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Abstract

Systems that involve N  identical, interacting particles under quantum confinement 

appear throughout many areas of physics, including chemical, condensed matter, and 

atomic physics. In this thesis, we present the methods of dimensional perturbation 

theory, a powerful set of tools that uses symmetry to yield simple results for studying 

such many-body systems. We present a detailed discussion of the dimensional contin
uation of the AT-particle Schrodinger equation, the Z) —> oo equilibrium structure, and 

the normal-mode oscillations of this structure. We use the Wilson FG matrix method 
to derive general, analytical expressions for the many-body normal-mode vibrationed 

frequencies, and we give analytical results for three AT-body quantum-confined sys

tems: the iV-electron atom, iV-electron quantum dot, and iV-atom inhomogeneous 

Bose-Einstein condensate with a  repulsive hard-core potential.

The focus of this thesis will be on the many-body physics of Bose-Einstein con

densates (BEC). The achievement of BEC in magnetically trapped alkali-metal atoms 
in 1995 has generated a considerable amount of experimental and theoretical activ

ity in recent years. In typical BEC experiments, the average distance between the 

hose atoms is much larger than the range of the atomic interactions, and hence, the 

properties of these weakly interacting condensates have been successfully described 
by the mean-field nonlinear Gross-Pitaevskii equation. Recently, however, no longer 

restricted to the atom’s natural interaction parameter, experimentalists have created 

condensates with a  “knob” (i.e., a Feshbach resonance) tha t allows them to adjust the 

interaction to whatever strength, repulsive or attractive, they wish. These strongly 
interacting condensates provide a new test bed for fundamental atomic and many- 

body physics. In this thesis we develop a theory that goes beyond the standard 
mean-field approximation for many-body systems.

Feshbach resonances notwithstanding, most experimentally realized atomic-vapor 

condensates are dilute and are best described by the mean-field Gross-Pitaevskii 

equation. For this reason, we use dimensional scaling methods to obtain an analyt
ical approximation to  the GP equation that is more accurate and flexible than the

XI



commonly used ground-state Thomas-Fermi approximation. We also demonstrate 

the power of dimensional perturbation theory by providing a  full solution of a model 
BEC Hamiltonian and a  two-electron quantum dot Hamiltonian. A feature shared 

by these examples is the high degree of accuracy provided by the lowest orders of the 

perturbation theory. In our approach to the full many-body BEC Hamiltonian, we 

use the lowest orders of many-body dimensional perturbation theory to obtain semi- 

analytical ground-state energies and collective excitation frequencies. Our many- 

body calculations for BEC’s compare well with the Gross-Pitaevskii results in the 

weakly-interacting regime, as they should, and are much improved over mean-field 
theory predictions in the strongly-interacting regime.
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Chapter 1 

Introduction

1.1 A tale of two particles

According to quantum mechanics, the universe can be divided into two types of 

particles -  fermions and bosons -  based on their fundamentally different quantum 
statistics. Classically, there is also a third type of statistic which both fermions and 

bosons obey for large temperatures, called Boltzmann statistics. By quantum statis

tics we do not mean the particle’s quantum batting average or on base percentage. 
Rather, statistics here refers to the allowable arrangements of a collection of parti

cles into energy levels. Fermions are particles with half-integer spin that obey fermi 
statistics, which specifies tha t no two indistinguishable fermions can be in the same 

state. Fermions thus have very reclusive social mores, but it is this antisocial be
havior tha t we have to thank for the richness of chemistry and atomic physics. For 

example, an electron in an atom is a fermion, whose statistics prevent any two from 
occupying the same orbital, which gives the predictable structure tha t we see in the 

periodic table of elements. Two of the many-body systems we will discuss in this 
thesis involve fermions: the A-electron atom and the A-electron quantum dot.

One typically thinks of quantum theory in the context of the microscopic world 

of atoms and molecules, but quantum theory is also valid for macroscopic systems. 

This validity is oftentimes of no important consequence for ordinary macroscopic ob
jects because one can use classical mechanics to  obtain the same result more easily. 
Quantum mechanics is valid for basketballs, for example, but to  describe its thermo

dynamic properties or its trajectory one would be best served to use classical physics. 
However, for low-temperature, macroscopic systems, where identical particles become 

indistinguishable, classical theory is no longer valid and quantum predictions can dif

fer greatly from classical theory. An example of such a low-temperature, macroscopic.



yet quantum mechanical, system is the Bose-Einstein condensate, which results from 

a phase transition of a  collection of identical bosons into the lowest energy quantum 

state. Bose-Einstein condensation (BEC) of trapped atomic gases is the focus of this 

thesis.
If fermions are the most antisocial members of the particle society, then bosons 

are the opposite extreme of temperament. They are a gregarious bunch who enjoy 

the company of other bosons. Not only does nothing prevent identical bosons from 

occupying the same state, but they actually have a tendency to join other bosons 

that are already in the same state. Which is not to suggest that achieving BEC is 

easy. See Ref. [1] for a detailed discussion of the cooling and trapping methods used 

to make a BEC in an atomic gas.

This macroscopic occupation of the ground state is unique to bose particles. It 

is evident that fermions, with their disdain for each other, cannot form a condensate 

(without some mechanism like Cooper pairing which tricks the fermions into forming 

a  composite quasi-particle with integer-spin statistics). But it is not immediately 

obvious that distinguishable (classical) particles cannot form a condensate. One 

practical reason, as we will see later, is tha t low temperatures are necessary for 

BEC formation, and indistinguishability of the particles becomes most relevant at 

low temperature. However, there is a more fundamental argument, to follow shortly, 
having to do with the statistics of distinguishable particles.

Indistinguishability is a t the heart of quantum mechanics. Electrons have certain 

properties such as mass, charge and spin. An electron can be in a spin-up or spin- 

down state, but every spin-up electron is identical to every other spin-up electron. 

If there were a way to distinguish between two spin-up electrons in an atom then 

one could in principle follow the trajectories of these two electrons in the atom. As 

it stands, however, the classical concept of trajectories for electrons in an atom is 

meaningless because of the indistinguishability of the electrons and the small size of 

atoms and electrons. The significance of small size can be seen from the Heisenberg 

uncertainty principle for the position and momentum, which can be written as follows,

AxAp >  A/2, (1 .1)

where Ax and Ap are the uncertainty in the position and momentum of the particle, 

respectively, and A is a very small number known as Planck’s constant. This equation 

states that the more precisely you know the position of the particle, the less precisely



you can know its momentum, and vice-versa. Resolving the position of an electron in 

the atom would require scattering of small-wavelength light off the electron, but the 

smaller you make the wavelength of light the greater the momentum kick the light 

gives to the electron, thus, throwing the electron off its original course and making a 
trajectory measurement meaningless.

So, why are distinguishable (classical) particles unlikely to  form a BEC? Imagine 

a system of N  particles with a  set of nondegenerate energy levels and a certain 
fixed amount of energy available to the system. Consider two of the many possible 

configurations:

1. One particle in each of the lowest N  levels.

2 . — 1 particles in the lowest level and one particle in a higher level with energy 

equal to tha t of the N  — 1 excited particles in Case 1.

For bosons, both distributions are equally likely. But for distinguishable (classical) 

particles, there are N\ arrangements corresponding to Case 1, and only N  corre

sponding to Case 2. Thus, for distinguishable particles, arrangements fike 2 with 

a large fraction of the particles in the lowest energy level are much less likely than 

other arrangements. For bosons, both distributions 1 and 2 are equally likely, which 

at the moment doesn’t  tell us much about the likelihood of a macroscopic occupation 
of bosons in the ground state. Low temperature holds the key to forming BEC.

Why is low temperature so important in achieving BEC? Part of the answer 

again has to do with indistinguishability of the bosons. In his explanation of the 

photoelectric effect in 1905 -  one of the first applications of quantum theory -  Einstein 

suggested tha t it is helpful to  think of light as composed of particles instead of waves. 

Later, deBroglie turned this idea around, by proposing that particles with mass should 

likewise be thought of as waves with wavelength given by

AdB =  h/p, (1 .2 )

where p is the particle’s momentum. Consider a  gas of identical atoms in a container. 

The temperature of this system is a  measure of the average kinetic energy of the 

individual atoms. Further, the average kinetic energy is proportional to the mean



squared velocity <  >  or the mean squared momentum <  > . Hence, from Eq.
(1.2) we see tha t the deBroglie wavelength of a  particle a t temperature T  varies as

1
VT'

For large T, the atomic wavelengths are short enough tha t one can treat the atoms 

in the gas as distinguishable. As T  is lowered, the wave-like nature of the atoms is 

enhanced and their deBroglie waves begin to overlap each other so tha t it becomes 

impossible to tell where one atom stops and another begins -  one can no longer treat 

the atoms as distinguishable. As T  shrinks further, the boson waves overlap to form 

a single macroscopic wavefunction for the entire gas. This is the wavefunction of the 

condensate, a quantum mechanical system tha t you can see with the naked eye. In 

addition to leading to indistinguishability, low T  is im portant for the formation of 

BEC because the colder the gas, the less energy is available to thermally excite the 
atoms, and with no energy to occupy a higher energy state, the bosons have no choice 

-  and nothing to prevent them, being bosons -  but to all pile into the lowest state.

In 1924, based on the ideas of Bose concerning photons[2], Einstein considered a 

noninteracting gas of bosons with mass, and concluded tha t a finite fraction of the 

particles would occupy the lowest-energy single-particle state[3]. Far from an ideal 

(noninteracting) gas, however, the first occurrence of BEC was observed in strongly 
interacting superfiuid liquid ^He in 1938. Direct measurement of the occupancy of the 

zero-momentum state of superfiuid liquid ^He is difiRcult because of the reduced occu

pancy of the zero-momentum state due to the strong interactions (approximately 10% 

of the atoms occupy the zero-momentum state). Besides yielding a  larger condensate 

fraction, creating a BEC in a nearly ideal gas would prove to  be of fundamental im

portance because it would suggest that bose statistics drives the condensation process 

and not interactions. Creating a gaseous BEC is not a  straightforward task, however, 

because when you cool a gas it tends to liquify or solidify or form molecules which 

then solidify. It was not until 1995, with the achievement of BEC in a  dilute atomic 

alkali gas, tha t BEC was observed in a nearly ideal gas as predicted 71 years earlier 

by Einstein. The 2001 Nobel prize in physics was awarded for this achievement.

Despite the weakness of the interactions, properties of atomic BEC, such as the 

energy per atom, the radius of the condensate cloud and collective excitation firequen- 

cies, show a  significant dependence on the strength of the atom-atom interactions



through the s-wave scattering length. The mean-field theory (the nonlinear Gross- 

Pitaevskii equation) has had great success in describing these properties because in 
experimentally realized condensates the interatomic spacing is much larger than the 

range of the interatomic potential. Recently, however, experimenters have taken ad

vantage of Feshbach resonances which allow one to tune the atom-atom interaction 

strength to any value by adjusting an external magnetic field. This, in turn, has 
allowed experimenters to  create stable condensates of moderate size (AT ~  10'*) in a 

regime where the mean-field theory is no longer expected to be valid; namely, the 

regime of strong, repulsive interaction[4]. This thesis addresses the breakdown of the 

mean-field theory by applying the many-body formalism of dimensional perturbation 

theory.

1.2 Outline of thesis

During the last two decades, techniques to confine and manipulate atoms, ions, and 

electrons have led to the creation of new W-body quantum systems of both fun

damental and technological interest. The condensation of atomic bose gases, the 
confinement of atoms using optical lattices, and the creation of quantum dots in 

semiconductors are all examples of novel many-body environments tha t can be ma

nipulated using external potentials. These systems thus provide a unique opportunity 

to study many-body effects over a  range of interaction strengths as external poten
tials are tuned. The quantum dot is a nanostructure in which electrons are confined 

in all three dimensions by an external potential. This “artificial atom” has shown 

great potential in biological and medical applications and may form the basis for a 

new generation of semiconductor lasers with applications in quantum computation 
and quantum cryptography. The atomic vapor Bose-Einstein condensate, a phase 

transition of a collection of externally trapped identical bosons into the lowest energy 

quantum state, provides a coherent source of m atter waves with possible applications 

in atom interferometry, atom circuits, holography, precision measurements and quan

tum  information. The confinement of atoms in single cells of optical lattices could 
provide the controlled interaction required to  create a quantum logic gate.

These new quantum-confined iV-body systems have resulted in new demands and 
renewed interest in the many-body techniques of quantum physics and chemistry, 

originally developed to study atoms and molecules. Mean-field treatments of these 

iV-body systems such as the Hartree-Fock method in atomic physics and also the



Gross-Pitaevskii approximation for Bose-Einstein condensates are inadequate to fully 

describe many-body effects such as correlation and become particularly inaccurate 

for systems under tight confinement or strong interparticle interaction. These new 

systems, which can have a  few hundred to millions of particles, present serious chal
lenges for existing many-body methods, most of which were developed with small 

systems in mind.

In this thesis we develop a novel many-body approach known as many-body di

mensional perturbation theory (DPT). In DPT, the radius of each of the N  particles 

is allowed to have D  Cartesian components and 1/D  becomes a  perturbation parame

ter. As D —> CO the particles become localized in the bottom of an effective potential 

defined by a centrifugal-like contribution from the kinetic energy and contributions 

from the other potential energies (i.e., the confinement and interaction potentials). In 

the case of attractive interparticle forces, the repulsive centrifugal-like term stabilizes 

the large-D configuration against collapse. The first-order quantum correction cor

responds to normal-mode vibrations about the large-D effective potential minimum 

(see chapter 4).

We develop the methods of many-body dimensional perturbation theory for the 

study of large A^-body systems under quantum confinement. We apply dimensional 

perturbation theory to many-body quantum confined systems from chemical, con

densed matter, and atomic physics. We treat such systems as the AT-electron atom, 
where the confinement is supplied by the Coulomb attraction of the nucleus, and 

the AT-electron quantum dot, an atom-like many-body system from condensed mat
ter physics, where the confinement of the N  electrons is supplied by an external, 

isotropic trapping potential. Since AT-electron atoms are not the primary focus of 
this thesis, we direct the reader to Ref. [5] and references therein for a  discussion 

of dimensional perturbation theory of few-electron atomic systems. However, we do 
provide a full calculation for the two-electron quantum dot in addition to low-order 

results for the iV-electron dot. The final application of many-body D PT is N  identical 
hard spheres in an isotropic trap, which provides a model appropriate for describing 

an inhomogeneous Bose-Einstein condensate of alkali-metal atoms and which is the 
primary focus of this thesis.

In Chapter 2  we discuss some of the standard theoretical tools of BEC. We derive 

the mean-field Gross-Pitaevskii equation, and its highly useful aneilytical approxi

mation to the ground state known as the Thomas-Fermi approximation. We also 

discuss two standard approximations to the mean-field theory of excitations of the



condensate. Also in the introduction we discuss analytical beyond-mean-held correc

tions to  the ground-state energy and excitation frequencies. In Chapter 3 we discuss 

three applications of DPT to systems tha t can be reduced to  single degree of freedom 

problems. As previously mentioned, one such system is the two-electron quantum 

dot. The other two singe degree of freedom applications of D PT in Chapter 3 are 

for theories describing BEC’s. One of these theories results in a  linear Schrodinger 

equation with the number of atoms as a parameter. We solve this linear equation in a 

manner similar to the two-electron quantum dot, except we use \ / N  as the perturba

tion parameter instead of 1/D . Since most BEC’s are in the dilute regime we apply 

the methods of D PT to  the Gross-Pitaevskii equation, which is the other BEC theory 

treated in this chapther. This example is a departure from previous applications of 

DPT to low degree of freedom systems in tha t the method is applied to a non-linear 

Schrodinger equation.

We develop the general microscopic-level many-body approach in Chapter 4, and 
then apply it to the A^-electron atom and quantum dot. In Chapter 5 we use these 

methods to derive beyond-mean-field-theory results for the ground state and collec
tive excitation spectrum of inhomogeneous atomic vapor condensates. We are most 

interested in a high density regime, where the gas is no longer dilute, and yet it is 

not so dense th a t the alkali atoms collapse from the metastable BEC state into their 

true ground state, which is a  solid. We use a  shape-dependent interatomic potential, 
and we make no prior assumptions about the separability of the condensate wave 

function. We present numerical results for the ground-state energies and excitation 
frequencies tha t are more accurate than mean-field predictions. Moreover, our results 
are semi-analytical and offer insight into the many-body physics of BEC.

The appendices contain derivations tha t are nonetheless important, but tha t we 

feel may take away from the flow of the main text. For the interested reader, we direct 

him or her to  appendices for more detailed derivations and technical information.



Chapter 2 

Standard m ethods for Bose-Einstein condensates

In this chapter we introduce some of the standard theoretical methods used to study 

atomic-gas Bose-Einstein condensates. W ith so much activity in this rapidly ex

panding field since the mid-1990’s, not to mention the more than half-century of 

work before that, which focused on superfiuid liquids, we can only hope to scratch 

the surface in this review chapter. Fortunately, however, there are some excellent 

review materials (e.g., Dalfovo et aJ.[6], Leggett[7], and articles from the book edited 

by Inguscio et aJ.[8 ]), which should help the interested reader.

In Sec. 2.1, we introduce some of the necessary concepts from scattering theory. 

Then in Sec. 2.2 we introduce the main equation of atomic BEC, the mean-field 

or Gross-Pitaevskii (GP) equation, which we derive using the first-quantization ap

proach with an single-particle trial wave function. We also discuss the Bogoliubov 

approach and its long-wavelength interpretation of the condensate wavefunction. In 

Sec. 2.3 we introduce the extremely useful, simple and powerful Thomas-Fermi ap

proximation of the GP ground state. The Thomas-Fermi approximation yields phys

ical insight into the properties of the GP equation and becomes an exact description 

of the GP density for strong interaction, but, as we will see in chapter 5 when we dis

cuss the breakdown of the mean-field theory, the GP equation itself -  and hence the 

Thomas-Fermi approximation -  becomes a  poor model of the physical BEC. Finally, 

in Sec. 2.4, we discuss collective excitations of the condensate within the context of 

mean-field theory, and we derive some relationships tha t will be needed later in the 
thesis.



2.1 Basic scattering theory

Ultracold collisions play an important role in the physics of atomic BEC. The long 

wavelength, macroscopic phenomenon tha t is BEC is a  manifestation of microscopic 

interactions. Typical condensates are dilute enough tha t their properties are accu

rately described by the s-wave scattering length and no other details of the interatomic 

potential. When two atoms in a  gas are close to each other they feel the short-range 
details of the interatomic potential and the scattered wavefunction shows rapid spa

tial variation. However, for a  dilute gas the atoms spend most of their time far away 

from each other and only feel the long range parts of the interatomic potential. Con
sequently the atomic wavefunctions are slowly varying in space, and one is justified 

in replacing the precise interatomic potential with an efiective interaction known as 
the Fermi pseudopotential.

The scattered wavefunction for two identical atoms interacting via some potential 
V  (r) is given by the following Schrodinger equation in relative coordinates:

2

V (E ,r) =  E%^(E,r), (2.1)

where /x =  m /2  is the reduced mass. In Figs. 2.1 and 2.2 below, we show the short- 
range numerical solution of this Schrodinger equation for a Morse potential for two 
different well-depths. Dm :

% o».(r) =  -  2 ) . (2 .2 )

The Morse parameters, a  and r<„ are associated with the width of the well and 
the location of the well minimum, respectively. At very short range one can see 

the rapid spatial variation of the scattered wavefunction due to the details of the 

Morse potential, which supports several bound states, but at long range (beyond 

that shown in the figures) the wavefunction has the form of a sine wave. These two 

figures illustrate the physical interpretation of the scattering length as an effective 
shift in the origin of the long-range wavefunction. In Fig. 2.1 the shift is positive, 
indicating a  positive scattering length, while Fig. 2.2 shows a negative scattering 

length.
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Figure 2.1: Numerical solution of Eq. (2.1) for a Morse potential in the short-range 

regime. The depth is chosen to  give a positive scattering length, which manifests 
itself as positive shift in the long-range wavefunction.
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Figure 2.2: Numerical solution of Eq. (2.1) for a Morse potential in the short-range 
regime. The depth is chosen to give a  negative scattering length, which manifests 

itself as a negative shift in the long-range wavefunction.

The asymptotic solution of Eq. (2.1) is of the form of an incoming plane wave, 

assumed to be travelling along the z-axis, plus a scattered spherical wave:

V»(r) +m-oikr
(2.3)

where k = \ / 2fIE /h  and we have assumed that the interaction is spherically sym

metric so that the scattering amplitude f { 0) only depends on the scattering angle. 

For scattering at low energy (fc —* 0), the scattering amplitude becomes a constant 

defined in terms of the scattering length: f { 6) = —a. The wavefunction of Eq. (2.3) 
becomes

Ip - * 1 -  o /r , (2.4)

and again we see tha t the scattering length represents the r-intercept of the long-range 

wavefunction.
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In order to  transform the Schrodinger differential equation into an equivalent 

integral equation, we rewrite Eq. (2.1) in the following form:

=  y{f')ip{r),

which is solved by the Lippman-Schwinger equation:

ip{r) = +  j  G{r,r')V{r')ip{r')dr'.

The free-particle Green’s function G  is given by

fM e’*!’’"’’'!

(2.5)

(2 6)

G{r,r') = -
2irh^ \r — r’\ ’ (2.71

which, for r  »  r ', can be approximated by

G(r,/)
ikr

(2.8)

where kr =  k f / r  is a vector of length k  pointing in the direction of f. Inserting this 

approximation into Eq. (2.6) and comparing the resulting equation with Eq. (2.3), 
one obtains an implicit expression for the scattering amplitude:

m  =  I (2.9)

The integral in this equation can be interpreted as the T  matrix, a transition matrix 

between the initial incoming state ip{r') and final outward travelling state 

Furthermore, if the effect of the interatomic potential is small, as it is should be for 

a dilute gas, one may replace the exact wavefunction ip{r') in the integral with the 

unperturbed incoming plane wave i>i{r') =  exp(%A;z'). This assumption is the Born 
approximation, under which Eq. (2.9) can be written as

/ * ( « ) = - 7 ^  / (2.10)

The vector q =  k{êr — ê*), where ê, and ê* are unit vectors in the direction of the 
radial vector and z-axis, respectively.
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For low-energy (ultracold) collisions, for which fc —> 0 and hence q —> 0, Eq. (2.10) 

becomes

In the low-energy limit the scattering amplitude reduces to  the s-wave partial wave 

amplitude which can then be identified with the scattering length as = —a (see any 

scattering textbook, such as Refs. [9] and [10], for more details). This approximation 

can be summarized as J  V{r')dr' = (2 .1 2 )

or

V(r  -  r') =  5{r -  / ) ,  (2.13)
TTl

which, as we will see momentarily, is the underlying interaction used in the Gross- 

Pitaevskii equation.

2.2 Ground-state Mean-field theory for bosons

The key to deriving the T  =  OK Gross-Pitaevskii equation for the ground state of the 

condensate is to understand tha t under dilute conditions one may replace the true 
interatomic potential with a delta function potential tha t reproduces the long-range 

effects of the true interatomic potential (i.e., the s-wave scattering length)[6 , 7, 8 ]. 
Thus, we replace the true interatomic potential by

Vi(t) =  ^ « ( r ) ,  (2.14)

where a is the s-wave scattering length. The physical parameters in Vs come from 
the Born approximation for the scattering amplitude of identical particles of mass 

m  [Eq. (2.12)]. It is assumed tha t the scattering atoms are of very long wavelength 

and low energy. Eq. (2.14) is a good approximation when the interatomic spacing is 

much larger than the scattering length; the atoms spend most of their time far away 

from each other, and hence, they do not sample the short-range, detailed shape of 
the true interatomic potential.
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2.2.1 Single-particle picture

In this derivation of the GP equation, we use the first-quantization formalism (i.e., 

where the many-body wave function is expressed in terms of the spatial coordinates) 

with a  single-particle basis. This derivation follows closely the second-quantization 

Hartree theory presented in Ref. [11]. The ansatz for the ground-state wavefunction 

of a  collection of bosons is simply

N

..., rjv) = n  V'(n), (2.15)
i= l

where ^  is some normalized (to unity), single-particle wavefunction to  be determined, 
and N  is the number of condensate atoms. The equation for ip is found by applying 

the variational principle to  the Hamiltonian

f f  =  i : » . ( r i )  +  f ; K ( r , - r , ) ,  (2.16)
t= l i< j

where V  is the interatomic potential and the single-particle Hamiltonian Hg is:

=  (2.17)

where Vconf is the external confining potential. Given the trial wave function in Eq. 
(2.15), the expectation value of H  or the total mean-field energy of the N-particle 
system in bra-ket notation is given by

The variation of Eq. (2.18) with respect to arbitrary ip* gives

^ : , tts , N{N-\){5ipip-\-ip5ip\V\ipip)
 —

which can be rearranged to  give

Q = 5{H)n  =  N{SiP\[Hg+{N-l){iP\V\iP)]\iP)

-N{6iP\ MHol'^P) + { N -  l){rpip\V\iPiP)] \iP), (2.20)
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where we used the fact tha t the wave function ^  is normalized to unity. Since we 

have assumed arbitrary variations JV’*, Eq. (2.20) gives

Ho{r) + (iV -  1) j drV *(r')V (r -  r ')^ ( r ')  t/»(r) = fi-ipir), (2 .2 1 )

where the eigenvalue fj, is defined as

pMF yv — 1 
^  =  +  (2 .2 2 )

which, as one can see using Eq. (2.18), is equal to  the bracketed term in the second 
line of Eq. (2.20). A few words should be said about fi. In the first quantization 

approach, /x is the energy of the ground-state orbital From Eq. (2.18) one can 

see tha t fi = — E ^_ i, which is approximately the energy needed to remove an
atom from the condensate. This is essentially the definition of the chemical potential 

in the Bogoliubov approach, where fj, is a Lagrange multiplier defined by the grand 
canonical Hamiltonian to fix the average number of atoms[12].

The final touch is to use the low-energy, dilute-gas approximation for the inter

atomic potential [i.e., the delta function of Eq. (2.14)] in the integral in Eq. (2.21). 
This gives the number-conserving Gross-Pitaevskii equation:

i>(r) +  V̂ conf(r)^(r) + { N -  l) t /3 |V '(r)|V (r) =  M^(r), (2.23)

with coupling constant

U3 = {4irh^a)/m. (2.24)

Essentially Eq. (2.23) is a  Schrodinger equation with a single-atom Hamiltonian plus 

a contribution from the mean field. The mean-field term can be interpreted as the 

potential tha t a representative atom feels due to the remaining [N  — 1) atoms of 
density {N — l)\rp  | .̂ When A  =  1 or a  =  0, the mean-field term drops out of the 

GP equation and one recovers the ideal gas, tha t is, the zero-point motion in the 

trap or the ground state of the trapping potential. One often sees the GP equation 
written with an N  rather than an (iV — 1) preceding the mean-field term, but for 

most experimentally realized condensates the difference is negligible. As we have 

seen above, the (iV — 1) factor in front of the nonlinear mean-field term follows from 

number conserving Schrodinger quantum mechanics, using a single-particle initial 
state.
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In the independent-particle approximation, each particle moves in an effective 

potential which represents the average effect of the interaction between the atom and 
the remaining {N — 1) atoms. The ground state of the condensate is composed of N  

identical single-particle orbitals and in the independent-particle approximation the 
motion of one atom in the ground state must be the same as the remaining (iV — 1). 

The probability of finding one of these particles between x i  and X2 is where
is a  probability density. If we were to measure the position of a particle JV 

times, each time preparing the system so that it had the same the number of times 

the particle would be found between xi and X2 would be N  where Nip*itj
would be the number density. Instead of measuring a single particle N  times, we may 

equivalently measure an ensemble of N  particles all at once, obtaining the same result 

for the number density. This collection of N  particles represents the condensate in 
the independent-particle approximation, and hence, in the single-particle picture the 
condensate number density is

n(r) =  iV |^p. (2.25)

For positive (negative) scattering length, the mean-field energy increases above 

(decreases below) the noninteracting ideal-gas result. This can be seen by inspection 
of the GP equation, but it can also be understood in terms of scattering theory by 

considering the scattered wavefunction of two trapped condensate atoms[13]. Recall 
from the discussion surrounding Figs. 2.1 and 2.2 that from the viewpoint of the 

asymptotic wave, the scattering length manifests itself as an effective shift of the 

origin of the scattered wavefunction. In this heuristic discussion, we treat the two 

interacting atoms in a  trap as a  single particle in a box. We replace the harmonic trap 

with a one-dimensional square well with the right wall fixed by the oscillator length 

{^hfmujo) and with the leftmost wall allowed to shift from a: =  0  (the noninteracting 
case) depending on the sign of the scattering length. This is illustrated in Fig. 2.3, 

where the walls of the box for the noninteracting density (solid line) are vertical 

dotted lines. For a  noninteracting gas, the length of the box is L, and the energy is 

proportional to 1/L. For positive scattering length (plus-signs), the box is squeezed 

by an amount equal to L — a and the energy increases with respect to the ideal 
gas energy. And for negative scattering length, the box widens by an amount equal 
to fr +  a, causing the energy to  decrease with respect to  the ideal-gas energy. For 

a many-atom (single-component) condensate in which the interatomic interaction 
yields a positive scattering length, the additional energy from the extra curvature of
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the scattered wavefunction, which is imposed by the boundary condition a t r  =  a, 
causes the condensate wavefunction to  climb up the walls of the trap.

+ \

Figure 2.3: Density of a scattered particle in a  square well from the asymptotic 

viewpoint. Vertical dotted lines represent the walls of the box for noninteracting 

atoms (soHd line). Plus-signs signify the scattered density for positive scattering 
length, while minus-signs signify the negative scattering length case. The effect of a 

positive (negative) scattering length is to increase (decrease) the energy with respect 
to the ideal gas result.

2.2.2 Classical field picture

We have focused on the number conserving formalism of mean-field theory since 

our many-body formalism is also number conserving. The most commonly used 
approach for dealing with a EEC in the mean-field approximation was that proposed 
by Bogoliubov[14]. Since the Bogoliubov approach uses the second quantization 

formalism, which is not number conserving, the number of particles is conserved by
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introducing the chemical potential in the grand canonical Hamiltonian. We now 

briefly review this theory (see articles in Ref. [8 ] for more details).
The many-body Hamiltonian describing N  interacting bosons confined by an ex

ternal potential Vtrap is given, in second quantization, by

H  = y +Krap( r)  t o

y  drdr'^^(r')^^(r)V (r -  r ')^ ( r ')^ ( r ) ,  (2.26)

where ^*(r) and ^ (r )  are boson field operators tha t create and annihilate a particle 
at the position r, and V{x — r') is the two-body interatomic potential. The main 

idea of the Bogoliubov approach is first to separate out the condensate ôo^o from the 
excited states 6 in the second quantization ^-operator:

Î} = âoi>o + Ô, (2.27)

where âg is the annihilation operator for an atom in the ground-state orbital. The 

c-number tpo is the field-function of the condensate, normalized to  unity. The second
part of the BogoUubov approach is to assume that the condensate has a very large

occupation of the ground-state orbital so that one may make the replacement âg «  

\/ÏVÔ. The motivation for this replacement can be seen from the relationships for the 
ground-state creation and annihilation operators acting on a state labelled by a set 

of occupation numbers:

4 l ” o ,r i i,.. .,n jv )  =  Vn7+T|n<, +  l ,n i , . . . ,n w )  (2.28)

Uo|rio) , . . . ,  n ^ ) — \/Ttg 1 1, îî j, . . . ,  njy). (2.29)

Assuming that the occupation of the ground state is quite large (i.e., rio =  Ao »  1), 

and consequently the occupation of the excited states is small, we have N g ± l  fa Ng. 

The operator àg can be replaced by y/N^ and using this substitution one can write 
the following effective boson field operator:

î> =  \f̂ o*l>o +  Ô, (2.30)

where Ng is the number of condensate atoms. In this approximation, matrix elements 
involving àg are of order \ /N l,  while matrix elements involving excited states è  are at
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most of order unity. The c-number ^  is a  long-wavelength classical field made up of 
condensate bosons, analogous to an electromagnetic wave, a classical field composed 

of photons.
The consequence of the replacement in Eq. (2.30) is that the number operator 

N  = f  does not commute with the Hamiltonian H, causing the number of 

atoms to not be conserved. To overcome this, one introduces the grand canonical 
Hamiltonian K  =  H —fxN, where fi is the chemical potential which is chosen to  fix the 
average number of particles. In the standard Bogoliubov approach, one assumes that 

only the condensate part of the modified Hamiltonian K,  denoted by Ko, dominates 
the physics a t low temperature, and equating to zero the variation of K q with respect 

to V'o one obtains the time-independent Gross-Pitaevskii equation[15, 16];

+  K :o n f +  iVC/3 |'0 (r)|^'0 o =  (2.31)

The condensate number density in the Bogoliubov approximation [Eq. (2.30)] is

n(r) =  »  Nol'ipol'̂ . (2.32)

This result helps us see tha t the GP equation (2.31) is a  classical equation in the sense 

that tpo is not an operator, but a complex function whose modulus and gradient of 
the phase <t> have a  clear classical meaning:

rio{r,t) = Nolipof, and v (r ,t)  =  ^ V 0 ,  (2.33)

where Ug is the density and v the velocity of the classical gas of atoms. The classical 
meaning of the GP equation can be seen more fully in Appendix A, where we show 

how to write the time-dependent GP equation in the form of classical equations for 

the potential flow of a gas [Eqs. (A8 ) and (A9)]. For example, in Appendix A, we 

show how the quantity arises as the velocity field.

The single-particle approach given in the previous subsection is sometimes referred 

to in the literature as the Hartree-Fock approximation. The wavefunction is built up 
from single particle wavefunctions. For the ground-state, all of the atoms have the 
same wavefunction. In the Bogoliubov picture, the wavefunction has a completely 

different interpretation. In this picture, the wavefunction can be viewed as a long- 

wavelength, classical field. These two pictures complement each other and nearly 
coincide for the ground state in tha t both formalisms give the same number density
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[i.e., Eqs. (2.32) and (2.25)]. In most cases the numerical predictions based on each 

picture are practically the same.

2.3 Thomas-Fermi approximation for the GP ground 

state

The ground-state Thomas-Fermi (TF) approximation is valid when the mean-field 

term in the GP equation dominates the kinetic and trap  energies, which occurs for 

large ATo/aho, where N  is the number of atoms and o/oho is the scattering length in 

oscillator units (uho =  where a>o is the trap frequency). The simplifying
assumption of the TF approximation is to neglect the kinetic energy of the GP 

equation, which reduces the partial difierential equation to an algebraic one. The 
concept of using an exactly soluble limit of a system is also the driving force behind 

dimensional perturbation theory. This relationship between TF and the lowest order 
DPT approximation of the GP is discussed further in Sec. 3.1 and Ref. [17]. The 

fact should be noted, and possibly has not been emphasized enough in the literature, 
that the TF approximation has an upper limit on the region of validity in terms 

of the number of atoms and scattering length. Mathematically, in the TF limit 

iVa/oho »  1, the T F  density becomes a near perfect description of the mean-field 
GP density. However, if N  and/or Uho become too large, the mean-field theory itself, 

which TF describes, breaks down.

For any system of particles, the TF approximation corresponds to large N  {N »

1). The TF model was originally applied to the many-electron atom in the late 1920’s 

by replacing the complicated many-body wavefunction by a density that treats the 

electrons as a uniform charge distribution. The TF model for atoms describes the 

least bound electron in a radially symmetric potential due to the mean field of the 

remaining electrons and the field due to the nuclear charge. This description is 

analogous to the description of a  BEG by the number-conserving GP equation(2.23). 

This is a very simple model, but the TF approximation to the ground state of neutral 

and positively ionized atoms works unexpectedly well, but only when the number of 

electrons, N , is large. There are many excellent textbook reviews of the TF limit for 

atoms, such as Re£s. [9] and [10].

The TF treatm ent of BEG is restricted to repulsive interactions (o >  0) because 

the TF limit (i.e., large N )  cannot be reached for negative scattering length atoms
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before the attractive forces cause the condensate to collapse above some critical num

ber of condensate atoms. The TF limit {N  »  1) for BEC results in the quantum 

kinetic energy, or quantum pressure, term becoming negligibly small (compared to 
the trap and atom-atom energies), falling off as iV~5  [see Eqs. (2.43) and (2.44)]. The 

physical reason for the relative smallness of the quantum kinetic energy is that as N  

increases, the central density of the condensate lowers and becomes hatter assuming 

as we have th a t a  >  0. The quantum kinetic energy coming from the uncertainty 

principle, V • {Vy/n), where n  =  NtjP is the condensate density, becomes small com

pared to the other energy scales except at the outer edge of the condensate beyond 

the classical cutoff radius R  [see Eq. (2.48)] where T F  breaks down. This may seem 

counter to classical intuition which would suggest th a t the kinetic energy of an os

cillating particle would be smallest near the edge of the harmonic oscillator trap, 

but while the T F  limit for the GP equation is in some sense a  classical limit, the 

GP wavefunction is a  long-wavelength classical field, and hence the classical particle 

picture is not relevant. This fiattening of the condensate wavefunction can be seen in 

Fig. 2.4 below, which shows the numerical solution of the G P nonlinear Schrodinger 

equation for *^Rb condensates (small, positive scattering length) containing different 

numbers of atoms.
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Figure 2.4: Numerical solution of the GP nonlinear Schrodinger equation for ®^Rb 

condensates (positive scattering length) containing different numbers of atoms. Flat

tening of the GP wavefunction occurs for increasing N  and positive scattering length.

The suggestive term “Thomas-Fermi” has been appUed in the BEC literature to 
this limit because it is a large-AT limit where one would expect the system to behave 

statistically; however, a more appropriate modifier for this limit might be “classical” 

since it results in the neglect of the kinetic energy, localizing the system (see Sec. 3.1.3 
and Ref. [18]). We will demonstrate the justification for the neglect of the kinetic 
energy term in the large-jV limit by following a scaling of Eq. (2.35) originally given 

by Baym et aJ.[19].

We begin by considering the time-dependent Gross-Pitaevskii equation or non
linear Schrodinger equation,

=  - ^  v "  ^ (r ,  t) + v ;„ ^ (r)^ (r , t) + NU^l «r(r, t) |" $ ( r ,<), (2.34)

where the three-dimensional coupling constant is U3 =  {4irh^a)/m, a is the s-wave 

scattering length, Vconi is the external confining potential. In Eq. (2.34) we are
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assuming large-7V, which is why we use N  instead of iV — 1 in the mean-field term. 

Assuming a  stationary state, ’ï ’(r,f) =  e ~ ^ ^ (r) , and inserting it into Eq. (2.34), we 
obtain the time-independent GP equation for ‘ip{r):

V’(r) +  Vc^{r)ip{T) 4- A r% |^(r)|^^(r) =  # ( r ) ,  (2.35)

where fx is the chemical potential, the energy needed to add an additional atom to 

the condensate (i.e., n  =  |^ ) ,  and we will assume an anisotropic trap, typical of most 

experimental condensates:

Koni(r) =  4- w^z^). (2.36)

We next scale the radius and wavefunction as:

r  =  (ax»/)f (2.37)

where oj_ =  yh/m w j. is the characteristic oscillator length scale and r/ is a dimen- 

sionless parameter characterizing the interatomic interactions. We will defer writing 

the explicit form of rj until later in the scaling of the Schrodinger equation when its 
form will be logically deduced. The particular form of the wavefunction scaling in 

Eq. (2.38) is chosen so as to maintain a  simple form for the normalization condition. 

With these scalings, the normalization condition remains unchanged, namely,

27t j d z d f j j \ \  ip{r) f  =  1. (2.39)

Substituting Eq. (2.37) into Eq. (2.35), using the definition of U3, and dividing 
through by ^huj± gives the following:

+’’f{ r±  +  A^z^) 4- STrJVaoj l̂ ix (2.40)

where A =  w%/w_L is the anisotropy parameter. Now making the substitution for the

wavefunction prescribed by Eq. (2.38) and dividing through by i f  we find

( - ÿ  v "  + ( f î  +  A V ) +  ^ ^ 1  ?  l ' ) 9  =  • 4 ,  (2.41)
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where

Accordingly, a natural definition for t) is

(2.43)

which further simplifies Eq. (2.41) to

+ 1-11) = i/^. (2.44)

For large Na/obo, the kinetic energy term drops off as t?"'* ~  N~&, so in the TF 
limit it is justified to drop the kinetic energy. The TF (large-AT) limit of Eq. (2.44) 
gives the TF density:

The TF density defines an ellipsoid, whose transverse radius we define as R  and 
whose conjugate radius we define as Z. Requiring that the density be continuous on 
the surface of the ellipsoid, we can write these radii in terms of i/:

=  u = (2.46)

One then uses the normalization (2.39) to calculate i/, which in turn gives the
TF chemical potential, radius and density. The normalization condition gives the
following:

where the notation for the integration limits means to integrate over the interior 

volume of the ellipsoid. This integral is easily calculated by first integrating dfj. 
from fx =  0 to fx  =  \Jv — A^z^, then integrating dz from Z  to —Z. This leaves us 

with a simple expression involving only Z, which we choose to write in terms of the 
transverse TF radius R  [i.e., Z  = R f \  from Eq. (2.46)]:

f l = ( ^ )  , (2.48)
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which from Eqs. (2.46), (2.42), and (2.43) gives the chemical potential:

/i =  1  (2.49)

in oscillator units (Awj.).

To get the TF ground-state energy, we integrate Eq. (2.49) (since fi =  |^ ) :

^  (2-50)

2.4 Collective excitations and the hydrodynamic 

limit

Since we are interested in quantifying the breakdown of the mean-field approxima

tion, excitations of the condensate are of particular interest as they can be measured 

in the lab much more precisely than ground-state energies[20, 21]. The frequencies 
associated with the low-lying excitations are measured by “shaking” the condensate 

and watching the motion th a t develops. The time-dependent GP equation (2.34) 
corresponds to  the mean-field approximation a t zero temperature, and the excita
tion frequencies can be found from the linearized GP equation, which results from 

assuming small amplitude fluctuations about the (unperturbed) ground-state GP 

wavefunction. We assume a solution for time-dependent GP equation (2.34) of the 
following form:

ip{r, t) = +  u {r )e ~ ^  + v^(r)e’“̂ ] , (2.51)

which is known as the Bogoliubov transformation[14, 22]. The overall phase fac

tor is needed for the unperturbed state ^o(r). The operators u^(r)e’" ‘ and

u{r)e~'^*' act as creation and annihilation operators of excited quasiparticles in the 

second-quantization formalism, where their sum would correspond to the quantum 

fluctuation term 6 in Eq. (2.27). A simpler interpretation of u and v is to think of 

them as the shapes of the normal mode oscillations. Inserting Eq. (2.51) into Eq.
(2.34) and dropping second-order terms in the small, complex amplitude functions u
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and V,  one obtains the coupled, linearized GP equations, or the coupled Bogoliubov 

equations:

Rwu(r) =  +  K:onf(r) +  2n{r)U3 -  )u]u(r) +  n (r)f/3v(r) (2.52)

- ^ v ( r )  = + K:onf (r) + 2n{r)Uz -  Ai]v(r) + n{r)U3u{r), (2.53)

where n(r) =  N\ipo\^ is the inhomogeneous number density and U3 =  Airh^a/m. 
Since we only keep terms linear in u and v, it is not necessary to worry about the 

commutativity of the two operators in the second-quantization formalism, and we 
can treat them as c-numbers. Solving these two coupled, linearized equations (three 

when you realize tha t you must also solve the time-independent GP equation) gives 
the eigenfrequencies w, and hence, the energies of the elementary excitations. These 
excited states do not refer to excited states of individual atoms because the atoms 

are interacting a t low temperature, making their individual wavefunctions overlap. 

However, as we discuss shortly, these quasiparticle excitations can be either single- 
particle-/zA:e or phonon-ZzAe.

In calculations in a later chapter, we solve these coupled equations numerically, 

but in this section we find it useful to review certain limiting cases of the linearized 

GP equations. Specifically, we consider the semiclassical limit for the homogeneous 
bose gas and the hydrodynamic/TF fimit for the inhomogeneous gas. Also in this 

section we discuss the first beyond-mean-field correction to the excitation frequencies 

from the local-density approximation.

2.4.1 Homogeneous bose gas

In this approximation the gas is treated as locally uniform[8 ]. The semiclassical 
approximation of Eqs. (2.52) and (2.53) is found by replacing the kinetic energy 

operator by p^/2 m where p = fik is the momentum of the excitation with wavevector 
k:

fiwu(r) =  4- K : o n f ( r )  +  2n{r)U3 -  At]«(r) -f- n{r)U3v{v) (2.54)

-h u v it)  = + Konf (r) -t- 2n(r)U3 -  /i]u(r) -f- n(r)f/3«(r). (2.55)

26



The semiclassical approximation is valid when spatial variations of the condensate 
occur over distances that are large compared with the wavelengths of the excitation. 
Equating to zero the determinant of the coupled equations we find

{tuüŸ =  + %:onf(r) + n{r)Us — fij + Konf (r) +  3 n(r)C/3 — (2.56)

For a homogeneous gas one sets V"coni(r) =  0, and for consistency in the long- 
wavelength limit (i.e., when p —» 0) one uses the Bogoliubov approximation for 
the ground-state chemical potential (i.e., n = nUz), which ensures tha t the zero- 

momentum excitation frequency is zero. Taking the homogeneous limit and using 
the Bogoliubov approximation for the ground-state chemical potential, the disper

sion relation for the quasi-particle spectrum for a homogeneous condensate becomes

where we have used the fact tha t the ground-state wavefunction for a uniform system 

is simply V’o =  l /V F , where V  is the volume of the system, and the uniform number 
density is n =  N /V .

An elementary excitation behaves as a quasi-particle moving in the volume occu
pied by the body with definite energy s and momentum p. The dispersion relation for 

the elementary excitations e(p) characterizes the spectrum of excited states. Again 

it is important to remember that the quasi-particles are fictitious bodies that conve

niently describe the elementary excitations, and there is no correspondence between 
the quasi-particles and the true atoms of the condensate. The dispersion relation for 

a phonon is linear in the momentum (e(p) =  pc, where c is the velocity of sound 
in the medium, see below). Elementary excitations behave like phonons (collective 
motion) when the wavelength is large compared to the inter-atomic separation or, 

equivalently, when the momentum is small. The long wavelength of the phonon is 

what allows the coupling of a collective oscillation to occur. When the quasi-particle 

wavelength is small or the momentum large, the elementary excitation, called a  ro- 
ton, behaves like a free particle. The roton dispersion relation takes the form of the 

energy of a free particle with a shift, e(p) =  + A,  where m* is the roton effective2m

mass.
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In the small (large) momentum limit of the elementary excitation spectrum, one 
finds tha t Eq. (2.57) describes phonon (roton) quasi-particles.

=  ^  t o
+  A for s f e s r l

where c =  yJnUz/m  is the speed of sound, A =  nf /3  is the roton energy shift, and the 

relation i / l  +  ® ^  1 4- x / 2  has been used in the calculation of the large momentum 

limit of the dispersion relation expanded about the roton minimum, Pm. Another 
feature of the spectrum in Eq. (2.57) is a high-energy maximum called a  maxon, 

which is in a  region of such high energy tha t it is never thermally excited.

2.4.2 Inhomogeneous bose gas

For a homogeneous BEC (uniform density), the temperature is sufficiently low that 
the elementary excitation spectrum is almost completely described by phonons; ro

tons are of such high energy and short wavelength that they are not excited. Of 
course, inhomogeneous condensate gases, tha t is, condensates with an external trap, 

also form at low temperature, but the system is very dilute making the collective 
effects of phonons less important than in its homogenous liquid counterpart. Also 

the non-uniformity of the condensate density allows the single-particle-like roton part 

of the dispersion curve to be excited, especially near the surface of the condensate 
where the density is most dilute.

Recall that the type of elementary excitation depends on the relative size of the 

quasi-particle wavelength, which depends on the momentum via A =  h/p. To say 
precisely whether a quasi-particle wavelength is small or large, it must be compared 

to some appropriate length scale. Inside the condensate, the healing length is the 
appropriate length scale[6]. The healing length is the typical size of the core of a 

quantized vortex; it is the length scale over which the wavefunction can “heal” from 
zero density to the average density n. If the condensate density grows from 0 to n
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within a distance then equating the quantum pressure from the uncertainty prin

ciple* ~  T?I{2m ^ )  and the interaction energy ~  Airt^an/m, one finds the following 

relation for the healing length:

^ = (87rna)-*/2. (2.59)

In the region near the surface of the condensate, the appropriate comparison length 

scale is the surface thickness, d. The (isotropic) trap potential is which
exerts a  force of F  =  —m J^R  on a particle on the surface, where R  is the TF 
radius. The trap potential energy of a particle on the surface of thickness d is V ~  

—Fd  =  mu>lRd. Balancing this energy with the zero-point kinetic energy from the 

uncertainty principle ~  ft^/(2mcP) a t the surface gives[19]

('«°)
For an inhomogeneous gas, the spectrum exhibits excitations of a collective nature 

(phonons) in the bulk of the condensate, and single-particle-like excitations near the 
surface. Collective effects become less important near the surface because the gas 

is considerably more dilute. The larger distance between the atoms on the surface 

makes it more difficult for them to act collectively. Furthermore, phonons cannot 
be supported on the surface because they have a  very long wavelength compared to 

the surface thickness. Another reason tha t rotons (single-particle-like excitations) 
are not as prevalent as phonons in the bulk of the condensate is that the repulsive 

force of the condensate atoms actually pushes rotons out to the surface. This can 
be understood by considering the single-particle Hamiltonian for excitations, which 
is obtained by setting w =  0  in Eq. (2.52). Finding the single-particle excitation 

energies then reduces to solving the eigenvalue problem — ii)u  =  huju, where

Hsp =  \ m w y  -k 2N U M .  (2.61)

Using the TF density for \ipo\  ̂ one finds

^ » P  =  - m w g ( r ^  -  Pi?), ( 2 . 6 2 )

*The energy due to the quantum pressure is approximately ©ven by E  ~  (Ap)*/(2m), where 
(Ap^) ~  ft/Ç comes from the uncertainty principle.
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where R  =  yJ[2fj./{müJo)] is the TF radius. The second term in Eq. (2.62), which 
corresponds to the repulsive mean-field term in Eq. (2.61) in the large-iV limit, acts 
as a  potential barrier tha t pushes the rotons to the surface.

In Appendix A we derive the TF approximation for the mean-field collective 

modes of the condensate in the hydrodynamic picture. This approximation provides 

a valid description of the mean-field theory for a BEC with a large number of atoms 

vdth positive scattering length. We write the time-dependent GP equation (2.34) as 

two coupled hydrodynamic equations in terms of the density n(r) =  and the 
local velocity, which is proportional to the gradient of the phase <j) (i.e., v  =  ^V ^). 
Inserting the ansatz

$  =  ^ n (r ,t)e ‘̂ ("-‘) (2.63)

into Eq. (2.34) and linearizing the density (see Appendix A for details) we find that
the density fluctuation 5n satisfies

=  t/aV • (n,qV5n). (2.64)

Then in Appendix A we consider oscillations with time dependence 5n(r, t) =  Sn(r) cos(wt4- 
7 ), where u> is the frequency of the excitation and 7  is a phase shift. Equation (2.64) 
becomes

—u^Sn = ^  [Vn«j • V(5n 4- neqV^<Jn]. (2.65)

Using the TF equilibrium density

(2 .66)

results in the following difierential equation:

rfn  =  r ± S n  -  1 ( i ?  -  r^) fa , (2.67)

where we have defined e =  Equation (2.67) can be manipulated into a hyper

geometric equation (see Appendix A). The TF excitation frequencies in terms of the 
trap frequency iVo are then given by

u) =  U o{l +  3jv  +  2 n r l  +  (2.68)
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where Ur is the number of radial nodes and I is the angular momentum of the exci

tation. The density fluctuation is given by

(5n(r, t) = Cr‘F {—n, l + n  + 3 /2 ,l + 3/2, r^/R^)Y^m{9,4>) cos(wt -f- 7 ), (2.69)

where C  is a normalization constant.

Despite the signiflcant departure from the non-interacting case (w =  Who(2nr+0)> 
the mean-field frequency does not depend on the scattering length or the number of 

atoms in the TF limit. This curious lack of dependence on the interaction strength 

yVa/oho can be seen as follows. The time-dependent equation after linearization in 

the TF limit (2.64) can be interpreted as a wave equation:

^  =  V -(c2(r)V 5n), (2.70)

where c(r) is the speed of sound in the condensate. Comparing this equation with 

Eq. (2.64), we see tha t the TF speed of sound is c =  y jU in ^/m . The frequency of 

an excitation is given by a; ~  c/A, where A is the wavelength of the excitation. In the 
phonon regime, A is on the order of the size of the condensate, which is approximately 

given by the TF radius R  =  <Jîiüjjm{\hNa / ■ Using the TF speed of sound 
at the center of the condensate, which has the same iVa/cho-dependence as A, we 

find that the dependence on the interaction of the excitation frequency cancels in 

the quotient c/A, and w is then on the order or Uo- For the inhomogeneous gas, as 

Na/a^o increases, the quantum pressure causes the size of the condensate and hence 
the phonon wavelength to increase, but the speed of sound increases proportionally. 

This cancellation does not occur in the homogeneous gas because, while the speed of 

sound does increase with iVa/aho, the wavelength of the phonon is fixed by the size 

of the container. The above argument is similar to tha t given in Ref. [6 ].

Stringari and Pitaevskii find the following beyond-mean-field fractional shift of 

the monopole frequency (n^ =  1, Z =  0) in the hydrodynamic limit [23]:

Sujm 63 (ISZVa®)*/®, (2.71)
2 5 6 1 /2

where ujm is the mean-field monopole frequency in the hydrodynamic limit [jv =  1 , 
/ =  0 in Eq. 2.68], w is the hydrodynamic-limit beyond-mean-field frequency, and
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w =  (jJm +  àuM- Essentially, Stringari and Piteavskii use the low density expansion 
for a  homogeneous gas [Eq. (FIO)] for the chemical potential:

/X =  U^n ^1 +  , (2.72)

to derive a generalized hydrodynamic equation:

rrwj^5n +  V (t/3« 9qV(Jn) =  0, (2.73)

which they solve perturbatively. In their calculation for the monopole frequency-shift 

above, they used u  =  \/5wo and 5n ~  (1  — 5r^/R^) as the unperturbed frequency 

Eq. (2.68) and density fluctuation Eq. (2.69), respectively. In a  later chapter, we 

compare this beyond-mean-field result with our many-body DPT predictions for the 

monopole frequency, also known as the breathing mode frequency.
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Chapter 3 

Single degree of freedom dimensional perturbation 

methods

In preparation for the many-body formalism to follow in the next chapter, we discuss 
dimensional perturbation theory for confined systems tha t can be reduced to a  single 
degree of freedom. In the first system, using the leading order of DPT, we derive 

a simple approximation that is more accurate and flexible than the Thomas-Fermi 

(TF) ground-state approximation of the Gross-Pitaevskii equation[17]. We use a per

turbation parameter tha t depends on the effective dimensionality of the condensate 
and on the angular momentum quantum number. Our approximation is well-suited 

for calculating properties of Bose-Einstein condensates in three dimensions and in 

low effective dimensionality, such as vortex states in a highly anisotropic trap. This 

approximation is unique among previous applications of DPT in tha t it involves a 
nonlinear Schrodinger equation.

In the second example, we present a  perturbation solution of a  model Bose- 
Einstein Hamiltonian derived by Bohn, Esry and Greene. In our solution we use 

1/N  as the perturbation parameter, where N  is the number of particles in the 

condensate [24]. Ground state energies are reported for parameters approximating 
the J.I.L.A. *^Rb experiments. We predict the critical number of atoms with nega

tive scattering lengths that can be trapped using the effective trap  frequency of the 

first-order equation. The iV —» oo perturbation limit, which retains an additional 

single term beyond the conventional Thomas-Fermi limit, gives ground state energies 
that agree to three digits with converged results, thus providing a  much improved 
limit for large N.

Finally, dimensional perturbation theory is applied to the two-electron D-dimensional 

quantum dot, obtaining accurate values for the ground and excited state energies[25j.

33



The expansion parameter is l//c, where k = D + 2|/|, D  is the effective spatial di

mensionality of the quantum dot environment and I is the relative-motion angular 
momentum quantum number. In this method, we include correlation at each order, 
including zeroth order. Analytic approximations for ground and excited state energies 

are obtained from the zeroth- and first-order terms of the perturbation expansion; 

thus, constituting a semiclassical approach to the quantum dot from a  perturba
tion formalism. Using this analytical form of the energy, parameterized by D, the 

effects of the effective quantum dot dimensionality on the energy spectra may be 
investigated. Systematic corrections are made to the semiclassical approximation by 

adding higher-order perturbation terms. The method described is extended in the 

next chapter to obtain an analytical approximation to the ground state energy of 

the many-electron D-dimensional quantum dot Hamiltonian by truncating the 1/D  
expansion to low order.

3.1 1 / D  perturbation methods for the Gross-Pitaevskii
equation

The most commonly used approach to  describe a dilute gas of atoms in a BEC at 
T  =  0 is mean-field theory, which takes the form of the time-independent GP equation 

of Eq. (2.35). The N  oo Thomas-Fermi (TF) approximation has been proven to 
be a  highly successful analytical approximation of the GP equation [19, 26]. The 

strength of the iV —» oo TF approximation is its simplicity: neglecting the kinetic 
energy results in a simple approximation of the ground-state condensate density that 
is effective in analyzing properties of large-iV condensates. For condensates with 

a moderate number of atoms and condensates with attractive interactions, the TF 

approximation breaks down. The kinetic energy is important in each case, especially 
in the latter, where the kinetic energy is necessary to prevent collapse. The effects 

of attractive interactions have been studied using approximation techniques such as 
variational trial wave functions [27, 28, 29]. Other approximations that have been 

employed to extend the TF regime of validity include the fi —» 0 TF approximation 
[18], a method that uses two-point Fade approximants between the weakly- and 
strongly-interacting limits of the ground-state [30], and a variational method for 

anisotropic condensates [31].
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W ith the study of BEC in highly anisotropic traps as a motivation, we use a  per

turbation formalism tha t permits the effective dimensionality, D, to vary. Because 
it readily allows one to approximate quantities in any dimension, such a formalism 
is ideally suited for condensates in the anisotropic traps used in many laboratories 

where the condensate can be effectively one-, two- or three-dimensional. The per

turbation parameter is (J =  1 /k , where k depends on the effective dimensionality 

of the condensate and on the angular momentum quantum number. The J —> 0 
limit becomes an exactly soluble problem, the solution of which is used by the var

ious dimensional-scaling methods as the starting point for the solution of the full 
three-dimensional problem [32, 33, 34]. The ^ > 0 approximation to the condensate 

density, which retains part of the kinetic energy, is quite accurate for both a large 

and moderate number of atoms in the BEC ground state, and the dimensional scal

ing formalism, which treats the dimensionality as a parameter, is advantageous when 
studying condensates of low effective dimensionality due to extreme trap anisotropy. 
The centrifugal-like term in the f  —» 0 density also makes it a good physical starting 

point for treating vortex states.
In the case of positive scattering length, the repulsive interaction causes the den

sity to become flat, and the kinetic energy of the condensate becomes negligible in 

the AT —f CO limit. This limit of the GP equation is referred to as the Thomas-Fermi 
(AT —> 0 0  TF) approximation. See Sec. 2.3 where we discussed the TF approxi

mation for an anisotropic trap. The N  oo TF density for the ground state in a 
three-dimensional isotropic trap  is [19, 26]

nif{r)  =  -  \r w J r ^ )  (3.1)

for /ztf > and u tf =  0 elsewhere. Ekj. (3.1) provides an excellent description of
the condensate ground-state density in the bulk interior. This approximation breaks 

down near the surface of the gas where the density is not flat; the wave function 
must vanish smoothly, making the kinetic energy appreciable in the boundary layer. 

Boundary layer theory techniques have been employed to obtain corrections to the 
N  —* oo TF approximation a t the condensate surface where the gradient of the 
density is no longer small [35, 36, 37]. The leading order correction to the ground 

state chemical potential due to the boundary layer a t the surface is of order i 2~‘‘ln(/2).
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3.1.1 Effective dimensionality

We use a perturbation formalism where the effective dimensionality, D, of the con
densate is allowed to vary. The effective-dimensionality of the condensate depends 

on the relative size of the condensate in each of the three spatial dimensions. Most 

experimentally realized traps are axially symmetric with some having a high degree 

of anisotropy [38, 39]. In the case of axial symmetry, the trapping potential takes 

the form, 14rap(r) =  = ^rriw^{r\ -I- X^z^), where A =  Wz/wj. is
a measure of the degree of anisotropy. The system reduces to a  three-dimensional 
isotropic condensate for A =  1. In the small- (large-) A limits, the system reduces to 

an effective one- (two-)dimensional isotropic condensate^
As an illustration, consider A »  1 where the motion of the atoms in the z- 

direction becomes frozen and their motion is described by a gaussian of small width. 
To determine the 2D effective coupling constant, we assume the wave function in Eq.

(2.35) is separable: ^ (r)  =  V'2 (r i)x (z ), where %(z) is assumed to  be a  gaussian, and 

operating with /  dzx*, one finds a new effective 2D GP equation:

{ ~ 2 m  =  M2'02> (3.2)

which has the same form as Eq. (2.35), but r  is the 2D radius, wg =  w i, //g =  

fj, -  W z /2 , N2 = N  J  dz\x\‘̂- Requiring that V»2 and x  be normalized to unity, 
/  dzjxl^ has units of 1 /length; thus, we interpret as the number of atoms in the 

2D condensate per unit length along the z-axis. In our subsequent scalings, we will 

adopt a notation for the number of atoms that is similar to  th a t of Jackson et al. 

[40]. For A 1, one may assume the motion in the radial-direction in the x-y plane 

is described by a gaussian of small width, %(rj_), and, following the same procedure, 

one obtains a ID equation analogous to  Eq. (3.2), where Ni would represent the 

number of atoms in the ID condensate per unit area in the xy-plane.

3.1.2 GP equation in variable dimensionality

We begin by explicitly generalizing the nonlinear Schrodinger equation (NLSE), Eq.

(2.35), to D-dimensions where r  becomes the radius of a  D-dimensional sphere with

^It is conceivable that an isotropic hamiltonian in a fractional-dimensional space could be used 
to describe experimental condensates for intervening values of A, but we will focus our attention on 
integer dimensions.
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D — 1 remaining angles. The Laplacian is generalized to D-dimensions (Bohn, Esry 

and Greene[41, 24] treat the Laplacian in a similar fashion, in which they use hyper- 

spherical coordinates to define a  mean condensate radius.), and the potential terms 
retain their three-dimensional form; the coupling constant is generalized in the final
scaling. We obtain the Schrodinger equation:

+  AT(/,|ÿ(r)p}«(r) =  ^ ^ (r) , (3.3)

where is a generalized angular momentum operator depending on D — 1 angles

with eigenvalues —l{D + l — 2) [42]; the angular momentum quantum number. I, 

is non-negative. Substituting these eigenvalues and introducing the radial Jacobian 

factor in a transformation of the wave function, (j>{r) =  to eliminate the
first derivative terms, we find

~  +  ̂ m .V + # % W ( r ) P |4 r )  =  M r ) .

(3.4)

Finally, we make two sets of scalings to arrive at the NLSE in dimensionally scaled 
oscillator units. The first scaling is a purely dimensional scaling: r  = K^f, w =  k^u), 
ft = and tp =  where k = D + 21. The final scaling is to scaled oscillator 

units (denoted by bars): r  =  âhof, ft =  tujjft, and ^  where ôho =  \Jh/mûj.
Combining these two scalings, we arrive at

 ̂ ^  ^  +  5z?pl^(r)f |0 ( f )  =  /i^(f), (3.5)

where everything is now in dimensionally scaled oscillator units. The perturbation 

parameter is J  =  1/ k  and Dp refers to the effective dimension we are interested in 

studying. For the effective dimensions of primary interest in this study, the dimen

sionally scaled coupling constants are, for 3D, §3 = 5 3 /K®̂ ,̂ where 53 =  AirNsa/ato 

and iVa is the number of condensate atoms; and for 2D, gg =  gg/w^i where gg =  47riVga 

and iVg represents the number of atoms in the 2D condensate per unit length along 

the z-axis. The definition of iVg makes gg dimensionless. For general D,

(3-6)
Oho'
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making Eq. (3.5) valid for describing condensates in any efiective dimension. In the 
next section, we describe a  simple and accurate zeroth-order approximation to  Eq.

(3.5).

3.1.3 Zeroth-order density

It has been pointed out by Schuck and Vinas [18] tha t the true TF limit (ft —> 0 

as originally applied to the case of Fermi statistics [43, 44]) is not equivalent to 

N  —* oo, and they show tha t the ft —» 0 TF limit for bosons does not neglect the 

kinetic energy for the ground state. The iV —> oo TF approximation to the ground 
state is too harsh on the kinetic energy for a  moderate number of atoms. A less 

harsh and nearly as simple approximation is the zeroth-order {S —> 0) approximation 

of Eq. (3.5). Unlike the ground-state N  oo TF approximation, which neglects the 

entire kinetic energy, our zeroth-order approximation of the Jacobian-transformed 
generalized GP equation of Eq. (3.5) neglects the derivative part of the kinetic 

energy but retains a centrifugal-like term. For vortex states, one understands this 

term as being a centrifugal-like barrier due to quantized circulation, which pushes 
atoms away from the axis of rotation. This centrifugal-like barrier arises from the 

condensate phase of the wavefunction: {ip = s/ne'^, where n  is the condensate
density and S  is the spatially dependent condensate phase; then the velocity of the 

condensate atoms is given by v  =  ^ V S ) .  For the ground state, this centrifugal-like 
term in the zeroth-order density has an alternate, quantum mechanical interpretation, 

which helps explain its good agreement with numerical calculations. We discuss this 
interpretation in Section 3.1.4.

The 5 —> 0 limit of Eq. (3.5) results in the following zeroth-order density in scaled 
oscillator units:

n(f) =  1̂ 1̂  =  ^ ( f i  -  ^  - \ f %  (3.7)
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for Roifj) < r <  FL.Jp) and n =  0 elsewhere. The normalization condition^ becomes

« ( £ > )  J = 1, (3.8)
Roiii)

where Q{D) = 2n^^^/T{D /2). The J —> 0 limit can be thought of as a  large-D or 
large-/ limit.

Eq. (3.7) is valid where the density is non-negative. In addition to the N  —*■ oo
TF-like classical cutoff radius near the surface, R  the centrifiigal-like term  requires

that another cutoff be defined, Ro, slightly removed from the origin, to  satisfy the 
requirement tha t the density be non-negative. In terms of the chemical potential, the 

cutoff radii in scaled oscillator units are defined as

^o(A) — ~  \

and

Â L(A ) =  Â i + V Â ^ .  (3.9)

In regular oscillator units (oho),

M -  1  

and

M +  yjf^^ ~  T -  (3.10)

Notice for the ground state in the strongly interacting regime tha t /i »  1 and the cut

off radii for the ground state becomes N  oo TF-like: w 0  and n  «  /2 ^ /2 ;  thus,

the strongly interacting limit, or, equivalently, the iV —> oo limit of our zeroth-order 
approximation collapses to  the iV —> oo TF approximation, as expected. (For finite 
N,  as will be shown later, our zeroth-order approximation gives better agreement 

with the numerical solution of the G P equation than the iV —» oo TF approxima

tion.) Using the integration limits defined in Eq. (3.9), along with the condensate

^As the GP equation is nonlinear, one cannot treat excited-/ states (vortices) (or D >  2 radially 
symmetric traps in the usual manner of separating the wave function into radial and angular parts. 
Presently, however, vortices in 3D radially symmetric traps are not realized. Vortex states in a 2D 
isotropic trap do not pose a  problem to theory because the spherical harmonic wave function acts 
as a phase factor. In ID, the sphericai harmonic wave function is a constant and, since there are no 
angles, one can think of / =  0 and / =  1 as even and odd parity states.
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density defined in Eq. (3.7), the normalization condition (Eq. 3.8) gives an equation 

for the zeroth-order chemical potential tha t is easily solved in any dimension. (See 

Section 3.1.5 where this procedure is illustrated for two dimensions.)
Once the chemical potential is calculated, it is then used in Eq. (3.7) to complete 

the description of the zeroth-order wave function. One can then calculate the energy 

from

-f-E / N  = j d P r

= E^ia/N 4- Eho/lV -l- (3.11)

or in the zeroth-order approximation and scaled oscillator units.

È /N  «  Ü{D) J  f ^ - ^ d f
Roip.)

^  Ë ^ i a / N  +  Ë ^ o / Ë  +  Ë i a t / Ë . (3.12)

3.1.4 Ground state in three dimensions

The numerical effect of the centrifugal-like term in the zeroth-order approximation 
on the ground state of a stationary condensate is clear from Fig. 3.1, where we 

compare the numerical solution of the GP chemical potential with our zeroth-order 
approximation and the N  —* oo TF approximation for up to  10 000 ®^Rb atoms in a 

spherical trap. Our zeroth-order approximation is more accurate than the iV —> oo TF 
approximation for all N , most notably for a moderate number of atoms. The accuracy 

of the zeroth-order approximation is comparable to boundary layer corrections: the 
zeroth-order approximation is slightly more accurate for small coupling constant, 

while boundary layer theory is slightly more accurate for larger coupling constant, 
but the difference between all three approximations becomes small for very large 

coupling constant.
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Figure 3.1: Chemical potential in oscillator units vs. number of condensate atoms for 

a condensate in a 3D isotropic trap, where o =  100 bohr and v  =  200 Hz. The 

zeroth-order (6  —> 0 ) approximation of dimensional perturbation theory presented 
here (dashed) is in better agreement with the numerical solution of the GP equation 

(solid) than the N  —* oo Thomas-Fermi approximation (dash-dot).

The correct physical interpretation of this centrifugal-like term, as originally noted 

by Chatterjee[45], is that it is the component of the kinetic energy needed to  satisfy 

the minimum uncertainty principle. The zeroth-order density includes a centrifugal

like term from the kinetic energy, which pushes the wave function away from the 

origin in the ground state as if there were a  non-zero quantum of angular momentum; 

however, the 1/r^  contribution to  the ground state density of a nonrotating cloud 

clearly is not due to any rotational motion of the cloud. This effect, which becomes 

less pronounced as N  increases, is demonstrated in Figs. 3.2 and 3.3, which show the 
numerically calculated GP ground-state non-Jacobian weighted wave function {ip) 

along with our zeroth-order approximation and the N  —* oo TF approximation.

41



0.1
—  numerical 
. —. N —>«»
— -  5 —* 00.09

0.08

0.07

0.06

0.04

0.03

0.02

0.01

0.5 2.5 3
radius (ose. units)

3.5 4.5 5.5

Figure 3.2: Ground state wave functions -  non-Jacobian weighted) for a  ®^Rb 
condensate of 10000 atoms in a 3D isotropic trap, where a =  100 bohr and i/ =  200 

Hz. These parameters correspond to gz w 872.04. Plotted are the numerical solution 
of the GP equation (solid), the iV —> oo Thomas-Fermi approximation (dash-dot) and 

our zeroth-order {5 —>■ 0) approximation (dashed). Our zeroth-order approximation 

contains an unphysical core near the origin, but the added kinetic energy, which 
causes the core to appear, is also responsible for the increased accuracy seen in Fig. 

3.1.
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Figure 3.3: Same as Fig. 3.2 but with 10® atoms, corresponding to gs «  87,204. 

As the number of atoms increases, the unphysical core in our zeroth-order wave 

function shrinks. Near the origin, the N  —* oo T F  and numerically calculated wave 

functions overlap, while the N  oo TF and our zeroth-order wave function overlap 

in the boundary region. For sufficiently large N , the three wave functions become 

indistinguishable.

The centrifugal-like term in the lowest order of dimensional perturbation theory 

{5 -*  0) can be understood as arising from the requirement tha t the system’s uncer

tainty product be a minimum [45]. Another way to see how a centrifugal-like term 

may arise in the ground state -  this time within the N  —* oo TF approximation -  is 

by applying the Langer modification[10] of WKB theory to the N  oo TF density. 

For vortices, one may not neglect the entire kinetic energy in the N  oo limit. A 

slightly more general N  —* oo TF density than Eq. (3.1) tha t includes vortices is

n T F ( r )  =  1^1^ = (3.13)

For a spherical trap, A  ̂=  /(/ +  1), which reduces to the usual ground state AT —> oo 
TF density for 1 =  0, but using the Langer modification, where the correct asymptotic
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phase of the WKB wave function is obtained by the replacement l{l +1) —> (/ +1/2)^  

in the centrifugal-like potential, a  centrifugal-like barrier remains in the ground-state:

« tfW  1̂ 1̂  =  (3.14)

The dependence of our perturbation parameter on the angular momentum quan
tum number suggests that the zeroth-order density will be a good physical starting 
point for vortex states, which we explore in the next section for D = 2. The remaining 

centrifugal-like term in our zeroth-order approximation is a  lowest-order correction 

to the kinetic energy, which, for a moderate number of atoms, greatly improves the 

ground state approximation {I =  0) over the ^  oo TF approximation. For a very 

large number of atoms, the contribution from the kinetic energy becomes very small, 
as can be seen by comparing the wave functions in Figs. 3.2 and 3.3, for N  = 10  ̂ and 

N  = 10® ®^Rb atoms, respectively. As the number of atoms increases, our unphysical 
core becomes smaller than the healing length, eventually vanishing: our zeroth-order 

and the iV —> oo T F wave functions become indistinguishable from the numerical 

solution for large N.

3.1.5 Lower dimension

The 5 —>• 0 density (Eq. 3.7) is well suited for describing condensates in the presence 
of a vortex, where the centrifugal-like term models the vortex core (see Fig. 3.4). In 

this section, we present explicit expressions for the D = 2 ground-state and vortex 

states. In the angular-dimensional scaling of the GP equation, one has considerable 
freedom in the choice of the scaling parameter, S =  1 / k . In the previous section, 
we used k  = D + 21 or, for the ground state, k  = D. The choice k  = D + 21 — 2 

exactly reduces our expressions below for the chemical potential and energy to a  two- 
dimensional N  oo TF approximation tha t includes the leading contribution to the 

kinetic energy due to fluid motion of the condensate[46]. Slightly improved agreement 
of the zeroth-order energy with the numerical solution of the 2D GP equation for a 
wide range of values of the mean-field coupling constant can be obtained by choosing 

K = D + 21 — 1, which changes the numerator in the centrifugal-like term of Eq. (3.5) 

to  1 — 6^. Zeroth order predictions show a small amount of variability with the choice 
of «, but the results of higher order perturbation theory should not depend on the 
particular choice of k.
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Figure 3.4: Comparison of the condensate wave function {tp -  non-Jacobian weighted) 
with an / =  1 vortex in a 2D isotropic trap with Q2 =  10000. The solid line is the 

numerical solution of the GP equation and the dashed line is our zeroth-order (S —> 0) 

wave function, whose centrifugal-like term models the vortex core.

Using Eqs.(3.7,3.8,3.9) for D =  2, one finds that the scaled chemical potential 
satisfies _____

2ir
(3.15)

Recalling the earlier conversion relations leading to Eq. (3.5), the chemical potential, 
in regular oscillator units, satisfies

92
2ir

(3.16)

Solving Eq. (3.15) for the scaled zeroth-order chemical potential, Ji, and using the re

sulting wave function, Eq. (3.7) and Eq. (3.12) give a simple analytical approximation 
for the 2D energy,

( - T )
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where we have already converted to regular oscillator units. Eq. (3.16) and Eq. (3.17) 

for the chemical potential and energy per atom, respectively, are analagous to the 

results of the N  —*■ oo T F  approximation for vortices given in Ref. [46], which includes 
a kinetic energy term associated with the fluid motion tha t is encoded in the wave 

function's phase. This similarity is due to the zeroth-order 5 —> 0 limit being a large 

angular momentum limit or, in the language of hydrodynamics, a large quantum 

of circulation limit. The zeroth-order approximation for £) =  2 results in a shifted 

TF-like energy spectrum, whose ground state approximation is, just as for D =  3, 

more accurate than the IV —> oo TF approximation for any coupling constant, most 
noticeably for smaller coupling. For the energy of a single charge vortex located at 

the center of the trap, the above expressions are more accurate than the unregulated 

AT —» oo TF approximation in Ref. [46] for a moderately sized coupling constant, and 

slightly less accurate for very large coupling. For our zeroth-order approximation and 

the N  oo TF approximation, respectively, the relative errors in the first vortex 

state energy are 0.56% and —0.88% for 52 =  1000; and 0.015% and —0.012% for 

92 =  100, 000.

3.1.6 Anisotropic trap: generalized cylindrical coordinates

In the previous sections we dealt with traps that are isotropic in some effective dimen

sionality for special limits of the anisotropy parameter A. For such isotropic traps, 

we analyzed the condensate from the vantage point of a  D-dimensional space with 

spherical symmetry. We now consider a  D-dimensional space with cylindrical sym

metry, which is a  more suitable vantage for axially symmetric traps with an arbitrary 

anisotropy parameter, A. Such axially symmetric traps are the most prevalent in 

current gaseous BEC experiments.

We begin by writing the GP equation in generalized cylindrical coordinates as

I 2m drji^

+ A V ) -f- lV D 3l^(r)l^|^(r) =  fiipir), (3.18)

where A =  w%/w_L is the anisotropy parameter and r± is the radius of a  D  — 1 

dimensional sphere with D  — 2 remaining angles. Just as we did in Sect. 3.1.2 for the 

isotropic case, we introduce the eigenvalue of L%_2, —1{D — 1 — 3), and the Jacobian
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transformation of the wave function, (j) =  arriving a t the dimensionally
scaled GP equation,

+5a|i^(fx, z) = ^ ( f x ,  z), (3.19)

where r± =  K^^^a±f±, z  =  K^^^a±z, /z =  «Rwx/z and ip = (« /ox)^/^^, and where 

Ox =  y^/m w x, K = D + 21 and 5 =  1 / k .  We are primarily interested in the Z? =  3 
scaled coupling constant, which is

The normalization becomes

n{D  - 1 )  j f f -^ d fx  j  dz\ip\^ =  1. (3.21)

Using the J 0 density,

^  -  2(^1 + (3 22)

in the normalization condition and using the units, fx  =  y / ^ f ±  and z  =  y/7fiz, the 
chemical potential for Z) =  3 satisfies

1 =  f }  fj.dr± t  d z ( l - f l - ^ -  XH %  (3.23)
93 j_ •'* f"±

where a  =  1/4/i. For large N, a  becomes a very good perturbation parameter, but 

even for moderate N  it is quite good, and the integral in scaled units to second order

in regular oscillator units. A similar perturbative integration is performed in Ref. 
[47] for a T F  approximation for vortices in an anisotropic condensate.
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Recall the TF ground state chemical potential for an axially symmetric trap[19],

- I  , (3.26)
1

//TF =  %
2 I  ax )

which we compare with our Eq. 3.25 results in Figure 3.5 for a  condensate with JILA 

TOP trap parameters [20].

i
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Figure 3.5: Chemical potential in oscillator units vs. number of condensate atoms 

for a condensate with parameters corresponding to the JILA TOP trap [20); we 
let a =  110 bohr, î x =  133 Hz and A =  \ / 8 . The zeroth-order approximation of 
dimensional perturbation theory presented here (dashed) is in better agreement with 

the numerical solution of the GP equation (solid) than the IV —> oo Thomas-Fermi 
approximation (dash-dot).

3.2 1 / N  perturbation theory for a model BEC Hamiltonian

Using ordinary Schrodinger quantum mechanics, Bohn, Esry and Greene[48] have 

derived effective potentials for dilute Bose-Einstein condensates. The many-atom
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problem is reduced to a linear Schrodinger equation by identifying a  single coordi
nate, R, the mean condensate radius. Bohn et aJ. use hyperspherical coordinates 

to define R, expand in hyperspherical harmonics, and then retain only a single term 
in this expansion. They refer to this as the “K-harmonic” approximation following 

terminology from nuclear theory. The resulting one dimensional linear Schrodinger 

equation gives quite good results for ground state energies in a trap  roughly approx

imating the JILA ®'̂ Rb experiments [20], faring slightly better than other variational 

approaches. Their effective potential is also able to  predict reasonably well the criti

cal number of bosons with negative scattering lengths th a t can be condensed, as well 
as other characteristics of the condensate such as low lying excitation frequencies, 

peak densities and decay rates from two- and three-body processes.

We chose this model Hamiltonian to test a  perturbation formalism which uses 

1/A  as the perturbation parameter, where N  is the number of particles in the con
densate. This formalism is analogous to the dimensional perturbation methods used 

successfully in many areas of physics[32, 33, 49, 50, 51, 52, 53, 54]. In particular 

we use a matrix method developed for atomic systems to solve the perturbation 

equation [55]. We find tha t this perturbation approach takes advantage of the sim
plicity of the Thomas-Fermi limit which is valid for N  large, but improves on this 

limit significantly for the zeroth order starting point by including a single additional 

term beyond Thomas-Fermi.

3.2.1 Formalism

The derivation of Bohn et al. begins with the full A-body Hamiltonian:

^  IZ  Vi +  ^  ^  Uiat{fi -  Jj), (3.27)
j=i i=i ^  i<j

where Aint is the two-body atomic interaction potential. All three-body and higher 
interactions are ignored under the assumption of a  dilute gas. The mean condensate 

radius of the atoms from the trap center is:

where we assume all the particles in the condensate are identical. The remaining 

3A -  1 coordinates are then given in terms of hyperangles collectively denoted by
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Î2[56]. Using the transformation (n ,....rjv) -+ and assuming Uiat{f{ — rg) =

{4wti^a/m) 6{f{ — 7^), where o is the s-wave scattering length, yields a transformed 

Schrodinger equation:

+ 'Z ^ ^ 5 { f i  -  fj) -  n) =  0.
i<j J

where is a  “grand angular momentum operator” [42]. Expanding in hyperspherical 

harmonics and retaining a single term, results in the final equation:

8P
+  + V ^ { R )  -  =  0, (3.30)

2MdH?  '  J

where:

~ mT-3)/2)Ni-
is the effective potential. Bohn and coworkers solve this equation numerically using 

a B-spline approach.

In our solution of this equation we use a perturbation approach where 1/iV is the 

perturbation parameter. We transform the equation using scalings that give a  stable 

N  —» oo limit:

R  = N^R,  w =  a = Nà, E  = N ~ h ,

and then change to scaled oscillator units: R  =  \ f ^ R ,  ê =  hûë, which yields

( 9 - 1 2 J  +  3<J2)
+

where 5 =  l / N  and w =  1 in scaled oscillator units. To obtain a  zeroth-order starting 
point we let —» oo i.e. 6  —» 0. In this limit the derivative term and part of the 

centrifugal-Uke potential drop out and the problem reduces to finding the minimum 

of the effective potential,
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[v ;S (A n )-E ]* (A ,)  =  0, (3.34)

(3.35)

Note that this effective potential retains an additional term, 9/(8Â^), compared 

to the Thomas-Fermi limit of Eq. (3.30). This additional term comes from the 
centrifugal-like part of the effective potential which originates in the kinetic energy. 

The Thomas-Fermi limit of Eq. (3.30) drops the entire kinetic energy including the 

centrifugal-like potential. Note also that all the terms in Bohn’s effective potential are 
included a t least in part. The importance of including a term  from the centrifugal-like 
potential is obvious from Figure 3.6 where we compare our iV —> oo effective potential, 

for a  <  0 and a >  0 to the Thomas-Fermi limit of Bohn’s potential using the 

same values of a. In contrast to the Thomas-Fermi potential, our retains the 
correct features for both positive and negative scattering lengths. For a > 0, 
gains a repulsive contribution from the interaction term  increasing the strength of 

the effective trap, compared to the Thomas-Fermi limit which is too deep. For o <  0, 

the competition between the positive centrifugal-like term, 9/8R^ and the negative 

term, X/R^, which contains the negative scattering length, creates a  potential barrier 

for small R  and a metastable well in our , while for the Thomas-Fermi potential, 
no metastable region exists.

Eq. (3.35) can be solved for the R  =  Rm which yields the minimum energy 

ëoo =  K « ( ^ ) -  The perturbation series is then generated by defining a scaled 
displacement coordinate, r, by Â =  Rm 4- J a r  and expanding:

$ (r)  =  Y ,  « =  ëoo +  (5 53  (3.37)
j =0 j=0

The first-order equation in delta is harmonic:

{ ~ 2 ^  ^  ^  ~  (o<Âo(r), (3.38)
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Figure 3.6: Comparison of for different values of the scattering length, a. The 
solid lines are our N  ^  oo effective potential, t / ^ ,  for a  > 0, a  =  0 and a < 0. The 
short dashed lines are the Thomas-Fermi limit of the Bohn potential for a > 0 and 
a < 0
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Co — Weff +  Vq, (3.39)

^ q{t) = (w«ff)^/^A„(wèffr), (3.40)

where:

and hu is a harmonic oscillator solution. This equation defines the harmonic basis 

functions tha t are used to solve the higher order equations. Note tha t the harmonic 

frequency, w,ff, Eq. (3.42), automatically adapts as the trap frequency and/or scat
tering length changes, essentially folding these interactions into an effective trap. 

Thus this first-order equation provides basis functions tha t are sensitive to the in

terplay between the trap  frequency, uj and the scattering length, a. For a  <  0, 

shows the gradual “softening” of the effective trap, due to the attractive

potential, X/R^, which increases as N  increases. (See Eqs. (3.35) and (3.36)). As 

the metastable well slowly disappears, the minimum and maximum of coincide 

in an inflection point where d^V ^ffdR ^  =  0. This occurs a t /2c =  (l/5 )?(3 /2)3 , and 

corresponds to = 0 (since =  df^V^f/dR?), i.e. no effective trap exists. The 

resulting critical number, Nc, of negative scattering length atoms tha t can be trapped 
is found to be:

Nc — 0.671 i / ----- -j—- (3.43)
V m u  |a|

which is the same Nc obtained by Bohn et ai. from his effective potential. (This is 

not unexpected since Bohn et ai. assume tha t iV »  1 in their alternative derivation 

of Nc- (see Ref. [48] Eq. (4.4).)) This result is also in excellent agreement with the 
results obtained from several variational treatm ents[27, 29, 57, 58]. Figure 3.7 shows 

the change in our as the number of particles changes from slightly below Nc to 
slightly above this value. (For this graph we use trap  parameters tha t approximate 

the ^Li experiments a t Rice[59].)
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Figure 3.7: Plots of our N  oo efiPective potential, for a =  —27.3 bohr and 
1/ =  144.6 Hz. The solid curve represents the case where the number of particles, 

iV, is just less than the critical number, Nc- The dashed curve shows the case where 

N  > Nc resulting in no metastable region.

Higher order terms bring in coupling between the higher order terms in the 

centrifugal-like potential and the atomic interaction term. The external harmonic 

trap is included entirely in the first-order harmonic equation. The infinite set of 
differential equations for the ^j{r) and the C2j are computed using a linear alge

braic method tha t expands the 0 j(r)  in terms of the harmonic oscillator functions 

and represents the displacement coordinate r  as a matrix in this basis. A recursion 
relation yields the wave function and energy coefficients[55].

3.2.2 Results

Our results for this one dimensional problem using values of a  =  100 bohr and 

V =  200 Hz, roughly approximating the JILA ®^Rb experiments[20], are extremely 

encouraging. Our converged results, of course, compare quite well to the results
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of Bohn et al., agreeing to 5 digits. (See Table 3.1.) Table 3.1 also compares our 

zeroth-order results to converged results. The agreement is striking. Our zeroth-order 

results agree to 3 or 4 digits with the converged results. (100.02% of the converged 
value). The Thomas-Fermi results, which are obtained from the effective Hamiltonian 

of Bohn et al. (See Eq. (3.30)) by dropping the full kinetic energy including the 

centrifugal-like potential, and finding the minimum of the remaining potential, are 
45% of the converged results a.t N  = 500, improving to  97% agreement a t N  =  10 000. 
(Bohn et al. compare their results to the results from the Gross Pitaevskii equation 

as well as to the Thomas-Fermi limit of the Gross Pitaevskii equation. See Ref [48], 

Fig. 3.7)) Our zeroth-order equation retains just a  single additional term beyond 
the Thomas-Fermi limit of the Schrodinger equation used by Bohn et al., a term 

from the centrifugal-like potential. This is an impressive improvement over Thomas- 

Fermi since the zeroth-order perturbation term is obtained from a trivial calculation. 
The first order term  brings in the interplay between the trap  and the interatomic 

interaction term and adds two more decimal places of accuracy. Table 3.2 shows 

the extremely rapid convergence to five or six digits by first order and ten or more 
digits by sixth order for three condensates. This is obtained by a simple summing of 

the series rather than Padé summation reflecting the excellence of the zeroth-order 

starting point. We obtain similar agreement with the excitation energies of Bohn et 

al.(See Ref. [1], Fig. 3) By first order our results agree to 4 or more digits with the 
converged results of Bohn et al.ffiOj.
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Table 3.1: Results for ground state energies in oscillator units, tabulated in the form 

E / N  — for a. condensate with a =  100 bohr and i/ =  200 Hz. We compare our 
zeroth-order and our converged results (10th order) to the results of Bohn et al. We 
also compare the Thomas-Fermi limit of the effective Hamiltonian of Bohn et al. to 

our zeroth-order results.

N TF of Eq. (4) Zero order Converged Bohn et al.

500 0.37509 0.83749 0.83732 0.83732

1 0 0 0 0.97643 1.33807 1.33784 1.33783

2 0 0 0 1.76914 2.04852 2.04828 2.04827

3000 2.34534 2.58465 2.58443 2.58441
4000 2.81462 3.02877 3.02857 3.02855
5000 3.21766 3.41402 3.41382 3.41380
6000 3.57472 3.75759 3.75741 3.75738

7000 3.89759 4.06975 4.06958 4.06955

8000 4.19382 4.35719 4.35702 4.35700
9000 4.46857 4.62454 4.62439 4.62436

1 0 0 0 0 4.72555 4.87518 4.87503 4.87500

Table 3.2: Partial sums for the ground state energy using a =  100 bohr and i/ = 200 

Hz for condensates with 500 particles, 5000 particles, and 10000 particles in oscillator 

units, tabulated in the form E / N

order iV =  500 N =  5000 N =  1 0 0 0 0

0 0.837 487 821 79 3.414 016 707 69 4.875 183 724 38
1 0.837 324 621 72 3.413 825 082 25 4.875 032 178 85
2 0.837 323 748 09 3.413 824 807 49 4.875 032 077 37
3 0.837 323 665 36 3.413 824 805 36 4.875 032 076 83
4 0.837 323 663 03 3.413 824 805 33 4.875 032 076 83
5 0.837 323 662 93 3.413 824 805 33 4.875 032 076 83
6 0.837 323 662 93 3.413 824 805 33 4.875 032 076 83

Our potential is quite similar in form to several other effective potentials[27, 

29, 57, 58] in the Uterature, which have been obtained using variational approaches.
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Our method, which is based on a  rigorous perturbation analysis of the Hamiltonian 

with a perturbation parameter of 1/AT, offers the possibility of systematic improve

ment by including higher-order terms.

3.3 1/D Perturbation theory for two-electron quantum
dot

In recent years, various theoretical approaches have been employed to calculate the 
approximate energy spectra of quantum dot systems, systems in which correlation and 

exchange effects have been found to play a significant role. In the early development 
of quantum dot theory, the approaches used were “exact” diagonahzation[61, 62] and 

Hartree-Fock [61, 62, 63, 64]. More recent approaches include semiclassical[65, 6 6 ] 

and perturbation methods[30,67] proposed with the goals of including correlation and 

maintaining accuracy for many-electron dots while simultaneously reducing compu
tational expense.

A variation of the dimensional perturbation method to be described in this section 
has been applied to two-dimensional semiconductor systems like magnetoexitons[6 8 ] 

and hydrogenic donor states in a magnetic field [69]. This approach is known as the 

shifted \ / N  expansion where N  is the number of spatial dimensions. In this method, 

the energy is expanded in inverse powers of IV — o where the shift parameter, a, is 

determined by requiring that the first-order energy correction vanish.

The effective dimensionality of the quantum dot environment depends on the 

relative size of the confinement length scales in each of the three spatial dimensions.

The effective dimensionality may be one, two or three; or for some quantum dots, 

the experimental energy spectra may be better described by the energy obtained via 

a model Hamiltonian in a space with some non-integer effective dimensionality to 

account for anisotropy in the quantum dot interactions. The concept of fractional 

dimensionality has been applied to semiconductor systems like exitons in anisotropic 

or confined quantum well structures in order to account for the effective medium 

and the anisotropy of the interactions[70, 71, 72]. An advantage of dimensional 

perturbation theory is tha t we obtain analytical energy approximations in terms of 
the parameter D.

Dimensional perturbation theory[32, 33] has been successfully applied to atomic 

systems in which correlation is significant. In this chapter, we present a perturbation
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approach to the two-electron quantum dot with expansion parameter, where

D  is the effective dimensionality of the quantum dot environment and I is the angular 
momentum quantum number for the relative motion of the electrons. The anisotropy 
of the quantum dot interactions is modeled by a Hamiltonian in an isotropic D- 
dimensional space where D is a measure of the degree of anisotropy and may be 

integer or non-integer. In the D = 2 and D = S limits of this generalized Hamiltonian, 
we regain the usual isotropic Hamiltonians in plane polar and spherical coordinates, 

respectively.

The zeroth- plus first-order terms of the energy series provide an accurate analyti
cal approximation to the energy. In the zeroth-order calculation, we take the infinite- 

D  limit of the Hamiltonian which results in an effective potential. The zeroth-order 
problem is then reduced to a simple minimization calculation of the effective potential 

that turns out to be similar in form to WKB and other semiclassical approximations 
of the D = 2, two-electron quantum dot[65, 6 6 ]. This similarity is not fortuitous 
because the infinite-D limit is itself a classical limit.

When a higher degree of accuracy than th a t provided by the analytical approxi

mation is desired, our method allows for systematic improvement by including higher- 
order terms; the partial sums of the resulting energy series are calculated using 

straight summation. We compare our results with exact numerical results obtained 
by directly integrating the Schrodinger equation using a Numerov method for Z? =  2 

and D =  3. In Sec. V, we briefly discuss extensions of this perturbation method 
including the extension to the many-electron D-dimensional quantum dot.

3.3.1 Formalism

To illustrate the dimensional perturbation method, we consider a  two-electron dot 

within the effective mass approximation where the two electrons, each with effective 

mass m*, move in a  medium with dielectric constant c. Before considering the more 

general quantum dot with effective dimensionaUty 0 <  D  <  3, we will work with 

the more restricted D =  3 case with a  spherical harmonic confining potential with 

frequency Uo- In three dimensions, this system is described by the Hamiltonian:
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We define: 2

where a* is the effective Bohr radius and is the characteristic size of the dot. Letting 

Tj —> a*Ti yields the Hamiltonian:

i f  =  - V ? - V i  +  i7^(r?  +  ,^) +  i ^  (3.47)

where the energy is in units of effective Rydbergs R* and 7  =  2 (^)^ . The parameter 

7  describes the relative magnitude of the confinement energy and Coulombic energy 

scales. Later we investigate quantum size effects on our accuracy by varying 7 “ 5 .

The Hamiltonian of Eq. (4) can be separated into center-of-mass and relative- 

motion pieces as

H  = (3.48)

with

(3.49)

and

^ r . i  =  - 2 V L  +  g 7 V  +  ;  (3.50)

where R  =  | ( r i  +  T2), Vc.b. =  Vi +  V 2 , r  =  r i  -  F2 and Vrei =  ^(Vi -  V2). This 
essentially reduces the problem to two one-particle equations. In the rest of this 

section and the following, our main focus will be on calculating the relative-motion 
energy, by applying a  perturbation approach to the Hamiltonian of Eq. (7) in 

arbitrary dimension.

Next we explicitly generalize the Schrodinger equation to D-dimensions where r

becomes the radius of a D-dimensional sphere with D — 1 remaining angles. Using
the procedure where the Laplacian is generalized to D-dimensions, but the poten

tial terms retain their three-dimensional form, we obtain the following Schrodinger 
equation:

+ % ^ l +  +  H |* (r) =  f^ .$ (r ) , (3.51)
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where is a generalized angular momentum operator depending on D — 1 angles 

with eigenvalues —\1\{D + |/| — 2)[42]. Substituting these eigenvalues and introduc
ing the radial Jacobian factor in a  transformation of the wave function, 0 (r)  =  

r(^ “*)/2^ (r)  to eliminate the first derivative terms, we find:

We now define an expansion parameter, k, as

k = D  + 2\1\, (3.53)

and introducing the dimensionally-scaled variables

r  = K^f, 7  =  K®7 , e„ i =  K^Erai (3.54)

we obtain a  dimensionally-scaled Schrodinger equation tha t has a finite energy as 

D —» oo:

(3.55)

where 5 =  l / «  is treated as a  continuous parameter. Hence, D  may be non-integer as 
well as integer by this dimensional continuation. One may find similar dimensional 
scalings for atomic systems in Refs. [73] and [74].

One may perform a similar dimensional scaling of the center-of-mass Hamiltonian, 

Eq. (6 ). The eigenenergies can be obtained exactly and are found to be

Ec.(jV , L, D) = {2N -k IL] -k | ) 7  (3.56)

where N  and L  are the radial and orbital quantum numbers for the center-of-mass 

motion and D  is the effective dimensionality of the quantum dot. The total energy 

is E  = E cm. 4- Ext\

3.3.2 Perturbation expansion

To obtain the zeroth-order energy approximation for the relative-motion energy, we 
begin by taking the infinite-dimension limit, D ^  oo (i.e. <5 —> 0) of Eq. (12). In this
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limit, the derivative terms of the kinetic energy drop out of the Hamiltonian reducing 
the calculation of the zeroth-order energy, €00, to finding the minimum of an effective 

potential, Vett:

€00 =  (3.57)

V^it takes the form:

and fm is the smallest positive root of the quartic polynomial:

=  (3.59)

The zeroth-order energy is already in good agreement with exact values for 7  =  1 

and 7  =  .05 for states with n =  0  (see Tables 3.3 and 3.4). Our effective po

tential has the same form as those found in other semiclassical approximations of 

two-electron dots for D = 2. Klama et al.[65] propose a simple model within the 

WKB context called the harmonic approximation which results in an analytical ap

proximation to  the energy. They achieve this by replacing the WKB potential in the 
Schrodinger equation with its Taylor expansion about its minimum up to harmonic 

order. This results in a linear oscillator spectrum. Also within the WKB context, 

Garcia-Castelan et al. [6 6 ] obtain analytical results by approximating the true po
tential curve by matching two half parabolas at the minimum of the WKB effective 
potential.
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Table 3.3: Comparison of the results of our analytical zeroth-order, first-order and 
numerically calculated sixth-order approximations to the exact energies for 7  =  1 and 
D = 2. The energy state is specified in the first column by the quantum numbers 
(n, I; N ,L ) .  Total energy is in units of effective Rydbergs.

(n ,l;N ,L ) exact zero order first order sixth order
(0 ,0 ;0 ,0 ) 3.3242 2.8998 3.1575 3.3188
(0 ,1;0 ,0 ) 3.8279 3.6784 3.7929 3.8279
(0 ,0 ;0 ,1) 4.3242 3.8998 4.1575 4.3188
(0 ,2 ,0 ,0 ) 4.6437 4.5641 4.6306 4.6436
(0 ,1 ;0 ,1) 4.8279 4.6784 4.7929 4.8278
(1 ,0 ;0 ,0 ) 5.1568 2.8998 5.0150 5.1456
(0 ,0 ;1 ,0 ) 5.3242 4.8998 5.1575 5.3188
(0,3;0,0) 5.5432 5.4924 5.5369 5.5432
(0 ,2 ;0 ,1) 5.6436 5.5641 5.6306 5.6436
(1 ,1;0 ,0 ) 5.7439 3.6784 5.7224 5.7439
(o,i;i,o) 5.8279 5.6784 5.7929 5.8278
(1 ,0 ;0 ,1) 6.1568 3.8998 6.0150 6.1456
(0 ,0 ;1 ,1) 6.3242 5.8998 6.1575 6.3188
(0,4;0,0) 6.4782 6.4423 6.4746 6.4782
(1 ,2 ;0 ,0 ) 6.5957 4.5641 6.5882 6.5957
(0 ,2 ;1 ,0 ) 6.6436 6.5641 6.6306 6.6436
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Table 3.4: Comparison of the results of our analytical zeroth-order, first-order and 

numerically calculated sixth-order approximations to the exact energies for 7  =  .05 

and D = 2. The energy state is specified in the first colunm by the quantum numbers 
(n, I; N ,L).  Total energy is in units of effective Rydbergs.

(n, I] N, L) exact zero order first order sixth order

(0 ,0 ;0 ,0 ) 0.2963 0.2624 0.2896 0.2963
(0 ,1 ;0 ,0 ) 0.3062 0.2856 0.3028 0.3062

(0 ,0 ;0 ,1 ) 0.3463 0.3124 0.3396 0.3463
(0 ,2 ;0 ,0 ) 0.3311 0.3177 0.3293 0.3311

(0 ,1 ;0 ,1) 0.3562 0.3356 0.3528 0.3562
(1 ,0 ;0 ,0 ) 0.3853 0.2624 0.3778 0.3853

(0 ,0 ; 1 ,0 ) 0.3963 0.3624 0.3896 0.3963
(0,3;0,0) 0.3644 0.3550 0.3633 0.3644
(0 ,2 ;0 ,1) 0.3811 0.3677 0.3793 0.3811
(i,i ;0 ,0 ) 0.3968 0.2856 0.3939 0.3968
(0 ,1;1 ,0 ) 0.4062 0.3856 0.4028 0.4062

(1 ,0 ;0 ,1 ) 0.4353 0.3124 0.4278 0.4353

(0 ,0 ;1 ,1) 0.4463 0.4124 0.4396 0.4463
(0,4;0,0) 0.4025 0.3955 0.4018 0.4025
(1 ,2 ;0 ,0 ) 0.4240 0.3177 0.4227 0.4240
(0 ,2 ;1 ,0 ) 0.4311 0.4177 0.4293 0.4311

In contrast, we systematically improve upon our semiclassical, zeroth-order ap
proximation by adding the next higher-order term of the energy series. The per
turbation series is generated by defining a scaled displacement coordinate, x, by

r  = frn + and expanding the wave function and energy as:

00

=  ( 3 . 6 0 )
j=0

00

C re l =  «00 +  <5 X I  ( 3 . 6 1 )
j=0
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The first-order equation in 5 is harmonic:

where

{ “ 2 ^ ^  +  +  Wooj^oC®) — ô<t>o{x), (3.62)

6o = {n+  g)2waff -f- Voo, (3.63)

M ^ ) = ( 3 . 6 4 )

Voo — (3.65)

-  K ff (^m) -  %%- +  t 7^ +  %3", (3.66)
' m  ^  '  m

and the h„ are harmonic oscillator eigenfunctions. This first-order correction repre

sents normal mode vibrations about the classical minimum. The analytical, semi

classical approximation of the energy to first order can then be compactly written

as

Erel{V', I, D) «  Ô̂ too +  +  2)2w,ff 4- Voo) (3.67)

where n is the harmonic quantum number for the relative motion and we have used 
the relations in Eq. (1 1 ) to convert the energy units to  unsealed effective Rydbergs. 

Erei is parameterized explicitly by n and implicitly by I and D. Eq. (24) may then be 
evaluated a t the physically relevant spatial dimension tha t best describes a  particular 
quantum dot namely, 0 <  D <  3.

The infinite set of differential equations for the <t)j{x) and the cgj are computed 

using a linear algebraic method that expands the (j>j(x) in terms of the harmonic 

oscillator functions, /i„, and represents the displacement coordinate, x, as a matrix 

in the harmonic oscillator basis. A recursion relation yields the wave function and 

energy coefficients[55].

3.3.3 R esults and Discussion

In the special case of D =  2, we compare our analytical zeroth-order, first-order and 

numerically calculated sixth-order approximations for ground and excited state en
ergies to exact values obtained by numerical integration of the Schrodinger equation. 

In Table 3.3, we show this comparison for 7  =  1, which is an intermediate regime 

where neither the confinement energy nor the Coulombic energy scale dominates the
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other. Table 3.4 makes the same comparison for 7  =  .05, which is a regime where 

the repulsive interaction energy becomes more dominant and the dot becomes larger. 
For all three approximations in each table, we add the exact center-of-mass energy, 

Eq. (13), to the relative-motion energy to obtain the total energy approximation. 

For 7  =  1, the analytical results of dimensioned perturbation theory to first order 

are in good agreement with exact calculations with relative error less than 5% for 
states with |/ |=  0 and less than 1% for states with |Z|> 0. For 7  =  .05, the analytical 
results to first order agree with exact calculations with relative error less than 2.3% 

for states with |/ |=  0 and less than 1.1% for states with |Z|> 0. By sixth order, all 
energies are converged to a t least 7 digits for 7  =  .05 while some of the energies are 

slightly less accurate for 7  =  1 .

Effects of the harmonic quantum number, n, are not brought into the calculation 

until first order by Eq. (23). Tables 3.3 and 3.4 illustrate this fact by the marked 
improvement of the first-order over the zeroth-order approximation for states with 

n > 0. For states with n =  0, the zeroth-order results are already in good agreement 

with exact values, making higher-order terms only minor corrections. Tables 3.3 and 

3.4 also show that the accuracy of the zeroth-order perturbation starting point im
proves as the magnitude of the relative-motion angular momentum quantum number, 

|/|, increases. This is understood by noting that increasing |/| decreases the size of the 
perturbation parameter, Ô. For the same reason, we expect the accuracy to improve 

as the effective dimensionality increases.

In order to demonstrate the flexibility of this method with respect to the quantum 

dot dimensionality, we compare electron-electron interaction energies, E,_«(n,Z, D), 
for D =  2 and D = 3. The eigenenergies for the relative motion without the electron- 
electron interaction may be obtained exactly:

E„in,l,D) = ( 2 n + \ l \ + j ) r  (3.68)

The electron-electron interaction energies may then be obtained simply by subtracting 
out this relative-motion energy without the electron-electron interaction from the full 
relative-motion energy, Erai(n, I, D):

ZS._,(n, I, D) = E r,i(n , I, D) -  E„(n, /, D). (3.69)

In Fig. 3.8, we show the behavior for the Is, 2p and 3d states in two and three 

dimensions as 7  increases. We use notation conventions from atomic physics where
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the principal quantum numbers are given by (n+  |/| +1) and the azimuthal quantum 

numbers, |/ |=  0 , 1 , 2 , 3 , are designated by s, p, d, f,... Fig. 3.8 is in excellent 
agreement with the energy ordering predicted by other calculations done separately 

for D =  2 and D — 3 [75], and shows that the electron-electron interaction energy is 
proportional to 7 5 .

1.5

a

"3 (1
0.5

0.5
Y

Figure 3.8: Comparison of i, D) vs 7  for £> =  2 and D =  3 for states Is, 2p

and 3d. The solid lines indicate D = 2 and dashed lines indicate D = Z.

3.4 Discussion

In Sec. 3.1 we allowed the effective dimensionality of a BEG to be a variable quantity, 

and we used the parameter S = 1 /k  to scale the GP equation in arbitrary dimension, 
where « depends on the effective dimensionality of the condensate and on the angular 
momentum quantum number. We have shown tha t our zeroth-order {5 —> 0) limit 

of the Gross-Pitaevskii equation provides a less severe approximation of the kinetic 
energy than the N  ^  00 Thomas-Fermi approximation for the ground state, which
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neglects the entire kinetic energy. The zeroth-order (â —* 0) limit is a  simple approx

imation that, in order to satisfy the minimum uncertainty principle, retains a  kinetic 

energy contribution, rather than neglecting the entire KE, making it more accurate 
and flexible than the ground-state iV —> oo T F  approximation. As shown in Fig. 3.1, 

our zeroth-order approximation is more accurate than the N  —*■ oo T F  approximation 

for the chemical potential. The accuracy of the zeroth-order approximation is com

parable to the lowest order correction due to  the boundary layer a t the condensate 

surface. Improved accuracy for the ground state is most noticeable for a  moderate 

number of atoms, the case in which the kinetic energy is most significant. For a 

sufficiently large number of atoms with positive scattering length, the kinetic energy 

becomes small for the ground state chemical potential, and the three approximations 

converge to the numerical solution of the G P equation.

The core near the origin and the presence of the angular momentum quantum 

number. I, in the scaling parameter, S =  1 / k , make the zeroth-order (5 —> 0) density 

an especially good starting point for studying properties of vortices. The ground- 
state AT —> 0 0  T F  approximation is unable to accommodate such states, but it can 

be extended to include vortices by introducing the gradient of the phase from the 

Laplacian [46, 57, 47, 76]. We expect higher order, finite-J corrections to further 

refine the shape of our zeroth-order density for the ground state and vortex states.

We have shown tha t the dimensional scaling formalism is conducive to  analysis of 

condensates of any dimension. We outlined how simple yet accurate approximations 

can be achieved for any effective D, and we demonstrated the improved numerical 

results for D = 3. In addition to 3D BEG, the dimensional scaling formalism pro

vides a  useful analytical tool in the study of EEC in lower effective dimensionality. 

We also extended this method to  D-dimensional cylindrical coordinates, where the 

anisotropy parameter was included explicitly for treatment of axially symmetric traps 

with arbitrary anisotropy.
For the linear model Bose-Einstein Hamiltonian of Bohn, Esry and Greene, we 

used the methods of DPT in Sec. 3.2 with 1 /N  as the perturbation parameter. 
The zeroth-order term is similar to  the TF approximation in the large-AT limit, but 

improves on the usual TF approximation by retaining a term from the centrifugal-like 

potential which stabilizes the N  —* oo limit. The first-order equation is harmonic 

with a  frequency tha t reflects not only the trap  frequency but also the interatomic 

interaction.
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The harmonic oscillator basis set (obtained from the first-order equation) is ex

panded about the point Rm which is the minimum of the iV —► oo effective potential, 

This value of Rm is thus sensitive to the balance between the trap  potential and 
the interatomic potential(see Eq. (3.35)). For example, for the case of no interaction 

between the particles (a =  0 ), R m  = ^ 3 /2  (in oscillator units), which is the value of 
the uncertainty, AA, for the ground state of a harmonic oscillator. 1/ ^  a t this mini

mum is corresponding to an ideal Bose condensate. For a  >  0, Rm > due 
to the repulsive interaction of the particles with a positive scattering length while for 

o < 0 , R m  < ^ 3 /2 , due to the attractive interaction of the particles with a negative 
scattering length. Thus, the basis set is not only chosen with a frequency tha t is 

responsive to both the trap frequency and the scattering length, but this basis set is 

also expanded about a point, Rm, which adjusts to changes in these two parameters.

The zeroth-order energy, E q,  is quite close to  the converged result reflecting the 

excellent starting point provided by the iV —> oo effective potential which retains 

terms from all parts of the full effective potential.

Although it involves particles with fundamentally different statistics (fermi vs. 

bose) and involves only two particles, the two-electron quantum dot in Sec. 3.3 

demonstrates the advantages of DPT and sets the stage for the many-body formalism. 

We obtained an analytical approximation, parameterized by D, for the ground and 

excited state energies of a two-electron quantum dot with an effective dimensionality 

D, which is a measure of the degree of anisotropy in the quantum dot interactions or 

confinement. Our zeroth-order approximation results in an effective potential remi

niscent of semiclassical WKB approaches[65, 6 6 ]. This is to be expected because the 

parameter, k, acts as an effective mass so tha t the electrons become infinitely heavy 

as £) or |Z( approaches infinity. This in turn causes the derivative terms of the kinetic 

energy to become zero and the infinitely heavy electrons to remain stationary a t the 

bottom of the effective potential. The effective potential evaluated a t its minimum 

provides a good zeroth-order analytical starting point for the perturbation expansion 

because the minimum, r^ , is sensitive to the interplay between the confining energy 

and the repulsive electron interaction energy scales via 7 . We then systematically 

improve upon this classical approximation by adding the semiclassical first-order har
monic correction, which is analogous to vibrations of a  Wigner molecule.

Dimensional perturbation theory is applicable to the entire range of 7 , unlike 

perturbation methods tha t use the confinement strength or the Coulomb strength as 

the perturbation parameter or methods tha t use a  basis set that takes advantage of
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a high- or low-limit of 7 . For all values of 7 , the analytical semiclassical results of 

DPT perform extremely well for |/|>  0 excitations because in our scaling the kinetic 

energy scales as the inverse square of the angular momentum. For |Z|= 0 states, ana

lytical semiclassical results are extremely accurate for typical dots in the mesoscopic 
regime ( 7  < 1) because the kinetic energy scales linearly with 7  [77). Not surprisingly, 

the domain of validity of 7  for different values of I is the same as that of the WKB 

approximation, which can be determined in terms of either the de Broglie wavelength 

or the classical momentum [6 6 ]. The domain of validity of the semiclassical perturba

tion expansion for Z =  0 may be extended to very large 7  by applying sophisticated 

summation methods such as Fade approximants to the asymptotic series; however, 

even for quantum dot systems where the kinetic and potential energy scales are com

parable ( 7  % 1) the analytical semiclassical results continue to work surprisingly well 

suggesting tha t D PT is a particularly robust method for treating quantum dot sys

tems. These results also suggest that DPT would be well suited for application to a 

quantum dot in an external magnetic field.

Another advantage of this semiclassical method is the ready extension to systems 

with many degrees of freedom allowing one, for example, to obtain an analytical 

approximation to  the ground and excited states of the AT-electron quantum dot or 

A-atom Bose-Einstein condensate. One way to approach this problem is similar to 

the large-dimension limit described above for the N  = 2 electron dot. The idea, 

which is described fully in the next chapter, is as follows. We begin by writing out 

the full AT-electron quantum dot Hamiltonian in generalized-D form; and dimension- 

ally scale it as we have done for the two-electron dot. In the classical infinite-D 

limit, the derivative terms of the kinetic energy become zero and we assume a sym

metric geometry for the electrons in the effective potential minimum. We would 

then be able to obtain an analytical zeroth-order approximation of this new effective 

potential by assuming the electrons are equivalent. This classical result could then 

be improved upon by appending the semiclassical harmonic correction term which 

represents normal mode vibrations about the symmetric equivalent geometry. The 

normal modes may be obtained by applying the FG matrix method to the iV-electron 
Hamiltonian[78|.

A semiclassical technique that uses correlated “pocket state” basis functions and 

the WKB approximation has been used to study the low lying excitation spectrum 

for quantum dots with two or more electrons[79). Although the method is differ
ent, many of the ideas are similar to the arbitrary-A^ perturbation method described
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above. The total potential is a double well, and each basis function of the finite 

dimensional “pocket state” basis is strongly localized a t a  potential minimum be

coming smaller further from the minimum. The WKB method is used to compare 

the magnitudes of oflF-diagonal Hamiltonian matrix elements, which describe corre

lated tunneling between different arrangements of the N  electrons. For sufficiently 

low electron densities (or small 7  in the notation of this chapter), only one tunneling 

integral dominates exponentially. As the quantum dot electrons become more Wigner 
molecule-like, this method becomes more accurate.

The large-D limit is analogous to the prequantum valence models of Lewis and 
Langmuir. In the large-D limit of the A-electron quantum dot, the electrons be

come frozen in a  Lewis structure. The first-order harmonic oscillations are Langmuir 

vibrations about the Lewis structure, or, in condensed m atter terminology, vibra

tions about the Wigner structure. This semiclassical perturbation method would be 
amenable to the calculation of correlation energies, and the prospects for a treatment 

of the many-electron quantum dot are promising based on successful applications to 

many-electron atomic systems[80]. Along with the general formalism, in the next 

chapter we give analytical results for the A-electron atom and iV-electron quantum 

dot. Then in Chapter 5 we apply these same methods to the trapped A^-atom Bose- 

Einstein condensate.
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Chapter 4 

M any-body dimensional perturbation theory

In this chapter the methods of many-body dimensional perturbation theory are de

veloped for the study of large iV-body systems under quantum confinement. We ap

ply dimensional perturbation theory to  many-body quantum confined systems from 

chemical, condensed matter, and atomic physics. The first application originated in 

Ref. [80], in which Loeser introduced low-order many-body dimensional perturbation 

methods to the W-electron atom. In this instrumental paper, Loeser obtains low- 
order, analytical results for the ground-state energy of neutral atoms for Z  =  1 to 

127 tha t compare well to Hartree-Fock energies with a correlation correction. We 

then discuss the formalism and general theory behind Loeser’s results for the N-  

electron atom, in which the quantum confinement of the N  electrons is supplied by 

the Coulomb attraction of the nucleus. We follow this atomic physics system with 

the quantum  dot, an atom-like many-body system from condensed m atter physics, 

where the confinement of the N  electrons is supplied by an external, isotropic trap
ping potential.

In the next chapter, we consider N  identical hard spheres in an isotropic trap. 

Although our results are more general, this model is appropriate for describing a 

Bose-Einstein condensate of an inhomogeneous alkali metal gas. Atomic EEC, like 

the quantum dot, acts as a bridge between the areas of atomic and condensed m atter 

physics and is the emphasis of this thesis.

In many-body dimensional perturbation theory, the N  particle radii are allowed 

to have D  Cartesian components and 1 /D  becomes a  perturbation parameter. An 
overview of the formalism to be described in this chapter is as follows. The Schrodinger 

equation is written in terms of a similarity transformed wave function th a t removes 
first-order derivatives from the Laplacian and introduces a  centrifugal-like potential 

containing all of the explicit dimension dependence of the Laplacian. The explicit
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dimension-dependence of the centrifugal-like potential is quadratic, and in order to 

regularize the £) —> oo limit of the Hamiltonian (the leading-order term in the \ / D  

expansion) we choose a  scaling of the length and energy that is also quadratic in D. 
Then as D  oo the second-order derivative parts of the kinetic energy vanish and 

the particles become localized in the bottom of an effective potential defined by a 
centrifugal-like contribution from the kinetic energy and contributions from the other 

potential energies (i.e., the confinement and interaction potentials). In the case of 
attractive interparticle forces, the repulsive centrifugal-like term stabilizes the large- 

D  configuration against collapse. The first-order quantum correction corresponds to 

normal-mode vibrations about the large-/? effective potential minimum. We find the 

normal-mode frequencies using the FG matrix technique of molecular physics[78]. 

Higher orders can be calculated using a  matrix method developed specifically for 

dimensional perturbation theory[55].

4.1 D-dimensional 7V-body Schrodinger equation

For an AT-body system of particles confined by a spherically symmetric potential 

and interacting via a  common two-body potential Qij, the Schrodinger equation in 
Z?-dimensional Cartesian coordinates is

H ^  =
N  J V - 1  JV

è  ^ + 1 ]  9ij
i=l i=l j=i+l

$  =  E ^ ,  (4.1)

where

and Qij =  Viat ~  (4 3)

are the single-particle Hamiltonian and the two-body interaction potential, respec

tively, and V̂ onf is the confining potential. The operator H  is the /?-dimensional 

Hamiltonian, and Xw is the i/*** Cartesian component of the particle. For the N-  

electron atom, V̂ onf is the Coulomb attraction holding the electrons to the nucleus, 

while for the N-electron quantum dot and iV-atom hard-sphere (EEC) problem we 

will model the confinement as a harmonic trapping potential. The two-body inter

action potential V^t is Coulombic in the first two systems and hard sphere in the 
third.
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4.1.1 Transformation o f the Laplacian

Restricting our attention to spherically symmetric {L =  0) states of the many-body 

system, we transform the coordinates of all particles, each with D  Cartesian com

ponents Xi = {xii,Xi2, .. .,Xio)  (1 <  i < N), to internal coordinates. A convenient 
internal coordinate system for confined systems is

(1  < * <  iV) and 7 y =  cos(%) =  f  ̂  / n r j  ( l < i < j < N ) ,
f/=l \l/= l /

(4.4)

which are the D-dimensional scalar radii of the N  particles firom the center of the 

confining potential and the cosines 7 ÿ of the N {N  — l) /2  angles between the radial 

vectors. Now for a function ^  dependent on two functions r{x) and 7 (x), which 

represent the internal coordinates, one can write

( f ^ ( r ( z ) ,7 (z)) _  cP'yd^ ^ d 'y \^ cP 9  d'y dr . .
dx^ dx"̂  d r ^ d ' ) ^ \ d x )  d r ^ ^ \ d x )  d x d x d rd y

Generalizing this, when operating on the state #(n(Zw), 7 i,i(xj^). . .  yi,k{xw) ■ ■ ■ yi,N{xiu)) 
(where k ^  i and u = 1 , . . . ,  D)), Vf can be written in terms of the internal coordi
nates of Eq. (4.4) as

ils (ê) (S)I j / i

The relevant derivatives of the internal coordinates are

dr
dXii/

df r̂.
dx

which lead to the effective 5̂ -wave Laplacian in internal coordinates:
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(4.9,

4.1.2 Removal o f first-order derivatives

Next we wish to find a transformation of the Hamiltonian tha t removes the first- 

order derivatives from the Laplacian (Eq. 4.9) so tha t the kinetic energy operator 

is reduced to  a  sum of terms of two kinds, namely, a  second-order derivative term 
and a repulsive centrifugal-like term. When this is done the zeroth and first orders 

of the dimensional (1/D ) expansion of the Hamiltonian become exactly soluble for 
any value of N. In the D  —» oo limit, the second derivative terms drop out, resulting 

in a static problem at zeroth order, while first order correction corresponds to simple 

harmonic normal-mode oscillations about the infinite-dimensional structure.

In Ref. [81], Avery et al. considered the problem of performing a similarity 
transformation of the wave function 'I' and operators Ô:

0  =  and Ô = x~^Ox, (4.10)

where the transforming function, with adjustable parameters a  and /?, is of the form:

X  =  ( n r 2 . . . r j v ) - “ r - ^ / " .  ( 4 . 1 1 )

Here F is the Gramian determinant, the determinant of the matrix whose elements are 

7 ÿ (see Appendix E). One of the cases considered by Avery et al. in Ref. [81] for a  

and (3 (a i =  (D —1)/2 and /?i =  {D — N  — \) /2 )  causes the weight function for matrix 

elements, W  — Jx^,  to equal unity, where J  is the Jacobian of the transformation to 
internal coordinates:

J  = ( n r a  . . .  ( 4 . 1 2 )

As will be discussed in a future publication[82], this scenario has the advantage of 
making matrix elements easier to  calculate using DPT, and makes the physical inter

pretation of the large-dimension normal-mode structure more transparent. However, 

the results in this chapter are easier to derive if we use a  =  /? =  (D — l ) / 2 , which 
removes the first-order derivatives from the Laplacian while giving the same results 

as Qi and f3i through first order in 1/D. Carrying out the transformation of the
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Hamiltonian and wave function of Eq. (4.1) via Eq. (4.10) with a  = P = {D — l) /2  

in Eq. (4.11), the Schrodinger equation becomes[80]:

(T  +  y ) $  =  E 0  (4.13)

2rriirf Hjdnfik 

h \ D - l ) { D - 2 N - l ) T^)\
^  Brmrf r  )

V =  Z ^ c o n f ( r i ) + E  E  ^ t ( n j ) .  (4.15)
1=1 »=i jf=»+i

The Gramian matrix whose determinant is is the principal minor formed 

by deleting from F the row and column corresponding to the i'* particle, and =  

\Jrf + r^ — 2 r jr j7 ÿ is the interparticle separation. The similarity-transformed Hamil

tonian for the energy eigenstate $  is where H  = {T + F ).

We remark tha t for the hard-sphere system in Ch. 5, we find it expedient to choose 

a dimensional continuation of F n t tha t contains explicit dimension dependence, which 

is not expressed in the equation above. However, the general discussion to  follow in 

Secs. 4.2 - 4.3 holds for the hard-sphere with only slight modification to the first- 

order energy approximation. This is discussed further in Ch. 5. We will also assume 

identical particles in each system so that all the particle masses rrii are equal.

4.2 Infinite-jD analysis: Leading order energy

To begin the perturbation analysis we regularize the large-dimension limit of the 

Schrodinger equation by defining dimensionally scaled variables:

fi — ri/K{D), Ë  =  k{D)E, and H  = k{D)H  (4.16)

with dimension-dependent scale factor k{D). From Eq. (4.14) one can see tha t the 

kinetic energy T  scales in the same way as 1/r^, so the scaled version of Eq. (4.13) 

becomes

m  =  (4.17)
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where barred quantities simply indicate tha t the variables are now in scaled units. 

Because of the quadratic D  dependence in the centrifugal-like term in T  of Eq. (4.14), 
we conclude tha t the scale factor k{D) must also be quadratic in D, otherwise the 

D oo limit of the Hamiltonian would not be finite. The factor of k{D) in the 

denominator of the scaled kinetic energy acts as an effective mass tha t increases 

with D, causing the derivative terms to become suppressed while leaving behind a 
centrifugal-like term in an effective potential,

Keff
Af /  p ( i )  _  \  N - l  N  _

=  i z  ( +  Vcontin) J + Y l  12  (4.18)

in which the particles become frozen at large D. In the Z) —> oo limit, the excited 

states have collapsed onto the ground state, which is found at the minimum of V^tt.
We assume a totally symmetric minimum characterized by the equality of all 

particle radii and angle cosines when D —» oo, i.e.,

n  =foo (1 <  Î < N), 'Tij =  7oo (1 <  Î <  j  < N).  (4.19)

Since each particle radius and angle cosine is equivalent, we can take derivatives with 

respect to an arbitrary f< and 7 ÿ in the minimization procedure. Then evaluating all 
fi and 7 ij a t the infinite-D radius and angle cosine, foo and 7 oo, respectively, we find 
that foo and 7 oo satisfy

dV,e f f

dfi

dV,tt
dlij

= 0 (4.20)

=  0, (4.21)
OO

where the oo subscript means to evaluate all r* a t fœ and all 7 y at 7 oo- In scaled 
units the zeroth-order {D —* oo) approximation for the energy becomes

■̂ oo — ^ f f |^  — (f'oo» Too). (4.22)

In this leading order approximation, the centrifugal-like term that appears in Vm i  
even for the ground state, is a  zero-point energy contribution required by the mini
mum uncertainty principle[45].
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4.3 Normal-mode analysis: 1/D first-order quantum  
energy correction

At zeroth-order, the particles can be viewed as frozen in a  completely symmetric 

high-1? configuration or simplex. It is somewhat analogous to the Lewis structure in 
atomic physics terminology. Likewise, the first-order 1 /D  correction can be viewed 

as small oscillations of this structure, analogous to Langmuir oscillations. Solving 

Eqs. (4.20) and (4.21) for foo and 7 oo gives the infinite-D structure and zeroth-order 

energy and provides the starting point for the 1/D  expansion. To obtain the 1/D  
quantum correction to the energy for large but finite values of D, we expand about 

the minimum of the D  —> oo effective potential. We first define a  position vector 

consisting of all P  =  N {N  l) /2  internal coordinates whose transpose is

y  (̂ 1) ̂ 2» • • • 7 Tl2j 7l3) * • • ) l,iV)• (4.23)

We then make the following substitutions for all radii and angle cosines:

fi =  foo +  d^/'f( (4.24)

l i j  =  Too +  f '/ 'T ij, (4.25)

where S = 1 /D  is the expansion parameter, and we define a  displacement vector

consisting of the internal displacement coordinates (primed in Eqs. (4.24) and (4.25)):

—  ( f i )  fz» • • • ) ’"iv) T Îz) 7 i3 )  • • • ) 7 n - i , j v ) - (4.26)

We may then obtain a  power series in 5^^  ̂of the effective potential about the D —► oo 
symmetric minimum:

v;«  =  v ;„ | +
#1=1 

1 ^  ^

dV,«ff
%

where

f i = l  1/=:!

00

P _ N { N + 1 )
(4.28)
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is the number of radial and angular coordinates. The first term  in the power series 

(Eq. 4.27) is simply the zeroth-order energy (Eq. 4.22). The second term is zero 

since we are expanding about the minimum of the effective potential; the system is 

said to be in equilibrium since the forces acting on the system vanish [Eqs. (4.20) 
and (4.21)]. The third term defines the elements of the Hessian matrix[83] F  of Eq. 

(4.30) below. The derivative terms in the kinetic energy are taken into account by 

a similar series expansion beginning with a  first-order term tha t is bilinear in d /d ÿ ,  
i.e.,

+  O , (4.29)
^ H=lu=l

where T  is the derivative portion of the kinetic energy T  (see Eq. (4.14)). Thus, 

obtaining the first-order energy correction is reduced to a harmonic problem, which 

is solved by obtaining the normal modes of the system.

We use the Wilson FG m atrix method [78] to obtain the normal-mode vibrations 

and, thereby, the first-order energy correction. It follows from Eqs. (4.27) and 
(4.29) tha t G  and F, both constant matrices, are defined in the first-order Ô = 1/D  

Hamiltonian as follows:

Hi =  + \ÿ ^ F ÿ ' ,  (4.30)

where T  here refers to the traspose operation. After the Schrodinger equation (4.13) 

has been dimensionally scaled, the second-order derivative terms are of order Ô, and 

by comparing these terms with the first part of Hi, the elements of the kinetic- 

energy matrix G  are easily determined. The elements of the Hessian matrix[83], 

Ffiu =  [^I4ff/5ÿJ,ÿv]oo) on the other hand, require a bit more effort to obtain, as we 
will see in detail in later sections.

We include a  derivation of the FG matrix method in Appendix B, but we state 
here the main result of the method, which consists of finding the roots of the following 

characteristic polynomial in A:

det(AI -  G F) =  0. (4.31)

Depending on the number of particles, the number of roots A, which number from 

1 to P  = N { N  4- l) /2 , is potentially quite large. However, as we will see shortly, 
there is a  high degree of degeneracy in the roots A due to the total symmetry of the 

infinite-D Lewis structure. In fact, there are only five distinct roots: A ,̂ 1 <  a  <  5.
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And as we conclude in Eq. (4.60) the energy through first-order can be written in 

terms of the distinct normal-mode vibrational firequencies, which are related to the 

roots Xa of G F  by the following (see Eq. B5):

Xa — (4.32)

In the next subsections, we show explicitly how to find analytical expressions for the 

roots of G F.

4.3.1 Indical structure o f F, G, and GF matrices

The F, G, and G F  matrices, which we generically denote by Q, are P  x F  matrices 
with the same indical structure as ÿÿ^\

(

yy^ =

n n  riT2

riTi rgrg

TiTn

Tn Ti Tn Tn

712̂ 1 T12T’2

713^1 713T’2 • • • 712»"1

7JV-1NH I N - X N T n

\

n7i2

^2712

n7i3

^2713

I'l'yN-iN

f ' 2 ' yN - lN

»'w7l2 f ' N ' Ï N - l N

712712 7 l27 l3

713712 713713

7127JV-11V

7 i37w-iiv

7N-11V712 7JV-1JV713 7 iv-ijv7 iv-ijv

(4.33)

The indical structure of this matrix suggests a convenient set of indices for describing 

the elements of the Q  matrices. The upper left quadrant of Eq. (4.33) is an (A  x N)  

matrix with elements associated with (fj,fj); hence we use the subscript (i , j)  to 

refer to these elements. The upper right quadrant is an (JV x JV(JV — l) /2 )  matrix 

with elements associated with (fi, Tj*,); hence, we use the subscript ( i , jk )  to refer
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to these elements. Finally, the lower left quadrant is an {N {N  — l ) / 2  x  N)  matrix 

with elements associated with hence, we use the subscript {ij,k)  to refer to
these elements. The lower right quadrant is an {N{N  — l) /2  x N {N  — l)/2 ) matrix 

with elements associated with (7 i j ,7 fci); hence, we use the subscript (ij,kl)  to refer 
to  these elements.

4.3.2 Symmetry of the Q matrices

As the number of particles N  increases, diagonalizing the P x P  G F  matrix becomes, 

prima facie, a daunting task (P  =  N { N + l) /2 ) .  However, one of the advantages of di
mensional perturbation theory is the simplifications tha t occur in the large-dimension 

limit, a limit in which one is often able to find analytical expressions for the normal

mode frequencies of oscillation about the symmetric configuration. In particular, 

since we are dealing with identical particles in a  totally symmetric configuration (the 
Lewis structure) in which all the particles are equivalent, the Q  matrices display a 

high degree of symmetry with many identical elements. Specifically,

Qi,i Qi',i' = Qa

QiJ = Qi'j’ = Qb {i ^  j )  and ( f  j ')

Qij,i = Qi'j',i> Qc (* f  j )  and

Qjk,i = Qj>k',i' = Qi 3 k) and (z' ^  f  7  ̂ k')

Qi,ij = Qi'.i'j' = Qe { i ^ j )  and (z '7^ / )

Qijk = Qi'J'k' = Qf k) and (z' 7  ̂f  7  ̂ &')

Qij,ij = = % ( i ^ j )  and ( i ' ^  f )

Qijjk = Qi’j'j'k' = Qh (* 3 ¥^k)  and (z' 76 j '  7  ̂ k/)

Qij,kl = Qi'j',k'V Q. { i ^ j ^ k j ^ l )  and

(4.34)
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Note the indices in the relationships above run over all particles ( 1 ,2 , . . . ,N)  with 

the exceptions noted in the far right column. For example, Q ij  =  Qi>j> =  Qb, 
where {i ^  j )  and ( f  7  ̂ / ) ,  means tha t all ofif-diagonal elements of the upper left 

block (the pure radial block) of Q  are equal to  the same constant Qb- Similarly, 

Qij,ki = Qi'j'jt'V =  Qt. where {i ^  j  ^  k ^  I) and (i' 7  ̂f  7  ̂ fc' 7  ̂ /')> means tha t any 
elements of Q in the lower right block (the pure angular block) tha t do not have a 

repeated index are all equal to the same constant Qi. We should remark here tha t G  

and F  are also symmetric matrices (G ^ =  G  and =  F); however, while G F  does

display the high degree of symmetry of Eq. (4.34), it is not a symmetric matrix.

4.3.3 Q matrices in term s of simple submatrices

The symmetry of the Q matrices (F, G , and G F) described in Eq. (4.34) allows us 

to write these matrices in terms of six simple submatrices. We first define the number 

of coordinates to  be

M  =  N { N  -  l) /2 , (4.35)

and let Ijv be an iV X jV identity matrix, Im an Af x M  identity matrix, Jjv an

N  X N  matrix of ones and 3 m  an M  x Af matrix of ones. Further, we let R  be an 

N  X M  matrix^ such that Rijk  =  5ij +  5ik, J jvm be an N  x  M  matrix of ones, and

— ^MN-
We then write the Q matrices as

Q  =

I \
Q i Q 2

Qa Q 4

(4.36)

where the block Q i has dimension (iV x JV), block Q 2 has dimension (JV x JV/), block 

Q3 has dimension (JV/ x JV), and quadrant Q 4 has dimension (JV/ x JV/). Now, as we

show in Appendix C, Eq. (4.34) allows us to  write the following:

Qi =  (Qo — Qfc)Ijv +  Qô-Jat (4.37)

Q 2 =  (Qe — Q /)R  +  Q /3 n m  (4.38)

Qa =  {Q c -Q d )B T  + Q<i3lM (4.39)

^In graph theoretic terminology R  is called a vertex-edge matrix (see Appendix C).
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Q4 =  (Qg — 2Qh + Q i)1m  +  {Qh — Q t)R ^R  +  Q tJAf

in particular, letting Q =  G F , Eq. (4.36) becomes

(4.40)

G F  =

(
{a — b)lff +  bJnf (e — / ) R  +  / J nm

(c — d)R ^ +  dJ\fN {9 ~  ^b, +  t')Iivf {h — t)R ^ R  +  iJm  
\

where we have used the following abbreviations:

(4.41)

(4.42)

a = {GF)a = GaFa 

b = {GF)b = GaFb

c =  {GF)c = GgF^ + {N -2 )G h F ^  + { N -2 )G g F f  

d = {GF)d = GgFj + 2GhFe + 2{N -Z )G h F f  

e =  {GF)e = GaFe 

f  = {GF)f = GaFj 

g = {GF)g = GgFg + 2 {N -2 )G H F f

h =  {GF)h = GgFH + GhF, + {N -2)G H Fh + {N -3 )G h F ,  

i =  {GF), = GgF, + AGhFH + 2 {N -4 )G h F ,.

The righthand sides of Eq (4.42), the G F  matrices expressed in terms of the F  and 
G matrix elements, are derived in Appendix C.

4.3.4 Normal m ode frequencies and first-order energy

Having obtained the G F  matrix of Eqs. (4.41) and (4.42), we may then, according 

to Eq. (4.31), find the eigenvalues A of G F  by solving

det(E) =  0 , (4.43)
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where we have defined E  as

E  =

0 Alivf

- G F . (4.44)

/

To find an analytical expression for det(E) we multiply E  by three matrices: X, Y  

and Z, such that
/  \

+  NAT 0
X Y E Z =

vI m

(4.45)

where det(X) =  det(Y ) =  det(Z) =  1 so tha t det(E) =  det(X Y EZ). In Appendix 

D we construct the matrices X , Y  and Z needed to transform E  of Eq. (4.44) to 

X Y EZ of Eq. (4.45). We find

V

t

u

=  A — g 2h — I (4.46)

N - l
=  (A — a +  b)v +  [N — 2)(i — h){X — o +  6) +  {N — 2)(d — c)(e — / )  (4.47) 

=  —kv  — (fi — t)(A — o +  6) +  (d — c)(e — / )  +

[/(2(d — c) — Nd) — i(A — a — [N — 1)6) +  46(fi — t) — 2d(e — /)]  .(4.48)

The determinant of X Y EZ, which does not depend on the submatrix in the lower 

left quadrant, is found from Appendix C (see Eq. (C30)) to be

det(E) =  det(X Y EZ) =  +  N u)v (4.49)

There are five distinct roots, which naturally arise from the terms in Eq. (4.49) with 

t, u, and V given by Eqs. (4.46), (4.47) and (4.48). From Eq. (4.49), det(E) =  0 

factors into three terms, resulting in three equations for the five distinct roots:

=  0

{t +  Nu) = 0
y M - N  =  y N ( N - 3 } / 2  _  0

(4.50)

(4.51)

(4.52)
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From Eqs. (4.46) and (4.47), one can see tha t t  is quadratic in A. Hence, from Eq. 

(4.50) there are two roots with multiplicity N  — \  given by

(4.53)

Similarly, the {t +  Nu)  term in Eq. (4.49) is quadratic in A and, hence, there are 
two roots with multiplicity 1. Finally, v is linear in A; hence, there is one root with 

multiplicity N {N  — 3)/2 from Eq. (4.52) given by

t; =  0. (4.54)

From Eqs. (4.54) and (4.46), the root of multiplicity N { N  — 3)/2 is

Ag — g — 2/i +  4. (4.55)

From Eqs. (4.53) and (4.47), the two roots with multiplicity {N  — 1) are

Ai± =  7/1 ± (4.56)

where

T]i — ^[a — b + g + {N  — 4)h — (iV — 3 )4]

Ai =  (AT -  2 ) ( c -  d)(e -  f )  + (a -  b)[g + (N  -  4)h -  {N -  3 )4].

(4.57)

From the t + N u  term in Eq. (4.49) along with Eqs. (4.47) and (4.48), the two roots 
with unit multiplicity are

Ao± =  »7o ±  -  Ao,

where

%

Ao

a — (N  — 1)6 +  f l f  +  2(N  — 2)h +
(N  -  2)(N  -  3)

(a -  (iV -  1)6) 

N - 2

g +  2(JV — 2)h —
(N  -  2){N -  3)

+

{ 2 c + iN -2 )d ) { 2 e  + { N - 2 ) f ) .

(4.58)

(4.59)
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The five A’s or distinct roots belong to three different irreducible representations of 

the symmetric group of order N[80, 84]. The multiplicity-jV(JV — 3)/2 root is 
designated by 2. The two multiplicity-(iV — 1) roots, which are a mixture of asym
metric stretching and bending motions, are designated by 1“ and I"*", respectively. 
Finally, the two multiplicity-1 roots, which are a mixture of symmetric stretching 

and bending motions, are designated by 0 “ and O"*", respectively.

The distinct roots X„, where 1 <  cr <  5, are equal to the square of the normal
mode vibrational frequencies (i.e., Eq. (4.32)), and the energy through first-order in 

6 =  1/D  is then

É  = Èoo + ôEo + 0{5^)

= Vett{roo,7oo) + à
I (T flff

+ 0{8%  (4.60)

where the n„ are the vibrational quantum numbers of the normal modes of the 

same frequency o>̂ , and is the occupancy of the manifold of normal modes with 
vibrational quantum number n„ and normal mode frequency â><,. The total occupancy 

of the normal modes with frequency is equal to  the multiplicity of the root 

(see the discussion after Eq. (4.52)). This equation differs sUghtly from the version 

found in Ref. [80], where is the multiplicity of the root. In Eq. (4.60), 
counts the number of particles with n„ quanta in the normal mode of frequency 

One can also view as the number of normal modes of the same frequency which 

have the same number of quanta where is the number of nodes in the normal 

mode oscillator wavefunction.

4.4 A^-electron atom

The AT-electron atom was previously discussed using low-order many-body dimen

sional perturbation theory by Loeser [80]. In this section, we give details necessary 

to derive the results in Ref. [80], to  which we direct the interested reader for specific 
numerical results. The confining potential is provided by the Coulomb attraction of 
the electrons to  the nucleus:

VcoBi{ri) = (4.61)
Ti
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and the interaction potential is the Coulomb repulsion of the electrons:

(4.62)

Substitution of the following charge/dimensionaJly scaled variables into the simi

larity transformed Schrodinger equation (4.13) in atomic units {h = m  = \)\

ri = ^ r u  Ê = ^ E ,  Q = (D -  1){D -  2 N  -  l)/4 ,  (4.63)

places all of the dimension-dependence in the second-derivative parts of the kinetic 

energy and gives the following scaled equation:

( j ( A )  +  y {A )  ^  y(A)'^ $  =  (4.64)

where

1 N

dfi^ f? d'fijd'Tik

N  1 1 N-1 N

1 = 1  ' »n  Z  i = i  j = i + i  + f ] -  2 r j r j 7 ÿ

The superscript A refers to the IV-electron atom system (to distinguish these quan
tities from those in the systems to follow). Prom this equation, it can be seen that 

if D, and hence fi, become infinitely large, the differential part of the kinetic 

energy being the centrifugal-like part of the kinetic energy) will drop out of the 

similarity transformed Hamiltonian. In effect it is as though the particles become 
infinitely heavy, and, because of this, any function from the basis set of all delta 

functions in configuration space is an eigenfunction of the Hamiltonian. The energy 
of such an eigenfunction is just the value of the effective potential at tha t specific 
point in configuration space which tha t delta function selects, and, as mentioned in 

Section 4.2, this point is the minimum of the infinite-D effective potential:

1^ =  ^ , (4.66)

where the effective potential corresponds to Eq. (4.18) in scaled units.

86



4.4.1 Atomic infinite-D analysis

We have chosen a particularly simple infinite-£) configuration: the totally synunetric 

configuration characterized by the equality of all fj and jij. The effective potential 

is an extremum when its derivatives with respect to all fj and 7 ^ are zero a t f^o and 

7 oo- Using the conditions imposed in Eqs. (4.20) and (4.21), we find:

1 l  +  ( iV -2 )7 ^  1

r | , ( H - ( ^ - l ) 7 o o ) ( l - 7 o o )  f?00

1 - =  0,

f | . ( l  +  (J V - l) 7 „ ) 2 ( l - 7 „ ) 2  f.»2=/“Z { l - 7 » ) ’«

where we have used the infinite-D symmetric-minimum Gramian results given in Eqs. 
(E12) of Appendix E.

One can eliminate fœ from the above equations and then 700 is the negative 
solution of smallest magnitude of the following equation:

8 Z S 1 [2  + { N -  2)7oo]" +  7oc -  1 =  0. (4.68)

For Z =  JV it has been verified tha t this extremum is a minimum. If we consider 

Z  to be a parameter and we decrease this parameter, the system becomes more and 
more unstable and a t some point the above extremum is no longer a minimum. This 

critical value Ziocai can be obtained via Eq. (4.68) from the negative real solution of 
the following equation:

(4 -67» )(l-7oo )"+ ^7oo(22 -97oo)(l-7oo )'+ 20A f"7 i(l-7oo )4 -5N %  =  0, (4.69)

which is simply the condition under which the smallest eigenvalue of the Hessian[83]

changes sign. Ziocai is always less than N  for neutral atoms, and hence the totally

symmetric state is indeed in an energetic (local) minimum for neutral atoms.

The infinite-D radius and energy can be written in terms of the solution joo of 
the quartic equation (4.68) as follows:

f^> =  [ l- f  (7V -1)7co]-" (4.70)

Ë W
N =  - ô [ l  +  ( ^  -  l)7oo]"[l + { N -  2)7oo]/(1 -  7oo). (4.71)

87



We should remark here on the fact tha t we are considering a  minimum in the effective 

potential, which allows us to eliminate Z  from the above expressions. Specifically, 

we have employed the conditions (4.20) and (4.21) a t the minimum that

= - f ^ l  . (4.72)a^ij loo loo

which leads to
(4,73)

Z  V 1 — 7oo

4.4.2 Atom ic normal modes

We can determine the elements of G  by comparing the differential terms in Eq. (4.30) 

with in Eq. (4.65) expanded to first order in 1 /D  as in Eq. (4.29). The non-zero 

elements of the G  matrix are;

Gq =  1

=  =  2 |l +  ( ^ - l W ( l  +  W ( l - W  (4.74)

%  =  =  |l  +  ( iV - l ) 7 o . l '7 o o ( l - 7 j .

where the matrix elements have been evaluated a t the infinite-D symmetric minimum 

and we have used the notation in Eq. (4.34). The factor of 2 in G g comes from the 

fact that each {ij, i j )  term appears twice in of Eq. (4.65) (e.g., (21,21) as well as

(12,12)), but it is only counted once in the G  matrix (e.g., only (12,12) is counted). 

In a similar manner to  the G-matrix elements, the non-zero F-m atrix elements are:

^  [l +  ( iV - l) 7 o o ]% .

( 1 - 7 » ) '
'2  4- 2(5JV -  7)70. +  (57V -  6)(7V -  3 )7 ^  -  3(7V -  1)(7V -  2 )7 ^ '

F t =  

Fe =

\  2 
[1 +  (TV -  1 ) 7 » ] "  / - 7 o o ( 3  -  7 o c )[2  +  (TV -  2) 7 . ] \

(1 -7» )' I 2 )
[1 4 - (TV — l)7 o o ]^  /  - 7 » [2  +  3(TV — 2 ) 7 0 0 ] \

(1 -7» )' I 2 )
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F, =

Fh =

[l +  ( iV - l)7 c o ]
( 1 - 7 . ) =

4 +  6(2iV -  5)7oo +  (12iV2 -  53iV +  6 4 )7 ^  +  {AN^ -  231^  +  A9N -  8 8 )7 ^( 2
[l +  ( iV - l)7 o o ] ,

^  (3  +  (5 ^  -  1 4 )7 . +  (2W^ - 9 N  + 11)7^)

F. = "^ 1  -  4 7 I  (2 +  (AT -  2 )700) ,

where we have used Eqs. (E13) from Appendix E to evaluate the Gramian second- 

order derivatives. Again we have used the fact tha t we are considering a minimum 

in the effective potential, which allows us to use Eq. (4.73) to eliminate Z  from the 

above expressions. Pulling out the common term among the O F  matrix elements, 

we define the matrix (G F)' as:

(O F)' =  r C F ,  (4.76)

where

^ =  |1 +  (AT - T h J ' ” '

Using the above equations along with Eqs. (4.42) we find the following for the 
elements of (G F)':

a =  2 +  2(5A -  7)700  +  (5A -  6)(N  -  8 )7 !  -  3(AT -  1)(A -  2 )7 !

b =  - 7 . ( 3  -  7 .)[2  +  (A’-  2)7oo]

c =  - 7 . ( l - 7 . ) [ 2  +  (3 A -4 )7 o c][2 -h (A -2 )7 o c l[l +  (A - l)7 o o P

d =  2 7 ^ ( 1 - 7 . ) [ 2  +  (A - 2 )7 .] [ 1  +  ( A - 1 ) 7 . P

e =  - 7 . [ 2  +  3 (A -2 )7 .] [1  +  (A -1 )7 « ,]-2  (4.78)

/  =  47^(1-h (A -  1)7oo]-2

g =  2 [4 -F 2(4A -ll)7oc  +  (4 A 2 -1 7 A -h 2 4 )7 ^ - |-3 (A -2 )7 ^ ]

h = - 7 . [ 8  +  6 ( A - 3 ) 7 o o - ( 3 A - 1 0 ) 7 ^ ]

t =  87^ ( 1 - 7 . ) -
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The eigenvalues of (G F)' will be equal to the eigenvalues of G F  multiplied by the 

common factor r  in Eq. (4.77).

Using the matrix elements of Eq. (4.78), we obtain the two multiplicity-1 modes 

from Eqs. (4.58) and (4.59):

=  5(1 — 7oo)  ̂-I- 2iV7oo(l — 7oo) +  +

3(1 -  7oo)"(3 +  8700) -  12iV7oo(l -  7oo)'(l -  37oc) 

- 2 A f % ( l  -  7 oo)^(l -  6 7 » ) +  41V % (1 -  7 oo) 4- 1̂ 7 ^

.(4.79)

For the modes with multiplicity iV — 1 (Aj±^) and multiplicity N {N  — 3)/2 (Â ^̂ )̂ we 

find from Eqs. (4.55, 4.56, and 4.57):

A lf =  5 ( l-7 o c )"  +  9iV7oo(l-7co) +  ^ lV ^ ^ -F

3(1 — 7oo)^(3 +  8700) — 61V7oo(1 — 7oo)^(l — 8 7 » )
(4.80)

-2 1 V % (1  -  7=o)"(4 -  97oc) +  31V % (1  -  7» )  +

Â "') =  4(1 -  7oc)(2 -  57co) +  21V7«,(8 -  I I 700) +  81V % . (4.81)

W ith r  given in Eq. (4.77), from Eq. (4.32) the normal-mode frequencies w are 

related to these A’s by
IT w

— . (4.82)wW =

Having obtained the normal-mode frequencies from Eqs. (4.79), (4.80), (4.81), and 
(4.82), the energy through first order is given by Eqs. (4.60) and (4.71).

4.5 iV-electron Quantum Dot

We follow the W-electron atom with an analogous many-electron system, the quan

tum  dot, or, as it is sometimes called, the artificial atom[85]. Quantum dots are 
nanostructures in which a controllable number of electrons are attracted to a cen

tral location. But instead of the Coulomb attraction of a  nucleus, the quantum dot
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electrons are attracted to the center of an external trapping potential. Another dif

ference between quantum dots and atoms is their size: quantum dots are typically 

much larger than atoms. Furthermore, the quantum dot electrons typically interact 
in some medium such as a  semiconductor; thus, we use the efiFective-mass approxi
mation where the electrons, each with mass m*, move in a medium with dielectric 

constant e. McKinney and Watson have used dimensional perturbation theory to 
solve for the two-electron quantum dot spectrum [86]. In their paper, they outhne 

how one could use the many-body techniques previously introduced by Loeser[80] 

and detailed in this chapter, to apply dimensional perturbation theory to a  quantum 

dot with an arbitrary number of electrons. We now provide the details sketched in 

Ref. [86] .

The electrons, each of effective mass m*, are confined by a spherical harmonic 
trap with trapping frequency Who:

Vcont{ri) = (4.83)

and we take the interelectron potential to be

Vintifij) = , , (4.84)
e y ' r ?  -I- r |  -  2 r < r j 7 ÿ

where e is the electric charge and e is the dielectric constant. Unlike the A/^-electron 

atom problem, where we used dimensionally scaled atomic units, for the quantum 

dot we use dimensionally scaled harmonic oscillator units. We can transfer all of 

the explicit dimension dependence to the differential part of the kinetic energy and 

regularize the large-dimension limit by substituting the following dimensionally-scaled 
variables into the similarity transformed Schrodinger equation (4.13):

n  =  ^  n  =  ( D - l ) ( D - 2 7 V - l ) / 4 ,  (4.85)

where the dimensionally scaled harmonic oscillator length and trap  frequency are, 
respectively.

That is, we obtain

— \ l  ^  (4.86)

(^(QD) ^  f/(QD) +  y (Q D ))0  =  (4.87)
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where

and where

dfi^ +  E E
Ijk  -  7ii7«fc

rf d ji jd jik

AT 1 1 N -1  N

v ^ ( P D ) ^ E k  +  ^ E  E
i=l ^ <=i j=i+i y/rf + f j -  2r<rj7 ÿ ’

pvho
a  =

m*e^

(4.88)

(4.89)

are the coupling constant and the elective bohr radius, respectively. From Eq. (4.88), 

it can be seen that if D  and, hence, 0  becomes infinitely large, the differential part 

of the kinetic energy will drop out of the Hamiltonian, just as for the AT-electron 
atom. The particles behave as though they become infinitely heavy and the infinite-D 

energy becomes the value of the effective potential.

(4.90)

at its minimum;

(4.91)

4.5.1 Quantum D ot infinite-D analysis

As before, we choose the totally symmetric configuration for which all fj and 7 ^ are 

equal to some foo and 700 . The effective potential is an extremum when its derivatives 

with respect to all fj and 7 ,̂ are zero a t this foo and 700 . Using Eq. (4.90) in Eqs. 
(4.20) and (4.21), we find:

1 -t- (A  -  2)7o

r L  (1 +  (iV -  1)7 0 0) (1 -  7oo)
1 ( 2 - F ( ^ - 2 ) 7 oo)7oo

+

+

N - 1
Too -

1
23/2Çf^V'l -  7c

‘ = 0 .

=  0, (4.92)

(4.93)

where we have used the infinite-D symmetric minimum Gramian results given in Eqs. 
(E l2) of Appendix E.
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One can eliminate Too from the above equations and then, just as for the N- 

electron atom, is the negative solution of smallest magnitude of a quartic equation:

8 4 % [2  + { N -  2)7oo|'* -  (1 -  7oo)(l + { N -  l)7oo)= =  0. (4.94)

The infinite-£> radius and energy per atom are then given by

f W  =  [1 +  (iV -  l)7oo]-'/" (4.95)
l { N - l ) { N - 2 ) ' y l  + 2 N ' y ^ - 2

N  2 ( l - 7 „ ) [ l  +  (y v - l ) 7 ^ ] (4.96)

where we use the superscript (QD) to distinguish similar quantities in the atomic 

and hard-sphere systems. Just as in the iV-electron atom analysis, we have used the 

fact that we are considering a  minimum in the effective potential, which allows us to 

eliminate the coupling constant Ç from the above expressions. Specifically, we have 
employed the conditions (4.20) and (4.21) at the minimum that

g[/(QD)
d^ij loo I (4.97)

which leads to

4.5.2 Quantum D ot Normal Modes

We can determine the elements of G  by comparing the differential term in Eq. (4.30) 

with in Eq. (4.88) expanded to first order in 1/D  as in Eq. (4.29). The non-zero 
elements of the G  matrix are:

Ga = 1

=  == 2 ( l - 7 c o ) ( l  +  7oo)[l +  ( iV - l)7 o o ]  (4.99)

=  =  1 » { l - 7 « ) | l  +  ( iV - lh o . ) ,
V “  )

where the matrix elements have been evaluated at the infinite-D symmetric minimum 
and we have used the notation in Eq. (4.34). (See the discussion after Eq. (4.74) for
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an explanation of the factor of 2 in Gj.) Likewise, the non-zero F  matrix elements 
are:

&  =  2 ( j - : ^ ( 8  +  2(5JV -13ho . +  (5JV2-21Ar +  2 4 ) 7 | , - 3 ( J V - l ) ( ; V - 2 h y  

7oo(Too — 3)(2 -I- (iV — 2)7oo)
Fb =

2(1 -  7oo)2(1 + "n  -  1)7oc)V2

^  "  ( l - 7 . ) : » ( l + ^ - l ) 7 . ) » / '

(-3 8  +  49N -  23AT2 +

”  (1 -  7„)3(1 +  (N -  1 )7 .P  +  2N ‘) 7 J )

F. =  +

where we have used Eqs. (E13) from Appendix E to evaluate the Gramian second- 

order derivatives. Again, since we are considering a minimum in the effective poten

tial, we employed Eq. (4.98) to replace the coupling constant Ç of Eq. (4.89) in favor 

of 7oo- Using the above equations for F  and G  along with Eqs. (4.42) we find:

O =  2( T : ^  ( 8 -H2(5jv- 13)700+  (5iV=-21AT-b 24)7^- 3 ( i V - l ) ( j V - 2 ) 7 y

. _  7oo(7oo — 3)(2 -I- (iV — 2)7oo)
2(1 — 7oo):»

c =  (4 +  3(N  -  2 ) W )

j  ,  700^(1 +  7o,)(I +  (iV- l)7oo)‘ =̂ 6).,^)
7(x)

^ =  2(1 -  7oo)2(1 +  0V -  1)7.)»/: 

y  =  2 7 . '
( 1 - 7 . ) ' ( 1  +  (A ^ -1 )7 .)» / '

'  =  (1 -  I  {N  - 1 ) 7 . )  i* + +  (« ' -  +

(-3 0  -H 20iV -f- 27iV' -  12N^ + 2 N * ) j J  +  (50 -  107JV +  89N^ -  22N^ + 2N *)j^^)  

“ =  2(1 -  7 . ) ' ( Z :  (N  -  1 )7 .)  +  +  +
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( -1 4  -  35N  +  45iV2 -  14JV= +  2iV'‘)7oo^)

‘ “  (1 -  7 » W  +  ( V - 1 ) 7 „ )  +  PJV -  5 )7 » “) .

Substituting these G F  matrix elements in Eqs. (4.32), (4.55), (4.56), and (4.58), 

we now write down the quantum dot normal-mode frequencies. The multiplicity- 

N {N  — 3)/2  mode is a  vector mode with frequency

4 ”“  ̂ =  ^ g - 2 h  + i. (4.102)

The multiplicity-(AT — 1) asymmetric stretch and bend frequencies take the form

±  \ / i ^  -  A i, (4.103)

and the two multiplicity-1 symmetric stretch and bend frequencies take the form

=  \ j ‘m ± y f r ^ -  Ao, (4.104)

where and Ai are given in Eq. (4.57), and % and Aq are given in Eq. (4.59).

Having obtained the frequencies from Eqs. (4.102), (4.103), and (4.104) and 

the Lewis structure energy in Eq. (4.96), the energy through first order is given 

by Eq. (4.60). Although this is only a  low order approximation, two-body studies 

suggest tha t when the coupling constant ^ < <  1 (i.e., the strongly interacting regime 

where the repulsive energy of the electrons dominates the confinement energy of the

trap) low order dimensional perturbation may be very accurate[86]. Dimensional

perturbation theory has a non-perturbative character in the sense tha t the leading- 

order term of DPT includes a contribution from the Coulomb potential.
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Chapter 5 

Many-body dimensional perturbation theory for 

Bose-Einstein condensates

The achievement of Bose-Einstein condensation (EEC) in magnetically trapped alkali- 

metal atoms has generated a considerable amount of experimental and theoretical ac

tivity in recent years. In typical EEC experiments, the average distance between the 

bose atoms is much larger than the range of the atomic interactions, which is char

acterized by the s-wave scattering length a. The mean-held Gross-Pitaevskii (GP) 

equation has been instrumental in describing the properties of these weakly interact

ing condensates (see Ref. [6] for an extended review). A fundamental assumption 

underlying the derivation of the GP equation is tha t the interatomic potential is 
well described by the shape-independent approximation, also called the pseudopo

tential approximation, which uses a zero-range potential, as opposed to an extended 
potential with a  well-defined shape:

v^ ( t) = ( 5 . 1 )

where a is the s-wave scattering length and m  is the mass of the identical bosons. 
Despite its success in the weakly interacting regime, the GP equation does not ade

quately treat correlation, and its assumed shape-independent approximation breaks 

down in the strongly interacting regime[87]. Moreover, recent experiments involving 

atoms with tunable interactions have obtained stable condensates in a  regime in which 
the predictions of the mean-field theory are measurably lacking[4], allowing EEC to 

act as a test bed for fundamental many-body physics beyond the mean-field approach. 

Recent theoretical studies, performed to  quantify the breakdown of the mean-field 
theory and the shape-independent approximation, have included analytical correc

tions to  the GP equation due to  quantum fluctuations about the mean-field[88, 89]
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and a related approach from density functional theory [90], while others are based on 

numerical calculations such as the diffusion Monte Carlo method(DMC)[91, 92] or 

the correlated basis function approach[93, 94]. In this chapter, we further explore 

beyond-mean-field effects using many-body dimensional perturbation theory (DPT), 

a novel many-body approach that includes correlation beyond mean-field at low or

ders. We use a shape-dependent interatomic potential, and the number of condensate 

atoms N  appears as a  parameter in our results, which are analytical, thus making our 

many-body calculations for any N  much less involved than even solving the mean- 
field GP equation. We also calculate excitation frequencies, which naturally arise out 

of our first-order, harmonic energy correction.

In our discussion of the inhomogeneous (trapped) atomic BEG, it proves useful 

to mention properties of the homogeneous (uniform) bose gas theory, since the two 

systems will share many features, at least qualitatively, when the density of the 

inhomogeneous gas is slowly varying. The low-density expansion of a  homogeneous 
bose gas of hard spheres of mass m is well known[14, 95, 96]. The expansion relies 

on an improved, though still shape-independent, potential over the pseudopotential 

of Eq. (5.1), called the regularized Fermi pseudopotential (derived in Appendix F):

1/ / \ 47r^^o Ô
Vreg-p8eudo(r) — ^  Qr^' (^'^)

The ground-state energy per particle, expanded in terms of the gas parameter Vno^, 

is

E  2nh^na
T r  -    XN  m

198   SM ir _  8^/81 _ .  . 1
, (5.3)1 4- In(no^) + O(na^)

lOyTr O

where n is the uniform number density. In this approximation, it is assumed that 
the gas is dilute, th a t is, the average interatomic spacing is much larger than the 

s-wave scattering length, stated mathematically as na^ 1. For larger densities, 

higher-order terms in the expansion beyond those in Eq. (5.3) are needed, and 
these terms depend on the detailed shape of the potential [97]. The leading-order 

term of (5.3) was first derived by Bogoliubov[14] and is equivalent to  the mean- 
field term in the Gross-Pitavskii equation(see below). The term in Eq. (5.3) of 

order (no^)^/^ was derived by Lee, Huang, and Yang[95], and the logarithmic term
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was first obtained by Wu[96]. Lieb and Yngvason[98] showed th a t for a repulsive, 

non-negative, finite range, spherical, two-body potential, the Bogoliuobov mean-field 
term, E / N  — 2-Kt^na/m, is the lower bound for the exact ground-state energy of 

a homogeneous bose gas. Giorgini et ai. [91] found tha t Eq. (5.3) continues to be a 

good approximation for higher densities provided the logarithmic term  is dropped. 

At intermediate densities (no® >  1.385 x 10“®) the logarithmic term causes the overall 
correction (second and third terms in brackets in Eq. (5.3)) to the Bogoliuobov mean- 
field energy to  become negative, thus, violating the lower bound. For a narrow range 

of no® the logarithmic term does actually improve the energy over the mean-field 
term.

The validity condition for a homogeneous gas to be described by the shape- 

independent approximation of Eq. (5.3) is given by the diluteness condition na® 1. 
This condition is often invoked for the inhomogeneous system as well except, since 

the density is not uniform, one uses some other characteristic density of the gas n, 

usually the peak density at the center of the trap n(0)[92, 94, 99]. However, it is 

possible for the condensate to be in a  strongly interacting regime, wherein the shape- 

independent approximation fails, and yet for the condensate to still be dilute (i.e., 

no® < 1). A more appropriate validity-condition rigorously obtained by Proukakis 

and Burnett[100] for inhomogeneous gases is Airh^na/m <K fiwho, where n  is some 
characteristic number density in the trap and is the harmonic trap  frequency. 
If one takes the characteristic density of the trapped gas to be the average density, 

which is on the order N/a^^, where Oho =  yfi/mwho is the trap length-scale, the valid

ity condition for an inhomogeneous gas becomes 4irNa/atu, <K 1. The fimit of strong 

interaction in the mean-field approach (iVo/oho 1) corresponds to  the TF limit of 

the GP equation[6]. T hat is, iVa/oho, which is the ratio of the mean-field interaction 

energy to the kinetic energy, satisfies iVa/oho 1 in the T F  limit. These two oppos
ing limits -  the small Aa/Oho limit in which the mean-field approach is valid on the 

one hand and the large-iVa/oho TF limit of the GP equation on the other -  suggest 
that while the TF approximation is an excellent approximation of the GP equation 

in the strongly interacting limit, the GP equation itself is not a good approximation 

of the BEG in this limit. Thus, the TF approximation and the GP equation are not 
physically relevant in the large-iV limit. Other approaches are needed to describe 

the strongly interacting (large-JV or large-a) systems. We use DPT to study both 

weakly and strongly interacting systems. In the latter case, for which 4irNa <K 1, we 
examine both large-jV and large-a systems.
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We investigate beyond-mean-field effects in inhomogeneous BEC’s by analyzing 

three scattering lengths for the ®^Rb atom: the natural scattering length, and multi

ples 10 and 100 times the natural value. As mentioned earlier, the shape-independent 

approximation is one of the underlying weaknesses of the GP equation. Ideally, one 

would use a  detailed interatomic potential in a  many-body calculation in the strongly 

interacting, shape-dependent regime, but using such a  potential poses a difficult chal
lenge. In our large-A calculations, we use a simple shape-dependent potential as 
the interatomic potential, namely, a hard sphere with radius equal to the s-wave 

scattering length. In the previous chapter, we derived the methods of many-body 

dimensional perturbation theory (DPT) for a general system of identical, interacting 

particles under spherically symmetric quantum confinement[101]. In this chapter, 

we use this many-body formalism to calculate the ground-state energy for spherical 

condensates in both the strongly and weakly interacting regimes.
We compare our many-body results with two nonlinear Schrodinger equations 

that describe inhomogeneous condensates: the mean-field Gross-Pitaevskii equation 

and a modified GP equation tha t contains beyond-mean-field quantum corrections. 

The GP energy for an isotropically trapped BEG is calculated from the following 
energy functional:

(5.4)

where is the harmonic frequency of the isotropic trap and ^  is the ground-state 
wavefunction, which is given by the solution of the GP equation:

( - ^  V ' ^  (5.5)

In Eq. (5.5), is interpreted as the chemical potential in the BogoUubov approach and 

as the ground-state orbital energy in the Hartree-Fock approach[ll]. The presence 

of the quantity {N  — 1) in the nonlinear term, rather than  N ,  follows from number- 

conserving Schrodinger quantum mechanics with a product of orbitals as the initial 
statefll]. The so-called modified GP (MGP) equation includes an analytical quantum 

correction to  the mean-field contribution to the GP equation[88, 89]. This correction 
takes the form of an additional nonlinear term to the G P energy functional, which
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arises from the ground-state depletion of the condensate due to  excitations. The 

MGP energy is calculated from the following energy functional:

Eksp[̂ \ = J  dr 4- X

(5.6)

where the wave function is given by the following nonhnear Schrodinger equation:

2m 2 m

The MGP energy was derived by Braaten and Nieto[88] by carrying out a self- 
consistent one-loop calculation through second order in the gradient expansion. In 

Eqs. (5.7) and (5.6) we have dropped the additional nonlocal term  in Eq. (2) of Ref. 

[88] that accounts for edge effects since it is found to be small[88, 92]. The stationary 
MGP solution of Eq. (5.7) minimizes the MPG energy functional (5.6). The nonlinear 

mean-field term in the GP energy functional (5.4) reproduces the leading-order term 

of the homogeneous energy density expansion (5.3) in the uniform limit. Likewise, the 

nonlinear terms in the MGP energy functional (5.6) reproduce the homogeneous-gas 
energy per particle of Eq. (5.3) with the logarithmic term neglected (see Appendix 

G). Equation (5.6) is the inhomogeneous generalization of the first two terms in Eq. 

(5.3).

We compare our results with the GP and MGP equations (5.5 and 5.7), and 

discuss the relevance of the logarithmic term in Eq. (5.3) to the range of validity of 

our DPT results. In addition to predicting ground-state properties of the condensate, 
we also calculate excitation properties, such as frequencies, which arise naturally from 

our first-order calculation. An advantage of many-body DPT over purely numerical 
methods is the analytical nature of its results which offer insight into the many-body 

physics of EEC.
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5.1 Formalism

5.1.1 The dimensionally scaled Schrodinger equation

The JV-body Schrodinger equation for a  system of identical, trapped, interacting 

particles in D-dimensional Cartesian coordinates is

■ N N-1  N

YL 3ij
i=l i=l j=i+l

(5.8)

hi = (5.9)

(5.10)

where 14onf is the trapping potential, Vint is the two-body interatomic potential, H  
is the D-dimensional Hamiltonian, and Xii, is the Cartesian component of the 

particle. We have also assumed equal masses m for the condensate atoms at T  =  OK, 
which are confined by an isotropic, harmonic trap with frequency Who:

14onf(rj) =  ]^rm}lji^.

We take the interatomic potential to be a hard sphere of radius a:

(5.11)

oo, Tij < a

0, Tij > a.

(5.12)

where a is the s-wave scattering length of the condensate atoms. In the many-electron 

systems of the previous chapter, the dimensionally continued Laplacian is dimension 

dependent while the potential energy maintains the same form as it has at D =  3. 

In the hard-sphere system, we dimensionally continue the hard-sphere potential so 

that it is differentiable away from D =  3, allowing us to perform the dimensional
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perturbation analysis (see the previous chapter as well as a  later discussion in this 
chapter). Thus, we take the interaction to  be

3 /D
1 — tanh

(

1-3/D
l  +  ( l - 3 / C ) E A . i r )

n=l / .

( r i j - a -  ^ ( o - a)^  x

(5.13)

where D  is the Cartesian dimensionality of space. This interaction becomes a hard- 
sphere of radius o in the physical, D  = 3, limit. The other s constants {Vo, a, and 
{cni Vra : 0 <  n <  s — 3}) are parameters tha t allow us to fine-tune the large-O 

shape of the potential and optimize our results through Langmuir (first) order (see 

Section 5.3). The simplest possibility could have as few as two parameters: ¥„ and 
Co, with a  = a and the remaining c„ =  0; however, we can have any number of 
parameters for the most general and flexible potential.

As in the previous chapter, we restrict our attention to  spherically symmetric 
states (i.e., S-wave states), and we transform the Schrodinger equation to a form 

more suitable for dimensional perturbation theory analysis. The transformation, 
discussed in more detail in the previous chapter, takes place in three steps. The 
first step is to transform the variables of all N  particles, each with D  Cartesian 

components Xi =  (zji,a^j2) • • • iXixj) {1 < i < N ), to  internal coordinates, defined as 
the D-dimensional scalar radii n  of the N  particles and the angle cosines 7 ÿ of the 
N {N  — l) /2  angles between the radial vectors:

D  /  D  \

(1 <  i <  N),  and 7 y =  cos{0ij) = I ^  A<rj { l < i < j <  N).
u=l \l<=l /

(5.14)
The second step is to carry out a similarity transformation of the Schrodinger 

equation resulting from step 1. The transforming function.

X =  ( n r 2 . . . r w ) - ^ r - ^ , (5.15)

results in a  Schrodinger equation in terms of $  (=  x "^^ ), in which the first derivative 
terms of the Laplacian are removed.

The third step is to regularize the large-D limit of the similarity transformed 

hamiltonian (x~*^x)- We use dimensionally scaled harmonic oscillator units similar 
to  the ^-electron quantum dot system with the difference tha t we use D^ in the
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dimensional scaling instead of Q of Eq. (4.85). Ideally, one would use Î2 in order to 

remove all of the dimension dependence from the centrifugal-like term in the kinetic 

energy, but in order to  simplify the scaling of our dimensionally continued hard-sphere 

potential, we allow some dimension dependence in the centrifugal-like term  (see U in 

(5.18) below). We regularize the large-D limit of the Schrodinger equation by using 

the following dimensionally scaled variables (bars):

i =  Ë = £ : E ,  = -a =Awh, «Who Oho '
(5.16)

^  ~  ^  ~  v̂ D*Oho ’ ~  VZD^ÔhoCo, Cm — ('v/^D^aho)^"Cn,

where

« h o  =
mwho

and Who =  D̂ Who (5.17)

are the dimensionally scaled harmonic oscillator length and dimensionally scaled trap 

frequency, respectively. The dimensionally scaled harmonic oscillator units of energy, 

length and time are hüho, üho, and 1/who, respectively. All barred constants (ô, ôho, 

Who, K , Ô, Co and ô,) are held fixed as D  varies. For example, as D  varies ô is held 

fixed a t a  value by requiring tha t it give the physical unsealed scattering length at 

D = 3. Finally, we arrive a t

H ^  = { T + U  + V )^  = (5.18)

where 

T  = 

U =  

V =

i= I

i = l
N

8f? r
JV 1 t >  JV

(' -  -  «)) ( i+(1 -  ).

(5.19)

(5.20)

(5.21)
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where the perturbation parameter is

5 = 1/D  (5.22)

and fij = yjrf + f j  — 2fifj7ÿ is the interatomic separation. The quantity T  is the 

derivative portion of the kinetic energy T  = T  + U. As D  becomes infinitely large, 

and S —* 0, the entire differential part of the kinetic energy as well as a  portion of 

the interatomic and centrifugal-like potentials will drop out of the Hamiltonian. In 
the infinite-dimension limit, the particles behave as though they become infinitely 

heavy and rest a t the bottom of the infinite-D effective potential, a  potential tha t 
includes the trap potential and contributions from the centrifugal-like and hard- 

sphere potentials. The infinite-D energy becomes the minimum value of the effective 

potential (see Appendix A of Ref. [55]).

As noted above, for a given set of trap  parameters at D =  3, the energy of 
the D =  3 Bose-Einstein condensate only depends on the scattering length of the 

interatomic potential, and not the detailed shape of the potential. This is due to the 
long wavelength nature of BEC’s: for small to  moderate scattering lengths, the atomic 

wavelengths are not short enough to “resolve” the short-range detail of the potential. 

However, for large D the atomic wavelengths become very short, since according to 

Eqs. (5.18), (5.19) and (5.22) the scaled, similarity-transformed Hamiltonian displays 
an effective mass term equal to  D^. Thus, unlike at D =  3, the energy of the large-D 
system is sensitive to the details of the potential.

One may think, prima facie, tha t this is an indication that the large-dimension 
limit is a poor starting point for a series expansion in terms of a perturbation pa
rameter, in this case <5, since it appears not to  reflect the long wavelength nature of 

the condensate and displays a sensitivity to the details of the interatomic potential. 
These concerns are particularly acute since a  large-order calculation for a  large-A 

system seems infeasible. These concerns, though, are resolved upon closer inspection 

of the issues involved. Suppose one had actually found a  perturbation scheme in some 
parameter which at low orders displays an insensitivity to the precise shape of the 
interatomic potential, as long as the perturbation parameter and scattering length 

are unchanged. Now what is most important in a low-order perturbation calculation 

is th a t the energy be as close as possible to  the actual D =  3 result. One could not, 
however, reasonably ask for both the energy to  be insensitive to the precise shape of 

the interatomic potential for fixed scattering length and, at the same time, for the
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energy a t low orders of a perturbation theory to  differ only a small amount from the 

actual D = 3 condensate energy. The energy at low orders would almost certainly 

be different from the actual D = 3 condensate.
In fact, instead of being a  liability, this large-D sensitivity to the details of the 

interatomic potential is actually to our advantage, enabling us to optimize our dimen
sional continuation of the hard-sphere potential so tha t the low-order DPT energy is 

as close as possible to the actual D = 3 result. We discuss this in detail in Section 
5.4.

It is also seen tha t the issue of long wavelengths at (5 =  1/3 and short wavelengths 

for extremely small (5 is a spurious concern. At D — 3 the zeroth-order wavefunction 

does have a large-wavelength character, but further discussion of this issue is put off 

until Section 5.1.3.

5.1.2 Leading-order energy term

The infinite-D {5 —* 0) effective potential in dimensionally scaled harmonic oscillator 

units is

(5.23)
As one can see from the double-sum term in Vett, the interaction potential becomes 

a soft sphere of radius approximately â  and height 2%. The slope of the soft wall is 

determined by Cg, while, as discussed earlier, the remaining s — 3 parameters act to 
further refine the shape of the interaction potential[1 02 ].

The parameters are chosen with the goal of optimizing the energy perturbation 

series through first order in Ô. In Sec. 5.4 we optimize the potential by fitting the 
energies through first order to DMC energies[92] at low atom number, and since in our 

DPT analysis the number of atoms A  is a  parameter, we can readily extrapolate to 

larger N  without large amounts of calculation. Further discussion on the optimization 

procedure and the range of validity of the extrapolation to larger N  will follow in 

Sections 5.3 and 5.4, respectively.
Again choosing the totally symmetric configuration for which all fj and 7 *̂ are 

equal to  some foo and 7 ^ :

n  =  foo (1 <  Î <  N )  and 7 ^ =  7 »  (1 <  i < j  <  N ), (5.24)
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and using Eqs. (E12) from Appendix E in Eqs. (4.20) and (4.21), we find tha t the 

large-D radii and energy per atom are:

f o o  =  [ 2 ( 1 - h  ( i V  -  1 ) 7 « , ) ] - ' / 2

Ëqo _  ____ 1 + {N — 2)7oo 1
N ( l - 7 o c ) ( l  +  ( ^ - l ) 7 o c ) 8 f 2 ,  +  2 ^ “ ^  2

N - 1
(5.25)

% [ l - ta n h ( 0 ) ]  (5.26)

where for simplicity of presentation we have defined the following:

6  =  0 ,  ( f o o / l  -  T o o - à )  ( l  +  E - T o c ) " ^  • (5.27)

The large-D direction cosine, 'Yoo, of the hyperangle between the infinite-dimensional 
radii is given by the negative solution of smallest magnitude of

VJ,C(,Tsech^0 -I- 7oo 2 ( 2 - K A - 2 ) 7 oo)  ̂
( l - 7 c ) = ( l  + (Ar-l)7o.)

=  0, (5.28)

where

T  = 1 - f  ^  ((2n 4- l ) 0 , f t ( l  -  T o o )"  -  2 n a c r , f ^ - ^ ( l  -  T o o )" " ^ ^ " )
n=l

(5.29)

5.1.3 Normal m odes and first quantum energy correction

To obtain the 1 /D  quantum correction to the energy for large but finite values of 

D, we expand about the minimum of the D  —> oo effective potential (5.23) and use 
the FG matrix method [78] to  obtain the normal-mode frequencies of the condensate. 

We first define a  configuration vector consisting of all P  =  N (N  +  l) /2  internal 
coordinates:

=  (h ,  fg ,. . . ,  fw , Ti2, Ti3, . . , TN-i,Af), (5.30)

where T  is the transpose operator. We make the following substitutions for all radii 

and angle cosines:

n  =  f o o - h

Tij =  Too +  <*'/Sij,

(5.31)

(5.32)
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where 6 =  1 /D  is the expansion parameter, and we define a displacement vector 

consisting of the internal displacement coordinates (primed in Eqs. (5.31) and (5.32)):

2/^ =  ( î> ̂ 2» • • • > 7i2» 7i3) • • • » 7/v-i,jv)) (5.33)

The first-order term in the hamiltonian (in Ô — 1/D ) becomes

1 P P 1 P P
^  A/1. %  +  9 2/m WttAoO ÿ't' +  (5.34)
^=1 U—1 /1=1 !/=l

where the elements of G  are found by comparing with T  of Eq. (5.19), and the 

elements of F  are found by evaluating the Hessian matrix of the effective potential 

at the infinite-D symmetric minimum[101]:

[D̂ i/]oo —
e lf (5.35)

The quantity Vo is a constant first-order energy shift (see Eq. (5.59) below), and 

the subscripts fi and u refer to the components of the displacement vector j/', whose 

elements are the internal displacement coordinates defined in Eqs. (5.31), (5.32), and

(5.33).
To make the connection with internal coordinates more explicit we adopt the 

following subscripts to  identify the elements of F , G, and the product G F, which 

we will need shortly: { i,j)  refers to elements associated with (n ,r j) ;  ( i , jk )  refers to 

(T u l jk ) \  and {ij,k l)  refers to (7ÿ,7w), etc. See Chapter 4 for more details on the 

indical structure of the F G  matrices.
The first-order Hamiltonian, H\, of equation (5.34) gives the first-order energy

correction, Do, and zeroth-order similarity transformed wave function, Oq, through
the Schrodinger equation

H i^o  =  Dq$o. (5.36)

The Wilson FG method shows tha t under a  linear transformation

ÿ  =  T ÿ ', (5.37)

the large-D similarity transformed Schrodinger equation of eq. (5.36) takes on the 

separable form

— -l- Aÿ  -t- vq $0 =  Do$o » (5.38)
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where A is a positive-definite diagonal matrix (see Appendix A of Ref. [101] with the 
identification T  =  U A ). Thus the large-dimension similarity-transformed Schrodinger 

equation is separable into one-dimensional harmonic oscillator wave functions in each 

of the P  normal modes where 1 <  p <  P. If Wp is the corresponding normal-mode 
frequency, then the wave function is a product of P =  N { N + l) /2  harmonic oscillator 

wave functions ^

^o(ÿ') =  n  ^  i ^ p \ )  > (5.39)
p=i

where is a one-dimensional harmonic oscillator wave function of fire-
quency Wp and Up is the oscillator quantum number, 0 <  rip <  oo, which counts the 

number of quanta in each normal mode.

Having obtained equation (5.39) we are now in a  position to address the above 
noted concern (in Sec. 5.1.1) tha t low-order DPT might not contain the right physics 

for the macroscopic, long-wave-length D = Z condensate since DPT is a  perturbation 
expansion based on solutions to the semi-classical short wavelength problem in a 

large number of spatial dimensions. In the notation of equation (5.30) and (5.33), 
equations (5.31) and (5.32) can be written as

;T _ ^ T + g i/2 g /r  (5.40)Î/,00

where

fi = foo V 1 <  i <  A  and 1 < j  < k < N. (5.41) 
7jfc =  7oo

Inserting equation (5.40) into equation (5.37) one obtains

f  = q l  + 5 ^ /^ f ',  (5.42)

where

9oo — Tÿoo. (5.43)

Then using equation (5.42) in equation (5.39) one obtains

Pn
p=i

^o(j/) =  n *np ( { y } (9p -  [9oo]p)  ̂ • (5.44)

Equation (5.44) represents oscillations about the Lewis structure configuration Çoo 

with frequencies {ûp/ô}. When Ô is small (large dimensions) the frequencies {ûip/5}
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are very large and so according to equation (5.44) the zeroth-order wave function is 

strongly localized about q = qoo (i.e., it  features short wavelengths). However as Ô 

takes on increasing positive values, {Cjp/6} becomes less and less large, and so the 

zeroth-order wave function becomes increasingly extensive. That is, the wavelengths 

of the zeroth-order wave function a t J  =  1/3 have become macroscopic. Thus, the 

zeroth-order DPT wave function for the Bose-Einstein condensate a t D =  3 appro

priately has a macroscopic, long-wave-length character.

The Wilson FG method shows tha t the normal-mode coordinates are the solutions 

of the eigenvalue equation
G F g ;  =  A p ^ ,  ( 5 . 4 5 )

where the eigenvalues Xp are the diagonal entries of the diagonal force-constant matrix 

A in equation (5.38). Thus the normal-mode frequencies are related to the Xp in 

equation (5.45) by
Xp = ü>l. (5.46)

Equation (5.45) leads to the secular equation

det(ApI -  G F) =  0 (5.47)

for the Ap.
Equation (5.47) provides a general formula for calculating the normal-mode fre

quencies in terms of the elements of the product G F . Recall from the previous chapter 

that we derived analytical expressions for the normal-mode frequencies in terms of
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the highly symmetric G F  matrix elements. To simplify the analytical expressions for 

the normal-mode frequencies, we define the scalar quantities a through t:

— GaFa

= GaFb (*■ < j)

= GgFe + { N -  2)GhFe + { N -  2)GgFf (* < j)

^GgFf + 2GkF̂  + 2{N -  3)GhFj j  < k ^ i )

-  GaFe (*■ < j)

-  GaFf { i ^ j < k ^  i)

= GgFg -h 2(N -  2)GhFf {i < j)

= GgFn + GnFe + ( N -  2)GhFn + { N -  3)G&fI { i < j <  k)

= GgF, + AGhFh + 2{N -  A)GhF, {i < j , k <  I),

(5.48)
where the expressions in Eq. (5.48) for the G F  matrix elements of the Schrodinger 

equation (5.18) in terms of the F  and G  matrix elements were derived in Eq. (4.42). 
The G  and F  matrices are defined by the first-order 1/D  Hamiltonian of Eq. (5.34). 

We can determine the elements of G  by comparing the differential term in Eq. (5.34) 

with T  of Eq. (5.19) expanded to first order in 1/D . Using the notation in Eq.

(4.34), the non-zero elements of the G  matrix are found to be:

Ga = 1

G, =  2 i ^  =  4 ( l - T j ( l + 7 » ) I l  +  ( iV - l ) 7 „ l  (5.49)

= =  27„(1-7») |1  +  (W-1)7««I,
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where the matrix elements have been evaluated at the infinite-JD symmetric minimum. 

Likewise, using Eq. (5.35), the non-zero F  matrix elements are:

1 +7oo

Co(l -  7oo)T^ tanhG  -f-

+  E  -  7oo)” ^̂ [̂(2n -  l)7oo -  (2n -t-1)] 4-
2rooVi -  7oo 

2nâr‘̂ -^{l -  7oo)""^[(m -  l)7oo -

Ff, =  -^^sech^O Co(l — 7oo)Y^ tanh 0  -I- —— ,  -f-
2^00 7oo

E  -  7 » ) " - ‘" 1 ( 2 " + i h »  -  ( 2 «  -  1)1 +

-  7 o„)”"‘[n7 „.. -  (n -  1))A%,

-CofooT^ tanh 0  -t-p  _   1 +  (IV — 2)7oo_____
2 f l , ( l - 7 . o ) ' ( l  +  ( ^ - l ) 7 « , ) '  2

+ ^ se c h " 0

F, =

+ 2y/l^-'Too %  I + 1)%(1 - 7oc)”-'/" -  (2 n )% -'( l  -  7oc)"-')cn

(5.50)7<x
2f| .( l -7oc)2(l4-(Af- l)7«,)2  

=  2f% il -  7«,)=(1 -h (IV -  1)7oc)3 +  (13 -  11^  +  3 ^ ) 7 0 . ' +

(IV -  2)(4 -  SiV -h N ^ h J )  + ^ a e c h '0
1 ~  7oo

T ^tanhG  4- 0̂0
2 (1 -7 » )= /:

4-

- E ( ^
n= l \

-  I ) ( 2 n 4 -  l ) ^ 2 n -i /  
2 '(1 -  7oo)”- " / ' +

4-2n(n -  l ) a f ^ ( l  -  7oo)"~^^c„l

=  4% (1 - 7 _ ) V : -  1 ) 7 .) ' 1=* +  '
7^(2 4 -(1V -2)7oo)F, =

f ^ ( l - 7 » ) = ( l  +  (A l- l )7 » )= '

where we have used Eqs. (E13) from Appendix E to  evaluate the Gramian second 

derivatives. For transparency we leave the fœ terms in Eq. (5.50) instead of using 

the explicit joo dependent form of foo-
Although there axe N {N + 1)/2  different normal modes, there are only five distinct 

normal-mode frequencies[101, 80]! The five distinct eigenfrequencies of G F  belong to
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three different irreducible representations of the symmetric group 5jv[80, 101]. One 

distinct frequency, given by
wg =  \Jg — 2/i +  t, (5.51)

has a  multiplicity of N {N  — 3)/2 (i.e., there are N {N  — 3)/2 normal modes with the 

same frequency wg). We designate the set of normal-modes with this frequency with 
the label 2 [80, 101]. Another two frequencies, with multiplicities {N  — 1), are given

‘■y I—  ------------
W1± =  yT?i ±  A i, (5.52)

where

Vi =  - [ a  — b + g + {N -  4)/i — {N — 3)t] (5.53)

A j =  {N  — 2)(c — d)(e — / )  4- (o — 6) [g 4- {N — 4)h — {N  — 3 )t]. (5.54)

The normal modes with the frequencies tDi± are a mixture of asynnnetric stretching 

and bending motions, and we designate them by the labels 1“ and l ’*'[80, 101]. The 
last two frequencies have multiplicity of unity (i.e., singlet) and are given by

wo± =  \Jt]o±  yfrio'̂  -  Ao, (5.55)

where

%

Ao

a - { N  - l ) h  + g + 2 { N - 2 ) h -
{N -  2){N  -  3)

(a -  (A  -  1)6) 

N - 2

g + 2 { N - 2 ) h -
{N -  2){N  -  3)

4-

(2 c 4 - ( iV -2 )d ) (2 e + (J V -2 ) /) .

(5.56)

(5.57)

The normal modes with the frequencies wo+ and ô>o- are a mixture of symmetric 

stretching and bending motions, and correspond to the center of mass and breathing 

mode of the condensate, respectively. We designate them by 0“ and 0'"'[80, 101].

Because of the factors of 5 in the centrifugal-like and hard-sphere potentials {U 
and V  of Eq. (5.18)), there is also a constant shift, Vo, in the first-order energy:

= È ^  + 6Èo + 0{6^)

Kiff(foo,7oo)4-5 4- g )d(T,n,W(, 4- Vc
a

4- 0(S%  (5.58)
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where the ra<̂ (1 <  tr <  5) axe the vibrational quantum numbers of the normal modes 

of the same frequency (jj„, and d„̂ n„ is the occupancy of the manifold of normal 
modes with vibrational quantum number and normal mode frequency Cj .̂ The 
contribution from Vo acts as an order-J shift in the energy, which is given by:

=  -  . T  + 3 '  '  +  3 % ^ ^ 1 1 -  .a n h e  +0
+Co o -  â )  C n f^ il -  Too) j  -  (r-oo\/l-7oo -  Ô) sech^G^, (5.59)

where 0  is give by Eq. (5.27).
Using the definitions of the dimensionally scaled harmonic oscillator units in Eqs. 

(5.16) and (5.17), we can undo the scalings to  write the through-first-order DPT 

energy of Eq. (5.58) in regular oscillator units (%M.o) we arrive at

£;(»") =  DK„(foo,7oc) + 4- 0{6). (5.60)

Since the normal-mode frequencies G)„ do not depend on D, Eq. (5.60) shows that 

their values are equal to the physical {D — 3) excitation frequencies of the con

densate. I t is also noteworthy that in the noninteracting limit the DPT energy 
series truncates a t first order and gives the exact isotropic D-dimensional iV-paxticle 
harmonic oscillator energy. At its minimum the effective potential in regular oscil

lator units (Who) in the noninteracting limit becomes Eoo = DËqo =  DV^tt{foo =  
1 / \ / 2 , 7 o o  =  0) =  D N /2 , the ideal-gas energy. In the infinite-D limit, Voo =  ^ D /2  
is the infinite-D radius in regular oscillator units, also the expectation value < >

for the ground-state D-dimensional spherical harmonic oscillator. In addition, the 

excitation frequencies become the Af-atom harmonic oscillator frequencies: = 2

for all cr. As the interatomic interaction increases, the strength of the interaction 
is reflected in the deviation from the above noninteracting values of the infinite-D 

radius and direction cosine as well as the excitation frequencies of the leading-order 
energy correction.

5.2 M otivation for low-order method

Recall tha t the dimensionally-continued interatomic potential becomes a  hard sphere 
at D =  3 with radius equal to  the scattering length, but takes on the shape of
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a soft-sphere for larger D. The reason for choosing this dimensional continuation 

of the hard sphere is to facilitate the DPT analysis, which requires a  differentiable 
effective potential. The exact shape of the soft sphere for dimensions departing 
from D =  3 is determined by s built-in parameters. In this study we consider 

three scattering lengths: the ®^Rb scattering length am, =  0.00433oho and two larger 

multiples, o =  10 x om, and o =  100 x am,. For these three scattering lengths, 
we optimize the s interatomic potential parameters by fitting our analytical energy 
through first order (Eq. (5.58)) a t the physical (D =  3) dimension to  accurate, 

low-AT, hard-sphere DMC energies[92].

The fitted interatomic parameters for each scattering length are given in the Sec. 
5.4 where we extrapolate our fitted energies to large values of N . Note tha t our 

extrapolating function is not an arbitrary fitting function to  the data. Rather, it is 

based on the dynamical approximation to the real system that is intrinsic to  DPT, 

which includes contributions from all components of the Hamiltonian, including the 
kinetic, trap  and interaction terms, as well as correlation effects beyond the mean- 

field approximation. Furthermore, this low-order approximation is well defined and 
in principle can be systematically refined by using higher-order DPT[55, 103].

5.3 Optimization of the interatomic parameters

A chi-square statistic is used to optimize the parameters of the dimensionally-continued 

interatomic potential. We fit to  six accurate low-A DMC energies[92] for each scat
tering length (see column 1 of Tables 5.1, 5.2, and 5.3) by minimizing the following 

quantity[104] with respect to the set of parameters {Vo, a} |J {cnl Vn : 0 <  n < 
s — 3}:

\El^^-E^^”KNi;Vo,a,{cr,})y
(5.61)

where E^^^^ is the DMC energy within statistical uncertainty o-j* for a condensate 
with atom number Ni. That is, the DMC energy has an error of ±ffj. The

quantity {c„}) is the DPT energy approximation through first-order

given by Eq. (5.58) with interatomic potential parameters {Vo, a}  U {cn! Vn : 0 <

^Each DMC-calculated energy for a given number of atoms Ni represents a collection of in
dependent random walks. The uncertainty CTj in the energy arises from overall statistical
fluctuations due to the finite number of random walks.
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n  <  s — 3}. The Q-probability is used to constrain the number of parameters s in 

the fitting function Vo, a, {c„}), where

is the probability tha t x l  should exceed a particular value by chance, and in our 

case^ the quantity i/ =  6 — s is the number of degrees of freedom in the fitting 

function[105]. We want to use the minimum number of parameters which extract all 
of the relevant physical information from the DMC energies, while not overfitting the 
DMC energies. Thus, the number of parameters s is constrained to be the minimum 

number of parameters whose Xa gives a Q-probability greater than 0.5. The value 
of Q =  0.5 is chosen as the cutoff in order to avoid overfitting the DMC energies. 
Overfitting is a serious concern as we are extrapolating our energies to large N , and 
we wish to capture the essential information without fitting to  statistical fiuctuations 

in the DMC energies. We found s =  4 to be the minimum number of parameters in 

the fitting function that gives a  Q-probability of a t least 0.5 from the weighted 

least-squares-fit to the six low-iV {N < 100) DMC energies for all three scattering 

lengths considered in this study. In fact, there is a  dramatic increase in Q when 
going from three to four parameters, suggesting tha t four parameters is the optimum 
number.

5.4 Ground-state energy

In this section we report calculations for ®^Rb atoms in a  spherical condensate with 

trap frequency u>to = 27t x  77.87 Hz. We consider three scattering lengths: one equal 

to the natural ®^Rb value of approximately a — 100 a.u. or 0.00433aho in oscillator 

units (oho =  yJh/muJi,o)', one roughly 10 times the natural *^Rb value, at a =  1000 a.u. 
or 0.0433aho in oscillator units; and one roughly 100 times the natural ®^Rb value, at 

a =  10000 a.u. or 0.433oho in oscillator units. The scattering length a =  0.433aho is 
especially relevant to experiments observing beyond-mean-field effects, because stable 

condensates with a  scattering length of 10 000 a.u. have been achieved in nonspherical 
traps[4].

^Equation (5.61) assumes one can achieve an exact fit {Q =  1.0) with s =  6 parameters, which is 
not quite possible with our fitting function. However, the fit with s =  6 parameters is close enough 
to effectively give Q =  1.0
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5.4.1 Small scattering length

For a — 0.00433oho, we determine the s =  4 interatomic potential parameters to be 
Vo =  0.0257, a  =  —0.464, Co =  1.402, and c\ = 0.109, with =  .20 and Q =  0.90. 

Table 5.1 shows a  low-iV comparison of energies for a =  0.00433oho Colunm 1 

contains accurate DMC energies for a  hard-sphere potential calculated previously 
in Ref. [92], where the statistical uncertainty is given in parenthesis. Colunm 3 

contains our many-body DPT energies, while colunms 4 and 5 contain GF and MOP 
energies, which are calculated by using the wave functions from Eqs. (5.5) and (5.7), 
respectively, in the corresponding energy functionals[6j. In Fig. 5.1, we plot the 

energy shift per atom due to the interatomic interactions (i.e., we subtract the ideal- 

gas energy 3iV/2, in units of hj^o) for the DPT, OP, and MOP for larger N . There 
is very little difference between any of these interaction energies because, for such 
a small scattering length and moderate atom number, the condensate is very dilute 

and weakly interacting. Consistent with low-AT DMC calculations by Blume and 
Greene [92], the many-body DPT energy is slightly above the MGP and GP energies 

for low and moderate iV, with the MGP energy being slightly above the GP energy. 

Going to higher N  (beyond that shown in the plot), near 10  ̂ atoms the DPT energy 
falls below the GP energy.

Table 5.1: Ground-state energies in units for small scattering length and low 

N. Column 2 contains DMC energies from Ref. [92] (statistical uncertainty in paren

thesis). Column 3 contains our many-body DPT energies. Columns 4 and 5 contain 

the GP (Eq. 5.5) and MGP energies (Eq. 5.7), respectively. We use ®^Rb mass and 

let a =  100 a.u. and ŵ o =  27t x 77.87 Hz, which corresponds to a =  0.00433oho, in 
oscillator units.

N DMC DPT GP MGP
3 4.51036(2) 4.51035 4.51032 4.51032
5 7.53443(4) 7.53441 7.53432 7.53434
10 15.1537(2) 15.1537 15.1534 15.1535
20 30.640(1) 30.6396 30.638 30.639

50 78.96(1) 78.964 78.953 78.962
100 165.07(5) 165.089 165.06 165.11
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Figure 5.1: Interatomic energy per atom versus number of condensate atoms for small 

scattering length. We use *'^Rb mass and let a =  100 a.u. and w^o =  2?r x 77.87 Hz, 

which corresponds to o =  0.00433oho, in oscillator units. Circles refer to the MGP 
energy from the solution of Eq. (5.7), plus signs, slightly below the circles, refer 
to the G P energy from the solution of Eq. (5.5), and the dashed line refers to  the 

many-body D PT energy. Interaction energies are obtained by subtracting the ideal 

gas energy 37V/2 from the total energy. Energies are given in oscillator units (îwJho)-

5.4.2 Large and intermediate scattering length

The s =  4 interatomic potential parameters for the large scattering length o =  

0.433oho are found to  be Vo =  4.617 x  10^, a  =  —4.211, Cg =  1.555, and ci =  
5.00 X 10“*, with X* =  0.23 and Q =  0.89. In Table 5.2 and Fig. 5.2 for a =  0.433Oho, 
it can again be seen tha t the MGP interaction energy lies above GP, but the DPT 

interaction energy is now sandwiched between MGP and GP. These results are also 
consistent with accurate low-iV DMC calculations in Ref. [92], which show MGP 

overestimating the ground-state energy for a =  0.433oho for small N . However, as 
one increases the number of atoms beyond th a t displayed in Fig 5.2, one finds that
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the low-order many-body DPT interaction energy eventually falls below GP above 

10  ̂ atoms.

Table 5.2: Ground-state energies in units for large scattering length and low N. 

Column 2 contains DMC energies from Ref. [92] (statistical uncertainty in paren

thesis). Column 3 contains our many-body DPT energies. Columns 4 and 5 contain 

the GP (Eq. 5.5) and MGP energies (Eq. 5.7), respectively. We use ®^Rb mass and 

let a =  1 0 0 0 0  a.u. and Who =  27t x 77.87 Hz, which corresponds to a =  0 .4 3 3 a h o ,  in 
oscillator units.

N DMC DPT GP MGP

2 3.3831(7) 3.38319 3.3040 3.3950

3 5.553(3) 5.5519 5.329 5.611
5 10.577(2) 10.5771 9.901 10.772

10 26.22(8) 26.2151 23.61 26.84

20 66.9(4) 67.01538 57.9 68.5
50 239.2(3) 239.18 196.12 243.45
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Figure 5 . 2 :  Interatomic energy per atom versus number of condensate atoms for large 

scattering length. We use ®^Rb mass and let a  =  10 000 a.u. and Who =  27t x 77.87 

Hz, which corresponds to a =  0.433oho, in oscillator units. Circles refer to the MGP 
energy from the solution of Eq. (5.7), plus signs refer to the GP energy from the 
solution of Eq. ( 5 . 5 ) ,  and the dashed line refers to the many-body D PT energy. 

Interaction energies are obtained by subtracting the ideal gas energy ZN/2  from the 
total energy. Energies are given in oscillator units (Awho).

The intermediate-a (a =  0 .0 4 3 3 o h o )  interaction parameters are found to be %, =  

0 . 6 4 5 ,  a  =  — 0 . 8 3 7 ,  Co =  1 .3 8 7 5 ,  and c\ =  0 . 0 8 8 9 ,  where =  0 . 0 0 4 7  and Q  =  0 .9 9 8 .  

Figure 5 . 3  shows the DPT interatomic energy falling below GP at a few hundred 

atoms, as opposed to approximately 10“* atoms for large and small a. The interatomic 

interaction parameters were determined from accurate DMC energies (see Table 5 . 3 )  

near a  shape-independent density regime and then extrapolated to a  shape-dependent 

regime. As we discuss below in more depth, this lack of shape-dependent information 
in the DPT energies for intermediate-a helps to  explain the smaller range of validity 

versus the small- and large-o extrapolations.
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Table 5 . 3 :  Ground-state energies in units for intermediate scattering length 

and low N .  Colunm 2  contains DMC energies from Ref. [9 2 ]  (statistical uncertainty 

in parenthesis). Column 3 contains our many-body D PT energies. Columns 4 and 

5 contain the C P  (Eq. 5.5) and MCP energies (Eq. 5.7), respectively. We use 

®^Rb mass and let a  =  1000 a.u. and Who =  27t x 77.87 Hz, which corresponds to 

a =  0 .0 4 3 3 o h o ,  in oscillator units.

N DMC DPT CP MCP

3 4.6033(5) 4.6032 4.6007 4.6024

5 7.8356(15) 7.8356 7.8265 7.8340
10 16.426(6) 16.426 16.383 16.426
20 35.475(15) 35.474 35.297 35.497
50 103.99(3) 103.991 102.96 104.21

100 245.4(1) 245.402 241.85 246.24
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Figure 5.3: Interatomic energy per atom versus number of condensate atoms for 

intermediate scattering length. We use ®^Rb mass and let a  =  1000 a.u. and u>to = 

2ir X 77.87 Hz, which corresponds to  o =  0.0433oho, in oscillator units. Circles refer 
to the MGP energy from the solution of Eq. (5.7), plus signs refer to the GP energy 

from the solution of Eq. (5.5), and the dashed line refers to the many-body DPT 

energy. Interaction energies are obtained by subtracting the ideal gas energy 3N/2  
from the total energy. Energies are given in oscillator units (Aw^o).

5.4.3 Discussion

For large scattering lengths such as o =  0.433oho, the condensate has entered a den
sity regime where, even for small atom number, the gas parameter no® becomes large 
enough that shape-dependent corrections can no longer be ignored. For a homoge

neous condensate in this shape-dependent regime, the truncated series of Eq. (5.3) 

becomes invalid and the logarithmic term causes the mean-held lower-bound to be 
violated. To connect with the low-density expansion of (5.3), we use its validity con

dition (no® 1) for the inhomogeneous gases considered in this study. We use the 

TF peak density as the characteristic density in order to write the gas parameter
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in terms of the physical parameters of the system. The gas parameter can then be 

approximated by

(5,63)
OTT

The TF peak density is often a surprisingly good estimate of the bose number density 

at the center of the trap, even when the the TF energy is a poor approximation. 

DuBois and Glyde[99] show that for iVo/cho > 5 and n(0)o^ <  10"®, nrF(O) is a good 
estimate and it is sufficient for our qualitative purposes of using Eq. (5.3). Using 
Eq. (5.63) as the estimate for no®, the correction to the mean-held in Eq. (5.3) is 

already negative for a = 0.433oho for only a single atom. And so higher-order, shape- 
dependent terms are needed in the local-density approximation corresponding to Eq. 

(5.3). That is, the energies depend on the detailed shape of the potential, in this 

case the hard-sphere potential. Again, strictly speaking, the truncated low-density 

expansion (5.3) is only valid for homogeneous hard-core bose gases. However, we 

assume the spatial variations of the inhomogeneous gas are not too large, in which 

case Eq. (5.3) will share features of the inhomogeneous gas theory. Within this 

context, we use Eq. (5.3) to  interpret our DPT results for the trapped EEC.
The optimization procedure discussed earlier gives the best energy a t low order for 

low and moderate N , but terms beyond first-order become more significant at large 

atom number in which case higher-order DPT is needed for all scattering lengths. 

When the number of atoms is extended beyond that shown in Figs. 5.1 and 5.2 for 
both large and small scattering lengths, one finds that the low-order many-body DPT 

interaction energy eventually falls below the GP interaction energy above 10  ̂ atoms 
due to the neglected higher-order terms. At these larger values of iV, higher-order 
perturbation theory is needed.

However, as can be seen from Fig. 5.3, for intermediate-a (i.e., a =  0.0433oho) 
the DPT interatomic energy falls below GP at a  few hundred atoms, as opposed 

to approximately 10'* atoms for large and small a. For this intermediate a, the 

interaction parameters are determined from accurate DMC energies, but near a 

shape-independent density regime (i.e., nTF(0)a® <  10"^), and then extrapolated to 

a shape-dependent regime (i.e., nTF(0)a® >  10"®). Since the intermediate-a potential 

parameters were calculated in a  shape-independent density regime, the extrapolated 

energies follow the local-density approximation tha t includes the logarithmic term 

in Eq. (5.3) but not higher-order, shape-dependent corrections. Fig. 5.3 shows the 

DPT interatomic energy falling below GP, and thus violating the lower bound, at a
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few hundred atoms, as opposed to  approximately 10  ̂ atoms for both large and small 

a. It should be noted tha t the reduced extrapolation range for intermediate a is not 

due to overfitting, the large Q-probability for four-parameters notwithstanding. The 

dramatic increase in Q from s =  3 to s =  4 parameters indicates underfitting for 

any s < 4. Moreover, varying the fourth parameter above and below the optimal fit 

to lower the Q-probability to 0.5 results in the same reduced range of validity noted 
above.

The low-o (i.e., a = 0 .0 0 4 3 3 o h o )  parameters were also determined in a shape- 
independent regime, but the extrapolated energies never reach the shape-dependent 

regime (which the local-density approximation suggests does not occur until there 

are more than 10® atoms) before higher-order 1 /D  perturbation theory is needed. 

The increased range of validity of our large-o results over intermediate-a is likely 

explained by noting tha t the large-o (e.g., o =  0 .4 3 3 O h o )  D PT parameters contain 

shape-dependent information as they were determined in a  shape-dependent density 
regime.

5.5 Excitations

In addition to ground-state properties, we can easily calculate excitation properties 

of the condensate, such as frequencies, from the normal-mode structure of many- 

body DPT. The analytical frequencies in Eq. (5.55), Qq-  and <Do+, correspond to 

the center-of-mass and breathing modes of the condensate, respectively. In units 

of the trap frequency Who, the center-of-mass frequency equals 2. We also calculate 

the frequencies of small oscillation about the ground-state wave function within the 

mean-field approximation by solving the linearized GP equation[6].

Using the hydrodynamic theory of superfluids[106] based on the GP equation, 

Stringari found the following large-lV approximation to the mean-field dispersion 

relation[107]:

w(nr. I) = Who +  2rirl -f- SUr + i j   ̂ , (5.64)

where jv  is the number of radial nodes and I is the angular momentum of the 

excitation. Despite the significant departure from the non-interacting case (w =  

Who(2n, 4- /)), the mean-field frequency does not depend on the scattering length or 
the number of atoms in the TF limit. This curious lack of dependence on the mean- 

field interaction strength TVo/oho in the strongly interacting limit can be seen as a

123



consequence of the relationship between the spatial extent of the condensate and the 

speed of sound a t the center of the condensate[6]. The excitation frequency in the 

phonon regime is given by a» ~  c(r =  0; Na/atu,)/X{Na/abo), where the wavelength 
A(A^o/aho) associated with the excitation and the speed of sound a t the center of the 

the gas c(r =  0; Na/a^^) are both functions of Na/a\a- In the phonon regime, the 

excitation wavelength for an inhomogeneous gas is on the order of the size of the 

gas, which increases with increasing Na/a^o- As the mean-field interaction strength 
increases, the speed of sound increases in the same ratio as the increase in the wave

length of the phonon-like excitation. This lack of dependence on the number of 
atoms and the scattering length clearly becomes a problem in the strongly-interacting 
regime, as can be seen in Fig. 5.4. For intermediate scattering lengths and moderate 

number of atoms, the excitation frequency is accurately described by the hydrody
namic approximation of Eq. (5.64), which is independent of N . However, just like 

the TF approximation for the ground-state energy of the GP equation, Eq. (5.64) is 
a  good approximation of the mean-field theory in the strongly-interacting limit but 

the mean-field theory itself breaks down.
In Ref. [23], Stringari and Pitaevskii consider beyond-mean-field corrections to 

the collective excitation frequencies in Eq. 5.64). Defining ujh as the mean-field 

monopole frequency in the hydrodynamic limit (n^ =  1, I =  0 in Eq. 5.64), u> as 

the hydrodynamic-limit beyond-mean-field frequency, and writing u  =  ojh +  Jw* (5 
is not to be confused with 1/D  as is the shift from the mean-field monopole 
frequency), Stringari and Pitaevskii use the homogeneous gas first-order correction 

(i.e., the second term in Eq. (5.3)) to the Bogoliubov equation to find the follow

ing beyond-mean-field, but still shape independent, fractional shift of the monopole 
(breathing mode) frequency in the hydrodynamic limit [23]:

^  (5.66)

In Fig. 5.4 we compare the DPT breathing mode frequency wo+ in Eq. (5.55) with 

the mean-field (i.e., the solution of the linearized GP equation[6]) and the beyond- 

mean-field correction (5.65) to the monopole (breathing) mode of frequency in the 
strongly interacting regime, a =  0 433aho- The lack of dependence on the interaction 

strength for the mean-field excitation frequency in Eq. (5.64) is clearly a detriment in 

this regime, in which a large beyond-mean-field shift of the breathing mode frequency 
is predicted by both DPT and the beyond-mean-field calculation by Stringari and
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Pitaevksii. For N  =  2000 atoms we predict a fractional shift of 74% above the 
mean-field prediction while Eq. (5.65) gives a 50% shift.
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Figure 5 .4 :  Breathing mode frequency in units of Who versus N  for large scattering 
length. We use ®^Rb mass and let a =  10 000 a.u. and Who =  2ir x 77.87 Hz, which 

corresponds to a =  0 .4 3 3 o h o ,  in oscillator units. The solid line corresponds to Eq. 

( 5 . 6 5 ) ,  the first correction to the monopole frequency calculated by Pitaevskii and 

Stringari [2 3 ] . The dashed line is the numerical solution of the linearized GP equation. 

The dash-dotted line refers to the DPT normal mode frequency wq+ from Eq. ( 5 . 5 5 ) .
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Chapter 6 

Summary

This dissertation has developed a  comprehensive many-body approach to isotropi- 

cally confined systems of identical, interacting particles. In this final chapter, we 

summarize the most important results and give an outlook for further development 
and applications of many-body DPT.

D PT has advantages over traditional methods th a t either neglect all of the in

teraction (conventional perturbation theory) or all of the kinetic energy (classical 
TF approximation) a t lowest order. The infinite-dimension (leading-order) limit of 

DPT results in an effective potential tha t keeps contributions from the confinement, 
interaction, and kinetic terms of the Hamiltonian. The remaining kinetic contribu

tion is a centrifugal-like (1/r^) term tha t allows the leading order of DPT to satisfy 

the minimum uncertainty principle. In the infinite-dimension limit, we choose a 
symmetric configuration in which all of the particles are localized and equivalent. 

The first-order energy correction corresponds to small oscillations about the large-Z) 

structure, where the vibrational frequencies are determined by the Wilson FG matrix 

method. Analytical results through first order are obtained for a  spherical system of 
identical particles with a general confining potential and general interaction potential. 

Many-body DPT includes beyond-mean-field correlation a t all orders.

Many-body DPT was first applied to two Af-electron systems: the iV-electron 
atom where the confinement is supplied by the attraction of the nucleus and the 

AT-electron quantum dot where the confinement is supplied by an external harmonic 
potential. Numerical results for the N-electron atom are given in Ref. [80]. Our two- 

electron quantum dot study suggests tha t our low-order many-body results will be 
quite accurate for typical many-electron quantum dots whose length scales are in the 
mesoscopic regime (i.e., in the strongly interacting or strongly confined regime), but 

higher order perturbation theory would most likely be needed to accurately describe
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many-electron quantum dots in the weakly interacting or weakly confined regime. 

Moreover, because iV is a parameter in our formalism, the challenge of calculating 

the physical properties of a  system with DPT does not increase as one adds more 

particles to the system.
The main focus of this dissertation is on obtaining results for the A^-atom inho

mogeneous bose condensate th a t go beyond the mean-field and shape-independent 
approximations. For BEC we use a shape dependent interatomic potential, namely, 

a hard sphere. Like the iV-electron quantum  dot, the condensate atoms are confined 
by an external harmonic trap. Unlike either iV-electron system, however, the hard 
sphere potential has explicit dimension dependence. Both the atom and quantum 

dot interact via a repulsive Coulomb potential tha t maintains its three-dimensional 

form as D  varies (an alternative generalization of the three-dimensional Coulomb 
potential might be In order to make the hard sphere amenable to DPT

analysis, we dimensionally continue the hard-sphere potential so that it is differen
tiable in the infinite-D limit and becomes a hard-sphere with radius equal to the 

scattering length in the physical D =  3 limit. This dimensional continuation results 

in a shape-dependent soft-sphere interatomic potential a t large-D. The large-D soft- 

sphere potential parameters are optimized for the ground-state energy. No adjusting 

of parameters is needed for the W-electron systems because their interparticle poten
tials do not vary with dimension. This makes the iV-electron systems easier to deal 

with, but it also makes them less fiexible.

We compare our semi-analytical ground-state energy results with numerical solu

tions of the GP equation and modified GP equations for Bose-Einstein condensates 

with three different scattering lengths, in the weak, intermediate, and strongly inter
acting regimes. As expected, there is practically no deviation from the mean-field 

ground-state energy for small scattering length up to very large N . For intermediate 

and large scattering length, though, the breakdown of the mean-field becomes quite 
noticeable even for a low number of atoms. We also calculate collective excitation 
frequencies from our first-order normal-mode frequencies. For large scattering length, 

we predict a large beyond-mean-field correction to the condensate breathing mode 

frequency. For a = 0A33aho for example, we predict a 75% firactional shift above 
the mean-field breathing mode frequency for N  =  2000 atoms. Our many-body 

DPT results are accurate up to moderate atom number. For larger N , higher order 
D PT terms, which are small for low and moderate N , become more important as 

N  increases. Our studies suggest tha t the regime of vaUdity is further reduced for
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intermediate scattering lengths, which is related to the presence of the logarithmic 

correction in the low-density expansion (5.3). In future work, we will incorporate 
higher-order, anharmonic terms to the perturbation series, which will extend the 

range of validity to larger N .
While the treatm ent of these physical systems has been in many respects quite 

general, this dissertation leaves open many opportunities for further development 
and application of the many-body D PT formalism. One extension might be to re

lax the spherical symmetry constraint by allowing confining potentials with axial 
symmetry. This is a particularly important extension for describing actual experi

ments, especially for BEC’s, which predominantly have axial symmetry. W ith axial 

symmetry, one has an extra N  degrees of freedom due to the z-components of the 

N  particles, but the many-body formalism presented in this dissertation readily ac
commodates this generalization. Instead of generalized spherical coordinates with a 

D-dimensional radius, one uses generalized cylindrical coordinates, which consists of 

a (D — l)-dimensional sphere plus a z-coordinate. Another extension involves the 

choice of confining potential. Our main focus has been on harmonic traps of the form 

because this is the most prevalent form of confinement in experiments today, but 

there is no reason why one could not also consider more general external confining 

potentials. Yet another extension involves the use of the DPT formalism for higher 

angular momentum[108, 109] (L >  0) states, which would correspond to quantized 
vortex states. Using this formalism, it is possible to find analytical, low-order ener

gies for the iV-atom condensate similar to the analytical ground-state results found 

in this thesis but for quantized vortices in a BEC. Finally, the calculation of higher- 

order perturbation terms is the last extension of the results of this thesis tha t we 

mention. As discussed in Sec. 5.1.3, the leading-order DPT wavefunction is a prod

uct of one-dimensional harmonic-oscillator wavefunctions with frequencies given by 

the first-order term of the energy series. From this wavefunction, one can then use 
ordinary perturbation theory to extend our results to  include anharmonic corrections 

beyond first order. This is also an important extension as it will increase the range 

of validity of our dimensionally continued hard sphere results to larger N  as well as 
improve numerical results for many-electron systems.
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Appendix A

Hydrodynamic approximation for inhomogeneous 
bose gas

In this appendix we derive the TF approximation for the mean-held collective modes 
of the condensate in the hydrodynamic limit. This approximation provides a valid 
description of the mean-held theory for a BEC with a large number of atoms with 
positive scattering length. We begin by writing the time-dependent GP equation 
(2.34) as two coupled hydrodynamic equations in terms of the density n  =  NtjP' and 
the local velocity, which is proportional to the gradient of the phase <l> (i.e., v  =  ^  V0, 
see Eq. (A3) below). Inserting the ansatz

#  =  ^ n (r ,i)e ’̂ ('--‘) (Al)

into Eq. (2.34) results in a new equation whose imaginary part is given by

n - V “^ + —V n -V ^
m  m

(A2)

Noting the identity V  x (V x A) =  V(V • A) -  V^A for a vector A and noting tha t 
</» is irrotational (i.e., V x 0  =  0), we can replace V V  in Eq. (A2) with V(V -0). 
Further, using the dehnition

V =  ^ V 0 , (A3)

Eq. (A2) becomes
ôti
—  =  -  [nV • V +  V n • v]. (A4)

We recognize the product rule in the bracketed term in the above equation, which
allows us to write it as a continuity equation for j  =  nv:

Ôti
-t- V • {nv) =  0. (A5)

The real part of the time-dependent GP equation after insertion of the ansatz of 
Eq. (Al) is

=  —^ V ^  + ^mu)lr^y/n-i-U3ny/n + 
u t  2 tti 2
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2m
(Vn)2 1

\ fn (A6)

This equation simplifies greatly when we recognize tha t the right-hand-side on the 
first line is simply the time-independent GP Hamiltonian, which we can replace with 
\iy/n. Also, since V n =  2y/nVy/n, the first two terms in the bracket cancel, and Eq. 
(A6) simplifies to

= t^+  (A7)

Taking the gradient of this equation and using the definition v =  ^V(f> gives the 
equation of motion:

m —  =  - V  , (AS)

where
1 1 

H =  +  nUz -  —  (A9)

Next we linearize the hydrodynamic equations (A5), (AS), and (A9). This is 
equivalent to linearizing the time-independent GP equation as we did in Eqs. (2.52) 
and (2.53). We write the density as

» =  Meq 4- 5n, (AlO)

where rieq is the equilibrium density and 5n is a  small departure from the equilibrium. 
We assume tha t Sn and v are small quantities and we neglect terms th a t are higher 
than linear in ân and v. Using Eq. (AlO) with the assumed small quantities, the 
continuity equation (A5) gives

^  =  -  V  • ( n ,q v ) ,  (A ll)

where we have neglected 5nv as second-order small. Similarly, Eq. (AS) gives

(A12)

where we have neglected m v^/2  as second-order small and Sfi =  {diJ,/dn)0n. Taking 
the time derivative of Eq. (A ll)  and noting tha t d n ^ /d t  =  0, we find the linearized 
equation of motion:

=  V  • {n^VSfj.), (A13)

where we have used Eq. (A12) in the right-hand side.
Recall tha t in the TF (iVa/Cho ^ 1 )  limit one neglects the quantum pressure. In 

the TF limit, Eq. (A9) reduces to

fj, =  4- nUzy (A14)

137



and hence we find
ôfi =  UzSn, (A15)

which when used in Eq. (A13) we find tha t the density fluctuation satisfies

=  t/sV . (A16)

If we consider oscillations with time dependence 5n{r,t) =  0n{r)cos{<jt +  7 ), where
uj is the firequency of the excitation and 7  is a phase shift, the previous equation
becomes

—u?0n =  [Vneq • V5n + naqV^Jnj. (A17)

We now use the T F  equilibrium density

(A18)
U3

where /jtt = mailR^f2  with R  being the TF radius, and Eq. (A17) then becomes

=  +  (A19)

where we have defined e =  w^/w^. Due to the spherical symmetry of this equation, 
the general solution for the density fluctuations is

5n{r) = P{r)r%rn{6,4>)- (A20)

Assuming this form for the solution in Eq. (A19) and introducing the new variable 
u = r^/F^, one finds the following equation

(A21)

which is in the form of the differential equation for the hypergeometric function
F(a,/3,7,w ):

u ( l -  u)F" +  ( 7  -  (a  +  +  l)it) F' — aP F  =  0. (A22)

To ensure that F  or P  is well behaved, we set a  =  —n where 71̂  is an integer. Then
comparing Eqs. (A21) and (A22), we find tha t =  I +  n , +  3/2, 7  =  Z +  3/2, and 
e — I = 2n{l + rir + 3/2). Thus, the TF excitation frequencies in terms of the trap 
frequency are given by

(jj =  uJo{l +  Zur 4- 2rir/ +  2nr)^^^, (A23)

where rir is the number of radial nodes and I is the angular momentum of the exci
tation. The density fluctuation is given by

5n(r, t) =  C r 'F ( - n ,  l + n + 3 /2 , 1 + 3/2, /  R^)Yi,m{e, <j>) cos(wt +  7 ), (A24)
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where C7 is a normalization constant.
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Appendix B

Wilson FG matrix method

In this appendix, we derive the Wilson FG matrix method [78] which is a t the heart 
of our obtaining the normal mode frequencies and, thereby, the first-order energy 
correction. The derivation involves a transformation to  the set of coordinates called 
normal-coordinates in which both the differential term  and the potential term of 
Eq. (4.30) are diagonal. We begin by defining a  symmetric transformation, A, that 
transforms from the vector j/', defined by Eq. (4.26), to z' {z' =  Aÿ'). A  is an active 
transformation and has the property that it diagonalizes the symmetric G  matrix to 
unity. That is, A  satisfies

A ^G A  =  I, (Bl)

which can also be written as

G  =  A - '( A - ') ^ ,  (B2)

where we have used the property tha t A  is symmetric (A =  A^) in the derivation of 
Eq. (B2). Hi then becomes

Hi - 1 %  +  ^z^^(A-^)^FA-^z'. (B3)

Next we focus our attention on the potential term, the term involving the ma
trix F. We introduce another transformation, U  (q' =  Uz'), that diagonalizes the 
potential term  while simultaneously leaving the differential term unchanged. This 
orthogonal transformation (U ^U  =  I, where I is the identity matrix) leaves the
differential term in the same form as in Eq. (B3), and the potential terra becomes

U (A -i)^ F A -‘U ^ =  A, (B4)

where A is a diagonal matrix. That is.

Hi -> +  -q '^A q'. (B5)
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The eigenvalue equation corresponding to Eq. (B4) is

(U (A -i)'^FA -*U ^) q' =  Aq', (B6)

where q' is the eigenvector with eigenvalue A. Equation (B4) is a matrix eigenvalue 
equation expressed in the basis of the normal coordinates. We can change the basis 
back to the original internal displacement coordinates with the passive similarity 
transformation ÿ  =  A “ ^U^q', under which Eq. (B6) now reads

U (A -^ )^F ÿ  =  AUA^. (B7)

Multiplying on the left by followed by A “  ̂ gives

A - i(A - i) ï 'F ÿ  =  Aÿ. (B8)

Inserting Eq. (B2), gives the eigenvalue equation for the normal mode coordinate ÿ :

G F ÿ  =  Aÿ. (B9)

Thus, the FG matrix method consists of finding the roots of the characteristic poly
nomial in A:

det(AI -  G F) =  0, (BIO)

which is carried out for a general iV-body system in Sec. 4.3 and applied to the 
systems of Secs. 4.4 and 4.5 and Ch. 5.
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Appendix C

Spectral graph theory and the symmetry of the Q 
matrices

In this appendix, we introduce the relevant aspects of graph theory in order to  derive 
several quantities used throughout the main text and to show the connection of graphs 
to the large-D symmetric configuration of N  particles. A more complete treatment of 
the mathematics of graph theory with an emphasis on chemical physics applications 
may be found in Ref. [110].

A graph Ç =  {V,E) consists of a  finite set of vertices {v\,V2, . ■. iVn}(V {Q) and 
a set of not necessarily distinct unordered pairs {(uj, Uj), V(1 < i < j  < n)}eE{G) 
connecting the vertices to form the corresponding edges. A graph is complete on n 
vertices, denoted by Kn(G), if every distinct pair of vertices is connected by an edge; 
Kji is sometimes called a  simplex of n points. Notice tha t K„ contains n{n  — l) /2  
edges. Our large-dimension symmetric minimum configuration of N  atoms forms a 
simplex on N  vertices in D-dimensional space. For example, the N  = 4 simplex is 
a hypertetrahedron. The line graph L{G) of a graph G is the graph whose vertices 
correspond to  the edges of G with two vertices being adjacent if and only if the 
corresponding edges in G have a vertex in common.

D eriv a tio n  o f  E q . (4.42): The Q  matrices display a high degree of symmetry 
in the large-dimension configuration, but it is not trivial to  write down the elements 
of G F  in terms of its constituents G  and F  as we have done in Eq. (4.42). We now 
derive this result in a two-step process. The first step is to write the {N + M)-square 
matrices G  and F, where M  — N {N  — l)/2 , as block matrices of the following form:

Q =

f  \
Qi Q2 '

Qa Q 4 y

(Cl)

where the blocks, each of which will be discussed in turn, have the same indical 
structure as the blocks of yy^  in Eq. (4.33).

From Eq. (4.34), the (N  x N ) Q i block is composed of two distinct elements: the 
diagonal elements Qa = Fa and the off-diagonal elements Qb =  Q ij {i ^  j) .  Qi can
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be written in terms of the more basic matrices Ijv (the {N  x N )  identity matrix) and 
Jjv (the {N  X N ) matrix consisting of all ones):

Ql =  {Qa — Qb)^N + Qb^N- (C2)

The matrix Jyy contains all ones, so for the diagonal parts of Q i the Q b’s cancel and 
one is correctly left with Qa- The oflF-diagonal parts of Q i correctly become Qb since 
the off-diagonal of Ijv is zero. Specifically, taking the Q matrix to be F, we find

F i =  {Fa — Fb)lN 4- FfcJjv. (C3)

One can write down the G i block in similar fashion noting that the off-diagonal 
entries of G i are zero:

G i  =  GoIn . ( C 4 )

The {N  X M ) Q 2 block according to Eq. (4.34) is also composed of two distinct 
elements: the “incident” elements Qe = Qi,ij {i 9  ̂j )  and the “non-incident” elements 
Q f = Q ijk  {i j  f  A). The elements Fg are termed “incident” because the repeated 
index i means tha t the vertex i is incident with edge {ij), while for Q f  the vertex 
designated i is not incident with the edge {jk) since i ^  j  ^  k. To write Q 2 in 
terms of basic matrices, we need the {N x M)  vertex-edge matrix R , defined as 
Ri,jk = Sij +  Sik,- which equals one when vertex i is incident with edge {jk) (i.e., when 
i = j  or i = k) and zero otherwise. Thus, the following equation accurately describes 
the Q 2 block:

Q 2 =  {Qe — 0 / ) R  +  Q / J n m - ( C 5 )

Specifically, letting the Q matrix be F, we find

F 2 =  {Fe — F^)R 4- FfJffM- (C6 )

And since there is no mixing of radial and angular derivatives in the Schrodinger 
equation (4.13), we have

G 2 =  G 3 = 0. (C7)

By definition, the Hessian matrix F  is symmetric; hence, from Eq. (C6 ) we find

F 3 =  (Fe — F /)R ^  4- F/Jftfjv, (C8 )

where J mn  = However, for a more general Q-matrix (e.g., G F  which, unlike 
F, is not symmetric), an analysis analogous to tha t leading to  Eq. (C5) yields

Qa =  {Qc -  Qd)R'^ +  QhJmn,  ( C 9 )

where Qc = Qij,i {i 9  ̂ j )  and Qd = Qjk,i (% 9  ̂ J 9  ̂ k). The Q 3 block can be 
interpreted in the same was as Q 2 where the “incident” elements are now Qc and the 
“non-incident” elements are Qd

For the fourth block of Q, we need to introduce the adjacency matrix of the line 
graph of the simplex, i.e., the quantity R ^ R —2Ijvf. A more intuitive way to interpret 
this quantity is to  think of it as an edge-edge matrix tha t is unity when two edges
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are adjacent and zero otherwise. For the purposes of constructing the Q 4 matrix, 
which has indices of the form (ij, kl), it helps to  then think of the index (ij) as an 
edge of the simplex connecting vertices i and j ,  and likewise for edge (kl). Two 
edges are adjacent if they share a vertex. Q 4 is comprised of three distinct elements: 
the diagonal elements Qg =  Qij^ij (i ^  j ) ,  the adjacent-edge elements Qh = Qijjk 
(i j  ^  k), and the non-adjacent-edge elements Qi =  Qijja (i j  I), which
have no repeated indices and, hence, no adjacent edges. The matrix R^R, whose 
(ij, kiy*  element is given by Iik(JN)ji +  Iu(JN)jk +  Ijk(JN)u +  Iji(JN)ik, gives the 
adjacent edges, bu t it double counts the diagonal; hence, the term Q /,(R^R — 21m ) 

of Q 4 accounts for the adjacent edges. To get the diagonal elements of Q4 , we need
the term QqIm- And for the non-adjacent edges we need Q,[3m — (R^R — I a/) ] .
Putting these terms together gives:

Q4 = (Qg — 2Qh + Qt)lM + (Qh — Qt)R^R + Qi3m- (CIO)

Specifically, one has

F 4 =  (Fg — 2Fh +  F1)Im +  (Fh — FJR^R +  (Cll)

and likewise for G 4 , noting that Gi =  0:

G 4 =  (Gg -  2Gh)Im  +  GaR'^'R. (C 1 2 )

The second step to derive Eq. (4.42) is to find the blocks of G F  by matrix 
multiplication of G  and F, whose blocks are given above. That is, we multiply the 
following

/  \  /  \
I F i Fa '

F  =G =
G i 0

0 G 4 Fa F 4

(C13)

Then  by analyzing each block of G F  we can write down its elements in terms of the 
elements of G  and F. The first block of G F  gives a and b of Eq. (4.42) and is given 
by

(G F)i =  G iF i =  (GaFa — GaFb)!^ +  GaFfcJjv. (Cl4)

Taking the diagonal part of (G F)i gives

a =  ( G F ) a  =  ( G F ) i , i  = G a F a ,  (CIS)

while the off-diagonal (i ^  j )  gives

b = ( G F ) b  = ( G F ) i j  =  G a F b .  (016)

The second block gives e and /  of Eq. (4.42) and is given by

(GF)a =  G 1F 2 =  (GaFe -  G a F f ) R  + Gaf/JjVM. (C17)
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Noting that ü<,ÿ is unity when j  and tha t all elements of Jjvjvf are unity, we find 
the following from (GF)a when j\

e = {GF),  =  {GF)i,ii = GaF,. (CIS)

For % /  j  ^  t ,  R ijk  =  0; hence,

/  =  (GF)/ =  (GF)yt = GaFf. (019)

When deriving (G F )3 and (G F )4 below, the following relations prove useful:

R R ^  =  Jiv 4-(iV — 2)Ijv R^J/v =  2Jjvfjv R Jm n  =  (N̂  ~  1)Jn (020)
R Jm  = {N ~  1)Jatm R^Jjvm =  2Ja / . (021)

Equations c and d of Eq. (4.42) can be found from the third block of GF, which is 
given by

(GF) 3  = G4 F3 = [GgF, -  GgFf + { N -  4)(GfcFe -  G^F/)] R^
4- [GgFf +  2GhF, +  2{N  — 3)GhF/] Jmjv- (022)

For the (ÿ ,i)  elements {i ^  j ) ,  R ^ is unity; thus, to get (GF),  one adds both 
bracketed terms in Eq. (022):

c =  (GF)e =  {GF)ij,i =  GgF, + { N -  2)GhF, + { N -  2)GhFf.  (023)

For the {jk, i)  elements {i ^  j  ^  k), R ^  is zero; hence, (GF)j is simply given by the 
second bracketed term in Eq. (022):

d =  (GF)j =  (GF)jk,i =  GgFf + 2GhF, +  2 (iV -  3)G&F}. (024)

Equations g, h, and t of Eq. (4.42) can be found from the fourth block of GF,
which is given by

(GF) 4  = G4 F4 = [(Gg -  2Gn){Fg -  2 f\ + FJ] W

+ [GgFi 4- AGhFh 4- 2{N — 4)GhFi] 3m

+  [{N -  6 )GfcFfc - { N -  5 ) G h F  +  G g { F n  -  FJ 4 -  GhFg] R ^ R .

(025)
As noted earlier, R ^ R  double counts the diagonal elements (i.e., (ij^ij) elements 
where i 7̂  j) .  Thus, the (GF)i/,i/ elements are given by the sum of the first two 
bracketed terms in Eq. (025) plus twice the third term:

g = (GF)ij^ij = (GF)ij^ij = GgFg + 2{N — 2)G/,F/,. (026)
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For the {i j , jk)  elements {i ^  j  ^  k), we note tha t the R ^ R  elements are unity and 
the elements of Ijv are zero. Thus, to  get {GF)ijjk we take the sum of the second 
and third bracketed term in Eq. (C25):

h = {GF)h =  (GF)ijjk =  GgFn + GnFg + { N -  2)GhFh + {N -  3)GhF .  (C27)

Finally, the {ij, kl) elements {i ^  j  ^  k  ^  I) oï  R ^ R  and Ijv are zero, and thus the 
last equation in (4.42) is simply given by the second bracketed term in Eq. (C25):

I = {GF)i = (GF)ij^ki — GgF  ̂+  AGhFh + 2(iV — 4)G/,Ft. (C28)

D eriv a tio n  o f Eq. (4.49): A graph with a given structure corresponds to  a 
spectrum. That is, a graph may be represented by a  matrix whereby its spectrum, or 
eigenvalues, may be calculated. Pq{ \)  denotes the characteristic polynomial of the 
adjacency matrix A  of graph G'-

Pg{X) =  det(AI — A). (C29)

The element {i, j) of the adjacency m atrix is the number of edges connecting vertices 
i and j of the graph G- The spectrum of G is found by solving Pç{X) =  0.

To prove the relationships involving determinants in this appendix and the next, 
we quote the following result from p.72 of Ref. [110] for the complete graph K„:

^KniX) — (A — n  +  1)(A +  1)n - l (C30)

The adjacency matrix of a  simplex of n points, Kn,  is an ra x n matrix of ones except 
along the diagonal which contains all zeros. That is, Pk„{X) takes the following form:

PKn(X) = det

A - 1

- 1

- 1

-1 A :

: • • •  - 1

-1 A

(C31)

Using Eq. (C30) one can easily derive Eq. (4.49) of Sec. 4.3 , which states

det(X Y EZ) =  det
|Iiv  +  ^Jjv 0

vijvf

=  ^{t + Nu)vM - N (C32)
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where the integer M  is defined in Eq. (4.35). First we note that

=  det (vlAf) det ( —In  H— Jiv') • (C33)
\ v  V J

det

V vI m

Then, det(|Iyv +  can be written as am {N x  N )  matrix of the same form as 
Pk„{X) in Eq. (C31):

t u
det(—I)v 4— Jiv) — det

V V

u u
V V V

u
V V

%
V

u . . .  % t±u
V V V /

det
_ 1  - 1 - -

- 1

- 1 - 1  - 1 - Ï Ï /

, (C34)

so that, noting det(uljv/) =  and setting A =  —1 — ^ and n = N  in Eq. (C30) 
leads directly to det(X Y EZ) =  +  Nu) v ^ ~^ .
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Appendix D

Gaussian reduction of Eq. (4.44)

The characteristic equation for the G F  eigenvalues is det(E) =  0, where E  is given by 
Eq. (4.44). The Gaussian elimination to  reduce E  of Eq. (4.44) to the form X Y E Z  
of Eq. (4.45) allows us to find analytic expressions for the normal-mode frequen
cies. The goal is to transform E  to  a  lower-triangular matrix, whose determinant we 
can compute exactly with Eq. (4.49), while leaving the characteristic determinant 
invariant by imposing tha t the transforming matrices have unit determinant. The 
elimination process consists of three steps.

S te p  1: We first define Z:

Z =

( \ 
In  wJ n m

0
(D l)

whose determinant is unity, which we now show. It is known from matrix theory (for 
example, see Ref. [Ill]) that the determinant of an (JV 4- M)-square matrix with an 
(iV X M)  zero matrix (O n ,m ) in the upper right block or an (M  x  N)  zero matrix 
(Om,n) in the lower left block is the product of the determinant of the diagonal block 
of matrices. That is.

det

/
A

\
Onm

=  det

/
A

\
C

 ̂ Omn B ,

=  det (A) det(B), (D2)

where A  and B  are square matrices. For Z, we have det(A) =  det(Ijv) =  1 and 
det(B) =  det(lAf) =  1; thus, det(Z) =  1.

Multiplying E  on the right by Z and using the multiplication rules above leads to

EZ  =

( \  
(A — a  4- 6)I;v — 6Jtv ( /  — e)R  4- [w(A — a — {N  — 1)6) — / ] JjvAf

(A — ÿ 4“ 2h — t)\.M — {h — i)R ^ R  
4-[(2(d — c) — Nd)w  — ijJjvf

(D3)
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We choose w equal to //(A  — a — (AT — 1)6), such tha t the upper-right term 
vanishes. This results in:

/

EZ =
(A — a +  b)lff — bJff ( /  — e)R

v Ï M - { h - t ) B : ^ R  + C3M

\

(D4)

where

_  (  2 { d - c ) - N d  \
~ ^ \ X - a - { N - l ) b J{N - 1 ) 6 ,

V = X — g  26 — t.

(D5)

(D6)

S tep  2: Next multiply on the left by Y , which by Eq. (D2) has unit determinant:

/  \
Y  =

I n 0

 ̂ x R '  +  vJnm ^  Im j

(D7)

where we impose

h — i CX =   -----  y = —■ 1 ' (  2 { d - c ) - N d  \  
yA — a — [N  — 1)6 Jf - e  " 2 ( / - e )  2 ( / - e )

to eliminate the lower-right R ^ R  and J m  terms from E M . This results in

(D8)

Y EZ =

/  \  
(A — a +  6)Ijv — 6J tv ( /  — e)R

N M vI m

(D9)

where

I = ! ^ { X - a  + b) + { d - c )
f - e

m  =  y{X — a — {N — 1)6) — 26
h — I 
f - e

d (DIO)

’2 ( /  — g) — c) — Nd) — t(X -  a — {N — 1)6)] -  2b j  ̂  ^ — d.
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S tep  3: The final step is to eliminate the upper right term  from Y E Z  by multi
plying Y E Z  by X, which by Eq. (D2) has unit determinant:

X  =

( \ 
In  zR

0 I M

(Dll)

where z = {e — f ) / v .  X Y E Z results in the desired form of Eq. (4.45):

/  . \
X Y E Z  =

+ vI m

(D12)

where

t — (A — a 4- b)v 4- {N — 2)(t — h ){ \  — a 4- f>) 4- {N — 2)(d — c)(e — / )  (D13)
u =  —kv — {h — i){ \  — a + b)-\-{d — c){e — f )  (D14)

— [/(2(d — c) — iVd) — t(A — a — {N  — 1)6) 4- 46(6 — t) — 2d(e — /) ] .4--

As the determinants of Z, Y , and X  are unity, the determinant of X Y E Z and, 
hence, the characteristic determinant det(E) may be calculated using Eq. (4.49), 
which was derived in the previous appendix.
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Appendix E

Gramian determinants

The Gramian determinant [112] is defined as:

r  =  det(7 ÿ), (El)

where 7 y =  Ti-Tj/riTj, the angle cosines between the particle radii Fj and Xj, represents 
the elements of an iV x iV matrix. A related quantity used in the main text is the 
principle minor of the Gramian, defined as the determinant of the 7 y matrix 
with the row and column removed.

A most challenging part of calculating the large-D minimum and the F  matrix 
elements in the systems discussed in this paper is handling the Gramian determinants 
and their derivatives. W hat makes these calculations feasible is the very high sym
metry of the infinite-dimension, symmetric minimum. We make use of Eq. (030) to 
obtain the Gramian determinant and its derivatives a t the infinite-dimension, sym
metric minimum. We will now demonstrate how this is done and summarize the 
results.

In general 7 » =  1 and a t the infinite-/) synunetric minimum all of the remaining 
direction cosines are equal, 7 ÿ =  7 oo- Hence, the Gramian determinant is an (iV x N)  
matrix of the form

r  =  det
loo

/
Too

To

•• Too

Too I

(E2)
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which can be written in the same form as fW„(A) (Eq. C31 of Appendix B):

/  \

r |  =  (-Too)"'det

-1 /T o 

- 1

- 1

•l/7o

- 1

- 1

—1 ••• —1 —l/7o

Setting A =  — l/7cn and n  = N  in Eq. (C30) gives

r| =[i + (Ar-i)7o.](i-7oor-\

(E3)

(E4)

The principle minor evaluated at the infinite-D symmetric minimum is simply 
related to the corresponding Gramian determinant (E4) by iV —► iV — 1.

To calculate the inhnite-D symmetric minimum of the Gramian derivatives, we 
expand T in terms of its cofactors. The cofactor, denoted by C'y-, of the element 7 ÿ 
in r  is (— multiplied by the determinant of the matrix obtained by deleting the 

row and column of F. We may then write F as

j= i

Then the partial derivative of F in terms of the cofactor is

(E5)

(E6)

Fi-om this equation, the partial derivative of F evaluated a t the infinite-Z? symmetric 
minimum is

dr
(E7)

where we have defined the following determinant of an (W — 1) x (N  — 1) matrix;

7oo 7oo 7oo ••• 7oo

7oo 1 7oo :

=  det 7oo 7oo 1 : (E8)

: 7oo

••• 7oo
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and the superscript {N — 1) simply indicates the size of the matrix. From this matrix 
one can show tha t the following recursion relation holds:

=  7oc -  (AT -  , (E9)

or equivalently

=  Too - { N -  , (ElO)

|(JV)
where the (N)  superscript in the notation F j^  again refers to the size of the ma

trix r |^ .  From the recursion relation (ElO), one can easily prove by induction the 
conjecture tha t =  7oo(l -  7oo)^""^ and, hence.

dr
dji j

=  -2 7 co( 1 - 7 oc)"'-"- (E ll)

The derivative of the principle minor evaluated a t the infinite-£) symmetric minimum 
is simply related to  the corresponding Gramian determinant derivative (E ll)  by 
N  —* N  — 1.

To summarize the above results, the following expressions are needed when cal
culating the minimum of the effective potential (4.20 and 4.21):

^ L  =  - 2 7 .( l -7 o .)^ - '  % ^ L  =  - 2 7 . ( l - 7 « r =

rioo =  [1 +  (iV -  l)7oc](l -  7oo)^-' r w |^  = [1 + { N -  2 ) 7 o c ] ( 1  -  7oo)"^-".
(E12)

And when evaluating the F  matrix elements at the infinite-D symmetric min
imum, the following six second-order derivatives of the Gramian determinants are 
needed:

- S Î L I  = 0  = 09yijdyki I
9*r =  - 2 ( l - 7 o o ) M l  +  (Ar-3)7oo)  ^

L  “  7oo)^~®

Sutid̂ kl loo

00

^ijd^ik loo

\ N - i l

(E13)
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Appendix F

Regularized Fermi pseudopotential and the low 
density expansion

The type of BEC discussed in this thesis is of the trapped or inhomogeneous variety. 
However, it proves useful to call attention to some properties of the homogeneous 
system because the two systems share similar features when the inhomogeneous den
sity is slowly varying. The low density expansion for a homogeneous (untrapped) 
bose gas of hard spheres is a perturbation expansion of the energy in terms of the gas 
parameter na^, where n  is the uniform number density of the gas[14, 95, 96]. The 
lowest order for the ground-state energy is equivalent to the BogoUubov mean-held 
term in the GP equation: E /N  =  2T rh \a /m . The hrst-order energy for a  homo
geneous gas can be calculated by sununing over the momentum states with k ^  6, 
but using the contact potential leads to  a  divergent ground-state energy (and recall 
that the contact potential (2.14) is the underlying interaction of the mean-held GP 
equation (2.23)). One needs to use a  pseudopotential or a regularized contact po
tential that, like the contact potential, replaces the hard-sphere boundary condition, 
but also removes singularities in the wavefunction of the form 1 /r  by including the 
operator {d/dr)r.

The goal of the regularized Fermi pseudopotential, which we now derive, is to 
obtain a Schrodinger equation with an inhomogeneous term that reproduces the effect 
of the hard-sphere boundary condition on the scattered wavefunction. Stated more 
simply, we want to derive a pseudopotential that places a node in the wavefunction 
at r  =  a. The relative-motion Schrodinger equation for two atoms interacting via a 
hard sphere of radius a is

( ;3 |: r2 |-h A :2 )^ ( r )  =  0 , r >  a
(FI)

V'(r) =  0 , r  <  a,

where k  is the relative wavevector defined hy E  = h^k^/2fi where E  is the relative- 
motion energy and n  =  m /2  is the reduced mass of the system. In the low energy 
limit ( t  —» 0), the extended wave function.

M r )  X, (F2)
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satisfies Eq. (F I) everywhere except a t the point r  =  0. The quantity % is a  constant 
that depends on the boundary condition at r  =  oo. Integrating the Laplacian we see 
that

|d r V V e x  =  4 7 r r 2 ^ ,  (F3)

and using the wave function in Eq. (F2),

J  drV^Tpexir) 47rax. (F4)

Since we would like the pseudopotential to be an operator acting on (at the 
origin so that we can interpose a delta function into the pseudopotential), we want 
to express \  in terms of ip̂ x as r  —> 0; using Eq. (F2) it is easy to  show that

1 d .
(P5)

r=0

Substituting this into Eq. (F4) we see that as k  0 and for r  > a, the hard-sphere 
boundary conditions and the wave function in Eq. (FI) with the same eigenvalue can 
be approximately reproduced by the pseudopotential

kreg-pBeudo(r) =  47ro5(r)^^r. (F6)

In a  future publication we plan to give the derivation of the generalized pseudopo
tential for arbitrary dimension. For arbitrary D, one must proceed more carefully 
than in the above D = 3 derivation; otherwise, one finds a pseudopotential for larger 
D that removes the singularity from the origin, but does not remove the less
singular functions. For D =  7 for example, this naive pseudopotential removes 1/r® 
terms from the wavefunction but not 1/r^ and 1 /r  terms. The generafized pseudopo
tential is

v £ . - ^  =  (P7)

where Q{D) =  27r°/^/F(D/2) is the volume of D-dimensional unit sphere. Busch 
et o/.[113] derive the following relationship for the energy of two atoms interacting 
via the three-dimensional regularized pseudopotential of Eq. (F6) in an isotropic, 
harmonic trap of frequency uj:
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where a/oho is the scattering length in oscillator units (oho =  The general
ization of this result for the regularized pseudopotential of Eq. (F7) is

r(D /2 - i ) ' r(3/4 -  E f t )
(F9)

where derivation, like that of Eq. (F7), will be given in a  future pubHcation.
The low-density expansion of a  homogeneous bose gas of hard spheres is well 

known[14, 95, 96]. As mentioned above, to obtain the correct result one must use the 
regularized contact potential (F6) rather Eq. (2.14), which would lead to a divergent 
ground state. The ground-state energy per particle, expanded in terms of the gas
parameter vna^, is

E
N

2irh na
--------------X

m

1 4- 4- In(no^) 4- O(na^)
lOyTT O

(FIO)

In this approximation, it is assumed tha t the average interatomic spacing is much 
larger than the s-wave scattering length: stated mathematically as na^ 1.
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Appendix G

Homogeneous limit of the GP and MGP equations

Provided the density of the nonuniform gas is slowly varying, the uniform low-density 
expansion of Eq. (5.3) can be a useful tool for understanding the qualitative features 
of the inhomogeneous gas theory. We now show tha t one recovers the first two 
terms of the uniform bose gas expansion of Eq. (5.3) firom the GP and MGP energy 
functionals (Eqs. (5.4) and (5.6)) in the homogeneous limit. We first rewrite the GP 
energy functional (5.4) in terms of the ground-state density n  =

Eop[n] = f  dr [ ; ^ |V \ / n p  +
J  Zm I  m

(GI)

where we have assumed a large number of atoms so tha t N  - 1  fa N . In the limit of 
a homogeneous gas in a box of volume V, the quantum pressure and the harmonic 
trap (the first and second terms in Eq. (G l)) become zero and the nodeless GP 
wavefunction becomes ^  =  ^ 1 /V . The inhomogeneous energy functional (G l) then 
reduces to the leading-order term of the homogeneous energy density expansion (5.3), 
where n = N/ V:

%  -  (G2)
N  m   ̂ '

In the homogeneous limit, the mean-field term of the GP equation is equivalent to 
the leading order (BogoUubov) term of the low-density expansion (5.3).

Similarly, rewriting the MGP energy functional in terms of the ground-state den
sity,

Ewsp[n] = j  +  ^ n u ^ r ^ n  +
2irh a ,
 n‘‘ X

m

and, as above, taking the homogeneous Unfit, one finds tha t the nonlinear terms 
in the MGP energy functional (5.6) are equivalent to  the energy per particle for a 
homogeneous gas in Eq. (5.3) with the logarithmic term neglected:

Eiap 2irh^na
N  m (04)
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