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A bstrac t

A simple model of line radiative transfer in a circumstellar shell surrounding a super­

nova is presented. An exam ination o f optical depth in an atmosphere with power-law  

expansion and a single source of opacity highlights certain difficulties arising as the  

power-law index approaches zero. The Sobolev approximation is shown, however, to  

be applicable to the case o f a constant-radial-velocity wind so long as the intrinsic line 

profile o f the opacity source is a Dirac delta function. Sample line profiles for vari­

ous geom etries are presented along with the source code used to generate the profiles. 

The simple model predicts the shape of spectral features with a characteristic size o f  

about 10-100 km s~* in the observed spectrum of a core-collapse supernova that shows 

evidence for circumstellar interaction.
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Chapter 1

Introduction

I present a model for the formation of narrow features observed in the spectrum of a 

supernova (SN) of Type Iln. A SN is an explosion that destroys a star or transforms it 

into som ething exotic (like a neutron star). This explosion is bright. The visible-light 

lum inosity typically rises to a peak that occurs from about, a week to about a month 

after the beginning of the explosion. The peak optical luminosity ranges from about 

(for some Type II SN) to about (for a typical Type la SN ), where is

the lum inosity of the Sun.

An obser\"ation of light from a SN is either spectroscopic or photnrnetric. \  sp ectro  

scopic observation is represented as brightness versus wavelength, and the wavelength 

resolution is high (say. 10 A ). A photometric observation measures the brightness aver­

aged across a well-defined, broad (say. lOOO-A) wavelength range, or pass band [Bessell, 

1990]. A  tim e sequence of photometric observations in the same passband is known as 

a light curve.

A  SN model is typically either static or dynamic. A static model (as o f Lentz et al. 

[1999]) produces a high-resolution synthetic spectrum that can be compared with a 

spectroscopic observation of a SN. A dynamic model (as of Hoflich and Khokhlov [1996])



produces synthetic light curves. The model presented in this dissertation is of the static  

type, and unlike a static model that aims to fit every feature over the wavelength range 

of interest, the model under consideration here only addresses certain features thought 

to be formed reasonably independently of other features in the spectrum.

1.1 Classification of Supernovae

A SN is classified on the basis of its optical spectrum; Filippenko [1997] has provided a 

recent review o f the optical spectra of supernovae (SNe). At its root, the classification  

system  for SNe hinges, from historical precedent, on the presence or absence of spectral 

features associated with hydrogen [Minkowski, 1941]. A Type I SN (or SN I) shows no 

spectroscopic evidence for the presence of hydrogen; the spectrum of a SN II, however, 

does imply the presence of hydrogen.

Only the spectrum  of a SN la shows a deep absorption feature (near 6150 A) due to 

blueshifted lines (laboratory-frame Si II AA6347, 6371) of silicon. In the standard theo­

retical framework, a SN la results from the thermonuclear fusion explosion o f a white 

dwarf star that accum ulates matter from a companion star. A white dwarf is supported  

against its own gravity not by the familiar pressure resulting from the tem perature of 

a gas but rather by electron degeneracy pressure resulting from the close proximity 

of neighboring electrons in the high-density material o f the white dwarf. An object 

supported against gravity by electron degeneracy pressure has a maximum mass and. 

more importantly, becomes smaller in size  as it accumulates mass. The white dwarf, 

as it accum ulates mass, undergoes quasistatic contraction until the atomic nuclei in its 

constituent material (carbon and oxygen) fuse. The resultant thermonuclear explosion  

com pletely unbinds the star and provides the kinetic energy of the ejected material. 

Conditions near the center of the SN la drive thermonuclear reactions to  produce ra­



dioactive '̂’Ni. Away from the center o f the explosion, thermonuclear reactions produce 

a substantial am ount of silicon as well as other intermediate-mass elements. Because 

the SN la  begins as a com pact object, the fractional change in volume per unit time is 

huge at early tim es during the explosion, and so the temperature drops rapidly. How­

ever. not all of the nuclear potential energy is deposited thermally on the fusion time 

scale and dissipated in the expansion. The radioclive decay of "''Ni (whose half-life is 

about a week and whose decay product. "’®Co. also radioactively decays with a half-life 

i)f more than two months) provides a delayed input of energy that accounts for the great 

luminosity of the SN la.

All o f the SN Ib, SN Ic, and SN II are associated with a different explosion model: 

core-collapse. A massive star (initially greater than about 8 -10  solar masses) will, over 

the course of its evolution, fuse nuclei in its core and in concentric spherical layers 

surrounding the core. The process must come to an end soon after the star begins to 

fuse silicon into iron because although fusion of nuclei lighter than iron is an exothermic 

process, fusion o f iron and heavier elements is endothermie. As nuclear burning in the 

silicon shell surrounding the core produces iron, the mass, density, and temperature 

of the core grow. Eventually, the temperature becomes so great that iron nuclei are 

photodissociated, and then electrons begin to disappear from the core; each disappearing 

electron com bines with a proton in a nucleus in order to form a neutron and a neutrino. 

Because the pressure is provided by electron degeneracy— even at temperatures great 

enough so that an individual photon can break apart an iron nucleus— this reaction 

causes the core (now more than a solar mass) to  collapse. The collapse continues 

until the core’s density overshoots that of the nucleus of an atom . In what has been 

the standard model for many years, the core then rebounds to produce a shock wave 

that drives away the outer portion o f the star. The nuclear-density core remains as a 

neutron star (or possibly collapses to  form a black hole). Recently, pervasive evidence



for asym m etry in core-collapse SNe and the difficulty of getting core-bounce models 

actually to produce a simulated explosion together suggest that some other mechanism, 

like bipolar jets em anating from the neutron star or black hole, may actually produce 

the explosion. In any event, the spectrum of a SN Ib— as if the progenitor were, before 

core collapse, stripped of its outerm ost hydrogen envelope— shows little or no evidence 

for hydrogen. Further, the relatively bland spectrum of a SN Ic— <is if the progenitor 

were, before core collapse, stripped o f both its hydrogen and helium envelopes— shows 

little or no evidence for hydrogen and helium.

-A. SN I for which there exists a good optical spectrum is usually labeled "SN l a ' , 

"SN Ib". or "SN Ic” . but a SN II— even one with a good optical spectrum — is usually 

classified spectroscopically as sim ply "SN 11” . Figure l . l  shows optical spectra o f SN II 

I992H [Clocchiatti et al.. I99C]. .At maximum light and for at least a few weeks after 

maximum light, the spectrum of a4;ypical SN II is characterized by wide features (with  

doppler width o f more than 10' km s ~ ') .  Usually a few P-Cygni profiles [Mihalas, 1978], 

each of which results from the scattering of light off of a particular atomic transition in 

the ejecta above the region in which the continuum of the spectrum is formed, can be 

identified. A P-Cygni profile has a blueward absorption trough and a red ward emission  

feature. After the spectrum has been adjusted in order to remove the relative line- 

of-sight velocity com ponent between the observer and the SN, the emission part of a 

P-Cygni profile peaks near the rest-frame wavelength of the transition that gives rise 

to the profile. A P-Cygni profile in a typical SN II is broad enough to imply that the 

profile forms in the ejecta.

Recently, "SN Iln” , a peculiar spectroscopic subclass of SN II, has been defined. A  

SN Iln has narrow emission lines, probably indicative of slowly expanding circumstellar 

gas with which the rapidly expanding ejected material interacts. Figure 1.2, copied 

from a preprint o f Leonard et al. [1999], shows an optical spectrum of the SN Iln 1998S;
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compare with Figure 1.1. M any an emission feature in the spectra of SN1998S has a 

com ponent narrow enough to be unresolved in the figure. Particularly interesting, how­

ever, are ultraviolet spectra taken by the Hubble Space Telescope. Figure 1.3 shows such 

a spectrum  around maximum light, several days after the spectra in Figure 1.2. Note 

that the strongest features in Figure 1.3 are as narrow as can be resolved by the detec­

tor (which at these wavelengths cannot resolve features due to a radial wind component 

slower than about 300 km s “ *), and there appear to be features unresolved even at this 

scale. Nevertheless each o f the top and bottom plots displays a prominent P-Cygni 

profile that suggests scattering in an envelope that is expanding around 10  ̂ km s~* (as 

compared with the characteristic speed of 10“’ km s~* for the ejecta).

-\lthough the SN II has tw o photometric subclasses (SN II-L and SN II P ), distin­

guished by the shape of the optical light curve, the SN Iln exhibits a light curve that 

does not fit well into the photom etric classification scheme. The optical light curve of 

a SN Iln declines, in comparison with other SNe II, very slowly Just after maximum  

light, probably because of light em itted by the interaction of the ejected material and 

the circumstellar wind.

1.2 M otivation for a Simple M odel

Radio observations of SNe II [Weiler et al., 1992] and of SNe Ib and Ic [Van Dyk et al., 

1993] imply that a wind blown off from the progenitor of a core-collapse SN may interact 

with the ejecta. As indicated in the previous section, recent observations of SN Iln 1998S 

have revealed narrow spectral features that suggest the presence of a circumstellar wind. 

High-resolution spectroscopic observations of these features provide the opportunity to  

test models o f line formation in the wind.

A  circumstellar wind is accelerated away from a star by radiation pressure. A small



mass element in the wind will, after initial acceleration near the surface o f the star, 

asym ptotically approach a terminal radial velocity. The wind expansion speed (up to 

about 10  ̂ km s" ')  is much smaller than the expansion speed (more than lO"* km s “ ') of 

the ejecta. Because the width of an observed spectral feature is related by the doppler 

effect to  the speed of the radial expansion, a line formed in the wind will appear much 

narrower than a line formed in the ejecta. In the simplest wind model, the luminosity 

and mass-loss rate of the star were constant around the time during which a spherically 

symmetric wind (now interacting with light from the SN) was initially accelerated, and 

the wind under consideration exists in a shell that expands at the terminal speed.

Especially for SNe la, simple, spherically symmetric models [Branch et al., 1983, 

.leffcry et al., 1992, Fisher et al., 1997, Millard et al., 1999, H atano et al., 1999] of 

line formation in the SN ejecta have taken advantage of hom ologous expansion, the 

proportionality between the speed o f an ejected mass element and its distance from 

the center of the explosion. A large, isotropic velocity gradient at every point in the 

homologously expanding ejecta provides an ideal context for application of the Sobolev 

[1960] approximation to the mathematical representation of line radiative transfer. If, 

in a frame o f reference at rest with respect to atmospheric material, the atm osphere is 

considered to be transparent except for a few individual wavelengths (lines) at which the 

atmosphere is som ewhat opaque, then in the Sobolev approximation a monochromatic 

light beam will interact with the atmosphere only at one location in the atmosphere 

for each line. A model derived from the Sobolev approximation is very com putationally  

efficient and so allows for rapid identification of the dominant, relatively wide features 

in a SN spectrum; the spectrum-fitting process gives insight into the physical structure 

of the SN ejecta. Can such a model be extended or changed in order to  give insight into 

the formation of the very narrow lines that appear to form in a circumstellar shell?

The primary difficulty in adapting to this task a model based on the Sobolev method



is that for a constant-radial-velocity wind, the velocity gradient becomes zero along the 

radial direction. Nevertheless, I show that the Sobolev method can be used in order to 

produce synthetic line profiles so long as the intrinsic width of the line is vanishingly 

small. Although this discussion covers only the case in which the shell has a single line 

(or multiple lines spaced far enough apart in wavelength space), extension to the case of 

line blending, in which light scatters off of more than one line before leaving the shell, 

is straight-forward.
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Chapter 2

Beam —Line Resonance in an 

A tm osphere w ith Power-Law  

Expansion

In order numerically to calculate a line profile as seen by a distant observer, one must 

describe, in terms of the m odel’s geometry, the propagation of a monochromatic light 

beam through the line-forming region. Only then can a representative sample of beams, 

that are directed toward the distant observer, be combined in order to produce a syn­

thetic profile.

2.1 General Description o f the M odel

The model under consideration is a spherical shell of radially expanding gas whose 

opacity com es only from narrow lines and whose expansion speed is independent o f  

radial coordinate. For the developm ent o f the initial material related to the propagation  

o f a beam through an expanding atmosphere, however, 1 begin by discussing the more

11



general case o f power-law expansion. This provides a context in which one can see the  

mathematical difficulties introduced by the assumption of a constant-speed wind.

2.1.1 Power-Law Expansion

Consider a spherical shell containing a gaseous medium that is expanding radially and 

has a radial-power-law velocity field with

a
00, (2.1)

where Va(r) is the magnitude o f the atm osphere’s radial velocity at d istance r from the  

center of symmetry; Ua(^o) =  Oq; and the power-law index for the velocity field is a. The 

inner and outer boundaries of the atmosphere must be chosen such that everywhere in 

the shell Ca(r) c, where c is the speed of light; otherwise a time-independent treatment 

is not valid, .\trnospheric expansion speeds must be much smaller than the speed of light 

because the geometric analysis presented here assumes that the size of the atmosphere 

and shape of the velocity profile do not change significantly over the time required for a  

beam to traverse the atmosphere. Moreover, calculations are greatly simplified by the  

first-order approximation for terms involving % /c. For a <  0 the velocity constraint 

applies to the inner boundary, for which r =  /2[; for a >  0, to the outer boundary, for 

which r =  R q -

2.1.2 Line Opacity and Resonance

For points near the origin o f a coraoving frame— a frame o f reference whose origin is 

stationary with respect to  the atmosphere near that origin— the opacity as a function o f  

wavelength as measured in the comoving frame is, in the model under consideration, a  

superposition o f narrow (non-overlapping) profiles, each corresponding to an atom ic (or.

12



in principle, molecular) line transition, which I shall call a ‘line” . For a monochromatic 

specific intensity beam, which I shall call a ‘beam ” , whose wavelength, as measured by 

a comoving observer on the beam path, lies between sufficiently separated line profiles, 

the atm osphere in the neighborhood of the observer is transparent to the beam. In 

the opposite extreme, a comoving observer who finds the beam ’s wavelength to be at 

the center of a line profile occupies a resonance potnt for the beam and the line, and 

surrounding the observer is a resonance region in which the beam interacts with the 

line.

2.2 An Unbounded Atmosphere

,\s  a beginning, let us ignore inner and outer boundaries of the line-forming region. 

Consider a region of space filled with a gaseous medium with bulk motion that is radial. 

.\ssurne that the characteristic thermal speed for a gas particle is small in comparison 

with the local mean radial velocity and that the atmosphere is transparent except for a 

single line, whose wavelength dependence in the comoving frame is given by a normalized 

distribution function, (p, centered at A'.

2.2.1 Impact-Parameter Representation of the Beam

Consider a beam that propagates through this atmosphere. Because of spherical sym ­

metry, the beam ’s trajectory may be fully described by its impact parameter, p, and 

one may w ithout loss of generality describe the geometry of the system  in terms of the 

plane that contains the center of the velocity field and the beam path.

In Figure 2.1, the beam is represented by a thick line and propagates to the right. 

The beam path coordinate, s, is zero at C , which on the beam is the closest point to 

O, the center of the radial velocity field. In this diagram, s is positive for points on the

13



beam path —s

Figure 2.1: The beam path is represented by the horizontal line at top. The positive 
distance to a point at negative beam path parameter s is indicated by - s .  On the y -  
axis at distance p  from the center O  of  the velocity field, the point of the beam's closest 
approach to O  is C . On the incoming (left) side o f C . .s is negative; on the outgoing  
(right) side o f C ,  s  is positive. The distance from O  to the point at s is Æ(s).
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beam to the right of C; negative, to the left of C .  The distance from O  to the point at

•s on the beam is Æ (i) =  \ / .

Let the wavelength that a comoving observer at C  ascribes to the beam be C. Al­

though a com oving observer at C  is not stationary with respect to O, there is no 

com ponent of atm ospheric velocity along the beam at C . and so, to first order in ve­

locity, t is the sam e wavelength observed for the beam by any (non-comoving) observer 

stationary with respect to O.

At this point I introduce the unitless quantities, û =  s /ro  and w =  p /ro, which will 

simplify many of the expressions that follow.

Let A(iz) be the wavelength that a comoving observer at a point corresponding to  

It =  s/ci) on the beam ascribes to the beam. According to the first-order Doppler 

correction,
r o «  e „ (  A ( r o u )  )

A(ü) =

where

i2(rou)
L (2 .2)

is proportional to the fractional difference between the comoving wavelength at ft =  s / m  

and f. the com oving wavelength at C .  So long as a > 0, /„ (û ) increases m onotonically  

with li. In particular this means that for both a constant-speed wind (a =  0) and a 

hom ologously expanding atm osphere (a =  1), the wavelength o f a beam becom es ever 

longer, in the com oving frame of reference, as the beam traverses the atm osphere.

For the case in which m =  p/ro =  1, Figure 2.2 illustrates the beam’s wavelength as 

perceived by com oving observers along the beam path. The horizontal axis represents 

li =  s /ro , the beam path parameter in units of m. The vertical axis represents f„{ü).  

For each curve, a positive slope indicates local redshifting of the beam; a negative  

slope indicates local blueshifting. The curves for a <  0 show that the beam blueshifts,

15
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retlshifts, and then blueshifts as it passes through the atmosphere. The curve for a =  0 

shows that the beam always redshifts, but it asymptotically approaches a constant 

wavelength at large distances. The curves for a >  0 show that the beam always redshifts 

as it passes through the atmosphere and that the beam obtains every wavelength in an 

unbounded atmosphere. Note that the curve for a =  1 is a straight line, and so the 

beam redshifts linearly with increasing u in the case of homologous expansion.

For a given velocity field, to hold w =  p/r^  fixed is to specify a particular trajectory, 

but many distinct monochromatic beams share the same trajectory. One must also fix 

(. in order to specify a particular beam. As the beam travels through the atmosphere it 

may appear to a cornoving observer on the beam to be at the central wavelength. A', for 

the opacity distribution function. <p. Any such observer is located at a resonance point 

for the beam (determined by ib and t.) and the line (determined by 0 ).

For a given beam and a given line. Figure 2.2, in which a resonance point would 

be identified by the intersection of (1) the curve corresponding to a particular value 

of a and (2) the horizontal line corresponding to a particular value of A', implies that 

there will be zero, one, or two resonance points in an unbounded expanding atmosphere 

with a power-law velocity profile. Specifically, for a < 0 there will be zero, one, or two 

resonance points: for a =  0, zero or one resonance point; and for a >  0, exactly one 

resonance point. Below we shall consider as specific examples a =  - 1 ,  a =  0, and a =  1. 

which together cover the three qualitatively distinct types of atmosphere that the model 

under consideration describes.

In order to  calculate the optical depth of the resonance region later, we effectively 

invert A by finding a function Üa such that the beam path coordinate û for a particular 

comoving beam wavelength A is given by Üa{ L (i .  A) ), where

Aj) =  f -p  -  1 —  (2.4)
IA| Wo

17



is proportional to the fractional difference between Aj and A ,.

For a <  0, in which case there are as many as two values of a that correspond 

to a given com oving wavelength, we define two functions, and 6^+, such that 

Ü„_ ( L{C, A) ) is one of the two values of u for which the beam has comoving wavelength 

A, and ( L { i ,  A) ) is the other of the two values. Then

A( t/a_ ( A) ) ) =  A (  { Lie, A) ) ) =  A. ( 2 . 5 )

The solution for a =  - 1  is

=  , 2 .6 )

where (:) is defined for 0 <  |c| < and (z) is defined for |z | < l / 2 w .

Moreover.

respectively, as is evident from Figure 2.2, in which the curve for a =  - 1  has an 

extremum at each o f « =  s / tQ =  s /p  =  ± 1 . Finally, C/_|.j,(0) is undefined, but

t - i _ ( 0 )  =  0, and C /_i_(z) is well defined for z in the neighborhood of 0.

For any a >  0 one needs only a single function (%, such that

A ( r , ( I ( t A ) ) )  =  A. (2.8)

For 0  =  0, Üij{z) is defined only for |z | < 1, and

.lust as for o <  0, a corresponding value o f  « will only exist for A sufficiently close to
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(. because there is a maximum atmospheric velocity difference between a point on the 

beam path and point C  in Figure 2.1. For a >  0, (Ja[2) is defined for any value of j .  

The simplest exam ple corresponds to a =  1, for which

Ü\{z]  =  z.  (2.10)

2.2.2 Common-Resonance-Point Representation

Now that the basic variation of comoving wavelength with beam path parameter has 

been presented, the objective becomes to exam ine the region surrounding a resonance

point. Figure 2.3 locates on the y-axis a resonance point P  for a line centered at

A' and a monochromatic beam, whose trajectory is identified by (/-coordinate p  and 

direction-angle 6. By varying 61, one may consider many beams that share a common 

resonance point. The new beam path parameter, s, increases in the direction of beam 

propagation and gives the distance to the resonance point, P.  The impact parameter 

in this representation p =  p  sin 9. The distance from O to a point at .s on the beam 

path is

R { s )  =  yjp^  +  5 ^ 4 -  2 p s  cos# . (2.11)

The comoving beam wavelength at C  is now

g =  1 -  ^ ^ c o s é ^ l  A', (2.12)

and as before we introduce unitless quantities, w =  p / r o  and u =  s/rq , that will simplify 

expressions that follow. So, the comoving beam wavelength at a point corresponding to 

u on the beam is now

A(u) =
, , rou +  p cosfl U a(/2(rou ))l ^
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Figure 2.3: The beam travels from the upper left to the lower right. Points O  and C  
and distance p  have exactly the sam e meaning as in Figure 2.1. The beam has comoving 
wavelength A' at the resonance point P  on the positive t/-axis. The direction angle 6 
measures the angular separation at P  between the incoming beam and the negative 
y-direction. The distance between the resonance point and the the origin O  is p.  The 
distance between a point on the beam and P  is s for points on the outgoing side o f P  
and - .s  for points on the incoming side of P . The distance between O  and a point on 
the beam is R{s) .
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Plugging in the power law for velocity and only keeping first-order terms in % yields

A(«) A', (2.14)

where

/ a ( “ ) =  [u +  l e c o s - f  a'  -f 2 t e i i c o s -  w“ cos(f. (2.15)

For the case in which lu =  p/ro =  1, Figure 2.4 displays some curves that correspond  

to a =  - 1 .  The horizontal a.xis represents u =  s/ro-  The vertical axis represents / _ i ( u ) .  

Each curve corresponds to a particular value of the direction angle, ff. Note that the 

curve corresponding to 90° is just the same as the a =  - 1  curve in Figure 2.2. . \t  

0 =  90°, the beam passes through the resonance point at impact parameter distance  

from the center o f the velocity field; the resonance point is situated mid-way between  

the point of maximum blueshift and the point o f maximum redshift for the beam. A s ti 

decreases from 90°. the resonance point moves closer to the point o f maximum redshift 

until ê  =  45°, where the resonance point is the point of maximum redshift for the beam. 

So. at =  45°. the beam is blueshifted in either direction away from the resonance point. 

For 0° < É( < 45° the beam encounters the resonance point as its comoving wavelength  

asym ptotically blueshifts toward a constant value. .As 6 approaches 0°, the beam passes 

ever closer to the center of the velocity field, where velocities are very large, and so the 

maximum redshift. and maximum blueshift o f the beam become arbitrarily large. The  

case for 90° <  0 <  180° is very similar to  the one just described, but the resonance point 

moves through the point o f maximum blueshift; each corresponding curve is sym m etric  

about the origin with a curve in Figure 2.4.

In a manner similar to that of Figure 2.4, Figure 2.5 displays some curves that 

correspond to the a =  0 case. The vertical axis now corresponds to fo(u).  Again note  

that the curve corresponding to 90° is just the sam e as the a =  0 curve in Figure 2.2. .As
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Figure 2.4: For each of several values o f B, which is proportional to the fractional
difference between A' and the com oving wavelength at u =  s/rq , is plotted against u.
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9 decreases toward 0°, the comoving wavelength at the resonance point asym ptotically  

approaches the maximum redshift limit for the beam. ,\s  9 increases toward 180°, the 

rem oving wavelength at the resonance point asym ptotically approaches the maximum  

blueshift limit for the beam.

For a =  1, f \ (n)  =  ii, and therefore A{«) =  [14- i lvq/c\X' ,  are independent of w 

and 9, just as / i (n ) ,  and therefore A(u), are independent of w. The beam redshifts 

uniformly as it traverses the atmosphere.

Now A( u) can be inverted to produce the functions, U,i^ and analogous to 

and C'a above. f/„( T(A', A) ) is the value of the beam path parameter u such that the 

com oving wavelength at the corresponding point on the beam is A.

For Ü =  - 1 ,

U- i .
1 ±  \ / l  -  {2[(nr 4  cosé^|sind}* 

2 [ w :  +  cos 61]
— cos 9 w. (2.16)

is defined for

and (z) is defined for

(2.17)

1
2 sin 9

cos 9 < wz  <
1

-  2 sin 9
— cos 9. (2.18)

Figure 2.6 indicates the range of values of z for which U - i ^ ( z )  are defined. The hor­

izontal axis corresponds to 9, the beam path direction angle, and the vertical axis 

corresponds to  wz,  a normalized wavelength parameter. t7_i_ is defined for all points 

between the top and bottom  curves; f/_t+ is, too, except for points along the central 

curve.
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Figure 2.6: The highest contour represents the upper limit o f the product wz  such that 
U^\ ^(z )  are defined; the lowest contour represents the lower limit such that they are 
defined. For points along the central contour, U-i^  is undefined, and so its domain is 
com posed of two disjoint sets.
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Figure 2.7: The higher contour represents the upper limit of z  such th at Uo{z)  is finite; 
the lower contour represents the lower limit.
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Lu(-) is expressed in a manner that will simplify optical depth integrals below.

—  '30

d| .in 6
\/1 —[;+i;os sp

+  0C

if 3 <  - 1  -  COS B 

w if - 1  — COS d < z < 1 -  cos B 

if z >  1 — cos B

(2.19)

Similar to Figure 2.6, Figure 2.7 indicates the range of values of z for which f.'o(z)

has finite value. The vertical axis corresponds in this case to a simpler normalized

wavelength parameter, z. C'o is finite for all points between the upper and lower curves. 

For 0  =  1.

D l(z) =  z. (2.20)

and so, regardless of B (and w),  (z) is defined for every z.

2.2.3 Optical Depth and the Resonance Region for o = Ü

We shall now exam ine the optical depth o f the resonance region in a constant-speed  

wind atmosphere, for which o =  0.

Integrated Line O pacity

.Assume that the integrated line opacity at radial coordinate r can be approximated by

h'b(r) =  A'o, (2 .21)

a radial power law. The power-law index is b, and the integrated line opacity at radial 

coordinate ro is A'o- Then the total optical depth of the resonance region can be written
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as

/ »+oc r+oo
K h { R { s ) ) é ( \ ( s / r o ) ) d s  =  ro I f ib{R{rou)  ) 4>{\ {u) ) du,  (2.22)

-CO J —'30

an integral over the entire beam path. The assumption of constant raass-loss rate for a 

constant-speed wind gives a radial power-law index of - 2  for the atmospheric density. 

To assum e that the integrated line opacity follows the matter density is to assume that 

b =  - 2 .  This assum ption is correct only if the level populations associated with the 

source o f opacity are independent of radial coordinate. Nevertheless, the assum ption  

is made here as a rough approximation so that expressions below may be evaluated  

explicitly.

Line Profile

We may evaluate the integral directly if we approximate the comoving line profile as a 

rectangular impulse of width 2c and height l /2 e .  Then

0 ( \ )  =
0 if |A -  A'l > c

(2.23)
l /2 e  otherwise

and ( =  <t\/3 gives a distribution with standard deviation <r. This is of course an unre­

alistic shape for the comoving line profile, and this shape is not a useful approximation  

unless the actual line width is very small. Nevertheless, the discontinuity at each edge of  

this artificial com oving line profile produces, in the figures that follow, easily recogniz­

able features, typically o f the cusp sort. T he features, though unrealistic, do allow one 

to develop an intuitive grasp of the model and to verify the validity of the expressions 

derived below.
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An approxim ate expression for the optical depth of the resonance region becomes

T  fi '̂o{+€) (lu
T

where

_  T  du

 ̂ Jva(-e) -h 2wUC0sff-h lî

T =  (2.25)

and

In the lu =  I case, Figure 2.8 displays for each of several values of = a contour that 

represents the boundary of the line in physical space. Each axis represents, in units 

of To, the distance from the resonance point, and the plane o f the graph contains the 

center of the velocity field. For a beam that travels on a non-radial trajectory and has 

its incoming side on the left, a contour corresponds to ) on the left half (u^ <  ()) of

the graph and to on the right half (u , >  0) of the graph; here, Uj. is the horizontal

distance from the resonance point in units of ro, and Uy similarly corresponds to vertical 

distance. As w changes, the entire figure maintains its shape, but the scale is directly 

proportional to  w.  On its way toward the resonance point, a beam that crosses the 

contour enters the line; if the incoming beam does not cross the contour, then the 

incoming beam is entirely within the line. On its way from the resonance point, a beam 

that crosses the contour departs from the line; if the outgoing beam does not cross the 

contour, then the outgoing beam is entirely within the line.

.At large distance from the resonance point, each contour converges to an incoming 

asym ptote and to  an outgoing asym ptote. The incoming asym ptote corresponds to a 

critical angle, 0 -  =  arccos(e — 1), and the outgoing asym ptote corresponds to a critical 

angle, =  arccos(l —gj. By definition, for a collection of beams that share the same
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Figure 2.8: The horizontal axis represents u^, the horizontal distance from the resonance 
point in units o f tq. Similarly, the vertical axis represents Uy, the vertical distance from 
the resonance point in units of tq. For lir <  0, contours of Uo{—e) are displayed, and 
for «I >  0, contours o f Uo(e)  are displayed. This figure corresponds to the w  =  1 case.
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resonance point, every beam is in the line at least near the resonance point. For 9 <  9^,  

the entire outgoing beam is in the line: for 9 > 9_,  the entire incoming beam is in the 

line. For r <  1, there is no beam entirely within the line because 9+ <  9^.  When - =  1, 

9_ =  9^ =  90°, and so only the beam with 9 =  90° is entirely within the line. For 

L < £■ < 2. the line is sufficiently wide so that Q° < 9^ < 9+ <  180°, and every beam  

with 9^ < 9 < 9^ IS entirely within the line. For £ >  2. every beam that shares the  

resonance point is entirely within the line.

A pproxim ate E xpression for Total Optical Depth

Evaluation o f the integral leads to an approximate expression for r when a =  0:

T
T =  [g(cosg +  £) -  g (cos g -  £•)], (2.27)

where

+7t/ 2 if I  > 1 

<7(x) =  { _7r/2 i f x < - l  • (2.28)

arcsin(x) otherwise

Figure 2.9 illustrates the relationship between the resonance region’s normalized tota l 

optical depth t / T  and the normalized line width c. N ote that because of symmetry, a  

curve corresponding to 9 corresponds as well to 180° — 9, that the total optical depth

of the resonance region becomes large as the beam’s direction becomes radial, and that

each curve converges at e =  0 to the total optical depth o f the resonance region for a  

line with a Dirac-delta-function profile. For 9 =  90° the optical depth increases as the  

normalized line width £ grows from zero (corresponding to  the delta-function profile) 

until the optical depth reaches a maximum at • =  1; at this point, the line is minimally 

broad enough so that the beam is entirely in the fine. A s s  increases beyond unity,
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8 = 90%
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0 = 70° or 0 = 110° 
0 = 55° or 0 =  125°
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-  0 =  10° or 0 = 170®

Figure 2.9: The normalized total optical depth r /T  of the resonance region is plotted  
against the normalized line width £ with a =  0 and w =  1, and for various values of 9.

32



the total optical depth diminishes because the decreasing height of the comoving line 

profile is no longer offset by increase in the (now unit) fraction of the beam that is in 

the line. In fact, the total optical depth r becomes proportional to 1 / î ,  and so the 

curve becomes a straight line with negative unit slope on the logarithmic plot. For 

<  90° (ff > 90°) the optical depth increases as î  grows from zero until the optical 

depth reaches a maximum that corresponds to the line s being minimally wide enough  

so that the outgoing (incoming) beam is entirely in the line. As the line width increases 

further, the total optical depth diminishes at first but then reaches a second, lower, 

local maximum that corresponds to the minimum line width such that all points on the 

beam are in the line. Finally, as for 9 =  90°. further increase in the line width brings 

down the total optical depth along with the height of the comoving line profile.

Figure 2.10 represents the resonance region’s total optical depth as a function of 

the beam's direction angle for values o f r up to unity. For every value of £, the curve 

diverges to infinite optical depth as the beam ’s trajectory becomes radial. This makes 

sense because A'_2 (r) becomes arbitrarily large as r decreases, and the impact parameter 

p  for the beam decreases to zero as the trajectory becomes radial; the beam passes 

through a region of arbitrarily large opacity for a trajectory sufficiently near a radial 

orientation.

Consider first the curves corresponding to the smallest two values o f s . Note that 

for both of I =  0.001 and s =  0 .01, the total optical depth is essentially the sam e. (For 

a model in which a supernova is surrounded by a constant-velocity wind, useful values 

o f c lie between about 0.001 and 0.01). For a very narrow line ( f  1),

IV ( s in -
1 -f 2 cos2 É»

(2.29)
3 sin* 9

The optical depth has practically reached the limit corresponding to  a delta-function
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Figure 2.10: Like Figure 2.9 but normalized total optical depth of the resonance region 
as a function of 9 and for various values o f the normalized line width s..
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line profile, at least for 9 larger than about 10° and smaller than about 170°, where the 

narrowest-line curves begin to separate from one another. Note that as 8 approaches 

90°, t / T  approaches 2, and so because o f symmetry, the optical depth at the resonance 

point is r .  Therefore, T  =  roA'u/2 is just the optical depth at the resonance point 

for a line with a delta-function profile and a beam with a direction angle of 90° in 

an unbounded constant-veiocity atmosphere, and for w =  1. In this case, T  is also 

clearly the minimum optical depth at the resonance point; any value of 8 other than 

90° corresponds to an optical depth larger than T.

Next consider each curve corresponding to a value of € less than unity. For 8 =  90°. at 

a certain point on the outgoing (incoming) side of the beam, the beam leaves (enters) the 

line. .A.S 8 decreases (increases), that point moves farther from the resonance point. For 

8 < 8^,  the outgoing beam never leaves the line, and so the optical depth accumulated  

on the outgoing side of the beam suddenly decreases as, with decreasing 8, the outgoing 

beam, no longer increasing in fractional path length inside the line, retreats more rapidly 

from the center o f the opacity distribution. (For 8 > 8^,  the incoming beam is always 

in the line, and so the optical depth accumulated on the incoming side o f the beam  

suddenly decreases as, with increasing 8, the incoming beam, no longer increasing in 

fractional path length inside the line, retreats more rapidly from the center of the opacity 

distribution.) So 8 =  8^ (0 =  (9_) corresponds to the left (right) cusp in each of the 

curves for £ < 1; for exam ple, the left (right) cusp corresponding to £ =  0.55 is expected  

to occur at about arccos(l — f )  % 63° (or arccos(e -  1) ~  117°), as shown in the figure. 

The curve corresponding to  the sm allest value of e  has cusps that are above the top 

edge o f the figure.

Next, consider the curve corresponding to £ =  1, which is the minimum value such 

that the entire beam is in the line for 8 =  90°. As 8 decreases (increases), the outgoing 

(incoming) side o f the beam, com pletely within the line, retreats more rapidly from the
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center of the opacity distribution, and so its contribution to the optical depth decreases. 

. \ t  first, the contribution from the incoming (outgoing) side decreases as well because 

the beam ’s entry (departure) point into (from) the line rapidly moves closer to the 

resonance point from infinite distance. , \ s  0 decreases (increases) further, however, the 

beam ’s trajectory eventually passes near enough to the center o f the opacity distribution  

so that the optical depth contributed by the incoming (outgoing) beam grows much more 

rapidly than the optical depth contributed by the outgoing (incoming) beam diminishes.

Figure 2.11 is just like Figure 2.10 except that curves are plotted for f >  1 instead 

of c <  1. Consider first the curves corresponding to 1 <  s  < 2. Because r > 1, the beam  

is entirely within the line for < ê < 0^.  For 0 within this range, r =  k T / s w ûï 0 oc 

CSC .\s  0 decreases below (increases above #^), we expect, in correspondence 

with the left (right) cusp in the figure, a sudden decrease in total optical depth as the 

incoming (outgoing) beam enters (departs from) the line at finite distance from the 

resonance point. In consideration of the curves corresponding to r > 2, we find that the 

the beam is always entirely within the line; so there are no cusps, and each such curve 

is given by a function proportional to esc 6.

For 9 approaching zero. Figure 2.12 shows the divergence of curves representative of 

Figures 2.10 and 2.11. Note that as 9 falls below about 10°, the curve for £ =  0.001 is 

distinguishable from the curve for £ =  0.01. Each curve’s linear nature on the left side 

of the figure arises because for small 9,

- . ^ [ 5
(2.30)

The small-^ dependence o f lo g (r /T ) on log#  is linear, and the slope is —I. because r / T  

is proportional to

Figure 2.13 shows the dependence o f r  on w for small î .  .A.s 10 decreases, the
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Figure 2.11: Like Figure 2.10 but for s  >  1.
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Figure 2.12: Like Figures 2.10 and 2.11 but with a logarithmic scale for the angular 
axis.
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Figure 2.13: Like Figure 2.10 but w ith s  =  0.005 and for several values o f w.
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resonance point moves closer to the center o f the velocity field, where the integrated  

line opacity A'_z(r) is larger. Basically, one of the curves for very small s  in Figure 2.10 

is multiplied by \ / w  in order to produce the curves in Figure 2.13.

A ccum ulation  o f  Optical D epth  and th e Shape of the R esonance Region

A c  a  p o i n t  c o r r e s p o n d i n g  Co u  =  s / V o ,  t h e  o p t i c a l  d e p t h  o f  t h e  a t m o s p h e r e  a l o n g  t h e  

i n c o m i n g  b e a m  p a t h  is

0 if u < l ' o ( - ï )

== ' [arctan ( +  cot g) -  g (c o s0 -  = )] if f /o (-? )  < “ <  ■

r if (1 > f 'o l+ f)
(2.31)

This expression allows us to visualize the shape of the resonance region by plotting a 

contour of constant optical depth for all beams arriving at a particular resonance point. 

Figure 2.14 displays a contour of constant optical depth r /T  =  0.1 for each o f the values 

of f  used in Figure 2.8, and the scale is the same as in that figure. For t / T  =  0.1, every 

contour o f constant optical depth is alm ost identical to the corresponding contour of 

constant Uq{ - - ) .

Figure 2.1-5 displays contours of constant optical depth r /T  =  1. The most sig­

nificant deviation from the contours of Figure 2.8 occurs for B near 90“ and c near 

unity.

In practice we are interested in narrow lines; that is, small values of e (between 0.001 

and 0 .01). For e =  0.005 and w  =  1 Figure 2.16 shows contours of constant optical depth  

for various values of t / T .  The contours are essentially identical on a scale large enough 

to include on the same graph both the center o f the velocity field at ( 0 , - 1 )  and the 

resonance point at the origin. For a narrow line, the resonance region is physically
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Figure 2.14: For the incoming beam in an unbounded atmosphere, a contour o f constant 
optical depth r /T  =  0.1 (for w  =  1) is plotted for each o f several values o f e.  The  
resonance point is at the origin, and the center of the velocity field is at (0, —1). Compare 
with Figure 2.8.
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Figure 2.15: Like Figure 2.14, but for r /T  =  1.
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Figure 2.16: For the incoming beam in an unbounded atmosphere, a contour o f constant 
optical depth (for £ =  0.005 and w =  I) is plotted for each of several values o f normalized  
optical depth t/T. The resonance point is at the origin, and the center o f the velocity  
field is at (0, —1). Although several contours are plotted, they overlap com pletely on 
this scale.
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narrow and is elongated in the radial direction.

Figure 2.17 shows a magnified view of the vicinity o f the resonance point. Note that 

for values o f optical depth t greater than T  the contour passes through the resonance 

point because the incoming beam does not accumulate the specified optical depth before 

it reaches the resonance point. For a delta-function line profile, if (9 =  90°, and in =  I, 

then T  is the optical depth of an incoming beam at the resonance point. The optical 

depth at the resonance point is minimum for a beam with 0 =  90°, and so increasing 

optical depth for a contour causes the contour first to pass through the resonance point 

at éf =  90°. For larger values of optical depth, a contour passes through the resonance 

point at an angle farther from 90°.

For t / T  =  1 Figure 2.18 illustrates the shape of the resonance region for several 

values of w.  Remember that w is just the distance of the resonance region from the 

center of the velocity field in units o f ro, and so the center of the velocity field is located  

at (0. - w )  in this figure. The effect o f increasing w is strongly to elongate and weakly 

to widen the resonance region.

For the very same contours as in Figure 2.18, Figure 2.19 presents a magnified view  

of the region near the resonance point. Note that even though the total optical depth  

for any direction angle decreases with increasing w,  the contour for w =  0.2 more closely  

approaches the resonance point than does the contour for w =  0.6. This merely reflects 

that for small w the resonance point is near the center of the distribution of integrated  

line opacity, and so most of the optical depth is accumulated very near the resonance 

point.
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Figure 2.17: Like Figure 2.16, but a close-up view near the resonance point.
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Figure 2.18: Like Figure 2.16, but with each contour corresponding to t / T  =  1 for a
particular value o f w .  T he center of the velocity field is now located at (0, — in).
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Figure 2.19: Like Figure 2.18, but a close-up view near the resonance point.
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2.3 A Bounded Atm osphere with a =  0

Let =  R x/ tq and wo =  R o / r o  represent, respectively, the inner and outer boundary 

radii in units of tq. Then the location of the resonance point must be such that w\ <  

w < Wo- A t the resonance point, the inner boundary subtends an angle.

ê\ =  arcsin  ̂ . (2.32)

For 0\ <  0 <  180° the incoming beam does not accumulate optical depth until it 

is within the outer boundary, and so every contour of constant optical depth must lie 

between the outer boundary and the resonance point. For 0 ° < S the incoming 

beam is considered to originate on the inner boundary, and so every contour of constant 

optical depth must lie between the inner boundary and the resonance point.

The total optical depth of the resonance region becomes

T —
z w  sin ff

arctan

where

(i_ =  <

and

/T (+ = ) -t- in COS 0
V w sin 0

ii_

r ( z )  =  <

 ̂ Uo{z)

) /  "^1 - sin ' 0

- \ / w 6  - w^sia^0

J w l  -  w sin^ 0 —

 ̂ -  arctan ^
TT( — c o s  6/

w sin & )]■

if Uo{z) <  u_ 

if C'o(^) >  «+

(2.33)

(2.34)

(2.35)

(2.36)

Like Figure 2.9, Figure 2.20 illustrates the relationship between the resonance re-
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Figure 2.20; Like Figure 2.9, but with atmospheric boundaries, =  0.5 and wq  =  1.5.
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gion’s normalized tota l optical depth r /T  and the normalized line width The atm o­

spheric boundaries have been chosen such that w\ =  0.5 and wq =  1.5. As in the case of 

an unbounded atm osphere, a cusp in one of the curves still corresponds to  a minimum  

lincwidth such that the beam is always in the line in either the incoming or outgoing  

direction, or in both directions at once for 0 =  90°. In the bounded case, however, 

•‘entirely in the line” has changed in its meaning to imply that every cornoving observer 

on the beam path but only in the bnunded volume sees the beam within the line. In the 

unbounded case the cusp is situated at a value of r such that =  d for the left cusp, 

and 0 ^ — 9 for the right cusp. In the bounded case for 9 > 9\. the cusp is situated at 

a value of f  such that 0  (f)  identifies a point on the outer boundary for the left cusp, 

and U { ~ - )  identifies a point on the outer boundary for the right cusp. For 9 < 9{ the 

left cusp is found in the sam e way, but the right cusp is situated at the value of f  such 

that U { —z) identifies a point on the inner boundary. Note that because the path length  

through the atm osphere now depends (discontinuously) on 9, for large values of f  the 

dependence o f r / T  on 9 is not so straight-forward as it was in the unbounded case. In 

particular, for large f , the total optical depth does simply become larger as 9 becomes 

smaller.

Like Figure 2.10, Figure 2.21 represents the resonance region's total optical depth  

as a function o f the beam ’s direction angle for values o f e up to the critical value

= 1/ 1 -
w

Wo
(2.37)

which is the minimum value o f e  such that the beam is entirely within the line for the 

bounded case. In this figure, c , w  0.745 because w =  1, and mo =  1.5. T he most 

striking difference from Figure 2.10 is that the curves corresponding to the larger values 

o f f  do not appear to  diverge for 9 approaching 0 and 180. In fact, there is no divergence
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Figure 2.21: Like Figure 2.10, but with atmospheric boundaries, w; =  0.5 and xüq =  1.5.
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for : =  constant >  0. For e <  s , , the total optical depth has a local minimum a,t 0 =  90°, 

just as for £• <  1 in the unbounded case. .As ë  decreases (increases) from 90°, th e total 

optical depth increases until the outgoing (incoming) beam is entirely in the line; then 

there is a cusp because the optical depth contributed by the outgoing (incoming) beam  

suddenly begins to decrease. In the unbounded case the angle corresponding to  this 

cusp is 0+ ( ë - ) ,  but in the bounded case, the angle is larger (smaller) because of the 

atmospheric outer boundary. .As 0 becomes still smaller (larger), the total optical depth  

inevitably begins to rise again as the opacity sampled by the incoming (outgoing) beam 

increases. Eventually, however, the total optical depth reaches a maximum value at the 

maximum (minimum) angle such that the beam segment between the inner boundary 

and the resonance point is entirely within the line. This corresponds to the left most 

(right m ost) cusp. As £ increases toward

w
(2.38)

the cusp angle increases (decreases) toward 9i (or 180° -  É>i). When - =  £2, the line is 

minimally broad enough so that the entire beam segment between the inner boundary 

and the resonance point is in the line for a beam tangent to the inner boundary (that 

is, for & =  9\).  In this example we have £2 % 0 .8 6 6 , and so the cusp angle continues to 

increase (decrease) for each subsequently larger value of 5  in Figure 2.21.

Figure 2.22 is just like Figure 2.21 except that curves are plotted for r > instead  

of c <  Cl. T he left-m ost (right-m ost) cusp is located at the same angle, 30° (or 150°), 

for every curve except the one corresponding to  £1  ss 0.745 < £3 . Every other curve 

corresponds to  £ >  £ 3  % 0 .8 6 6 ; for each of these the line width £ is large enough so  that 

every beam path crossing the inner boundary is completely within the line between  

the inner boundary and the resonance point. As the line width increases from £ , ,  two
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Figure 2.22: Like Figure 2.11, but with atmospheric boundaries, w \  =  0.5 and w q  =  1.5.
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central cusps appear. Each of these corresponds to an angle at which the beam is just 

barely entirely within the line. The central cusps move outward with increasing 5  until 

£ becomes

wf
, 1 ---------------- . ‘  , (2.39)
\  -  'tf] +  4[ie'  ̂ -  icf]

which, in this case, is approximately 1.854. A t this point the line is wide enough so that 

a beam tangent to the inner boundary is just barely entirely within the line. In fact, £ 3  

is the minimum line width such that every beam is entirely within the line because at 

this line width the beam segm ent between the inner boundary and the resonance point 

is certainly within the line.

For an unbounded atmosphere, the total optical depth of the resonance region be­

comes arbitrarily large— regardless o f £— as the beam direction becom es radial. For a 

bounded atmosphere, however, the total optical depth is finite for every value of 0 so 

long as £ is positive. Figure 2.23 illustrates that even for small - and small 0, the total 

optical depth of the resonance region is finite.

Like Figure 2.13, Figures 2.24 and 2.25 show the angular dependence o f r  for several 

values o f w and for £ =  0.005. In Figure 2.24, the resonance point's location w varies 

from a value just slightly greater than in; =  0.5 to

in I =  W q , [ « - i i  (2.40)

where

Of\/£^[a^ — 1] -f 1 -  -  0.5] ’

«  =  4 # .  (2.41)w l - w j

W hen the resonance point is located at w ,, each of the two direction angles at which the 

outbound beam becomes entirely within the line is the sam e as the direction angle at
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Figure 2.23: Like Figure 2.12, but with atmospheric boundaries, w; =  0.5 and w q  =  1.5.
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Figure 2.24: Like Figure 2.13, but with atmospheric boundaries, w; =  0.5 and w q  =  1.5.
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Figure 2.25: Like Figure 2.13, but with atmospheric boundaries, w\ =  0.5 and u7o =  1.5.
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which the corresponding inbound beam becomes entirely within the line. For tni =  0 . 5  

and Wq =  1.5, w, % 0.67. The curve corresponding to w =  w, has only two cusps; every 

other curve has four cusps. In Figure 2.24. each of the central cusps corresponds to an 

angle at which the im pact-param eter side of the beam becomes entirely within the line; 

each o f the lateral cusps corresponds to an angle at which the anti-irnpact-paramter 

side o f the beam becomes entirely within the line. Each of the curves corresponding 

to one of the two resonance points closest to the inner boundary shows a decrease in 

optical depth just outside o f the central cusp; although the impact-parameter side of the 

beam passes through a region o f higher opacity as the beam becomes more radial, for 

a resonance point sufficiently close to the inner boundary the path length between the 

inner boundary and the resonance point at first decreases rapidly enough to dom inate 

the behavior of the total optical depth.

In Figure 2.25, the meaning o f the central cusps and the meaning of the lateral 

cusps are swapped with respect to the meanings in Figure 2.24. Figure 2.25 begins the 

sequence of tn-curves where Figure 2.24 ends. In this case one clearly sees that the curve 

for w =  (Cl only has two cusps. A s in Figure 2.24, each curve corresponding to one of the 

two resonance points closest to  the boundary—in this case, the outer boundary— shows 

a decrease in total optical depth just outside of the central cusp. Here, close proximity 

to the outer boundary leads to a rapid decrease in the beam path length between the 

outer boundary and the resonance point as the beam becomes radial, and again this 

decrease at first dom inates the behavior of the total optical depth.

Like Figure 2.14, Figure 2.26 shows contours of constant optical depth t / T  =  0.1 (for 

w =  1 ), but for the bounded case (mi =  0.5 and wq  =  1.5). Unlike the open contours in 

Figure 2.14, each contour in the bounded case encloses a finite area on the graph. The 

shape and location o f each o f the inner and outer boundaries clearly influence the shape 

of each contour, which for T  =  1 roughly marks the locus of points at which the beam
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Figure 2.26: For the incoming beam in a bounded atmosphere, a contour o f constant 
optical depth r / T  =  0.1 (for u; =  1) is plotted for each of several values o f £. T he  
resonance point is at the origin, and the center of the velocity field is at (0. -  I). Compare 
with Figures 2.8 and 2.14.
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begins to interact with the line. Each contour in the bounded case roughly resembles a 

truncated version o f the corresponding contour in the unbounded case.

Like Figure 2.26. Figure 2.27 shows contours of constant optical depth but for r /T  =  

1. For T  =  1 , the contour outlines the core of the resonance region, for the beam is 

already strongly scattering as it approaches the resonance point. The presence of the 

boundaries accounts for significant distortion from the unbounded case.

Figure 2.28 shows contours of constant optical depth for a very narrow (c =  0.005) 

line in a bounded atmosphere. For a narrow line, the various contours, as in the un­

bounded case, are roughly identical to each other, and the contour in the bounded case 

is basically a truncated version of the contour in the unbounded case.

Figure 2.29 magnifies the plot of Figure 2.28 in order to show behavior near the 

resonance point. N ote that the contour corresponding to t / T  =  1.0 just touches the 

origin because, apparently. î  =  0.005 is a good approximation of a delta function line, 

and T is the optical depth of a delta function line when the beam ’s closest approach to 

the center o f the system  is at the resonance point.

Figure 2.30 illustrates the narrow-line shape of the resonance region for different 

values of w.  .\ga in  we see that the narrow-line contours for the bounded case have the 

appearance o f those for the unbounded case except for truncation at the boundaries.

Although the imposition of an inner boundary and an outer boundary have signif­

icant effects on the nature of the resonance region for large line widths, the nature of 

the resonance region is hardly affected by the presence o f shell boundaries for small 

line widths. T hat truncation of the resonance region by the outer boundary changes 

the region’s extent from infinite to finite and that truncation by the inner boundary 

removes a singularity are small effects for a sufficiently narrow line because those ef­

fects only involve a tiny piece of direction-angle space. Indeed, as the width of the line 

goes to zero, the effect o f atmospheric boundaries on the resonance region disappears
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Figure 2.27: Like Figure 2.26, but for r / T  =  1.
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Figure 2.28: For the incoming beam in a bounded atmosphere, a contour o f constant 
optical depth (for c =  0.005 and w =  1) is plotted for each o f several values of normalized 
optical depth t /T .  The resonance point is at the origin, and the center o f the velocity  
field is at (0, —1). Although several contours are plotted, they overlap com pletely on 
this scale. Compare with Figure 2.16.
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Figure 2.29; Like Figure 2.28, but a close-up view near the resonance point.
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Figure 2.30: Like Figure 2.28, but with each contour corresponding to t / T  =  1 for a 
particular value o f w.  T he center of the velocity field is now located at (0 , - w ) .
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com pletely (and there is even the reappearance of infinite optical depth along the radial 

direction). This allows for a relatively simple treatment of line radiative transfer in the 

next chapter.
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Chapter 3

Sobolev M ethod for the  

C onstant-Speed Radial W ind

In an atm osphere with power-iaw radial velocity, a delta-function line profile (together 

with the assumption of com plete redistribution in wavelength) is sufficient but not 

always necessary for the application o f the Sobolev method. In the Sobolev m ethod, a 

beam directed toward the observer accumulates, at only one point in the atm osphere, all 

of the optical depth that a given line has to offer. Usually a sufficiently small but finite 

line width will guarantee that this is a good approximation. For the constant-speed  

wind, however, a delta-function line profile is necessary in order to evaluate certain 

integrals over all solid angle.

If the power-law index, a, is positive— as it is, for exam ple, in a homologously ex­

panding atmosphere— then the velocity gradient is positive for every beam direction 

away from a resonance point. A sufficiently narrow line allows for the application of 

the Sobolev method because for every beam direction through the resonance point the 

resonance region will, in correspondence with the sufficient narrowness of the line, be
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sufficiently sm all so that physical conditions are approxim ately constant across the res­

onance region. N ote that for a given integrated line opacity, the Sobolev method optical 

depth o f the resonance region still depends on the width o f the line. A delta-function 

line profile is associated with a particular limiting value o f the resonance region’s optical 

depth but is in no way required.

If a < U, then there will always be beam directions for which the velocity gradient at 

the resonance point is (locally) zero, but a sufficiently narrow line will still be associated  

with a resonance region that is small in every direction. A single beam, however, in this 

(•:use may have a pair of resonance points, and so there is extra complexity built into 

the analysis from the beginning.

Now the constant-speed wind, for which a =  0, has a radial velocity gradient that 

is globally (and not merely locally) zero. For the radial direction, the resonance point 

becomes a radial resonance ray, whose end point is the inner boundary of the line- 

forming region. A line with finite width—even an arbitrarily small w idth—produces a 

resonance region which for finite solid angle extends far enough to violate the assumption 

that physical properties are approximately constant across the region. Only a delta- 

function line profile reduces the violation's corresponding solid angle to zero (and still 

there is a singularity in the radial direction).

3.1 Integration of the Transfer Equation

Let the source function S  be defined such that S{ w)  is the source at radial distance ro«t 

from the center of the system . For a beam whose resonance point (with the line centered 

at A') is located at a d istance vqw from the center of the system  and whose direction angle 

at the resonance point is 0, let the intensity function I  be defined such that l ( t v , 0 ,  u) 

is the intensity at d istance rgu from the resonance point; I ( w ,  0, u) corresponds to light
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traveling, for u <  0 . toward the resonance point and, for u >  0 , away from the resonance 

point. Then, in terms of symbols defined in the previous chapter, the radiative transfer 

equation becomes

I d l { w ,  6. u

ru
-■ =  A'_2 ( R{rQu) ) 0{  A(u) ) (i) (3.1)

For a line whose profile is the rectangular impulse of equation 2.23. the transfer 

equation becomes

d l {  w. 0. a) _  

du
l ^ ( ^ )  -  “)] < « <  c„ (e .9 )

0  otherwise

(3.2)

Here the function Uq has been redefined so that the dependence on angle is now explicit. 

Let 6c{iv)  be half of the angle subtended by an opaque central sphere, of radius ivc,  

that em its wavelength-independent continuum intensity, Iq. Oc { iu) is distinguished from 

which is the angle subtended by the inner boundary of the line-forming shell. 

There is the explicit allowance for a vacuum gap between the emissive sphere and the 

shell, and so wc <  uq. If @ <  ^c(w ), then I { w, 9 .  u) =  Iq for u <  if, however.

9 > ^c(u'), then I ( w , 9 ,  a) =  0 for u <  Uo ( - s , 9 ) .

There is no sufficiently small f  such that, for every non-radial direction, R{rou)  and 

S ( A (rou)/ro ) have small variation as u varies from Uq{ - £ ,  9) to Uo(s,  9).  Nevertheless, 

for each non-radial direction there is a sufficiently small s  (which might need to be 

smaller for one direction than for another) such that R(rou)  and S( R(rou) / ro)  have 

small variation as u varies from Uq(—£, 9) to Uo{e, 9).  So in order to  apply the Sobolev  

method, one must consider the lim it of small e, which corresponds to a delta-function  

line profile. Because, esper.ially for arbitrarily small e, I { w , 9 .  ii) changes rapidly for a 

near zero, the limit may not be evaluated explicitly until after the differential equation
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has been integrated. For each non-radial direction, then, there is a sufficiently small s  

such that, to a good approxim ation.

(3.3)

for

U o ( - s , 0 )  ~  - e i n c s c ^ ^  <  u <  s wc s c ^O  ~  £/o(c.6>). (3.4)

Defining

I(u)  =  S(w)  -  l { w . 0 .  u) (3.5)

simplifies the transfer equation so that

(3.6)

Integrating and substituting, one finds

I {w.  0. u] ~  S(ii;)
•u a'o[«+ < tM C3C“ ff

1 — ft 2w-, + 0, - z w v s c ^  0J (3.

and

/^lu. 0, £«;csc* ~  5(u;) | l  — e + /^ w , 0 , - -w c sc ^  0j e~ . (3.8)

Now the limit of small e may be taken, and the result is

(3.9)
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where

is, ill agreement with equation 2.29 for a delta-function line profile, the optical depth  

of the resonance point at radial parameter le; I^{w,6)  is the intensity incident on the  

resonance point; is the intensity emergent from the resonance point.

3.2 Source Function for a Two-Level Atom

The line mean intensity function J  is defined such that J{w)  is the mean intensity, 

averaged over solid angle and wavelength within the width of a vanishingly narrow 

line, at radial coordinate w. This mean intensity can be expressed as an integral over 

direction angle. For each beam trajectory, the integrand must add together the intensity  

contribution, weighted by the line absorption profile, from every distinct monochromatic 

beam that can interact with the line at the point corresponding to w. The integrand of 

the integral over direction angle must be evaluated in the limit o f vanishing line width  

so that the integrand has the appropriate value for every non-radial direction.

■'( » '  =  5 J '  !ii‘l  [ è  / ( -■ '■ “ v j ' ’ ’* - .  «resin » ) )  d .-] sin » d«

(3.11)

The integral over the line profile incorporates a contribution from distinct monochro­

matic beams that share the same trajectory. Each distinct beam has its resonance point 

with the center of the line profile at a distinct radial coordinate,

w' = ^ !jyUo(z,e)) ̂  (3.12)
ro
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anil at that resonance point there is a distinct direction angle.

for the sam e beam trajectory.

As the normalized line width 5 becomes very small, the intensity's variation due 

to the location o f the beam ’s resonance point also becomes very small. .A.lthough the 

variation in the value of the intensity function always remains substantial as its third ar­

gum ent, f7o(r. 0), changes, the third argument may be expressed as -  in esc* 9 in the limit 

of small £. The expression for the line mean intensity may thus be greatly simplified.

sin g dg (3.14)

The use o f equation 3.7 leads to an innermost integrand whose variation is simply  

exponential with z. The exponentials are easily integrated, and the result is

./(in) =  [1 -  d(ii;)] S ( w)  +  du(ie) /o, (3.15)

where

and
1 fOc[w} 1 _

* < “’' = 2 / ,  r ( ,M )

If the source o f opacity is modeled as a two level atom , then the rate equation for 

the transition can be written as

S { w )  =  [1 -  x] ./(in) +  X B{ w) ,  (3.18)
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where x is the collisional fraction of de-excitations, and B{ w)  is the thermal black- 

body intensity in the comoviug frame, at line center, and for radial parameter w. In 

com bination with equation 3.15, this expression becomes

For each radial point in the model, this two-level-atom source function can be calculated  

from the model parameters, wc,  T.  x.  and B,  alone.

3.3 T he Line Profile

•\ synthetic line profile is the calculation of what an observer would measure if the 

observer were to point a perfect telescope at a perfect realization of the model and to 

collect the light with a perfect spectrometer. Because the value of the source function 

is known at every radial point in the shell, the computation of the synthetic line profile 

becomes an exercise in geometry. The geometric exercise is simplified by the assumption  

that if there is more than one line in the shell, the minimum wavelength separation of 

a. pair o f lines is larger than the largest doppler shift obtainable in the shell. For the 

purpose o f this discussion, such a simplification is equivalent to the assertion that there 

is only one line in the shell.

3.3.1 Geometry

Consider an opaque sphere that em its a continuum of light, and let this sphere be 

surrounded by a concentric spherical shell that is expanding with constant radial velocity  

V.  In units o f tq (the length scale for the radial diminution of the integrated line opacity), 

the radius o f the emissive sphere is wc', the radius of the inner boundary of the shell is 

IV]; and the radius of the outer boundary of the shell is wo- In the shell, absorption.



lo observer

^  ' ,'t \  " \
' 'V r  " ' '»' ^ Î

Figure 3.1: Three concentric spheres characterize the basic geom etry o f the scattering 
model. The innermost sphere (singly hatched) is opaque and em its light. Behind this 
sphere is an occulted region (doubly hatched) that is invisible to the observer. Between 
the two outer spheres is a shell (shaded) in which scattering takes place. A beam  
with a particular observer-frame wavelength will interact with material in the shell 
if it intersects within the shell a cone corresponding to that wavelength. Five cones 
(including the central, degenerate one that is a plane) are drawn.
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scattering, and thermal emission occur at the line wavelength A' in the comoving frame. 

The observer is at rest with respect to the center of spherical symmetry, and the observer 

is located far enough from the shell so that every line of sight through the shell shares 

essentially the same direction. Then, as indicated by the doubly hatched region in 

Figure 3.1, there is an occulted region from which light can not travel directly to the 

observer. Outside o f this occulted region, light traveling from the emissive sphere and 

not toward the observer may be scattered toward the observer at some point in the 

shell. Also, light traveling from the emissive sphere and toward the observer may be 

scattered away from the line-of-sight direction as it passes through the shell.

Consider a beam that passes through the shell and that is parallel to the line of 

sight. This beam has at m ost one resonance point with the line in the shell. Consider 

an ensemble of such beam s that that are distributed uniformly through space. If every 

beam shares the sam e observer-frame wavelength A, and if A is sufficiently near A'— 

the wavelength of the line in the observers frame of reference (and in a frame locally 

com oving with a mass elem ent in the shell)— then the locus of resonance points is the 

intersection o f the shell and a cone. The cone's apex is the center of the emissive sphere; 

the cone's axis is the line of sight; and the cone's half-angle is arccos([l -  A/A'jc/u).

The line source function and optical depth at points on each cone, along with the 

intensity of the light em itted  by the opaque sphere, com pletely determine the intensity 

that the observer measures. The source function, computed at the com oving line wave­

length A', can be used to  calculate the amount o f light em itted by the cone into the line 

of sight. Because every point on the cone has the same velocity com ponent along the 

line of sight, light em itted  at wavelength X' from any point on the cone into the line of  

sight is collected by the observer at wavelength A. Similarly, the optical depth, com­

puted at the line wavelength A', can be used to calculate the amount o f light scattered  

out o f the line of sight. For a beam emitted at observer-frame wavelength A, from the
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opaque sphere, and toward the observer, light is scattered out o f the line of sight at the 

intersection of the beam and the cone, on which in the com oving frame the beam has 

wavelength A'.

The general procedure for calculating a value proportional to the observed flux at 

wavelength A is as follows:

•  Calculate the angle of the cone corresponding to A.

•  At least som e part o f the surface of the emissive sphere is unobscured by the cone. 

Multiply I(], the em issive sphere’s intensity at A by the area that results from the 

projection of the unobscured part the sphere onto the plane perpendicular to the 

line o f sight. Store this product in the observed flu.x bin corresponding to A.

•  If any part of the surface of the emissive sphere is obscured by the cone, then 

integrate 5 (  i/;)[l — -|- /□c"’’!'"'®) (where w is the radial coordinate and (f

is the direction angle of the observer’s line of sight for a resonance point on the 

cone) over the projected area of the obscuring part of the truncated cone. .Add 

this integral to the observed flux bin corresponding to A.

•  If any part o f the truncated cone does not obscure the surface o f the em issive 

sphere, then integrate 5 (u ;)[l — over the projected area o f the non­

obscuring part of the truncated cone. Add this integral to the observed flux 

bin corresponding to A.

This procedure is carried out for every wavelength point on a linear grid in the observer 

frame. The result is a line profile.
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3.3.2 Pure Scattering

If X, the collisional fraction of de-excitations, is zero, then none of the radiation em itted  

by the opaque sphere is absorbed in the shell, and so the line profile results from pure 

.scattering. The source function becomes

"’""I = ^

Recall that each wavelength point in the synthetic line profile corresponds to a 

particular cone. Let a cone's half-angle be rv, and let a  near zero correspond to narrow 

cones opening toward the observer. The cone with a half-angle n =  z / 2  is really a 

plane, and its intersection with the shell is an annulus that shines at A' (line center) 

in the observer frame. In general, the intersection is a truncated cone that shines at 

[1 — e cos(nr)/c]A'. The continuum  level of the pure-scattering synthetic line profile is 

the observed flux that corresponds to a completely unobscured view of the emissive 

sphere. For every half-angle o  such that arcsin(u;c/in|) < a  <  n -  arcsin (w c/ w g), the 

cone does not obscure the observer’s view of the emissive sphere. Nevertheless, because 

the cone glows— that is. it scatters light into the line of sight along beams with impact 

parameter greater than w c — the observer measures more than the continuum flux for 

the corresponding wavelength, and so the observed line profile is in emission at this 

wavelength. For every half-angle a  such that 0  <  or < arcsin (w c/teo), the truncated  

cone only obscures the observer’s view of the emissive sphere. Because the cone scatters 

away from the line o f sight som e of the light originally headed directly toward the 

observer from the em issive sphere, the observer measures less than the continuum flux 

for the corresponding wavelength, and so the observed line profile is in absorption at 

this wavelength. , \ t  som e wavelength corresponding to  q  between arcsin (n;c/w o) and 

arcsin(u?c/ini) the flux measured by the observer crosses the continuum level. For this
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range of a  values, part of the truncated cone diminishes the observed flux by obscuring 

the emissive sphere, but part of the truncated cone augments the observed flux by 

scattering light into the line of sight along beams with impact parameter greater than 

Wc Finally, for half-angles greater than tt -  arcsin(w c/w o), each cone is occulted by 

the opaque sphere, and so the observer measures exactly the continuum flux at the 

corresponding wavelength.

For each o f several line strengths T, Figure 3.2 shows source functions and line pro­

files. The geometry of the shell is the same as that used in the plots in the previous 

chapter: wi =  0.5 and wo =  1.5. The radius of the emissive sphere is ti;c =  0.4, and so 

there is a small vacuum gap between the emissive sphere and the inner boundary o f the 

shell. For a very weak line, the source function, expressed in units of the intensity emit-

1 -  y / l -ted by the central sphere, is nearly the dilution factor, W ( w) =  0.5 

which represents the pure-scattering source function if the optical depth is independent 

of direction angle. .Although the optical depth r is still certainly dependent on the 

direction angle for small T, nevertheless r can be small over a wide range of direction 

angles, and this results in the weak-line behavior of the source function. The angular 

dependence of r causes the value of the source function to become smaller at any given 

radial coordinate as T grows larger. Beyond T =  1, however, the effect is not noticeable; 

the source function for T =  10 is indistinguishable from the source function for T  =  I. 

Because the source function is the ratio of the local emissivity to the local opacity, the 

interpretation is that for T <  1 the emissivity climbs more slowly than the opacity, and 

that for T  > 1 the emissivity is proportional to the opacity.

T he behavior of the line profile reflects that of the source function for strong lines 

because for a strong line the only contribution to the observed flux from an obscured 

portion o f the emissive sphere is just the source function. Note that the horizontal 

coordinate z o f the line profile is such that - 1  corresponds to the bluest wavelength
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Figure 3.2: For wc =  0.4 and for the standard shell geom etry used in the previous 
chapter =  0.5 and wq =  1.5), the source function and the line profile for each of
several values o f the line strength parameter T  are shown. The dilution factor and the 
source functions are plotted in the top graph. The line profiles are plotted in the bottom  
graph.
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that the line can produce, and + 1  corresponds to the reddest wavelength that the line 

can produce. The rest-frame wavelength of the line corresponds to r =  0. The existence 

of the vacuum gap between the emissive sphere and the shell produces a cusp in the 

line profile because as the observed wavelength increases beyond a certain critical value, 

obscuration of the em issive sphere suddenly ceases. The shape of the blue absorption 

trough depends on the com petition between two things. The decrease of the cone's 

half-angle a  toward zero leads ( 1 ) to the increase in a cone's optical depth along the 

observer's line o f sight but (2 ) to the decrease in the fraction of the emissive sphere 

obscured by the cone. Blueward of the minimum, the fractional coverage dominates the 

observed flux.

Figure 3.3 shows the sam e curves as Figure 3.2 but for different geometric parame­

ters. The em issive sphere has been enlarged so that the vacuum gap has been eliminated, 

and the outer boundary of the shell has been reduced so that ivo =  0.6. The cusp has 

disappeared because, as the cone angle increases. ( 1 ) the fractional coverage of the emis­

sive sphere by the cone decreases to zero more slowly than in the ciise of the gap, and (2 ) 

the optical depth along the line o f sight decreases further than in the case of the gap as 

the coverage goes to zero. The minimum of the absorption trough has moved redward 

because the shell is thinner, and so, for larger values of a , the fractional coverage of 

the em issive sphere by the cone drops rapidly with a . The reduction of the thickness 

of the shell also renders the effect of the weakest line almost unobservable. Because the 

ratio of «,’o  to n,’c  is near unity, there is a large flat region of continuum flux at the red 

extreme of the line profile. This results from the com plete occultation of cones over a 

relatively large range o f or up to tr.
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3.3.3 Isothermal Shell

The admission o f a non-zero probability x of collisional de-excitation for the two-level 

atom requires the specification of a temperature. Specifying the ratio o f the intensity B  

of blackbody radiation (at line center in the comoving frame) to the intensity /o em itted  

(at all wavelengths) by the opaque sphere is equivalent to specifying a temperature. The 

sim plest way to do this is to set B / I q equal to some value that is fixed throughout the 

shell. Figure 3.4 illustrates the zero-temperature case for x =  Ü.2. One of the most 

noticeable differences between the case of pure scattering and the case in which the 

source function is coupled to a thermal pool has to do with the behavior for very strong  

lines. .As T  increases beyond unity, both 3o{w) and ,d(ii;) decrease at a given radial 

coordinate w. When both do(iu) <K x B / [ l  -  x]/o and /^(iw) x / [ l  -  x |, the source 

fiiin tion at w will have converged to B. For the case of pure scattering, every line 

with strength greater than about T  =  I has the same source function. However, when 

collisional de-excitation is turned on. the source function may continue to change even 

for very large values o f T,  especially if x is small but positive. Because the pure- 

scattering source function is recovered as x approaches zero, the source function will, 

for very small values o f x , vary only slowly with T  as T  becom es greater than unity until 

T  becomes very large; then the source function will converge toward B  as T  increases 

still further. Figure 3.5 dem onstrates this behavior for x =  O.OOl; note that the source 

function for T =  1 is alm ost identical to the source function for T =  1 0  but that the 

source function evolves toward B  =  0.25/o for very large T .

Figure 3.4 shows that the zero-temperature shell, for a strong line, does little but 

absorb light from the em issive sphere. The line profile hardly ventures above the contin­

uum for T  =  10, even though it has a deep blueward absorption trough. Although light 

from this trough would be redistributed to the emission part o f the profile in the case of
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pure scattering, here the light is dissipated into the cold thermal pool from which it is 

not re-em itted. In comparison with the pure-scattering shell, the zero-temperature shell 

produces a very similar absorption trough because at the wavelengths in the trough, 

the observer cannot distinguish between the scattering of light out of the line of sight 

and the absorption of light by the material in the shell. Figure 3.5 shows that (for a 

sufficiently strong line) even a shell temperature for which S / /o  is smaller than unity 

can produce a substantial emission component in the observed profile. At line center 

in the observer’s frame, the flux contribution of from the disk is augmented by

a contribution o f k [ w ’q -  from the shell. Nevertheless, so long as B /Iq  is smaller 

than unity, there will be a blueward absorption com ponent because, for wavelengths 

corresponding to a  <  arcsin fiec/'eo), the only contribution from the shell obscures the 

brighter contribution that would otherwise come from the emissive sphere.

3.4 Instrum ental Resolution

Because pure scattering merely redistributes light from one part of the observed pro­

file to another, a pure-scattering observer-frame profile that is narrower than the in­

strum ental resolution limit will be invisible. Figure 3.6 displays the change in the 

observer-frame line profile as the instrumental resolution varies. In the bottom  graph, 

the pure-scattering profile virtually disappears as soon as the resolution of the detector 

is as large as the width of the profile. This exam ple demonstrates that for a strong 

feature (T =  10) in a thick shell {w\ =  0.5 and ivq =  5) with an expansion speed  

n =  1 0 0  km s " \  an instrumental resolution o f lA  is insufficient for the detection of 

the line in the case o f pure scattering. The top graph, however, demonstrates that the 

sam e line coupled to a thermal pool in the shell can produce a detectable feature at a 

resolution o f lA .
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Figure 3.7 is like Figure 3.6 but illustrates the effect of instrumental resolution on a 

strong line coupled to a zero-ternperature thermal pool. The bottom  graph, which shows 

profiles for a shell expansion speed u =  1 0 0  km s" ', indicates that a weak feature could 

be detected with a resolution limit like that (about 0.75A) of the detector that produced 

the data for Figure 1.3. The top graph, which corresponds to u =  1000 km s~ '. shows 

that the strength of the observed line profile really does increase with the velocity of 

the shell.
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Chapter 4

Conclusion

The simple model presented here allows for the synthesis of line profiles. A wide variety 

of profile shapes may be produced in the exploration of the space formed by the model’s 

input parameters. P-Cygni profiles in which the total flux is conserved but transfered 

from the absorption part to the emission part of the observer-frame profile correspond 

to the case of pure scattering (x = 0 ) .  A flattening and diminution o f the emission 

part to a plateau can be accomplished by specifying a vacuum gap between the emissive 

sphere and the inner boundary of the shell. Alternatively, the emission part of the 

observer-frame profile can be reduced without sacrificing the depth of the absorption 

part by coupling the line to a low-temperature thermal pool. By coupling the line to 

higher-ternperature pools, the emission part of the profile can be augm ented, and, for 

B  >  fo. a sufficiently strong line will not even show blueward absorption. Finally, the 

overall deviation of the profile from the continuum and the location of the absorption 

minimum (if it exists) can be controlled by adjusting the thickness o f the shell. So, 

fitting a synthetic line profile produced by this model to an observed line profile would 

yield both a geometric interpretation o f the feature’s formation and an estim ate of the 

strength of the transition.
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For a spectral resolution of about an angstrom in the near-ultraviolet, a pure- 

scattering line profile described by this model will not be detected if the shell expansion  

speed r less than about 100 km s ~ ‘ . A strong line coupled to a zero-ternperature shell 

would produce only a weak signal for v =  1 0 0  km s ~ ‘ and would likely be undetectable 

for u =  10 km s “ '. Even for the slowest expansion speeds, however, a  strong line coupled 

with a thick shell whose blackbody emission intensity is at least a substantial fraction of 

the intensity em itted  by the opaque sphere will produce a detectable unresolved emis­

sion feature. So this model would predict that for a very slowly expanding shell, the 

only detectable feature at 1 -A or broader resolution is an unresolved emission spike like 

those in Figure 1.2. The real test of the model will come in the analysis of line profiles 

measured with 0.1 A or better resolution.

There are. however, many potential problems. The simple shell wind model does 

not allow for variations in rnass-loss rate and terminal velocity for the progenitor wind. 

Nor does it allow for the obvious types of asymmetry (prolate or oblate spheroidal) in 

the wind and in the SN ejecta; the model fails to distinguish between the identification 

o f the emissive sphere with the SN photosphere and the identification o f the emissive 

sphere with the interaction region between the ejecta and the wind. Nor does it take 

into account acceleration of the inner part of the wind by radiation pressure from the 

ejecta/w ind interaction shock. Finally, the simple shell model assum es that the source 

of line opacity has no intrinsic width. Nevertheless, this model’s sim plicity allows for 

the com plete comprehensibility of every aspect of every line profile that it produces. 

So, to the extent that it turns out to fit profiles consistently, the m odel provides direct 

physical insight into the nature o f line formation in a circumstellar envelope around a 

SN.

The sim plest extension o f the model presented here is to include line blending. If 

tw o lines are separated in rest-frame wavelength by a wavelength shift smaller than the
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largest shift obtainable by the doppler effect in the shell, then the bluer line may be 

treated exactly as above. In computing the source function for the redder line, however, 

intensity beams from the emissive sphere are augmented by intensity beams that come 

from a surface like those in Figure 2.8. Light in those extra beams is scattered from 

the bluer line into resonance with the redder line. The generalization to an arbitrary 

number of lines is equivalent to adding to the source function of each line a contribution  

from every bluer line.

Beyond line blending, an ambitious but interesting project would be to use internal 

data from a model that produces a synthetic fit to the broad features formed in the 

ejected material. Although the output of such a model is usually averaged over all of 

the (parallel) lines of sight, the full internal detail of such a model could provide a more 

realistic (than constant continuum intensity) lower boundary condition for the radiation  

field that illum inates the simple shell wind model.

Thank you for your attention.
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A ppendix A

Source Code

A .l Resonance Region Around Finite-W idth Line 

A .1.1 C-I-+ Header (Interface-Description) Files
resonance-point. hh

#ifndef __RESONANCE_POINT_HH__
«define __RESONANCE_POINT_HH__

«define pi 3.14159265358

// For a monochromatic beam with direction angle, theta, and for a 
// line with normalized width, epsilon, this class describes a 
// resonance point in a bounded atmosphere. The integrated line 
// opacity is K_0 at r_0 from the center and is proportional to 
// (r_0)'(-2).

class resonance.point
{
double w_I : // inner boundary in units of r_0
double w; // resonance point location in units of r_0
double w.O; // outer boundary in units of r_0
double theta; // direction angle of beam
double epsilon: // normalized line width

void die( const char* fname, const char* msg ) const;

public :

resonance_point(); // Read initialization from standard input.

resonance_point( double i, double z, double o, double t, double e );

92



double get.w.I 0  const { return w.I; }
double get.w 0  const { return w; }
double get.H.O () const { return w.O; }
double get.theta 0  const { return theta; }
double get.epsilonO const { return epsilon; }

void set.w.I ( double i );
void set.H ( double X ):
void set.w.O ( double G ):
void set.theta ( double t );
void set.epsilonC double e ):

double U( double z, inth flag ) const;
double tauO const ;
double u( double t ) const;

>:

#«ndif // __RESONANCE_POINT_HH__

A. 1.2 C + +  Implementation Files for Library (Reusable) Components
resonance-point.cc

#include <math.h> 
tinclude <string.h> 
tinclude <iostream.h>

ffinclude "rasonance-point.hh"

void resonance.point:;die( const char* fname, const char* msg ) const 
{
cerr «  "resonance.point : ; " «  fname «  " «  msg «  endl;
exitC 1 );

}

resonance.point;:resonance_point()
{
for( int flag = 0; flag != 31; )

{
char param.nameClS]; 
double val;

cin »  param.name;

if( ! strcmpC param.name, "epsilon" ) )
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if( ! (cin »  val) ) 
dieC "resonance.point", "unable to read epsilon" ); 

else
set.epsilonC val ); 

flag 1= 1;
}

else if( ! strcmpC param.name, "e.I" ) )
{

if( ! (cin »  val) )
die( "resonance.point", "unable to read w.I" ); 

else
set.w.K val ) :

flag 1= 2;
}

else if( ! StrcmpC param.name, "w" ) )
{

if( ! (cin »  val) ) 
dieC "resonance.point", "unable to read w" ) ; 

else
set.wC val );

flag 1=4;
}

else if( • StrcmpC param.name, "w.O" ) )
{

if( ! (cin »  val) ) 
dieC "resonance.point", "unable to read w.O" ) ; 

else
set.w.O( val );

flag 1= 8;
>

else if( * StrcmpC param.name, "theta" ) )
{
if( ! (cin »  val) ) 
dieC "resonance.point", "unable to read theta" ); 

else
set.thetaC  val ) ; 

flag 1= 16;
}

else
£
cerr «  "resonance.point: : resonance.point: param.name= ' " 

«  param.name «  «  endl;
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die( "resonance.point", "unknown parameter" );
}

}
}

resonance.pointresonance.polntC double i, 
double X,  

double o, 
double t, 
double a )

{
set.w.I ( i );
set.w ( X )

set.w.O ( o )
set.theta ( t )
set.epsilon( e )

}

void resonance.point::set.w.K double i )
{
if( i <= 0 ) die( "set.w.I", "w.I not positive" ); 
else w.I = i;

}

void resonance.point:; set.w( double x )
{

if(  X <= w.I ) die( "set.w", "w not larger than w.I" ); 
else w = x;

}

void resonance.point:; set.w .0( double o }
{

if( o <= w ) die( "set.w.O", "w.O not larger than w" ); 
else w.O = o;

}

void resonance.point::set.thetaC double t  )
{

i f ( t  <= 0 I I t  >= pi ) 
d ie( " se t.th e ta " , "theta not between 0 and pi" ); 

else
th e ta  = t ;

}

void resonance.point::set.epsilonC double e )
{

i f  ( e <=0 ) die( "se t.epsilon", "epsilon not positive" ); 
e lse  epsilon -  e;
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double resonance.point::U( double z, int* flag ) const
{
double et = cos( theta );
double zpc = z + et ;

if( zpc <= -1 )
{
flag = -1; // negative infinity
return 0; // return value irrelevant

>
else if( zpc >= 1 )

{
flag = 1; // positive infinity
return 0; // return value irrelevant

}
else

{
flag = 0; // finite value
return ( zpc*sin( theta )/sqrt( 1 - zpc«zpc ) - ct )*w;

}
}

double resonance.point: :tau() const
{

double wc = u«cos( theta  );
double ws = v«sin( theta );

double t i  = asin( w- I / h );

double swoM = sqrtC U_0*H.0 - i)S«HS ):
double swiw = sqrtC - ws*ws ):

double u_n;
double u-p:

i f ( the ta  < t i ) u.n = swiw - wc
else u.n = -SHOW - wc

i f ( th e ta  < pi - t i )  U . p  = SHOW - wc
else u.p = -swiw - wc

in t flag:
double u;

double upsilon.p;
double upsilon.n;
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u = U( +epsilon. flag );

if ( flag =  -1 ) upsilon.p = u_n;
else if( flag =  1 ) upsilon.p - u.p;
else 

{
if ( u < u.n ) upsilon.p = u.n;
else if( u > u.p ) upsilon.p = u.p;
else upsilon.p = u;

}

u = U( -epsilon, flag );

if ( flag == -1 ) upsilon.n = u.n;
else if( flag == 1 ) upsilon.n = u.p;
else

{
if ( u < u.n ) upsilon.n = u.n;
else if( u > u.p ) upsilon.n = u.p;
else upsilon.n = u;

}

double arg.p = ( upsilon.p + bc )/w s ;
double arg.n = ( upsilon.n + wc )/ws;

double r = ( atanC arg.p ) - atan( arg.n ) )/epsilon/us;

if( r < 0.0 ) die( "tau", "tau less than zero" );

return r;

double resonance.point:;u( double t ) const 
{

double wc - w*cos( theta );
double ws = w«sin( theta ) ;

double t i  = asin{ B.I/w ) ;

double swow = sq rt(  w.O*w.O -  ws*ws );
double swiw = sq rt(  w.lew.I -  ws*ws );

double u.n;
double '»-P:

i f ( theta  < t i  ) u.n -  swiw - wc
else u.n = -SWOB - wc
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if( theta < pi - ti ) u_p = swow - wc; 
else u_p = -swiw - wc;

int flag; 
double u;

double upsilon.n;

u = U( -epsilon, flag );

if ( flag =  -1 ) upsilon.n = u.n;
else if( flag =  1 ) upsilon.n = u.p;
else

{
if ( u < u.n ) upsilon.n = u.n;
else if( u > u.p ) upsilon.n = u.p;
else upsilon.n = u;

}

double arg = atan( (upsilon.n + wc)/ws + epsilon*ws«t );

if ( arg <= -pi/2 ) return -100;
else if( arg >= pi/2 ) return 100;
else return ws«tan( arg ) - wc;

}

A. 1.3 C4—I- Main-Program Files
t-contours-lim.O.cc

•include <stdlib.h>
•include <iostream.h>

•include "resonanca-point.hh"

aainC int argc, char** argv )
{

if( argc != 2 )
{
cerr «  "usage; " «  argvC 0 ] «  " <optical.depth>" «  endl; 
exitC 1 );

}

double t = atofC argvC 1 ] );
resonance.point rp;
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double th.beg = 0.1;
double th.end = 179.9;
int th.nuB = 500;
double th_del = ( th.end - th.beg )/( th_nua - 1 );

for( int i=0; i<th_num; i++ )
{

double t h  = (th.beg + th_del*i)#pi/180; 
rp.set_theta( th ); 
d o u b l e  u  =  r p . u (  t  ) ,

cout << u*sin( th ) << " " «  u*cos( th ) «  endl;
}

}

tau-angle-lim .O .cc

tinclude <stdlib.h> 
tinclude <iostream.h>

tinclude "resonance-point. hh"

main( int argc, char** argv )
{

if( argc != 2 )
{
cerr «  "usage: " «  argvC 0 ] «  " <direction_angle_deg>" «  endl; 
exitC 1 );

}

double epsilon = atof( argv[ 1 ] );
resonance.point rp;

rp.set.epsilonC epsilon );

double theta.beg = 0.0001;
double theta.end = 179.9999;
int theta.nua = 2000;
double theta.del = ( theta.end - theta.beg )/( theta.nua - 1 );

forC int j=0; jctheta.num; j++ )
{
rp.set.thetaC Ctheta.beg + j*theta.del)*pi/180.0 ); 
cout «  rp.get.thetaC)*180/pi «  " " «  rp.tauC) «  endl;

>
>
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tau-angle2-lim .0.cc

*include <stdlib.h>
#include <iostrean.h>

tinclude "resonance-point.hh"

mainC int argc, char** argv )
{

il( argc != 2 )
{

cerr «  "usage: " «  argvC 0 ] «  " <rad_coord_w>" «  endl; 
exit( 1 ):

}

double u = atof( argvC 1 ] );
resonance.point rp;

rp.set_w( w );

double theta.beg = 0.0001;
double theta.end = 179.9999;
int theta.nua = 2000;
double theta.del = ( theta.end - theta.beg )/( theta.nua - 1 );

for( int j=0; j<theta.nua; j++ )
{
rp.set.thetaC (theta.beg + j*theta_del)*pi/180.0 ); 
cout «  rp.get.thetaC)* 180/pi «  " " «  rp.tauC) «  endl;

}
}

tau-linewidth-lim .O .cc

tinclude <iostreaa.h> 
tinclude <aath.h> 
tinclude <stdlib.h>

tinclude "resonance-point.hh"

aainC in t argc, char** argv )
{

ifC argc != 2 )
{

cerr «  "usage: " «  argvC 0 ] «  " <direction.angle.deg>" «  endl;
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exit( 1 ):
}

doubla theta = atof( argvC 1 3 );
resonance_po int rp;

rp.set_theta( theta«pi/180.0 );

double e.beg = 0.001;
double e.end = 10.0000;
int e_nun = 999;

double e_rat = pon( e_end/e_beg, 1.0/(e_num - 1.0) ); 
//double e_del = ( e.end - e_beg )/( e.num - 1.0 );

for( int j=0; j<e_num; j++ )
{

rp.set_epsilon( e_beg*pou( e_rat, j ) ); 
//rp.aet_epailon( a_beg + j*e_del );

cout «  rp.get.epsilonO «  " " «  rp.tauO «  endl ;
}

}

A .2 Observed Profile o f Delta-Function Line

A.2.1 C-f-1- Header (Interface-Description) Files 
linterp.hh

// diss/sobolev/linterp.hh
/ /
// copyright 1999 Thomas E. Vaughan
/ /
// This is free software, redistributable only under the terms of the GNU 
// General Public License (GPL). See <http://www.gnu.org>.

// Provide a general linear interpolation function.

double linterp
(

double zmin, double zmaz, double dx, double x, double y[]
) :
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param eters.hh

// diss/sobolflv/paraffleters.hh
/ /
// copyright 1999 Thomas E. Vaughan
/ /
// This is free software, redistributable only under the terms of the GNU 
// General Public License (GPL). See <http://www.gnu.org>.

#ifndef __PARAMETERS_HH._
«define __PARAMETERS_HH__

«include <map>
«include <string>

class parameters
{

map<string,double> vais; 

public :

parameters( const char* filename ); 
double get( const string* key ) const;

> ;

extern parameters* params;

«endif // __PARAHETERS_HH__

source-function .hh

// diss/sobolev/source_function.hh
/ /
// copyright 1999 Thomas E. Vaughan
/ /
// This is free software, redistributable only under the terms of the GNU 
// General Public License (GPL). See <http://www.gnu.org>.

// Calculate the Sobolev source function for a spherically-symmetric 
// constant-speed radial wind whose only illumination comes from a central 
// sphere. The illumination is angle-independent (over the solid angle 
// subtended by the central sphere) and wavelength-independent. The line 
// profile is a delta-function.

double 3ource_function
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(
double u_em, // size of light-emitting sphere
double w, // radial parameter of interest
double T. // line-strength parameter
double z, // collisional fraction of de-excitations
double B // Blackbody at tr in terms of intensity at n_em
) i

trapezoid.hh

#ifndef __TRAPEZOID_HH_.
«define __TRAPEZOID.HH__

// Provide an interface to a function that calculates an integral by 
// incrementally doubling the number of partitions in the domain of the 
// integrand and applying the trapezoid rule.

double trapezoidC
double (*f)( double z ), //
double a. //
double b. //
double e = l.OE-05, //
int m = 20 ); //

«endif // __TRAPEZOID_HH_

A .2.2 C-t—j- Implementation Files for Library (Reusable) Components
linterp.cc

// diss/sobolev/linterp.cc
/ /
// copyright 1999 Thomas E. Vaughan
/ /
// This is free software, redistributable only under the terms of the GNU 
// General Public License (GPL). See <http://www.gnu.org>.

// Provide a general linear interpolation function.

«include <iostream>

double linterp
(

double zmin, double zmaz, double dx, double x, double yO
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if( z < zmin I I z > zmaz )
{

// Disallow eztrapolation.

cerr «  "linterp: ERROR: z=" «  z «  " not in [" 
«  zmin «  «  zmaz «  "]" «  endl;

exit( 1 ),

if ( z =  zmaz ) return y[ int( (z-zmin)/dx ) ]; 
else if( z =  zmin ) return yC 0 ];

// index of left edge of interpolation zone 
int i = int( (z - zmin)/dz );

// coordinate of left edge of zone 
double xleft = zmin + i«dz;

// slope of linear fit across zone 
double m = ( yCi+1] - y[i] )/dz;

// linearly interpolated value 
double V = ( y[i] + m*(z - zleft) );

return v;

parameters.cc

// diss/sobolev/paraneters.cc
II
// copyright 1999 Thomas E. Vaughan
/ /
// This is free software, redistributable only under the terms of the GNU 
// General Public License (GPL). See <http://www.gnu.org>.

tinclude <fstream> 
tinclude <string>

tinclude "parameters hh"

parameters* params; // global pointer to parameters instance params
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parametersparameters( const char* filename )
{

istream* isp; // base input stream pointer

if( filename ]
{

isp = new ifstreamC filename );

cerr «  "parameters:; parameters : reading from "
«  filename «  endl;

}
else
{

isp = kcin;

cerr «  "parameters:: parameters : reading from "
«  "standard input" «  endl;

}

string k; // current key

I I  Read keys until the end of the input file is reached. Assume
// that the next word is a key.

while( (*isp) »  k )
{

I l k  now holds candidate key.

// Assume that the next word is the value corresponding to
// the current key.

(♦isp) »  valsC k ] ;
}

}

// Allow for a public method to extract a parameter value by its key.

double parameters::get( const stringt key ) const 
{

map<8tring,double>: :const_iterator i = vals.findC key );

if( i =  vals.endO )
{

II key was not initialized in the constructor.

cerr «  "parameters : :get : ERROR: no entry for " «  key 
«  endl;
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exit( 1 );
>

return i->second;
}

source_function.ee

/ diss/sobolev/source.function.cc 
/
/ copyright 1999 Thomas E. Vaughan
/
/ This is free software, redistributable only under the terms of the GNU 
/ General Public License (GPL). See <http://www.gnu.org>.

/ Calculate the Sobolev source function for a spherically-symmetric 
/ constant-speed radial wind whose only illumination comes from a central 
/ sphere. The illumination is angle-independent (over the solid angle 
/ subtended by the central sphere) and wavelength-independent. The line 
/ profile is a delta-function.

include <iostream> 
include <math.h> 
include "trapezoid.hh"

/ The following two variables are file-scope global because the integrand 
/ function below requires access to them but must have a signature with 
/ only one argument.

static double T; // half of minimum optical depth at w = 1
static double w; // radial coordinate in units of r_0

// The source function contains two integrals. Each integral has the same 
// integrand. Defined as follows, f() is that integrand. The limits of
// integration for one of the integrals are 0 and theta.I ; for the other, 0
// and pi.

double f( double theta )
{
double S t  = sin( theta );
return 0.2S#w*( 1 - exp( -2*T/w/st/st ) )*st*st#st/T;
}

double source_f unct ion
(
double w_ea, // size of light-emitting sphere
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double ww, // radial parameter of interest
double TT, // half of minimum optical depth at w = 1

double X, // collisional fraction of de-excitations
// x=0 corresponds to pure resonance scattering.

// x=l corresponds to pure thermal emission

double B // thermal blackbody intensity at hh in units of
// intensity of light-emitting sphere

)

if( w_em > HH )

// Something neird is going on.

cerr «  "source_function; ERROR: H_em=" «  H_em 
«  " > H=" «  HH «  endl;

exit( 1 ) ;
}

T = TT; // assignment to global variable for f()
H = h h ; // assignment to global variable for f()

double theta.I = asin( H_om/H );

double integ.l = trapezoidC f, l.OE-06, theta.I ); 
double integ.2 = trapezoidC f, theta.I, M.PI );

return  C Cl-x)*integ.l + x*B )/C Cl-x)*Cinteg.l+integ_2) + x ); 
}

trapezoid.cc

I I diss/sobolev/trapezoid. cc
/ /
// copyright 1999 Thomas E. Vaughan
/ /
// This is free s of tear e, redistributable only under the terms of the GNU 
// General Public License CGPL). See <http:/ /H H H  gnu org>.

tinclude <iostrean.h> 
tinclude <math.h>

tinclude "trapezoid.hh"
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// Provide a convenient way to dereference a function pointer, 
tdefine F(x) ((*f)(x))

// Calculate the nth-order trapezoid rule sum. This function assumes that 
// it has already been called once, in turn, for each of the previous n-1 
// sums.

double trap(
double (*f)(double), // pointer to integrand function
double a, // lower integration limit
double b, // upper integration limit
int n ) // number of bifurcations
{
static double s; // sum to be returned

if( n == 1 )
{
return ( s = 0.5*(b - a)*( F(a) + F(b) ) );
>
else
{
int it;
int j;

for( it = l,j = l ; j < n - l ;  j++ ) it « =  1; 

double tnm = it ;
double del = (b - a)/tnm; // spacing of new points 
double X = a + 0.5«del;

double sum;
for( sum=0, j=l; j <= it; j++, x ■*•= del ) sum += F(x) ;

s = 0.5*( s + (b - a)«sum/tnm ); // refinement of s 
return s;
>
>

// Provide the public interface, and handle the proper calling of trapO 
// above.

double trapezoidC
double (*f)(double), // pointer to integrand function
double a, // lower integration limit
double b, // upper integration limit
double e, // error tolerance
int m ) // maximum number of bifurcations
{
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if( a =  b ) return 0.0; // quick escape for trivial case 
double olds = -l.OE+30; // unlikely to be function average

for( int j = 1; j <= m; j++ )
{
double s = trapC f, a, b, j );

// cerr «  "trapezoid; j=" «  j «  " s=" «  s «  endl;

if( fabs(s - olds) < e«xabs(olds) I I
s == 0.0 k t  olds "  0 .0  kk j  > 6 ) return s;

olds = s;
>

cerr «  "trapezoid: ERROR; too many steps" «  endl; 
exit( 1 );
}

A.2.3 C + +  Main-Program Files
sf.cc

// dissertation/sobolev/sf.cc
/ /
// copyright 1999 Thomas E. Vaughan
/ /
// This is free software, redistributable only under the terms of the GNU 
// General Public License (GPL). See <http;//www.gnu.org>.

tinclude <iostream>

tinclude "parameters hh" 
tinclude "source.function.hh"

// Provide a stand-alone program for use in producing a plot of the source 
// function for various values of T.

mainC int argc, char** argv )
{
if( argc =  1 )
{
// There are no command-line arguments. Pass a null string 
// pointer to the parameters constructor so that it reads 
// from the standard input.
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params = new parameters( 0 );
}
else if( argc == 2 )
{
II There is a command-line argument. Assume that the 
// argument is the name of a parameter file.

params = new parameters( argv[l] );
}
else
{
// There are two or more command-line arguments. This is 
/ / a n  error condition.

for( int i = 0; i  < argc; i++ )
cerr «  "argument " «  i «  " " «  argv[i]

«  endl;

cerr «  "usage; " «  argvCO] «  " <parameter file>"
«  endl;

exit( 1 );
}

// Get parameters.

double T = params->get( "T"
double w.opaque = params->get( "w.opaque"
double w.min = params->get( "w_min"
double w_max = params->get( "w.max"
double X = params->get( "x"
double B.inner = params->get( "B.inner"
double B.outer = params->get( "B.outer"

int sgrid = int( params->get("sgrid") + 0.5  );
double w.del = (w.max - w.opaque)/(sgrid - 1.0);

for( int j = 0 ; j < sgrid; j++ )
{
double w = w.opaque + j♦w.del; 
double s ;

if( w < w.min )
{
3 = 0 ;
}
else
{
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double r = (w - w_min)/(u_maz - »_min) ; 
double B = B.inner + r*(B.outer - B.inner);

a = source.functionC «.opaque, v, T, x, B );
}

cout «  w «  " " «  s «  endl;
}
}

s moot h.cc
/ dissertation/sobolev/snooth.cc
/
/ copyright 1999 Thomas E. Vaughan
/
/ This is free software, redistributable only under the terms of Che GNU 
/ General Public License (GPL). See <http://wHH.gnu.org>.

/ Transform two-column x-y data from standard input to standard output.
/ Transformed data has been smoothed by a gaussian whose standard 
/ deviation is (optionally) specified on the command line.

include <stdlib.h> // ezitO and strtodO
include <iostream.h> // usual C++ I/O
include <map.h> // STL map
include <math.h> // M.PI and sqrt()

include "trapezoid.hh" // trapezoidO trapezoid-rule integrator

/ The following variables are file-scope global because they are needed by 
/ fl(), which must have only one parameter. A pointer to fl() is passed 
/ to trapezoidO for integration.

// s2pi is a normalization factor for the gaussian. 
static const double s2pi = sqrt( 2.0+N.PI );

static map<double,double> f; // map for standard input

static double sd; // standard deviation of gaussian
static double x.center; // central x value for the current gaussian

// fl() is an integrand, the product of (1) a gaussian and (2) an 
// interpolant and extrapolant of the input data. Interpolation is 
// performed linearly, and the extrapolant is a constant equal to the edge 
// value of the input data.
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double fl( double z )
{
static double id; // value of interpolant at z

if( z < ( f.beginO )->first )
{
// z is smaller than the smallest key. and so eztrapolation 
// is necessary.

id = ( f.beginO )->second;
}
else if( z > ( f.rbeginO )->first )
{
// z is larger than the largest key, and so eztrapolation 
// is necessary.

id = ( f.rbeginO )->second;
}
else
{
// Interpolate.

static map<double, double): : iterator ub; 
static map<double, double)::iterator lb;

ub = f.upper.bound( z ); // upper bound
lb = ub;

— lb; // lower bound

static double zl; 
static double z2; 
static double yl; 
static double y2;

// A map is a set of pairs, each of which has a 'first' and 
I I a 'second' member.

zl = lb-)first; 
z2 = ub-)first; 
yl = lb-)second; 
y2 = ub-)second;

id = yl + (z - zl)*(y2 - yl)/(z2 - zl);
>

static double z; 
z = (z - z_center)/sd;
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return id«ezp( -O.S*z*z )/sd/s2pi;
}

// main program

int main( int argc, char* argv[] )
{
// Process command-line arguments, if any

if( argc == 1 )
{
// There are no command-line arguments. Indicate that sd 
// should be chosen automatically.

sd = 0;
}
else if( argc =  2 )
{
// There is a command-line argument. Assume that it 
// represents the standard deviation.

char** endptr = NULL;
sd = strtodC argvCl], endptr );

if( sd < 0 )
{
cerr «  argv[0] «  ": ERROR: negative standard “

«  "deviation" «  endl;

exit( 1 );
}
}
else
{
// There are too many command-line arguments, 

cerr «  "usage: " «  endl;
cerr «  argv [0] «  " [<standard deviation)] " «  endl ;

exit( 1 );
}

// Read standard input.
{
double x; 
double y ;

shile( cin » x » y )  f [ x ] = y ;
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// total X size of input data
double xsize = ( f.rbeginO )->first - ( f.beginO )->first;

// mean x step size in input data
double dx = xsize/( f.sizeO - 1 );

// If sd is unspecified or specified on command line as 0, then set 
// sd equal to mean x step size in input data.

if( sd == 0 ) sd = dx;

// sdlim is the number of standard deviations to consider for the 
// gaussian.
/ /
// i is an iterator for (like a pointer to) an element of a
// map<double,double>. Each such element is a pair.

const double sdlim = 3.5;
map<double,double): ; iterator i ;

// Extend the input map by at least sdlim standard deviations on 
// each side.
{
i = f.beginO ;

double xl = i->first; // smallest x
double yl = i->second; // corresponding y

double x2 = ( f.rbeginO )->first; // largest x
double y2 = ( f.rbeginO )->second; // corresponding y

for( int j = 0; j < sdlim*sd/dx + i; j++ )

fC xl - j#dx ] = yl;
fC x2 + j*dx ] = y2;
}
}

// For each x in the input data, integrate the product of (1) a
// gaussian centered at that x and (2) the interpolated or
// extrapolated value from the input data. The integral becomes 
// the output value for that x.

for( i = f.beginO; i != f.endO; i++ )
{
x.center = i->first; // global parameter for fl()
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double x_lo = i->first - sdlia^sd; 
double x_hi = i->first + sdliB«sd;

I l Calculate and send results to standard output.

cout.precision( 11 );

cout «  i->first «  " " «  trapezoidC f1, x_lo, x_hi ) 
«  endl;

}

// Indicate normal exit to operating system, 
return( 0 ) ;
}

test_syn.cc

// dissertâtion/sobolev/test_syn.cc
/ /
// copyright 1999 Thomas E. Vaughan
/ /
// This is free software, redistributable only under the terms of the GNU 
// General Public License (GPL). See <http://HHH.gnu.org>.

// Synthesize a line profile as measured by a distant observer of a 
// radially expanding spherical shell. The expansion speed is independent 
//of radial coordinate. In the comoving frame, the shell is transpairent 
//at every wavelength except for a single delta-function line profile. An 
// opaque sphere whose radius is smaller than that of the shell’s inner 
// boundary emits light with an intensity that is independent of angle and, 
// for wavelengths in the vicinity of the line's rest-frame wavelength, is 
// also independent of wavelength. There is no source of opacity outside 
// of the outer boundary ; also, there is no source of opacity between the 
// opaque sphere and the inner boundary. The integrated opacity of the 
// line varies as the inverse square of the radial coordinate.

// Allow access to standard input-output and math functions.

tinclude <iostream> 
tinclude <math.h>

// Allow access to various functions that I have written. These functions 
// allow linear interpolation, reading of a parameter file, calculation of 
// the source function, and calculation of an integral via an iterative 
// trapezoid-rule scheme.
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tinclude "linterp.hh" 
tinclude "parameters.hh" 
tinclude "source.function.hh" 
tinclude "trapezoid.hh"

// The following variables are file-scope global because they are needed by 
// fl() and f2(), each of which must have only one argument in its 
// signature. In this context, "static" means that the symbol cannot be 
// accessed by a function in a different file scope.

static double* sf ; //
static double s.del; //

static double z; //
static double T; //

static double w.opaque; //
static double w.min; //
static double w.max; //

>11 inner radius in units of r.O
>11 outer radius in units of r.O

// Within the scope of each of the following functions, "static" means that 
// storage for the symbol is allocated at compile time, and so no time will 
//be required for automatic stack allocation at each function call.

// fl() maps impact parameter p to the product of p and the intensity at p 
// for wavelength shift z. fl() corresponds to the intensity emergent from 
//a resonance point between the opaque sphere and the observer.

double fl( double p )
{
static double w; // radial coordinate 
static double t; // optical depth

w = p/sqrt( 1.0 - z«z ); 
t = 2.0*T*w/p/p;

// w should lie within [w.min,w.max]. Correct for the inevitable 
// slight numerical error.

if ( w < w.min ) w = w.min; 
else if( w > w.max ) w = w.max;

static double s; // source function
static double wi; // intensity weighted by impact parameter

s = linterpC w.opaque, w.max, s.del, w, sf ); 
wi = p*( s*( 1.0 - exp(-t) ) + exp(-t) );
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return v i ;
}

// f2() maps impact parameter p to the product of p and the intensity at p 
// for wavelength shift z f2() corresponds to the intensity emergent from 
// a resonance point NOT between the opaque sphere and the observer.

double f2( double p )
{
static double w; // radial coordinate 
static double t; // optical depth

w = p/sqrt( 1.0 - z*z ); 
t = 2.0*T*w/p/p:

// w should lie within [w.min,w.maz]. Correct for the inevitable 
// slight numerical error.

if ( w < w_min ) w = w_min; 
else if( w > w.max ) w = w.maz;

static double s; // source function
static double wi; // intensity weighted by impact parameter

s = linterpC w.opaque, w.max, s.del, w, sf ); 
wi = p*s«( 1.0 - exp(-t) );

return wi;
>

// Execution of the program begins with this function, main().

main( int argc, char«* argv )
{
// First, process command-line arguments.

if( argc == 1 )
{
// There are no command-line arguments. Pass a null string 
// pointer to the parameters constructor so that it reads 
// from the standard input.

params = new parameters( 0 );
}
else if( argc —  2 )
{
// There is a command-line argument. Assume that the
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// argument is the name of a parameter file.

params = new parameters( argv[l] );
}
else
{
// There are two or more command-line arguments, this is 
// an error condition.

cerr «  "usage: " «  argv[0] << " <parameter fiie>"
«  endl;

exit( 1 );
}

// Use paurameters to initialize some variables.

T = params->get( "T" )
w.opaque = params->get( "w.opaque" )
w_min = params->get( "w_min" )
H_max = params->get( "w_max" )

// line-strength parameter 
// opaque sphere radius 
// shell inner boundary 
// shell outer boundary

if( H.opaque > w.min )
{
cerr «  argv[0] «  ": ERROR: opaque sphere bigger than "

«  "inner boundary of shell: " «  w.opaque «  " > "
«  w.min «  endl;

exit( 1 );
>

// sgrid is number of source-function points 
// zgrid is number of wavelength-shift points

int sgrid = int( params->get("sgrid") + 0.5 ); 
int zgrid = int{ params->get("zgrid") + 0.5 );

sf = new doubleC sgrid ]; // memory allocation for source function

double z.max = 1.0; // max wavelength shift in units of v_0/c
double z.min = -1.0; // min wavelength shift in units of v_0/c

// various step sizes

s.del = (w.max - w.opaque)/(sgrid - 1); // global variable
double z.del = (z.max - z.min )/(zgrid - 1); // local variable

// Calculate source function for each point on a radial grid.
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double X = parains->get( "x" ); // coll. frac, of de-excitations

double 3_inner = params->get( "B.inner" ); //at opaque sphere 
double B.outer = params->get( "B.outer" ); //at outer boundeury

for( int i = 0; i < sgrid; i++ )
{
double w = w.opaque + i*s_del;
double s;

if( w < w.min )

s = 0;
}
else
{
double r = (w - w.min)/(w.max - w.min); 
double B = B.inner + r*(B.outer - B.inner);

s = source.functionC w.opaque, w, T, x, B );
}

sf[i] = s;
}

// Consider each wavelength shift in turn.

cerr «  argv[0] «  ": calculating intensity for each wavelength" 
«  flush;

int ip = -1; // counter for progress graph

for( int i = 0; i < zgrid; i++ )
{
z = z.min + i#z.del; // current wavelength shift

if( i*10/zgrid > ip )
{
// Add a tic to the progress graph, 
cerr «  «  flush;
ip = i«10/zgrid;
}

// pO is impact parameter for resonance at opaque surface
//pi is impact parameter for resonance at inner boundary
// p2 is impact parameter for resonance at outer boundary
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doubla pO = H_opaqua*sqrt( 1.0 - z*z )
doubla pl = v_min *aqrt( 1.0 - z*z )
doubla p2 = w.max *sqrt( 1.0 - z*z )

// Initializa total emargant intansity for currant
// wavalangth shift.

doubla I = 0.0;

/ /  F i r s t  c a l c u l a t e  t h e  c o n t r i b u t i o n  due t o  e a c h  r e s o n a n c e  
// point within the opaque sphere. For the impact 
// parameter at each such point, the observer sees directly 
// the surface of the opaque sphere.

// line of sight to disk 
I += p0*p0/2.0;

// Next calculate the contribution due to each resonance 
// point between the opaque sphere and the point at which 
// the impact parameter equals w.opaque.

if( z > 0 I I pl > w.opaque )
{
// For positive wavelength shift, the points in 
// question are in the occulted region. For pl >
// w.opaque, every point now under consideration 
// lies in the evacuated region between the opaque 
// sphere and the inner boundary of the shell. For 
// the impact parameter at each such point, the 
// observer sees directly the surface of the opaque 
// sphere.

// line of sight to disk 
I += (w.opaque*w_opaque - p0«p0)/2.0;
>

else
{
// Each point under consideration lies between the 
// opaque sphere and the observer. Moreover, there 
// is, corresponding to some of those points, a 
// range of impact parameters for which photons 
// from the opaque surface may be scattered out of 
// the line of sight.

// Photons from the opaque surface may not be 
// scattered out of the line of sight until the 
// impact parameter is large enough so that the 
// resonance point lies within the shell. So we
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/ integrate contributions from the smaller impact 
/ parameters for which there is a direct line of 
/ sight to the opaque surface.

/ line of sight to disk 
+= (pl*pl - p0*p0)/2.0;

f( p2 < w.opaque )

/  A r e s o n a n c e  p o in t  a t  t h e  o u t e r  b ou n d ary  
/ has impact parameter less than w.opaque.
/ So the range of impact parameters for 
/ which photons from the opaque surface 
/ may be scattered out of the line of 
/ sight is [pl,p2]

/ scattering away from line of sight 
+= trapezoidC f1, pi, p2 );

/ There remain some impact parameters for 
/ which the observer’s line of sight ends 
/ on the opaque surface, but for which the 
/ resonance point lies outside the shell's 
/ outer boundary.

/ line of sight to disk 
+= (w.opaque*w.opaque - p2*p2)/2.0;

else

/ A resonance point at the outer boundary 
/ has impact parameter greater than 
/ w.opaque. So, resonance points within 
/ the shell extend at least as far as the 
/ limb of the opaque sphere.

/ scattering away from line of sight 
+= trapezoidC f1, pl, w.opaque );

/ Finally add the contribution from each resonance point 
/ with impact parameter larger than w.opaque.

f( pl > w.opaque )

/ A resonance point at the inner boundary of the 
/ shell has impact parameter larger than w.opaque.
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// Integrate all the way through the shell.

// scattering into the line of sight 
I += trapezoidC f2, pi, p2 );
>

else if( p2 > w.opaque )
{
// The resonance point at the limb of the opaque 
// sphere is somewhere within the shell. Integrate 
// from the limb to the outer boundary of the 
// shell.

// scattering into the line of sight 
I += trapezoidC f2, w.opaque, p2 );
}

cout precisionC 11 );
cout «  z «  " " «  I «  endl ;
}

cerr «  " done" «  endl;
}

A.2.4 Perl Scripts

syn-T.pl
#!/usr/bin/perl

openC INFILE, "lARGVCO]" );

tepsfile = (ARGV[0]; 
lepsfile =* s/\.C *)/ eps/;

whileC <INFILE> )
{

my $k; # key
my Qv; # list of values

Clk, Cv) = split;
SparamClk} = \0v; # reference to a list of values

OT = $param{’T'} >;
$z = |param{ }->[0]
(B.inner = (param{ 'B.inner' }->[0]
(B.outer = (param-C 'B.outer' }-> [0]

122



$w_min = tparam{ 'w_min' }->[0]
Sw.maz = $param{ ’w_max’ }->[0]
$w_opaque = $param{ ‘w.opaque’ }->[0]
Srea = $param{ ‘res' }->[0]

ST.OK = 1;
foreach $i ( OT ) { $T_OK = 0 if $i < 0; }

if(
(T.OK kk
(z = 0 kk
(z 1 kk
(B.inner 0 kk
(B.outer = 0 kk
(w.min (w.opaque kk
(w.max (w_min kk
(w.opaque 0 kk
(res = 0 kk
(epsfile ne nil J

# Make a plot of the syntheti

(plotline plot [:] [0:] "

foreach (T ( OT )

(params = “sgrid iSl zgrid 251 “.
“T $T “.
“x Ix
“B.inner (B.inner “ .
“B.outer (B.outer ".
“w.min (w.min “.
“w.mM (w.max “.
“w.opaque (w.opaque “;

(dname = “syn-({T}.dat“;
(plotline .= qq!({sep}“(dname“ title “T=(T“ with lines Iw 3!; 
if( "(sap" eq "" ) { (sap = ", \\\n"; }

'echo (params I ./test.syn > tmp.dat';
'./smooth (res < tap.dat > (dname';

(gpfile = "syn.gp"; 
open( GPFILE. "Xgpfile" ); 
print GPFILE «"EOF";

set format "%.2f"
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set grid 
set key beloH 
set mxtics 
set mytics 
set origin 0,0 
set size 1.2,2.0
set term postscript eps enhanced 24
set xlabel "{/Times-Roman normalized wavelength shift {/Times-Italic z}}' 
set ylabel "{/Times-Roman relative flux}"

set multiplot 
set size 1.1,0.9

(plotline

EOF

# Make a plot of the source function.

(plotline = " plot (l-sqrt(l-((w_opaque/x)**2))/2 ". 
qq! title "dilution factor" with lines Iw 1 ! ;

foreach (T ( OT )
{

(params = "sgrid 151 zgrid 251 ".
"T (T ".
"X (x ".
"B.inner (B.inner ".
"B.outer (B.outer ".
"w.min (w.min ".
"w.max (w.max "
"w.opaque (w.opaque ";

(dname = "sf-({T}.dat";
(plotline .= qq!({sep} "(dname" title "T=(T" with lines Iw 3!;
'echo (params I ./sf > (dname';

}

print GPFILE «"EOF"; 

set origin 0.0,1.1
set xlabel "normalized radial coordinate {/Times-Italic w}" 
set ylabel "source function"

(plotline

EOF
close( GPFILE );
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}
else
{

'gnuplot Sgpfile > lepsfile': 
"rm -V Igpfile';

# The form does not contain valid data, 
print "Choose appropriate parameters.\n" ;

print "T CT\n"; 
print "I $x\n"; 
print "B.inner $E_inner\n"; 
print "B.outer $B.outer\n"; 
print "w.min $w.min\n"; 
print "w.max $w.max\n"; 
print "w.opaque $w.opaque\n"; 
print "res $res\n"; 
print "epsfile lepsfile\n";

syn.pl
#!/usr/bin/perl

open( INFILE, "lARGVCO]" );

WhileC <INFILE> )
{

my Ov;
(Ik, Cv) = split; 
Iparamdk} = \*v;

}

IT = lparam{ 'T' } -> [o ]
Ix = lparam{ } -> [o ]
IB.inner = IparamC 'B.inner' } -> [0 ]
IB.outer = lparam{ 'B.outer' } -> [ 0 ]
lw.min = IparamC 'w.min' } -> [0 ]
|w.max = lparam{ 'w_max' } -> [o ]
Iw.opaque = IparamC 'w.opaque' }->C o]
1res = lparam{ 'res' } -> [0 ]
lepsfile = IparamC 'epsfile' } -> [ 0 ]

ifC
IT >= 0 t t
Ix >= 0 kk
Ix <= 1 kk
IB.inner >= 0 kk
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IB.outer >= 0 kk
lw.min > Iw.opaque kk
Iw.max > lw.min kk
Iw.opaque > 0 kk
1res >= 0 kk
lep sfile ne )

# Make a plot of the synthetic line profile.

(params = "sgrid 151 zgrid 251 
"T $T ".
"x $x "
"B.inner (B.inner 
"B.outer IB.outer ".
"w.min lw.min ".
"w.max Iw.max "
"w.opaque Iw.opaque ";

Idname = "syn.dat";
Isname = "smooth.dat";

Iplotline = qq! plot "Idname" title "synthetic profile" 
qq! with lines Iw 1, "Isname" title !. 
qq! "smoothed profile" with !. 
qq! lines Iw 3 ! ;

‘echo Iparams I /usr/local/bin/test.syn > Idname‘;
'/usr/local/bin/smooth 1res < Idname > Isname‘;

Igpfile = "syn.gp":

openC GPFILE, ">|gpfile" );
print GPFILE «"EOF";

set format 2f"
set grid
set key below
set fluctics
set mytics
set origin 0.0
set size 1.2,2.0
set term postscript eps enhanced 24
set xlabel "{/Times-Roman normalized wavelength shift}" 
set ylabel "{/Times-Roman relative flux}"

set multiplot 
set size 1.1,0.9
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Splotline

EOF

# Make a plot of the source function.

$dname = "sf.dat";

(plotline = qq! plot (l-sqrt(l-($H_opaque/x)**2))/2 
qq! title "dilution factor" with lines lu 1, !.
qq! "Idname" title "source function" with !.
qq! lines Iw 3 ! ;

'echo Iparams I /usr/local/bin/sf > Idname';

print GPFILE «"EOF";

set origin 0.0,1.1
set xlabel "normalized radial coordinate {/Times-Italic w}" 
set ylabel "source function"

Iplotline

EOF
closeC GPFILE ); 
gnuplot Igpfile > lepsfile';
'rm -V Igpfile';

}
else
{

# The form does not contain valid data, 
print "Choose appropriate parameters.\n";

print "T |T\n"; 
print "x lx\n"; 
print "B.inner IB_inner\n"; 
print "B.outer |B.outer\n"; 
print "w.min tw.minXn"; 
print "w.max lw.max\n"; 
print "w.opaque Iw.opaque\n"; 
print "res |res\n"; 
print "epsfile lepsfileXn";
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