maximum Vertical Velocity In Cloud Model Domain (m s ’ )̂
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Figure 3.9a. Time series of vertical velocity from nine cloud model runs. Values represent the largest verti­
cal velocity anywhere in the cloud model domain over a period of 92 min. The x-axis is the time in minutes, 
and the y-axis is vertical velocity in m s'L The dashed line at 10 m s'^ shows the threshold value used to 
determine cell lifetime for this example. Note that there are qualitatively three modes: one high-amplitude 
mode lasting the entire 92 min, a second moderate-amplitude mode lasting 60 to 73 min, and a low ampli­
tude, short mode that lasts 14 to 23 min.

the modes that remain must account for the **left-over” Euclidean distance by requiring as 

much distance as possible between the ending mode and those modes that remain. This 

distance is created by an abrupt upward deviation in whatever modes remain. Such an arti­

fact can lead to nonphysical values, such as reflectivity values greater than 70 dBZ^. Mod­

eled modes do not to show diis characteristic as strongly, mainly because they have finer 

temporal discretization.

Another characteristic of Euclidean similarity is that the resultant modes do not 

retain the original amplitude of the data fiom which they are derived because the data
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Figure 3^B. The first three least-squares modes fiom a Euclidean-simflarity PCA of the vertical velocities 
in Fig. 3.9a. The Jt axis is time, and the y-axis is vertical velocity. The dashed line at 5 m s'* shows the cell 
lifethne threshold used for the modes. Note that these modes are not filtered.

needed to do so ate distributed in PCs Aat have been discarded (or, alternatively, cast into 

other dimensions of the eigenspace). If PCA is considered in a signal analysis paradigm, 

because some PCs (data) are discarded, some signal is discarded as well. The few retained 

components cannot recreate the total similarity contained in the original signal (the full 

data set). Hence, determining cell lifetime is problematic. Fortunately, another inherent 

characteristic of Euclidean similarity is that the resulting modes display either a sign 

change or rapidly decrease towards zero at some point Either the sign change or the rapid 

decrease toward zero sufRces to characterize the lifetime of each mode. This behavior is
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not significantly affected by the amplitude of the mode and is used to define the cell life­

time.

The retained modes are filtered to remove the transient artifacts, especially smce 

these artifacts can lead to non-physkal values. A local, linear, least squares filter (Fried­

man 1984; Cleveland 1994) is applied to the modes in post processing to display the final 

modal structure. This filter effectively removes the short-time scale variations and simul­

taneously preserves the main features of interest in the recovered modes.

3.9 Contingency table analysis

Contingency table statistics are used to determine if the location of modeled 

storms, produced firom the various Mesoeta soundings, provide information about where 

actual storms are observed. To simplify the geometry, the Minkowski Li norm (also 

known as a "Manhattan" or "taxicab" distance) is used to define the verification region 

(Fig. 3.10). This distance creates a diamond shaped area around each ensemble grid point 

For the AWIPS 212 grid, a 40 km distance suffices. In this case, the vertex of each dia­

mond is 40 km from an ensemble grid point The L; distance is given by

L, = |A *l+ |A y|, (3.3)

where Ax is the x-direction distance from the grid point to a storm and Ay is the y-direction 

distance from the grid point to a storm. Put simply, the task is to determine if a cell is 

observed within a 40 km Lj distance from each grid location where a sounding is used to 

initialize a cloud model forecast A correct fiorecast occurs when the model produces <kep 

convection at a particular grid point and a storm is observed by radar in the box defined by 

the L | distance firom that point A "miss’* is defined when a storm occurs in the box and no
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Figure 3.10. DFW ensemble region overlaid with 40 km Li distances which are shown by dotted lines. L, 
regions are centered on ensemble grid points. For clarity, county boundaries are grey.

stonn is modeled. A false alann is defined when modeled convection occurs but none is 

observed in tbe box around tbe grid point A correct "no evenf ’ forecast C'correct null") is 

defined when no modeled convection occurs and no convection is observed. Tbe 2 x 2  sta­

tistics considered for tbe study data are probability of detection (POD), false alarm ratio 

(FAR), critical success index (CSI), and tbe Tnre Skill Score (TSS; Wilks 1995). All of 

these scores represent an attempt to coUi^se a multidunensional problem into single num­

bers, and all suffer deficrencies. Vfilks (1995) discusses tbe weaknesses and Marzban 

(1998) discusses at length the characteristics of these and other measures.

Many notations are used to describe 2 x 2  contmgency tables, ffere, a  is the num­

ber of correct forecasts ("bits"), c is tbe number of missed detections ("misses"), 6 is tbe

number of times convection is forecast and does not occur ("false alarms"), and d is tbe
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number of conect nulls, which means no convection is forecast and none is observed 

(Table 3.L).

Tmbk3.1.

Observed

£

Yes No

1
a b

c d

IXble 3.1. A basic 2 x 2contingency table. 
The various skill scores are given by:

POD =

FAR =

a + c 

b
a + b

CSI =

and

TSS =

a + b + c

a d - b c

(3.4)

(3.5)

(3.6)

(3.7)(a + c)(h + d)‘

The TSS possesses some appealing characteristics. Random forecasts, where a 

random forecast is based on the same relative fiequency as the observed event frequency, 

and constant forecasts, such as “no convection,” receive a zero score. Also, the contribu­

tion of correct “no evenf ’ and correct “yes” (bit) forecasts increase as the event is more or 

less likely, respectively. Hence, forecasts of rare events are not discouraged based solely 

on their low relative frequency.
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3,10 Initial conditions verification

Knowledge about the accuracy of the initial soundings used to initialize ensemble 

members helps cast the ensemble results within a proper context Questions about the 

forecast soundings must he addressed, such as do forecast soundings capture the correct 

mesoscale variability? Do forecast soundings contain biases and, if so, what are their char­

acteristics? These questions can he addressed directly with some common, simple statisti­

cal tools.

Because observed soundings are not available from either the DFW site or the 

MEM site, the Mesoeta analysis is used as the best guess of actual conditions in these 

regions. Mesoeta analyses in 1995 and 1996 occur twice daily, at 0000 UTC and 1200 

UTC. The only common analysis and forecast time is 0000 UTC. Hence, 0000 UTC fore­

cast soundings are compared to 0000 UTC analysis soundings for each day in the study 

data se t Ensembles are available for 18 different days, but only on 17 of those days can 

0000 UTC analyses be recovered from NCEP (0000 UTC analyses for the 03(X) UTC 

Mesoeta are not usually distributed). Because thirteen (X)00 UTC soundings are used for 

each day, a total of 221 soundings are available for verification.

First a t-iest is used to determine if the difference between forecast and verifica­

tion soundings is significantly different from zero (Blum and Rosenblatt 1972). The t-test 

assumes, as a null hypothesis, that there is no difference between the mean forecast and 

mean verification soundings. Tests are performed for 0 (potential temperature), q (mixing 

ratio), u, V, and wind speed, at the surface and all levels from 950 hPa to 1(X) hPa, in 25 

hPa increments. Results are displayed as the 95% confidence interval plotted against pres­

sure for the forecast 0(X)0 UTC sounding minus the verification 0000 UTC sounding ^ g .
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F ig u re  3.11 .95% confidence interval for wind speed errors (forecast speed - analysis speed). Dashed line is 
the zeto-error line. When the dashed line is within the shaded region, the difference between the forecast and 
verification wind speed (or whatever parameter is considered) is insignificant with 95% confidence.

3.11). If this confidence interval contains the zero error value at some level, then, with

95% confidence, the null hypothesis cannot be rejected and the error is insignificant at that

level. This same test can be used to determine the significant differences between sotmd-

ings that produce long-lived storms and soundings that do not.

While a daily mean sounding is not used to create the ensemble initial conditions, a

daily mean sounding is useful to help characterize the variability o f the individual sound-
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ings that comprise the ensemble initial conditions. Consequently, daily deviation sound­

ings are produced from a daily mean forecast sounding and a daily mean verification 

sounding derived firom the 0000 UTC analysis. A distribution of deviation values for the 

forecast and verification soundings is produced and compared via a  two-sample Kolmog- 

orov-Smimov (KS) goodness-of-fit test (see Appendix 3). Descriptively, the KS test deter­

mines if two distributions are different based upon sample size and the maximum vertical 

separation between the sample cdfs (Fig. 3.12). The KS test can be applied when three 

conditions are met: 1) the two samples are random, 2) the two samples are mutually inde-

pendent\ and 3) the data are measured on at least an ordinal scale. Finally, KS test results 

are exact if the parent pdf’s are continuous which is the case with the deviation values. All 

these conditions are met with these data.

While a PPP could be used to compare the parent distributions, it is not necessary 

because the perturbation temperatures are not artificially discretized, i.e., data values are 

not artificially cast into 1 degree increments. Why not, then, use the KS test to compare 

forecast and observed cell lifetime distributions? In the case of cell lifetimes, the parent 

pdf is continuous, but the sample is artificially discontinuous because cell lifetimes are 

discretized to either 1 min (forecast), 5 or 6 min (WSR-88D data). This discretization arti­

ficially masks the continuous nature of the parent pdf, which can cause significant error in 

KS test results. Moreover, the true number of elements in a sample, which is a pivotal part 

of the KS test, are discarded by the kernel density estimation process, because, regardless 

of how many elements comprise a sample, a kernel density estimate is always composed

1. This condition may not be strictly met for these data, but is probably met closely enough. If  the 
two distributions are not mutually independent, the KS test will tend to falsely accept Aq, that the 
distributions are indistinguishable.
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F ig u re  3.12. Kolmogorov-Smimov goodness-of-fit computation for the perturbation temperature (60 at 950 
hPa. The solid curve is for the verification 6', and the dotted curve is for the forecast 0'. The maximum ver­
tical distance between these two curves is D„. For this example, the two distributions are different with 95% 
confidence (p = 0.037).

of the same ntimber of discrete points. So, the KS test cannot be reliably used after a ker­

nel density estimate has been performed.

This completes the description of the various methods and techniques used to cre­

ate and analyze the ensemble model output. While these techniques are statistical in 

nature, they constitute a good, expedient way to gain physical insights into the meteorol­

ogy contained within the cloud model ensembles. With all this in place, ensemble results 

follow.
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Chapter 4: Results

4.1 Days used in analysis

A total of eighteen days are Investigated: S days horn the 1995 warm season and

13 days firom the 1996 warm season (Table 4.1). Sixteen of these days use data from the

Table 4.1. Days Used in Analysis

Date Location Severe Weather Type

6 June 1995 MEM Wind, Hail, Tornado

14 July 1995 MEM Wind

17 July 1995 MEM Wind

17 August 1995 MEM none

19 August 1995 MEM Wind

28 May 1996 MEM Wind, Hail

6/7 June 1996 DFW Wind, Had

13 June 1996 MEM none

22 June 1996 MEM none

23 June 1996 MEM none

29 June 1996 MEM none

8 July 1996 MEM Wind, Had

16 July 1996 MEM none

8 August 1996 MEM none

12 August 1996 MEM none

17 August 1996 MEM none

30 August 1996 MEM none

21 October 1996 DFW Wind, Had, Tornado

Memphis, TN, region while the remaining two days use data from the Dallas/Ft. Worth, 

TX, region. According to the Storm Prediction Center’s (SPC) Smooth Log (a quality con­

trolled version of Storm Data, Doswell 1985), 8 of these 18 days had severe weather of
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some kind within the region of interest, which means that either surface winds in excess of 

25 m s '\  hail greater than 1.9 cm in diameter occurred, or a tornado occurred.

4J2 Initial condition verification

Data firom the 0000 UTC Mesoeta analysis are available for 17 of the 18 cases (a 

0000 UTC Mesoeta analysis is not available for 6 June 1995). For each forecast sounding, 

five parameters, 6, q, u, v, and wind speed, all valid at 0000 UTC, are verified using 

soundings derived fi:om the next day’s 0000 UTC analyses. A combined analysis using all 

days pooled together is presented along with a focussed effort on three specific days. Most 

verification studies use RMS error to compare forecasts with analyses (or observations), 

but RMS errors do not provide information about statistical significance. However, 95% 

confidence intervals derived from a t-test provide insight into statistically significant fore­

cast errors. The t statistic tests the null hypothesis, Hg, that no difference exists between 

the forecast and analyzed parameter. Stricdy applied, the t-test is parametric because the 

parent distributions are assumed to be normal, but the t statistic is tolerant of non-normally 

distributed data.

Potential temperature (6) has a warm bias below 700 hPa, a moderate cool bias 

between 700 and 525 hPa, a slight warm bias from 450 to 300 hPa, and a strong warm bias 

above 225 hPa (Fig. 4.1a). At the surface, the temperature bias is +3 K (too warm). This 

bias decreases to slightly over +1 K above 950 hPa until near 700 hPa. This type of bias 

has been noted previously (Marshall 1998), and is a consequence of the land-surface 

parameterization scheme used in the Mesoeta model during the 1995-1996 period, hi sim­

ple terms, the sensible heat flux in the Mesoeta model is too large. One consequence of
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F ig u re  4.1.95% confidence interval for a) 8,^, b) q„p c) d) and e) wind speed error. The vertical 
dashed line is zero error. When the confidence interval (shaded region) contains the zero line, the error is 
insignificant at the 95% confidence level.

this erroneous heat flux is a modeled moisture flux that is less than the actual surface 

fluxes of latent heat. In turn, the low-level mixing ratio is reduced in the model.

The very warm bias above 225 hPa suggests that the forecast tropopause height is 

too low. This upper-level error is unlikely to affect modeled storm lifetimes significandy.
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FiGtatE 4.1. Continued.

too low by nearly 4 g kg'L This bias towards low values moderates to roughly 1 g kg'* 

above 900 hPa. The excessively large sensible heat flux is particularly evident in summer, 

when évapotranspiration is a primary source of low-level moisture. Forecast boundary 

layer mixing ratios that are too small result in CAPE values that also are too small. Insuf­

ficient moisture also is forecast for mid-levels, which, when combined with surface tem­

peratures that are too warm, translate to downdrafts that are too cold. These forecast 

biases, combined with the Kessler precipitation scheme, can lead to downdrafts originat­

ing in mid-levels that are both too cold and too strong. Depending upon the overall envi­

ronment, this can lead to either storms with forecast lifetimes that are too short or storms 

that form a supercell-like organization too quickly, and hence last too long.

Errors in u and v are similar in magnitude (Fig. 4.1c and d). The u component con­

tains too much easterly flow below 350 hPa, then sharply too much westerly flow above

250 hPa. The easterly bias is strongest (2 m s'^) around 850 hPa. Errors in the v component 

forecast contain too much southerly flow below 800 hPa, too much northerly flow from 

750 to 550 hPa, and too much southerly flow above that level. The strongest southerly bias
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is about 2 m s'* just above the surface, and the strongest northerly bias is about -1.5 m s'* 

at 650 hPa (Fig. 4 .Id). Errors in forecast speeds are near zero up to 850 hPa, but are posi­

tive (too strong) from 850 hPa to 600 hPa. Between 600 and 300 hPa, the errors in wind 

speed is near zero, but firom 300 hPa to 100 hPa, the error in wind speed is as large as 2.5

m s'* (Fig. 4. le). Overall, the wind errors result firom low-level southeasterly winds that 

are too strong, and mid-level winds that are too northerly.

In a similar fashion, 95% confidence intervals are constructed for forecasts of five 

bulk parameters that are known to be relevant to severe weather events. These bulk param­

eters are derived firom the forecast soundings valid at 0000 UTC and verified against 

soundings firom the next day’s 0000 UTC analysis (Bluestein 1993; Davis-Jones et al. 

1990). These parameters are CAPE, lifted index (LI), SREH, bulk Richardson number, 

and the shear firom the bulk Richardson number (BRN shear; Bluestein 1993; Davies- 

Jones et al. 1990; Doswell 1985). This analysis helps answer questions about how well 

salient sounding features are forecast, regardless of how well any individual sounding 

level is forecast.

Consistent with the previous verification characteristics, a t-test on forecast mean 

CAPE vs. analyzed mean CAPE indicates that forecast CAPE is significantly less than the 

CAPE derived firom the analysis (Fig. 4.2d). Results are similar for LI, where the forecast 

LI is significantly too positive (stable) compared to the LI derived firom the analysis (Fig. 

4.2a). These statistical results are expected primarily because the low-level mixing ratio 

forecast by the Mesoeta model is significantly less than the verification mixing ratio. 

Because these statistical results are derived firom several days pooled together, there are
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F ig u re  4.2. GOOD UTC forecast vs. 0000 UTC verification for a) lifted index (LI), b) storm relative helicity 
(SREH), c) bulk Richardson number (BRN). and d) convective available potential energy (CAPE). If the 
forecast and analyzed values agreed perfectly, they would lie on the dashed lines.

times when, for example, the warm bias is large enough to overcome the dry bias, which 

results in a forecast CAPE that is larger than the analysis CAPE.

At the 95% significance level, no difference exists between forecast and analyzed 

SREH (Fig. 4.2b). This result is at least partially an artifact of the many summer days 

used, which are typified by low-shear environments. The large data cluster centered on
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compared, the analysis SREH is larger than 

the forecast SREH at the 95% significance 

level. Hence, on days with significant shear,

the forecast SREH is too low. Because '
F ig u re  4.2e . Forecast BRN shear vs. verification 

SREH is sensitive to storm motion, which is BRN shear valid at 0000 UTC.

not estimated or forecast very accurately, clear evidence does not exist whether this bias

error in SREH creates an associated bias error in storm lifetimes.

Because BRN ranges from 0 to 10*, BRN is transformed to log(BRN) and a t-test 

is performed on log(BRN). When transformed this way, the forecast BRN is significantly 

smaller than the corresponding analysis BRN (Fig. 4.2c). This result also holds true for 

iogCBRN shear), which, like BRN, suffers from numerical instability owing to the large 

range of values that are possible. When a t-test is performed on log(BRN shear), which 

looks much the same as BRN, the forecast BRN shear is also significantly less than the 

analysis BRN shear. These results are consistent with the preceding verification analysis.

As in any verification exercise, these results do not necessarily apply to any partic­

ular sounding. These statistics serve only to help understand the nature of the forecasts. 

Further, whether the forecast values will be too high or too low is not known a priori from 

day to day. As always, when properly used, model output is guidance, and the forecaster 

must interpret any guidance as she sees f it
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Understanding how well a forecast model performs, on average, is only one aspect 

of the verification problem. Like any numerical model, ensemble forecasts are a hostage 

to their initial conditions. But, the ensemble model also depends upon the range of initial 

conditions it is provided. Because this particular cloud-model ensemble model depends 

upon forecast soundings, it is important to know how well these forecast soundings cap­

ture the range of variability that exists over the forecast region. How variable are the 

soundings extracted over such small regions? Is the forecast variability an accurate depic­

tion of the analyzed variability? To answer these questions, the variability in the 0000 

UTC forecasts is compared with the variability in the 0000 UTC analyses.

When perturbations firom the forecast daily mean values are pooled, the overall 

variability is dependent on height. Potential temperature has its greatest variability in the 

boundary layer, and near the tropopause (Fig. 4.3a). Clearly, over a 160 x 160 km spatial 

region and a nine hour time span, at least 50% of the perturbation values fall outside a ±1 

K range, a range where significant variations in thunderstorm characteristics are observed 

(Crook 1996; Brooks et al. 1992). Mixing ratio is naturally height dependent as are any 

perturbations in mixing ratio. Hence, the greatest mixing ratio variability is in the bound­

ary layer, where over 50% of the data have perturbation values outside a ±I g kg'̂  range, a 

range where significant variations in thunderstorm characteristics are observed (Crook 

1996; Fig. 4.3b). Perturbation values of u and v are remarkably similar, with the smallest 

interquartile range (IQR) near the surface and the largest IQR near the tropopause (Rgs. 

4.3c and 4.3d). Both distributions are generally symmetric and similar in appearance, 

though the perturbation v has a larger negative extrema.

66



Temperature Perturlsation from Daily Mean Mixing Ratio Perturbation from Daily Mean

•7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 
Perturbation 8 (K)

u Perturbation from Daily Mean

-7-6 5-4 3 2-1 0 1 2 3 4 5 6 7 
Perturbation q(g  kg"’)

tr Perturbation from Daily Mean

q> 500

8600 
S
0-700

-20-16-12 -8 -4 0 4 8 12 16 20 
Perturbation t/(m  s*')

3600 
S
0-700

-20-16-12 -8 12 16 20
Perturbation y(m s '')

FlGiniE 43. Distribution of forecast sounding parameters from daily means for all days, combined: a) poten­
tial temperature (d), b) mixing ratio (q), c) u, and d) v. The solid line shows the median, and the grey region 
contains 50% of the data. The 10^ and 90'*’ percentiles are shown by dash-dot and dash-dot-dot-dot patterns 
(containing 80% of the data) as are maximum (dashed) and minimum (dotted) values.

A KS test is used to determine if the forecast and analyzed perturbation distribu­

tions at 0000 UTC are different at each sounding level. As implemented in all preceding 

statistical comparisons, 95% confidence limits are imposed. For perturbation 6, only one 

level in the hoimdary layer has different forecast and analysis perturbation distributions 

(Fig. 4.4a). Significantly different distributions also exist for a few layers above 600 hPa.
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F igure 4.4. KS test results for the forecast vs. the analysis perturbation distributions valid at 0000 UTC for 
a) 6, b) q, c) u, and d) v. The vertical dashed line indicates the 95% significance level (p=0.05). Values to the 
left of this line indicate parent distributions that are different

Except near the surface, the distribution of forecast perturbation mixing ratio 

is indistinguishable from the distribution of analyzed q' for most of the troposphere (Fig. 

4.4b). The KS results above 200 hPa have no meaning because mixing ratio is, for all 

practical purposes, zero at these levels. The distributions of forecast and analyzed pertur­

bation tt components are statistically indistinguishable at all levels (Fig. 4.4c). The same

applies for perturbation v components (Fig. 4.4d). At two levels near the tropopause, the
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forecast and analysis perturbation v distributions are different, but this result is expected 

by chance and is probably not significant

These results are encouraging because the forecast and analysis dispersions are 

equal. This indicates that using a mesoscale model to generate the perturbations for a 

cloud-scale model is a reasonable approach.

Crook (1996) shows that variations o f only ±1 K and ±1 g kg'̂  in the boundary 

layer can make the difference between whether or not a storm forms. The biases in the 

mean fields clearly exceed these limits. Given these verification results, why proceed with 

the ensemble cloud model exercise? If the goal is to explicitly (or deterministically) model 

particular thunderstorms at particular locations, the answer to this question is self evident 

and there is no reason to proceed. However, the variability exceeds the magnitude of 

biases (cf. Figs. 4.1 and 4.4). Hence, the goal to extract the maximum amount o f data con­

cerning the range and distribution of thunderstorm lifetimes from the Mesoeta may still be 

attainable. There is no reason why non-zero mean biases preclude success using an ensem­

ble model.

4.3 General results

Results for all days combined are presented first, followed by results from individ­

ual days. Observed lifetime can be based only on observed reflectivity, but both w and 

reflectivity can be used to estimate forecast lifetime. However, a question arises: which 

parameter worics best for forecasting the range and distribution of storm lifetimes? To 

determine the answer to this question, forecast results for all days are pooled into a single

data set The threshold for forecast lifetimes based on w is varied fix>m 5 to 10 m s'^ in Im
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s'̂  increments and, in a like manner, the threshold for forecast lifetime based on reflectiv- 

i^  is varied from 30 to 60 dBZg in 2 dB increments. This scenario provides 10 different 

thresholds for w and 16 different thresholds for reflectivity. Kernel density estimates are 

computed based on each threshold of each parameter, and compared to the kernel density 

estimate of the observed lifetime for the superset of all observed cells. As yet another mea­

sure of similarity, the Euclidean distance is computed between the forecast lifetime pdf’s 

and the observed lifetime pdf. Ideally, as the Euclidean distance between the forecast and 

verification pdf decreases, the forecast pdf becomes a better representation of the observa­

tions.

A clear minimum for the pdf of storm lifetime based on w occurs at 8 m s*^ There­

fore, the best predictor for observed storm lifetime is w when a threshold of 8 m s*̂  is used 

(Fig. 4.5). When compared on a cell-by-cell basis, the 56 dBZg threshold tends to result in

shorter lifetimes compared to the 8 m s'̂  threshold (Fig. 4.6). A least squares linear regres­

sion fit yields a slope less than 1, which indicates that given a lifetime based on 8 m s '^  the 

expected lifetime based on 56 dBZ, is shorter. In particular, when the 8 m s*̂  threshold 

yields a lifetime of 90 min, the 56 dBZg threshold yields lifetimes between zero and 90

min. Such a broad range indicates that, in some cases, a vertical velocity of 8 m s'* is main­

tained for 90 min, but the reflectivity never exceeds 56 dBZ,.

The observed lifetime pdf is bhnodal, with the strongest peak around 12 min and a 

secondary peak near 90 min (Fig. 4.7). In comparison, the pdf based on aw  threshold of 8

m s'* also has a peak at 12 min and a broadened area at 23 min. A secondary peak, which 

is too large by a factor of three, exists at 90 min (Fig. 4.7a). In contrast, the reflectivity-
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Figure 43. Euclidean distance between forecast and observed pdfs as a function of threshold for both w (in 
black) and reflectiviQr (in grey); 95% confidence limits are shown by capped, vertical bars. Results derived 
from any value whose confidence interval contains the dotted line are statistically indistinguishable from 
results derived from the 8 m s*̂  threshold.

based forecast pdf has double-humped appearance between 12 and 30 min and a secondary 

peak at 90 min. The peak at 90 min is smaller than the pdf based on an 8 m s*̂  threshold by 

about 50% (Fig. 4.7b). While there is no statistical difference between these two pdfs, the 

w-based pdf has more o v e rly in g  area in common with the observed pdf. Also, a 56 dBZ^
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F igure 4.6.CelI lifetime threshold based on 8 m s'* and 56 dB2^ thresholds. The solid line is a linear regres­
sion fit to the data while the dashed line shows a line of perfect agreement.

threshold decreases the total number of cells that make up the pdf compared to the w pdf

with an 8 m s'̂  threshold; on some days, a 56 dBZe threshold cuts by half the number of

cells that can contribute to a pdf forecast. Consequently, w-based forecast pdTs using the 8

m s*̂  threshold are used for all subsequent analyses.

These pdf’s provide insight into limits imposed by the particular cloud modeling

approach used in the ensemble. The COMMAS cloud model is initialized with a  homoge-
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Figure 4.7.95% confidence bounds for forecast (shaded) and observed (crosshatched) lifetime pdTs based 
on a) 8 m s'* w threshold, and b) 56 dEZ^ reflectivity threshold. Where pdf’s overlap, the pdfs are statisti­
cally indistinguishable with 95% confidence.

neous environment based on a single initial soimding. Thus, any convection that develops 

in the model is “trapped” in this environment because a simulated storm cannot propagate 

into different environmental conditions. A homogeneous environment provides one plau­

sible explanation for the shape of the forecast pdf compared to the observed pdf. Any cell 

that forms in a marginal forecast environment cannot move into a more favorable forecast 

environment, even if a favorable environment is the obvious result of the forecast cell 

motion within the chosen Mesoeta sub-domain. In a like manner, the homogeneous envi­

ronment may partially explain the excessive number of long-lived cells created by the 

ensemble model. A cell that starts in a favorable environment cannot propagate into a less 

favorable environment.

The 0000 UTC verification data suggest that the Mesoeta environment is, on aver­

age, less favorable to deep convection than is the real atmosphere. This characteristic is 

clearly seen in the resulting forecast pdf’s of cell lifetime. Cloud scale models also are
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well-known for their tendency to evolve storms too quickly, especially when using the 

Kessler microphysical parameterization (L. Wicker 1999, personal communication). 

Taken together, this tenden^ helps explain the dearth of cells with medium lifetimes.

The forecast data set consists of 531 cells and the observed data set consists of 

1481 cells. Because the PCA is performed on the observed data using redectivi^ and on 

on the forecast data using vertical velocity, the two PC As carmot be directly compared. 

However, the Euclidean similari^-based PCA extracts simila r modes of cell lifetime from 

the set of observed cells and the set of forecast cells. Both PC As produce a long-lived 

mode lasting 90 min, a medium-length mode and a short mode. The medium-length fore­

cast mode is 37 min long and the medium-length observed mode is 39 min long. The

Forecast Euclidean PCA Observed Euclidean PGA
Least Squares Modes
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figure 4.8. a) Forecast Euclidean PCA modes based on an 8 m s‘* threshold, b) Observed Euclidean PCA 
modes based on a 40 dBZ^ threshold.

short-lived forecast mode is 28 min long, while the short-lived observed mode is 15 min 

long (Fig. 4.8).

A 2 X 2 contingency table analysis yields further insight into the characteristics of

the cloud-model ensemble. While substantial variability exists from day to day, overall
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TSS = 0.064, which shows that the ensemble has little skill in helping to anticipate where

convection might occur within the region (Table 4.2)

Table 4 .2 .2 x 2  Contingency Table Statistics for Long-Lived PCA Modes

Parameter AU Days Com­
bined

Days with Lim­
ited Convection

Reflectivity- 
Based Severe

w-Based Severe

POD 0.615 0.786 0.625 0.625

FAR 0.385 0.389 0.286 0.0

CSI 0598 0524 0500 0.625

TSS 0.064 0.202 0.425 0.625

. Because the ensemble is not designed explicitly to examine or address the ques­

tion of convective initiation, this result is expectcd.Such a lack of skill results because the 

COMMAS model tends to create deep convection at every grid point for at least one fore­

cast sounding time. Too much deep convection is likely related to the warm bubble initia­

tion procedure: identical warm bubbles are used, regardless of horizontal variations in the 

environment. However, four days occur when COMMAS does not produce deep convec­

tion at every grid point (“limited convection” days). For these days, TSS = 0.202, which 

indicates a substantial increase in the TSS. This increase suggests some skill in predicting 

where convection is likely on days with limited convection (Table 4.2).

Does the ensemble display any skill at identifying days when severe weather 

occurs? Again, 2 x 2  contingency table statistics help answer this question. For these 

scores, a “hit” occurs when the PCA applied to the ensemble output produces a long-lived 

mode (defined as longer than 60 min) and severe weather is observed. A false alarm 

occurs when the PCA produces a Ipng-lived mode and no severe weather is observed, and 

a miss is observed when the PCA does not produce a  long-lived mode and severe weather
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is observed. A correct “no even^’ forecast is self evident Similar to forecast lifetime pdf's, 

two parameters can be used in the PCA: reflecting and w.

Because only 8 days exhibit severe weather, these results must be interpreted cau­

tiously. However, the TSS increases to above 0.425 for reflectivity-based lifetimes and 

0.625 for w-based lifetimes. Because lifetimes based on reflectiviQr produce some false 

alarms, modes produced using a lifetime based on w yield a higher TSS. The only study 

that addresses a similar statistic is performed for temporal periods of one hour over a spa­

tial domain the size of a single manually digitized radar (MDR) box, and is performed for 

all MDR boxes contained within severe thunderstorm and tornado watch boxes (Doswell 

et al. 1993). In contrast, the ensemble results presented here consist of a nine hour tempo­

ral period (instead of 1 hr periods) and uses a spatial area equivalent to 13 MDR boxes, 

instead of using single MDR boxes. Consequently, these scores are not directly compara­

ble because a larger temporal and spatial domain inflates the TSS considerably compared 

to the results in Doswell et al. (1993). If the forecasts and events are independent and iden­

tically distributed, the TSS values reported in this study will be higher than those reported 

in Doswell et al. (1993), though how much higher is not clear. As expected, the TSS val­

ues reported here are larger that the normalized values reported in Doswell et al. (1993). 

Despite problems in comparing these two studies, the high TSS values suggests that there 

may be some utility in using a long-lived mode from the PCA as a severe weather indica­

tor.
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4,4 Long-lived vs, short-lived storms

When a large number of cloud model runs are available, the differences between 

soundings that create long-lived storms and those that create short-lived storms can be 

addressed. Do differences exist between soundings that produce long-lived and short-lived 

storms that, in hindsight, can be used to predict the resulting lifetimes? This question 

amounts to a sensitivity study and, while such an analysis is not an explicit goal of this 

work, the data are available to examine such sensitivities. If reliable indicators of storm 

longevity are revealed, then a need to run the cloud model ensemble may not exist, 

because an approximate lifetime can be extracted directly by examining certain sounding 

characteristics that may have been missed in earlier analyses of the Mesoeta model sound­

ings (Stensrud et al. 1997).

To make sure that the demarcation between short and long-lived storms is distinct 

and without overlap, a maximum lifetime of 40 min is used to define short-lived storms, 

and a minimum lifetime of 60 min is used to define long-lived storms. Having such a clear 

distinction between short-and long-lived storms helps insure that any differences noted in 

the parent soundings are unmistakable.

Some characteristic in the perturbations may discriminate between long- and 

short-lived cells. Because the ensemble sometimes creates long- and short-lived storms 

based on data from the same day, an obvious approach examines differences in perturba­

tion values of the raw sounding parameters, 6. q, u, and v. To facilitate this investigation, 

perturbation values 8 ' g ' « ' and v ' are constructed for each day. For example, g ' = q - q ,  

where g is the daily mean value at a particular level and q is the actual value at the same 

level from a single sounding. Perhaps long-lived storms possess statistically higher mixing
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ratios near the surface. A t-test on the quantity (9’iong~5shott). where $’iong appües to 

long-lived storms and appKes to short-lived storms, is used to determine if the

mean perturbations are significantly different from zero at any level. As done previously 

for the verification statistics, the 95% confidence interval for (?\ong ~ 5 ’short) plotted as

a function of height. If the confidence interval contains zero difference, no significant dif­

ference in the perturbation quantity for short- and long-lived storms exists. Unfortunately, 

when examined this way, perturbation soundings provide no discrimination for lifetime 

(Fig. 4.9).

A more sophisticated approach examines various parameter spaces constructed 

from the derived sounding parameters to determine if derived sounding parameters can 

help discriminate between long- and short-lived storms. Derived parameters clearly help 

forecasters anticipate the nature of convection that might occur. But, whether or not they 

are useful in discriminating if long- or short-lived storms will result is unknown.

One common derived parameter space is maximum CAPE vs. BRN, an approach 

similar to that used in Weisman and Klemp (1982). CAPE vs. BRN is plotted for each ini­

tial sounding that results in deep convection, using distinctive symbols for short- and long- 

lived storms. If the combination of these two parameters can discriminate between long- 

and short-lived cells, distinct clusters of points for each type will appear. For long-lived 

cells, there is at least some success because long-lived cells tend to exist in the area where

CAPE exceeds 500 J kg~̂  and BRN is less than 60 (Fig. 4.10). Unfortunately, because 

many short lived-cells are mixed in with long-lived cells, and because a few long-lived 

cells exist for BRN between 60 and 100, this discrimination is deficient The boundary
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F igure 4.9.95% confidence limits (shaded area) for the difference between perturbation a) 6, b) q, c) u, and 
d) V parameters associated with short- and long-lived storms. Perturbations are calculated using daily mean 
values. The vertical dashed line is the zero-difference line which, when contained in the shaded region, indi­
cates no significant difference at the 95% confidence level.

between long- and short-lived cells becomes more diffuse when CAPE is less than KXX) J

k g '\ but considerably more distinct when CAPE exceeds 2000 J  kg'^ Consequently, lim­

ited discrimination is provided with the phase space defined by CAPE and BRN.

Another, related, parameter space compares the maximum CAPE to the BRN 

shear. Unfortunately, this combination provides no discrimination between short- and
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long-lived stonns because both are mixed 

together such that there is no distinct cluster 

that contains primarily one or the other 

(Fig. 4.11a). While short-lived cells occur

i(f 
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this region. When only those days that pro­

duce both long-lived and short-lived cells
Figure 4.10. Forecast lifetime plotted as a function of 

are used, excluding all days when either max CAPE and BRN. The best discrimination is pro­
vided when CAPE is greater than 2000 J kg'^ and 

only long- or short-lived cells result, no sig- BRN is less than 60.

nifîcant improvement is noted. In fact, the mixing of long- and short-lived cells is even 

more apparent (Fig. 4.1 lb).
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Figure 4.11. Same as Fig. 4.10, but plotting max CAPE vs. BRN for a) all days combined, and b) only those 
days that produced both short-lived and long-lived cells.

Storm type cart be categorized based on observed storms with SREH as a parame­

ter (Brooks et al. 1994). hi one scenario, CAPE is plotted against SREH along with lines
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of constant equivalent helicity index (EHI) (EHI = CAPExSREH/160,000). EHI has been 

proposed as a discriminator between storms that produce strong tornadoes and those that 

produce violent tornadoes. Unfortunately, while modeled short-lived storms are not found 

where EHI > 2.5, long-lived storms tend to exist everywhere within this parameter space 

(Fig. 4.12a). Thus, this parameter space does only part of the job, because conditions that 

preclude long-lived cells are not identified.
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F igure 4.12. Parameter space graphs using SREH as a dimension. In a) maximum CAPE vs. SREH, the 
horizontal dashed line is the zero SREH reference line, while the solid and dashed curves are EHI=1.0 and 
EHI=23, respectively. In b) is shown SREH scaled by the minimum storm relative wind vs. the maximiun 
mixing ratio. Zone 1 contains observed LP supercells, zone 2 contains observed storms with tomadic meso- 
cyclones, and zone 3 contains observed storms associated with extreme wind gusts (after Brooks et al. 
1994).

Another variant on this parameter space uses SREH scaled by the minimum storm- 

relative wind as one dimension, and the maximum mixing ratio as the other dimension. 

One theory about low-level mesocyclogenesis concerns a balance between helicity and 

storm-relative, environmental winds at mid-levels. When SREH is scaled by the minimum 

storm relative wind, the two components of this balance are reduced to a single value 

(Brooks et al. 1994). Based on observations, this parameter space is further divided into
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three zones. Stonns in the Zone 1 environment tend to be of the low-precipitation (LP) 

supercell type. Zone 2 tends to contain tomadic storms, and Zone 3 tends to contain 

storms that create extreme wind events that are not associated with tornadoes (Fig. 4.12b). 

Clearly, this particular parameter space offers no discrimination between short- and long- 

lived storms that are modeled.

Other parameter spaces defined by perturbations from daily mean values are also 

examined. These additional parameter spaces are perturbation BRN vs. perturbation 

CAPE, perturbation BRN shear vs. perturbation CAPE, and perturbation BRN vs. pertur­

bation SREH. Clearly, such perturbation values have meaning only for those cases when 

both long- and short-lived storms coexist. Unfortunately, none of these combinations offer 

any discrimination between long-and short-lived storms (not shown).

If very small differences in the parent soundings can produce substantial differ­

ences in the resulting storms, then the preceding results are not surprising. To show that 

modeled storms are, indeed, sensitive to very small differences in parent soundings, three 

cases are examined.

For the 6/7 June 1996 case, very small thermodynamic and kinematic differences 

below 700 bPa generate a storm with a 26 min lifetime and another storm with a 92 min

lifetime (Fig. 4.13). Current sensing technology is accurate to ± 1K, ±1 g kg*̂  and ±1 m s*̂

(Crook 1996), but below 700 hPa, the differences between these two soundings fall within 

the noise level of measurement sensors. Above 700 hPa, both soimdings appear to be con­

taminated by parameterized convective processes within the Mesoeta model. Regardless 

of these convective parameterization effects, these sotmdings reveal the remarkable aspect
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FIGURE 4.13. Soundings fix>m the 6/7 June 1996 case, showing the sensitiviQr of storm lifetime to the parent 
soundings. The green sounding results in a storm that lasts the maximum possible time of 92 min, while the 
blue sounding results in a storm that lasts only 26 min. Below 500 mb, differences between these two sound­
ings are less that 1 g kg'^ and 1 K.

that two soundings, containing what appear to be insignificant differences, result in storms 

with very different lifetimes.

A different situation occurs in the 8 July 1996 case (Fig. 4.14). The thermody­

namic differences between these two soundings are everywhere less than 1 K and I g kg"\ 

differences diat cannot be resolved using current observation systems. In one case, a storm
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F igure 4.14. Same as Fig. 4.13, but for 8 July 1996. Here, the green sounding results in a cell lasting 62 
min, while the blue sounding results in no convection. The only obvious difference is the slight inversion 
near 870 hPa in the sounding that produces no convection. The thermodynamic differences between these 
soundings are no greater than 1 Kor 1 g kg*‘ anywhere in soundings.

lasting 62 min is generated while^ in the other case, no storm at all is generated. The 

sounding that does not generate a  storm has a weak inversion centered near 850 hPa. In all 

likelihood, this sounding would result in deep convection if a stronger initial bubble were 

used. While this distinction is apparent upon inspection, it illustrates that the process of 

using a warm bubble to initiate convection in a cloud-scale model is inadequate. This case
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also shows that the convective initiation process, which is poorly understood at present, is 

an important aspect of cloud-scale modeling.

Two soundings firom the 14 July 1995 case are thermodynamically indistinguish­

able below 650 hPa, yet one produces a cell lasting 92 min while the other produces a cell 

lasting 25 min (Fig. 4.15). If the thermodynamic differences between these two soundings 

cannot be accurately measured, it is unlikely that they can be accurately forecast Differ­

ences between the winds are 1-2 m s'^ below 650 hPa. However, current observing sys­

tems cannot resolve these kinematic differences. This case appears to be evidence of 

chaotic sensitivity, wherein infinitesimal differences in initial conditions result in dispro­

portionately large differences in the outcomes. In many cases, soundings that possess dif­

ferences which are easily measurable do not produce storms with significantly different 

lifetimes (not shown). This fact indicates that the cloud model is more sensitive in some 

environments than in others.

Evidently, there is no way to determine a priori how long a thunderstorm is going 

to last, even when the parent environmental sounding (instead of a less-representative 

proximiQr sounding) is known. Consequently, it appears that a cloud model is needed to 

estimate the storm lifetime given a particular sounding. Further, it appears that the mod­

eled lifetime of a storm is sometimes highly sensitive to the initial sounding. Thus, it 

seems that an ensemble of cloud models is the only reliable method available to extract the 

range and distribution of storm lifetimes firom mesoscale model output.
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RGURE4.1S. Same as Fig. 4.13, butforlhe 14 July 1995 case. The green soundings results in a cell that lasts 
the maximum of 92 min, while the blue sounding results in a cell that lasts only 25 min.

4.5 Specific cases

From the 18 available cases, three specific cases are presented. These ^ i f y  the 

range of characteristics contamed in all 18 cases. These representative cases help to illus­

trate daily ensemble model output, interpretation of the ensemble model ou^ut, and veri­

fication of the ensemble model forecasts.
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4.5A  30 August 1996

The 30 August 1996 case is from the Memphis, IN , area. While severe weather 

was not reported on this day, this case displays sensitivity to where convection occurs, 

which is valuable. However, the forecast lifetimes do not span a large enough range. 

Hence, the forecast and observed lifetime pdf’s are different. Because the forecast life­

times do not contain any long-lived cells, the forecast PCA modes also miss the long-lived 

mode in the observed data.
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figure 4.16. Same as Hg. 4.1, but for 30 August 1996.
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The main errors in the Mesoeta forecasts of the 6 field for this day indicate that the 

layer fiom just above the surface to 700 hPa is too warm by nearly 2 K, and too cold 

between 700 to 550 hPa by as much as 2 K. Smaller errors exist up to about 300 hPa, 

where 0 is again too warm (Fig. 4.16a). This structure implies that the static stability is 

forecast to be insufficient (too unstable), in agreement with general characteristics of the 

Mesoeta verification firom 1995 and 1996.

Errors in mixing ratio display a dry bias of 4 g kg'̂  at the surface, which quickly

reverses to a moist bias of 1-2 g kg*̂  from just above the surface to 850 hPa (Fig. 4.16b). 

Given this structure, surface-based CAPE estimates are low, but CAPE values resulting 

from a layer mean (across a depth of 100 hPa) mixing ratio are too high. Because there is a 

slight dry bias between 850 and 700 hPa, and because the Kessler precipitation parameter­

ization is used, resulting downdrafts are likely to be too cold and too strong.

Errors in the u component are not significant between the surface and 525 hPa 

(Fig. 4.16c). However, errors in the v component are significant above 850 hPa, with a

maximum northerly error of 3 m s'^ near 7(X) hPa (Fig. 4.16d). For both components, large 

errors occur near the tropopause level, hi summary, Mesoeta forecast errors on this day 

tend towards insufficient static stability and insufficient surface-based moisture, but 

slightly excessive elevated boundary layer moisture. Whether forecast CAPE values are 

high or low depends upon how CAPE is calculated. Wind forecasts in the lower tropo­

sphere are good, which yield relatively accurate SREH values.

Given the mean forecast sounding, perturbation distributions can be computed and 

plotted, as in Fig. 4.3, but for individual days (Fig. 4.17). For 30 August 1996, at least half

of all input soundings contain perturbations o f ± 1K in potential temperature and ±1 g kg'
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Figure 4.17. Same as Bg. 4.3, but for 30 August 1996.

 ̂ in mixing ratio. These small perturbations have been shown to be significant for the 

development of convection (Crook 1996). The perturbations remain large throughout the 

depth of the sounding, except for the fact that nuxing ratio tends to zero as pressure 

decreases. In half of the soundings, perturbations in the u and v components are about 1 m

s'^ in the boundary layer, and increase to ±3 m s~̂  near the tropopause.
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Because long-lived cells are not created within the ensemble, none appear in the 

modes recovered through PCA (Fig. 4.18). Three modes are needed to characterize the

Observed Modes Vertical Velocity Modes

70

50-

40

0 10 20 30 40 50 60 70 80 90

Mod* 2 
Mod*3

Cell Lifetime (min)
10 20 30 40 50 60 70 80 90 

Cell Lifetime (min)

Figure 4.18. Observed PCA modes for a) observed reflectivity, and b) forecast vertical velocity modes. This 
ensemble fails to produce the lifetime range that is observed and so is under-dispersive. Modes resulting 
from observed data explain 79.9% of the Euclidean similarity while modes resulting from the forecast data 
explain 82.4% of the Euclidean similarity.

forecast data, and three modes are needed to characterize the observed data. However, the 

observed long-lived mode is not produced by the ensemble model. As a result, the forecast 

and observed lifetime pdf’s show significant differences (Fig. 4.19). In particular, the 

observed lifetime pdf includes cells that last at least 90 min while none of the ensemble 

members lasted longer than 32 min. Consequently, the lifetime of storms created by this 

ensemble lack sufficient range, or is tmder-dispersive.

When applied to the reflectivity-based and w-based lifetime estimates, the PPP test 

indicates that the distribution o f storm lifetimes based on either w or reflectivi^ are signif­

icantly different fi*om the observed distribution of storm lifetimes (Fig. 4.20). This result is 

expected, given that the ensemble model results are under-dispersive.
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95% Confidence Limits for Observed and Forecast Cell Lifetimes
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Figure 4.19. Forecast and observed pdf’s as in Fig. 4.7a, but only for 30 August 1996.

On this day, observed thunderstorms are generally confined to a region south of an

east-west line extending through the Memphis International Airport. This delineation is 

well represented by the ensemble (Fig. 4.21). The skill scores resulting from this forecast 

are: POD = 0.875, FAR = 0.222, CSX = 0.700, and TSS = 0.475. These statistics suggest 

that the ensemble output contains trustworthy spatial information about where convection 

will occur. If spatial discrimination is possible, useful information is available to air traffic 

control, which could plan to bring flights in from the north during the period covered by 

this forecast guidance.
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Cumulative Probability and p=0.95 Significance Test
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Figure 4.20. PPP results for both reflectivity and w-based lifetime estimates firom the 30 August 1996 
ensemble. Dashed lines are for the reflectivity-based estimates of storm lifetime, while solid lines are for the 
w-based lifetime estimates. Vertical lines show dQ for each parameter. According to these results, regardless 
of the parameter used, the estimates of storm lifetime come from a population distinct from the population of 
observed storm lifetimes.

4.5.214 July 1995

Also from the Memphis area, the 14 July 1995 case is an example of good agree­

ment between the forecast lifetime pdf and the observed lifetime pdf. Reinforcing this 

interpretation, the PPP test indicates that there is no statistical distinction between the par­

ent population of forecast lifetime and the parent population of observed lifetime. The 

PCA modes for the forecast and observed lifetimes are similar. Unfortunately, this case 

does not provide any spatial information about where convection will occur.
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Cell and Report Locations for 30 August 1996

POD =0.875 
081 = 0.700

FAR = 0.222 
TSS = 0.475

F igure 4.21. Observed storm locations for 30 August 1996. Grey crosses show locations for ail storms that 
last 30 min or less, and light red crosses show the same for cells that last longer than 30 min. Green dots rep­
resent locations that generate soundings which result in deep convection (defined as a cell that lasts longer 
than 6 min with w at least 8 ms'*) within the ensemble model, while black dots represent locations that gen­
erate soundings which do not generate deep convection. The light red lines show the 40 km L j distance from 
each location. Skill scores are shown at the bottom of the figure.

On this day, the Memphis area is south of a siuface anticyclone that extends firom 

the surface to at least 500 hPa. As a result, the area south of Memphis is dominated by 

eastedy flow from the surface through mki-levels. Hence, the lower atmosphere is charac­

terized by subtropical easterly flow. Verification results show that the 0 field is forecast to 

be is too warm at the surface, but too cool by 2 K just above the surface to 800 hPa (Rg. 

4.22a). Between 800 and 700 hPa, errors in die 0 field are insigni& ant From 575 hPa to
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fig u re  A22. Same as Fig. 4.1, but for 14 July 1995.

the tropopause, the 6 field is again too warm. Consequently, the forecast soundings have 

excessive static stabiliQr in the layer from 925 to 800 hPa. Mixing ratios are accurate at the

surface, but too low by as much as 5 g kg*̂  firom just above the surface to 850 hPa. Above

800 hPa, errors in the forecast mixing ratio are ±1 g kg*̂  CÊ ig. 4.22b). Errors in the « and v 

components indicate southwest winds that are too strong from the surface to 900 hPa.
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From 900 hPa to 500 bPa, southeast winds are too strong (Figs. 4.22c and d). This fact 

suggests that the forecast height gradient is too strong.
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Figure 4.23. Same as for Fig. 4.15, but for 14 July 1995.

P400

6 8 10
~r ' I ' I 

"10 - 8 -6 - 4  2  0
Perturbation y(ms

From the surface to 800 hPa, the initial conditions contain temperature perturba­

tions that are generally less than ±1 K, but above 800 hPa the range of perturbations 

exceeds ±1K (Fig. 4.23a). The perturbations in mixing ratio are skewed significantly from 

the surface to 975 hPa. This skewness indicates that most soundings display mixing ratios
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less than the mean (hence forecasts that are too dry), while a few soundings display mix­

ing ratios significantly above the mean. The perturbation range is at least ±1 g kg*̂  from 

the surface to 850 hPa (Fig. 4.23b).

Perturbations in the u component are ±1-2 m s'̂  throughout the depth of the atmo­

sphere, but perturbations in the v component are ±2-3 m s~̂  from 850 hPa to 700 hPa, and 

from 550 hPa to 350 hPa. The first maxima is co-located with the largest positive bias in 

the V component, where the 95% confidence interval widens. The second is co-located 

with the large negative bias in the forecast v component (Fig. 4.23c and d).

Observed Modes Vertical Velocity Modes
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Figure 4.24. Same as fig. 4.18, but for 14 July 1995. Modes resulting from observed data explain 82.9% of 
the Euclidean similarity while modes resulting from the forecast data explain 85.1% of the Euclidean simi­
larity.

The PCA modes from the ensemble suggest that the simulated storms display three 

behaviors: 1) lifetimes of less than 20 min and weak, 2) lifetimes of approximately 30 min 

and very intense, and 3) long-lived storms with moderate intensity. For forecast and 

observed storms, four modes characterize at least 80% of the Euclidean similarity (Fig.
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4.24a and b). The forecast modes have lifetimes o f 6, 8, 34 and 92 min, which qualita­

tively match the observed modes with lifetimes are 13,20,40 and 82 min.
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Figure 4.25. Same as Fig. 4.18, but for 14 July 1995.

The pdf estimates agree moderately well between those obtained from the ensem­

ble versus those obtained from observations (Fig. 4.25). The only region without overlap 

is between 60 and 83 min. This fact means the ensemble did not produce any cells with 

lifetimes in this range. Also, the ensemble produced relatively few cells with lifetimes 

approaching 90 min. Thus, the 2.5 percentile limit for that region is zero. There is no dis­

agreement, however; because the 2.5 percentile limit for the observed lifetime pdf is also 

zero. The PPP test indicates the parent population of lifetimes based on w is indistinguish­

able from the parent population of observed lifetime. Hence, for estimates of storm life­
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times based on w, the PPP test indicates that the ensemble correctly forecast the pdf of 

observed storm lifetimes. However, this may represent an instance when the PPP test 

results incorrectly indicate that the null hypothesis should be accepted. If such an error has 

occurred, it may indicate that the PPP test lacks the power to discriminate between sam­

ples firom different populations. For estimates of storm lifetime based on reflectivity, the 

observed and forecast parent populations are significantly dififerent (Fig. 4.26).
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Figure 4.26. Same as Fig. 4.20, but for 14 July 1995.

Unfortunately, this ensemble also shows no ability to discriminate where convec­

tion may be expected, because deep convection results at every available sounding loca­

tion (Fig. 4.27). Convection also occurs everywhere in fourteen of the eighteen cases. 

Because deep convection occurs at all sounding forecast locations, the TSS is zero for this
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Cell and Report Locations for 14 July 1995

see
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Figure 4.27. Same as Fig. 4.21, but for 14 July 1995. The red w symbol shows the location of a severe wind 
report between the hours of 1630 UTC 14 July 1995 and 0120 UTC 15 July 1995.

case. The ensemble model output contains long-lived (lifetime greater than 60 min) cells, 

and severe wind events are reported on this day.

4.5.3 6T7 June 1996

The 6/7 June 1996 case is one of two from the Dallas/Ft. Worth area. This case is

distinctive because the forecast times used previously are not used on this day. Rather,

forecast soundings for 0000 UTC, 03(X) UTC, and 0600 UTC are used in the ensemble.

When the standard forecast times are used, only two short-lived cells occur on the north-
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em-most grid points. Yet, a significant severe weather outbreak occurred on this day. The 

report times indicate severe weather occurs after 0000 UTC, as a short wave and associ­

ated dryline and cold front sweeps though the area. Hence, the times for the ensemble ini­

tial conditions center upon the times of reported events. Even so, a representative forecast 

pdf of storm lifetime is not possible because an insufficient number of cells are created by 

the ensemble. Yet, the PCA modes that result from the ensemble reveal a long-lived, pos­

sibly severe event, could have been foreseen.
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Figure 4.28. Same as Fig. 4.1, but for 6/7 June 1996.

100

-8 - 8 - 4  -2 0 2 4  6 8 10 12
Vl»"» )



Oa this day, the errors in the boundary layer Mesoeta forecasts have a large, warm, 

and dry bias, which suggests a possible phase error in the time of frontal passage. From 

the surface to 800 hPa, the bias in potential temperature is +5 K and the error in mixing

ratio is -11 g kg'̂  at the surface. The error in mixing ratio decreases to -4 g kg'̂  just above 

the surface (Fig. 4.28). Above 800 hPa, the errors in mixing ratio are insignificant.

In contrast, the errors wind forecasts are less extreme. Errors in the u component

are around 1-2 m s'̂  fix>m the surface to 600 hPa, where the westerly component becomes 

too weak. Between 500 and 200 hPa the error in the u component is between -5 and -7 m

s'̂  (Fig. 4.28c). The error in the v component is roughly +5 m s'* in the boundary layer. 

This error also suggests a timing error in the frontal passage. The errors in the v compo­

nent are -5 m s'* from 850 through 3(X) hPa. When combined, these kinematic and thermo­

dynamic errors suggest that the forecast position of the short wave and associated cold 

front lags behind the actual positions.

A wide range of temperature perturbations characterize the initial conditions of the 

ensemble, which suggests that a significant temperature gradient exists over the region 

(Fig. 4.29a). The variability in mixing ratio is the same as for other days except for the 

layer between 8(X) hPa to 6(X) hPa (Fig. 4.29b). An elevated moisture gradient across the 

region is consistent with the dryline activity occurring during this period. The broad distri­

bution of perturbations in the m and v components are also consistent with the frontal and 

dryline activity throughout the area during this period. The perturbations in the u compo­

nent are particularly large at mid levels, which is also consistent with a short wave passing 

over the region during this time (Fig. 4.29c). The perturbations in the v component helow
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FIGURE 429. Same as Fig. 4.14, but for 6/7 June 1996.

800 hPa are more broad than for any other day examined, which is also consistent with the 

frontal activi^ recorded during this time (Fig. 4.29d).

The PCA modes recovered from the observations and the ensemble forecast reveal 

similar storm lifetime estimates. Two modes result from the observed data, and explain 

82.5% of the Euclidean similarity (Fig. 4.30a). TWo modes also result from the forecast 

data, and explain 79.8% of the Euclidean similari^ (Fig. 4.30b). The short-lived storm
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Figure 4.30. Same as Fig. 4.18, but for 6/7 June 1996. a) shows observed modes, which explain 82.5% of 
the observed Euclidean similarity, while in b) shows forecast modes, which explain 79.8% of the forecast 
Euclidean similarity.
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FIGURE 4.31. Same as Fig. 4.18, but for 6/7 June 1996.
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lifetime mode differs by only 1 min between the observations and the forecast Long-lived 

modes also exist in the observations and the forecast though the long-lived mode resulting 

6om the observed data shows a steady decay after 50 min. This decay occurs because the 

PCA constructs modes from a linear combination of the reflectivity time series. The obser­

vations contain only one cell with a lifetime greater than 90 min and several other cells 

with lifetimes between 50 and 80 min. When these observed time series of reflectivity are 

used to create the long-lived mode, a decreasing reflectivity value beyond 50 min results.

A comparison between the pdTs that describe forecast and observed lifetimes is 

not meaningful because there are not enough cells produced by the ensemble for reliable 

pdf estimates (Fig. 4.31). One indication that the sample size is too small is that the lower

Cumulative Probability and p=0.95 Significance Test

1.00

0.80-

0.60-

I
0.40-

0.2 0 -

0.00
0.00 0.05 0.10 0.15

Figure 4 J2 . Same as Fig. 4.20, but for 6/7 June 1996.
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bound for the forecast pdf is evciywhcre zero except around 90 min. Only ten cells are 

produced within the ensemble and, of these ten, five last 92 min. The other five cells have 

different lifetimes, which appear as bumps in the upper bound of the pdf estimate. Conse­

quently, only six different lifetime estimates can be resampled. That the observed and 

forecast storm lifetime pdf’s overlap is widiout question, but the nature of the parent pop­

ulation from which the sample of forecast lifetimes is drawn carmot be characterized with 

certainty.

Cell and Severe Report Locations for 6/7 June 1996
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TSS =0.528

Figure 4J3 . Same as Fig. 4.21, but for 6/7 June 1996. Red H’s show location of hail reports that meet or 
exceed severe criteria.
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Because the forecast lifetime pdf cannot be well estimated, it is no surprise that the 

PPP test shows significant differences between the observed and forecast parent distribu­

tions of storm lifetime (Fig. 4.32). Choosing a wider window in the kernel density func­

tion might result in a better comparison, but optimizing the kernel window width based on 

PPP test results assumes that the pdf of observed lifetimes is representative of the pdf of 

forecast lifetimes. This assumption is neither warranted nor defensible.

Despite these pdf results, this ensemble forecast has the exemplary quality that it 

captures the spatial distribution of convection well (Fig. 4.33). The ensemble generated 

long-lived cells where severe weather is reported, which means that, in this case, the 

ensemble is useful for severe weather guidance. The 2 x 2  statistics for this case are excel­

lent, with POD = 0.750, FAR = 0.400, CSI = 0.500 and TSS = 0.528. Forecasters could 

use output from this ensemble to maintain an especially careful watch on the region from 

the Dallas/Ft. Worth area northward. Air traffic control could use output from this ensem­

ble to prepare to route any incoming flights between 2230 UTC and 0730 UTC through 

the southern arrival gates, to avoid last-minute rerouting of aircraft.
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Chapter 5: Conclusions

An ensemble cloud modeling system is developed to create forecasts of pdTs that 

describe thunderstorm lifetimes over a limited spatial and temporal domain. The forecast 

pdTs are valid for a 9 hr period across regions 160 km x 160 km in size and centered on 

either the Memphis or Dallas/Ft. Worth International Airports. These ensemble forecasts 

span 18 days during the summers of 1995 and 1996. Each ensemble consists of 39 cloud- 

scale model runs initialized with output hrom the operational Mesoeta forecast model. This 

technique maximizes the information available from the Mesoeta model. The ensemble 

approach presented in this work also facilitates objective, probabilistic forecasts of the 

range and distribution of storm lifetime. This approach can be extended to almost any 

observable thunderstorm characteristic. Ensemble models are particularly suited to fore­

cast phenomena that can only be described using a pdf, such as thunderstorm lifetime over 

a given spatial domain and time period.

Consistent, nonparametric statistical techniques, based on the frmdamental charac­

teristics of pdf’s, are developed and applied so that pdf’s of storm lifetime can be extracted 

from both the cloud model ensemble and radar observations. These techniques allow 

direct comparisons between forecast and observed pdf’s of storm lifetime. Only one 

parameter (reflectivity) is available for extracting lifetimes of observed storms, but two 

model parameters, vertical velocity and reflectivi^, are available to define storm lifetime. 

Of these two model parameters, vertical veloci^ yields the best overall agreement 

between forecast and observed storm lifetimes.

frdtial conditions for the ensemble model consist of soundings extracted from the 

operational Mesoeta forecast model, through a process called spatial and temporal atmo­
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spheric sampling (STAS). The STAS process extracts soundings from the Mesoeta model 

over a nine hour temporal window and over a 160 km x 160 km spatial domain. Thus, 

STAS implicitly uses the spatial and temporal variations provided by the mesoscale fore­

cast to generate the ensemble of initial conditions. STAS is a reasonable technique for 

generating a set of initial conditions because it uses the forecast variabUity for each day, 

which is itself variable, to define variability within the ensemble initial conditions. STAS 

also fits well into a concept that underlies ensemble modeling: namely, that the initial con­

ditions (soundings, in this case) are all equally probable.

About 10 hr of clock time are required to complete the ensemble model run on a 

ten-processor SGI Power Challenge. Hence, even with outdated computational resources, 

this cloud-scale ensemble output is available within an operationally-useful time frame. 

Because ensemble models, and this one in particular, are ideally suited to parallel process­

ing, a parallel cluster of 40 PCs running at 500 MHz could execute the entire ensemble in 

about 2 hr. Consequently, operational applications are feasible with modest, off-the-shelf 

hardware.

To further assist operational forecast activities, a new PCA technique is developed 

that combines the time series of any particular modeled parameter into a display that can 

be readily interpreted. Within a particular ensemble model, some members exhibit similar 

behavior. This PCA technique groups and displays common behavior patterns, or modes. 

In the case of cell lifetimes, this common behavior ^>pears as a peak in the forecast pdf. 

But, a pdf of cell lifetimes provides only one characteristic of a two-dimensional data 

space consisting of time and amplitude. The new PCA technique uses Euclidean distance 

to build the parent similarly matrix, a metric that has not been previously tqiplied to PCA.
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This new PCA technique clearly captures the essence of ensemble members which display 

similar behavior.

While the Mesoeta is shown to produce the correct amount of dispersion or vari­

ance in the forecast fields at nearly all levels, the Mesoeta clearly displays pathological 

biases during the 1995 and 1996 summer seasons. When 0000 UTC analyses are used to 

verify the prior forecasts valid at 0000 UTC, the Mesoeta displays a dry and warm bias in 

the lowest model levels. These biases affect some derived sounding parameters, such as 

CAPE and LI, which are known to be associated with significant thunderstorm character­

istics. However, given the ensemble model results, no evidence exists that complete infor­

mation about storm lifetime can be garnered from these derived parameters. Various 

parameter spaces constructed fix)m combinations of these derived parameters do not pro­

vide a reliable way to identify days when long-lived storms are absent. Thus, derived 

parameters do not help discriminate between days that do and do not produce long-lived 

storms. However, derived parameters may be useful for describing other storm attributes.

In several of the cases, modeled thunderstorm lifetimes are shown to be extraordi­

narily sensitive to variations in the initial soundings. However, such chaotic sensitivity is 

not always evident because, in several cases, thunderstorm lifetimes are remarkably insen­

sitive to variations in the initial soundings. Because derived sounding parameters, and the 

various parameter spaces constructed from them, do not provide reliable insight into storm 

lifetimes, it is unknown whether the lifetime of a  modeled storm will be disproportionately 

sensitive to the initial soundings. Therefore, a way does not exist to forecast the range and 

distribution of thunderstorm lifetimes short of running an ensemble of cloud models.
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Because the ensemble tends to generate long-lived storms on days that experi­

enced severe weather; some evidence exists that simulated storms with lifetimes longer 

than 60 min are a useful indicator of severe weather. In a similar vein, if convection does 

not occur at all the locations firom which initial soundings are drawn (“limited convec­

tion”), the ensemble results display some skill in identifying where thunderstorms occur. 

However, only a handful of cases exist with either severe weather or limited convection. 

While these results are encouraging, more cases must be analyzed to know if storm life­

time is a useful proxy for severe weather occurrence, and whether there is any skill in 

identifying where convection is likely to occur.

Uncertainties in the forecast and observed pdf’s of storm lifetime are estimated 

with bootstrap resampling. When these uncertainties are considered, agreement between 

forecasts and observations are quite good, because in 17 out of 18 cases, the forecast and 

observed pdf confidence intervals have significant overlap. When considering the range of 

thunderstorm lifetimes, 50% of the forecast pdf’s captured the correct range, while 50% 

underestimated the range by varying degrees. However, there is some evidence that the 

PPP test may lack sufficient power to reliably discriminate between samples drawn firom 

significantly different populations. When all the forecast and observed storm lifetimes are 

combined, the overall probabilify of storms with lifetimes between 35 and 75 min is too 

low.

The forecast pdf’s can be used to provide beneficial strategic guidance for plan­

ning the available capacity at airport terminals. For example, during periods when the 

probability of long-lived storms exceeds a pretktermined threshold, arrivals can be appro­

priately scaled back in advance. U the ensemble displays skill at forecasting where storms
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are most likely, plans for arriving flights can be refined to use the arrival routes that are 

most likely to remain fiee of convection.

Another straightforward application of the ensemble data is to create conditional 

cell decay forecasts based on the current age of a particular observed cell (Fig. 5.1). The

Conditional Cell Survival pdf
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Figure 5.1. Conditional cell survival probability. The vertical dashed line shows the current age of the thun­
derstorm cell. The pdf to the right of this line has been rescaled such that the area beneath the pdf is unity. 
Grey area represents the part of the pdf that no longer applies because the cell has already existed for 30 min. 
The cross-hatched area yields the probability the cell has a lifetime between 30 and 35 min. The hatched 
area yields the probability that the cell has a lifetime between 35 and 40 min. The sum of the cross hatched 
and hatched areas yield the probability that the cell has a lifetime between 30 and 40 min.

conditional cell lifetime is given by P(cell lifetime I cell has survived for t min), which is 

computed using the forecast pdf after it is adjusted for how long the cell has already sur­

vived. The forecast pdf is adjusted for the age of a cell by truncating that part of the fore­

cast pdf from t=O tot=current cell age, and rescaling the remainder of the forecast pdf to
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an area of unity. Thus, the probability that a cell will ^ a y  within a specified period of 

time beyond the current cell age can be calculated. Subtracting this cell decay probability

Conditional Survival Probability

1.0

0.97 0.88

0.8 -

0.73

0.6 - 0.57

 50% Threshold •
0.42

0.34
0.29

0.24
 25% Threshold -

0.14

0.0
5 10 15 20 25 30 35 40 45 50 55 60

Survival Time (min from current time)

F igure S.2. The conditional survival probability, computed from Fig. 5.1. The x-axis shows the cell survival 
time beyond the current cell age. The y axis is the probability of survival beyond the current cell age. The 
horizontal dashed lines show probability thresholds of 50% and 25%.

from 1 yields the probability that the cell survives beyond a given age (Fig. 5.2). This 

information can be displayed easily as part of a storm track on a radar display. Colors can 

be used along the cell track to describe the likelihood that a cell survives to a particular 

part of the projected cell track (Fig. 5.3). Such a display furnishes useful information to 

Air Traffic controllers by providing guidance about how soon a storm is likely to affect (or 

cease to affect) an arrival gate. Similarly, it provides NWS forecasters with guidance about 

the likelihood that a particular cell will affect a given community.
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Conditional Cell Survival Probabilities

Figure 5 J .  ConditioRal cell survivil product The previously observed cell positions are shown in white. 
Projected cell positions are shown in color. With at least 50% probability; the cell will survive to some point 
along the red part of the projected track, with probability between 25% and 50% that the cell will survive to 
some point along the yellow part of the track, and with probability less than 25%, the cell will survive to 
some point along the green part of the track.

Other characteristics derived from an ensemble can be encoded along the projected 

track, such as the probability of a mesocyclone, as defined by a positive correlation 

between vertical velocity and vertical vorticity. The projected cell tracks could be created 

with a 95% probability confidence interval using the pdf of cell motion for cells at various 

ages. Creating pdf forecasts has an elegwt appeal because, once pdfs of a particular char­

acteristic are constructed, creating probabilistic forecasts for that characteristic is easy.

While these results are encouraging, this woric is preliminary and much remains to 

be done. The results raise as many questions as they answer. For example, the Mesoeta
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model no longer exists, having been incorporated into the current Eta model. Various 

parameterizations within the Eta have been changed or modified. How these changes 

affect the cloud scale ensemble model is unknown. A broader question concerns which 

mesoscale model to use. One way to investigate this problem, and many other questions, is 

to simultaneously develop and maintain an archive of radar data from various sites and an 

archive of output from operational forecast models. The archived model output is then 

used to create variations of the cloud-scale ensemble, which are run and verified against 

the archived radar data.

Cloud scale models also are sensitive to the geometry and strength of the warm 

bubble used to initiate convection, but the nature of this sensitivity is not well understood. 

How convection is affected by the way it is initialized remains unknown. Warm bubbles 

clearly have weaknesses when used to initiate convection, but they remain the most eco­

nomical initialization scheme available. How the initiation procedure affects the ensemble 

results remains unknown.

Cloud scale model results are known to be sensitive to the precipitation physics 

that are simulated (Jewitt et al. 1990; Johnson et al., 1993; Straka and Rasmussen, 1998). 

The cloud scale model applied to this ensemble uses the Kessler scheme to parameterize 

precipitation physics. Ample evidence exists (Wicker 1999, personal communication, 

Johnson et al., 1993) that the Kessler scheme can lead to unrealistic storm evolution by 

significantly accelerating certain cloud-scale processes, which can cause unrealistically 

short lifetimes. If, instead, a full ice microphysics package is used, more storms lasting 

between 35 and 75 min might occur, producing better overall forecasts o f the pdTs of 

storm lifetime.
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Days chosen for the ensemble runs were dependent upon the available verification 

data. This restriction also determined the nature of days examined with the ensemble to 

those with relatively weakly-sheared environments. Yet, most significant severe weather 

occurs in strongly sheared environments. How the ensemble performs in such cases is 

uncertain.

Finally, given the promising nature of the results so far, a field test is warranted. 

Obviously, all of the statistical tools are in place to perform manually such a test, and auto­

mating these tests, and other data processing tasks, is straightforward. However, to make a 

field test possible, a version of COMMAS that automatically adjusts the grid motion to 

keep storm cells within the center of the grid needs to be implemented.
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Appendix 1: Kernel Density Estimation

Following the development by Silverman (1986), a histogram is constructed by 

placing n “boxes” of width 2h, on the real line. Given the origin jkq and the bin width h, the

bins of the histogram are defined as the intervals [xg+m h, Xg + (m + 1)A) for positive

and negative integers m. The interval is closed on the left and open on the right for defi­

niteness. The histogram estimate of the pdf for a parameter x  is then given by

J{x)  =  X [no. of falling in (x - / i ,x  + /i)],

where are the sample of n real observations whose densiQr can be esti­

mated. More transparently, define a weight function w by

w(x) = >
0 otherwise.

Now, it is easy to see that the histogram estimating function can be written as

»=1

This estimator can be generalized for any weight, or kernel, function K  satisfying

f“the condition that I K{x) = 1. AT is almost always a symmetric pdf and commonly the

Gaussian pdf. By analogy with the definition of the histogram estimator, the kernel den- 

sify estimator is

f =  I

where h is the window width (also called the smoothing parameter, or bandwidth). For 

this work, the kernel estimator is simply
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• <A1.4)
1 = 1

where /(or) = density estimate at x,
X = location of 1-D density estimate,

= observation location,

n = number of observations, 
a  = bandwidth in units of standard deviations.

Note that f(x)  is the sum of the kernel estimator, K, at the location x, over all the 

points, Xi, at which it is applied. Hence, in eq. AI.4, K, the kernel Junction, is

, where x  is replaced by %(, and fx is replaced by x. Also, note that

ft

J /(x)djc = 1 and thus, in finite difference form, Y /(Jfj) = 1, when summed over all
—oo

1 = 1

of the locations, x, at which kernel density estimates are made. For this work, the band­

width is chosen to be 3 min (since the grid upon which the pdf is analyzed is lifetime in 

min). This bandwidth choice smooths most of the insignificant bumps while retaining the 

real peaks.
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Appendix 2: Euclidean Principal Component Analysis^

A2.1 Introduction

Eigentecbniques have been widely used in meteorology since the 1950’s. Three 

common variants are; Common Factor Analysis (CFA, Thurstone 1947), Empirical 

Orthogonal Functions (EOF, Lorenz 1956) and Principal Component Analysis (PCA, 

Hotelling 1933). EOF uses unit-length eigenvectors, whereas in PCA and CFA each eigen­

vector is weighted by the square root of its corresponding eigenvalue. Consequently, the 

weights represent the correlations or covariances between each variable and each principal 

component, depending upon which similarity matrix is employed (JoUiffe 1995). Any of 

the three techniques may be used as either a statistical modeling tool or as a diagnostic 

tool. Each eigentechnique is derived directly &om a parent similarity matrix (also called a 

dispersion matrix in some texts) which typically consists of either a correlation or covari­

ance matrix or, rarely, a matrix of cross-products. These similarity matrices are diagonal- 

ized such that eigenvalues and associated eigenvectors are identified, and eventually used 

in the physical interpretation phase of the analysis. Because the parent similarity matrix 

embodies the type of association desired, and defines the immediate starting point for the 

eigenanalysis by virtue of being diagonalized, the similarity measure used to build the par­

ent similarity matrix is an important aspect of any eigentechnique. However, this choice is 

not always given the consideration it is due. Historically, the various similarity matrices 

are discussed and compared in meteorological literature. Examples include Craddock 

(1965), Kutzbach (1967,1969) and Craddock and Flood (1969) who all favor the covari­

ance matrix on grounds that it more accurately portrays the true variance structure. In con-

I £xceipted from a  paper authored by Kimberly L. Elmore and Dr. Michael B. Ricbman, and sub­
mitted to Monthly Weather Review, 16 February 2000.
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trast. Oilman (1957), Sellers (1957) and Glahn (1965) are proponents of the correlation 

matrix, claiming it puts all variables on equal footing, whereas Resio and Hayden (1975) 

and Molteni etaL (1983) find cross-products to have utility.

Table A2.1.
Similarity
Measure Vector Form M atrix Form

Cross-
Products

Tp -  X y P = X^X

Variance/
Covariance

_ [(x -x )^ (y -ÿ )] c _ [(X -M )'^(X -M )]
(n -1 ) (n -1 )

Correlation
r  =  ------------------------------z-------

R =

[(x - m )(Vv )~‘h (x - m )(7 v )‘ ‘i
( n - 1 ) (n - 1 )

T a b l e  A2. l . Vector and matrix forms for cross-products, variance/covariance and correlation. For the vector 
form, n is the length of the vector and £ (ÿ ) is the vector whose values consist of the mean of x (y). In the 
vector form of correlation, s% (Sy) is the square-root of variance for the x (y) vector. For the matrix form, the

X i s n x  pin rows and p  columns), and M (also n x p )  is the matrix whose i"* column is the mean of the 
column of X. V is ap  X p diagonal matrix whose p non-zero elements consist of the variance of each column 
ofX

Depending upon the parent similarity matrix, eigentechnique results can have 

physically different meanings. Table A2.1defines cross-products, covariance and correla­

tion for both single column data vectors of length n and n x p  data matrices. The correla­

tion matrix groups variables together regardless of the amplitude of their variation or 

mean. By its nature, correlation provides no measure of how much parameters vary with 

each other, only that they do. For example, correlation does not address whether the mag­

nitude of variation in one variable coincides with the magnitude of variation in another. 

Correlation addresses only relative variability relationship because the standardization 

puts all variances equal to unity. Often, such a  relation is the most important aspect of an

analysis. Because input data have been normalized to a zero mean and unit variance, cor-
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relation is a dimensionless similarity^ metric; hence, it is appropriate for comparing vari­

ables with different units or scales.

The covariance matrix yields insight into how much variables change with respect 

to each other. Data that are transformed into a covariance matrix have been translated to 

zero mean. Strictly speaking, dimensions or scales are preserved with covariance, which 

means that applications that mix different units will emphasize those with units having the 

most variation. Moreover, analyses using a single variable with a large range over the 

domain (for example, sea level pressure at sites from the tropics to the poles) will empha­

size these variables with a large variance. This can be a positive of a negative attribute, 

depending upon the specific nature of the analysis.

A cross-products (covariance without removing the means) similarity matrix also 

preserves units, and results are sensitive to the magnitudes of the means as well as co­

association. A data vector that possesses a mean with large magnitude will dominate the 

eigenanalysis outcome. When the magnitudes of the means are similar, the eigenanalysis 

outcome is primarily determined by the covariance. Additionally, analyses utilizing the 

cross-products similarity matrix tend to have a first principal component that resembles 

the mean.

For these three similarity matrices, co-association plays an important role because 

the eigenanalysis, in some manner, identifies variables that change together. But might 

physical insight arise from another characteristic besides co-association?

Clearly, the investigator must carefully consider what is desired from an eigenanal­

ysis and choose an appropriate parent similarity matrix that preserves the desired informa­

tion. It is possible that co-association of the aforementioned types is not an important
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issue. For example, objective identification and representation of variables that, when 

plotted together, are co-associated in that they appear visually close to one another may be 

important. A desirable result is to distill the data into a few, easily interpreted modes of 

behavior. To accomplish this result, a new similarity matrix, named Euclidean similarity 

(ES), is utilized. Euclidean similarity is inspired by the large body of literature in cluster 

analysis, which clearly demonstrates the effectiveness of Euclidean distance (ED), on 

which ES is based.

The next section introduces and defines ES. Section 3 demonstrates how modes of 

co-association are extracted with a PCA based on ES. Section 4 demonstrates results of 

PCA using ES in both S-mode and T-mode analyses, and these results summarized in Sec­

tion 5.

A2.2 Euclidean similarity

As a motivational example, ES is used to extract vertical velocity (w) time series 

that exhibit similar behavior, and combine them into modes. In this example, the ensemble 

of w time series come firom several cloud model runs, each started with slightly different 

initial conditions. Other time series can also be treated this way, such as precipitation, or 

the u and v wind components. Of course, extracting modes need not be limited to time 

series. For example, two-dimensional fields, such as spatial pressure or height patterns can 

be treated in an identical fashion.

hi this case, the parameter to be examined is arranged in a data matrix that pro­

vides an S-mode analysis (Richman 1986), in which each column (variable) represents a 

vector. The vector may consist of an individual time series or, alternatively, spatial pattern.
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Although the number modes is important, these ensemble modes must also be visualized 

(Anderson 1996). Once modes are identified, they must be displayed unambiguously, and 

the ED (or the Minkowski L2 norm) between each data vector provides a natural way to 

proceed. Cluster analysis uses ED extensively to identify or group data or entities that are 

dissimilar (Anderberg 1973; Gong and Richman 1994). Euclidean distance is an attractive 

measure for identifying modes because whether the parameter comprising the individual 

vectors vary together is not as important as how closely they overlay each other.

Consider u p  x n  data matrix Z composed of n columns (cases), each p  elements 

long. The ED between the vectors Zi and zj is

dij -  [(z,—Zy)̂ (z,—Zy)] (A2.1)

where d,y is the distance between the vectors z, and Zy. When computed for all i, j, and 

arranged in a matrix in an order identical to that obtained from matrix cross-products, this 

process results in a symmetric dissimilarity matrix of Euclidean distances, D. For n cases, 

D will ben X n. This matrix has zeroes along the main or principal diagonal (because the 

distance between a vector and itself is zero) and has units identical to the input data. The 

difference between dissimilarity and similarify is orientation, so for a Euclidean dissimi­

larity metric, large values indicate a large Euclidean distance, whereas for a Euclidean 

similarify ^ )  metric, large values indicate a small Euclidean distance. To create a simi­

larify matrix, some simple operations must be applied to D.

Define fo be the maximum of all elements in D. Normalize D by d^^x such

that no element in the new D is greater than 1 by setting

D = D [d iag (l/d „„ )], (A2.2)
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where [d*ag(lAfmax)] is the n x  n diagonal matrix that consists of 1/d^ax along the minor 

diagonal. Let Q be the n x n matrix for which all elements are 1 and use it to define a new 

similarity matrix, E, such that

E = Q -D  (A2.3)

These operations transform D into a matrix of similarities, where the main or principal 

diagonal consists of I ’s. Hence, D mimics a correlation matrix. Euclidean similarity is 

dimensionless and, because ES is constructed to mimic correlation, an eigenanalysis pre­

serves relative distances.

The PCA performed on ES creates a column-wise orthogonal loading matrix, 

though the loading vectors may be correlated. The Euclidean distance between the loading 

vectors is the primary structure imposed by the eigenanalysis. Let the columns of the load­

ings matrix A be defined as @2 «n Th^ Euclidean distance between ay and a i is the 

largest of any pair of PC loadings. The Euclidean distance between ay and is the next 

largest, and so on to the distance between n, and a„. The next largest distance between any 

two loadings is that between «2  and «3, then that between «3 and a^, and so on. The small­

est distance between loadings is that between a„.i and a„.

An example that uses only two data vectors is presented as a simple introduction. 

Let the Euclidean distance between these two vectors be defined as d. Thus, the matrix of 

Euclidean distances is:

D = Qd
d o

Because d ^ ^ = d, the matrix of normalized Euclidean distance, D is:
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Finally, this new matrix is converted to ES by element-wise subtracting it from Q: 

E = I 1 
1 1

0 I
1 0

1 0 
0 1

The similarity matrix, E, is the 2 x 2 identity matrix in this example. A PCA on 

this matrix is trivial because, by inspection, the eigenvalues are = Xg = 1 and eigenvec­

tors are V( = 0 1
1

» ^2
0

. This result shows that any two data vectors are as distinct as

possible (in a Euclidean distance sense) because they cannot be remapped to new orthogo­

nal components that will result in a coordinate transformation that further separates them. 

This is quite different from, say, a variance/covariance-based PCA, where the data may be 

recast onto orthogonal coordinates such that the first loading (scaled eigenvector) repre­

sents the coordinate axis that explains the most variance, and the second loading defines 

the axis that explains the rest of the variance.

A2.3 Euclidean similarity PCA using least squares scores

The breadth of solutions and interpretations that can result from a single data set, 

based on different similarity measures, is briefly reviewed prior to the demonstration of 

pattern retrieval using scores derived from ES. This is intended to help emphasize the 

point that the investigator needs to deliberately address the question, a priori, of what is

truly desired from the analysis. “Black box” approaches, which mean the blind (plication
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of a given similari^ matrix, may not lead to useful results. Moreover, such an approach 

may deprive the investigator of new insights.

Typically, the fundamental PCA equation is cast as

Z = Fa ”̂  (A2.4)

where Z is the (p x n) data matrix, and, in the nomenclature of PCA, A is the (n x n) 

matrix of loadings, and F is the (p x /i) matrix of scores. In PCA, the eigenvectors (V) are

scaled by the square root of their respective eigenvalues which yields the matrix of

loadings (A). Despite the fundamental formula, the traditional manner in which V Is 

derived is through diagonalization of a similarity matrix E, as

E = VAV'*’. (A2.5)

Any PC loading vector, aj, can have all of its elements multiplied by -1, because the signs 

of the loadings are arbitrary. These loadings may be considered weights that identify linear 

combinations of the scores that, as defined in the parent similarity matrix, behave simi­

larly. Geometrically, the PCs define a new, orthogonal coordinate system into which the 

loadings are projected. If all of the eigenvectors are retained, the original data (and thus its 

total similarity) can be recovered exactly, although the original data may be standardized 

for certain analyses. If all are not retained, the original data (and its total similarity) can be 

recovered only approximately, yet the PC model yields the most efficient manner in which 

data can be expressed in a smaller number of dimensions.

The maximum variance and orthogonality constraints that act on a geometric

domain can lead to a number of hindrances to physical interpretation of unrotated PC 

loadings (Richman 1986). These hindrances include merging of unique sources of varia­

tion on the leading PC (Karl and Koscielny 1982), high sampling errors if adjacent eigen­

values are similar ^ o rth  et al. 1982), a set of predictable geometric patterns which are

partly a function of domain shape (Buell 1975), and poor fit to the parent similarity matrix
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(Ricbman and Gong 1999). Hence, the PC loading patterns may not optimally portray 

physical relationships embedded in the data. In fact, they these patterns can be misleading 

if they are literally interpreted as the key modes of variation in the parent similarity 

matrix. Because the ability to portray physical relationships accurately is crucial to identi­

fying modes of behavior in a PCA, coordinate transformations, called rotations, are often 

applied to the PCs. Once rotation is invoked, some of the characteristics of the loading and 

score matrices (in particular, orthogonality) no longer apply (JoUiffe 1995). Appropriate 

rotation does, however, enhance interpretability though rotation does not guarantee inter- 

pretability (Richman 1986; (Zheng et al. 1995). How many (r, where r <n)  PCs to retain 

for rotation is a somewhat subjective decision, and can be determined in numerous ways, 

i.e., by variance criteria, eigenvalue separation criteria, etc. In principle, the majority of 

the signal is captured in the first r PCs, and noise, which is contained in ther+1,..., n PCs, 

is discarded. For the example here, enough PC’s to explain at least 80% of the total ES are 

retained. For the examples that use the w time series firom the cloud model ensemble, three 

PCs are required to meet this constraint which, coUectively, explain 86 .6% of the total ES.

To aid in obtaining physicaUy interprétable results, a Varimax (Kaiser 1958) rota­

tion is applied. The Varimax rotation criterion is the most widely accepted and employed 

orthogonal rotation, because it tends to produce, but does not guarantee, simplification of 

the unrotated loadings into easier to interpret results (Cooley and Lohnes 1971). Varimax 

tends to simplify by rigidly rotating the PC axes such that the variable projection (load­

ings) on each PC tend to be high or low (Cooley and Lohnes 1971), which is consistent 

with the physics needed for the definition of a smaU set of convective modes. These 

modes are used to describe the dominant behavior o f convective storms out of an ensem­
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ble of many cloud model runs. Varimax Is an orthogonal rotation, which means that the 

original loading matrix. A, is transformed via an orthogonal transformation matrix to the 

rotated loading matrix, B. Mathematically,

B = A T, (A2.6)

where T is an orthogonal matrix such that

T^T = I ,  (A2.7)

and I is the identity matrix. The Varimax method finds T by iteratively maximizing the

collective variance of the squared loadings for all the retained PCs.

Unlike typical PCA, where most of the physical interpretation is applied to the 

loadings, for this application physical interpretability arises from the scores (F) recovered 

from the rotated loadings and original data. Recovery of modes from a small number of 

dimensions, r < n, uses a crucial PCA characteristic; PCA provides variables in the order 

necessary to allow linear least squares reconstruction of the data using the fewest possible 

terms. Modes are extracted through a least-squares formulation, because it is straightfor­

ward and optimal in an L2 sense. Least squares scores are defined by

F = Z B (B ^B )^, (A2.8)

where Z is the original p  x n matrix of w values. This yields r  modes because, if Z is p x n

and B is n X  r , where r  is the number of retained PCs, then (B^B)*  ̂ is r  x  r ,  F is p  x  ;; 

which leaves r  column vectors in the result, where each column vector represents a mode.

The matrix represented by B@^B)^ is the n x r  matrix of least squares weights. The PCA

model is closed because, for all cases, Z -F A  = 0 . This relationship holds for both 

unrotated and rotated loadings, ensuring model closure. Note that the sign of the recovered
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scores is arbitrary, dependent upon the arbitrary sign of the loadings. As such, all scores 

have been arbitrarily defined to start with positive values.

Another characteristic of any similarity metric, including ES, is that the resultant 

modes do not retain the original amplitude of the data from which they are derived. This 

arises because the data needed to do so fully are distributed in all PCs, including those that 

have been discarded, r+1, r+2 , ..., n (or, alternatively, distributed into other, unused 

dimensions of the eigenspace). If PCA is cast in a signal analysis paradigm, because some 

PCs (data) are discarded, some signal is discarded as well. The few retained components 

cannot recreate the total similarity contained in the original signal (the full data set). 

Hence, determining cell lifetime from a w time series becomes problematic because the

original threshold of 10 m s'* may no longer be representative. Fortunately, when applied 

to these w time series, another inherent characteristic of ES based on rotated PCs is that 

each mode displays either a sign change or rapidly decrease towards zero at some point. 

Either the sign change or the rapid decrease toward zero suffices to characterize the life­

time of each mode. This behavior is not significantly affected by the amplitude of the 

mode and is used to define the cell lifetime.

A2A Examples

PCA may be based upon various similarity matrices. The chosen similarity matrix 

significantly affects the appearance of the resulting least-squares scores. Examples of 

PCA that use correlation, covariance, cross-products, and ES are developed and shown for 

the w time series. An example is also shown for a two-dimensional station pressure field. 

The pressure field example uses correlation and ES to demonstrate that a  PCA based upon
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a ES parent matrix will extract a pattern known to exist within the data, but that a PCA 

based on a correlation matrix extracts different patterns that must be interpreted differ­

ently.

The example that motivates this work uses a time series of the maximum w within 

the spatial domain for an ensemble of individual cloud model runs, each started with 

slightly different initial soundings. For these time series, w is available every 1.05 min and 

it is possible, at least for the sample case, to determine subjectively what the dominant 

modes are by visual inspection (Fig. A2.1). For example, let cell lifetime be defined as

that period for which vertical velocity is at least 10 m s '\ .  Subjectively, it is desired that

35

30 -

25 -

"C
£ 2 0

I 15 -

10

5

0 -

Maximum Vertical Velocity In Cloud Model Domain (m s' )̂
— I— 1— I— I— I— I— I— I— ,— I— I— I I I I I I i _

V ■ -  Run 1
Run 2

—— —  Runs
-----------Run 4
-------— R uns
— ——  R uns

' Run 7
— — -  R uns
-----------  R uns

—r~ 
10

—r- 
20 30

I ' 1

40 50
Tfme (mtn)

60
— I—  

70
—T— 
80

—r  
90

figure A2.1. Vertical velociQr time series from nine cloud model runs. Values represent the largest positive 
vertical veloci^ anywhere in the model domain, over a period of 92 min. The jc-axis is time and the y axis is 
vertical velociQr in m s'k  Dashed line shows the threshold for cell lifetime definition.
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all of the extracted modes be based upon the apparent “closeness” of the time series to 

each other. Consequently, a group of time series that overlay each other or, put visually, 

that overlap or form a cloud, are linearly combined to form a  single time series that repre­

sents a collection of similar time series. Accordingly, a cloud of w time series that last for 

the entire 90 min, and have similar amplitude, are linearly combined into a single mode.

Based on the above subjective definition of a mode, three modes should result 

from the PCA. Our a priori expectations are that one should have a large amplitude that 

lasts for the entire length of the data series (92 min). This mode results fix>m the similarly 

between Runs 2 ,4 ,5 ,7  and 8 . A second mode, that lasts about two-thirds of the available 

data series length, and with an amplitude close to the first mode might also be reasonably 

expected. This second mode is driven primarily by the similarity between Runs 1 and 6 . A 

third mode that has a low amplitude and a brief duration, is also expected. The third mode 

will be driven primarily by the similariQr between Runs 3 and 9.

Least-squares scores that are recovered from a rotated correlation-based PCA do 

not result in elements that can be physically interpreted as a vertical velocity time series 

(Fig. A2.2). This is because these scores represent the centered (to zero mean) and scaled 

(to unit variance) uncorrelated vertical velocity modes.. Given the nature of the modes that 

are desired, scores based on correlated behavior are not the desired result Unfortunately, 

these scores provide no way to scale cell lifetime. Neither do these scores provide any way 

to extract information about the intensity o f convective activity. Similar, though not identi­

cal, results are obtained from the covariance similarity matrix (Fig. A2.3).. Given the 

nature of the modes that are desired, scores based on correlated behavior are not the 

desired result. Unfortunately, these scores provide no way to scale cell lifetime. Neither do
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Rotated Vertical Velocity Correlation Least Squares Scores
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Figure A2.2. The first three least-squares modes for a correlation-based S-mode analysis of the vertical 
velocities in Fig. A2.1. The Jc-axis is time and the y-axis is centered, scaled vertical velocity. The solid line 
shows the zero reference.

these scores provide any way to extract information about the intensity of convective

activity. Similar, though not identical, results are obtained from the covariance similarity

matrix (Fig. A2.3). Again, these are the centered, uncorrelated vertical velocity scores.

Certain segments appear similar to the original data (which is expected), but how these

scores relate to updraft intensity or cell lifetime is not clear.

Least-squares score recovery with cross-products have some characteristics similar

to the a priori expectations (Fig. A2.4).. Unfortimately, nothing that resembles vertical

velocity magnitudes are preserved within the scores. It is possible to define cell lifetime

with these scores by when the score magnitude rapidly decreases. Using this rule. Mode 1
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Rotated Vertical Velocity Covariance Least Squares Scores
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F igure A2.3. Same as Fig. A2.2, but for a covariance-based analysis. Here, the y-axis is centered vertical 
velocity, in m s*^ Solid line shows the zero reference.

lasts the entire 92 min, which is an expected lifetime mode. Mode 2 length could be either 

59 min or 72 min, depending upon whether the first sharp, but small, decrease or the sec­

ond, larger decrease is used. Mode 3 could also be either 14 min or 23 min. However, 

information about relative updraft intensiQr is unavailable, which, along with cell lifetime, 

might be an important indicator of storm characteristics.

Least squares scores that result from ES meet the requirements of preserving both 

cell lifetime and relative vertical veloci^ magnitude information (Fig. A2.5).. Mode 1 is 

clearly a large-magnitude convective mode that lasts the entire 92 min. In this case, mode 

2 is the short-lived, low-magnitude mode. Mode 3 lasts about 60 min and has a high
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Rotated Vertical Velocity Cross-Products Least Squares Scores
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FIGURE A2.4. Same as Fig. A2.2, but for a cross-products analysis. Here, the y-axis is vertical velocity in m 
s'L Solid line shows the zero reference.

amplitude. As for cross-products, cell lifetimes can be defined in various ways. Here, cell 

lifetime is defined as that period when the least squares vertical velocity score is at least S

m s'L  Cell lifetime could also be defined as for cross-products, where the first large nega­

tive deviation signals the end of the storm. For this example, using either a 5 m s"̂  thresh­

old or the first large negative deviation results in equivalent cell lifetime estimates.

A second example uses a familiar meteorological parameter: surface station pres­

sure. For this example, the data comes firom the Oklahoma mesonet ^rock , et al. 1995). 

The data matrix consists of station pressures taken at 1 hr intervals for the entire month of

October 1994, one column for each hour, which makes this is a T-mode analysis. Because
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Euclidean Similarity Least Squares Modes

25-

2 0 -

■-V
15-

ModeZcaUWellm*
• 10 -

-25
10 20 900 30 40 70 8050 60

Tîme (min)

FIGURE A 2j. Same as Fig. A2.2, but for a Euclidean similarity-based analysis. Here, the y-axis is vertical 
velocity in m s'L Solid line shows the zero reference. Dashed line represents a 5 m s*‘ threshold for cell life­
time definition, which is necessary because the full amplitude of the original data is not retained. See text for 
further details.

the data are station pressures, the overwhelming signal or pattern is driven by surface ele­

vation (Fig. A2.6). Hence, the expected corresponding pressure mode should* resemble 

closely the pattern of station elevations or, alternatively, the mean station pressure.

A PCA is performed using a ES matrix and a correlation matrix to provide a con­

trast. Two PCs are retained from the ES analysis, which explain 87% of the total ES. 

Alternatively, three PCs are retained from the correlation analysis, which explain 83% or 

the total variance. The retained PCs ate rotated using the Varimax rotation algorithm. The 

least squares scores, which constitute modes, are recovered using Eq. A2.8.
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Figure A2.6. Oklahoma mesonet data as input to both a PCA based on ES, and a PCA based on correlation. 
Input data consists of hourly station pressures for the month of October 1994. Dots show individual mesonet 
station locations, a) Oklahoma mesonet station elevation in m; b) mean pressure, in hPa, over the Oklahoma 
mesonet for October 1994; c) the first modal pressure, in hPa, resulting from a PCA based on ES; d) the first 
modal pressure resulting from a PCA based on correlation. The field in d) is pressure normalized to a mean 
of zero and unit variance, and is thus dimensionless

The presstues that result from the PCA based on ES do not equal the station pres­

sures because the total pressure similarity has been distributed to all n dimensions, and r 

dimensions have been retained. Despite this, the contour pattern formed by the first ES 

mode is strikingly similar to both the pattern of average station pressure and the pattern of 

station elevation. The values resulting from the PCA based on correlation cannot be inter­

preted as pressure, because each mode is normalized to a mean of zero and unit variance. 

The contour pattern formed by the first correlation mode shows a general gradient o f nor-
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malized pressure &om northwest to southeast, but the lowest normalized pressure appears 

in northwestern Oklahoma, when in reality the lowest station pressure should be in the 

western Oklahoma panhandle. Overall, the correlation mode lacks the detail in the mor­

phology and gradient of the isopleths contained in the ES mode. Based on the two exam­

ples provided, it is clear that a PCA based on ES can recover both one-dimensional and 

two-dimensional modes that are contained in the input data. Additionally, the recovered 

modes are easily interpreted in units that are native to the original input data. Because gra­

dients, and their interpretation, are an important part of meteorological analyses, an ES 

alternative to the often-used correlation and covariance similarity matrices appears to have 

broad utility.

A2.5 Discussion and conclusions

Eigentechniques, such as PCA, are important, and commonly applied, tools for 

meteorological analysis. When PCA is performed appropriately it can lead to physical 

insight and understanding of large amounts of data. Traditionally, PCA has been applied to 

a parent similarity matrix based on either correlation, covariance, or occasionally, cross- 

products. This paper shows that the specific choice of the similarity matrix used to recover 

the PC loadings and scores can profoundly affect the results. Many meteorological data 

fields are distributed in both time and space, e.g., pressure, rainfall, and temperature. For 

single- and multi-dimensional problems embedded in such fields, our investigation illus­

trates that when a similarity matrix based upon Euclidean distance (ED) is constructed, the 

resulting PCs can lead to unique insights. Furthermore, these insights arc consistent with 

physical Actors known to control the behavior of spatial gradients in these fields.
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In the PCA development presented here, rotated PC loadings and the resulting 

scores are used to recover these structures or co-associations, called modes. By applying 

the ED-based similarity matrix to data fields that have known modes of behavior, the 

results are shown to be reasonable. As contrasting examples, PCA scores that result firom 

the correlation matrix, the covariance matrix, and cross-products matrix are also depicted 

and discussed. The ED-based results are also demonstrated to be valid for both S-mode 

and T-mode analyses. Hence, a PCA based on ED can recover both one- and two-dimen­

sional scores. Another, useful characteristic of the modes that result from an ED-based 

PCA is that they tend to preserve physically-interpretable gradients (both the gradient and 

the direction of the gradient) within the original data fields.

This technique is intended to illustrate both the utility and flexibility of eigenanal- 

ysis. Therefore, investigators should not feel eigenanalysis is necessarily constrained by 

two or perhaps three popular similarity matrices, nor should the analysis step of choosing 

a similarity matrix be taken lightly. Instead, the large number of similarity matrices which 

are available, such as Mahalanobis distance, similarity based on the L; distance, and theta 

angle between entities (Anderberg 1973), must be considered. Hence, the choice of a sim­

ilarity matrix is limited only by the desired output and the analyst’s insight into the best 

procedure to maximize the underlying physics that can emerge from a PCA. As a bonus, 

such investigations constitute an opportunity to expand upon eigenanalysis as a diagnostic 

tool.
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Appendix 3: Kolmogoroy-Smirnov Goodness-of-Fit Test

The Kolmogorov-Smimov goodness-of-fit (KS) test uses the empirical cdf of two 

different samples to determine, for some p-ievel, if the samples come from indistinguish­

able or difrerent distributions. The following development follows that of Blum and 

Rosenblatt (1972).

Let be independent, observed random variables with a common

unknown cdf, Fq. For each real x, let F ^x) be the proportion of satisfying

Xf ^ x .  Fgis called the empirical cdf based on . The values of (the propor­

tion of Xf<x)  should be close to Fq(x)  = P{X < %} for large n. In fact, since

' l i fX .S x
nFg(x) = ^  y,., where Y; =

1 = I
. (A3.1)

0  otherwise.

then nFij[x) is a binomial random variable with parameters n  and F (^x). That n F ^x) is 

binomial is important because it allows the Chebychev inequality to be used directly. The 

Chebychev inequality is invoked as:

p ||F j( x ) - FoW | S .2  t - p  (A3.2)

where k is a constant. This states the probabilify that |fg(%) -Fq(jc)| is within at least k  

standard deviations of zero, where the standard deviation is given by

jFoCxni-Fo(x)]
n

Hence, when n  is large.

-  fo U )| 3 . (A3.3)
2v«J k
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showing that for large n , F ^ x )  is close to F q (x )  with high probability if the two parent 

cdfs are indistinguishable. Let the null hypothesis be H qiF e  = Fq , It seems reasonable to 

use some measure of the distance between f g  an d fg  as a test statistic. That statistic is the 

maximum vertical distance, between Fg and Fq. Thus, is real and within the inter­

val [0 , 1].

For each a  in (0,1), there exists a value, h^, such that

Um  = 1 - a ,  (A3.4)
n  —> <»>

where a  is any real number in the interval [0, 1]. Typically, a  is used to define the signifi­

cance level, such as 0.05 for a 95% confidence level.

In fact.

lim P{D^J^<h^}  = I -  2 y  ( - i y ‘e (A3.5)
n -*oo  ^

y = i

and, from this expansion, Ag can be numerically calculated and the significance level 

determined.

To test the hypothesis ffg, that the cdf, Fq, of the independent random variables 

is indistinguishable from the empirical cdf, Fg at approximately the _  level,

reject Hq if the value of D^»/n exceeds A .̂ More generally, to test the hypothesis H q that

D^»/n at approximately the a  level, reject H q if the value of D^<Jn > k jn  + A„.

The KS test can be used when the test cannot because the KS test does not test

against a theoretical, or parametric, distribution. The test assumes that the source of the 

Fg cdf is the Gaussian pdf while the KS test does not depend on any assumptions about 

the nature of Fg.
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