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ABSTRACT

The orientation of different segments of 4'-cyanophenyl 4-heptylbenzoate 

(7CPB) has been investigated using NMR. The method of proton encoded 

local field (PELF) spectroscopy was used in combination with off-magic-angle 

spinning (OMAS) of the sample. High-resolution 2D spectra were obtained and 

the order parameters were calculated fiom the spectra. Linear relationships 

between the obtained order parameters and anisotropic chemical shifts determined 

by ID '^C NMR were established and semi-empirical parameters were obtained. 

A 1:2 mixture of 7CPB and its chain-perfluorinated analog (7PFCPB) shows 

interesting phase behavior with changing of temperature. The mixture was studied 

by the use of NMR and polarizing optical microscopy. The order parameters 

of 7CPB in the smectic A phase of the mixture were calculated using the semi- 

empirical parameters obtained by the 2D NMR method.

Eight series o f liquid crystals containing an electron-donating group at one 

end of a conjugated system and an electron-withdrawing group at the other end 

have been synthesized. The electron-donating group is 4-»-alkylpiperazinyl 

group, the electron-withdrawing group is nitro group and the conjugated system is 

diphenyldiazene with zero, one or two substituents on the phenyl rings. The 

substituents are -F, -Cl, and -CH3. Two series of compounds with cyano group as 

electron-withdrawing group were also synthesized. Most of the compounds 

synthesized are nematogenic and exhibit rather broad liquid crystalline ranges. 

The effects of the lateral substituents on the optical absorption and phase

XX



transition temperatures are correlated with their nature and position of 

substitution. Birefiingence, dielectric anisotropy, elastic constant ratio and rise 

time of the liquid crystals were carried out using 10 wt% LC mixtures in E7. It 

has been found that lateral substituents have subtle effects on the properties. The 

presence of lateral substituents depresses melting points and clearing points of the 

liquid crystals. All the liquid crystals synthesized in this work have relatively 

large values of birefringence, although the dielectric anisotropy values were not as 

high as desired. The incorporation of a fluorine atom onto the position 

neighboring the nitro group enhances the conjugation of the push-pull system and 

liquid crystals with better physical properties were obtained.
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Chapter I. Introductioii

1.1. The fourth state of matter

It is well-known that many substances can exist in more than one state of 

matter. Solids, liquids, and gases are the most common states of matter. These 

three common states are different from each other because the molecules in each 

state possess different degrees of order.

The solid state consists of a more or less rigid arrangement of molecules. 

Each molecule has no transitional degree of freedom. Not only ar? the molecules 

constrained to occupy a specific position, they are also oriented in a specific way. 

In other words, the molecules in solids (except plastic solids) do not rotate freely. 

They do have vibrational motions, but on average they constantly remain a highly 

ordered arrangement Strong attractive forces are present in solids, which makes 

the solid state energetically stable and needs large external forces to disrupt the 

structure. Strictly speaking, this description of solids is only applied to crystals. 

There are some materials which have definite shapes and are not very easy to 

deform, but their molecules lack regular arrangement. In other words, they are 

amorphous.

Liquids are quite different from solids in that the molecules neither occupy 

a specific average position nor remain oriented in a particular way. The molecules 

are free to diffuse around in a random âshion, which was substantiated by the 

phenomenon of Brownian motion. Attractive forces obviously still exist in liquids 

but the random transitional and rotational motions of the molecules do not allow



the interactions between molecules to add up. However, this interaction is strong 

enough to hold molecules close to each other. The evidence for this is that it is 

very difScult to compress liquids and in fact liquids have been used in hydraulic 

systems.

In the gaseous state, attractive forces are even weaker. As a result, gas 

molecules can move around more chaotically and spread throughout the container 

regardless of its volume.

When heated from a low temperature, most substances will undergo phase 

transitions at certain temperatures: melting (from solids to liquids), evaporation 

(from liquids to gases) or sublimation (from solids to gases directly).

In 1888, Friedrich Reinitzer, an Austrian botanist, synthesized an ester 

from cholesterol, and found that this ester had two melting points. At 145.5 ®C it 

melted from a solid to a cloudy fluid and at 178.5 °C it turned into a clear liquid. 

He also observed some unusual color change upon cooling. Then he wrote to Otto 

Lemann, a German physics professor, who was studying the crystallization 

properties of various substances. He built a cross polarizing microscope with a hot 

stage which made it possible to precisely control the temperature of the sample. 

He studied Reinitzer’s sample and found that the cloudy fluid was similar to some 

crystalline samples, so he called it “soft crystal” and later “crystalline fluid”. As 

he became more convinced that the opaque phase was a uniform phase of matter 

sharing properties o f both liquids and solids, he began to call them liquid 

crystals.'^



As mentioned before, molecules in a solid are constrained to occupy only 

certain positions. En other words, they possess positional order. In addition, the 

molecules in these specific positions also possess orientational order and th ^  are 

also arranged in the ways they orient themselves with respect to each other. When 

a solid melts to a liquid, both Qrpe of order are lost completely and the molecules 

move and tumble randomly. However, when a solid turns to a liquid crystalline 

phase, some of the orientational order remains.^ Normally liquid crystals are 

turbid because there exist many differently oriented domains which scatter light 

differently.

The discovery of liquid crystals, together with plasma, completed the 

picture of states of the matter.

1.2. Types of liquid crystals

In this section, a general picture of liquid crystals will be given by 

consideration of their most important features.

A number of different types of molecules can form liquid crystalline 

phases. What they have in common is that they are anisotropic. Either their shape 

is such that one molecular axis is very different from the other two or in some 

cases different parts o f the molecules have very different solubility properties, hi 

either case, the interactions between these anisotropic molecules promote 

orientational and sometimes partial positional order in an otherwise liquid phase.*

Liquid crystals can be classified by their shapes.^* The most common type 

of molecules that form liquid crystal phases are rod-like molecules (i.e., one



molecular axis is much longer than the other two). Such compounds are called 

calamitic (derived 6 om the Greek word “calamos” for rod) liquid crystals and 

many different phases are possible. It is important that the molecule be fairly rigid 

for at least some portion of its length, since it must maintain an elongated shape in 

order to produce some interactions that favor alignment. The general structures of 

these liquid crystals are two or more rings, either linked directly or via short 

linking groups, and hydrocarbon chains at one or both ends. There are numerous 

variations of this general feature, as will be discussed in depth in Chapter 3. A 

typical example, 5CB (4-cyano-4’-pentylbiphenyl), is given below in Figure 1.1.

Figure 1.1. Typical calamitic liquid crystal.

Disk-like molecules, for which one molecular axis is much shorter the 

other two, also form liquid crystal phases. These compounds are called discotic 

liquid crystals, and the rigidity of the center of the molecule is essential. The core 

of a typical discotic liquid crystal molecule is usually based on benzene, 

triphenylene, cyclohexane, or truxene, with six or eight side chains. Figure 1.2 is 

an example of a discotic liquid crystal.
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Figure 1.2. A typical discotic liquid crystal.

Compounds that can change from a solid to a liquid crystal upon heating 

are called thermotropic liquid crystals. On the other hand, when some special 

amphiphilic substance is dissolved in a certain solvent, in a certain concentration 

range, the system can exhibit liquid crystalline properties. Such liquid crystals are 

called lyotropic liquid crystals. Good examples are surfactants and various 

phospholipids. Figure 1.3 shows the structures of a surfactant and a phospholipid. 

At low concentrations, these amphiphilic substances tend to form micelles or 

vesicles." The structures o f a micelle and a vesicle formed in polar solvents are 

shown in Figure 1.4. At higher concentrations, these smaller units can further 

aggregate to form liquid crystals (Figure 1.5).



+  -

Ha
.?

« . - p a , ;
CHj O I ^c-c,Ai

C » ) (b)

Figure 1.3. Two lyotropic liquid crystals: (a) a soap, and (b) a phospholipid.
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Figure 1.4. Structures formed by amphiphilic molecules in a polar solvent.
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Figure 1.5. Lyotropic liquid crystal phases: (a) cubic phase; (b) hexagonal phase.



Polymers with rigid structural units can also form liquid crystalline 

phases/ A main chain polymer can be viewed as calamitic liquid crystal 

molecular segments separated by flexible hydrocarbon chains, hi a side chain 

polymer, the rigid sections are attached to the flexible polymer chain by short 

flexible hydrocarbon chains. Polymer liquid crystals are often related to super 

strong materials. Kevlar, an excellent example of this, is made &om extrusion of a 

lyotropic liquid crystal solution of aramide^ through a spinneret The resultant 

Sber possesses extreme strength and can be utilized to fabricate bulletproof vests 

and other materials.^

1.3. Classification of liquid crystal phases

Since most liquid crystals are calamitic and only this kind of liquid crystal 

has been used in practical applications, only calamitic liquid crystal phases will be 

discussed in this part.

The phase classification of liquid crystals can be made by using three 

criteria: the structure determination (mainly by X-ray, supported by neutron 

scattering, NMR, IR and Raman spectroscopy), texture (defects of molecular 

arrangement, which can be observed using a cross-polarizing microscope) and 

miscibility investigation.^

In simple terms, liquid crystal phases consist of nematic (derived fiom the 

Greek word for thread) and smectic (derived from the Greek word for soap) 

phases.



Figure 1.6. Schematic representation of molecule arrangement of nematic phase.

The nematic phase is probably the simplest liquid crystal phase. In this 

phase, the molecules maintain a preferred orientational direction as they diffîise 

throughout the sample (Figure 1.6). There is no positional order in the bulk of the 

molecules. The average of the alignment is characterized by one symmetric axis 

called the director. The director can be oriented by an external field, such as 

electric field, magnetic field and mechanical field. The existence of this phase can 

be confirmed using X-ray diffraction, and it can also be observed using a cross- 

polarizing microscope. Typical textures for nematic liquid crystals are nematic 

marbled and nematic schiieren textures.^

Smectic phases are more ordered phases than the nematic phases.^ Smectic 

states always have layered structures. When the director of each layer is 

perpendicular to the plane o f the layer, the phase is characterized as Smectic A 

(Figure 1.7), while in the Smectic C phase the director is tilted from the normal of 

the plane (Figure 1.8). Molecules in smectic A and C phases are randomly 

ordered within the layers, and therefore these phase types are also called smectic
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phases “without order’'. The molecules can rotate around their long axes with only 

small hindrance. Because the alkyl chains are not completely stretched, the layer 

thickness d is usually smaller than the length of molecules L for the most 

extended conformera.

A
a
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Figure 1.7. Schematic representation of molecule arrangement of Sa phase.
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Figure 1.8. Schematic representation of molecule arrangement o f Sc phase.

The smectic B, F and I phases are more highly ordered. Inside the layers, 

the molecules are ordered on a two-dimensional lattice (smectic phases “with



order”), however, the layers do not have long-range correlation. Still more 

ordered smectic phases are L, J, G, E, K, and H, which possess three dimensional 

long range order and therefore are also called “crystal smectics”. In most of the 

smectic phase “with order”, the layer thickness d is in good agreement with the 

length of the molecules L for the most extended conformations, and o f course in 

tilted phases,

d  = L COS0

where, 0 is the tilt angle. However, rotation along the axis of the molecules is so 

strongly hindered that only a 180° dip of the molecules is possible. It should be 

mentioned that the labeling of smectic phases has nothing to do with the 

microscopic properties of the phases, but instead they were designated in 

chronological order of their discovery.®

Under a cross-polarizing microscope, there are also special textures for 

smectic A and C, e.g. cone shape fan texture for the smectic A phase, and Sc 

schiieren texture for the smectic C phase. It is very difficult to tell more ordered 

smectic phases firom each other microscopically. In some compounds phase 

transition between two or more very similar structures can have such enthalpies as 

low as 3 J-mor% so discrimination between them will demand the use of very 

sophisticated techniques.

A complete sequence of phase transitions between different phases is 

shown below. Since there is not a single compound that exhibits all these phases, 

this sequence can be achieved only by comparing the known sequences of many 

different liquid crystals. The existence of this sequence is a valuable tool for
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phase classificatioii investigation using miscibility criteria.^*’ The miscibility 

method is uniquely possible in the liquid crystalline state since complete 

miscibility is found for phases with equal or closely related structures, even when 

their size difference exceeds 100%.

Solid crystal-H-K-E-G-J-F-B(crystal)-I-B(hexagonal)-C-A-N-blue-isotropic 

The above calamitic liquid crystals are all non-chiral. However, chiral 

compounds with structures related to those non-chiral liquid crystals are also able 

to form mesophases and different properties are expected. For example, all chiral 

LC phases possess optical activity and can selectively reflect light.

Figure 1.9. Structure of the cholesteric phase (N*).

The chiral nematic phase (N*) is also called the cholesteric phase. It 

contains nematic layers in which the director is shiAed by a constant angle firom

11



one layer to the next. This twist or helical structure (Figure 1.9) has several 

special optical properties useful in practical applications. Chiral nematic liquid 

crystals can be used in electrooptic displays and thermogr^hic devices.

//////////

\\\\\\\

\  //////////

Figure 1.10. Structure of the Sc phase and P denotes the spontaneous polarization 

direction.

All smectic phases with tilted structures derived firom chiral compounds 

exhibit ferroelectric properties: they can exhibit spontaneous polarization and 

piezoelectric properties.^ ‘ Figure 1.10 shows the structure of the chiral smectic C 

(Sc ) phase. The ferroelectric liquid crystals (FLCs) have been very important for 

fast switching electrooptical displays which will be discussed later this chapter. 

Higher order chiral smectic phases can also be used in ferroelectric displays, at 

least in principle, but the current study of these phases is far firom the point where 

practical applications are possible. All ferroelectric liquid crystals can selectively 

reflect circularly polarized light.

12



1.4. Liquid crystal displays ^C D s)

Many liquid crystal displays have been introduced since the discovery o f 

the phenomenon of dynamic scattering'^ of liquid crystals. Nowadays, guest-host 

(GH) mode, twisted nematic (TN), super-twisted nematic (STN), ferroelectric 

(FLC)'^’''* and active matrix (AM) LCDs'^ all have found their applications. The 

thorough understanding of the basic principles of all kinds of liquid crystal 

displays provides useful information to guide future modification o f the devices 

and design and synthesis of new liquid crystal materials.

1.4. l.GHmode'^'®

The GH mode LCD was first proposed in 1966 by Heilmeier and co- 

workers.'^'* This mode takes advantage of the anisotropic dyes doped in the 

liquid crystals. For example, if a dichroic dye is rod-like, the molecules tend to 

arrange parallel to the liquid crystal molecules and therefore, when the liquid 

crystal molecules change their orientation in response to the applied external 

electric field, the orientation direction of the dye molecules will also change. 

Thus, difierent colors of different pixels will be observed by varying the applied 

electric field. Polarizers can also be used to improve the contrast ratio of this kind 

of device.^
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Figure 1.11. Schematic drawing of an LCD using the guest-host mode. On the 

right hand of the picture are the absorption curves corresponding to the “ON” and 

“OFF” states, respectively (adopted from Ref. 9).

The performance of GH LCD depends greatly on dye parameters (such as 

solubility, stability, absorption, etc.) and host liquid crystal mixture properties 

(such as viscosity, temperature, birefringence, stability, etc.) and the dye’s 

compatibility with the host

1.4.2.TNmode‘®

The TN mode LCD, invented by Schadt and Helfrich,^" can be used to 

fabricate LCDs with low operating voltage, low energy consumption, and long 

life. It is the most widely used LCD mode, and represents the first successful 

application of liquid crystals. It has been used in wristwatches, calculators and 

electronic devices for many years.
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In this mode, a thin film of liquid crystal (or liquid crystal mixture) with 

positive dielectric anisotropy, Ae > 0) is sandwiched between two pieces of 

substrates, the insides of which are transparent HO (indium-tin oxide) electrodes 

covered with polyimide films. The polyimide films are rubbed along special 

directions, so the film can serve to align the vicinal molecules in certain 

directions. The alignment directions of the two substrates are perpendicular to 

each other, and as a result, the director of the molecules undergo a smooth 90° 

twist within the cell (hence the name “twisted” nematic LCD). Outside of the LC 

cell, two polarizers are used and arranged in such a way that each polarized 

direction is parallel to the alignment direction of the polymer film of 

corresponding substrate.

Polarizer

Liquid crystal 
dlreaor

OFF

Figure 1.12. Schematic drawing of LCD using twisted nematic mode (normal 

white mode).’’
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When a beam of light passes through the first polarizer, the non-polarized 

light now becomes polarized in the same plane as the local orientation of the LC 

molecules. The twisted arrangement of the LC molecules within the cell then acts 

as an optical wave guide and rotates the plane of polarization by 90 degrees so 

that the light which reaches the second polarizer can pass through it. In this state 

the cell is transparent and this arrangement is called normal white mode.

However, when a voltage is applied to the electrodes, the liquid crystal 

molecules are forced to align with the resulting electric field and the optical wave 

guiding property of the cell is lost. The cell is dark, as it would be without the LC 

present. When the electric field is turned off, the molecules relax back to their 

twisted state and the cell becomes transparent again. This relaxation step is 

controlled by the interaction between the alignment film and vicinal LC 

molecules and the viscosity of the liquid crystal.

To increase the stability of the twisted configuration, some liquid crystals 

with certain chirality are used as dopant to induce the desired twisting (i.e. 

clockwise, not anti-clockwise, or vice versa). To obtain a satisfactory contrast 

ratio, the following requirement (Mauguin condition) must be satisfied:^^

d An »  X/2

where d is the thickness o f the cell and An is the birefiingence o f the chosen liquid 

crystal mixture and k  is the wavelength at which the LCD is operated.

1.4.3. STN mode*®
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LCDs require high steepness of the electro-optical response to obtain a 

high quality display. It was found that the twisted configuration of LC cells used 

in the TN mode can accomplish this provided that the twisting angle is increased 

to larger than 180°. The STN mode is derived &om the TN mode. Liquid crystals 

used in the STN mode are cholesteric liquid crystals. Another important cell 

parameter is the pretilt angle (the angle formed by the director of molecules and 

the substrate). For TN mode, this angle is normally 3° for a rubbed polyimide (PI) 

alignment film, but a higher twisting angle needs higher pretilt angles such as 20°, 

which generally is not obtainable fiom polyimide films. Consequently, other 

techniques will have to be applied to manufacture alignment films that can 

provide larger pretilt angle.

STN LCDs require precise control of the flamess of the LC cells, and 

usually, the accuracy of the cell thickness is below ±0.1-0.2 pm, which limits the 

availability of large screen STN displays. Currently, high quality STN-LCDs are 

widely used in lap-top computers and fiat panel TV sets.

1.4.4. FLC mode‘̂ ‘'‘

FLC displays have advantages such as high storage ability and high 

response speed and will be a good candidate for large screen, fiat, high definition 

television sets, which was thought to be almost impossible for current STN LCDs.

Due to symmetry considerations, when a molecule is chiral, a spontaneous 

polarization Ps exists and the direction of this vector is tangent to the circle 

intersection of the cone with the layer plane in Sc*. Thus a macroscopic sample of
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Sc* is not feiioelectric due to the zero value of the averaged spontaneous 

polarization along one pitch of the sample.

To achieve macroscopic alignment of the dipoles, a special technique must 

be used to arrange the molecules in such a way that this helix is not generated in 

the sample. Very thin LC cells are used, in order that the boundary conditions 

imposed by the alignment layer would be strong enough to suppress the helix. 

Thus the smectic layers are perpendicular to the substrates and the state is 

characterized by a uniform orientation of Ps (Figure 1.13).

/ / / /
"Up" state "Down" state

Figure 1.13. Uniform state generated in a thin FLC cell. Ps denotes the 

spontaneous polarization (adopted from Ref. 4).

When uniform states have been successfully generated in the cell, it is 

possible to switch the orientation of the molecules with the aid o f electric freld. 

Then this device can be operated using the same principle as in the TN mode 

(birefringence type) or GH mode. Figure 1.14 is a schematic representation of the 

birefringence mode display. The crossed polarizers are arranged with one
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polarizer parallel to one possible molecular orientation of one stable state, so one 

state is non-transmissive, while the other one allows light to cross the cell.

cnxaed
polaiizm

"black”sate 
polaiizm for example "down" stale

Figure 1.14. Schematic drawing of LCD using FLC bire&ingence mode (adopted 

from Ref. 4).

1.5. Past, present and future of liquid crystal research

After the discovery of liquid crystals, liquid crystal research underwent 

very slow progress for several decades.^ In the early stages, studies focused on 

understanding the basic properties of various liquid crystals and establishing 

proper methods to study liquid crystals. Shortly after 1960, interest in liquid 

crystals increased greatly in the United States, Great Britain and the Soviet Union 

due to the scientific importance of these materials. During the 1970s and 1980s, 

desires to investigate the relation between structure and properties of liquid 

crystals and their practical applications led to the rapid flourish of liquid crystal 

research.

Currently, liquid crystal research has expanded worldwide and various 

liquid crystal displays have been invented; most of them have found exciting 

applications. LCDs have many advantages such as small size, low operating
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energy, low power consumption, low irradiation and high resolution, which result 

in new applications previously impossible for traditional CRT displays. For 

example, portable TV sets with 2.5” LCD screens have been commercially 

available for some time. Further improvement of the viewing angle and the 

lowering of prices will lead to wider applications of LCDs.

Obviously, liquid crystal research is multi-disciplinary, requiring concepts 

and techniques from chemistry and physics at the very least and in some cases 

also demanding ideas from mathematics, biology and some types of engineering. 

Nowadays, it is still of interest to find new liquid crystals with low viscosity, low 

melting point, broad liquid crystal range and good properties for special 

applications as well. Works to improve the properties, especially the viewing 

angle,“ ' ‘̂* contrast ratio^  ̂and driving speed̂ ® of LCDs are very popular topics in 

LCD researches. At the same time, now ideas are being proposed to make LCDs 

using new materials, such as vitrified liquid crystals,^’’̂ * polymer composites,^®'^* 

etc., or LCDs based on new principles, such as bistable cholesteric displays^^ and 

spatial modulators.^^*^  ̂New alignment techniques are being studied to improve 

pretilt angle'’®'̂ * and to replace traditional PI alignment films which need to be 

further rubbed and consequently increase the failure rate of manufacturing 

substrates and increase the price ofLCDs.^^"^^

Liquid crystal displays are the most promising candidates to replace 

presently dominant CRT displays in the near future. With the development of 

other techniques such as microelectronics to further improve the capacity and 

density of the memory elements, it may not be too surprising to see LCDs replace
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books printed on paper in the future. Electronic displays combining the high 

quality of CRT images with the convenience of a flat panel will be a trend of 

future displays. Because LCDs have the previously mentioned advantages and 

very good compatibility with electronic elements, new displays to replace LCDs 

in near future must possess comparable or even higher merits and overcome the 

weakness of LCDs. Although there have been some reports proposing 

manufacturing flat panel displays with new materials,^ '̂*  ̂ LCDs will still be 

expected to dominate the market of displays in the near future and probably 

expand their applications to many other fields due to the fast development of LCD 

techniques.
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Chapter H. NMR Study of 4 -Cyanophenyl 4-ff>heptylbeozoate 

(7CPB) and A Mixture with Its Chain-perfluorinated Analog

2.1. Introduction

2.1.1. Fiuorinated liquid crystals and liquid crystal mixtures

Fluorinated liquid crystals have received much attention'*^ for the fact that 

fluorine substitution can increase the impedance and decrease the viscosity of 

liquid crystalline compounds substantially, making them advantageous in 

fabricating high performance TFT (thin-film transistor) display devices. The 

presence of fluorine atoms can also change the polariQr and phase behavior of 

molecules. It has been shown that the replacement of a hydrocarbon chain in a 

liquid crystal by a perfluorinated or semi-perfluorinated chain highly favors the 

smectic A or smectic C phase.**  ̂ The poor miscibility of hydrocarbon and 

fluorocarbon segments causes different parts in segmentaUy fluorinated alkanes to 

organize themselves in layered structures or microdomains of different 

compositions.^ The same case can be found in the crystalline state, where the 

molecular packing is controlled by steric structure and intermolecular 

interactions.* Therefore, the phase behavior of mixtures of liquid crystals with 

hydrocarbon and fluorocarbon chains, respectively, should be different from that 

of normal hydrocarbon liquid crystal mixtures. However, it is surprising that there 

are not many studies of hydrocarbon/fluorocarbon liquid crystal mixtures.

* Some of the material m this chapter is presented m a paper entitled “Orientational ordering o f a
nematic liquid crystal and its mixture with its cham-perfluormated analog” by Hong Sun and B. 
M. Fung, Liquid Crystals, in press.
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2.1.2. Order parameters

As mentioned in Chapter I, there is no positional order in the bulk of 

liquid crystals, while they do exhibit some orientational order. This behavior is 

described quantitatively by order parameters.

In liquid crystal phases, the molecules have a preference of orientation, 

denoted as the director and it can be represented as a unit vector. The director can 

also be viewed as the average of molecular orientation. One way we can visualize 

taking an average in the orientation is to take a snapshot of a representative group 

of molecules considered as rigid rods at a certain time. Each molecule in the 

picture is oriented at some angle with respect to the director. The angles can be 

measured and used to calculate the average angle as a measure of the amount of 

orientational order. All the angles are between 0° and 90°, so the average should 

also be between 0° and 90°. The higher the orientational order, the closer the 

average angle would be to zero. Because this arrangement is in three dimensions, 

the most useful formulation is to find the average of the second Legendre

polynomial,^’̂® y(3cos“0-l), in a polar coordinate system:

4 « iT t 2x
S =<P2(cos0 )> = < -co s^0 — > =  J  f(0 )(—cos“0 — )sin0d0 J d(j>

2 2 g 2 2 0

where 0 is the angle formed by the molecules and the director, (j> is the azimuthal 

angle formed by molecules and some arbitrary axis within a plane perpendicular 

to the director, and f(0) is the angular distribution function of orientational order 

of molecules. f(0) can be defined by either taking a  snapshot o f a certain group of
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molecules at any time and noting the number of molecules that form an angle of 0 

or by following a single molecule, noting at specified times the angle 9 between 

the molecular axis and the director. Statistically, these two definitions are the 

same if it is assumed that all molecules undergo the same type of random motion. 

Since all directions perpendicular to the director are equivalent in the most simple 

liquid crystal phase, the orientation does not depend on the azimuthal angle (|>. It 

should be noticed that this distribution function is not normalized.

In general, numerous orientations can make an angle of 90° to the director, 

but only one arrangement corresponds to 0°. Therefore, in an isotropic phase there 

will be many more molecules making an angle of 90° with the director compared 

to 0°. If we average the measurement of angles of random arrangement, the value 

should be 0 = cos '(l/V3 ) = 54,73°. Therefore, no orientational order means an 

average angle of 54.73° and a smaller average angle indicates the existence of 

orientational order.

To further understand how the order parameter S represents the amount of 

orientational order, let us calculate the value of S if the molecules are perfectly 

oriented, that is if 9 = 0 for all molecules. Now, the distribution function f(9) 

becomes 1, when 0 = 0 ; while f(9) = 0 at any other angle 9. Now the integration 

can not be done, but the average is easy to perform and the averaged term is 

constant 1. Let us now consider another extreme case and the molecules are 

arranged in an absolutely disordered way, that is, the molecules point in all 

dnections. In this case, the distribution function is a constant (independent of 

9, assume it to be a, an arbitrary constant), so
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where, x = cos0. Thus S is zero if there is no orientational order. In the 

calculation, the denominator is used to normalize the distribution function. From 

the above discussion, it can be found that the value of S is between 0 for absolute 

disorder to 1 for perfect order and it quantifies the orientational order of the liquid 

crystal phase.

For cases in between, if the distribution function can be found, it is rather 

easy to calculate the corresponding order parameter S. It should be kept in mind 

that the above definition of the order parameters is used for “sticks” (or uniaxial 

phase of cylindrical rods), and for molecules with more complex structure, more 

order parameters are needed to describe the orientational order. For example, in a 

biaxial phase, two order parameters are needed:''

Sn ~ — <3COŜ 0 — 1>
2

Sxx-Syy ~ J  < sin" 0cos2(j) >

where, the z axis points to the director and the x and y axes are within the plane 

perpendicular to the director. Sxx’Syy is an order parameter related to the 

“flamess” of the molecules. More general definitions can be found in Ref. 11.

To a first approximation S is a function of temperature. A closed 

analytical dependence of S on T is not available since it is strongly dependent on
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the Qrpe of molecules considered A useful empirical relation between S and T 

will be discussed in Section 2.6.

As a result of ordering, liquid crystals exhibit anisotropy in many of their 

properties, which can be related to the order parameter,^^ such as,

Ae = 8// -  8x

= (NhF/eo)[a/ -  a ,  -F ( p ^/21cbT )(1-3cos^P)]S

A n -p '^ S

A x  =  X //‘ Xx =  ( X / - X / ) S  

where As, An and Ax are dielectric anisotropy, bire&ingence, and magnetic 

susceptibility anisotropy, respectively. N is the number of particles, F and h are 

constants of proportionality called the reaction field factor and cavity factor, a/ 

and at are the two major components of polarizability tensor a , where the 

subscripts I and t stand for contributions from longitudinal and perpendicular to 

the molecular axis, p is the moment of molecule, P is the angle between p, and the 

direction of a/, and p is the mass density. On the other hand, order parameter can 

be used to estimate the anisotropic properties of the liquid crystal system provided 

that the relations between the properties and order parameters are known.

2.1.3. Methods to measure order parameters

The order parameter S can be measured in a number of ways, such as 

dielectric relaxation,infrared spectroscopy,^^ X-ray diffraction '̂  ̂ and nuclear 

magnetic resonance (NMR). Usually a macroscopic property of the liquid crystal
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phase is measured, which then can be used to determine S if  the molecular 

parameters that produce the macroscopic property are known.

Of all the methods mentioned above, NMR probably gives the most 

detailed information at the molecular level since it probes each nucleus via its 

distinct signal and it can therefore determine the ordering and motion of 

individual parts of liquid crystal molecules. For this reason, NMR has been used 

extensively to investigate the orientational ordering of liquid crystals. Proton 

NMR is suitable for the study of small solute molecules in liquid crystalline 

solutions, but it does not offer detailed information for pure liquid crystalline 

phases as the peaks are usually not well resolved.' '̂^^ On the other hand, by 

measuring quadrupolar splittings and relaxation, NMR has been applied 

successfully to study the orientational ordering and motions of liquid crystals."°'^^ 

However, it is not trivial work to synthesize liquid crystals with unfunctionalized 

sites deuterated, which limits the application of NMR as a consequence.

A 2D *̂ C NMR technique was developed in this laboratory to measure the 

orientational ordering of nematic and smectic A liquid crystals in 1986."̂ "̂  ̂This 

method involves a combination of SLF (separated local field spectroscopy/^"^^ 

and VAS (variable angle spinning), which is also called OMAS (off-magic-angle- 

spinning),and has proven very effective. A recent improvement of this 

technique increased the resolution of the 2D spectra,^ '̂^  ̂ and it is now called 

PELF (proton-encoded local field) spectroscopy.^ The combination of PELF with 

OMAS was used in this study, so the principle of this method is briefly discussed 

in the following.
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22. The PELF/OMAS technique

The NMR spectra of liquid crystals and solids are often complicated by 

the existence of extensive dipolar interactions. Without any decoupling 

mechanism, the dipolar interactions are usually strong and cause complex 

splitting patterns, resulting in the formation of broad peaks. In a spin system 

containing protons and carbon-13, the NMR spectrum can be simplified with 

the application of a homonuclear (proton-proton) decoupling, and carbon-proton 

dipolar coupling constants can be measured firom the simplified spectrum. From 

these dipolar coupling constants, the orientational ordering of the liquid crystals 

can be determined.

In the past, many decoupling pulse sequences have been developed to 

remove the homonuclear dipolar couplings. It was found in this laboratory that the 

BLEW-48 sequence^^ is the most effective one in eliminating homonuclear 

couplings with moderate decoupling power. It is also least sensitive to the offset 

of the decoupler firom the center of proton resonance. The success of 

PELF/OMAS and SLF/VAS relies on the application of BLEW-48 sequence, 

which is represented as

1 i i 1 r  r  r r

Where I = X Y X  X Ÿ X 

i  = X Y X X  Ÿ X 

r = x Ÿ X X Y x  

r = X Y X X Y X
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and X is a 90° pulse oa the X axis, Y is a 90** pulse on the y axis, X is a  90° pulse 

on the -X  axis, and Y is a 90° pulse on the -y axis.

Even with the removal of proton-proton dipolar couplings by the BLEW- 

48 sequence, the proton-carbon dipolar couplings are still retained. Therefore, the 

NMR spectra o f liquid crystal samples are complicated with splittings by 

scalar couplings and H-C dipolar couplings, which are not resolvable in the 

coupled spectra. Each splitting for carbons is related to the H-C dipolar coupling 

and scalar coupling by the following equation

A v= /(2D + J) (2.1)

where /  is a factor determined by the BLEW-48 decoupling sequence. Its 

theoretical value is 0.420^ and experimental value is 0.414.^^ D is dipolar 

coupling constant a n d /is  the scalar coupling constant.

To distinguish the splittings for individual peaks with different 

chemical shifts, the 2D separated local Held"*̂ "̂  ̂ technique can then be applied. 

Normally, in this kind of 2D technique, a broadband decoupling sequence is 

applied to obtain normal proton-decoupled spectrum in the (Oi dimension. 

Because the proton spectra of liquid crystals have wide spectral windows, the 

decoupler power applied must be considerably larger than that for liquid samples. 

Excessive decoupler power, on the other hand, leads to rf heating, which is an 

extremely undesirable effect because the orientational ordering of liquid crystals 

is very sensitive to temperature.^^ To alleviate this problem, the OMAS (off- 

magic-angle-spinning) technique can be utilized. For solids, MAS (magic angle 

spinning) is usually used to reduce the linewidths of the peaks, but all information
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on anisotropic interactions is lost. Fortunately, liquid crystals give rather sharp 

peaks under the condition of OMAS. OMAS scales down the anisotropic 

chemical shifts and dipolar couplings, which are the most important information 

for the study of orientational ordering of liquid crystals. The reduction of dipolar 

couplings makes it possible to use milder conditions for both homonuclear and 

heteronuclear decoupling.

In the OMAS technique, a liquid crystal sample is spun rapidly at an angle 

9 with respect to the magnetic field of the NMR spectrometer. Now, the magnetic 

torque exerted on the liquid crystal sample is overcome by the viscous torque and 

as a result, for 0 < 54.73“, a liquid crystal with positive magnetic susceptibility 

> 0 would have its nematic director aligned along the spinning axis instead of 

magnetic field; a liquid crystal with A% < 0 would have its nematic director 

aligned perpendicular to the spinning axis. For 0 > 54.73“, the situations are the 

opposite.

For the parallel alignment, now the anisotropic coupling is reduced by a 

factor (3cos^0-l)/2 and Eq. 2.1 is changed to

Av = /[(3cos-0-1)D +V ] (2.2)

because the anisotropy in the scalar coupling is negligible.

In the separation of C-H dipolar couplings according to the chemical 

shifts, the SLF technique probes the anisotropic C-H dipolar local fields at the 

carbon sites. Because dipolar coupling is basically through space and because of 

the much higher number density of the nuclei, each nucleus is coupled to 

several protons, which are either directly bonded or not bonded to it (long-range
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coupling). Due to the successive splittings, the SLF spectrum of a carbon coupled 

to N protons exhibits up to 2^ lines, even when homonuclear dipolar interaction 

among the protons is removed. Since most of the long-range couplings overlap 

with each other and cannot be resolved, the peaks in the SLF spectra are usually 

quite broad.

An improvement was made by Pines and co-workers on this 2D method to 

detect the dipolar-coupling local field on the proton sites.'***̂ * The idea is that with 

the effective removal of the proton-proton dipolar coupling by a homonuclear 

decoupling sequence (they used MERV-8), each proton is only coupled to one 

site due to the low natural abundance of and this dipolar coupling information 

can be encoded in the proton magnetization and then be transferred fiom the 

abundant spin (proton) to the rare spin (carbon) local field by cross polarization. 

When the signals for each carbon are observed, each kind of dipolar-coupled 

proton will only give a doublet. The line number for each carbon is now reduced 

to up to 2N and thus the spectrum is much simplified. This method is now called 

PELF (proton encoded local field) spectroscopy.^^

In this modified method, during the acquisition period, a very effective 

heteronuclear decoupling sequence SPINAL-64^^ (5mall Phase ZA/cremental 

Alternation with 64 steps) is applied, which was developed in this laboratory and 

was found that for liquid crystal samples it is superior to many other broadband 

decoupling sequences, such as, MLEV,^*'^* WALTZ,^’’̂  and GAPP.®*’®̂ The 

sequence is represented as;

Q Q Q Q  Q Q Q Q
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where Q = 165(10“) 165(-I0“) 165(15“) 165(-15“) 165(20“) 165(-20“) 165(15“)

165(-15“)

Q = 165(-10“) 165(10“) 165(-15“) 165(15“) 165(-20“) 165(20“) 165 (-15“) 

165(15“).

The pulse sequence of the PELF/OMAS method is shown below in Figure

2.1.^  ̂During evolution period, BLEW-48 decoupling is used to remove proton- 

proton dipolar coupling as explained above, and then the encoded proton-carbon 

dipolar coupling information is transferred to carbons by cross polarization, so 

that in the dimension, one-bond couplings and some two-bond couplings can 

be observed. During acquisition period, the SPINAL-64 broadband decoupling 

sequence is applied to obtain normal proton-decoupled spectrum in the (Oi 

dimension.

nil
n

n
n

BLEW-48 BLEW-48

- ^ h j l
n

preparation evolution

CP

CP

SPINAL-64

nil nil

acquisition

Figure 2.1. Schematic diagram o f the 2D proton-encoded local field spectroscopy. 

CP -  cross polarization. The last two n/2 pulses of the S spin act as a “z-filter”.
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23 . Orientational ordering information from PELF/OMAS technique

hi the liquid crystalline phase, each benzene ring has an effective Civ 

symmetry because it undergoes r^ id  flips between two equilibrium positions. 

Therefore, two order parameters, Szz and Sxx-Syy, are sufGcient to describe the 

orientational ordering of each ring. These order parameters can be related to the 

dipolar coupling constant o f each C-H pair in the ring bŷ ^

Dij = -  ' 2 3 1(3 cos^Gijz-l)Szz+(cos^ 0ijx -  cos' 0ijy)(Sxx -  Syy)] (2.3) 
sTC rij

where ry is the intemuclear distance and Gya is the angle between ring and the 

molecular axis a. The twofold axis of the phenyl ring is taken as the z axis, and 

the axis perpendicular to the plane of the phenyl ring is taken as the y axis. 

Normally, the values, rcc = 0140 nm, rcH = 0.108 am are used in the calculation, 

so the order parameters and the bond angle can be determined &om least-squares 

fitting of a set of D values to Eq. 2.3.

The aliphatic chain, on the other hand, has a large number of segmental 

motions, and it is difGcult to defîne the order parameters for the whole chain. A 

simplified treatment can be made to define a C-H bond order parameter for each 

aliphatic segment, considering the C-H bond as having an approximate axial 

symmetry. Taking rcH = 0.110 nm for CHi and CHg groups, the order parameter 

o f the C-H bond is related to the corresponding C-H dipolar coupling constant

by''

n  — = -4.047 x  iQ-* DcH (24)
47c"r̂ H
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2.4. Orientational ordering information from ID NMR method

Although the 2D PELF/OMAS method (and the earlier 2D VAS/SLF 

version) has proven to be very successful to determine order parameters o f liquid 

crystals, it requires special hardware and software and needs stringent control of 

experiment conditions, which limits its ^plication. In addition, prolonged 

spectrometer time and extensive data processing can not be avoided for these 2D 

methods. Therefore, it is preferable to determine order parameters by using ID 

NMR. For macroscopically oriented liquid crystal samples, the major 

advantage is the simplici^ of the spectra with the application of suitable 

broadband decoupling pulse sequence. The existence of chemical shift anisotropy 

normally makes the chemical shifts o f different carbons vary from those for liquid 

samples. Anisotropic chemical shift is related to isotropic chemical shift by the 

following equation^'

Sobs “  Sjso Sani

2 1 1 
~ Siso ^SzzCozz ®yy)] 'j(Sxx ~Syy)(Oxx ~(Tyy)

2 2 2 
■̂ ySxyCTxy ■̂ ■ySxzCTxz'̂ 'jSyzO’yz (2.5)

where the Sy’s are components of the order matrix, and the Oij’s are components 

of chemical shift tensor, both being in the same axis system.

Obviously, &om the equation, one cannot get order parameters without 

knowing the chemical shift tensors. However, it needs single crystal samples to 

obtain chemical shift tensors and for polycrystalline samples, complicated axis
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transfonnation is a must Fortunately, for systems with higher symmetry, for 

example, phenyl rings of Civ symmetry, Eq. 2.5 can be simplified to

2 1 1 
8obs~0iso ^ ^ y y ) ] " S y y ) ( C x x " O y y )  (2.6)

It was found that experimental values of Sxx-Syy are almost always less than 10% 

of those of Szz and do not show systematic variation with the change in 

temperature. Therefore, by replacing the last term with an empirical constant b, 

Eq. 2.6 can be further simplified to

2 1
AS=5obs~Ôi5o * jSnCSn:-—( ô x x  + 8 y y )]  + 8  (2.7)

 ̂ 1
Letting a = j[ôzz--(ôxx+0yy)], Eq. 2.7 can be rewritten aŝ *’**̂

AS = a  S + 6  (2.8)

where S is previous Szz and the subscript z is dropped. This requires that the major 

axis of chemical shift tensor coincide with the z axis of the phenyl ring. Although 

this is approximately true for the carbon atoms lying on the symmetry axis of the 

phenyl ring, it is not necessarily so for the rest carbon atoms; for aliphatic carbon 

atoms, the above approximation is not fulfilled. Nevertheless, the semi-empirical 

relationship has been found to work surprisingly well for both aromatic and 

aliphatic carbon atoms in many types of liquid crystal samples.**̂

The method to determine order parameters by using chemical shift 

data is described in the following. First, the PELF/OMAS technique is used to 

study the liquid crystal sample at several different temperatures within the liquid 

crystal range. The order parameters are then calculated by the dipolar coupling 

constants obtained in this method, using Eqs. 23 (least-squares fitting method
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needed, of course) and 2.4. The anisotropic chemical shifts of the same compound 

are then determined &om ID spectra at the same temperatures. Then the order 

parameters and anisotropic chemical shifts are correlated by Eq. 2.8 to obtain the 

empirical constants a and b, from which order parameters at other temperatures 

can be calculated from chemical shift values.

This method has the following advantages. First, the chemical shifts can 

be obtained from ID experiments, which requires much less spectrometer time, 

making it possible to investigate changes of the order parameter with 

temperatures in smaller temperature steps. Second, the chemical shift data can be 

determined more precisely than the dipolar coupling constants, and their 

systematic changes with temperature are less subjected to random experimental 

uncertainties. Many interesting studies can be carried out with this method, such 

as, effect of various solutes on the orientational ordering of liquid crystal solvents, 

the phase behavior of liquid crystal mixtures, order of phase transitions of liquid 

crystals and the temperature dependence of the position of the major axis of the 

mesogenic core, etc.

The goal of this research was fîrst to obtain the empirical relationship 

between order parameters and chemical shift anisotropy of a liquid crystal 

7CPB (4’-cyanophenyl 4-n-heptylbenzoate) and to study the change o f the order 

parameter with temperature over the whole nematic range. The empirical 

constants obtained in this study can also be utilized in the orientational ordering 

study by those that have no access to the PELF/OMAS technique. Fitting the
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temperature dependence of the order parameter into the Haller equation could 

provide information about the segmental movement of the molecules at a limit of 

perfect ordering. Such information for the aliphatic chain has not been 

investigated thus far. Due to the importance of the study of phase behavior of 

hydrocarbon and fluorocarbon mixtures, the second part o f this work deals with 

the phase behavior of a mixture of 7CPB and its chain-perfluorinated analog 

7PFCPB (4’-cyanophenyl 4-n-perfluoroheptylbenzoate). The mixture was studied 

by ID NMR method, and the ordering of the 7CPB component was then 

evaluated to obtain useful information about the system.

2.5. Experimental

2.5.1. Synthesis of 4'-cyanophenyl 4-«-heptylbenzoate (7CPB)

4'-Cyanophenyl 4-n-heptylbenzoate was synthesized by following a 

general procedure:'*® ®̂ To a solution of 4-cyanophenol (1.1 g, 9.2 mmol) in 

pyridine (30 mL) was slowly added a solution of 4-n-heptyIbenzoyl chloride (2.0 

g, 8.4 mmol) in 1,4-dioxane (15 mL), and the mixture was then refluxed for 5-6 

hours. After cooling, the reaction mixture was poured into a 1:1 mixture of ice 

and concentrated hydrochloric acid (50 mL). Chloroform (30 mL) was added to 

dissolve the white precipitate and the aqueous part was further extracted with 

chloroform (30 mL x 3). The organic portions were combined, washed with H%0 

(30 mL X 2), 20% NaOH (20 mL x 2), H2O (30 mL x 3) successively and then 

dried over Na2 S0 4 . After the removal of the solvent, the solid was further purified 

by multiple recrystallizations fiom a mixture of ethanol and water.
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Yield, 1.5 g (56%); white crystals, mp 40-42 "C; 400-MHz NMR 

(CDCI3) 8.98 (d, / =  7.8 Hz, 2H), 7.74 (d, / =  8.3 Hz, 2H), 7.32-7.37 (m, 4H), 

2.71 (t, 7 =  7.8 Hz, 2H), 1.66 (m, 2H), 1.28-1.34 (hr, 8 H), 0.89 (t, / =  6.1 Hz, 3H); 

100-MHz NMR (CDCI3) 165.5, 155.5, 151.2, 134.8, 131.5, 129.9, 127.1, 

124.0, 119.4,110.8,37.2, 32.8 (CH2), 32.2,30.3,30.2,23.7,15.2.

2.5.2. Synthesis of 4'-cyanophenyl 4-n-perfluoroheptylbenzoate (7PFCPB)

The synthesis of 4’-cyanophenyl 4-n-perfloroheptylbenzoate (7PFCPB) is 

shown below in Scheme 2.1.

Scheme 2.1

HOOC-

I(CF2)6CF3
C u/D M SO

HOOC—4  j — (CFaleCFa

SOCI-,

C IO C -4  y — (CFjleCFa HO—  >— CN

NC
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2.5.2.1.4-n>Pei£[uoroheptylbenzoîc acid^^

A 3-necked round bottom flask equipped with thermometer, condenser 

and nitrogen inlet, was charged with CF3(CF2)6l (15.5 g, 31.3 mmol), 4- 

iodobenzoic acid (7.8 g, 31.3 mmol), heshly activated copper bronze (10.0 g, 

157.5 mmol)^ and heshly distilled dimethyl sulfoxide (50 mL). The reaction 

system was purged with Nz first and then heated at 110 °C under Nz with stirring 

overnight. After cooling to room temperature, ether (300 mL) was added. A blue 

precipitate was formed which was then filtered o£f. The liquid part was treated 

with water (200 mL), and the resultant blue precipitate was separated and 

combined with the previous solid portion. The solid was treated with hydrochloric 

acid and then extracted with ether (50 mL x 4). All extracts were combined, 

washed with water till neutral and then dried over Na2S0 4 . A solid (a mixture of 

4-iodo-benzoic acid and 4-n-perfluoroheptylbenzoic acid, 10.1 g) was obtained 

after the distillation of the solvent.

2.5.2.2.4'-CyanophenyI 4-n-perfluoroheptylbenzoate

The 4-n-perfluoroheptylbenzoic acid mixture (4.5 g, ~ 9.2 mmol) obtained 

firom the last step was dissolved in hot toluene (70 mL). Thionyl chloride (1.5 

mL) was added dropwise to the above solution and the reaction mixture was 

refluxed for 5 hours. Toluene and excess thionyl chloride was removed using a 

rotary evaporator. The residual solid was washed with toluene and dried under 

reduced pressure. The residual yellow solid was dissolved in 1, 4-dioxane (30 

mL) and added dropwise to a solution of 4-cyanophenol (1.29 g, 10.8 mmol) in
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pyridine (30 mL). The mixture was then heated at 100 ®C for 15 hours. The work­

up procedure of this reaction was similar to that of 4’-cyanophenyl 4-w- 

heptylbenzoate (7CPB), except that this compound needed further silica gel 

column chromatographic separation (ethyl ether). White crystals were obtained. 

Yield, 2.5 g (29%); 400-MHz ‘H NMR (CDCI3) 8.34 (d, / =  8.3 Hz, 2H), 7.78 (d, 

y  = 8.3 Hz, 2H), 7-77 (d, / =  8.3 Hz, 2H), 7.39 (d ,J=  8.3 Hz, 2H); 100-MHz 

NMR (bulk) 162.8, 154.2, 134.4, 133.3, 130.1, 127.0, 122.2,117.3, 110.6, 108.0- 

132.0 (CFi’s and CF3).

2.5.3. Phase transition measurements

The phase transitions of the two compounds were measured using a Perkin 

Elmer DSC7 differential scanning calorimeter. The liquid crystalline phases were 

checked under cross polarizing microscope (Olympus BH-2).

2.5.4. ‘̂ CNMR

NMR experiments using the 2D PELF/OMAS technique were 

performed on 4'-cyanophenyl 4-n-heptylbenzoate with the use of a Varian 

UNITY/INOVA 400 NMR spectrometer equipped with a variable-angle spinning 

probe. The PELF pulse was used with proton-carbon cross-polarization and the 

BLEW-48 decoupling sequence. Temperature calibration was made by observing 

the temperature-dependent chemical shift change of ethylene glycol. In this 

experiment, the sample was spun at an angle 0 with respect to the magnetic field 

Bo, which was 47.58** and calibrated by measuring the ^H splitting of a sample of
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CDCl] dissolved in a liquid-crystalline solvent ZLI-1291 with and without sample 

spinning.

The chemical shift determination of pure 4'-cyanophenyl 4-n- 

heptylbenzoate (7CPB) and a mixture of 7CPB and its fluorocarbon analog 

7PFCPB was conducted on the same spectrometer. An indirect detection probe 

manufactured by Narolac Corporation, Mastinez, C A, was used. The sample was 

first heated above its clearing point and the chemical shift of the terminal methyl 

was set to be 14.05 ppm with respect to tetramethylsilane (TMS), so that the data 

were self-consistent. The chemical shift measurement was then made with 

decreasing temperature at 1 °C intervals. To prevent rf overheating, a 1,6% 

decoupler duty cycle was used with a total cycling time of 3.558 s and a yBz/2n 

value of 9.06 kHz. The calibration of temperature was made using ethylene 

glycol.

2.6. Results and discussion

4’-Cyanophenyl 4-n-heptylbenzoate (7CPB) melts at 40.3 ®C to form a 

nematic phase, which then turns isotropic at 52.7 °C. These are slightly difièrent 

from literature values.'*  ̂Its chain-fiuorinated analog 7PFCPB melts at 107.5 “C to 

form a smectic A phase, which becomes isotropic at 136.4 °C.

The peak assignments of aromatic carbons of the NMR spectrum in 

the isotropic phase were made with the aid of the group contribution method. In 

this method, the chemical shift value of unsubstituted benzene, 128.0 ppm is used 

as base value, and substituents cause the chemical shift changes o f ortho-, meta-.
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para- and directly bonded carbon atoms differently. The changes are known as 

increment values, which are tabulated in many books, such as Ref. 67. Then the 

chemical shift of each aromatic carbon can be calculated by adding up all 

increment values induced by all substituents on the phenyl ring. For the aliphatic 

carbons, the assignments were based on comparison with corresponding 

cyanobiphenyis. The proton coupled NMR spectrum of this compound was 

taken to find out the scalar coupling constants, J ’s, for the later calculation of 

dipolar coupling constants (Eq. 2.2). All results are summarized in Table 2.1.

3’ 2' ^  “  P Y 5 e Ç Ü)
/ —j^^^CHgCHgCHgCHzCHzCHzCHs

Ü L iu .

180 160 140 120 100 80 60 40 ppm

Figure 2.2. Proton-coupled and decoupled NMR spectra o f 7CPB in CDCI3.
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Table 2.L Compaiison of measured and calculated chemical shiôs of aromatic 

carbons and a summary of scalar coupling constants for ail carbons of 7CPB,

Carbon Calculated

5

Actuals

V

y  values / Hz Splitting

patterns

r 154.7 154.3 10.1 4.1 tt

r 121.6 122.9 166.2 5.0 dd

3’ 132.0 133.7 166.6 6.9 dd

4’ 109.1 109.6 9.2 t

1 127.2 126.0 7.8 t

2 129.1 130.4 158.1 6.0 dd

3 128.0 128.8 152.4 5.1 dd

4 146.8 150.1 hr

-CN 118.3 5.3 t

-c o o - 164.4 s

a 36.1 126.6 t

P 31.1 125.4 t

7 29.1 129.5 t

S 29.2 125.4 t

E 31.7 125.4 t

; 22.6 126.3 t

o 14.1 125.7 q
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The proton decoupled "C  NMR spectra of 7CPB and 7PFCPB in their 

isotropic and liquid crystalline phases are shown in Figure 2.3. As usual, the 

aromatic peaks shift down field when the compounds are cooled from the 

isotropic phase to the liquid crystalline phase. The aliphatic peaks of 7CPB shift 

slightly up field correspondingly (Figure 2.3, b), but the aliphatic peaks for 

7PFCPB are too broad to be observed due to extensive coupling (Figure

2.3, c and d). Even though the aromatic carbons have no directly bonded fiuorine 

atoms, the dipolar couplings in the smectic A phase are large enough to

cause severe broadening o f the aromatic carbon peaks (Figure 2.3, d).

The chemical shift change over the whole liquid crystalline range of 7CPB 

is shown below in Figures 2.4 and 2.5. To prevent overcrowding, the aromatic 

and aliphatic carbons are plotted separately. The change in chemical shifts is due 

to incomplete averaging of the chemical shift tensors in the liquid crystalline 

phase. However, unless all the components of the tensors in the axis system of the 

ordering matrix are known, it is not possible to calculate the order parameters 

from the chemical shifts. A more direct way to obtain the order parameters is to 

measure the C-H dipolar coupling constants using the 2D PELF/OMAS method, 

as described above.
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220 180 140 100 60 40 ppm

Figure 2.3. NMR spectra at 100.58 MHz for (a) 7CPB in the isotropic 

phase; (b) 7CPB in the nematic phase (at 43 °C); (c) 7PFCPB in the 

isotropic phase; (d) 7PFCPB in the smectic A phase (at 128 ®C).
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hi this experiment, to reduce the dipolar couplings and obtain sharp 

peaks, the sample was spun rapidly (~1 kHz) at an angle 9 with respect to the 

magnetic field Bo, which was chosen to be 47.58**. hi the evolution period, the 

BLEW-48 decoupling sequence is used to remove proton-proton dipolar coupling 

so that first-order C-H couplings can be observed in the o i dimension. In the 

detection period, the SPINAL-64 broadband decoupling sequence was used to 

obtain normal proton decoupled spectrum in the 0 2  dimension.

The 2D PELF/VAS spectra of 4'-cyanophenyl 4-«-heptyibenzoate at 

temperature T/Tni = 0.945 are shown in Figure 2.6. In the spectra, in the Oi, 

dimension one-bond C-H coupling and some 2-bond coupling can be observed. 

Each type of proton gives a doublet, and the central peaks are due to overlapping 

of many unresolved long range couplings. The quality of spectra in Figure 2.6 is 

better than that obtained by the SLF/VAS method, in which 2-bond couplings can 

only be obtained by deconvolution of the overlapping peaks."’’̂ *
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The method to calculate order parameters 6om the C-H splittings has been 

described in detail previously/^"*^ and will not be repeated here. Related data can 

be found in Appendix A.I. For the phenyl ring carrying an aliphatic chain, the 

average values of the calculated angles are: L H2-C2-C3 = 120.3 ± 0.4° and L H3- 

C3-C2 = 119.8 ± 0.4°; for the phenyl ring bearing cyano group, the angles are: L 

H2'-C2'-C3' = 120.8 ± 0.3° and L H3’-C3'-C2' = 120.1 ± 0.3°. These data are 

comparable to the previous results obtained with the SLF/VAS method."*”

To calculate the order parameters obtained firom the 2D data with the 

chemical shifts (5’s), the semi-empirical equation

A 5 = a S + è  (2.8)

can be used. For the phenyl rings, S refers to the order parameter of the two-fold 

axis of the ring; for the aliphatic carbons, S refers to the order parameters of the 

C-H axis.

In the present study, the PELF/OMAS technique was used to obtain the 

order parameters of 7CPB at four different temperatures. The values of AÔ for 

each carbon nucleus at these temperatures were then plotted against the order 

parameters to calculate the values of a and b. The plots are shown in following 

figures.
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Figure 2.21. Correlation between chemical shift anisotropy (AS) and order 

parameters for C(o of 7CPB.

The results, together with the correlation coefficients, are given in Tables 

2.2 and 2.3. The high values of the correlation coefficients show that the data 

obey the linear relation expressed in Eq. 2.8 very well.

Table 2.2. Semi-empirical parameters for the aromatic carbons of 7CPB.

c 1 2 3 4 r T 3’ 4’

a 74.7 34.6 29.3 51.7 94.3 40.8 45.1 106.9

b 10.1 6.44 5.56 20.4 -6.91 -0.02 -0.68 -7.10

Correlation
coefficient

0.989 0.986 0.985 0.984 0.996 0.996 0.996 0.996
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Table 2.3. Semi-empirical parameters for the aliphatic carbons of 7CPB.

c a P y 5 8 ; <0

a 42.9 31.6 33.5 38.6 46.7 14.8 48.3

b 022 -1.89 -0.32 -0.54 0.12 -0.55 0.32

Correlation
coefficient

0.994 0.998 0.989 0.998 l.OOO l.OOO 0.996

Once the values of a and b are determined, they can be used to calculate 

the order parameters from the chemical shift values, which can be measured more 

conveniently as a function o f temperature using 10 data. The data for the 

aromatic and aliphatic carbons are presented in Figures 2.21 and 2.22, 

respectively. The validity of this calculation was further examined by fitting the 

calculated values to the Haller equation^ '̂^°

S(T) = So(I-T/Ty (2.9)

where So and F are empirical constants and T* is a temperature at which the order 

parameter becomes zero. The best fitting curves are represented as dashed lines in 

Figures 2.22 and 2.23. The detailed procedure to obtain the best fitting curve for 

the aromatic carbons is given in Appendix A 3. I* was initially treated as a 

variable parameter for fitting each curve; then, the average value of 324.7 K was 

used as a fixed parameter for all final fittings. Data for carbon atoms on the same 

ring are positioned on the same line. A good agreement between the experimental 

data and S by the theoretical calculation can be found in the plots.
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Table 2.4. So and F obtained by fitting the calculated order parameter to the Haller 

equation.

c Ring 1 Ring 2 a P r S e ; (Ù

So 1.09 1.02 -0.340 -0.360 -0.344 -0.366 -0.361 -0.282 -0.139

F 0.20 0.15 0.14 027 0.23 0.31 0.30 0.33 0.28

The So and F values for the best fitting are listed in Table 2.4, where Ring 

I refers to the phenyl ring containing the heptyl chain. It has been suggested that 

the numerical values of So for the phenyl ring should be close to unityAlthough 

a variety of experimental techniques utilized in the determinations of order 

parameters indicated that this is not always true,*’ the values of So for both phenyl 

rings in 7CPB are actually quite close to unity. For a perfectly aligned all-frans 

conformation of the aliphatic chain. So for each C-H bond should be close to - 

0.333 [i.e. (3cos'109®28’-l)/2]. The values listed in Table 2.4 for the first five 

carbon atoms agree with this estimation reasonably well. However, an obvious 

odd-even alternation trend can be observed in the table, indicating that the bond 

angles are not strictly 109*’28’. The two most outer carbon atoms (i.e. ^ and o) 

have So values substantially less negative than the ideal value. This means that, in 

the theoretical state o f perfect nematic ordering for the liquid crystalline core, the 

chain end would still undergo considerable motions. The value F is an indication 

of how fast a molecular segment approaches this perfect state with the lowering of 

temperature. The data in Table 2.4 show that in general F increases gradually 

fiom the core to the chain. This is quite reasonable because in the nematic phase

6 6



the motions of the core are more limited than those of the chain, and the 

“fieezing” of chain motions with the lowering of temperature is more pronounced.

Because o f the lack of resolution in the "C  spectrum of 7PFCPB in the 

smectic A phase (Figure 2.3, d), the order parameters could not be obtained with 

good accuracy. Nevertheless, a study of the spectra of mixture of 7PFCPB 

and 7CPB offers useful information on the phase behavior of these systems.

Fig. 2.24 shows the spectra of a mixture of 7PFCPB and 7CPB (mole 

ratio 2:1) at five different temperatures. At 137 °C, which is higher than the 

clearing points of both compounds, the spectrum (Figure 2.24, a) is the sum of 

two isotropic spectra (Figure 2.3, a and c). When the temperature is lowered, the 

spectrum consists of both isotropic and anisotropic peaks for both compounds 

(Figure 2.24, b). As the temperature is further lowered, the intensities of the 

isotropic peaks decrease (Figure 2.24, c). However, upon a further decrease of 

temperature, the intensities of the isotropic peaks increase substantially (Figure 

2.24, d); in the meantime, the anisotropic peaks become very broad. Finally, at 48 

°C, the isotropic peaks disappear completely, while the anisotropic peaks sharpen 

again, but appear as partial powder pattern rather than single peaks.
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This interesting sequence of spectral changes can be explained in the 

foilowing. As the mixture is cooled from the isotropic phase, part o f the sample 

turns into a smectic A phase. The smectic A phase seems to be well aligned in the 

magnetic field, so that the linewidths (Figure 2.24, b and c) are comparable to 

those in the nematic phase (Figure 2.3, b). The two phases coexist for a fairly 

large temperature range (firom ca. 133 ®C to 80 ®C), with the amount of isotropic 

phase diminishing. Further lowering of temperature reduces the solubility of 

7PFCPB in 7CPB because the fiuorocarbon chain is not compatible with the 

hydrocarbon chain. Then, the system, which has been mostly smectic A with only 

a small amount of isotropic phase, turns into a mixture of isotropic and a higher 

order smectic phase. Judging from the characteristic of the spectrum (Figure 2.24, 

d), the isotropic phase contains mostly 7CPB, with a small amount of dissolved 

7PFCPB to keep it in the isotropic state. The director of the smectic phase does 

not have a unique orientation in the magnetic field, and the '^C peaks are broad. 

Finally, at still lower temperatures, the isotropic portion freezes, and the smectic 

phase has better ordering to show partial powder patterns (Figure 2.24, e). These 

explanations were substantiated by observations under the polarizing microscope, 

which showed the smectic A phase started to appear at ~133 ®C and turned into a 

higher smectic phase at -80 ®C.

In the smectic A phase, the order parameters of the rings and aliphatic C-H 

bonds in 7CPB can be calculated from Eq. 2.8 by using the data listed in Tables 

2.2 and 2.3. The results obtained at two temperatures are listed in Table 2.5,
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where Ring 2 refers to the phenyl ring carrying the cyano group. As expected, the 

liquid crystal becomes more ordered with the decrease of temperature.

Table 2.5. Order parameters of the rings and aliphatic C-H bonds of 7CPB in the 

mixture at two temperatures.

Ring I Ring 2 a P Y 5 s ; (0

114X 0.65 0.70 -0.19 -0.15 -0.13 -0.13 -0.15 -0.068 -0.057

104 “C 0.69 0.72 -0.20 -0.18 -0.14 -0.14 -0.16 -0.075 -0.061

2.7. Conclusions

In conclusion, the orientational ordering of 4’-cyanophenyl 4-n- 

heptylbenzoate (7CPB) has been studied by using 2D PELF/OMAS method, 

which provides higher resolution than previous SLF/VAS method and long range 

dipolar coupling can be directly visualized. Linear relations between chemical 

shifts and order parameters were established, and semi-empirical parameters were 

obtained to facilitate the study on the order behavior of 7CPB over the entire 

nematic range by using ID anisotropic ^̂ C chemical shift measurements. A 1:2 

mixture of 7CPB with its chain-perfluorinated analog has very interesting phase 

behavior with the change of temperature. The order parameters of 7CPB in the 

smectic A phase of the mixture were calculated firom the ‘̂ C chemical shifts.
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Chapter m . Synthesis and Characterization of Diazo Liquid 

Crystals for Potential IR Applications*

3.1. Introduction

Cunently, liquid crystal displays (LCDs) are mainly designed for 

application in the visible region. However, some special operations require 

electro-optic devices specially designed to function in the IR region for electronic 

sensing and communication. Although electro-mechanical IR modulators have 

been proven to be successful, ‘ LCDs operated in the near- and mid-lR ranges are 

a more desirable technological option because they have such advantages as small 

size and weight, low operating voltage, and low power consumption. Commercial 

liquid crystals were used to fabricate IR LCDs,^^ but they suffer from such 

problems as insufficient birefringence (An) and high optical loss because these 

liquid crystals are designed to be used in the visible range. Therefore, liquid 

crystals specially designed for use in IR range and with high dielectric anisotropy 

and birefringence need to be synthesized to overcome these problems.

3.2. Physical properties of liquid crystals

The presence of long-range orientational ordering is a fundamental 

characteristic of liquid crystals. Many interesting properties and important

* Part o f the material in this chapter is presented in a paper entitled “Diazo liquid crystals for 

potential infiared applications” by Hong Sun, Wing Shun Cheung and B. M. Fung, submitted for 

publication.
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applications of liquid crystals result &om their anisotropic orientational ordering. 

A study of the macroscopic properties of liquid crystals is essential not only for 

the evaluation of various theories but also for practical p lica tion  consideration.

Dielectric anisotropy, birefiingence and elastic constants are among the 

most important physical properties of liquid crystals, which will be discussed in 

detail in the following sections. Viscosity is also crucial for application, but since 

most of the liquid crystals for display devices are liquid crystal mixtures, this 

property is mainly tunable. Measurement of the viscosity of liquid crystals was 

not performed in this research and no discussion is made.

3.2.1. Dielectric permittivity

Dielectric permittivity e is a physical quantity related to the susceptibility 

to external electric field.^ Unfortunately, there is no good definition of this 

quantity. In general, s is related to capacitance C by the following equation

c  = ^  (3.1)
d

where A is the overlapped area of the two plates of a capacitor, d is the distance 

between the two layers, and the quantity s is the permittivity of the material 

between the plates. For vacuum, the firee-space value of So is 8.85 x iO‘‘̂  F/m. Air 

has only a slightly different value. The permittivity e of a material is expressed in 

terms of the permittivity of fiee space as

G = SrGo (3.2)

where Cr is the relative permittivity and is often called the dielectric constant.
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As in all covalent molecules, the bonds in liquid crystals are formed by 

overlapping electron clouds. Atoms with high electronegativity have stronger 

attractions for shared electrons, so a covalent bond formed between two atoms 

having different electronegativity has an unbalanced charge distribution, resulting 

in a permanent dipole. The dipole moment of a molecule is the vector sum of the 

dipole moments of individual molecular segments. If a molecule has a permanent 

dipole moment, it exists with or without an applied electric field, but its 

contribution to g is fi^quency dependent since the external electric field will 

inevitably change the alignment of the molecules.

Induced dipoles are created by the applied electric field which causes a 

distortion of the electron clouds, resulting in a redistribution of electrons shared 

by atoms with similar electronegativity. The contribution of this component to s is 

not frequency dependent since the formation and alignment of these dipoles does 

not require molecular motion.

Both permanent and induced dipoles account for the different dielectric 

permittivity of different materials.*

By applying an electric field along the long axis of the liquid crystals, the 

permittivity observed is su, while the application of an electric field perpendicular 

to this axis, Gi is measured. The dielectric anisotropy As is defined as

As = s//-sj. (3.3)

As is of fundamental importance in the switching performance of a material. For 

instance, in a twisted nematic display. As is required to be high enough to enable 

6 s t switching at low voltage. Values for As of technically useful materials range
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from -6 to +50. Materials with negative Ae can be used in a device called 

electrically controlled birefiingence (ECB) display.^ In 6ct, the ratio Ae/gj^ is 

important and is required to be minimized for the steep electrooptic response 

necessary for the highly multiplex nematic mixtures used in complex display.’

In electrostatics, the measurement of dielectric constant is almost always 

accomplished by the application of capacitors by using Equation 3.1. In LC 

measurement, this requires precise measurement of parasite capacitance (Cp, due 

to the rest of the circuit) and thickness (d) of LC cells. Since the accuracy of this 

measurement is extremely important for the practical application of liquid crystal 

materials, normally the measurement of s//, and Ae is performed on the same

liquid crystal sample cell. In this method, the thickness o f the cell is first 

measured on the empty LC cell after obtaining the Cp value, and d can be 

calculated by

d = So A/(Canpv -Cp) (3.4)

This equation can be derived fiom Eq. 3.1 pretty easily. Now, standard LC cells 

are commercially available and in order to prevent the potential error induced by 

the bubbles formed in the procedure of filling cells, the transparent electrodes are 

normally arranged in the center of the ceils and liquid crystal materials should 

cover the whole surface of the two electrodes. The measurement is taken on the 

electrode area instead of the whole area of the cell. Since the electrodes are 

formed by lithography, the areas are precisely known.

Without or with a low external electric field, at least one surface layer of 

LC molecules is aligned parallel to the surface of the cells, but Just like liquid
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crystals put into a glassy flask, the liquid crystal is opaque because there exist 

some microdomains in the bulk of the liquid crystal which have different 

orientation and anisotropic properties (e.g. they reflect light differently). To make 

sure the ex is the actual dielectric constant for the perpendicular arrangement, a 

certain technique (i.e., alignment) must be applied to make the needed uniform 

orientation of the bulk liquid crystals. The electrodes of the standard cells are 

coated with alignment polyimide (PI) films, which were rubbed along the same 

direction, ensuring parallel alignment (to the surface of the electrodes and 

substrates, but perpendicular to the external electric field applied for the 

measurement). By applying a voltage much lower than the threshold voltage, the 

capacitance of the cell can be measured and s i can then be calculated fiom Eq.

3.1. With the application of high enough external electric field, by Fredericks 

transition, all the molecules are aligned parallel to the electric field. Therefore, the 

dielectric constant thus obtained should be 8//. Dielectric anisotropy can then be 

calculated by Eq. 3.3.

3.2.2. Birefiingence

Double refaction occurs in optically anisotropic media, that is, media 

having optical properties dependent on direction. The phenomenon is also 

referred to as birefiingence. The "double" and “bi” in the name o f this effect 

refers to a difference in the refractive indices along the two different directions of 

propagation that a given incident ray can take in such media, depending on the 

direction of polarization. UniformLy aligned liquid crystals possess the same
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properQr. Because liquid crystals are uniaxial systems, let us just consider the 

simplest kind of birefiringent medium.

If dif&action effects are neglected, propagation of waves in uniaxial 

birefiingent medium can be described by a generalization of Huygens’ principle. 

The spherical secondary wavelets are replaced by wave surfaces of greater 

complexity, consisting of a spherical wave (referred to as ordinary ray) plus a 

wave (referred to as extraordinary ray) that is an ellipsoid of revolution. The 

ellipsoid is tangent to the sphere at two points that lie on a line though the center 

of the elliptical waves. The line is called the optic axis (O.A.) and it forms the 

axis for the ellipsoid o f revolution. In liquid crystals, this optic axis is the same as 

the director of the molecules.

OA OA
(a) Negative (6) Positive

Figure 3.1. Schematic representation of the polarizability for birefiringent 

materials (adopted firom Ref. 10).

The spherical wavelet spreads with a velocity Vg = c/no, and so at time t its 

radius will be (c/0o )t  The ellipsoidal wavelet spreads with a veloci^ ranging 

between c/no along the optic axis to a velociQr to a veloci^ v* = c/n« in a plane
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perpendicular to the optic axis. Here, % and Oe refer to the reâactive indices for 

ordinary and extraordinary rays respectively. The ellipsoid can be described by 

the following equation

= (3.5)
Ve Vo

if a coordinate is picked to have its z axis along the optic axis. Obviously this 

equation can be rewritten as

ne (x^ + y )̂ + n^z" = c  ̂t" (3.6)

The value o f n« is always greater than that of n@ for all liquid crystals and 

they are referred to as positive material. The birefiingence, or optic anisotropy is 

defined as An = n« -  n<). Birefiingence can be related to the dielectric anisotropy 

by the following relation*

Ae(v) = „.(v)=-o,(v)= (3.7)

However, the dielectric anisotropy of interest for LCDs is at very low firequency 

(v firom 0 to I kHz), and is usually much larger than As(v) in the visible and IR 

ranges.

When a beam of light is shone along the optic axis (molecular axis and 

also director) of the liquid crystal mixture, it will not sense the birefiingence and 

this is the basic principle of LCDs. The magnitude of birefiingence of liquid 

crystal mixtures is important when considering their use in display devices; in 

fact, it is the optical path difference (Anx d) that is the most important parameter.

When a linearly polarized light impinging on a parallel-aligned cell with 

the polarization axis perpendicular (9 = 90") to the LC director, a pure phase
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modulation is achieved because the light behaves like an extraordinary ray. On 

the other hand, if 8  = 45°, the polarized light can be viewed as the sum o f an 

extraordinary and an ordinary rays of the same intensity and the phase retardation 

occurs due to the different propagating speed of the extraordinary and ordinary 

rays in the LC medium. The phase retardation (5) can be expressed as'^

5(V,T,A.) = 2îtdAn(V,T,>.)/A.. (3.8)

An(V, T, X) is the effective birefringence of the LC, which is a function of the 

applied voltage, temperature and the wavelength of the incident light. At V = 0, 

An (= De -  Uo) reaches its maximum value, and so does 5.

Wu et al. proposed a method to measure the birefringence of LC 

materials. In their method, the alignment direction of both substrates of the 

sample cell are parallel to each other. Therefore, LC molecules will orient 

themselves parallel to each other and at the same time parallel to the alignment 

direction of the substrates. Then the cell is filled with the LC material to be 

studied and put between two polarizers (normally, the one closer to the detector is 

called analyzer and the other one is called polarizer). The angle between the 

polarization direction of the polarizer and director of the LC molecules is assumed 

to be 9. When the polarization direction of the analyzer is adjusted to be parallel 

or perpendicular to that of the polarizer, the normalized transmission of the cell 

can be expressed as

T// = I -  sin^ 20 sin* — 0  -9)

T i = sin^28sin^Y (3-10)
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9 is generally set to be 45" and Eqs. 3.9 and 3.10 can be simplified as

T// ~ cos^T (3 11)

T i = sin= | (3.12)

where S is still a fimction of V, T and X, as discussed previously. A plot of 

voltage-dependent transmission is shown below in Figure 32.

From Eqs. 3.11 and 3.12

—  = tan*— (3-13)
T// 2

and it can be deduced that

5 = n u t+2tan~* m  —0 ,2 ,4  (3.14)

5= (m + l)7 t-2 tan ‘‘J —  m = l , 3 , 5 (3.15)
V T / /

where the quantity m is the number of maxima determined fiom a plot such as 

that shown in Figure 3.2. As mentioned before, when the driving voltage is 0 V, 5 

and An reach their maxima. Afier the value of 6 (V = 0) is calculated fiom Eq. 

3.14 or 3.15, An (= Oe -  Uo) can be calculated using Eq. 3.8. In our measurement, 

the driving voltage is scanned fiom way below the threshold voltage to 24 V, the 

polarization direction of the analyzer is switched to be either parallel or 

perpendicular to that of the polarizer. Two curves similar to Figure 3.2 

corresponding to Tx and T// > respectively, are obtained. The light used in this
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measurement should be monochromie, since An is also a fimction of wavelength. 

A typical calculation is shown in Appendix A.6 .

Is

VOLTAGE. Vnn.

Figure 3.2. Voltage-dependent transmission of a 7.72-pm-thick, parallel-aligned 

E-7 LC cell at 633nm and two polarizer positions (adopted from Ref. 11).

3.2.3. Elastic constant

The elastic constants o f a liquid crystal are restoring torques which 

become apparent when the system is perturbed from its equilibrium configuration. 

These restoring forces are very weak in comparison with the restoring forces of 

solids, e.g. Hook’s law. While in displays it is the electric force which induces the 

initial perturbation, it is the balance between elastic and electric forces which 

determines the static deformation pattern of a liquid crystal and the dynamic 

behavior additionally invokes the viscous propertied of the system.

Frank^^ has shown that an arbitrary deformation state can be visualized as 

the combination of three basic operations; splay, twist and bend, which are 

described by the corresponding elastic constants Ku, K2 2  and K33, respectively, 

(Figure 3.3). The elastic part o f the internal energy of a perturbed liquid crystal is 

given by the equation^’
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F = i[K ii(V n)^+ K22(H'Vxn/+ fcsCn-Vn)^] (3.16)

In order to improve the multiplexability^ of TN-LCDs, the ratio o f bend 

and splay elastic constants K33/K11 of nematic liquid crystal is the most important 

parameters, that is, small Kja/Kn gives sharp threshold and hence high 

multiplexability.

llA
equilibrium
configuration

splay twist bend

Figure 3.3. Three possible deformations of a liquid crystal.

A method to determine K33/K 11 from capacitance-voltage curve was 

reported by Uchita and co-workers.*^ The exact relation between cell capacitance

C and applied voltage are obtained by Gruler et al. as 

V 2

13.14

(̂l+Ksin^<#)(l+Ysin-<#)^' ̂ 

C » sin^<#m"sm^4»
Cj. A

f [
1+Ksin^4i

(3.18)

(l+Ysin^< )̂(sin^«^m-sin"<|»)
] d(ji

where
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K = ̂ - l ,
Kl,

Y =  -  =  ̂ - l .
6i Sj.

^ is tilt angle of director of the liquid crystal, and is the tilt angle at the center

of the cell. can be determined by a numerical curve fitting method using Eqs. 
Kii

3.17 and 3.18, although the calculation procedure is very complicated. Eq. 3.18 

can be transformed to

A [- —

C „  , ® (l+Ysin^<^)(sin^<^m-sin^'j»)
—  =  (1 + Y )------------------------------------  i---------  (3-19)

V(—

0 (1+Ysin“<j>)(sin'̂ <j>jn“sin'̂ <j>)

Eqs. 3.17 and 3.19 give

and if let X = cos<j>, it then becomes

When the applied voltage is sufficiently high, the approximation ~  is valid, 

and Eq. 3.21 can be simplified as

£ ^  = y - ^ ( H - y ) î ^ f { ‘± ^ ) ' d x  (3^1)
C i te V o  1+Yx
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From Eqs. 3.1 and 3.3,

y _  ^  _ gff ~gj. _ C// ~CX 
g.L gx. Cx

and therefore, Eq. 3.21 can be rewritten as

I

= = (3-22)
C//-C j^ n V 0 1+7x2

Thus, the measurement of can be combined with the measurement of
Kii

dielectric anisotropy. In the dielectric measurement, C//, Cx and y can be

obtained. Then a scanning of driving voltage is applied and the corresponding 

capacitance is then recorded. The reduced capacitance Cr is then allowed to plot

against ^  and the slop of this straight line (when Cr > 0.8) can then be
c / / - c ^

utilized to achieve the value of K and thus of —  (= K +1).
Kii

3 J . Stnicture-property relations of liquid crystals

An enormous number of organic compounds have been synthesized, but 

among them only a small portion exhibits any liquid crystal phases. On the other 

hand, thousands of liquid crystals have been made, and each has its own specific 

combination of structural moieties which confer a certain phase morphology, 

phase transition temperatures, and other physical properties. The presence of 

liquid crystal phases is limited by both steric and polariQr Actors, that is, liquid 

crystal phases can only be exhibited by compounds with specific structures. The

88



combination of structurai moieties determines the physical properties of materials 

which are very important when materials are being considered for specific 

p lications.

Not all liquid crystals are suitable for applications or in fact even designed 

to do so. Accordingly, much care is required in the design and synthesis of liquid 

crystal materials in order to generate the desired liquid crystal properties and the 

necessary general physical properties. Much valuable information of the structure- 

property relationships^’*̂ '̂  ̂ has been provided by fundamental research. 

Subsequently this knowledge has been applied to the design and synthesis of 

liquid crystal materials that are used in the rapidly growing range of applications 

that are of increasing importance to technological advancement.

All scientists working in this field require at least a basic understanding of 

the structure-property relationships of liquid crystals. This understanding is 

essential, and it is well recognized that the relationships are extremely interesting 

aspects of liquid crystal research, although in practice the actual synthesis and 

evaluation of the materials must be performed.

Of all liquid crystalline phases, the nematic phase is used in many 

commercially available displays fi’om low information content ones (e.g. watches, 

calculators, etc) to high information content ones (e.g. portable computers, small 

screen TV, etc). The nematic liquid crystals are expected to fulfil the future 

demand for medium-sized displays. In contrast, smectic liquid crystals have found 

fewer commercially successful applications, although LCD using FLC (Sc*) has
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been commercially successful recently. Thus the following discussion is mainly 

concerned with the formation and thermal stability of nematic phases.

The structure of calamitic liquid crystals can be illustrated by the 

following schematic structure, in which A and B are ring systems connected by a 

linking group Z, M and M’ are lateral substituents, R is a terminal chain, and X is 

the other terminal group. Some general discussion of effect of various groups on 

the properties of liquid crystals will be given below.

Figure 3.4. General structure of liquid crystals.

3.3.1. Ring system

Most liquid crystals require at least two rings to produce the mesophase. 

Two of the rare exceptions^’̂ ’ are shown in Figure 3.5. Theoretically, any ring 

system that allows a linear configuration can be a good candidate for making 

compounds with mesogenic properties. However, in practice, only some five and 

six-member rings have been used. The failure is caused either by the difGculty in 

getting the correct substitution pattern to ensure the wanted linear configuration or 

by the fact that some ring systems favor crystalline phases too much to form any 

liquid crystalline phase.

The ring system affects not only the thermal stability o f liquid crystals but 

also dielectric anisotropy, optical birefringence, elastic constants and viscosity.
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Large dielectric anisotropy and birefringence can be obtained from aromatic 

rings, especially highly conjugated ring systems. Normally they also possess large 

elastic constants, but a problem accompanying this is that these liquid crystals 

have relatively large viscosity. Alicyclic rings can also be adopted in liquid 

crystals and the resultant liquid crystals are normally associated with low 

viscosity, but low dielectric anisotropy and low birefringence as well. In both 

cases, heterocyclic rings can also be used.^ '̂'^ The hetero atoms on the rings 

normally broaden the molecules and result in lowered mesogenic stability. The 

interaction between the hetero atoms can either favor the layered arrangement of 

the molecules to form smectic phases or the other way around. There exists some 

subtle balance between the size and the interaction of the atoms in the structure.

,0  C 32.0 N  6 2 .5 1
CsHi3^ ^OH'

F f F f F f F i F P
C 46.9 S 633 I

9,17Figure 3.5. Unusual liquid crystals without ring systems.

Some of the ring systems used in liquid crystals are depicted in Figure 3.6.

3.3.2. Linking group

In liquid crystals, linking groups serve to connect different ring systems. 

These groups could be a  single bond as in 5CB or other groups. Most linking
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Figure 3.6. Commonly used ring systems.

groups contain two or four binding atoms, because an odd number of binding 

atoms cause the core to bend and reduce the mesogenic property. Linking groups 

lengthen the molecules to increase the length-to-breadth ratio of the molecules, 

thus to favor the mesophase. Linking groups can also change the polarity and 

polarizability of the whole molecules, thus changing the properties of the 

molecules. An advantage of unsaturated linking groups is that they can elongate 

the conjugated system to obtain large dielectric anisotropy and optical 

birefringence, which are not obtainable in biphenyls since the two phenyl rings 

are not coplanar due to the steric repulsion between the ortho hydrogen atoms on 

the different rings. The most common linking groups are listed below in Figure

3.7.
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—C ~ “0 — o
II
o

Figure 3.7. Common linking groups.

3.3.3. Terminal moiety

The physical properties of nematic materials are greatly influenced by the 

choice of terminal unit. Any group that can extend the length without increasing 

the width of the molecules can be used as a terminal group. Nearly all liquid 

crystals contain at least one terminal chain, which could be alkyl, alkoxyl or 

alkenyl chain.‘° Although hydrocarbon terminal chains have low polarizability. 

they increase the length-to-breadth ratio of molecules. In the mean time, they 

impart some flexibility into the molecules, and lower the transition temperatures. 

Therefore, alkyl chains are good promoters of liquid cry stal phases.

The effect of chain length on the phase transition properties of liquid 

crystals is normally irregular and unpredictable. In many cases, the minimum 

melting points can be obtained in the liquid crystals with pentyl chains. However, 

often an odd-even effect will be found in the homologous series, that is, the phase 

transition temperatures of liquid crystals having chain with even number of 

carbon atoms lie on the same smooth curve, while those with odd carbon numbers 

on another curve. This phenomenon can be explained by considering that the odd 

carbon atom alkyl chain having a terminal methyl which extends the molecular
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axis, whereas in an even number carbon chain the terminal methyl tends to lie off 

axis/^ As the chain length increases, this effect becomes less pronounced and 

longer chain length favors smectic phases. The length of the chain can also 

influence the elastic constants of the nematic phase.

Branching the alkyl chains has a significant effect on the liquid crystal 

phase behavior of a material. Basically, the branching can suppress the orthogonal 

packing and be used to introduce tilted smectic phases into a system. It lowers the 

phase transition temperatures of the materials, and this effect is strengthened 

when the branching is moved towards the core. Another benefit of this effect is 

that chiral centers can be introduced to the system at the same time, which can 

then lead to the formation of ferroelectric properties.'* Surprisingly, the viscosity 

of materials is also increased by the branching.

Alkoxyl chains can also be incorporated into liquid crystals. Tlie polarity 

of the oxygen atom often causes an increase of melting point and viscosity, 

although they may exhibit a trend similar to their alkyl analogs. The nematic 

stability (N->1 transition temperature) also increases.”  The oxygen atom is 

generally directly bonded to the aromatic ring, which extends the conjugation and 

increases the rigidity of the core. Liquid crystals with oxygen connected to 

aliphatic rings are not well-explored due to the difficulty of synthesis.

Alkenyl chains increase the rigidity of the terminal chain and the whole 

molecule. However, this affects the phase properties of materials in a subtle 

manner, i.e. the position of the double bond is crucial in either lowering or 

increasing the elastic constant ratio and phase transition temperatures.'**
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Besides long chains, other terminal unit can also be chosen to incorporate 

into the structure of liquid crystals. It was found that the nematic stability 

decreases in the following sequence:^’*̂ '̂ ®

Ph > NHCOCHj > CN > OMe > NO2  > Cl > Br > NMei > Me > F > H.

A polar terminal group such as the carboxyl group can force the molecules to 

form dimers (by hydrogen bonding) which significantly increases the length of 

the molecules without increasing the breadth, resulting in better mesogenic 

properties. The cyano group behaves in a similar manner.^ The liquid crystal 

molecules bearing cyano end groups are often arranged in antiparallel fashion but 

the molecular axes are not in the same line. As a result, the dielectric anisotropy 

can be reduced. The resultant molecular pair is broader and transient and the 

extent of the antiparallel ordering is determined by the structure of the molecules, 

but as yet this cannot be predicted accurately.

The physical properties of the molecules are influenced greatly by the 

selection of the end group and in most cases high dielectric anisotropy requires 

the incorporation of cyano group. However, the molecular arrangement is another 

important factor. The existence of polar terminal groups in liquid crystals will 

inevitably invoke larger viscosity of the materials.

3.3.4. Lateral substitution

A lateral substituent is one that is attached off the linear axis of the 

molecule, usually on the side of an aromatic or aliphatic ring. A wide range of 

different lateral substituents (e.g., F, Cl, CN, NO2 , Me, CF3) have been adopted
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into many different liquid crystal systems in many different environments. Alkyl 

chains can also serve as lateral groups."'* More interestingly, branches in a 

terminal alkyl chain such as methyl, fluoro and cyano moieties are sometimes 

referred to as lateral substituents as well.’

Intuitively, it may be considered that anything that sticks out at the side of 

a molecule obviously disrupts molecular packing and therefore reduces liquid 

crystal phase stability. Indeed such disruption nearly always occurs through 

lateral substitution, but the situation is very subtle. Accordingly, in some cases 

this disruption to the molecular packing turns out to be advantageous for the 

mesomorphic and physical properties required for applications, and some very 

interesting and useful materials have been generated by the appropriate use of 

lateral substitution. Lateral substitution is important in both nematic and smectic 

systems: however, because of the particular disruption to the lamellar packing, 

necessary for smectic phases, lateral substitution always reduces smectic phase 

stability (particularly the more ordered smectic phases) more than nematic phase 

stability.

For lateral substitution, three factors need to be considered: size, polarity 

and position of the substituent. The most commonly used lateral substituent is the 

fluoro substituent which is only slightly larger than hydrogen and thus can exert a 

limited steric effect. Additionally, the fluoro substiment is of high polarity. This 

unique combination of steric and polarity effects enables some significant 

engineering of physical properties without too much disruption to the liquid 

crystal phase stability. The lateral fluoro substimtion can lower Ae and in some
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extreme cases, liquid crystals with negative Ae have even been prepared. Other 

lateral substituents are larger, and most o f  them have a significant effect in 

depressing the mesophase stability o f  the liquid crystals. For alkyl chains, this 

effect levels off with the increase o f  the length o f  the chain because it tends to lie 

along the long molecular axis. The position o f  the substitution is also o f  

importance. Changing the position o f  the substituent on the same ring can even 

affect the phase properties o f the liquid crystal, which is seen in many instances. 

When the lateral substituents are situated in such positions that they can make the 

previously conjugated aromatic rings twist to disrupt the coplanarity o f  the 

system, the physical properties such as dielectric anisotropy and birefringence can 

be lowered significantly.

3.4. Preliminary results of liquid crystals for IR application

Compounds with electron-donating and electron-withdrawing (push-pull) 

groups separated by a conjugated system, such as N, N-dimethyl-4-nitroaniline, 

are often used in non-linear optics applications. They have large molecular dipole 

moments, which result in optical absorption tailing into the near-IR region, high 

birefiingence and large dielectric anisotropy. Liquid crystal dyes (Figure 3.8) 

bearing push-pull groups have been synthesized in this la b o r a to r y a n d  they 

exhibit high dielectric anisotropy and large birefiingence which extends into the 

IR region better than commercial liquid crystal mixtures, for example, E7 (Figure 

3.9). However, their usage is limited to guest-host display since they are 

monotropic and have only narrow nematic ranges.
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Figure 3.8. Two liquid crystal dyes synthesized in this laboratory 25-27
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Figure 3.9. Wavelength-dependent birefringence o f E7 (filled circles), 10% I (R = 

CôHis) in E7 (open circles), and 20% I in E7 (filled squares).'^

Lengthening mesogenic cores normally results in better liquid crystalline 

properties, and the introduction o f  lateral substitutions can overcome the
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accompanying problem o f an undesirable increase in the melting point."*'"̂  Some 

four-ring nematic liquid crystals with a lateral alkoxy branch (III and IV) have 

been synthesized,^® and they have wide nematic ranges. Unfortunately, when used 

in guest-host display devices, they behaved differently from liquid crystal hosts, 

the reason o f  which is most likely due to the presence o f  the lateral alkoxy chains.

C=H

C,H„0 III

R'O

/ —\
N N - R

Figure 3.10. Some 4-ring nematic liquid crystals synthesized in this laboratory.^®

In this work, the synthesis, mesomorphic and physical properties of some 

new liquid crystalline compounds containing three rings with relatively small 

lateral substituents such as fluoro-, chloro- and methyl groups on the central 

phenyl ring will be presented. The core o f these compounds bears an electron- 

withdrawing nitro group at one end and an electron-donating group in the form o f  

piperazine ring at the other end. The properties o f  these compounds are compared 

with those o f the parent (non-substituted) liquid crystals. The effect of size, 

polarity and position o f  the substituents on the phase behavior and other physical 

properties can then be analyzed and used tor further modification to prepare 

similar liquid crystals. For each series, the chain length changes from C5 to C8 .
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Because longer chain length normally favors smectic phase, liquid crystals with 

chains longer than C8  are not synthesized.

O5 N

N—R

X i= F ,C l ,M e :X 2  =  F ,C l ,M e

Since liquid crystals with cyano group are very commonly used, cyano 

analogs o f  the above liquid crystals with relatively low phase transition 

temperatures were also synthesized to evaluate the possibility o f obtaining liquid 

crystals with lower phase transition temperatures.

Inspired by the fact that many liquid crystals with the following structure 

at one end have rather large dielectric anisotropy, two other series were also

synthesized. Because the mono-fluorinated compounds in the first series are all 

smectic, another fluorine atom was introduced to disrupt the lamellar 

arrangement, forming the second homologous series.
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In the following sections, the synthesis and mesophoric, absorption and 

physical properties o f  all these liquid crystals will be discussed.

3.5. Experimental

3.5.1. Synthesis o f  liquid crystals

After many unsuccessful attempts (Appendix A.4), the following synthetic 

routes were adopted to make the desired liquid crystals.

3.5.1.1. Synthesis o f 2 -methyl-l-(4 ’-nitrophenylazo)-4 -(4 ’'-rt-octylpipera2 inyl)- 

benzene, 1 2

Scheme 3.1

CHg NHCOCH3  NH2

HCI / EtOH^

Br Br

2 3
I IlNaNOj/ 
I  2) NaBF4

HCI

NO2 N2"BF4'

NaN02, Cu H3C

Br Br

5 4

101



Scheme 3.2
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8

O2N—^  NO
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SnCIa / HCI

\ _ V
9

glacial acetic acid

12

3.5.1.1.1 .3 -Bromo-6 -acetamidotoluene. 2’’ ̂

A 500 mL round bottom flask was charged with a solution o f acetyl o- 

toluidine 1 (14.8 g, 0.10 mol) in acetic acid (45 mL). With the aid o f  a pressure- 

equalizing dropping funnel, a solution ofBr% (17.0 g, 0.11 mol) in acetic acid (25
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mL) was added dropwise into the flask with continuous stirring at room 

temperature. After completion o f  the addition, the solution was allowed to stay at 

room temperature for another 30 minutes. Then the reaction mixture was poured 

into water (400 mL) and well stirred. The solid 2 (white crystals) was collected by 

filtration.

3.5.1.1.2.4-Bromo-2-methyIaniline, 3̂ ^

The crystals 2 from last step were dissolved in boiling ethanol (35 mL) 

contained in a 500 mL flask equipped with a reflux condenser. Concentrated 

hydrochloric acid (22 mL) was added to the solution via a pressure-equalizing 

dropping ftmnel. The mixture was then allowed to reflux for another 30 minutes 

until a test portion remained clear when diluted with water. The solution was then 

diluted with water (150 mL) and the flask was fitted with a condenser set for 

distillation. After the collection o f  100 mL of distillate, the residue was poured 

into ice-water (100 mL) and neutralized with 5% sodium hydroxide until Just 

alkaline. The yellow crystals 3 were collected with filtration and dried in air.

Yield, 16.8 g (90%); yellow crystals; 400-MHz ‘H NMR (CDCI3) 7.19 (d. 

J =  2.3 Hz. IH), 7.11 (d .J =  8.3 Hz, 2.3 Hz, IH). 6.54 (d ,J =  8.3 Hz. IH), 3.59 (s. 

2H), 2.13 (s,3H); 100-MHz '"C NMRlCDCb) 143.6. 132.8, 129.5. 124.4. 116.3.

110.0. 17.2.

3.5.1.1.3.4-Bromo-2-methylphenyldiazonium tetrafluoroborate, 4
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4-Bromo-2-methyIaniline 3 (8.84 g, 0.048 mol) was dissolved in a 1:1 

mixture o f  HCI and HiO (27 mL) with heating when necessary and the resultant 

solution was cooled with ice-salt bath. A pre-cooled solution o f  sodium nitrite 

(3.86 g, 0.056 mol) in H%0 ( 8  mL) was added dropwise to above solution and the 

mixture was then allowed to sit for 15 minutes. Another pre-cooled solution o f  

sodium tetrafluoroborate (8.37 g, 0.078 mol) in H%0 ( 8  mL) was added to above 

mixture below 10 °C. The mixture was stirred for 10 more minutes and the solid 

product was collected by filtration and then washed by ethyl ether. Yield, 10.5 g 

(78%); white crystals.

3.5.1.1.4.3-Bromo-6-nitrotoluene. S'*'

4-Bromo-2-methylphenyldiazonium tetrafluoroborate 4 (9.0 g, 0.037 mol) 

was dispersed in a solution o f sodium nitrite (40.0 g, 0.58 mol) in HiO (200 mL) 

mixed with freshly activated copper bronze ( 8  g) contained in a 400 mL beaker. 

The system was well stirred mechanically. Ether was added from time to time to 

destroy the froth. The mixture was then extracted with chloroform (200 mL x 3), 

the organic portions were combined and dried over anhydrous sodium sulfate. The 

solvent was removed and the residue was purified by silica gel column 

chromatography using hexane. Orange cry stals 5 were obtained.

Yield, 2.0 g (20% for two steps): orange crystals; MS spectrum: m/z (DIP, 

70 eV) =  214.8 (17.6), 216.8 (18.4); 400-MHz ‘H NMR (CDCI3) 7.87 (d, J =  8.7 

Hz, IH), 7.51 (d, / =  2.2 Hz, IH), 7.47 (d. / =  8.7 Hz. 2.2 Hz, IH). 1.55 (s, 3H); 

lOO-MHz NMR (CDCI3 ) 147.0. 135.7. 135.5, 130.1,127.7, 126.2,20.4.
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3.5.1.1.5.1 -n-Octylpiperazine, 7

A round bottom flask equipped with a refluxing condenser was charged 

with piperazine 6  (30.16 g, 0.30 mol), 1-bromooctane (13.52 g, 0.070 mol) and 

pyridine (80 mL) and heated to reflux overnight. After being cooled to room 

temperature, the flask was transferred into a freezer for further cooling. The white 

precipitate (excess piperazine and resultant pyridinium salt) was then filtered o ff 

and washed with acetone. The acetone wash was combined with the previous 

filtrate and the solvents were removed with a rotary evaporator. The residue was 

heated at about 1 0 0  °C under moderate vacuum overnight, and then fractionally 

distilled under vacuum. Yellowish oil was obtained.

Yield. 9.8 g (71%); yellowish oil; bp 115 -  117 °C / 20 mm Hg; 400-MHz 

‘H NMR (CDCb) 2.93 (t. J =  4.8 Hz. 4H), 2.44 (br s, 4H), 2.33 (m, 2H), 1.52 (m, 

3H). 1.32 (br. lOH), 0.91 (t. J =  6.7 Hz, 3H); lOO- /̂lHz ‘̂ C NMR (CDCb) 59.4.

54.6.46.1 ,31.7 .29.5 ,29.2 ,27.5 ,26.6 .22.5 ,14.0 .

3.5.1.1.6. 2-Methyl-4-(4’-rt-octylpiperazinyl)nitrobenzene, S'""

3-Bromo-6-nitrotoluene 5 (0.40 g, 1.4 mmol), 1 -n-octylpiperazine 7 (0.29 

g, 1.5 mmol), potassium carbonate (0.55 g, 4.0 mmol) and pyridine (20 mL) were 

added to a 50 mL flask and refluxed. The reaction was monitored by TLC. After 

removal o f  the solvent, purification o f  the residue by silica gel column 

chromatography using 1 :1  mixture o f hexane/ethyl acetate afforded 8 .

Yield: 0.25 g (50%); Yellow crystals; 400-MHz ‘H NMR (CDCb) 8.07 (d. 

/ =  9.2 Hz, IH), 6.91 (dd, J =  9.2 Hz, 2.6 Hz, IH), 6.62 (d, / =  2.6 Hz, IH), 3.39
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(W /= 5.1 Eiz, 4H), 2.63 (s, 3H), 2.56 (t, J=  5. I Hz, 4H), 2.37 (t, J =  7.6 Hz, 2H), 

1.51 (br s, 2H); 1.27 (br ra, lOH); 0.88 (t, / =  7.2 Hz, 3H); lOO-MHz "C NMR 

(CDCb) 153.8, 139.2, 137.1, 127.7, 116.1, 111.1, 58.7, 52.7, 47.0, 31.8, 29.5,

29.2,27.5,26.8,22.6,22.6,14.1.

3.5.1.1.7.2-MethyI-4-(4’-n-octylpiperazinyl)aniline,

A mixture o f  2-methyl-4-(4’-n-octyipiperazinyI)iiitrobenzene 8 (1.12 g,

3.4 mmol), stannous chloride dihydrate SnCliCHiO (2.92 g, 12.4 mmol) and 

hydrochloric acid (56.7 mL) was refluxed until a drop o f  the reaction mixture 

became clear when diluted with distilled water ( I mL). The reaction mixture was 

transferred into a flask and chloroform (100 mL) was then added. After cooling, 

the mixture was basified with 35% ammonium hydroxide slowly with stirring till 

it was highly alkaline. The organic part was separated and the aqueous layer was 

further extracted with chloroform (50 mL x 3). The organic portions were 

combined, dried over anhydrous potassium carbonate and then filtered. After 

removal of the solvent, purification of the residue by silica gel column 

chromatography using ethyl acetate afforded 9.

Yield, 0.65 g (64%); yellow crystals; 400-MHz *H NMR (CDCb) 6.69 (d, 

y  = 2 .2  Hz. IH), 6.65 (dd. /  = 8.4 Hz, 2.2 Hz. IH). 6.54 (d, J =  8.4 Hz, IH), 3.32 

(s. 2H), 3.03 (t. J  = 4.4 Hz. 4H). 2.56 (t, / =  4.4 Hz, 4H), 2.35 (t. J  = 7.8 Hz. 2H), 

2.10 (s. 3H), 1.51 (br m. 2H), 2.28 (br m, lOH). 0.88 (t. / =  7.0 Hz, 3H); 100- 

MHz^'C NMR (CDCb) 144.5, 138.4, 123.2, 120.0, 116.0. 115.8. 58.9, 53.5, 51.0,

31.9 ,29.6 ,29.3 ,27.7 ,26.9 ,22.7 .17.8 , 14.2.
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3.5.1.1.8.4-Nitrosonitrobenzene,

Potassium persulfate (5.0 g, 18.5 mmol) was added to pre-cooled 

concentrated sulfiiric acid (3.5 mL) with continuous stirring. After the formation 

of a white paste, ice (50 g) was added. After the ice had completely melted, the 

pH of the resulting solution was adjusted to 3 with potassium carbonate. The 

white solid precipitated during the neutralization was filtered off and p- 

nitroaniline 10 (0.207 g, 1.5 mmol) was added to the collected filtrate at room 

temperature. After stirring for 3 hours, the yellow solid formed in the mixture was 

filtered and then purified by silica gel column chromatography using ethyl acetate 

/ hexane ( 1 :2 0 0 ).

Yield, 0.164 g (72%); yellow powder; 400-MHz 'H NMR (CDCb) 8.52 

(d ,y=  8 . 8  Hz. 2H), 8.06 (d. 7  = 8 . 8  Hz, 2H); lOO-MHz '̂ C NMR (CDCb) 121.3. 

125.5 (quaternary carbons missing).

3.5.1.1.9 .2-Methyl-1-(4’-nitrophenylazo)-4-(4” -rt-octylpiperazinyl)benzene, 12'’’

A mixture of 2-methyl-4-(4’-n-octylpiperazinyl)aniline 9 (0.65 g, 2.15 

mmol), 4-nitrosonitrobenzene 11 (0. 33 g, 2.2 mmol) and glacial acetic acid (30 

mL) was heated at about 100 ®C with stirring, and the reaction was monitored by 

TLC. The solvent was then removed under reduced pressure. The residue was first 

neutralized with saturated sodium bicarbonate solution and then extracted with 

ethyl acetate (20 mL x 2). The solvent was removed and purification of the 

residue by silica gel column chromatography using ethyl acetate / hexane (1:3) 

afforded 1 2 , which was then recrystallized firom hexanes.
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Yield, 0.40 g (43%); dark red crystals, mp 124-126 C®; MS spectrum; m/z 

(DIP, 70 eV) = 437.3 (72.6); 400-MHz 'H NMR (CDCb) 8.32 (d, / =  9.1 Hz, 2H), 

7.92 (d, y  = 9.1 Hz, 2H), 7.77 (d, 7 =  9.9 Hz, IH), 6.77-6.78 (br, 2H), 3.43 ( t , /=

4.8 Hz, 4H), 2.72 (s, 3H), 2.60 (br s, 4H), 2.39 (t, 7 =  7.4 Hz, 2H), 1.54 (br s, 2H), 

1.28-1.31 (br m, lOH), 0.89 (t, J  = 6.5 Hz, 3H); 100-MHz '^C NMR (CDCb)

156.9,153.9,142.6, 124.6,122.8, 117.1, 115.0, 112.4,58.7,52.9,47.3,31.8, 29.5,

29.2.27.5.26.8.22.6.18.2, 14.1.

3.5.1.2. Synthesis o f 3'Chloro-I-(4'-aitrophenylazo)-4-(4” -n-octy[piperazmyI)- 

benzene. 16d

The same scheme (Scheme 3.3) can be utilized to synthesize many other 

liquid crystals with other types of substituents and the operations of the actual 

syntheses were very similar to that of 16d. For simplification, only the synthesis 

of 16d is shown below as an example.
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Scheme 3.3

Xl *2 
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Glacial acetic acid

O2N

16
Series a: X, == H, X% = H; Series b: X, = H. X% = F; 
Series c: X, = H. X% = CHj; Series d: X| = H. Xi= Cl;

3.5.1.2.1.3-Chloro-4-(4’-«-octylpiperazinyl)nitrobenzene, I4d^*

A mixture of 3-chloro-4-fluoronitrobenzene I3d (0.64 g. 3.7 mmol). \-n- 

octylpiperazine 7 (0.72 g, 3.7 mmol) and pyridine (20 mL) were added to a round 

bottom flask fitted with a condenser and refluxed overnight. After cooling, the 

white precipitate was filtered off. Then the solvent was removed with a rotaiy
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evaporator, and purification of the residue by silica gel column chromatography 

using ethyl acetate / hexane (1:4) afforded 14d.

Yield: L13g (8 8 %); yeUow crystals; 400-MHz ‘H NMR (CDCI3) 8.24 (d, 

J=  2.6 Hz, IH), 8.09 (dd, / =  8.9 Hz, 2.6 Hz, IH), 7.04 (d, J=  8.9 Hz, IH), 3.25 

(t, J= 4 .7  Hz, 4H), 2.65 (t,7= 4 .7  Hz, 4H), 2.41 (m, 2H), 1.53 (m, 2H), 1.32-1.28 

(br m, lOH), 0.89 ( t ,J =  7.0 Hz, 3H); 100-MHz NMR (CDCI3) 154.9, 141.9,

127.4, 126.6, 123.4, 119.2, 58.67, 53.0, 50.6. 31.8, 29.5, 29.2, 27.5, 26.8. 22.6.

14.1.

3.5.1.2.2. 3-Chloro-4-(4'-n-octylpiperazinyl)aniline. 15d

mixture of 3-chloro-4-(4’-«-ociylpiperazinyl)nitrobenzene I4d (1.13 g,

3.2 mmol), stannous chloride dihydraie SnCWCHiO (2.78 g, 12.3 mmol) and 

hydrochloric acid (54 mL) was refluxed until a drop of the reaction mixture 

became clear when diluted with distilled water ( 1 mL). The reaction mixture was 

transferred into a flask and chloroform (100 mL) was then added. After cooling, 

the mixture was basified with 35% ammonium hydroxide slowly with stirring till 

it was highly alkaline. The organic part was separated and the aqueous layer was 

further extracted with chloroform (30 mL x 3). The organic portions were 

combined, dried over anhydrous potassium carbonate and then filtered. After 

removal of the solvent, purification of the residue by column chromatography 

using ethyl acetate afforded 15d.

Yield, 1.03 g (-100%); yeUow crystals; 400-MHz ^H NMR (CDCI3) 6.81 

(d, J=  8.5 Hz, IH), 6.73 (d, /  = 2.6 Hz. IH). 6.55 (dd, / =  8.5 Hz, 2.6 Hz, IH),
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3.53 (br s, 2H), 2.98 (br s, 4H), 2.61 (br s, 4H), 2.39 (L / =  7.8 Hz, 2H), 1.52 (br s, 

2H), 1.30 (br m, lOH), 0.88 (t, /  = 6.9 Hz, 3H); 100-MHz ‘̂ C NMR (CDCb)

142.8, 141.1, 129.8, 121.3, 117.1, 114.2, 58.9, 53.6, 51.8, 31.8, 29.5, 29.2, 27.6,

26.9,22.6, 14.1.

3.5.1.2.3. 3-Chloro-1 -(4’-nitrophenylazo)-4-(4” -M-octyIpiperazinyl)benzene, 16d 

A mixture of 3-chloro-4-(4’-«-octylpiperazinyl)aniiine 15d (0.38 g, 1.2 

mmol), 4-nitrosonitrobenzene 7 (0.178 g,1.2 mmol) and glacial acetic acid (25 

mL) was heated at about 100 ®C with stirring, and the reaction was monitored by 

TLC. The solvent was then removed under reduced pressure. The residue was first 

neutralized with saturated sodium bicarbonate solution and then extracted with 

ethyl acetate (20 mL x 2). The solvent was then removed and the residue was 

purified by silica gel column chromatography using ethyl acetate / hexane (1:3) 

and then recrystallized from hexanes.

Yield. 0.33 g (62%); orange crystals, mp 57-59 °C; MS spectrum: m/z.(EL 

12 eV) = 459.3 (4.3), 457.3 (22.7); 400-MHz *H NMR (CDCb) 8.36 (d, J  = 5.0 

Hz, 2H), 8.00 (d, J =  5.0 Hz, 2H), 7.98 (d ,/= 2 .4  Hz, IH), 7.89 (dd. 8.5 Hz,

2.4 Hz. IH), 7.15 (d, J =  8.5 Hz. IH), 3.25 (br s, 4H). 2.67 (br s, 4H), 2.43 (t, /  =

7.8 Hz. 2H). 1.54 (m, 2H), 1.32 (br m, lOH), 0.89 (t. / =  7.0 Hz, 3H); 100-MHz 

'̂C NMR (CDCb) 155.7, 152.9, 148.5, 147.7, 128.3. 125.1, 124.7. 124.4, 123.3.

119.9. 58.8, 53.1,50.9,31.8,29.5,29.2,27.6,26.9,22.6. 14.1.

The homologous series of compounds 16a, 16b, 16c were synthesized by 

following the same scheme and the data were listed below.
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16a (n = 8 ): red crystals, mp 128-130 ®C; MS spectrum: m/z (DIP, 12 eV) 

= 423.1 (58.8); 400-MHz NMR (CDCb) 8.34 (d, / =  7.0 Hz, 2H), 8.00 (m, 

overlapping, 4H), 6.96 (d, J=  9.4 Hz, 2H), 3.44 (t, 7 =  5.1 Hz, 4H), 2.60 (t, 7  = 

5.1 Hz, 4H), 2.39 ( t , /=  7.8 Hz, 2H), 1.53 (m, 2H), 1.31 (br m, lOH), 0.89 (t,

7.0 Hz, 3H); 100-MHz "C NMR (CDCb) 156.5, 153.9, 147.6, 144.9, 125.7,

124.6, 122.8, 113.9.58.7, 52.9,47.3,31.8,29.5,29.2,27.6,26.9,22.6,14.1.

16b (n = 8 ): red crystals, mp 93-95 °C; MS spectrum: m/z (FAB) = 442.2 

(M 4- 1 , 81.3), 441.2 (M. 37.8); 400-MHz 'H NMR (CDCb) 8.36 (d, / =  9.0 Hz. 

2H). 7.97 (d. y  = 9.0 Hz. 2H), 7.79 (d. / =  8.3 Hz. IH), 7.66 (d ,J =  14.2,12 Hz. 

IH). 7.03 (t. J  = 9.0 Hz. IH), 3.32 (t, J  = 4.5 Hz. 4H), 2.65 (t. J  = 4.5 Hz. 4H). 

2.41 (t. J =  8.0 Hz. 2H). 1.54 (m, 2H), 1.30 (br m, lOH), 0.89 ( t , /=  7.0 Hz, 3H): 

1 0 0 -MHz '^C NMR (CDCb) 156.0, 148.2. 147.1. 143.9. 124.6. 124.3. 123.1.

122.8. 117.7, 108.1. 58.8. 53.1,49.8,31.8,29.5,29.2,27.6,26.9,22.6. 14.1.

16c (n = 8 ): red crystals, mp 87-90 °C; MS spectrum: m/z (DIP, 70 eV) =

437.2 (11.5); 400-MHz ‘H NMR (CDCb) 8.36 (d. / =  6 . 8  Hz, 2H), 7.97 ( d . /  =

6 . 8  Hz. 2H), 7.80 (m. overlapping, 2H), 7.10 (d. J=  9.2 Hz. IH), 3.08 (t. / =  4.6 

Hz. 4H). 2.65 (br s. 4H), 2.42 ( t ,J =  7.2 Hz. 2H), 1.54 (m, 2H), 1.30 (br m, lOH), 

0.89 (t, J =  7.0 Hz. 3H); 100-MHz '^C NMR (CDCb) 156.1. 155.9, 148.2. 144.1.

132.6. 125.5, 124.7, 123.7, 123.0, 118.8, 58.9. 53.5, 51.2, 31.8, 29.5, 29.2, 27.6,

26.9.22.6,14.1.
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3.5.1.3. Synthesis of 2-chloto-I-(4’-nitrophenylazo)-4-(4” -«-octyIpiperazinyl)

benzene, 19

Scheme 3.4

11

> vN O  H z N — ^

17

r - A
H N  N — ( C H , ) n . , C H 3

  n = 5.6. 7, 8
7

OzN

Glacial acetic acid

18

Cut. DMF.
, KnCOj. 100“C

/ = \  ^ - \N ^  ^ N ^ __ N̂-(CH2)„.,CH3

19

3.5.1.3.!. 4-(2’-Chloro-4’-fluorophenylazo)nitrobenzene, 18

The procedure to make this compound is similar to that for making I6d. A 

mixture of 2-chloro-4-fluoroaniIine 17 (1.00 g. 6.9 mmol). 4-nitrosonitrobenzene 

11 (1.04 g, 6.9 mmol) and glacial acetic acid (35 mL) was heated at 100 °C with 

stirring, and the reaction was monitored by TLC. After removal of glacial acetic 

acid, neutralization with sodium bicarbonate solution, extraction with ethyl 

acetate (20 mL x 2) and distillation of ethyl acetate, the residue was subjected to 

silica gel column chromatographic separation using ethyl acetate / hexane ( 1 ;2 0 ).
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Yield, L65 g (85%); orange crystals; 400-MHz NMR (CDCI3) 8.40 (d, 

/ =  8.3 Hz, 2H), 8.07 (d ,J=  8.3 Hz, 2H), 7.83 (dd, 7 =  9.1 Hz, 6.0 Hz, IH), 7.35 

(dd, y  =9.1 Hz, 2.8 Hz, IH), 7.11 (m, IH); 100-MHz ‘̂ C NMR (CDCI3) 166.0,

163.4, 151.9, 143.5,138.4, 124.8. 123.9, 119.0, 118.1, 115.0.

3.5.1.3.2.2-Chloro-1 -(4’-nitrophenyIazo)-4-(4’ ’ -n-octylpiperazinyl)benzene, 19̂ ^

4-(2’-Chloro-4’-fluorophenylazo)mtrobeiizene 18 (0.77 g, 2.7 mmol), l-n- 

octylpiperazine 7 (0.60 g, 3.0 mmol), cuprous iodide (0.57 g, 3.0 mmol), 

potassium carbonate (0.42 g, 3.0 mmol) and dry DMF (30 mL) were charged into 

a flask which was then sealed and heated at 100 'C with stirring overnight. AAer 

cooling, the solvent was distilled off under reduced pressure and the residue was 

purified with silica gel column chromatography using ethyl acetate / hexane 

(1:10), followed by ethyl acetate / hexane (1:3). The product 19 was then 

recrystallized from a mixture of ethyl acetate and hexanes.

Yield, 0.35 g (28%); orange crystals, mp 77-79 °C; MS spectrum: m/z (El, 

12 eV) = 459.3 (12.2), 457.3 (34.0); 400-MHz ‘H NMR (CDCI3) 8.35 (d ,J=  7.0 

Hz. 2H),.7.99 (d .y =  7.0 Hz. 2H), 7.82 (d. / =  9.4 Hz, IH), 6.99 (d, ./=  2.6 Hz, 

IH), 6.81 (dd, y  = 9.4 Hz, 2.6 Hz, IH), 3.44 (t. y  = 5.0 Hz, 4H), 2.59 (t, J  = 5.0 

Hz, 4H), 2.39 (t. y  = 7.6 Hz, 2H). 1.53 (m. 2H). 1.31 (br m, lOH), 0.89 (t, y  = 6 . 6  

Hz. 3H); 100-MHz‘"C NMR (CDCI3) 156.5. 154.1, 147.9, 140.2, 140.0, 124.7,

123.2, 118.5, 114.2, 112.6, 58.6, 52.7. 47.1. 31.8, 29.5, 29.2, 27.5, 26.8, 22.6.

14.1.
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3.5.1.4. Synthesis of 4-[3’-fluoro-4’-(4” -n-octyIpiperazmyl)phenyIazo]benzoni-

triie,22

Scheme 3.5

nc- ^ ^ ~ ^ nH2

20

NCH^~^NO

21

F

(CH2)7CH3

15b

Glacial acetic acid. 100 C

NC

 ^N-(CH2)7CH3

22

3.5.1.4.1.4-Nitrosobenzonitrile, 21

Potassium persulfate (5.0 g, 18.5 mmol) was added to pre-cooled 

concentrated sulfuric acid (3.5 mL) with continuous stirring. After the formation 

of a white paste, ice (50 g) was added. After the ice had completely melted, the 

pH of the resulting solution was adjusted to 3 with potassium carbonate. The 

white solid precipitated during the neutralization was filtered off and p- 

aminofaenzonitrile 20 (0.18 g, 1.5 mmol) was added to the collected filtrate at 

room temperature. After stirring for 3 hours, the pale yellow solid formed in the 

mixture was filtered off and then purified by silica gel column chromatography 

using ethyl acetate / hexane (1:200).
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Yield, 0.10 g (50%); pale yellow crystals; 400-MHz 'H NMR (CDCI3) 

7.97 (s); 100-MHz NMR not available due to the low solubility in CDCI3.

3.5.1.4.2.4-[3’-Fluoro-4’-(4” -rt-octylpiperazinyl)phenyIazo]benzonitrile, 22

A mixture of 3 -fluoro-4 -(4 -/7-octylpiperazinyl)aniline 15b (0.127 g, 0.41 

mmol), 4-nitrosobenzonitrile 21 (0.12 g, 0.91 mmol) and glacial acetic acid (25 

mL) was heated at 100 °C with stirring, and the reaction was monitored by TLC. 

The solvent was then removed under reduced pressure. The residue was first 

neutralized with saturated sodium bicarbonate solution and then extracted with 

ethyl acetate (20 mL x 2). The solvent was then removed and the residue was 

purified by silica gel column chromatography using ethyl acetate / hexane (1:3), 

followed by ethyl acetate / hexane (1:1). The product 22 was then recrystallized 

from a mixture of ethyl acetate and hexanes.

Yield: 0.10 g (57%); orange crystals, mp 79-80 ®C; MS spectrum: m/z (EL 

1 2  eV) = 422.3 (25.7). 400-MHz ‘H NMR (CDCI3) 7.92 (d.J= 8 . 8  Hz, 2H), 7.75- 

7.80 (m. 3H), 7.64 (dd, J=  2.2 Hz. 14.2 Hz. IH), 7.02 (t, J =  8 . 8  Hz. IH). 3.30 (t. 

J =  5.0 Hz, 4H), 2.64 (t, J =  5.0 Hz, 4H). 2.40 (t, / =  7.7 Hz, 2H), 1.53 (m. 2H); 

1.26-1.31 (br, lOH), 0.89 ( t ,J =  7.1 Hz. 3H); 100-MHz ‘̂ C NMR (CDCI3) 154.6.

133.1, 132.8, 126.0, 124.1. 123.1, 118.3. 117.8. 113.3. 108.2. 108.0, 58.7. 52.8.

47.2.31.8.29.5.29.2.27.5.26.8.22.7.14.1.
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3.5.I.5. Synthesis of 4-[3’-chioro-4’-(4” -n-octyipiperazinyl)phenyiazo]benzom- 

trile, 23

Scheme 3.6
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3.5.1.3.1.4-[3 ’-Chioro-4’-(4’'-n-octylpiperazinyL)phenyIazo]benzonitriIe, 23

A mixture of 3-chIoro-4-(4*-n-octyIpiperazinyl)aniiine 15d (0.20 g, 0.62 

mmol), 4-nitrosobenzonitrile (0.10 g, 0.62 mmol) and glacial acetic acid (25 mL) 

was heated at 100 °C with stirring, and the reaction was monitored by TLC. The 

solvent was then removed under reduced pressure. The residue was first 

neutralized with saturated sodium bicarbonate solution and then extracted with 

ethyl acetate (20 mL x 2). The solvent was removed and the residue was purified 

by silica gel column chromatography using ethyl acetate / hexane (1:5) and then 

recrystallized firom hexanes.

Yield, 0.22 g (81%); orange crystals, mp 76-78 °C; MS spectrum: m/z (EL 

12 eV) = 4392 (5.9), 437.2 (15.9); 400-MHz ‘H NMR (CDCb) 7.98 (d, J  = 2.2
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Hz, IH), 7.94 (d, y =  8.4 Hz, 2H), 7.86 (dd,/ =  2.2 Hz, 8.6 Hz, IH), 7.80 (d, J  =

8.4 Hz, 2H), 7.14 (d ,J=  8.6 Hz, IH), 3.24 (br s, 4H), 2.67 (br s, 4H), 2.43 ( t , /  =

7.8 Hz, 2H), 1.54 (br s, 2H), 1.26-1.32 (br, lOH), 0.89 (t, / =  6.8 Hz, 3H); 100- 

MHz ‘̂ C NMR (CDCb) 154.5, 152.7, 147.7, 133.2, 128.7, 124.9, 124.3, 123.2,

122.8, 119.9, 118.5, 58.8,53.2,50.9, 31.8.29.5,29.2,27.6,26.9,22.7, 14.1.

3.5.1.6. Synthesis of l-(3’-fluoro-4’-nitrophenyIazo)-4-(4’'-n-octyipiperazinyl) 

benzene, 29

Scheme 3.7
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Scheme 3.8
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3.5.1.6.1.3-FIuoroacetanilide. 25-"'

3-FluoroaniIine 24 (5.02 g. 0.045 mol) was dissolved in about 30 mL 

pyridine and the mixture was then cooled in an ice bath. Acetyl chloride (4.26 g, 

0.054 mol) was dissolved in 1,4-dioxane (15 mL) and the resultant solution was 

added to the previous mixture dropwise with constant stirring. After completion 

of addition, the mixture was then heated with a water bath at 60 ®C for an hour.
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After cooling, the solvents were removed with a rotary evaporator and the residue 

was dissolved in chloroform and the solution was washed with 10% HCI (30 mL 

X 2), water (50 mL x 2), NaiCOs solution (30 mL x 2) successively and dried over 

anhydrous NazS0 4 . After filtration and distillation of chloroform, white crystals 

were obtained. The product was used directly in the following step without fiirther 

purification.

Yield, 4.72 g (6 8 %); white crystals; 400-MHz ^H NMR (CDCI3) 7.66 (br 

s. IH); 7.47 (d ,J=  11.0 Hz. IH); 7.23 (m, IH); 7.13 (d ,/=  8.1 Hz. IH); 6.79 (dt,

2.5 Hz, 8.4 Hz); 2.17 (s. 3H).

3.5.1.6.2.3 -Fluoro-4-nitroacetanilide. 26’’'

A 150 mL round bottom flask was charged with nitric acid (5 mL), and 

concentrated sulfuric acid (7 mL) was introduced into the flask slowly. The 

mixture was then cooled with 0 °C water with stirring. 3-Fluoroacetanilide 25 

(4.72 g, 0.031 mol) was added to the above mixture in small portions. The 

resultant mixture was heated in a water bath at 55 "C (not appreciably higher) for 

45 minutes. The reaction mixture was poured into a beaker charged with a 

mixture of water and ice (100 mL) with vigorous stirring and the precipitate was 

collected and purified by column chromatography using 1 :1  hexane/ethyl acetate.

Yield, 1.34 g (22%): yellow crystals; 400-MHz ‘H NMR (CDCI3) 8.08 

(dd, / =  8.4 Hz, 8.9 Hz, IH). 7.82 (dd. /  = 2.3 Hz. 13.2 Hz, IH), 7.56 (br s. IH), 

7.22 (ddd, y  = 1.2 Hz, 2.3 Hz. 9.0 Hz, IH), 2.25 (s, 3H); 100-MHz ‘̂ C NMR 

(CDCI3) 127.3,114.0,108.2.24.8 (quaternary carbons missing).
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3.5.1.6.3.3-FIuoro-4-nitroaniline (27)

3-FIuoro-4-nitroacetanilide 26 (I.34g, 6,8 mmol) was dissolved in boiling 

ethanol (5 mL). With the aid of pressure-equalizing dropping funnel, concentrated 

hydrochloric acid (1 mL) was added into the solution and the mixture was 

refluxed for another hour. Water (10 mL) was added and the mixture was then 

subject to distillation under reduced pressure with rotary evaporator. The residue 

was added with water (20 mL) and the solid was collected and recrystallized from 

dilute ethanol. Brown crystals 27 were obtained.

Yield. 1.0 g (95%); brown crystals; 400-MHz *H NMR (CDCb) 7.98 (dd, 

y=  7.9 Hz. 8.9 Hz. IH), 6.43-6.37 (m, 2H), 4.47 (br s. 2H).

3.5.1.6.4.2-Fluoro-4-nitrosonitrobenzene. 28

Potassium persulfate (15.0 g, 0.056mol) was added to pre-cooled 

concentrated sulfuric acid (17.5 mL) with continuous stirring. After the formation 

of a white paste, ice (150 g) was added. After the ice had completely melted, the 

pH of the resulting solution was adjusted to 3 with potassium carbonate. The 

white solid precipitated during the neutralization was filtered off and 3-fluoro-4- 

nitroaniline 27 (1.0 g, 6.4 mmol) was added to the collected filtrate at room 

temperature. After stirring for 3 hours, a yellow solid formed in the mixture was 

filtered off and then purified by silica gel column chromatography using ethyl 

acetate / hexane ( 1:200).

Yield: 0.51 g (47%); bright yellow crystals; 400-h^IHz ‘H NMR (CDCb) 

8.44 (dd, J= 2.0 Hz, 4.9 Hz, IH), 8.04 (ddd,/ =  12 Hz, 2.0 Hz, 8.8 Hz, IH), 6.58
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(dd, J  = 6.4 Hz, 8.8 Hz. IH); 100-MHz NMR not available due to the low 

solubility in CDCI3 .

3.5.1.6.5. l-(3 ’-Fluoro-4’-nitrophenylazo)-4-(4’ ’-«-octylpiperazinyl)benzene, 29 

A mixture of 4-(4’-n-octylpiperazinyl)aniline 15a (0.0447 g, 0.155 mmol), 

2-fluoro-4-nitrosonitrobenzene 28 (0.0234 g, 0.141 mmol) and glacial acetic acid 

(5 mL) was stirred at room temperature, and the reaction was monitored by TLC. 

The solvent was then removed under reduced pressure. The residue was first 

neutralized with saturated sodium bicarbonate solution and then extracted with 

ethyl acetate (20 mL x 2). The solvent was then removed and the residue was 

purified by silica gel column chromatography using ethyl acetate / hexane (1:3) 

and then recrystallized from a mixture of etheyl acetate and hexanes.

Yield, 0.0617g (99%); red crystals, mp 94-96 °C; MS spectrum: m/z (El. 

12 eV) = 441.2 (40.0); 400-MHz ‘H NMR (CDCI3) 7.67-8.18 (m, 5H). 6.94 (d, J  

= 9.2 Hz, 2H), 3.46 ( t . /=  5.1Hz. 4H). 2.60 (t. / =  5.1 Hz. 4H), 2.39 (t. J =  7.7 Hz. 

2H), 1.53 (m, 2H). 1.28-1.31 (br. I OH). 0.885 (t. J =  6.7 Hz. 3H); 100-MHz '"C 

NMR (CDCI3) 154.2. 145.3, 126.2, 126.1. 119.8. 118.3, 113.7, 112.9, 110.3,

100.02. 58.7, 52.8.47.2. 31.8.29.5.29.2.27.5,26.8,22.7. 14.1.

3.5.1.7. Synthesis of 3-fIuoro-l-(3'-fIuoro-4'-nitrophenylazo)-4-(4''-»-octyl- 

piperazinyl)benzene. 30
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Scheme 3.9
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3.5.1.7.1. 3-Fluoro-1 -(3 ' -fluoro-4’ -nitrophenyIazo)-4-(4’ ’-n-octylpiperazinyl)ben- 

zene, 30

A mixture o f  3-fluoro-4-(4'-«-octyIpiperazinyI)aniIine 15b (0.0341 g, 0.11 

mmol), 2-fluoro-4-nitrosomtrobenzene 28 (0.0158 g. 0.093 mmol) and glacial 

acetic acid (5 mL) was heated with a water bath at 70 °C with stirring, and the 

reaction was monitored by TLC. The solvent was then removed under reduced 

pressure. The residue was first neutralized with saturated sodium bicarbonate
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solution and then extracted with ethyl acetate (20 mL x 2). The solvent was then 

removed and the residue was purified by silica gel column chromatography using 

ethyl acetate / hexane (1:3) and then recrystallized from hexanes.

Yield, 0.0363 g (71%); red crystals, mp 76-78 °C; MS spectrum: m/z (El, 

12 eV) = 459.2 (16.9); 400-MHz *H NMR (CDCb) 8.08-8.23 (m, 2H), 7.63-7.87 

(m, 3H), 6.94 (dt,7 =  1.8 Hz, 9.2 Hz. IH), 3.34 (t,/ =  4.8 Hz, 4H), 2.64 (t, 4.8

Hz, 4H), 2.41 (t, / =  7.7 Hz, 2H), 1.53 (m, 2H), 1.28-1.31 (br, lOH), 0.89 ( t ,J  =

6.6 Hz, 3H); 100-MHz ‘̂ C NMR (CDCb) 127.0, 124.9. 119.8, 119.6. 118.5.

117.6. 113.3, 113.0. 110.8, 110.6. 108.6. 108.4.58.8. 53.1.49.8.31.8. 29.5. 29.3.

27.6,26.8,22.7, 14.1.

3.5.2.Measurement of absorption properties of synthesized liquid crystals

The absorption properties of the synthesized liquid crystals were recorded 

on a Shimadzu UV-160 UV-vis spectrophotometer. Two solvents were used in the 

measurement. DMSO was selected when plastic cells were used. When quartz 

cells were applied, acetonitrile was utilized.

3.5.3. Phase behaviors of the synthesized liquid crystals

The phase transition temperatures were determined using a Perkin Elmer 

DSC7 differential scanning calorimeter and the nature of phases was checked 

using an Olympus BH-2 polarizing optical microscope.
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3.5.4. Other physical property measurements of synthesized liquid crystals

The dielectric anisotropy and elastic constant ratio measurements were 

performed on APT IH automated LC property tester purchased from Dispiaytech, 

Inc.

The birefringence measurements were carried out in a home-built 

instrument with an optical path shown in Figure 3.11. The light from the lamp is 

made monochromie by an optical grating (the wavelength of the light can be 

controlled by a palm-top computer). When it passes through the polarizer, it 

becomes plane polarized light. The intensity of the light can be modulated by the 

analyzer and detected by a photodetector. The liquid crystal cell is situated in 

between the two polarizers. By changing the amplitude of the driving voltage, the 

retardation can be measured and used to calculate the birefringence. The change 

of the driving voltage was facilitated by the APT III instrument. The same voltage 

scanning technique is used in the measurement of dielectric anisotropy and elastic 

constant ratio. To improve the intensities of the signals, a pair of condenser lenses 

are put between the polarizer and LC cell and between the cell and the analyzer.

The lamp, monochromator, palm-top computer and photodector were all 

purchased from CVI instrument group. The polarizer and analyzer (for visible and 

near-IR) were purchased from Edmund Scientific Co.

The signals from the photodetector are analog signals which are then 

transformed into digital signals with the help of an A/D converter (obtained from 

Digi-Key corporation). The data acquisition part uses the parallel port of a PC
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computer with the aid of a Quick Basic program. The configuration and principle 

of its operation can be found in Appendix A.5.

I / w  TL.

LC Ce
Polarizer

Monochromator 45/, _
slip p. _  Analyzer

'  #

^  Data acquisition 
hotodetector

Figure 3.11. Setup for birefringence measurement.

3.6. Results and discussion

Ten series of liquid crystals with push-pull structures were synthesized 

and studied in this work. In most of the schemes of the synthesis, the diazo 

linkage was formed by coupling a porn-substituted nitroso benzene derivative 

with a suitably substituted aniline. The results of all the measurements are listed 

in the subsequent sections. The structures of most of the synthesized liquid 

crystals has the general formula as VT. and two other series have the structure

v n .
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N N—R

-N N—R

3.6.1. Phase behavior

As expected, the presence o f  lateral substituents depresses the melting 

point and the clearing point o f all the liquid crystals because lateral substitution 

interferes with the packing o f molecules in crystalline and liquid crystalline 

phases. The position o f substitution is important in affecting the phase transition 

temperatures. When the substituents are ortho to the piperazine ring, the liquid 

crystals have lower melting points but higher clearing points, namely broader 

liquid crystalline ranges, than the corresponding mem-substituted liquid crystals. 

It can be found that when the substituent is located meta to the piperazine ring, the 

group is more shielded by other part o f  the molecule and its steric effect on the 

melting points is less obvious (compared to corresponding ortho-compoxmds). In 

the mefa-fluorinated case (compound *), although the steric effect is somewhat 

shielded, intermolecular interactions are sufficient to cause smectic arrangements.
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Table 3.1. Phase transition temperatures o f  the liquid crystals substituted with 

different groups on the central ring.

Compound Xz Xj n K S N I

16a H H 5 - 148.2 194.8
6 - 147.5 227.0
7 - 145.1 230.9
8 - 128.4 229.2

16b H F 5 - 98.6 194.2
6 - 81.2 183.0
7 - 91.9 180.7

8 93.0 168.8 184.7

16d H Cl 5 - 91.3 154.4

6 - 76.9 146.7

7 - 74.0 148.6
8 - 57.6 135.1

16c H CHj 5 - 117.0 165.8

6 - 86.7 154.9

7 - 83.8 151.0

8 - 87.7 149.0
* F H 5 103.2 131.8 190.3

6 82.9 154.4 184.2
7 88.4 164.7 181.0

8 81.8 175.8 181.2

19 Cl H 5 - 91.5 139.8

6 - 84.2 127.5
7 - 93.0 120.7

S - 77.7 128.3

1 2 CHj H s - 124.5 146.8

6 - 108.0 146.3
7 - 1 0 2 J 131.2
8 - 109.8 132.6

This series o f compounds were synthesized by Wing Shun Cheung, a postdoc in our laboratory.
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For substituents on the ortho (X3) position, the extent o f melting point 

depression (compared to the non-substituted compound, 16a) is Cl > CH3 > F, 

while the extent o f clearing point depression is CH3 > Cl > F. For substituents on 

the meta position (X2), the extent o f  melting ponit depression (compared with 

16a) is F > Cl > CH3, while the extent o f clearing point depression is Cl > CH3 > 

F. Melting points are mainly determined by the packing o f molecules as well as 

intermolecular interactions in the solid lattice; therefore, the melting point 

depression is a combinative effect o f polar and steric factors.

The effect o f  fluorine substitution at different positions are shown in Table

3.2. Regardless o f the position o f substitution, all fluorinated compounds with a 

pentyl chain have wider mesomorphic ranges than the parent compound (16a). 

Substitution at the position ortho to the piperazine ring (16b, 16c. 16d) has the 

most significant influence on the melting point depression o f the liquid crystals. 

Substitution at other positions (* and 29) has less effect, plus another 

disadvantage o f  inducing the formation o f a S.\ phase. However, when another 

fluorine atom is introduced into compound 29, the disruption o f the lamellar 

arrangement can be visualized again (compound 30). This is in accordance with 

the observation that the incorporation o f the second fluorine atom does not 

guarantee an enhancement o f smectic phases.'*® From other physical 

measurements to be discussed later, it appears that the introduction of a fluorine 

atom onto the position ortho to the nitro groups is a rather promising method to 

obtain liquid crystals with large birefringence and lower melting points. If the 

electron-withdrawing group like fluorine neighboring to the nitro group is a must
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for good physical properties, larger groups can be incorporated in the X3 position 

in structure VI to further lower the melting points o f  the liquid crystals.

Table 3.2. Phase transition temperatures o f  liquid crystals VI with fluorination at 

different positions.

Compound Xi X2 X3 n K S N I

16a H H H 5 - 148.2 194.8

6 - 147.5 227.0

7 - 145.1 230.9

8 - 128.4 229.2

16b H H F 5 - 98.6 194.2

6 - 81.2 183.0

7 - 91.9 180.7

8 93.0 168.8 184.7

* H F H 5 103.2 131.8 190.3

6 82.9 154.4 184.2

7 88.4 164.7 181.0

8 81.8 175.8 181.2

29 F H H 5 109.8 154.1 183.2

6 99.0 158.8 182.9

7 94.0 169.8 182.8

8 94.8 175.5 180.8

30 F H F 5 - 69.9 160.6

6 - 75.4 150.6

7 - 8 8 . 8 152.1

8 76.0 138.0 150.0
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For the three liquid crystals with a cyano group (22 and 23, n = 7, 8 ), their 

phase transition temperatures are listed in Table 3.3. For the sake o f comparison, 

their nitro analogs (16d and 16b) are also listed. The results show that, although 

all the cyano liquid crystals have higher nematic stability than their nitro analogs, 

the change o f  the terminal group has an ambiguous effect on the liquid crystal 

system. For instance, 22 has lower melting point than 16b (n = 8 ), but 23 has 

higher melting points than corresponding 16d. This really makes the study much 

more complicated, so the investigation o f effect o f end groups was not further 

pursued.

Table 3.3. Phase transition temperatures o f three cyano liquid crystals VII (22, X 

= F; 23, X = Cl) and their nitro analogs VI (16b, X, = Xi = H, X3 = F: 16d, Xi = 

X2 = H ,X 3 = C 1).

Compound n K S N I

22 8 - 79.0 192.1

23 7 - 106.2 157.1

23 8 - 76.5 167.5

16b 8 93.0 168.8 184.7

16d 7 - 74.0 148.6

16d 8 - 57.6 135.1

3.6.2. UV-vis absorption
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The Xmax values o f  the nitro compounds in DMSO solutions are listed in 

Table 3.4. The data show that the substituents have considerable effect on the 

optical absorption o f the liquid crystals. For compounds with only one substituent 

on the central aromatic ring, the values o f  Xmax for meta substitution (with respect 

to the piperazine ring) increase compared with the parent liquid crystals (16a) and 

the bathochromic effect is CH3 > Cl > F. When the substituents are situated ortho 

to the piperazine ring, the values o f  X̂ ax decrease and the hypsochromic effect is 

CH3 < Cl < F. The presence o f a fluorine atom at the Xi position increases the 

Xmax values o f corresponding compounds (from 480 nm in 16a to 493 nm in 29 

and from 435 nm in 16b to 448 nm in 30).

Table 3.4. Xmax values o f liquid crystals VI in DMSO.

16a 1 2 19 * 16c 16d 16b 29 30

X, H H H H H H H F F

Xi H CH3 Cl F H H H H H

X3 H H H H CH3 Cl F H F

Xmax / nm 480 493 483 482 406 418 435 493 448

These results can be explained as follows. Because the piperazine ring 

prefers a chair conformation, the nitrogen atom directly bonded onto the phenyl 

ring cannot adopt sp" hybridization, but the conjugative stabilization will force the 

ring to adopt a conformation to allow partial overlapping o f the lone pair on the 

nitrogen atom with the z  electrons on the phenyl ring. The presence o f  a lateral
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substituent on the ortho position (16c, 16d and 16b) would invoke strong steric 

interactions between the substituent and the piperazine ring, which would force 

the ring to rotate along the N-C bond connecting the piperazine ring to the phenyl 

ring to relieve the steric repulsion. This would diminish the conjugation o f the 

system, causing a broadening o f the energy gap between n and 71’ orbitals and 

results in an increase o f the n-^tt" excitation energy. An increase in the size of the 

substituent would increase the magnitude o f steric interaction, so the 

hypsochromic effect shows the trend CH3 > Cl > F.

When the substituents are neighboring the azo linkage (meta to the 

piperazine ring; 12, 19. and *), an opposite trend is observed. The steric 

interaction may force the 4-nitrophenyldiazene moiety to rotate away from the 

coplanar conformation with respect to the central phenyl ring. Quantum 

mechanical calculations by Forber *̂ er al. showed that there is a strong anti- 

bonding interaction between the substituents and the azo linkage. It increases the 

energy o f the n orbital on the nitrogen/^ '*’ thus lowering the energy o f the n->7t' 

transition. Basically the effect o f  the substituent at the meta position with respect 

to the piperazine ring is due to the steric factor, but it must also have an electronic 

component. This is manifested by the fact that the Àmax values for 16a, 19. and * 

are almost the same in spite o f the large differences in the sizes o f  H, Cl, and F. 

Thus, the electronic interaction works against the steric factor in these 

compounds. Our other work^° to incorporate a second fluorine atom onto the other 

ortho position o f  the piperazine ring caused the to decrease from 483 nm to 

448 nm (not listed in Table 3.4).
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A comparison o f  the difference o f  Àmax values o f  the non-substituted and 

corresponding substituted compounds suggests that the deconjugation perturbance 

is larger in magnitude than the perturbance o f  the increasing energy level o f  the 

nitrogen atom in the azo linkage. For example, the difference between 12 and 16a 

is only 13 nm, while that between 16c and 16a is -74 nm.

The fluorine neighboring the nitro group also has bathochromic effect. 

This effect can be ascribed as resulting from the fluorine atom, a strong electron- 

withdrawing group, which together with the nitro group can make better 

conjugation in this push-pull system than a single nitro functionality. Interestingly 

enough, the increments from 16a to 29 and from 16b to 30 are both 13 nm.

DMSO is not a commonly used solvent for UV-vis measurements. It was 

chosen because other solvents dissolve plastic sample cells that were used in the 

initial study. To obtain better UV-vis spectra and precisely obtain the molar 

extinction coefficients, acetonitrile, which has a cut-off wavelength o f 2 1 0  nm. 

was chosen as a solvent later, and quartz cells were used in the measurements. 

The data are listed in Table 3.5.

Table 3.5. Xmax and logs values for liquid crystals VI in acetonitrile.

16a 1 2 19 * 16c 16d 16b 29 30

Xi H H H H H H H F F

Xz H CH3 Cl F H H R H H

Xs H H H H CH3 Cl F H F

Xmax /  nm 456 455 465 453 413 406 392 474 434

logs 4.36 4.40 4.60 4.47 4.29 4.08 4.41 4.41 4.37
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It is widely accepted that Xmax values change with the solvents/^ However, 

it is rather surprising that the trend o f wavelength change with the substituents is 

also solvent dependent Careful comparison between the data in Tables 3.4 and 

3.5 shows that the case is really complicated. When the substituent is ortho to the 

piperazine ring (16c, 16d, 16b), the trends in acetonitrile and DMSO are just the 

opposite. When the substituent is meta to the piperazine (ortho to the diazo 

linkage), only the chloro group increases the Xmax value; methyl and fluoro 

substitution actually slightly decrease the Xamx values. In this case it can be 

concluded that the electronic effect plays a much more important role than in the 

DMSO case. In the extreme case (16c, 16d. 16b, orr/jo-substitution to the 

piperazine ring), electronic effect can completely dominate over the steric one and 

invert the trend o f the wavelength change.

It should be kept in mind that the fluoro group neighboring the piperazine 

ring substantially decreases the Xmax o f the liquid crystal. However, the fluorine 

atom neighboring the nitro group on the outer aromatic ring increases the Xmax 

value (from 456 nm o f 16a to 474 nm o f 29, and from 392 nm o f 16b to 434 nm 

o f 30). This can only be attributed to the better delocalization of electrons o f the 

whole conjugation system due to the help o f the fluorine atom. In other words, the 

newly introduced fluorine atom makes a better push-pull system.

3.6.3. Dielectric anisotropy

The measurement o f dielectric anisotropy must be made in the liquid 

crystalline phase. However, none o f  the synthesized liquid crystals has liquid
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crystalline phase at room temperature. To measure the genuine dielectric 

anisotropy o f the pure liquid crystal samples, a hot stage with precise temperature 

control compatible with the LC cells used in the APT HI automated LC property 

tester would be necessary. However, in practical applications, LCDs are operated 

at ambient temperatures.

To avoid this problem, the dielectric anisotropy measurements were made 

by dissolving the LC samples in E7, a commercially available liquid crystal 

mixture, to form 10 wt% "solutions”. E7 is a mixture o f cyano biphenyls and 

terphenyls; it has a large nematic range, and is widely used as a standard for 

electro-optic studies o f liquid crystals at room temperature. The results of these 

liquid crystal mixtures are summarized below in Table 3.6.

From physics, the dielectric constant s o f a mixture o f two substances 

(with dielectric constants, Si and si, respectively) can be related to si and si by the 

following relation.

G = xiEi + x:G: (3.23)

where X[ and Xi are the mole fraction o f  the two components. At low frequency, 

for liquid crystal mixtures, the same relation can be applied to the case o f  parallel 

and perpendicular components. However, in our measurement, the applied 

frequency is l.O kHz, and this relation does not strictly hold. Although 

calculations cannot be carried out, Eq.3.23 can still be used to estimate the 

properties o f pure LC materials.

The data in Table 3.6 show that only samples 19, * and 16c have larger 

dielectric anisotropy than that o f  E7. However, as discussed in the introduction
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part o f this chapter, it is the ratio o f  As/ gj_ that really affects the switching time of 

liquid crystals.  ̂Therefore, the most promising sample seems to be compound 30 

because this compound has smaller value o f s# but larger gĵ  than those o f E7 and

consequently a smaller value o f  As/gj^. It is worth to note that the data listed in 

the table are the data for the 10 wt% LC mixtures in E7. The molecular weights o f  

the synthesized liquid crystals are larger than those o f different components o f E7, 

so the molar ratios are actually smaller than 10%. Pure 30 should have smaller Zn 

and larger gj. than the data listed in Table 3.6 and the Ae/gj_ for pure 30 should be 

even smaller.

Table 3.6. Dielectric anisotropy of 10% liquid crystals in E7.

compound n S// S i Ab As/g^

E7 18.39 5.33 13.06 2.45

16a 8 17.56 4.75 12.81 2.69

12 8 19.26 5.10 14.16 2.78

19 8 18.30 5.04 13.26 2.63

it 8 22.33 6.05 16.28 2.69

16c 8 18.64 5.00 13.64 2.73

16d 8 17.74 4.99 12.76 2.56

16b 8 17.07 4,78 12.29 2.57

29 8 17.42 4.87 12.55 2.58

30 8 18.26 6.15 12.11 1.97
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3.6.4. Elastic constant ratio 

Table 3.7. Elastic constant ratio and threshold voltage of 10 wt% LC mixtures.

compound n d(pm) K33/K11 VthOO

E7 3.83 1.05 1.55

16a 8 3.72 1.34 1.51

1 2 8 3.91 1.18 1.43

19 8 3.92 1.18 1.39

* 8 3.57 1.16 1.51

16c 8 4.47 1 . 2 2 1.47

16d 8 3.43 1.16 1.39

16b 8 3.47 1.14 1.51

29 8 3.34 1 . 1 2 1.51

30 8 2.56 1.06 2.25

These data are for 10 wt% LC mixture in E7. Practical LCDs require 

materials with low elastic constant ratio K33/K 11 and this property is determined 

by each component of the mixture and the interactions between them. The 

concentrations of the synthesized LCs are low. and the values are all very close to 

that of E7. They indicate that mixing the LC samples does not substantially 

deteriorate the elastic property of the LC mixture except for 16a.

3.6.5. Birefringence
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Birefringence measurements were performed at 633 nm (visible range) 

and 1050 nm (near-IR range). The samples are the same as those in the other 

physical property measurement. The data are summarized in Table 3.8.

Table 3.8. Birefringence of liquid crystal mixtures at two wavelengths.

Compound n 10% LC mixture Pure compounds

An(633) An(1050) An(633) An(1050)

E7 0.213 0.203 0.213 0.203

16a 8 0.257 0.221 0.653 0.383

12 8 0.257 0.220 0.653 0.373

19 8 0.256 0.224 0.643 0.413

* 8 0.217 0.200 0.253 0.173

I6c 8 0.243 0.220 0.513 0.373

16d 8 0.242 0.217 0.503 0.343

16b 8 0.251 0.226 0.593 0.433

29 8 0.266 0.230 0.743 0.473

30 8 0.277 0.236 0.853 0.533

For most of synthesized samples, with molar percentage lower than 10%, 

the obtained birefringence is already substantially higher than that for E7. For a 

mixture, the observed birefringence is related to the An, values of the components 

by Eq. 3.24

An =s P i Ani + Pi An% (3.24)
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where Pi and Pi are the weight percentage of the components I and 2 , 

respectively. Using the values of E7, extrapolations to the pure liquid crystals 

were made and the results are also listed in Table 3.8. These extrapolation values 

were used to estimate the birefringence for pure LCs with structure VI. It can be 

seen that except for compoimd *, the resulted birefringence values are very high 

for all the synthesized liquid crystals. The main error is not from the measurement 

procedure itself but weighing the mass of the compounds in the preparation of LC 

mixtures. Because of the high price of E7, only 45 mg and 5 mg of the 

synthesized compounds were used to make each mixture.

3.6.6. Rise time

The sample cells for this measurement have alignment films arranged 

perpendicular to each other. In other words, this measurement is Just like the 

practical operation of TN LCDs. The measurement of rise time was performed 

using a 5.0 V driving voltage and 1060 tun monochromie light. After the 

application of the driving voltage, the transmittance change with time was 

recorded using a photodetector and the results are summarized in Table 3.9. In 

this table. 1 0 0 - 1 0 % stands for the transmittance change from 1 0 0  to 1 0 % and the 

time is in ms unit.

From this table, all the TN cells have rise time of the same magnitude. 

Although it is not suitable to compare the trend of rise time change with the 

substituents, it can still be concluded that all these liquid crystals are good 

candidates for potential IR applications. It was pointed out in 3.6.3. that 30 has the
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smallest A e / s j .  value, which favors a fast response. This is indeed the case, but 12 

and 16c also have the same rise time. Obviously, other factors such as viscosity 

must also be taken into account.

Table 3.9. Rise time of 10 wt% LC mixtures in E7.

Compound d(^un) 1 0 0 - 1 0 %

E7 3.25 13.5

16a 3.77 2 2

12 3.18 17.0

19 3.77 23.7

16c 3.65 17.0

16d 3.72 2 2 . 0

16b 4.29 2 0 . 2

29 3.99 23.7

30 3.52 17.0

3.7. Conclusion

The syntheses of eight series of liquid crystals carrying push-pull groups, 

with four homologs in each series, were carried out in this work. The effects of 

the substiments on the phase behavior, phase transition temperatures, optical 

absorption, dielectric anisotropy, elastic constant ratio and birefringence were 

studied.
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The presence of lateral substitution depresses both melting and clearing 

points of the liquid crystals. Compounds with orrAo-substitution (with respect to 

the piperazine ring) have broader nematic ranges than the corresponding meta- 

substituted ones. For optical properties, in DMSO, orfAo-substitution causes red 

shift, while /wgto-substitution causes blue shifts. This effect originates from the 

steric and electronic interactions between the substituents and certain segments of 

the liqitid crystals. This trend is solvent dependent and in acetonitrile, only meta- 

chlorination causes a red shift. Surprisingly, in DMSO and acetonitrile, ortho 

substitution has exactly the opposite trends in the À.„,ax change with respect to the 

parent compound.

All the liquid cry stals synthesized in this study have relatively large values 

of birefringence. However, the dielectric anisotropy values were much lower than 

expected.

The incorporation of a fluorine atom onto the position neighboring the 

nitro group can enhance the conjugation of the push-pull system, as a result, 

liquid crystals with better physical properties (large birefringence, small Ae/ sj.

ratio) can be obtained. This can then be combined with other substituents on the 

position ortho to the piperazine ring, and hopefully liquid crystals with both good 

properties and rather low melting points can be achieved. This information can be 

taken further advantage to guide the design and modification of liquid crystals 

with similar structures.

142



3.8. References

1. Flannery, R. E. and Miller, L E.. Proceedings ofSPIE Infrared Image Systems: 

Design, Analysis, Modeling, and Testing III, 1992,379.

2. Joffire, P., niiaquer, G. and Huignard, J. P., SPIE Proceedings, 1989,1126,13.

3. West, J. L., Doane, J. W., Domingo, Z. and Ukleja, P., Polym. Prepr., 1989, 

iO, 531.

4. Shi, Y., SPIE Proceedings, 1990,1220, 58.

5. Sharp, R. C., Resler, D. P., Hobbs, D. S. and Dorschner, T. A., Opt. Lett., 

1990,15, 87.

6. McCarger, W., Ondris-Crawford, R. and West. J. L., J. Electronic Imaging, 

1992,1 ,22.

7. Moore, A. D., Electrostatics and Its Applications (John Wiley & Sons), 1973.

p26.

8. Polh, L., Liquid Crystals, Applications and Uses (World Scientific), ed. by 

Birendra Bahadur, 1990, Vol. 1. p 140.

9. Collings, P. J. and Hird, M.. Introduction to Liquid Crystals (Taylor & 

Francis), 1997, p 273.

10. Klein, M. V., Optics (John Wiley & Sons), 1970, p 496.

11. Khoo, I. and Wu, S.-T., Optics and Nonlinear Optics of Liquid Crystals 

(World Scientific), 1993, p 107.

12. Frank, F. C., Disc. Faraday Soc., 1958,59,958.

13. Uchida, T. and Takahashi, Y., Mol. Cryst. Liq. Cryst., 1981, 72, 133.

14. Gruler, H., SchefFer, T. J. and Meizer, G.. Z  Naturforsh., 1972, 72a, 966.

143



15. Coats, D., Liquid Crystals, Applications and Uses (World Scientific), ed. by 

Birendra Bahadur, 1990, VoL / ,  p 92.

16. Hrid, M. and Toyne, K. J., Mol. Cryst. Liq. Cryst., 1998,323,1.

17. Viney, C., Russell, T. P., Depero, L. E. and Twieg, R. J., Mol. Cryst. Liq. 

Cyst., 1989,168,63.

18. Schubert, H. and Zaschke, H. J., J. Prakt. Chem., 1970, 312,494.

19. Haramoto, Y. and Kamogawa, H., Chem. Lett., 1985, 79.

20. Scadt, M., Buchecker, R., Leenhouts, F., Boiler, A., Nilleger, A. and Petrzilka, 

M.. Mol. Cryst. Liq. Cryst., 1986,139, 1.

21. Coates, D., Liq. Cryst.. 1987,2 ,63.

22. Gray, G. W., Harrison, K. J. and Nash, J. A.. Electron Lett., 1973, 9, 130.

23. de Jeu, W. H.. Philos. Trans. R. Soc. London. .4 .1983,309.217.

24. Weissflog, W. and Demus, D., Mol. Cryst. Liq. Cryst., 1985,129,235.

25. Wu, S. T., Margerum, J. D., Ho, M.-S. and Fung, B. M., .4ppl. Phys. Lett.. 

1994, <54,2191.

26. Wu, S. T., Ho, M.-S. and Fung, B. M., Mol. Cryst. Liq. Cryst.. 1995,261, 79.

27. Wu, S. T., Sherman, C. S., Margerum, J. D.. Funkhouser, K. and Fung, B. M., 

Asia Display. 1995, 567.

28. Osman, M. A., Mol. Cryst. Liq. Cryst., 1985.128,45.

29. Bui, E., Bayle, J. P., Perez, P., Libert, L. and Courtieu, J., Liq. Cryst., 1990,8. 

513.

30. Tong, T.-H. and Fung, B. M., Liq. Cryst.. 1997,23.883.

144



31. Fumiss, B. S.. Hannaford, A. J., Smith, P. W. and Tatcheil, A. R., Vogel's 

Textbook o f Practical Organic Chemistry (Longman), Fifth Edition, 1991, p 

918.

32. Kiritsy, J. A. and Yung, D. K.,J. Med. Chem., 1978,21, 1301.

33. Bellamy, F. D. and Ou, K., Tetrahedron Lett., 1984,25,839.

34. Dankwardt, S. M., Newman, S. R. and Krstenansky, J. L., Tetrahedron Lett., 

1995,36,4923.

35. Huang, S.-L. and Swem, D.,J. Org. Chem., 1979,44.2510.

36. Fieser, M., and Fieser, L. F., Reagents for Organic Synthesis (John Wiley & 

Sons), 1977,6.97.

37. Matsui, M., Tanka, N.. Nakaya, K., Funabiki, K., Shibata, K., Muramatsu, H., 

Abe, Y. and Kaneko. M., Liq. Cryst., 1997,23, 217.

38. March, J., .idvanced Organic Chemistry, Reactions, Mechanisms and 

Structures (John Wiley & Sons), Third Edition. 1985. p 581.

39. Lindley, J., Tetrahedron, 1984,4 0 ,1433.

40. Sun, H., Cheung, W. S. and Fung, B. M.. Liq. Cryst. (in press).

41. Forber, C. L., Kelusky, E. C., Bunce, N. J. and Zemer, M. C., J. Am. Chem. 

Soc., 1985,107,5884.

42. Kobayashi, S.. Yokoyama, H. and Kamei, H.. Tetrahedron. 1987,138.333.

43. Crews, P., Rodriguez, J. and Jaspars, M., Organic Structure Analysis (Oxford 

University Press), 1997, p 396.

145



Appendices

A.1. Least-squares fitting of the two phenyl rings in 7CPB

Table A. 1.1. Least-squares fitting for Ring I (phenyl ring with heptyl chain) of 

7CPB.

T/°C 1st simulation 2nd Simulation

LHz-Cz-C] Z.H3-C3-C2 Szz Sxx ■ Syy Szz Sx-X “ Syy

25.0 120.34= 119.88= 0.662 0.0354 0.662 0.0365

30.0 120.IT 119.51= 0.637 0.0474 0.636 0.0372

35.0 120.63= 120.00= 0.595 0.0278 0.597 0.0366

39.0 120.30= 119.85= 0.576 0.378 0.575 0.0376

Average 120.34= 119.81=

Table A. 1.2. Least-squares fitting for Ring 2 (phenyl ring with cyano group) of 

7CPB.

T/=C 1st simulation 2nd Simulation

LH2*-C:‘-C3’ LH3’-C3'-C2‘ Szz S\x - Syy Szz Sxx ■ Syy

25.0 121.49= 120.99= 0.699 0.0129 0.704 0.0470

30.0 120.50= 119.30= 0.687 0.0857 0.685 0.0639

35.0 120.85= 119.73= 0.654 0.0717 0.655 0.0658

39.0 120.48= 120.30= 0.643 0.940 0.631 0.0890

Average 120.83= 120.08°

In the first fitting, I-bond and 2-bond dipolar coupling constants were used (6- 

component fitting). The average values of angles were used in second fitting.
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A.2. Linear correlation between order parameters and chemical shift

anisotropy

Table A. 2.1. Data for the correlation of order parameters and chemical shift 

anisotropy for Ring 1.

T/°C Szz AÔ /ppm

Cl C2 C3 C4

25.0 0.662 59.36 29.28 24.88 54.46

30.0 0.636 57.61 28.50 24.20 53.31

35.0 0.597 55.25 27.43 23.32 51.75

39.0 0.575 52.62 26.14 22.21 49.76

Table A. 2.2. Data for the correlation of order parameters and chemical shift 

anisotropy for Ring 2.

T/°C Szz AÔ /ppm

C r  C2' C3* C4"

25.0 0.704 59.36 28.64 31.08 68.08

30.0 0.685 57.66 27.87 30.20 66.08

35.0 0.655 55.27 26.84 29.08 63.37

39.0 0.631 52.33 25.60 27.70 60.09

In the actual plotting (Figures 2.6-2.13), the z denotation was dropped and as a 

result. Szz became S.
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Table A. 2.3. Data for the correlation of order parameters and chemical shift

anisotropy for aliphatic carbons.

Ca cp Cy C5

T/“C S AÔ S AÔ S A8 S AÔ

25.0 -0.242 ■10.21 -0.188 -7.80 -0.199 -7.05 -0.173 -7.19

30.0 -0.237 -9.79 -0.177 -7.43 -0.193 -6.63 -0.161 -6.71

35.0 -0.225 -9.38 -0.166 -7.04 -0.180 -6.25 -0.150 -6.27

39.0 -0.215 -8.92 -0.152 -6.59 -0.166 -5.81 -0.139 -5.74

Cs c : Cm
T/oc S AÔ S AÔ S AÔ

25.0 -0.176 -8.09 -0.128 -2.45 -0.073 -3.20

30.0 -0.166 -7.60 -0.120 -2.31 -0.068 -2.92

35.0 -0.156 -7.05 -0.111 -2.16 -0.063 -2.69

39.0 -0.143 -6.42 -0.101 -2.01 -0.058 -2.46
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A.3. Haller fitting of aromatic carbons in 7CPB
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Figure A.3.1. First fitting of the temperature dependence of the order parameter of 
Cl in 7CPB.
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Figure A.3.2. First fitting of the temperature dependence of the order parameter of
C2in7CPB.
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Figure A.3.3. First tltting of the temperature dependence of the order parameter of 
C3 in 7CPB.
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Figure A.3.4. First fitting o f the temperature dependence of the order parameter of
C4in7CPB.
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Figure A.3.5. First fitting of the temperature dependence of the order parameter of 
c r  in 7CPB.
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Figure A.3.7. First fitting of the temperature dependence of the order parameter of 
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Figure A.3.8. First fitting of the temperature dependence of the order parameter of
C4* in 7CPB.
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The above fittings were carried out by using So, F and I*  as three 

variables and the results were summarized in Tables A.3.I. and A.3.2.

Table A.3.1. So, F and T* from the first Haller fitting of aromatic carbons of Ring 

I of 7CPB.

2of7CPB.

Carbon So F T*

Cl 1.091 0.201 324.46

C2 1.074 0.195 324.38

C3 1.072 0.194 324.34

C4 1.008 0.194 323.79

d T* from the first Haller fitting of aron

Carbon So F T*

c r 1.036 0.158 325.39

CT 1.036 0.158 325.52

C3’ 1.042 0.159 325.68

C4' 1.028 0.153 324.93

The average value of T* was then used as a fixed parameter. The second 

fitting was then performed by treating So, F as two variables.The parameters thus 

obtained were summarized in Tables A.3.3. and A.3.4.
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Figure A.3.9. Second fitting of the temperature dependence of the order parameter 
of Cl in 7CPB.

0.7-

0.6 - • a .

0.5 -

0 .4-

i_ 0 .3-

Î  ■
o  0.2-

0.0
305 310300 315 325295 320

Tem perature I K

Figure A.3.10. Second fitting of the temperature dependence of the order
parameter of C2 in 7CPB.
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Figure A.3.11. Second fitting of the temperature dependence of the order 
parameter of C3 in 7CPB.
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Figure A.3.12. Second fitting of the temperature dependence of the order
parameter of C4 in 7CPB.
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Figure A.3.13. Second fitting of the temperature dependence of the order 
parameter of CI’ in 7CPB.
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Figure A.3.I4. Second fitting o f the temperature dependence of the order
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Figure A.3.15. Second fitting o f the temperature dependence o f  the order 
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parameter o f C4‘ in 7CPB.

157



Table A.3.3. So, F from the second Haller fitting of aromatic carbons o f  Ring 1 of  

7CPB.

7CPB.

Carbon So F

Cl l.IOO 0.205

C2 1.085 0.200

C3 1.084 0.199

C4 1.071 0.195

Average 1.09 0.20

le second Haller fittina of aron

Carbon So F

cr 1.030 0.153

CT 1.018 0.149

C3' 1.021 0.149

C4' 1.023 0.151

Average 1.02 0.15

The average values o f So and F were then used in the fitting curve shown 

in Chapter II.
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A.4. Attempted synthesis

A.4.L Alkylation o f anilines

Scheme A.4.I

OTsOH

TsCI, Py
NHj

31
X = F,CI

OTsOH

RNH,,
KHCÔ:
HMPA

/ = /  / - A  .  .....
I.H C I.C H ,C N .A cO H  /  \ — /  

' — '  2. MaOH
16 34

Scheme A.4.1 was first proposed to synthesize the liquid crystals by 

following a procedure used for dialkylation of aniline with alkoxyl goups.' 

Unfortunately, the first step (31->32) did not work. The possibility o f dialkylation 

o f substituted aniline was tested by reacting 2-chloroaniline (or 2-fluoroanline) 

with ethylene ditolsylate. Only monoalkylated product was obtained. The 

dialkylation was further tested using Scheme A.4.2. The electron-withdrawing 

ability o f acetyl amino groups is much lower than fluorine and chlorine, but the 

alleviation was still not successful.

Scheme A.4.2

OzNzN OzN HzN
CH3COCI, Py Sn.HCI ) = \i  ^ N H z   -----------► ^  ^N H C O C H a----------- ► 4  ^N H C O C H z

35 36 3 7

(TsOCH2>,
Vfonoalkylation
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A literature procedure^ was followed to make the arylpiperazine, pyridine 

was the solvent and K2CO3 was utilized as a base (Scheme A A3). Another 

procedure^ using microwave was also attempted and there was no positive result 

either.

Scheme A.4.3

" 3C H3C

r = \  (H0 CH-,CH2)-,NH,’Cr ) = \  /— V

38 3 9

Since such a strong alkylating reagent as tosylate is not good enough to 

dialkylate the chloroaniline (or fluoroaniline or even m-acetylaminoaniline), 

probably it is not possible to prepare ar\ipiperazine by the way shown in Scheme 

A.4.1.

A.4.2. Direct coupling

To couple the alkylpiperazine with aromatic halides should be a good way 

to circumvent the confronted difficulty. Some methodŝ "® (Schemes A.4.4. and 

A.4.5) were tried to coimect the aromatic ring with the piperazine ring and then 

manipulate with the rest functionality. Pd^* has been widely reported in literature 

to catalyze this coupling reaction, but the expense is rather prohibitive.

Scheme A.4.4

) = \  O * * "  ) = \  r A
\ J - '  L r  w"'"

40 41
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) = \  Cr(C0)6, BU.O.THF ) = \  " O  . . . . .
/  ^ N H , ------------------------------^  4  i / —NHz-------------- ► No desired reaction
\  ff y jr  DMso. hv

‘*2 (0C)3Cr 43

A.4.3. Aromatic nucleophilic substitution

Aromatic nucleophilic substitution^'" is the best candidate for the 

coupling of piperazine and the phenyl rings. However, it is rather frustrating to 

see that diazo coupling reaction fail to proceed in the presence of halogen atoms 

on the aromatic ring (Scheme A.4.6).

Scheme A.4.6

N O , N O , N H ,

/r~ L  / — \  Pvridine / = \  /  \  S n /H C l / = \  /  \

44 45 46

'N H ,

I ;
\ _ V 2) CuCI

8. 47

No diazo coupling

It took quite a while to realize that suitably substituted 4- 

fluoronitrobenzene can be used in this synthesis. The nitro group can facilitate the 

nucleophilic substitution (F as leaving group), and can then be reduced to amino 

group by various methods. The resultant amino group can then react with nitroso 

group to form diazo linkage as shown in the synthetic part in Chapter 3.
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A.5. Data Acquisition

MAX187
Amlog Dfut (0-4.09ÎV)

DigHl OuBwt (bftiwr M»

7IL05Power supply 
6V

O Ô Ô O O O O O O O O Ô O

MAXI 87 is an A/D converter that can convert analog voltage signals to 

digital signals. There is an internal reference voltage that can be utilized by the 

converter to calculate the magnitude of the analog input. This internal reference is 

connected to Pin 1 of MAXI 87. Pins 6 , 7 and 8  (of the converter) are used in the 

data collection. When Pin 7 receives a pulse, it initiates the conversion of the 

analog signal to a digital one. The resulting signal (binary) is stored in the 

converter. When Pin 8  receives a pulse, the converter begins to output signal bit 

by bit from Pin 6 . In the above circuit. Pin 7 (of the converter) is connected to Pin 

2 of the parallel port of a PC computer. Pin 8  (of the converter) to Pin 3 (of the 

parallel port) and Pin 6  (of the converter) to Pin 12 (of the parallel port).

The needed pulse can be realized by sending a number to the parallel port 

and its address in a PC computer is always 378H. It can be seen from the above 

pictiure that the parallel port has 25 pins. The parallel port is used to exchange data 

between the computer and perimeter equipment in a parallel manner, so some of 

the pins are used for input and output of the data. Normally, Pins 2-9 work as data 

bits and they are data bits 0-7 correspondingly. In current computers, one bit has
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only two states, 0  and I, which is different from each other in the voltage of the 

bit- When the voltage is high, it stands for 1, otherwise it is 0. Now the if we want 

to send a pulse to Pin2 of the port (and then to Pin 8  of the converter) to initiate 

the A/D conversion, we need to send first a 1 and then 0 to Pin 2. If we want to 

send a similar pulse to Pin 3 of the port (and then to Pin 8  of the converter) to 

trigger the output the data, we need to send 2, 0 to the address 378H, because Pin 

3 is data bit 1, and 2 means a high voltage on Pin 3.

The output signal on Pin 12 (data bit 4 of address 379H) needs to be read 

out. A common way to do this is to test the voltage of this pin directly. In 

computer language, this is done by testing the bit with a logic command AND. 

This datum is only a bit of the whole binary signal (12 bits). As mentioned 

previously, the signal will be transferred bit by bit in decreasing significance. 

Then these 12 binary signals are converted to the more familiar decimal signal by 

following basic rules.

The practical program is written in Quick Basic as follows:

D IM B 1 T % (II)

INPUT "OPTICAL MEASUREMENT FILENAME:", OÜTHLES 

OPEN OUTFILES FOR OUTPUT AS #l

NAVE% = 500 

START& = TIMER
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WHILE INKEYS o  "!"

SIG!=0

FOR]% = I TO NAVE%

OÜT&H378,1 

OUT&H378,0

FOR i% = 0X 0 II 

OUT &H378,2 

OUT &H378.0

IF (INP(&H379) AND &H20) THEN 

BIT%(i%) = I

ELSE

BIT%(i%) = 0 

END IF 

NEXT i%

NUM% = BIT%(11) BIT%(IO) * 2 + BIT%(9) * 4 -  BIT%(8 ) * 8  + BIT%(7) * 

16 + BIT%(6 ) ♦ 32 -  BIT%(5) *64 + BIT%(4) * 128 -  BIT%(3) * 256 + 

BIT%(2) * 512 + BIT%(I) * 1024 + BIT%(0) * 2048 

SIGÎ=SIG!+NUM%

TIME! = TIMER - START&

N E X T j%
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SIG[=SIG1/NAVE%

PRINT USING "##.## # # # # " ;  TIME!: SIG! 

PRINT #1, USING "##.## ######"; TIME!: SIG!

WEND

CLOSE n
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A.6. Data for birefringence measurement for 10 wt% LC mistures

n d
jim

633 nm 1050 nm

T// Tx m An T// Tx m An

E-7 3.83 0.387 0.620 2 0.213 0.481 0.532 I 0.203

16a 8 3.72 O.OOl 0.999 3 0.257 0.401 0.619 I 0.221

12 8 3.91 0.077 0.924 3 0.257 0.707 0.292 1 0.220

19 8 3.92 0.074 0.930 3 0.256 0.752 0.241 1 0.224

16c 8 4.47 0.393 0.608 3 0.243 0.968 0.027 1 0.220

16d 8 3.43 0.311 0.677 2 0.242 0.364 0.624 1 0.217

16b 8 3.47 0.141 0 . 8 6 8 2 0.251 0.504 0.521 1 0.226

29 8 3.34 0.090 0.897 2 0.266 0.445 0.558 1 0.230

30 8 2.56 0.860 0.140 2 0.277 0.054 0.950 I 0.236

An example of the calculation for compound 16b at 633 nm is given below.

The following plot is somewhat different from what is shown in Figure 3.2, 

because in our automated measurement, we used the scanning voltage used by the 

APTTII instrument. The voltage begins to increase from 0.5 V in every 0.1 V 

interval when below 4.0 V and changes to 1.0 V interval after 4.0 V till 24.0 V. In 

our program we did not try to relate the voltage to time since the most important 

information is the values of T/(0), Tx(0) and m (number of cycles) and they all 

can be obtained in this measurement.
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16b at 633 nm

?
I

Time/s

m = 2. d = 3.47 |im 

T//(0) = 0.141, T.(0) = 0.868

I n ^68
6  = 2% An d / À. =2tc + 2 tan'' J — = 2.756 %

V0.I4I

Thus.

^ , 2 J 5 6 5 x 6 3 3 ^ , g . _ , ^ _ ,
271x3.47x10'"
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A.7. UV-vis absorption spectra for synthesized liquid crystals

SAMP :

+ 1 . 0 0 A

0.200

+ 0  0 0 A

1 0 0 . 0 ( N M / O I V . )

1 4 = 4 8  1 0 / 0 8  * 4 8 8 0 0 . 0NM - 0 . 0 0 2 A

Figure A.7.1. The UV-vis spectrum of 16a (n = 5) in DMSO (1 ^3% = 443 nm).

SAMP :
+ 2 . 0 0 A

NM200 .0
4 = 3 2  3 / 0 7  * 4 3 3 0 0  . 0 N M 0 . 0 0 0 A

Figure A.7.2. The UV-vis spectrum of 16c (n = 5) in DMSO (Xmax = 406 nm).
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SAMP REF: 418.0NM 1.850A
+ 2 . 0 0 A  r

0  . 5 0 0  
( A/ OI V.> .

+ 0 . 0 0 A NM 
10 0 0 . 01 0 0 . 0 ( N M / D I V . )200 .0

1 4 = 4 2  7 / 2 6  ' ? 9 1 0 0 0  . 0NM 0 . 0 0 f Â ]

Figure A.7.3. The UV-vis spectrum of 16d (n = 5) in DMSO (Âmæc = 418 nm).

S AMP  : R E F  : 4 3 5 . 0 NM 1 . 0 3 6 A

0 . 5 0 0  
( A/ DI V.> .

NM 
1 0 0 0  . 01 0 0  . 0 ( N M / D I U . )

1 4 = 3 2  7 / 2 6  ' ? 9 1 0 0 0 . 0 NM - 0 . 0 0 1 Â I

Figure A.7.4. The UV-vis spectrum of 16b (n = 5) in DMSO (Xmix = 435 nm).
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SAMP : 4 9 3 . 0NM 1.700AREF :

0 . 5 0 0  
CA-' DIU.  >

“ 7 ^  NM 
1 0 0  0  . 020 0 100 . 0 (  NM-^DIU . )

1 4 = 4 5  7 / 2 6  ' 7 3 1 0 0 0 . 0MM 19 . 0 0  1 A

Figure A.7.5. The UV-vis spectrum of 12 (n = 5) in DMSO (Xmax = 493 nm).

S A M P  :

+ 2 . 0 0 A

0  . 5 0 0  
< A / D I U  .  ) .

+ 0 . 0 0 A NM200.0 
4 = 3 0  9 / 0 7  ' &9

1 0 0  . 0 ' :  N M / D I V  . ) 8 0 0  . 0

3 0 0 . 0 N M 0 . 0 0 1 A

Figure A.7.6. The UV-vis spectrum of 19 (n = 5) in DMSO (X.max = 483 nm).
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REF =SAMP =

0  . 5 0 0  
( A / D I V . )

+ 0 .  0 0 A
NM

2 0 0 . 0 1 0 0  . 0 < N M / D I V . ) 3 0 0

4 = 2 5  9 / 0 7  ' 4 9 8 0 0 . 0 NM 0 . 0 0 1 A

Figure A.7.7. The UV-vis spectrum of * (n = 5) in DMSO (Â.max = 482 nm).

S AMP  : R E F  :

+ 0 . 0 0 A
NM

2 0 0  . 0
1 0 = 3 0  1 / 1 7  ' < 0

1 0 0 . 0 ( N M / D I V . ) 8 0 0  . 0

8 0 0 . 0NM 0 . 0 O 1 A

Figure A.7.8. The UV-vis spectrum of 29 (n = 5) in DMSO (Xmax = 493 nm).
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REF:SAMP :

0.200 
( A / D I V . )

+  0 .  0 0 A

200.0 0 < N M / D I U  . )

1 0 = 2 4  1 / 1 7  ' < 0 3 0 0 . 0 NM 0  . 0 0 0 A

Figure A.7.9. The UV-vis spectrum of 30 (n = 5) in DMSO (Àmax = 485 nm).

R E F  =S A M P  :

+ 2 . 0 0 A

0 . 5 0 0
(

+ 0 . 0 0 A
NM200 .0 

2 2 = 1 2  1 0 / 1 6  ' 4 9

1 0 0 . 0 ( N M / D I U . ) 3 0 0  . 0

I 8 0 0 . 0 NM 0 . 0 0 1 A

Figure A.7.I0. The UV-vis spectrum of 13.0 pM 16a (n = 5) in CH3CN (Xmax ~

456 nm and A = 0.296).
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SAMP : REF :

NM 
8 0 0  . 01 0 0  . 0 C N M / D I U  . )200

1 6 : 3 6  1 0 / 1 7  ' d9 I 3 0 0 . 0 NM 0 . 0 0 2 A I

Figure A .7 .I  I. The U V -vis spectrum o f  27 .8  u.VI 12 (n  =  5) in CH 3CN (Xmax =  

455  nm and A  =  0 .7 18).

S A MP  :

NM
8 0 01 0 0 . 0 ( N M / D I U . )

2 2 : 1 4  1 0 / 1 7  ' 4 9 I 8 0 0 . 0 NM 0 . 0 1 0 Â Ï

Figure A.7.12. The UV-vis spectrum of 24.1 pM 19 (n = 5) in CH3CN (Xma% =

465 nm and A = 0.956).
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SAMP : REF
+ 2 . 0 0 A

0  . 5 0 0  
( A / D I V

NM 
8 0 0  . 02 0 0 . 0 1 0 0  . 0 C  N M / D I V .  )

2 2 = 5 4  1 0 / 1 7  ‘ d 9 I 3 0 0 . 0 NM 0 . 0 0 0 A

Figure A.7.13. The UV-vis spectrum of 30.0 ĵ VI * (n = 5) in CHjCN (Xmæc = 453 

nm and A = 0.878).

S A M P  : R E F :

+  2  . 0 0 A

0 . 5 0 0  
( A/ DIV . >

+ 0 . 0 0 A
NM

8 0 0 . 01 0 0 . 0 C N M / D I V . )200.0
2 3 = 2 9  1 0 / 1 6  ' i 9 8 0 0 . 0 NM 0 . 0 0 1 Â ]

Figure A.7.14. The UV-vis spectrum of 35.4 pM 16c (n = 5) in CH3CN (Xmæc

413 nm and A = 0.692).
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REF:SAMP:

0  . 2 0 0
(

NM 300 . 02 0 0 . 0
15:40 10/17 ' d S 300.0HM 0 .000A|

Figure A .7 .1 5 . The U V -v is spectrum o f  19.3 uiVI 16d (n  =  5) in CH 3 C N  (X„ 

406 nm and A  =  0.234).

SAMP : REF :
+ 2 .00A

00A
200 .0 

22:45 10/16 ' d S

NM 300 .0100 .0(NM/DIV.)
"3 0 0 .0NM 0.001AI

Figure A.7.16. The UV-vis spectrum of 35.1 jiM I6 b (n = 5) in CH3CN (Imax =

392 nm and A = 0.911).
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S A MP  :

0 0
NM

2 0 0  . 0  
1 5 = 5 2  1 0 / 3 1  ' &9

1 0 0 . 0 ( N M / D I V . ) 8 0 0  . 0

3 0 0 . 0 NM 0 . 0 0 2 A

Figure A.7.17. The UV-vis spectrum of 25.1 pM 29 (n = 5) in CH3CN (Xmax = 

474 nm and A = 0.653).

R E F  :S A MP  :

+ 2 . 0 0 A

5 0 0

+ 0 . 0 0 A
NM200 .0 

1 5 = 1 0  1 0 / 3 1  ' 4 9

1 0 0  . 0 C  N M / D I U . ) 3 0 0  . 0

3 0 0 . 0 NM 0 . 0 0 4 A

Figure A.7.18. The UV-vis spectrum of 38.4 pM 30 (n = 5) in CH3CN (Xmox =

434 nm and A = 0.891).

177



A.8 . IVMR spectra for synthesized liquid crystals
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Figure A.8 .L ‘H and NMR spectra of 12 (n = 8 ) in CDCI3 .
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Figure A .8 .2 . and N M R  spectra o f  16a (n =  7) in  CDCI3 .
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Figure A.8.3. and ‘̂ C NMR spectra of 16b (n = 8 ) in CDCI3 .
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Figure A. 8  A  and '^C NMR spectra of 16c (n = 7) in CDCI3 .
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Figure A.8.3. *H and ‘̂ C NMR spectra of I6d (n = 8) in CDCI3.
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Figure A.8 .6 . and NMR spectra of 19 (n = 5) in CDCI3 .
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Figure A.8.7. and NMR spectra of 29 (n = 8 ) in CDCI3 .
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Figure A.8 .8 . and NMR spectra of 30 (n = 8 ) in CDCI3 .
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A.9. Rise time
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This is a plot of the rise time measurement for sample E7 and the time 

interval between points is 1.69 ms. Therefore, the rise time value (100-10%) is 

about 1.69x8 = 13.52 ms. This measurement was performed at 1060 nm and a 

driving voltage of 5.0 V was applied.

The measurement for other samples is based on the same principle.
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