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ABSTRACT

The filling process of injection molding in various planar gaps and center-gated 

disks are analyzed numerically. Comprehensive mathematical models are developed for 

flows in planar gaps and center-gated disks. An incompressible Newtonian fluid with 

creeping velocity is assumed in the present study. Also assumed is that the fluid viscosity 

is a function of temperature only.

Because the fountain flow effect plays an important role on the molecular 

orientation, the related effects o f gravitational force, surface tension, and non-iso thermal 

conditions on the fountain flow are systematically analyzed for flow injection through 

various mold geometries and orientations. Additionally, in order to seek a complete and 

general understanding of the flow fields involved, all the variables presented are non- 

dimensionalized. The results of negligible surface tension and gravitational effects are 

compared with previous studies and have well agreement.

The transient development of flow front, required injection pressure in the inlet 

and velocity and temperature distributions have been obtained for different molding 

conditions. These results provide the important information for the design of the new 

molding process, such as the construction of mold, exit gate design, choice of material, 

heat transfer design and so on.
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW

1.1 Injection Molding

Injection molding is one o f the main manufacturing techniques for producing 

identical products 6om the designed mold in polymer processing. The process can be 

divided into three steps: filling stage, packing stage, and cooling stage. The filling stage 

is the most important and complex step of the injection molding cycle. Material 

deformation and orientation that take place during the filling stage have a major effect on 

the morphology and ultimate properties of the molded part.

Since the pioneering work of Spencer and Gilmore (1951), injection mold filling 

has been the subject of great interest over the last three decades. Their study has dealt 

with the modeling of the fluid mechanics in the mold filling process, pressure and 

temperature variations in the molding cycle, time dependence of the flow front position 

during the mold filling, and orientation and residual stresses in the molded part. In their 

study, they considered the problem to be one-dimensional. The actual mold filling 

process on a macroscopic scale is shown in Fig. 1.1. Fluid is injected from the gate. It 

fills the mold when it advances to the right. The plot shows the advancing flow front at 

successive times. The insert of the cross-sectional diagram in Fig. 1.1 shows the fountain 

flow effect in the transverse plane, which is one at the main interests in the present study.



1.2 Macroscopic Descrtptioii of Flow Injection

1.2.1 One-Dimensional Models

Ballman and co-workers (1959a, b) reported the first model o f non-isothermal 

mold filling in thin rectangular cavities. They used the power law model to track the 

fluid velocity in the mold. The effect of molding process conditions on the resulting 

orientation distribution and its consequence on the physical properties o f the mold part 

were studied. Later, Harry and Parrot (1970) performed a numerical simulation for flow 

injection in rectangular thin cavities by coupling the energy and momentum equations. 

The problem was considered as a quasi-stationary flow and the constant injection 

pressure was imposed. A similar model for the rectangular cavities was also reported by 

Lord and William (1975) and Thienel and Menges (1978).

For the filling problems of center-gated disk, numerical simulation and 

experimental results were reported by Kamal and Kenig (1972a, b). Further numerical 

simulations and experimental studies were presented by Berger and Gogos (1973) and 

Wu etal. (1974).

Considering the geometric complexity involved in most mold cavities in industry, 

the one-dimensional model is apparently not capable o f producing detailed information 

about the filling process. Nevertheless, this simple approach allows one to obtain a quick 

solution and the first estimate of the process.

1.2.2 Two-Dimensional Hele-Shaw Flow Models

Generally speaking, the thickness of most injection molded parts is very small. It 

allows the simplification of an originally three-dimensional flow injection problem to a



two-dimensional flow progression problem. Based on this idea, Tadmor et al. (1974) 

developed a method called Flow Analysis Network (FAN) to predict the flow front 

position and the pressure field during cavity filling. The same model was numerically 

solved using a finite element/finite difference formulation (Hieber and Shen, 1980; 

Chiang et al., 1991) and a boundary element formulation (Shen, 1984). The numerical 

simulation for the advancing flow front, the location of weldlines and the pressure field at 

various positions within the cavity have a good agreement with the measured data 

(Hieber et al., 1983). Kuo and Kamal (1976) presented an analytical solution for flow 

injection in rectangular cavities by solving the Laplace equation for pressure, which was 

coupled with the energy equation. Good agreement between the analytical results and 

experimental data were found for the flow front position and pressure distribution.

13 Microscopic Description of Flow Injection

Although the Hele-Shaw flow models can effectively describe the overall 

macroscopic behavior of the flow injection and predict the pressure, flow rate, required 

filling time, and the position of the leading edge of the fluid. However, it can not provide 

any insight to the flow pattern in the direction of the part thickness, such as the shape of 

flow front, velocity, and pressure distributions near the front. For example, it can not 

provide the detailed information needed for the prediction of molecular orientation for 

homopolymers or the orientation of fibers for fiber reinforced plastics. It also can not 

reveal the fountain flow pattern near the froe surface as observed by Rose (1961).



In the following sections, some fundamental issues related to flow injection 

molding are discussed. These include the moving contact line, contact angle, and 

fountain flow effect. A literature review on these subjects is also provided.

1 3.1 Moving Contact Line

A contact line forms at the intersection of the fluid-fluid interface and solid wall. 

A fundamental difficulty in the hydrodynamic analysis of dynamic wetting arises when 

the no-slip boundary condition is applied to the contact line. Since the normal stress 

difference across the fluid interface varies with R*' (where R is the distance from the 

contact line), the work done by wall stresses and surface force required to advance the 

liquid becomes logarithmically infinite (Huh and Scriven, 1971). This singular effect 

was reported by Moffat (1964) and Bhattachaqi and Savic (1965) in the analysis of a 

steady, creeping flow of liquid with a flat, free surface intersecting a moving solid wall. 

Their findings seem to contradict the common belief (i.e., no-slip boundary condition) in 

fluid mechanics. Particularly, Goldstein (1938) stated that the confidence in the no-slip 

assumption for liquids flowing over the solid surface was based on the direct 

experimental evidences and which agreed with the macroscopic theories that relied on 

the assumption. The confidence was reinforced by the analysis o f flow over a rough 

surface, which showed that even the perfect slip was assumed at the submicroscopic 

length scale, the flow appeared to obey the no-slip boundary condition at the length scale 

larger than the asperities (Richardson, 1973; Jansons, 1988).

However, Dussan and Davis (1974) emphasized that the unbounded force was a 

dynamic consequence of the multivalued velocity field at the contact line. They showed



that no-slîp boundary condition and the moving contact line are kinematically 

compatible.

Huh and Scriven (1971) were the first to theoretically deal with the moving 

contact line and showed the consequence o f the stress singularity. In order to remove 

(mentioned above) the singularity, various slip boundary conditions have been proposed 

(Huh and Scriven, 1971; Hocking, 1976,1977; Dussan, 1976; Huh and Mason, 1977; 

Greenspan, 1978; Lowndes, 1980; Cox, 1986; Durbin, 1988).

Hocking (1977) has successfully analyzed the flow field associated with the 

displacement of two immiscible fluids through a capillary tube and between two parallel 

plates by using a slip boundary condition. One of his major contributions was to 

demonstrate that the flow field containing moving contact lines could be analyzed near 

the singular points by the method of matched asymptotic expansions (Dussan, 1979; 

Kaflca and Dussan, 1979).

Huh and Mason (1977) proposed a slip boundary condition based on a physical 

model of the motion of a gas-liquid interface. When the molecules of the liquid rolled 

onto the contact line, they were not oriented and required a re-orientation time t before 

attaching the solid surface. During the re orientation time, they experienced no drag 

force by the solid surface and they did not slip along the surface afterward. The main 

criticism of this model came from Dussan (1979). As she pointed out, the model 

declared that the liquid underwent a rolling motion, but the solution of the problem 

showed that it was not so. Material points located on the gas-liquid interface never 

arrived at the moving contact line and the contact line always consisted o f the same 

material points.



More recently, the studies o f moiecuiar dynamics of the immiscible liquid/liquid 

displacement on a smooth solid surface showed that the no-slip boundary condition broke 

down at a distance of a few molecular diameters away from the moving contact line 

(Thompson and Robbins, 1989; Kopliketal., 1988).

Although the slip boundary conditions are effective in dealing with the free 

surface flow problems with moving contact lines, the selection of a slip boundary 

condition is however never easy. Since a slip condition can remove the singularity 

mentioned above, it has been widely used for its mathematical convenience, but not for 

its physical correctness. The approach itself has some serious weak points 

(Shikhmurzaev, 1994, 1996, 1997) which include: (i) it replaces the actual rolling motion 

of the liquid by the sliding motion, and qualitatively changes the characteristics of the 

liquid flow; (ii) the velocity-dependence of the dynamic contact angle cannot be obtained 

using this approach and it must be prescribed instead.

Yamold (1938) was the first to use the term rolling motion to describe his 

observation that dust particles sprinkled on top of a mercury drop sliding down an 

inclined plane advanced at a velocity that was considerably greater than that of the drop 

as a whole. The motion of liquid along the interface toward the moving contact line has 

been confirmed by following the movement of dye marks placed in the liquids (Dussan 

and Davis, 1974; Dussan, 1977) and by direct measurement with LDV (Mues, 1989). 

Later, the rolling motion was modeled in the numerical simulation of fountain flow by 

Behrens et al. (1987) and Mavridis et al. (1988).

In order to describe the actual rolling motion of the liquid, Mavridis et al. (1988) 

illustrated the rolling motion processes as shown in Fig. 1.2. In the beginning, free



surface ABCD is perpendicular to the wall at time tg. As the flow advances (at time t,), 

the liquid particles in the free surface ABCD roll toward the solid wall and the contact 

angle increases. In their numerical algorithm, the position of the contact line remains 

fixed until when the contact angle becomes 180°. Afterward, a fixed contact line 

position is replaced by the 180° contact angle condition, and the contact line is allowed to 

move.

Kistler (1984) reported that the Galerldn finite element method allows the 

computation of macroscopic flow solutions without imposing the slip boundary condition 

on the dynamic contact line. Since the method was based on a weak form of the 

governing equation, one could manage the discretization to satisfy both the kinematic 

condition of interface and the condition of impervious solid surface at the contact line. 

Behrens et al. (1987) and Mavridis et al. (1988) took the advantage of this approach and 

applied the no-slip boundary condition in their numerical models.

Instead of prescribing a 180° dynamic contact angle as the boundary condition, 

Behrens (1983) and Behrens et al. (1987) determined the contact line movement using 

the projected shape functions. For a given free surface mesh at t,, they calculated the 

velocities of each node along the free surface at the same instant, then moved the free 

surface nodes to their new location at t^, as shown in Fig. 1.3. If the projected free 

surface did not intersect the boundary wall at more than one location, they concluded that 

the contact line did not move within this time step. But, if  the projected free surface 

intersected the boundary wall at another location, this point o f intersection became the 

new contact line. This model has successfully described the “rolling” motion of the fluid 

as reported earlier by Yamold (1938) and Dussan and Davis (1974). In this method, the



size of the time step is controlled by some prescribed conditions and is calculated 

through a predictor-cocrector numerical procedure. This method was later adopted by 

Friedrichs and Guceri (1993). It has also been adopted in the present study. To 

numerically simulate the advancement o f free surface and the movement of contact line 

from t, to t^„ one needs to move the nodes on the free surface to their new positions.

The procedure to relocate the free surface nodes is schematically presented in Fig. 1.3.

13.2 Contact Angle

The contact angle between the fluid-fluid interface and solid wall plays an 

important role in the solution o f any wetting problem. It is given as a boundary condition 

to determine the shear stress on the solid wall and the surface force on the free surface. It 

leads to the determination of the interface shape. The dependence of the dynamic contact 

angle on the capillary number (Ca) has been reported by many investigators (Elliott and 

Riddiford, 1967; Hansen and Toong, 1971a; Hoffman, 1975; Jiang et al., 1979; Ngan and 

Dussan, 1989; Dussan et al., 1991; and Shikhmurzaev, 1994, 1996, and 1997).

Elliott and Riddiford (1967) measured the angle at which the wall appeared to 

make with the interface at the solid-fluid-fluid intersection (i.e., contact line). They 

assumed that the angle measured was equal to that at a close range to the wall. Their 

experimental results showed that advancing contact angle was independent of the 

interfacial velocity at small capillary numbers. Above a certain critical capillary number 

(1 mm/min in their experiment), the advancing contact angle at first increased linearly 

with Ca. But at a higher capillary number, the rate of change diminished until it finally 

reached a limiting value. They also showed that the upper limiting value for the



advancing contact angle was 180° in the case of a two-liquid system. However, they 

found that it was difficult to correlate the advancing contact angle with any particular 

velocity in their experiment.

A direct (photographic) measurement of the contact angle characterizing 

interfaces in motion in a capillary tube was reported by Rose and Heins (1962). The 

axial distance between the apex of the meniscus and the contact line was measured. They 

assumed that the interface was a sector of a sphere and the angle formed between the 

interface and the capillary tube would be the contact angle.

Based on the hydrodynamic analysis, Hansen and Toong (1971a) were the first to 

point out that the fluid-fluid interface might be severely deformed by the viscous forces 

in the vicinity of the solid-fluid-fluid intersection, even in the case of a small capillary 

number. The measured contact angle in the capillary tube was probably not its actual 

contact angle and it could not be accurately measured using low-magnification optical 

techniques. Instead of measuring the contact angle with protractor, they reported their 

findings in terms of an apparent contact angle (Hansen and Toong, 1971a, b) given by the 

following equation:

where a is the radius of capillary and H is the distance between the meniscus apex and 

the plane containing the contact line.

For a low capillary number, they found that the interface between a heavy 

paraffin oil and air was a spherical sector. For a high capillary number, for example Ca = 

2.12, they reported deviations from a spherical shape. They also reported that the 

classical laws of fluid motion and interface behavior were not applicable for the range



which was smaller than 10'̂  cm from the contact line. Since molecular interaction might 

be dominant in this range, it precluded the use of continuum concepts. Their theory 

predicted a 13** difference between the contact angle obtained from (Eq. 1.1) and that 

evaluated at a distance o f 10 '  cm from the moving contact line at a capillary number of

2 x l O \

In the study of the shape of an advancing interface in a liquid-gas system,

Hoffman ( 1975) found that the apparent contact angle could be correlated as a function of 

the capillary number with a shift factor f(6g) when the interfacial and viscous forces were 

the dominant factors controlling the system. If the interfacial forces between a solid and 

a liquid did not change when the flow occurred, the shift factor could be determined 

solely by the static contact angle between the liquid and solid wall. He also reported that 

the shift factor f[6s) could be determined using the apparent contact angle Ĝpp instead of 

0s. Hoffman’s experiments (1975) covered a wide range o f capillary numbers 

(4 X10"' < Ca < 36), allowing the contact angle to vary from a few degrees to 

approximately 180**. The resulting correlation was compared with the data of Hansen 

and Toong (1971a) and Rose and Heins (1962). A good agreement was found. Based on 

the experimental data presented by Hoffman (1975), Jiang et al., (1979) presented an 

explicit expression of Hoffman’s correlation. They found that the data were best fitted 

by the following curve:

C O S0S-cos0^  ̂  tanh(456Ca®-’“ ) (1.2)
COS0C + 1
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Voinov (1976) did not consider the region of stress singularity immediate in the 

vicinity of the contact line. He prescribed an angle 0„ at the distance h^ from the contact 

line, which was on the order of molecular dimension. He proposed a profile equation for 

the interface at a location close to but not right at the contact line. He balanced the local 

capillary pressure with the normal stresses directly calculating from Moffat’s (1964) 

solution which acted on a straight wedge with the local slope 0(r). The approximate 

result for contact angle 0 < 135®, given by

e’ - e ; ,= 9 a i n ( h /h „ )  ( i j )

When 0„ approaches zero, Voinov’s results reduces to the well-known power law 

proposed by Tanner (1979) for small capillary numbers.

0 d -C a " ' (1-4)

The power law was directly derived from hydrodynamics theory without 

assuming a prewet surface by Tanner (1979). It has been verified by the experiments of 

de Gennes (1985). For this reason, equation (1.4) was referred as Hoffman-Voinov- 

Tanner law by Kistler (1993). Later, the approach of Voinov (1976) was also adopted by 

Boender et al. (1991).

To remove the singularity in stress at the moving contact line. Huh and Scriven 

(1971) and Dussan (1979) suggested that the force singularity was non-integrable if the 

contact angle was less than 180®. Later, Pisman and Nir (1982) pointed out that this 

singularity could be relaxed as the dynamic contact angle approached 180® in the 

immediate vicinity of the moving contact line. The no-slip boundary condition and 180® 

dynamic contact angle were applied to the mold filling related problems by Blake (1987), 

Coyle et al. (1987), and Mavridis et al. (1988).

It



Although the concept o f the apparent contact angle has been well received, it is 

not the true dynamic contact angle after all. It is also not a material property of the 

system. Ngan and Dussan (1982, 1984) were the first to present the size effect on the 

apparent contact angle from their experimental results.

Based on the earlier findings reported by Hocking and Rivers (1982) and Cox

(1986), Ngan and Dussan (1989) introduced the parameter Ô , defined to be the contact 

angle at some distance from the contact line, for which the interface was located within 

the intermediate region. They used 6^ as a boundary condition to predict the size effect 

they had observed earlier in experiments.

This model was improved by Dussan et al. (1991). The interface shape at low 

capillary numbers was given by;

8 - g " ' (g((o 0 ) + Ca ln(r /  a)) + fo (r / a; © 0 ; R t /  a) -  to 0 (1.5)

where 6 is the local slope of the interface with respect to the solid wall, r  is the distance 

from the contact line to the point on the interface, which is located at the intermediate 

region where viscous effect and surface tension are both important, a is the capillary

length , a n d i s  the inverse function ofg. A good agreement between the

predictions from this model and the experimental results was found (Dussan et al., 1991). 

The experimental data o f Marsh (1992), Marsh et al. (1993), and Chen et al. (1995) have 

shown that this model accurately predicts the interface shape within 300 pm from the

contact line for Ca < O.l. However, ©« shown in Eq. (1.5) depends on the material 

properties of the system, and which must be determined experimentally, ©q plays a
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similar role of the dynamic contact angle. Apparently, It would be difficult to apply this 

model in the numerical simulation without the value o f %  from experiment

In the numerical simulation of the mold filling process, the condition o f 180* 

dynamic contact angle is commonly used for fluid with high viscosity and negligible 

surface tension (Coyle et al., 1987; Mavridis et al., 1988). From the numerical results 

presented by Behrens et al. (1987), in which only no-slip boundary condition was applied 

to the solid wall, the dynamic contact angle was found to be close to 180*. In a review of 

contact angles by Blake (1993), he concluded that the contact angle was in a certain 

range of values, even for the static contact angle (Fig. 1.4). In addition, the flow 

direction (advancing or receding) plays an important role to determine the value of the 

dynamic contact angle. This conclusion has prompted the use of Behrens’s free surface 

updating and contact line moving schemes in the present study.

1.3.3 Fountain Flow Effect

Rose (1961) introduced “fountain effect” to describe the advancing fluid particles 

from the central region decelerate as they approach the slower moving interface region, 

and which requires a finite outward component of velocity as they roll over towards the 

advancing interface. Correspondingly, a “reverse fountain effect” has been observed in 

the receding fluid ahead o f the interface as the fluid particles are displaced from the wall 

region and move towards the centerline. As such, the fluid particles accelerate centrally 

ahead of the advancing interface.

Based on the experimental observation. Rose concluded that the tangential 

velocity was zero at the boundary of each phase forming the interfacial region. The

13



capillary pressure at each point in the interface region would have some constant value 

and the moving interface would have a constant curvature throughout However, it was 

later found that Rose’s argument was not completely valid. The flow Geld with fountain 

effect and reverse fountain effect is shown in Fig. l.S, which also reveals the presence of 

two vortices near the receding interface.

More recently, Savelski et al. (1995) experimentally studied the flow patterns 

associated with the steady movement of immiscible fluids. Their experimental results 

showed that there were three types of flow patterns in the vicinity of a moving contact 

line, depending on the ratio of viscosity of the advancing fluid to that o f receding fluid. 

One was observed by Rose (1961). The other two flow patterns both had rolling motion 

and split-injection (or split-ejection) streamlines are shown in Fig. 1.6. Based on the slip 

model proposed by Huh and Mason (1977) and the assumption of dynamic contact angle 

being equal to static contact angle, Sheng and Zhou (1992) presented their numerical 

results of the dynamics of immiscible-fluid displacement in a capillary tube. Their 

results showed that the shape of the interface and the macroscopic immiscible-fluid 

behavior were determined by the slip length and pre-set dynamic contact angle. The 

macroscopic flow pattern with the microscopic details in the slipping region is shown in 

Fig. 1.7.

Tadmor (1974) presented a semi-quantitative model to estimate the effect of 

fountain flow on molecular orientation by assuming the flow as a planar stagnation flow. 

The flow was considered folly developed before the fluid particle moved into a region 

within one gap width (or one diameter for tube in axisymmetric case) from the front. 

Based on approximation, the centerline velocity would decrease linearly from the
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maximum value to the average one. Since Tadmor assumed a constant elongation rate, it 

can be calculated to give

d „ = (U _ -U .,^ /2 H

= 0.25U,vg / H (planar flow) ( 1.7a)

= 0.5U„g / H (axisynunetric flow) ( 1.7b)

Behrens et al. (1987) and Mavridis et al. (1988) compared Eq. (1.7) with their 

flnite element results. They found that it did provide a reasonable approximation after 

adjustment of some numerical coefflcients.

Schmidt (1974) found that for a thin-wall molding, colored pellets introduced 

along the centerline came out at the surface in contact with the mold walls in a reverse 

order of that they were introduced. The lines of tracers were deformed into a series of 

characteristic “V” shape marks.

To numerically simulate the fountain flow effect, a finite difference method 

combined with the marker and cell (MAC) scheme was used by Huang (1978) to keep 

track of the front progression in a fixed frame of reference. The same numerical 

technique was employed in the studies of Gogos et al. (1986), Lafleur and Kamal (1986), 

Kamal and Lafleur (1986), and Kamal et al. (1986,1988).

By flnite element simulations, Wang et al. (1978,1979) and Mavridis et al. 

(1986a) presented a steady-state results of the flow front in a parallel channel.

Mavridis et al. (1986b) put some tracer fluid elements in the core region to investigate 

the deformation and orientation of their path, and to reveal the fountain effect in the flow 

front The " T ' shape marks formed near the wall were illustrated as a “rolling” type
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motion which fell far behind the advancing front Later, the tracer technique was adopted 

by Coyle et ai. (1987) to obtain a more comprehensive picture on the formation o f “V" 

shape marks. A mushroom-like flow front was formed when the V-shaped marks were 

swept backward parallel to the walls as shown in Fig. 1.8.

A boundary element method with tracer-in-domain technique was applied to 

simulate the fountain flow by Jin (1993). The moving boundary nodes were relocated at 

each time step. In this approach, only the boundary values are involved in the 

calculation. If any boundary element was stretched longer than a critical length, one 

additional node was inserted between the two boundary nodes to form two new elements 

to replace the old one. Similar results to the earlier studies were reported and which were 

in close agreement with the visualization results shown by Schmidt (1974).

The mechanism of the fountain flow was investigated by Bens (1987). He 

showed that the deformation of"V" shape marks in the front region was independent of 

the constitutive equations, and it was only determined by the flow continuity and the 

viscous force.

The first theoretical approach to determine the flow field inside a tube was 

reported by Bhattachaqi and Savic (1965). The flat interface with no shear and no-slip 

boundary condition was assumed. The analytical solution was presented in terms of 

streamfimction. The model developed by Bhattachaqi and Savic (1965) was later 

adopted by Castro and Macosko (1982), Lekakou and Richardson (1986), and Gong 

(1994) in their studies o f the reaction injection mold-fllling process. The model of 

Bhattachaqi and Savic (1965) has been reported to have a singularity  ̂in stresses at the 

contact line by Huh and Scriven (1971). Various slip boundary conditions have been
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proposed to replace the no-slip one. The alternative boundary conditions were proposed 

by Huh and Mason (1977), Hocking and Rivers (1982), Cox (1986) and many others.

Behrens (1983) and Behrens et al. (1987) studied the transient fountain flow in a 

tube and a planar gap by using Galerldn flnite element method. They considered an 

isothermal, incompressible Newtonian fluid with a low Reynolds number (i.e., creeping 

flow). Since the understanding of true dynamic contact angle was limited, no-slip 

boundary was applied to the wall instead of using a specified contact angle. The relative 

distance between the fiont tip and the contact line in the flow direction (Ay) was 

calculated. They showed that, for axisymmetric flows, the fully developed relative front 

tip travel distance Ay was 0865 when using a fixed fiame of reference and it was 0.82 

when using a moving frame of reference. A good agreement was found between the 

numerical prediction and their experimental results.

A similar finite element method was employed by Mavridis et al. (1988) to solve 

the full Navier-Stokes equations to predict the transient flow front shape. The only 

exception was that a 180" contact angle boundary condition was employed in the latter 

study. However a good agreement with the experimental results of Behrens (1983) and 

Behrens et al. (1987) was achieved by combining the free surface deformation method of 

Khesghi and Scriven (1984) and Keunings (1986) with a predictor-corrector scheme for 

the case of negligible surface tension and gravitational effects. Fauchon et al. (1991) 

presented a numerical simulation for fountain flow, flow in a 90" bent, and jet in a 

sudden expansion. The fountain flow numerical results were compared with those of 

Behrens et al. (1987) and Mavridis et al. (1988).
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The study of transient fountain flow for viscoelastic fluids was reported by Sato 

and Richardson (1995) using a flnite element method and a finite volume method. The 

contour plots of pressure, normal stress, and shear stress for Oldroyd-B fluids with 

diflèrent operating conditions were presented for a flow domain of up to approximately 

sixteen times of the gap width. The reported folly-developed front tip travel distance was 

between 0.92 and 0.98.

Some of the models discussed earlier have been applied to reaction injection 

molding (RIM) simulations. In the filling process of the reaction injection molding, the 

fluid contains chemical species undergoing temperature-dependent reaction and thus has 

a temperature-dependent viscosity. From the engineering point of view, it is most 

important to know how a melt front advancing in a thick rectangular mold cavity and 

how the viscosity affects the flow advancement in the cavity. The model ofBhattachaqi 

and Savic (1965) was adopted by Castro and Macosko (1982) in a study of the injection 

molding in rectangular thick cavities. The assumptions that they made include a flat flow 

front, uniform mixture properties such as viscosity in the fountain flow region, and a 

quasi-steady condition with respect to the momentum balance at the flow front. They 

found that the fountain flow effect significantly influenced the temperature and 

conversion behavior in the mold. The numerical solution was found in good agreement 

with their experimental results.

Lekakou and Richardson (1986) adopted the same model of Castro and Macosko 

(1982) but employed a flnite difference/control volume method in their numerical study. 

The time dependent term was retained in their analysis. Their model was reported to 

reproduce the results of previous studies.
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A numerical model similar to that of Lekakou and Richardson (1986) was 

employed by Perrett et al. (1993) without the assumption o f a flat front and a parabolic 

flow region behind the front Neglecting the surface tension and gravitational effects, the 

predicted front shape in a thin mold was approximately semi-circular. They compared 

their results with those of the flat front model (Lekakou and Richardson, 1986) and 

experimental results of Castro and Macosko (1982). The macroscopic pressure, 

temperature, and conversion profiles were shown very little sensitive to the front shape. 

In the force balance analysis, they reported that the curved fix>nt shape provided a better 

result than the flat one.

The Petrov-Galerkin finite element method was applied to the reaction injection 

molding problem by Anturkar (1994, 1995). The predicted results were compared with 

those obtained by the conventional Galerkin finite element method and the reported 

experimental data of Castro and Macosko (1982). The results showed that the Petrov- 

Galerkin finite element formulation was more stable and accurate than the conventional 

(Galerkin) formulation, particularly when convection is donunant

Lee (1997) solved the non-isothermal, power-law non-Newtonian flow injection 

using finite element method. In the numerical simulation, the streamline Upwind/Petrov- 

Galerkin technique proposed by Brooks and Hughes (1982) was employed. The fully- 

developed relative front tip travel distance Ay was reported to be 50% higher than the 

results of Behrens et al. (1987). His simulation also found that the shapes o f free surface 

became flatter as the melt front advanced and Ay approached unity (i.e., approximately a 

semicircle).
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1.4 Objective of Present Study

The motivation of the present study has stemmed from a recent investigation on 

the feasibility of producing high-performance composite materials under microgravity 

environment It has been speculated that the special spreading and wetting characteristics 

of resin in space may lead to the production of super-strength composite materials using 

resin transfer molding (RTM) process. To evaluate this technical plausibility, it is 

important to have a complete understanding of gravitation, surface tension, and heat 

transfer effects on the development of the flow front

For impregnation of a fibrous pre-form, these factors can significantly influence 

the fluid behavior. Particularly, surface tension may become the dominant factor in 

microgravity environment. Since the phenomena involved are very complicated, it has 

been decided to first investigate the flow injection process in the absence of fibrous pre­

form. Thus, the present study is the first step toward a comprehensive modeling of the 

fiber impregnation process.

It should be mentioned that the previous studies on injection molding have all 

neglected the surface tension and gravitational effects except one study by Coyle et al.

(1987). However, these effects on injection molding were considered only for a very 

limited case in a vertical channel (St = 33 and Ca = S). As such, the related flow details 

and their general trends were not fully disclosed. Therefore, it is also the objective o f the 

present study to supplement the literature with a complete study of the effects of surface 

tension and gravitation on flow injection.

To this end, the present study has covered a wide range of the governing 

parameters. For flow injection in planar gaps, channels at various inclined angles (0 =
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0", 30°, 45°, 60°, and 90°) have been studied. The parametric ranges considered are 1 < 

Pe < 50,0 < St < 10, and I < Ca < oo. For flow injection through center-gated disks, the 

parametric ranges are 0 < Bo (Bo = St Ca) < 10 and Ca = 0.1,0.2,1,2,10, and oo.
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Figure 1.1 Macroscopic overview of molding with microscopic flow profile inserted
(Behrens et al., 1987)
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Figure 1.2 Contact line motion model to describe rolling motion (Mavridis et al.,
1988).
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Figure 1.3 Use o f finite-element predictor-corrector method for free surface updating
and moving of the contact line (Behrens et al., 1987).
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Figure 1.4 Schematic representation o f the velocity dependence of the experimentally
determined contact angle 0, showing static, advancing and receding limits 
0A and 6r (Blake. 1993).
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Figure 1.5 Conceptualization o f flow field near the contact line (Dussan, 1977)

26



Flow patterns

(a) (b) (c)

Figure 1.6 Schemmatics o f kinematically consistent flow patterns (A is displaced
phase and B is displacing phase): (a) split injection in A and rolling 
ejection in B, (b) motionless interface pattern with rolling injection in B 
and rolling ejection in A, and (c) rolling injection in B and split ejection in 
A (Savelski et a l, 1995).
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Slipping Region

' ) / / / / / / .%'V./

Center

Figure 1.7 Flow field for C a=  10 slip length = 6 x 10“̂  R, and contact angle -  40® 
with the insert showing the slipping region (Sheng and Zhou, 1992).
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Figure 1.8 Deformation and arrangement of three sequential tracer lines show V-
shape marks and mushroom-like flow shape (Coyle et al., 1987).
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CHAPTER:

FORMULATION AND NUMERICAL METHOD

2.1 Flow Injection through Planar Gaps

2.1.1 Governing Equations

The filling process in fiow injection molding through planar gaps can be modeled 

as a transient fiow firont advancing between two parallel plates (Fig. 2.1). The geometries 

considered include vertical channels (with the gravitational force acting against the flow 

direction), horizontal channels, and inclined channels (with an inclined angle 0 = 30°, 

45°, 60°). For an incompressible Newtonian fluid, the continuity and momentum 

equations are given as follows:

Continuity Equation:

— + —  = 0, (2.1a)
ÔX 3y

Momentum Equations:

If temperature effects on the flow field are considered, then energy equation must 

be included and solved simultaneously with the previous two equations. To simplify the 

problem, it is assumed that the viscosity of the fluid is dependent on the fluid 

temperature, while other properties (such as density, heat capacity, conductivify and
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surface tension) remain constant in this study. For a non-isothermal, incompressible 

Newtonian fluid, the energy equation is given as:

where c  ̂and k  are the speciflc heat capacity and thermal conductivity of the fluid, 

respectively. The variables are normalized using the average entry velocity U «, half gap 

width H and reference viscosity p . . For pressure and time, they are non-dimensional- 

ized using /H  and H / U „ . The governing equations in the dimensionless form 

are given below.

where Re is the Reynolds number, p U .H /p ,. The body force terms in x and y direction

are expressed in terms of the Stoke numbers, Stc = pg%Ĥ  / pnU« and Sty = pgyH^ /  p«U«, 

which are defined as the ratio o f gravitational forces to viscous forces. Pe is the Peclet 

number ( Pe = U .H /a  = Re Pr ), which measures the relative magnitude of thermal
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energy carried by the flow to heat transfer by conduction.

Since the injection velocity is usually small, the flow is assumed to be quasi­

steady in this study. The time dependent term and inertial terms are neglected due to the 

assumption of Re «  1. Thus, the original transient problem is now reduced to a series of 

quasi-steady processes. Consequently, the momentum equations are simplifled to give

6Y a x V . 3y  a v ^  p . a v '
+ = 0 . (2.3b)

If the order of magnitude of the Peclet number is much less than unity, then 

energy equation can be further simplifled to Eq. (2.3c). Otherwise, the whole energy 

equation, Eq. (2.2d) will be solved simultaneously with the continuity and momentum 

equations.

g ' g "

2.1.2 Boundary Conditions

For vertical channels (i.e., the inclined angle is 90*’), the governing equations are 

solved using only half of the channel due to the symmetry of the problem. For all other 

cases, the equations are solved using the entire channel. In the present study, the fluid is 

assumed to be injected into the channel with a constant flow rate and a fully developed 

velocity profile. The appropriate boundary conditions for the problem are
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• At the inlet,

U = 0, V = V(X), T = T;, (2.4a)

• Along the channel wails (X  = ±l),

U = 0, V = 0, T = T^. (2.4b)

• Along the free surface, the normal force component is proportional to the local 

curvature of the &ee surface and the surface tension. In addition, the tangential force 

component vanishes and heat transfer &om the flow front to the ambient air is 

assumed negligible,

« . = 0 .  k | -  = 0.  (2.4c)

where Ot and On are the dimensionless stresses in the tangential and normal direction, 

respectively. K is the dimensionless mean surface curvature and Pa is the ambient 

pressure. C a(= pU . /y  ) is the capillary number defined as the ratio of viscous force to 

surface tension. Accordingly, a small capillary number implies a large surface tension. 

When the capillary number approaches infinity, the surface tension effect becomes 

insignificant.

For vertical channels, the boundary condition at the wall (X = -1), Eq. (2.4b), is 

replaced by the symmetrical condition at the centerline (X = 0), i.e.,

Along the centerline,

i ' " -  § = * •
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2.1 J  Numerical Method

a. Finite Element Method

Since the flow domain is continuously deformed and expands for flow injection 

problems, it is felt that flnite element method is best suit for this kind o f problems. In the 

finite element method, the unknown velocities and pressures are approximated using 

following expressions,

U « iv i(^ .n )U r(t) , (2.5a)
i=l

V « iv .(^ .n )V ,( t) , (2.5b)
i«l

P=^Z*j(^,n)Pj(t), (2.5c)
j-l

where U,-, V,-, Pj are the nodal velocities and pressure at a given time step, respectively;

\|/i and (|>i are the interpolation functions of velocity and pressure, N and M are the number 

of nodes used in the approximation of velocities and pressure at each element. In the 

present study, a nine-point quadrilateral element was used for the calculation of the 

velocity field and a four-point bilinear element for the pressure field. ^ and q are the 

coordinates in the isoparametric domain. A four-point bilinear element and a nine-point 

biquadratic element and their relative interpolation functions are expressed in Fig. 2.2 and 

Fig. 2.3.

The transformation between the physical and isoparametric domain is given

below.

X = iv.(Ç.q)X,(T). (2.da)
i>l

Y = ivs(^.q)Y ,(t). (2.6b)
i>l
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where and - 1 < ti^ L

With the adoption of the Galerkin criterion and the selection of the weighting 

function Wj (x, y) = V,-(x, y) in Eq. (2.5), one can derive the following system of 

equations from Eq. (2.3).

ÔX p. ax av p. av ax ax dQ

= -  iSt,dQ + jv ;T ,dT , (2.7a)

^ j l Æ + ^ ) + 2 ^ - ^ — - - ^ pax p. av ax^ av n. av av d n

= -  JViStydQ + JVjTydT, (2.7b)

(2.7c)

(2.7d)

(2.7e)

Express velocities and pressure in terms of their interpolation functions, one obtains

2 K „+ K

-Q ?

22 ^21 ~Q i
K |i + 2 K jj - Q i

- Q l  0

u
V = Fy
p 0

(2.8)
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where Kg = (2.9a)
aoXf oXj

Qi = (2.9b)
QOXj

F, = -  fvSt, dQ + |v T ,d r ,  (2.9c)
Q r

Fy = - fvSty dQ  + fvT ydr. (2.9d)
D r

For isothermal condition (p/n« = I) and Eq. (2.9a) can be simplified further. Otherwise, 

the temperature effect on the fluid viscosity should be considered in Eq. (2.9a). In this 

study, the variation of fluid viscosity with temperature is assumed to be an inverse linear 

function as shown in Eq. (2.10) below.

where A and B are the coefficients o f correlation. In this expression, temperature is in °C 

and viscosity in Pa s .

Most polymeric resins experience a phase change (specifically solidication) when 

exposed to a large temperature variation. To avoid further complication from phase 

change, glycerol has been chosen as the sample fluid in the present study. Although this 

dose not represent the actual process, it is expected that the results obtained should at 

least provide us a qualitative assessment o f the process variables.

The viscosity of glycerol is correlated with temperature using available data in the 

literature. The correlation was performed using TableCurve 2D (Jandel Scientific,
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Window v2.03) and the coefficients were found to be A = -2.3595155 and B =

0.15342883. The variation of viscosity o f glycerol with temperature is plotted in Fig. 2.4.

b. Taylor-Galerkin Formulatton

For small Peclet numbers, the conventional Galerkin fînite element formulation 

can be applied to the convection-diffiision problems and provide reasonable results. 

However, for convection dominant problems (i.e., problems with large Peclet numbers), 

spurious oscillations may arises and completely obscure the true result. To avoid the 

numerical oscillations mentioned above, Taylor-Galerkin formulation has been applied to 

the energy equation in this study. Taylor-Galerkin method was first introduced by Donea 

(1984) for various time marching schemes. Later Donea et al. (1984) and Zienkiewicz et 

al. (1984,1985) extended this method to the solution of advection-diffusion problems. 

Consider the dimensionless energy equation.

Using the forward Taylor series expansion, one has

+0(A T )\ (2.12)
At Z

where T̂  is the first derivative of temperature with respect to time at the n* time step. 

From Eq. (2.11), one can obtain the following expressions.

P . T ; = - P . ( U . § . V . ^ ) . g ^ . g f .  (2.13)
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P e T > - P e ( U , ^ . V . ^ ) . ^ . | i ,  (2.14)

Eq. (2.14) is resulted from taking further differentiation with respect to time to Eq. (2.13). 

The variation of velocity within the time step is assumed negligible. Since the time step 

is chosen to be very small, it is not likely to have a drastic change in velocity. Substitute 

Eqs. (2.13) and (2.14) into Eq. (2.12) and neglect the higher order terms, one yields

P e ( ^ ^ ^ )  = P e (T ;+ ^ T ;)
Ax 2

= f  - f

= f  P.U. A ( ( U .  V=T, )

+ Y P e V . ^ ( ( U . ^  + V . ^ ) - V % )  + y V % .  (2.15)

which can be further simplified to give

P e ( l ^ )  = -Pe(U . § )  + V 'T. . f  Peu. A ( U .  ^  .  V. § )

3 P e v 4 ( U , § . V , ^ ) . f v = ( l = ^ ) .  (2.16)

In Eq. (2.16), the higher order terms are neglected and the last term with in 

Eq. (2.15) is approximated by (T„.,, -T„)/A x to avoid third-order derivatives. Collecting 

the coefficients of T,*, and T„, the final equation can be written as
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The conventional Galerkin finite element formulation is applied to Eq. (2.17). A 

nine-point biquadratic element is used for the calculation of temperature distribution.

The unknown temperatures are approximated using in the following expression,

T = E v ,& n )T ,( :) . (218)
1=1

With the integration by parts on the higher order terms, the fiilly discretised Galerkin 

equations can be written as

f M  K V  ( M  K
. A t  2 .

T.., =1 ^ - y - P e ( A + S )  IT., (2.19)

where M = Pe[v|/\|/^dQ, (2.20a)

A = r«|/(U. V, ^ ) d £ j .  (2.20c)
n o X  oY

(2.20d)

c. Numerical Integration

Since all the calculations are performed on the computational (isoparametric)
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domain, it is necessary to establish the Jacobian matrix first in order to facilitate the 

numerical integration. The transformation between the derivatives o f the interpolation

function and derivatives of coordinates ^ r )  established using the
3 ^  3 t | oX. ox

chain rule.

3^1 _  dX  3V; 3Y
3^ ■ 3X 34 3Y 34 ’

3^i _  3Vi 3X 3^j 3Y
3q 8X dr\ dY  dr\'

or in the matrix form

(2.21a)

(2.21b)

’3Vi' "3X 3Y' ’5Vi'
54 3X
3Y 5Vi

_3n 3n. l a Y j

(2.22)

The required derivatives and in Eq. (2.9) are obtained out by matrix inversion,
3X 3Y

(2.23)

'5V ;' *5Vi'
a x = J 54
5Vi 5Vi

.ÔY.

where J  is the Jacobian matrix and is defined as

J  =

3X 3Y 
34 34 
^  3Y 
3q 3q

(2.24)

Three points Gauss-quadrature (3x3) is used to perform the numerical integration for the 

velocity field and two points Gauss-quadrature (2 x 2 )  is used for the pressure. The
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difïèrentîal area dA (=dX dY ) in Eq. (2.9) is replaced by an equivalent part in the 4. H 

coordinates,

dX • dV = det( J) d^ * dq. (2.25)

d. Free Surface Updating Scheme

To accurately predict the location o f the flow front, a second-order predictor- 

corrector scheme (namely, the Adams-Bashforth predictor and the trapezoid-rule 

corrector) developed by Gresho et al. (1979) has been employed in the present study.

The predictor scheme is applied first to predict the new location of the free surface nodes 

at each time step.

X L  =X- , (2.26)
2 LI Av ,

where At„ is the n“* time step ( At„ = t„„, -  ),

Vn, V„.i are the velocities at time t„ and t„_, (given),

X" is the location of the free surface nodes at time ,

X̂ +, is the predicted location of the free surface nodes at time V i .

Note that at least two velocity values are needed to apply the above scheme.

Given XJ„,, the velocity V^, at time t„+i can be predicted and the location of the actual 

free surface nodes is determined by the corrector step,

X"*' =X" + ^ ( V .  + v ;„ ) . (2.27)
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e. Estimation of Time Step

The use of Adams-Bashforth predictor and trapezoid-rule corrector leads to a 

truncation error of O (At  ̂) and a pre-set error tolerance to control the time step. To 

estimate the truncation error, Taylor series expansion is applied to the predictor and 

corrector scheme (Gresho et al., 1979). The predictor truncation error is given by

^T ..l 
At

(228)
n J

where as the corrector truncation error is

= X „, -X ( t . . , )  = i(A t)> X , +(XAt‘ ). (2.29)

where dn+i is the local time truncation error of the actual solution. Combine Eqs. (2.28) 

and (2.29), the actual truncation error d̂ +i can be obtained after some manipulations.

(2.30)

Atn /

As the actual truncation error is obtained from Eq. (2.30), Eq. (2.29) is used to estimate 

the next time step as shown below.

|d„.,| 
Idn+u

At
\3

y
(2.31)

Since X„ î = X„ + 0 (At), At„,., is determined by setting dn+% = e and neglecting the

higher order terms. Thus, one obtains 

A v , =AT„(e/|d„,,|)"\ (2.32)

where |d,„,| is the root mean square truncation error at time t„,., . In this study, e is set 

to be 0.001 for the calculation o f the next time step.
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f. Contact Line Moving Scheme

A major difficulty encountered in free-surface flow problems is the determination 

of the movement of the contact line. As discussed in the Chapter 1, the boundary 

condition of specified contact angle (180°) used by Mavridis et al. (1988) is only 

appropriate when surface tension is absent. The criterion to determine the movement of 

contact line described by Behrens et al. (1987) is more general and has been adopted in 

the present study. As the free surface nodes is moved form t„ to t„ ,̂, the new projected 

surface is determined by the new free surface nodes instantaneously. The movement of 

the contact line is determined as follows. If the contact line does not intersect the 

boundary wall at more than one location, it is assumed that the contact line does not 

move in this time step. If it intersects the boundary wall at another location, the contact 

line is assumed to move to that new location. With this approach, the no-slip boundary 

condition is still imposed on the boundary wall.

g. Boundary Conditions for Surface Tension

When surface tension is present at the free surface (in a planar gap), the normal 

force is given by

f  = - f n ,  (2.33)
K.

where y is the surface tension, R is the radius of curvature of the free surface, and h is 

the unit outward normal vector from the fluid. R is positive if the origin of the circle 

which prescribes the free surface is located within the fluid. Along the free surface, the 

unit tangential vector t is expressed as
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-  dr . t = ~  = r, 
ds

7 _ I _
~ d s ^ ~  r ” '

(2.34)

(2.35)

Substitute Eqs. (2.34) and (2.35) into Eq. (2.33), one can rewrite the normal force as

-  .. d h (2J6)

or in the dimensionless form

f  =
Ca, 3s

(2.36b)

The normal force at the flow front is integrated over the free surface to give

F; =fv|/if-dT
r

1 3"R .

1 n  3"R .

C a . r  3s'

Integrating by parts, one can cast Eq. (2.37) into the following form.

(2.37)

F; =
' Ca. 

1
Ca„

dR l
d s ,

I *i3R 3Vjj— p d s
,, C a, s, 3s 3s

(Vit),, -(V it),, -  f t ^ d s  
s, os J

(2.38)

Equation (2 J8) shows that the effect o f surface tension has three contributing terms, the 

first two terms represent the contact line effect and the last term represents the effect over 

the free surface.
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When surface tension is included in the problem formulation, ripples on the free 

surface are Aequently observed in the numerical solutions. Since these ripples are not 

physically present, they are believed to be induced by numerical instability. To 

overcome this numerical instability, an implicit treatment of the surface tension term (i.e., 

the last term in Eq. (2.38)) recommended by Slikkerveer et al. (1996) has been employed. 

To obtain the implicit expression for the surface tension term, one needs to know the 

surface tension at the next time step. Taylor series expansion has been used in the 

derivation of the implicit surface tension term as shown below.

t+At dxr ds
At + 0 (At)‘ . (2 .39)

Since the tracking algorithm for the free surface is linear (Eq. (2.27)), only the first two 

terms are needed. In the present study, the change of surface tension at the contact line is 

neglected. The time dependent term in Eq. (2.39) can be rewritten as an integral along a 

reference curve L in the reference element which is independent of time. This can be 

expressed as follows.

d t r  ds
A A fdt At = — AtJ—

rdt dL
dL. (2.40)

For the change in the tangential vector with time, it has been derived by Slikkerveer et al. 

(1996) and is given by

d t Id s  )
(2.41)

Substitute Eq. (2.41) into Eq. (2.40), one obtains
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",'S ^ d L  = -
dL

dL = -AtJ ( ^ n ) n
ds

d\\f;
dL

dL. (2.42)

By applying this implicit treatment for the surface tension term, ripples on the free 

surface can be successfully removed.

h. Automatic Mesh Generation Scheme

Since the fluid domain is continuously deformed and advanced, an automatic grid 

generation scheme is required for the numerical solutions. As the flow front advances, 

the grid generation scheme is used to re-create the mesh for calculations in the next time 

step. This is realized by solving the following Laplace equations (Eq. (2.43)) with the 

new location of the flow front as the boundary condition.

6' x(^,n)=o.

Y (^,n)=o.

(2.43a)

(2.43b)

i. Mesh Refinement Test

Three finite element meshes, 8x8, 10x10, and 12x10, have been used for the 

mesh refinement test. With the absence of the gravitational and surface tension effects, 

the predicted relative front tip travel distance shows an improvement of 2.5% when the 

mesh is refined from 8x8 tolOxlO. However, only 0.3% of improvement is observed 

when the mesh is further refined from 10x10 to 12x10. In addition, the mesh with
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12x10 elements provides the best result when compared with the previous studies (Table 

2.1). Thus, it is chosen for the present study (Fig. 2.5).

2.2 Flow Injection through Center-Gated Disks

2.2.1 Governing Equations

The filling process in center-gated disks can be modeled as an axisymmetric 

transient flow front advancing radially between two parallel disks (Fig. 2.6). The gap 

between the two disks is considered to be very thin and has the same order o f magnitude 

as the injection hole. Since the creeping motion is assumed for the present study (i.e.,

Re «  1 ), the time dependent term and inertial terms are neglected. As a result, the 

continuity and momentum equations are simplified to give:

Continuity Equation:

~ ( n i ) + ^  = 0, (2.44a)
r dr 5z

Momentum equations:

= 0, (2.44b)

5p f i d .  ÔW- 
- i r + W — (r— )+ — -p g ^ = 0 .  (2.44c)

dz dr d z \

The variables are normalized using the average entry velocity , radius of the injection 

hole Rj and viscosity p . Pressure p is non-dimensionalized by pU<»/Ri and time t is non- 

dimensionalized by Ri/U«. The resulting dimensionless governing equations are given 

by
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dP

aZr

az  )
d _ A ±  

l^aR RaR.
= 0 ,

R aR ^ aR^ az^
- S t ,= 0 .

(2.45a)

(2.45b)

(2.45c)

Substitute Eq. (2.45a) into Eqs. (2.45b) and (2.45c), momentum equations can be 

rewritten in the traction form.

± ± f R ( ^ Æ ) l  R aR l az aR J

fau  dw\ 
l a z  aR j = 0 ,

az
aw

(2.45d)

(2.45e)

where Stz (= pgj-RV̂ Uoo) is the Stokes number, which is defined as the ratio of 

gravitational force to viscous force in z direction.

2.2.2 Boundary Conditions

For flow injection through center-gated disks, the governing equations are solved 

using only half of the physical domain since the problem is axisymmetrical. The 

appropriate boundary conditions for the problem are;

• At the inlet, 

U =0, W = W(R). (2.46a)
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• Along the solid walls,

U = 0, W =0. (2.46b)

• Along the centerline of the injection hole (R = 0),

dW^  = 0,, U = 0. (2.46c)

• Along the free surface, the normal force component is proportional to the local 

curvature of the free surface and the surface tension. In addition, the tangential force 

component vanishes and the heat transfer from flow front to the ambient air is 

negligible,

where at and a„ are the dimensionless stresses in the tangential and normal direction 

respectively. Ri and Rz are the dimensionless radius of curvature of the front surface, 

and Pa is the ambient pressure. Ca (=  pU . /y  ) is the capillary number defined as the 

ratio of viscous force to surface tension.

2.2 J  Numerical Method

a. Finite Element Method

To simulate the filling process in center-gated disks, Galerkin fînite element 

method is adopted here for its flexibility and superiority in handling domains with 

irregular shape. Following the same procedure discussed in section 2.1.3, the fully 

discretized Galerkin equations can be obtained.
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f
nv

f ( R U ) . f ( R W ) ) i n = 0 , (2.47a)

(2.47b)

ôk{ az aR ; az

where T .= (-P  + 2 g ) n , + ( g + H ) . „

[VjRSt jdQ + JViRTjdr, 
Q r

(2.47c)

(2.47(1)

(2.47e)

Express velocities and pressure in terms of their interpolation functions, one obtains the 

following equation in the matrix form.

(2.48)
'2K„ + Kjj+2C Ki. - Q , u X
K,i K „+ 2K „ -Q z w =

-Q T -Q Î  0 . p 0

where K. = JR a^  a\|/^
o aX; aXj

dfi, (2.49a)

Q. = f^(Rv)(|»^dQ

Qi  = n

(2.49b)

(2.49c)

(2.49d)
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F, = fvR T .d r. (2.49e)
r

F, = -  JvRSt, dQ +  IvRT^dr. (2.49f)
Q r

The estimation of time step, free surface updating scheme, and contact line moving 

scheme are the same as those described in section 2.1.

b. Boundary Conditions for Surface Tension

For flow injection through center-gated disks, the normal force has two 

contributing radii o f curvature along the free surface. The normal force is expressed by

f = (2-50)
K, Kj

where Y is the fluid surface tension. Ri is given by Eq. (2.35) and Rz can be found 

directly from the geometric construction (Fig. 2.7) and is given by.

—  = - ^ .  (2.51)
R , r

With the aid of Eqs. (2.34)-(2.36), one can non-dimensionalize the normal force to give

Since only isothermal condition is considered for the present case, the normal force at the

flow front can be integrated directly over the &ee surface to give

Fj = JvjrjRf-dr 
r

(2.53)
Si L& cS s, L&

Integrating by parts, one can cast Eq. (2.53) into the following form.
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p I f  odRV* I d ,  I
dTj.,

J _
Ca (Vi^*)f, ~(Vi*^t),, -  i V i  "  [vjH,nds

t i  OS OS S i ,

(2.54)

Equation (2.54) shows that the effect of surface tension has four contributing terms. The 

first two terms represent the contact line effect and the last two terms represent the effect 

over the free surface. To overcome the numerical instability induced by surface tension, 

an implicit treatment of the surface tension terms (i.e., the last terms in Eq. (2.54)) 

recommended by Slikkerveer et al. (1996) has been adopted. To obtain the implicit 

expression for the surface tension terms, one needs to know the surface tension at the 

next time step. By Taylor series expansion, the implicit surface tension terms can be 

obtained as follows.

t+4t

d t rV OT os
ds A t+0(A t)^. (2.55)

Since the algorithm used to track the free surface is linear (Eq. (2.27)), only the first two 

terms are needed. In our numerical approach, the change of surface tension at the contact 

line is neglected. Following the procedure discussed in previous section, the time 

dependent term in Eq. (2.55) can be written as
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= -At + Vi ^ ) d s  -  A t f t Æ ^ + Vi -  At J ^ jn ^ d s
rd t  o s os r d t os d t rd t

(2.56)

For the change in the tangential vector with time, it has been derived by Slikkerveer et ai. 

(1996) and is given by

^  = r ^ . n l n .  (2.57)
d t Id s J

For the change in the normal vector with time, it has been derived and documented in 

Appendix A. It is expressed in the following equation.

^  = J ^ . n V  (2.58)
d t yds J

Substitute Eqs. (2.57) and (2.58) into Eq. (2.56), the implicit surface tension term in the 

Eq. (2.56) now can be expressed as follows

-  At f ^ ( R ^ + Vi ^ ) d s  -  A t f t ( ^ ^ + Vi ^ y ^ ) d s  -  A t f ^ in .d s  
rdT os ds r dT os dT rd i

= - A t /  ( ^  ' n ) n l ( R ^ +  Vi ~ ) d s  -  ATft(U ̂  + v,- ^ ) d s  
dT y os o s r o s ds

ds (2.59)

By applying the implicit treatment for the surface tension above, one can successfully 

remove ripples on the free surface.

c. Automatic Mesh Scheme

As the flow front advances, an automatic grid generation scheme is required to
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recreate the mesh for the calculations in the next time step. The automatic grid 

generation scheme introduced by George (1991) and Heinrich and Pepper (1999) is 

realized by solving the following Laplace equations (2.60a, b) with the new location of 

the flow front as the boundary condition.

^RR+^zz=0» (2.60a)

^RR Hzz ~ ® • (2.60b)

Once the solutions of Eq. (2.60) are known, one can find R(^,q) and Z(^,q) through the 

inverse process. Using the chain rule, one obtains

Note that product of these derivatives yields the following relations

1 0 
0 1

'dK 6R" a
dr\ aR az

dZ az dt\ dr\
.5R az.

= M

or

■5 ^ aR '
aR az _  1 an an
an an '  J az aR

_8R az. 5^.

(2.61a)

(2.61b)

(2.62a)

(2.62b)
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where J is the Jacobian, which is similar to that defined in Eq. (2.24) except that X and Y 

are now replaced by R and Z. From Eq. (2.62), one can obtain the expressions of the 

second derivative for ̂  and q . Given 9%/3R =(1/J)(5Z/5ri), one has

aR" aç
Ü + i

j a n . aR n J  an .
f n
a R ’

(2.63a)

or

i l
aR"

a 'idz^ I a '1 ^
J  an, J an n J  an. J a^

(2.63b)

Carrying out the derivatives in Eq. (2.63b) one yields

a"^ 1
aR" J"

az a"z aza"zl \(  aj.az., ajazaz^i
1, aç an an 5n a^^

(2.64)
l^aqaqa^ a^ an" J

Similar expressions for a^^ /az \ and d^r\fdZ^ can be obtained with the aid of

Eq. (2.62). Given Eq. (2.60) and the values of dJ/d^ and dJ/dr\ in terms of R and Z, 

one can show that R and Z satisfy the following system

a"Ra"R

an' a^an

a"z a"z _ a"z .

where g„ = ^ ^ + 4 »

8 2 2  = R^ + ,

8 1 2

(2.65a)

(2.65b)

(2.65c)

(2.65d)

(2.65e)

A typical mesh used for flow injection through in center-gated disks is shown in Fig. 2.8.
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Table 2.1 : Comparison o f predicted flow float travel distances (Ay) at the 
full-developed stage (vertical channels)

Investigators Frame of Reference Ay
Wang et al. (1978) Moving—steady 1.04
Wang et al. (1979) Moving-steady 0.84
Mavridis et al. (1986a) Moving-steady 0.90
Behrens et al. (1987) Moving—steady 0.94
Behrens et al. (1987) flxed-transient 0.91
Shin and Lee (1995) fixed-transient 0.933
present study (1998) fixed-transient 0.930
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Figure 2.1 Flow injection through planar gaps: (a) vertical channels, (b)horizontal
and inclined channels (6 = 0®, 30®, 45®, and 60®).
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4)4=

Figure 2.2 A four-point bilinear element and its interpolation functions.
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4

1

5 6 

2 3

4

V « I V i ( ^ , i l ) V i ( T )
i=t

where

V, = W  

V 4 = W

V, = L'r'L'i"
and

L'-’ = 4 R -1 ) /2

C = i (n - i ) /2

V2 = L'*’L'« 

V, =L'«L'« 

V ,  =  L « L ‘«

L‘?’ = i -n '

V, =

V. =L“ L<’>

V, = l" l '»

L“  = % + ' ) / :  

L'/’ =n(n+i)/2

Figure 2.3 A nine-point biquadratic element and its interpolation functions.
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Figure 2.4 Viscosity variation of glycerol with temperature effects.
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Figure 2.5 A typical finite element mesh used for flow injection through planar gaps, 
(a) initial mesh, (b) mesh in transition..
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Figure 2.6 Flow injection through center-gated disks
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Figure 2 J  Construction for second radius of curvature (Behrens, 1983).
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(a)

(b)

Figure 2.8 A typical finite element mesh used for flow injection through center-gated 
disks: (a) initial mesh, (b) mesh in transition.
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CHAPTERS 

ISOTHERMAL INJECTION IN PLANAR GAPS

Flow injection between two parallel plates has been numerically studied using the 

finite element method described in the previous chapter. The advancement o f the flow 

front, its shape and velocity distribution are obtained. To validate the numerical code, the 

results obtained are compared with the data available in the literature for the special case 

of negligible gravitational and surface tension effects. The asymptotic (fully developed) 

values of the front tip travel distance relative to the contact lines (Ay) are listed in Table

2.1 for comparison. The definition of Ay for various channel orientations is shown in Fig. 

2.1. As shown, the present result agrees very well with the results obtained from the 

previous studies.

3.1 Flow Injection through Vertical Channels

3.1.1 Gravitational Effects

For flow injection through a vertical channel, the gravitational force is acting 

opposite to the flow direction. Its effects on the development o f the flow front at a given 

capillary number (Ca = 1) are shown in Fig. 3.2. The first curve represents the front 

shape at the time when the contact lines begin to move. Since the time step is controlled 

by the pre-set error criterion (Eq. (2.32)), its value is different in each case. As a result, it 

is difficult to present the flow front profiles at the exactly same time fhune. The flow 

front profiles presented in Fig. 3.2 are roughly at the same time frame and thus they are 

intended for qualitative discussion only. It is clear to see that the gravitational effect has
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significantly shortened the front tip travel distance. The initial front tip travel distance 

(when the contact line initiates its first move) decreases from 0.805 to 0.490 as the Stokes 

number increases from 0 to 10. As a result, the flow front becomes flattened when the 

gravitational force increases. This is understood since the gravitational force is acting 

opposite to the flow direction. The velocity fields under various gravitational effects are 

shown in Fig. 3.3. From the figure, the fountain flow pattern near the flow front can be 

clearly observed. The gravitational force flattens the flow front and minimizes the 

fountain flow region. As the Stokes number increases, the fountain flow region although 

becomes more confined, its effect can still be felt at the flow front. Also observed is that 

the flow at the upstream region (close to the inlet) has attained a fully developed 

(parabolic) velocity profile.

The advancement of flow front under various gravitational effects is shown in 

Fig. 3.4. As the gravitational force increases, the asymptotic value of the front tip travel 

distances decreases. It decreases from 0.964 to 0.559 as the Stokes number increases 

from 0 to 10 (Ca = 1). At the same time, it is observed that the gravitational effect also 

reduces the time needed for the first move of the contact line. The time is calculated to 

be 0.631 for S t= 0  and is decreased to 0.385 for St = 10. Since the gravitational effect 

flattens the flow front, the contact line is forced to move earlier. Figure 3.4 also shows 

that it would be faster for the flow to become fully developed when the Stokes number is 

higher. A similar situation is also observed for other capillary numbers (Ca = 2,5,10 

and 00 ).

The gravitational effects on the fully developed front tip travel distance is shown 

in Fig. 3.5 for capillary number fixed at Ca = 10 and oo. It shows that the gravitational
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force has a dramatic effect on the front tip travel distance when the Stokes number is 

greater than O.l. For Stokes numbers less than 0.1, the effect o f gravitation becomes 

insignificant. Based on this observation, one can conclude that the gravitational effects 

on fountain fiow are negligible under microgravity environment.

3.1.2 Effects of Surface Tension

The effect o f surface tension on fiow injection can be cross-examined from Fig. 

3.6. For a negligible gravitational force (St = 0), the asymptotic value of the front tip 

travel distance decreases from 0.965 to 0.929 as the capillary number increases fix>m I to 

00 (the limiting case of no surface tension effect). It clearly shows that the effect of 

surface tension is to expand the fountain flow region and increase the front tip travel 

distance. From the present study, it shows that the effect of surface tension on the 

relative front tip travel distance is insignificant for capillary number greater than 10. It 

becomes important only when the capillary number is less than 10. A similar situation is 

also observed for other Stokes numbers (St = 0.1,1,2, and 10).

Although the surface tension does not have a significant influence over the final 

profile of the flow front for capillary number greater than 10, it does affect the contact 

line moving time. For fluids with a larger surface tension (i.e., a smaller capillary 

number), a longer time is required for the contact line to initiate its first move because of 

a higher potential energy on their free surfaces. This surface energy can withstand larger 

shear stresses acting on the free surface and thus can move the free surface further 

downstream before the contact line begins to move. For a given flow rate, their contact 

lines will move later than those with a smaller surface tension. The time required for the
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contact line to initiate its first move is listed in Table 3.1 for various capillary and Stokes 

numbers. For a fixed Stokes number, the waiting time decreases with the capillary 

number. Similarly, it also decreases with the Stokes number when the capillary number 

is fixed.

From Fig. 3.5, it is also noticed that the effect of surface tension on the front tip 

travel distance is limited if the capillary number is greater than 10. This change on the 

relative fi'ont tip travel distance is less than 1% for all Stokes numbers considered (St = 0, 

O.l, 1 ,2, and 10).

3.1.3 Pressure Distribution

The pressure contour in a flow field with a negligible gravitational effects is 

shown in Fig. 3.7. It shows that the pressure gradient is constant in the upstream region 

but becomes more complicated near the fountain flow region, particularly in the vicinity 

of the moving contact lines. The pressure distribution can be cross-examined from Fig. 

3.8. In the upstream region, the pressures along the channel wall and the centerline are

exactly the same. The deviation appears only in the fountain flow region.

To get a better insight to the phenomenon observed, consider a creeping flow in a 

vertical channel (y is treated as flow direction and x is perpendicular to the flow 

direction ). When the flow becomes fully developed, the momentum equations are 

simplified to give:

^  = 0 (3.1a)
ÔK

j- -p g  =0  (3.1b)
ay ÔK

6 8



Momentum equations (3.1) can be non-dimensionalized using the half channel width (H), 

average velocity (U«), and fluid viscosity (p) to give:

1 = 0  (3^a)

With the boundary conditions; V = 0 for X = ±1. Where P is the dimensionless pressure 

and Sty (= pgyH^ / p U .) is the body force term in y direction due to gravitational effect. 

Since dP / dX = 0, the pressure is uniform in the direction perpendicular to the flow and 

is a function of Y only. Thus 3P /ÔY =constant (Eq. 3.2b) and the velocity distribution 

of the flow can be found to be:

V = y ( ^ + S t , ) { l - X = )  (3.3)

The fully developed velocity distribution of the creeping flow is known as 

V = | ( l - X ' )  (3.4)

Substituting Eq. (3.4) into Eq. (3.3), and thus

dP
dY
^  = -(Sty+3) (3.5)

For negligible gravitational effects (Sty = 0), the pressure gradient (ÔP / 3Y ) of the 

fully developed creeping flow is thus equal to -3. This result is compared with the 

pressure distributions of the flow injection along the vertical channel wall and centerline 

and is plotted in Fig. 3.8. Figure 3.8 shows that the pressure gradient for the injection 

flow in the upstream region is exactly the same as that of the fully developed creeping 

flow.
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For negligible sur&ce tension (Ca oo ), the efifects of the gravitational force on 

the pressure distribution along the channel wall and centerline are plotted in Fig. 3.9. 

Figure 3.9 shows that the pressure gradient increases as the Stokes number increases. 

Similar results are observed for other surface tension conditions (Ca = 1,2,5, andlO). 

Surface tension effect on the pressure distribution is shown in Fig. 3.10 for negligible 

gravitational effect. It shows that the pressure gradients of various capillary number have 

the same value, except the fountain flow region. Due to the surface tension effect, the 

pressure distribution shifts upward as surface tension increases. Similar results are 

observed for other Stokes numbers (St = 0 .1 ,1,2, and 10).

3.2 Flow Injection through Inclined Channels

3.2.1 Gravitational Effects

For flow injection through inclined channels (30", 45", and 60"), the gravitational 

force is acting both parallelly and perpendicularly to the flow direction. The normal 

component of the gravitational force destroys the symmetric flow structure which is 

featured in flow injection through vertical channels. In addition, the flow is sagging 

toward the bottom wall when it advances. Figures 3.11 to 3.13 show the gravitational 

effect on the development of flow front for various inclined channels (30", 45", 60") at a 

given capillary number (Ca = 1). For a given inclined angle, the sagging of fluid 

becomes more serious as the gravitational effect (St) increases. As a result, the flow fi’ont 

profile becomes more asymmetric and the front tip is observed to shift downward. On 

the other hand, the development of flow fix>nt approaches that o f the symmetric one when 

the inclined angle increases. The difference between the firont tip travel distance relative
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to the upper contact line, Ayi, and that relative to the bottom contact line, Ayz, becomes 

small, which is evident from Fig. 3.14. Figures 3.15 to 3.17 show the gravitational 

effects on the velocity fields for various inclined channels (30**, 45**, 60**) at a given 

capillary number (Ca = I). Again, as the inclined angle decreases, the lower fountain 

flow region expands as more gravitational force acting perpendicular to the flow direction 

increases. At the same time, more rolling motion is observed on the lower channel as the 

inclined angle decreases.

The effects of gravitational force on the advancement of flow front for various 

inclined angles are shown in Figs. 3.18 to 3.20. For a given inclined angle, the front tip 

travel distance relative to the upper contact line. Ay,, increases with the Stokes number 

while its travel distance relative to the bottom contact line, Ayz, decreases. As the 

inclined angle increases, the asymptotic value of Ay, decreases and that of Ay% increases. 

It is clear that these two values converge as the inclined angle approaches 90° (i.e., 

vertical channels) and the flow field becomes symmetric.

For a given inclined angle (30°) with Ca = 10 and St = O.l, the pressure 

distribution is shown in Fig. 3.21. It shows that the pressure gradient is constant in the 

upstream region. Similar results are also observed in other inclined channels. The 

gravitational effects on the pressure distribution along the upper and bottom wall for 

various inclined channels are shown in Figs. 3.22 to 3.24. As the gravitational effect 

increases, the pressure gradient increases. It also increases the pressure difference 

between the upper and bottom wall at the same flow fmnt travel distance. For a fixed 

capillary number and Stokes number, pressure gradient increases with the inclined angle 

because there are more gravitational forces acting against the flow.
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3.2.2 Effects of Surface Tension

The effect of surface tension can be examined firom Figs. 3.25 to 3.27. For a 

given inclined angle (30**) and a weak gravitational effect (S t=0.1), the asymptotic value 

of Ayi decreases from 0.966 to 0.965 and Ayz decreases from 0.870 to 0.862 as the 

capillary number increases from 10 to oo. The change is less than 1%. Thus, one can 

conclude that the surface tension effects on the asymptotic values of Ay, and Ayz are 

insignificant for the capillary numbers greater than 10. On the other hand, if the capillary 

number is less than 10, the effect of surface tension on Ayi and Ayz becomes more 

important, which is evident from Fig. 3.25. As the capillary number decreases from oo to 

I (i.e., surface tension increases), the values of Ayz and Ayi increase. For larger 

gravitational effects (St = 1 and 2), the value of Ayz increases but the value of Ayi 

decreases as surface tension increases. However, the results of inclined channels at 45° 

and 60** (Figs. 3.26 and 3.27) show that the values of Ayz and Ayi both increase with the 

surface tension for a given gravitational force.

3 J  Flow Injection through Horizontal Channels

3 J . l  Gravitational Effects

For flow injection through a horizontal channel, the gravitational force is acting 

perpendicular to the flow direction. This gravitational effect destroys the symmetric 

nature which is featured in flow injection through vertical channels. In addition, the flow 

is sagging toward the bottom wall as it advances. With an increase in the gravitational 

force, the sagging of fluid becomes more serious. Figure 3.28 shows the gravitational 

effect on the development o f flow front at a given capillary number (Ca = I). The case of
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St = 0 is included for comparison. As the gravitational force increases, the flow profile 

becomes more asymmetric. Also observed is the downward shifting o f the front tip 

location. The velocity fields under various gravitational effects are shown in Fig. 3.29. It 

is clear that the gravitational force has further modified the flow velocity distribution as 

compared with those in inclined channels. When the Stokes number increases, the 

fountain flow region at the upper channel is compressed while it is expanded at the lower 

channel. More rolling motion of fluid is observed in the lower chaimel.

Figure 3.30 shows the advancement of flow front under various gravitational 

effects (Ca = I). Because of the sagging of fluid, the asymptotic value of Ayi increases 

with the Stokes number while the asymptotic value o f Ayz decreases. For a weak * 

gravitational force (St = 0.1), the front tip is positioned close to the centerline of the 

channel when the flow reaches the fully developed stage. With an increase in the 

gravitational force (St = 1 and 2), the sagging of fluid becomes critical. Since the upper 

contact line moves relatively slower than the bottom contact line, Ayi initially increases 

with time. It continues for some time before it approaches the asymptotic value.

With weak surface tension and gravitational effects (Ca = 10 and St = 0.1), the 

pressure contour in the fully developed flow field is shown in Fig. 3.31. Although the 

pressure gradient is also a constant (except in the fountain flow region), the pressure 

distribution is not uniform across the channel height. This can be cross-examined from 

Fig. 3.32 for pressure distribution along both the upper and bottom walls. Despite that 

the gravitational force is acting perpendicular to the flow direction, it does not affect the 

pressure gradient in the upstream region. The pressure gradient (dP/dX) is still -3 in the 

upstream region, which is the same as the fully developed creeping channel flow.
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3 Effects of Surface Tension

The effect of surface tension on the horizontal channel flow can be examined 

from Fig. 3.33. For a weak gravitational force (S t=0.1), the asymptotic value of Ayi 

decreases from 1.00 to 0.974 while the asymptotic value of Ay% decreases from0.923 to 

0.853 as the capillary number increases from I to qo. It shows that the effect of surface 

tension is to hold and strengthen the free surface and thus it increases the values of Ayi 

and Ayz. However, for an increased gravitational force (St = 2 or 3), flow is sagging 

toward the bottom wall and the upper contact line is more difficult to move forward. For 

a given gravitational force, surface tension helps the upper contact line to move faster and 

thus reduces Ayi. On the other hand, surface tension is holding the free surface close to 

the bottom channel and which leads to an increase in Ayz. Actually, both changes in Ayi 

and Ayz are only about 2% as the capillary number increases &om 10 to « . One can thus 

conclude that the surface tension effect on the front tip travel distance is insignificant in 

horizontal injection molding if the capillary number is greater than 10.

Although the effect of surface tension on the relative front tip travel distance is 

insignificant for capillary numbers greater than 10, its effect on the waiting time for the 

contact lines to initiate their first move is quite obvious. The time required for the 

contact lines to begin their first move is listed in Table 3.2 for various capillary and 

Stokes numbers. For the bottom contact line, the waiting time decreases with the 

capillary number and Stokes number. However, for the upper contact line, the waiting 

time decreases with the capillary number when the Stokes number is less than or equal to 

unity, but increases with the capillary number if  the Stokes number is greater than unity. 

In all cases, the waiting time increases as the Stokes number increases.
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3.4 Conclusioa

The effects of gravitational force and surface tension on flow injection through 

various channel inclinations (0*, 30", 45", 60", 90") are analyzed using the Galerkin finite 

element method. The present study not only confirms the results of the previous studies 

(i.e., for the case when the surface tension and gravitational effects are both negligible), 

but also brings out the new evidences of the gravitational and surface tension effects on 

injection molding.

For vertical channels, gravitational force flattens the flow front and reduces the 

fountain flow region. It also shortens the time required for the contact line to initiate its 

first move and the total time to reach a fully developed stage. With negligible surface 

tension and gravitational effects, the pressure gradient o f the upstream flow has the same 

value as that of a fully developed creeping flow. As the gravitational force increases, the 

absolute value of the pressure gradient increases as indicated by Eq. (3.5).

The effect of surface tension is to expand the fountain flow region. With a large 

surface tension, the front tip travel distance increases. Although surface tension also has 

an influence over the waiting time for the first move of the contact line, its effect is 

insignificant for Ca > 10. The effect of surface tension on the front tip travel distance 

become important only when the capillary number is less than 10. Also, their effect on 

the pressure distribution is limited for Ca < I.

For horizontal channels, the effect of the gravitational force is drastic, especially 

for St ^  0.1. It has not only destroyed the symmetric nature of the flow field, but also 

greatly modified the fountain flow region, veloci^, and pressure distribution. Due to the 

sagging of fluid, the gravitational effect leads to non-uniform impregnation, a condition

75



which is not preferred in resin transfer molding processes. The effect of surface tension 

leads to an increase in the value of Ayz. However, the value o f Ayi increases with surface 

tension at St = 0.1 but decreases with surface tension when St = I and 2. Although the 

effect of surface tension on the front tip travel distance is insignificant for Ca > 10, but its 

effects on the waiting time is quite obvious.

For inclined channels, the gravitational effects on the development of the flow 

front, velocity field, pressure distribution and the front tip travel distance are in between 

the two limiting cases of vertical and horizontal channels. As the inclined angle 

increases, the flow Reid becomes more symmetrical and the difference between Ayi and 

Ayz reduces. The effect of surface tension on the asymptotic value of front tip travel 

distance becomes more important as the capillary number becomes less than 10.

A further increase in the gravitational force leads to the retreat of the upper 

contact line and the solution becomes more difficult. For resin transfer molding 

processes, it can be concluded that the presence of gravity results in non-uniform 

impregnation and will adversely affect the part quality.
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Table 3.1: Time required for the contact line to initiate its first move
(vertical channels)

St
1 2 5 10 00

0 0.631 0.462 0.296 0.285 0.240
0.1 0.595 0.429 0.296 0.285 0.240
1 0.529 0.396 0.285 0.276 0.236
2 0.495 0.362 0.285 0.269 0.229

10 0.385 0.296 0.240 0.229 0.196

Table 3.2: Time required for the contact line to initiate its first move (horizontal
channels): (a) upper contact line, (b) bottom contact line.

Ca
St

1 2 5 10 00

0.1 0.629 0.462 0.329 0.296 0.262
1 1.001 0.995 0.878 0.429 0.345
2 1.382 1.494 1.529 1.544 1.564

(a)

Ca
St

1 2 5 10 00

0.1 0.562 0.429 0.296 0.276 0.240
1 0.396 0.329 0.241 0.224 0.196
2 0.329 0.262 0.196 0.187 0.152

(b)
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(a)

T
Ay

1

(b)

Figure 3.1 Definition of the front tip travel distance relative to the contact lines (Ay,
Ayr, and Ayz): (a) vertical channel, (b) horizontal or inclined channels 
(0 = 0®, 30®, 45®, and 60®).
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Figure 3.2 Development of flow front in a vertical channel at various Stokes numbers (Ca = 1): (a) St = 0, (b) St = 0.1, (c) St = 1,
(d) St = 2, and (e) St = 10.
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Figure 3.3 Velocity fields for flow injection in a vertical channel at various Stokes numbers (Ca = 1): (a) St = 0, (b) St = 0.1, 
(c) St = 1, (d) St = 2, and (e) St = 10.
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Figure 3.4 Relative flow front travel distance under various gravitational efTects 
(vertical channels, Ca = 1).
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Figure 3.5 Relationship between the Stokes number and fully developed front tip 
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Figure 3.6 Fully developed front tip travel distance as a function of the Stokes and 
capillary numbers.
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Figure 3.7 Pressure contour of a fully developed flow field in vertical flow injection 
(St= 0,Ca 0 0 , and AP = 0.5).
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Figure 3.8 Comparison of pressure distribution o f fully-developed creeping flow and 
that of flow injection with negligible surface tension and gravitational 
effects.
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Figure 3.9 Gravitational efTects on the pressure distribution along the wall and 
centerline (Ca -► oo ): wall (— ) and centerline (-----).
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Figure 3.10 Surface tension effects on the pressure distribution along the wall and 
centerline (St = 0): wall (— ) and centerline (— ).
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Figure 3.11 Gravitational effects on the development o f flow front in a 30° inclined 
chaimei (Ca = I): (a) St = 0.1, (b) St = 1, and (c) St = 2.
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Figure 3.12 Gravitational effects on the development o f flow front in a 45° inclined
channel (Ca = 1): (a) St=0.1, (b) St = 1, and (c) St = 2.
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Figure 3.13 Gravitational effects on the development of flow front in a 60** inclined
channel (Ca= 1): (a) St=0.1, (b) St= I, and (c) St = 2.
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Figure 3.14 Development of flow front for flow injection in various inclined channels 
at Ca = 1 and S t=2.
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Figure 3.15 Gravitational effects on the velocity field for a 30° inclined channel:
(a) St = 0.1, (b) St = 1, and (c) St = 2.
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Figure 3.16 Gravitational effects on the velocity field for a 45** inclined channel:
(a)St=0.1,(b)St= 1, and (c) S t=2.
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Figure 3.17 Gravitational effects on the velocity field for a 60° inclined channel:
(a) St=0.1, (b) St = 1, and (c) St=2.
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Figure 3.18 Relative flow front travel distance under various gravitational effects in a
30® inclined channel; (a) St=0.1, (b) St = 1, and (c) St = 2.
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Figure 3.19 Relative flow front travel distance under various gravitational effects in a
45® inclined channel: (a) St=0.1, (b) St =  1, and (c) St=2.
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Figure 3.20 Relative flow front travel distance under various gravitational effects in a
60® inclined channel: (a) S t=0.1, (b) St= 1, and (c) St=2.
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Figure 3 .21 Pressure contour of a fully developed flow field in a 30° inclined channel
(Ca = 10, St =0.1, and AP = 0.5).
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Figure 3.22 Gravitational effects on the pressure distribution in a 30° inclined channel: 
upper wall (— ) and bottom wall (—  ).
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Figure 3.23 Gravitational effects on the pressure distribution in a 45° inclined channel: 
upper wall ( —  ) and bottom wall (—  ).
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Figure 3.24 Gravitational effects on the pressure distribution in a 60° inclined channel: 
upper wall (— ) and bottom wall (—  ).
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Figure 3.25 Fully developed front tip travel distance relative to the upper contact lines, 
Ayi, and bottom contact line, Ay%, as a function of the Stokes and capillary 
number (30° inclined channels).
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Figure 3.26 Fully developed front tip travel distance relative to the upper contact lines, 
Ayt, and bottom contact line, Ayz, as a function of the Stokes and capillary 
number (45* inclined channels).

103



1.5 -hh

Ay P - .

0.0

O S t-0.1 
□  St=1 
O St = 2

1.0
I

10

» »  m "

10
-M

00

Ca

Figure 3.27 Fully developed front tip travel distance relative to the upper contact lines, 
Ayi, and bottom contact line, Ayz, as a function of the Stokes and capillary 
number (60* inclined channels).
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Figure 3.28 Development of flow front for injection through a horizontal channel at
various Stokes numbers (Ca= l):(a)S t = 0, (b )S t=O .I,(c)S t=  I, and 
(d)S t= 2 .
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Figure 3.29 Velocity fields for flow injectioii through a horizontal channel at various 
Stokes numbers (Ca = I): (a) S t=0, (b) St = O.I, (c) St = I, and 
(d )S t= 2 .
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Figure 3.30 Relative flow firent travel distance under various gravitational effects
(horizontal channels, Ca= 1): (a) St = 0.1, (b) St = I, and (c) St = 2.

107



Rgu« 3.31 ^ s u «  con.our „ fa  Mly developed flow field ina horizonlel ehanoel
(La -  10, St = 0.1, and AP = 0.5),

lOS



151

P

3 4 52 60 1

Figure 3.32 Gravitational effects on the pressure distribution in a horizontal channel: 
upper wall (— ) and bottom wall (—  ).
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Figure 3.33 Fully developed front tip travel distance relative to the upper contact lines. 
Ay I, and bottom contact line, Ay%, as a function of the Stokes and capillary 
number (horizontal channels).
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CHAPTER 4

ISOTHERMAL FLOW INJECTION IN CENTER-GATED DISKS

For flow injection through center-gated disks, the cross-section area of the flow 

passage increases and the average flow velocity decreases when the flow advances 

radially. As a result, the flow inside a center-gated disk never reaches the fully 

developed stage. A comprehensive three-dimensional mathematical model is developed 

to simulate the filling stage of the injection molding process in the center-gated disk 

under isothermal condition. Since the flow is axisymmetric, only half of the domain is 

used in the numerical simulation. The left boundary of Fig. 2.6 represents the axis of a 

center-gated disk. The flow is assumed to be quasi-steady in this study. A combination 

of Galerkin finite element method and predictor-corrector scheme are employed to 

evaluate the surface tension and gravitational effect on the transient flow front shape, 

velocity distribution, pressure distribution, and advancement of the flow front.

The results of this study have covered a wide range of the governing parameters 

(i.e., 0 < Bo < 10, and Ca = 0.1,0.2,1,2,10, and oo). All parameters, such as capillary 

number (Ca), Stokes number (St), and Bond number (Bo = St Ca), are defined based on 

the characteristic velocity U . , the radius of the injection hole R, and the viscosity of the 

fluid p. The definitions o f the front tip travel distance relative to the contact lines are 

given in Fig. 2.6.
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4.1 Flow Injection In Center-Gated Disks with Negligible Surface Tension and

Gravitationai Effects

For flow injection through center-gated disks with negligible surface tension and 

gravitational effect (St = 0 and Ca -> oo ), the initial flow front shape is assumed to be 

flat and perpendicular to the axis (Fig. 2.8a). In the numerical simulation, the fluid 

initially takes up the space the depth o f one hole radius below the injections hole and the 

initial velocity distribution is assumed to be fully developed. A mesh that consists of 120 

elements and 525 nodes is employed in this study (Fig. 2.8b). The total number of 

unknowns (U, V, and P) is 1193. The development of the flow front, as the fluid 

advances in the center-gated disks, is shown in Fig. 4.1. The first solid line in Fig. 4.1 is 

the initial front position. The first dash line shows the flow front position when the front 

tip just touches the upper wall and the second one represents the flow front position when 

the bottom contact line begins to move. Before the front tip reaches the top disk, the flow 

front advances upward along the centerline, but the bottom contact line does not move at 

all. As the front tip touches the top wall, it becomes the upper contact line and moves 

radially outward along the top wall. During this period of time, the bottom contact line 

remains still on the lower wall. This stationary nature of the bottom contact line is 

simply a consequence of relative high level viscous effect in the fluid since Reynolds 

number is much less than one. As times increases, the bottom contact line begins to 

move (at t  = 4.568). The upper contact line is initially moving faster than the bottom 

contact line. Finally, the values of front tip travel distances Ar, and Ar% (relative to 

upper and bottom contact lines respectively) converge and the flow profile becomes 

symmetric downstream.
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The velocity distribution at various injection times is shown in Fig. 4.2. From the 

figure, the fountain flow pattern can be clearly observed near the flow front As soon as 

the fi'ont tip reaches the upper disk, its velocity is assigned zero immediately to satisfy the 

no-slip boundary condition on the top wall. Actually, the velocity of the front tip is 

calculated to be 0.93 when it hits the upper wall. It is expected that some oscillations 

(flow transients) may occur after the fi’ont tip hits the upper wall. This situation, although 

interesting, was not investigated further due to the limitation of the numerical code. The 

flow then turns and spreads radially outward after it reaches the top wall. It acts like a 

three-dimensional round jet impinging the upper disk at right angle and spreading radially 

outward in all directions. The center of the upper disk acts like a stagnation point. The 

velocity distribution along the axis decreases gradually from 2 to 0. As the flow direction 

turns radial, more motion takes place at upper half gap in the earlier stage. This explains 

why the upper contact line is moving fast in the beginning of spreading. Since the flow 

rate is fixed, the average velocity of the flow front decreases gradually when the flow 

advances radially outward. As a result, the fountain flow effect is more clearly observed 

in the early stage. When the flow advances, its effect diminishes gradually, but can still 

be felt at the flow front.

The relative front tip travel distance during the injection process can be examined 

from Fig. 4.3. Both Ar, and Ar̂  are calculated after the front tip reaches the upper wall.

As the flow advances, Ar, decreases immediately and Ai  ̂ increases almost linearly 

before the bottom contact line begins to move. When the bottom contact line begins to 

move, the value of Ar̂  decreases immediately. The sharp change in the curve indicates 

the time when the bottom contact line begins to move. At the meantime, the value of Ar,
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begins to increase. Thereafter, the difference between Ar, and ATj continues to decrease 

as the flow advances. It eventually becomes zero if the injection time is long enough.

From the previous studies, we know that the moving contact angle is 180** when 

the surface tension and gravitational effects are negligible. The moving contact angle of 

the present case is shown in Fig. 4.4. It shows that the upper contact angle is about 

171.5** when the flow front reaches the upper wall. Afterward, it increases with some 

oscillations and approaches ISO**. The oscillation becomes weak when the flow moves 

further downstream. On the other hand, the bottom contact line does not move until the 

contact angle is increased approximately up to ISO**. The asymptotic values of both 

upper and bottom contact angles are ISO**. It also shows that the oscillation of the upper 

contact angle is weaker than the bottom one in the final stage

The pressure field in the center-gated flow injection is shown in Fig. 4.5. The 

pressure contour is plotted with an increment of 0.5 dimensionless pressure (pU , /H  ). 

From the figure, it is observed that pressure decreases almost linearly in the upstream 

region flow entry and in the downstream region except close to turning comers and flow 

front Since the flow direction changes, the pressure drop is large near the bottom wall.

It is also observed that there are pressure jumps along the axis and the bottom wall (i.e., 

close to the turning points).

4.2 Gravitational Effects on Flow Injection through Center-Gated Disks 

For flow injection through center-gated disks, the gravitational force is acting 

perpendicular to the flow direction in the downstream while it is acting against to the 

flow direction close to the injection hole. Figure 4.6 shows the gravitational effects on
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the development o f flow fi'ont at a given capillary number (Ca = 1). Since each time step 

is controlled by the pre-set error criterion (Eq. 2.32), its value is different for each case. 

The flow fiont profiles presented in Fig. 4.6 are not at the same time fiame and they are 

intended for reference only. The flow fi-ont profiles shown in Fig. 4.6 are plotted 

approximately every dimensionless time except the first curve which is about 0.5 

dimensionless time. The first dash curve shows the flow firont position at the time when 

the front tip reaches the top disk. The second one represents the flow front position at the 

time when the bottom contact line begins to move. Clearly, the gravitational force has 

significantly modified the shape of flow firont. As the gravitational force increases, the 

firont tip is compressed and becomes flattened before it hits the top wall. During the 

radial spreading, the firont tip position is shifting downward as the flow advances. The 

time required for the flow firont to reach the upper wall increases from t = 0.729 to 

T = 1.1292 when the Bond number (Bo = Ca St) increases from 0.1 to 10. However, the 

time required for the bottom contact line to begin its move decreases from t = 2.51 to 

t  = 1.28 for the range of Bond number. If the gravitational force keeps increasing, the 

bottom contact line will begin to move before the flow front reaches the upper wall. In 

addition, the flow will sag forward the bottom wall downstream.

The velocity fields under various gravitational effects are shown in Fig. 4.7. For a 

given capillary number (i.e., a fixed surface tension effect), if the gravitational force 

increases (correspondingly, the Bond number increases), the fountain flow region near 

the upper disk is compressed while it is expanded at the lower disk. More rolling motion 

o f fluid is observed near the lower disk, same as the one observed in the horizontal 

channel case. If the gravitational force increases further, more external pressure pumping
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power is required to overcome the gravitational force. Otherwise, the flow front won’t be 

able to reach the upper wall and the fluid will not fill the disk gap completely.

For a fixed capillary number (Ca - 1), the relative front tip travel distance under 

various gravitational effects (in terms of the Bond number) are shown in Fig. 4.8. Due to 

the sagging of the fluid, gravitational effects increase the time required for the flow front 

to reach the upper wall but shorten the time required for the bottom contact line to begin 

its move. Results shows that the front tip travel distances, Ar% and Ar, display the same 

trend as that of the special case with negligible surface tension and gravitational effects 

(Bo = 0). The difference between Atj and Ar, decreases as the gravitational force 

increases. The case with negligible surface tension and gravitational effects is also 

included in Fig. 4.8 for comparison. For a weak gravitational force, the value of ( Arj >

Ar, ) approaches an asymptotic value in this study. For higher gravitational effect (Bo > 

5), the value of(Ar% - Ar, ) decreases as the flow advances.

The effect of gravitational force on the moving contact angle is shown in Fig. 4.9. 

When the front tip reaches the upper wall, the upper moving contact angle increases 

from 172.39“ to 179.3“ if the gravitational effects increase from Bo = 0.1 to Bo = 10. On 

the other hand, the bottom moving contact angle reduces from 179.8“ to 177.2“ when the 

bottom contact line begins to move. Figure 4.9 also shows that the oscillation of the 

upper contact angle reduces as the gravitational effects increase while it becomes more 

serious for the bottom contact angle. Since the velocity of the flow front reduces as the 

flow advances, the local capillary number decreases and bottom contact angle reduces. 

This result is consistent with the conclusion of the Shikhmurzaev (1994).
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The pressure contours of the flow field in center-gated disks under various 

gravitational effects are shown in Fig. 4.10. The increment o f the pressure contours is 

one dimensionless pressure in each case. For flow injection under a strong gravitational 

force, it requires a higher injection pressure at the entry. The entry pressure varies from 

23.53 to 35.32 dimensionless pressure if the Bond number increases from 0.1 to 10. The 

pressure gradient along the center axis is almost linear except the region close to the top 

wall. Results obtained also indicate that there are pressure jumps near two turning points. 

For a weak gravitational condition (Bo = 0.1), the flow fiunt is positioned almost right at 

the center of the two disks. The pressure contours in the downstream region (away from 

the front tip) is similar to that in the horizontal channel. As the gravitational force 

increases, the contour in the downstream region inclined further to the bottom wall. The 

lowest pressure is located at the upper contact line.

4.3 Surface Tension Effects on Flow Injection through Center-Gated Disks 

The surface tension effect on the development of flow front is shown in Figure 

4.11. As before, the first dash curve shows the flow front position when the front tip 

reaches the upper wall. The second one represents the flow front position at the time 

when the bottom contact line begins to move. For a given Bond number (Bo = 1), the 

time required for the bottom contact line to begin its move reduces from t = 3.342 to 

t  = 1.781 dimensionless time when the capillary number reduces fi*om 10 to 0.1. 

However, the time required for the flow fi:ont to reach the upper wall reduces firom 

t  = 0.778 to T = 0.727 over the same range of the capillary number. Although surface
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tension may have some influence over the flow &ont shape in the early filling stage» its 

e£Tect on the final shape is insignificant.

The effect o f surface tension on flow injection through center-gated disks can be 

cross-examined from Fig. 4.12. Results shows that the advancement o f the front tip 

travel distance relative to upper and bottom contact line, Âr, and has the same trend 

as that of the special case (St = 0 and Ca -> qo) .  For a given Bond number (Bo = 1), the 

difference between and Ar, increases as the capillary number increases in the early 

filling stage. However, they all approach the same asymptotic value in the final stage. 

Figure 4.12 also shows that a fluid with a smaller capillary number can reach the upper 

wall faster and the time required for the bottom contact line to begin its move is shorter.

The effect of surface tension on the moving contact angle is shown in Fig. 4.13. 

For a given Bond number (Bo = I), a larger capillary number results in a larger 

oscillation on the upper moving contact angle, but its effect on the asymptotic value of 

both moving contact angles (upper and bottom moving contact angles) is insignificant.

4.4 Conclusions

The effects of gravitational force and surface tension on flow injection through a 

center-gated disk are analyzed numerically using a Galerkin finite element method. In 

order to predict the flow front shape, a comprehensive three-dimensional mathematical 

model is developed for flow injection in the center-gated disks. The transient flow shape 

and flow fields in the center-gated gap are obtained first for flows with negligible surface 

tension and gravitational effects. Then, the advancement of flow front, pressure
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distribution, moving contact angle, and flow fields are compared with those subject to 

various surface tension and gravitational effects.

With negligible gravitation and surface tension, flow front will reach the upper 

wall and then spread radially while bottom contact line still sticks on the wall. It is due to 

the high level of viscous effect (Re «  I). During this process, injection flow acts as a 

three dimensional stagnation flow impinges on the upper wall at right angle to it and flow 

away radially in all directions. The center of the upper wall acts as a stagnation point. 

When the flow front reaches the upper wall, it becomes the upper contact line. Results 

obtained shows that the upper contact line moves faster than bottom contact line in the 

earlier stage and most flow fluid is distributed on the upper half gap. When the bottom 

contact line begins to move, the values of the front tip travel distance relative to upper 

and bottom contact line, Ar, and Afj, approach to each other. Finally, the flow front 

shape is symmetrical between gap and both upper moving contact angle and bottom 

moving contact angle are 180°.

If the gravitational effects are considered, the gravitational force can significantly 

modify the flow front shape. As the gravitational force increases, the front tip is 

compressed and becomes flattened before it reaches the top wall. The front tip position is 

also moving downward as flow advances. For each case, the flow turns and spreads 

radially after it reaches the upper disk. It acts as a three-dimensional stagnation flow 

impinges on the upper disk which we observed in without gravitational and surface 

tension case. It also shows that the upper contact line is moving faster than the bottom 

contact line in the earlier stage. The difference between the upper and bottom contact 

line travel distance (absolute value) increases. The time required for the flow front to
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reach the upper wall increases if  the Bond number (Bo) increases. However, the time 

required for the bottom contact line to begin its move is shortened. If the gravitational 

effects keep increasing, the bottom contact line begins to move before the flow front 

reaches the upper wall. Finally, the flow is sagging in the bottom half. The gravitational 

force has also greatly modified the velocity field. If gravitational effect increases, the 

flow is sagging in the bottom half. The fountain flow region at the upper gap is 

compressed while it is expanded at the bottom half as the flow advances. Since the 

average front velocity reduces as the flow advances, the fountain flow effect is most 

noticeable in the early stage of spreading. When the flow advances, its effect diminishes 

gradually, but can still be felt at the flow front. More motion is at upper half gap in the 

earlier stage. It explains the reason why the upper contact line is moving fast in the 

beginning.

For a given Bo number, the result shows that a fluid with a smaller capillary 

number reaches the upper wall faster and the time required for the bottom contact line to 

begin to move shortens. It also leads the flow approaching symmetrical between the gap. 

The difference between the movement of the upper and bottom contact lines approaches 

the same value.
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Figure 4.1 Development of flow flont for flow injection through center-gated disks 
with negligible surface tension and gravitational effects.
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Figure 4.2 Velocity  ̂fields for flow injection through center-gated disks with
negligible surface and gravitational effects: (a) t  = 0.557, (b) t  = 1.512, 
(c) T = 3.512, and (d) t  = 12.009.
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Figure 4.3 Relative front tip travel distance for flow injection through center-gated 
with negligible surface tension and gravitational effects.
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Figure 4.4 Development o f contact angles in a center-gated flow injection without
surface tension and gravitational effects (a) upper contact angle, (b) bottom 
contact angle.
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Figure 4.5 Pressure contour for flow injection through center-gated disks with 
negligible surface tension and gravitational effects (ÂP = 0.5).
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(a)

(b)

Figure 4.6 Development o f flow front for flow injection through center-gated disks
under various gravitational effects (Ca = I): (a) Bo =0.1, (b) Bo = I,
(c) Bo = 5, and (d) Bo = 10.
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(c)

(d)

Figure 4.6 Continued
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(a) (c)

(b) (d)

Figure 4.7 Velocity fields for flow injection through center-gated disks under various gravitational effects (Ca = 1): (a) Bo = 0.1,
(b) Bo = 1, (c) Bo = 5, and (d) Bo =10.
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Figure 4.8 Relative front tip travel distance for flow injection through center-gated 
disks under various gravitational effects (Ca = 1).
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Figure 4.9 Development of moving contact angles for flow injection through center-gated disks under various gravitational effects 
(Ca = 1 ); (a) Bo =0.1 and (b) Bo = 10.
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(a)

(b)

Figure 4.11 Development o f flow front for flow injection through center-gated disks
under various surface tension effects (Bo = 1): (a) Ca = 0.1, (b) C a=0.2,
(c) Ca = 1, (d) Ca = 2, and (e) Ca = 10.
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Figure 4.11 Continued
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Figure 4.12 Relative front tq> travel distance for flow injection through center-gated 
disks under various surAce tension effects (Bo = I).
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CHAPTERS

NON-ISOTHERMAL FLOW INJECTION THROUGH VERTICAL CHANNELS

In the injection molding process, the polymer melt at an elevated temperature is 

injected into a stationary mold. Thus, the flow is non-isothermal and has a transient free 

surface. In this chapter, the thermal effects on flow injection between two parallel 

vertical are analyzed using Taylor-Galerkin finite element method. The effects of heat 

transfer on the advancement o f the flow front, transient front shape, velocity, and 

pressure distributions are carefully investigates. To correlate the results, the temperature 

and viscosity distributions at various Peclet numbers ( Pe = Re* Pr ) are closely examined. 

To assess the thermal effects on flow injection through vertical channels, the results 

obtained here for various Peclet numbers are compared with those reported in Chapter 3 

for the isothermal case.

The present study have covered a wide range of the governing parameters (i.e.,

1 < Pe < 50,0 < St < 10, and Ca = 1 and qo) .

5.1 Thermal Efiects

In the present study, it is assumed that fluid at a higher temperature is injected to a 

vertical channel, in which the channel walls are maintained at lower temperature. For 

computational purpose, glycerol is taken to be the fluid in consideration. The correlation 

of its viscosity with temperature has been presented in Chapter 2. The inlet fluid 

temperature and wall temperature are fixed at 100*’C and 20*C, respectively.

For flow injection through vertical channels, non-uniform temperature in fluid
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affects the velocity and pressure distributions in the flow fields through the change of 

fluid's viscosity. Its effects on the development of the flow front are shown in Fig. 5.1 

when the surface tension and gravitational effects are negligible (Ca -> oo and St = 0).

As explained earlier, the time step used for the present study is controlled by the pre-set 

error criterion (Eq. (2.32)), thus its value is different in each case (i.e., variable time step). 

As a result, it is only possible to present the flow profiles at the approximately same 

times. From Fig. 5.1, it is clear to see the added heat transfer effects have extended the 

front tip travel distance as the Peclet number increases. The initial front tip travel 

distance (when the contact line initiates its first move) increases from 0.806 to 0.912 as 

the Peclet number increases from 1 to 50. Also, the relative front tip travel distance (Ay) 

increases with the Peclet number at any given injection time. Actually, the result shows 

that Ay does not reach an asymptotic value during the filling process considered in the 

present study (i.e., 6 dimensionless time) as one has observed in the isothermal case. 

Since the Peclet number represents the relative magnitude of heat transfer by convection 

to that by conduction, a flow with a higher Peclet number will carry more heat in the flow 

direction, which leads to a sharper temperature gradient at the wall. As a result, the fluid 

viscosity near the wall is higher than that at the centerline. For a higher Peclet number, 

the added thermal effect increases the axial velocity along centerline and thus increases 

Ay.

The corresponding velocity fields under various Peclet numbers are shown in Fig. 

5.2. From the figure, it is clear to see that the velocity vectors in the flow front region 

always direct themselves from the centerline towards the wall. This indicates that fluid 

in the central region rolls out towards the wall due to the fountain flow effect The
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fountain flow pattern can be clearly observed near the flow flont region. As the Peclet 

number increases, the fountain flow region is expanded further downstream and its effect 

becomes more obvious.

The added thermal effects on the veloci^ distribution along the centerline are 

shown in Fig. 5.3a. From the figure, it is obvious that the thermal effects have 

dramatically modified the velocity distribution. For isothermal flow injection, the 

upstream velocity distribution along the centerline remains at 1.5, the fully developed 

value. It decreases gradually toward the flow front due to the fountain flow effect. 

However, for the non-isothermal case, the axial velocity along the centerline increases 

significantly upstream but decreases sharply near the flow front. As will be revealed 

later, this is due to a smaller viscosity that the fluid experiences along the centerline as 

compared with that near the flow front.

The thermal effects on the axial velocity distribution across the channel width are 

shown in Fig. 5.3b for various locations. It shows that the axial velocity has a maximum 

value at the centerline region and a minimum at the wall. Further downstream, the axial 

velocity decreases in the centerline region but increases near the wall, especially at the 

flow font. Since the thermal effects increase the axial velocity along the centerline, it 

extends the relative front tip travel distance Ay (Fig. 5.4).

The advancement of flow font for various Peclet numbers can be cross-examined 

from Fig. 5.4. The result of the isothermal case is also included for comparison. Since 

the flow with a larger Peclet number carries more heat in the flow direction, it reduces 

the fluid viscosity and increases the axial velocity along the centerline. As the result, the 

font tip travel distance increases with the Peclet number during the filling process. From
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the figure, it is clear that the flow with a larger Peclet number will require a longer 

waiting time to initiate its first move. The relative front tip travel distance keeps 

increasing with time for the non-isothermal flows whereas it reaches an asymptotic value 

for the isothermal flow after certain time (Chapter 3). The relative front tip travel 

distance for various Peclet numbers at selected times are also listed in Table 5.1 for 

reference. The fluctuation of Ay is observed for all cases and becomes large when the 

Peclet number increases. This is believed to be caused by the contact line moving 

scheme and can be reduced by refming the elements. A similar situation is also observed 

for flows under other surface tension and gravitational conditions ( 0 < St < 10 and Ca = 1 

andoo).

To better understand the variation of flow field with time, the temperature and 

viscosity distributions at various times are shown in Figs. 5.5 and 5.6. All the data 

presented in Figs. 5.5 and 5.6 have been normalized by the reference temperature and 

reference viscosity. As time increases, the fluid temperature decreases and viscosity 

increases for any given point in the centerline region. From Fig. 5.5, fountain flow 

effects can be clearly observed since the fluid with a higher temperature (along the 

centerline) rolls out towards the wall. As a result, the fluid viscosity is the smallest along 

the axial direction at the fountain flow region and it increases rapidly as the fluid moves 

closer to the wall (Fig. 5.6).

The temperature and viscosity distributions for various Peclet numbers are shown 

in Figs. 5.7 and 5.8. The case with constant viscosity is also included for comparison 

(Fig. 5.7). Again, the data presented in Figs. 5.7 and 5.8 are normalized by the reference 

temperature and reference viscosity. A higher temperature gradient and thus a higher
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viscosity gradient are found near the wall in the entrance region due to thermal boundary 

condition imposed. For a larger Peclet number (Pe = SO), the temperature along the 

centerline and near the front tip remains close to the inlet temperature. Accordingly, the 

fluid viscosity is also close to that of the inlet fluid. With the decrease of temperature, 

viscosity increases rapidly near the wall. When the Peclet number is small (e.g., Pe = 1), 

the temperature gradient is mostly confined to the upstream region. The fluid 

temperature at the front tip and along the centerline is considerably lower and as such the 

viscosity there is higher. Since the viscosity is a function of temperature, a non-uniform 

temperature distribution leads to a non-uniform viscosity distribution in the flow field, 

with the smallest value in the core region. As a result, the axial velocity increases in the 

core region, and which in turn further extends the relative front tip travel distance Ay 

(Fig. 5.4). The thermal plume is also extended further downstream (comparing Fig. 5.7

(a) and (c)).

Figure 5.9 shows the pressure distribution for various Peclet number. In the 

entrance region, the pressure profiles have been greatly modified by the presence of a 

large temperature (and thus, viscosity) gradient. Recall that a uniform pressure profile 

was observed in the isothermal case. A high pressure gradient occurs at the regions near 

the wall and the contact line. It is understood that this high pressure gradient has resulted 

from a high viscosity gradient occurring at these regions (Fig. 5.8), which in turn is due 

to the presence of a high temperature gradient (Fig. 5.7). The pressure gradient becomes 

almost constant one channel width downstream of the inlet, but becomes more 

complicated near the flow front, especially in the region close to the contact line. With 

an increase in the Peclet number, a smaller injection pressure is required in the inlet
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After S dimensionless injection time from the start of injection, the maximum inlet 

pressure has increased from 39.39 to 185.33 as the Peclet number decreases from 50 to 1. 

The pressure distributions along the centerline and the wall are shown in Fig. 5.10. The 

results from the isothermal case are also included for comparison. From the figure, it is 

observed that the absolute pressure gradient increases as the Peclet number decreases. In 

addition, as the Peclet number increases, the pressure gradient along the wall approaches 

that of the centerline constant and both become constant in the front region.

The variation of contact angle for various Peclet numbers is shown in Fig. 5.11. 

After the contact line begins to move, some fluctuation is observed in the earlier stage for 

Pe = 50. After several time steps, the contact angles become more stable and approach 

180°. From these figures, one can conclude that the thermal effect on the variation of 

contact angle is rather limited.

5.2 Gravitational Effects

For flow injection through a vertical channel, the gravitational force is acting 

opposite to the flow direction. Figure 5.12 shows the development of the flow front for a 

given capillary number (Ca = 1) and various gravitational forces. It is clear to see that a 

large gravitational force greatly shortens the front tip travel distance. For Pe = 10, the 

initial front tip travel distance (when the contact line initiates its first move) decreases 

ftom 0.904 to 0.636 when the Stokes number increases from 0 to 10. As a result, the 

flow front becomes flattened when the gravitational force increases. Similar situation is 

observed for Pe= 1 and 50.

The velocity distributions under various gravitational forces are shown in Fig.
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s. 13. From the fîguie, the fountain flow effects can be clearly observed near the flow 

flont It is easy to see that gravitational force flattens the flow front and compresses the 

fountain flow region. As the gravitational force increases, the fountain flow region 

becomes more confined, and its effect is more obvious near the flow front. With an 

increase in the Peclet number, the rolling motion of the fluid at the flow fl-ont can be 

clearly observed (i.e., the change o f the vector angle).

The relative flow flont travel distance under various gravitational effects is 

shows in Fig. 5.14 for a given capillary number (Ca = I). For all Peclet numbers 

considered, the instantaneous flont tip travel distance decreases as the gravitational force 

increases. A large gravitational force (i.e., a high Stokes number) generally reduces the 

time required for the contact line to initiate its first move. For Pe = 10, this waiting time 

is calculated to be 0.708 at St = 0 and it reduces to 0.502 at St = 10. The times required 

for the contact line to initiate its first move under various surface tension and 

gravitational effects are listed in Table 5.2. From the table, it is clearly observed that the 

gravitational force shortens the waiting time for the contact line to begin its first move. 

Since the gravitational force compresses and flattens the flow front, the contact line is 

forced to move earlier. The relative flont tip travel distances under various surface 

tension and gravitational effects are listed in Table 5.3 for some selected times. From the 

table, it is observed that the gravitational force has a more significant impact on the 

relative flow flont tip travel distance when the Peclet number is large. For Pe= I, Ay 

decreases flom 0.995 to 0.905 as the Stokes number increases flom 0 to 10. At the same 

time, it decreases flom 1.086 to 0.746 when the Stokes number increases flom 0 to 10. 

Since the flow with a higher Peclet number has a higher temperature and a lower
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viscosity on the flow front The gravitational force is able to compress the front region 

further. The thermal effects on the relative front tip travel distance can be cross- 

examined from Table 5.3 for various gravitational effects. The results show that the 

relative flow front tip travel distance increases with the Peclet number if the gravitational 

effect is small (e.g., 0 < St < I). On the other hand, the relative flow front tip travel 

distance decreases with the Peclet number when the gravitational effect is significant 

(St =10).

The gravitational effects on the pressure distribution is shown in Fig. 5.15 for 

Ca = 1. As observed earlier, a high pressure gradient occurs at the entrance region near 

the wall due to the presence of a higher temperature gradient. There also exists a 

complicated pressure gradient in the vicinity of the contact line. The pressure gradient 

becomes nearly constant about one channel width downstream from the inlet. From the 

figure, it is clearly observed that gravitational effect significantly increases the inlet 

injection pressure and pressure distribution close to the contact line. For Pe = 1, the 

maximum pressure (which is the required pressure at the inlet for flow injection) has 

increased from 186.50 to 250.60 as the Stokes number increases from 0 to 10. A similar 

trend is observed for Pe = 10 and 50. From the pressure contours, it is clearly observed 

that a smaller injection pressure is required when the Peclet number is large. The 

pressure distributions along the wall and centerline are presented in Fig. 5.16 for cross- 

examination. As the gravitational effect increases, the pressure distribution between the 

wall and centerline (at the same distance along the flow direction) decreases. For a given 

gravitational force, as the Peclet number increases, the required injection pressure 

decreases and pressure gradient approaches constant.
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Figures 5.17 and 5.18 show the transient temperature and viscosity distributions 

under at a given set o f flow condition (St = 1, Ca = 1 and Pe = 10). As time increases, the 

temperature decreases (and thus viscosity increases) at any given point in the centerline 

and flow front region. It can be attributed to fountain flow effect that more heat is 

delivered to the wall. The temperature and viscosity distributions under various 

gravitational forces are shown in Figs. 5.19 and 5.20. From these figures, it may first 

appear that the temperature profiles are all identical at a given Peclet number. However, 

a closer examination on these temperature profiles reveals that there is a difference in the 

temperature gradient near the wall in the entrance region. A similar situation can be 

found in the flow front region. Accordingly, differences in the viscosity gradient can be 

found in these two region, although they may not be as obvious. As a result o f these 

differences, the pressure gradient varies significantly with the Stokes number.

53  Effects of Surface Tension

The effect of surface tension on the relative front tip travel distance is listed in 

Table 5.3. For a given gravitational force (St = 1), the relative front tip travel distance 

(Ay) increases as the capillary number decreases (i.e., the surface tension effect increases) 

at the selected injection time frame. The results also show that this effect is enhanced 

when the Peclet number increases. For Pe= 1, Ay increases from 0.909 to 0.921 as the 

capillary number decreases from qo to 1. For Pe = 50, it increases from 0.916 to 0.966 for 

the same range of the capillary number. It shows that Ay is further extended more by the 

surface tension when the Peclet number increases. A similar result is observed for S t=0 

and St = 10. From this observation, one may conclude that the surface tension effect
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expands the fountain flow region and enhances the fountain flow effect

Although the surface tension does not have a significant influence on the velocity 

field, its effect on the waiting time (the time required for the contact line to initiate its 

first move) is obvious and can be verified from Table 5.2. As the surface tension effect 

increases (i.e., the capillary number decreases), a longer waiting time is required. This 

potential energy can resist more shear stresses acting on the flee surface and flow flont 

can move further before the contact line begins to move.

The surface tension effect on the pressure distribution along the centerline is 

shown in Fig. 5.21 for S t=0. It shows that surface tension increases the pressure 

distribution along the centerline for a fixed Peclet number. For Pe =1, the inlet pressure 

along the centerline increases flom 174.08 to 177.70 when the capillary number 

decreases flom oo to I. For Pe = 50, the inlet pressure along the centerline increases flom 

32.12 to 33.44 for the same range of the capillary number. It shows that the surface 

tension effect on the required injection pressure is reduced as the Peclet number 

increases.

5.4 Conclusions

The effects of the gravitation and surface tension on the non-isothermal flow 

injection through a vertical channel is analyzed numerically using the Taylor-Galerkin 

finite element method. A predictor-corrector scheme is employed to update the flee 

surface at each time step. The development o f the flow front, instantaneous velocity, 

pressure, temperature, and viscosity are obtained. The fountain flow effect under various 

gravitational force, surface tension and heat transfer conditions are compared.
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For a given surface tension, results obtained show that the gravitational force has 

a significantly impact on the development o f  flow front and the relative front tip travel 

distance (Ay). As the gravitational force increases, the time required for the contact line 

to begin its fîrst move is shortened and the fountain flow region is compressed. As a 

result, the required injection pressure increases. This is understood because the 

gravitational force is acting in a direction opposite to the flow direction.

For a given gravitational force, the relative front tip travel distance increases with 

the surface tension because of the presence of a higher potential energy on the free 

surface. This surface energy can withstand a larger deformation of the free surface and 

thus increases Ay. It also expands the fountain flow region as the surface tension 

increases.

The results also show that the added temperature effect significantly changes the 

fountain pattern and the required injection pressure. As the Peclet number increases, the 

temperature along the centerline and near the front tip increases while the viscosity 

decreases in these regions. For a small gravitational force (0 < St < 1), the fountain flow 

region is further expanded by convection and Ay increases with the Peclet number. For a 

larger gravitational force (St = 10), the fountain flow region is compressed further and Ay 

decreases as the Peclet number increases. This is due to a sharp reduction in the viscosity 

along the flow front and a weaker viscous force to balance the gravitational force. The 

required dimensionless injection pressure increases from 46.13 to 191.96 as the Peclet 

number decreases from 50 to 1 (Ar » 5, St = 1, and Ca-^oo). At the same time, the 

added thermal effect enhances the surface tension effect on the development o f flow front 

and the relative front tip travel distance Ay.
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Table S. I Relative front tip travel distance for various Peclet numbers at different
injection times (Ca -> oo and St = 0).

Ay

Time isothermal non-isothermal flow
flow Pe= I Pe=lO Pe = 50

t *4.0 0.930 0.950 0.955 1.005

t «5.0 0.930 0.976 0.996 1.048

t »6.0 0.930 1.009 1.013 1.075

Table 5.2 Time required for the first movement of contact line: (a) Pe = l , 
(b) Pe =10, and (c) Pe = 50.

St
Ca

0 1 10

I 0.663 0.642 0.520
00 0.638 0.618 0.498

(a)

St
Ca

0 1 10

1 0.707 0.661 0.502
00 0.704 0.670 0.483

0t>)

St
Ca

0 1 10

I 0.726 0.681 0.475
00 0.727 0.661 0.454

(c)
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Table 5.3 Relative front tip travel distance under various surface tension and
gravitational effects: (a) Pe = 1, (b) Pe = 10, and (c) Pe=50.

Time At » 4.0 A t  » 5.0 A t  » 6.0

■ ^ C a
St

l 00 l 00 1 •X3

0 0.931 0.927 0.960 0.960 0.995 0.990

l 0.921 0.909 0.946 0.946 0.985 0.981

10 0.828 0.820 0.868 0.856 0.905 0.901

(a)

Time A t  « 4.0 A t  » 5.0 A t  « 6.0

^ \ C a
St

l 00 l 00 l 00

0 0.989 0.966 I.0I6 0.996 1.042 1.031

l 0.930 0.902 0.972 0.936 0.994 0.971

10 0.723 0.683 0.759 0.729 0.801 0.771

(b)

Time A t  » 4,0 A t  « 5.0 A t  « 6.0

St
1 00 1 00 1 00

0 1.038 1.005 1.071 1.048 1.086 1.075

1 0.966 0.916 0.984 0.938 1.022 0.985

10 0.696 0.638 0.719 0.674 0.746 0.708

(c)
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Figure 5.1 Development o f flow front in a vertical channel at various Peclet numbers
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Figure 5.5 Temperature contours at various injection times (Pe = 10, Ca oo, and 
St = 0): (a) t  = 4.03, (b) t  = 5.02, and (c) t =6.02 (AT=0.1).
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Figure S.6 Viscosity contours at various injection times (Pe = 10, Ca oo, and
St=0): (a) t  = 4.03, (b) r  = 5.02, and (c) t  *6.02 (A n=0.15 ).
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Figure 5 J  Temperature contours for flow injection at various Peclet number (St=0
and Ca -► oo) : (a) Pe = 10 (constant viscosity), (b) Pe = I, (c) Pe = 10, 
and(d)Pe =  50(AT=0.I).
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Figure 5.8 Viscosity contours for flow injection at various Peclet numbers (St -  0 
and Ca -> oo) : (a) Pe = I, (b) Pe = 10, and (c) Pe = 50 ( An = 0.15 ).
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Figure 5^  Pressure contours for flow injection at various Peclet numbers (St = 0 and
Ca 00 ): (a) Pe = I (Pm« = 185.33, Pmi„ = -45.66, and AP = 5),
(b) Pe = 10 (PnuK = 58.66, Pmm = -5.68 and AP = 2), and (c) Pe = 50 
(PiMx = 39.79, Pmm = -3.60, and AP = 2).
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Figure 5.15a Pressure contours for flow injection under various gravitational effects
(C a= l):P e= l(A P  = 5).
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Figure 5.15b Pressure contours for flow injection under various gravitational effects
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Figure 5.15c Pressure contours for flow injection under various gravitational effects
(C a=l):Pc = 50(AP = 2).

169



m
S t-0

330 S r»l

Si - 10
1M

p t«0

too

3 4

Y

(a)

130

S t-0
too S t-I

- o -  St -  10

P

72 3 S «0 t

(b)

120

S t-0
too

S t - 10

p

•20
703 52 40 1

(c)

Figure S.16 Gravitational effects on the pressure distribution along the wall and 
centerline for various Peclet numbers (Ca =  1): wall (— ) and 
centerline (— ).

170



0.6

0.6
0.6

0.9 0.9 0.9

Figure 5.17 Temperature contours at various injection times for St =  I, Ca = I, and 
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CHAPTER 6 

CONCLUSIONS

The main objective o f the present study is to evaluate the technical feasibility of 

producing high-performance composite materials using resin transfer molding under 

microgravity environment.

Since resin transfer molding involves the impregnation o f fiber pre-form, the 

present study has served as a preliminary study to understand and to predict the 

gravitational and surface tension effects on the injection molding.

In this study, numerical simulations for isothermal and non-isothermal flow 

injection through planar gaps and center-gated disks have been successfully performed. 

The effects of gravitation, surface tension and temperature-dependent fluid viscosity on 

the development of the flow fields (flow front, velocity, pressure, temperature, and 

viscosity) have been systematically studied. Their effects on the fountain flow are also 

discussed.

From the present results, one can clearly observe that the fluid initially located 

near the centerline rolls out towards the wall due to the fountain flow effect. The 

fountain flow effect results in material restructuring near the flow front, especially in the 

vicinity of contact line. It can significantly affect the ultimate molecular structure and 

residual stress in the molded part. The results also show that the gravitational force can 

greatly modify the fountain flow region, especially for flow injection through an inclined 

channel. It leads to an asymmetric structure of the ultimate molded part and may reduce 

the material strength. If  fibers were considered, the fiber orientation might become more
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complicated and asymmetric, and which might reduce the material strength. For reaction 

injection moldings, it is even more critical to know the front location-time relation in 

order to find the temperature and conversion distribution throughout the mold.

The results obtained from the present study (for example, the development of the 

flow front and flow fields (velocity and pressure)) have provided the important 

information needed to design or improve the mold filling process, such as the required 

injection pressure, choice o f material, fabrication of mold, and exit gate design. Since the 

major cost of a product cycle is usually spent on the initial design stage, it is important to 

have a completely understanding of the effects of the process variables (gravitation, 

surface tension, and temperature-dependent properties) on the factors (such as fountain 

flow, development of flow front, and fields variables distribution), which have ultimate 

influences on the product of quality.
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APPENDIX A

CHANGE IN SURFACE NORMAL VECTOR WITH TIME

Assume that a curve in a two-dimensional Cartesian or a three-dimensional 

axisymmetrical coordinate system can be described using a parameter p,

X(p) = x(p)i + y(p)j. (A.I)

where p is independent of time.

The tangent vector along the curve is defined as

dX dx : dy -
r  = —  = T “ * + ~ p J -  dp dp dp

Then, the unit tangent vector is given by

dx Î dy

'r- r

(A.2)

(A.3)

Accordingly, the unit outward normal vector cab be expressed as 

dy : dx-
dp dp t “ * • i. *

n =  :  = n j  +  ny j  =  t y i - t j .
' r  r

(A.4)

The change in the surface unit outward normal vector with time is obtained by 

differentiating Eq. (A.4).

dh d 
d t d t

dy: dx:^ d
— I  J —
dp dp d t

^dy: dx-.'
— I  J
dp dp j  
Vf f

(A.5)

Since p is independent of time, the change in the tangent vector with respect to time is 

obtained as
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dr /  dt = (du /  dp)i + (dv / dp)j. (A.6)

With the aid of Eq. (A.6), Eq. (A.5) can be rewritten as

dvt du*, dy : dx* 
dn dp dp dp dp 
d t "  V F F  ( r - r p

du : dv * 
Idp dp

(A.7)
JJ

The length of the vector r can be expressed in terms of the length s  along the curve as

Irl  ̂ = f  r = ^ds '

,dP>
(A.8)

With the aid of Eq. (A.8) and the identity t^ + tj = I (where dx/ds = t  ̂and dy/ds = ty ) ,  

one can take p to be equal to the curve distance s at time t. Given r = t and r • r = I, 

Eq. (A.7) can be further simplified to give

dn dv t du *. -  f  du ; dv *
t  •  I  4 J

Id s  ds j
dy : dx *̂—  I  J
ds ds ;

dU _----- n
ds

t . (A.9)

where 0  = ui + vj.
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