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Abstract

A simple model of line radiative transfer in a circumstellar shell surrounding a super-
nova is presented. An examination of optical depth in an atmosphere with power-law
expansion and a single source of opacity highlights certain difficulties arising as the
power-law index approaches zero. The Sobolev approximation is shown, however, to
be applicable to the case of a constant-radial-velocity wind so long as the intrinsic line
profile of the opacity source is a Dirac delta function. Sample line profiles for vari-
ous geometries are presented along with the source code used to generate the profiles.
The simple model predicts the shape of spectral features with a characteristic size of
about 10-100 km s~! in the observed spectrum of a core-collapse supernova that shows

evidence for circumstellar interaction.



Chapter 1

Introduction

[ present a model for the formation of narrow features observed in the spectrum of a
supernova (SN) of Type IIn. A SN is an explosion that destroys a star or transforms it
into something exotic (like a nentron star). This explosion is bright. The visible-light
Inminosity typically rises to a peak that occurs from about a week to about a month
after the beginning of the explosion. The peak optical lnminosity ranges from about
10%L;, (for some Type II SN) to about 10'°L; (for a typical Type la SN), where L is
the luminosity of the Sun.

An observation of light from a SN is either spectroscopic or photometric. A spectro-
scopic observation is represented as brightness versus wavelength. and the wavelength
resolution is high (say. 10 A). A photometric observation measures the brightness aver-
aged across a well-defined, broad (say, 1000-}\) wavelength range, or passband [Bessell,
1990]. A time sequence of photometric observations in the same passband is known as
a light curve.

A SN model is typically either static or dynamic. A static model (as of Lentz et al.
(1999]) produces a high-resolution synthetic spectrnm that can be compared with a

spectroscopic observation of a SN. A dynamic model (as of Hoflich and Khokhlov {1996])



produces synthetic light curves. The model presented in this dissertation is of the static
type, and unlike a static model that aims to fit every feature over the wavelength range
of interest, the model under consideration here only addresses certain features thought

to be formed reasonably independently of other features in the spectrum.

1.1 Classification of Supernovae

A SN is classified on the basis of its optical spectrum; Filippenko [1997] has provided a
recent review of the optical spectra of supernovae (SNe). At its root, the classification
system for SNe hinges. from historical precedent, on the presence or absence of spectral
features associated with hydrogen [Minkowski, 1941]. A Type I SN (or SN I) shows no
spectroscopic evidence for the presence of hydrogen; the spectrum of a SN II, however,
does imply the presence of hydrogen.

Only the spectrum of a SN Ia shows a deep absorption feature (near 6150 A) due to
blueshifted lines (laboratory-frame Si II AA6347, 6371) of silicon. In the standard theo-
retical framework, a SN [a results from the thermonuclear fusion explosion of a white
dwarf star that accumulates matter from a companion star. A white dwarf is supported
against its own gravity not by the familiar pressure resulting from the temperature of
a gas but rather by electron degeneracy pressure resulting from the close proximity
of neighboring electrons in the high-density material of the white dwart. An object
supported against gravity by electron degeneracy pressure has a maximum mass and,
more importantly, becomes smaller in size as it accumulates mass. The white dwarf,
as it accumulates mass, undergoes quasistatic contraction until the atomic nuclei in its
constituent material (carbon and oxygen) fuse. The resultant thermonuclear explosion
completely unbinds the star and provides the kinetic energy of the ejected material.

Conditions near the center of the SN Ia drive thermonuclear reactions to produce ra-



dioactive **Ni. Away from the center of the explosion, thermonuclear reactions produce
a substantial amount of silicon as well as other intermediate-mass elements. Because
the SN Ia begins as a compact object, the fractional change in volume per unit time is
huge at early times during the explosion, and so the temperature drops rapidly. How-
ever. not all of the nuclear potential energy is deposited thermally on the fusion time
scale and dissipated in the expansion. The radioctive decay of “*Ni (whose halt-life is
about a week and whose decay product. *Co. also radioactively decays with a half-life
of more than two months) provides a delayed input of energy that accounts for the great
Inminosity of the SN Ia.

All of the SN Ib, SN Ic, and SN II are associated with a different explosion model:
core-collapse. A massive star (initially greater than about 8-10 solar masses) will, over
the course of its evolution. fuse nuclei in its core and in concentric spherical layers
surrounding the core. The process must come to an end soon after the star begins to
fuse silicon into iron because although fusion of nuclei lighter than iron is an exothermic
process, fusion of iron and heavier elements is endothermic. As nuclear burning in the
silicon shell surrounding the core produces iron, the mass, density. and temperature
of the core grow. Eventually, the temperature becomes so great that iron nuclei are
photodissociated, and then electrons begin to disappear from the core; each disappearing
electron combines with a proton in a nucleus in order to form a neutron and a neutrino.
Because the pressure is provided by electron degeneracy—even at temperatures great
enough so that an individual photon can break apart an iron nucleus—this reaction
causes the core (now more than a solar mass) to collapse. The collapse continues
until the core’s density overshoots that of the nucleus of an atom. In what has been
the standard model for many years, the core then rebounds to produce a shock wave
that drives away the outer portion of the star. The nuclear-density core remains as a

neutron star (or possibly collapses to form a black hole). Recently, pervasive evidence



for asymmetry in core-collapse SNe and the difficulty of getting core-bounce models
actually to produce a simulated explosion together suggest that some other mechanism,
like bipolar jets emanating from the neutron star or black hole. may actually produce
the explosion. In any event, the spectrum of a SN Ib—as if the progenitor were, before
core collapse, stripped of its outermost hydrogen envelope—shows little or no evidence
for hydrogen. Further, the relatively bland spectrum of a SN Ic—as if the progenitor
were, before core collapse, stripped of both its hydrogen and helium envelopes—shows
little or no evidence for hydrogen and helium.

A SN I for which there exists a good optical spectrum is usually labeled SN Ia”,
*SN Ib”. or “SN Ic”. but a SN II—even one with a good optical spectruin—is usually
classified spectroscopically as simply “SN II”. Figure 1.1 shows optical spectra of SN [I
1992H [Clocchiatti et al.. 1996]. At maximum light and for at least a few weeks after
maximum light, the spectrum of a typical SN Il is characterized by wide features (with
doppler width of more than 10* km s~'). Usually a few P-Cygni profiles [Mihalas, 1978],
each of which results from the scattering of light off of a particular atomic transition in
the ejecta above the region in which the continuum of the spectrum is formed, can be
identified. A P-Cygni profile has a blueward absorption trough and a redward emission
feature. After the spectrum has been adjusted in order to remove the relative line-
of-sight velocity component between the observer and the SN, the emission part of a
P-Cygni profile peaks near the rest-frame wavelength of the transition that gives rise
to the profile. A P-Cygni profile in a typical SN II is broad enough to imply that the
profile forms in the ejecta.

Recently, “SN IIn”, a peculiar spectroscopic subclass of SN II, has been defined. A
SN IIn has narrow emission lines, probably indicative of slowly expanding circumstellar
gas with which the rapidly expanding ejected material interacts. Figure 1.2, copied

from a preprint of Leonard et al. {1999], shows an optical spectrum of the SN IIn 1998S;
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Figure 1.1: Spectra of SN II 1992H starting (at top) about two weeks after maximum
light show broad features characteristic of a typical SN II. The time sequence is arranged
from top to bottom. Maximum light in the B passband occured around 1992 Feb 13.
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Figure 1.3: The Hubble Space Telescope was used to obtain very high-resolution ultra-
violet spectra of SN IIn 1998S. Here are two sections of the same spectrum on 1998 Mar
16, around maximum light.



compare with Figure 1.1. Many an emission feature in the spectra of SN1998S has a
component narrow enough to be unresolved in the figure. Particularly interesting, how-
ever, are ultraviolet spectra taken by the Hubble Space Telescope. Figure 1.3 shows such
a spectrum around maximum light, several days after the spectra in Figure 1.2. Note
that the strongest features in Figure 1.3 are as narrow as can be resolved by the detec-
tor (which at these wavelengths cannot resolve features due to a radial wind component
slower than about 300 km s™'), and there appear to be features unresolved even at this
scale. Nevertheless each of the top and bottom plots displays a prominent P-Cygni
profile that suggests scattering in an envelope that is expanding around 10° km s~} (as
compared with the characteristic speed of 10! km s~! for the ejecta).

Although the SN II has two photometric subclasses (SN II-L and SN [I-P), distin-
guished by the shape of the optical light curve, the SN IIn exhibits a light curve that
does not fit well into the photometric classification scheme. The optical light curve of
a SN IIn declines. in comparison with other SNe II, very slowlv just after maximum
light. probably because of light emitted by the interaction of the ejected material and

the circumstellar wind.

1.2 Motivation for a Simple Model

Radio observations of SNe II [Weiler et al., 1992] and of SNe Ib and Ic [Van Dyk et al.,
1993] imply that a wind blown off from the progenitor of a core-collapse SN may interact
with the ejecta. As indicated in the previous section, recent observations of SN IIn 1998S
have revealed narrow spectral features that suggest the presence of a circumstellar wind.
High-resolution spectroscopic observations of these features provide the opportunity to
test models of line formation in the wind.

A circumstellar wind is accelerated away from a star by radiation pressure. A small



mass element in the wind will, after initial acceleration near the surface of the star.
asymptotically approach a terminal radial velocity. The wind expansion speed (up to
about 10% km s~') is much smaller than the expansion speed (more than 10* km s™!) of
the ejecta. Because the width of an observed spectral feature is related by the doppler
effect to the speed of the radial expansion, a line formed in the wind will appear much
narrower than a line formed in the ejecta. In the simplest wind model, the luminosity
and mass-loss rate of the star were constant around the time during which a spherically
symmetric wind (now interacting with light from the SN) was initially accelerated, and
the wind under consideration exists in a shell that expands at the terminal speed.
Especially for SNe Ia, simple, spherically symmetric models [Branch et al., 1983,
Jeffery et al., 1992, Fisher et al., 1997, Millard et al., 1999, Hatano et al., 1999] of
line formation in the SN ejecta have taken advantage of homologous expansion, the
proportionality between the speed of an ejected mass element and its distance from
the center of the explosion. A large, isotropic velocity gradient at every point in the
homologously expanding ejecta provides an ideal context for application of the Sobolev
[1960] approximation to the mathematical representation of line radiative transfer. If,
in a frame of reference at rest with respect to atmospheric material, the atmosphere is
considered to be transparent except for a few individual wavelengths (lines) at which the
atmosphere is somewhat opaque, then in the Sobolev approximation a monochromatic
light beam will interact with the atmosphere only at one location in the atmosphere
for each line. A model derived from the Sobolev approximation is very computationally
efficient and so allows for rapid identification of the dominant, relatively wide features
in a SN spectrum; the spectrum-fitting process gives insight into the physical structure
of the SN ejecta. Can such a model be extended or changed in order to give insight into
the formation of the very narrow lines that appear to form in a circumstellar shell?

The primary difficulty in adapting to this task a model based on the Sobolev method



is that for a constant-radial-velocity wind, the velocity gradient becomes zero along the
radial direction. Nevertheless, I show that the Sobolev method can be used in order to
produce synthetic line profiles so long as the intrinsic width of the line is vanishingly
small. Although this discussion covers only the case in which the shell has a single line
(or multiple lines spaced far enough apart in wavelength space), extension to the case of
line bleuding, in which light scatters off of more than one line betore leaving the shell,

is straight-forward.
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Chapter 2

Beam—Line Resonance in an
Atmosphere with Power-Law

Expansion

In order numerically to calculate a line profile as seen by a distant observer, one must
describe, in terms of the model’s geometry, the propagation of a monochromatic light
beam through the line-forming region. Only then can a representative sample of beams,
that are directed toward the distant observer, be combined in order to produce a syn-

thetic profile.

2.1 General Description of the Model

The model under consideration is a spherical shell of radially expanding gas whose
opacity comes only from narrow lines and whose expansion speed is independent of
radial coordinate. For the development of the initial material related to the propagation

of a beam through an expanding atmosphere, however, [ begin by discussing the more
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general case of power-law expansion. This provides a context in which one can see the

mathematical difficulties introduced by the assumption of a constant-speed wind.

2.1.1 Power-Law Expansion

Consider a spherical shell containing a gaseous medium that is expanding radially and

has a radial-power-law velocity field with
a
a(r) = H o, (2.1)

where v, (r) is the magnitude of the atmosphere’s radial velocity at distance r from the
center of symmetry; vq(ro) = vo; and the power-law index for the velocity field is a. The
inner and outer boundaries of the atmosphere must be chosen such that everywhere in
the shell v,(r) < ¢, where cis the speed of light; otherwise a time-independent treatment
is not valid. Atmospheric expansion speeds must be much smaller than the speed of light
because the geometric analysis presented here assumes that the size of the atmosphere
and shape of the velocity profile do not change significantly over the time required for a
beam to traverse the atmosphere. Moreover, calculations are greatly simplified by the
first-order approximation for terms involving vy/c. For a < 0 the velocity constraint
applies to the inner boundary, for which r = Ry; for @ > 0, to the outer boundary, for

which r = Ro.

2.1.2 Line Opacity and Resonance

For points near the origin of a comoving frame—a frame of reference whose origin is
stationary with respect to the atmosphere near that origin—the opacity as a function of
wavelength as measured in the comoving frame is, in the model under consideration, a

superposition of narrow (non-overlapping) profiles, each corresponding to an atomic (or,

12



in principle, molecular) line transition, which I shall call a “line”. For a monochromatic
specific intensity beam, which [ shall call a *beam”. whose wavelength. as measured by
a comoving observer on the beam path, lies between sufficiently separated line profiles,
the atmosphere in the neighborhood of the observer is transparent to the beam. In
the opposite extreme, a comoving observer who finds the beam’s wavelength to be at
the center of a iine profile occupies a resonance point for the beam and the line, and
surronnding the observer is a resonance region in which the beam interacts with the

line.

2.2 An Unbounded Atmosphere

As a beginning, let us ignore inner and outer boundaries of the line-forming region.
Consider a region of space filled with a gaseous medium with bulk motion that is radial.
Assume that the characteristic thermal speed for a gas particle is small in comparison
with the local mean radial velocity and that the atmosphere is transparent except for a
single line. whose wavelength dependence in the comoving frame is given by a normalized

distribution function, o, centered at \'.

2.2.1 Impact-Parameter Representation of the Beam

Consider a beam that propagates through this atmosphere. Because of spherical sym-
metry, the beam’s trajectory may be fully described by its impact parameter, p, and
one may without loss of generality describe the geometry of the system in terms of the
plane that contains the center of the velocity field and the beam path.

In Figure 2.1, the beam is represented by a thick line and propagates to the right.
The beam path coordinate, s, is zero at C, which on the beam is the closest point to

O, the center of the radial velocity field. In this diagram, 3 is positive for points on the

13



beam path -5

Figure 2.1: The beam path is represented by the horizontal line at top. The positive
distance to a point at negative beam path parameter s is indicated by —s. On the y-
axis at distance p from the center O of the velocity field, the point of the beam’s closest
approach to O is C. On the incoming (left) side of C. 5 is negative; on the outgoing

(right) side of C, s is positive. The distance from O to the point at 5 is R(S).
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beam to the right of C; negative, to the left of C. The distance from O to the point at
s on the beam is R(s) = /p? + 52.

Let the wavelength that a comoving observer at C ascribes to the beam be ¢. Al
though a comoving observer at C is not stationary with respect to O, there is no
component of atmospheric velocity along the beam at C. and so, to first order in ve-
locity, € is the same wavelength observed for the beam by any (non-comoving) observer
stationary with respect to O.

At this point [ introduce the unitless quantities, & = 5/rq and w = p/rg, which will
simplify many of the expressions that follow.

Let A(&) be the wavelength that a comoving observer at a point corresponding to
n = s/ry on the beam ascribes to the beam. According to the first-order Doppler

correction,

—— roit vy( R(roa) )| , ;. Vo .
Aa) = [1 + Rlrod) - ] ¢ = [1 + fa(it) T_] ¢, (2.2)
where
fali) = [u? + a‘l][“"'“ i (2.3)

is proportional to the fractional difference between the comoving wavelength at @ = §/rg
and ¢, the comoving wavelength at C. So long as a > 0, f,(i) increases monotonically
with . In particular this means that for both a constant-speed wind (a = 0) and a
homologously expanding atmosphere (a = 1), the wavelength of a beam becomes ever
longer. in the comoving frame of reference, as the beam traverses the atmosphere.

For the case in which w = p/ro = 1, Figure 2.2 illustrates the beam’s wavelength as
perceived by comoving observers along the beam path. The horizontal axis represents
i = §/ry, the beam path parameter in units of ro. The vertical axis represents f,(i).
For each curve, a positive slope indicates local redshifting of the beam; a negative

slope indicates local blueshifting. The curves for a < 0 show that the beam blueshifts,
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Figure 2.2: For each of several values of e, f,(i), which is proportional to the fractional
deviation of the comoving wavelength from ¢, is plotted against a = 5/ry.

16



redshifts, and then blueshifts as it passes through the atmosphere. The curve fora =0
shows that the beam always redshifts, but it asymptotically approaches a constant
wavelength at large distances. The curves for @ > 0 show that the beam always redshifts
as it passes through the atmosphere and that the beam obtains every wavelength in an
unbounded atmosphere. Note that the curve for a = 1 is a straight line, and so the
beamn redshiits linearly with increasing u in the case of homologous expansion.

For a given velocity field, to hold w = p/r, fixed is to specify a particular trajectory,
but many distinct monochromatic beams share the same trajectory. One must also fix
¢ in order to specify a particular beam. As the beam travels through the atmosphere it
may appear to a comoving observer on the beam to be at the central wavelength, \’, for
the opacity distribution function. ¢. Any such observer is located at a resonance point
for the beam (determined by w and #) and the line (determined by o).

For a given beam and a given line, Figure 2.2, in which a resonance point would
be identified by the intersection of (1) the curve corresponding to a particular value
of @ and (2) the horizontal line corresponding to a particular value of A, implies that
there will be zero. one, or two resonance points in an unbounded expanding atmosphere
with a power-law velocity profile. Specifically, for a < 0 there will be zero, one, or two
resonance points: for a = 0. zero or one resonance point; and for a > 0, exactly one
resonance point. Below we shall consider as specific examplesa = -1, ¢ =0,and a = 1,
which together cover the three qualitatively distinct types of atmosphere that the model
under consideration describes.

In order to calculate the optical depth of the resonance region later, we effectively
invert A by finding a function U, such that the beam path coordinate & for a particular

comoving beam wavelength A is given by U,( L(¢, A) ), where

LM, ) = [ﬁ -1l £ (2.4)

/\[ 1))
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is proportional to the fractional difference between A, and A,.

For @ < 0, in which case there are as many as two values of i that correspond
to a given comoving wavelength, we define two functions, U,_ and U, +» such that
U._( L(€, A} ) is one of the two values of ii for which the beam has comoving wavelength

A, and U,, (L(€, 7)) is the other of the two values. Then

AMUCL(L(EAN))) = A(Oay (L(€A))) = M (2.5)

The solution tora = -1 is

1¢\/1 - [2zw]*
() = (2:0] - (2.6)

where U_y, (z) is defined for 0 < |z| < 1/2w, and U_,_(z) is defined for |z] < 1/2uw.

- 1 - 1 _ )
L_l_(i:;:;) =U_y, (:tz—u_)-) = tw, (2.

Moreover,

i~
-~
-~

respectively, as is evident from Figure 2.2, in which the curve for ¢ = -1 has an

extremum at each of 4 = s/ry = s/p = xl. Finally, U, (0) is undefined, but

U_,_(0) =0, and U_,_(z) is well defined for = in the neighborhood of 0.

For any a > 0 one needs only a single function U, such that

AUT(L(&AN))) = A (2.8)

For a = 0, Uy(z) is defined only for |z| < 1, and

wes

Ou(z) = (2.9)

Just as for a < 0, a corresponding value of & will only exist for A sufficiently close to

18



¢ because there is a maximum atmospheric velocity difference between a point on the
beam path and point C in Figure 2.1. For a > 0, U,(z) is defined for any value of z.

The simplest example corresponds to a = 1, for which

Ui(z) = =. (2.10)

2.2.2 Common-Resonance-Point Representation

Now that the basic variation of comoving wavelength with beam path parameter has
been presented, the objective becomes to examine the region surrounding a resonance
point. Figure 2.3 locates on the y-axis a resonance point P for a line centered at
A" and a monochromatic beam, whose trajectory is identified by y-coordinate p and
direction-angle 8. By varying 8, one may consider many beams that share a common
resonance point. The new beam path parameter, s, increases in the direction of beam
propagation and gives the distance to the resonance point, P. The impact parameter
in this representation is p = p siné. The distance from O to a point at s on the beam

path is

R(s) = \//)2 + 52 + 2ps cos 6. (2.11)

The comoving beam wavelength at C is now
€= [1 - ﬁ-ii'lcoso] X, (2.12)

and as before we introduce unitless quantities, w = p/rg and u = s/rg, that will simplify
expressions that follow. So, the comoving beam wavelength at a point corresponding to

¢ on the beam is now

rou + pcos vy R(ro"))] ¢ (2.13)

R(ryu) c
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Figure 2.3: The beam travels from the upper left to the lower right. Points O and C
and distance p have exactly the same meaning as in Figure 2.1. The beam has comoving
wavelength )\’ at the resonance point P on the positive y—axis. The direction angle 8
mcasures the angular separation at P between the incoming beamn and the negative
y—direction. The distance between the resonance point and the the origin O is p. The
distance between a point on the beam and P is s for points on the outgoing side of P
and —s for points on the incoming side of P. The distance between O and a point on
the beam is R(s).



Plugging in the power law for velocity and only keeping first-order terms in vy yields
Yo ' ;
Alu) = [1 + f,,(u)?] N, (2.14)

where

fa(uw) = [u + weosb)[w? + u? + 2wu cos 0][“’”/2 — w'coséb. (2.135)

For the case in which w = p/rg = 1, Figure 2.4 displays some curves that correspond
to ¢ = —1. The horizontal axis represents u = s/r¢. The vertical axis represents f_;(u).
Each curve corresponds to a particular value of the direction angle, #. Note that the
curve corresponding to 90° is just the same as the ¢ = -1 curve in Figure 2.2. At
# = 90°, the beam passes through the resonance point at impact parameter distance
from the center of the velocity field; the resonance point is situated mid-way between
the point of maximum blueshift and the point of maximum redshift for the beam. As ¢
decreases trom 90°, the resonance point moves closer to the point of maximum redshift
until § = 45°, where the resonance point is the point of maximum redshift for the beam.
So. at # = 45°, the beam is blueshifted in either direction away from the resonance point.
For 0° < # < 45° the beam encounters the resonance point as its comoving wavelength
asymptotically blueshifts toward a constant value. As 6 approaches 0°, the beam passes
ever closer to the center of the velocity field, where velocities are very large. and so the
maximum redshift and maximum blueshift of the beam become arbitrarily large. The
case for 90° < # < 180° is very similar to the one just described, but the resonance point
moves through the point of maximum blueshift; each corresponding curve is symmetric
about the origin with a curve in Figure 2.4.

In a manner similar to that of Figure 2.4, Figure 2.5 displays some curves that
correspond to the a = ( case. The vertical axis now corresponds to fy(z). Again note

that the curve corresponding to 90° is just the same as the a = 0 curve in Figure 2.2. As
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Figure 2.4: For each of several values of 8, f_,(u), which is proportional to the fractional
difference between A’ and the comoving wavelength at u = s/r, is plotted against u.



Solu)

_3 1 3 2

-3 -2 -1 0
— 9=05° ~— @ =45°
e e=15§ ---—e=eo§
............. 9 = 30 arwrmimimide 9 = 75

- I 900

Figure 2.5: Like Figure 2.4, but for a = 0.
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8 decreases toward 0°, the comoving wavelength at the resonance point asymptotically
approaches the maximum redshift limit for the beam. As 8 increases toward 180°, the
comoving wavelength at the resonance point asymptotically approaches the maximum
blueshift limit for the beam.

For ¢ = 1, fi(u) = u, and therefore A(u) = [l + uvg/c]N, are independent of w
and #, just as fi(u), and therefore A(u), are independent of w. The beam redshifts
nniformly as it traverses the atmosphere.

Now A(u) can be inverted to produce the functions, U,, and U,. analogous to C, N

and U, above. U,( L(N.A)) is the value of the beam path parameter u such that the

comoving wavelength at the corresponding point on the beam is A.

For ¢ = -1,
1+ /1 - {2[w=+ cos¥|sin §}?
—1.(2) = - cos B w. 2.1
U.i,(2) Sws + cosd] cas B w (2.16)
U-1, (=) is defined for

wz 50| < 2.17
0 < fw +c030|_25i"0, (2.17)

and U__(=) is defined for
- —cosf < wz < — cos#. (2.18)

2sind 2sin @

Figure 2.6 indicates the range of values of = for which U_, (z) are defined. The hor-
izontal axis corresponds to 6, the beam path direction angle, and the vertical axis
corresponds to wz, a normalized wavelength parameter. U_,_ is defined for all points
between the top and bottom curves; U_;, is, too, except for points along the central

curve.
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Figure 2.6: The highest contour represents the upper limit of the product wz such that
U_y,(z) are defined; the lowest contour represents the lower limit such that they are
defined. For points along the central contour, U_;, is undefined. and so its domain is
composed of two disjoint sets.
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Figure 2.7: The higher contour represents the upper limit of = such that Uy(z) is finite;
the lower contour represents the lower limit.
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Uu(=) is expressed in a manner that will simplify optical depth integrals below.

if z2< -1 ~cost

-cosﬂ] w if -1 -cost <z<1-cost . (2.19)

if 22> 1—-cosé

Similar to Figure 2.6, Figure 2.7 indicates the range of values of = for which Uy(z)

has finite value. The vertical axis corresponds in this case to a simpler normalized

wavelength parameter, =. Uy is finite for all points between the npper and lower curves.
Fora =1,

i(s) = = (2:

I~
I~
(=]
-

and so, regardless of ¢ (and w), U)(z) is defined for every :=.

2.2.3 Optical Depth and the Resonance Region for a =0

We shall now examine the optical depth of the resonance region in a constant-speed
wind atmosphere. for which ¢ = 0.

Integrated Line Opacity

Assume that the integrated line opacity at radial coordinate r can be approximated by

Ky(r) = Hb Ko, (2.21)

a radial power law. The power-law index is b, and the integrated line opacity at radial

coordinate ry is Ky. Then the total optical depth of the resonance region can be written



as

4 0C +00
r = / Kb( R(s)) 6(A(s/ro) ) ds = ro /_ Ks(R(rou) ) #(A(u) ) du,  (2.22)

-0

an integral over the entire beam path. The assumption of constant mass-loss rate for a
constant-speed wind gives a radial power-law index of -2 for the atmospheric density.
To assume that the integrated line opacity follows the matter density is to assume that
b = -2. This assumnption is correct only if the level populations associated with the
source of apacity are independent of radial coordinate. Nevertheless, the assumption
is made here as a rough approximation so that expressions below may be evaluated

explicitly.

Line Profile

We may evaluate the integral directly if we approximate the comoving line profile as a
rectangular impulse of width 2¢ and height 1/2¢. Then

0 if [A=MN| > ¢

&(A) = : (2.23)

1/2¢ otherwise
and € = av/3 gives a distribution with standard deviation ¢. This is of course an unre-
alistic shape for the comoving line profile, and this shape is not a useful approximation
unless the actual line width is very small. Nevertheless, the discontinuity at each edge of
this artificial comoving line profile produces, in the figures that follow, easily recogniz-
able features, typically of the cusp sort. The features, though unrealistic, do allow one
to develop an intuitive grasp of the model and to verify the validity of the expressions

derived below.



An approximate expression for the optical depth of the resonance region becomes

T [Volte) du
r== - . (2.24)
g Jug(-ey W +2wucos + ul
where
T= r“f”. (2.25)
and
=2 (2.26)
N o

In the w = 1 case, Figure 2.8 displays for each of several values of £ a contour that
represents the boundary of the line in physical space. Each axis represents, in units
of ry, the distance from the resonance point, and the plane of the graph contains the
center of the velocity field. For a beam that travels on a non-radial trajectory and has
its incoming side on the left, a contour corresponds to Uy(-<) on the left half (v, < 0) of
the graph and to Up(<) on the right half (u; > 0) of the graph; here, u, is the horizontal
distance from the resonance point in units of ry, and u, similarly corresponds to vertical
distance. As w changes, the entire figure maintains its shape, but the scale is directly
proportional to w. On its way toward the resonance point, a beam that crosses the
contour enters the line; if the incoming beam does not cross the contour, then the
incoming beam is entirely within the line. On its way from the resonance point, a beam
that crosses the contour departs from the line; if the outgoing beam does not cross the
contour, then the outgoing beam is entirely within the line.

At large distance from the resonance point, each contour converges to an incoming
asymptote and to an outgoing asymptote. The incoming asymptote corresponds to a
critical angle, #_ = arccos(s — 1), and the ontgoing asymptote corresponds to a critical

angle, 8, = arccos(1 — £). By definition, for a collection of beams that share the same
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Figure 2.8: The horizontal axis represents u,, the horizontal distance from the resonance
point in units of ro. Similarly, the vertical axis represents u,, the vertical distance from
the resonance point in units of rg. For u, < 0, contours of Up(—¢) are displayed, and
for uy > 0, contours of Uy(e) are displayed. This figure corresponds to the w = 1 case.
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resonance point, every beam is in the line at least near the resonance point. For 8 < ¢4,
the entire outgoing beam is in the line; for # > 6_, the entire incoming beam is in the

line. For = < 1, there is no beam entirely within the line because 8, < §_. When

"

=1,
#- = 6, = 90°. and so only the bcam with 8 = 90° is entirely within the line. For
1l <z < 2, the line is sufficiently wide so that 0° < §_ < 6, < 180°, and every beam
with #_ < ¢ < 0,4 is entirely within the line. For ¢ > 2, every beam that shares the

resonance point is entirely within the line.

Approximate Expression for Total Optical Depth

Evaluation of the integral leads to an approximate expression for 7 when a = ():

T
= — £} - 30 — ¢ 2.2
T=o—— [9(cos® + =) - g(cosb — ¢)], (2.27)
where
+7/2 ifzr>1
g(z) =4 -n/2 tr<-1 - (2.28)

arcsin(z) otherwise
Figure 2.9 illustrates the relationship between the resonance region’s normalized total
optical depth /T and the normalized line width . Note that because of symmetry, a
curve corresponding to # corresponds as well to 180° — 6, that the total optical depth
of the resonance region becomes large as the beam'’s direction becomes radial, and that
each curve converges at ¢ = 0 to the total optical depth of the resonance region for a
line with a Dirac-delta-function profile. For 6 = 90° the optical depth increases as the
normalized line width ¢ grows from zero (corresponding to the delta-function profile)
until the optical depth reaches a maximum at £ = 1; at this point, the line is minimally

broad enough so that the beam is entirely in the line. As ¢ increases beyond unity,
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Figure 2.9: The normalized total optical depth r/T of the resonance region is plotted
against the normalized line width £ with a = 0 and w = 1, and for various values of 6.
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the total optical depth diminishes because the decreasing height of the comoving line
profile is no longer offset by increase in the (now unit) fraction of the beam that is in
the line. In fact, the total optical depth r becomes proportional to 1/:, and so the
curve becomes a straight line with negative unit slope on the logarithmic plot. For
# < 90° (# > 90°) the optical depth increases as ¢ grows from zero until the optical
depth reaches a maximum that corresponds to the line’s being minimally wide enough
so that the outgoing (incoming) beam is entirely in the line. As the line width increases
further, the total optical depth diminishes at first but then reaches a second, lower,
local maximum that corresponds to the minimum line width such that all points on the
beam are in the line. Finally, as for 8 = 90°. further increase in the line width brings
down the total optical depth along with the height of the comoving line profile.

Figure 2.10 represents the resonance region’s total optical depth as a function of
the beam’s direction angle for values of = up to unity. For every value of <, the curve
diverges to infinite optical depth as the beam'’s trajectory becomes radial. This makes
sense because K _»(r) becomes arbitrarily large as r decreases, and the impact parameter
p for the beam decreases to zero as the trajectory becomes radial; the beam passes
through a region of arbitrarily large opacity for a trajectory sufficiently near a radial
orientation.

Consider first the curves corresponding to the smallest two values of ¢. Note that
for both of = = 0.001 and £ = 0.01, the total optical depth is essentially the same. (For
a model in which a supernova is surrounded by a constant-velocity wind, useful values

of = lie between about 0.001 and 0.01). For a very narrow line (¢ < 1),

92 2 cos® .
r:Z{ 2 +[1+"c°‘°‘ 0]5‘}. (2.29)

w | sin? @ 3 sin®d

The optical depth has practically reached the limit corresponding to a delta-function
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Figure 2.10: Like Figure 2.9 but normalized total optical depth of the resonance region
as a function of @ and for various values of the normalized line width =.
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line profile, at least for 8 larger than about 10° and smaller than about 170°, where the
narrowest-line curves begin to separate from one another. Note that as # approaches
90°, /T approaches 2, and so because of symmetry, the optical depth at the resonance
point is T. Therefore, T = roKy/2 is just the optical depth at the resonance point
for a line with a delta-function profile and a beam with a direction angle of 90° in
an unbounded constant-velocity atmosphere, and for w = 1. In this case, T is also
clearly the minimum optical depth at the resonance point; any value of # other than
90° corresponds to an optical depth larger than T.

Next consider each curve corresponding to a value of ¢ less than unity. For # = 90°, at
a certain point on the outgoing (incoming) side of the beam, the beam leaves (enters) the
line. As @ decreases (increases), that point moves farther from the resonance point. For
# < 8. the outgoing beam never leaves the line. and so the optical depth accumulated
on the outgoing side of the beam suddenly decreases as, with decreasing 6. the outgoing
beam, no longer increasing in fractional path length inside the line, retreats more rapidly
from the center of the opacity distribution. (For # > #_, the incoming beam is always
in the line, and so the optical depth accumulated on the incoming side of the beam
siuddenly decreases as, with increasing #, the incoming beam. no longer increasing in
fractional path length inside the line, retreats more rapidly from the center of the opacity
distribution.) So 8 = 0, (8 = 8_) corresponds to the left (right) cusp in each of the
curves for £ < 1; for example, the left (right) cusp corresponding to ¢ = 0.55 is expected
to occur at about arccos(l — £) & 63° (or arccos(e — 1) = 117°), as shown in the figure.
The curve corresponding to the smallest value of € has cusps that are above the top
edge of the figure.

Next, consider the curve corresponding to £ = 1, which is the minimum value such
that the entire beam is in the line for # = 90°. As 8 decreases (increases). the outgoing

(incoming) side of the beam, completely within the line, retreats more rapidly from the
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center of the opacity distribution, and so its contribution to the optical depth decreases.
At first, the contribution from the incoming (outgoing) side decreases as well because
the beam’s entry (departure) point into (from) the line rapidly moves closer to the
resonance point from infinite distance. As # decreases (increases) further, however, the
beam’s trajectory eventually passes near enough to the center of the opacity distribution
so that the optical depth contributed by the incoming (outgoing) beam grows much more
rapidly than the optical depth contributed by the outgoing (incoming) beam diminishes.

Figure 2.11 is just like Figure 2.10 except that curves are plotted for = > 1 instead
of = < 1. Consider first the curves corresponding to 1 < € < 2. Because £ > 1, the beam
is entirely within the line for 6. < 8 < 8. For ¢ within this range, r = 7T /cwsin § x
cscB. As 8 decreases below #_ (increases above 8.), we expect, in correspondence
with the left (right) cusp in the figure, a sudden decrease in total optical depth as the
incoming (outgoing) beam enters (departs from) the line at finite distance from the
resonance point. In consideration of the curves corresponding to ¢ > 2, we find that the
the beam is always entirely within the line; so there are no cusps, and each such curve
is given by a function proportional to csc 6.

For 8 approaching zero. Figure 2.12 shows the divergence of curves representative of
Figures 2.10 and 2.11. Note that as § falls below about 10°, the curve for ¢ = 0.001 is
distinguishable from the curve for ¢ = 0.01. Each curve’s linear nature on the left side

of the figure arises because for small 6,

50 [% ~g(1- 5)] : (2.30)

T=

£
-

The small-0 dependence of log(7/T) on log# is linear, and the slope is —1. because 7/T
is proportional to 87!,

Figure 2.13 shows the dependence of r on w for small s. As w decreases, the
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Figure 2.11: Like Figure 2.10 but for ¢ > 1.
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Figure 2.12: Like Figures 2.10 and 2.11 but with a logarithmic scale for the angular

axis.

38



100

T

10

A i i

0 20 40 60 80 100 120 140 160 180

0 (degrees)

sseccconsse

w=0.3 w=15
w=06 | | —— w=12 - w=18

Figure 2.13: Like Figure 2.10 but with £ = 0.005 and for several values of w.
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resonance point moves closer to the center of the velocity field, where the integrated
line opacity A'_;(r) is larger. Basically, one of the curves for very small < in Figure 2.10

is multiplied by 1/w in order to produce the curves in Figure 2.13.

Accumulation of Optical Depth and the Shape of the Resonance Region

At a point corresponding to u = s/rg, the opticai depth of the atmosphere along the

incoming beam path is

0 if u < Up(~¢)
t(u) = ﬁﬁ [arctan (g +cotl) — g(cosd - <)) if Ug(—=) < u < Up(+¢)
T if u> Uy(+#)

(2.31)
This expression allows us to visualize the shape of the resonance region by plotting a
contour of constant optical depth for all beams arriving at a particular resonance point.
Figure 2.14 displays a contour of constant optical depth /T = 0.1 for each of the values
of = used in Figure 2.8, and the scale is the same as in that figure. For /T = 0.1, every
contour of constant optical depth is almost identical to the corresponding contour of
constant Up(-2).

Figure 2.15 displays contours of constant optical depth r/T = 1. The most sig-
nificant deviation from the contours of Figure 2.8 occurs for # near 90° and ¢ near
unity.

In practice we are interested in narrow lines; that is, small values of £ (between 0.001
and 0.01). For £ = 0.005 and w = 1 Figure 2.16 shows contours of constant optical depth
for various values of ¢/T. The contours are essentially identical on a scale large enough
to include on the same graph both the center of the velocity field at (0, —1) and the

resonance point at the origin. For a narrow line, the resonance region is physically
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Figure 2.14: For the incoming beam in an unbounded atmosphere, a contour of constant
optical depth 7/T = 0.1 (for w = 1) is plotted for each of several values of . The

resonance point is at the origin, and the center of the velocity field is at (0, —1). Compare
with Figure 2.8.
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Figure 2.15: Like Figure 2.14, but for r/T = 1.
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Figure 2.16: For the incoming beam in an unbounded atmosphere, a contour of constant
optical depth (for € = 0.005 and w = 1) is plotted for each of several values of normalized
optical depth ¢t/T. The resonance point is at the origin, and the center of the velocity
field is at (0, —1). Although several contours are plotted, they overlap completely on
this scale.
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narrow and is elongated in the radial direction.

Figure 2.17 shows a magnified view of the vicinity of the resonance point. Note that
for values of optical depth ¢t greater than T the contour passes through the resonance
point because the incoming beam does not accumulate the specified optical depth before
it reaches the resonance point. For a delta-function line profile, if § = 90°, and w = 1,
then T is the optical depth of an incoming beam at the resonance point. The optical
depth at the resonance point is minimum for a beam with # = 90°, and so increasing
optical depth for a contour causes the contour first to pass through the resonance point
at # = 90°. For larger values of optical depth, a contour passes through the resonance
point at an angle farther from 90°.

For t/T = 1 Figure 2.18 illustrates the shape of the resonance region for several
values of w. Remember that w is just the distance of the resonance region from the
center of the velocity field in units of rg, and so the center of the velocity field is located
at (0. —w) in this figure. The effect of increasing w is strongly to elongate and weakly
to widen the resonance region.

For the very same contours as in Figure 2.18, Figure 2.19 presents a magnified view
of the region near the resonance point. Note that even though the total optical depth
for any direction angle decreases with increasing w, the contour for w = 0.2 more closely
approaches the resonance point than does the contour for w = 0.6. This merely reflects
that for small w the resonance point is near the center of the distribution of integrated
line opacity, and so most of the optical depth is accumulated very near the resonance

point.
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Figure 2.17: Like Figure 2.16, but a close-up view near the resonance point.
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Figure 2.18: Like Figure 2.16, but with each contour corresponding to t/T = 1 for a
particular value of w. The center of the velocity field is now located at (0, —w).
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Figure 2.19: Like Figure 2.18, but a close-up view near the resonance point.
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2.3 A Bounded Atmosphere with ¢ =0

Let w; = Ry/ro and wo = Ro/ro represent, respectively, the inner and outer boundary
radii in units of ro. Then the location of the resonance point must be such that wy <

w < wg. At the resonance point, the inner boundary subtends an angle,

w

8; = arcsin (“’—') : (2.32)

For 6, < 6 < 180° the incoming beam does not accumulate optical depth until it
is within the outer boundary, and so every contour of constant optical depth must lie
between the outer boundary and the resonance point. For 0° < # < 6 the incoming
beam is considered to originate on the inner boundary, and so every contour of constant
optical depth must lie between the inner boundary and the resonance point.

The total optical depth of the resonance region becomes

= T [arccan (T(+-:) + wcosO) — arctan (T(—:‘) + m cosa)] ' (2.33)
swsin @ wsin @ wsin 0
where
T if Up(z) < u-
T(z) =19 uy if Ug(z) > uy (2.34)
Us(z) otherwise
wf — w?sin?0 - weos®  if 0 <O <O
b = ; (2.35)
-y wh - wsin?0 - wcosd fH <O
and

Vwd — w?sin®d - wceosd f0<O< -0
. (2.36)
-y wf - wsin®0 —wecosd T -6 <O

Like Figure 2.9, Figure 2.20 illustrates the relationship between the resonance re-

Uy =
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Figure 2.20: Like Figure 2.9, but with atmospheric boundaries, w; = 0.5 and wo = 1.5.
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gion’s normalized total optical depth /T and the normalized line width . The atmo-
spheric boundaries have been chosen such that w; = 0.5 and wg = 1.3. Asin the case of
an unbounded atmosphere. a cusp in one of the curves still corresponds to a minimum
linewidth such that the beam is always in the line in either the incoming or outgoing
direction, or in both directions at once for # = 90°. In the bounded case, however,
“entirely in the line” has changed in its meaning to imply that every comoving observer
on the beam path but only in the bounded volume sees the beam within the line. In the
unbounded case the cusp is situated at a value of ¢ such that #, = @ for the left cusp,
and #_ = 8 for the right cusp. In the bounded case tor # > ;. the cusp is situated at
a value of ¢ such that U(<) identifies a point on the outer boundary for the left cusp,
and U(-=¢) identifies a point on the outer boundary for the right cusp. For 8 < 8 the
left cusp is found in the same way, but the right cusp is situated at the value of ¢ such
that U(—-2) identifies a point on the inner boundary. Note that because the path length
through the atmosphere now depends (discontinuously) on 8, for large values of = the
dependence of 7/T on # is not so straight-forward as it was in the unbounded case. In
particular, for large =, the total optical depth does simply become larger as 6 becomes
swmaller.

Like Figure 2.10, Figure 2.21 represents the resonance region’s total optical depth

as a function of the beam’s direction angle for values of £ up to the critical value

Bl
sp=y1=-1—1.
wo

which is the minimum value of € such that the beam is entirely within the line for the

(2.37)

bounded case. In this figure, £, ~ 0.745 because w = 1, and wg = 1.5. The most
striking difference from Figure 2.10 is that the curves corresponding to the larger values

of £ do not appear to diverge for 8 approaching 0 and 180. In fact, there is no divergence
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Figure 2.21: Like Figure 2.10, but with atmospheric boundaries, w; = 0.5 and wo = 1.5.
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for = = constant > 0. For = < =z, the total optical depth has a local minimum at § = 90°,
just as for = < 1 in the unbounded case. As 6 decreases (increases) from 90°, the total
optical depth increases until the outgoing (incoming) beam is entirely in the line; then
there is a cusp because the optical depth contributed by the outgoing (incoming) beam
suddenly begins to decrease. In the unbounded case the angle corresponding to this
cusp is U4 (#_). but in the bounded case, the angle is larger (smaller) because of the
atmospheric outer boundary. As 6 becomes still smaller (larger), the total optical depth
inevitably begins to rise again as the opacity sampled by the incoming (outgoing) beam
increases. Eventually, however, the total optical depth reaches a maximum value at the
maximum (minimum) angle such that the beam segment between the inner boundary
and the resonance point is entirely within the line. This corresponds to the left-most

(right-most) cusp. As ¢ increases toward

2
er=4[1- [5’—'] . (2.38)
w
the cusp angle increases (decreases) toward 8y (or 180° — ). When = = =,, the line is

minimally broad enough so that the entire beam segment between the inner boundary
and the resonance point is in the line for a beam tangent to the inner boundary (that
is, for # = #1). In this example we have £, ~ 0.866, and so the cusp angle continues to
increase (decrease) for each subsequently larger value of < in Figure 2.21.

Figure 2.22 is just like Figure 2.21 except that curves are plotted for = > ¢, instead
of £ < z,. The left-most (right-most) cusp is located at the same angle, 30° (or 150°),
for every curve except the one corresponding to €, = 0.745 < &;. Every other curve
corresponds to ¢ > £3 X 0.866; for each of these the line width ¢ is large enough so that
every beam path crossing the inner boundary is completely within the line between

the inner boundary and the resonance point. As the line width increases from =z}, two
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Figure 2.22: Like Figure 2.11, but with atmospheric boundaries, wy = 0.5 and wo = 1.5.
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central cusps appear. Each of these corresponds to an angle at which the beam is just
barely entirely within the line. The central cusps move outward with increasing = until

= becomes

wf

wd + 4\/[10% - wil[w? — wi] + 4[w? - wf],

(2.39)

which. in this case, is approximately 1.854. At this point the line is wide enough so that
a beam tangent to the inner boundary is just barely entirely within the line. In fact, 3
is the minimum line width such that every beam is entirely within the line because at
this line width the beam scgment between the inner boundary and the resonance point
is certainly within the line.

For an unbounded atmosphere, the total optical depth of the resonance region be-
comes arbitrarily large—regardless of ¢—as the beam direction becomes radial. For a
hbounded atmosphere, however, the total optical depth is finite for every value of 4 so
long as ¢ is positive. Figure 2.23 illustrates that even for small < and small 6, the total
optical depth of the resonance region is finite.

Like Figure 2.13, Figures 2.24 and 2.25 show the angular dependence of 7 for several
values of w and for ¢ = 0.005. In Figure 2.24, the resonance point's location w varies

from a value just slightly greater than w; = 0.5 to

V-1 -
1 o -1 + £ (2.40)

oV/efa? = 1]+ 1 - z[a? - 0.5]'

wy = wo,| [ -

where
_ wh+wi

. 2.41
g (2.41)

When the resonance point is located at w), each of the two direction angles at which the

outbound beam becomes entirely within the line is the same as the direction angle at
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Figure 2.23: Like Figure 2.12, but with atmospheric boundaries, wy = 0.5 and wo = 1.5.
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Figure 2.24: Like Figure 2.13, but with atmospheric boundaries, wy = 0.5 and wg = 1.5.
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Figure 2.25: Like Figure 2.13, but with atmospheric boundaries, w; = 0.5 and wo = 1.5.



which the corresponding inbound beam becomes entirely within the line. For wy = 0.5
and wo = 1.5, wy = 0.67. The curve corresponding to w = w, has only two cusps; every
other curve has four cusps. In Figure 2.24, each of the central cusps cotresponds to an
angle at which the impact-parameter side of the beam becomes entirely within the line;
each of the lateral cusps corresponds to an angle at which the anti-impact-paramter
side of the beam becomes entirely within the line. Each of the curves corresponding
to one of the two resonance points closest to the inner boundary shows a decrease in
optical depth just outside of the central cusp; although the impact-parameter side of the
beam passes throngh a region of higher opacity as the beam becomes more radial, for
a resonance point sufficiently close to the inner boundary the path length between the
inner boundary and the resonance point at first decreases rapidly enough to dominate
the behavior of the total optical depth.

In Figure 2.25, the meaning of the central cusps and the meaning of the lateral
cusps are swapped with respect to the meanings in Figure 2.24. Figure 2.25 begins the
sequence of w-curves where Figure 2.24 ends. In this case one clearly sees that the curve
for w = w) only has two cusps. As in Figure 2.24, each curve corresponding to one of the
two resonance points closest to the boundary—in this case. the outer boundary—shows
a decrease in total optical depth just outside of the central cusp. Here, close proximity
to the outer boundary leads to a rapid decrease in the beam path length between the
outer boundary and the resonance point as the beam becomes radial, and again this
decrease at first dominates the behavior of the total optical depth.

Like Figure 2.14, Figure 2.26 shows contours of constant optical depth 7/T = 0.1 (for
w = 1), but for the bounded case (w; = 0.5 and wo = 1.5). Unlike the open contours in
Figure 2.14, each contour in the bounded case encloses a finite area on the graph. The
shape and location of each of the inner and outer boundaries clearly influence the shape

of each contour, which for T = 1 roughly marks the locus of points at which the beam
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Figure 2.26: For the incoming beam in a bounded atmosphere, a contour of constant
optical depth 7/T = 0.1 (for w = 1) is plotted for each of several values of . The
resonance point is at the origin, and the center of the velocity field is at (0. —1). Compare

with Figures 2.8 and 2.14.



begins to interact with the line. Each contour in the bounded case roughly resembles a
truncated version of the corresponding contour in the unbounded case.

Like Figure 2.26, Figure 2.27 shows contours of constant optical depth but for r/T =
1. For T = 1, the contour outlines the core of the resonance region, for the beam is
already strongly scattering as it approaches the resonance point. The presence of the
boundaries accounts for significant distortion from the unbounded case.

Figure 2.28 shows contours of constant optical depth for a very narrow (¢ = 0.005)
line in a bounded atmosphere. For a narrow line, the various contours. as in the un-
bounded case, are roughly identical to each other, and the contour in the bounded case
is basically a truncated version of the contour in the unbounded case.

Figure 2.29 magnifies the plot of Figure 2.28 in order to show behavior near the
resonance point. Note that the contour corresponding to t/T = 1.0 just touches the
origin because, apparently, ¢ = 0.005 is a good approximation of a delta function line,
and T is the optical depth of a delta function line when the beam'’s closest approach to
the center of the system is at the resonance point.

Figure 2.30 illustrates the narrow-line shape of the resonance region for different
values of w. Again we see that the narrow-line contours for the bounded case have the
appearance of those for the unbounded case except for truncation at the boundaries.

Although the imposition of an inner boundary and an outer boundary have signif-
icant effects on the nature of the resonance region for large line widths, the nature of
the resonance region is hardly affected by the presence of shell boundaries for small
line widths. That truncation of the resonance region by the outer boundary changes
the region’s extent from infinite to finite and that truncation by the inner boundary
removes a singularity are small effects for a sufficiently narrow line because those ef-
fects only involve a tiny piece of direction-angle space. Indeed, as the width of the line

goes to zero, the effect of atmospheric boundaries on the resonance region disappears
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Figure 2.28: For the incoming beam in a bounded atmosphere, a contour of constant
optical depth (for z = 0.005 and w = 1) is plotted for each of several values of normalized
optical depth t/T. The resonance point is at the origin, and the center of the velocity
field is at (0, —1). Although several contours are plotted, they overlap completely on
this scale. Compare with Figure 2.16.
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Figure 2.29: Like Figure 2.28, but a close-up view near the resonance point.
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completely (and there is even the reappearance of infinite optical depth along the radial
direction). This allows for a relatively simple treatment of line radiative transfer in the

next chapter.
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Chapter 3

Sobolev Method for the
Constant-Speed Radial Wind

In an atmosphere with power-law radial velocity, a delta-function line profile (together
with the assumption of complete redistribution in wavelength) is sufficient but not
always necessary for the application of the Sobolev method. In the Sobolev method. a
beam directed toward the observer accumulates, at only one point in the atmosphere, all
of the optical depth that a given line has to offer. Usually a sufficiently small but finite
line width will guarantee that this is a good approximation. For the constant-speed
wind. however, a delta-function line profile is necessary in order to evaluate certain
integrals over all solid angle.

If the power-law index, a, is positive—as it is, for example, in a homologously ex-
panding atmosphere—then the velocity gradient is positive for every beam direction
away from a resonance point. A sufficiently narrow line allows for the application of
the Sobolev method because for every beam direction through the resonance point the

resonance region will, in correspondence with the sufficient narrowness of the line, be

66



sufficiently small so that physical conditions are approximately constant across the res-
onance region. Note that for a given integrated line opacity, the Sobolev method optical
depth of the resonance region still depends on the width of the line. A delta-function
line profile is associated with a particular limiting value of the resonance region’s optical
depth but is in no way required.

If a < v, then there will aiways be beam directions for which the velocity gradient at
the resonance point is (locally) zero, but a sufficiently narrow line will still be associated
with 4 resonance region that is small in every direction. A single beam, however, in this
case may have a pair of resonance points. and so there is extra complexity built into
the analysis from the beginning.

Now the constant-speed wind, for which a = 0, has a radial velocity gradient that
is globally (and not merely locally) zero. For the radial direction, the resonance point
becomes a radial resonance ray, whose end point is the inner boundary of the line-
forming region. A line with finite width-——even an arbitrarily small width —produces a
resonance region which for finite solid angle extends far enough to violate the assumption
that physical properties are approximately constant across the region. Only a delta-
function line profile reduces the violation's corresponding solid angle to zero (and still

there is a singularity in the radial direction).

3.1 Integration of the Transfer Equation

Let the source function S be defined such that S(w) is the source at radial distance ryw
from the center of the system. For a beam whose resonance point (with the line centered
at ') is located at a distance row from the center of the system and whose direction angle
at the resonance point is 8, let the intensity function I be defined such that I'(w,#, u)

is the intensity at distance rou from the resonance point; I(w, 8, u) corresponds to light



traveling, for u < 0, toward the resonance point and, for « > 0, away from the resonance
point. Then, in terms of symbols defined in the previous chapter, the radiative transfer
equation becomes

_l_(?](w, 0. u)

re du

= R _y( R(rou) ) o( A(u)) [S(M‘—)) - I{w,¥, u)] . (3.1)

ro
For a line whose profile is the rectangular impulse of equation 2.23. the transfer
equation becomes

of(w.0.u) | [ataa) e [S(Re) - (w.8.u)] if Uo(-2.0) < u < La(c. )

du 0 otherwise
Here the function Uy has been redefined so that the dependence on angle is now explicit.
Let 8¢ (w) be half of the angle subtended by an opaque central sphere. of radius wc.
that emits wavelength-independent continuum intensity, Iy. 8¢ (w) is distinguished from
#(w). which is the angle subtended by the inner boundary of the line-forming shell.
There is the explicit allowance for a vacuum gap between the emissive sphere and the
shell, and so we < wy. 1If 6 < Oc(w), then I(w, 8, u) = Iy for u < Uy(-=<. 8); if, however.
# > 6c(w), then I(w,8, u) = 0 for u < Up(-=.6).

There is no sufficiently small = such that, for every non-radial direction, R(rou) and
S( R(rou)/ro) have small variation as u varies from Up(—¢, 8) to Up(c, #). Nevertheless,
for each non-radial direction there is a sufficiently small ¢ (which might need to be
smaller for one direction than for another) such that R(rqu) and S( R(rou)/ro) have
small variation as u varies from Up(—¢, 8) to Up(e, ). So in order to apply the Sobolev
method, one must consider the limit of small €, which corresponds to a delta-function
line profile. Because, especially for arbitrarily small e, I(w, 8. u) changes rapidly for u

near zero, the limit may not be evaluated explicitly until after the differential equation
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has been integrated. For each non-radial direction, then, there is a sufficiently small ¢

such that, to a good approximation,

dI(w.0,u) ryK,
3 = Skl (S(w) = I'(w. 0, u)) (3.3)
for
fo(~2.8) ~ —swese® 0 < u < swesc? ~ Uv(z.9). (3.4)
Defining
I(u) = S(w) - I{(w. 8, u) (3.3)
simplifies the transfer equation so that
(3.6)

N rol\y ;
F'(u) ~ -.,f:uz‘r’l(u).

- -

Integrating and substituting, one finds

ry l\'.)(u+( weae? 9[
2wee

rodlg|udew oy

+ [(w.H. —swesc? 0) e 20l¢ . (3.7)

I(w. 0. u) = S(w) [1 —e”

and
1(w.9, cwese? 8) = S(w) [1 - p‘—l"%] +1(w,0, —swese? ) . (39)
Now the limit of small £ may be taken, and the result is
(3.9)

[+(w'0) = S(IU) [1 - e-r(urﬂ)] + I_.(w,()) e—r(ur,g)’
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where
"QI\’() 2T

wsin?d  wsin’é

r(w,8) = (3.10)

is, in agreement with equation 2.29 for a delta-function line profile, the optical depth
of the resonance point at radial parameter w; /_(w,#) is the intensity incident on the

resonance point; I (w, 8) is the intensity emergent from the resonauce point.

3.2 Source Function for a Two-Level Atom

The line mean intensity function J is defined such that .J(w) is the mean intensity,
averaged over solid angle and wavelength within the width of a vanishingly narrow
line. at radial coordinate w. This mean intensity can be expressed as an integral over
direction angle. For each beam trajectory, the integrand must add together the intensity
contribution, weighted by the line absorption profile, from every distinct monochromatic
beam that can interact with the line at the point corresponding to w. The integrand of
the integral over direction angle must be evaluated in the limit of vanishing line width
so that the integrand has the appropriate value for every non-radial direction.

L 1 r* R(roUy(=.8)) . rowsin f _— 1.
J(w) = 5/0 eh_’nb[ /_zl(——ro——,arcsm m,bu(_.(i)) d-] sin® do

I
-

(3.11)
The integral over the line profile incorporates a contribution from distinct monochro-
matic beams that share the same trajectory. Each distinct beam has its resonance point

with the center of the line profile at a distinct radial coordinate,

ot = BUoUo(2,0)

ro

(3.12)
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and at that resonance point there is a distinct direction angle,

rowsin 8
R(roUo(z.0))’

# = arcsin (3.13)
for the same beam trajectory.

As the normalized line width ¢ becomes very small, the intensity’s variation due
to the location of the beam’s resonance point also becomes very small. Although the
variation in the value of the intensity function always remains substantial as its third ar-
gument, Up(z.8), changes, the third argument may be expressed as zw csc? 4 in the limit

of small . The expression for the line mean intensity may thus be greatly simplified.

rwy=3 [ —1—/!1( 8. =2 d:|sin 0o 3.14
. w)_§ A lim 1= g w, a1g) & sin 8 ¢ (3.14)

The use of equation 3.7 leads to an innermost integrand whose variation is simply

exponential with =. The exponentials are easily integrated, and the result is

J(w) = [1 = 3(w)] S(w) + 3o(w) Iy, (3.15)
where
1 71 = e-r(wd) )
,d(w) = 5/0 Wsmﬂd(), (316)
and
] 1 [fc(w) 1- e-—r(m,@) )
ﬁo(w) = ;/0 —T—(‘-‘-}—o)—sm0d0. (317)

If the source of opacity is modeled as a two level atom, then the rate equation for

the transition can be written as

S(w) =[1-z]J(w) + z B(w), (3.18)
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where r is the collisional fraction of de-excitations, and B(w) is the thermal black-
body intensity in the comoviug frame, at line center, and for radial parameter w. In

combination with equation 3.15. this expression becomes

(1 - 2] Bu(w) Iy + £ B(w)

Stw) = 1-z]3(w)+z

(3.19)

For each radial point in the model, this two-level-atom source function can be caleulated

from the model parameters. we, T. £, and B, alone.

3.3 The Line Profile

A synthetic line profile is the calculation of what an observer would measure if the
observer were to point a perfect telescope at a perfect realization of the model and to
collect the light with a perfect spectrometer. Because the value of the source function
is known at every radial point in the shell, the computation of the synthetic line profile
becomes an exercise in geometry. The geometric exercise is simplified by the assumption
that if there is more than one line in the shell, the minimum wavelength separation of
a pair of lines is larger than the largest doppler shift obtainable in the shell. For the
purpose of this discussion, such a simplification is equivalent to the assertion that there

is only one line in the shell.

3.3.1 Geometry

Consider an opaque sphere that cmits a continuum of light, and let this sphere be
surrounded by a concentric spherical shell that is expanding with constant radial velocity
v. In units of ro (the length scale for the radial diminution of the integrated line opacity),
the radius of the emissive sphere is wc; the radius of the inner boundary of the shell is

wy; and the radius of the outer boundary of the shell is wo. In the shell, absorption,
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to observer

Figure 3.1: Three concentric spheres characterize the basic geometry of the scattering
model. The innermost sphere (singly hatched) is opaque and emits light. Behind this
sphere is an occulted region (doubly hatched) that is invisible to the observer. Between
the two outer spheres is a shell (shaded) in which scattering takes place. A beam
with a particular observer-frame wavelength will interact with material in the shell
if it intersects within the shell a cone corresponding to that wavelength. Five cones
(including the central, degenerate one that is a plane) are drawn.
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scattering, and thermal emission occur at the line wavelength A’ in the comoving frame.
The observer is at rest with respect to the center of spherical symmetry, and the observer
is located far enough from the shell so that every line of sight through the shell shares
essentially the same direction. Then, as indicated by the doubly hatched region in
Figure 3.1, there is an occulted region from which light can not travel directly to the
observer. Outside of this occulted region, light traveling from the emissive sphere and
not toward the observer may be scattered toward the observer at some point in the
shell. Also. light traveling from the emissive sphere and toward the observer may be
scattered away from the line-of-sight direction as it passes throngh the shell.

Cousider a beam that passes through the shell and that is parallel to the line of
sight. This beam has at most one resonance point with the line in the shell. Consider
an ensemble of such beams that that are distributed uniformly through space. If every
beam shares the same observer-frame wavelength A, and if \ is sufficiently near A'—
the wavelength of the line in the observer’s frame of reference (and in a frame locally
comoving with a mass clement in the shell)—then the locus of resonance points is the
intersection of the shell and a cone. The cone's apex is the center of the emissive sphere;
the cone’s axis is the line of sight; and the cone’s half-angle is arccos([1 — A/A]e/v).

The line source function and optical depth at points on each cone, along with the
intensity of the light emitted by the opaque sphere, completely determine the intensity
that the observer measures. The source function, computed at the comoving line wave-
length A, can be used to calculate the amount of light emitted by the cone into the line
of sight. Because every point on the cone has the same velocity component along the
line of sight, light emitted at wavelength A’ from any point on the cone into the line of
sight is collected by the observer at wavelength A. Similarly, the optical depth, com-
puted at the line wavelength \’, can be used to calculate the amount of light scattered

out of the line of sight. For a beam emitted at observer-frame wavelength A, from the
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opaque sphere, and toward the observer, light is scattered out of the line of sight at the
intersection of the beam and the cone, on which in the comoving frame the beam has
wavelength \’.

The general procedure for calculating a value proportional to the observed flux at

wavelength \ is as follows:
e Calculate the angle of the cone corresponding to A.

o At least some part of the surface of the emissive sphere is unobscured by the cone.
Multiply I, the emissive sphere’s intensity at A by the area that results from the

p
projection of the unobscured part the sphere onto the plane perpendicnlar to the

line of sight. Store this product in the observed flux bin corresponding to .

e [f any part of the surface of the emissive sphere is obscured by the cone, then
integrate S(w)[1 — e~"(w D] 4 [,e="(w8) (where w is the radial coordinate and
is the direction angle of the observer’s line of sight for a resonance point on the
cone) over the projected area of the obscuring part of the truncated cone. Add

this integral to the observed flux bin corresponding to A.

e [f any part of the truncated cone does not obscure the surface of the emissive
sphere, then integrate S(w)[l — ¢~ "(®9] over the projected area of the non-
obscuring part of the truncated cone. Add this integral to the observed flux

bin corresponding to A.

This procedure is carried out for every wavelength point on a linear grid in the observer

frame. The result is a line profile.
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3.3.2 Pure Scattering

If z, the collisional fraction of de-excitations, is zero, then none of the radiation emitted
by the opaque sphere is absorbed in the shell, and so the line profile results from pure

scattering. The source function becomes

. Jo(w) [, .
S(w) = (;(—w)u (3.20)

Recall that each wavelength point in the synthetic line profile corresponds to a
particular cone. Let a cone’s half-angle be «, and let a near zero correspond to narrow
cones opening toward the observer. The cone with a half-angle o« = 7/2 is really a
plane. and its intersection with the shell is an annulus that shines at A’ (line center)
in the observer frame. I[n general, the intersection is a truncated cone that shines at
[1 — vcos(a)/c]N. The continuum level of the pure-scattering synthetic line profile is
the observed flux that corresponds to a completely unobscured view of the emissive
sphere. For every half-angle o such that arcsin(wc/wy) < o < 7 — arcsin(we/we), the
cone does not obscure the observer’s view of the emissive sphere. Nevertheless. because
the cone glows—that is. it scatters light into the line of sight along beams with impact
parameter greater than wc—the observer measures more than the continunm flux for
the corresponding wavelength, and so the observed line profile is in emission at this
wavelength. For every half-angle a such that 0 < o < arcsin(wcg/wo), the truncated
cone only obscures the observer’s view of the emissive sphere. Because the cone scatters
away from the line of sight some of the light originally headed directly toward the
observer from the emissive sphere, the observer measures less than the continuum flux
for the corresponding wavelength, and so the observed line profile is in absorption at
this wavelength. At some wavelength corresponding to a between arcsin(wc/wo) and

arcsin(wg/wy) the flux measured by the observer crosses the continuum level. For this
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range of «a values, part of the truncated cone diminishes the observed flux by obscuring
the emissive sphere, but part of the truncated cone augments the observed flux by
scattering light into the line of sight along beams with impact parameter greater than
wc. Finally, for half-angles greater than 7 — arcsin(wc/wo), each cone is occulted by
the opaque sphere, and so the observer measures exactly the continuum flux at the
corresponding wavelength.

For each of several line strengths T, Figure 3.2 shows source functions and line pro-
files. The geometry of the shell is the same as that used in the plots in the previous
chapter: wy = 0.5 and wo = 1.5. The radius of the emissive sphere is wc = 0.4, and so
there is a small vacuum gap between the emissive sphere and the inner boundary of the
shell. For a very weak line, the source function, expressed in units of the intensity emit-
ted by the central sphere, is nearly the dilution factor, W(w) = 0.5 [1 -V1-{wc/ w]z],
which represents the pure-scattering source function if the optical depth is independent.
of direction angle. Although the optical depth 7 is still certainly dependent on the
direction angle for small T, nevertheless r can be small over a wide range of direction
angles, and this results in the weak-line behavior of the source function. The angular
dependence of r causes the value of the source function to become smaller at any given
radial coordinate as T grows larger. Beyond T = 1, however, the effect is not noticeable;
the source function for T = 10 is indistinguishable from the source function for T = 1.
Because the source function is the ratio of the local emissivity to the local opacity, the
interpretation is that for T < 1 the emissivity climbs more slowly than the opacity, and
that for T > 1 the emissivity is proportional to the opacity.

The behavior of the line profile reflects that of the source function for strong lines
because for a strong line the only contribution to the observed flux from an obscured
portion of the emissive sphere is just the source function. Note that the horizontal

coordinate z of the line profile is such that —1 corresponds to the bluest wavelength
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Figure 3.2: For wc = 0.4 and for the standard shell geometry used in the previous
chapter (w; = 0.5 and wg = 1.5), the source function and the line profile for each of
several values of the line strength parameter T are shown. The dilution factor and the
source functions are plotted in the top graph. The line profiles are plotted in the bottom
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that the line can produce, and +1 corresponds to the reddest wavelength that the line
can produce. The rest-frame wavelength of the line corresponds to = = 0. The existence
of the vacuum gap between the emissive sphere and the shell produces a cusp in the
line profile because as the observed wavelength increases beyond a certain critical value,
obscuration of the emissive sphere suddenly ceases. The shape of the blue absorption
trough depends on the competition between two things. The decrease of the cone’s
half-angle « toward zero leads (1) to the increase in a cone’s optical depth along the
observer’s line of sight but (2) to the decrease in the fraction of the emissive sphere
obscured by the cone. Blueward of the minimum, the fractional coverage dominates the
observed flux.

Figure 3.3 shows the same curves as Figure 3.2 but for different geometric parame-
ters. The emissive sphere has been enlarged so that the vacuum gap has been eliminated,
and the outer boundary of the shell has been reduced so that wo = 0.6. The cusp has
disappeared because, as the cone angle increases, (1) the fractional coverage of the emis-
sive sphere by the cone decreases to zero more slowly than in the case of the gap, and (2)
the optical depth along the line of sight decreases further than in the case of the gap as
the coverage goes to zero. The minimum of the absorption trongh has moved redward
because the shell is thinner, and so, for larger values of «, the fractional coverage of
the emissive sphere by the cone drops rapidly with «. The reduction of the thickness
of the shell also renders the effect of the weakest line almost unobservable. Because the
ratio of wo to wc is near unity, there is a large flat region of continuum flux at the red
extreme of the line profile. This results from the complete occultation of cones over a

relatively large range of a up to 7.
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3.3.3 Isothermal Shell

The admission of a non-zero probability £ of collisional de-excitation for the two-level
atom requires the specification of a temperature. Specifying the ratio of the intensity B
of blackbody radiation (at line center in the comoving frame) to the intensity /y emitted
(at all wavelengths) by the opaque sphere is equivalent to specifying a temperature. The
simplest way to do this is to set B/ equal to some value that is fixed throughout the
shell. Figure 3.4 illustrates the zero-temperature case for z = 0.2. One of the most
noticeable differences between the case of pure scattering and the case in which the
source function is coupled to a thermal pool has to do with the behavior for very strong
lines. As T increases beyond unity, both do(w) and 3(w) decrease at a given radial
coordinate w. When both do(w) « zB/[1 - ]Iy and B(w) < r/[1 - z], the source
function at w will have converged to B. For the case of pure scattering, every line
with strength greater than about T = 1 has the same source function. However, when
collisional de-excitation is turned on, the source function may continue to change even
for very large values of T, especially if r is small but positive. Because the pure-
scattering source function is recovered as r approaches zero, the source function will,
for very small values of £, vary only slowly with T as T becomes greater than unity until
T becomes very large: then the source function will converge toward B as T increases
still further. Figure 3.5 demonstrates this behavior for £ = 0.001; note that the source
function for T = 1 is almost identical to the source function for T = 10 but that the
source function evolves toward B = 0.25], for very large T.

Figure 3.4 shows that the zero-temperature shell, for a strong line, does little but
absorb light from the emissive sphere. The line profile hardly ventures above the contin-
uum for T = 10, even though it has a deep blueward absorption trough. Although light

from this trough would be redistributed to the emission part of the profile in the case of
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pure scattering, here the light is dissipated into the cold thermal pool from which it is
not re-emitted. In comparison with the pure-scattering shell, the zero-temperature shell
produces a very similar absorption trough because at the wavelengths in the trough.
the observer cannot distinguish between the scattering of light out of the line of sight
and the absorption of light by the material in the shell. Figure 3.5 shows that (for a
sufficiently strong line) even a shell temperature for which B/l is smailer than unity
can produce a substantial emission component in the observed profile. At line center
in the observer’s frame, the flux contribution of 7wé Iy from the disk is augmented by
a contribution of 7{w} — wi]B from the shell. Nevertheless, so long as B/, is smaller
than unity, there will be a blueward absorption component because, for wavelengths
corresponding to « < arcsin{wc/wg), the only contribution from the shell obscures the

brighter contribution that would otherwise come from the emissive sphere.

3.4 Instrumental Resolution

Because pure scattering merely redistributes light from one part of the observed pro-
file to another. a pure-scattering observer-frame profile that is narrower than the in-
strumental resolution limit will be invisible. Figure 3.6 displays the change in the
observer-frame line profile as the instrumental resolution varies. In the bottom graph.
the pure-scattering profile virtually disappears as soon as the resolution of the detector
is as large as the width of the profile. This example demonstrates that for a strong
feature (T = 10) in a thick shell (w; = 0.5 and wo = 3) with an expansion speed
v = 100 km s~!, an instrumental resolution of 1A is insufficient for the detection of
the line in the case of pure scattering. The top graph, however, demonstrates that the
same line coupled to a thermal pool in the shell can produce a detectable feature at a

resolution of 1A.
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Figure 3.7 is like Figure 3.6 but illustrates the effect of instrumental resolution on a
strong line coupled to a zero-temperature thermal pool. The bottom graph, which shows
profiles for a shell expansion speed v = 100 km s~!, indicates that a weak feature could
be detected with a resolution limit like that (about 0.75.;\) of the detector that produced
the data for Figure 1.3. The top graph, which corresponds to v = 1000 km s~} shows
that the strength of the observed line profiie reaily does increase with the velocity of

the shell.
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Chapter 4

Conclusion

The simple model presented here allows for the synthesis of line profiles. A wide variety
of profile shapes may be produced in the exploration of the space formed by the model’s
input parameters. P-Cygni profiles in which the total flux is conserved but transfered
from the absorption part to the emission part of the observer-frame profile correspond
to the case of pure scattering (z = 0). A flattening and diminution of the emission
part to a plateau can be accomplished by specifying a vacuum gap between the emissive
sphere and the inner boundary of the shell. Alternatively, the emission part of the
observer-frame profile can be reduced without sacrificing the depth of the absorption
part by coupling the line to a low-temperature thermal pool. By coupling the line to
higher-temperature pools, the emission part of the profile can be augmented, and, for
B > [,. a sufficiently strong line will not even show blueward absorption. Finally, the
overall deviation of the profile from the continuum and the location of the absorption
minimum (if it exists) can be controlled by adjusting the thickness of the shell. So,
fitting a synthetic line profile produced by this model to an observed line profile would
vield both a geometric interpretation of the feature’s formation and an estimate of the

strength of the transition.
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For a spectral resolution of about an angstrom in the near-ultraviolet, a pure-
scattering line profile described by this model will not be detected if the shell expansion
speed v less than about 100 km s~!. A strong line coupled to a zero-temperature shell
would produce only a weak signal for v = 100 km s~! and would likely be undetectable
for v = 10 km s~!. Even for the slowest expansion speeds, however, a strong line coupled
with a thick sheil whose blackbody emission intensity is at least a substantial fraction of
the intensity emitted by the opaque sphere will produce a detectable unresolved emis-
sion feature. So this model would predict that for a very slowly expanding shell, the
only detectable feature at 1-A or broader resolution is an unresolved emission spike like
those in Figure 1.2. The real test of the model will come in the analysis of line profiles
measured with 0.1A or better resolution.

There are, however, many potential problems. The simple shell wind model does
not allow for variations in mass-loss rate and terminal velocity for the progenitor wind.
Nor does it allow for the obvious types of asymmetry (prolate or oblate spheroidal) in
the wind and in the SN ejecta; the model fails to distingnish between the identification
of the emissive sphere with the SN photosphere and the identification of the emissive
sphere with the interaction region between the ejecta and the wind. Nor does it take
into account acceleration of the inner part of the wind by radiation pressure from the
ejecta/wind interaction shock. Finally, the simple shell model assumes that the source
of line opacity has no intrinsic width. Nevertheless, this model’s simplicity allows for
the complete comprehensibility of every aspect of every line profile that it produces.
So, to the extent that it turns out to fit profiles consistently, the model provides direct
physical insight into the nature cf line formation in a circumstellar envelope around a
SN.

The simplest extension of the model presented here is to include line blending. If

two lines are separated in rest-frame wavelength by a wavelength shift smaller than the
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largest shift obtainable by the doppler effect in the shell, then the bluer line may be
treated exactly as above. In computing the source function for the redder line, however,
intensity beams from the emissive sphere are augmented by intensity beams that come
from a surface like those in Figure 2.8. Light in those extra beams is scattered from
the bluer line into resonance with the redder line. The generalization to an arbitrary
number of lines is equivalent to adding to the source function of cach line a contribution
from every bluer line.

Beyond line blending, an ambitious but interesting project would be to use internal
data from a model that produces a synthetic fit to the broad features formed in the
ejected material. Although the output of such a model is nsnally averaged over all of
the (parallel) lines of sight, the full internal detail of such a model could provide a more
realistic (than constant continuum intensity) lower boundary condition for the radiation
field that illuminates the simple shell wind model.

Thank you for your attention.
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Appendix A

Source Code

A.1 Resonance Region Around Finite-Width Line
A.1.1 C++4 Header (Interface-Description) Files

resonance-point.hh

#ifndef __RESONANCE_POINT_HH__
#define __RESONANCE_POINT_HH__

#define pi 3.14159265358

// For a monochromatic beam with direction angle, theta, and for a
// line with normalized width, epsilon, this class describes a

// resonance point in a bounded atmosphere. The integrated line
// opacity is K_0 at r_O from the center and is proportional to

/7 (x_0)~(-2).

class resonance_point

{
double w_I; // inner boundary in units of r_0
double w; // resonance point location in units of r_0
double w_0; // outer boundary in units of r_0
double theta; // direction angle of beam

double epsilon; // normalized line width
void die( const char* fname, const chars msg ) const;
public :
resonance_point(); // Read initialization from standard input.

resonance_point( double i, double x, double o, double t, double e );
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double get_w_I () const { return w_I; }
double get_w () const { return w; }
double get_w_0 () const { return w_0; }
double get_theta () const { return theta; }
double get_epsilon() const { return epsilon; }

void set_w_I ( double i );
void set_w ( double x );
roid set_w_0 { double s );
void set_theta ( double t );
void set_epsilon( double e };

double U( double z, int&k flag ) const;

double tau() const;

double u( double t ) const;
};

#endif // __RESONANCE_POINT_HH__

A.1.2 C++ Implementation Files for Library (Reusable) Components

resonance-point.cc

#include <math.h>
#include <string.h>
#include <jostream.h>

#include '"resonance-point.hh"

void resonance_point::die( const char* fname, const chars msg ) const

{

cerr << '"resonance_point::" << fname << ": " << msg << endl;
exit( 1 );
}
resonance_point: :resonance_point()
{
for( int flag = 0; flag !'= 31; )
{
char  param_name(16];
double val;
cin >> param_name;
if( ! strcmp( param_name, "epsilon” ) )
{
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if( ! (cin >> val) )

die( "resonance_point”, "unable to read epsilon" );
else

set_epsilon( val );

flag I=1;
}
else if( ! strcmp( param_name, "w_I" ) )
{
if( ¢ (cin >> val) }
die( "resonance_point", "unable to read w_I" );
else
set_w_I( val );
flag |= 2;
}
else if( ! strcmp( param_name, "w" ) )
{
if( ! (cin >> val) )
die( "resonance_point', "unable to read w" );
else
set_w( val );
flag i= 4;
}
else if( ! strcmp( param_name, “w_0" ) )
{

if( ! (cin >> val) )

die( "resonance_point”, "unable to read w_0" );
else

set_w_0( val );

tlag |= 8;
else if( ! strcmp( param_name, "theta™ ) )

if( ! (cin >> val) )

die( "resonance_point”, "unable to read theta" );
else

set_theta( val );

flag |= 16;
}

else

{
cerr << "resonance_point::resonance_point: param_name='"
<< param_name << "’" << endl;
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die( "resonance_point", "unknown parameter” );
}
}
}

tesonance_point::rosonance_point( double i,
double x,
double o,
double t,
double 8 )

set_w_I (
set_w (
set_w_0 (
set_theta (
set_epsilon(

}

void resonance_point::set_w_I( double i )

{
if( i <= 0 ) die( "set_w_I", "w_I not positive” );
else v.l=1;

}

void resonance_point::set_w( double x )

{
if( x <= w_I ) die( "set_w", "v not larger than w_I" );
else ¥ =X;

}

void resonance_point::set_w_0( double o )

{
if( o <= w ) die( "set_w_0", "w_0 not larger than w" )};
else v_0 = o;

}

void resonance_point::set_theta( double t )
{
if(t <=0 || t > pi)
die( "set_theta”, "theta not between 0 and pi" );
else
theta = ¢;
}

void resonance_point::set_epsilon( double e )

{
if( e <=0 ) die( "set_epsilon”, "epsilon not positive" );
else epsilon = e;
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}

double resonance_point::U( double z, int&k flag ) const

{
double ct
double zpc

cos( theta );
z + ct;

if( zpc <= -1 )

{
flag = -1; // negative infinity
return O; // return value irrelevant
}
else if( zpc >= 1)
{
flag = 1; // positive infinity
return O; // return value irrelevant
}
else
{
flag = 0; // finite value
return ( zpcesin( theta )/sqrt( 1 - zpcezpc ) - ct )sw;
}

}

double resonance_point::tau() const

{
double wc = wecos( theta );
double ws = wssin( theta );

double ti = asin( w_I/w );

sqrt( w_0sw_0 - wssus );
sqrt{ w_Isw_I - useus );

double swow
double swiw

double u_n;

double u_p;

if( theta < ti ) u_n = swiw - wc;
else u_n = -SWOW - WC;
if( theta < pi - ti ) u_p = swow - wc;
else u_p = -swiw - wc;
int flag;

double u;

double upsilon_p;
double upsilon_n;
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u = U( +epsilon, flag );

it ( flag == -1 ) upsilon_p = u_n;
else if( flag == 1 ) upsilon_p = u_p;
else
{
it (u<u.n) upsilon_p = u_n;
else if( u > u_p ) upsilon_p = u_p;
else upsilon_p = u;
}

u = U( -epsilon, flag );

it ( flag == -1 ) upsilon_n = u_n;
else if( flag == 1 ) upsilon_n = u_p;
else
{
it ( u<u_n) upsilon_n = u_n;
else if( u > u_p ) upsilon_n = u_p;
else upsilon_n = u;
}

double arg_p = ( upsilon_p + wc )/vs;
double arg_n = ( upsilon_n + wc )/vs;

double r = ( atan( arg_p ) - atan( arg_n ) )/epsilon/us;

if( r < 0.0 ) die( "tau", "tau less than zero" );

return r;
}
double resonance_point::u( double t ) const
{

double wc = wscos( theta );

double ws = wesin( theta );

double ti = asin( w_I/w );

double swow = sqrt( w_0*w_0 - wssws );
double swiw = sqrt( w_Isw_I - wssus );

double u_n;

double u_p;
if( theta < ti ) u.n = swiv - wc;
else u_n = -swow - WC;
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it( theta < pi - ti ) u_p = swow - wc;
else u_p = -swiw - uc;
int tlag;

double u;

double upsilon_n;

2 = U( -epsilon, flag };

it ( flag == -1 ) upsilon_a = u_n;
else if( flag == 1 ) upsilon_n = u_p;
else
{
if (u<u_n) upsilon_n = u_n;
else if( u > u_p ) upsilon_n = u_p;
else upsilon_n = u;
}

double arg = atan( (upsilon_n + wc)/ws + epsilonswsst );

if ( arg <= -pi/2 ) return -100;

else if( arg >= pi/2 ) return 100;

else return wsstan( arg ) - wc;
}

A.1.3 C+4+ Main-Program Files

t-contours-lim.0.cc

#include <stdlib.h>
#include <iostream.h>

#include "resonance-point.hh"

main{ int argc, charss argv )

{
if( arge '= 2 )
{
cerr << "usage: " << argv[ 0 ] << " <optical_depth>" << endl;
exit( 1 );
}
double t = atof( argv( 1] );

resonance_point rp;
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double th_beg = 0.1;
double th_end = 179.9;
int th_num = 500;

double th_del

( th_end - th_beg )/( th_num - 1 );

for( int i=0; i<th_num; i++ )
{
double th = (th_beg + th_delsi)spi/180;
rp.set_theta( th );
double u = rp.ul t );
cout << ussin( th ) << " " << uscos( th ) << endl;

tau-angle-lim.0.cc

#include <stdlib.h>
#include <iostream.h>

#include "resonance-point.hh"

main( int argc, charss argv )

{
if( arge '= 2 )
{
cerr << "usage: " << argv([ 0 ] << " <direction_angle_deg>" << endl;
exit( 1 );
}
double epsilon = atof( argvl 1] );
resonance_point rp;
rp.set_epsilon( epsilon );
double theta_beg = 0.000%;
double theta_end = 179.9999;
int theta_num = 2000;
double theta_del = ( theta_end - theta_beg )/( theta_num - 1 );
for( int j=0; j<theta_num; j++ )
{
rp.set_theta( (theta_beg + jstheta_del)*pi/180.0 );
cout << rp.get_theta(}*180/pi << " " << rp.tau() << endl;
}
}
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tau-angle2-lim.0.cc

#include <stdlib.h>
#include <iostream.h>

#include "resonance-point.hh"

main( int argc, chars* argv )

{
it( arge =2 )
{
cerr << "usage: " << argv[ 0 ] << " <rad_coord_w>" << endl;
exit( 1 );
}
double w = atof( argvl 1 ] );

resonance_point rp;

rp.set_w( w );

double theta_beg = 0.0001;
double theta_end = 179.9999;
int theta_num = 2000;

double theta_del = ( theta_end - theta_beg )/( theta_num - 1 );

for( int j=0; j<theta_num; j++ )
{
rp.set_theta( (theta_beg + jstheta_del)»pi/180.0 );
cout << rp.get_theta()*180/pi << " " << rp.tau() << endl;
}

tau-linewidth-lim.0.cc

#include <iostream.h>
ginclude <math.h>
#include <stdlib.h>

#include "resonance-point.hh"

main( int argc, charss argv )
{
if( arge !=2)
{

cerr << "usage: " << argv[ 0 ] << " <direction_angle_deg>" << endl;
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exit( 1 );
}

double theta = atof( argv( 1] );
resonance_point rp;

rp.set_theta( thetaspi/180.0 );

double e_beg = 0.001;
double e_end = 10.0000;
int e_num = 999,

double e_rat = pow( e_end/e_beg, 1.0/(e_num - 1.0) );
//double e_del = ( e_end - e_beg )/( e_num - 1.0 );

for( int j=0; j<e_num; j++ )

{
rp.set_epsilon( e_beg*pow( e_rat, j ) );
//tp.set_epsilon( e_beg + j*e_del );
cout << rp.get_epsilon() << " " << rp.tau() << endl;
}

A.2 Observed Profile of Delta-Function Line

A.2.1 C++ Header (Interface-Description) Files
linterp.hh

// diss/sobolev/linterp.hh

//

// copyright 1999 Thomas E. Vaughan

1/

// This is free software, redistributable only under the terms of the GNU
// General Public License (GPL). See <http://wvw.gnu.org>.

// Provide a general linear interpolation function.
double linterp

(

double xmin, double xmax, double dx, double x, double y[]
);
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parameters.hh

// diss/sobolev/parameters.hh

//

// copyright 1999 Thomas E. Vaughan

//

// This is free software, redistributable only under the terms of the GNU
// General Public License (GPL). See <http://www.gnu.org>.

#ifndef __PARAMETERS_HH__
#define __PARAMETERS_HH__

#include <map>
#include <string>

class parameters

{
map<string,double> vals;
public :
parameters( const chars filename );
double get( const stringk key ) const;

extern parameters* params;

#endif // __PARAMETERS_HH__

source_function.hh

// diss/sobolev/source_function.hh

//

// copyright 1999 Thomas E. Vaughan

//

// This is free software, redistributable only under the terms of the GNU
// General Public License (GPL). See <http://www.gnu.org>.

// Calculate the Sobolev source function for a spherically-symmetric

// constant-speed radial wind whose only illumination comes from a central
// sphere. The illumination is angle-independent (over the solid angle

// subtended by the central sphere) and wavelength-independent. The line
// profile is a delta-function.

double source_function
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(
double w_em, // size of light-emitting sphere

double w, // radial parameter of interest

double T, // line-strength parameter

double x, // collisional fraction of de-excitations
double B // Blackbody at w in terms of intensity at w_em
);

trapezoid.hh

#ifndef __TRAPEZOID_HH__
#define __TRAPEZOID_HH__

// Provide an interface to a function that calculates an integral by

// incrementally doubling the number of partitions in the domain of the
// integrand and applying the trapezoid rule.

double trapezoid(
double (»f)( double x ), // pointer to integrand

double a, // lower limit of integration
double b, // upper limit of integration
double e = 1.0E-05, // desired accuracy

int m=20); // max number of bifurcations

#endif // __TRAPEZOID_HH__

A.2.2 C++ Implementation Files for Library (Reusable) Components

linterp.cc

// diss/sobolev/linterp.cc

//

// copyright 1999 Thomas E. Vaughan

//

// This is free software, redistributable only under the terms of the GNU
// General Public License (GPL). See <http://www.gnu.org>.

// Provide a general linear interpolation function.
#include <iostream>
double linterp

(

double xmin, double xmax, double dx, double x, double y(]
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~

if( x < xmin || x > xmax )
{

// Disallow extrapolation.

cerr << "linterp: ERROR: x=" << x << " npot in ["
<< xmin << "," << xmax << "]" << endl;

exit{ 1 };

}

it ( x == xmax ) return y[ int( (x-xmin)/dx ) 1;
else if( x == xmin ) return y[ 0 ];

// index of left edge of interpolation zone
int i = int( (x - xmin)/dx );

// coordinate of left edge of zone
double xleft = xmin + isdx;

// slope of linear fit across zone
double m = ( y[i+1] - y[i] )/dx;

// linearly interpolated value
double v = ( y(i] + m*(x - xleft) );

return v;

parameters.cc

// diss/sobolev/parameters.cc

//

// copyright 1999 Thomas E. Vaughan

//

// This is free software, redistributable only under the terms of the GNU
// General Public License (GPL). See <http://www.gnu.org>.

#include <fstream>
#include <string>

#include "parameters.hh"

parameters® params; // global pointer to parameters instance params
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parameters: :parameters( const char* filename )

{

}

istreams isp; // base input stream pointer

if( filename )

{
isp = new ifstream( filename );
cerr << ''parameters::parameters: reading from "
<< filename << endl;
}
else
{
isp = &kcin;
cerr << 'parameters::parameters: reading from "
<< "standard input” << endl;
}

string k; // current key

// Read keys until the end of the input file is reached. Assume
// that the next word is a key.

while( (*isp) >> k )

{
// k now holds candidate key.
// Assume that the next word is the value corresponding to
// the current key.
(»isp) >> vals( k ];
}

// Allow for a public method to extract a parameter value by its key.

double parameters::get( const stringk key ) const

{

map<string,double>::const_iterator i = vals.find( key );
if( i == vals.end() )
{

// key was pnot initialized in the comstructor.

cerr << "parameters::get: ERROR: no entry for " << key
<< endl;
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exit( 1 );

}

return i->second;
}
source_function.cc

// diss/sobolev/source_function.cc

//

// copyright 1999 Thomas E. Vaughan

//

// This is free software, redistributable only under the terms of the GNU
// General Public License (GPL). See <http://www.gnu.org>.

// Calculate the Sobolev source function for a spherically-symmetric

// constant-speed radial wind whose only illumination comes from a central
// sphere. The illumination is angle-independent (over the solid angle

// subtended by the central sphere) and wavelength-independent. The line
// profile is a delta-function.

#include <iostream>
#include <math.h>
#include "trapezoid.hh"

// The following two variables are file-scope global because the integrand
// function below requires access to them but must have a signature with
// only one argument.

static double T; // half of minimum optical depth at w = 1
static double w; // radial coordinate in units of r_0

// The source function contains two integrals. Each integral has the same
// integrand. Defined as follows, f() is that integrand. The limits of

// integration for one of the integrals are O and theta_I; for the other, 0
// and pi.

double f( double theta )

{

double st = sin( theta );

return 0.25sws( 1 - exp( -2*T/u/st/st ) )*stsstest/T;
}

double source_function

(

double w_em, // size of light-emitting sphere
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double ww, // radial parameter of interest
double TT, // half of minimum optical depth at w = 1

double x, // collisional fraction of de-excitations
// x=0 corresponds to pure resonance scattering.
// x=1 corresponds to pure thermal emission

double B // thermal blackbody intensity at ww in units of
// intensity of light-emitting sphere

)

{

if( w_em > uw )

{

// Something weird is going onm.

cerr << "source_function: ERROR: w_em=" << w_em
<< " > y=" << yw << endl;

exit( 1 );
}

T = TT; // assignment to global variable for f()
w = ww; // assignment to global variable for f()

double theta_I = asin( w_em/w );

double integ_1 = trapezoid( f, 1.0E-06, theta_I );
double integ_2 = trapezoid( f, theta I, M_PI );

return ( (1-x)*integ_1 + x*B )/( (1-x)*(integ_1+integ_2) + x );
}

trapezoid.cc

// diss/sobolev/trapezoid.cc
//
// copyright 1999 Thomas E. Vaughan

//
// This is free software, redistributable only under the terms of the GNU
// General Public License (GPL). See <http://wuw.gnu.org>.

#include <iostream.h>
#include <math.h>

#include "trapezoid.hh"
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// Provide a convenient way to dereference a function pointer.
#define F(x) ((sf)(x))

// Calculate the nth-order trapezoid rule sum. This function assumes that
// it has already been called once, in turn, for each of the previous n-1
// sums.

double trap(

double (sf)(double), // pointer to integrand function
double a, // lower integration limit
double b, // upper integration limit

int n) // number of bifurcations

{

static double s; // sum to be returned

if(n==1)

{

return ( s = 0.5%(b - a)*( F(a) + F(b) ) );
}

else

{

int it;

int j;

for( it =1, j=1; j<n~-1; j*+ ) it <<= 1;

double tnm = jit;
double del = (b - a)/tnm; // spacing of new points
double x = a + 0.5+del;

double sum;
for( sum=0, j=1; j <= it; j++, x += del ) sum += F(x);

s =0.5#( s + (b - a)ssum/tnm ); // refinement of s
return s;

}

}

// Provide the public interface, and handle the proper calling of trap()
// above.

double trapezoid(
double (#f)(double), // pointer to integrand function

double a, // lower integration limit
double b, // upper integration limit
double e, // error tolerance

int m) // maximum number of bifurcations
{
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if( a == b ) return 0.0; // quick escape for trivial case
double olds = -1.0E+30; // unlikely to be function average

for( int j = 1; j <= m; j++ )
{
double s = trap( £, a, b, j );

// cerr << "trapezoid: j=" << j << " g=" << s << endl;

if( fabs(s - olds) < esfabs{olds) ||
s == 0.0 &k olds == 0.0 &% j > 6 ) return s;

olds = s;

}

cerr << "trapezoid: ERROR: too many steps'" << endl;
exit( 1 );

}

A.2.3 C++ Main-Program Files

sf.cc

// dissertation/sobolev/sf.cc

//

// copyright 1999 Thomas E. Vaughan

//

// This is free software, redistributable only under the terms of the GNU
// General Public License (GPL). See <http://www.gnu.org>.

#include <iostream>

#include "parameters.hh"
#include '"source_function.hh"

// Provide a stand-alone program for use in producing a plot of the source
// function for various values of T.

main( int argc, charss argv )

{

if( argec == 1)

{

// There are no command-line arguments. Pass a null string
// pointer to the parameters constructor so that it reads
// from the standard input.
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params = new parameters( 0 );

}

else if( argc == 2 )

{

// There is a command-line argument. Assume that the
// argument is the name of a parameter file.

params = new parameters( argv([1] );

}

else

{

// There are two or more command-line arguments. This is
// an error condition.

for( int i = 0; i < argc; i++ )

cerr << "argument " << i << " " << argv[il
<< endl;

cerr << '"usage: " << argv[0] << " <parameter file>"
<< endl;

exit( 1 );

}

// Get parameters.

double T = params->get( "T" )i
double w_opaque = params->get( "w_opaque” );
double w_min = params->get( "w_min" ):
double w_max = params->get( "w_max" );
double x = params->get( "x" )i
double B_inner = params->get( "B_inner" );
double B_outer = params->get( "B_outer" );

int sgrid
double w_del

int( params->get("sgrid") + 0.5 );
(v_max - w_opaque)/(sgrid - 1.0);

"

for( int j = 0; j < sgrid; j++ )
{

double w = w_opaque + j*w_del;
double s;

if( w < w_min )
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double r = (w - w_min)/(v_max - w_min);
double B = B_inner + r#(B_outer - B_inner);
s = source_function( w_opaque, w, T, x, B );
}

cout << ¥ << " " << s << endl;

}

}

smooth.cc

// dissertation/sobolev/smooth.cc

//

// copyright 1999 Thomas E. Vaughan

//

// This is free software, redistributable only under the terms of the GNU
// General Public License (GPL). See <http://www.gnu.org>.

// Transform two-column x-y data from standard input to standard output.
// Transformed data has been smoothed by a gaussian whose standard
// deviation is (optionally) specified on the command line.

#include <stdlib.h> // exit() and strtod()
#include <jiostream.h> // usual C++ I/0
#include <map.h> // STL map

#include <math.h> // M_P1 and sqrt()

#include "trapezoid.hh" // trapezoid() trapezoid-rule integrator

// The following variables are file-scope global because they are needed by
// £1(), which must have only one parameter. A pointer to fi() is passed
// to trapezoid() for integration.

// s2pi is a normalization factor for the gaussian.
static const double s2pi = sqrt( 2.0+M_PI );

static map<double,double> f; // map for standard input

static double sd; // standard deviation of gaussian
static double x_center; // central x value for the current gaussian

// £1() is an integrand, the product of (1) a gaussian and (2) an

// interpolant and extrapolant of the input data. Interpolation is

// performed linearly, and the extrapolant is a constant equal to the edge
// value of the input data.
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double f1( double x )
{
static double id; // value of interpolant at x

if( x < ( f.begin() )->first )

{

// x is smaller than the smallest key, and so extrapolation
// is necessary.

id = ( f.vegin() )->second;

}

else if( x > ( f.rbegin() )->first )

{

// % is larger than the largest key, and so extrapolation
// is necessary.

id = ( f.rbegin() )->second;
}
else

{
// Interpolate.

static map<double, double>::iterator ub;
static map<double, double>::iterator lb;

ub = f.upper_bound( x ); // upper bound
1b = ub;

--1b; // lower bound

static double x1;
static double x2;
static double y1;
static double y2;

// A map is a set of pairs, each of which has a 'first’ and
// a 'second’ member.

x1 = 1b->first;
x2 = ub->first;
y1 = lb->second;
y2 = ub->second;

id = y1 + (x - x1)s(y2 - y1)/(x2 ~ x1);
}

static double z;
z = (x -~ x_center)/sd;



return idsexp( -0.S5#z»z )/sd/s2pi;

}
// main program

int main( int argc, chars argv([] )
{

// Process command-line arguments, if any.

if{ argc == 1)

{

// There are no command-line arguments. Indicate that sd
// should be chosen automatically.

sd = 0;

}

else if( argc == 2 )
{

// There is a command-line argument. Assume that it
// represents the standard deviation.

chars* endptr = NULL;
sd = strtod( argv[1], endptr );

if( sd < 0 )

{

cerr << argv[0] << ": ERROR: negative standard "
<< '"deviation' << endl;

exit( 1 );
}

}

else

{

// There are toc many command-line arguments.

cerr << "usage: " << endl;
cerr << argv[0] << " [<standard deviation>]" << endl;

exit( 1 );
}

// Read standard input.
{
double x;

double y;

while( cin >> x >> y ) f[(x] =y;
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// total x size of input data
double xsize = ( f.rbegin() )->first - ( f.begin() )->first;

// mean x step size in input data
double dx = xsize/( f.size() - 1 );

// 1t sd is unspecified or specified on command line as C, then set
// sd equal to mean x step sSi1ze 1n input data.

if( sd == 0 ) sd = dx;

// sdlim is the number of standard deviations to consider for the

1/ gaussian.

1/

/7 i is an iterator for (like a poimter to) an element of a
// map<double,double>. Each such element is a pair.
const double sdlim = 3.5;

map<double,double>::iterator 1i;

// Extend the input map by at least sdlim standard deviations on
// each side.

{

i = f.begin();

double x1 = i->first; // smallest x
double y1 = i->second; // corresponding y
double x2 = ( f.rbegin() )->first; // largest x
double y2 = ( f.rbegin() )->second; // corresponding y

for( int j = 0; j < sdlimesd/dx + 1; j++ )
{

t0 x1 - jedx ] = y1;
10 x2 + jedx ] = y2;
}
}

// For each x in the input data, integrate the product of (1) a
// gaussian centered at that x and (2) the interpolated or

// extrapolated value from the input data. The integral becomes
// the output value for that x.

for( i = f.begin(); i != f.end(); i++ )
{

x_center = i->first; // global parameter for f£1()
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double x_lo i->first - sdlim®sd;
double x_hi = i->first + sdlimssd;

// Calculate and send results to standard output.
cout.precision( 11 );

cout << i->first << " " << trapezoid( f1, x_lo, x_hi )
<< endl,;

}

// Indicate normal exit to operating system.
return( 0 );

}

test _syn.cc

// dissertation/sobolev/test_syn.cc

//

// copyright 1999 Thomas E. Vaughan

//

// This is free software, redistributable only under the terms of the GNU
// General Public License (GPL). See <http://wuw.gnu.org>.

// Synthesize a line profile as measured by a distant observer of a

// radially expanding spherical shell. The expansion speed is independent
// of radial coordinate. In the comoving frame, the shell is transparent
// at every wavelength except for a single delta-function line profile. An
// opaque sphere whose radius is smaller than that of the shell’s inner

// boundary emits light with an intensity that is independent of angle and,
// tor wavelengths in the vicinity of the line’s rest-frame wavelength, is
// also independent of wavelength. There is no source of opacity outside
// of the outer boundary; also, there is no source of opacity between the
// opaque sphere and the inner boundary. The integrated opacity of the

// line varies as the inverse square of the radial coordinate.

// Allow access to standard input-output and math functionms.

#include <iostream>
#include <math.h>

// Allow access to various functions that I have written. These functions
// allow linear interpolation, reading of a parameter file, calculation of
// the source function, and calculation of an integral via an iterative

// trapezoid-rule scheme.
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#include "linterp.hh"
#include "parameters.hh"
#include "source_function.hh"
#include "trapezoid.hh"

// The tollowing variables are file-scope global because they are needed by
// £1() and £2(), each of which must have only one argument in its

// signature. In this context, "static' means that the symbol cannot be

// accessed by a function in a different file scope.

static doubles sf; // pointer to start of source-function array
static double s_del; // step size for source-function grid

static double z; // wavelength shift (Think of redshift.)

static double T; // line strength (half of min opt depth at w=1)

static double w_opaque; // opaque sphere radius im units of r_0
static double w_min; // shell inner radius in units of r_0
static double v_max; // shell outer radius 1in units of r_0

// ¥Within the scope of each of the following functions, "static” means that
// storage for the symbol is allocated at compile time, and so no time will
// be required for automatic stack allocation at each functior call.

// £1() maps impact parameter p to the product of p and the intensity at p
// tor wavelength shift z. f1() corresponds to the intensity emergent from
// a resonance point between the opaque sphere and the observer.

double f1( double p )

{

static double w; // radial coordinate
static double t; // optical depth

w
t

p/sqrt( 1.0 - zs2 );
2.0+T»u/p/p;

// w should lie within (w_min,w_max]. Correct for the inevitable
// slight numerical error.

it (w < w_min ) ¥ = ¥_min;
else if( w > w_max ) ¥ = W_max;
static double s; // source function

static double wi; // intensity weighted by impact parameter

= linterp( w_opaque, w_max, s_del, w, sf );
p*( s»( 1.0 - exp(-t) ) + exp(-t) );

wi
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return wi;

}

// £2() maps impact parameter p to the product of p and the intemsity at p
// for wavelength shift z. f£2() corresponds to the intensity emergent from
// a resonance point NOT between the opaque sphere and the observer.

double £2( double p )

{

static double w; // radial coordinate
static double t; // optical depth

p/sqrt( 1.0 - z%z );
2.0¢T*w/p/p;

v
t

// w should lie within [w_min,w_max]. Correct for the inevitable
// slight numerical error.

if ( w < w_min ) v = w_min;
else if( w > w_max ) ¥w = w_max;

static double s; // source function
static double wi; // intensity weighted by impact parameter

s = linterp( w_opaque, w_max, s_del, w, sf );
wi = pss*( 1.0 - exp(-t) );

return wi;

}

// Execution of the program begins with this function, main().

main( int argc, charss argv )
{

// First, process command-line arguments.

if( arge == 1)

{

// There are no command-line arguments. Pass a null string
// pointer to the parameters constructor so that it reads
// from the standard input.

params = new parameters( 0 );
}

else if( argc == 2 )

{

// There is a command-line argument. Assume that the
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// argument is the name of a parameter fils.

params = new parameters( argv([i] );

}

else

{

// There are two or more command-line arguments. This is
// an error condition.

cerr << "usage: " << argv(0] << " <parameter file>"
<< endl;

exit( 1 );

}

// Use parameters to initialize some variables.

T = params->get( "T" ); // line-strength parameter
w_opaque = params->get( "w_opaque” ); // opaque sphere radius
w_min = params->get( "w_min" ); // shell inner boundary
v_max = params->get( "w_max" ); // shell outer boundary

if( w_opaque > w_min )

cerr << argv[0] << ": ERROR: opaque sphere bigger than "
<< "inner boundary of shell: " << w_opaque << " > "
<< w_min << endl;

exit( 1 );
}

// sgrid is number of source-function points
// zgrid is number of wavelength-shift points
int sgrid = int( params->get("sgrid") + 0.5 );
int zgrid = int( params->get("2zgrid") + 0.5 );

sf = new double[ sgrid ]; // memory allocation for source function

1.0; // max wavelength shift in units of v_0/c
-1.0; // min wavelength shift in units of v_0/c

double z_max
double z_ain

// various step sizes

s_del (w_max - w_opaque)/(sgrid - 1); // global variable
double z_del = (z_max - z_min )/(zgrid - 1); // local variable

// Calculate source function for each point on a radial grid.
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double x = params->get( "x" ); // coll. frac. of de-excitations

double B_inner = params->get( "B_inner" ); // at opaque sphere
double B_outer = params->get( "B_outer" ); // at outer boundary

for( int i = 0; i < sgrid; i++ )
{

double w = w_opaque + is»3_del;
double s;

if( w < w_min )

else

{

double r = (w - w_min)/(w_max - w_min);
double B = B_inner + r*(B_outer - B_inner);

s = source_function( w_opaque, w, T, x, B );
}

stli] = s;

}

// Consider each wavelength shift in turn.

carr << argv[0] << ": calculating intensity for each wavelength"
<< flush;
int ip = -1; // counter for progress graph

for( int i = 0; i < zgrid; i++ )
{

z = z_min + i*z_del; // current wavelength shift

it( i%10/zgrid > ip )

{

// Add a tic to the progress graph.
cerr << "." << flush;

ip = i*10/2grid;

}

// pO is impact parameter for resonance at opaque surface
// pl is impact parameter for resonance at inner boundary
// p2 is impact parameter for resonance at outer boundary
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double p0 = w_opaque*sqrt( 1.0 - 2%z );
double p1 = w_min *sqrt( 1.0 - 2%z );
double p2 = w_max #sqrt( 1.0 - z*z );

// Initialize total emergent intensity for current
// wavelength shift.

double I = 0.0;

// First calculate the contribution due to each resonance
// point within the opaque sphere. For the impact

// parameter at each such point, the observer sees directly
// the surface of the opaque sphere.

// line of sight to disk
I += p0*p0/2.0;

// Next calculate the contribution due to each resonance
// point between the opaque sphere and the point at which
// the impact parameter equals w_opaque.

if( z > 0 || pt > w_opaque )

{

// For positive wavelength shift, the points in

// question are in the occulted region. For p1 >
// w_opaque, every point now under consideration

// lies in the evacuated region between the opaque
// sphere and the inner boundary of the shell. For
// the impact parameter at each such point, the

// observer sees directly the surface of the opaque
// sphere.

// line of sight to disk

I += (w_opaquesw_opaque - p0»p0)/2.0;

}

else

{

// Each point under consideration lies between the
// opaque sphere and the observer. Moreover, there
// is, corresponding to some of these points, a

// range of impact parameters for which photons

// from the opaque surface may be scattered out of
// the line of sight.

// Photons from the opaque surface may not be

// scattered out of the line of sight until the
// impact parameter is large enough so that the
// resonance point lies within the shell. So we
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// integrate contributions from the smaller impact
// parameters for which there is a direct line of
// sight to the opaque surface.

// line of sight to disk
I += (pispl - pO*p0)/2.0;

if( p2 < w_opaque )

{

// A resonance point at the outer boundary
// has impact parameter less than w_opaque.
// So the range of impact parameters for
// which photons from the opaque surface
// may be scattered out of the line of

// sight is [pt,p2].

// scattering away from line of sight
[ += trapezoid( f1, p1, p2 );

// There remain some impact parameters for

// which the observer’s line of sight ends

// on the opaque surface, but for which the
// resonmance point lies outside the shell’s
// outer boundary.

// line of sight to disk

[ += (w_opaque*w_opaque - p2#p2)/2.0;

}

else

{

// A resonance point at the outer boundary
// has impact parameter greater than

// w_opaque. So, resonance points within
// the shell extend at least as far as the
// limb of the opaque sphere.

// scattering away from line of sight
I += trapezoid( fi, pl, w_opaque );

}

}

// Finally add the contribution from sach resonance point
// with impact parameter larger than w_opaque.

if( p1 > w_opaque )

{

// A resonance point at the inner boundary of the
// shell has impact parameter larger than w_opaque.
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// Integrate all the way through the shell.

// scattering into the line of sight

1 += trapezoid( £2, pi, p2 );

}

else if( p2 > w_opaque )

{

// The resonance point at the limb of the opaque

// sphere is somewhere within the shell. Integrate
// from the limb to the outer boundary of the

// shell.

// scattering into the line of sight
I += trapezoid( f2, w_opaque, p2 );

}

cout.precision( 11 );

cout << z << " " << I << endl;
}

cerr << " done'" << endl;

A.2.4 Perl Scripts
syn-T.pl
#!/usr/bin/perl

open( INFILE, "$ARGV[O0]" );

$epsfile = $ARGV({0];

$epsfile =~ s/\.(.*)/.eps/;
vhile( <INFILE> )
{
my $k; # key
my Qv; # list of values
($x, ov) = split;
$param{$k} = \@v; # reference to a list of values
}
eT = e{ $param{’'T’'} };
$x = $paran{ ’'x’ }->(0l;
$B_inner = $param{ ’B_inner’ }->[0];
$8_outer = $paraa{ ’'B_outer’ }->[0];
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$v_min = $param{ ’'vw_min’ }->(0];
$v_max = $param{ 'v_max’ }->(0];
$v_opaque = $param{ 'w_opaque’ }->[0];
Sres = $param{ 'res’ }->[0];
$T_OK = 1;

foreach $i ( @T ) { $T_OK = 0 if $i < 0; }

if(
$T_OK &k
$x >= 0 &k
$x <= 1 &k
$B_inner >= 0 &&
$B_outer >= 0 73
$u_min > $w_opaque k&
$w_max > $u_min &k
$w_opaque > 0 &:
$res >= 0 &k
$epsfile ne "" )

{

# Make a plot of the synthetic line profile.
$plotline = " plot [:] (0:] *;

foreach $T ( €T )
{
$params = "sgrid 151 zgrid 251 ".
"T ST "
"x $x .
"B_inner $B_inner .
"B_outer $B_outer .
"w_min $v_min .
"w_max $w_max ".
"w_opaque $w_opaque ";

$dname = "syn-${T}.dat";
$plotline .= qq!'${sep}”$dname" title "T=$T" with lines lw 3!;
if( "‘ﬂﬁp" Gq nn ) { ‘BOP - u' \\\nn; }

‘echo $params | ./test_syn > tmp.dat’;
‘./smooth $res < tmp.dat > $dname‘;

}

$gpfile = "syn.gp";

open( GPFILE, ">$gptile" };
print GPFILE <<"EOF";

set format "%.2f"



set grid

set key below

set mxtics

set mytics

set origin 0,0

set size 1.2,2.0

set term postscript eps enhanced 24

set xlabel "{/Times-Roman normalized wavelength shift {/Times-Italic z}}"
set ylabel "{/Times-Roman relative flux}"

set multiplot
set size 1.1,0.9

$plotline
EQF
# Make a plot of the source function.

$plotline = " plot (1-sqrt(1~($w_opaque/x)s*2))/2 ".
qq! title "dilution factor” with lines lw 1!;

foreach $T ( @T )

{
$params = "sgrid 151 zgrid 251 .
"T ‘T "
"x $x .
“B_inner $B_inner ".
"B_outer $B_outer ".
“w_min $v_min .
"w_max $w_max ".
"w_opaque $w_opaque ";
$dname = "sf-${T}.dat";
$plotline .= qq'${sep} "$dname” title "T=$T" with lines lw 3!;
‘echo $params | ./sf > $dname’;
}

print GPFILE <<"EQOF";
set origin 0.0,1.1
set xlabel "normalized radial coordinate {/Times-Italic w}"
set ylabel "source function”

$plotline

ECOF
close( GPFILE );
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‘gnuplot $gpfile > $epsfile’;
‘rm -v $gpfile’;

}
else
{
# The form does not contain valid data.
print "Choose appropriate parameters.\n";
print "T @T\n";
print "x $x\n";
print "B_inner $B_inner\n";
print "B_outer $B_outer\n";
print "w_min $w_min\n";
print "w_max $w_max\n";
print "w_opaque $w_opaque\n";
print "res $res\n";
print "epsfile $epsfile\n";
}
syn.pl

#!/usr/bin/perl
open( INFILE, "$ARGV([0]" );

vhile( <INFILE> )

{

my Qv,;

($k, Ov) = split;

$paran{$k} = \@Qv;
}
ST = $param{ 'T’ }->[0];
$x = $param{ 'x’ }->[0];
$B_inner = $param{ ’'B_imner’ }->[0];
$B_outer = $param{ 'B_outer’ }->[0];
$w_min = $param{ ’'w_min’ }->[0];
$u_max = $param{ 'w_max’ }->[0];
$v_opaque = $param{ ’'w_opaque’ }->[0];
$res = $param{ 'res’ }->[0];
$epsfile = $param{ ’epsfile’ }->[0];
if(

ST > 0 74

$x >= 0 &k

$x <= 1 &k

$B_inner >= 0 &k



$B_outer >= 0 1
$v_min > $u_opaque &k

$vw_max > $w_min &k
$v_opaque > O 173
$res >> 0 £
$epsfile ne " )

# Make a plot of the synthetic line profile.

$params = "sgrid 151 zgrid 251 ".

T $T .

"x $x .

"B_inner $B_inner ".
"B_outer $B_outer ".

"w_min $w_min ".

"w_max $w_max ".
"w_opaque $w_opaque ";

$dname = "syn.dat";
$sname = "smooth.dat";

$plotline = qq! plot "$dname" title "synthetic profile" !.
qq! with lines lw 1, "$sname" title '.
qq! "smoothed profile" with !.
qq! lines 1w 3 !;

‘echo $params | /usr/local/bin/test_syn > $dname‘;
‘/usr/local/bin/smooth $res < $dname > $sname’;

$gpfile = "syn.gp";

open( GPFILE, ">$gpfile” );
print GPFILE <<"EOF";

set format "%.2f"

set grid

set key below

set mxtics

set mytics

set origin 0,0

set size 1.2,2.0

set term postscript eps enhanced 24

set xlabel "{/Times-Roman normalized wavelength shift}"
set ylabel "{/Times-Roman relative flux}"

set multiplot
set size 1.1,0.9
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$plotline

EOF

# Make a plot of the source function.

$dname "gf.dat";

$plotline = qq! plot (1-sqrt(i-($w_opaque/x)*+2))/2
4q! title "dilution factor" with lines 1w i, !.
qq! "$dname" title "source function” with ',
qq! lines 1w 3 UK

‘echo $params | /usr/local/bin/sf > $dname’;

print GPFILE <<"EOF";

set origin 0.0,1.1
set xlabel "normalized radial coordinate {/Times-Italic w}"
set ylabel '"source function”

$plotline

EOF

else

close( GPFILE );
‘gnuplot $gpfile > $epsfile’;
‘rm -v $gpfile’;

# The form does not contain valid data.
print "Choose appropriate parameters.\n";

print "T $T\n";

print "x $x\n";

print "B_inner $B_inner\n";
print "B_outer $B_outer\n";
print "w_min $w_min\n";
print "w_max $w_max\n";
print "w_opaque $w_opaque\n";
print "res $res\n";

print "epsfile $epsfile\n”;
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