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^Ẑ )̂ f̂ Z^̂ USÎ )̂ fS •*••••«•••«••••••••••••••••••••••«••••••«•••*••«•••••••••«««••«•••*••«••••••••••••••«•••••••«•«•••••••••••••«•••••• 352

Chapter IX  : Partial Purification o f Antifungal Activity from  Coccoloba ip .. . ....... 353

............. 353
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ABSTRACT

Every year we loose billions of dollars in agriculture because of 

fungal pathogens. Chemical controls of these pathogens provide some 

protection but the continued use of chemical pesticides is under attack 

because of economic, environmental and health issues. The focus of our 

research is to find alternative ways to protect crop plants from fungal 

pathogens and pests. Our specific goal is to discover, purify and 

characterize antifungal proteins and to isolate genes encoding these proteins. 

Once isolated these genes can be engineered into crop plants to increase 

their resistance to fungal diseases. Our research has focused on plant species 

from the tropical rainforest because of the diversity of species present in 

these areas and because of the virtually untapped wealth of novel defenses 

used by these plants.

To date, we have screened 164 extracts from over 100 different plant 

species for antifungal activity against Fitsarium chlamydosporum, a 

saprophytic/pathogenic fungus. Out of these 164 crude extracts, 111 had 

antifungal activity. Thirty-five aqueous crude extracts exhibited very strong 

to complete inhibition of growth o f F. chlamydosporum. Forty o f the 164 

extracts retained activity after dialysis (3,500 molecular weight cut off)

suggesting that proteins may be responsible for the activity. Five of the
xvii



dialyzed extracts showed strong to complete inhibition of fungal growth. 

Antifungal activities present in several o f  these plant extracts were purified 

further.

Novel antifungal activities were discovered in extracts from seeds of 

three different legumes, Swartzia simplex, S. cubensis and Pentaclethra 

macroloba. These activities included chitinases and other defense-related 

proteins and peptides. Chitinases were purified from all three sources using 

a combination o f chitin-affinity chromatography followed by anion- 

exchange chromatography. Alternatively, chitinases were purified by a 

combination o f affinity-chromatography followed by size-exciusion 

chromatography. Acidic chitinases isolated from all three species inhibited 

growth o f A. flavus in a liquid bioassay.

The physical and biochemical properties of selected chitinases were 

determined. Purified chitinases were stable in 0.1 M HCl, 0 .1 M acetic acid 

and 0.1 M NaOH. The molecular weight, pi, glycosylation, amino acid 

composition and partial amino acid sequence of several forms of the purified 

chitinases were determined. The partial amino acid sequence revealed a 

high degree (over 60%) o f sequence homology to class three 

lysozyme/chitinase and endochitinase precursor from several plant species.
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In addition to chitinases, other antifungal proteins/peptides were 

detected in all three species mentioned above. Agglutination and P-1,3- 

glucanase activities present in these extracts were associated with several 

fractions that inhibited the growth of A. flavus. Other novel activities were 

detected and purified. These activities await further characterization.

A protein-containing fraction purified from Coccoloba sp. exhibited a 

broad range of antifungal activity. This material strongly inhibited conidial 

germination and hyphal growth of A. flavus, Fusarium chlamydosporum, F. 

moniliforme, Sclerotinia minor and Sclerotium rolfsii. The antifungal 

activity was stable in 0.1 M NaOH, 0.1 M HCl, 0,1 M acetic acid, survived 

boiling for 5 min and was retained after dialysis using 3,500 to 14,000 

molecular weight cut off dialysis membranes. Purified materials caused 

changes in fungal morphology including hyperbranching and extremely 

reduced hyphal elongation. These observations are consistent with the 

effects of many morphogenic plant defensins suggesting that the active 

component may be a defensin-like protein.
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Chapter I : Introduction

Catastrophic losses in yield have occurred throughout the centuries because 

of fungal diseases. In 1845, the potato crop of Ireland was destroyed by late 

blight disease caused by Phytophthora infestans. This fungus caused a 

famine so devastating that half a million people died and one and a half 

million people migrated from Ireland (Agrios, 1997; Daly, 1996). The Great 

Bengal Famine o f 1943 is another example of the devastation caused by 

fungal diseases. Famine occurred because the entire rice crop was destroyed 

by the fungal disease, brown spot of rice. Thousands died from starvation 

and starvation related diseases. Although not so directly devastating, other 

epidemics such as chesmut blight, Dutch elm disease and coffee rust have 

decimated whole species within a region (Agrios, 1997).

The indirect cost of such epidemics can be tremendous. Estimates in 

1982 suggest that economic losses due to plant diseases in the United States 

approached $9.1 billion. The Southern com leaf blight alone caused losses 

in 1970 in the range of $l billion (Agrios, 1997). In the United States, the 

average disease losses in cotton are in the range of 15%. According to the 

Cotton Disease Coimcil o f America, the value of the cotton fiber lost in 

1975-78 because o f fungal wilts caused by Fusarium and Verticillium was



$74 million (Schnathorst, 1981). The United States is the world’s largest 

exporter o f soybean oil (Sinclair and Backman, 1989). Yield losses of 

soybean up to 59% have been reported from a single disease caused by 

Fusarium sp. (Datnoff, 1989). It is estimated that in the U.S., 10 million 

acres of soybean crops are lost each year from diseases caused by 

Phytophthora (Anon, 1986). Every year 600,000 hectors of peanuts with a 

value exceeding one billion dollars are harvested in the United States. Stem 

rot and Sclerotinia blight are two major fungal diseases of peanuts in major 

peanut producing states such as Oklahoma and Virginia. These diseases 

cause yield losses ranging from 10% to 80% in infected fields (Porter, 

1990). When the cost due to yield losses is coupled with the cost of disease 

control, the impact o f these diseases on human civilization is staggering.

Pests and pathogens of crop plants have typically been controlled 

through the application of chemical pesticides. Without the application of 

these pesticides, crop loss would increase by 10% and in the case of specific 

crops, losses would range from zero to nearly 100% (David, 1992). 

Worldwide, the cost of manufacture and application of chemical pesticides is 

in the billions o f dollars. In the United States alone, the cost of pesticide 

treatment for peanuts and potatoes are $175 and $139 million, respectively. 

For peanuts, 90% o f the acres are treated with fungicide (Table I-l). The



Table I-l: Value and Treatment Costs for Selected Crops in the United 
States.

CROP ACREAGE VALUE % ACRES TREATED TREATMENT
COST

Millions
Acres

$ Billion
Insecticides Fungicides

($ Million )

Com 79 17 30 NA 700

Peanuts 1.8 2.1 60 90 175

Potatoes 1.35 2.5 90 70 139

Cotton 13 4.1 67 6 576

Soybean 60 12 2 NA NA

Source: Agricultural Statistics 1994, U. S. Department of Agriculture.



total consumer cost of pest control products in 1995 reached $32 billion with 

fungicides accounting for $6.5 billion. The market value of pesticides has 

increased from $300 million in 1950 to the present value of $32 billion in 

1995. Projections indicate that the value o f pest control will increase 

another 50% by the year 2010 (Figure I-l).

The use o f chemical pesticides has increased drastically due to 

changes in agricultural practices and consumer demand for esthetically 

pleasing produce. Western Europe and the United States are the major users 

of synthetic pesticides, accounting for 31% and 26% of the total usage, 

respectively (Chatteijee, 1994). Since 1945, pesticide use in the U.S. has 

increased dramatically. In 1995, 1.2 billion pounds of synthetic pesticides 

were applied to crops in the U.S. compared to 540 million pounds in 1964 

(Environmental Protection Agency, 1996). Although synthetic pesticide use 

has reached an all time high, their continued widespread use is under 

scrutiny. Conventional pesticide application is not very efficient with only 

1% of the active component actually reaching the targeted pest. The 

remaining 99% o f the pesticide applied are wasted. The wasted pesticides
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Figure I-l: Global Value of Pest Control Market. 
Values for 2000 and 2010 are projected values. Values 
are taken from Global Insecticide Directory (First 
Edition), by W. Hopkins, Ag Chem Information 
Services, Indianapolis, Indiana (1996).



and their residues contaminate soil, water supplies, produce and wildlife 

(Martinez, 1990).

Half the population of the United States relies on groundwater for 

their drinking water supply (Nader, 1988). An Environmental Protection 

Agency (EPA) survey found 23 pesticides in the groundwater in 24 states. 

According to an United States Department of Agricultural (USDA) 

Marketing Service survey of pesticide use on produce, the frequently used 

fungicide, Chlorothalonil, was applied on green beans an average of 3 to 4 

times in 1992. Out o f 36% of the samples of Chlorothalonil-treated green 

beans tested, 7.1% of the samples contained residue of the fungicide. 

Captan is the most heavily used fungicide on apples and 52% of the apple 

crop receives an average of 7.3 treatments per season with Captan. The 

same USDA survey found Captan in 7.3% of the samples of Captan-treated 

apples. The Agricultural Marketing Service survey screened 568 potato 

samples and found 530 cases of pesticide contamination from 16 different 

chemicals (Kuchler, 1996).

Environmental pollution by the fungicide pentachloronitrobenzene 

(PCNB) was investigated in Japan. High concentrations of PCNB were 

detected in the river water near a cabbage farming area. Principal PCNB 

biodégradation products such as pentachloroaniline (PCA) and



pentachlorothioanisole (PCXA) were also found in the river water and in 

river sediment. The study indicated a higher rate o f conversion of PCNB to 

PCA in the river sediments than in the river water. According to this study 

the principal PCNB biodégradation products remain in the environment for a 

long time and accumulate in river sediment and soil (Fushlwaki, 1990). The 

effect of the fungicide orthocide on certain desirable microorganisms such as 

Azotobacter, nitrogen-fixing bacteria etc. was studied. Lower growth o f all 

microorganisms was observed in fungicide-treated soil (Makawi et al., 

1979).

Many routinely used synthetic pesticides are carcinogenic in nature 

and can produce cancerous tumors in humans. The EPA has data on 74 of 

the 289 currently (1990) registered pesticides. Out o f  these 74 pesticides, 53 

were classified as oncogenic and in total these 53 compounds accounted for 

90% of all fungicides used (Martinez, 1990). Approximately one third o f all 

the fruits and vegetables produced in the United States are treated with a 

class of fungicides which break down into a carcinogenic compound upon 

heating (Nader, 1988).

Tetrachloroisophthalonitrile (TCPN) is a fungicide used in many parts 

of the world. This compound is also used as a wood preservative in 

Northern Europe. This toxic fungicide causes allergic contact dermatitis



(Johnson, 1983). Fiuazium, the active ingredient o f the fungicide Shirlan, 

was responsible for the outbreak of contact dermatitis in a tulip bulb 

processing company in the western part of the Netherlands (Van Ginkel and 

Sabapathy, 1995). In the United States, contact dermatitis due to the active 

fungicidal chemical dyrene was reported in 1997 (Mathias, 1997). These are 

just a few o f the examples of carcinogenic, environmentally unfnendly and 

toxic fungicides that are used in agriculture today. As the use of these 

fungicides increases, so do the public concerns of the harmful effects of 

these chemicals.

Another major concern is that monocroping, a practice prevalent in 

the industrialized nations, along with the continued application of the same 

chemical control year after year has led to the selection o f populations of 

pests and pathogens that have developed resistance to these chemical 

pesticides, making it necessary to apply even greater amounts of these 

pesticides. According to the Congressional Record, 447 species of insects 

and mites are resistant to members of all principal classes o f insecticides. 

According to the same report, there are 35 species of weeds and 100 species 

o f plant pathogens which are resistant to chemical pesticides (Proxmire,

1986). It has been estimated that the increased resistance to pesticides costs 

U. S. farmers at least $118 million annually (Knight and Norton, 1989).



Chemical controls are extremely costly and substantial losses occur in 

spite of pesticide application, A survey conducted by Oerke et al. indicated 

that crop loss due to diseases, weeds and insects have increased in both 

developed and underdeveloped countries in spite of better and widely used 

chemical controls (Oerke et al,, 1994), The combined costs of pest control 

and crop losses are passed on to the consumer. Only a small fraction o f the 

pesticide reaches the target. Most of the compounds end up in the soil or 

ground water. Pests and pathogens develop resistance to these compounds, 

making these chemicals even less effective. Many synthetic pesticides are 

hazardous to man and the environment, therefore, a number of pesticides 

have been banned from use in developed countries. Without any chemical 

protection or other safe pest control alternatives, agricultural productivity 

will be devastated by pests and pathogens.

Alternative strategies need to be developed to protect plants from 

pests and pathogens, to decrease environmental pollution, and to minimize 

the development of pesticide resistant pests. Genetic engineering and 

biotechnology provide such an opportunity. Through genetic engineering 

and biotechnology, foreign genes may be introduced into plants to protect 

these crops from pests and pathogens. Genetically-engineered resistance to 

insects, fungal pathogens, and viruses has been achieved by expression of Bt



toxin (Wood and Granados, 1991) or trypsin inhibitor (Chen, 1998), 

chitinase and glucanase (Broglie et al., 1991; Jongedijk et al., 1995; Lin et 

al., 1995; Zhu et al., 1994), and viral coat protein genes, respectively. These 

techniques have already been proven to be very successful. In 1993 the 

USDA has issued 158 permits to test genetically engineered crops (Cox,

1993).

Genetic engineering offers many advantages. These include;

1. Single gene for resistance can be incorporated into the plant without the 

transfer of deleterious or undesirable genes and subsequent genetic drag.

2. Genes can be highly specific for selected pests so beneficial and non- 

parasitic organisms are not affected.

3. Gene expression can be targeted to specific tissues, e. g. the roots, leaves 

or seeds and/or developmental stages, e. g. during sensitive stages of 

development such as germination, early seedling growth or seed 

formation.

4. Gene expression can be localized to specific cellular and subcellular 

sites, e. g. extracellular.

5. Gene expression can be constitutive or inducible, for instance triggered 

upon infection or attack. The later insures that the protective agent is
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present only when needed e. g. during initial infection, thereby, limiting 

the damage done and reducing the cost to the host plant for defense.

6 . The cost o f application is eliminated. This is very important for crops 

such as wheat, produced on large acreage with relatively low inputs and 

yields.

7. Genetic engineering allows for gene transfer from any organism, 

avoiding the sexual barriers that limit conventional breeding.

Plants can be protected from fungal pathogen by the introduction and 

expression of antifungal genes. The major factor limiting the exploitation of 

genetic engineering and biotechnology is the discovery o f pesticidal genes. 

There are several different approaches to the discovery o f antifungal genes. 

One needs to either identify and sequence the gene product, i. e. an 

antifungal protein, and use this information to isolate the gene or use 

approaches to directly clone the gene, e. g. using sequence homology, 

mutational or combinatorial studies. We have chosen to screen tropical 

plants for antifungal proteins. Antifungal proteins exist in nature but to 

discover these proteins, it may be necessary to screen a large number o f 

plants. Once an antifungal protein is discovered, the next step is to isolate 

and characterize that protein, so that the gene expressing this protein can be
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cloned and characterized. Once the gene is cloned and characterized, it can 

be introduced into plants via techniques o f plant transformation.

The goal of this research project was to discover, isolate and 

characterize antifungal proteins from tropical plants. Once purified and 

characterized the information gained can be used as the basis for cloning the 

gene encoding the antifungal protein. Ultimately, this gene can be inserted 

into crop plants via various mechanisms and transgenic plants expressing 

this gene can be tested for their ability to resist fungal attack. In the end, the 

transgene should confer protection from attack by fungal pathogens.
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Chapter II : Review of Literature 

INTRODUCTION

Plants have developed an arsenal o f defense mechanisms to protect 

themselves from pests and pathogens. Various compounds are synthesized 

by the plant defense system either to prevent pathogen attack or to destroy 

the pathogen after infection. These compounds include proteins as well as 

lower molecular weight natural products. Many of these compounds are 

produced constitutively while others are induced by pathogen attack. The 

production of these antimicrobial compounds may also be induced by stress 

or different chemicals such as ethylene, jasmonic acid and salicylic acid.

Defense-related proteins produced by plants can be categorized into 

three major groups based on their role in plant defense. The first group 

includes proteins that are involved in strengthening the structural defenses of 

a plant. These proteins strengthen, alter or repair the cell wall of plants 

creating a physical barrier to ward off pathogens. Examples of proteins in 

this group include hydroxyproline-rich glycoproteins, glycine-rich proteins 

and various enzymes that are involved in the formation or modification of 

cell wall polymers such as lignin, suberin, callose and cell wall bound 

phenolics.
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The second group of proteins is directly involved in the destruction o f 

the invading pathogens. These antimicrobial proteins include amylase 

inhibitors, proteinase inhibitors; toxic proteins such as lectins and thionins; 

hydrolases such as chitinases and (3-1,3-glucanases; anti-microbial peptides 

such as defensins and other cysteine-rich proteins. Enzymes involved in the 

biosynthesis of antibiotic compounds such as phytoalexins may be placed in 

this group. The third class of proteins is known as pathogenesis-related 

proteins or PR proteins. The appearance of these proteins is correlated with 

fungal attack and the host plant’s defense responses such as the 

hypersensitive reaction of plants to pathogen attack.

Not all PR proteins exhibit activity against fungal pathogens. PR 

proteins that have been shown to possess antifungal properties include 

chitinases, |3-l,3-glucanases, osmotins and several other chitin-binding 

proteins, e. g. PR-1 and PR-4. Although the identity of some PR proteins 

has been established, the biological functions o f many PR proteins are still 

unknown. There can be an overlap between proteins placed in group 2 and 

group 3. For example, chitinases and glucanases are placed in both groups. 

The major distinction seems to be whether the production of a protein is 

induced by the pathogen.
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Our research goal has been the identification of plant antifungal 

proteins that are directly active in the host plant’s defense against fungal 

pathogens. Consequently, this literature review will focus only on the latter 

two groups. The properties of proteins involved in strengthening the 

structural defenses of plants will not be discussed. Likewise, biosynthetic 

enzymes involved in the synthesis of antibiotic compounds will not be 

included. The structure and functions of selected PR proteins, defensins, 

lectins, thionins, ribosome-inactivating proteins and nonspecific-1 ipid- 

transfer proteins will be emphasized.

PATHOGENESIS-RELATED PROTEINS

Pathogenesis-related proteins were first detected in tobacco leaves infected 

with tobacco mosaic virus (Van Loon, 1970). Since 1970, a number o f PR- 

proteins have been isolated from tobacco and characterized. Although the 

largest number o f PR-proteins isolated up to now are from tobacco, PR- 

proteins have also been purified from other plant species, both dicots and 

monocots (Stintzi et al., 1993).

The synthesis of PR-proteins is induced by both biotic and abiotic 

factors. Viruses, viroids, fungi and bacteria are among the biotic factors that 

induce PR-protein production in plants (Benito et al., 1998; Bol et al., 1990;
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Buchter et al., 1997; Dubery and Slater, 1997; Hu et al., 1997; Lawrence et 

al., 1996; Mohr et al., 1998; Stintzi et al., 1993; Van Loon, 1985). Members 

of these groups are also induced by chemicals such as salicylic acid, aspirin, 

jasmonic acid, heavy metals, etc. (Chen et al., 1994; Kan et al., 1995; Kim et 

al., 1996; Linthorst, 1991; Schneider Muller et al., 1994; Schraudner et al., 

1992; Siefert and Grossmann, 1997; Siefert et al., 1996). Osmotic stress, 

wounding, stress hormones like ethylene and other phytohormones may also 

induce expression o f many PR-proteins (Chen and Bleecker, 1995; Chen et 

al., 1994; Keefe et al., 1990; Mauch et al., 1992; Mauch and Staehelin, 1989; 

Sagee et al., 1995). Developmentally regulated expression of PR-proteins 

has been observed in roots, senescent leaves and flowers of tobacco.

Typically, PR proteins are 1) stable at extremes of pH; 2) relatively 

resistant to digestion by proteolytic enzymes; and 3) normally exist as 

monomers o f low molecular weight (8 to 50 kDa). Because of these typical 

physiochemical properties, pathogenesis-related proteins survive in harsh 

environments such as vacuolar compartments, the cell wall and intercellular 

spaces (Stintzi et al., 1993).

Because PR-proteins have been isolated and characterized from many 

plant sources, it has been useful to develop a classification scheme for PR- 

proteins. At the 3rd International Workshop on PR-proteins, a common
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classification and nomenclature was agreed upon to facilitate the study of 

these proteins. PR-proteins were grouped into five families, i. e. PR-1, PR- 

2, PR-3, PR-4 and PR-5. Representatives fi*om these five families seem to 

be ubiquitous in the most commonly studied plants. In this section, the 

properties and role of these five groups of proteins in plant defense will be 

reviewed.

PR-1 Proteins

Tobacco PR-1 was the first pathogenesis-related protein isolated. Since that 

time, both acidic and basic forms o f PR-1 have been isolated from tobacco 

and other plant species (Joosten et al., 1990; Naderi and Berger, 1997; 

Niderman et al., 1995; Pierpoint, 1986; Szybiak. Strozycka et al., 1995). 

Acidic PR-la, lb and Ic from tobacco are serologically related to each other 

and to PR-1 from other plant species (Antoniw et al., 1985; Nassuth and 

Sanger, 1986; White et al., 1987). PR-1 cDNA clones isolated and 

sequenced from tobacco show a high degree of sequence similarity. For 

example, sequence homology between PR-la, lb and Ic was approximately 

90%. PR-1 proteins of tobacco are encoded by a small gene family 

consisting o f at least eight genes [for a review see (Bol et al., 1990; 

Linthorst, 1991; Stintzi et al., 1993)].
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Although PR-1 proteins are induced by viral infection, transgenic 

plants expressing high levels of PR-1 cDNA did not exhibit resistance to 

TMV or alfalfa mosaic virus (Cutt et al., 1989; Linthorst et al., 1989). 

However, the antifungal properties of PR-1 proteins isolated from TMV- 

infected tomato and tobacco were clearly demonstrated by Niderman et al. 

(1995) in both in vitro and in vivo leaf disc assays (Table II-1). These PR-1 

proteins were found to display differential and dose dependent antifungal 

activity against Phytophthora infestons. Among the PR-1 proteins tested, 

basic PR -l’s from tomato (PI4c) and tobacco (PRl-g) were found to be 

more active against P. infestons than the acidic PR-1 proteins from the same 

plants. A minimum concentration of over 100 fig/ml of acidic PR-1 proteins 

was required to inhibit germination of P. infestons zoospores by 90% while 

only 20 pg of basic PR-1 proteins was required to give the same level of 

inhibition in the in vitro assay.

Additional evidence for the antifungal properties o f PR-1 proteins was 

provided by studies involving the expression o f PR-1 cDNA in transgenic 

plants. Constitutive high level expression o f PR-la in transgenic tobacco 

resulted in tolerance o f the transgenic plants to two oomycete pathogens, P. 

porositico and Peronosporo tobociono (Alexander et al., 1993). Although 

the exact mechanism of tolerance is not known, it was proposed that PR -la
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either I) exerts a direct fungicidal effect that decreases disease development 

in transgenic plants or 2) reduces pathogen establishment and aids in 

pathogen recognition until other defense components are activated.
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Table H -l: Properties o f PR-1 Proteins Isolated from Tobacco and Tomato

Protein Plant
Source

Molecular
Weight
(kDa)

Isoelectric
Point

Biological
Activity*

PRl-a Tobacco 15.5 < 7 Antifungal

PRl-b Tobacco 15.5 4.5 Antifungal

PRl-c Tobacco 15 4.7 Antifungal

PRl-g Tobacco 17 > 7 Antifungal

PR14a Tomato 14 10.7 Antifungal

PR14b Tomato 14 10.9 Antifungal

PR14C Tomato 14 > 10.7 Antifungal

* Antifungal activity against Phytophthora infestans has been observed in 

PR-1 proteins from tobacco and tomato (Joosten et al., 1990; Niderman et 

al., 1995; Stintzi et al., 1993).
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PR-2 Proteins

P-l,3-glucans are polysaccharides consisting of P-l,3-linked glucose 

monomers. PR-2 proteins are P-l,3-glucanases that hydrolyze laminarin, an 

essentially unbranched P-glucan and/or other P-glucans. Most P-1,3- 

glucanases are endoglucanases, which produce oligomers of 2 to 6 glucose 

units. The occurrence o f endo-P-1,3-glucanases is widely distributed among 

angiosperms. Glucanases from various plant species have been purified, 

cloned and sequenced (Meins et al., 1992).

Plant P-l,3-glucanases isolated and characterized so far have been 

grouped into three structural classes (Payne et al., 1990; Ward et al., 1991). 

Class I P-l,3-glucanases are basic vacuolar glucanases while class II and III 

glucanases are extracellular acidic glucanases. Class II glucanase from 

different plant species are closely related to tobacco PR-2, PR-N and PR-O 

proteins and class III glucanases are closely related to P-l,3-glucanase PR-Q 

from tobacco. Among the three classes o f P-l,3-glucanases, tobacco class I 

P-l,3-glucanases have been studied in the greatest detail.

Tobacco class I P-l,3-glucanases are located in the vacuole o f 

mesophyll and epidermal cells (Keefe et al., 1990; Van den Bulcke et al..

21



1989). The post-translational processing of tobacco class I P-l,3-glucanase 

is depicted in Figure II-1. Structurally, Class I isoforms o f P-1,3-glucanase 

are synthesized as a preproenzyme with a 21 amino acid N-terminal signal 

peptide and a N-glycosylated 22 amino acid C-terminal extension peptide 

(Shinshi et al., 1988; Sticher et al., 1992). The signal peptide is responsible 

for targeting the protein to the lumen of the ER. The proprotein is then 

transported to the vacuole via the Golgi apparatus, where the proglucanase 

undergoes post-translational modification and the C-terminal extension is 

removed to form the mature class I P-1,3-glucanase (Figure II-1). The 

process is analogous to the processing of tobacco class I chitinase (Neuhaus 

et al., 1991) and barley lectins (Bednarek and Raikhel, 1991) where the C- 

terminal extension is a sorting signal for vacuolar targeting (Worrall et al., 

1992). Southern blot analysis of tobacco genomic DNA indicated that the 

tobacco class I glucanases represent a small gene family of less than eight 

genes (Beffa and Meins, 1996).

Analysis of genomic southern blots probed with cDNA clones of class 

II glucanases indicated that there were eight genes encoding class II tobacco 

glucanases (Linthorst et al., 1990). Although class II and III glucanases are
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Figure II I: Structure and Processing of |3-1,3 Glucanase Preproprotein
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both acidic and are located extracelluiarly, comparison o f the deduced amino 

acid sequence of these two classes of glucanases from tobacco revealed only 

54-59% homology. Class III glucanases of tobacco also differ from the 

basic class I glucanases and comparison o f the protein sequence deduced 

from the cDNA for both classes exhibited 55% sequence homology. 

Comparison of the C-terminal end of basic class I and acidic class III 

glucanases provides insight into a possible mechanism for removal of the C- 

terminus of class I glucanase that involves recognition and cleavage at a 

conserved phenylalanine-glycine site. The sequence for the carboxy- 

terminal processing site for class I glucanase was phenylalanine-glycine. 

This dipeptide is the C-terminus of mature class III glucanase (Payne et al.,

1990).

Plant glucanases are involved in physiological and developmental 

processes such as microsporogenesis (Worrall et al., 1992), pollen 

germination (Rogen and Stanley, 1969), fertilization (Lotan et al., 1989), and 

seed germination (Vogeli-Lange et al., 1994). Plant glucanases also play a 

role in plant defense. The substrate for glucanase (P-l,3-glucan) is a major 

component of most fungal cell walls (Wessels and Sietsma, 1981). 

Induction of plant glucanases in response to fungal invasion has been 

observed in maize (Cordero et al., 1994), barley (Ignatius et al., 1994), carrot
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(Cam et al., 1994), potato (Godoy et al., 1996; Kombrink et al., 1988), 

tomato (Solorzano et al., 1996), pea (Mauch et al., 1988) and several other 

plant species (Roulin and Buchala, 1995). In addition, P-1,3-glucanases are 

also induced by elicitors, chemicals, phytohormones and abiotic stress as 

observed with other PR proteins (Boiler et al., 1983; Hwang et al., 1997; 

Mauch and Staehelin, 1989; Siefert and Grossmann, 1997; Siefert et al., 

1996; Kombrink et al., 1988; Roby et al., 1990; Schneider and Ullrich, 1994; 

Sock et al., 1990).

Specific isoforms of P-l,3-glucanases are induced by fungal 

pathogens and other kinds of biological and non-biological stresses (Nasser 

et al., 1990). Differential regulation, induction and expression of P-1,3- 

glucanases were observed in response to fungal pathogens, tobacco mosaic 

virus and abiotic stress (Brederode et al., 1991; Cordero et al., 1994; 

Mamelink et al., 1990). Hormonal, developmental and pathogen induced 

regulation of tobacco glucanase promoter was demonstrated by Vogeli- 

Lange and co-workers (Vogeli-Lange et al., 1994). In this case, the class I 

P-l,3-glucanase promoter was fused with a GUS reporter gene and 

expressed in transgenic tobacco. According to Vogeli-Lange et al. (1994), 

glucanases were expressed in roots of young seedlings and preferentially 

expressed in the lower leaves and roots in mature plants. Induction of
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glucanase expression by ethylene treatment or inoculation with tobacco 

mosaic virus was observed in leaves. Tissue specific expression and 

differential expression of (3-1,3-glucanases in response to fungal invasion 

was demonstrated by Cordero et al. (1994). According to these 

investigators, [3-1,3-glucanase was induced in the vegetative tissues of maize 

seedlings after inoculation of germinating maize seeds with the com 

pathogen F. moniliforme. At the same time, expression of another isoform 

of P-1,3-glucanase was observed in embryo and radicle tissue. However, the 

level of this glucanase did not increase upon fungal infection.

In response to TMV infection, class II and class III glucanases in 

tobacco were coordinately regulated in infected and uninfected tissue. The 

kinetics and pattern of induction for both classes of P-1,3-glucanase were 

qualitatively similar to the accumulation to mRNA encoding other PR 

proteins in infected and uninfected tissues. In uninoculated tissue, the 

induction of class I glucanases was weak compared to class II glucanases 

(Ward et al., 1991). Inoculation of potato leaves with Phytophthora 

infestans caused induction of class I P-l,3-glucanase along with chitinases 

(Beerhues and Kombrink, 1994).
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Class I and class II P-l,3-glucanase was purified from tobacco leaves 

infected with TMV (Sela-Buurlage et al., 1993). When tested for antifungal 

activity, purified class 1 P-l,3-glucanase was foimd to be the most active 

glucanase isoform against Fusarium solani, causing lysis of hyphal tips. 

Class II p-l,3-glucanase from the same plant did not show any inhibitory 

activity against the same pathogen. Class I glucanases also exhibited 

synergistic activity with class 1 and class II chitinases.

Antisense transformation using the tobacco gene encoding class I P- 

1,3-glucanase was used to confirm the function of plant P-l,3-glucanases in 

plant defense (Beffa and Meins, 1996). Although the expression of the class 

I P-l,3-glucanase gene was blocked, the transformed plant compensated by 

producing functionally equivalent enzymes when treated with tobacco 

mosaic virus and ethylene. In addition, the transformed plants were fertile 

and developed normally in the greenhouse, suggesting that the expression of 

class 1 P-l,3-glucanase blocked by the antisense construct was not important 

for housekeeping functions of healthy tobacco cells.

Research on plant P-l,3-glucanases clearly indicates that the 

antifungal activity o f plant P-glucanases varies with different isoforms. 

Differences in the activity may reflect differences in substrate specificity.
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For example, tobacco PR-2 glucanases differed in substrate specificity 

towards laminarin and P-l,3-glucan (Table II-2). When tested for substrate 

specificity using P. megasperma cell wall, purified glucanase from soybean 

was very active whereas tobacco glucanase did not show any significant 

activity toward this substrate (Ham et al., 1991). This is logical since P. 

megasperma is a pathogen of soybean but does not cause disease in tobacco. 

A 19-kDa barley P-l,3-glucanase differed greatly from typical laminarinase 

(Grenier et al., 1993). This particular P-1,3-glucanase did not hydrolyze 

laminarin, alkali soluble P-l,3-glucan, and P-1,6-glucan but did lyse 

Candida yeast and fission yeast cell wall (Grenier et al., 1993). It is not 

clear why some P-1,3-glucanases are lytic to cell walls and some are not. 

According to Grenier et al. (1993), one possible explanation is that the lytic 

P-1,3-glucanases have high affinity for insoluble wall glucan.

Although some isoforms o f glucanases do not exhibit direct antifungal 

activity, it is possible that they act as elicitors or release elicitors and induce 

the host plant’s defenses. For example, the constitutive P-1,3-glucanase 

isolated from soybean releases soluble and highly active carbohydrate 

elicitors from fungal cell wall. Four different soybean elicitors released by
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Table II-2: Properties of PR-2 Proteins (P-1,3-Glucanases).

Name Class Molecular
Weight

(kDa)

Isoelectric
Point

Relative
Specific
Activity

(% )

PR-2 II 31 4.4 0.4

PR-N II 33 4.7 1.8

PR-0 II 35 4.8 85

PR-Q’ III 35 5.3 3.8

I 33 7 ICO

Recreated from Stintzi et ai., 1993.

29



treatment of P. megasperma mycelia with p-l,3-endo-glucanase were 

purified and characterized (Okinaka et al., 1995). These eiicitors were 

composed of a P-I,6-Iinked glucose backbone with fi-equent P-l,3-linked 

side branches consisting of one or two glucose moieties.

It has been proposed that vacuolar class I enzymes function late in the 

infection process after cell breakage and release of cellular contents into the 

extracellular matrix has occurred. Induction of these glucanases is correlated 

with pathogen invasion and they are usually strongly induced at the site of 

infection. Class I enzymes may also act as a constitutive defense system in 

plants since these enzymes accumulate in the epidermal cells of uninfected 

plants (Felix and Meins Jr, 1986; Payne et al., 1990). Upon wounding, these 

enzymes would be released providing protection from invading fungi 

entering through the wound site. Other non-vacuolar iso forms may act 

directly on the fungus, depending on substrate specificity, or may activate 

the plant’s defense system by releasing eiicitors from the fungal or plant cell 

wall and therefore, still play an important role in plant defense.
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PR-3 Proteins

Chitin is one o f the most abundant polysaccharides found in nature. Chitin, 

a linear polymer of P-l,4-iinked N-acetyl glucosamine, is a common 

component o f insect exoskeleton, shells o f crustaceans and fungal cell walls. 

Chitin-containing organisms produce chitinase, an enzyme that hydrolyzes 

the C1-C4 bond of two consecutive N-acetylglucosamine units of chitin. 

Chitinases are also produced in bacteria and higher plants, organisms that are 

devoid of chitin. Legrand and co-workers demonstrated that four different 

PR-3 proteins exhibited chitinase activity (Legrand et al., 1987). Since then, 

many plant chitinases have been purified and characterized. Interest in plant 

chitinases has increased dramatically over the last 12 years, as the 

significance o f chitinases in plant defense and plant microbe interactions has 

become evident. Ultimately, this has led to the publications o f a large 

numbers of papers. In the present review, the discussion will focus mainly, 

on the role of chitinases, in plant defense against pathogenic fungi.

Most o f the chitinases isolated to date are endochitinases (Graham and 

Sticklen, 1994). Endochitinase hydrolyzes chitin internally by cleaving the 

P-1,4-linkages and producing short chitooligosaccharides o f two to six 

N-acetylglucosamine units. On the other hand, exochitinase activity has 

only been observed in a few plant chitinases (Kuzniak and Urbanek, 1993;
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Martin, 1991; Nehra et al., 1997; Nielsen et al., 1993; Roby and Esquerre- 

Tugaye, 1987; Wurms et al., 1997). Acidic chitinase purified from sugar 

beet leaves infected with Cercospora beticola exhibits both exo and

endochitinase activity. This chitinase was capable of hydrolyzing 

chitooligosaccharides into N-acetylglucosamine monomers. Along with 

chitin-hydrolyzing ability, many plant chitinases possess lysozyme activity, 

i.e. these chitinases can hydrolyze the (3-1,4-linkage between N-

acetylmuramic acid and N-acetylglucosamine of bacterial peptidoglycans.

Some chitinases are produced constitutively while others are

inducible. Chitinases can be induced in higher plants by 1) pathogen

infection; 2) eiicitors, e. g. chitooligosaccharides from the fungal cell wall, 

plant cell wall or other sources; 3) chemicals such as ethylene, salicylic acid, 

mercuric chloride; and 4) physical stress such as wounding (for a review see 

(Graham and Sticklen, 1994). Chitinases produced constitutively have been 

purified from Hevea and Papaya latex (Azarkan et al., 1997; Martin, 1991), 

banana pulp (Clendennen et al., 1998) and Castanea crenata cotyledons 

(Collada et al., 1993). In healthy plants, chitinases are also produced in a 

developmental and a tissue specific manner. High levels of chitinase are 

found in roots and flowers of these plants. Chitinases are also present in
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seeds, fruits and leaves, although the level of chitinases in healthy leaf tissue 

is usually low relative to roots and flowers (Trudel et al., 1989).

Acidic and basic chitinases and the genes encoding these proteins 

have been isolated from monocots and dicots (Table II-3). Characterization 

of these proteins and genes has resulted in the accumulation of substantial 

amounts of information on the protein, cDNA and genomic sequences 

(Table II-4). Chitinases purified and characterized so far are divided into 

three classes based on sequence homology, biochemical properties and 

localization in the plant cell (Shinshi et al., 1990).

Most tobacco class I chitinases have basic isoelectric points above 8 . 

Class I chitinases possess a N-terminal cysteine-rich, chitin-binding domain 

of 40 amino acids. This N-terminal domain exhibits structural similarity 

with chitin-binding lectins such as hevein and wheat germ agglutinin (Figure 

II-2). Certain positions in this cysteine-rich domain are highly conserved, i. 

e. eight cysteine residue are present at the same position in the chitin-binding 

region of almost all class I chitinases. Next to the cysteine-rich domain is a 

glycine and proline-rich domain (glycine and arginine in rice) which 

connects the cysteine-rich domain to the chitin-binding domain. The length 

of the glycine-proline-rich domain varies in different class I chitinases 

(Graham and Sticklen, 1994).
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Table II-3: Properties of Chitinases Isolated from Monocotyledenous and 
Dicotyledonous Plants.

Plant
Source

Isoform Molecular
Weight
(kDa)

Isoelectric
Point

Class

Tobacco 4 27.5-34 ND 1, 111
Tomato 7 26-34 6.1 to 8.5 1, 111
Potato 9 26.5-38.7 6.1 to 7 1, 111
Pea 5 25-39 8.5-9.3 1
Sugarbeet 2 32 ND 111
Soybean 1 29.0 3.0 ND
Wheat 5 33.5-34 S.8-9.2 ND
Barley 26-35 8.7-9.7 L 11
Maize 4 25-33 ND 1,11
Garlic

1
32 ND I

Yam 3 33.5 3.8-4.0 ND

Melon 2 29,34 8.4, 10.0 1
Cucumber 2 27,28 ND 111

Different classes and isoforms of chitinases can exist in a single species. 
Chitinases can be either acidic or basic and typically exist as monomers of 
25 to 35 kDa. ND, not determined. Reference; Tobacco (Legrand et al.,
1987); Tomato (Breijo et al., 1990; Joosten and De Wit, 1989; Pegg and 
Young, 1982); Potato (Kombrink et al., 1988; Pierpoint et al., 1990); Pea 
(Mauch et al., 1988; Vad et al., 1991); Sugar beet (Esaka et al., 1990); 
Soybean (Nielsen et al., 1993); Wheat (Molano et al., 1979; Ride and 
Barber, 1990); Barley (Jacobsen et al., 1990; Kragh et al., 1990; Kragh et al., 
1991; Leah et al., 1987; Leah et al., 1991; Swegle et al., 1992); Maize 
(Nasser et al., 1988); Garlic (Van Damme et al., 1993); Yarn (Tsukamoto et 
al., 1984); Melon (Roby and Esquerre-Tugaye, 1987); Cucumber (Metraux 
et al., 1989).
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The catalytic domain is 61% homologous at the amino acid sequence level 

between tobacco, potato and bean class I chitinase (Graham and Sticklen,

1994). The catalytic domain contains a 20-residue hypervariable region 

along with several conserved cysteine residues that may be involved in the 

formation of a loop (Meins et al., 1992).

Class I chitinases are synthesized as a preproprotein with a signal 

peptide that may have some role in directing the protein to the endoplasmic 

reticulum. This peptide is removed from the mature protein by post- 

translational modification. The length of this signal peptide is different in 

different class I chitinases (Broglie et al., 1991; Shinshi et al., 1990; Zhu and 

Lamb, 1991). Class I chitinases are usually located in the vacuole. A short 

C-terminal amino acid sequence is necessary for vacuolar targeting of class I 

chitinases (Chrispeels and Raikhel, 1992; Neuhaus et al., 1991). In tobacco 

class I chitinase, a seven amino acid C-terminal sequence (GLLVDTM) was 

necessary and sufficient for vacuolar targeting (Neuhaus et al., 1991).

Class II chitinases do not have the N-terminal cysteine-rich domain 

characteristic of class I chitinases (Figure II-2). Class II chitinases consist of 

a catalytic domain and a signal peptide. The signal peptide is hydrophobic
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Table II-4: Summary of References on the Protein, cDNA and Genomic 
Sequences of Plant Chitinases.

Plant Class Sequence Reference

Tomato I, II Protein, cDNA (Danhash et al., 1993)

Potato I Protein, cDNA 

Genomic

(Gaynor, 1988)

(Gaynor and Unkenholz, 1989) 

(Laflamme and Roxby, 1989)

II Partial protein (Pierpoint et al., 1990)

Rice I Protein

Genomic

cDNA

(Zhu and Lamb, 1991) 

(Huang et al., 1991) 

(Nishizawa and Hibi, 1991)

Tobacco I Protein, cDNA 

Genomic

(Fukuda et al., 1991) 

(Neale et al., 1990) 

(Shinshi et al., 1990) 

(Van Buuren et al., 1992)

II Protein, cDNA (Linthorst, 1991) 

(Payne et al., 1990)

III Protein, cDNA (Lawton et al., 1992)

Sugar beet III Protein, cDNA (Nielsen et al., 1993)

Cucumber III Protein, cDNA 

Genomic

(Metraux et al., 1989) 

(Lawton et al., 1994)

Garlic I Protein, cDNA (Van Damme et al., 1993)

Bean I Protein, cDNA, 

Genomic

(Broglie et al., 1989; Broglie et 

al., 1986)

Barley I Protein, cDNA (Jacobsen et al., 1990; Kragh et

II Protein, cDNA al., 1991; Leah et al., 1991)
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Figure II-2: Primary Structure of Selected Chitin-Binding Proteins
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in nature and is generally 23 amino acids long. The catalytic domain of 

class II chitinases shows strong sequence homology to the catalytic domain 

of class I chitinases. These chitinases are generally acidic and are located in 

the apoplastic compartment. The signal peptide of class II chitinases differs 

substantially from the signal peptides of class I chitinases.

Class III chitinases can be either acidic or basic and are 

compartmentalized in the extracellular space (Flach et al., 1992). Class III 

chitinases do not show any sequence homology or serological relationship 

with class 1 or II chitinases. Some members of class III chitinases have 

limited similarity to Bacillus circalan chitinase I (Watanabe et al., 1992). 

Several class III chitinases exhibit lysozyme activity (Table II-5).

The antifungal activity of several of plant chitinases has been 

demonstrated using an in vitro assay (Table 11-6). Differential antifungal 

activity was observed among the three classes of chitinases and within the 

members of the same class. For example, two class I chitinases (Chit A and 

Chit B) from maize seeds showed differential in vitro antifungal activities 

even though they were very similar at the amino acid level (i.e. 87% 

sequence homology). Although Chit A and B both exhibited antifungal 

activity against Trichoderma reesi, Altemaria solani and Fusarium solani 

Chit A exhibited better activity than Chit B.
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Table II-5: Hydrolases with Chitinase and Lysozyme Activities.

Plant Source Purified as MW
(kDa)

Reference

Bean Chitinase 31.5 (Boiler et al., 1983)

Cucumber

(seeds)

Chitinase 27.0 (Majeau et al., 1990)

Figure (Ficus 

sp.)

Lysozyme 29.0 (Glazer et al., 1969)

Hevea (latex) Chitinase 27.5, 26.0 (Martin, 1991)

Papaya (fruit) Lysozyme 28 (Howard and Glazer, 

1969)

Parthenocissus

quinquifolia

(leaves)

Chitinase-

lysozyme

30 (Bemasconi et al., 1987)

Pea (pods) Chitinase 33.1,36.2 (Mauch et al., 1988)

Rubus hispidus Lysozyme 31.3 (Bemasconi et al., 1986)

Turnip (root) Lysozyme 25 (Bernier et al., 1971)

Modified from Graham and Sticklen, 1993
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Table II-6; Antifungal Activity of Plant Chitinases.

Plant
Source

Fungus Reference

Bean Trichoderma viridae (Mauch et al., 1988; 
Schlumbum et al., 1986)

Wheat Trichoderma hamatum 
Phycomyces blakesleeanus

(Broekaert et al., 1988)

Tobacco Trichoderma hamatum 
Phycomyces blakesleeanus 
Fusarium solani

(Broekaert et al., 1988) 

(Sela-Buurlage et al., 1993)
Thom apple T hamatum

Phycomyces blakesleeanus
(Broekaert et al., 1988)

Arabidopsis Trichoderma reesei (Verburg and Huynh, 
1991)

Pea Trichoderma viridae (Mauch et al., 1988)
Maize Fusarium oxysporum 

Alternaria solani 
Trichoderma reesei

(Huynh et al., 1992)

Barley Trichoderma reesei 
F. sporotrichoides

(Leah et al., 1991)

Antifungal activity o f chitinases isolated from different plant species was 

assessed using pathogenic and saprophytic fungi. Antifungal activity was 

estimated based on inhibition of spore germination or hyphal growth.
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The binding constant (Kd) of Chit A and Chit B was determined using 

the soluble chitinase substrate, N,N',N",N"'-tetraacytyl chitotetrose. The 

binding constant for Chit B (1.9 mM) was 10-foId higher than that for Chit 

A (0.13 mM). This observation suggests that Chit A may have higher 

affinity for chitin. Therefore, Chit A is more likely to bind effectively to the 

chitin in the fungal cell wall. Fungal growth was inhibited with only 0.5 p.g 

of Chit A whereas 5 |ig of Chit B was required to inhibit fungal growth. 

Sela-Buurlage and associates demonstrated that not all plant chitinases from 

tobacco exhibit antifungal activity (Sela-Buurlage et al., 1993). Tobacco 

class I chitinase inhibited growth of F. solani by hydrolyzing hyphal tips of 

the fungus. On the other hand, class 11 chitinase from tobacco did not 

exhibit any antifungal activity against the same fungus. Based on these 

observations, it appears that class 1 plant chitinases, play a direct role in 

plant defense.

As stated earlier, the major difference between class I chitinase and 

the other two classes of chitinase is that class I chitinase has a N-terminal 

cysteine-rich, chitin-binding domain. The importance of the chitin-binding 

domain in fungal susceptibility was studied (Iseli et al., 1993). This research 

group constructed a transformation vector with genes of tobacco chitinase A
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with or without a chitin-binding domain. These genes were constitutively 

expressed in transgenic tobacco plants. The expressed chitinases were 

purified to homogeneity from the transgenic plant and tested for in vitro 

antifungal activity. Chitinases with and without a chitin-binding domain 

were capable of inhibiting growth of T. viride. When tested for chitin- 

binding ability, chitinase A without the chitin-binding domain was unable to 

bind to a chitin-affinity matrix but both forms o f chitinase (with and without 

chitin-binding domain) exhibited similar specific hydrolytic activity towards 

chitin. These results indicate that the chitin-binding domain was not 

necessary for catalytic activity.

However, the presence of the chitin-binding domain does modify the 

biochemical properties of the protein. For example, the chitinase form with 

the chitin-binding domain had higher activation energy and a lower apparent 

Km for chitin. Although both forms of chitinase inhibited fungal growth, the 

antifungal activity o f chitinase with the chitin-binding domain was three 

times more effective on a protein basis. Based on these results, these authors 

concluded that the catalytic domain of class 1 chitinase is sufficient for 

inhibition of fungal growth but the addition o f the chitin-binding domain 

improves the antifungal activity. Apparently, chitinases have a high affinity 

binding site and a low affinity catalytic site. Iseli and associates proposed
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that the chitinase with the chitin-binding domain had higher activity because 

the chitin-binding domain aids in the initial attachment of the enzyme to the 

substrate. This increases the local concentration of chitin around the 

catalytic site and at the same time increases the local concentration of 

chitinase on the cell wall of the fungi.

Even though class 1 and class II chitinases have the same catalytic 

domain antifungal activity has been mostly associated with class 1 chitinases. 

Even so class II chitinase with lower specific activity may still play an 

indirect role in plant defense. These chitinases may act as a signaling 

molecule to trigger plant defense directly or by releasing eiicitors from the 

fungal cell wall rather than destroying the fungus. Exposure of plant cells to 

chitooligosaccharides has been shown to induce chitinase activity (Fukamizo 

et al., 1996; Inui et al., 1997; Roby and Esquerre-Tugaye, 1987). 

Extracellular class II chitinases may initially come in contact, with the 

fungal cell wall forming the first line of defense. Without destroying the 

fungus, these chitinases may release fragments of the fungal cell wall 

capable of triggering other plant defenses.

Antifungal activity of specific chitinases is correlated with the 

structure of fungal cell walls. In the case o f maize, barley and several other 

plants, the antifungal effect of chitinases depends on the fungi tested. For
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example, Arabidopsis chitinase exhibited antifungal activity against T. reesi 

but not against A. solani (Verburg and Huynh, 1991). Likewise, chitinases 

from tobacco, thomapple and wheat inhibited growth of T. hamatam but did 

not affect Botrytis cineria (Broekaert et al., 1988). In all o f the examples 

listed above, the fungi have chitin in their cell wall. Indeed, the two major 

carbohydrate components o f the cell wall of a majority o f fungi, especially 

fungi with septate mycelia, are chitin and glucan (Bartnicki-Garcia, 1968).

However, the amount o f chitin can vary in each fungus. According to 

Verbug and Huynh, the amount o f chitin in the fungal cell wall determines 

the susceptibility of the fungus to the action of chitinase (Verburg and 

Huynh, 1991). Quantitative data on the composition of various fungal cell 

walls is limited. Rokem and associates observed that the carbohydrate 

composition of fungal cell wall was quite variable (Rokem et al., 1986). For 

example, the ratio of N-acetylglucosamine to glucose was 2.5:1 for 

Marchella crassipes cell wall whereas the ratio was 1.5:5 in the case of 

Candida utilis cell wall.

Protein, cDNA, and genomic sequences of several plant chitinase have 

been described (Table II-4). The cDNA clone encoding acidic class III 

chitinase isolated from a sugar beet cDNA library from plants infected with 

the sugar beet pathogen Cercospora beticola has been constitutively

44



expressed in tobacco (Nielsen et al., 1993). Transgenic plants did not show 

any increased resistance to C. nicotianae. Even so, these plants accumulated 

higher levels of chitinase mRNA. Roby and associates demonstrated 

activation o f a bean chitinase gene (CHI 5B) promoter in transgenic tobacco 

upon attack by fungal pathogens Botrytis cineria, Rhizoctonia solani and 

Sclerotium rolfsii (Roby et al., 1990).

Broglie and co-workers produced transgenic tobacco plants by 

constitutively expressing CHI 5B, a bean chitinase gene, under the control o f 

the cauliflower mosaic virus 35S promoter (Broglie et al., 1991). The gene 

was correctly expressed in tobacco plants producing a high level of chitinase 

activity. According to Broglie et al. (1991), the highest chitinase activity 

was found in the roots of the transgenic tobacco seedlings. These seedlings 

showed increased ability to survive in soil infested with the soil-borne plant 

pathogen R. solani. Seedling mortality was 37% in transgenic plants 

compared to 56% in the untransformed seedlings.

The bean chitinase gene was also introduced into canola. Transgenic 

canola plants exhibited 50% mortality compared to 80% mortality o f wild 

type canola in R. solani infested soil. Transgenic rice plants constitutively 

expressing rice class I chitinase exhibited enhanced protection from R. 

solani, the causative agent of sheath blight o f rice (Lin et al., 1995).

45



Compared to untransformed control plants, transgenic plants infected with 

the fungus had fewer lesions and the lesions were smaller. Three weeks 

after infection, disease symptoms had spread to the upper half of the control 

plants. In contrast, transgenic plants remained free o f infection on the upper 

half of the plant, especially the flag leaves that contribute most to grain 

filling.

Although reports about the role of plant chitinases in plant defense has 

increased tremendously over the past 10-15 years, very little is known about 

the mechanism of fungal growth inhibition by chitinase. Chitinase- 

dependent hydrolysis of fungal cell wall polysaccharides has been reported 

by several research groups (Arlorio et al., 1992; Boiler, 1985; Kumiak and 

Urbanek, 1993). A morphological study of fungal growth inhibition by plant 

chitinase and glucanases was carried out by Arlorio and associates (Arlorio 

et al., 1992). In this study, observations made by combined use of light 

microscopy, fluorescence microscopy, scanning electron microscopy and 

transmission electron microscopy revealed that chitin was present in the 

apex of T. viride (Figure II-3). After treatment o f fungal cell wall with 

chitinase, the hyphal wall became swollen and detached chitin fibrils were 

already visible. Gradually the walls became thinner and eventually 

disappeared. Without the structural strength o f the cell wall the hyphal tip
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FigureII-3: Diagrammatic Representation of a Typical Fungal Cell Wall.
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expanded like a balloon and finally the plasma membrane mptured. 

According to Arlorio et al. (1992), chitinase did not interfere with the cell 

wall synthesis machinery but simply weakened the cell wall at the hyphal tip 

and altered the cell’s ability to withstand turgor pressure. Thus, chitinases 

inhibit by disturbing the balance between cell wall synthesis and 

degradation. The formation of balloon-like swellings in fiingal hyphae 

followed by rupture of hyphal tips proved to be the cause for the 

susceptibility of T. viridi and F. solani f. sp. pisi to bean chitinase (Mauch et 

al., 1988).

Synergistic antifungal activity of (3-13-glucanases and chitinases

As stated earlier, chitin and glucan are the two major components of 

the fungal cell wall (Figure II-3 and Figure II-4). These carbohydrates are 

susceptible to hydrolysis by chitinases and glucanases, respectively. 

Synergistic effect of cucumber chitinase and |3-l,3-glucanase against 

Colletotrichum lagenarium in an in vitro assay has been reported by Ji and 

Kuc (Ji and Kuc, 1996). The synergistic activity of pea chitinases and 

glucanases was demonstrated by Mauch et al. (1988).
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Figure II-4: Diagrammatic Representation of the Structure of the
Primary Cell Wall of a Typical Fungus
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Pea chitinase exhibited antifungal activity against T. viridi and pea glucanase 

showed antifungal activity against F. solani f. sp. pisi when tested alone. In 

combination, these two enzymes inhibited growth of eight different 

pathogenic and/or saprophytic fungi in an in vitro assay at concentrations 

from 10 to 30 pg/ml.

In a similar study, Seela-Buurlage et al. (1993) reported on the 

synergistic activity of tobacco chitinases and glucanases. Class II isoforms 

of both enzymes did not exhibit any antifungal activity against F. solani 

when tested alone. When class II chitinases were combined with class I (3- 

1,3-glucanases, limited growth inhibitory activity was observed. A 

combination of class I chitinase and class I (3-1,3-glucanase was the most 

effective at inhibiting fungal growth.

Transgenic plants expressing a combination of chitinase and glucanase 

genes have been used to demonstrate the synergistic effects of chitinase and 

glucanase. Zhu and associates (Zhu et al., 1994) demonstrated enhanced 

protection in transgenic tobacco to Cercospora nicotianeae (causal agent of 

frog eye disease) by constitutive co-expression of basic chitinase and acidic 

glucanase genes from rice. Enhanced disease resistance of transgenic tomato 

by simultaneous expression o f tobacco class I chitinase and class I |3-1,3- 

glucanase was achieved by Jangedijk et al. (Jongedijk et al., 1995). In this
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study transgenic tomato plants infected with F. oxysporum showed reduced 

(36%) disease severity compared to 58% in untransformed plants.

Using cytochemical techniques in combination with fluorescence and 

electron microscopy, Arlorio et al. (1992) observed the combined effects of 

chitinase and glucanase on fungal cell wall. This study revealed that chitin 

was present at the tip of the fungal hyphae and along the lateral part of the 

inner cell wall whereas, glucans were present in the outer cell wall (refer to 

Figure II-3 and II-4). The results of these morphological studies on the 

effects of chitinase and glucanase on the fungal cell wall help to explain the 

synergistic effects of these two hydrolases. To begin, the degradation of the 

outer wall glucan by glucanase would make the chitin at the apex more 

susceptible to the action of chitinase. In addition, the effectiveness of 

chitinase in hydrolyzing the inner wall a chitin-glucan complex may be 

enhanced by the simultaneous activity of glucanase.
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PR-4 Proteins

Properties of PR-4 proteins from various plant sources are presented in 

Table II-7. Two isoforms of PR-4 proteins were isolated from tobacco 

leaves infected with TMV (Friedrich et al., 1991). These proteins known as 

PR-4a and PR-4b are acidic in nature, have molecular masses o f 13.4 kDa 

and are located extracellularly. The deduced amino acid sequence of these 

two PR-4 proteins showed 75% homology to the carboxy-terminal domain 

of the wound-induced potato proteins (Win-1 and Win-2) and hevein, a 

protein from rubber tree latex. The amino acid sequence deduced from the 

cDNA sequence revealed that PR-4 proteins are synthesized as preproteins 

with signal peptides. The signal peptide of tobacco PR-4 protein is 

comprised of about 25 amino acid residues. The same is true for Win-1, 

Win-2 and hevein. However, unlike Win I , Win-2, and hevein, these acidic 

PR-4 proteins do not contain a chitin-binding domain (Figure 11-2).

Similar but basic counterparts of PR-4a and PR-4b have been purified 

from tomato leaves infected with Cladosporium fulvum  (Joosten et al., 

1990). A 13.7 kDa basic PR-4 protein (CBP-N) was purified from barley 

grain (Hejgaard et al., 1992). Two very similar basic PR-4 proteins (CBP-4
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Table 0 -7 : Biochemical Properties of PR-4 Proteins from Selected Plant 
Sources.

Protein Plant
source

Molecular
Weight
(kDa)

Isoelectric
point

Antifungal
activity

PR-4a Tobacco 13.4 6.2 ND

PR-4b Tobacco 13.4 6.2 ND

PR-4a Tomato 15 7 ND

PR-4b Tomato 15 7 ND

PR-4C Tomato 15 7 ND

CBP-N Barley 13.6 9.3 T. herzianum

CBP-4 Barley 13.6 9.3 T. herzianum

CBP-5 Barley 13.7 9.3 T. herzianum

CBP-20 Tobacco 20 T. viride 

F. solani

Antifungal activity was measured using an in vitro assay. ND; not 
determined.
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and CBP-5) were isolated from barley leaves infected with Erysiphe 

graminis. All three PR-4 proteins from barley exhibited high amino acid 

sequence homology to tomato and tobacco PR-4 proteins and to the C- 

terminal domain o f prohevein and the putative Win proteins. The three 

barley proteins exhibited antifungal activity against Trichoderma herzianum 

at a concentration of 10 pg/ml (Hejgaard et al., 1992). The ability o f these 

proteins to retard fungal growth was equivalent to the combined effects of 

chitinase and PR-5 isolated from barley. All three PR-4 proteins from barley 

acted synergistically to inhibit fungal growth when combined with barley 

chitinase and the barley PR-5 known as protein R. The PR-4 proteins from 

barley leaves are inducible while the PR-4 protein from barley grain (CBP- 

N) is produced constitutively and deposited along with chitinase in the outer 

aleurone layer o f the grain. In nature, it is possible that the combined action 

of all of these proteins, are required to efficiently retard fungal attack. 

Although the three barley PR-4 proteins, like their acidic counterparts, do 

not possess a chitin-binding domain, they were isolated by chitin-affinity 

chromatography and exhibited antifungal activity against chitin-containing 

fungi. These proteins do not exhibit chitinase or lysozyme activity.

A 20 kDa PR-4 protein (CBP 20) was purified by Ponstein and co­

workers (Ponstein et al., 1994) from TMV infected tobacco leaves. Like
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class I chitinases, this protein was located intracelluiarly. CBP 20 contained 

an N-terminal chitin-binding domain as observed in class I chitinases, Win-1 

and Win-2 o f potato and prohevein from rubber tree. In all these proteins, 

the chitin-binding domain was preceded by a signal peptide and connected to 

the C-terminal domain by a hinge region (Figure II-2). CBP 20 is processed 

to form the mature protein by removal of the signal peptide and a C-terminal 

propeptide. Typically, class I proteins are localized in the vacuole of the 

plant cell and class II proteins are usually present extracellularlly. On this 

basis, all the extracellular PR-4 proteins lacking a chitin-binding domain 

were classified as class II PR-4 proteins. The PR-4 proteins with a chitin- 

binding domain and a C-terminal propeptide were classified as class I PR-4 

proteins (Linthorst et al., 1991). The C-terminal domain of class 1 PR-4 

protein CBP 20 exhibited strong similarity (75-78%) to all the class II PR-4 

proteins (Linthorst, 1991; Ponstein et al., 1994). Southern blot analysis of a 

tobacco genomic library using PR-4 cDNA as a probe indicated that the PR- 

4 proteins are encoded by a relatively small gene family comprised of 2 to 4 

members (Friedrich et al., 1991; Linthorst, 1991; Ponstein et al., 1994).

According to Ponstein et al. (1994), CBP 20 exhibited antifungal 

activity toward T. viridi and F. solani by causing lysis of the germ tube and/ 

or inhibition o f hyphal growth. T. viride appeared to be more sensitive to
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this protein than F. solani. This protein also acted synergistically with 

tobacco class I chitinase to inhibit growth of F. solani and with tobacco class 

I P-l,3-glucanase to inhibit both F. solani and Altemaria radicana.

PR-5 Proteins

A fifth group of pathogenesis-related proteins, PR-5 proteins, have been 

identified. PR-5 proteins are highly homologous to the sweet-tasting protein 

thaumatin extracted from the African-rainforest shrub Thoumatoccus 

donielli. For this reason, PR-5 proteins are also known as thaumatin-like 

proteins (Comelissen et al., 1986; Edens et al., 1982). The occurrence of 

thaumatin-like proteins is widespread in nature. These proteins are found in 

both dicotyledenous and monocotyledenous plants (Bryngelsson and Green, 

1989; Choi et al., 1997; Hejgaard et al., 1991; Huynh et al., 1992; Van Loon, 

1985; Vigers et al., 1992; Vu and Huynh, 1994; Woloshuk et al., 1991).

Slightly acidic to neutral tobacco PR-5 protein R (pi 6.9) and neutral 

tobacco PR-5 protein S (pi 7.5) were among the 10 PR proteins initially 

detected using a native basic PAGE system (Van Loon, 1985; Van Loon, 

1970). Tobacco protein R and protein S share greater than 90% sequence 

identity and both o f these proteins are very similar (60% sequence 

homology) to thaumatin (Comelissen et al., 1986; Payne et al., 1988; Singh
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et al., 1989). Among the five different forms of thaumatin isolated from 

Thoumatoccus donielli, two forms (thaumatin I and II) are found to be more 

abundant (Comelissen et al., 1986). Thaumatin I and II are 207 amino acids 

in length, and differ from each other only at five positions. Thaumatins are 

synthesized as preprothaumatins with an amino-terminal signal peptide o f 22 

amino acids and an acidic carboxy-terminal extension of 6 amino acids. The 

mature protein is obtained after removal of the signal peptide and the C- 

terminal extension (Comelissen et al., 1986).

Two serologically related basic counterparts of tobacco R and S were 

purified and identified as osmotins (Nelson et al., 1992; Stintzi et al., 1993). 

Osmotins were first detected in osmotically-stressed cell suspension cultures 

of tobacco (King et al., 1986). Two basic osmotins were found in the cells 

subjected to salt (NaCl) stress. Osmotin I was soluble in aqueous solution 

and osmotin II was solublized only after detergent treatment. The osmotins 

are very similar in structure to thaumatins. Both thaumatins and osmotins 

are hydrophobic in nature, have similar molecular weights, contain high 

proportions o f proline and are stabilized by several disulfide bonds.

PR-5 proteins have been purified fi’om various plant species (Table II- 

8). The cDNA clones corresponding to acidic and basic PR-5s o f tobacco
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have been isolated (Hu and Reddy, 1997; Liu et ai., 1996; Nelson et al., 

1992; Payne et al., 1988; Rodrigo et al., 1993; Singh et al., 1989; Zhu et al.,

1995). The basic PR-5 proteins were located in the vacuole and the neutral 

and slightly acidic forms were extracellular and localized in the apoplast 

(Nelson et al., 1992; Singh et al., 1989). Like other pathogenesis-related 

proteins, some PR-5 proteins are induced by fungal infection and salicylic 

acid (Hu and Reddy, 1997; Woloshuk et al., 1991). Thaumatin and several 

other PR-5 proteins from the Graminae are produced constitutively (Vigers 

et al., 1991; Walden et al., 1990).

Several PR-5 proteins exhibited direct and differential antifungal 

activity in in vitro assays. Woloshuk et al. (1991) demonstrated that osmotin 

II had antifungal activity against pathogenic oomycetes. Osmotin II isolated 

from TMV inoculated tobacco leaves caused lysis of P. infestons sporangia 

and inhibition of fungal growth. Osmotin (AP 24) purified from P. infestons 

infected tomato leaves exhibited similar antifungal activity against P. 

infestons in the in vitro assay.

Two thaumatin-like proteins isolated from barley grain exhibited 

homology to the bi-functional a-amylase/protease inhibitor from maize 

grain (Hejgaard et al., 1991). These two proteins named protein R and 

protein S were as potent as ribosome-inactivating protein K from barley.
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Table II-8: Antifungal Properties and Activities o f Various PR-5 Proteins.

Name
Molecular
weight
(kDa)

Source Pathogen Reference

Osmotin 24 Tobacco P. infestons 
C. albicans 
T. reesi 
A', crassa

Woloshuk et al., 1991 

Vigers et al.. 1992

Zeamatin

22

Maize C. albicans 
F. oxysporum 
T. reesi 
N. crassa 
A. solani

Roberts et al. 1990 

Quang et al.. 

Huynh et al.. 1992
Trimatin Wheat C. albicans 

N. crassa 
T. reesi

Vigers et al.. 1992

Protein R
23

Barley C. albicans 
T. viride 
F. oxysporum

Hejgaard et al.. 1991

Protein S
23

Barley C. albicans 
T. viride 
F. oxysporum

Hejgaard et al.. 1991

Thaumatin T. donielli C. albicans Vigers et al.. 1992

PR-5 25 Flax A. solani 
C. albicans

Borgmeyer et al.. 1992

PR-S 24 Tobacco C. beticola Woloshuk et al. 1991 

Vigers et al.. 1992
PR-5 27 D. taxana P. infestons Vu and Huynh. 1994
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Both proteins inhibited growth of F. oxysporum^ T. viride and Candida 

albicans. Although protein R and S were homologous to a - 

amyiase/proteases inhibitor, they did not inhibit a-amylase or serine 

proteases. The barley grain proteins also acted synergistically with 

nikkomycin Z to retard fungal growth. Nikkomycin Z is a nucleoside 

peptide antibiotic active as competitive inhibitor o f chitin synthase. Because 

of its structural resemblance to chitin monomer it inhibits the biosynthesis of 

fungal cell wall. Synergistic antifungal activity of barley proteins R and S in 

combination with barley chitinase C or barley ribosome-inactivating protein 

R was also observed.

Zeamatin, a twenty-two kDa PR-5 isolated from com, exhibited 

antifungal activity against Neurospora crassa, T. reesei and C  albicans 

alone or in combination with nikkomycin Z (Huynh et al., 1992; Roberts and 

Selitrennikoff, 1990; Vigers et al., 1991; Walden et al., 1990). Synergistic 

antifungal activity with nikkomycin was also noted with PR-5 proteins 

isolated from other members of Poaceae family. The PR-5 proteins trimatin, 

avematin and sormatin were isolated from wheat, oat, and sorghum, 

respectively. These proteins inhibited growth of C. albicans when combined 

with nikkomycin Z (Vigers et al., 1991). These three proteins have
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considerable amino acid sequence homology with each other and with 

zeamatin (Malehom et al., 1994; Vigers et al., 1991). A cDNA clone 

encoding a zeamatin-like protein (Zip) was isolated from a Zea mays cDNA 

library (Malehom et al., 1994). The Zip gene encoded a protein nearly 

identical with zeamatin and a-amylase/trypsin inhibitor. Despite the near 

identity of purified Zip to a-amylase/trypsin inhibitor. Zip proteins do not 

inhibit bovine trypsin (Malehom et al., 1994). Zip cDNA was expressed in 

insects, tobacco and Arabidopsis and the Zip protein purified from all three 

sources exhibited antifungal activity against C. albicans and T. reesei 

(Malehom et al., 1994).

Not much is known about the mechanism of action of PR-5 proteins. 

Based on the very hydrophobic nature of these proteins, Woloshuk et al. 

(1991) proposed that these proteins reacts with the plasma membrane of 

oomycetes causing cellular dismption and lysis of hyphae. In support o f this 

hypothesis, the less hydrophobic isoform o f PR-5 from tomato, AP 24, was 

less active against P. infestans when compared to the more hydrophobic 

isoform o f AP 24. Zeamatin, trimatin, avematin and sormatin also exhibited 

membrane permeabilizing activity (Vigers et al., 1991; Walden et al., 1990).

Zeamatin did not hydrolyze chitin, glucan, mannan or proteins that are 

common components o f fungal cell walls (Walden et al., 1990). When
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fungal cells were treated with zeamatin, hyphal rupture was rapid and 

occurred in less than 15 seconds at 23°C (Walden et al., 1990). Hyphal 

rupture was also observed after treatment o f different fungi with trimatin, 

avematin, and sormatin or other zeamatin-like proteins from seeds of several 

plant species (Vigers et al., 1991). Based on these findings, it appears that 

the mode o f action of zeamatins does not involve hydrolysis of fungal cell 

wall. Instead, zeamatin may act directly by inserting itself into fungal 

membranes to form transmembrane pores. This conclusion has led to the 

suggestion that this family of membrane-permeabilizing antifungal proteins 

be referred to as prematins (Vigers et al., 1991; Walden et al., 1990). Fungal 

plasma membrane has also been identified as the target site for antifungal 

PR-5 protein purified from the flower bud o f Chinese cabbage (Choi et al., 

1997).

This kind o f membrane-permeabilizing activity has been observed 

with proteins and polypeptides isolated from various sources. For example, 

polypeptides from bee venom (melittens), toad skin (magainins), 

haemolymph o f insects (cecropins) and proteins such as the bacteriocins, 

colicin and halocin, appear to bind to the cell wall through cationic 

interactions and insert a hydrophobic domain through the lipid bilayer o f  the 

membrane (Bhakdi and Tranum-Jensen, 1987; Mackler and Kareil, 1977;
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Parker et al., 1989; Steiner et al., 1981; Torreblanca et al., 1989; Zasloff, 

1987). An analysis o f the crystal structures of zeamatins suggests that all 

thaumatin-like proteins have an electrostatically polarized surface which 

may be critical for the antifungal activity o f  these proteins (Batalia et al.,

1996).

A transmembrane protein kinase, PR5K, isolated from Arabidopsis 

was reported to be structurally related to tobacco acidic extracellular PR-5 

protein (Wang et al., 1996). PR5K kinase, like other receptor proteins 

presumably binds to polypeptide ligands. This observation has lead to the 

suggestion that PR-5 proteins may interact with specific proteins, possibly 

polypeptides on the fungal cell surface. The binding of PR-5 proteins to cell 

surface proteins represent an entirely different mode of action from the 

hydrolytic enzymes such as chitinases and glucanases and other chitin- 

binding proteins which interact with cell wall carbohydrates.

OTHER DEFENSE-RELATED PROTEINS 

Defensins

Plant defensins are a class of cysteine-rich, antimicrobial peptides. 

Individual members of this group differ in the number of disulfide bonds, 

mass and/or tertiary structure (Boman, 1995). These plant defensins
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structurally resemble the structure of mammalian and insect defensins. 

Unlike linear antimicrobial peptides such as mammalian and insect 

cecropins, the plant defensins have extensive disulfide linkages forming a 

complex, disulfide-bond stabilized, three-dimensional structure. Therefore, 

the term plant defensins is commonly used to describe these cysteine-rich 

peptides from plants.

The first examples of plant defensins were isolated from wheat and 

barley and were referred to as y-thionins because of their size similarity (5 

kDa) with a  and (3-thionins. Later work has shown that the y-thionins differ 

structurally from the a  and the |3-thionins. Since then, many plant defensins 

and defensin gene have been isolated and sequenced from taxonomically 

divergent plant species. Comparison of the amino acid sequence of different 

plant defensins reveals some common features (Broekaert et al., 1995). 

Most plant defensins are 45-54 amino acids in length, carry a net positive 

charge and show clear, although limited, sequence conservation. Conserved 

residues include eight cysteine residues, two glycine residues at position 13 

and 34, an aromatic residue at position 11 and glutamate at position 29 

(numbering relative to radish defensin, Rs-APPl).

The amino acid sequences o f seed defensins from Amaranthus, 

Capsicum and Briza are highly homologous to the chitin-binding domain of
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plant chitin-binding proteins (Broekaert et al., 1996). The mature defensins 

from Amaranthus are essentially just a chitin-binding domain (Figure II-2). 

The deduced amino acid sequence from cDNA clones of different seed 

defensins revealed that the peptides are expressed as preproteins with N- 

terminal signal peptides (Bolle et al., 1993; Broekaert et al., 1996; Terras et 

al., 1995). Differences between defensin isoforms from the same plant 

species are minor. Amaranthus defensins Ac AMP-1 and AcAMP-2 differ in 

a single amino acid residue and the later has one extra amino acid residue at 

the carboxy-terminal end (Broekaert et al., 1992). In the case of Mirabilis 

jalapa defensins, MJAMP-1 was N-terminally blocked and Mj AMP-2 was 

not blocked. The remainder of the protein differed in only three positions 

(Cammue et al., 1992).

Most of the plant defensins isolated to date are antifungal. The only 

known exceptions are plant defensins isolated from some members of 

Poaceae including S ia l, Sia2 and Sia3 from wheat, barley and sorghum 

seeds, respectively. These defensins do not inhibit fungal growth but have 

been reported to inhibit a-amylases from insects and humans (Bloch and 

Richardson, 1991; Osborn et al., 1995). Most antifungal plant defensins 

such Ah-AMP I, Ct-AMPl, Dm-AMPl, Hs-AMPl, and Rs-AFP2 do not 

inhibit a-amylase (Osborn et al., 1995; Terras et al., 1992).
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The majority of the plant defensins are very potent antifungal agents 

and exhibit a broad range of antifungal activity (Table II-9) at very low 

concentrations (Broekaert et al., 1996; Cammue et al., 1992; Osborn et al., 

1995; Terras et al., 1995). At the same time, antifungal potency o f each 

defensin varies depending on the fungus tested. For example MjAMP-1 and 

Mj AMP-2 exhibited antifungal activity against 13 different plant pathogenic 

fungi. The amount o f these defensins required to inhibit fungal growth by 

50% (IC 50) varied from 0.5 pg to 300 pg /ml in a 48 h assay depending on 

the test organism (Cammue et al., 1992). Radish defensins RsAMP-1 and 

RsAMP-2 inhibited growth of 20 different plant pathogenic fungi. The IC- 

50 value for these two defensins varied from 0.4 pg to 100 pg/ml. Similar 

results were obtained with Ac AMP-1 and Ac AMP-2 from Amaranthus 

caudatus and CaAMP-1 from Capsicum. Ac AMP-1 and Ac AMP-2 were 

active against 13 different plant pathogenic fungi with 1C50 values between 

0.8 and 20 pg/ml. CaAMP-1 inhibited growth of 18 different plant 

pathogens with IC50 values between 1 and 500pg/ml depending on the 

fungus tested.
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Table H-9: Broad Host Range Antifungal Activity o f Several Defensins.

Defensins Plant source Defensin
sensitive
Fungi

Reference

Rs-AFPl Raphaniis sativus. 20 Terras et al., 
1992

RS-AFP2 Raphanus sativus. 20 Terras et al., 
1992

Ac-AMP 1 Amaranthus
caudatus

14 Broekaert et al., 
1996

AC-AMP2 Amaranthus
caudatus

14 Broekaert et al., 
1996

Ca-AMPl Capsicum annum 19 Broekaert et al., 
1996

Bm-AMPl Brizza maxima 8 Broekaert et al., 
1996

Dm-AMPl 
Hs-AMPl 
Ah-AMP 1 
Ct-AMPl

Dahlia merckii:
Heuchera
sanguinea;
Aes cuius 
hippocastanum; 
Clitoria ternatea

8 Osborn et al., 
1995

Mj-AMPl Mirabilis jalapa 13 Cammue et al., 
1992
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The antifungal activity of plant defensins is generally resistant to heat, 

extreme pH and proteases. For example, antifungal activity of Amaranthus 

defensins was not affected by heat treatment at up to 100°C for 10 min, 

exposure to acidic (pH 2) or alkaline pH (pH 11 ) conditions or treatment 

with proteases including proteinase K, pronase E, chymotrypsin and trypsin 

(Broekaert et al., 1996).

Despite the similarity in amino acid sequence and tertiary structure, 

the plant defensins show marked differences in their antifungal activity 

including differences in their unit activity and range of pathogens affected. 

Based on their morphological effect on fungi, the plant defensins are divided 

into two groups. Group 1 the morphogenic defensins, cause hyphae to swell, 

reduce hyphal elongation and increase hyphal-branching. Examples o f 

morphogenic plant defensins include RsAMP-1 and Rs AMP-2 from radish 

and Hs-AFPl from Heuchera senguinea. Group 11, the non-morphogenic 

defensins, slow hyphal growth without any marked change in hyphal 

morphology. Examples o f non-morphogenic defensins include DmAMP-1 

from Dahlia, CtAMP-1 from Clitoria and AhAMP-1 from horse chestnut 

seeds.
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The efficacy of plant defensins varies depending on the protein’s pl- 

value. Generally, the more basic proteins exhibit higher antifungal activity 

(Broekaert et al., 1996; Cammue et al., 1992; Terras et al., 1995). In the 

case of the defensins from Mirabilis, Raphanus, Capsicum, Amaranthus and 

Briza, the more basic isoforms are more active showing 2 to 30-fold higher 

activity than the less basic forms. The antifungal activity of plant defensins 

is affected by the ionic composition of the growth media. Both morphogenic 

and non-morphogenic defensins have reduced antifungal activity in the 

presence of monovalent and divalent cations, especially calcium (Broekaert 

et al., 1996; Terras et al., 1995). This phenomenon has been observed with 

insect and mammalian defensins (Cociancich et al., 1993; Lehrer et al., 

1993).

Thevissen reported that Rs-AfP2 from radish and DmAMP-1 from 

dahlia cause rapid ion fluxes when added to fungal hyphae i. e. Ca"‘ uptake, 

K ion efflux and pH of the medium all increase (Thevissen et al., 1996). The 

cation sensitivity of radish defensins varies depending on the fungus tested. 

Terras proposed that the antagonistic effect o f cations is not through direct 

interaction with the defensin causing conformational changes in the proteins 

(Terras et al., 1995). They concluded that the fungus interacts directly with
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the cation and thereby acquires protection from the effects of these toxic 

proteins.

Branching of fungal hyphae is regulated by specific Ca " channels 

(Robson et al., 1991). Rs-AFPs from radish are morphogenic defensins and 

cause hyperbranching suggesting that these defensins may interfere with 

Ca""' signaling (Terras et al., 1995). The specific relationship between pi, 

fungal calcium ion uptake and antifungal activity was clearly demonstrated 

by De Samblanx and co-workers (De Samblanx et al., 1997). In mutational 

studies with Rs-AFP2, De Samblanx et al. demonstrated that by replacing 

the amino acid residues in non-conserved positions with arginine, the 

antifungal activity o f the substituted analogs Rs-AFP2 (G9R) and Rs-AFP2 

(V39R) was enhanced. These more basic variants caused increased Ca " 

uptake while another variant, Rs-APP2 (Y38G), that was devoid o f 

antifungal activity was unable to stimulate Ca uptake in the fungus tested. 

The antifungal activity of the more positively charged variants was less 

susceptible to the presence of cation in the media relative to the wild type 

RS-AFP2.

Two highly hydrophobic and adjacent sites in Rs-AFP2 were also 

critical for antifungal activity. These two sites may be part o f a putative 

signal receptor. Alternatively, the two sites may represent two independent
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binding sites on each of two receptor sites (Terras et ai., 1995). Rs-AFP2 

cDNA was introduced into and constitutively expressed in transgenic 

tobacco (Terras et al., 1995). Transgenic plants expressing Rs-APP2 

defensin exhibited a 7-fold reduction in lesion size after infection with 

Alternaria lortgipes.

Although most plant defensins isolated to date are from seeds, it 

appears that these proteins are constitutively expressed at lower 

concentrations in healthy, vegetative tissues (Broekaert et al., 1995; Moreno 

et al., 1994; Terras et al., 1995). The levels of these leaf defensins increase 

rapidly upon infection. For example, radish Rs-AFP counterparts in the leaf 

were strongly and systemically induced upon fungal infection or treatment 

with mercuric chloride (Terras et al., 1995). Plant defensins are produced in 

the peripheral layer of seeds or vegetative tissues. Thus, induction of 

defensin genes in vegetative tissue may provide protection against pathogens 

that reside in the outer tissues o f leaves (Moreno et al., 1994; Terras et al., 

1995). According to Terras and co-workers, these proteins together with 

different PR-proteins such as chitinases and glucanases may prevent the 

development of fungal diseases in vegetative tissue (Terras et al., 1995). 

The same is true for the seed defensins that are present extracellularly and
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are located in the ceil wall and outer cell layers lining different seed tissues. 

Seed defensins released during germination may protect the germinating 

seedling from soil home pathogens.

Thionins

Thionins are low molecular weight (approximately 5 kDa) proteins found in 

roots, stems, leaves, flowers and seeds o f a number o f plants (Florack and 

Stiekema, 1994; Gu et al., 1992). Depending on the net charge, number of 

amino acids residues, disulfide bonds, plant species and tissue source, 

thionins are divided into four different types (Florack and Stiekema, 1994; 

Garcia-Olmedo et al., 1989). Type 1 thionins are present in members of the 

Poaceae. These thionins are present primarily in endosperm tissue. They 

are highly basic and consist of 45 amino acids and 4 disulfide bonds. Type 2 

thionins are found in the leaves o f barley and in the leaves and nuts of the 

parasitic plant Pyrularia pubera (Bohlmann et al., 1988). Type 2 thionins 

are slightly less basic than type 1 thionins. These thionins are 46-47 amino 

acids long and have 4 disulfide bonds. Leaves and stems o f Phoradendron 

species contain type 3 thionins (Samuelsson and Pettersson, 1971; Schrader 

and Apel, 1993). Type 3 thionins are 45-46 amino acids long, have 3-4 

disulfide bonds and are as basic as type 2 thionins. Type 4 thionins are
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found in seeds of Abyssinian cabbage. These thionins are 46 amino acids 

long, have three disulfide bonds and are neutral (Van Eaten et al., 1965). All 

four types of thionins are highly homologous at the amino acid level. The 

position and number o f disulfide bonds are highly conserved and all thionins 

have a tyrosine residue at position 13.

Analysis of thionin cDNA sequences reveals that thionins are 

synthesized as preproproteins that undergo post-translational modification. 

The precursors contain three distinct domains. The first is an N-terminal 

signal peptide that is involved in the transfer o f the protein into the lumen of 

the HR. Adjacent to the N-terminal signal peptide is the mature thionin. The 

last is the C-terminal domain. According to Florack et al. (1994), the C- 

terminal domain is involved in the transport of thionins through membranes.

Thionins are toxic to fungi (Molina et al., 1993; Terras et al., 1993; 

Terras et al., 1996). The three dimensional structure of the protein reveals 

that thionins consist of an outer part which is mostly hydrophobic and an 

inner part that is mostly hydrophilic. The outer hydrophobic surface of the 

positively charged thionins presumably interacts with the negatively charged 

polar tail groups of the phospholipid o f the host membrane. This anchors the 

protein so that the hydrophilic core can extend into the aqueous phase of the 

cytoplasm (Teeter et al., 1990; Wada et al., 1982).
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Non-specific lipid transfer protein:

Non-specific lipid transfer proteins (nsLTPs) are present in both monocots 

and dicots (Arondei and Kader, 1990; Bernard et ai., 1991). The nsLTP’s 

are basic polypeptides containing 90 to 93 amino acid residues including 

eight cysteine residues. In in vitro experiments, these proteins transfer 

phospholipids and glycoproteins between organelle membranes, liposomes 

and mitochondria (Arondei and Kader, 1990; Kader, 1993). The nsLTP 

precursors contain signal peptides. They may be secreted or bound to the 

cell wall (Bernard et al., 1991; Thoma et al., 1993). The nsLTPs are the 

major proteins in the surface wax of broccoli and are involved in cuticle 

formation. The antifungal properties of nsLTPs purified from radish, onion 

and sugar beet has been reported (Cammue et al., 1995; Nielsen et al., 1996; 

Terras et al., 1992). Radish and onion nsLTP are active at very low 

concentration (below 10 pg/ml) and exhibit a broad range o f antifungal 

activity.

The antifungal activity of Ace-AMP (nsLTP from Allium cepa) was 

weakly affected by the presence of different cations. On the other hand, 

antifungal activity of radish nsLTP is affected by the presence of even low 

concentrations (1 mM) of calcium ion in the growth medium (Terras et al..
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1992). Although Ace-AMP exhibits a high degree of homology to other 

nsLTPs, this protein was unable to transfer phospholipids from liposomes to 

mitochondria (Cammue et al., 1995). The protein structure predicted from 

the sequence of the cDNA revealed that Ace-AMP has a 12 residue C- 

terminai peptide that was absent from the mature protein (Cammue et al., 

1995). It is not clear whether the absence of this peptide accounts for 

differences in activity.

Not all non-specific lipid transfer proteins have antifungal activity. 

Some isomers of nsLTPs may be involved in defense while others deposit 

extracellular lipids such as cutin monomers. According to Terras and 

associates some nsLTPs acquire defensive roles after their deposition on the 

cell wall along with the cutin they transfer (Terras et al., 1995). Thus, it is 

possible that the direct antifungal activity of nsLTP’s is a secondary 

function.

Two antifungal proteins with homology to nsLTPs and with very 

strong activity against Cercospora beticola were isolated from the 

intercellular fluids of sugar beet (Nielsen et al., 1996). A cDNA encoding a 

similar isoform of these sugar beet proteins has been isolated and 

characterized (Nielsen et al., 1996). The expression of these proteins was 

not induced upon infection with C. beticola. Gene expression in the
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uninfected plant was developmentally regulated even though constitutive 

accumulation of mRNA was observed. C. beticola was restricted to the 

extracellular environment during the entire infection process. Sugar beet 

nsLTPs, isolated from the apoplastic compartment o f these plants, were very 

effective inhibitors o f  C. beticola growth. The presence of nsLTPs in the 

intercellular space apparently helps to prevent C. beticola infection.

Ribosome-inactivating proteins:

Plant ribosome-inactivating proteins (RIPs) catalytically cleave N-glycosidic 

bonds of a single adenine residue of the large ribosomal RNA. Altered 

rRNA can not bind to the elongation factor 2 and, consequently, protein 

synthesis is inhibited (Roberts and Selitrennikoff, 1986; Stirpe et al., 1992). 

RIPs are found in a wide variety of monocots and dicots. RIPs were first 

known for their antiviral activities (Stirpe et al., 1992). RIPs purified and 

characterized so far have been divided into two different groups (Stirpe et 

al., 1992). Type 1 RIPs consist of a single polypeptide chain with RNA 

glycosidase activity. Type 2 RIPs are composed o f two polypeptide chains, 

an A chain with RNA glycosidase activity and a B subunit containing a 

galactose-specific lectin domain. The B chain o f type 2 RIPs binds to the 

cell surface and promotes uptake of the A-chain into the cell. Once the A-
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chain enters the ceil, it inhibits protein synthesis by modification of 28S 

ribosomal RNA. Type 1 RIPs lacking the ability to bind to cells are not 

cytotoxic.

Type 2 RIPs are extremely potent cytotoxins. Examples of type 2 

RIPs include ricin from Ricinus communis, abrin from Abrus precatorious 

and viscacin from mistletoe. Type 2 RIPs are 1000-times more active on 

mammalian ribosomes, while type 1 RIPs have a broad spectrum specificity 

and cleave rRNA from both eukaryotic and prokaryotic organisms (Prestle et 

al., 1992; Zoubenko et al., 1997). Type I RIPs are more common than type 

II RIPs and a number of type I RIPs have been isolated from representatives 

of different plant families. Examples of type I RIPs include saporin from 

soap wart, asparin from asparagus, pokeweed antiviral protein (PAP), 

Mirabilis antiviral protein (MAP), tritin from wheat, barley RIP, com RIP 

and amaranthin from Amaranthus viridis (Chaudhry et al., 1994; Habuka et 

al., 1993; Hey et al., 1995; Kataoka et al., 1993; Kwon et al., 1997; Stirpe et 

al., 1983; Watanabe et al., 1997).

Although a 30-kDa type I RIP from barley seed showed antifungal 

activity against Tricoderma resii and F. sporotrichoides, the activity was 

much lower than chitinases and glucanases isolated from the same plant 

(Leah et al., 1991). Although barley chitinase (CHI 26) and glucanase (BGL
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32), showed better antifungal activity than RIP 30 when tested alone, the 

strongest antifungal activity was observed when these three proteins were 

combined. According to Leah et al. (1991), the activity o f RIP was 

enhanced by chitinase and glucanase dependent hydrolysis o f cell wall 

components. Once the cell wall constituents are removed, RIP may enter the 

cytoplasm and reach its target site.

In principle, type 2 RIPs should be toxic to flingi. However, the thick 

fungal cell wall may prevent penetration and binding and, thereby, reduce or 

eliminate the toxicity o f these proteins. To this date, there is no evidence for 

the direct antifungal effect of type 2 RIPS. A barley RIP gene under the 

control of a wound-inducible promoter was introduced into tobacco 

(Logemann et al., 1992). The transgenic R1 progeny exhibited enhanced 

resistance to R. solani (Logemann et al., 1992). Constitutive co-expression 

of barley endosperm RIP and barley chitinase 11 exhibited significant 

improvements in resistance to R. solani in transgenic tobacco (Jach et al., 

1995). Similarly, expression of pokeweed antiviral protein (PAP) in 

transgenic tobacco activates multiple plant defense pathways and confers 

resistance to R. solani. The resistant plants expressed high levels of both 

class 1 and class II isoforms of PR proteins (Zoubenko et al., 1997). Thus, 

RIPs may have an indirect role in the regulation of plant gene expression.
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Lectins

Plant lectins are a unique class o f proteins with the ability to bind to 

carbohydrates. In many cases, these proteins agglutinate red blood cells. 

Concanavalin A (Con A) was the first lectin to be isolated. This lectin was 

isolated from Canavalia emiformis (jack bean) in 1936 (Sumner and 

Howell, 1936). Since then, over 100 lectins have been purified from species 

of diverse plant families [for detailed review, see (Lis and Sharon, 1986; Lis 

and Sharon, 1981)]. Plant lectins occur in seeds and vegetative tissue such 

as roots, leaves, rhizomes, latex, bark and the flowers (Peumans and Van 

Damme, 1995). Depending on the specificity of carbohydrate binding, plant 

lectins are divided into five major groups (Table II-10). The native 

molecular weight o f lectins varies from 4.5 kDa (hevein) to 265 kDa (lima 

bean lectin). Lectins may exist as monomers or homo or hetero-multimers.
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Table 11-10; Monosaccharide Specificity o f Some Lectins.

Group Sugar Lectin

I Mannose
Glucose

Concanavalin A 
Fava bean 
Lentil 
Pea

II N-acetylgiucosamine Wheat germ 
Ulex europeus

III N-acetylgalactosamine Soybean 
Lima bean 
Dolichos biflora

IV Galactose Peanut
Ricinus
communis

V L-fucose Ulex europeus 
Lotus
tetragonolobus
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Lectins such as Conconavaiin A tend to aggregate depending on conditions. 

For example, at pH below 6.0, Con A exists as a monomer (51 kDa) but 

aggregates to form a dimer at physiological pH (102 kDa). Plant lectins are 

stable over a wide range o f pH. They are frequently heat resistant and are 

not destroyed by animal or insect gut proteases. With few exceptions, most 

lectins contain metal ions and in some instances, the metal ion is necessary 

for carbohydrate binding.

Because of the widespread distribution of lectins in the plant kingdom 

and the abundance of lectins in many plants, it is possible that lectins play 

important physiological roles in plants. Lectins may function in seed 

maturation and germination, maintenance of seed dormancy and as storage 

proteins (Etzler, 1985; Peumans et al., 1983; Shakirova et al., 1994). Lectins 

are capable of exerting a variety of biological effects on human, animal, 

insect, fungal and bacterial cells and viruses. Not all the biological effects 

are observed with all lectins but different lectins are responsible for different 

biological activities. This review will be restricted to a discussion of the 

antifungal properties of plant lectins.

Because some lectins are able to bind to chitin, researchers speculated 

that lectins have antifungal properties. The first observation of antifungal 

lectins was reported by Mirelman and co-workers (Mirelman et al., 1975).
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According to this report, wheat-germ agglutinin (WGA) inhibits spore 

germination and hyphai growth of T. viride. However, the antifungal role of 

lectins was seriously questioned when Schlumbam and associates 

(Schlumbum et al., 1986) demonstrated that highly purified WGA did not 

have any antifungal activity. Subsequently, it was shown that the original 

preparations o f WGA were contaminated with chitinase. Later Broekaert 

and co-workers demonstrated that chitinase-ffee potato lectin did not exhibit 

any antifungal activity (Broekaert et al., 1989).

Conclusive evidence for the existence of antifungal lectins was 

obtained by Broekaert et al. (1989). This research group demonstrated 

conclusively the antifungal activity of chitinase-ffee nettle lectin isolated 

from nettle rhizomes. Nettle lectin was more active than chitinase against 

Botrytis cineria whereas chitinase was more active against T. hamatum. 

Nettle lectin (UDA), a small (8.5 kDa) monomeric lectin is not blood group 

specific. Nettle lectins do not bind to chitin monomers effectively and do 

not agglutinate blood cells very well. Another antifungal lectin, hevein, was 

isolated from Hevea brasiliemis latex. Hevein is a small monomeric lectin 

(4.7 kDa) with strong homology to the amino acid sequence of nettle lectin. 

UDA and hevein are the only two monomeric lectins isolated so far. Both of 

these proteins are cysteine rich and heat resistant. These proteins are not
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denatured by boiling for 10 min (Broekaert et al., 1989; Parijs et al., 1991). 

Chitinase-free hevein exhibited antifungal activity against eight different 

fungi including plant pathogenic fungi such as F. oxysponim, F. culmorum 

and Pyrecularia oryzeae. Expression of lectin genes can be triggered in 

vegetative tissue in response to stress. Wounding of potato tuber resulted in 

increased accumulation o f lectins (Miller et al., 1992).

It is not clear why some chitin-binding lectins such as nettle lectin and 

hevein exhibit antifungal properties, while others such as WGA or potato 

lectin do not. Both UDA and hevein are very small proteins whereas WGA 

(86 kDa) or potato lectin (100 kDa) are not. It is possible that the small size 

of the antifungal lectins is related to the antifungal activity. According to 

Parijs, these small antifungal lectins may penetrate through the fungal cell 

wall and reach the plasma membrane where they inhibit synthesis of chitin 

or interfere with chitin deposition (Parijs et al., 1991). Hevein and UDA 

show the same morphological affect on fungi. Both of these antifungal 

lectins inhibit fungal growth by producing thick hyphae with buds, in 

contrast to chitinase that causes lysis of the hyphai tip.

83



Chapter III : Evaluation of Tropical Plant Extracts for 

Antifungal Activity

INTRODUCTION

Tropical rainforests occupy approximately 7% of the earth’s land surface, 

yet more plants and animals exist in these forests than in all of the world’s 

other ecosystems combined (Wilson, 1991). There are a number of layers in 

a tropical rainforest and different life forms have evolved to survive in these 

layers resulting in a tremendous amount of biodiversity (Erwin, 1991). For 

example, 151 different tree species are found in a 100 sq. meter section of 

Barro Colorado Island. In contrast, there are only 30 different tree species in 

a 10,000 sq. meter area in the Appalachian mountains. In a one hectare 

surveyed plot of Peruvian Amazon, 300 different tree species have been 

identified (Wilson, 1991).

Not only is there a tremendous amount o f biodiversity among plant 

species in the tropical rainforest, but there is also a tremendous diversity of 

animals, insects, fungi and microbes. E.B. Wilson identified 43 different ant 

species in one legume tree located in Tombapata Reserve in Peru (Wilson, 

1987). It is common to find thousands o f species o f  beetles and other insects
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in one sq. kilometer o f forest in Central and South America (Erwin, 1991; 

Wilson, 1991). Because of the enormous species diversity in the tropical 

rainforest, there is extreme competition between species for survival. In 

order to protect themselves from a diverse range of pests and pathogens, 

tropical rainforest plants have evolved an arsenal of defense mechanisms.

Fungi are considered as one of the major pathogens of plants. The 

moist, warm conditions and high organic content of tropical forests provide 

a perfect envirorunent for fungal growth and propagation. Therefore, it is 

only reasonable that tropical plants produce fungicidal compounds to protect 

themselves from these pathogens (Robinson, 1991). Various pesticidal 

compounds have been isolated from a number of tropical plants. Most of 

these compounds have insecticidal properties and have been characterized as 

low molecular weight secondary metabolites. Although tropical plants are a 

rich source o f fungicidal compounds, the search for antifungal compounds in 

tropical plants remains unexplored.

To discover antifungal activity from this rich natural source, more 

then 100 tropical rainforest species were collected and screened for 

antifungal activity. Crude extracts from these species were tested for 

antifungal activity before and after dialysis. Dialysis was done to separate
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the low molecular weight (less then 3,500 Da) from high molecular weight 

(greater then 3,500 Da) antifungal activities. Emphasis was given to those 

activities retained upon dialysis on the assumption that the high molecular 

weight activity could be a protein. Many antifungal proteins have been 

purified and characterized but very few of them are from tropical rainforest 

plants. Most of the purified and characterized antifungal proteins cited in 

the literature are from spices, agricultural crops or common flowering plants.

Our objective was to discover, isolate and characterize antifungal 

proteins from tropical plants. In this chapter, we report on the results of our 

initial screen. After the initial screen, several extracts exhibited antifungal 

activities that were retained after dialysis. These findings provided a 

preliminary indication that these activities were due to macromolecules, 

possibly proteins, and not low molecular weight secondary metabolites. The 

purification and characterization of several o f these activities is presented in 

subsequent chapters.
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MATERIALS AND METHODS 

Source of P lant M aterial

All plant materials used for the antifungal screen were collected from the La 

Selva Biological Station, Costa Rica. Permits for plant collection and 

exportation were obtained from the appropriate governmental authorities in 

Costa Rica. Importation permits required to bring biological materials into 

the U.S. were obtained from the Animal Plant Health Inspection Service 

(APHIS), of the U.S. Department of Agriculture. Plant samples were 

collected based on field observations and ethnobotanical information. In a 

few cases, plant materials were collected by an external contractor. After 

collection, plant materials were processed in the laboratory at La Selva 

Biological Station. Biological materials were separated into seeds, roots, 

leaves, fruits etc., labeled and stored in a -20°C freezer or on dry ice. In 

general, voucher specimens were prepared for each collection and 

maintained for identification and future reference. The frozen plant tissues 

and voucher specimens were imported into the United States. In the 

laboratory at the University of Oklahoma the plant tissues were stored at 

^ 0 °C .
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Extraction of Plant Materials

Plant materials (seeds, fruits, leaves, roots, stems) were extracted in 10 mM 

Tris-HCl (pH 8.0) containing 0,2 g of insoluble PVP 

(polyvinylpolypyrrolidone; Sigma Chem, Co, St. Louis, Mo; Cat. # P6755) 

for each g of plant tissue. Tris-HCl buffers were prepared using a mixture of 

Tris-free base and Tris-HCl. Plant tissue was homogenized in a polytron 

homogenizer and the homogenate was filtered through a double layer of 

Miracloth. The filtrate was centrifuged at 15,000 x g for 15 min in a Sorvall 

SS34 rotor. The supernatant fluid was collected and the pellet containing 

debris and insoluble PVP was discarded. This clarified supernatant fluid, 

referred to as the crude extract, was tested for antifungal activity.

Dialysis

To remove soluble, low-molecular-weight materials from the crude extract, a 

volume o f each crude extract was dialyzed extensively against 10 mM Tris- 

HCl (pH 8.0) using a 3,500 molecular weight cut off dialysis membrane 

(Spectra/Por). Dialysis was routinely carried out in 4 L beakers and the
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dialysis buffer was changed at least three times over a 24-48 h period. After 

dialysis, the crude extract (referred to as dialyzed extract) was stored frozen 

at-20°C.

Source of Fungal Pathogens

Cultures of Fusarium chlamydosporum, Aspergillus flavus and Aspergillus 

parasiticus were used for the initial antifungal screen. The antifungal 

activity of all extracts was evaluated on the basis of their antifungal activity 

against F. chlamydosporum. A. flavus and A. parasiticus were used only in 

selected assays. Cultures of A. parasiticus were obtained from the 

Department of Botany and Microbiology culture collection at the University 

of Oklahoma. A. flavus (ATCC # 22548) and F. chlamydosporum ( ATCC # 

22187) cultures were obtained from the American Type Culture Collection, 

Waldorf, MD. Working cultures o f A. flavus and A. parasiticus were 

maintained at room temperature on full strength potato dextrose agar (PDA; 

Difco # 0013-17-6) and F. chlamydosporum was grown at room temperature 

on half strength PDA. All three fungi were kept at room temperature for ten 

days or until the mycelial growth covered three fourths of the plate. At that
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point, plates were kept at 4®C. For long term preservation, conidia of A. 

flavus and F. chlamydosporum were preserved on sterile silica gel at 4°C 

according to the method of Windels (1992).

Antifungal Bioassay

The antifungal assay used to detect antifungal activity in plant extracts was 

originally developed by Duvick and associates (Duvick et al., 1992). 

Conidia of all three fungi were collected for antifungal bioassay by scraping 

the colony with a sterile loop and suspending the conidia in sterile water 

containing 0.01% Tween 20. Conidia from this stock solution were diluted 

with synthetic culture medium to a final concentration of approximately 290 

conidia/90 pi o f growth medium. The latter contained 0.037 g NaCl, 0.0625 

g MgSo4 THiO, 0.25 g CaNO], 2.5 g glucose, 0.25 g yeast extract, and 0.125 

g casein enzyme hydrolysate in one liter of 7.5 mM sodium phosphate 

buffer, pH 7.0. Ninety pi of the culture medium containing conidia was 

added to each well of a 96-well, U-bottom microtiter plate. Ten pi of crude 

extract or crude dialyzed extracts was added to each well. Four replicates 

(individual wells) were used for each sample. Sample buffer was used as a 

control. The microtiter plate was covered with parafilm and incubated in the 

dark at 25°C for 48 h. Conidial germination and fungal growth were
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observed after 48 h using an inverted microscope. A rating scale of 0 to 4 

was used to evaluate inhibition of ftmgal growth (Figure HI-1). The ratings 

were based on the relative growth of fungi in the buffer control. A rating of 

zero indicated no inhibition of fungal growth and a rating of four was given 

in the case of complete inhibition of fungal growth. Intermediate values 

were assigned to distinguish between ratings when possible. Values from 

the four replicates were averaged.
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Figure I II - l;  Rating Scale for Fungal Growth inhibition Assay.

m

No Inhibition Slight Inhibition Moderate InliiMtion

« » rO
Strong Inhibition Complete Inhibition
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RESULTS

Results of extracts from PCN 1 to 40

Out of the first 41 extracts, 38 extracts exhibited moderate to complete 

inhibition of fungal growth (rating of 2 to 4) before dialysis (Figure III-2 and 

III-3). Only five extracts (2L, 5L, lOL, 15F and 34LT) had ratings of 2 or 

lower. Among the 38 crude extracts showing moderate to strong antifungal 

activity, eleven inhibited F. chlamydosporum growth moderately (rating 2 to 

less than 3), sixteen crude extracts exhibited very strong inhibition (3-3.6) 

and eleven extracts inhibited fungal growth completely.

A selected group of the first 40 extracts (IS, 7L, 8S, 14L, 2 IF, 23L, 

33L, 34LT, 35LT and 40L) were exhaustively dialyzed (3,500 MWCO) and 

assayed for antifungal activity. Dialyzed 40L and IS completely inhibited 

conidial germination of F. chlamydosporum (Figure III-4). Loss of 

substantial activity was observed in extracts 7L, 8S, ML, 2 IF, 23L, 33L and 

35LT. All of these extracts exhibited complete to very strong inhibition 

before dialysis but after dialysis, these extracts exhibited only moderate to 

slight (rating less than 1) inhibition o f fungal growth in the bioassay.
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Cnide Extract

Figure HI-2: Evaluation of Antifungal Activity of Crude 
Extracts from Plant Collection Number (PCN) 1-20. Antifungal 
activity was measured using the standard assay with F. 
chlamydosporum. Rating of 4 = complete inhibition of conidial 
germination and hyphai growth, rating of 0 = no inhibition of 
fungal growth. (L = leaf, S = seed, F = fruit, LT = latex).
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Figure III-3: Evaluation of Antifungal Activity of Crude 
Extracts of PCN 21-40. Antifungal activity was measured 
using the standard assay with F. chlamydosporum. Rating of 4 
= complete inhibition of conidial germination and hyphai 
growth. (L = leaf, F = fruit, LT = latex).
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Dialyzed Extract

Figure HI-4: Evaluation of Antifungal Activity of Selected 
Dialyzed Extracts. Antifungal activity was measured using the 
standard assay with F. chlamydosporum. Rating of 4 = 
complete inhibition of conidial germination and fungal growth, 
rating o f 0 = no inhibition o f fungal growth. (L = leaf, F = fruit, 
S = seed, LT = latex).
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Results of extracts from PCN 41 to 100

Seven crude extracts from the group 41 to 100 did not exhibit any antifungal 

activity (Figure HI-5, III-6 and III-7) against F. chlamydosporum, while 42 

showed slight inhibition of fungal growth (rating below 2) in the bioassay. 

Three crude extracts exhibited moderate antifungal activity. Very strong 

inhibition o f fungal growth was observed in extracts 47F, 48L and 69L. 

Crude extracts, 438, 65F, 70L and 98F exhibited complete inhibition of 

conidial germination.

Fifty-two o f the 60 extracts from this group exhibited antifungal 

activity before dialysis, but majority of these extracts lost activity after 

dialysis (Figure HI-5, HI-6 and HI-7). Ten extracts out o f the 14 extracts that 

retained antifungal activity after dialysis exhibited only a slight inhibition 

(rating of 1 or below) of F. chlamydosporum growth. Dialyzed extract of 

lOOS showed moderate inhibition and very strong inhibition of fungal 

growth was observed in the dialyzed extract of 48L. The antiflingal activity 

was completely retained by extract 98F. This dialyzed extract completely 

inhibited conidial germination of F. chlamydosporum. Extract 98F was the 

only extract among this group that completely inhibited fungal growth 

before and after dialysis.
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Figure III>5: Evaluation of Antifungal Activity of Crude 
and Dialyzed Extracts of PCN 41 to 60. Antifungal activity 
was measured using the standard assay with F. 
chlamydosporum. Rating of 4 = complete inhibition of 
conidial germination and hyphai growth, rating of 0 = no 
inhibition of fungal growth. (L = leaf, S = seed, F = fruit, 
W = whole plant).
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Figure III-6: Evaluation of Antifungal Activity of Crude 
and Dialyzed Extracts o f PCN 61 to 79. Antifungal activity 
was measured using the standard assay with F. 
chlamydosporum. Rating of 4 = complete inhibition of 
conidial germination and hyphai growth, rating of 0 = no 
inhibition o f fungal growth, (L = leaf, F = fruit).
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Figure III-7: Evaluation of Antifungal Activity of Crude 
and Dialyzed Extracts o f PCN 80 to 100. Antifungal 
activity was measured using the standard assay with F. 
chlamydosporum. Rating o f 4 = complete inhibition of 
conidial germination and hyphai growth, rating o f 0 = no 
inhibition o f fungal growth. (L = leaf, F = fhiit, St = stem, 
T = tuber, YL = young leaf, W = whole plant).
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Results of extracts from PCN 101 to 158

Antifungal activity against F. chlamydosporum was observed in eighteen 

crude extracts from extracts 101 to 158 (Figure III-8, III-9 and 111-10). Out 

of these eighteen crude extracts, three extracts exhibited only slight 

inhibition and 14 extracts exhibited moderate inhibition (rating 1.5 to 2.6) o f 

F. chlamydosporum mycelial growth. Extract 157L was the only crude 

extract from PCN 101 to 158 that showed complete inhibition of fungal 

growth.

After dialysis there were sixteen extracts out of this group, that 

exhibited antifungal activity against F. chlamydosporum (Figure II1-8, HI-9 

and III-10). Out of these sixteen, nine extracts (lOlL, 107L, 115L, 115S, 

119L, 122L, 129 W, 140L, 144L) inhibited fungal growth after dialysis but 

not before dialysis. Extract 140L completely inhibited F. chlamydosporum 

growth. Extract 115S inhibited F. chlamydosporum growth moderately 

while the other seven extracts only slightly inhibited fungal growth. There 

was some increase in antifungal activity after dialysis in extract 157F (crude 

1.6, dialyzed 2.2).

In summary, except crude extract I57L (rating=4), none o f the other 

crude extracts within this group exhibited strong to complete inhibition of

101



2

1.8

1.6

I "
I -
0
1 0* 
£

0.6

0.4

0.2

0

■  Crade 
□ Dimbfzcd

l l t L  IflXL l U L  I H L  IM F  IM L  I M L  IM L  IM L  I l M  t l l L  IIX F tU L  I l i L  II4 L  I I9 L  lIS S  t |7 L  I M L l l t S

Plant Extract

Figure III-8: Evaluation of Antifungal Activity of Crude 
and Dialyzed Extracts o f PCN 101 to 119. Antifungal 
activity was measured using the standard assay with F. 
chlamydosporum. Rating of 4 = complete inhibition of 
conidial germination and hyphai growth, rating o f 0 = no 
inhibition o f fungal growth. (L = leaf, F = fruit, S = seed).
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Figure HI-9: Evaluation of Antifungal Activity of 
Crude and Dialyzed Extracts of PCN 120-138. 
Antifungal activity was measured using the standard 
assay with F. chlamydosporum. Rating o f 4 = complete 
inhibition of conidial germination and hyphai growth, 
rating o f 0 = no inhibition of fungal growth. (L = leaf, St 
= stem, W = whole plant).
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Figure III-IO: Evaluation o f Antifungal Activity of 
Crude and Diaiyzed Extracts of PCN 140-158. 
Antifungal activity was measured using the standard 
assay with F. chlamydosporum. Rating o f 4 = complete 
inhibition of conidial germination and hyphal growth, 
rating of 0 = no inhibition of fungal growth. (L = leaf, F 
= fruit).
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fimgal growth. Unfortunately, 157L did not retain activity after dialysis. 

Surprisingly, while crude 140L did not exhibit antiftmgal activity, diaiyzed 

extract completely inhibited fimgal growth in the bioassay.

Time course study

A time course experiment was conducted to establish the optimum time for 

recording fimgal growth in the bioassay. In this experiment, germination of 

conidia and hyphal growth were monitored over time using seven randomly 

selected diaiyzed extracts (IS, 7L, 14L, 2 IF, 23L, 33L and 34LT) and a 

buffer control. Conidial germination was observed at 6, 18.5, 29, 40 and 48 

h of incubation. There was no visible germination or growth after 6 h of 

incubation. Star shaped growth indicative o f conidial germination was 

observed in treatments, containing extracts 7L, 14L, 23L, 21F or 33L after 

18.5 h. After 29 h o f incubation, the number of conidia that germinated 

increased dramatically in three of the extracts and the buffer control (Table 

lll-l). In contrast, the number of conidia that germinated in wells containing 

IS, 14L, 2 IF or 23L was much lower. After 40 h o f incubation, moderate
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Table III-l: Time Course of Conidial Germination and Hyphal Growth 

in the Bioassay.

Plant extract Conidial germination 

18.5 h 29 h

Hyphal growth rating 

40 h 48h

IS 0 9 VL 3.8

7L 5 130 MG 2

14L 5 35 MG 2

21F 1 40 MG 2

23L 4 45 MG to HG 1

33L 5 130 MG 2

34LT 0 100 MG 2

Control 0 150 HG 0

Standard assay conditions were used in this experiment. 

Approximately 290 conidia were used in each well. Conidial 

germination and hyphal growth of Fusarium chlamydosporum was 

observed at 6, 18.5, 29, 40 and 48 h o f incubation. The observation 

after 48 h was measured using the numerical rating scale outlined in 

the Materials and Methods. (MG = moderate hyphal growth, HG = 

heavy hyphal growth, VL = very little hyphal growth, S = seeds, L = 

leaves, LT = latex).
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hyphal growth was noted in the buffer control and in all the extracts except 

IS. In the case o f extract IS, conidial germination remained low (60 

conidia) and there was only a small amount of hyphal growth. Although 

there was lower conidial germination in wells containing 14L, 21F or 23 L 

after 29 h of incubation, the mycelial growth after 40 h of incubation was 

comparable to growth in the control. Hyphal growth covered most of each 

well and star shaped conidial germination was no longer visible after 40 

hours of incubation in the control and all extracts except IS. Even after 48 

h, the number o f germinated conidia remained the same as noted in the 40 h 

observation and the star-shaped growth pattern was still visible in wells 

containing IS. Although there was some hyphal growth in this extract, the 

mycelia were branched, stunted and distorted.

Mycelial growth was extensive in the buffer control after 48 h of 

incubation and covered the total surface of each well of the microtiter plate. 

The buffer control received a rating of zero, indicating no inhibition of 

ftmgal growth. Mycelial growth remained moderate in extracts 7L, 14L, 

21F, 33L and 34LT after 48 h and the growth was mostly in the center of the 

microtiter well. A ftmgal growth inhibition rating o f 2 (moderate inhibition) 

was given to all these extracts. Hyphal growth was fi'om moderate to heavy
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in extract 23 L indicating a slight inhibition o f fungal growth. Therefore, a 

rating of 1 was given to extract 23L. No new conidial germination was 

observed in extract IS and there was a clear indication that the hyphal 

growth had stopped. The hyphal growth was still distorted and the hyphae 

appeared to disintegrate into small fragments. For each extract, four 

replicates were used. Based on the observation, an inhibition of fungal 

growth rating of 3.5 to 4 was given to each replicate o f diaiyzed extract IS. 

Average rating of four replicates was 3.8 indicating a very strong antifungal 

activity. Based on observations from the time course study, 48 h was 

selected as the standard incubation time for the fungal bioassay.

Range of activity

Several diaiyzed extracts were tested for antifungal activity using A. flaviis 

and A. parasiticus. The inhibition of growth o f A. flavus and A. parasiticus 

by these extracts was similar in extent to the inhibition observed using F. 

chlamydosporum. For example, extract 34LT exhibited moderate and 8S 

exhibited slight inhibition o f fungal growth with all three fungi.
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DISCUSSION

One hundred-sixty-four crude extracts from over 100 tropical plant species 

were screened for antifungal activity against F. chlamydosporum. Thirty- 

five crude extracts exhibited anywhere from strong to complete inhibition of 

fungal growth. Twenty-five extracts showed very slight (rating of one or 

below) inhibition and in the rest of the extracts, inhibition of fungal growth 

was higher than one. After dialysis, most of the crude extracts lost their 

antifungal activity. Forty extracts retained antifungal activity after dialysis. 

Most of these extracts exhibited moderate to slight inhibition of fungal 

growth. Only five diaiyzed extracts exhibited strong to very strong 

antifungal activity. Based on the results of this antifungal screen, we 

conclude that tropical rainforest species are a useful source of antifungal 

activities. The presence of putative antifungal proteins in the diaiyzed 

extracts was less common.

Most of the extracts that exhibited antifungal activity before dialysis 

lost their activity after dialysis. Thus, it appears that most of the antifungal 

activity was due to soluble metabolites with molecular weights less than 

3,500 Da. Apparently, macromolecular compounds with molecular weights
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greater than 3,500 Da were responsible for the strong inhibition of fimgal 

growth exhibited by the five diaiyzed extracts.

Close observation of conidial germination and hyphal growth revealed 

that the mechanisms of inhibition fall into at least two classes. In the first 

class, conidial germination was completely inhibited after 48 h of 

incubation. In some cases, e. g. 98F, conidia did not germinate even after 72 

h of incubation. In the second class, conidial germination did occur but the 

number of conidia that did germinate was often lower than in controls. In 

these cases, the reduction in germination was frequently coupled with a 

reduction or alteration in hyphal growth. For example, diaiyzed extracts IS 

and 1158 strongly inhibited conidial germination and retarded hyphal 

growth, forming extremely branched and distorted hyphae.

In assays with IS, none of the conidia germinated in the presence of 

crude extract. Only a few conidia germinated in assays containing diaiyzed 

extract. In fact, hyphal growth stopped within two days and hyphal 

disintegration was observed. The inhibitory activity o f these extracts may be 

due to enzymatic activity that interferes with hyphal growth. Mauch et al. 

(1988) reported that the inhibition of ftmgal growth in extracts of pea was 

caused by swelling and lysis of the hyphal tips o f the fungus. When the 

same fungus was incubated with chitinase and P-I,3-glucanase purified fi*om

110



pea, swelling and lysis of the fimgal tips were observed. Fimgal growth was 

also inhibited. Thus, extracts may exert their effect in at least three different 

ways. The first is to inhibit conidial germination, the second is to retard the 

growth of hyphae and the third is to distort hyphal growth.

The differences in the results obtained with crude and diaiyzed 

extracts suggest that many o f these plant extracts contain more than one 

antifungal activity. Indeed, many of these plants may possess a variety of 

defensive weapons that protect the plant from fungal attack. The 

observation that some extracts may utilize more than one mechanism of 

action, e. g. inhibition of germination and retardation o f hyphal growth, 

support this conclusion. The observed differences in inhibitory activity 

between different plant extracts may reflect differences in the unit activity of 

the inhibitor and/or differences in the concentration o f inhibitor in the 

extract.

The inhibitory activity may not be stable over time. The inhibitor 

may break down naturally. Alternatively, it may be inactivated or detoxified 

through the action o f 1) endogenous activities in the extract, i. e. hydrolases;

2) reactive components in the extract, i. e. phenolic compounds, oxygen; or

3) activities present in the fungus, e. g. hydrolases, detoxification 

mechanisms. This may account for the reduced activity or loss of activity
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with time noted in some extracts. The extraction conditions used in these 

studies were not designed to protect sensitive or unstable activities. 

Antioxidants, metal chelators, protease inhibitors and/or reductants were not 

included in the buffer. The only protectant used was PVP that was added to 

reduce the concentration of potentially reactive phenolics.

The activities noted in these screens may not reflect all of the 

activities initially present in the extracts. Protein precipitation and 

dénaturation continue during storage and dialysis of the extracts. The loss of 

activity upon dialysis is consistent with the conclusion that metabolites were 

responsible for some fungal growth inhibition. In a few instances, the 

activity actually increased after dialysis. The inhibition or masking of 

activity by endogenous factors that are removed upon dialysis may explain 

this observation. Certainly, only a relatively small proportion of plant 

species tested exhibited strong antifungal activity.

The activities detected in these aqueous extracts do not reflect the 

total antifungal activity present in the plant tissue or the potential to produce 

defense-related proteins and metabolites in response to fungal invasion. 

Many antifungal metabolites may not be soluble or may be only sparingly 

soluble in aqueous extracts. Normally, organic solvent extraction is required 

to isolate those compounds. Frequently, plant defenses are not expressed
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constitutively but are produced in response to attack. We have not attempted 

to induce any of the plant species tested to enhance the occurrence or levels 

of defensive compounds present in the tissue.

In many plants, defense-related proteins are induced upon infection by 

pathogens (Benito et al., 1998; Bol et al., 1990; Dubery and Slater, 1997; Hu 

et al., 1997; Hu and Reddy, 1997; Kragh et al., 1995; Mohr et al., 1998; 

Rasmussen et al., 1992; Rethinasamy et al., 1998; Yi et al., 1996). These 

defense-related proteins include enzymes responsible for the production of 

phytoalexins and other defensive metabolites, as well as pathogenesis- 

related proteins such as chitinase, glucanase and protease inhibitors. It is 

possible that extracts without antifungal activity are from plants that do not 

produce defense-related molecules constitutively and have not been induced. 

Therefore, it can not be concluded from this antifungal screening that the 

extracts that did not exhibit any antifungal activity are from plants that don’t 

produce any antifungal compounds. Even though antifungal compounds are 

not produced constitutively by these plants, they may very well possess the 

ability to activate defense genes in response to various elicitors. There may 

be an ecological advantage for plants that do not produce defense-related 

compounds constitutively. Plants with inducible defenses would dedicate
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resources to the production of defensive agents only when required, 

conserving resources for growth and reproduction.

Selected extracts were screened against three different fungi. All of 

these selected extracts exhibited similar antifungal inhibition against all 

three fungi. From this study, it can not be concluded that similar results 

would be obtained if the rest of the extracts were tested with the same fungi 

or other fungi. Antifungal compounds present in the extracts may or may 

not have a broad range of activity. The activity may vary for different fungi 

due to different modes of action or different fungi may be more or less 

sensitive to certain defense compounds or may be able to detoxify or 

counteract certain types of defenses.

All the extracts were tested against F. chlamydosporum, which 

belongs to the higher group of fungi. None of these extracts was tested 

against any representatives from the lower group of fungi such as 

Phytophthora sp. or Pythium sp. There are many antifungal proteins such as 

PR-1 (see review) and PR-5 (Woloshuk et al., 1991) proteins that 

specifically affect the lower group of fungi such as Phytophthora infestans. 

Consequently, if these 164 extracts were tested for antifungal activity against 

members of the lower group of fungi, the results may be completely 

different from the results obtained in this antifungal screen. The goal o f this
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section was to identify tropical plants with antifungal activity. For this 

reason, a large number o f plant extracts was screened. To facilitate 

screening and the interpretation of results, it was convenient to use only one 

species o f fungus in the bioassay.

CONCLUSIONS

Our objective was to discover and purify antifungal proteins/polypeptides from 

tropical plant extracts. In this initial screen, we identified a number of tropical 

plant extracts with antifungal activity. The antifungal activity in several plant 

extracts was retained after dialysis. Presumably, antifungal activities retained after 

dialysis might be due to proteins or polypeptides. Based on these results, efforts 

were initiated to further purify these putative antifungal proteins from the plants 

identified.
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Chapter IV: Preliminary Characterization and Properties of 

Antifungal Activities from Seeds of Swartzia simplex

INTRODUCTION

During the initial screen, a number of extracts were identified that exhibited 

moderate inhibition of fungal growth. One o f these was PCN 119, a small 

tree species from the lowland tropical rainforest of Costa Rica. This plant 

was identified as Swartzia simplex (Swartz). S. simplex is a member of the 

Caesalpinioideae, one of three subfamilies o f the Leguminosae. Activity in 

seed extract o f S. simplex was retained after dialysis indicating that the active 

components were greater than 3,500 Da in size.

Seeds o f S. simplex was collected by Dr. Karel R. Schubert from the 

La Selva Biological Station in the Limon Province of Costa Rica. The field 

station is operated by the Organization for Topical Studies. According to 

Dr. Schubert’s field observations, fruits of S. simplex remain on the tree for 

approximately 4-6 months. During this period, there were no visible signs 

of fungal infection or insect predation. Subsequently, an extract of S. 

simplex seed was tested against Aspergillus flavus and Fusarium

116



moniliforme. This extract was not included among the selected extracts 

tested against A. flavus and A. parasiticus in the initial screen (Chapter III). 

The antifungal activities o f the selected extracts tested in the initial screen 

against A. flavus and A. parasiticus were similar to those obtained with F. 

chlamydosporum. As discussed in Chapter III although the results of the 

selected extracts were similar with the three fungi tested, results with 

different extracts and/or different fungi might be quite different. This was 

the case with S. simplex seeds. The latter exhibited only moderate inhibition 

o f F. chlamydosporum growth but strongly inhibited growth of A. flavus and 

F. moniliforme. The activity was retained after dialysis and inhibition of 

both by diaiyzed extract was strong. Based on these observations the 

decision was made to further purify the antifungal activity from S. simplex 

seeds.

The purification of bioactive factors was initially based on results 

from bioassays using three different fungi, A. flavus, F. moniliforme and F. 

chlamydosporum. In the early studies, it was clear that after initial 

purification the growth o f F. chlamydosporum was extremely sensitive to a 

variety of factors present in these extracts. In contrast, the growth of A. 

flavus and F. moniliforme were not affected by many of the components
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(factions) which retarded the growth of F. chlamydosporum. In addition, F. 

chlamydosporum is a saprophytic/opportunistic pathogen and our goal was 

to purify antifungal activities against agronomically important fungal 

pathogens.

From the beginning, it was clear that there were multiple components 

with antifungal activity, in extracts o f seeds of S. simplex and the activities 

were different against different fungi. It was not possible to pursue the 

purification o f all the different activities against both F. moniliforme and A. 

flavus. Thus, we had to concentrate on purifying the activities against one 

fungus. A. flavus is one of the most difficult fungi to control and this fungus 

produces aflatoxin which is very toxic to animals and humans. Therefore, 

we decided to concentrate our efforts on the purification of antifungal 

proteins active against A. flavus. The later stages o f purification were based 

entirely on the results of the A. flavus bioassays.
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MATERIALS AND METHODS 

Fungal bioassay

The antifungal assay was performed using the liquid bioassay 

according to the procedure described in Chapter III. The pathogenic fungus, 

A. flavus, was used for all bioassays, unless noted.

Extraction of plant tissue

Neutral extraction: Plant seeds were routinely extracted in 10 mM Tris- 

HCl, pH 8.0 according to the extraction protocols described in Chapters III. 

After homogenization, filtration and centrifugation, the crude extract was 

diaiyzed using Spectra For 3 dialysis membrane with a nominal molecular 

weight cut off of 3,500 Da (3500 MWCO). The diaiyzed supernatant was 

referred to as the neutral extract (NEx).

Acid extraction: Seeds of & simplex were homogenized in 5 volumes of 

0.1 N HCl. Typically, the homogenized tissue was filtered and centrifuged 

as per the neutral extraction protocol. After centrifugation, the acid extract 

was either 1) diaiyzed exhaustively against 10 mM Tris-HCl (pH 8.0) using 

a 3,500 MWCO membrane; or 2) neutralized with the
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dropwise addition o f 2 M NaOH; or 3) neutralized and then diaiyzed. For 2 

and 3, the extract was held on ice for one h after neutralization. After one h, 

the cloudy supernatant was centrifuged (20,000 x g for 10 min) to remove 

the denatured protein and the clarified supernatant was filtered through 

Whatman 3MM filter paper. The diaiyzed acid extract (not neutralized) was 

referred to as acid extract (AEx). The neutralized acid extract (not diaiyzed) 

and the neutralized/dialyzed acid extract was referred to as neutralized acid 

extract (NAEx) and neutralized/dialyzed acid extract (NDAEx), 

respectively. All extracts were stored at 4 °C or frozen at -20 °C.

Heat treatment

To determine the stability o f the active components to heat dénaturation, 

neutral extract was subjected to heating at 60, 70, 80, 90, and 100°C for 3 

min. After heat treatment, the extracts were cooled quickly on ice. To 

remove precipitated protein, the heat-treated samples were centrifuged at 

18,000 rpm for 20 min. The pellet was discarded and the soluble material 

present in the supernatant was assayed for antifungal activity.
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Preparative isoelectric focusing

A BioRad Rotofor preparative isoelectric focusing cell was used for 

preparative isoelectric focusing. Crude diaiyzed extract was diaiyzed 

against 10 mM sodium chloride prior to isoelectric focusing. Twenty-six ml 

of the diaiyzed extract was added to 12.5 ml of 25% glycerol. To this 

solution, 0.62 ml of ampholyte, pH range 3-10 (BioRad), was added 

bringing the total volume of the solution to 39.1 ml. The final volume o f the 

solution was brought to 50 ml by adding 10.9 ml of deionized water. The 

entire sample containing diaiyzed crude extract, glycerol, ampholyte and 

deionized water was injected into the Rotofor cell. Isoelectric focusing was 

performed according to the BioRad lEF protocol provided by the 

manufacturer.

Twenty fractions (2.5 ml each) were collected and the pH o f each 

fraction was measured with a Beckman micro-electrode. All 20 fractions 

were diaiyzed against 1 M NaCl to disrupt the electrostatic forces between 

ampholytes and proteins. After dialysis with high salt, fractions were 

exhaustively diaiyzed against 10 mM Tris-HCl (pH 8.0) and assayed for 

antifungal activity.
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Size-exclusion chromatography (SEC)

A 100-cm X 1.6-cm Pharmacia column was packed with Pharmacia 

prep-grade Superose 12 or Sephacryl-200 HR gel filtration media according 

to the manufacturer’s instructions. Once packed, each column was 

equilibrated at a flow rate of 1 ml/min with 10 mM Tris-HCl, pH 8.0, using 

a Pharmacia FPLC system equipped with a UV monitor and conductivity 

flow cell. Generally, the sample was concentrated (2-4 fold) by 

ultrafiltration (Centricon 10,000 MWCO) before loading onto the column. 

The concentrated sample was centrifuged in a microfuge just prior to 

injection to remove any insoluble material and 0.5 ml of the sample was 

applied to the column. Proteins were eluted with the same buffer and 

collected in 4-ml fractions. The absorbance of eluted fractions was 

measured at 280 nm.
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Chitin-affinity chromatography

Neutral chitin column: Sigma practical grade crab shell chitin (Sigma # C- 

9213) was poured into a 1-cm x 15-cm column and washed extensively with 

each of the following: 0.1 M HCl, deionized water, 0.1 M NaOH and 1 M 

NaCl. After washing, the column was equilibrated with 10 mM Tris-HCl, 

pH 8.0. Neutral extract (5-20 ml) was loaded onto the column and the 

unbound fraction, i.e. flow through (FT), was collected and reapplied to the 

column four times. The final flow through was collected and stored at 4 “C. 

The column was washed sequentially with 10 mM Tris-HCl, pH 8.0 (1st Tris 

wash), 0.1 M NaCl in 10 mM Tris-HCl (0.1 M salt wash) and 1 M NaCl in 

10 mM Tris-HCl (1 M salt wash).

Proteins that were bound to chitin were eluted with 0.1 M acetic acid. 

The absorbance o f each 10-ml fraction was measured at 280 nm with a 

Beckman 7500 Diode Array Spectrophotometer and the peak protein- 

containing ft-actions were pooled. Protein in the pooled fractions was 

concentrated by ammonium sulfate precipitation (i.e. 0.6 g of powdered 

enzyme-grade ammonium sulfate was slowly added per ml of sample with 

gentle stirring. The sample was held on ice for 30 min and then centrifuged
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at 18,000 rpm for 20 min). The pellet obtained after ammonium sulfate 

precipitation was resuspended in a minimal volume of 10 mM Tris-HCl, pH

8.0, and the supernatant fluid was saved.

After acetic acid elution, the column was washed with 100 ml o f 10 

mM Tris-HCl, pH 8.0 (2nd Tris wash). Protein bound to the column but not 

removed with 0.1 M acetic acid was eluted with approximately 100 ml o f 0.1 

M NaOH. Peak fractions were pooled and concentrated in the same manner 

as described for the acetic acid eluate. The salt washes. Tris washes, 

supernatant fluids after ammonium sulfate precipitation and the resuspended 

pellets (eluates) were diaiyzed against 10 mM Tris-HCl (pH 8.0).

In some instances, a modification o f the neutral chitin column 

chromatography protocol was used. After the first Tris wash, bound proteins 

were eluted stepwise with 0.1 M, 0.2 M, 0.3 M, 0.4 M, 0.5 M and 1 M NaCl 

in 10 mM Tris-HCl, pH 8.0. After elution, fractions were pooled, 

concentrated by ammonium sulfate precipitation and diaiyzed in Tris-HCl 

buffer.
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Acid chitin column: Chitin was packed into a column and washed

extensively as described above for the neutral chitin column. After washing, 

the column was either equilibrated with 20 mM sodium acetate buffer, pH 

5.6 or 50 mM sodium acetate, pH 3.8 for diaiyzed acid extract (AEx) and 

acid extract (NAEx), respectively. Five ml o f  the extract was loaded onto 

the colunm and the flow through was collected and reapplied to the column 

four times. The final flow through was collected and saved.

The column was washed sequentially with column equilibration 

buffer, 0.1 M NaCl and 1 M NaCl in buffer. Bound proteins were eluted 

first with 0.1 M acetic acid and then with 0.1 M NaOH. Between the low 

and high pH elution, the column was washed with either 1 M salt in buffer 

(neutral chitin column) or equilibration buffer without salt In the case of the 

chitin column where diaiyzed acid extract was used. Eluates were 

precipitated with ammonium sulfate as described for the neutral chitin 

column. The ammonium sulfate precipitated pellets obtained after elution 

with 0.1 M acetic acid elution (acetic acid eluate) and 0.1 M NaOH elution 

(NaOH eluate) were resuspended in a minimal volume of 10 mM Tris-HCl, 

pH 8.0. The washes, supernatant fluids and pellets were diaiyzed against 10 

mM Tris-HCl, pH 8.0 to remove excess NaCl and ammonium sulfate.
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Samples were concentrated by ultrafiltration using Centricon 10 

concentrators as noted.

Ion-exchange chromatography

Anion-exchange chromatography was performed using a Pharmacia 

Resource Q (RSQ) column. Before injection o f the sample, the column was 

washed with 1 M NaCl in 10 mM Tris-HCl, pH 8.0 at a flow rate of 1 

ml/min and equilibrated with 10 mM Tris-HCl, pH 8.0. Before loading onto 

the RSQ column, the sample was diaiyzed against 10 mM Tris-HCl, pH 8.0. 

After sample injection, the column was washed with several volumes of 

column buffer to remove unbound proteins. Bound proteins were eluted 

with a programmed gradient from 0 to 1 M NaCl in 10 mM Tris-HCl, pH

8.0, at a flow rate of 1 ml per min. Absorbance of the eluted proteins was 

measured at 280 nm. All RSQ column fractions were diaiyzed exhaustively 

against 10 mM Tris-HCl (pH 8.0) to remove salt.

Determination of purity

Protein purity was assessed by SDS-PAGE (12.5% total acrylamide)

according to Laemmli (Laemmli, 1970). Protein samples were denatured by 

boiling for five min in SDS sample buffer containing (3-mercaptoethanol
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(BME). After electrophoresis, gels were stained with Coomassie Brilliant 

Blue R 250 and then destained for 48 h in destaining solution. After 

destaining, the gels were restained with silver nitrate according to the 

method described by Bloom, 1987.

Hemagglutination

Lectins were detected by measuring hemagglutination. The 

agglutination assay was performed according to the protocol described by 

Lis and Sharon (Lis and Sharon, 1981). Three different sources of red blood 

cells were used for the agglutination assay: 1) human type A red blood cells 

(RBC); 2) porcine RBC; and 3) rabbit RBC. For each fraction, 100 pi of 

concentrated sample (Centricon 10) was serially diluted with phosphate 

buffered saline (PBS) in a 96-well, U-bottom microtiter plate. Red blood 

cells were added to these diluted samples and the plates were incubated for 

30-60 min. After incubation, agglutination o f red blood cells was measured 

visually and the data was recorded. Positive agglutination resulted in a 

dispersed appearance to the red blood cells whereas a negative result 

produced a compact dot of RBC.
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Enzyme assays

Spectrophotometric chitinase assay: Endochitinase activity was measured 

spectrophotometricaily using a modification of the method developed by 

Boiler and Mauch (Boiler and Mauch, 1988). Individual fractions (100 |il) 

were incubated in a water bath with 0.01% (w/v) insoluble shrimp shell 

chitin (Sigma # C8908) resuspended in 10 mM NaAc, pH 5.0, for I h at 

37°C. After incubation, the insoluble chitin was removed by centrifugation 

in a microfuge at 14,000 rpm for 5 min. A portion of the supernatant fluid 

(175 pi) was pipetted into glass tubes containing 10 pi of N-acetyl 

glucosaminidase (Sigma # A 3189) and incubated in a 37°C water bath for 

another 2 h. After incubation, 35 pi of 1 M borate was added to the reaction 

mixture and the reaction mixture was heated in a boiling-water bath for 3 

min and then cooled to 25 °C. One ml of color reagent (p- 

dimethylaminobenzaldehyde; DMAB) was added to the cooled reaction 

mixture and the latter was incubated at 37°C for 20 min. After the final 

incubation, the absorbance of the reaction mixture was measured at 595 nm. 

N-acetyl glucosamine (Sigma # A 8625) was used as a standard and 10 pi of 

a 0.5 mg/ml solution o f chitinase (Sigma # C 7809) in 10 mM NaAc (pH 

5.0) was used as a positive control.
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B-13-Giucanase Assay: A modification o f the spectrophotometric assay 

developed by Abeles and Forrence (Abeles and Forrence, 1970) was used to 

measure P-l,3-giucanase activity. A sample (100 pi) from each fraction was 

incubated at 37°C for 3 h with 100 pi of 2.5% (w/v) laminarin (Sigma # L- 

9634) in 125 mM sodium acetate buffer, pH 5.0. After incubation, 750 pi of 

color reagent (dinitrosalicylic acid) was added to the reaction mixture and 

the latter was heated for 5 min in a boiling-water bath. The reaction mixture 

was cooled to room temperature, diluted (1:10) with deionized water and the 

absorbance of the samples was measured at 500 nm. A standard curve was 

constructed using 10 mM glucose and 100 pi o f 5 mg/ml laminarinase 

(Sigma # L 5144) was used as a positive control.

Chitinase and glucanase in-gel assay

To detect different isoforms of chitinases and glucanases, polyacrylamide 

gel electrophoresis was performed under nondenaturing conditions. Native 

PAGE without SDS was carried out at high pH (pH 8.9) according to Davis 

(Davis, 1964). The acrylamide concentration used for all gels was 12.5% 

unless otherwise noted. Ten to 15 pi of each sample was added to an equal
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volume of sample buffer, before loading onto the gel. The gel was subjected 

to electrophoresis at 20 mA for 3-4 h at room temperature. After separation 

of protein bands on the native gel, the presence o f chitinase and glucanase 

bands on the resolving gel were detected using the procedure developed by 

Shen and associates (Shen et al., 1991). After electrophoresis, the resolving 

gel was incubated at room temperature for 5 min in O.l M NaAc buffer, pH

5.0.

After equilibration in acetate buffer, the gel was overlaid with a 

precast 7.5% polyacrylamide gel containing 0.01% (w/v) glycol chitin. The 

gels were wrapped in saran wrap and incubated for 45-60 min at 37°C. 

After incubation, the original native gel was separated from the overlay gel. 

The later was incubated at room temperature for 5 min in a freshly prepared 

solution of 0.01% (w/v) fluorescent brightener 28 (Sigma # F 3543) in 0.5 M 

Tris-HCl-Cl, pH 8.0. The gel was then transferred to deionized water for 5 

min at room temperature to remove excess brightener and the gel was 

viewed with an UV transilluminator. Chitinase bands appeared as non­

stained (darker) spots.

To detect P-l,3-glucanase activity, the 12.5% native polyacrylamide 

gel from above was washed in deionized water for 5 min and then incubated 

in O.l M NaAc (pH 5.0) for 5 min. After equilibration with NaAc, the gel
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was incubated at 40°C for 2-3 h with a mixture containing 75 ml o f 0.05 M 

NaAc (pH 5.0) and 1 g of laminarin dissolved in 75 ml water. At the end of 

this period, the gel was transferred to a solution of methanol lacetic 

acidiwater (5:5:2). Subsequently, the gel was washed with water and stained 

with freshly prepared 2, 3, 5-triphenol tétrazolium chloride in 1 M NaOH by 

heating in a microwave for 3 min with shaking every 30 seconds.
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RESULTS AND DISCUSSION OF PRELIMINARY PURIFICATION 

Approach to purification of antifungal proteins and other factors

Before discussing an approach to purification o f bioactive materials, one 

needs to establish what the goals of purification are and how purification is 

to be defined. The goal of purification is to obtain a specific material in 

relatively pure form from a heterogeneous mixture of similar and dissimilar 

materials. The purification process itself is based on the selective removal 

of a specific substance from the mixture or the reverse, i. e. the removal of 

contaminants from the mixture. Purification can be achieved using either 

positive or negative selections. The ultimate goal is to obtain enough 

material in a state of purity suitable for the elucidation of the physical and 

chemical structure of the bioactive agent.

There are two basic approaches to purification of bioactive materials: 

I) the bioassay-directed approach and 2) the biochemistry-based approach. 

The purification o f antifungal activity by necessity focuses on the biological 

activity of these factors, i. e. their ability to inhibit or retard the growth, 

development and replication o f a specific fungus. Thus, much of the 

purification described herein has been based on the bioassay-directed
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approach. Various factors contribute to the complexity o f this approach. 

These factors include but are not limited to the following: 1) biological 

variability in fungal growth responses; 2) time required for the bioassay; 3) 

qualitative nature o f the bioassay; and 4) inability to distinguish between 

differences in the specific type of activity (e. g. occurrence of multiple forms 

or types of activities that give the same response, i. e. the “inhibition of 

fungal growth”). In addition, not all inhibitors are generic. Many are very 

specific, i. e. a component may inhibit one fungus but not another. For 

example, certain extracts tested in Chapter III inhibited the growth of F. 

chlamydosponim but not F. moniliforme.

The ability to identify specific biochemical attributes associated with 

a biological activity (“handles”) can reduce the complexity to some extent. 

For example, the purification of chitinase may be more direct because there 

are biochemical tests that allow one to specifically measure chitinase activity 

in the presence o f a mixture of other antifungal proteins. In this case, 

chitinase may or may not exhibit antifungal activity in the specific bioassay 

being used, for instance activity against A. flavus. These tests are also 

capable o f distinguishing specific isoforms of chitinase without the 

requirement for them to have a direct effect on the fungus. With the 

biochemistry-based approach, the higher degree o f specificity may be

133



actually be a drawback. The concern is that other bioactive factors which do 

not have a measurable and known biochemical activity will be missed by 

this more limited examination.

To be able to purify anything one must have 1) a way to measure the 

substance or activity (i. e. concentration) and 2) a way to assess the state of 

purity. In the case of proteins, the latter is most often done using SDS 

PAGE or other techniques such as HPLC, mass spectrometry, amino acid 

sequencing and isoelectric focusing. One can measure either the presence o f 

the desired substance or the absence of contaminating substances or both. 

The former, however, is often not so simple when isolating bioactive 

molecules.

By definition, bioactive factors are substances that have some 

measurable biological or biochemical activity. As stated earlier, purification 

can be based on the isolation of these biological activities (bioassay-directed 

approach) or on a biochemical assay (biochemistry-based approach). 

Purification is somewhat simpler if there is a biochemical measure o f 

activity, e. g. an enzyme assay, immunoassay, agglutination assay or enzyme 

inhibition assay. Life is not so simple when the biological activity is a 

physiological or cellular response, e. g. measuring effectors of cell growth, 

cell division or cell development.
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Measurements may be quantitative (e. g. enzyme assay, enzyme 

inhibitor assay), semi-quantitative (e. g. agglutination) or qualitative (e. g. 

inhibition o f fungal growth assay). The fungal bioassay used throughout this 

study is a fungal growth inhibition assay. Fungi can be grown on solid 

media in the presence of crude extracts or purified components. These 

materials can be applied to a filter disk placed on the media (disk assay) or 

introduced into a well cut out o f the media. Activity is measured as a zone 

of clearing, i. e. inhibition of growth of hyphal mat on the surface of the 

media. Normally, the width of the zone of inhibition provides a semi- 

quantitative measure of activity. Unfortunately, this technique which has 

been used effectively to identify antibiotic natural products does not perform 

as effectively when the bioactive material is a high molecular weight 

protein. Proteins do not diffuse into the media and, as a consequence, give a 

very narrow zone of inhibition.

For this reason, we have exclusively used a liquid growth media to 

which potential inhibitory proteins can be added. The assay can be easily 

replicated. The only limitation is the amount of material available for assay 

and the time involved in setting up and recording the results of the assay. 

The latter is quite tedious and has to be done by direct observation using an 

inverted microscope. Because all o f the plant materials tested in these
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studies are limited and, therefore, individual fractions of more purified 

components are even more precious. The major limitation is that the assay 

is only qualitative, not quantitative. Greater reliability can be obtained by 

replication and by determining the dose response for individual fractions. 

Unfortunately, this requires much more material. Although the use of 

replicated treatments with different concentrations provides a semi- 

quantitative analysis, the assessment of growth is still only qualitative.

Attempts have been made to make the microtiter plate assay more 

quantitative by measuring fungal “growth” spectrophotometrically in a 

microtiter plate reader. Still, many factors interfere with the reliability and 

accuracy of these methods. Ultimately, a plate reader was not available for 

these studies and we were forced to rely on the qualitative assay. Additional 

quantitative information can be derived by actually measuring and recording 

the number of conidia that germinate. This process is extremely tedious and 

time consuming. General observations on conidial germination and the 

morphology of fungal growth (stunting, hyperbranching, etc.) however, are 

extremely useful.

Because o f the qualitative nature of the assay, one does not know 

whether differences in activity reflect differences in the amount of material 

present in an extract or on the unit activity o f the material or both. Thus,
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when confronted with two samples with equivalent or different activities, it 

is difficult to choose to pursue one activity or the other. One may be present 

at very low concentrations but have a very high unit activity or just the 

opposite. In either case, the combination o f concentration and unit activity 

can give the full range of inhibition ratings. Indeed, it may be better to 

pursue a fraction with a fungal growth inhibition rating of 2.5 over a fraction 

with a rating of 4. There are other complications. In some cases, a threshold 

amount o f material may be necessary to detect activity. In other cases, 

activity may be in low abundance and masked by other components in the 

mixture.

The general approach to protein purification used in these studies 

involves three basic steps 1) the evaluation and optimization of bulk 

methods; 2) the preliminary evaluation of purification techniques; and 3) the 

development of a purification strategy or scheme. These steps are outlined 

in Figure IV-1 and the rationale behind each step is discussed below.

Research in Dr. Schubert’s laboratory is focused on the identification 

of novel bioactive proteins and natural products. Extraction conditions are 

used that favor the isolation of proteins, especially durable proteins that are
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Figure IV-1: A pproach to the Purification  
o f Bioactive Proteins
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capable of surviving in harsh environments such as the surface of a leaf, the 

seed coat or the gut o f an insect. To select “tough” proteins, plant tissues are 

extracted with low ionic strength, neutral pH buffers with minimal additives. 

The only “protectant” added during extraction was PVP. The latter is added 

to remove phenolic compounds that react with proteins contributing to 

protein dénaturation and causing chemical modifications. These 

modifications complicate interpretation of results by introducing molecular 

heterogeneity. This heterogeneity may create apparent “isoforms” or cause 

spurious results with techniques such as amino acid sequencing, isoelectric 

point determination and molecular weight determination.

This is the standard extraction protocol. In some instances, there are 

advantages to the use o f different or more “stringent” extraction procedures, 

e. g. extraction at low or high pH. Extraction with low (deionized water) or 

high ionic strength buffers or with organic solvents, additives and extractants 

such as chaotropic agents (urea, guanidine) or ionic or nonionic detergents 

are also possible. Potential advantages of these modifications are that a 

different range or complement o f bioactive factors may be isolated using 

different extraction protocols. At the same time, certain contaminants may 

not be extracted. Another potential benefit may be that some contaminants
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may not be stable using the modified extraction protocol and can be 

removed fi-om the more stable bioactive materials.

Once conditions are identified for the extraction of a bioactive factor, 

attempts can be made to optimize extraction conditions and thereby enhance 

extraction efficiency (total activity), recovery (yield) and/or purity (specific 

activity) of the starting material. This is especially useful with certain 

enzymatic activities that tend to be more sensitive to external conditions. 

Because the focus of this work is on the discovery of relatively robust 

activities, little effort has been spent on optimizing extraction conditions 

The use of drastically different extraction conditions, e. g.. Tris-HCl buffer, 

pH 8 vs. 0.1 M HCl, have been used on the premise that a different 

complement of activities may be isolated or less stable contaminants may be 

removed. This approach also provides information that may help identify 

specific active components.

The next step is to examine the effectiveness of bulk purification 

techniques that may be useful for the first steps o f the purification. Bulk 

purification techniques are procedures used for the initial fractionation of the 

dilute crude extract. The goals o f bulk purification are: 1) remove as much 

of the contaminating protein as possible fi-om the relatively dilute extract 

without substantial loss of the desired activity; 2) concentrate the desired
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activity into a more manageable volume; and 3) provide basic information 

and insight on the general properties of the active material that may be 

useful later in the purification.

The primary bulk technique used in these studies was dialysis. This 

technique can provide information concerning the nature of the active 

material, e. g. is it a low molecular weight compound or metabolite or is it a 

higher molecular weight component like a protein. In addition, dialysis is a 

relatively effective way to remove interfering substances like phenolic 

compounds with molecular weights below a certain cut-off. Other bulk 

techniques are listed below in Table IV-1. Heat treatment and ultrafiltration 

were routinely evaluated for their potential use as bulk purification 

techniques.

Table IV-1: Examples of Bulk Purification Techniques
Purification Concentration Information

Technique

Heat Treatment Yes No Yes

Ultrafiltration Yes Yes Yes

Dialysis Yes No Yes

Stability (pH) Yes (Yes) Yes

Solubility* Yes Yes Yes

' Solubility precipitation with ammonium sulfate, PEG, et lanol, acetone.
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Once bulk, purification techniques have been evaluated and exploited, 

if possible, the next step is to evaluate generic techniques that separate 

molecules based on general properties o f biomolecules. These properties 

and the associated separation techniques are listed below.

1. Size Size-exclusion (gel filtration) chromatography

2. Charge Anion and cation-exchange chromatography

3. Hydrophobicity Hydrophobic interaction chromatography

4. Isoelectric point lEF/ chromatofocusing

5. Affinity Affinity chromatography

Again, these techniques were screened for effectiveness as preliminary 

purification techniques. The techniques were evaluated based on the 

following criteria:

1. Yield

2. Fold purification

3. Purity of final material

4. Ability to resolve differences in activities and/or isoforms o f the same 

activity.
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Certain techniques such as gel filtration may introduce secondary separation 

techniques. For example, gel filtration media also introduce potential ionic, 

hydrophobic and affinity interactions that may play a role in specific 

separations. Each technique can be optimized by selection of specific 

chromatography media and separation conditions (pH, buffer, buffer 

concentration, additives such as salt, ionic strength, etc.).

Each technique also provides information about the biochemical and 

structural properties of the active material. This information along with an 

analysis of the performance of the technique and the nature of contaminating 

substances is used to develop a purification protocol including the sequence 

of steps, combining one or more techniques to achieve further purification. 

In this process, two factors need to be kept in mind. The first is that the 

purification sequence is important and alterations in sequence can alter the 

final purification. Second, with the sensitivity of modem analytical 

techniques such as HPLC, mass spectrometry, automated protein 

sequencing, one does not have to purify a protein to homogeneity in order to 

characterize the protein. One only needs to purify the material enough to be 

able to identify the putative bioactive protein. Furthermore, some methods, 

for instance the chitinase in-gel assay are not sensitive to contaminating
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activities such as hemagglutination, while others may be extremely sensitive 

to contaminants, e. g. protein sequencing. Note: combining techniques such 

as SDS-PAGE with electroblotting onto PVDF membranes can circumvent 

this limitation in the case of protein sequencing.

Potential pitfalls of these techniques are 1) activities may associate 

and co-purify with one another; 2) active components may require more that 

one factor for activity or multiple activities may act in a synergistic manner, 

e. g. chitinase and glucanase; and 3) one may measure the properties of a 

minor contaminant that has for example an abundance of certain amino acid 

residues. Alternatively, because of the sensitivity of some assays including 

certain bioassays, a minor component, not the major component, may 

actually be responsible for biological activity.

Other factors to consider include the availability of biological 

materials. As noted before, limiting supplies o f biological materials requires 

that micro scale purification and assay techniques be used. One also needs 

to consider separation time and temperature when one is dealing with 

somewhat labile activities. In the current studies, the latter two 

considerations were not so important.

In this chapter, the results of the preliminary purification and 

evaluation o f techniques is presented. A diagram describing the standard
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process of methods evaluation is presented in Figure IV-2. Several different 

methods were tested (see following section on Preliminary Purification) and 

the information gained was used to develop a purification scheme for the 

isolation o f antifungal activities from extracts of Swartzia simplex seeds. 

The latter is presented in Chapter V.
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Figure IV-2: Standard Procedures for the Evaluation and Development of
Preliminary Purification Methods.
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Initial characterization of the antifungal activity from S. simplex

Heat treatment: Dialyzed neutral extract of S. simplex seeds was subjected 

to a 5-min heat treatment at 50, 60, 70, 80, 90 or 100 °C. After removal o f 

heat-denatured proteins, heat-treated extracts were tested for antifungal 

activity. Antifungal activity survived heating at 50 °C (Figure IV-3). This 

fraction retained full activity and completely inhibited conidial germination 

of A. flavus. Antifungal activity was totally lost after heating at 60 °C or 

higher. The heat sensitivity of the antifungal activity is consistent with the 

conclusion that the active component is a protein. Heat-treated extracts were 

also tested for hemagglutination activity. All o f the heat-treated extracts 

retained hemagglutination activity indicating that at least some of the 

agglutinating activity present in the extracts was not denatured by heat.
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Figure IV-3: Assessment of Antifungal Activity of 
Heat-Treated Extracts. Dialyzed neutral extracts 
were heated for 5 min at 50,60,70, 80,90 or 100°C. 
Heat treated extracts were centrifuged and the 
supernatants were assayed for antifungal activity 
against A. flavus using the standard bioassay.
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Estimation of size bv ultrafiltration: Dialyzed neutral extract was

concentrated by ultrafiltration using 10, 30, 50 or 100 kDa MWCO 

concentrators (Centricon). The solution retained after ultrafiltration (i. e. 

retentate) containing macrosolutes with estimated molecular weights above 

the membrane cut off and the solution that filtered through the membrane (i. 

e. filtrate) containing solutes with apparent molecular weights less than the 

nominal MW cut off were tested for antifungal activity. The retentâtes from 

the CIO, C30, C50 and C l00 concentrators completely inhibited germination 

of A. flavus conidia after 48 h of incubation (Figure IV-4). Moderate to 

slight inhibition o f hyphal growth was observed in all the filtrates in the 48 h 

assay. When the incubation period was prolonged to 7 days, inhibition of 

hyphal growth o f A. flavus by the filtrates was not detectable. However, 

even after 7 days of incubation, all of the retentâtes still inhibited 

germination and growth of this ftmgus.
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Figure IV-4: Preliminary Size Fractionation 
of Antifungal Activity. Dialyzed neutral 
extract was fractionated by ultrafiltration 
using 10, 30,50 and 100 kDa MWCO 
concentrators. One hundred gl of both the 
retentate and filtrate from each size 
fractionation were assayed for antifungal 
activity using A. flam s.
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Because of the limited heat stability of the bioactive components, heat 

treatment was not an effective technique for bulk purification. The apparent 

size of the active components was greater than 3,500 kDa based on the 

results of dialysis and ultrafiltration. In fact, the activity appears to be 

greater than 100 kDa in size based on its retention by the ClOO concentrator. 

If this is true, then size-exclusion chromatography may be an effective 

method of preliminary purification.

Preliminary purification of antifungal activity

Comparison of extraction procedures; As discussed earlier in this 

chapter, to develop preliminary bulk methodology for the purification of 

antifungal activity from S. simplex seeds, two different extraction procedures 

were chosen. In the standard neutral extraction procedure, S. simplex seeds 

were extracted with 10 mM Tris-HCl, pH 8.0, while the second procedure 

(acid extraction) involved extraction with 0.1 M HCl. The different 

extraction conditions used may enrich in certain activities, isolate different 

activities and/or remove contaminating protein. In both cases, the crude 

extracts were dialyzed to remove low molecular weight factors and tested for 

antifungal activity. The dialyzed neutral extract provided very strong
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inhibition, while the dialyzed acid extract completely prevented fungal 

growth. Very strong hemagglutination activity was observed in the dialyzed 

neutral extract. Notably, there was no hemagglutination activity in the 

dialyzed acid extract suggesting that hemagglutinating activity was sensitive 

to very low pH. The latter observation is consistent with the conclusion that 

the agglutinating activity was a protein.

After extraction, various preliminary purification techniques were 

evaluated for yield and effectiveness. All o f these preliminary purification 

steps (summarized in Figure IV-5) were carried out in parallel with both 

neutral and acid extracts. These techniques include size-exclusion, chitin- 

affmity and anion-exchange chromatography, preparative isoelectric 

focusing and other methods.

Size-exclusion chromatography and chitin-affinity chromatography 

were the most effective tools for purification o f activity from crude extracts. 

For this reason, results of preliminary fractionation of crude extracts using 

these two techniques will be discussed first and with the most detail. As 

discussed earlier, the use of different approaches to purification provides an 

additional benefit by creating a set o f data on the properties o f active 

materials that can help distinguish between different activities. This 

“triangulation” approach assists in the identification of bioactive proteins.
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Figure IV-5: Scheme Outlining the Methods Tested for the Preliminary 
Purification o f Antifungal Proteins fi"om Extracts of S. simplex Seeds.
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Size-exclusion chromatography

Neutral Extract: To begin, 500 \i\ o f dialyzed neutral extract was

fractionated by size-exclusion chromatography (SEC) on a Pharmacia 

Superose 12 column. According to the absorbance profile (280 nm), the 

majority of the 280-absorbing material was in fractions 2-5 with smaller 

peaks in fractions 8 and 11 (Figure IV-6). The middle peak exhibited a 

characteristic shoulder in fractions 9 and 10. All 20 fractions obtained from 

the Superose column were assayed for antifungal activity. The results of the 

bioassay revealed that fraction 9 and 10 very strongly inhibited growth of A. 

flavus, while fraction 1 and 4 completely inhibited conidial germination and 

growth (Figure IV-7). Only slight inhibition of hyphal growth was observed 

in fractions 12, 13 and 15.

Fractions 9 and 10 agglutinated human and rabbit red blood cells 

(Figure IV-8). The strong agglutination reaction and inhibition of fungal 

growth by these fractions suggest that there may be a correlation between 

hemagglutinating activity and antifungal activity. Chitinase and glucanase 

activities in the Superose 12 fractions were also measured. According to the 

results of the chitinase colorimetric assay, the main peak o f chitinase activity
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Figure IV-6; Absorbance Profile of Neutral 
Extract Fractionated by Size Exclusion 
Chromatography. Five hundred \i\ of 
concentrated (2x) neutral extract was applied to 
the column. Proteins were eluted with 10 mM 
Tris-HCl, pH 8.0.

155



4-1

I  ■■
a 2  ̂T «

It

1 2 3 4 5 6 7 8 9 10 II  12 13 14 15 16 17 18 19 20
Fraction Number

Figure IV-7: Antifungal Activity of Fractions From 
Neutral Extract Superose 12 Column. Neutral extract 
was separated by size exclusion chromatography on 
a Superose 12 column. A sample (100 pi) from each 
fraction was assayed for antifungal activity using A. 
flavus.
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Figure IV-8: Hemagglutination of Fractions from 
Neutral Extract Fractionated by Size Exclusion 
Chromatography on a Superose 12 Column. A 
sample (100 pi) from each fraction was tested for 
agglutinating activity with human red blood cells.
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was present in fractions 4 to 5 (Figure IV-9). Fractions 2 to 4 had the 

highest glucanase activity, although there was a trace of activity in all 20 

fractions (Figure IV-10).

The protein banding patterns o f the neutral extract Superose 12 

fractions were analyzed by SDS-PAGE (Figure IV-11). This analysis 

revealed that fraction 1 contained 5-6 minor bands. A number of heavily 

stained bands with estimated molecular weights between 28 to 35 kDa were 

present in fractions containing chitinase (fractions 2-6), glucanase (fractions

1-4) and antifungal activity (fraction 4). The molecular weights of these 

proteins are similar to the molecular weights o f many plant chitinases and 

glucanases. Fraction 4 that had very strong antifungal activity, the highest 

glucanase activity and very good chitinase activity contained several other 

prominent bands with estimated molecular weights of approximately 25, 18 

and 8 kDa. Fraction 9 and 10 exhibited 2 major bands of approximately 21 

to 22 kDa. Bands with similar molecular weights were also present in 

fractions 3-17 but the intensity of staining of these bands was the highest in 

fractions 9 and 10 and was relatively low in fractions 3-5. Fraction 9 also 

contained four distinct bands with molecular weights from 31 kDa to 66 kDa 

along with some minor bands including several diffuse bands from 10 to 16 

kDa.
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Figure IV-9: Total Chitinase Activity of Fractions from 
Neutral Extract Superose 12 Column. A 100 pi sample 
from each fraction was used for the assay . Chitinase 
activity in each fraction was measured using the 
colorimetric chitinase assay.
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Figure FV-10; Total Glucanase Activity of 
Fractions after Superose 12 Chromatography of 
Neutral Extract. A portion of each fraction was 
concentrated (2x) and 100 pi of the concentrated 
sample was evaluated for glucanase activity using a 
colorimetric assay.
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Figure FV-ll: SDS-PAGE Gel of Neutral Extract 
Superose 12 Fractions. One hundred (il from each 
fraction was dried in vacuo, resuspended in 10 (il of 
sample buffer and boiled for 5 min before loading 
onto the gel. Lane 1 to 17, Superose 12 fractions 1 to 
17. Lane 18, molecular weight markers.
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Acid extract: Dialyzed acid extract (0.5 ml) was fractionated by size- 

exclusion chromatography using the same materials and methods as used for 

the neutral extract. The absorbance pattern (Figure IV-12) was substantially 

different from the profile for the neutral extract. For instance, there was a 

broad peak of 280 absorbance in fractions 2-7 but individual peaks were not 

clearly resolved. Additional 280-absorbing material was eluted in fractions 

8-20. These late-eluting constituents gave broad, non-resolved peaks.

Incorporation of fractions 3-5 in the fungal bioassay resulted in 

complete inhibition of conidial germination and fungal growth (Figure IV- 

13). Unlike results obtained from the neutral extract Superose 12 fractions, 

no antifungal activity was found in fractions 9 and 10. The absence of 

antifungal activity in fractions 9 and 10 support the conclusion that there are 

differences in the active components found in the acid and the neutral 

extracts. When tested, none o f the acid-extract Superose 12 fractions 

agglutinated human or rabbit red blood cells. Again, the apparent loss of 

both antifungal activity and agglutination activity in fractions 9 and 10 after 

size-exclusion chromatography of the acid extract adds support to the notion 

that at least some o f the antifungal factors present in the neutral extract may 

be agglutinins. Chitinase and glucanase activity was present in factions
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Figure IV-12: Absorbance Profile o f Acid 
Extract Separated by Size Exclusion 
Chromatography. Five hundred pi o f the 
concentrated (2x) acid extract was loaded onto 
the column. Proteins were eluted in 10 mM Tris- 
HCl, pH 8.0.
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Figure IV-13; Antifungal Activity of Fractions from 
Acid Extract Superose 12 Column. Acid extract was 
separated on a Superose 12. A sample (100 pi) from 
each fraction was assayed for antifungal activity 
using A. flavus.
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2-5 (Figure IV-14) and 2-5 (data not shown), respectively.

SDS-PAGE analysis of acid extract Superose 12 fractions revealed 

several protein bands in fractions 3 to 7 including two prominent bands with 

approximate molecular weights between 30 and 32 kDa (Figure IV-15). 

Two distinct bands between 14 and 21 kDa in size were present in all the 

fractions. Several additional bands between 21 and 14 kDa were present in 

fractions 3 to 6 only.

In an attempt to determine the number of individual proteins present 

in the active fractions, fraction 5 from the acid extract Superose 12 column 

was further purified by reverse phase HPLC at the Molecular Biology 

Resource Center at the University of Oklahoma Health Sciences Center (OU 

HSC). Approximately 12 different peaks were detected based on the 

absorbance profile at 218 nm (Figure IV-16). The fractions from the micro- 

HPLC were dried and subjected to SDS-PAGE. The results of a silver- 

stained SDS gel of these fractions are presented in Figure IV-17. Although 

the pattern o f protein bands differed in each fraction, the major peaks from 

HPLC fractions 10-19 contained one or two major bands with very similar 

molecular weights in the range of 28 to 31 kDa.
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Figure lV-14: Total Chitinase Activity of Acid Extract 
Fractionated by Size Exclusion Chromatography on a Superose 
12 Column. A sample (100 pi) from each fraction was used foe 
the assay. Chitinase activity in each fraction was measured 
using the colorimetric chitinase assay.
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Figure FV-15: SDS-PAGE Gel of Acid Extract 
Separated on a Superose 12 Column. One hundred pi 
of each fraction was dried in vacuo, resuspended in 
10 pi of sample buffer and boiled for 5 min before 
loading onto the gel. Lane 1 to 17, Superose 12 
fractions 1 to 17.
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Figure V-16: HPLC Profile of Acid Extract Superose 12 Fraction 5.

Micro-HPLC of fraction 5D2178.

Sample separated on a C l8 
column with a gradient of 
acetonitrile in water 
with TFA.
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Figure IV-17: SDS-PAGE Gel o f HPLC Column Fractions. 
Acid extract was separated on a Superose 12 column. Fraction 5 
was further fractionated by HPLC. Individual fractions were 
dried and separated on a 12.5% SDS gel. The gel was silver 
stained to detect protein bands. Lane 1, molecular weight 
standard. Lane 2 to 15, HPLC fraction 4 to 19.
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Affinity chromatography

Chitin-affinity chromatography has been used effectively to isolate chitin- 

binding antifungal proteins. Chitin-affinity chromatography was evaluated 

as a preliminary purification method. Dialyzed neutral extract and acid 

extract were both fractionated by chitin-affinity chromatography.

Neutral chitin-affinitv chrom atography: Two different elution procedures 

were used to fractionate dialyzed neutral extract on the chitin-affinity 

column. Once the sample was applied to the chitin column, bound 

components were eluted stepwise with either acetic acid/sodium hydroxide 

or NaCl. In the case of the low and high pH elution, 5 ml of dialyzed neutral 

extract was routinely loaded onto the column equilibrated with 10 mM Tris- 

HCl, pH 8.0. The flow through was collected and the unbound proteins 

were removed first with 100 ml of 10 mM Tris-HCl, pH 8.0 (first Tris wash) 

followed by washes with 0.1 M NaCl and I M NaCl in 20 mM sodium 

acetate buffer, pH 5.6.

After washing the colunm, bound proteins were eluted first with 100 

ml of 0.1 M acetic acid followed by 100 ml o f 0.1 M NaOH as described in 

the Materials and Methods. The elution profiles for the acetic acid and
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sodium hydroxide steps are shown in Figure IV-18. The majority o f the 

280-absorbing material released from the column was eluted with 0.1 M 

acetic acid and the remainder was eluted as a broad peak with 0.1 M NaOH. 

All of the fractions except the first Tris wash, second Tris wash and the 

supernatant after ammonium sulfate precipitation of the NaOH eluate 

strongly inhibited fungal growth (Figure IV -19). Chitinase and glucanase 

activities (Figure IV-20 and IV-21, respectively) were present only in the 

flow through and the resuspended pellets after ammonium sulfate 

precipitation o f the acetic acid and NaOH eluates. The presence of 

chitinases and glucanases in both the high and the low pH eluates suggested 

that there were different forms of chitinase and glucanase present in the 

neutral extract. This suggestion was confirmed using the chitinase and 

glucanase in-gel assay. Multiple forms o f both activities were detected in 

the neutral extract and in different chitin column fractions. These results 

will be presented in greater detail in Chapter V.

All of the fractions from the chitin column were assayed for 

hemagglutination (Figure IV-22). Before analysis, the flow through. Tris 

washes, 0.1 M NaCl wash and 1 M NaCl wash were concentrated using a 

Centricon CIO (10,000 MWCO) concentrator. For the hemagglutination 

assay, 100 pi o f each of the concentrated retentâtes along with an equal
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Figure IV-18: Absorbance Profile of Acetic 
Acid and Sodium Hydroxide Elution of 
Chitin-affinity Column. Neutral extract was 
applied to the chitin-affinity column and 
eluted with 0.1 M acetic acid followed by 
elution with 0.1 M sodium hydroxide. 
Fractions (10 ml) were collected and the 
absorbance at 280 nm was measured.
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Figure IV-19; Antifungal Activity of Neutral 
Chitin Column Fractions. Five ml of dialyzed 
neutral extract was fractionated on a chitin affinity 
column. Fractions from the chitin colunm were 
dialyzed against 10 mM Tris-HCl, pH, 8.0, and 100 
pi from each fraction was assayed for antifungal 
activity using A. flavus.
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Figure IV-20: Total Chitinase Activity of Neutral 
Chitin Column Fractions. Chitinase activity was 
measured using the colorimetric chitinase assay. A 
sample (100 pi) from each fraction was used in the 
standard assay.
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Figure IV-21: Total Glucanase Activity of Neutral 
Chitin Colunm Fractions. A sample of each fraction was 
concentrated (2x). One hundred pi o f concentrated 
sample from each fraction was evaluated for glucanase 
activity using the colorimetric glucanase assay.

175



I
?
go

oc(D

* p i Î?
-4H S

s?
St
g

g | lS'
g I a01? y

^ O
sr
I

Figure IV-22; Hemagglutination of Fractions 
from the Neutral Extract Chitin Column. Neutral 
extract was fractionated on a chitin affinity 
column. A sample of each fraction except acetic 
acid eluate and sodium hydroxide eluate were 
concentrated (2x). One hundred pi of 
concentrated samples from each fraction and one 
hundred pi of neutral extract, acetic acid eluate 
and sodium hydroxide eluate each were tested for 
hemagglutinating activity using human red blood 
cells.
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volume of the resuspended and dialyzed pellets after ammonium sulfate 

precipitation o f the acetic acid and NaOH eluates were tested. Different 

forms of agglutinin were present in the neutral extract. A portion of the 

agglutinating activity did not bind to the chitin column. This material, the 

non-chitin binding ft-action, was found in the flow through and the first Tris 

wash. Agglutinins that did bind to the chitin column were eluted at high pH. 

Only a small amount of this agglutinating activity was precipitated by 

ammonium sulfate, while most of the agglutinating activity remained soluble 

in the supernatant.

The occurrence of enzymatic activity, antifungal activity and 

agglutinating activity in the flow through and initial washes may indicate 

that the column was overloaded. Alternatively, different isoforms of an 

activity may be present in different fractions. For instance, some isoforms 

of chitinase may bind to the column while others do not bind. In 

experiments in which larger volumes of extract were applied to the same 

size column, the relative percentage of the total activity loaded onto the 

column that did not bind remained the same. This observation suggests that 

the column was not overloaded. Therefore, molecular differences or
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interactions between individual proteins may account for the lack of binding 

of certain forms.

SDS-PAGE analysis of the chitin column fractions revealed a number 

of protein bands with molecular weights between 14 and 45 kDa (Figure IV- 

23). Seven prominent bands were visible in the lane containing flow 

through. Out of the seven distinct bands, there were two major bands with 

molecular weights of approximately 31-33 kDa. Two bands of similar size 

were the major proteins in the acetic acid and NaOH eluates and were also 

present to some extent in the 1st Tris wash and 1 M NaCl wash. Two other 

bands with molecular weights between 21 and 31 kDa were seen in the flow 

through, 1 M NaCl wash and acetic acid eluate. A 45-kDa protein was 

present in the flow through and acetic acid eluate. The sodium hydroxide 

pellet was very clean and only two bands with molecular weights about 31 

kDa were detected in this fraction. There were no visible bands in the lane 

containing the NaOH supernatant.

Although bands o f similar size were detected in different fractions, the 

absolute identity o f individual proteins requires further investigation. Since 

concentrated samples were not used for the SDS gel, it is possible that any 

protein responsible for the agglutinating activity present in the concentrated

178



1 2 3 4 5 6 7 8 9 10 11 12

Figure IV-23: SDS-PAGE Gel o f Neutral Chitin 
Column Fractions. A sample (100 pl) of each fraction 
was dried in vacuo^ resuspended in 10 pi of sample 
buffer and boiled for 5 min before loading onto the 
gel. Lane 1, neutral extract; lane 2, flow through; lane 
3 ,1st Tris wash; lane 4, 0.1 M salt wash; lane 5,1 M 
salt wash; lane 6, acetic acid eluate; lane 7, acetic acid 
supernatant; lane7,2nd Tris wash; lane 8,2nd 1 M salt 
wash; lane 9, sodium hydroxide eluate; lane 10, 
sodium hydroxide supernatant; lane 12, molecular 
weight markers.
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retentate from the NaOH supernatant would not have been visible in the 

SDS gel.

For the salt elution, the column was washed first with 10 mM Tris- 

HCl, pH 8.0 to remove unbound proteins. Subsequently, bound proteins 

were eluted stepwise with 100 ml each of 0.1 M, 0.2 M, 0.3 M, 0.4 M, 0.5 M 

and 1 M NaCl in 10 mM Tris-HCl, pH 8.0. Very strong antifungal activity 

was present in the flow through and first Tris wash (data not shown). 

Agglutinating activity was present in the same fractions but not in the 

fractions eluted with salt (data not shown). There was little difference 

between the protein-banding pattern of the crude extract applied to the 

column and the flow through containing the antifungal activity (data not 

shown). Because the only antifungal activity detected under these 

conditions was primarily in the flow through and not in the fractions eluted 

with salt, this method was not used for further purification. This flow 

through, however, may be very useful starting material for further 

purification of antifungal activity and agglutinin that did not bind tightly to 

the column. Presumably, other activities that could be eluted with stronger 

eluants such as acetic acid remained tightly bound to the column. 

Alternatively, chromatographic conditions could be modified to achieve 

better separation o f specific activities.

180



Acid chitin column chromatography: Two slightly different acid

extraction procedures were used to prepare acid extract for chitin-affinity 

chromatography. To begin, 10 g o f 5. simplex seeds were homogenized in 

0.1 N HCl according to the methods described by Penmans and associates. 

(Penmans et al., 1983). Following homogenization, the extract was 

centrifuged at 20,000 x g for 10 min. The clear supernatant was saved and 

the pellet containing cell debris and denatured protein was discarded. The 

pH of the crude extract was adjusted to 3.8 with 2 N NaOH and allowed to 

stand on ice for one h. At the end of this time, the cloudy supernatant was 

centrifuged (20,000 x g for 10 min) to remove the denatured protein and the 

clear supernatant was filtered through Whatman 3MM filter paper. The 

filtrate i. e. crude neutralized acid extract (5 ml) was loaded onto a chitin 

column (equilibrated with 50 mM NaAc buffer, pH 3.8) and fractionated on 

the column according to the procedures described in the materials and 

methods section. An aliquot o f the neutralized extract and all the fractions 

from the neutralized chitin column were dialyzed in 10 mM Tris-HCl, pH, 

8.0, and assayed for antifungal activity.

Antifungal activity was not detected in the dialyzed neutralized acid 

extract or in any of the fractions from the neutralized chitin column. 

Apparently, antifungal activity did not survive the acid extraction followed
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by the neutralization process used in this particular procedure. All of the 

agglutination activity was also lost during extraction and neutralization.

Although antifungal activity did not survive the combination of acid 

extraction followed by neutralization with base, activity was retained using a 

modification of the original acid extraction and neutralization procedure 

used by Peumans and co-workers. After extraction with 0.1 N HCl, the 

tissue was centrifuged (15,000 x g; 15 min) and the resulting supernatant 

was not neutralized with NaOH as described above. Instead, the supernatant 

was immediately dialyzed against 10 mM Tris-HCl (pH 8.0). Dialysis 

buffer was changed every 4 to 6 h over a 72 h period. The dialyzed acid 

extract was tested for antifungal as well as agglutination activity. As 

observed previously, agglutination activity did not survive acid extraction. 

Antifungal activity, however, was not denatured in this process. Dialyzed 

acid extract completely inhibited A. flavus conidial germination in the 48 h 

assay and continued to inhibit growth even after prolonged incubation for 7 

days. Apparently, the process of extraction with 0.1 N HCl did not destroy 

antifungal activity but activity was lost when the acid extract was neutralized 

with NaOH.

On this basis, S. simplex dialyzed acid extract was used from this 

point for preliminary fractionation by chitin-affinity chromatography. The
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chitin column in this case was equilibrated with 20 mM sodium acetate (pH 

5.6) instead o f 50 mM sodium acetate (pH 3.8) as used for neutralized chitin 

column. As done previously, 5 ml of dialyzed acid extract was loaded onto 

the column, the flow through was collected and the column was washed with 

column equilibration buffer, buffer plus 0.1 M NaCl and buffer plus 1.0 M 

NaCl. Bound proteins were eluted with 0.1 M acetic acid and 0.1 M NaOH 

as described in the Materials and Methods. The amount of protein eluted 

with acetic acid, as measured by the absorbance profile at 280 nm, was much 

lower than the amount o f protein eluted from the neutral chitin column with 

acetic acid (data not shown). Antifungal activity was detected in the flow 

through, acetic acid eluate and sodium hydroxide eluate (Figure lV-24). 

Complete inhibition of A. flavus conidial germination was observed in wells 

containing the flow through. The acetic acid eluate (dialyzed ammonium 

sulfate pellet) showed very strong inhibition and the sodium hydroxide 

eluate (dialyzed AS pellet) exhibited moderate inhibition o f hyphal growth.

Chitinases and glucanases were detected in the flow through, acetic 

acid and NaOH eluates (Figure IV-25 and IV-26). However, the total 

chitinase and glucanase activities recovered in the acid chitin column 

fractions were substantially lower than the total chitinase and glucanase 

activity found in the neutral chitin column fractions.
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Figure FV-24: Antifungal Activity of Acid Chitin 
Column Fractions. Five ml of dialyzed acid extract 
was fractionated on a chitin affinity column. 
Fractions from the chitin column were dialyzed 
against 10 mM Tris, pH, 8.0, and 100 (il from each 
fraction was assayed for antifungal activity using A. 
flavus. Samples from all other fractions except acid 
extract, acetic acid eluate and sodium hydroxide 
eluate were concentrated ( 2 k ) before assay.
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Figure IV-25; Total Chitinase Activity of Acid Chitin 
Column Fractions. Acid extract was fractionated on a 
chitin affinity column. Each fraction was dialyzed 
against 10 mM Tris-HCl, pH 8.0. A (100 ^1) sample 
from each fraction was used to measure chitinase activity 
using the standard chitinase colorimetric assay.
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Figure IV-26: Total Glucanase Activity of Acid Chitin 
Column Fractions. S. simplex acid extract was 
fractionated on a chitin affinity column. Each fraction 
was dialyzed against 10 mM Tris, pH 8.0. A sample 
(100 pi) from each fraction was used to measure 
glucanase activity. The latter was determined using the 
standard glucanase colorimetric assay.
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The SDS-PAGE protein banding profile o f the fractions from the acid 

chitin column were very similar to, but not identical to, the SDS gel profile 

of neutral chitin column fractions (Figure IV-27). The lane with the acetic 

acid eluate contained much higher amounts of the 22 to 25-kDa bands as 

well as a number o f lower molecular weight species. The sodium hydroxide 

eluate contained one major band around 32 kDa and prominent bands with 

molecular weights between 12 kDa and 24 kDa.

Other methods

Anion-exchange chrom atography: Ion-exchange column chromatography 

was evaluated as a preliminary purification technique. Dialyzed neutral 

extract was fractionated on a Pharmacia Resource Q (RSQ) column. A total 

volume of 0.5 ml was loaded onto the colunm and the bound protein was 

eluted with a gradient from 0 to 1.0 M NaCl. Antifungal activity was 

detected in every RSQ fraction. There are at least two possible explanations 

for these results. First, there were multiple activities and/or multiple forms 

of the same activity; Alternatively proteins and/or other components in the 

extract interacted with the column and/or each other (data not shown).
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Figure IV-27: SDS-PAGE of Acid Chitin Column 
Fractions. Two hundred pi of each fraction was dried 
in vacuo, resuspended in 10 pi of sample buffer and 
boiled for 5 min before loading onto the gel. Lane 1, 
acid extract (100 pi dried); lane 2, flow through; lane 
3,0.1 M salt wash; lane 4,1 M salt wash; lane 5, 
acetic acid eluate; lane 6, acetic acid supernatant; lane 
7, second 1 M salt wash; lane 8, sodium hydroxide 
eluate; lane 9, sodium hydroxide supernatant; lane 10, 
molecular weight markers.
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Either of these possibilities could account for the lack of separation between 

individual activities or components.

None of the fractions agglutinated rabbit red blood cells even though 

the starting material (neutral extract) exhibited very strong agglutination 

activity. The latter findings suggest that the agglutinating activity in the 

crude extract was highly charged and remained tightly bound to the RSQ 

column and was not eluted from the column under the conditions used 

herein. SDS-PAGE analysis o f the RSQ fractions (data not shown) revealed 

several protein bands between 21 and 45 kDa in all the fractions. Thus, it 

was not possible to separate the antifungal activity into individual protein 

bands by anion-exchange chromatography using crude extracts. Therefore, 

ion-exchange column chromatography was not used as a method for 

preliminary fractionation.

Preparative isoelectric focusing; Dialyzed neutral extract was fractionated 

using a BioRad Rotofor isoelectric focusing chamber. Results of the 

antifungal bioassay o f individual Rotofor fractions is presented in Figure IV- 

28. Fractions 2 to 10 and fractions 17, 18 and 20 exhibited slight inhibition 

o f A. flavus hyphal growth. The recovery of total antifungal activity in the
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Rotofor fractions was very low. The antifimgal activity that survived lEF 

was mostly acidic in nature. Likewise, agglutinating activity did not survive 

Rotofor fractionation. The protein banding profile of Rotofor fractions was 

determined by SDS-PAGE. Fraction one to ten contained protein bands 

with estimated molecular weights between 21 and 50 kDa (data not shown). 

Overall, the antifungal activity was very low and

the gel profile indicated that there was very little separation of individual 

protein components. Therefore, preparative lEF was not used as a 

separation method.
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Figure IV-28: Antifungal Inhibition and pH 
Profile o f S. simplex Neutral Extract Fractionated 
by Preparative Isoelectric Focusing. Twenty five 
ml of neutral extract was fractionated by 
preparative lEF. After fractionation, the pH of 
each sample was measured and firactions were 
dialyzed in salt followed by dialysis against 10 
mM Tris-HCl, pH 8.0. A sample (100 pi) of 
each fraction was assayed for antifungal activity 
using A. flam s.
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CONCLUSIONS

Based on the results o f these preliminary studies, a number o f antifungal 

(defense-related) proteins and/or other factors are present in extracts of 

Swartzia simplex seeds. These factors appear to be proteins based on heat 

sensitivity and relative size. Chitinases, glucanases, lectins and/or chitin- 

binding proteins present in these extracts may account for the antifungal 

activity. The most effective techniques for preliminary purification of the 

antifungal activities were chitin-affinity chromatography and size-exclusion 

chromatography. Other techniques such as ion-exchange chromatography 

and preparative lEF were less effective at this stage o f purification.

Preliminary results suggest that an agglutinin may be responsible for 

at least part of the antifungal activity of these extracts. This conclusion is 

based on 1) the co-purification of agglutinating activity and antifungal 

activity by size-exclusion chromatography; 2) the concurrent loss of both 

activities after separation o f acid extracts on the same column; 3) presence 

of both activities in chitin column fractions. Confirmation o f this hypothesis 

will require further purification and characterization.

In the next chapter, the information gained herein will be applied to 

the development o f a purification scheme for the isolation of antifungal 

proteins from the extracts o f S. simplex seeds.
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Chapter V : Purification of Antifungal Proteins from Seeds of

Swartzia simplex

INTRODUCTION

In the preliminary studies, it was clear that substantial purification and 

separation o f individual activities was achieved using either chitin-affinity 

chromatography or size-exclusion chromatography. The results of 

fractionation based on the charge o f the protein (e. g. anion-exchange 

chromatography and preparative lEF) were less effective when working with 

relatively crude materials.

Preparative lEF can be an excellent bulk purification technique. With 

these particular samples, however, the recovery of activity after preparative 

lEF was very low. The low recovery of activity may be due to loss of 

activity at extremes of pH or decreased solubility and precipitation of 

proteins at or near their pi. Indeed, there was substantial precipitation 

during isoelectric focusing. Although this technique separated distinct
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groups of antifungal activities with pi values in the acid, neutral and basic 

range, the poor recovery o f activity precluded further use o f this technique 

for the isolation of antifungal activities from S. simplex.

The potential separation possible with ion-exchange chromatography 

made this a good choice for fractionating proteins after initial separation by 

either chitin-affinity or size-exclusion chromatography. For further 

purification of antifungal activities from extracts of S. simplex seeds, anion- 

exchange chromatography was combined with either chitin-affinity 

chromatography or size-exclusion chromatography.

The specific components isolated may vary depending on the protocol 

used for the purification. To reduce the possibility that specific activities 

may be missed or lost with certain protocols, antifungal activities were 

isolated from seed extracts using several different protocols. Based on 

results presented in Chapter IV, four different schemes (Figure V-l) were 

developed for the purification o f a broad range of antifungal activities. The 

four schemes will be referred to in subsequent sections of this chapter.
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Figure V-l: Process for the Development of a Protocol for the Purification of 
Antifungal Proteins from Tropical Plants. SEC, size exclusion chromatography; 
lEC, ion exchange chromatography; lEF, isoelectric focusing; CAC, chitin affinity 
chromatography. Bold lines represent primary method used for the isolation of 
antifungal proteins. Dashed and dotted line represent alternative protocols for 
purification.
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MATERIALS AND METHODS

The methods used within this chapter are the same as those described in 

Chapter IV unless otherwise noted. Please see the previous chapter for 

detailed information concerning methodology.

In several instances, Sephadex G-50 superfine resin was used for size based 

separation. The dry resin was hydrated in equilibrating buffer overnight, 

poured into a 1.6-cm x 100-cm column connected to the Pharmacia FPLC 

system and packed according to the manufacturer’s instructions. The 

column was equilibrated with 10 mM Tris-HCl, pH 8.0, at a flow rate of 0.5 

ml/min. Active fractions after Superose 12 chromatography were pooled 

and concentrated by ultrafiltration with a Centricon 10 concentrator. The 

concentrated fractions were centrifuged briefly to remove any insoluble 

material and 0.5 ml o f the sample was loaded onto the G-50 column.
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DEVELOPMENT OF FINAL PURIFICATION PROTOCOLS FOR 

THE ISOLATION OF ANTIFUNGAL ACTIVITIES FROM 

EXTRACTS OF S. SIMPLEX SEEDS

A combination o f size-exclusion chromatography followed by anion- 

exchange chromatography was an effective means for purifying antifungal 

activity, agglutinin, chitinase and glucanase. This protocol was limited, 

however, by the amount of sample that can be loaded onto the gel filtration 

column and the dilution that occurs during separation. The latter is less 

important when techniques such as ion-exchange or affinity-chromatography 

follow the gel-filtration step. Chitin-affinity chromatography was not the 

best choice to follow size-based separations because both methods suffer 

from lack of resolving power. Both are more suitable as preliminary (bulk) 

fractionation methods.

Gel filtration separates proteins roughly based on size but this 

technique does not resolve proteins of very similar size. For example, gel 

filtration on Superose 12 would not separate a 20-kDa protein from a 30 to 

40-kDa protein. Ionic, hydrophobic and affinity interactions between the 

sample and the column matrix and between individual components in the 

sample complicate these separations. For instance, some proteins remained 

bound to the Superose 12 column even after extensive washing o f the
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column with elution buffer. These materials were partially eluted with the 

addition of 1-2 M NaCl to the elution buffer and only completely removed 

by washing the column with 1 M NaOH. Under these conditions, activity 

may be lost.

As another example, several of the antifungal activities were eluted as 

if they were less than 10 kDa in size, yet the analysis of SDS profiles 

suggested that the proteins were greater than 20-30 kDa. Obviously, these 

proteins were interacting with the column matrix. Chitinases and 

glucanases, on the other hand, were eluted as much larger species. These 

proteins may be aggregating or interacting with other components adding to 

their apparent mass. These subtle features of column chromatography can 

be used to advantage in achieving unique separations.

Chitin-affinity chromatography suffers from the disadvantage that 

there are many chitin-binding activities in these extracts. Not all of the 

materials bound to the column interact specifically with chitin. Chitin is 

highly charged and many proteins may bind through ionic and not affinity 

interactions. Other proteins may bind to sugar residues and not to chitin per 

se. Although gel filtration was used to further purify specific proteins from 

the chitin-affinity column, the results were not very satisfactory (Data not

198



shown). Gel filtration fractions were not subjected to chromatography on 

chitin for the very same reasons.

Ion-exchange chromatography on high performance resins such as 

Pharmacia Resource-Q (RSQ) can be an extremely effective means for 

protein purification. As shown earlier, these high performance techniques 

did not provide satisfactory separations of crude extracts of Swartzia seeds. 

This lack of separation may be specific to extracts of this species. The 

extract contains a complex mixture of closely related proteins. This 

technique is much more effective when used after an initial purification step. 

As just stated, gel filtration followed by anion-exchange chromatography 

was effective in providing highly purified proteins suitable for further 

analysis and characterization but was limited in terms of the amounts of 

protein that can be handled efficiently. For this reason, the primary 

purification scheme (Scheme I and III, Figure V-l)  used in subsequent 

experiments combined chitin-affinity chromatography with anion-exchange 

chromatography.

Antifungal activities present in neutral and acid extracts of S. simplex 

seeds were purified using the protocols outlined in Scheme I and III (Figure 

V-l), respectively. The detailed protocol for the purification of antifungal 

activities and chitinases from neutral extract is outlined in Figure V-2.
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Figure V-2: Purification of Antifungal Activities by 
Chitin-affinity Chromatography

Neutral Extract

L
Chitin Affinity Column

Flow Through Chitin-binding fraction

AFA
Chitinase
Glucanase
Agglutination

Acetic Acid Eluate Sodium Hydroxide Eluate
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PURIFICATION OF ANTIFUNGAL ACTIVITIES BY CHITIN- 

AFFINITY CHROMATOGRAPHY

Further purification of active fractions from the neutral chitin column

Flow through: The flow through obtained after chitin-affinity

chromatography of the neutral extract completely inhibited A. flavus conidial 

germination. In addition, this fraction contained chitinase, glucanase and 

agglutinating activity. These proteins may not bind to the chitin-affinity 

column for several reasons. Either the proteins had no affinity for chitin or 

the column was overloaded. Further purification o f these activities from the 

flow through was not carried out. Emphasis was placed on the chitin- 

binding fractions from this column. Further work is required to isolate the 

specific activities present in the flow through.

Acetic acid eluate: The resuspended ammonium sulfate pellet from the 

acetic acid eluate of the neutral chitin column completely inhibited conidial 

germination of A. flam s. Chitinases and glucanases were also detected in 

this ft-action. Although the same general activities (i. e. chitinase.
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agglutination and antifungal activities) were present in the flow through 

from the neutral chitin column, the SDS gel profile revealed that, in general, 

there were fewer protein bands in the acetic acid eluate and the common 

bands were enriched. Therefore, the acetic acid eluate was chosen over the 

flow through for ftuther purification of chitinase, glucanase and antifungal 

activities.

Ion-exchange chromatography of acetic acid eluate: The acetic acid 

eluate was precipitated with ammonium sulfate and the resuspended pellet 

was subjected to anion-exchange chromatography on a Pharmacia RSQ 

column. The column was equilibrated with 10 mM Tris-HCl, pH 8.0. Five 

hundred pi o f the resuspended and dialyzed acetic acid pellet was loaded 

onto the column and bound proteins were eluted with a linear gradient from 

0 to 1 M NaCl. A very good separation was obtained based on the 

absorbance profile (Figure V-3) and the banding pattern after SDS-PAGE 

(Figure V-4).

Fractions were dialyzed extensively against 10 mM Tris-HCl, pH 8.0, 

to remove salt before testing for antifungal and chitinase activity. Complete 

inhibition o f A. flavus conidial germination was observed in fractions 3, 5-7, 

9,10,13 and 14 (Figure V-5). Fractions 1 ,2 ,8 ,12  and 15 did not show any

2 0 2
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Figure V-3: Absorbance Profile of Anion Exchange 
Column Chromatography of Acetic Acid Eluate 
from a Neutral Chitin Column. Five hundred pi of 
acetic acid eluate was applied to the column 
equilibrated in 10 mM Tris-HCl, pH 8.0. Bound 
proteins were eluted with a linear gradient of sodium 
chloride in the same sample buffer. Fractions were 
collected manually based on the absorbance at 280 
nm. Position of the fractions is noted on the top of 
the figure.
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Figure V-4; SDS-PAGE Analysis of Fractions 
Obtained after Anion Exchange Chromatography of 
the Acetic Acid Eluate from the Neutral Extract. A 
sample (200 pi) from each fraction was dried in 
vacuo, resuspended in 10 pi of sample buffer and 
boiled for 5 min before loading onto the gel. Lane 1 
to 12, RSQ fractions (see Figure V-3) 1 to 12; lane 
13, fraction 14; lane 14, fraction 15; lane 15, fraction 
13. The gel was silver stained to reveal protein 
bands. STD= molecular weight standards.
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Figure V-5: Antifungal Activity of Fractions 
Obtained After Anion Exchange Chromatography of 
the Acetic Acid Eluate from a Neutral Chitin Column. 
Acetic acid eluate was fractionated on a Pharmacia 
RSQ column. All fractions were dialyzed against 10 
mM Tris-HCl, pH 8.0, to remove salt. A sample from 
each dialyzed fraction was concentrated (2x) and 100 
|il of the concentrated sample was assayed for 
antiftmgal activity against A. JIavus.
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antifungal activity. Chitinases were detected in fractions 5-10 (Figure V-6). 

Several protein bands of approximately 30-34 kDa were observed in SDS 

gels of all six fractions. Fraction 5 contained one major 30-kDa-protein 

band, indicating that the sample was nearly homogeneous. Fractions 6, 8 

and 9 each had two protein bands (approximately 31-34 kDa). There was 

one major band and several minor bands in fraction 7 and three minor bands 

in fraction 10. The multiplicity of protein bands may reflect different forms 

of the same activity including post-translational modifications. 

Alternatively, a protein may be composed o f non-identical subunits. 

Although this is less likely in the case of chitinases (chitinases are generally 

monomeric proteins), the possibility certainly exists for other activities. The 

presence of multiple bands does not infer that the protein was impure. 

Fraction 10 contained three bands and fraction 7 contained four bands.

Fraction 7 was further purified by micro-HPLC at the OUHSC (data 

not shown). SDS gel profile (see Chapter VI) o f the micro HPLC fractions 

revealed one 32-kDa band in the peak fraction. A second band of similar 

size was evident in the trailing edge of the peak fraction. Purified proteins in 

these RSQ fractions were further characterized (see Chapter VI).
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Figure V-6 : Total Chitinase Activity of Anion 
Exchange Fractions of the Acetic Acid Eluate from a 
Neutral Chitin Column. Acetic acid eluate was 
fractionated on an anion exchange column. Each 
fraction was dialyzed against 10 mM Tris-HCl, pH 8.0, 
and a sample from each fraction was concentrated (2x). 
One hundred pi of the concentrated sample from each 
fraction was evaluated for chitinase activity using the 
colorimetric chitinase assay.
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Sodium hydroxide eluate; The sodium hydroxide eluate from the neutral 

chitin column was concentrated with ammonium sulfate. The pellet was 

resuspended and dialyzed extensively. The sodium hydroxide eluate 

exhibited antifungal activity as well as chitinase and glucanase activity. 

Several bands were detected after SDS-PAGE. To further purify these 

activities, the sodium hydroxide eluate was fractionated by anion-exchange 

chromatography.

Aqion-exchange chromatography of sodium hydroxide eluate: The

sodium hydroxide eluate was fractionated by anion-exchange 

chromatography on a Pharmacia RSQ column. The absorbance profile is 

presented in Figure V-7. Eleven fractions were collected and assayed for 

antifungal activity. Moderate to strong antifungal activity was present in all 

the fractions except 2, 6 and 8 (Figure V-8). Among the active fractions, the 

best activity was in fractions 4 and 5. Both of these fractions strongly 

inhibited A. JIavus hyphal growth and conidial germination. Strong 

inhibition was also observed in fractions 1 and 10. This activity inhibited 

hyphal growth but not conidial germination. Moderate inhibition of A. 

JIavus hyphal growth was observed in wells containing fractions 3 , 7 , 9  and 

1 1 .
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Figure V-7 : Absorbance Profile o f Anion 
Exchange Column Chromatography of the Sodium 
Hydroxide Eluate from the Neutral Chitin Column. 
Five hundred jil of sodium hydroxide eluate was 
applied to the column and bound proteins were 
eluted with a linear gradient of sodium chloride in 
10 mM Tris-HCl, pH 8.0. Fractions were collected 
manually based on the absorbance at 280 ran. The 
specific fi-actions were noted on the top of the figure.
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Figure V-8: Evaluation of the Antifungal Activity of 
Fractions after Anion Exchange Chromatography of the 
Sodium Hydroxide Eluate from a Neutral Chitin Column. 
Sodium hydroxide eluate from the neutral chitin column 
was fractionated on a Pharmacia RSQ column. All the 
fractions were dialyzed against 10 mM Tris-HCl, pH 8.0, 
and assayed for antifungal activity against A. JIavus.
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Prolonged incubation of the assay revealed the stable nature and 

durability of the activity in fractions 9-10. These two fractions exhibited 

strong inhibition o f hyphal growth even after 4 weeks. Although fraction 11 

caused moderate inhibition after 48 h, hyphal growth remained the same 

even after 4 weeks of incubation. The activity of the remaining active 

fractions (1, 3-5, 7-8) declined after 4 weeks of incubation and hyphal 

growth in the microtiter wells containing these fractions was comparable to 

the hyphal growth in the control wells. This may be due to the loss of 

activity. Alternatively, even though the rate of fungal growth may have 

been reduced dramatically, the cumulative, albeit slow, growth of the fungus 

may have filled the well after prolonged incubation. This would be difficult 

to distinguish such slow growth from the growth of the controls which filled 

the wells within 48 h. SDS gel profiles for these fractions are presented in 

Figure V-9.
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Figure V-9 : SDS-PAGE Gel of Fractions Obtained 
after Anion Exchange Chromatography of the Sodium 
Hydroxide Eluate from a Neutral Chitin Column. 
Sodium hydroxide eluate was fractionated on a 
Pharmacia RSQ column. A 200 pi sample from each 
fraction was dried in vacuo, resuspended in 10 pi of 
sample buffer and boiled for 5 min before loading 
onto the 12.5% SDS gel. Lane 1 to 11, RSQ fractions 
1 to 11. The gel was silver stained to detect protein 
bands. STD = molecular weight standards.
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Further fractionation of chitinase and glucanase-containing fractions 

from the acid chitin column

In general, chitinases purified by anion-exchange chromatography of the 

eluates from the acid chitin column were purer than chitinases isolated by 

the same procedures but with neutral extract. The amount of chitinase 

extracted, however, was much lower when the acid extract was used. A 

comparison of the results using the two different extraction procedures is 

presented in Table V-1. The total chitinase activity in the crude acid extract 

(AEx) was only one-third of the activity in the neutral extract (NEx). 

Overall, the specific activities in the crude acid extract and fractions from 

the acid chitin column were much lower than the corresponding fractions 

derived from the neutral extract. This result suggests that specific forms of 

chitinase with high unit activity may have been lost during acid extraction. 

It should be noted that the antifungal activity of these fractions was very 

good considering the low amount of protein present.

The acetic acid eluate from the acid chitin column was further 

fractionated by anion-exchange chromatography. The absorbance (280 nm) 

profile of the column (Figure V-10) showed 4 distinct peaks in fractions 3, 4 

and 5 that were eluted at low concentrations o f salt and one minor peak
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Table V-1: Comparison of Extraction Methods for the Isolation of

Chitinase from Extracts of S. simplex Seeds.

Fraction Activity

(pmol/h/m
I)

Protein

(mg/ml)

Volume

(ml)

Specific
Activity

(pmol/h/m
g)

Total
Activity
(|imol/h)

Yield

(%)

NEUTRAL

Cnide 7.7 1.56 5 5.0 38.7 100

FT 5.7 0.24 5 23.9 28.7 74.2

ACP 5.0 0.42 1 12.0 20.0 51.7

SHP 0.11 0.34 0.75 0.34 0.86 2.2

ACID

Crude 2.7 0.9 5 3.0 13.4 100

FT 0.9 0.8 5 1.1 4.5 33.6

ACP 0.4 0.3 2 1.4 0.8 8.5

SHP 0.008 0.28 1.3 0.028 0.01 >0.01
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after high salt elution. Twenty fractions were collected and pooled based on 

the absorbance profile, dialyzed against 10 mM Tris-HCl, pH 8.0 and 

assayed for antifungal as well as chitinase activity. Chitinase activity 

(Figure V-11) was detected in the peak fractions (3, 4 and 5). The fungal 

bioassay revealed antifungal activity in fraction 4 and fraction 6 (Figure V- 

12). The SDS-PAGE profile (Figure V-13) revealed very distinct 31-32 kDa 

protein bands in the chitinase-containing fractions (3-5).
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Figure V-10; Absorbance Profile of Anion 
Exchange Chromatography of the Acetic Acid 
Eluate from the Acid Chitin Column. Five hundred 
pi of the acetic acid eluate was applied to the RSQ 
column equilibrated with 10 mM Tris-HCl, pH 8.0. 
Bound proteins were eluted with a linear gradient of 
sodium chloride in the same buffer.
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Figure V-11: Total Chitinase Activity of the Anion 
Exchange Fractions of the Acetic Acid Eluate from the 
Acid Chitin Column. Acetic acid eluate from the acid 
chitin column was fractionated on a Pharmacia RSQ 
column. Each fraction was dialyzed against 10 mM 
Tris-HCl, pH 8.0., and a sample from each fraction was 
concentrated (2x). One hundred pi of the concentrated 
sample from each fraction was evaluated using the 
colorimetric chitinase assay.
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Figure V-12: Antifungal Activity of Fractions 
Obtained after Anion Exchange Chromatography of 
the Acetic Acid Eluate from the Acid Chitin 
Column. Fractions from the anion exchange 
separation were dialyzed against 10 mM Tris-HCl, 
pH 8.0, and concentrated (2x). One hundred pi of 
the concentrated sample from each fraction was 
assayed for antifungal activity against A. flavus.

218



1 2 3 4 5 6 7 8 9 STD kDa

Figure V-13: SDS-PAGE Gel of Fractions Obtained 
after Anion Exchange Chromatography of the Acetic 
Acid Eluate from the Acid Chitin Column. The acetic 
acid eluate was fractionated on a Pharmacia RSQ 
column. Two hundred pi from each fraction was 
dried in vacuo, resuspended in 10 pi of sample buffer 
and boiled for 5 min before loading onto the 12.5% 
SDS gel. Lane 1 to 7, RSQ fractions 1 to 7; lane 8, 
neutral chitin column acetic acid eluate; lane 9, acid 
chitin column acetic acid eluate. STD = molecular 
weight standards.
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ALTERNATIVE PURIFICATION PROTOCOLS FOR THE 

ISOLATION OF ANTIFUNGAL PROTEINS FROM EXTRACTS OF 

S. SIMPLEX SEEDS

The primary method for the isolation o f antifungal proteins, especially 

chitinases and other chitin-binding proteins involved the use of a 

combination of chitin-affinity chromatography followed by anion-exchange 

chromatography. Alternative protocols were developed for the purification 

of antifungal proteins from both neutral and acid extracts using size- 

exclusion chromatography and either anion-exchange chromatography or a 

second gel filtration step. The protocols for these separations are outlined in 

Figure V-1 Schemes II and IV. Although the latter methods were not the 

best methods for the isolation of chitinase and other chitin-binding proteins, 

these methods were very effective for the isolation of other classes o f active 

proteins. To date, none of the other active proteins identified as part o f these 

studies has been characterized. Results of these studies are included herein 

for future reference.
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Purification of antifungal activity from Superose 12 fractions from

neutral extracts of S, simplex seeds

After fractionation of neutral extract of S. simplex seeds by size-exclusion 

chromatography on Superose 12, three zones of antifungal activity were 

detected, fraction 1, fraction 4 and fiaction 9-10. Fraction 4 also contained 

chitinase and glucanase activity and fractions 9 and 10 contained 

agglutinating activity. The three zones o f antifungal activity were further 

purified by either anion-exchange chromatography or by size-exclusion 

chromatography on Sephadex G-50 as outlined in Scheme II (Figure V-1). 

A flow chart for these experiments including a summary of key results is 

presented in Figure V-14. Although Scheme II was not used as the primary 

method for the purification of antifungal activity from neutral extracts, some 

of the actual results of these studies are included herein for future reference. 

The techniques outlined in Scheme II may be useful for the purification of 

other antifungal activities identified in these studies but not yet purified and 

characterized.
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Figure V-14: Alternative Protocol for the Isolation of 
Antifungal Proteins from Neutral Extracts of S. simplex Seeds.
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Aniop-exchange chromatography of Suoerose 12 fraction 1: Fraction I 

(10 ml) was loaded onto the RSQ coiunm and bound proteins were eluted 

with a linear gradient of NaCl in 10 mM Tris-HCl (pH 8.0). Fractions were 

collected and pooled based on the absorbance at 280 nm. Pooled fractions 

were dialyzed against 10 mM Tris-HCl, pH 8.0, and assayed for antifungal 

activity. Antifungal activity (data not shown) was present in all the fractions 

except fractions 1 to 4 (pooled fraction 1). Samples from each fraction were 

subjected to SDS-PAGE analysis. A protein band with an estimated 

molecular weight between 38 and 41 kDa along with three to four bands in 

the range of 50-60 kDa were detected in the active fractions after silver 

staining the gel (data not shown).

Anion-exchange chromatography of Superose 12 fractions containing 

chitinase and glucanase; Although antifungal activity was only detected in 

fraction 4, fractions 4 and 5 containing chitinase and glucanase were pooled 

and 2 ml of the pooled material was applied to the RSQ anion-exchange 

column in order to purify the antifungal activity. The absorbance and 

gradient profiles for the RSQ separation of the chitinase/glucanase- 

containing fractions are presented in Figure V-T5.
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Figure V-15: Absorbance Profile of Fractions 
Obtained after Anion Exchange Chromatography of 
Neutral Extract Superose 12 Fractions 4 and 5. After 
chromatography of neutral extract on Superose 12, 
fraction 4 and 5 containing antiftmgal activity, 
chitinase and glucanase were pooled and 500 pi of 
the pooled fraction was injected onto a RSQ anion 
exchange column. The column was equilibrated with 
10 mM Tris-HCl, pH, 8.0 and the bound proteins 
were eluted with a linear gradient from 0-1 M NaCl 
in the same buffer. Fractions were collected 
manually and pooled based on the absorbance profile.
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Twenty fractions were collected from the RSQ column and these fractions 

were dialyzed and then assayed for antifungal activity. Antifungal activity 

was observed in fraction 3, 5-7,9 and 12 to 17 (Figure V-16).

Ten distinct peaks were visible in the absorbance profile. Chitinases 

were detected in 6 of these peaks based on results from the colorimetric 

chitinase assay (Figure V-17). The eighth peak (fraction 17) did not exhibit 

any chitinase activity and the SDS gel profile (Figure V-18) did not show 

any visible protein band in this fraction.

Anion-exchapge chromatographv of Suoerose 12 fractions 9 and 10;

Fraction 9 and 10 from the neutral extract Superose 12 column were pooled 

and 10 ml of the pooled fraction was subjected to anion-exchange 

chromatography as stated above. Fractions were collected, dialyzed 

separately and assayed for antifungal activity. Activity was present in all 24 

fractions. The protein-banding pattern was determined by SDS-PAGE. The 

pattern in each fraction was similar with proteins o f approximately 28 kDa 

and less than 21 kDa present in all the fractions. The major difference in the 

fractions was the presence of a major band o f about 38 to 41 kDa in factions 

1-5 and 13-17. The lower molecular weight bands present in all the 

fractions appear to correlate with the antifungal activity. Note that the age
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Figure V-16 : Antifungal Activity of Fractions 
Obtained after Anion Exchange Chromatography of 
Neutral Extract Superose 12 Fractions 4 and 5. 
Fractions from the RSQ column were dialyzed 
against 10 mM Tris-HCl, pH 8.0, and concentrated 
(2x) by ultrafiltration. One hundred pi of the 
concentrated sample from each fraction was assayed 
for antifungal activity using A. flavus.
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Figure V-17: Chitinase Activity of Fractions Obtained 
by Anion Exchange Chromatography of Superose 12 
fraction 4 and 5. Fractions from anion exchange 
separation were dialyzed against 10 mM Tris-HCl, pH 
8.0 and concentrated 2-fold by ultrafiltration. One 
hundred pi of the concentrated sample from each 
fraction was assayed for chitinase using the standard 
chitinase colorimetric assay. Because of the limited 
volume of fractions and amount of protein, fractions 
were pooled before assay. Fraction 1-4, RSQ fractions 1- 
4; fraction 5, RSQ fractions 5 ,6  and 7; fraction 6, RSQ 
fraction 8; fraction 7, RSQ fraction 9; fraction 8, RSQ 
fraction 10; fraction 9, RSQ fractions 11-13; fraction 10, 
RSQ fractions 14-18.
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Figure V-18: SDS-PAGE Analysis of Fractions 
Obtained after Anion Exchange Chromatography of 
Superose 12 Fractions 4 and 5. Neutral extract was 
fractionated on a Superose 12 column. Superose 12 
fractions 4 and 5 were pooled and the pooled fractions 
were applied to an anion exchange (RSQ) column. A 
200 pi sample from each fraction was dried in vacuo, 
resuspended in 10 pi of SDS sample buffer and boiled 
for 5 min before loading onto the gel. Lane 1 to 17, 
RSQ fractions 1 to 17. STD = molecular weight 
standards.
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and previous use o f the Pharmacia RSQ column (a gift from Pharmacia, 

Upsala, Sweden) may account in part for the relatively poor resolution of 

individual components obtained in these separations.

Size-exclusion chromatography of fractions with hemagglutinating 

activity.

Fractions 9 and 10 from the neutral extract Superose 12 column 

contained several bands ranging in size from 20 to 41 kJDa. Although not 

readily detected on the silver-stained SDS gels, there was evidence that 

lower molecular weight components (less than 14 kDa) may also be present 

in these active fractions. In an attempt to separate these components, a 

sample from fraction 9 was concentrated and subjected to size-exclusion 

chromatography on Sephadex G-50 resin (Figure V-19). Moderate to slight 

antifungal activity (Figure V-20) was observed in seven fractions (fractions 

4-10). SDS-PAGE analysis of the G-50 column fractions (Figure V-21) 

revealed only one major protein band with a molecular weight near 21-24 

kDa in frractions 8, 9 and 10. Protein bands were not detected in any other 

fraction.
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Figure V-19 : Sephadex G-50 Elution Profile of 
Neutral Extract Superose 12 Fraction 9. Pooled 
fraction 9 from several Superose 12 runs was 
concentrated (4x) and 500 pi of concentrated 
fraction was separated on a G-50 column. Proteins 
were eluted with 10 mM Tris-HCl, pH 8.0. Fraction 
volume was 2 ml.

230



2.5 -

I "
Gfa
tmm0

1
0.5

7 8 9 10 11
Fraction  N um ber

12 13 14 15 16

Figure V-20: Antifungal Activity of Fractions 
Obtained by Gel Filtration Chromatography of Neutral 
Extract Superose 12 Fraction 9 on Sephadex G-50. 
Superose 12 fraction 9 was concentrated and applied 
to a Sephadex G-50 column equilibrated with 10 mM 
Tris-HCl, pH 8.0. Fractions eluted from the column 
were tested for activity against A. Jlavus.
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Figure V-21 : SDS-PAGE Analysis of Fractions 
Obtained by Gel Filtration Chromatography of Neutral 
Extract Superose 12 Fraction 9 on Sephadex G-50.
Neutral extract was fractionated on a Superose 12 
column. Fraction 9 containing antifungal activity and 
agglutinin was fractionated on a G-50 size-exclusion 
column. Lane 1 to 17, G-50 fractions 1 to 17. Lane 17, 
low molecular weight marker proteins. The gel was silver 
stained to reveal protein bands.
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Ion-exchange chromatography of antifungal and chitinase-containing 

fractions from the acid extract Superose 12 column

Fractions 3-5 isolated by size-exclusion chromatography o f the dialyzed acid 

extract exhibited antifungal activity as well as chitinase activity. These 

fractions were pooled and subjected to anion-exchange chromatography on a 

RSQ column for further purification of the antifungal and the chitinase 

activities. Fractions were collected and dialyzed against 10 mM Tris-HCl, 

pH 8.0. After dialysis, all o f the fractions were assayed for antifungal 

activity (Figure V-22). Fractions 1, 4-7, 16 and 17 exhibited moderate to 

very strong antifungal activity. Analysis of the RSQ fractions by SDS- 

PAGE (Figure V-23) revealed two heavily stained bands o f about 31-33 kDa 

in fractions 1 and 6-9. Although less intensely stained, bands of similar size 

were visible in fractions 2-5 and 10-14. Fractions 1 and fractions 6-7 

possessed very distinct bands o f molecular weight around 10-14 kDa. These 

bands were observed in the active fraction 4 and 5 but the intensity of
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Figure V-22: Antifungal Activity of Fractions 
Obtained after Anion Exchange Chromatography of 
Chitinase-containing Fractions from the Acid 
Extract Superose 12 Column. Acid extract was 
fractionated on a Superose 12 column. Fractions 3 
to 5 from the Superose 12 column were pooled and 
the pooled fractions were further fractionated by 
anion-exchange chromatography. Fractions from 
the anion exchange separation were dialyzed in 10 
mM Tris-HCl, pH 8.0, and assayed for antifungal 
activity against A. Jlavus.

234



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 kDa

&

97.4 
66.2

45

31

21.5

14.4

Figure V-23: SDS-PAGE Analysis of Fractions 
Obtained by Anion Exchange Chromatography of the 
Chitinase-containing Fractions from the Acid Extract 
Superose 12 Column. Acid extract was fractionated on 
a Superose 12 column. Superose 12 fractions 3 to 5 
were pooled and the pooled fraction was applied to an 
anion exchange (RSQ) column. A 100 pi sample from 
each fraction was dried in vacuo, resuspended in 10 pi 
of SDS sample buffer and boiled for 5 min before 
loading onto the gel. Lane 1 to 17, RSQ fractions 1 to 
17; lane 18, molecular weight marker proteins . The gel 
was silver stained to detect protein bands.
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staining was substantially reduced. Several minor bands were also present 

in fraction 1 and factions 6 through 9. Although fiaction 16 and 17 

exhibited antifungal activity, protein bands were not detected in these 

fractions.

PURIFICATION OF CHITINASE FROM EXTRACTS OF S.

SIMPLEX SEEDS

A number of chitinases have been isolated from extracts of S. simplex seeds 

using a combination of chitin-affinity chromatography and anion-exchange 

chromatography. The results of the chitinase purification from the acetic 

acid eluate after separation of neutral extract by chitin-affinity 

chromatography are summarized in the form of a purification table (Table 

V-2). Results from two different separations are presented. Each of the 

individual chitinase-containing fractions may represent one or more 

isoforms of chitinase. This conclusion was confirmed after analysis of 

individual fractions for chitinase isoforms using a chitinase in-gel assay.

In the first fi-actionation, chitinases were separated into three pooled 

fractions (3 ,4  and 5) using a steeper gradient with less resolution. In the
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Table V-2: Summary o f the Purification o f  Chitinase from Neutral Extracts 

of S. simplex Seeds.

Fraction Activity Protein Volume Specific
Activity

Total
Activity

Yield

(pmcl/h/ml) (mg/ml) (ml) (pmol/h/mg) (pmol/h) (%)

Crude 7.7 1.56 5 5.0 38.7 100

AC? 5.0 0.42 1 12.0 20.0 51.7

First Purification

3 0.094 0.012 1.96 7.8 1.8e 4.7

4 0.126 0.02 1.97 6.3 2.5 ♦ 6.5

5 0.057 0.072 1.97 0.79 l .U 2.8

Second Purification

5 0.072 0.012 1.6 6.0 0.3 ♦ 0.8

6 0.382 0.020 1.8 19.1 1.4# 3.6

7 0.939 0.072 1.0 13.0 1.9# 4.9

8 0.390 0.050 0.6 7.8 0.5 ♦ 1.3

9 0.358 0.135 1.8 2.7 1.3$ 3.4

10 0.796 0.035 2.2 22.7 3.5$ 9.0

♦ Values normalized to account for volume applied to RSQ column.
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second separation, the gradient was modified to increase resolution. 

Multiple forms o f chitinase were detected in five fractions (5-10).

Note that the specific activity of the acetic acid eluate may be higher 

than some of the more purified fractions from the RSQ column. This 

apparent anomaly may be explained by the following. The acetic acid eluate 

although highly enriched for chitinase, is actually a mixture of chitinases and 

other proteins. The specific activity of this fraction represents the 

proportional sum of the activities of individual chitinases divided by the sum 

of the protein for each form of chitinase plus the concentration of other 

protein contaminants. Thus, the specific activity of individual fractions 

reflects a combination of the specific activities of individual isoforms of 

chitinase along with the proportion of the total chitinase and total protein 

represented by these isoforms. The presence of isoforms of chitinase with 

very high specific activity in the acetic acid eluate with subsequent loss of 

these forms, either totally or in part, after anion-exchange chromatography 

could account for the apparent anomaly. Chitinases represent a major part of 

the protein found in seeds o f S. simplex. As a consequence, the fold 

purification was very low. The abundance o f these proteins was evident in 

the crude extracts o f S. simplex seeds.
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CONCLUSIONS

Extracts of the seeds o f S. simplex contain a variety o f antifungal activities. 

Several of these are proteins while others may be peptides or other toxic 

molecules. The antifungal proteins may include chitinases, glucanases, 

lectins and chitin-binding proteins. Using a combination of chitin-affinity 

chromatography and anion-exchange chromatography, a number of 

chitinases have been purified. Some of these chitinases exhibit antifungal 

activity against A. Jlavus while others do not. Other antifungal activities 

were also isolated using this and other purification protocols. The 

biochemical nature o f these activities is not yet known and will require 

further investigation.
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Chapter VI : Characterization of Antifungal Proteins from

Seeds of Swartzia simplex

INTRODUCTION

Several chitinases with antifungal activity were purified from extracts of 

seeds of Swartzia simplex. This work was discussed in Chapter V. These 

proteins account for only part of the antifungal activity contained in these 

extracts. Several isoforms of chitinase were further characterized. The 

results o f this characterization are presented in this chapter.

MATERIALS AND METHODS

Glycoconjugate detection

To determine if the purified protein was glycosylated, samples from 

the ion-exchange column were tested using the Boehringer Mannheim DIG 

glycan detection kit. Proteins were first separated on a 12.5% SDS 

polyacrylamide gel under denaturing conditions. Proteins were transferred 

from the SDS gel to a nitrocellulose membrane according to standard 

methods used for Western blots. Proteins bound to the membranes were
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oxidized with sodium metaperiodate and the oxidized proteins were reacted 

with DIG by incubating the nitrocellulose membrane as specified by the 

manufacturer. DIG-labeled proteins were detected with digioxigenin- 

specific antibody conjugated with alkaline phosphatase. The later was 

stained with NBT according to the manufacturer’s protocol.

Amino acid analysis

A protein sample (after anion-exchange chromatography) was sent to 

the Molecular Biology Resource Center at the University of Oklahoma 

Health Sciences Center for amino acid analysis. The sample was purified by 

micro-HPLC on a reverse phase microbore colunm and the peak fraction 

was dried and hydrolyzed in vacuo in 6 N HCl for 24 h at 110 °C. The 

identity of the peak fraction after micro-HPLC was confirmed by SDS- 

PAGE. After hydrolysis, the amino acid composition was analyzed by 

cation-exchange chromatography using an automated Beckman System Gold 

Model 126 HPLC Amino Acid Analyzer. The amino acids were detected by 

on-line, post-column reaction with ninhydrin (Trione, Pickering 

Laboratories, Inc.).
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Amino acid sequence analysis

Analysis o f the N-teraiinal and internal sequence o f purified proteins 

was performed at the Molecular Biology Resource Center at the University 

of Oklahoma Health Sciences Center. Purified protein samples were 

separated by micro-HPLC on a reverse phase column. The identity of the 

peak fraction was assessed by SDS-PAGE analysis o f the micro-HPLC 

fractions. The fraction containing the protein band of interest was 

sequenced directly. The N-terminal and internal amino acid sequence was 

determined by Edman degradation using a PROCISE Model 492 protein 

sequencer equipped with an on-line PTH-amino acid analyzer (Perkin 

Elmer, Applied Biosystems Division) and model 610 data system.

The internal amino acid sequence o f the purified protein was 

determined after digestion with LYS-C. The protease-digested samples 

were fractionated by micro-HPLC on a 1.0-mm x 150-mm C18 column to 

separate the peptides after protease digestion. The amino acid sequence of 

the internal peptides was obtained as described above.
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Determination of molecular weight

The molecular weight of purified chitinase was determined by 

electrospray LC mass spectrometry. Mass spectrometry was performed by 

Dr. Ken Jackson at the Molecular Biology Resource Center using an API 111 

triple quadrupole mass spectrometer (Sciex, Inc. Toronto, Canada) equipped 

with an atmospheric pressure ionization source.

Determination of isoelectric point

The isoelectric points o f proteins in the chitinase-containing fiactions 

from the RSQ colunm were estimated by conventional lEF gel 

electrophoresis. The purity and pi values for several o f the purified proteins 

were also determined by capillary electrophoresis on a Beckman PACE 

5000 capillary electrophoresis (CE) system using a CE-IEF kit, kindly 

provided by Dr. Bill Williams and Mr. Duncan Hare of Beckman 

Instruments, Inc., Palo Alto, CA.

Other methods are presented in detail in Chapter IV.
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BIOCHEMICAL CHARACTERIZATION 

Presence of chitinase isoforms

The presence of different isoforms o f chitinase was determined using a 

chitinase in-gel assay. At least 8 different forms of chitinase were observed 

in the dialyzed neutral extract of 5. simplex seeds (Figure VI-1). Five 

distinct isoforms were present in the neutral chitin column flow through and 

five forms were observed in the first Tris wash. Chitinase activity was not 

detected in the salt washes, 2nd Tris wash, acetic acid supernatant and 

sodium hydroxide supernatant. At least eight distinct isoforms were 

detected in the acetic acid eluate and five distinct isoforms were present in 

the sodium hydroxide eluate. The acetic acid eluate and the sodium 

hydroxide eluate were subjected to further purification by anion-exchange 

chromatography on a RSQ column.

SDS gel analysis o f the RSQ fractions obtained after anion-exchange 

fractionation of the acetic acid eluate revealed one major protein band in 

fraction 5; fractions 6, 8 and 9 showed two bands each; fraction 7 had one 

major and three minor bands; and fraction 10 had three lightly-stained 

bands. With the exception o f fraction 10, the most intensely stained bands in 

all these fractions, corresponded with the 31-kDa-protein marker. In
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Figure VI-1 : Detection of Isoforms of Chitinases in 
Neutral Chitin Column Fractions. Neutral extract was 
fractionated on a chitin colunm. Ten jil from each 
fraction was separated on a 12.5% native gel. Chitinase 
activity was detected using an in-gel assay. Lane 1, 
neutral extract; lane 2, flow through; lane 3, 1st Tris 
wash; lane 4, salt wash (0.1 M); lane 5, salt wash (1 M); 
lane 6, acetic acid eluate; lane 7, acetic acid 
supernatant; lane 8, sodium hydroxide supernatant; lane 
9, sodium hydroxide eluate.
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In fraction 10, the second protein band was smaller than 31 kDa.

Results of the chitinase in-gel assay o f the RSQ column fractions

mentioned above are shown in Figure Vl-2. Fractions 5, 6 and 7 each

showed one form o f chitinase. These were designated as S. simplex

Chitinase A1 (fraction 5), A2 (fraction 6), and A3 (fraction 7). Fractions 8,

9 and 10 each had more than one form o f chitinase. These chitinases differ

in charge and/or size from each other and from A l, A2 and A3. Four

chitinase bands were visible in fraction 8 (A4, A5, A6, and A7 in order of 
♦

their increasing mobility), two chitinase bands (A8 and A9) were visible in 

fraction 9 and two chitinases (AlO and A ll )  were detected in fraction 10. 

Chitinase bands in fractions 5, 6, and 7 were broad and diffuse. For this 

reason, it was difficult to determine if there was more than one form of 

chitinase present in these fractions.

At least five different forms of chitinase were present in the sodium 

hydroxide eluate. The latter was further fractionated on an RSQ column. 

Three of these purified isoforms were detected in an activity gel of the 

fractions obtained by anion-exchange chromatography of sodium hydroxide 

eluate (Figure Vl-3). Two chitinase bands were observed in fraction 4, and a 

single band was detected in fraction 5. These bands were designated as S. 

simplex chitinase B1 and B2 (fraction 4), and B3 (fraction 5).
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Figure VI-2: Detection of Isoforms of Chitinases in the 
RSQ Column Fractions 5-10 (see Figure V-3) from the 
Neutral Chitin Column Acetic Acid Eluate. Acetic acid 
eluate from the neutral chitin column was separated by 
anion exchange (RSQ) chromatography. Fractions were 
dialyzed against 10 mM Tris-HCl, pH 8.0, to remove 
salt. A sample from each of the fractions was 
concentrated and 10 pi of the concentrated sample was 
separated on a 12.5% native gel. Chitinase activity was 
detected using an in-gel assay.
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10 11

Figure VI-3: Isoforms of Chitinase in Fractions 
Obtained by Anion Exchange Chromatography of the 
Sodium Hydroxide Eluate from a Neutral Chitin Column. 
A sample from each fraction was concentrated and 10 pi 
of the concentrated sample was separated on a 12.5% 
native gel. Chitinase activity was detected using the in­
gel assay. Fractions refer to RSQ fractions 3-11 as 
indicated in Figure V-7.
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Detection of B-Glucanase bv Glucanase In-Gel Activity Assay; The

presence of P-glucanase in the S. simplex dialyzed neutral extract and 

dialyzed neutral extract chitin column fractions was determined using the 

glucanase in-gel activity assay. All the fractions used for the in-gel assay 

were concentrated (2x) and 15 pi o f each o f the concentrated sample was 

separated on a 12.5% polyacrylamide gel under non-denaturing conditions. 

After electrophoresis, the gels were incubated in laminarin for 30 min. 

Glucanase bands were detected after color development as described in the 

Materials and Methods (Chapter IV).

Dialyzed neutral extracts contained different forms of glucanases. At 

least four different bands were visible in the neutral extract o f S. simplex 

seeds. However, two bands were detected in the acetic acid eluate and no 

bands were visible in the flow through or the sodium hydroxide eluate 

(Figure VÎ-4). Apparently, some forms of glucanase were lost after chitin 

column chromatography. The possibility exists that other forms of 

glucanase were present in these chitin column fractions but at levels below 

the levels o f detection using the in-gel assay. In the future, alternative 

methods of purification of glucanases may be more productive.
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Figure VI-4: Glucanase In-Gel Assay of Neutral Chitin Column and 
RSQ Fractions. Samples were concentrated (2x) and 15 pi of each of the 
concentrated samples was separated on a 12.5% native gel. After 
electrophoresis, glucanases were detected using the glucanase in-gel 
assay. Lane 1, S. simplex neutral extract; lane 2, flow through from 
neutral chitin column; lane 3, neutral chitin column sodium hydroxide 
eluate; lane 4; neutral chitin column acetic acid eluate; Lane 5-11; RSQ 
fractions 5-11 obtained by anion-exchange chromatography of the neutral 
chitin column acetic acid eluate. Lane 12; positive control.
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Detection of Protein Glycosylation

The glycosylation of purified chitinases obtained by anion-exchange 

chromatography o f the neutral chitin column acetic acid eluate was 

measured using a DIG glycan detection system. Two hundred pi of each 

fraction was dried in a speed vac and 10 pi o f SDS sample buffer was added 

to each of the dried samples. After heating in a boiling waterbath for five 

min, these samples were separated on a 12.5% SDS polyacrylamide gel and 

then transferred onto a nitrocellulose membrane. All the chitinase bands 

were stained indicating the presence of carbohydrates attached to these 

proteins (Figure VI-5). In addition, glycosylation was also observed in 

fraction 14 from the RSQ column even though there was no visible protein 

band in this fraction.
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8 9 10 11 12 13 14

Figure VI-5; Glycoprotein Analysis of Ion Exchange Column 
(RSQ) Fractions of Acetic Acid Eluate from the Neutral Chitin 
Column. Glycoprotein analysis was performed after SDS- 
PAGE separation. Proteins were transferred to a nitrocellulose 
membrane. Glycoproteins were detected using the Boehringer 
Mannheim DIG glycan detection kit. Lane 3 to 14, RSQ 
column fiactions 3 to 14, respectively.
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Amino Acid Composition

Purified S. simplex chitinase A 3 (fraction 7 from the RSQ column) was 

loaded onto a micro-HPLC reverse phase column to remove minor 

contaminants before analysis of amino acid composition or sequence. The 

absorbance profile indicated two peaks (Figure VI-6), a major peak in 

fraction 8 with a trailing edge in fraction 9 and one minor peak in fraction 4. 

SDS-PAGE analysis confirmed the identity of the peak 8 (Figure VI-7). 

Fraction 8 was dried under vacuum and part o f this sample was subjected to 

acid hydrolysis to determine its amino acid composition using a auto 

analyzer (Table VI-1).
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Figure VI-6: Absorbance Profile of HPLC Separation of Chitinase A3 
Prior to Sequencing. Prior to HPLC purification, 72 pi of RSQ fraction 
7 containing chitinase A3 was added to 128 pi o f TEA in water. One 
hundred pi o f sample was injected onto a 1.0 mm x 50 mm 200 A° 
PLPR-S column, the column was eluted with a gradient of acetonitrile- 
water containg TFA. Peak fractions were collected manually.
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Figure VI-7: SDS-PAGE Analysis of Fractions from Micro- 
HPLC Separation of Chitinase A3. Acetic acid eluate firam the 
neutral chitin column was fractionated by anion exchange (RSQ) 
chromatography. Fraction 7 from the RSQ column containing 
chitinase A3 was further purified by micro-HPLC prior to 
sequencing. Fraction 4, 8 and 9 (see Figure VI-6 ) were dried and 
analyzed by SDS-PAGE. The protein banding pattern of the 
fractions corresponding to the peaks are shown on the figure. 
After electrophoresis, the gel was silver stained to reveal protein 
bands. STD = molecular weight standards.
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Table VI-1: Amino Acid Composition of Chitinase A3.

AMINO ACID NUMBER OF RESIDUES

Aspartic acid 46.0
Threonine 11.0

Serine 22.5
Glutamic acid 18.6

Proline 15.7
Glycine 29.2
Alanine 20.5
Cystine 2.9
Valine 14.1

Methionine 1.2
Isoleucine 13.1
Leucine 26.6
Tyrosine 15.3

Phenylalanine 12.3
Lysine 15.1

Histidine 7.1
Arginine 6.0

TOTAL 273.1

Amino acid analysis of chitinase A3 [Fraction 7]was performed on an automated 
amino acid analyzer after acid hydrolysis of the HPLC purified protein.
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Amino Acid Sequence Analysis

The N-terminal sequences of several of the purified chitinase iso forms were 

analyzed using a ProCise Automated Sequencer. The N-terminal sequence 

of both HPLC fractions 8 and 9 described above was determined. The two 

sequences obtained were identical, suggesting that the protein present in 

fractions 8 and 9 was the same even though two bands were detected on the 

SDS gel of fraction 9. Glycosylation may have been responsible for the 

trailing edge of the peak and the appearance o f multiple bands in this 

fraction. Alternatively, the N-terminus of the higher molecular weight form 

may have been blocked. The N-terminal sequence of S. simplex chitinase 

A1 (fraction 5) was the same as the N-terminal sequence of chitinase A3 

(Figure Vl-8).

Although these proteins share the same N-terminal sequence, they 

must differ in internal sequence since they can be separated by ion-exchange 

chromatography and native gel electrophoresis. The N-terminal sequence of 

A10/11 (fraction 10) was similar but not identical to the sequences of 

chitinase A1 and A3 (Figure VI-8). The N-terminal amino acid sequences of
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Figure VI-8: N-terminal Sequence of S. simplex Chitinases. The sequences 

were determined by Edman degradation with an automated protein 

sequencer. No amino acid residue was detected in position 23 of all three 

chitinases.

Chiti A1 KVNGWITIYWGQNNGDGTLAST7DTGLYEI

Chiti A3 KVNGWITIYWGQNNGDGTLAST7DTGLYEIVNLAF

Chiti A 10/A 11 RVDGWITIYWGQNNGDGSLTAT7DTGLYNI
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chitinase A3 and A 10/11 were compared to the N-terminal sequences of 

plant chitinases from different species using the Swiss-Pro Gene Bank 

database through the Internet (Figure VI-9 and Figure VI-10), The chitinase 

A3 N-terminal sequence was highly homologous to class III acidic 

endochitinase/lysozyme precursor from several plant species (Figure VI-9). 

Over 60% o f the N-terminal sequence o f chitinase A 10/11 was identical to 

the N-terminal sequences of several class III chitinase/lysozyme and class III 

chitinase/lyso2̂ m e precursors from different plants (Figure VI-10 and 

Figure VI-11), including Cucumis sativus (cucumber).

To obtain the internal sequence for chitinase A3, the most prominent 

chitinase, the HPLC purified A3 (fraction 8) was digested with Lys-C 

(Boehringer-Mannheim, Indianapolis IN). The peptide fragments obtained 

after the digestion were purified by RP-HPLC (Figure VII-12). Eight major 

peaks were separated and the N-terminal sequence of three of these peaks 

was determined. The internal sequences obtained are presented in Figure 

VII-13. Comparison of the internal sequences of chitinase A3 to cucumber 

class III endochitinase precursor Indicated over 50% sequence homology 

(Figure V I-14).
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Figure VI-9: N-terminal Sequence Homology o f S. simplex Chitinase A3 to

Chitinases from Other Plant Species.

Plant Species
Access
number

*

%
Identity

%
Similarity References

Cucumis sativus P17541 64 73 Metraux et al., 1989
Phaseolus
angularis

p29024 SI 68 Ishige et al., 1993

Vitis vinifera P51614 57 68 Busam et al., 1996
Parthenocissus
quinquefolia

p23473 57 63 Bemasconi et al., 1987

Nicotiana tabacum p29061 54 63 Lawton et al., 1992
Arabidopsis
thaliana

pl9172 54 66 Samac et al., 1990

Nicotiana tabacum P29060 54 63 Lawton et al„ 1992
Hevea brasiliensis P23472 54 60 Jekel et al., 1991
Cicer arietinum p36908 46 64 Vogelsang and Barz, 

1993
Beta vulgaris P36910 64 75 Nielsen et al., 1993

Swiss-Pro protein access number
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Figure VI-10: N-terminal Sequence Homology of S. simplex Chitinase

A10/11 to Chitinases from Other Plant Species.

Plant species
Access

num ber
*

%
identity

%
similarity Reference

Parthenocissus
quinquefolia

p23473 63 73 (Bemasconi et al.. 
1987)

Vitis vinifera p51614 63 73 (Busam et al.. 
1996)

Hevea brasiliensis p23472 63 73 (Jekel et al.. 1991)
Phaseolus
angularis

p29024 62 81 (Ishige et al.. 
1993)

Arabidopsis
thaliana

pl9172 63 78 (Samac et al.. 
1990)

Beta vulgaris p36910 64 70 (Nielsen et al.. 
1993)

Nicotiana
tabacum

p29061 52 68 (Lawton et al.. 
1992)

Cucumis sativus pl7541 64 76 Metraux et al.. 
1989

Nicotiana
tabacum

p29060 63 68 (Lawton et al.. 
1992)

Cicer arietnum p36908 64 78 (Vogelsang and 
Barz. 1993)

* Swiss-pro protein access number.
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Figure VII-11: Comparison of the N-terminal Sequence of S. simplex

Chitinase AlO with N-terminal Sequences o f Other Plant Chitinases.

CHIA 10 

CHIA ARATH 

CHLY PARTH 

CHIA VITVI 

CHLY HEVBR

RVDGWTTIYWGQNNGDGSLTAT7DTGLYNI 
* * ****** .).*+* •
GGIAIYWGQNGNEGNLSAT 

GGIAIYWGQNGNEGTLTQT 

GGIAIYWGQNGNEGTLTQT 

GG lAIYWGQNGNEGTLTQT

CHIA ARATH = acidic endochitinase precursor from Arabidopsis 
thaliana; CHLY PARTH = chitinase / lysozyme from Parthenocissus 
quinquefolia.’̂ CHIA VITVI = acidic endochitinase precursor from Vitis 
vinifera-, CHLY HEVBR = chitinase / lysozyme from Hevea brasiliensis. 
(*) = identical, (+) = similar.
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Figure VI-12 : HPLC Separation of Products of Lys-C Digestion of 
Chitinase A3. To obtain internal sequence of chitinase A3, chitinase A3 
was digested with Lys-C and the products of digestion were separated on a 
1.0-mm X 150-mm CIS column.

263



Figure VI-13: Internal Sequence of S. simplex Chitinase A3. The internal 

sequences were determined after micro-HPLC purification of the LYS-C 

digested fractions of Chitinase A3. No amino acids were detected in 

position 31 and 34 of LYS-C digested Chitinase A3 fraction 30.

Fraction 26 YYLSAAPQCFIPDYYLDK

Fraction 30 TGLFDDIFVQFTNNPPCQYASGDPDRLFQS?DA?T

Fraction 32 YGPLGSVALDGIDFDIQGGSNLYWDDLVRGLDTLRK

Figure VI-14: Comparison o f Homology between S. simplex Chitinase A3 

LYS-C Digested Fractions and Cucumber Class III Acidic Chitinase.

HPLC Fraction % Identity % Similarity

26 80 86

30 70 85

32 55 72

Reference: Metraux et al., 1989
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Determination of molecular weight

The molecular weights of the chitinases from S. simplex were determined by 

SDS-PAGE (Figure VI-15). Samples from the chitinase containing fractions 

were reduced with p-mercaptoethanol and boiled for 5 min before loading 

onto the gel. Based on this analysis, the subunit molecular weight of the 

major protein bands ranged from 28 kDa to 36 kOa. There were a few 

minor bands present in most of the chitinase-containing fractions (Chit A1 to 

A11). The molecular weights of all these protein bands are summarized in 

Table VI-2.

The molecular weight of S. simplex chitinase A3 (RSQ fraction 7) was 

also determined by LG mass spectrometry at the University of Oklahoma 

HSC Molecular Biology Resource Center. Three proteins that were closely 

related in molecular weight were observed in the HPLC purified S. simplex 

chitinase A3. The molecular weight of the major peak was 32,309 Da and 

the two smaller peaks were 32,151 Da. and 32,478 Da (Figure VI-16). The 

heterogeneity in molecular mass was most likely due to differences in 

glycosylation. Consistent with this conclusion, the differences in weight 

between the three peaks were approximately 162 Da (the residue weight of 

an additional hexose unit).
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Figure VÏ-15: Estimation of Protein Molecular Weights 
by SDS-PAGE. Plot of log Molecular weight o f protein 
standards versus relative mobility on a 12.5% SDS gel.
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Table VI-2: Estimated Molecular Weights o f Purified Chitinases and Other 

Minor Protein Bands Present in the Chitinase-containing Fractions Obtained 

by Anion-exchange Chromatography of the Acetic Acid Eluate from the 

Neutral Chitin Column.

Fraction num ber Band Molecular weight 
(kDa)

5 mai or 33
6 major I 36

major 2 34
7 major 37

minor 1 33
minor 2 30
minor 3 28

8 major 1 36
mai or 2 34

9 major 36
minor 35

10 minor I 36
minor 2 34

1 minor 3 28

Molecular weights of chitinase were determined by SDS PAGE. Numbers 
were assigned according to the mobility of proteins on the SDS gel. The 
highest numbers were assigned to the proteins with highest mobility.
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Figure V I-16: Determinationof Molecular Weight of 
Chitinase A3 by Electrospray Mass Spectrometry.
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Isoelectric point

The isoelectric points of several o f the purified S simplex chitinases were 

determined by isoelectric focusing using a BioRad mini-IEF chamber. The 

lEF gel was prepared according to the manufacturer’s instructions. After the 

sample was focused, the gel was stained with Coomassie Brilliant Blue. The 

pH profile was estimated by measuring the migration distance from the 

anode for a series of pi standards from BioRad. Results of this analysis 

indicate that the major p i’s o f the chitinase containing bands were very 

acidic with pi’s below 5.2 (data not shown).

Capillary lEF was performed with 5. simplex chitinase A l, A3 and 

AlO/l 1 using a Beckman PACE 5000 system. Based on the results of this 

analysis, the isoelectric point o f S. simplex chitinase A3 was 3.0 (Figure VI- 

17).
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Figure VI-17: Determination o f Isoelectric Points for Chitinases 
from 5. simplex by Capillary Isoelectric Focusing (CHIEF).
Samples with standards were separated by CHIEF on a 
Beckman FACE 5000. Standards include ribonuclease A, 
carbonic anhycirase II and p-Lactoglobulin A with pi values 
of 9.45, 5.90 and 5.10, respectively. Position o f standards 
and samples are noted on the figures. RSQ fraction 5 = chitinase A l; 
fraction 7 = chitinase A3; fraction 9 = chitinase A8/A9.
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CONCLUSIONS

A number o f isoforms of chitinase were detected in extracts from 5. simplex 

seeds. These chitinases were purified as described in Chapter V. The 

properties o f  several of these chitinases are reported in this chapter. The 

chitinases have molecular weights in the range of 30-32 kDa based on mass 

spectrometry and SDS-PAGE. The isoelectric points were determined for 

several isoforms using conventional and capillary lEF. These proteins were 

all acidic with pi values near 3. A partial amino acid sequence was 

determined for three of the chitinases isolated by anion-exchange 

chromatography. These chitinases have high sequence homology with class 

III chitinase/lysozyme from other plant sources. Based on results of an 

antifungal bioassay, several of these chitinases exhibit antifungal activity 

against A. flavus. Further analysis and gene cloning will be required to 

determine the structures of all of these chitinases and to determine their role 

in plant defense.

271



Chapter VII : Purification and Characterization of Antifungal

Activities from Swartzia cubensis

INTRODUCTION

A closely-related species o f Swartzia known as Swartzia cubensis (Britt. & 

Wils.) Standi, was collected by Dr. Karel Schubert from the lowland humid 

forests of Costa Rica. This species was not included in the initial screen. 

When tested for antifungal activity, both crude and dialyzed extracts of 5. 

cubensis seeds completely inhibited conidial germination and growth o f F. 

moniliforme and showed very strong inhibition of A. flavus hyphal growth. 

Since both species apparently contain potent inhibitors of fungal growth, the 

purification of antifungal activities from S. cubensis and S. simplex seeds 

was carried out in parallel. Although the same process for development o f  a 

purification method as presented in Chapter IV was used herein, only the 

results of selected experiments will be presented.
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MATERIALS AND METHODS

Seeds of Swartzia cubensis were collected from the lowland rainforest of 

Costa Rica and stored at -40°C. The general methods used for the isolation 

of antifungal activities from extracts of S. cubensis seeds were the same, 

unless otherwise noted, to those used for the purification of antifungal 

activities from S. simplex.

Ammonium sulfate fractionation

Solid ammonium sulfate was pulverized with a mortar and pestle and 

gradually added to a sample of neutral crude dialyzed extract to achieve 25% 

saturation of ammonium sulfate. The procedure was carried out on ice with 

constant stirring. After all of the salt dissolved, the sample was kept on ice 

for 60 min without stirring and then centrifuged for 30 min at 15,000 x g. 

The pellet was resuspended in a minimum volume o f 10 mM Tris-HCl (pH

8.0). Additional ammonium sulfate was added to the supernatant to a final 

concentration o f 35% saturation and the process described above was 

repeated, for the 25-35% ammonium sulfate saturated sample. The 

supernatant obtained after this step was adjusted with the addition of more 

solid ammonium sulfate and the process was repeated to obtain fr-actions for
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35-45, 45-55, 55-65 and 65-90% ammonium sulfate saturation. In each 

case, the pellet obtained after each fractionation was resuspended in 10 mM 

Tris-HCl (pH 8.0). The supernatant remaining after the final precipitation 

along with the resuspended pellets obtained after each step of the ammonium 

sulfate fractionation were dialyzed in 10 mM Tris-HCl (pH 8.0) and assayed 

for antifungal activity.

PRELIMINARY CHARACTERIZATION AND PROPERTIES OF 

ANTIFUNGAL ACTIVITY.

Heat stability

Samples of dialyzed neutral extract from S. cubensis seeds were heated at 

50, 60, 70, 80, 90 and 100 °C for 3 min and the heat-treated extracts were 

assayed for antifungal activity. Results of the bioassay indicated that 

antifungal activity was denatured by heat treatment, i.e. there was no 

inhibition o f A. flavus growth in heat-treated samples. The extreme 

sensitivity of the antifungal activity to heat supports the conclusion that the 

active components are proteins.
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Size fractionation by ultrafiltration

To estimate the size of the active components in these extracts, dialyzed 

neutral extract was size fractionated by ultrafiltration using Centricon C 10, 

C30, C50 or C l00 concentrators. The retentâtes and filtrates after 

ultrafiltration were tested for antifungal activity. The results o f these 

bioassays were very similar to the results obtained with S. simplex extracts. 

After 48 h o f incubation, all of the retentâtes completely inhibited conidial 

germination o f A. flavus (Figure VII-1). Moderate inhibition of hyphal 

growth was observed with all the filtrates in the 48-h assay but the activity 

diminished with increased time of incubation. After 7 days of incubation, 

heavy mycelial growth was observed in all the filtrates while all the 

retentâtes still showed complete inhibition. These results suggest that 

components with molecular weight greater than 10 kDa possess antifungal 

activity. In addition to the retentâtes, the filtrates apparently possess 

antifungal activity. Inhibition of fungal growth by these filtrates, however, 

was not complete and fungal growth was evident only after prolonged 

incubation.
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Figure V II-1 : Preliminary Size 
Fractionation of Antifungal Activity from 
Extracts of S. cubensis seeds. Dialyzed 
neutral extract was fractionated by 
ultrafiltration using 10,30, 50 and 100 kDa 
MWCO concentrators. One hundred m.1 of 
both retentate and filtrate from each size 
fractionation were assayed for antifimgal 
activity against/4.j7av«j.
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Ammonium sulfate fractionation

Dialyzed neutral extract from 5. cubensis seeds was fractionated by stepwise 

ammonium sulfate fractionation. Pellets obtained after each ammonium 

sulfate fractionation were resuspended and dialyzed in 10 mM Tris-HCl, pH

8.0. The final supernatant after precipitation with 90% ammonium sulfate 

was dialyzed and samples were assayed for antifungal activity. Antifungal 

activity was present in each fraction (Figure VII-2). The best activity was in 

the 0-25% and 25-45% pellets. The activity was spread through all the 

fractions suggesting that there may be multiple activities and/or 

heterogeneity in the active component(s).
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Figure VII-2: Evaluation of Antifungal 
Activity of Ammonium Sulfate Fractionated 
Neutral Extract of Seeds of S. cubensis. Dialyzed 
neutral extract was fractionated by stepwise 
addition of ammonium sulfate. Precipitated 
samples were resuspended in a minimum volume 
of 10 mM Tris-HCl, pH 8.0, dialyzed and 
assayed for antifungal activity against A. flavus 
using the standard bioassay.
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PRELIMINARY PURIFICATION OF ANTIFUNGAL ACTIVITIES

Extraction Procedure

S. cubensis seeds were extracted using both neutral and acidic extraction 

procedures. The extraction buffer for the neutral extract was 10 mM Tris- 

HCl, pH 8.0 and 0.1 M HCl was used for acid extraction. Crude acid extract 

was either neutralized with 2 M NaOH and than dialyzed or dialyzed 

immediately without neutralization. Dialyzed neutral extract (NEx) and 

neutralized/dialyzed acid (NDAEx) extracts were assayed for antifungal 

activity. Dialyzed neutral extract and neutralized dialyzed acid extract 

completely inhibited conidial germination of A. flavus. Hemagglutinating 

activity was present in dialyzed neutral extract but was absent in dialyzed 

acid extract. Preliminary experiments were conducted to develop a protocol 

for the purification of the antifungal activities from both neutral extract and 

acid extract.

Size-exclusion Chromatography

Neutral extract: Dialyzed neutral extract was concentrated 2-4 fold by 

ultrafiltration using a Centricon CIO concentrator. The concentrated sample

279



(0.5 ml) was loaded onto a Superose 12 column and eluted with 10 mM Tris- 

HCl, pH 8.0. Protein elution from the column was measured at 280 nm 

(Figure VII-3). Twenty four-ml fractions were collected from the Superose 

12 column and assayed for antifungal and hemagglutination activities. 

Strong inhibition of A. flavus growth was observed in fraction 10 (Figure 

VII-4). Moderate inhibition of hyphal growth was observed in assays 

containing fractions 1, 9, 11 to 13 and fractions 8 and 14 exhibited slight 

inhibition. Hemagglutination activity was observed in fraction 12 and 13 

but not in fraction 1, 8-10, 11 or 14. Analysis of the protein-banding pattern 

revealed protein bands in all the fractions (Figure Vll-5). The banding 

pattern was similar to the pattern observed in the SDS gel o f S. simplex 

neutral extract Superose 12 fractions. Two major bands of approximately 31 

kDa were present in fractions 4 and 5. Bands of similar size were also 

present in the rest of the fractions but the amount of protein was lower and 

they appeared as minor bands.

Acid extract: Dialyzed acid (DAEx) extract from S. cubensis seeds was 

concentrated and fractionated by size-exclusion chromatography on 

Superose 12. The absorbance profile (280 nm) of the eluted fractions is
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Figure VII-3 : Absorbance Profile of Neutral 
Extract of S. cubensis seeds Fractionated by Size 
Exclusion Chromatography. Five hundred pi of 
concentrated (2x) neutral extract was applied to 
the column. Proteins were eluted with 10 mM 
Tris-HCl, pH 8.0.
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Figure VII-4 ; Antifungal Activity of Fractions 
Obtained by Size Exclusion Chromatography of 
Neutral Extract of S. cubensis Seeds. Neutral extract 
was fractionated on a Superose 12 column 
equilibrated with 10 mM Tris-HCl, pH 8.0. One 
hundred pi from each fraction was assayed for 
antifungal activity against A. flavus in the standard 
bioassay.
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Figure VII-5 : SDS PAGE Analysis of Fractions 
Obtained by Size Exclusion Chromatography of 
Neutral Extract of S. cubensis Seeds. One hundred pi 
from each fraction was dried in vacuo, resuspended in 
10 pi of SDS sample buffer and boiled for 5 min 
before loading onto the gel. Lane 1 to 16, Superose 
12 fractions 1 to 16. STD = molecular weight 
standards.
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shown in Figure VII-6. Fractions obtained after size-exclusion 

chromatography of the acid extract were assayed for antifungal activity. 

Although the acid extract completely inhibited fungal growth, none of the 

fractions from the Superose 12 column inhibited growth of A. flavus. The 

protein composition of each of the fractions was examined by SDS PAGE 

(gel not shown). Protein bands were detected in fractions 2 to 12 but not in 

any of the other fractions even though, materials were eluted with 

absorbance at 280 nm. According to the SDS gel profile and antifungal 

assay, size-exclusion chromatography on Superose 12 was not an effective 

method for the preliminary purification of antifungal activities from acid 

extract of S. cubensis seeds.
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Figure VlI-6 : Absorbance Profile o f Size 
Exclusion Chromatography of Acid Extract of S. 
cubensis Seeds. Five hundred pi of concentrated 
(2x) acid extract was loaded onto the column. 
Proteins were eluted with 10 mM Tris-HCl, pH
8.0. Twenty 4-ml fractions were collected.
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Affinity chromatography

Chitin-afïïnity chromatography was a more effective method of preliminary 

purification o f the antifungal activities present in both acid and neutral 

extracts of S. cubensis seeds. Figure VlI-7 summarizes the methods used for 

purification of antifungal activities by chitin-affinity chromatography along 

with a summary of key results.

Neutral chitin column: Two different protocols for chitin-affinity 

chromatography of neutral extract were used. In both cases, 10 ml of 

dialyzed neutral extract was applied to the column. The flow through was 

collected and reapplied to the column 4 times. Proteins not bound to the 

column were washed from the column with 100 ml of 10 mM Tris-HCl, pH

8.0. At this point, the two procedures diverge. Bound proteins were eluted 

with either low and high pH or a step gradient of NaCl (i. e. 100 ml o f 0.1 

M, 0.2 M, 0.3 M, 0.4 M, 0.5 M and IM NaCl in 10 mM Tris-HCl, pH 8.0) 

according to the methods described in Chapter IV.

286



s. cubensis Seeds

I
Neutral Extract

I

Neutralized Acid Extract

I
A FA

I
RFP

AFA

I
RFP

CAC

CAC

FT ACE SHE

ACE SHEFT

AFA No AFAAFACAC
AFAAFA N o AFA

RNRRFP

RFP RFP

FT S A' T

Figure VII-7: Summary o f Results from Chitin Affinity Chromatography 
of Extracts of S. cubensis Seeds.

Abbreviations: CAC, chitin affinity chromatography; FT, flow through; 
ACE, acetic acid eiuate; SHE, sodium hydroxide eiuate; SALT, fractions 
eluted with salt; AFA, antifungal activity; No AFA, no antifungal activity; 
RFP; requires further purification; RNR, results not reported herein.
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Using the first method, chitin-binding proteins were eluted with 0.1 M 

acetic acid followed by 0.1 M NaOH. The acetic acid eiuate exhibited very 

little absorbance at 280 nm and after ammonium sulfate precipitation of this 

fraction there was no visible pellet. On the other hand, fractions eluted with 

sodium hydroxide yielded a sizable pellet that was resuspended in 4 ml of 10 

mM Tris-HCl, pH 8.0. Except the flow through and first Tris-HCl wash, all 

the other fractions were dialyzed against 10 mM Tris-HCl, pH 8.0 and all 

fractions were assayed for antifungal activity. Antifungal activity was 

present in the flow through, first Tris wash, 0.1 M salt wash and sodium 

hydroxide eiuate (Figure VlI-8). The sodium hydroxide eiuate completely 

inhibited conidial germination and the flow through strongly inhibited 

hyphal growth. The first Tris wash and the 0.1 M salt wash exhibited only 

moderate inhibition of fungal growth.
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Figure VlI-8: Antifungal Activity of Fractions from 
Neutral Chitin Column. Ten ml of dialyzed neutral 
extract of S. cubensis seeds was fractionated on a 
chitin affinity column. Fractions from the chitin 
column were dialyzed against 10 mM Tris-HCl, pH
8.0, and assayed for antifungal activity using the 
standard bioassay with A. flavus.
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Protein bands were visible in all fractions on the SDS gel (Figure VII-9). In 

the flow through, bands with estimated molecular weights of 21-24 kDa 

were very prominent. Several additional bands were visible in the flow 

through, first Tris-HCl wash and 0.1 M salt wash. The intensity of staining 

of all of these bands was lower in the first Tris-HCl wash and 0.1 M salt 

wash. There was no visible protein band in the 1 M salt wash and the 

supernatant of the sodium hydroxide eiuate after ammonium sulfate 

precipitation. The acetic acid eiuate contained only one protein band of 31 

kDa. The sodium hydroxide eiuate also contained one 31-kDa band and two 

bands with molecular weights smaller than 21 kDa

The chitin column fractions eluted with salt were dialyzed and 

assayed for antifungal activity. According to the results of the bioassay, the 

flow through, 0.1 M and 0.4 M salt eluted fractions showed very strong 

inhibition o f fungal growth while the 0.5 M and I M salt eluted fractions 

completely inhibited conidial germination (data not shown). SDS-PAGE 

analysis o f the salt eluted chitin column fractions revealed several protein 

bands in all the fractions but the number of bands was higher in the flow 

through and 0.1 M salt eluted fractions (gel not shown). Even though both
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Figure VII-9: SDS-PAGE Gel of S. cubensis Neutral 
Chitin Column Fractions. One hundred |il of each 
fraction was dried in vacuo, resuspended in 10 jil of 
SDS sample buffer and boiled for 5 min before loading 
onto the 12.5% SDS gel. Lane 1, neutral extract; lane 
2, flow through; lane 3, 1st Tris wash; lane 4,0.1 M 
salt wash; lane 5,1 M salt wash; lane 6, acetic acid 
eiuate; lane 7, 2nd Tris wash; lane 8, sodium 
hydroxide eiuate; lane 9, sodium hydroxide 
supernatant. Protein bands were revealed by silver 
staining. STD = molecular weight standards.
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procedures were effective, efforts focused on the use of low and high pH 

elution for the continued purification of antifungal activity from extracts of 

S. cubensis seeds.

Chitin-affinity chrom atography of acid extract: 5. cubensis seeds were 

extracted in 0.1 N HCl according to the method described in Chapter IV. 

Seeds (10 g) were extracted in 50 ml of 0.1 N HCl and centrifuged at 20,000 

X g for 10 min. After centrifugation, the pellet was discarded and the pH of 

supernatant fluid was adjusted to pH 3.8 with 2 N NaOH and allowed to 

stand on ice for 1 h. After 1 h, the supernatant was centrifuged again at 

20,000 X g for 10 min. The clear supernatant fluid after centrifugation was 

filtered through Whatman 3 MM filter paper and five ml of the filtrate was 

loaded onto a chitin-affinity column equilibrated with 50 mM sodium 

acetate buffer, pH 3.8. The remainder (approximately 10 ml) of the 

neutralized acid extract was dialyzed against 10 mM Tris-HCl, pH 8.0. 

Unbound proteins were washed from the column with 100 ml of 0.1 M NaCl 

followed by 100 ml o f 1 M NaCl both in 50 mM sodium acetate, pH 3.8. 

After removal of the proteins which did not bind or bind tightly to the chitin 

column, bound proteins were eluted first with 0.1 N acetic acid and then 

with 0.1 N NaOH according to the procedure described in the Materials and
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Methods of Chapter IV. Between the high and low pH elution the column 

was washed with 1 M NaCl in 50 mM sodium acetate, pH 3.8. Fractions 

were dialyzed and/or concentrated as noted.

Strong antifungal activity was observed in the flow through, acetic 

acid eiuate (Figure VII-10). Moderate inhibition was present in the acetic 

acid supernatant indicating that not all o f the antifungal activity was 

precipitated with ammonium sulfate. No antifungal activity was observed in 

the NaOH eiuate. In contrast to results with S. simplex, the antifungal 

activity in the extract of S. cubensis seeds was not denatured by acid 

extraction and neutralization. Strong inhibition of A. flavus hyphal growth 

was observed in the neutralized dialyzed acid extract.

Many o f the proteins present in the extracts, however, were denatured 

by this process. Analysis of neutralized dialyzed acid extract on SDS-PAGE 

revealed only five protein bands (Figure VII-11). These same protein bands 

were also observed in the chitin column flow through although the intensity 

of the bands was reduced in the flow through. The resuspended and 

dialyzed acetic acid eiuate after ammonium sulfate precipitation showed 

several very prominent bands with molecular weights less than 21 kDa.
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Figure VII-10; Antifungal Activity of S. cubensis 
Acid Chitin Column Fractions. Seeds were 
extracted in 0.1 M HCl and the extract was 
neutralized with NaOH. Ten ml of the neutralized 
acid extract was applied to a chitin-affinity column. 
The fractions from the chitin column were dialyzed 
in 10 mM Tris-HCl, pH 8.0, and assayed for 
antifungal activity against A. flavus.
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Figure VlI-11: SDS-PAGE Gel of S. cubensis Acid 
Chitin Column Fractions. One hundred |il o f each 
fraction was dried in vacuo, resuspended in 10 pi of 
SDS sample buffer and boiled for 5 min before loading 
onto the 12.5% SDS gel. Lane I, neutralized/dialyzed 
acid extract (20 pi dried); lane 2, flow through; lane 3, 
0.1 M salt wash; lane 4, 1 M salt wash; lane 5, acetic 
acid eiuate; lane 6, acetic acid supernatant; lane 7,2nd 
1 M salt wash; lane 8, sodium hydroxide eiuate; lane 
9, sodium hydroxide supernatant; Gel was silver 
stained to reveal protein bands. STD = molecular 
weight standards.
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Although much less abundant, bands of similar size were also observed in 

the sodium hydroxide eiuate. A 31-kDa band was also present in acetic acid 

eiuate, sodium hydroxide eiuate and in the flow through.

Other Methods

Anion-exchange chrom atography: Anion-exchange chromatography was 

initially evaluated as a method for the preliminary purification of antifungal 

activity from extracts of 5. cubensis seeds. Dialyzed neutral extract was 

fractionated on a Pharmacia RSQ column according to the procedure 

described in the Materials and Methods (Chapter IV). Fractions obtained 

after anion-exchange chromatography were dialyzed (10 mM Tris-HCl, pH

8.0) and assayed for antifungal activity. Activity was present in every 

fraction indicating either heterogeneity o f the active species or the presence 

of more than one activity (data not shown). Although agglutination activity 

was detected in the dialyzed neutral extract, there was no agglutination in the 

RSQ fractions. An SDS gel of the RSQ fractions (gel not shown) revealed a 

similar pattern o f  protein bands (21 to 45 kDa) as observed in the 

preliminary anion-exchange fractionation o f dialyzed neutral extract o f S.

296



simplex seeds. Antifungal activity was not resolved well by anion-exchange 

chromatography when used as a preliminary step o f purification.

Preparative isoelectric focusing: Dialyzed neutral extract (35 ml) was 

fractionated by preparative isoelectric focusing according to the procedures 

described in the Materials and Methods section of Chapter IV. None of the 

20 fractions possessed antifungal activity suggesting that the activity did not 

survive the separation process.

PURIFICATION OF ANTIFUNGAL ACTIVITY

Two protocols for the purification of antifungal proteins from S. cubensis are 

presented herein. Both protocols used dialyzed neutral extracts of 5. 

cubensis seeds as the starting material. Although neutralized acid extract 

contained very good antifungal activity, efforts to purify these components 

are not presented. The two protocols used for further purification of 

antifungal activity along with a summary o f key results are presented in 

Figure VII-12.
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Figure VII-12: Summary of Final Purification Protocols for the 
Isolation o f Antifungal Proteins from Extracts o f S. cubensis.
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Anion-exchange chromatography of neutral extract Superose 12 

fractions: According to the results of the fungal bioassay, fraction 10 from 

the neutral extract separated on Superose 12 exhibited strong antifungal 

activity. Moderate activity was observed in fractions 1, 9 and 11 to 13. 

Selected active fractions were pooled and further fractionated by anion- 

exchange chromatography.

Fraction 1 was pooled from three different Superose 12 runs and 10 

ml of the pooled fraction was applied to a Pharmacia RSQ column. Proteins 

were eluted with a gradient of 0 to 1 M NaCl. Fractions were collected, 

dialyzed and assayed for antifungal activity. Based on the fungal assay, 

there was no inhibition of A. flavus growth in any of these fractions. 

Likewise, there were no protein bands detected on the SDS gel of these 

fractions. These results were completely opposite to those obtained with 

anion-exchange fractions o f S. simplex neutral extract Superose 12 fraction 

1 .

Fraction 10 from the neutral extract Superose 12 run were pooled and 

10 ml of the pooled fraction was subjected to anion-exchange 

chromatography on a RSQ column. Fractions were collected, dialyzed and
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concentrated for the antifungal assay. Fraction 3 to 6 completely inhibited 

conidial germination and fraction 7 and 9 exhibited strong inhibition of 

fungal growth (Figure VII-13). Analysis of a SDS gel of these fractions 

revealed several protein bands between 66 and 14 kDa (data not shown). 

Size-exclusion chromatography coupled with anion-exchange 

chromatography were insufficient to separate and identify the active 

components. Therefore, further purification using alternative methods was 

required.

Anion-exchange chrom atography of neutral extract chitin column 

fractions: According to the results of the antifungal assay of neutral extract 

chitin column fractions, antifungal activity was present in the flow through, 

first Tris-HCl wash and sodium hydroxide eiuate. The latter completely 

inhibited conidial germination o f A. flavus. On this basis, antifungal activity 

from the sodium hydroxide eiuate was further purified by anion-exchange 

chromatography on a Pharmacia RSQ column. The sodium hydroxide pellet 

was loaded onto the RSQ column and proteins were eluted as stated in the 

Materials and Methods (Chapter IV). Eleven fractions (Figure VII-14) were 

collected, dialyzed and assayed for antifungal activity. Results of the
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Figure VII-13: Antifungal Activity of Fractions 
after Anion Exchange Chromatography of 
Superose 12 Fractions 9 and 10. Fraction 9 and 
10 were obtained from size fractionation of S. 
cubensis neutral extract on Superose 12. Both of 
these fractions were pooled and 10 ml of the 
pooled material was separated on a RSQ column. 
Proteins bound to the column were eluted with a 
linear gradient of NaCl. All the fractions from the 
column were dialyzed against 10 mM Tris-HCl, 
pH 8.0, and assayed for antifungal activity against 
A. flavus.
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Figure VII-14; Absorbance Profile of Anion 
Exchange Column Chromatography of the Sodium 
Hydroxide Eiuate from the S. cubensis Neutral 
Chitin Column. Five hundred pi of the sodium 
hydroxide eiuate was applied to the column. Bound 
proteins were eluted with a linear gradient o f sodium 
chloride in 10 mM Tris-HCl, pH 8.0.
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antifungal assay after incubation for 48 h indicated that antifungal activity 

was present in all the fractions except fraction three and eleven (Figure VII-

15). Moderate activity was present in fractions 4 to 7 while strong 

antifungal activity was present in fraction 1. Fractions 8-10 exhibited very 

strong to complete inhibition o f conidial germination. Observations of these 

assays after prolonged incubation (three weeks) revealed moderate inhibition 

in fractions 4 while fraction 9 still completely inhibited fungal growth.

SDS-PAGE analysis revealed a 31 to 33-kDa protein band in fractions 

4, 5 and 6 but the intensity of this band was lower in fraction 6 (Figure VII-

16). These bands were similar in size to chitinases from S’, simplex seeds. A 

number of lightly-stained protein bands were visible in fractions 7 to 10. 

Although it is possible that the antifungal activity in these fractions could be 

due to one or more of these proteins, it is not possible from these results to 

identify with any certainty the antifungal compound. The possibility exists 

that the some other compound in these fractions and not a protein is 

responsible for the activity. Fractions 1 to 3 each had a protein band of 

molecular weight close to 41 kDa. The antifungal activity decreased with 

the decreasing intensity o f staining of this band.
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Figure V II-15: Antiflmgal Activity of Fractions 
Obtained After Anion-Exchange Chromatography of 
Sodium Hydroxide Eluate ft’om the S. cubensis Neutral 
Chitin Column. Sodium hydroxide eluate ft-om the 
neutral chitin column was fractionated on a Pharmacia 
RSQ column. All the fractions were dialyzed against 
10 mM Tris-HCl, pH 8.0, and 100 pi of each ft-action 
was assayed for antiflmgal activity against A. flavus.
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Figure V II-16: SDS-PAGE Analysis of Fractions from 
the Anion Exchange Column Fractionation of the Sodium 
Hydroxide Eluate. Sodium hydroxide eluate from the S. 
cubensis neutral chitin column was applied to a RSQ 
column. Two-hundred pi samples from each fraction 
were dried in vacuo, resuspended in 10 pi of SDS sample 
buffer and boiled for 5 min before loading onto the 12.5% 
SDS gel. Lane 1 to 11, RSQ fractions (see Figure VU-14) 
1 to 11. The gel was silver stained to reveal protein 
bands. STD = molecular weight standards.
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CHARACTERIZATION

Selected chitinases are apparently responsible, at least in part, for the 

antiflmgal activity present in extracts of S. simplex seeds. These chitinases 

had molecular weights in the range of 28-36 kDa and were purified by 

chitin-affinity chromatography coupled with anion-exchange 

chromatography. Using the same basic purification protocol, protein bands 

of similar size were detected in anion-exchange column fractions exhibiting 

moderate antiflmgal activity and obtained from extracts of S. cubensis seeds. 

The moderate level of activity may reflect the very low levels of proteins of 

these fractions. To determine whether chitinase activity was present in these 

and other fractions and might be responsible, at least partially, for the 

antiflmgal activity, samples from each of the RSQ column fractions were 

tested for chitinase activity using the in-gel assay.

In extracts of 5. cubensis seeds, six chitinase bands were observed in 

the dialyzed neutral extract (Figure VII-17). After the neutral extract was 

fractionated by affinity chromatography, chitinase was only detected in the 

sodium hydroxide eluate (five chitinase bands). After purification o f the 

sodium hydroxide eluate by anion-exchange chromatography, chitinase
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Figure V II-17: Detection of Isoforms of Chitinases in 
Selected Fractions of S. cubensis Seed Extract. Neutral extract 
of S. cubensis seeds was fractionated on a chitin column and 
the sodium hydroxide eluate from the neutral chitin column 
was further fractionated by anion exchange chromatography. 
Ten |il of selected chitin column fractions was separated on a 
12.5% native gel. Sodium hydroxide eluate from the chitin 
column was fractionated on a RSQ column. A sample from 
each fraction was concentrated and 10 pi of each of the 
concentrated sample was separated on the same gel along with 
the chitin column fractions. Chitinase activity was detected 
using an in-gel assay. Samples: RSQ fractions 3 to fraction 
11 ; neutral extract (NEx); flow through (FT); and sodium 
hydroxide eluate (SHE), respectively. Chitinase bands are 
indicated with (*).
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bands were detected in fractions 4 and 5 (Figure V II-17). Two chitinase 

bands were detected in fraction 4 (chitinase B l, 32) and three chitinase 

bands were detected in fraction 5 (chitinase 33, 34  and 35). The sixth form 

of chitinase present in the original extract was not isolated or not detected 

under these conditions.

Fractions 4 and 5 exhibited moderate inhibition of A. flavus hyphal 

growth (Figure VII-15) in the 48 h assay but activity in fraction 5 decreased 

with prolonged incubation. After 4 weeks o f incubation, inhibition of A. 

flavus hyphal growth by fraction 5 was overcome. Fraction 4, on the other 

hand still, inhibited hyphal growth. In the initial 48-h assay, fractions 8, 9 

and 10 completely inhibited fungal growth. Even after 4 weeks of 

incubation, fraction 9 still completely inhibited growth of A. flavus. This 

chitin-binding activity did not correspond with chitinase activity.
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ANALYSIS AND DISCUSSION OF RESULTS

To date, there has been no report on the occurrence of antifungal proteins in 

S. cubensis. As far as known, this is the first report on the presence and 

isolation of antiflmgal proteins including chitinases and other antifungal 

proteins from 5. cubensis seeds.

Purification o f antifungal activities from the extracts of 5. cubensis 

seeds was carried out in parallel with the purification of active proteins from 

S. simplex. Because both o f these species belong to the same genus, one 

might assume that the antifungal activities in the seeds of these two species 

would be quite similar. Although there were some similarities between 

antifungal activities present in the two species, a number of differences were 

also apparent from the earliest stages of the purification.

In both the species, there appear to be multiple activities. The 

properties of the antifungal activities suggest that the active factors are 

proteins. Ammonium sulfate precipitation and size fractionation along with 

the heat treatment gave a clear indication o f the proteinaceous nature o f the 

activity. Antifungal activities in S. cubensis seeds were denatured by a 

50°C heat treatment and were greater than 3.5 kDa in molecular weight. 

Antifungal activity was precipitated over a wide range o f ammonium sulfate
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concentrations providing evidence for the existence of multiple antifungal 

proteins. In S. simplex, agglutinating activity was correlated with one form 

of antifungal activity. Agglutinating activity was sensitive to low pH. Low 

pH caused the loss of antifungal and agglutinating activity in Superose 12 

fractions 12 and 13, the peak o f agglutinating activity in the neutral extract 

of 5. cubensis seeds. The corresponding loss of both antifungal activity and 

agglutination adds support to the hypothesis that the two are connected.

At least some of the agglutinin was heat stable and was not 

precipitated with ammonium sulfate. In extracts of S. cubensis seeds, 

agglutinating activity present in the neutral extract was not denatured by heat 

treatment up to 80°C but was denatured by the 90®C heat treatment. The 

loss of antifungal activity after the 50°C treatment, argues against the notion 

that the agglutinating activity (at least the heat-resistant agglutinating 

activity) was responsible for the antifungal activity.

Four different preliminary purification procedures were evaluated. 

These were size-exclusion-chromatography, chitin-affmity chromatography, 

anion-exchange chromatography and preparative isoelectric focusing. The 

procedures mentioned above were chosen to separate antifungal activities by 

utilizing different properties o f proteins such as size, affinity for other
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biological compounds, charge etc. Preparative lEF proved to be an 

unsatisfactory method for the preliminary separation because activity did not 

survive this procedure. Anion-exchange chromatography of neutral extract 

did not adequately separate antifungal activity. This may have been due to 

the heterogeneity of the activity or the presence of more than one activity. 

This phenomenon was also observed in the separation of S. simplex neutral 

extract by anion-exchange chromatography.

In contrast to results with extracts of S. simplex seeds, only two zones 

of antifungal activity were observed after separation of neutral extract on 

Superose 12. Antifungal activity was not recovered after further 

fractionation of Superose 12 fraction 1 by anion-exchange chromatography. 

Activity in this fraction was not eluted and remained tightly bound to the 

RSQ column or activity was lost during this step. In fact, no protein bands 

were detected on a SDS gel of the anion-exchange fractions even though 

protein bands were present in the starting material (fraction 1). This 

observation confirms the conclusion that the antifungal protein remained 

tightly bound to the column.

The second zone of activity occurred in Superose 12 hactions 8 to 14, 

Activity in these fractions was eluted as a broad peak. In contrast with
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results from the purification of proteins from S. simplex, antifungal activities 

in fractions 9 and 10 were not associated with hemagglutination activity. 

Hemagglutinating activity, however, was present in fractions 12 and 13. 

Both of these fractions exhibited moderate antifungal activity.

Although some of the antifungal activity from the neutral extract was 

bound to the chitin column, a large portion of the activity did not bind to the 

column and came through in the flow through. A similar percentage of the 

total activity came out in the flow through when smaller volume of extract 

was applied to the colunrn, suggesting that the colunm was not overloaded. 

During the purification o f antifungal activities from S. simplex by chitin- 

affmity chromatography, antifungal activity was eluted by both acetic acid 

and sodium hydroxide. With neutral extracts of S. cubensis seeds, the bound 

activity was eluted only with high pH. Six isomers of chitinase were 

observed in neutral crude extract of S. cubensis seeds. Five out of the six 

were present in the sodium hydroxide eluate. It is worth mentioning that 

chitinase activity was not detected in the flow through, suggesting that all of 

the S. cubensis chitinases contain a chitin-binding domain. When sodium 

hydroxide eluate from the neutral chitin column was further fractionated on 

an anion-exchange column, all fractions except fiactions 3 and 11 caused 

moderate to complete inhibition of fungal growth.
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Overall, there were fewer isoforms of chitinase in seeds of S. 

cubensis. Chitinases were detected in fractions 4 and 5, both of which 

exhibited moderate antifungal activity. Three different isoforms of chitinase 

were present in fraction 5 and two in fiaction 4. SDS-PAGE analysis of 

these fractions revealed a single band with estimated molecular weight of 3 1 

and 32 kDa in fraction 4 and 5, respectively. Amino acid sequence analysis 

of these proteins will reveal more information about the exact nature of these 

chitinases, Chitinases were not detected in any other fraction from the 

anion-exchange column.

SDS-PAGE analysis of fractions 1 to 3 revealed a single 41 -kDa band 

in each fraction. No other bands were visible even after silver staining the 

gel. The intensity o f staining of the 41-kDa band was highest in fraction 1 

which exhibited the strongest antifungal activity (rating 3.5) among these 

three fiactions. The intensity of this band gradually decreased, as did the 

antifungal activity with fraction 3 showing very little antifungal activity 

(rating 1). It is quite possible that the 41-kDa band in fraction 1 to 3 is 

responsible for the antifungal activity. Hemagglutination activity of the 

anion-exchange column fractions was not determined. The possibility that 

the antifungal activity in fraction 1 to 3 could be an agglutinin can not be
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excluded. Antiflmgal activity in the rest o f the anion-exchange colunm 

fractions could not be associated with any specific protein band because 

there were a number of faint protein bands observed on SDS gels of these 

fractions. No single band seemed to correspond to the activity in these 

fractions.

Glucanase activity was detected in the crude neutral extract (Data not 

shown). It is possible that some of the antifungal activity, especially activity 

in the neutral chitin colunm flow through could be due to glucanases. 

Protein bands close to the molecular weight o f glucanases were observed 

after SDS-PAGE analysis of the neutral chitin colunm flow through. Chitin 

colunm fractions and fractions separated by anion-exchange chromatography 

were not tested for glucanase activity.

In contrast to the results with extracts of S. simplex seeds, 

neutralization of acid extract of S. cubensis seeds with 2 M NaOH did not 

denature the antiflmgal activity. Strong antifungal activity was present in 

the dialyzed neutralized acid extract (dialyzed in 10 mM Tris-HCl, pH 8.0 

after neutralization). Antiflmgal activity bound to the column was eluted 

only with acetic acid. The sodium hydroxide eluate did not exhibit any 

antiflmgal activity. Strong antiflmgal activity was observed in the flow 

through o f the acid chitin column.
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Since the chitin-binding antiflmgal activity in neutralized acid extract 

only eluted at low pH and the chitin-binding activity in the neutral extract 

eluted with high pH, it is likely that the antifungal activities extracted using 

the two different extraction conditions are unique. Fractionation of acid 

extract (not neutralized but dialyzed in Tris-HCl, pH 8.0) by size-exclusion 

chromatography (Superose 12 column) did not separate the antifungal 

activity. Although the acid extract completely inhibited A. flavus growth, 

none of the fiactions obtained after size-exclusion chromatography exhibited 

any antifungal activity against the same fungus. It appears that the 

antifungal components were bound to the column and were not eluted under 

these conditions.

Unless mentioned otherwise, A. flavus was used to assess the 

antifungal activity. One needs to keep in mind that these results may be 

different when tested against different flmgi (see Chapter 11 for detailed 

discussion). Although purification of antifungal activities from seeds of S. 

simplex and S. cubensis were performed in parallel, antifungal activities 

purified from S. cubensis have not yet been characterized as well as purified 

antifungal proteins from S. simplex. For future studies, agglutination and 

glucanase assays need to be performed on the chitin column and anion-
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exchange column fractions. If glucanases and/or agglutinins are detected, 

further purification of both can be based on the results obtained here. 

Testing against other fungi will also be worthwhile. Once this work is 

completed, efforts to clone and express the genes for these active 

components can be initiated.
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CONCLUSIONS

Both neutral and acid extracts of seeds o f  S. cubensis contained potent 

inhibitors of fungal growth. Based on available evidences, at least some o f 

these inhibitors are proteins. Some of the inhibitory activities bound to 

chitin and purified using a combination o f chitin-affmity chromatography 

and anion-exchange chromatography. Antifungal activities eluted from the 

anion-exchange column fall into three groups. The first group strongly 

inhibited fungal growth, did not bind tightly to the RSQ column and 

contained a major protein band of about 41 kDa. This band was correlated 

with antifungal activity. The second group contained a few proteins with 

molecular weights in the range of 31-33 kDa. These proteins were 

chitinases and may account for the moderate inhibition of fungal growth 

observed in these fractions. The last group was tightly bound to the RSQ 

column and strongly inhibited fungal growth. A variety of protein bands 

were detected in the latter group under the conditions used herein.

Although the antifungal activity of the fractions that did not bind to 

chitin was very good, these activities have not been purified to date. 

Additional purification and characterization will be worthwhile.
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Chapter VIII : Purification and Characterization of

Antifungal Proteins from Pentaclethra macroloba

INTRODUCTION

Pentaclethra macroloba is one of the legumes found in the Costa Rican 

rainforest. Despite the diversity of predators and pathogens and the intensity 

of attack in the humid lowland tropical forest, P. macroloba has survived, 

flourished and established itself as one o f the dominant tree species in these 

forests. In order to ensure successful germination, these plants must produce 

seeds that are able to protect themselves from pests and pathogens. In 1983, 

Hartshorn reported that seeds of Pentaclethra macroloba contained factors 

toxic to insects and small rodents.

The presence of trypsin inhibitors and other toxic factors in P. 

macroloba seeds was described by Schubert and Ruzicka (unpublished) in 

1989. Two different trypsin inhibitors were isolated from Pentaclethra 

macroloba seeds by Chen et al. (1999). Both of the trypsin inhibitors 

reduced insect growth and increased larval mortality. Based on field
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observations (K. R. Schubert, personal communication), seeds o f P. 

macroloba remain on the forest floor for weeks without visible signs of 

fungal infection.

In our initial screening, crude extract and crude dialyzed extract o f P. 

macroloba seeds (PCN # IS) showed strong inhibition against Fusarium 

chlamydosporum growth. The results of our initial screen were supported by 

earlier results of Schubert and Duvick (personal communication). Their 

investigations showed that extracts of P. macroloba possessed antifungal 

activity against several pathogenic fungi. For these reasons, efforts were 

initiated to purify antifungal activities from this plant.

We have purified several antifungal chitinases from S. simplex and S. 

cubensis by affinity chromatography followed by ion-exchange 

chromatography. We wanted to find out, whether chitinases accounted for 

antifungal activity in extracts of P. macroloba seeds. Using the same 

purification scheme developed for isolation of chitinases from Swartzia 

seeds, a combination of chitin-affmity and anion-exchange chromatography 

was used to isolate chitinases and other antifungal activities from 

Pentaclethra macroloba seeds. The results of this purification were 

compared to results obtained using size-exclusion chromatography and 

anion-exchange chromatography.
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MATERIALS AND METHODS 

Antifungal assay

The antifungal assay was performed as described in Chapter III (Initial 

Screen). Extracts of P. macroloba seeds were tested for antifungal activity 

against F. chlamydosporum, F. moniliforme and Aspergillus flavus.

Extraction of Pentaclethra macroloba seeds

Three different extraction procedures were used in this study. Seeds were 

extracted with either 10 mM Tris-HCl (pH 8.0), 10 mM sodium phosphate 

(pH 7.5) or 0.1 M HCl. Frozen plant tissue was homogenized with Tris-HCl 

or phosphate buffer and PVP as described in previous chapters. In the case 

of HCl extraction, the crude extract was neutralized with 2 M sodium 

hydroxide by adjusting the pH to 3.8. After neutralization, the extract was 

either dialyzed or loaded onto the chitin-affmity column.

Size-exclusion chromatography

Pharmacia Sephacryl S-200 was packed into a 100-cm x 1.6-cm column 

according to the manufacturer’s instructions. After the packing process was 

completed, the column was equilibrated with 10 mM sodium phosphate, pH
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7.5. Pentaclethra macroloba seeds were extracted with 10 mM sodium 

phosphate, pH 7.5, and the crude extract was concentrated by ammonium 

sulfate precipitation. Solid ammonium sulfate was added to the extract 

slowly to a final concentration of 70% saturation. The pellet obtained after 

ammonium sulfate precipitation was resuspended in a minimum volume of 

10 mM sodium phosphate (pH 7.5) and 2 ml o f the resuspended pellet was 

loaded onto the colunm. The column was developed at a flow rate of 2 ml 

per min. Fractions were tested for antifungal activity against F. 

chlamydosporum and F. moniliforme.

Ion-exchange chromatography

Pharmacia S Sepharose resin was used for cation-exchange chromatography. 

The S Sepharose column was equilibrated with 50 mM sodium acetate 

buffer (pH 5.6). Pentaclethra macroloba crude extract was dialyzed in the 

same buffer and 20 ml of dialyzed extract was loaded onto the column. 

Unbound proteins were removed by washing with the starting buffer and the 

bound proteins were eluted with a linear gradient from 0 to 0.5 M NaCl in 

50 mM sodium acetate buffer, pH 5.6, at a flow rate of 2 ml per min. 

Fractions were dialyzed in 10 mM Tris-HCl, pH 8.0 and assayed for 

antifungal activity.
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Anion-exchange chromatography was also performed using a column 

packed with Pharmacia Q Sepharose resin. The column was equilibrated 

with 50 mM Tris-HCl, pH 8.0. Pentaclethra macroloba seeds were 

extracted with 10 mM Tris-HCl, pH 8.0 and the crude extract was dialyzed 

in the same buffer. A 20-ml sample of the dialyzed extract was loaded onto 

the Q Sepharose column. The column was washed with starting buffer to 

remove unbound proteins and bound proteins were eluted with a linear 

gradient from 0 to 0.5 M NaCl in the starting buffer at a flow rate of 2 ml per 

min. Fractions were dialyzed against 10 mM Tris-HCl, pH 8.0, and assayed 

for antifungal activity.

Anion-exchange chromatography on a Pharmacia RSQ column was 

used to further purify the acetic acid and sodium hydroxide eluates obtained 

after chitin-affmity chromatography. Anion-exchange chromatography was 

performed according to the methods described in Chapter IV.

Chitin-affinity chromatography

Chitin-affinity chromatography was carried out with neutralized acid extract 

according to the procedures for acid chitin column chromatography 

described in Chapter IV.
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Other Methods

SDS-PAGE: SDS-PAGE was performed according to Laemmii (Laemmli, 

1970) using a 12.5% polyacrylamide gel.

Protein determination: Protein concentration was measured with a dye-

binding assay (Bradford, 1976). ESA was used as a protein standard.

Chitinase in-gel assay: Chitinase activity was determined using the chitinase 

in-gel assay according to the protocol described in Chapter IV.

Hemagglutination: Rabbit red blood cells (Sigma # R-1629) were used to 

detect agglutinins in chitin column and RSQ fractions. The assay method 

was the same as described for hemagglutination in Chapter IV.

Amino acid sequence analysis: Amino acid sequence was determined at the 

OUHSC Molecular Biology Resource Center (details in Chapter VI). Prior 

to sequencing, the sample was not HPLC purified.
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EVALUATION OF PRELIMINARY PURIFICATION TECHNIQUES 

Preliminary Purification

Size-exclusion chromatography (S-200), ion-exchange chromatography and 

chitin-affinity chromatography were evaluated as preliminary purification 

methods. The information gained from these preliminary purification 

procedures was used to develop a final purification scheme.

Size-exclusion chromatography

Fractions collected from the S-200 column chromatography were assayed 

for antifungal activity against F. moniliforme and F. chlamydosporum. The 

most active fractions were eluted with a higher elution volume. Inhibition of 

F. moniliforme was moderate in fraction 28 and strong inhibition was 

observed in fractions 26 and 27 (Figure VIII-1). Moderate activity against 

F. chlamydosporum was observed in many fractions. Fractions 26, 28 and 

29 exhibited strong inhibition and very strong inhibition was observed in 

fraction 27. An analysis of the protein components in each fraction by SDS 

PAGE revealed several different bands (gel not shown) in the active 

fractions. No single band correlated with antifungal activity. Consequently,
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Figure V m  i Antifungal Activity of Neutral Extract Separated by Gel Filtration 
Chromatography. Seeds were extracted in 10 mM sodium phosphate, pH 7.5 and 
precipitated with ammonium sulfate. The pellet was resuspended in Na phosphate 
buffer and 2 ml of the resuspended pellet was fractionated on a S-200 column. 
Proteins were eluted with 10 mM sodium phosphate, pH 7.5, dialyzed in 10 mM Iris, 
pH 8.0, and tested for ability to inhibit growth of F. moniliforme (Top Panel ) andF. 
chlamydosporum (Bottom Panel).
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it appears that there is a range of antifungal activities in these extracts. 

These activities differ in their effects on the specific flingi tested.

Ion-exchange chrom atography

Both anion and cation-exchange chromatography were evaluated as potential 

bulk purification methods. Seeds were extracted in 10 mM sodium 

phosphate, pH 7.5, or 10 mM Tris-HCl, pH 8.0, and dialyzed against the 

same buffer for cation and anion-exchange chromatography, respectively. 

Fractions from each column were dialyzed in 10 mM Tris-HCl, pH 8.0, and 

tested for antifungal activity against F. moniliforme and F. chlamydosporum. 

Antifungal activity did not elute, as a single peak but was spread out into 

many fractions after cation-exchange chromatography on the S-Sepharose 

column. In assays with F. chlamydosporum, moderate activity was observed 

in 22 fractions out of 28 fractions (data not shown). In the case of F. 

moniliforme, 6 fractions exhibited moderate inhibition and the rest of the 

fractions showed only slight activity (data not shown).

A similar pattern was observed after anion-exchange chromatography. 

All 28 fractions from the Q Sepharose column showed moderate inhibition
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against F. chlamydosporum but did not inhibit the growth o f F. moniliforme. 

These results suggest that more than one active component may be present 

in the extract and, therefore, ion-exchange-chromatography may be more 

effectively applied after some initial purification.

Chitin-affinity chromatography

Pentaclethra macroloba seeds (18 g) were extracted by homogenization in 5 

volumes (90 ml) of 0.1 M HCl. Acid extract was neutralized with 2 N 

NaOH and centrifuged to remove denatured protein. After centrifugation, 

the clarified neutralized extract (10 ml) was loaded onto the chitin column 

equilibrated with 20 mM sodium acetate, pH 5.6. The flow through was 

reapplied to the column 3 times and the final flow through was retained. 

The column was washed as described previously and the bound proteins 

were eluted with 0.1 M acetic acid. The acetic acid eluate was pooled and 

the protein in the pooled fractions was precipitated with ammonium sulfate. 

The pellet obtained after ammonium sulfate precipitation (the eluate) was 

resuspended in 5 ml o f 10 mM Tris-HCl, pH 8.0. Fractions eluted with 0.1 

M sodium hydroxide were also pooled and precipitated with ammonium 

sulfate. The pellet was resuspended in 6 ml of 10 mM Tris-HCl, pH 8.0.
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The neutralized HCl extract, flow through and all o f the fractions from 

the chitin column were dialyzed against 10 mM Tris-HCl (pH 8.0) and 

assayed for antifungal activity using A. flavus and F. moniliforme. Strong 

antiflmgal activity against A. flavus was observed in the neutralized dialyzed 

HCl extract and also in the resuspended sodium hydroxide eluate (Figure 

VIII-2). Slight inhibition was present in the flow through. In the case o f F. 

moniliforme, strong inhibition was observed in the neutralized acid extract, 

flow through and 0.1 M salt wash (data not shown).

Analysis of samples by SDS-PAGE revealed several protein bands in 

the acid extract, flow through, acetic acid eluate and sodium hydroxide 

eluate (Figure VIII-3). Two bands with estimated molecular weights 

between 31-32 kDa were very prominent in all these fractions. Results of 

the in-gel chitinase assay revealed several chitinase bands in the crude 

extract, flow through, acetic acid eluate and sodium hydroxide eluate (Figure

VII-4).
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Figure VIII-2; Antifungal Activity of P. 
macroloba Acid Chitin Column Fractions. Ten 
ml of neutralized acid extract was fractionated 
on a chitin-affinity column. Fractions from 
chitin column were dialyzed against 10 mM 
Tris-HCl, pH, 8.0, and assayed for antifungal 
activity against A. Jlavus.
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Figure VHI-3 : SDS-PAGE Gel of P. macroloba 
Acid Chitin Column Fractions. One hundred ^1 of 
each fraction was dried in vacuo, resuspended in 10 pi 
of SDS sample buffer and boiled for 5 min before 
loading onto a 12.5% SDS gel. Lane 1, flow through; 
lane 2, salt wash (0.1 M); lane 3, salt wash (1 M); lane 
4, acetic acid eluate; lane 5, acetic acid supernatant; 
lane 6, salt wash (1 M); lane 7, sodium hydroxide 
eluate; lane 8, sodium hydroxide supernatant. The gel 
was silver stained to reveal protein bands. STD = 
molecular weight markers.
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Figure VIII-4: Detection of Isoforms of P. macroloba 
Chitinases. Neutralized acid extract from P macroloba 
seeds was fractionated on a chitin column. A ten 1̂ 
sample from each fraction was separated on a 12.5% native 
gel. Chitinase activity was detected using an in-gel assay. 
Lane 1, sodium hydroxide eluate; lane 2, sodium 
hydroxide supernatant; lane 3, 2nd Tris wash; lane 4, acetic 
acid eluate; lane 5, acetic acid supernatant; lane 6, salt 
wash (0.1 M); lane 7, salt wash (1 M); lane 8, flow 
through; lane 9, neutralized/dialyzed acid extract.
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PURIFICATION OF CHITINASE AND OTHER ANTIFUNGAL 

ACTIVITIES

Purification of antifungal activity from the acetic acid eluate

The acid chitin column acetic acid eluate did not exhibit antifungal activity 

d^dimsx A. flavus. Previously, we have shown that antifungal activity may be 

masked in more crude preparations. To test this possibility, the acetic acid 

eluate was fractionated by anion-exchange chromatography and the fractions 

obtained from the RSQ column were tested for antifungal activity.

Proteins in the acetic acid eluate obtained after chitin-affinity 

chromatography were concentrated by ammonium sulfate precipitation. The 

ammonium sulfate pellet was resuspended in a minimum volume of 10 mM 

Tris-HCl, pH 8.0, and dialyzed against the same buffer prior to anion- 

exchange chromatography. Four ml o f the acetic acid eluate was injected 

onto a Pharmacia RSQ column equilibrated with 10 mM Tris-HCl, pH 8.0. 

The column was washed in the equilibrating buffer to remove unbound 

proteins and bound proteins were eluted with a linear gradient from 0 to 1 M 

NaCl in starting buffer.
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The sample was separated into a number of discrete peaks (Figure 

VIII-5). Based on the absorbance profile, fractions were pooled, dialyzed 

and assayed for antifungal activity against A. jlavus. Fractions 4 and 14 

completely inhibited A. jlavus conidial germination, while moderate 

inhibition was observed in fractions 11 and 13 (Figure VIII-6). SDS gel 

electrophoresis revealed a single (30-32 kDa) protein band in fraction 9 

(Figure VlII-7). Two distinctly separated bands with molecular weights 

between 30 to 32 kDa were visible in fraction 10. The same size bands were 

present in fraction 11 but the upper band was much less abundant. Although 

antifungal activity was observed in fraction 14, protein bands were not 

visible in this fraction.
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Figure VIII-5 ; Absorbance Profile of Anion 
Exchange Column Chromatography of the Acetic 
Acid Eluate from the Acid Chitin Column. Four ml 
of acetic acid eluate was fractionated on a Pharmacia 
RSQ column. Bound proteins were eluted with a 
linear gradient o f NaCl in 10 mM Tris-HCl, pH 8.0. 
Fractions were collected manually (as noted on the 
top o f the figure).
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Figure VIII-6: Antifungal Activity o f Fractions 
Obtained after Anion Exchange Chromatography of 
the Acetic Acid Eluate from the Acid Chitin Column. 
All fractions were dialyzed against 10 mM Tris-HCl, 
pH 8.0, and assayed for antifungal activity against A. 
flavus using the standard fungal bioassay.
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Figure Vni-7 : SDS-PAGE Analysis of Anion Exchange 
Column Fractions from the Acid Chitin Coliunn Acetic Acid 
Eluate. Acid extract was fractionated on a chitin column. 
The acetic acid eluate from the chitin column was applied to 
an anion exchange (RSQ) column. A 200-pl sample from 
each fraction was dried in vacuo, resuspended in 10 pi of 
SDS sample buffer and boiled for 5 min before loading onto 
the 12.5% SDS gel. Lane 1 to 14, RSQ fractions (Figure 
Vni-5) 1 to 14. Gel was silver stained to reveal protein 
bands. STD = molecular weight standards.
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Purification of antifungal activity from the sodium hydroxide eluate

Neutralized acid extract of P. macroloba seeds was applied to a chitin 

column and proteins were eluted as described previously. The resuspended 

pellet from the sodium hydroxide eluate was further fractionated by anion- 

exchange chromatography. The resuspended pellet was dialyzed against 10 

mM Tris-HCl, pH 8.0, and 4 ml of this solution was loaded onto the column. 

The column was eluted using the same protocol as described for the acetic 

acid eluate. Fractions were pooled based on the A 280 profile (Figure VIII- 

8) dialyzed and assayed for antifungal activity against A. flavus. Fractions 3 

and 4 completely inhibited conidial germination o f A. flavus while fraction 

12 caused moderate inhibition of hyphal growth (Figure VIII-9). The SDS 

gel profile was very similar to the SDS gel profile for the corresponding 

fractions after anion-exchange chromatography of the acetic acid eluate. A 

single protein band (30-32 kDa) was visible in Fractions 9 and 11 (Figure

VIII-10). Fraction 10 contained two distinct protein bands with molecular 

weights between 31 and 32 kDa. Fractions 3 and 4 that exhibited antifungal 

activity contained a 22-kDa band. This band (marked with an asterisk in the 

figure) correlated with antifungal activity. A trace of the same band was 

also observed in ftraction 5. Antifungal activity against A. flavus was not 

detected in the chitinase-containing fractions.
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Figure VIII-8: Absorbance Profile of Anion Exchange 
Column Chromatography of Sodium Hydroxide Eluate 
from the Acid Chitin Column. Four ml of sodium 
hydroxide eluate from the acid chitin column was 
fractionated on a RSQ column equilibrated with 10 mM 
Tris-HCl, pH 8.0. Bound proteins were eluted with a 
linear gradient o f NaCl in the same buffer. Fractions 
were collected manually based on the absorbance 
profile. The fractions are noted on the top of the figure.
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Figure VIII-9: Antifungal Activity o f Fractions 
Obtained after Anion Exchange Chromatography of 
the Sodium Hydroxide Eluate from the Acid Chitin 
Column. Sodium hydroxide eluate from the acid 
chitin column was dialyzed in 10 mM Tris-HCl, pH 
8.0, and applied to a RSQ column. All the fractions 
from anion exchange chromatography were dialyzed 
in 10 mM Tris-HCl, pH 8.0, and assayed for antifungal 
activity against A. flavus.
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Figure Vni-10 : SDS-PAGE Analysis of Anion Exchange 
Column Fractions of the Sodium Hydroxide Eluate. 
Neutralized acid extract was fractionated on a chitin affinity 
column. The sodium hydroxide eluate from the chitin 
column was applied to an anion exchange (RSQ) column.
A 2(X)-|il of sample from each fraction was dried in vacuo, 
resuspended in 10 pi of sample buffer and boiled for 5 min 
before loading onto the gel. Lane 1 to 13, RSQ fractions 
(Figure Vni-8) I to 13. The gel was silver stained to reveal 
protein bands. Putative antifungal protein indicated with (*). 
STD = molecular weight standards.
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CHARACTERIZATION 

Detection of chitinase activity

Anion-exchange column fractions were tested for the presence of chitinase 

activity using the chitinase in-gel assay. Chitinase activity was detected in 

fractions 9, 10 and II obtained by anion-exchange chromatography of the 

acetic acid eluate from the chitin column (Figure VIII-11). From the activity 

gel profile, it was clear that at least four chitinase isoforms were present in 

Fractions 9 to II . These activity bands corresponded to the protein bands 

revealed by SDS-PAGE. The purified chitinases from the acetic acid eluate 

were designated (in order of their increasing mobility on the activity gel) as 

AI (fraction 9), A2 (fraction 10), A3 (fraction 10), A4 (fraction 11).

Chitinase activity was detected in the same fractions obtained after 

anion-exchange (RSQ) chromatography of the sodium hydroxide eluate 

(Figure VIII-12). Again, the in-gel assay revealed 4 different chitinase 

isoforms in these fractions which corresponded with the protein bands in 

fraction 9, 10 and I I . These chitinases were designated as chitinase Bl 

(fraction 9), 82  (fi-action 10), 83 (Section 10) and 84 (fraction I I )  

according to the order of increasing mobility on the chitinase activity gel.
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Figure V Œ - ll  : Detection of Isoforms of Chitinases 
after Anion Exchange Chromatography of the P. 
macroloba Acetic Acid Eluate. Acetic acid eluate from 
the acid chitin column was separated by anion exchange 
(RSQ) chromatography. A sample from each fraction 
was concentrated and 10 pi of the concentrated sample 
was separated on a 12.5% native gel. Chitinase activity 
was detected using the in-gel assay. Lane 1 to 14, 
fractions 1 to 14. Lane 15, positive control (Sigma 
chitinase).
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Figure Vni-12: Detection of Isoforms of Chitinases after 
Anion Exchange Chromatography of the P. macroloba 
Sodium Hydroxide Eluate. Sodium hydroxide eluate from 
the acid chitin column was separated by anion exchange 
(RSQ) chromatography. A sample from each fraction was 
concentrated and 10 pi of the concentrated sample was 
separated on a 12.5% native gel. Chitinase activity was 
detected using the in-gel assay. Lane 1 to 13, RSQ 
fractions 1 to 13.
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Hemagglutination

The P. macroloba samples were tested for hemagglutination. The 

neutralized/dialyzed acid extract and flow through, O.l M salt wash, acetic 

acid eluate and sodium hydroxide eluate from acid chitin column 

agglutinated rabbit red blood cells (Figure VIII-13). The RSQ fractions 

from both the acetic acid eluate and sodium hydroxide eluate were also 

assayed for hemagglutination activity. Agglutination was not detected in 

any of the RSQ fractions from the acetic acid eluate even though, 

agglutination was observed in the starting material. Apparently, the 

agglutinin was bound tightly to the column and was not eluted from the 

column under the conditions used. Agglutination was observed in fraction 7, 

obtained after fractionation of the sodium hydroxide eluate on the RSQ 

column (Figure VIII-14). Agglutination in this case did not correspond with 

the antifungal activity in assays with A. flavus.

344



8 9 Dilution

K JT3P:PI ̂
€)io:o:oio©®©0 

s K E ) © © ©
®©®00©0

:2

:4

:8

:I6

:32

:64

:I28

:256

Figure VIII-13: Agglutination of Rabbit Red Blood Cells by 
Fractions after Chitin Affinity Chromatography of the P. 
macroloba Chitin Affinity Column. A sample (lOO-pl) from 
each fraction from the chitin affinity column was tested for 
agglutinating activity. Column 1, neutralized/dialyzed acid 
extract; column 2, flow through; column 3, salt wash (0.1 M); 
column 4, salt wash (1 M); column 5, sodium hydroxide eluate; 
column 6, buffer wash; column 7, acetic acid eluate; column 8, 
sodium hydroxide supernatant; column 9, acetic acid supernatant.
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Figure V III-14; Agglutination of Rabbit Red Blood Cells by 
Fractions after Anion Exchange Chromatography o f the Sodium 
Hydroxide Eluate. Sodium hydroxide eluate from the acid 
chitin column was fractionated on a Pharmacia RSQ column. 
Fractions were dialyzed (10 mM Tris-HCl, pH 8.0) and a sample 
from each fraction was concentrated (2x). One hundred pi of the 
concentrated sample ft"om each fraction was tested for 
hemagglutinating activity. Wells 2-13, RSQ column fiactions 2-13.
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Amino acid sequence analysis

Relatively pure chitinase was obtained after anion-exchange 

chromatography of the acetic acid and sodium hydroxide eluates from the 

acid chitin column. Fraction 11 (chitinase A4) was used directly for N- 

terminal sequencing. The N-terminal sequence of purified chitinase A4 was 

analyzed using a ProCise automated sequencer. Chitinase was not HPLC 

purified before sequencing. The N-terminal sequence for P. macroloba Chi 

A4 is:

Chi A4: KQIVTYWGQDVNQGKLDVAA

The N-terminal sequence obtained here was compared to the N- 

terminal sequences of other plant chitinases found in the Swiss Gene Bank 

Database using molecular biology tools available on the Internet. 

Comparisons of the N-terminal sequence revealed that chitinase A4 is highly 

homologous to chitinase class III chitinase/lysozyme precursor from several 

plant species including cucumber, azuki bean, Virginia creeper and para- 

rubber (Table VIII-1).
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Table V H I-l: N-terminal Sequence Homology of P. macroloba Chitinase

A4 with Chitinases from Other Plant Species.

Plant Species Access
number*

(A)

%
Identity

%
Similarity

References

Cucumis sativus pl754l 57 71 Metraux et al., 1989

Phaseolus

angularis

p29024 57 71 Ishige et al., 1993

Vitis vinifera p5l6 l4 57 71 Busam et al., 1996

Parthenocissus

quinquefolia

p23473 57 71 Bemasconi et al., 

1987

Nicotiana

tabacum

p2906l 54 63 Lawton et al., 1992

Arabidopsis

thaliana

pl9 l72 57 71 Samac et al., 1990

Nicotiana

tabacum

29061 78 85 Lawton et al., 1992

Nicotiana

tabacum

p29060 64 78 Lawton et al., 1992

Hevea

brasiliensis

p23472 57 71 Jekel et al., 1991

Cicer arietinum p36908 52 64 Vogelsang and Barz, 

1993

Beta vulgaris p36910 60 80 Nielsen et al., 1993

* Swiss-Pro protein accession number.

348



DISCUSSION

Eight apparently different isoforms of chitinase were purified from extracts 

of Pentaclethra macroloba seeds using a combination of chitin-affinity and 

anion-exchange chromatography. The estimated molecular weights of these 

chitinases were between 31 and 32 kDa. The N-terminal amino acid 

sequence of chitinase A4 was determined and compared to the N-terminal 

sequences o f other plants. This comparison revealed high sequence 

homology between P. macroloba chi A4 and class III chitinase/lysozyme 

from several other plant species. With the exception of the chitinase- 

containing fraction 11 obtained by anion-exchange chromatography of the 

acetic acid eluate, these purified chitinases did not exhibit any antifungal 

activity against A. flavus in the liquid assay used for assessment of 

antifungal activity.

Both the acetic acid eluate and sodium hydroxide eluate from the 

chitin-affinity column contained chitinases, chitin-binding agglutinin and 

antifungal activity. The chitin-binding agglutinins were separated from the 

fractions with antifungal activity and from chitinase-containing fractions by 

ion-exchange chromatography. Based on these findings it appears that the
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chitin-binding lectins were not responsible for the antifungal activity against 

A. flavus.

Although in our assay, most o f  the purified chitinase from P. 

macroloba seeds did not show any antifungal activity against A. flavus., it is 

possible that these chitinases along with P-glucanase, may be active against 

Aspergillus or other fimgi. In many cases, the antifungal activity of 

chitinases is highly selective. This is true in the case of antifungal chitinases 

from maize, wheat, pea and tobacco (Mauch et al., 1988; Verburg and 

Huynh, 1991; Huynh et al., 1992; Sela Buurlage et al., 1993). Even though 

these chitinases were tested against chitin-containing fimgi, chitinases from 

these sources showed marked difference in activity. Chitinases from 

tobacco, thomapple and wheat inhibit growth of Trichoderma hamatum but 

not Botrytis cineria (Broekaert et al., 1988). Pea chitinase exhibited 

antifungal activity against Thielaviopsis basicola but not against Aspergillus 

niger or Fusarium solani f. sp. phaseoli (Mauch et al., 1988).

The amount of chitin varies as a percentage of the total fungal cell 

wall among the chitin-containing fungi (Rokem et al., 1986). According to 

Verberg and Huynh (1991), the susceptibility of different fungi to the same 

chitinase may depend on the amoimt o f chitin in the fungal cell wall.

350



Therefore, it is quite possible, that the chitinases purified from P. macroloba 

seeds may exhibit antifungal activity against other chitin-containing fungi.

The biochemical nature of the antifungal activities from P. macroloba 

seeds has not been determined yet. Plants may contain a variety of 

pathogenesis-related proteins other than chitinases or chitin-binding lectins. 

Using chitin-affinity chromatography, Poinstein et al. (1994) purified a PR-4 

protein containing a chitin-binding domain. The protein in Pentaclethra 

macroloba seed extracts responsible for antifungal activity against A. flavus 

may be a PR-4 protein, since the antifungal activity was bound to the chitin- 

affinity column but was not a chitinase or chitin-binding lectin. A 22-kDa 

band was visible in the RSQ fractions that inhibited growth of A. flavus 

(Fractions 3 and 4). This band was the only band visible that corresponded 

with the antifungal activity. Once isolated, a comparison of the sequence of 

this band to other antifungal proteins may help to reveal the nature o f the 

protein.
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CONCLUSIONS

Extracts of P. macroloba seeds exhibited antifungal activity against A. 

flavus, F. chlamydosporum and F. moniliforme. Antifungal proteins were 

purified from these extracts using chitin-affinity chromatography in 

combination with anion-exchange chromatography. Active proteins 

included chitin-binding proteins and proteins that did not have affinity for 

chitin. The N-terminal sequence of purified chitinase A4 from P. macroloba 

exhibited high sequence homology to class III chitinase/lysozyme from 

several plant species. In contrast to results with S. simplex and 5. cubensis 

chitinases from P. macroloba were not very effective against A. flavus with 

the exception of Pm chitinase A4.
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Chapter IX : Partial Purificat ion of Antifungal Activity from 

Coccoloba sp.

INTRODUCTION

Extract from the fruit of PCN 98 was one of the most active of the tropical 

plant extracts identified in the initial screen for antifungal activity. Fruits of 

PCN 98 were collected from the lowland tropical rainforest of Costa Rica by 

a local naturalist, Mr. Orlando Vargas. According to the collector’s field 

notes, PCN 98 was tentatively identified as a species from the genus 

Coccoloba. The later is a member of the Polygonaceae, or buckwheat 

family.

Crude extracts prepared from ripe Coccoloba fruits completely 

inhibited germination of Fusarium chlamydosporum conidia. Activity was 

retained after dialysis (3,500 MWCO). Out of the 163 extracts tested for 

antifungal activity, there were only two extracts that showed complete 

inhibition of fungal growth after dialysis and the extract from the fhiit o f 

Coccoloba sp. was one o f them. However, there was a limited supply of 

these fruits. Because o f the excellent antifungal activity found in this
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extract, the decision was made to purify and characterize the antifungai 

activity as much as possible with the limited supply of material on hand.

MATERIALS AND METHODS 

Extraction of plant tissue

Fruits from (4.38 g) Coccoloba sp. were extracted in 25 ml of 10 mM Tris- 

HCl buffer (pH 8.0) containing 0.2 g of insoluble PVP per g o f tissue. All of 

the fruits used for extraction were ripe and rich burgundy in color. The plant 

tissue was homogenized using a Brinkmann PT-3000 homogenizer. The 

homogenized tissue was filtered through two layers of cheese cloth and two 

layers of Miracloth. The filtrate was centrifuged at 15,000 rpm for 15 min in 

a Sorvall SS 34 rotor. The supernatant fluid was collected and the pellet 

containing the insoluble material was discarded. The clear supernatant fluid 

referred to as the crude extract was highly pigmented, retaining the rich 

burgundy color. An aliquot of the crude extract was dialyzed extensively 

against 10 mM Tris-HCl buffer (pH 8.0) using a Spectra Por 3 membrane 

with a 3,500 Da molecular weight cut off. The dialyzed extract was clarified 

by centrifugation at 15,000 rpm for 15 min and the supernatant fluid was
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retained (crude dialyzed extract). The crude and crude dialyzed extracts 

were tested for antifungai activity,

Antifungai assay

The antifungai bioassay was performed according to the procedure described 

in Chapter III using five different fungi. They were Fusahum  

chlamydosporum, Fusarium moniliforme, Aspergillus flavus, Sclerotinia 

minor and Sclerotium rolfsii. Purification o f the active components was 

based on the results of the bioassay with F. chlamydosporum, F. 

monoliforme or A. flavus. The general bioassay protocol was modified 

slightly for assays with S. minor and S. rolfsii. Sclerotia of these two fungi 

were grown on potato dextrose agar (PDA) plates to obtain mycelial growth. 

After the desired growth of the mycelia, sclerotia were removed from the 

PDA plates and a single sclerotium was placed in the microtiter well 

containing growth media. Four replicates were used for each sample.

Working cultures o f S. minor and S. rolfsii were maintained on PDA 

plates at room temperature. For long-term storage, cultures of 5. minor were 

maintained as mycelial colonies on PDA plates at 4°C. For long-term 

preservation o f S. rolfsi, cultures were grown on PDA slants, covered with 

sterile mineral oil and stored at room temperature. Sclerotia produced by 

these two fungi were also used for long-term storage. Stocks of both fungi
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were kindly provided by Dr. Hassan Molouk from the Department of 

Entomology and Plant Pathology at Oklahoma State University.

Preliminary estimation of molecular weight

To obtain a preliminary idea about the size of the active component present 

in Coccoloba fruit extract, a sample of the dialyzed crude extract (3,500 Da 

MWCO) was dialyzed exhaustively using either 6-8,000 Da or 12-14,000 Da 

molecular weight cut off membranes. After dialysis, precipitated material 

was removed by centrifugation at 15,000 rpm for 15 minutes. The 

supernatant fluid was retained and tested for antifungai activity.

Heat treatment

To determine if the antifungai activity was heat stable, samples of crude 

dialyzed extracts were heated in a water bath for five min at 60, 70, 80,90 or 

100°C. After heat treatment, the extracts were cooled quickly on ice. To 

remove precipitated protein, the heat-treated samples were centrifuged at

15,000 rpm for 15 min. The pellet was discarded and the soluble material 

present in the supernatant was assayed for antifungai activity.
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Ion-exchange chromatography

Both anion-exchange and cation-exchange chromatography was used to 

fractionate the antifungai activity present in the fruits of Coccoloba.

Anion-exchange chrom atography: One ml of dialyzed crude extract was 

loaded onto a column (2 ml bed volume) packed with Pharmacia Q 

Sepharose and equilibrated with 10 mM Tris-HCl buffer (pH 8.0). After the 

sample was applied, the column was washed with the same buffer to remove 

unbound proteins. The flow through (FT) was collected and pooled. The 

proteins bound to the column were eluted with a step gradient of (2.5 ml 

each) O.l M, 0.2 M, 0.3 M, 0.4 M, 0.5 M and 2 M sodium chloride in 10 mM 

Tris-HCl buffer (pH 8.0). Fractions (2.5 ml) were collected and dialyzed 

against 10 mM Tris-HCl (pH 8.0) and all fractions were assayed for 

antifungai activity. Anion-exchange chromatography was also performed at 

a lower pH. In this case, the column was equilibrated with 10 mM Bis-Tris- 

HCl (pH 6.0). Crude extracts were dialyzed against the same buffer before 

loading I ml onto the column. Unbound proteins were collected and saved 

for antifungai assay as stated above. Bound proteins were eluted with a step
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gradient of (2.5 ml each) 0.1 M, 0.2 M, 0.3 M, 0.4 M, 0.5 M, and 2 M 

sodium chloride in 10 mM Bis-Tris-HCl (pH 6.0). All the eluted fractions 

were collected in a volume o f 2.5 ml, dialyzed separately in 10 mM Tris- 

HCl (pH 8.0) and assayed for antifungai activity.

Cation-Exchange Chrom atography: Pharmacia S Sepharose resin was 

used for cation-exchange chromatography. The S Sepharose column (2 ml 

bed volume) was equilibrated with 10 mM HEPES (pH 8.0). Crude extract 

was dialyzed in the same buffer and 1 ml o f the dialyzed extract was loaded 

onto the column. The column was washed with starting buffer to remove 

unbound proteins. The bound proteins were eluted with a step gradient of 

(2.5 ml each) 0.1 M, 0.2 M, 0.3 M, 0.4 M, 0.5 M and 2 M sodium chloride in 

10 mM HEPES (pH 8.0). The flow through and all the collected fractions 

(2.5 ml each) were dialyzed in 10 mM Tris-HCl (pH 8.0) and assayed for 

antifungai activity.

Preparative isoelectric focusing

Preparative isoelectric focusing was performed with the neutral extract. Five 

ml of the dialyzed neutral extract was added to 25 ml of 20% glycerol. To 

this solution, 12.5 ml of ampholyte, pH range 3-10 (BioRad), was added

358



bringing the total volume of the solution to 42.5 ml. The final volume o f the 

solution was brought to 50 ml by adding 7.5 ml of deionized water. This 

entire solution was injected into the rotofor cell and isoelectric focusing was 

carried out using the same protocol described in Chapter IV.

Affinity chromatography

Chitin-affinity chromatography was used to purify the antifungai activity 

from extracts of Coccoloba fhiit. Sigma practical grade crab shell chitin was 

used as the column matrix. The chitin column (bed volume 20 ml) was 

prewashed extensively with 0.1 M HCl, deionized water, 0.1 M NaOH and 

0.1 M NaCl in deionized water. The prewashed column was then 

equilibrated with 0.1 M sodium chloride in 50 mM sodium acetate buffer 

(pH 3.8).

Fruits were extracted in acid, using a slight modification o f the 

method described by Peumans et al. (1983). All the fruits used for acid 

extraction were ripe, soft in texture and rich burgundy in color. Ten g of 

fimits were homogenized in 5 volumes o f 0.1 M HCl. The homogenized 

tissue was filtered through two layers o f cheese-cloth and Miracloth. The 

filtrate was centrifuged at 20,000 x g for 10 minutes. The supernatant fluid 

was collected and the pH was adjusted to 3.8 with the
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addition of 2 N sodium hydroxide. After adjusting the pH to 3.8, the 

supernatant fluid was stirred on ice for one h, kept on ice for another h 

without stirring, and then centrifuged at 20,000 x g for 15 min. The 

supernatant fluid was saved and filtered through Whatman 3 MM filter paper 

before loading onto the chitin column. An aliquot o f the supernatant fluid 

(referred to as acid extract) was exhaustively dialyzed against 10 mM Tris- 

HCl (pH 8.0) and the latter was tested in the antifungai bioassay.

Forty milliliters o f the filtered acid extract was loaded onto the 

prewashed column. The flow through was collected and reapplied to the 

column four times. The final flow through was collected and assayed for 

antifungai activity. Unbound proteins were removed by washing the chitin 

column with 150 ml o f 0.1 M and I M sodium chloride in 50 mM sodium 

acetate (pH 3.8) followed by 150 ml of 1 M NaCl in the same buffer. Bound 

proteins were eluted first with 0.1 M acetic acid. Fractions were collected in 

10 ml volumes and the absorbance of the eluted proteins was measured at 

280 nm. Fractions with an absorbance of 0.05 or greater were pooled and 

concentrated by ammonium sulfate precipitation. After addition of 

ammonium sulfate to a final concentration of 95% saturation, the solution 

was kept on ice and stirred until all the salt dissolved. The solution
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containing ammonium sulfate was kept on ice without stirring for half an 

hour then centrifuged at 15,000 rpm for 30 min.

The supernatant fluid (65 ml) was saved and the pellet was 

resuspended in 1 ml of 10 mM Tris-HCl, pH 8.0. After acid elution, the 

chitin column was washed with 30 ml of 1 M sodium chloride in 50 niM 

sodium acetate (pH 3.8). At this point, the column was eluted with high pH 

(0.1 M NaOH) to remove proteins still bound to chitin. The base eluted 

fractions were pooled, ammonium sulfate precipitated and centrifuged 

according to the protocol used for acid-eluted fractions. After 

centrifugation, the supernatant fluid (50 ml) was saved and the pellet was 

resuspended in 5.0 ml of 10 mM Tris-HCl (pH 8.0). The three salt washes, 

the acetic acid and sodium hydroxide-eluted ammonium sulfate-precipitated 

pellets, and supernatants after ammonium sulfate precipitation were 

exhaustively dialyzed in 10 mM Tris-HCl (pH 8.0) and assayed for 

antifungai activity.

Chromatography on P-10 resin

The ammonium sulfate pellet from the NaOH-eluted ft-actions obtained from 

the chitin colunm was resuspended in 10 mM Tris-HCl, pH 8.0. A total of 4 

ml o f this was loaded onto a BioRad P-10 column (1.5-cm x 30-cm). The
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column was equilibrated with 0.02 M sodium phosphate buffer (pH 7,0) and 

proteins were eluted with the same buffer at a flow rate of 2 ml/min. 

Twenty-four fractions, including the void volume, were collected in 5 ml 

volumes. The absorbance of the eluted proteins was measured at 280 nm. 

Every four fractions were pooled resulting in seven 20-ml fractions. The 

column was then washed with 0.1 M NaOH to elute the pigmented part of 

the sample that was still bound to the column. The 0.1 M NaOH wash was 

collected in two fractions (20 ml/fraction). All o f the fractions from the P- 

10 column were dialyzed against 10 mM Tris-HCl, pH 8.0. After dialysis, 2 

ml of each fraction was concentrated by ultrafiltration using a 10,000 Da 

MWCO Centricon concentrator (Amicon). Both the retentate and filtrate 

were saved and assayed for antifungai activity.

Size-exclusioQ chromatography

The pigmented and non-pigmented components from the crude dialyzed 

extract were separated first on a P-10 column. Sixty-seven ml of the non- 

pigmented portion was concentrated by ammonium sulfate precipitation 

(95% saturation). The precipitated pellet was resuspended in 1 ml of 10 mM 

sodium phosphate buffer (pH 7,0) and 0.5 ml o f this resuspended pellet was 

loaded onto a Pharmacia Sephacryl S-200 column. The column was packed
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according to the protocol provided by Pharmacia and equilibrated with 10 

mM sodium phosphate buffer (pH 7.0). After application of the sample, the 

column was eluted at a flow rate of 1 ml/min. Thirty-six 2-ml fractions were 

collected. All of the fractions from S-200 column were dialyzed in 10 mM 

Tris-HCl (pH 8.0) before testing for antifungai activity.

SDS-PAGE

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

was carried out under denaturing conditions according to Laemmli using 

7.5%, 12.5%, and 15% acrylamide concentrations (Laemmli, 1970). 

Samples were denatured by heating at 100°C for five min in SDS sample 

buffer containing 2 mM P-mercaptoethanol. Unless otherwise mentioned, 

electrophoresis was carried out at constant voltage for 3-4 hours. Gels were 

stained with Coomassie Brilliant Blue (CBB) R-250. After staining, protein 

bands were revealed by destaining gels in 30% methanol: 10% acetic acid: 

60% water (v/v/v) for 10-24 h. In some cases, gels were restained with 

silver nitrate to achieve greater sensitivity o f protein detection (Bloom, 

1987).
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Isoelectric focusing gel electrophoresis

A BioRad mini lEF apparatus was used to perform lEF gel electrophoresis. 

To prepare the lEF gel solutions, one ml o f acrylamide solution (20% 

acrylamide, 3% bisacrylamide [BioRad]), 1 ml o f 25% glycerol (v/v) and 0.5 

ml of ampholyte (Biolyte with a pH range of 3-10) were mixed with 2.5 ml 

of deionized water. The solution was degassed and then 50 pi of freshly 

prepared 10% (w/v) ammonium persulfate, 50 pi of 0.1% FMN and 5 pi 

TEMED were added to the solution.

The gel solution was poured into the chamber and allowed to 

polymerize for one h. Protein samples (4 pi) were loaded on to the thin 

polyacrylamide gel. The gel was pre-run at 100 and 200 volts for 15 min 

each. lEF was then performed at 400 volts for one h. After electrophoresis 

the gel was stained with CBB R-250 containing 0.5% CaS04 , 5H2O and 50 

mg Crocein Scarlet 7B (Sigma # C 8822). After Staining the gel for 1 h, the 

gel was destained in destaining solution overnight and then stained with 

silver nitrate.
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RESULTS

The crude extracts prepared from the fruits of Coccoloba sp. inhibited the 

growth of selected pathogenic and/or saprophytic fungi (Table IX-1). This 

extract completely inhibited conidial germination of Sclerotinia minor, 

Sclerotium rolfsii, F. moniliforme and F. chlamydosporum even after 

exhaustive dialysis. There was a very strong inhibition of A. flavus growth 

(rating 3.8) in assays containing crude or crude dialyzed extracts. Antifungai 

activity was retained even after exhaustive dialysis using 6-8,000 and 12-

14,000 Da MWCO dialysis membranes (Table IX-2). The dialyzed extracts 

exhibited very strong to complete inhibition of growth of both F. 

chlamydosporum and F. moniliforme.

The dialyzed extracts were heated at 60, 70, 80, 90 and 100°C for five 

min. The antifungai activity present in Coccoloba sp. fruit extract was heat 

stable. Even after boiling for five min, the dialyzed extract completely 

inhibited growth of F. moniliforme and F. chlamydosporum (Table IX-3).
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Table IX-1: Antifungai Activity of Extracts of Coccoloba with Different 

Fungal Pathogens.

FUNGAL PATHOGEN

Inhibition of Fungal Growth

Crude
Extract

Dialyzed
Extract

Buffer
Control

Fusarium moniliforme 4.0 4.0 0

Fusarium

chlamydosporum

4.0 4.0 0

Aspergillus flavus 3.8 3.8 0

Sclerotinia minor 4.0 4.0 0

Sclerotium rolfsii 4.0 4.0 0

Extracts were tested for activity against various pathogenic and/or 
saprophytic fungi. Fungal growth ratings for each fungus are 
presented.
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Table IX-2: Preliminary Estimation of Molecular Weight of Antifungai 

Activity of Coccoloba sp.

FRACTION

INHIBITION OF FUNGAL GROWTH

F. moniliforme F. chlamydosporum

Crude Neutral Extract 4.0 4.0

Dialyzed 3,500 MWCO 4.0 4.0

Dialyzed 6-8.000 MWCO 4.0 4.0

Dialyzed 12-14,000 MWCO 3.8 3.8

Buffer Control 0 0

The molecular size of the antifungai activity from Coccoloba sp. was 
estimated based on retention after exhaustive dialysis. Samples were 
dialyzed using membranes with different molecular weight cut off 
(MWCO) ranges. Dialyzed material retained within the membrane was 
tested for antifungai activity in the bioassay using Fusarium moniliforme 
and F. chlamydosporum.
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Table EX-3: Effects of Heat Treatment on Antifungai Activity.

INHIBITION OF FUNGAL GROWTH

Fraction F. moniliforme F. chlamydosporum A. flavus

Crude 4.0 4.0 4.0

Dialyzed 3.9 4.0 3.9

60 C 3.9 4.0 3.5

70 C 3.9 4.0 3.9

80 C 4.0 4.0 3.9

90 C 4.0 4.0 3.9

100 C 4.0 4.0 3.9

Buffer 0 0 0

Extracts were heated at the designated temperatures for 5 min and 
centrifuged to remove denatured protein. Fungal growth inhibition ratings 
for each treatment are presented for three different fungi.
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To determine whether the activity was stable at low pH, fruits were 

extracted with 0.1 M HCl and the acid extract was dialyzed to remove the 

HCl. The activity was stable in 0.1 M HCl. acid. The dialyzed HCl extract 

in 10 mM Tris-HCl, pH 8.0, completely inhibited the growth of both F. 

moniliforme and A. flavus (Figure IX-1).

Many antifungai proteins bind to chitin and can be purified by chitin- 

affinity chromatography. To determine whether the active components in 

extracts of Coccoloba fhiits also had chitin-binding activity, fruits were 

extracted with 0.1 M HCl. After extraction, the pH of the acid extract was 

adjusted to pH 3.8. This material was applied to a chitin-affinity column and 

chitin-binding components were eluted using 0.1 M acetic acid and 0.1 M 

sodium hydroxide. After elution, proteins in the acid eluate and sodium 

hydroxide eluate were precipitated with ammonium sulfate and resuspended 

in 10 mM Tris-HCl, pH 8.0. Although the acetic acid eluate did not inhibit 

fungal growth, the fraction obtained after elution with 0.1 M NaOH 

exhibited very strong inhibition against F. moniliforme and A. flavus (Figure 

IX-1).
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■ F. moniliibrnie! 
□ A.fl«viis

Crude HCl NaAc Wash HAc Eluate NaOH Eluate BuAer 
Extract Control

Figure IX-1: Antifungai Bioassay of Fractions from the 
Chitin-Affinity Column. Neutralized acid extract was 
fractionated by chitin-affinity chromatography. A sample 
from each fraction was tested for antifungai activity with 
A. fla m s  and F. moniliforme.
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The active fractions (NaOH eluate) fr-om the chitin-affinity column 

were highly pigmented. The color o f the resuspended pellet of the NaOH- 

eluted fractions resembled the rich burgundy color of Coccoloba fhiits.

The nature and purity of proteins in the active and inactive fractions 

were analyzed using denaturing gel electrophoresis (SDS-PAGE). Fractions 

from the chitin-column were subjected to SDS-PAGE using gels with three 

different concentrations of acrylamide. Unfortunately, the heavy 

pigmentation caused extensive streaking and interfered with the detection of 

individual protein bands on these gels. In an attempt to clarify the fractions 

and to remove interference caused by pigmented substances, the material 

was precipitated with acetone prior to SDS-PAGE (Remy and Ambard- 

Bretteville, 1987). There was no pellet visible after acetone precipitation 

and no protein bands were detected after performing SDS-PAGE with the 

acetone-precipitated sample.

The protein-banding pattern o f individual fractions was analyzed by 

lEF slab gel electrophoresis (gel not shown). lEF gel electrophoresis 

revealed several protein bands in crude dialyzed neutral extract (extracted 

and dialyzed in 10 mM Tris-HCl, pH 8.0). Four bands were detected in the 

fraction that was eluted from the chitin-affinity column with sodium
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hydroxide and precipitated with ammonium sulfate. In contrast, no protein 

bands were detected in the fraction eluted with acetic acid and precipitated 

with ammonium sulfate. This was consistent with the absence of a visible 

pellet, after ammonium sulfate precipitation of the acetic acid eluate.

Pigmentation o f the extract also interfered with subsequent 

purification. When glycerol was added to the dialyzed crude extract prior to 

preparative isoelectric focusing, the pigmented material precipitated. This 

eventually interfered with the collection of the samples after lEF. The 

precipitated pigments clogged part of the collection tubes resulting in very 

uneven collection of samples. Normally, each fraction would contain 2 to 

2.5 ml. In the present situation, some tubes had less than 0.5 ml while other 

tubes had more than 4 ml of sample. In addition, it was not possible to 

determine an accurate pH profile for the fractionation. Even so, the 

collected samples were clear and devoid of any pigments. To our dismay, 

when these samples were assayed, there was no inhibition of F. 

chlamydosporum or A. flavus growth in any of the fractions (data not 

shown).

Our initial conclusion from these experiments was that the activity 

was associated with the pigmented materials. To test this possibility, it was 

necessary to determine with certainty whether the activity was associated
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with the pigmented or the non-pigmented portion. To separate the 

pigmented substances from the non-pigmented components, the active 

fraction after chitin-affinity chromatography was fractionated by size- 

exciusion chromatography on a Biogel P-10 column.

Using this technique, the pigmented portion was successfully 

separated from the non-pigmented portion. The non-pigmented fraction was 

eluted easily with 0.02 M sodium phosphate buffer (pH 7.0). The pigmented 

portion remained bound to the column even after the column was washed 

with 1 M NaCl in sodium phosphate buffer (pH 7.0), lithium hydroxide or 

acetic acid. Eventually, the very hydrophobic pigmented material was 

successfully eluted in two fractions with O.IM NaOH. The 24 non- 

pigmented fractions from the P-10 column obtained after elution with 

sodium phosphate were pooled into six fractions and the pigmented fractions 

eluted with NaOH (PNl and PN2) were kept separate. PNl was rich 

burgundy brown in color indicating a very high concentration of pigments. 

PN2 had a lower concentration of pigment and was light pink. According to 

the antifungai assay (Figure IX-2), there was antifungai activity in all six of 

the pooled non-pigmented fractions. These fractions strongly inhibited 

growth of F. moniliforme and A. flavus mycelia. The pigmented fractions,
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□ A. flavus 
F. monittibrmei

4 5 6
Fraction Number

Figure IX-2; Separation of Antifungai Activity by Size 
Exclusion Chromatography on Biogel P-10. Sodium hydroxide 
eluate from the chitin afïïnity column was fractionated on a P-10 
column. Non-pigmented fractions 1 to 7 were eluted with 
phosphate buffer. Pigmented fractions 8 (PN l) and 9 (PN2) 
were eluted with sodium hydroxide. Fractions were dialyzed 
and assayed for antifungai activity.
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on the other hand, had no antifungai activity against either of the fungi 

mentioned in the section above. A 12.5% SDS-PAGE gel of the non- 

pigmented fractions revealed the presence of protein bands in all of the 

fractions (Figure IX-3).

Several other approaches to protein purification were evaluated during 

the initial phases of purification protocol development. These included ion- 

exchange chromatography on anion and cation-exchange columns and size- 

exclusion chromatography. Crude dialyzed extract o f Coccoloba fruits was 

applied to a Pharmacia Q Sepharose column equilibrated with 0.1 M Tris- 

HCl buffer, pH 8.0. Bound proteins were eluted with a step gradient from 0 

to 2.0 M NaCl in the same buffer. Fractions from the Q Sepharose column 

were dialyzed against 10 mM Tris-HCl, pH 8.0, to remove salt and tested for 

activity in the fungal bioassay using F. moniliforme and A. flavus (Figure 

lX-4). Activity was not detected in the flow through or in any of the column 

fractions, suggesting that the active component remained tightly bound to 

the column. Consistent with the results of anion-exchange chromatography
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Figure IX-3: Analysis of Protein Banding Patterns 
of P-10 Fractions by SDS-PAGE. Lanes 1-7 were 
active fractions obtained by fractionation on a Biogel 
P-10 colum n.
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pH 8.0 
□  pH 6.0

InhibitioD of Fungal 
Growth

pH 6.0 
pH 8.0

Fraction

Figure IX-4: Fractionation of Antifungai Activity 
by Anion-Exchange Chromatography on Q Sepharose. 
Dialyzed neutral extract of Coccoloba Suits were 
fractionated on a Q Sepharose column at pH 6.0 and pH 8.0. 
Bound proteins were eluted with a step gradient of NaCl. 
Collected Suctions were dialyzed in 10 mM Tris-HCl, pH 
8.0, and assayed for antifungai activity using A. flavus.
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at pH 8.0, the antifungai activity was not retained on a Pharmacia S 

Sepharose strong cation-exchange column equilibrated with 10 mM HEPES 

at pH 8.0. The unbound fraction (flow through) exhibited very strong 

inhibition against both A. flavus and F. moniliforme (Figure IX-5). These 

results support the conclusion that the active material is acidic and is highly 

negatively charged at pH 8.0. Based on the assumption that the protein was 

highly negatively charged (i. e. the pi was acidic), crude dialyzed extract was 

applied to a Q Sepharose column equilibrated with 20 mM Bis-Tris-HCl at 

pH 6. This should reduce the strength of binding. In this case, some activity 

came through in the flow through and wash, while another peak of activity 

was eluted with moderate concentrations o f NaCl (Figure IX-4).

Crude dialyzed extract was concentrated by ultrafiltration and 

subjected to size-exclusion chromatography on Pharmacia Sephacryl S-200. 

Individual fractions were tested for antifungai activity using F. moniliforme 

and A. flavus. The activity was observed in almost all o f the fractions (data 

not shown). Fraction 1 to 21 and 35 exhibited very strong inhibition o f F. 

moniliforme growth while all 36 fractions exhibited strong inhibition o f A. 

flavus growth.

378



■ A. flaws 
□ F. moniliforme
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Figure IX-5: Fractionation of Antifungal Activity by 
Cation Exchange Chromatography on S Sepharose. 
Bound proteins were eluted with a step gradient of NaCl. 
Fractions were dialyzed in 10 mM Tris pH, 8.0, and 
assayed for antifungal activity against A. flam s  and 
F. moniliforme.
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DISCUSSION

PCN 98 was collected by Mr. Orlando Vargas. Unfortunately, Mr. Vargas 

did not provide information on the site of collection or a voucher specimen 

for this plant, making absolute identification and recollection difficult. Mr. 

Vargas indicated that PCN 98 was from the genus Coccoloba but he did not 

identify the species. Based on the characteristics o f the collected fruits and 

stems of PCN 98 and a comparison with herbarium specimens of Coccoloba 

or other representatives of the Polygonaceae, it appears that PCN 98 was 

correctly identified as the genus Coccoloba. When contacted later about the 

identification, Mr. Vargas indicated that he believes he collected Coccoloba 

tuerkheimii, a newly identified species o f Coccoloba from Costa Rica. 

However, a comparison of the morphological characteristics of the fruits 

from a herbarium specimen of C. tuerckheimii with the fhiits of PCN 98 did 

not match, suggesting that PCN 98 was incorrectly identified.

Changes in the laws of Costa Rica relating to plant collection 

prohibited Mr. Vargas from recollecting this material or providing voucher 

specimens for conclusive identification. These regulations have placed 

restrictions on our attempts to recollect this and other species of Coccoloba. 

Although Coccoloba is found in the U.S., none of the tropical
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botanical gardens has C. tuerckheimii or other Costa Rican species of 

Coccoloba in their collection.

A review o f the literature indicates that there is enormous variation in 

morphology among the species of Coccoloba. According to Richard A. 

Howard’s survey, there are differences in the juvenile and adventitious 

leaves of the same species of Coccoloba. He has also found differences 

between the leaves of juvenile species and flowering species. Results of his 

survey indicated that there are differences between the staminate flowering 

plants and pistillate flowering plants of the same species. According to 

Howard (1992), seven Coccoloba species from Mexico and Central America 

were originally identified by Standly (1928) based on characteristics of 

leaves from sterile specimens (Howard, 1992). In at least three of these 

species, specimens were taken from juvenile plants and not from 

adventitious shoots. Difficulty in matching recent fertile collections with the 

original specimens has arisen because of the enormous variation between 

collected specimens.

Howard also indicated that several species of Coccoloba from Panama 

originally identified as C  acuplcensis were incorrectly identified because of 

the natural variability among and within the species. Careful investigation 

by Howard revealed that these species belong to a new species from Panama
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named C. janstonii. Another example of misidentification due to variation 

within the species was noted in the case of C. lancifolia. Howard’s 

investigation proved that C. lancifolia was not a separate species but it is a 

Central American representative of the widespread Caribbean species, C  

diversifolia. In his review, Howard suggested another collection of mature 

specimens of a Coccoloba species from Guatemala known as C. cumbreance 

will also be proven to be C. diversifolia.

Certainly, the possiblility exists that the person who collected the 

Coccoloba sp. in question misidentified the species. Fruit of PCN 98 

resembled C  icvifera fruits collected from West Palm Beach, Florida. The 

C. uvifera fruits are slightly pear shaped and grow in grape-like elongated 

clusters. These fruits are burgundy in color when ripe and contain one seed 

in each fruit. This matches the exact description of the Coccoloba fruits 

(PCN 98) that were extracted for the antifungal assay. According to the 

Manual de la Flora de Costa Rica, C. uvifera is listed as one of the species of 

Coccoloba found in the Provincia de Limon in Costa Rica. Although the 

description of the fruit o f PCN 98 fruit matches the description of C. uvifera 

fruit, additional information and recollection of PCN 98 will be required. 

This information will be necessary to confirm that the species o f Coccoloba
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(PCN 98) collected in the lowland rainforests of Costa Rica is a Costa Rican 

representative o f C. uvifera. Because o f the restrictions on the recollection 

of this species, further comparison between the Coccoloba uvifera from 

Florida and Coccoloba sp. (PCN 98) from Costa Rica was not possible. 

Therefore, absolute identification of the Coccoloba sp. collected from Costa 

Rica remains unresolved.

To date there have been no reports on the presence of antifungal 

activity in Coccoloba fruit. According to Neelis, Coccoloba uvifera has 

been used in traditional medicine to treat wounds, eruptions, rashes and 

hemorrhoids (Neelis, 1994). This investigator also mentioned that the 

astringent root, bark, and leaves of C. uvifera have been used to treat asthma, 

hemorrhage and diarrhea (Neelis, 1994). Fruits of C  uvifera are non- 

poisonous to humans, and ripe fruits are used to make jelly and wine-like 

alcoholic beverages. According to Malathi and co-workers Coccoloba 

species are used as a traditional medicine in Venezuela to treat tumors 

(Malathi et al., 1995). The same study also reported isolation of several 

secondary metabolites from the dried leaves o f C. uvifera collected in 

Madras, India.
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There has been only one report that suggests Coccoloba may have 

factors that deter insect feeding, Rodrigues and Saches demonstrated that C. 

barbadensis possessed some anti-insect activity. According to this study, 

when the vegetative portion of the C. barbadensis plants was dried, ground, 

and fed to Sitophilus zeamais larvae, the plant material caused 20% mortality 

of the insects (Rodriguez and Sanchez, 1994).

As far as it is known, this work is the first report on the presence of 

antifungal activity in the fruits of Coccoloba sp. (PCN 98). The antifungal 

activity extracted from Coccoloba fruits was heat and acid stable. The 

aqueous extract exhibited a broad range of activity against different 

pathogenic and saprophytic fungi. Inclusion of these extracts in the fungal 

growth assay caused total inhibition of growth of all fungi tested. The 

activity was retained after dialysis using 3,500 Da, 6-8000 Da and 12-14000 

Da MWCO membranes. These results suggest that the active component is 

a macromolecule, possibly a protein with a molecular size greater than

14,000 Da.

Although the activity was retained after dialysis, there was no clear 

evidence of a single protein band on SDS-PAGE gels that corresponded to 

the activity. It is possible that the activity may not be a macromolecule 

(protein) but may be a low molecular weight peptide or other compound.
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These components may aggregate forming larger complexes or may bind to 

higher molecular weight compounds. In this way, these complexes would be 

retained even after dialysis using membranes with a cut off limit of 12-14 

kDa. The fact that no single protein band on the SDS gels corresponded 

with the antifungal activity may indicate that there is more than one active 

component in these extracts.

Heat and acid stability of the activity does not exclude the possibility 

that the active molecule is a protein or a polypeptide. The occurrence of heat 

and acid stable proteins and peptides in plants is not uncommon (see Chapter 

II). An acid and heat stable antifungal protein was purified by Broekaert and 

co-workers (Broekaert et al., 1989; Peumans et al., 1983) from rhizomes of 

Urtica dioica. This chitin-binding antifungal lectin was stable in 1 N HCl, 

0.1 N acetic acid, 5% trichloroacetic acid and was still active after boiling. 

Antifungal defensins from Amaranthus caudatus. Capsicum annum and 

Briza maxima possess chitin-binding domain and are stable at extremes of 

pH. These defensins are unaffected by protease treatment and the antifungal 

activity is stable after boiling for 10 min (Broekaert, 1996). The antifungal 

activity purified fi'om aqueous extracts of Coccoloba binds to chitin, was 

stable in 1 N HCl, 0.1 N acetic acid, 0.1 NaOH and was not affected by 

boiling for 5 min. The activity that eluted from the chitin-
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column with 0.1 N NaOH was precipitated by ammonium sulfate again 

supporting the conclusion that the active component may be a protein.

When crude extract was fractionated by size-exclusion 

chromatography, the activity did not elute as a sharp peak but eluted as a 

broad band o f activity. In the case of both the P-10 and S-200 columns, 

activity came off gradually as a broad peak. This broad diffuse zones of 

activity from these columns suggests that the active component interacts 

with the gel filtration resin. It is not uncommon for proteins to bind to 

various gel filtration media through ionic, hydrophobic or affinity (ligand- 

protein) interactions. In fact, various resins such as Sepharose have been 

used effectively to isolate lectins and other carbohydrate-binding proteins. 

Originally, it was assumed that the active component was a macromolecule 

and the pigmented portion of the extract was a low molecular weight 

compound. To separate the active fraction from the pigmented fraction the 

crude dialyzed extract was fractionated on a Biogel P-10 column. The latter 

has a molecular weight exclusion limit of about 10,000 Da. Based on this 

hypothesis, we would predict that the larger active molecule will come off 

along on the void volume o f the column and the pigmented portion will 

come off later due to its smaller size. In fact, the active molecule eluted as a
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broad peak from the void volume to the column bed volume. Based on this 

result, the possibility exists that the active component, or components, varies 

in size from low molecular weight to greater than 10,000 Da. Another 

possible explanation is that the active molecule interacts with the column 

matrix through hydrophobic, ionic or other interactions.

The pigmented portion did not elute with buffer but eluted with 0 .1 M 

NaOH. This result suggests that the pigmented material was bound tightly 

to the column through hydrophobic interactions and this interaction was 

disrupted in the presence of O.l M NaOH. We propose that the active 

material may interact with the pigmented material through hydrophobic 

bonds and that this association is not as strong as the interaction between the 

resin and the pigmented substance. Thus, the active material slowly 

dissociates from the pigmented-column complex during chromatography 

with buffer elution. This slow release results in a broad band of activity 

being eluted from the colunm. The pigmented substances remain bound to 

the column until these hydrophobic bonds are disrupted by strong base. 

With respect to size, one would predict that the active material has a 

molecular weight of around 10,000 Da or larger. Based on this analysis, one
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can not predict the size of the pigmented material. Overall, aggregate 

complex between the active component(s) and the pigmented substances 

have an effective size greater than 12-14,000 Da and, therefore, these 

complexes are retained during dialysis. This interpretation is consistent with 

the results obtained with preparative isoelectric focusing. In this instance, 

the glycerol which enhances/stabilizes hydrophobic interactions caused the 

pigmented material to aggregate and precipitate. Since there was no 

antifungal activity detected in any of the Rotofor fractions, we proposed that 

the antifungal component remained associated with the pigment and both 

were precipitated.

Very little information was gained from preparative lEF. When lEF 

was carried out on acrylamide gels, the only protein bands detected in the 

active fractions appeared to be acidic. This result is consistent with the 

results obtained from anion and cation-exchange chromatography. The 

active component remained tightly bound to an anion-exchange column at 

pH 8.0 and did not elute even with 2 M NaCl. This suggests that the active 

component was highly negatively charged at pH 8.0 (i. e. the pi must be 

much lower than pH 8.0). In support o f this conclusion, the active fraction
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did not bind to a cation-exchange column and came off in the flow through 

(i.e. activity was not positively charged). By lowering the pH of the elution 

buffer to pH 6.0, some activity came off the column in the flow through, i. e. 

pi must be between 6 and 8. Some activity was bound and eluted with the 

salt gradient, i. e. this component must have a pi below 6. The extract 

applied to the column still contained pigmented substances and it is possible 

that these compounds were bound to the column and affected elution. 

Alternatively, the active component may have separated from the pigment 

during lEF but may have become insoluble and lost activity at it’s pi.

More work is needed to further purify the antifungal activity from 

extracts of Coccoloba (PCN 98) fruit. In the future, it would be necessary to 

determine whether lower molecular weight polypeptides are present which 

correlate with the activity. This can be addressed by using high-resolution 

peptide gels. One needs to determine whether there is more than one active 

component. Results to date suggest that this may be the case. Based on 

analogy with heat and acid stable chitin-binding peptides, the active material 

may be a lectin. To test this hypothesis hemagglutination assays should be 

performed.

Although the work we report on herein is preliminary, the results are 

extremely promising once more material can be collected. This will require
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confirmation of the species identity and/or studies with ripe fruits of 

Coccoloba uvifera from Florida. Promising approaches to purification 

include a combination o f ion-exchange chromatography (different pH’s, 

anion and/or cation-exchange chromatography), affinity chromatography 

using a chitin column or sugar/lectin affinity columns and P-10 to separate 

the active material from the pigmented substances.
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CONCLUSIONS

In conclusion, these results are extremely promising. Fruits of Coccoloba 

(PCN 98) contain one or more potent inhibitors of fungal growth. Our 

results are consistent with the suggestion that the inhibitory substance(s) 

may be a polypeptide or protein. The future work will rely on the correct 

identification of the Coccoloba sp. and collection of more fruits of the 

identified species.
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