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Abstra ct

The Internet and advances in wireless communication technology have transformed 

many &cets of the computer environment. Virtual connectivity through the internet has lead to a 

new genre of software systems, i.e., cooperating autonomous systems - systems that cooperate 

with each other to provide extended services to the user. Multidatabase systems - a set of 

databases that cooperate with each other in order to provide a single logical view of the 

underlying information - is an example of such systems. Advances in wireless communication 

technology dictate that the services available to the wired user be made available to the mobile 

user.

This dissertation studies transaction management in the mobile Multidatabase 

environment. That is, it studies the management of transactions within the context of the mobile 

and Multidatabase environments. Two new transaction management techniques for the mobile 

Multidatabase environment i.e., the PS and Semantic-PS techniques are proposed. These 

techniques define two new states (Disconnected and Suspended) to address the discormectivity 

of the mobile user. A new Partial Global Serialization Graph algorithm is introduced to verify 

the isolation property o f global transactions. This algorithm verifies the serializability of a 

global transaction by constructing a partial global serialization graph. This algorithm relies on 

the propagation of (serialization) information to ensure that the partial graph contains sufEcient 

information to verify serializability of global transactions. The unfair treatment o f mobile 

transactions due to their prolonged execution time is minimized tfirou^ pre-serialization. Pre­

serialization allows mobile transactions to establish their serialization order prior to completing 

their execution.

IX



Finally, analytical evaluation and simulation is carried out to study the performance of 

these techniques and to compare their performance to that of the Kangaroo [DHB97] technique. 

Although the PS and Semantic-PS techniques enforce the isolation property, the evaluation 

results establish that the service time for these techniques in not significantly greater than that of 

the Kangaroo technique. In addition, the simulation establishes that pre-serialization effectively 

minimizes the unfair treatment of mobile transactions.



Chapter 1 

P ro b le m  S ta te m e n t

1.1 Objective

On August 19-21, 1998, a group of 16 distinguished database system researchers from 

academe, industry, and government including J. Gray, M. Stonebraker, P. Bernstein, H. Garcia- 

Molina, and J. UUman met at Asilomar, California, to assess the database system research 

agenda for the next decade. The goal of the meeting was to discuss the current database system 

research agenda and to report their recommendations. The group discussed their 

recommendations in [Bernstein et.al.98] where they encouraged the database community to 

eschew the incremental, “delta-X” research that focuses on improving some widely understood 

idea X. Instead, they challenged the database community to explore problems whose main 

applications are decades ofr  ̂ and to pursue highly innovative and speculative research. In foct, 

the “grand challenge” proposed by the group is “Make it easy for everyone to store organize 

access and analyze the majority of human information on-line”. Although the research 

documented in this dissertation commenced long before the Asilomar meeting, its contributions 

are in foct, a  direct response to this grand challenge.

In the Asilomar report the authors state that in the future, billions of web clients will be 

accessing millions of databases, and that the Web will be one large federated system. This 

research studies transaction management in a multidatabase environment that supports both 

static and mobile users. The multidatabase architecture defined in this research resembles the 

federated system of the Asilomar report The primary objectives of this research are fourfold; 

first to identify the issues related to transaction management in a multidatabase environment 

that supports both static and mobile users; second, to develop two transaction management 

techniques that addresses all identified issues; third, to develop analytical and simulation



models and to evaluate the performance of the proposed techniques and to compare their 

performance to that o f techniques existing in the current literature; and fourth, to develop 

guidelines to help users and future researchers.

1.2 Organization

This dissertation is divided into seven chapters. The following paragraphs provide an 

overview of each chapter in the dissertation:

The problem statement is presented in the remainder of this chapter. First, the mobile 

computing environment and the mobile computing architecture will be discussed. Next, the 

issues related to transaction management in the mobile multidatabase environment will be 

identified. These issues foil into three categories: multidatabase design restrictions; the ACID 

properties; and disconnection and migration issues.

Chapter 2 presents the state-of-the-art of related work. Specifically it discusses 

semantic atomicity and serializability theory, advanced transaction models and existing 

transaction management techniques that are applicable to the mobile multidatabase 

environment.

Two transaction management techniques that address all the issues will be developed in 

Chapters 3 and 4. The Pre-Serialization (PS) transaction management technique will be 

developed in Chapter 3. The shortcomings of the PS technique will be identified and a 

Semantic-PS technique that overcomes these shortcomings will be developed in Chapter 4.

The performance of these techniques will be evaluated in Chapters 5 aixl 6. Analytical 

models will be developed in Chapter 5 and used to study die performance of the PS and 

Semantic-PS techniques. Simulation models will be developed in Chapter 6 and used to validate 

the evaluation in Chapter S. The evaluation will also develop guidelines to assist future 

researches.



This dissertation will be concluded in Chapter 7. First, concluding remarks of the author 

will be presented. This will be followed by a discussion of future research issues.

1.3 Motivation

The Asilomar Report [Bernstein et.al.98] predicts that in the future billions o f users will 

access millions o f databases in order to access and analyze the vast information available on­

line. This multidatabase environment consists of a set of autonomous databases connected to a 

fixed (wired) network that cooperate with each other to provide extended services to users. For 

example, users will be able to verify entire travel itineraries that include round-trip airline 

tickets, hotel reservations, and rental car reservations, all in one transaction. Obviously, such a 

transaction will need to access multiple independent database systems. The rapid advances in 

wireless technology and the availability of mobile palmtops dictates that that the services 

available to the static user be made available to the mobile user. It is also expected that millions 

of users will be carrying mobile computers often called personal assistants, to carry out their 

day to day activities [IB94]. Each mobile computer will be equipped with a wireless connection 

to the information networks [IB94]. The mobile user will demand access to the information on 

the fixed system fiom anywhere and at any time. The multidatabase environment is no 

exception.

The distinguishing characteristic of mobile computing is the wireless communication 

medium that makes it possible for a mobile user to communicate with a static (wired) computer 

system through some wireless communication medium. In today's busy, technology dominated 

and communication intensive business environment, wireless computing offers numerous 

possibilities for the multidatabase environment.

For example assume the following scenario. A business traveler is commuting on a 

commercial airline firom city A to city B. During the flight, the commuter decides to invest his



or her annual bonus in the Stock Market. This person will first acce-jS some information systems 

to determine the best investment opportunity. Once a deter.mnation is made, the person will 

need to execute a global transaction that accesses his or her personal bank account (or brokerage 

account) to obtain the funds, the NYSE database to execute the sale, and the sellers account to 

deposit the value of the stock. The person may also need to access some personal database to 

record information on the transaction.

The transaction manager is a vital compment of any Database Management System 

(DBMS). It is responsible for providing reliable and consistent units o f computing to users. The 

characteristics of the mobile computing environment affects the conventional responsibilities of 

die transaction manager. They introduce new issues that need to be addressed by the transaction 

manager, i.e., disconnection and migration. The wireless communication medium is 

characterized by firequent disconnections that occur during the execution of a user session. 

These disconnections caimot be treated as communication medium feilures that result in aborted 

transactions as in conventional wired systems. The ability to migrate during the execution of a 

user session is unique to the mobile computing environment. In order to accommodate mobile 

users, the transaction manager of the Mobile MultiDataBase System (MMDBS) needs to view 

disconnection and migration as routine events that occur during the normal course of execution 

of a transaction. Bbwever, in some cases disconnection may represent unrecoverable fitilures. 

Upon disconnection the MMDBS needs to determine the status o f the user. If the user is 

expected to reconnect, the transaction should be temporarily suspended. If the user is not 

expected to reconnect, the transaction may be aborted. Erroneous decisions about the status of 

die disconnected user are likely to be made as the actual status can only be predicted after 

disconnection. Thus, such transactions should not be aborted until tiiey interfere with the 

execution of otiier transactions. Upon reconnection, suspended transactions should be allowed 

to resume execution fiom the point o f suspension. Further, transactions should be allowed to



resume execution from a location different than the location at which the user was situated prior 

to the disconnection.

In addition, disconnection and migration affect the execution behavior of the system. 

Disconnection and migration prolong the execution time of transactions of mobile users. Also, 

mobile transactions are expected to be interactive by nature, i.e., pause for input from the user 

[Chry93], For example, the stock broker will determine the quantity of shares to be purchased 

only after verifying the price per share. Thus, Long Lived Transactions (LLTs) [PB94] need to 

be supported. The length of execution affects concurrency control as well. The probability of a 

transaction conflicting with other transactions in the system is proportional to the length of 

execution of that transaction. As a result, transactions of mobile users are more likely to cause a 

consistency violation [DG98] and therefiore, are more likely to be aborted. In order to maintain a 

notion of frtimess, the transaction manager needs to minimize this victimization of mobile 

transactions due to their prolonged execution.

Existing Mobile multidatabase (MMDB) transaction management techniques that are 

found in the literature address some of the issues that have been identified. However, none of 

the techniques addresses all these issues. In frict, all reviewed techniques frtil to address the 

unfrtir treatment of mobile transactions due to their prolonged execution, nor do they ensure the 

consistency of the transactions. In order to facilitate mobile users access to the information 

systems available on-line, it is necessary to re-visit transaction management issues in this new 

environment and to provide solutions that address all requirements.



1.4 The Mobile Computing Environment

The gmerai mobile computing model consists of two distinct sets of entities: a fixed 

network system and a continuously changing set of mobile hosts (Figure 1-1). The fixed 

networking system consists of a collection of static computers connected by a wired networic. 

Some units on the static network have the capability of communicating with the mobile units 

through a wireless medium. These units are called base stations or mobile support stations 

(MSS). The area covered by an MSS is called a cell [PB95]. The wireless communication 

medium between the MSS and the mobile user includes cellular architecture, radio transmission 

over FM, satellite services, and wireless LAN. Although current wireless communication 

technology is &irly reliable, it is not as robust as the communication mediums used in the static 

systems. It is also limited in bandwidth compared to wired networks. During the course of 

execution the mobile user is likely to migrate fiom cell to cell. The mobile user will be 

connected to no more than one MSS at any given time. The process involved in transferring a 

user fiom one MSS to another is called a hand-off.

MSS MSS MSS

Mobile U i« t„
Cell

Fixed Network

I Fixed Server Fixed ServerFixed User

Figure l-I: The Mobile Computing Environment



The mobile hosts are portable computers that vary in size, processing power, memory, 

etc. The typical mobile computer will have limited resources compared to its desktop 

counterparts [PB9S-2], These limitations include battery power, processing power, volatile 

memory, disk space, network bandwidth, etc. Due to the unreliability of the communication 

medium as well as limited resources available, the mobile user will be characterized by 

frequent disconnections and will operate in one of many modes ranging from highly connected 

to disconnected. However, a characteristic of these modes of operation is that they are 

foreseeable [PB93]. For example, the MSS will be able to predict that the user is going out of 

range by monitoring the strength of the signal. On the other hand, if the user decides to 

disconnect in order to conserve scarce resources, the MSS could easily be informed of this 

decision prior to disconnection.

1.5 The Mobile Multidatabase Architecture

A multidatabase system (MDBS) is a collection of autonomous database systems 

(called local database systems, or LDBSs) that are connected to a fixed network (Figure 1-2). In 

many cases, an MDBS is the result of shifting priorities, and the need of an organization to be 

part of a larger information system [ERS98]. The need to be part o f a  larger information system 

arises primarily for two reasons: one, organizations may acquire or merge with other 

organizations creating the need for a new global information system; and two, competition 

forces organizations to take advantage of the Internet to provide cooperating information 

systems foat cater to the growing information needs o f users.

In the MDBS, the respective LDBSs retain complete control over their databases. Each 

autorxxnous database nuy be viewed as an independent site in the network. These databases 

operate in difforent environments, and may use different data models, data manipulation 

fitcilities, transaction management and concurrency control mechanisms, [GR93], Existing



users - referred to as local users - will continue to access these databases through their 

respective LDBSs. The execution of local transactions submitted by local users will be 

transparent to any external process. Users who simultaneously access multiple databases - 

referred to as global users - do so by submitting global transactions to the multidatabase 

Management System (MDBMS).

Global User

global queries

MDBMS

GTM

local queries obal subqueries

LDBS 1

local queries

LDBSn

Figure 1-2: Multidatabase System

The MDBMS is a set of software modules existing on the fixed network that cooperates 

with the local LDBSs in order to project an illusion of a  single database to the global user. 

Global users are allowed only limited access to the individual databases. For example, although 

global users will be allowed to make reservations on a  cotiunercial airline database system, they 

will not be allowed to execute ad-hoc queries that could compromise sensitive infermation. 

Each local database provides a service interfece that specifies the operations accepted by the 

LDBS and the services provided to the MDBMS. The Mobile Multidatabase system (MMDBS) 

is simply an MDBS that supports both static and mobile users. The database management 

system or DBMS of an MMDBS is referred to as a  Mobile Multidatabase Management System 

(MMDBMS).



The Global Transaction Manager (GTM) is a software component of the MMDBMS 

that manages the execution of global transactions. A global transaction consists of a set of 

queries, each of which is a legal operation accepted by some service interface of an LDBS in 

the system. Queries o f a global transaction may be grouped together to form logical units of 

execution called sub-transactions. Any subset o f queries of a global transaction that access the 

same LDBS may be executed as a single transaction with respect to that site and will form a 

logical unit called a  site-transaction. As users migrate from one MSS to another, queries of a 

global transaction may be submitted from different MSSs (Figure 1-3). Such transactions will 

be referred to as migrating transactions. The notation Q \ is used to represent the j* query of 

global transaction k.

Global Transaction GTl
Queries submitted from MSS 1 Queries submitted from MSS 2

! • • • . Q̂ mf • • ;k ̂  ####*# # # # >•••••** * » •  • •  • • • • • • • • •

LDBS 1 LDBS 2 LDBSn

Figure 1-3: Migrating Global Transaction

1.6 Transaction Management Issues

hi database theory, a transaction is defined as an independent, consistait and reliable 

unit o f computing [PB9S]. The definition of a transaction gives a  strong indication of the 

primary responsibilities of the transaction manager, i.e., to provide consistent and reliable 

access to the data within its domain. Generally, this can be achieved by enforcing die ACID 

(Atomicity, Consistency, Isolation, and Durability) properties [GR93]. Atomicity requires that



either all operations of a  transaction execute successfully or none at all. Consistency requires 

that a successful transaction not violate any consistency constraints defined on the database. 

Isolation requires that the effect of executing a set of transactions concurrently be equivalent to 

that of executing the same set of transactions in some serial order. Durability requires that all 

changes made by a successful transaction be permanently reflected in the database. However, 

the applicability of ACID in the MMDB environment has been questioned. Not that ACID is 

unenforceable, but because it is expected that ACID will be enforced using too many aborts, 

resulting in a system that is perfectly consistent, but gets only a small fiaction of useful work 

done [DHB97]. In addition to providing consistent and reliable access to the data, the Mobile 

MultiDataBase System (MMDBS) needs to address disconnection and migrating transactions. 

These reasons provide the motivation to revisit the requirements o f the GTM in the MMDB 

environment. In the remainder of this section, a more detailed discussion of these issues will be 

provided.

1.6.1 Multidatabase Design Restrictions

Local autonomy is the main feature that distinguishes multidatabase systems from 

conventional distributed database systems [BMS92]. Local autonomy dictates that no changes 

can be made to the local DBMSs in order to support the multidatabase system. A distinction 

can be made between structural design and execution aspects o f  local autonomy [ERS98]: 

Structural design autonomy refers to the ability of an LDBS to choose its own design with 

respect to issues such as data model, query language, etc.; Execution autonomy refers to the 

ability of an LDBS to execute transactions without interference. The MMDBMS cannot violate 

the structural design and execution autonomy of the local LDBSs. Local autonomy can be 

violated in four different ways:

10



• Preservation Infiingement (PI) - The GTM requires that modifications be made to LDBSs 

and existing (local) software.

• Execution Infiingement (El) - The GTM infiringes upon the execution fixedom of the 

LDBS. For example, an LDBS may be prevented from aborting a  site-transaction that 

executed at that site.

• Security Infiingement (SI) - An LDBS is not allowed to control access to one or more data 

items within its domain.

• Transparency Infiingement (TI) - The GTM requires the LDBSs to furnish control 

information such as serialization graphs.

The multidatabase environment give rise to other issues that need to be addressed as 

well. The vast number o f LDBSs that could potentially be part of a MMDBS, the autonomy o f 

the LDBSs, and the geographic distance that may separate the LDBSs make centralized 

algorithms or even distributed algorithms that require the cooperation of all sites, practically 

unacceptable. The global transaction management schemes that provide consistent and reliable 

units of computing to global users need to be de-centralized in nature, and need to minimize the 

cooperation required to perform its tasks.

1.6.2 The ACID Properties

As mentioned befi>re, if a transaction is guaranteed to satisfy the ACID properties it is 

then a consistent and reliable unit of computing. Enforcing the ACID properties in the MMDB 

environment is compounded by three fiuAors:

1. Enfi)rcing the ACID properties in a distributed environment requires the cooperation o f 

each site. For example, to enforce the atomicity property, the sites at Wiich a global 

transactions executes site-transactions need to cooperate in order to ensure a consistent

II



final outcome i.e., global abort or commit. The autonomy requirement of the MMDBS 

limits the level o f cooperation that can be achieved between the LDBSs.

2. Disconnection and migration of the mobile user alters the structure of (mobile) global 

transactions. For example, it prolongs the execution of a global transaction. This prolonged 

execution afiects the behavior of the system, i.e., the transaction is likely to retain resources 

for longer periods of time, thus limiting concurrency.

3. The vast number o f potential LDBSs that form a MMDBS and their geographic dispersion 

further limits the level of cooperation that can be achieved. It makes it practically 

impossible to implement any centralized algorithms or even distributed algorithms that 

require the cooperation of all sites.

As it is difficult to enforce the ACID properties in the MMDB environment, the 

applicability of ACID to this environment has been argued. Further, in [DH95] the authors 

make a compelling argument for providing unrestricted access to data in this otvironment: 

“Returning dirty data tagged with appropriate warnings is much more useful than returning an 

ABORT message ...” . Thus, it is necessary for the transaction management process of the 

MMDBS to support a spectrum of correctness criterion with respect to the ACID properties. 

Next, each of the ACID properties will be discussed individually.

1.6.2.I Atomicity

The atomicity property requires that either all operations of a transaction execute 

successfully, or diat they are all aborted (and all changes made by the transaction are erased 

from the system). In the MMDB environment, atomicity requires that either all site-transactions 

of a global transaction execute successfully, or that they are all aborted. Thus, all sites at which 

a global transaction executes site-transactions need to corporate in order to ensure that the same 

outcome is recorded at all sites. It has been debated vdiether, in the MMDB oivirooment, strict

12



atomicity can be enforced without violating local autonomy [BHS92], One side o f the argument 

is that the prepared-to-commit operation will become standard in most DBMSs and therefore 

provide the necessary cooperation to enforce strict atomicity. In essence, the local LDBS 

relinquishes its right to unilaterally abort the (site) transaction after the transaction enters the 

prepared-to-commit state. However as the transaction is not yet committed, it may be aborted if 

required to do so by the MMDBMS. The other side to the argument is that the prepared-to- 

commit operation causes an execution infringement upon the LDBS and that there will always 

be databases whose autonomy is critical and will not export the prepared-to-commit operation.

1.6.2.2 Isolation

The isolation property requires that the concurrent execution of any set o f transactions 

be equivalent to some serial execution of the same set of transactions. That is, intermediate 

results of a transaction must not be visible to other concurrently executing transactions. Once 

again, enforcing the isolation property in the MMDB environment is difBcult for two reasons:

1. Local transactions executed by the LDBSs are transparent to the MMDB system and 

therefore cannot be considered by any global algorithm.

2. The execution order of concurrent site-transactions of global transactions is not visible to 

the MMDB system.

In addition, to ensure that the local (LDBS) isolation property is not violated by a 

global transaction, it is necessary to execute all queries of a global transaction that access the 

same site as a  single ACID transaction with respect to that LDBS. In other words, it is 

necessary to limit each global transaction to no more than one site-tiansaction per site. Else, the 

LDBS may execute local transactions between the separate site-transactions o f a  single global 

transaction. This violates the local isolation property as the local transactions are able to view 

intermediate results o f the global transaction. This violation cannot be detected by the LDBS as
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it views each site-transactioas as a separate logical unit of computing. From the perspective of 

the MMDBs, diese separate site-transactions belong to the same (global) logical unit of 

computing whose intermediate results should not be made visible.

As argued before, in order to provide unrestricted access to data in the MMDB 

environment, it is necessary to support a wide range of correctness criterion with respect to the 

isolation property. Note that global transactions with unrestricted access that write data back to 

the databases may compromise the accuracy of the databases as the transaction may have read 

inconsistent data. If the system demands that the correctness of the databases not be 

compromised, unrestricted access should be limited to read-only transactions. Thus, only the 

data returned to the user will be compromised. As this requirement is application specific, any 

proposed technique should provide a wide range of correctness criterion and let the designers of 

the individual MMDBSs define the level of correctness that needs to be enforced.

Disconnection and migration affect the execution time of a transaction which, in turn, 

affects the enforcement of the isolation property. As the duration of execution o f a transaction 

increases, the possibility of the transaction conflicting with other transactions increases. If an 

optimistic concurrency control protocol - a protocol that checks for violations o f the isolation 

property at the time of the transaction’s commit - is used, transactions of mobile users are more 

likely to be aborted due to their prolonged execution time. If a pessimistic concurrency control 

protocol - a  protocol that does not allow a transaction to violate the isolation property during its 

execudom - is used, the average response time and throughput of the system will deteriorate as 

transactioas will be blocked for extended periods of time by transactions of mobile users. In 

order to maintain a notion of foimess, the MMDB system needs to minimize the ill-effects 

caused by disconnection and migration.
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1.6.2.3 Consistency and Durability

As a consequence of autonomy, we can assume that no data integrity constraints are 

defined on data items residing at dififermt LDBSs [DE89], As each LDBS will ensure that the 

site-transactions executed at its respective site do not violate any local integrity constraints, 

global transactions will, by de&ult, satisfy the consistency property. Thus, the MMDB system 

is relieved of this responsibility. Similarly, the MMDB system can rely on the durability 

property of the LDBSs to ensure durability of committed global transactions.

1.6.3 Disconnection and Migration

Unlike disconnection in the static environment, disconnection in the mobile 

environment cannot be treated as &ilures that result in aborted transactions. The transaction 

manager of the MMDBS should allow transactions to be halted at arbitrary points during its 

execution. Upon re-connection, halted transactions should be allowed to resume execution fixxn 

where they left off. In order to support migration, the transaction management process should 

allow halted transactions to resume execution ftom a  location different from the location at 

which the previous execution was halted. All responses that cannot be delivered due to 

disconnection need to be logged by the MMDBS and be delivered to the user upon re­

connection.

To fully support disconnection, it is not sufBcient to simply allow disconnection to 

occur at arbitrary points during the execution of a  transaction. In some cases, disconnection will 

be due to catastrophic ftulures, or catastrophic frilures may occur during the period of 

disconnection. Halted transactions are not resumed after catastrophic frilures. Therefore, the 

MMDBS needs to determine the status of its disconnected users periodically. When a 

catastrophic frilure is deemed to have occurred, the MMDBS may terminate any associated 

transactions. Although disconnection is foreseeable, erroneous decisions are bound to be made
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as the true status of the user cannot be verified after disconnection. Thus, not only should the 

MMDBS acconunodate disconnection but should also minimize the affects of such erroneous 

decisions. These affects can be minimized by postponing the abort of a  transaction until it 

obstructs the execution o f other transactions.

Frequent disconnection and migration will prolong the execution time of global 

transactions. In addition, global transactions are expected to be interactive by nature, i.e., pause 

for input by the user [Chry93]. To support mobile users, the GTM will need to support long- 

lived Transactions (LLT) [PB94]. As concurrent transactions compete for resources, prolonged 

execution limits concurrency if resources obtained by transactions - such as locks - are not 

released in a timely fiishion. The blocking of a transaction’s execution must be minimized in 

order to increase concurrency [MB98]. Therefore, site-transactions should be allowed to 

commit early so that resources can be released immediately after the site-transaction has 

completed its execution.

1.7 Summary of Transaction Management Issues

The transaction management process of the MMDBS needs to enforce the atomicity 

and isolation properties with respect to global transactions. In fact, it is necessary to provide the 

functionality to enforce a range of correctness criterion with respect to atomicity and isolation. 

Disconnection needs to be viewed as an event that occurs during the normal execution sequence 

of a Uansaction. To support migration, the disconnected user should be allowed to resume 

execution fitxn a  different location. Untimely abortions caused by erroneous decisions on 

catastrophic ftulures to mobile users needs to be at least minimized, if not eliminated. Any ill- 

affects due to the prolonged execution caused by disconnection and migration needs to be 

minimized. In addition, the autonomy of the LDBSs must not be compromised. Also, any
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algorithms used in the MMDB environment need to be de-centralized in nature and need to 

minimize the level of cooperation/coordination required by the sites.

Note that, as the local databases are autonomous, site-transactions are executed 

independent of each other by the respective LDBSs. As a  result, each site-transaction can be 

considered as a consistent and reliable unit of computing with respect to that LDBS. That is, 

each site-transaction is guaranteed to be an ACID unit o f computing with respect to the LDBS 

at which it executed. This does not guarantee that global transactions will be ACID with respect 

to the global database. However, the local ACID nature o f the site-transactions can be exploited 

by the MMDBS in order to provide globally ACID (global) transactions.

1.8 Contributions

This section summarizes the major contributions of this dissertation. This research 

proposes two new transaction management techniques for the mobile multidatabase 

environment. These techniques are based on the multi-level transaction model. As the multi­

level transaction model requires all sub-transactions be compensatable, these techniques require 

sub-transactions of a global transaction to be compensatable.

The proposed transaction management techniques introduce three new concepts. First, it 

introduces the notion o f suspended execution of transactions. Suspended transactions are not 

aborted until they interfere with the execution of other transactions. As the status of a 

disconnected user can only be predicted, suspending the execution of global transactions instead 

of aborting their execution minimizes erroneous aborts. Second, it introduces pre-serialization 

which is used to minimize the unfair treatment o f mobile transactions. Pre-serialization allows 

mobile transactions to establish their serialization order prior to completing their execution. 

Third, it introduces the Partial Global Serialization Graph (PGSG) algorithm that enforces the 

atomicity and isolation properties of global transactions. This algorithm is unique in that it
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verifies the serializability of a  global transaction by constructing a partial global serialization 

graph - a serialization graph that represents only a subset o f the global serialization scheme. The 

PGSG algorithm relies on serialization information propagation in order to ensure that the all 

isolation property violations are detected.

As new algorithms and concepts are proposed, extensive analysis and simulation is 

carried out. This research develops analytical and simulation models that can be used to study 

transaction managemœt in the mobile multidatabase environment.

The analytical and simulation experiments establish that the cost of enforcing the 

isolation property is minimal. The simulation results also indicate that the concept of pre­

serialization minimizes the unfair treatment of mobile transactions due to their prolonged 

execution.
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Chapter 2 

L i t e r a tu r e  R eview

In this section, relevant work will be discussed. As stated in Section 1.6.2.1, it has been 

argued whether strict atomicity can be enforced in the multidatabase environment without 

violating local autonomy. Without taking sides in that argument, the techniques proposed in this 

research will base its correctness criterion on semantic atomicity [LKS91] - an alternate 

criterion that is more suitable for the MMDB environment. Semantic atomicity will be 

discussed in Section 2.1. Serializability will be the correctness criterion used to enforce the 

isolation property in the proposed techniques. Serializability will be discussed in Section 2.2. A 

(global) transaction in the MMDB environment is a collection of (site) transactions that are 

executed as independent (local) transactions by the LDBSs. However, the global transaction 

needs to be executed as a  reliable and consistent unit of computing by the MMDBS. The flat 

transaction model used in traditional databases is not suitable for the MMDB environment as it 

provides only one level o f control. The transaction model proposed in this research is based on 

the Nested transaction model [MossSl] which will be introduced in Section 2.3. Finally, seven 

transaction management techniques that are applicable to the MMDB environment will be 

summarized in Section 2.4.

2.1 Semantic Atomicity

In order to enforce conventional atomicity, the GTM must ensure that either all sub­

transactions of a  global transaction are committed or that they are all aborted. Enforcing 

atomicity is difficult as each (autonomous) site retains the right to abort a (site) transaction 

executed under it’s supervision at any time prior to a  successful conunit at that site. An alternate
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criterion to conventional atomicity is semantic atomicity [LKS91], Semantic atomicity requires 

one of the following conditions to be satisfied by each (global) transaction:

1. Either all sub-transactions are aborted or each sub-transaction is committed or retried;

2. Either all sub-transactions are committed or each sub-transactions is aborted or 

compensated for

A compensatable transaction is a transaction whose effects can be undone after it has 

committed by executing a  compensating transaction. For example, a sub-transaction that 

reserves a seat in an airline reservation system is compensatable as reservation can be canceled 

which, in effect, undoes the reservation. A re-triable sub-transaction is one which is guaranteed 

to succeed if retried a sufficient number of times. For example, a sub-transaction that credits a 

bank account is a re-triable sub-transaction as money can always be credited to a bank account 

provided that the account exists.

Semantic atomicity is more suitable than conventional atomicity for the multidatabase 

environment for two reasons: First, semantic atomicity is easier to implement in this 

environment as it does not require the cooperation o f the autonomous sites in order to ensure 

that either all sub-transactions commit or that they all abort. The following cases will illustrate 

this point:

• Let us take the case where all sub-transactions are re-triable. Then, if an LDBS decides to

abort a  sub-transaction, then this sub-transaction can be retired until it executes

successfully, satisfying condition 1 of semantic atomicity.

• Let us take the case where all sub-transactions are compensatable. Then, if an LDBS

decides to abort a sub-transaction, then all committed sub-transactions can be compensated

and all active sub-transactions are aborted, satisfying condition 2 of semantic atomicity. 

This, in effect, erases the entire execution of the transaction fixxn the global system.

20



Second, semantic atomicity is ideally suited for the MMDB environment as it allows 

site-transactions to commit independently, releasing (local) resources held by that site- 

transaction in a timely 6shion. This increases local as well as global concurrency.

The transaction management techniques proposed in this research implement condition 

2 of semantic atomicity. Condition 2 is chosen for the following reasons:

• Most transactions executed on the Internet, a prevalent multidatabase environment, are 

inherently compensatable. For example, any reservation type transactions are 

compensatable as the reservation can be cancelled; most purchase type transactions are 

compensatable as most purchases are not final as most purchases can be cancelled within a 

certain time period.

• In a concurrent environment, strict isolation cannot be enforced under condition 1 of

semantic atomicity. The atomicity and isolation property of a  transactions cannot be

verified until the transaction completes the execution of its last sub-transaction. However 

under condition 1, a transaction may commit at any point at which all outstanding sub- 

transactions are retriable. Although the transaction may not violate the isolation property at 

the point of commit, a  consequent retriable sub-transaction may violate the isolation 

property. This violation can only be resolved by aborting one or more of the transactions 

involved in the isolation property violation. If all transactions involved in the violation have 

already committed, die violation cannot be resolved.

2.2 SerializabOity Theory

Serializability is the most frequently used correctness criterion to verify isolation 

[0V9I]. To state it simply, the execution of a set of transactions is said to be serial if all 

operations of each transaction are executed consecutively [UllmSS]. The omcurrent execution 

of a set of transactions is said to be serializable if its effect is equivalent to that of some serial
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schedule of the same set o f transactions. In this section, a formal definition of serializability will 

be provided. First, it is necessary to introduce some basic terminology. The terminology defined 

in this section is consistent with the definitions in [BHG87].

Definitioa 2.1: Let T = {T,, Tj, ..., T,} be a set of transactions. A history H over T is a partial 

ordering with respect to ordering relation such that:

1. H contains precisely the operations submitted by T, i.e., all operations ofT,, 7%,..., Tn;

2. H honors all operation orderings specified by each transaction in T, that is, if operation Ok, 

appears before Okj in transaction T ,̂ then Ok appears before Ok, in any history that 

contains Tk; and

3. For every pair o f conflicting operations 0; and Oj where Oi appears before Oj in the 

execution order of T, then Oi -> Oj is in H.

To illustrate this definition, consider the following example.

Example 2.1: Let T = {T„ Tj} be a set of (two) transactions such that:

Ti => R,(a), R,(b), W,(a), W,(b), C.

T ,=>R,(a),W ,(a),q

where R(x) represents a  read operation on x, W(x) represents a read operation on x, and C 

represents a commit operation. Assume that the operations of T  are executed in the following 

order

R,(a). R,(b), Wi(a), W # ,  C„ R,(a), Wj(a), C,

Then, the history H over T  is shown in Figure 2-1.
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R,(a) -4. R,(y) -> W,(a) -4- Wi(b) -> C.
i
R ,(a )-> W j(a)-> q

Figure 2-1: History aver transaction set T

Definition 2.2: The execution of a set of transactions is said to be serial if the transactions are 

executed in some serial order.

Note that the execution of transactions T, and T, in Example 2-1 is serial.

Definition 2.3: Let O; and Oj be two operations in transactions T, and Tj respectively. Oi and Oj 

are said to conflict (directly) if Oi and Oj both access the same data object X and at least one is 

a write operation that modifies the value of X.

Note that operations Wi(a) and R,(a) in T conflict as they access the same data object 

and one operation is a write. Also, if Oi and Oj conflict and Oj and Ok conflict, then Oi and Ok 

are said to conflict indirectly.

Definition 2.4: Two histories H and are said to be conflict equivalent if they are defined 

over the same set o f transactions and conflicting operations (of non aborted transactions) are 

ordered in the same way in both histories.

Definition 2.5: The concurrent execution of a set of transactions is said to be serializ/able if its 

history is conflict equivalent to some serial schedule of the same set of transactions.
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The following example will be used to illustrate a non serial but serializable schedule. 

Example 2.2: Let T  = {Ti, Tj} be a set of transactions as described in Example 2-1. However, in 

this case, assume that the operations of T are executed in the following order;

R,(a), R,(b), W,(a), R^(a), W,(a), Q. W.(b), C.

The history is said to be serializable as it is defined over the same set of transactions 

T and is conflict equivalent to the history H of the serial execution of T. In fact, the history 

of T in Example 2-2 is the same as the history H in Example 2-1. Note that non conflicting 

operations in a history can be rearranged in any order without affecting the outcome of any of 

the transactions.

Definition 2.6: Two transactions Ti and T, are said to conflict if they contain conflicting 

operations.

Definition 2.7: The serialization graph (SO) for a history H, denoted by SG(H), is a directed 

graph whose nodes represent committed transactions in H and whose edges T, Tj (i ^  j) 

represent conflicting transactions T, and Tj such that the conflicting operation of Ti precedes the 

conflicting operation of Tj.

Example 2 J :  Let H  be the history given in Figure 2-1. Then SG(H) is the graph T, ->  Tj.

Next, a  fundamental theorem of serializability is presented. A rigorous proof of this 

theorem can be fixind in [BHG87].

Theorem 2.1: A history H is said to be serializable iff SG(H) is acyclic.
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The serializability theory presented above cannot be applied directly to the 

multidatabase environment as this environment consists of two levels o f execution. At the local 

level, each local serializability graph SG| consists of local transactions and site-transactions of 

global transactions that have been submitted to that site. At the global level, the global 

serializability graph SG, consists of global transactions. The global serializability graph does 

not contain any local transactions as the execution of local transactions at the LDBS is 

transparent to the MDBS. In order for the execution of a  set of local and global transactions to 

be serializable in the multidatabase environment, the following conditions must be satisfied 

[MRKS92]:

1. The local serialization graphs must be acyclic, that is, the concurrent execution o f local and 

global transactions within each local LDBS must be serializable; and

2. The global serialization graph must be acyclic, that is, conflicting global transactions must 

be serialized in the same order at all sites at which they conflict.

A simple example will be used to illustrate condition 2;

Example 2.4; Let S, and S% be two sites in a multidatabase system where S| contains data item a 

and S% contains data item b. Let GT = (GTi, GTj} be two global transactions such that 

GT, => R,(a), W,(b), Ci and 

GTj=>R,(a),Wj(a), R,(b)C,

Assume that the operations of GTi and GT, are executed by the respective LDBSs in the 

following order

Si =» Ri(a), Rj(a), W,(a), Q , C, and 

S2=>W.(b), R,(b), Cj, Ci 

Then, GS, over GT is given by the graph GT, -> GT, as the execution of conflicting operations 

of GTi precedes the execution of conflicting operations of GT, at both sites. However, if the 

operations of G T  and GTj are executed in the following order
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Si => R,(a), Rj(a), W,(a), C„ C, and 

S2=>R,(b),W.(b),C„ C. 

then GT, and GTj are not serializable and SG, contains a cycle.

Each LDBS guarantees that all transactions (local and site-transactions) executed at that 

site do not violate the ACID properties. Thus, it is assured that the concurrent execution of 

transactions within each LDBS is Serializable and, therefore, condition 1 is satisfied by all 

LDBSs of the MMDBS. However, since the GTM has no knowledge of the execution order of 

site-transactions within the local LDBSs, condition 2 cannot be verified without taking 

additional steps to determine the serialization order of site-transactions within each site.

2.3 Advanced Transaction Models

In the traditional fiat transaction model, a transaction consists of a begin operation, a set 

of read and write operations that are executed sequentially, followed by a single commit 

operation or an abort operation that un-does the effect of the entire transaction. All committed 

transactions are required to satisfy the ACID properties. This model is called fiat because there 

is only one level o f control [GR93]. Either all operations succeed and the transaction is 

committed, or all operations are aborted. Flat transactions are the simplest type of transactions 

[GR93]. It does not provide the flexibility required for the multidatabase and mobile computing 

environments. It does not allow sets of operations to be executed as independent transactions 

under the supervision o f autonomous DBMSs. As a  transaction needs to be executed as a  single 

atomic unit, atomicity cannot be enforced in the multidatabase environment without the 

cooperation of the constituent DBMSs. This model does not allow for a wide range of 

correctness criterion wifo respect to the atomicity and isolation properties to be supported.
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To overcome these limitations, the nested transaction model has been proposed 

[MossSl, MMP83]. A nested transaction consists of a  set of sub-transactions each of which is 

either a nested transaction or a flat transaction. Therefore, the whole transaction forms a tree 

and is called a transaction tree. The transaction at the root of the tree is called a top-level 

transaction-, others are called sub-transactions. Sub-transactions at the leaf level are flat 

transactions. A sub-transaction’s predecessor is called a  parent-, a sub-transaction at the next 

lower level is called a child. In [MossSl], primitive database operations can only be contained 

within the leaf level sub-transactions. In [GR93], this restriction is not observed. In this 

research, the model defined in [GR93] will be followed as it is less restrictive. The nested 

transaction model allows potential internal parallelism to be exploited. It contains a control 

structure that allows operations to be grouped together and executed independently.

Modifications to the commit protocol of the nested transaction model have been 

proposed. Each naodification gives rise to a variation of the nested transaction model. These 

variations are detailed below:

2.3.1 The Basic Nested Transaction Model

In this model, each sub-transaction is committed or aborted independently [GR93], 

However, its commit does not take effect unless its parent transaction commits. Therefore, by 

inductioii, a sub-transaction can finally commit only if  the top-level transaction commits 

[GR93]. When a sub-transaction is committed, its results are made accessible only to its parent 

If a sub-transaction is aborted, then all its (child) sub-transactions are aborted r%ardless of their 

local commit status. Note that a sub-transaction may commit even if one or more of its sub­

transactions are aborted.

As the commit o f sub-transactions do not take efkct until the top-level transaction is 

committed, this model poses a major limitation with respect to the MMDB environment. That
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is, access to the data items modified by the committed sub-transactions needs to be regulated by 

the GTM. This cannot be achieved without violating local database autonomy.

2.3.2 The Open Nested Transaction Model

The open nested transaction model [GR93] is a liberal version of the nested transaction 

model that allows each sub-transaction to commit early, independent of the outcome of its 

parent transaction. Thus, a sub-transaction may ranain committed even if the parent transaction 

is aborted.

This model eliminates the limitations of the basic nested transaction model. That is, it 

allows sub-transactions' to commit independently in the multidatabase environment as the 

outcome of sub-transactions commit status is not influenced by the outcome of their parent. 

However, this model violates the atomicity property of transactions. The results of a sub­

transaction may persist in the database even if the top-level transaction is aborted.

2.3.3 The Multi-Level Transaction Model

The multi-level transaction model is an extension of the nested transaction model 

[GR93]. This model allows sub-transactions to commit early as well. However, it assumes the 

existence of a  compensating transaction that can semantically reverse the effects of committed 

sub-transactions in the event that the parent transaction is aborted. The compensating 

transaction guarantees that all updates made by committed sub-transactions can be revoked in 

the event that the top-level transaction 6ils.

This model is ideally suited for the multidatabase environment for three reasons:

1. It allows sub-transactions to commit early;

2. Atomicity can be enforced without the cooperation o f the autonomous DBMSs as commits 

of sub-transactions can be reversed;
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3. It allows a wide range of correctness criteria - with respect to the atomicity and isolation 

properties.

2.4 Transaction Management Techniques

In this section, a brief review of transaction management techniques applicable to the 

MMDB environment found in the current literature will be carried out. These techniques will 

be examined with respect to disconnection and migration support, LLT support, enforcement of 

the atomicity and isolation properties, and local database autonomy violations. The review will 

be summarized in Table 2-1.

In this section, the terms Full and Partial will be used to express the level of 

disconnection and migration support provided by each technique. Partial will be used to 

indicate that the technique allows for disconnection/migration but does not address all the 

related issues. The term Full will be used to indicate that the technique addresses all related 

issues. The issues related to disconnection are:

1. Arbitrary disconnection should be supported;

2. Disconnection that represent catastrophic failures need to be addressed;

3. Any ill-effect caused by the extended duration of transaction «cecution needs to be 

minimized.

The issues related to migration are:

1. Transactions should be allowed to halt their execution at one MSS and resume their 

execution firom another MSS at arbitrary points;

2. Any ill-effect caused by the extended duration of transaction execution needs to be 

minimized.

VAR, STR and None will be used to express the level of atomicity/isolation provided by 

each technique. VAR states that a  spectrum of correctness criteria is supported; STR states that

29



only strict atomicity/isolatioa is supported; and None states that atomicity/isolation is not 

enforced.

2.4.1 An Agent Based Approach

The technique presented in [PB9S-2] is based on agent-based distributed computing. 

An agent is an object that encapsulates data and procedures that the receiving computer 

executes. Formally, an agent is a quadruple (D, M, SD, P), where D is a  set of data, M is a set 

of methods, SD is a set of structural dependencies, and P is a set of break and relocation points. 

A global transaction can be visualized as an agent that consists of sub-agents. Agents may be 

submitted from various sites including mobile stations. Agent-based computation is 

decentralized as the agents themselves communicate with each other in order to provide 

consistent and reliable computing. A set of structural dependencies allows the user to define 

critical methods that, upon failure, cause the entire agent to fiul. It can also be used to define 

compensating methods that are executed to compensate for already committed methods. Thus, 

this model supports early commits o f its sub-agents and the spectrum of atomicity. In order to 

support migration, relocation points are pre-defined within the agent. This does not allow for 

arbitrary relocation of the mobile user. As a result, it does not fully support migration. The 

executions of Agents can be isolated fi-om each other by ensuring that concurrent execution 

occurs within the pre-defined breakpoints. Yet, the isolation property cannot be enforced 

globally as the execution of local transactions is transparent to the external agents. This 

technique does not violate any local autonomy requirements.

2.4.2 The Ouster Modd

Aldmugh [PB9S] focuses on a  distributed database with replication under central 

control, it introduces many interesting ideas applicable to the multidatabase environment as
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well. In this technique, closely located data is grouped as a cluster. Clusters are defined 

dynamically as mobile users connect and disconnect at different locations. Full consistency is 

maintained within a cluster. However, different degrees of consistency are defined for 

replicated data located at different clusters. This will increase the availability of data and 

consequently performance at the cost of consistency. Transactions are defined as either strict or 

weak. Strict transactions are allowed to access only consistent copies of a data item and, thus, 

produce only consistent results. Weak transactions are allowed to access copies of data items 

that are inconsistent within an acceptable limit and, thus, may also produce inconsistent results. 

If only strict transactions are allowed, the isolation property is ensured and all copies of a data 

item are consistent. If  weak transactions are allowed, multiple inconsistent copies of a data item 

are produced. Weak transactions provide the necessary flexibility to support a spectrum of 

atomicity and isolation criterion. Weak transactions are first committed at the cluster level and 

then at the global level. As weak transactions committed at the cluster level may be aborted 

during the global commit phase, weak transactions may be used only when compensating 

transactions are available; otherwise, cascading aborts of weak transactions could occur.

As a cluster maintains its own copy of data items, LLTs may be executed as weak 

transactions within that cluster without the undesirable effects o f data contention. As this 

technique fiacuses on distributed databases under central control, the autonomy restriction does 

not apply. However, it must be noted that this technique causes an El weak transactions 

committed at the cluster level may be aborted during the global commit, and PI as this 

technique requires the local DBMSs to be modified to support clusters.

2.4,3 The Semantic-Based Transaction Processing Scheme

The sonantic based transaction processing scheme [WC94] addresses transaction 

processing for the general mobile database environment in which the constituent sites may or
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may not be autonomous. Here, the authors exploit the semantics of data objects and operations 

defined on them to support autonomous mobile transactions that are executed on the mobile 

hosts and to increase concurrency. A 'master copy’ of each object resides on a stationary 

database server. These objects are split into disjoint fiagments that are handed out to the mobile 

hosts which manipulate the fiagments within defined consistency conditions. Upon completing 

the required operations, the fiagments are returned to the server and combined with the rest of 

the data objects using a merge operation. Not all data objects can be fiagmented and operated 

upon independently. Sets, stacks, and queues are a few examples of fiagmentable objects. This 

scheme is limited in its applicability as it works only in environments where those data can be 

fiagmented and operated upon independently.

Disconnected operations and LLTs are supported by allowing the mobile user to cache 

data objects required for computation on the local machine. Communication cost is minimized 

as only the (fiagmented) portion of the data objects required for the computation is obtained by 

the mobile host. As different consistency conditions may be specified for operating upon the 

fiagmented objects, the fiiU spectrum of atomicity can be supported. However, as the objects 

are split into disjoint fiagments, only strict isolation can be supported. As this technique is not 

designed specifically for the multidatabase environment, it violates the autonomy of the local 

databases. Modifications need to be made to the local DBMSs in order to support 

fiagmentation. In addition, this technique requires the cooperation of the local DBMSs - an El 

violation.

2.4.4 Reporting Transactions and Co-Transactions

The technique proposed in [Chiy93] is based on the open nested model and supports 

two additional types o f transactions, namely, reporting transactions and co-transactions. These 

new types of transactions allow concurrent global transactions to share partial results improving
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coacunency. In this model, sub-transactions can be committed or aborted independently. Each 

sub-transaction is either compensatable or non-compensatable. Non-compensatable sub­

transactions are not allowed to commit their effects on objects when they commit. This is an El 

with respect to the autonomy requirements. Sub-transactions are further categorized as either 

vital or non-vital. A transaction can commit only if all its vital sub-transactions commit and 

only after the statuses of non-vital sub-transactions are known. Thus, this model supports a 

spectrum of atomicity. The authors assume that sub-transactions of different global transactions 

can interleave their execution in any arbitrary order, eliminating the need to address the 

isolation property.

2.4.5 The Multidatabase Transaction Processing Manager Technique

The multidatabase Transaction Processing Manager (MDSTPM) technique proposed in 

[YZ94] is based on a Message and Queuing Facility (MQF) to manage global transactions 

submitted by mobile workstations. The site that a global transaction is initiated is designated as 

the coordinator site for that transaction and schedules and executes the transaction on behalf o f 

the mobile unit. Transactions submitted by mobile users are placed in an Input Queue by the 

coordinator site. These transactions are then transferred to the Active Queue during execution. 

Once the transaction has been completed, it is placed in the Suspend Queue while the two- 

phase commit (2PC) protocol is executed [GR93]. Upon completion of the commit protocol, 

the transaction and its outcome are placed in the Output Queue. The user may disconnect at any 

time during the execution of the transaction. Upon re-connection, the user may query the status 

of the transaction. The outcome of the transaction and any results produced are kept in the 

Output Queue which could be delivered to the user.

The use of queues allows the MDSTPM model to explicitly handle disconnection. As 

the execution of a transaction is coordinated by die initial site, transactions cannot migrate with
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the user. Instead, all communications with respect to a  global transaction need to be forwarded 

to the coordinator site. As all operations of a transaction need to be submitted before execution 

may begin, LLTs that involve human interaction cannot be supported. This publication does not 

discuss enforcing the isolation property. Although the two-phase commit protocol is to be used, 

the authors do not discuss the implementation details of this commit protocol. Note that the 

two-phase commit protocol (2PC) provides only strict atomicity. This approach does not violate 

any autonomy requirements of the local DBMSs. However, as the implementation details of the 

2PC are unknown, no definitive conclusion can be drawn.

2.4.6 The Kangaroo Model

The model presented in [DHB97] is based on the open nested model and is the first 

model to capture the movement behavior of the mobile user. A global transaction (referred to as 

Kangaroo transactions) consists of a set of Joey transactions, each consisting o f all operations 

executed within the boundaries of one MSS. Each Joey transaction consists of one or more sub­

transactions. As each Joey transaction contains all sub-transactions that are submitted fi-om 

some MSS, the set o f Joey transactions capture the migration of the global transaction. As a 

Joey consists o f sub-transactions, this technique does not address arbitrary migration that may 

occur in the middle o f a sub-transaction. A Joey transaction may be committed independently. 

Kangaroo transactions execute in two different modes: Compensating mode and Split mode. 

Under die Compensating mode, the fiiilure of any Joey transaction o f a  Kangaroo transaction 

causes all its committed Joeys to be compensated and all its other active Joeys to be aborted. 

Under the Split mode, all committed Joeys will not be compensated and the decision to commit 

or abort any active Joeys is left up to the component DBMSs. These modes provide a full 

spectrum of atomicity. However, under the Split mode, component DBMSs may be left in an 

inconsistent state. Neither mode enforces the isolation property.
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2.4.7 A Pre-Commit Model

The transaction model presented in [MB98] addresses transaction management in the 

mobile database environment in general. It does not specifically address the MMDB 

environment. This technique introduces a pre-read, pre-write, and a pre-commit operation to 

address the issues of mobile computing. Transactions of mobile users are initiated by the MH 

read or pre-read data values, manipulate the data that has been read and then pre-write modified 

values at the MH. Once all pre-write values have been declared, the transactions pre-commit at 

which point, all pre-write values are transmitted to the MSS. The MSS will then complete the 

transactions, i.e., write all values to the database and commit the transactions. A pre-write does 

not update the state o f the physical data object but only declares its modified value. Once a 

transaction pre-commits, its pre-write values are written to a pre-write buffer maintained in the 

MSS and are made visible to other concurrent transactions executing at that MH and the 

respective MSS. A transactions read will return a pre-read value if the latest value available 

has not been written to the database as yet; otherwise, the value residing in the database (read 

value) will be returned. All pre-committed transactions are guaranteed to commit by the MSS.

This transaction model does not fully support disconnection as it does not address 

disconnection that represents catastrophic fitilures. It addresses the concurrency limitation 

caused by the extended duration of mobile transactions by maintaining a pre-write buffer and 

making the pre-write values visible upon pre-commit. However, the pre-write values are visible 

only to those transactions that are executing in that MH or MSS. Note that this limits 

concurrency at the LDBS level. As this technique is not specifically designed for the MMDB 

environment, it does not address the autonomy requirement In feet, this technique violates El 

as transactions are pre-committed by the MSS which guarantees feat the pre-conunitted 

transactitm will not be aborted. In fee MMDB environment this cannot be achieved without the
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unilateral cooperation of the LDBSs. This technique enforces the strict atomicity and strict 

isolation. It does not provide the functionality to enforce a range of correctness criterion. As 

pre-committed transactions do not abort, no undo recovery or compensating transactions need 

to be performed.

2.5 Summary of Review

As shown in Table 2-1, none of the reviewed techniques enforces the isolation property 

without violating the autonomy of the local databases. In 6ct, four of the seven techniques 

reviewed do not enforce the isolation property at all. As a  result, conflicts have no effect on the 

outcome of transactions and, therefore, lengthy executions do not incur any ill-efiects. 

However, as the isolation property is not enforced, the consistency of the databases is 

compromised. In addition, all techniques do not address disconnections that represent 

catastrophic failures. It is assumed that a disconnection will always be followed by a 

subsequent re-connection. Moreover, performance analysis has not been conducted in any of 

these studies.

Technique Disctn Migrtn Autonomy

Violated

LLT

Support

Atomicity

Level

Isolation

Level
Agent-Based Access [PB9S-2] Partial Partial No Yes VAR None
The Cluster Model [PB9S] Partial Partial EI/PI Yes VAR VAR
Semantic based TP [WC94] Partial Partial EIÆ»! Yes VAR STR
TP in Mobile Env [Ctary93] Partial FuU El Yes VAR None
MDSTMP [YZ94I Partial Full No No STR None
Kangaroo Model [DHB97] Partial Partial No Yes VAR None
Pre-commit model [MB98] Partial FuU Yes Yes STR STR

Tabu 2-1 : Summary o f Mobile Database Transaction Models
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Chapter 3

T r a n s a c t io n  M an ag em en t in  t h e  MMDB E n v iro n m en t

In this chapter, the Pre-Serialization Transaction Management (PS) technique will be 

introduced. This technique fully addresses disconnection and migration, minimizes any 

prejudices against LLTs, provides the full range of correctness criterion with respect to the 

atomicity and isolation properties, and conforms to all multidatabase design restrictions. The 

Partial Global Serialization Graph (PGSG) algorithm which is used to verify the atomicity and 

isolation properties will be presented in Section 3.1.4.1. This algorithm is a graph-based 

algorithm that verifies isolation by analyzing serializability graphs of only a subset of the nodes 

in the system. In order to ensure that all isolation violations are detected, the algorithm 

propagates serializability information during the commit o f global transactions.

3.1 Overview

The Global Transaction Manager (GTM) of the PS technique is divided into two 

layers: the Global Coordinator (GC) layer manages the overall execution of global transactions 

aixl disconnection and migration of mobile users, and the Site Manager (SM) layer supervises 

the execution of site-transactions. Global transactions are initiated at the GC layer. The GC 

layer will submit the site-transactions to the SM layer. The SM layer submits the site- 

transactions to the respective LDBS, and forwards the outcome of the site-transactions to the 

GC layer. Global transactions are based on the multi-level transaction model. Site-transactions 

are categorized as either vital or non-vital [Chry93]. All vital site-transactions must succeed for 

the global transaction to succeed. However, the 6ilure o f a  non-vital site-transaction does not 

cause the global transaction to fiul. The interval in which all vital site-transactions are executed
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is referred to as the vital phase of the transaction. For simplicity, all LLTs will be considered to 

be mobile global transactions, and all non-LLTs will be considered as static global transactions.

Two new states • Disconnected and Suspended - are introduced to address 

disconnection and uncertainty about reconnection. Upon disconnection, global transactions are 

placed in the Disconnected state by the GC layer. Whenever a catastrophic Êûlure is deemed to 

have occurred, global transactions associated with that connection are placed in the Suspended 

state. Suspended global transactions are not aborted until they interfere with the execution of 

other global transactions, thus minimizing erroneous termination.

The Partial Global Serialization Graph (PGSG) algorithm is used to verify the A/I 

properties of a global transaction. This algorithm is based on the optimistic approach and 

enforces the range o f correctness criterion. If the A/I properties have not been violated the 

algorithm establishes the transaction's serialization order in the global serialization scheme. 

Note that the algorithm does not maintain a global serialization graph. Each site maintains a  Site 

Serialization Graph (SSG) that contains partial global serialization information. The global 

serialization scheme can be obtained through the union of all SSGs - a very costly operation. 

However, the PGSG algorithm does not construct the entire global serialization scheme in order 

to verify isolation; it only constructs a partial global serialization scheme - hence its name.

A static global transaction initiates the PGSG algorithm at the end of its execution. If 

the A/I properties can be verified, the transaction’s serialization order is roistered in the global 

serialization scheme - henceforth referred to as being toggled • and the transaction is committed; 

otherwise, it is aborted. However, a mobile global transaction initiates the PGSG algorithm at 

the end o f its vital phase. If the A/I properties can be verified, the transaction is toggled and 

execution continues; otherwise it is aborted. A toggled mobile global transaction is allowed to 

initiate only ncm-vital site transactions. At the end o f execution of a  toggled mobile global 

transaction, the transaction executes the PGSG algorithm a  second time to verify whether any of
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the Doa-vital site-transactions executed after being toggled violate the established serialization 

order. Any (non-vital) site-transaction that violates this order is at>orted. As only non-vital site- 

transactions are initiated after being toggled, the global transaction is guaranteed to commit. 

The toggle operation minimizes the ill-effects of extended executions of mobile global 

transactions as they are allowed to establish their serialization order prior to completing their 

execution.

3.2 The Model

Glot)al transactions are based on the Multi-Level transaction model. This model is 

ideally suited for the MMDB environment for three reasons;

1. Atomicity can be enforced without the cooperation o f the LDBSs as sub-transactions are 

compensatable;

2. It allows sub-transactions to commit early, independent o f the global transaction;

3. it provides the flexibility to accommodate a wide range o f A/I criteria.

In the proposed model, all operations of a global transaction accessing the same LDBS 

constitute a site-transaction (analogous to sub-transaction) that is compensatable and will be 

executed as a single transaction with respect to that site. This will ensure that the global 

transaction does not execute more than one ACID transaction at any LDBS. In addition, all site- 

transactions will be cat%orized as either vital or non-vital [Chry93]. Vital site-transactions are 

site-transactions drat must succeed in order for the global transaction to succeed. The abort of 

non-vital site-transactions does not force the global transaction to be aborted.

3.3 The Global Transaction Manager

The Global Transaction Manager (GTM) consists o f two layers: a  Global Coordinator 

(GC) layer and a  Site Manager (SM) layer (Figure 3-1). The GC layer consists of a set of Global
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Transaction Coordinators (GTCs) such that there exists a GTC at each MSS and any other static 

node to which global users may connect. All external users connect to the MMDBS via some 

GTC. The GTC is responsible for the overall execution of all global transactions of users 

currently connected to it. The GTC will submit site-transactions to the respective sites, handle 

disconnection and migration, log responses that cannot be delivered to the disconnected user, 

enforce the A/I, etc. The SM layer consists of a set of Site Transaction Managers (STMs) such 

that there exists an STM at each participating LDBS. The STMs receive site-transactions from 

the GTCs, submit the site-transactions to the respective LDBSs and oversee their execution.

MSS 1
GTC I

Static Node MSS 2
GTC 3 GTC 2

GC layer 
SM layer

Global Transaction 
Manager

STM I STM 2
Service Interface 1 Service Interface 2

Local DBMS 1 Local DBMS 2

Site A SiteB

Figure 3-1: Global Transaction Manager

Each global transaction can be in one of five states: 1) Active - the user is connected 

and execution continues; 2) Disconnected - the user is disconnected, but the disconnection was 

predicted and re-connection is expected; 3) Suspended - the user is disconnected and is deemed 

to have encountered a  catastrophic fitilure; 4) Committed - the transaction committed 

successfully; and S) Aborted - the transaction is aborted. Note that the states Disconnected and 

Suspended do not apply to global transactions of static users.
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When a global transaction is initiated by a user, the respective GTC creates a global 

data structure to keep track of the information required to supervise its overall execution. The 

Global Data Structure is given in Table 3-1.

GTID global transaction identifier
G T T ype Mobile (LLT) or static (non-LLTs)
GT Status current state of global transaction
Isolation Verified specifies whether isolation has been verified
Site List respective site of each site-transaction
STID List respective STID of each site-transaction
Critical List specifies vital/non-vital for each site-transaction
STID Status List respective status of each site-transaction
Response List list of undelivered responses, if any

Table 3-1: Global Data Structure

When a user migrates to a new cell, the user will supply the current MSS with the 

identity of the previous MSS. The GTC at the current MSS will obtain the associated Global 

Data Structure from the previous GTC and assume the responsibility of the overall execution.

The STM at each site supervises the execution of site-transactions submitted to that site. 

Each LDBS defines the set of operations accepted by that LDBS. Each site-transaction can be in 

one of finir states: 1) Active - the site-transaction is active; 2) Completed - the site-transaction 

has conunitted at the local database but the global transaction has not oxninitted; 3) Aborted - 

the site-transaction is aborted; or 4) Committed - the site-transaction and the respective global 

transaction have committed. Each STM will maintain a Site Table containing infiumation on all 

site-transactions submitted to it. For each site-transaction, the fiiUowing information will be 

collected:

GTID respective GTID
STID assigned STID
MSS ID current MSS to which user is connected
STID Status current state of site-transaction
Compensating Transaction compensating transaction o f site-transaction

Table 3-2: Site Table Structure
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The GTC submits all site-transactions and their compensating (site) transactions to the 

respective STMs. Upon completion of each site-transaction, the STM will submit a commit 

operation to the LDBS and consequently update the STTD_Status to reflect the outcome of the 

local COTimit operation, i.e., marked Completed or Aborted. The outcome will then be conveyed 

to the GTC to be recorded in the Global Data Structure. Site-transactions are committed locally 

independent of the future outcome of the global transaction in order to ensure that local 

resources are released in a timely manner.

Whenever a user disconnects, the respective GT Status is mariced as Disconnected. The 

execution of Disconnected transactions are not halted. All responses received after 

disconnection are placed in the Response_List. Upon reconnection, the GT_Status of 

Disconnected transactions will be set to Active, all responses in the Response_List are delivered 

to the user, and execution proceeds. At any time during a period of disconnection if the 

MMDBS determines that a catastrophic 6ilure has occurred, the respective GT_Status is 

marked as Suspended and the execution is halted, i.e., no new site-transactions are initiated. 

Suspended global transactions are not aborted until they obstruct the execution of other global 

transactions. This will minimize the number of unnecessary aborts caused by erroneous 

decisions.

To verify the A/I properties of a global transaction, the respective GTC will execute the 

Partial Global Serialization Graph (PGSG) algorithm. This algorithm verifies the A/I properties 

widi respect to all successful site-transactions o f a global transaction. A static global 

transactions initiates the PGSG algorithm at the end of its execution. If  die A/I properties have 

not been violated, the transaction's serialization order is roistered in die global serialization 

scheme (i.e., toggled) and it is committed; otherwise it is aborted. In the case of a mobile global 

transaction, the PGSG algorithm is initiated at the end of its vital phase. If either if the A/I
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properties have been violated, the mobile global transaction is aborted; otherwise the mobile 

global transaction is toggled, the Isolation_Verified field o f the respective Global Structure is 

set to true, and execution is allowed to continue. After being toggled, a mobile global 

transaction may initiate only non-vital site-transactions. As a toggled mobile global transaction 

establishes its serialization order in the global serialization scheme, it is guaranteed to commit. 

At the end of its execution, each toggled mobile global transaction initiates the PGSG algorithm 

the second time to verify that the (non-vital) site-transactions executed after being toggled do 

not violate the already established serialization order. If any site-transaction violates this order, 

it is aborted. However, as it is non-vital, its abort does not cause the global transaction to be 

aborted. A toggled mobile global transaction is aborted only if it obstructs the execution of 

another global transaction while it is in the Suspended state. As mobile global transactions are 

allowed to establish their serialization order prior to completing their execution, the prejudicial 

treatment of mobile global transactions is minimized.

3.4 the Atomicity and Isolation Properties

In this Section, the PGSG algorithm used to enforce the A/I properties will be 

introduced. First, an overview of the algorithm is presented. Details of the algorithm will be 

provided in subsequent sub-sections.

As stated previously, it has been argued that strict atomicity cannot be implemented in 

the multidatabase environment without violating local autonomy. Without taking sides in that 

argument, die atomicity property of the PS technique will be based on condition 2 of semantic 

atomicity. That is, either all site-transactions are committed, or all site-transactions are aborted 

or compensated for. Condition 2 of semantic atomicity is chosen as it allows (compensatable) 

site-transactions to be committed even before the decision to commit the global transaction is 

reached.
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The isolation property is based on seriaiizability. In Chapter 2 it was stated that in order 

for a set of local and global transactions to be serializable in the multidatabase environment, all 

local serialization graphs must be acyclic and the global serialization graph which contains only 

global transactions must be acyclic. In Chapter 1 it was stated that all transactions executed by 

the local LDBSs will satisfy the ACID properties. This guarantees that all local serialization 

graphs will be acyclic. Therefore, the MMDBMS needs only to œsure that the global 

serialization graph that represents global transaction serialization order at the local sites is 

acyclic.

To capture the local serialization scheme, each STM maintains a  Site Serialization 

Graph (SSG). The SSG is an ordered graph that reflects foe execution order of site-transactions 

at that site. The combination of all SSGs represents the global serialization order o f all global 

transactions. The rxxks in the SSG represent global transactions and are categorized as either 

Accessed or Propagated. Accessed nodes represent transactions that execute vital site- 

transactions at that site. Propagated nodes are nodes that get copied to foe SSG whenever foe 

STM participates in the PGSG algorithm. The edges in the SSG represent the serialization order 

of the global transactions.

The PGSG algorithm will first verify semantic atomicity of the transaction to be toggled 

or committed, say Ti. That is, the PGSG algorithm verifies that all vital site-transactions of T, 

have successfully committed at the respective LDBSs, i.e., marked Completed. If all vital site- 

transactions are marked Completed, the atomicity property is satisfied; otherwise, all Completed 

site-transactions of Ti (vital and non-vital) are compensated and T| is aborted.

The foct foat the abort of a non-vital site-transaction does o(* cause the global 

transaction to be aborted is actually a violation of condition 2 o f semantic atomicity. However, 

the need for fois can be argued as follows. In Chapter 2, it was argued that the GTM needs to 

support the foil range o f A/I properties. If  all site-transactions are classified as vital, then all
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site-transactions must succeed in order for the global transaction to succeed and condition 2 is 

strictly adhered to. If on the other hand ail site-transactions are classified as non-vital, then 

unrestricted access is supported. By allowing a global transaction to consist of any combination 

of vital and non-vital site-transactions, the PS technique supports the full range of the A/I 

properties.

To verify seriaiizability of T„ the PGSG algorithm constructs the Partial Global 

Serialization (PGS) graph. The nodes in the PSG graph represent a  subset of global transactions 

and the edges represent their serialization order. The PGS graph is constructed by combining 

Predecessor graphs obtained firom the SSGs at all STMs at which T, executed site-transactions 

successfully - hencefiirth referred to as Primary sites. Each Predecessor graph contains T„ all 

nodes that precede Ti in that SSG, and additional serialization information obtained firom other 

STMs with respect to propagated nodes in that SSG that are Active (henceforth referred to as 

Candidate nodes). These sites are referred to as Secondary sites.

After constructing the PGS graph, the algorithm verifies whether Ti violates the 

established serialization order of all committed and toggled transactions. Violations are 

represented as cycles that consist of T, and other toggled or conunitted transactions. If cycles are 

detected, the algorithm will attempt to break these cycles by aborting Suspended (toggled) 

mobile global transactions as they are obstructing the execution o f another global transaction. 

Note that all transactions mariced as Suspended have not been committed and therefore can be 

aborted. If  one or more cycles cannot be broken by aborting Suspended transactions, all 

Completed site-transactions of Ti are compensated and the global transaction is aborted. If there 

are no cycles or all cycles can be resolved, the Isolation_Verified field is set to True, the global 

transaction is committed or toggled, and Ae PGS graph is sait to all participating STMs , i.e., 

all Primary and Secondary sites. At each site, serialization information contained in the PSG 

graph is copied to its SSG - henceforth referred to as propagation.
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Propagatioa is a  fiindamental part of the PGSG algorithm and ensures that ail cycles are 

detected even though the global serialization scheme is only partially represented in each PSG 

graph. Whenever a  global transaction Ti establishes its serialization order in the global 

serialization scheme, propagation is designed to copy all active nodes T, that appear before T, in 

the PGS graph (i.e., conflict with and precede T, in the serialization order) to other participating 

SSGs. The motivation behind propagation is the following. Some active transaction Tj that 

precedes T  in the serialization order when T, was toggled may initiate other conflicting site- 

transactions in the future such that it now appears after T, in the global serialization scheme, 

thus causing a cycle. However, propagation will ensure that when the last transaction in the 

cycle attempts to establish its serialization order, the cycle will be in the PGS graph as:

1. Propagation copies preceding serialization information to all participating SSGs.

2. In a cycle, any node precedes all other nodes.

Therefore, the cycle is detected and the global transaction is aborted. Note that the key to the 

algorithm is to identify those nodes to which the "preceding" serialization information needs to 

be copied. The nodes to which the PGSG needs to propagate information are all Active nodes 

that precede T, in the PGS graph.

3.4.1 The PGSG Algorithm

As die execution order o f site-transactions within the local databases are transparent to 

all external processes, the STM cannot determine the local serialization order by any direct 

means. However, the execution order of site-transactions within the local LDBS may be 

obtained implicitly by forcing conflicts among the site-transactions by using a data item called a 

ticket [GRS91] maintained at each she. Each site-transaction is required to read die tick^ at that 

LDBS, increment its value and write the new value back as part of its execution. The ticket 

value read by the site-transaction indicates its serialization order at that she [BMS92] with
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respect to other site-transactions and will be used to construct the SSG. Note that, any site- 

transaction that violates the serialization order represented by its ticket will be aborted by the 

LDBS as all sites enforce the ACID properties on all local transactions.

The SSG at each site is a directed graph whose nodes represent the respective GTIDs of 

site-transactions and edges represent (forced) conflicts between the respective site-transactions 

executed at that site (i.e„ ticket values). For example, there exists T,-»Tz in some SSG if and 

only if global transactions T, and 7% access at least one common site and the ticket obtained by 

the site-transaction of T, is less than the ticket obtained by the site-transaction of Tz. The 

information contained within each node is given is Table 3-3. Each node in the SSG is 

cat%orized as either an Accessed node or a Propagated node. An Accessed node represents a 

global transaction that executed a site-transaction at that site. A Propagated node represents a 

global transaction whose serialization order was copied to the SSG during the execution of the 

PGSG algorithm. Next, certain terms used in the algorithm are defined.

GTID Respective global transaction ID
GT Status status of global transaction
Isolation Veri commit intent of global transaction
Node Categor Accessed or Propagated
Site ID If Access, then this Site ID; Else the Propagated Site ID

TabU 3-3: SSG Node

Definttioa 1: We say that Tj is reachable from Ti in graph G if there is a path from Ti to Tj in 

G, i.e., Ti—>...^Tj.

Definition 2: ReachablefTjJ is a  (directed) sub-graph o f an SSG that contains node Tj and all 

nodes T  such that Tj is reachable from T  in the SSG.
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Definition 3: a Candidate node is any Propagated node whose GT Status is not Committed.

Definition 4: Let G, and Gj be two graphs with node sets Ni and Nj and edge sets Ej and E, 

respectively. The operation G = MergefGt, Gj} results in a new graph G(N, E) such that N = Ni 

u  Nj and E = Ei w  E, where vj is the union operator. (G does not contain duplicate edges).

Definition 5: The graph Predecessor(T  ̂ is the sub-graph ReachabIe(Tj) of the SSG at site 

Sm Merged with all Predecessor(Tk, S J graphs where Tk is a Candidate node in Reachable(Tj) 

and So is the respective propagated site of Tk. Formally,

Predecessor(Tj, SnJ = { G = Reachab!e(Tj) I Merge (G, Predecessor(Tk, So)) V Candidate nodes 

Tk in Reachable(Tj) where So is the Site_ID of T k}

In the graph Predecessor(T%, Sy), T, is referred to as the requested root node.

Definition 6: The list PList(Tj, SIJ is a list (maintained at site Sm) whose elements represent 

sites firom which Predecessor graphs were obtained in order to construct Predecessor(Tj, Sm).

The PGSG algorithm consists of two modules: the GlobalCoordinator module 

constructs the PGS graph fiom the Predecessor graphs and verifies the A/I properties, and the 

RequestPredecessor module constructs the Predecessor graphs. The GlobalCoordinator module 

is executed by the GTC that supervised the execution o f the global transactions at the time that 

the commit or toggle operation was initiated. Ti rq>resents the global transaction to be 

committed or toggled and the Request argument specifies it is to be committed or toggled. First, 

this algorithm verifies that all vital siteHransactions have been Completed. Next, the algpridim 

obtains the Predecessor graphs firom all Primary sites at which Ti successfully executed site- 

transactions. Each Primary site executes the RequestPredecessor algorithm to construct the
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Predecessor graph and submits it to the GTC. The PGSG algorithm will then verify 

seriaiizability and either toggle, commit, or abort the global transaction. If the global transaction 

is to be committed or toggled, the PGS graph is sent to all participating sites so that the required 

serialization information is propagated.

Algorithm 3-1: GlobalCoordinator (Tj, Request)
/• Verifies the A/I properties */
/* first, verify atomicity */
I f  any critical site-transaction has been aborted 

Send ABORT (TJ to ail sites in SiteJList /* Abort all site-transactions */
Else

I* next, verify isolation */
fo r all site Sm in Site List where T, is marked Completed, obtain PredecessorfT^ S J  

by executing the Request Predecessorff^ algorithm 
Generate PGSG by Merging all Predecessorff ̂ S J  
Check fo r  cycles w. r. t. T . Committed nodes and Togged nodes 
I f  cycles are detected 

I f  cycles can be broken by aborting Suspended global transactions or 
non-vital site-transactions ofT j

Mark GTJStatus o f Suspended nodes as Aborted in PGSG 
Else /* isolation violated */

Send ABORT (TJ to all sites in Site List /* Abort all site-transactions */
Exit Algorithm 

E n d lf 
End I f
/* A/I properties verified *i
Mark Isolation_Verified in Global Structure and node Tj in PGS graph as True 
I* Propagate success and serialization information */
Send “SUCCESS" and PGS graph to sites in S iteJJst where T  is marked Completed 

E n d lf
End [PGSG Algorithm}

For Transaction Ti, The GlobalCoordinator module initiates RequestPredecessorfT,, S=) 

at all primary sites Sm. In turn, each site S» will initiate RequestPredecessorflj, St) for aU 

candidate nodes Tj (propagated fiom Site S J  in Predecessor(Ti, Sm). If Predecessor(T,, S J
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contains any Candidate nodes Tk, then the Secondaiy site initiates RfiquestPredecessor(Tk, Sp) 

for all Candidate nodes Tk. All SpS are also categorized as Secondary sites. Finally, Secondary 

sites Sn submit their graphs to the Primary sites which submit Predecessor(T„ So) to the 

GlobalCoordinator module. Each site then awaits the outcome of the Commit of Toggle 

operation. If T, is to be committed or toggled, each site (Primary and Secondary) will copy 

propagation information by merging ReachabIe(Tx) of the returned PGS graph with 

Reachable(T%) of its SSG where T% represents the requested root node for the Predecessor graph 

submitted by that site. For example, T% represents global transaction T̂  in all Primary sites.

Algorithm 3-2: Request Predecesscr(Tj, S«)
I* Construct Predecessor graph */
Construct Predecessor(Tf S J , PDst(Tj, S J  
Submit Predecessor(Tf S J  to requester 
Wait fo r Reply from  requester
I f  Reply is ABORT (T) I* site-transaction is to be aborted */

IfT i is Accessed node in SSG /* this is a Primary site */
Abort Tj i f  Active or compensate Tj i f  Completed 

E n d lf
Send ABORT (T^ to all sites in PList(T  ̂S J  /• inform all Secondary sites */ 

Else I* global transaction is to be toggled */
IfT i is Accessed node in SSG I* this is a Primary site */

Mark Isolation Verified as True 
E n d lf
I* Primary and Secondary copy serialization information */
SSG = Merge(SSG, Reachable(T) o f received PGS graph)
Update status o f  Candidate nodes in ReachablefT)
Send ‘SUCCESS’ and PGS graph to all sites in PListfT» S J  

E n d lf
End { Request Predecessor}

SO



3.4.2 A Sample Execution of the PGSG Algorithm

In this example, the MMDBS consists of 3 sites labeled S, through S3. There are 3 

active global transactions labeled T, through T3 in the system. For simplicity, we assume that 

each transaction accesses two sites, all site-transactions at each site conflict with each other, and 

that all transactions have completed their execution but have not yet committed. The algorithm 

is illustrated in Table 3-4. The initial SSG at each site is given in row one. For example, at site 

S3, T3->Ti indicates that T3 and T, conflict and that T3 is serialized before T,. Initially, all 

nodes are Accessed nodes. Rows two through four reflects the SSGs after the completion of the 

PGSG algorithm of the transaction given in column one. If a site does not participate in the 

PGSG algorithm, it will not have an entry in the corresponding row as the SSG does not change. 

The Site_ID of Propagated nodes is given in brackets below the respective node. The last 

column reflects the PGS graph that is constructed at each stage. A [C] below the respective 

node in the PGS graph states that the node is to be committed and a [A] states that the node is to 

be aborted.

In this example T, executes the PGSG algorithm first, T3 second, and Tz third. For the 

commit of T,, Si and S% participate as Primary sites. The Predecessor graph submitted by S| is 

T3->Ti, and the Predecessor graph submitted by Sz is T |. As there are no cycles in the PSG 

graph that is constructed by combining the two Predecessor graphs, Ti commits successfully. 

After Ae commit, the PGS graph is sent to all participating sites, i.e., Si and S%. At each site, the 

nodes in the PSG graph that are not in Predecessor(T|, S%) are copied (propagated) to the SSG. 

Next, fi>r die commit o f T3, Si and S3 participate as Primary sites. Once again, as there are no 

cycles in the PSG graph, T3 is committed and node T% is propagated to Si. Next, for the commit 

of Tz, Sz and S3 participate as Primary sites. As Predecessor(T3, Sz) Sz has an Active propagated 

node in its SSG widi SiteJED Si (i.e., T3 which when propagated to Sz was Active and therefore, 

still deemed to be active). Si will participate as a  Secondary site. Here, die PSG graph will
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contain a cycle involving Tj and therefore, Ti will be aborted and removed form the SSGs at all 

sites as part of the Propagation process. Note that the cycle will not be detected if  this example 

is carried out without Propagation.

s, Sj S j PGS graph
Initial SSGs Tj->T, T |—»Tj T j- ^ T j
Commit o f T| Tj-^T, T j—>T I—>Tj

[S,l
Tj->T,

[Cl
Commit o f T3 T j—>Tj ^ T i

fSsl
Tj->Tj Tj->Tj

[Cl
Commit ofT% T j—>Ti Tj-^T,

[S,]
T j T j—►Tj—>T |—►Tj 

[A1
Tiütle 3-4: Sample execution o f PGSG algorithm

3.4 J  Proof of Correctness

Lemma 1: Let Ti— be in the SSG at some site Sj. Then, T  began its execution at S, prior to 

the completion o f T,’s execution at Sj and therefore, prior to the (global) commit of Sj.

Proof: In order for T-^Tj to exist, T  must have obtained a ticket that is less than the ticket 

obtained by Tj. Therefore, Ti b%an its execution at Sj prior to Tj completing its execution at Sj.

Theorem 1: Let T  = {T,, T%,..., To} be a set of transactions that cause a cycle. Assume that T% 

dirouÿi T , commit successfully and that T, is the last transaction in T to attempt to commit. 

Then T, will be a  Candidate node in some PredecessorfTi,, S%) used to construct the PGS graph. 

Thus, the cycle will be detected.

Proof: For simplicity, let us assume that each transaction executes at exactly two sites such tiiat 

the cycle
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c  ■ T i->Ti->...->Tb->Ti is produced.

By Theorem 1, for all Tq that have completed their execution, there exists Tp-^T, for some T, in 

T in the SSG at some site Sq at which Tq executed. When Tq executes the PGSG algorithm, T, is 

in Predecessor(T^ Sq) used to construct the PGS graph. Now, either T , is committed, or not 

committed.

If Tp is not committed then T , will be added as a Candidate node to all the SSGs at which T, 

executed.

If Tp is committed, then, by Theorem 1, there exists a  T„ in S such that To,->Tp at some site Sm 

at which Tp executed. Once again, either Tm was committed or not committed at the time of Tp's 

commit. If Tm was not committed, then Tm was propagated to S„ at the time of Tp’s commit and, 

as a result, will be in PredecessorfTq, Sq) at the time of Tq’s commit and will be added as a 

Candidate node to all SSGs at which Tq executed. If  Tm was committed, we may repeat this 

argument. As the conflicts are cyclic, PredecessorfTq, Sq) used to construct the PGSG when Tq 

attempts to commit will always contain a non-committed node from T which will then be added 

as a Candidate node to all SSGs at which Tq executed.

Now let Ti attempt to commit at site Si and Sn where Ti-^Tj and T,->T, exist, respectively. 

Then, as To is committed, the SSG at S, will contain a  Candidate node - say T% with respective 

site Sx • in its PredecessorfTi, Sn). If T* committed after its propagation to site Sn, then the SSG 

at Sx would, in turn, contain a  Candidate node. Finally, as the only node in the cycle that is 

currently active is T |, the Predecessor(Ti, Sn) constructed at site S» will contain Ti as an 

Accessed node as well as a  Candidate node. Therefore, Predecessor(T|, So) will contain the 

entire cycle. Thus, the PGS graph will contain the cycle. As all nodes except T | are committed, 

the cycle will be detected.
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3.4.4 Concurrent Executions of the PGSG algorithm

In tbe preceding sections it was assumed that the PGSG algorithm always executed in 

isolation, that is, each instance of the GlobalCoordinator algorithm (and its respective 

RequestPredecessor algorithms) executed without interference from other instances of the 

algorithm. This section removes this assumption, studies its effects, and extends the algorithm 

to prevent the loss of information during propagation that may result from concurrent 

executions.

In the MMDBS environment, it is possible that multiple GTCs may execute the PGSG 

algorithm on bdialf of different global transactions at the same time. The concurrent execution 

of the PGSG algorithm may cause conflict information being propagated to be lost or ignored 

resulting in cycles going undetected. This will be illustrated using the sample execution 

presented in Section 3.1.4.2 and altering its execution as follows: Let us assume that global 

transaction T, has committed and that T% and T] have completed their execution but have not 

committed. See Table 3-5 for the SSGs at each site after T, has committed.

s, S2 S3 PGS graph
Initial SSGs T3—>Ti T |—»T] Tz-»T3
After Commit ofT, T3->Ti T 3̂ T i —>Tj

rs,i
T2—̂Ts T3-*T,

Td}le 3-5: SSGs after Ti has committed

Next, let us assume that T% and T3 initiate the PGSG algorithm concurrently. Table 3-6 

illustrates the execution of the algorithm. Row 3 and Row 4 contain the PGS graphs for T] and 

T« respectively. A in a  cell indicates that that site participates in the commit of the 

respective transaction. Assuming that propagation from the commit of one transaction does not
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overwrite the infonnation propagated from the commit of the other transaction, row 5 contains 

the SSGs after ail transactions have committed.

Note that, neither PGS graph contains the cycle as the PGS for T% does not contain the 

information that would have been propagated had T} committed before T% and vise versa. 

Therefore, both T% and T3 will be allowed to commit.

s , & S3 P G S  graph
After Commit ofT , T 3—>T i T 3—♦ T i—> T i

[ S .]

T]—>T]

Commit ofT] « « T 2-)> T 3

[C]
Commit ofT% « « « T 3- > T , - » T z

[C]
T i - ^ T ] —» T | 

[S3I

T 3—►Ti—>T j

[ S ,]

T 3—>T i —>T j—>T]

( S . l  [S3]

Table 3-6: Concurrent conunit o f T2 and Tm

To address this issue, the algorithm needs to ensure that global transactions whose PGS 

graphs contain at least one common node (i.e., the same node from the same SSG) do not 

execute the PGSG algorithm at the same time. Global transactions whose PGS graphs are 

disjoint may execute the PGSG algorithm concurrently as established by the next theorem and 

the following discussion.

Theorem 2: If the PGS graphs of global transactions Ti and Tj are disjoint (i.e., do not de-net 

contain any common node), dien the node set Si containing all nodes in Reachable(Ti) where Ti 

is modified by the Propagation phase o f Ti and the node set Sj containing all nodes in 

Reachable(Tj ) where T/ is modified by the Propagation phase of Tj are also disjoint.
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Proof: Let us assume the contrary. Assume that Si and Sj contain a common node representing 

global transaction T%. As propagation copies only those nodes contained in the PGS (and as it 

copies information only to nodes contained in the PGS), T% must exist in the PGS of both T, and 

Tj. Clearly, this is a contradiction and therefore. Si and Sj must be disjoint.

This theorem states that if the PSG graphs of any two global transactions are disjoint, 

then the nodes modified during the propagation phase are also disjoint. Therefore, if the PGS 

graphs of two or more transactions that execute the PGSG algorithm concurrently are disjoint, 

then the SSG graphs after a concurrent execution would not be any difibrent had the PGSG 

algorithms executed in some serial order.

To ensure that global transactions whose PGS graphs contain at least one conunon node 

do not execute the PGSG concurrently, a simple lock mechanism is employed. Each node in the 

SSG is associated with an exclusive lock. Each primary site Sm that executes Request 

Predecessor(Tj, Sm) needs to obtain a lock on T, and all nodes in all Predecessor graphs used to 

construct Predecessor(Tj, Sm) This simple locking mechanism will ensure that transactions 

whose PGS graphs are not disjoint will not be allowed to execute the PGSG algorithm 

concurrently as stated in the next theorem.

Theorem 3: If global transaction Ti obtains all locks necessary to construct its PGS graph Gi, 

then DO other transaction Tj whose PGS graph Gj has at least one common node with Gi can 

obtain all locks necessary to construct its PGS graph.

Proof: Let us assume the contrary. Assume that Global Coordinators GTCi and GTQ execute 

the PGSG algorithm concurrently for Ti and Tj respectively, and that G, and Gj have at least one
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common node N .̂ This implies that both GTC, and GTCj have obtained an exclusive lock on N .̂ 

This contradicts the definition of "exclusive" lock and therefore carmot occur.

The updated GlobalCoordinator algorithm and RequestPredecessor algorithm are given 

below. The statements diat have been added are in bold text.

Algorithm 3-3: GlobalCoordinator (Tj, Request)
/•  Verifies the A/I properties */
/• first, verify atomicity */
Ifcmy critical site-transaction has been aborted

Send ABORT (TJ to all sites in SiteJList I* Abort all site-transactions *1 
Else

/* next, verify isolation */
Loop

For all site Sm in SiteJList where Tj is marked Completed, obtain Predecessor(Tf S J  
by executing the Request Predecessorffp S J  algorithm 
I f  any a te  returns SH ARE-VIO IATIO N  send SH ARE-VIOLATIO N to all sites 

While some site returns SHARE-VIOLATION  
Generate PGSG by Merging all PredecessorCTj, S J  
Check fo r cycles w.r.t. T j, Committed nodes and Togged nodes 
I f  cycles are detected 

I f  cycles can be broken by aborting Suspended global transactions or 
non-vital site-transactions o fT j
Mark GTJStatus o f Suspended nodes as Aborted in PGSG 

Else /* isolation violated */
Send Abort (TJ to all sites in SiteJList /* Abort all site-transactions */
Exit Algorithm 

E n d lf 
E n d lf
I* A/I properties verified *i
M ark Isolation_Verified in Global Structure and nock Tj in PGS graph as True 
I* Propagate success and serialization information *l
Send "Success " cmd PGS graph to sites in S iteJJst where Tj is marked Completed 

E n d lf
End {PGSG Algorithm}
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Algorithm 3-4: RequestPredecessorfTj, S .)
/• Coostiuct Predecessor graph */
Obtain Exclusive locks on Reachableflj)
I f  any lock cannot be obtained 

Release all locks and return SHARE-VIOLATION  
ExU 

Else
Construct PredecessorfTj, S J , PListfTj, S J  
I f  any site returns SHARE-VIOLATION  

Release all locks and return SHARE-VIOLATION  
Exit 

E n d lf
Submit Predecessor(Tf S J  to requester 
Wait fo r Reply from  requester 

I f  reply is SHARE-VIOLATION
Release all locks and send SHARE-VIOLA TION to all sites in PListfTj, S J  
Exit

Else I f  Reply is ABORT(TJ I* site-transaction is to be aborted •/
IfT , is Accessed node in SSG /• this is a Primary site */

Abort Tj ifA ctive or compensate Tj i f  Completed 
E n d lf
Release all locks
Send ABORT (Tj) to all sites in PLisifT, S J  I* inform all Secondary sites */ 

Else /* global transaction is to be toggled */
IfT i is Accessed node in SSG /•  this is a Primary site •/

Mark Isolation_Verified as True 
E n d lf
I* Propagate serializatioa information */
SSG = Merge(SSG, Reachable(T) o f received PGS graph)
Update status o f  Candidate nodes in ReachablefT)
Release a lilocks
Send ‘SUCCESS' and PGS graph to all sites in PListfT> S J  

E n d lf 
E n d lf
End { Request Predecessor)
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Note that if  at any time a necessary lock carmot be obtained, the PGSG algorithm 

releases all locks that have been obtained and starts over. This will ensure that the algorithm 

does not cause any deadlocks in the system.

3.4.5 Restricting the Growth of the SSGs

The difference in philosophies in pessimistic vs. optimistic concurrency control 

approaches can be generalized as preventive vs. cure. Pessimistic concurrency control 

algorithms are based on the assumption that it is more cost-effective to prevent isolation 

property violations. On the other hand, optimistic concurrency control algorithms are based on 

the assumption that it is more cost-effective to detect isolation property violations and take the 

necessary corrective measures. The PGSG algorithm introduced in this research is based on the 

optimistic philosophy.

In general, optimistic approaches can be categorized as either forward-examination or 

backward-examination. Forward-examination algorithms verify the seriaiizability of a 

transaction T, by looking at the serialization order o f Ti and all active transactions in the system. 

Forward-examination algorithms detect a potential violation and resolve the violation by 

aborting some transaction involved in this potential violation. For example, if active 

transactions T, and Tj conflict at some site where Tj is serialized before T, and Ti and Tj do not 

conflict at any other site, then it may seem that Ti can be committed as there is no seriaiizability 

violation. Yet if Ti is committed, a seriaiizability violation could occur in the future if T, 

executes at some odier site at which Ti executed and Tj is serialized after T,. This violation will 

not be detected when Tj attempts to commit as the algorithm is based on forward-examination 

and Ti has already committed. Therefore, when Ti attempts to commit, if Ti conflict with 

another transaction Tj at some site wtere Tj is serialized before Ti, forward-examination
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protocols will abort either T. or Tj even though there is no violation at this point in order to 

prevent any seriaiizability violation occurring in the future.

On the other hand, backward-examination algorithms verify the seriaiizability of a 

transaction T, by looking at the serialization order o f T, and all committed transactions in the 

system. The advantage of backward-examination algorithms is that a transaction is aborted only 

if a real violation exists (as opposed to a potential violation). However, the disadvantage of the 

backward-examination algorithms is that, as the number of committed transactions in the 

system increases, the overhead required to verify seriaiizability increases.

The PGSG algorithm verifies seriaiizability based on the backward-examination 

approach. Therefore, the algorithm needs to address the growth in overhead over time. This is 

achieved by "trimming" the SSGs during the execution of the PGSG algorithm, thereby limiting 

the set of committed transactions that need to be considered. The basis behind this trimming is 

presented in the next theorem:

Theorem 4: Let node o; representing committed transaction T, be a node in some SSG. o; can 

be a node in a cycle in the PGS of some global transaction Tj only if there exists a Candidate 

node in Predecessorfn*).

Proof: Let us assume the contrary. Assume that Ti is committed, there is no Candidate node in 

Predecessorfoj), diat Oj is a node in a cycle in the PSG of Tj, and that Tj is the last node in diat 

cycle that attempts to commit Then by Theorem 1, Tj will be a Candidate code in some 

PredecessorfTj., S^J used to construct the PGS graph. As n* is a node in the cycle, % must be in 

the PredecessorfTj., S%) that contains the cycle. Therefore, Tj must be in Predecessorfoj). Clearly, 

this is a ctmtradiction. Therefore, if Tj is committed and there is no Candidate node in its 

PredecessorfTj graph, it cannot be a node in a cycle.
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As stated in tbe previous theorem, any node in an SSG representing a committed global 

transaction that does not contain a Candidate node in its Predecessor graph cannot be a node in 

a cycle. Therefore, it (and ail nodes in its Predecessor) can be removed from that SSG. The 

PGSG algorithm trims its graphs as follows: Whenever an STM S% executes Request 

Predecessor(T,, S%), the Request Predecessor algorithm trims the PredecessorfTj) by removing 

any committed node Ti in PredecessorfTj) such that Ti *  Tj and ReachablefT,) contains no 

Candidate Nodes. Thus, any node that, by Theorem 2, cannot be a node in any cycle is removed 

from the SSG.

The updated RequestPredecessor algorithm is given below. Once again, the statements 

that have been added are in bold text.

Algorithm 3-5: RequestPredecessor(Tj, S .)
/• Construct Predecessor graph */
Obtain Exclusive lock on ReachablefT])
I f  any lock cannot be obtained 

Release all locks and return SHARE-VIOLATION 
Exit 

Else
Construct PredecessorfTj S J , PListfTj, S J  
I f  any site returns SHARE-VIOLATION 

Release all locks and return SHARE-VIOLATION 
Exit 

E n d lf
Submit PredecessorfTj S J  to requester 
Wait fo r  Reply from  requester 

I f  reply is SHARE-VIOLATION
Release all locks and send SHARE-VIOLATION to all sites in PListfTj S J  
Exit

Else IfReplyisABO RTfTj) /* site-transaction is to be aborted */
IfT i is Accessed node in 5SG /* dûs is a Primary site */

Abort Tj ifActive or compensate Tj i f  Completed
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E n d lf
Release all locks
Send ABORT (T) to all sites in PListfTi, S J  I* inform all Secondary sites */

Else !* global transaction is to be toggled */
IfT , is Accessed node in SSG I* this is a Primary site •/

M ark Isolation_Verifted as True 
E n d lf
I* Propagate serialization information */
SSG = Merge(SSG, ReachablefT) o f received PGS graph)
Update status o f  Candidate nodes in ReachablefT)
Remove a llT iin  ReachablefT) such that T ,^T p  T its committed and 

ReachablefT) contains no Candidate Nodes 
Release all locks
Send 'SUCCESS' and PGS graph to all sites in PListfTj, S J  

E n d lf 
E n d lf
End { Request Predecessor)

3.5 Summary and Conclusion

This chapter proposes a new transaction management technique called Pre-Serialization 

(PS) for the mobile multidatabase environment The global transaction model of the PS 

technique is based on the multi-level transaction model, which requires site-transactions to be 

compensatable. The multi-level transaction model allows site-transactions to be committed prior 

to the decision to commit their global transaction, releasing local resources in a  timely manner. 

Site-transactions are cat%orized as either vital or non-vital. The vital phase of a  global 

transaction contains the entire ocecution between the first and last vital site-transaction of that 

global transaction. This cat%orization gives the PS technique the flexibility to enforce the full 

range of atomicity and isolation correctness criteria.

This technique introduces two new states to address the disconnectivity of the mobile 

user. Whenever a  disconnection occurs, all global transactions o f that user are placed in the 

Disconnected state. I f  at any stage it is deemed tiiat the disconnected user has encountered a
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catastrophic &ilure, these transactions are placed in the Suspended state. As catastrophic 

6 ilures can only be predicted, Suspended transactions are not aborted until they interfere with 

the execution o f other transactions. This minimizes unnecessary aborts caused by erroneous 

predictions.

This chapter proposes a new algorithm called PGSG that enforces the atomicity and 

isolation properties o f global transactions in the MMDB environment? This algorithm verifies 

serializability by constructing a partial global serialization graph. This graph does not contain 

the complete serialization scheme of the MMDBS. Instead, it contains all the serialization 

inArmation with respect to the transaction whose isolation property is being verified. This 

algorithm ensures that all cycles will be detected even though the complete serialization scheme 

in not reflected in the PGS throuÿr propagation which is the dissemination of serializability 

information. In order to minimize mobile global transactions being penalized due to their 

prolonged execution, the PS technique allows mobile transactions to establish their serialization 

order in the global serialization scheme at the end of their vital phase.
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Chapter 4

The Sem antic  Pre-Serialization  Transaction Managem ent Technique

The PS technique has two major limitations. First, mobile global transactions incur 

additional overhead as opposed to static global transactions as mobile global transactions need 

to execute the PGSG algorithm twice. Second, this technique provides limited concurrency as 

each site employs a  single ticket to serialize all site-transactions that execute at that site. In this 

section a Semantic Pre-Serialization (Semantic-PS) transaction management technique is 

proposed. The Semantic-PS technique is a modified version of the PS technique that overcomes 

the noted limitations o f the PS technique.

4.1 Overview

The Semantic-PS differs fiom the PS technique in two areas - both relate to the 

enforcement of the A/I properties. First, in order to address the additional execution overiiead 

incurred by mobile global transactions, the Semantic-PS technique further relaxes the A/I 

properties. That is, the Semantic-PS technique enforces the A/I properties only on the set of 

vital site-tiansactions of a global transaction. Therefore, all global transactions (mobile and 

static) need to execute the PGSG algorithm only once. Mobile global transactions execute the 

PGSG algorithm at the end of their vital stage. Static global transactions execute the PGSG 

algorithm at the end of their execution. Mobile global transactions are allowed to initiate non- 

vital site-transactions after being toggled.

Second, the Semantic-PS technique employs a  modified version of the ticket method to 

improve concurrency. In this version, each LDBS maintains a set of tickets and forces conflicts 

only between site-tianactioos that potentially conflict with each other. It does not force
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conflicts between all site-transactions that execute at that LDBS, thereby increasing 

concurroicy.

Next, a detailed description of the enforcement of the A/I properties is provided. The 

transaction model and the GTM architecture is identical to that of the PS techniques.

4.2 The Atomicity and Isolation Properties

The A/I properties of the Semantic-PS technique are enforced on the set of vital site- 

transactions only. This does not limit the scope of the technique. It still provides the full range 

of correctness criteria as well. That is, if all site-transactions of a global transaction are 

cat^orized as vital, then strict A/I is enforced. On the other hand if all site-transactions o f a 

global transaction are categorized as non-vital, then the A/I properties will not be enforced. This 

technique differs from the PS technique as follows: The PS technique enforces the A/I 

properties on all site-transactions that are completed successfully, i.e., all vital site-transactions 

and all non-vital site-transactions that complete execution successfully. Thus, the entire global 

transaction is executed as a consistent unit of computing. The Semantic-PS technique enforces 

the A/I properties on the set of vital site-transactions only. Therefore, only the set of vital site- 

transactions is executed as a consistent unit of computing. Although the Semantic-PS technique 

reduces the execution overhead and increases concurrency, its application is limited. It can only 

be used in environments where non-vital site-transactions do not cause any inconsistencies or, 

where the inconsistencies caused by the non-vital site-transactions can be tolerated.

As in the PS technique, the atomicity property of the Semantic-PS technique is based on 

condition 2 of semantic atomicity, and the isolation property is based on (global) serializability 

of global transactions. In die Semantic-PS technique, each site maintains an SSG graph as well. 

However, in Semantic-PS, only die execution of vital site-transactions is recorded in each SSG. 

The execution o f non-vital site transactions is not recorded in the SSG. The Semantic-PS
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technique enforces the isolation property by executing the modified PGSG algorithm described 

below.

In Semantic-PS, all global transactions execute the PGSG algorithm only once. Mobile 

global transactions execute the PGSG algorithm at the end of their vital stage while static global 

transactions execute the PGSG algorithm at the end of their execution. The PGSG algorithm 

will first verify semantic atomicity of the transaction to be toggled - say Tj. That is, the PGSG 

algorithm verifies that all vital site-transactions of T, have successfully committed at the 

LDBSs, i.e., marked Completed. If  all vital site-transactions are marked Completed, the 

atomicity property is satisfied; else, all Completed site-transactions of T* (vital and non-vital) 

are compensated and Ti is aborted.

Next, the PGSG algorithm will construct the Partial Global Serialization (PGS) graph to 

verify serializability of T*. Note that only the execution of vital site-transactions are represented 

in the PSG graph. After constructing the PGS graph, the PGSG algorithm will look for 

serializability violation in the PSG graph. Violations are represented as cycles that consist of T, 

and other toggled or committed transactions. If cycles are detected, the algorithm will attempt to 

break these cycles by aborting Suspended mobile global transactions as they are obstructing the 

execution o f another global transaction. If the cycles cannot be broken, all Completed site- 

transactions are compensated and the global transaction is aborted. If  there are no cycles or the 

cycles can be resolved, the lsolatioo_Verified field is set to True, the global transaction is 

toggled, and the PGS graph is sent to all participating sites so that serialization iitformation is 

propagated. Toggled mobile transactions are committed at the end of tiieir execution.

4.2.1 The PGSG Algorithm

In the Semantic-PS technique, the execution order of site-transactions within the local 

LDBSs is obtained by using an enhanced version of the ticket method used in the PS technique.
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Along with the operations accepted by each LDBS, the service interâce provides conflict 

inhumation with respect to the exported operations. That is, each service inter&ce groups the 

exported operations in to a set of groups G such that all operations in any group potentially 

conflict with other. For example, if operation 0 | and o% access some table t in the LDBS, then 0 | 

and 02 could potentially access the same data item in t. Therefore, o, and 0 2  need to appear in at 

least one group in G. Formally, the service inter&ce specifies a set of operations O = {o,,... Om} 

accepted by that site and a set of groups G = {g ,,... go} such that for all gi in G, g. = { o \,..., o', | 

o'x X = I..p in 0  and 0'% potentially conflicts with all operations in gi}. The LDBS maintains a 

set T = {ti, ..., to} o f tickets such that ticket ti is associated with group gi in G. Note that an 

operation may belong to one or more groups and therefore, be associated with more than one 

ticket.

Each vital site-transaction is required to increment all tickets associated with each 

operation in that site-transaction. Note that non-vital site-transactions do not read any tickets. 

The ticket values read by the vital site-transaction indicates its serialization order with respect to 

all other (potentially conflicting) vital site-transactions that execute at that site and will be used 

to construct the SSG just as in the PS technique. However, as there are multiple tickets 

associated with each site, all site-transactions that execute at the same site do not conflict with 

each other. In affect, this multiple ticked method reduces the granularity of locking from the 

LDBS to data items wifoin each LDBS.

The PGSG algorithm of the Semantic-PS technique is similar to that of the PS 

technique. The differences are:

1. In order to construct die PSG for a global transaction, only the sites at which the global 

transaction executed vital site-transactions need to submit Predecessor graphs
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2. As non-vital site-tiansactioas cannot cause isolation property violations, the PGSG 

algorithm of the Semantic-PS techniques does not attempt to resolve cycles in the PGS 

graph by aborting non-vital site-transaction

3. The GlobalCoordinator propagates the PSG only to those sites at which the global 

transaction executed vital site-transactions.

The PGSG algorithm of the Semantic-PS technique is given below. The statements that 

have been added or modified are in bold text.

Algorithm 4-1: GlobalCoordinator (Tj, Request)
I* Verifies the A/I properties */
/* first, verify atomicity •/
I f  any critical site-transaction has been aborted 

Send ABORT (T) to a ll sites in Site_List I* Abort all site-transactions */
Else

I* next, verify isolation */
Loop

fo r  all site Sm in Site_U st where 7} executed vital site-transactions, obtain 
PredecessorfTj, S„J by executing the Request PredecessorfTj, S J  algorithm 

I f  any site returns SHARE-VIOLATION send SHARE-VIOLATION to all sites 
While some site returns SHARE-VIOLATION 
Generate PGSG by Merging all PredecessorfTj, Sm)
Check fo r  cycles w.r.t. 7}, Committed nodes and Togged nodes 
I f  cycles are detected 

I f  cycles can be broken by aborting Suspended global transactions 
/*  Does not attempt to resolve cycles by aborting non-vital site-transactions V  

M ark GTJStatus o f Suspended nodes as Aborted in PGSG 
Else /* isolation violated */

Send Abort (T^ to all sites in S iteJJst /* Abort all site-transactions */
Exit Algorithm  

End I f  
E n d lf
/* A/I properties verified •/
Mark IsolationJVerifled in Global Structure and node 7} in PGS graph as True 
t* Propagate success and serialization information *!
Send “SU CCESS" and PGS graph to sites in S ite J J s t where 7}
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executed vital siie-transacHons
E n d lf
End {PGSG Algorithm}

The Request Predecessor code is the same as in the PS technique. However, unlike in 

the PS technique, the set of Primary sites in the Semantic-PS technique include only those sites 

at which the global transaction executed its vital site-transactions. (The set of Primary sites in 

the PS technique includes all sites at which die global transaction executed its site-transactions 

successfully.)

4.3 Summary and Conclusion

This chapter introduces the Semantic-PS transaction management technique. This 

technique proposes two changes to the PS technique in order to overcome its limitations. First, 

the Semantic-PS technique does not force conflicts between all site-transactions that execute at 

a given site (in order to obtain the local serialization order). Instead, it uses semantic 

information about the operations exposed by the local inter&ces to increase concurrency. 

Second, the Semantic-PS technique enforces atomicity and isolation only on the set of vital site- 

transactions -  a further relaxation of the A/I properties. As A/I is enforced only on the set of 

vital site-transactions, mobile global transactions do not have to execute the PGSG algorithm a 

second time as in the PS technique. Note that just as in the PS technique, the Semantic-PS 

technique enforces die foil range of A/I correctness criteria.
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Chapter 5 

A n a ly t ic a l  E v a lu a t io n

This chapter provides an analytical evaluation of the three transaction management techniques: 

PS, PS-Semantic, and Kangaroo [DH95], The Kangaroo technique is chosen as it supports 

unrestricted mobility and it does not violate local autonomy - vital requirements for the MMDB 

environment. Prior to conducting the evaluation, the following steps are carried out: First, a 

general MMDB transaction management evaluation model is developed; Second, the model 

parameters’ values are determined; Third, the general MMDB transaction management 

evaluation model is modified to accurately reflect each individual technique. Once the tailored 

models have been developed, the performance of the three techniques is evaluated.

5.1 The General MMDB Transaction Management Evaluation Model

Analytical modeling allows one to abstract essential components of the system and to 

model these components without regard to surrounding detail that one determines as 

insignificant. Analytical models provide accurate estimations o f perfiarmance of a  system at a 

relatively low-cost. Once analytical models of some computational environment are presented, 

these models can easily be used to evaluate the performance of different algorithms. This 

reduces the time, effort, and cost of the initial evaluation.

As transaction management in the MMDB environment is relatively new, analytical 

models of this environment for evaluating the performance o f transaction management 

algorithms have not been developed. In this section, an analytical model of the general MMDB 

transaction management environment will be developed. In this model the average service time 

(STn,) of a  global transaction - the average time taken by foe system to complete foe execution 

of a  global transaction - will be formulated with respect to the key components o f the MMDB
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enviromnent that afièct the execution of global transactions. These components are: 

communication time, execution time of site-transactions, the disconnection and relocation time, 

and the time taken to execute the commit algorithm. The model is presented next.

Let GTeie be the average time taken to execute all site-transactions of a global 

transaction and GT«— i, be the average time taken to commit a global transaction. Then, the 

average service time o f a global transaction S T ^  is:

S T ^  = G T„  + GTô ,  (1)

Next, GTeu and GTcoomt need to be formulated. Let N« be the number of site- 

transactions in a global transaction, EXE# be the average time taken to execute a site-transaction 

and Tthsgc be the average time interval between the completion of one site-transaction and the 

submission of the next site-transaction of the same global transaction. Then, in a static 

environment GTm is:

G T „ = N n*E X E ^ + ( N s t - l ) * T o ^

That is, GToa is the number of site-transactions multiplied by the average execution 

time of a site-transaction plus die think time between site-transactions, if any. However, GTm 

in the mobile environment is affected by disconnection and migration and these need to be 

accounted A r in the model. For simplicity, it is assumed diat, upon re-connection, all 

outstanding messages will be exchanged before the next disconnection. This assumption 

simplifies the model as follows: Although multiple disconnections may occur during the 

execution o f a site-transaction, at most only one disconnection will cause a delay to any EXE# 

or Tdmk- Let DLY# and DLY*t be the delay caused by a  disconnection to EXE# and Tn## ,
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respectively, and f**» and F ^ja , be the probability o f a  disconnection occurring during EXE* 

and Ttbàfc, respectively. Then GTae is given by;

G T„  = N„ * (EXE^ * DLY^) + (Nst - I) •  *DLYu*)) (2)

Here, the potential delay caused by disconnection has been factored into EXE* and T*mk- The

potential delay is modeled as the probability of disconnection multiplied by the delay caused by

disconnection.

Next, we calculate DLY*, DLYd*, ?*&*, and P"***. First, it is necessary to calculate the 

average delay caused by a disconnection (DCNdiy). DCNdiy is the average time of a 

disconnection (DCN**) plus the time taken by the system to address reconnection and migration 

(if any). Let Ndc* be the average number of disconnection during the execution o f a global 

transaction, Ng^, such that Ng^ <= Nda> be the average migrations during the execution of a 

global transaction, and RLu be the average time to address relocation. Then, DCNdiy is:

DCNjfy =  DCNa, ^ ( N ^ / N ^ * R L J  (3)

DLY* and DLYu* are influenced by three Actors (Figure S-1): 1 - the total delay caused 

by discoonectioa (DCN^y); 2 - the point within the current site-transaction at which the 

discoonecticn occurs (X); and 3 -the length o f execution o f the current site-transaction (EXEst). 

For example, in Figure S-1 (A), DLY* is 0 and in Figure 5-1 (B), DLY* is X + DCNdiy - EXE*.

Note that, a disconnection afiects EXE* only if  X + DCNdiy > EXE*. Therefore, DLY* 

is calculated by taking the probability that X + DCNdiy > EXE* multiplied by the average delay 

to EXE* given that X  + DCNdiy > EXE*. Let us consider the cases DCNdiy <= EXE* and DCNdiy 

>  EXE* separately. When DCNdiy <= EXE*. the probability that X +  DCNdiy >  EXE* is DCNdiy /
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EXE# and the average delay given that X + DCNdiy > EXE# is DCNdiy /2 - that is, the average of 

the minimum delay (i.e., 0) which occurs when X + DCNdiy = EXE# and the maximum delay 

(i.e., DCNdiy) which occurs when the disconnectioa occurs at the very end of the execution of 

the site-transaction, that is, X = EXE#. Thus:

DLYu = (DCNjfy/EXEst) * DCNoy/2 (4a)

When DCNdiy > EXE#, the probability that X + DCNdiy > EXE# is I and the average delay given 

that X + DCNdiy > EXE# is (DCNdiy - EXE# + DCNdiy)/2 - that is, the average of the minimum 

delay which occurs when the disconnection is at the very beginning of the site-transaction, and 

the maximum delay which occurs when the discormecdon occurs at the very end of the 

disconnection. Thus:

DLYn = I * (DCNjfy - EXEn + D C N ^ / 2 (4b)

Similarly, to formulate DLYu*, let us consider the case DCNdiy <= T*w, and the case 

DCNdiy > Tdunk separately. When DCNdiy <= T*ink then DLYd* is:

DLYa* = (DCN^ /  W  * DCNjfy /  2 (5a)

When DCNdiy > T*w,. DLYd& is:

DLYu* = 1 * (DCNdfy - + DCNoiJ/ 2 (5b)
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Finally, the probability of disconnectioa during EXE» and is formulated. Assume 

that only one disconnectioa occurs during the execution of a global transaction. As 

disconnection is equally likely to occur at any time, the probability of that disconnection 

occurring during EXE» (P*den) is simply;

= EXE„/(N„*EXE^+ ( N „ - D *  W

Then, as N*» disconnection occur during the execution of EXEst, P̂ dcn) is:

P ^ ^ - N ^ * E X E n / ( N ^ * E X E n +  ( N n - l ) * T u ù ^  (6a)

Similarly, the probability of a disconnection occurring during Tg»* (P"^dcn) is:

= Tü^ / (N „  •  EXEn + (N ^. I) •  (6b)

In (4a) and (4b) we have formulated DLY», in (5a) and (5b) we have formulated 

DLY*k, and in (6a) and (6b) we have formulated P^dcn, aod GT»» can now be obtained 

from choosing the appropriate formulas for DLY» and DLY&k. Given RLqb and GT«.

for any technique, ST«, can be calculated from (I). Note that the values for RLo» EXE», and 

GTcooBt will be modeled separately for each transaction management technique and then will be 

used to derive the service time for the specific transaction management technique as described 

in Section 5.3.
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Figure 5-1; Relationship between DLY* and X

5.2 Values of Model Parameters

In this section, the values of the model parameters for evaluating transaction 

management techniques in the MMDB environment are described. In order to simplify the 

evaluation, the foUowii^ assumptions will be made about the environment:

• All sites in the MMDB environment are equally likely to be accessed

• All global transactions are mobile transactions and execute successfully at all sites

• All site-transactions are equivalent to those specified in TPC-C benchmark [TPC991

• Site-transactions of a global transaction are executed consecutively. Each subsequent site- 

transaction is submitted to the MSS only after the results o f the previous site-transaction is 

received and analyzed by the user (7 *0*).

The parameters used to construct the model and their de&ult values are listed in the 

following table:
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Parameter Description Default Values
ST«, avg. service time of a global transaction Calculated
GT«e avg. time taken to execute a global transaction Calculated
GTcoonut avg. time taken to commit a global transaction Calculated
N„ avg. number of site-transactions in a global transaction in 

the same global transaction
4

EXE* avg. time taken to execution a site-transaction (includes 
communication time between the user and MMDBS)

Calculated

Tihidc avg. time between receiving the results of a site-transaction 
and submission of the next site-transaction

0

DCNttn avg. time between a disconnection and re-connection 0.1 second
DCNdiy avg. processing delay caused by a disconnection (includes 

DCNob and processing time taken to address relocation etc.)
Calculated

RLun avg. time to address relocation Calculated
DLY* avg. delay added to EXE* due to disconnection Calculated

DLVd* avg. delay added to Tn»* due to disconnection 0

P"dm Probability of a disconnection occurring during EXE* Calculated

P“ da. Probability of a disconnection occurring during 0

Nden avg. Number o f disconnection for a global transaction rN*/3i
N„y avg. Number of migrations for a  global transaction [NdmOl

avg. time to transmit a message on the static (wired) 
networic

0.0001 seconds

' T - avg. time to transmit a message over the wireless medium 0.07 Seconds
avg. time to transmit a Predecessor graph (or propagate a 
PGS graph) from site to site along the static network

0.001 seconds

EXEid avg. local execution time of a  site-transaction 0.003 seconds

P-f Probability of a site-transaction conflicting with another 0.05
Table 5.1: Model Parameters and Their Values

As mobile computing is a relatively new area, the values for many of the parameters 

used in the formulation o f the model are not known, (fore, educated guesses have bear used to 

decide their defoult values. The rationale for choosing foe stated values is given below.
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The value o f  T»** has the same effect on all algorithms and therefore is set to 0 

seconds. Similarly, the average delay due to disconnection that may be incurred between 

receiving the results o f a site-transaction and the submission of the next site-transaction is set to 

0 seconds. The average disconnection interval (DCN*n) is arbitrarily set to 0.1 second. Picking 

an arbitrary value for DCNm, does not 6 vor any algorithm in any significant manner as it has a 

the same effect on all transaction management techniques. The local execution time of a site- 

transaction (EXEid) is obtained fiom the TPC-C Benchmark (TPC99]. TPC-C is the Transaction 

Processing Performance Council's benchmark for Online Transaction Processing (OLTP) 

evaluation. EXElcl was obtained by calculating the average response time (obtained firom the 

throughput from TPC-C) for five popular databases running on small to medium size servers 

(IBM DB2 on IBM AS400e, Informix OnLine 7.3 on Compaq ProLiant 5000, MS SQL Server 

6.5 on Acer AcerAltos 19000Pro4, Oracle 7.3 on Sun UltraEnterprise 6000, and Sybase SQL 

Server 11.5 on Compaq ProLiant 6000). Message transmission time over the static (wired) 

network (T „ ,)  and wireless network (T"n«J have been calculated assiuning that the average 

size of a message is 1 Kb and that the static network is a  10 Mbps Ethernet and the wireless 

communication medium is cellular telephony with a bandwidth of 14 Kbps [PS98]. The average 

time to transmit a Predecessor graph or to propagate a PGS graph from one site to another along 

the static network (10 Mbps Ediemet) is calculated assuming that the message is 10 Kb in size. 

The probability that a  disconnection occurring during T*mk (P"*dm) is set to 0 as Tum* is itself 0.

The defruik values for the average number of site-transactions in a global transaction 

(N«), the average number of disconnection during the execution o f a  global transaction (N*u), 

the number o f migrations during the execution of a global transaction (No,), and the probability 

of a  site-transaction conflicting with another site transaction (Pod) have been arbitrarily chosen. 

As these parameters have a significant effect on the service time of a global transaction, the 

analytical evaluatioa will study the performance for a range o f  values for each parameter.
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5J  Transaction Management Evaluation Models Tailored to Individual 

Techniques

The analytical model developed in Section 5.1 is a general model used to evaluate the 

performance of transaction management techniques in an MMDB environment. In this section, 

this model will be tailored to describe the PS, Semantic-PS and Kangaroo model. Specifically, 

EXEst, RLun, and GT«n=nt will be formulated separately for each technique.

5J.1 The PS Technique

In this section, EXE«, RLun, and GTcoamt, for the PS technique will be formulated. The 

PS technique will incur two wireless messages to receive a site-transaction and submit its 

outcome to the user. Each site-transaction will require two additional wired messages to submit 

the site-transactions (and compensating transaction) and receive its outcome. Therefore, EXE# 

is given by:

EXE^ = 2 * r  + 2 * r  _  + EXEic^

In the PS technique, relocation incurs 2 wired messages - one message requesting the 

Global Structure and one to transfer this structure - and one wireless message to re-connect. 

Therefore,
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Next, GTooomt is calculated. Let GT», and GT«ai be the average time taken to verify the 

isolation property and enforce the atomicity property respectively. Then the cost to execute the 

PGSG algorithm (PGSGeo*) is:

PGSGco^ = GTam + GT„

However, the PS technique executes the PGSG algorithm twice for each technique. Therefore 

GTcoBBut is given by:

G T ^  = 2* (G T ^  + G T ^

The atomicity property is enforced by sending two messages to all sites requesting the 

status of the site-transactions and sending either an abort or commit. As these messages are sent 

in parallel:

GTa^ = 2

Next, GTiM is formulated. To verify serializability of global transaction Tj, the PGSG 

algorithm requests PredecessorfTj) from all sites at which the global transaction executed its 

vital srte-transactioos. These sites will, in turn, request (in parallel) PredecessorfTO graph for all 

Candidate nodes Tk in Predecessor(Tj). This process continues until there is no candidate node 

in any Predecessor graph. At each (parallel) step of the algorithm, in order to have a candidate 

node Tk in PredecessorfTj) three conditions must be satisfied:

1. Tk must conflict widi Tj

2. Tk must have executed prior to Tj at the site
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3. Tk must be must be active.

Note that, in the PS technique, all site-transactions that execute at a  site are forced to 

conflict with each other. Therefore for all Tk that execute before T„ the probability that Tk 

conflicts with Tj is 1. At each step of the algorithm, as Tk (of that step) executes prior to T, (of 

that step) the probability that Tk is active decreases by a factor of 1/N* (where N« is the number 

of site-transactions in a global transaction) as the time interval since the inidatioa of that Tk has 

increased by EXE#. As requests and submissions of Predecessor graphs are carried out in 

parallel for each Candidate node in any Predecessor graph, GT», is equivalent to the number of 

(parallel) steps multiplied by the time taken to execute a step. The number of parallel steps is 

determined by the probability that the Predecessor(Tj)'s of that step contains a Candidate node. 

Each step in the algorithm incurs 3 messages: one to request the Predecessor graph, one to 

submit the Predecessor graph to requesting site, and one to propagate the final outcome to that 

site. Therefore, GTi#, is given by:

G T ^ =  3 * r ^ * l  (3V#-0/N„

5.3.2 The Semantic-PS Technique

In this section, EXE#, RL*#, and GTomm,, for the Semantic-PS technique will be 

formulated. Note that, as the execution of local site-transactions and the steps taken to relocate a 

mobile user are foe same in both the PS and Semantic-PS techniques, EXE# and RLm, for 

Semantic-PS are foe same as those o f the PS technique. Thus, EXE# and RL*# are given by:

EXE  ̂= 2 * r « ,  + 2 ♦ r # ,  + EXEu.
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However, as the Semantic-PS technique executes the PGSG algorithm only once for 

each technique, GT»— it for Semantic-PS is given by:

GTeommU = GTaim + GTL,

Again, as the enforcement of the atomicity property is identical to that of the PS 

technique, GT«b is given by;

G7’« .=  2 * r ^

Next, GTiio for the Semantic-PS technique is formulated. Although the algorithm is 

identical to that o f the PS technique, the ticket algorithm used to implicitly obtain the 

serialization order o f site-transactions is different The ticket algorithm of the Semantic-PS 

technique does not generate conflicts between all site-transactions that execute at a site. In the 

Semantic-PS technique, for all Tk that execute before Tj, the probability that Tk conflicts with Tj 

is determined by the operation (conflict) grouping defined by the service interfiles of the 

LDBSs. Ideally, the conflict grouping should result in only the operations that actually conflict 

at foe local database being forced to conflict by the respective STM. Let us assun* that foe 

probability o f conflicts between site-transactions at a site is given by P«nf. Then GTa, for the 

Semantic-PS technique is given by:

G T ^ =  2 (Nn-V/%,
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5 ^ 3  The Kangaroo Model

Here we formulate EXEst, RLtm and for the Kangaroo Model introduced in

[DBH97] executing under the Compensating mode as this mode ensures atomicity. We assume 

that Joey transactions consist of sub-transactions that are analogous to site-transactions. First we 

calculate EXE«. For each site-transaction the mobile user submits the site-transaction to the 

MSS which then submits it to the respective site, receives a  response &om that site, and submits 

the response to the user. Therefore,

EXEa = 2 * r ^  + 2 * r ^  + EXEu.

In this model, migration is handled by a hand-off process that requires a HandOff KT 

(HOKT) record be written to the originator's (MSS requesting handoS) MSS’ log and a 

ConTinuing KT (CTKT) record be written to the destination MSS’ log. These records ro ister 

the transfer o f control of a global transaction from one MSS to another in their respective log 

files and create a doubly linked list that describes the migration of the global transaction. The 

communicatioa cost of writing the CTKT record is 0 as the global transactions is writing 

information to the current MSS. However, to write the HOKT record into die previous MSS’ 

log the current MSS needs to send a  message to the previous MSS along the static network. As 

relocation incurs one wireless message in order to contact the new MSS, RJL«n is given by;

ELtm + VmÊg

To commit a global transaction, all log file entries for that global transaction need to be 

freed. This requires that the entire doubly linked list related to that global transaction be 

traversed. Therefore:
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G T oo^ = 2 * ( r ^ * N ^

5.4. Evaluation Results

In this section, the tailored analytical models will be used to examine the performance 

of the PS and Semantic-PS techniques and to compare their performance to that o f the 

Kangaroo technique. The de&ult values for the parameters used in the analytical model are 

taken &om Table 5.1.

5.4.1 Service Time

First, the service time for the PS, Semantic-PS, and Kangaroo techniques will be 

calculated (Chart S-1).

0.685

0.6720.675

0.665

Semantic-PS Kangaroo

Chart 5-1 : ST^, for Three Transaction Management Techniques

Although the Kangaroo technique has the best average service time, the PS and 

Semantic-PS tedmiques are only marginally greater, i.e., 2% and 0.3%, respectively. This result 

is somewhat counter-intuitive as one would expect the propagation of information during the 

execution of the PGSG algorithm to utilize noticeable overhead. To clarify fois skepticism, the
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average time taken to commit a  global transaction is calculated (Chart 5-2). These results 

explain why there is only a small discrepancy between ST^, for all techniques. That is, for all 

three techniques GTeomnit is only a small fraction of the total execution time of a global 

transaction.

0.0150.016
0.014
0.012

0.008
0.006
0.004 0.002
0.002

Semantic-PS Kangaroo

Chart 5-2 : GTooobm for Three Transaction Management Techniques

The execution of a global transaction is not very different in any technique. It is the 

execution of the commit protocol that differs from one technique to another. Here, the time 

taken to commit a global transaction by the PS technique is greater than the Kangaroo technique 

by a frictor of 7.5, and the time taken by the Semantic-PS techrtique is greater tiian the Kangaroo 

technique by a  fector o f 2.5. This indicates considerable overhead. However, GTconnit accounts 

for only 2% o f S T ,, for the PS technique and less than 1% for both the Semantic-PS and 

Kangaroo techniques and therefore, the effect of propagation is hardly noticeable. Next, the 

effect of die environmental parameters on ST«, will be studied.

5.4.2 Varying The Number of Site Transactions in a Global Transactions

Here, die effect of the size of die global transaction (i.e., N* - the number of site- 

transaction in a global transaction) upon ST*, will be evaluated. Specifically, ST*, will be 

calculated for N« = 2 ,4 ,6, 8,10 . For this analysis, Ndm Ng^ and Paf are set to the defiuih values
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in Table 5.1. The service time for each technique is given in Table 5-2. These results indicate 

that alAough the Kangaroo technique ofiers the best performance, ST«, for the PS technique is 

only 1.6% greater than the Kangaroo technique and the PS technique is less than 1% greater 

than the Kangaroo technique.

2 4 6 8 10
PS 0.394 0.715 1.0 1.332 1.702
Semantic-PS 0.385 0.70 0.987 1.306 1.687
Kangaroo 0.385 0.70 0.986 1.305 1.686

Table 5-2: Service Time fo r  varying

5.4 J  Varying Number of Disconnections for a Global Transaction

Next, STn, will be calculated for different values o f Ndn- As at most only one 

disconnection can bave any affect on the execution of a site-transaction, the de&ult value for N̂ t 

will be set to 10 in order to accommodate sufficient test cases, i.e., Ndcs = 2,4 , 6, 8, 10. is 

set to 1. The service time for each technique with respect to N*n is given in Table 5.3. Again, 

the difference in service time is insignificant - ST^, for foe PS technique is approximately 1% 

greater than that of foe Kangaroo technique while the Semantic-PS techniques is less than 1% 

greater than that o f the Kangaroo technique.

N . 2 4 6 8 10
PS 1.592 1.658 1.726 1.796 1.865
Semantic-PS 1.56 1.626 1.694 1.763 1.833
Kangaroo 1.56 1.625 1.693 1.762 1.832

Table 5-3: Service Time fo r  varying Njo,
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5.4.4 Varying Number of Migrations for a Global Transaction

Next, die effect o f  the number of migrations during the course of execution of a global 

transaction will be evaluated for each technique. As each migration also causes a disconnection, 

Ndca will be set to the value of (i.e., N*. -  N„^). Once again, as at most only one 

disconnectioa (and therefore, at most one migration) can have any effect on the execution of a 

site-transaction, the defoult value for N„ will be set to 10 in order to accommodate sufBcient test 

cases, i.e., Ng^ = 2, 4, 6, 8, 10. The service time for each technique with respect to Ngy is given 

in Table 5.4. Again, the difference in service time is insignificant - ST«, for the PS technique is 

approximately 1% greater than that of the Kangaroo technique while the Semantic-PS 

techniques is less than 1% greater than that of the Kangaroo technique.

N . 2 4 6 8 10
PS 1.662 1.859 2.057 2.254 2.451
Semantic-PS 1.630 1.827 2.025 2.222 2.419
Kangaroo 1.629 1.826 2.024 2.221 2.418

Table 5-4: Service Time for varying ALp

From the evaluations carried out in Sections 5.4.2, 5.4.3, and 5.4.3, it is clear that the 

number of site transactions, die number of disconnections, and the number o f migrations have a 

similar effect on ST«« for all techniques. This is due to the feet that, as concluded in Section 

5.4.1, the time taken to commit a global transaction accounts for only a small percentage (<= 

2%) of the total execution time of a global transaction in all techniques. A lthou^ the PS and 

Semantic-PS techniques enforce die isolation property by executing the PGSG algorithm, the 

overhead widi respect to propagatimi is not a dominant fector in ST«,. Next, ST«, will be 

evaluated with respect to die average communication time on the static network f T — and the
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probability o f conflicts for site-transactions (Pa^) to detennine their effect on die average 

service time for the three techniques.

5.4.5 V arying  T im e to  T ransm it a M essage on the  S ta tic  N etw ork

In diis test the effect of the communication cost on the static network is evaluated for all 

techniques. Specifically, ST«, will be calculated for = 0.01, 0.02, 0.03, 0.04, 0.05, 0.06. 

Tnac is the time taken to transmit a 1 Kb message on the static message. Along with T g ,  it is 

also necessary to vary the value of T*p  ̂as it represents the time taken to transmit a 10Kb 

message on the static network. Accordingly Tp^ is set to 10 * i.e., Tp^ = 0.1, 0.2, 0.3,

0.4,0.5, 0.6. The service time for each technique is given in Table 5-5.

T - 0.01 0.02 0.03 0.04 0.05 0.06
PS 2.3 3.93 5.56 7.19 8.82 10.45
Semantic-PS 0.82 0.96 1.11 1.26 1.41 1.55
Kangaroo 0.77 0.87 0.97 1.07 1.17 1.27

Table 5-5: Service Time for varying 7**,

This result indicates that the three techniques respond differently to changes to the 

communication time on the static network (Figure 5-2). The results show that the 

communication time on the static network has a much greater effect on the PS technique than 

the Semantic-PS and Kangaroo technique. For each increment o f 0.01 seconds in the time taken 

to transmit 1 Kb on the static network, ST«, of die PS technique increases by 1.63 seconds as 

opposed to 0.145 seconds for the Semantic-PS technique and 0.1 seconds for die Kangaroo 

technique. That is, the rate o f growth of ST«, for a 0.01 second increase per 1Kb message on 

the static network is approximately 16 times greater for the PS technique than the Kangaroo
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technique. In comparison, the Semantic-PS techniques is only 0.45 times greater than the 

Kangaroo technique.

m 12
"ae 10
§ 8I 6

? 4
2

(0 0
0.01 0.02 0.03 0.04 0.05 0.06 

Tsmsg

•PS
'Semantic-PS
•Kangaroo

Graph 5-2 : Service Time for varying Tsmsg

Unlike in the previous experiments, the rapid growth of ST*, of die PS technique with respect 

to T*u, (T*p«J can be explained as follows: Unlike the Kangaroo the technique, the PS and 

Semantic-PS techniques enforce the isolation property by executing the PGSG algorithm. The 

PGSG algorithm utilizes information propagation to verify serializability. Serializability 

information is propagated by passing messages between STCs and MSSs residing on die static 

network. Therefore, any increases to T m , relative to the rest of die environment variables will 

have an impact on ST*, for the PS and Semantic-PS techniques.

The foct that this impact is more prominent for the ST*, of the PS technique can be 

explained as follows: The volume of infbrmatioa being propagated by the PGSG algorithm is 

determined by the number of conflicts between site-transactions. In order to obtain local 

serializatioa information, the PS and Semantic-PS techniques force conflicts between site- 

transactions diat execute at die same site. The Semantic-PS technique forces conflicts only
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between site-transactioas tfiat potentially conflict with each other. On the other hand, the PS 

techniques forces conflicts between all site-transactioas that execute at each site. In addition, the 

PS technique executes the PGSG algorithm twice, information is propagated a second time for 

every global transaction.

5.4.6. Varying Probability of Conflicts

Finally, foe effect of the probability of conflicts between site-transactions is evaluated 

for ail techniques. Specifically, Paf will be calculated for Par = 0.05, 0.1, 0.15, 0.2. 0.25, 0.3. 

Here again, Nda N g , and are set to the defiuilt values in Table 5 .1. The service time for 

each technique is given in Table 5-6. These results indicate that P«ur has no effect on the PS 

technique and the Kangaroo technique (Graph 5-3). In the case of the PS technique, Pcnf has no 

effect on the service time because all site-transactions that execute at a  given site are forced to 

conflict with each other as each LDBS maintains only one ticket. In the case of the Kangaroo 

model Pcnf has no effect on the service time as this technique does not enforce the isolation 

property. Thus, Pcnf affects only the Semantic-PS technique. However, the increase in ST«, for 

the Semantic-PS technique is only marginal, i.e., an increase of 0.0004 seconds for every 5% 

increase in the probability of conflicts. Once again, this is due to the fact that the time taken to 

propagate infbrmatioa on the static network is relatively small compared to the time taken to 

transmit a message on the wireless network as well as the time taken to address migration.

0.05 0.1 0.15 0.2 0.25 0.3
PS 0.6868 0.6868 0.6868 0.6868 0.6868 0.6868
Semantic-PS 0.6719 0.6723 0.6727 0.6731 0.6735 0.6739
Kangaroo 0.6715 0.6715 0.6715 0.6715 0.6715 0.6715

Table 5^: Service Time for varying Pa^
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Graph 5-3: Service Time Vs

5.5 Summary and Conclusion

In conclusion this analysis suggests that in certain environments, the average service time of 

these techniques is comparable to the Kangaroo technique which does not enforce the isolation 

property nor does it attempt to minimize the ill effects of the prolonged execution of mobile 

global transactions. For the values of the model parameters developed in Section 5.2, ST«, of 

the PS technique is only 2% greater than the Kangaroo technique and the Semantic-PS 

technique is only 0.3% greater than that of the Kangaroo technique. In addition, these 

experiments reveal that any changes to environment variables N« Ndm and No^. have a similar 

effect on all three techniques. In each case, ST«, for the PS techniques was approximately 1% 

greater than that of the Kangaroo technique; ST,,, for the Semantic-PS technique was less than 

1% greater than that of the Kangaroo technique.

However, ST^, for the PS technique deteriorates rapidly widi respect to the communication 

time on the static network. For every 0.01 second increase in the time taken to transmit 1 Kb 

over the static network, the rate of change of ST», for the PS technique is approximately 16 

times greater (1.63 seconds as opposed to 0.1 second) than that o f the Kangaroo technique; the 

rate of charge of ST„g for the Semantic-PS technique is approximately 1.45 times greater than 

that of die Kangaroo technique.
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Chapter 6 

S im u la tio n

This research introduces two new concepts to transaction management in the MMDB 

environment. First, it introduces the notion of pre-serialization, that is, verifying the isolation 

property of mobile transactions prior to their completing their execution. Second, it introduces 

a new technique called the PGSG algorithm to verify the isolation property of global 

transactions in large heterogeneous environments based on partial global serialization graphs 

and information propagation. As new concepts are introduced it is important that, as part o f this 

research, the PS and Semantic-PS techniques be simulated in order to observe (and learn about) 

the behavior of these techniques and to make recommendations for future researchers.

The primary goals of the simulation are twofold: First, the simulation models will be 

used to measure the service time of the PS, Semantic-PS, and Kangaroo techniques in order to 

validate the analytical models developed in Section 5.1. Second, the simulation models for the 

PS and Semantic-PS techniques will be used to study the effectiveness of pre-serialization in 

achieving its design goal, i.e., minimizing the unfoir treatment o f mobile transactions due to 

their extended execution time.

6.1 The Simulation Model

The ARENA [KSS98] simulation software is used to carry out the simulation 

experiments. ARENA is a  high-level simulator diat allows one to model discrete event-based 

simulation models. The execution of a global transaction in the MMDB environment can be 

defined by a  sequence of discrete events that occur during its execution, i.e., its creation.
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submissk» of a site-transaction, completion of a site-transaction, completion of the global 

transaction, potential disconnection and migration, etc.. Therefore, the ARENA software can be 

used to simulate the PS, Semantic-PS, and Kangaroo techniques. As ARENA is used for 

simulation, the simulation models will be described using simulation constructs similar to those 

available in the ARENA software. First, the basic ARENA constructs that are used to describe 

the models will be introduced.

a) The Simulate Module

The Simulate module is used to control the simulation. This module is used to specify 

the time of simulation, the number of runs in each simulation, the number of entities to be 

created, etc.

b) The Create Module

The Create module is used to create entities. Entities are dynamic objects in the 

simulation that are transferred ftom module to module in the simulation model. Each entity is 

associated with zero or more attributes that define the state of the entity at any given time.

c) The Dispose Module

The Dispose module is used to remove entities from the simulation and to dispose 

them. This module can also be used to collect statistics with respect to entities.

d) The Choose Module

When multiple simulation paths exist, the Choose module is used to determine the 

appropriate path that the entity needs to take based on some criteria. The criteria used to 

determine the path can be based on the current state o f the entity or some distribution fiinction.
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e) The Assign Module

The Assign module is used to assign values to attributes of an entity.

0  The Delay Module

The Delay module is used to delay entities for some period of time before being sent to 

the next module in the simulation.

g) The Station Module

The Station module passes entities that arrive at that module to the next module in the 

simulation model. They perform no particular task and are used mainly to represent different 

simulation paths.

h) The While End-While Modules

The While End-While module is used to model while loops in the simulation. The 

entity remains in the While End-While loop as long as it satisfies the condition that is defined in 

the While module.

i) The If End-IF Modules

The If  End-If module is used to represent conditional statements. An entity that arrives 

at an If module will pass th rou^ all nwdules encapsulated within the If End-IF module if it 

satisfies the condition set forth in die If.
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j) The Resource Module

The Resource module is used to represent resources available to entities in the 

simulation.

k) The Seize and Release Modules

The Seize module is used to model entities seizing resources defined using the 

Resource module. The Release module is used to release resources that have been seized by an 

entity.

I) The Write Module

The Write Module is used to write information to a file. This module is used to record 

the intermediate state of entities in an external file.

m) The Tally Module

The Tally module is used to collect statistics. These statistics are reported at the aid of 

the simulation.

6.2 The Common Simulation Model

In order to eliminate repetition, the general simulation model will be described in this 

section. The details of each transaction management technique will be described in subsequoit 

sub-sections. The simulation process for all techniques can be broken into three steps; the 

creation o f global transactions, the simulation o f global transactions, and the final deletion of 

the global transactions from the simulation (Figure 6-1). In all simulation models, global 

transactions are modeled as entities diat are created by the Create module. Each global 

transaction is associated widi a set of attributes that are initialized by this module. They are
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GTID, TransType, NumSites, SiteList, DcnDelay, and StaitTime. The GTID attribute is 

assigned a unique (consecutive) identifier. The TransType is assigned either "Static" or 

"Mobile" indicating that the transaction is either a static or mobile transaction.

CREATE
Simulation of 

Global 
Transactions

# DISPOSE

SIMULATE RESOURCE

Figure 6-1: Overview o f Simulation Model

NumSites is assigned the number of site-transactions in that global transaction. Once 

NumSites has been initialized the SiteList is assigned the list of sites that are to be accessed by 

that transaction. Each SiteList is generated such that it does not contain duplicate sites. This 

ensures that a global transaction does not access any site more than once during its execution as 

required by the PS and Semantic-PS techniques. Each site to be accessed is assigned as vital or 

non-vital indicating the type of site-transactions to be executed at that site. The attribute 

DcnDelay is used to record 6 e time a site-transaction is to be delayed if a disconnection occurs. 

This attribute is initially set to 0. Finally, the time on the simulation clock at which the global 

transactions was created is assigned to the StartTime attribute.

After being created by the Create module, global transactions are transferred to the 

Simulation of Global Transactions module. This module is used here to represent the simulation 

of the execution o f global transactions fisr a  given transaction managonent technique.

After completing the simulated execution, global transactions are transferred to the 

Dispose rtKxlule. In dûs module, statistics such as the time taken to execute the global
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transaction are collected before being disposed from the system. The Simulate module is used to 

control each simulation process.

The Resource module is used to represent sites (i.e., STMs) in the MMDBS. In Section

5.1 it was determined that the average mid-size DBMS system is capable of executing an 

average of 333 transactions per second. Therefore each resource in this simulation is modeled as 

a resource with unbounded capacity. That is, each site is capable of executing multiple site- 

transactions concurrently witiKxit any significant performance deterioration.

Tailored Simulation Models

6.3.1 Disconnection and Migration

In all techniques discormection and migration are modeled the same way. Therefore the 

details of disconnection/migration (D/M) model will be presented in this section and be 

represented as the D/M module in the tailored models.

During the execution of a site-transaction o f a mobile global transaction, the user may 

be disconnected. This is modeled using the Choose module (Figure 6-2). The Choose module 

decides between a  continuous execution and disconnected execution modeled using the 

Continuous and Disconnection Stations, respectively. If a resource is sent to the Disconnection 

module, then die subsequent AddDelay Assign module assigns the delay to be incurred to the 

DcnDday attribute.

In addition, each disconnection may represent a migration which is modeled using a 

second Choose module. Once again entities will be sent to either a Migration or No Migration 

module. If  the entity arrives at the Migration module, die DcnDelay is further incremented at 

the second AddDelay Assign module by the time taken to address migration. Finally, the entity
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is delayed at the Delay module by the amount specified in the DcnDelay attribute, the DcnDelay 

is reset to zero, and die entity is transferred to the next module in the simulation.

IComiî DUOU&

No M igradoPL-H -I^

LDisconncctionlHAddDelavM -C hoox

aoL

Migration

Figure 6-2: D/M module

6.3.2 Simulation Model for the PS Technique

This section details the "Simulation of Global Transactions" step of the common 

simulation model for the PS technique. Due to the complexity of the PGSG algorithm, 

especially propagation, the commit of global transactions cannot be simulated using ARENA 

constructs. Therefore, the simulation is carried out in two steps. First, an ARENA model is used 

to simulate the creation and execution of global transactions. This model simulates the entire 

life of the global transaction except the execution of the PGSG algorithm. The simulation 

records all relevant events - the creation of global transactions along with its type (i.e.. Static or 

Mobile), die execution o f each site-transaction, the occurrence of disconnection and migration, 

etc. - in an external file. Next, a Java application is used to simulate the PGSG algorithm by 

reconstructing the entire execution sequence recorded by the ARENA simulation. This program 

simulates the PGSG algorithm and adds the time taken to conunit die global transaction to the 

service time recorded by ARENA.

97



6J.2.1 The ARENA Model of the PS Technique

Global Transactions created by the Create module are transferred to the Record module 

labeled Rstait where their creation is recorded in an external text file labeled "PS.dat" (Figure 6- 

3). For each global transaction, the triple <"CREATE", GTID, TransType> is recorded. For 

GTID and TransType it is the attribute values that are recorded. Next, global transactions are 

transferred to the Choose module. The Choose module will transfer the global transaction to the 

appropriate path based on the value of the TransType attribute.

SMdly 

1
Seize Rlicket Xdly Release SMdly

While

Static

Rstait

End While

Choose

Mobil^,

RESOURCE Rfinish

While EndWhUe

i
M ^y||Seize|RUcket|| Xdly |d /S Release MMdlyj If Toggle End If

Figure d>i; Simuiation o f Global Transactions -  PS technique

The execution of static global transactions is mcxieled using a While End-While lcx>p. 

Each loop simulates the execution of one site transaction. The simulation of a site-transaction 

consists of six steps. First, the site transaction is transferred to the Delay module labeled SMdly 

(Static Message delay) to simulate the time taken to submit the site-transaction to the STM 

Next, the site-transaction will seize the resource representing that site at which it is supposed to 

execute. This is modeled using the Seize module. Next, it is transferred to fee Record module 

labeled Rticket where its execution at that site is recorded in PS.dat For each site-transaction
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the quadruple <"EXECUTE", GTID, Siteld, Criticality> (where Criticaiity represents whether 

the site-transactioa is vital or non-vital) is recorded. In essence, this step emulates the ticket 

value obtained by the site transactions at the respective site. Next, the site-transaction is delayed 

for some period of time to simulate its local execution. This is modeled using the Delay module 

labeled Xdly. Next, the Release module is used to release the seized site back to the system. 

Finally, the site-transaction is transferred to the Delay module labeled SMdly to simulate the 

time taken to return the outcome of the site-transaction to the user.

Similar to static global transactions, the execution of mobile global transactions are 

modeled using a  While End-While loop as well. However, each loop consists of ten steps. First, 

the site-transaction is transferred to the Delay module labeled MMdly (Mobile Message delay) 

to simulate the time taken to submit the site-transaction to the user. The next Seize Record and 

Xdly modules perform the same functions as in the simulation o f static transactions. The next 

D/S module (Section 6.1.3) simulates potential disconnection and migration that may occur 

during the execution o f site-transactions. At the end of site-transaction execution, the Release 

module releases the site resource. The next three blocks model pre-serialization, i.e., the toggle 

operation. The toggle operation is modeled using an If End-If block. If the last site-transaction 

that was just simulated represents the last vital-site transaction o f a global transaction, then the 

global transaction is toggled by the Record module labeled Toggle. This module records that the 

global transaction is to be toggled in PS.dat. For each mobile global transaction to be toggled 

the tuple <*TOGGLE", GTID> is recorded.

Upon completing their execution, global transactions (static and mobile) are transferred 

to the Record module labeled Rfinish which records the completion of the simulation of the 

global transaction in PS.dat For eadt global transaction, the triple <"COMMIT", GTID, 

ServiceTime> where ServiceTime is foe time taken to simulate the global transaction (i.e..
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current ARENA time - StartTime), is recorded. Each global transaction is then transferred to the 

Dispose module to be removed firom the simulation.

6 3.2.2 The PGSG Java Application

Once the ARENA simulation is completed, the text file PS.dat contains the complete 

ordered sequence of events necessary to trace the execution of all global transactions. This 

sequence of events is used to simulate the PGSG algorithm using a Java application and to 

determine the following: 1 - whether each global transaction is to be toggled committed or 

aborted; 2 - what is the number of parallel steps (i.e., parallel message transmissions) executed 

by the PGSG algorithm; and 3 • reporting the results of the simulation. This application is 

described next.

First, the application creates a list of Site objects, each object represents a site in the 

simulation envirorunent. Each Site object is associated with a Graph object that represents the 

Site Serialization Graph (i.e., SSG). Initially, each Graph object contains an empty set of nodes. 

The Java application then processes each entry in PS.dat file. The PS.dat file contains an 

ordered list o f events where each event is one of the following types:

• <"CREATE", GTID, [Mobile or Static]> - global transaction of type Mobile or Static with 

identifier GTID was created.

• <"EXECUTE", GTID, Siteld, [vital or non-vital]> - global transaction GTID executed a 

site-transaction of type vital or non-vital at site Siteld.

• <*TOGGLE", GTID> - global transaction GTID executed the toggle operation.

• <"C0MM1T", GTID, ServiceTime> - global transaction GTID completed its execution. The 

service time for the transaction is given by ServiceTime.

Each event is processed as follows. For each CREATE event, the application creates a 

Global Transaction object with foe corresponding GTID and TransType. Eadi Global
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Transactioa object contains an additional attribute named Propagation Count. This attribute is 

used to keep a  count of the number of parallel steps (i.e., parallel message transmissions) 

executed by the PGSG algorithm when the transaction is toggled and/or committed. For each 

EXECUTE event, the application adds a node labeled GTID in front of the SSG of the specified 

site. Essentially, this represents the serialization order of the site-transaction at that site.

For each TCXKjLE and COMMIT event, the application executes the PGSG algorithm and 

determines whether the global transaction is to be toggled committed or aborted. The complete 

PGSG algorithm for the PS technique is given in Section 3.1.4.5. Each time the global 

transaction executes the PGSG algorithm, the Propagation Count is updated accordingly. If the 

global transaction is to be aborted, the corresponding Global Transaction object is marked as 

Aborted. If the event is a TCXjGLE event and the PGSG algorithm succeeds, then the Global 

Transaction is marked as Toggled. If the event is COMMIT and the operation is successful, then 

the Global Transaction is marked as Committed and its execution time is set to the ARENA 

service time.

Once all events in PS.dat have been processed the application processes all Global 

Transaction objects and reports the final results of the simulation. For each simulation, the 

following results are reported:

• The ratio o f static-global-transactions-aborted / static-global-transactions-simulated

• The ratio o f mobile-global-transactions-aborted/mobile-global-transactions-simulated

• The average service time of all successful global transactions. Here the service time of a 

global transaction is the sum of the ARENA service time and the time taken to commit the 

global transaction, i.e.. Propagation Count multiplied by the time taken to transmit one 

message on die static network.
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6.3.3 Simulation Model for the Semantic-PS Technique

This section details the "Simulation of Global Transactions" step o f the common 

simulation model for the Semantic-PS technique. Once again, the simulation is carried out in 

two steps. First, an ARENA model is used to simulate the creation and execution of global 

transactions. Here, the sequence of events that occur during the ARENA simulation is written to 

a  file named SemPS.dat. Next, a Java application is used to simulate the PGSG algorithm by 

reconstructing the entire execution sequence recorded by the ARENA simulation. This is 

simulated as described in the following sub-sections.

6J.3.1 The ARENA Model of the Semantic-PS Technique

The execution process of global transactions in the Semantic-PS technique is very 

similar to that of the PS technique. The differences between the PS and Semantic-PS techniques 

are: 1 -  The Semantic-PS technique enforces atomicity and isolation properties only on the set 

of vital site-transactions; 2 -  Mobile global transactions execute the PGSG algorithm only once 

-  during the toggle phase; and 3- The ticket method used to obtain the local serialization order 

forces conflicts only between site-transactions (that execute at the same site and) potentially 

conflict witii each other. Here, 2 and 3 are related to the execution o f the PGSG algorithm. As 

the ARENA model does not simulate the execution of the PGSG algorithm, these do not have to 

be modeled in die ARENA model.

In order to ensure that the A/I properties are enforced only on the set of vital site- 

transactions, the ARENA model records only the execution of vital site-transactions in 

SemPS.dat file. This can be modeled by encapsulating the Rticket Record module within an If 

End-If block (Figure 6-4). If the site-transaction is a vital site-transaction, then it is recorded;
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otherwise it is not. Note that the execution of non-vital site-transactions needs to be simulated in 

ARENA as it afifects the service time of a global transaction.

SMdly Seize If Rticket End If Xdly Release SMdly

While

Static
1

Rstart ►Choose

Mobile

While

SMdly

End While

RESOURCE Rfinish

End While

MMdly S eizellf
T

Rticket I End If|| Xdly jp /S  Release MMdly If Toggle [ j in d lf

Figure 6-4: Simulation of Global Transactions -  Semantic-PS technique

6.3J.2 The PGSG Java Application

The Java application that simulates the PGSG algorithm for the Semantic-PS technique 

is very similar to that of the PS technique as well. The only differences are:

1. All site-transactions that execute at one site do not conflict with each other.

2. Mobile global transactions do not execute die PGSG algorithm during the commit phase.

These change are implemented as follows. The probability of a site-transaction 

conflicting widi another site-transaction is defined by the envirorunent variable Pcnf. As each site 

maintains multiple tickets that need to be distinguished, each Node object in the SSG graph is 

associated with an integer variable called ticket. Whenever the Java application encounters an 

EXECUTE event in the SemPS.dat file, diis event is processed by adding a Node object to the 

SSG of that site with the respective GTID and the ticket is assigned a random integer value in 

the range I..l/P<af. For example, if P^f = 0.1, i.e., there is a  one-in-ten chance that a site-
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transaction conflicts with another site-transaction at that site, then the ticket will be assigned a 

random value in the range of 1..10. Unlike for the PS technique, nodes in the SSG are linked 

only if they have the same ticket value. Therefore, the probability of a site-transaction 

conflicting with another site-transaction that executes at the same site is 1/10, i.e., P^f.

The CREATE event and the TOGGLE event are processed identical to that o f the PS 

technique. However, when a COMMIT is encountered, the application executes the PGSG 

algorithm only if the TransType is Static as in Semantic-PS, mobile transactions do not execute 

the PGSG during the commit. Note that the PGSG algorithm that is executed for each TOGGLE 

or COMMIT event is the one defined for the Semantic-PS technique in Section 4.2.1.

6 J.4 Simulation Model for the Kangaroo Technique

This section details the "Simulation of Global Transactions" step of the common 

simulation model for the Kangaroo technique. The entire simulation of the Kangaroo technique 

is carried out using an ARENA model which is described below.

The Kangaroo technique does not distinguish between static global transactions and 

mobile global transactions. Therefore, the simulation model contains only one path. In the 

Kangaroo model site-transactions are encapsulated in a Joey transaction. In the Kangaroo 

simulation model, in addition to the GTID, TransType, NumSites, SiteList, DcnDelay, and 

StartTime attributes, each global transaction entity contains two additional attributes labeled 

MigrationCount and MessageDelay. The MigrationCount attribute is used to keep track o f the 

number of migrations that occur during the execution of a global transaction. The 

MessageDelay attribute is assigned the time taken to submit a  site-transaction on the appropriate 

medium depending on the type o f global transactions. That is, for mobile transactions 

MessageDelay is assigned tiie time taken to transmit a  message on tiie wireless networic; for
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stade transactions MessageDelay is assigned the time taken to transmit a message on the wired 

network.

The execution o f a global transaction is simulated using a While End-While loop. Each 

loop simulates the execution of a single site-transaction. The execution of a site-transaction 

consists of seven steps (Figure 6-5). First, the site-transaction is delayed for a time period of 

MessageDelay to simulate the submission of a site-transaction to the MMDBMS. This is 

modeled using the Mdly Delay Module. Next, the global transaction seizes the Site which is 

modeled using the Seize module; executes the site-transaction which is modeled using the 

Delay module labeled Xdly; and releases the seized site which is modeled using the Release 

module.

Next, potential disconnection and migration need to be modeled for mobile global 

transactions. If  the transaction is a mobile transaction (which is modeled using the If module), 

then the potential disconnection and migration are modeled using the D/M module described in 

Section 6.1.3. In this nxxlule if a migration does occur, the MigrationCount is incremented. In 

essence, the MigrationCount represents the number of Joey transactions that are created for the 

global transaction.

Once the global transaction has completed its execution, it is transferred to the Commit 

nuxlule. This module is a Delay module and delays the transaction to simulate the execution of 

the commit protocol. Each global transaction is delayed for a time period equivalent to the 

commit time of the global transaction, i.e., 2 * MigrationCount * time taken to transmit a 

message on the static network. Next, the global transaction is transferred to the Tally module 

which collects statistics on the simulation, i.e., the average service time for global transactions 

and the individual tallies for static and mobile transactions.
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While

Tally
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End While

Mdly Seize Xdly Release Mdly If D/S IncrMC End If

Figure 6-5: Sim ulation o f Global Transactions -  Kangaroo technique

6.4 The Simulation Environment

In this section the defiuilt values used to define the simulation enviromnent will be 

documented. A summary of the parameters is presented in Table 6-1. As one of the primary 

goals of this simulation is to study the effectiveness of pre-serialization, some parameter values 

have been chosen especially to 6cilitate this goal. In essence, it was necessary to define a 

simulation environment that provided a sufGcient number of isolation property violations so that 

the effectiveness of pre-serialization could be studied.

The number of sites in the simulation environment is one such parameter. The typical 

MMDB environment will consist of a very large number of sites. As the number of sites in the 

system increases, the probability of isolation property violations decreases especially as it is 

assumed that each site is equally likely to be accessed. Therefore it was necessary to perform 

the simulation over a small number of sites in order to magnify isolation property violations. 

The number of sites in this simulation (TotalSites) has been set to 10.

Global transactions are created based on an exponential distribution with a mean of 0.2 

time units. The exponential distribution is chosen as it is often used to model inter-event times
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in random arrival processes [KSS98], A probability distribution is used to label transactions as 

either Static or M<*ile transactions.

A triangular distribution (with a minimum of 3, average of 4, and maximum of 5) has 

been chosen to describe the number of site-transactions in a global transaction (NumSites). The 

triangular distribution is chosen for two reasons: 1 -  it is commonly used in situations in which 

the exact fisrm of the distribution is not known [KSS98]; and 2 -  it is bounded by a minimum 

and maximum value. Note that on average 40 percent of the sites in the system are being 

accessed by a global transaction. Once again, a high value has been chosen in order to magnify 

the isolation property violations.

The execution time of a site-transaction is described using a triangular distribution. The 

mean time for execution has been derived from the values given in Table 5.1.

The length of the vital stage of a global transaction (VT#,) is set to be 50% of the length 

of the global transaction. This value has been chosen as initial simulation results indicate that 

50% is the value for VT«, at which neither static nor global transactions will be penalized. The 

average time o f disconnection has been taken fixxn the values given in Table 5.1.

The probability of a site-transaction conflicting with another site-transaction at the 

same site (Pcnf) is set to 0.5. (Note that this parameter applies only to the Semantic-PS 

technique.) Once again a high value is chosen to magnify the isolation property violations. The 

parameters P*m, Pn#, T*aa«, T'an„ and T*p^ have been taken from Table 5.1. The length of a 

simulation run (Leo) has been set to 7200 time units. Assuming that a  time unit represents one 

second, the length of a  simulation run represents a  2-hour period.

Finally, as in the analytical evaluation, this simulation assumes that each site is equally 

likely to be accessed by any site-transaction such diat a  global transaction does submit two site- 

transactions at the same site.
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Parameter Description Default Value
TotalSites Number of sites in the MMDBS 10
GTi. Inter-arrival time of global transactions EXPO(0.2) time units
GT(*io The ration of mobile global transactions to static 

global transactions
0.3/0.7

NumSites Number of site-transactions in a  global transaction TR1A(3, 4, 5)
EXEw avg. local execution time of a site-transaction TRIA (0.001, 0.003. 0.005)
V Tc The size of the vital stage of a global transaction 

(as a fraction of the total length)
0.5

DCNnn Avg. time between discormection and relocation 0 .1 time units
Parf Probability of a site-transaction conflicting with 

anofoer site-transaction (at foe same site)
0.5

Pd. The probability of a disconnection during the 
execution of a site-transaction

(f NumSites/3l)/NumSites

P“» The probability of a migration during the execution 
of a site-transaction

fPd«/3l

Tnm avg. time to transmit a message on the static 
(wired) network

0.0001 time units

T n .. avg. time to transmit a message over the wireless 
medium

0.07 time units

avg. time to transmit a Predecessor graph (or 
propagate a PGS graph) from site to site along the 
static network

0.001 time units

Len Length of simulation 7200 time units
Table 6-1: Environment parameters fo r  simulation

6.5 Service Time for Global Transactions

In this section, the simulation models will be used to obtain the service time (i.e., ST»,) 

for the PS Semantic-PS and Kangaroo techniques. As the primary purpose of this experiment is 

to validate the analytical model (and vice versa) by reproducing the experiment carried out in 

Section 5.4.1 - Service Times, the MMDB environment will need to duplicate the same 

environment The de&ult values will be taken from Table 6-1 for every parameter, except P=f 

and GTnbo. as foe values represent the same environment defined in Table 5.1. In this 

experiment Pcnf will be set to 0.05 - the value defined in Table 5.1. In foe experiment carried out 

is Section 5.4.1, all global transactions are mobile global transactions. To duplicate this 

scenario, GT^ia is set to I/O.
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The simuladoo is repeated 20 times for each technique. The average ST«, is given in 

Figure 6-6. These results show that the simulated ST«, for all techniques is less than the 

analytical ST^,. However, this deviation is very minimal. That is, for the PS technique, ST^, 

obtained firom the analytical model is only 1.3% greater than that obtained from the simulation 

model. For the Semantic-PS and Kangaroo techniques, ST^, obtained from the analytical 

models is less than 1% greater than that obtained fixxn the simulation models. Once again, it can 

be concluded that ST^, for the PS and Semantic-PS technique is not significantly higher than 

that of the Kangaroo technique.

•g 0.69 
I  0.685
S 0.68
5  0.675 
%  0.67 
S  0.665 
§ 0.66f 0.655 

0.65

iLSSfi.

I Analytical 
I Simulation

PS Semantic- Kangaroo 
PS

Figure 6-6: ST«, for Three Transaction Management Techniques Using Analytical
Models and Simulation Models

Next, the 95% confidence interval over die 20 runs is calculated. The 95% confidence 

interval fijr the PS technique is 0.677 ± 0.009. Thus 95% of the simulation results reside in the 

interval (0.668 - 0.686). The 95% confidence interval for the Semantic-PS technique is 0.667 ± 

0.006, i.e., (0.661 - 0.673). The 95% confidence interval for the Kangaroo technique is 0.665 ± 

0.006, i.e., (0.659 - 0.671). Note that the ST^, obtained fixim the analytical model fiir each 

technique is widiin the 95% confidence interval obtained fiom the simulation model. Thus, it 

can be stated with cmifideoce that die simulation model complemoits the analytical model.
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6.6 Hypothesis Testing

In the previous section it was concluded that the service times for the PS and Semantic- 

PS techniques are not significandy higher than the service time of the Kangaroo technique. This 

conclusion was drawn from an informal evaluation o f the simulation results. In this section, 

hypothesis testing will be used to examine whether ST^g for the PS and Semantic-PS 

techniques are significandy greater than that of the Kangaroo technique. Specifically, the 

hypodiesis test concerning means will be used to determine whether it can be established that 

ST«, for the PS and Semantic-PS techniques are different fixxn that of the Kangaroo technique 

at the 0.05 level of significance.

6.6.1 Hypothesis Test for the PS Technique

In this section, the claim that ST^, for the PS technique is not significandy higher than 

that of the Kangaroo technique is tested. As the aim of this hypothesis test is to establish that 

STiv, for PS is not significandy higher, the null hypothesis will claim the contrary. That is, the 

null hypothesis states that ST«, for the PS technique is significandy different than that o f the 

Kangaroo technique. The null hypothesis Ho, and alternate hypothesis H, are stated as:

Ho: ST,v( for the PS technique # S T ^  for the Kangaroo technique (i.e., 0.665)

Hi: STng for the PS technique = ST*, for the Kangaroo technique

Let X be the sample mean of the PS technique, c  be the variance, and n be size of the 

population. Then die test statistic z  is given by:

z  = (x - ST*, for Kangaroo) /  (rr /  Vn)
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A 0.05 level of significance defines a critical region 6 r  z  such that for any z  < 1.645 the 

null hypodiesis must be rejected in fiivor of the alternate hypothesis. For the PS technique, x =

0.677 and a -  0.0205. Consequently,

z = (0.0677 - 0.665) / (0.0205 / V20) = 0.13

As z < 1.645, the null hypothesis Ho must be rejected in fiivor of the alternate 

hypothesis H, Thus it must be concluded that, at the 0.05 level of significance, ST«v, for the PS 

technique is not different from that of the Kangaroo technique.

6.6.2 Hypothesis Test for the Semantic-PS Technique

In this section, the claim that ST«v, for the Semantic-PS technique is not significantly 

higher than that of the Kangaroo technique is tested. Once again, the null hypothesis will claim 

the contrary. That is, the null hypothesis states that ST^, for Semantic-PS is significantly 

different than that of the Kangaroo technique. The null hypothesis Ho and alternate hypothesis 

H i are stated as:

Ho: STwi for the Semantic-PS technique *  ST*, for the Kangaroo technique (0.665)

H|: ST*, for the Semantic-PS technique = ST*, fiir the Kangaroo technique 

For the Semantic-PS technique, x = 0.667 and <t= 0.0137. Consequently, 

z  =(0.0667 - 0.665)/(0.0137/ V20) = 0.2
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Once again, as z < 1.645, the null hypothesis Ho must be rejected in &vor of the 

alternate hypothesis H,. Thus, it must be conclutkd that at the 0.05 level of significance, the 

STw, for the Semantic-PS technique is not different fixHn that of the Kangaroo technique.

6.7 Evaluation of Pre-Serialization

In this section the simulation model will be used to evaluate the effectiveness of pre­

serialization in minimizing the unfidr treatment o f mobile global transactions due to their 

prolonged execution time. In order to measure its effectiveness, the ideal case needs to be 

established.

Simply stated, the ideal case is to ensure that mobile global transactions are not 

penalized in any manner due to their prolonged execution. With respect to the PS and Semantic- 

PS techniques, this requires that the percentage o f mobile global transactions aborted due to 

isolation property violations be equal to the percentage of static global transactions aborted due 

to isolation property violations. Formally, let MT-Abort be the percentage of mobile global 

transactions aborted during some time interval t, and ST-Abort be the percentage o f static global 

transactions aborted during the same time interval t  Then the penalty incurred by mobile global 

transactions due to their extended execution time (MT-Penalty) can be represented as:

MT-Penalty = (MT-Aborts - ST-Aborts)

Note that MT-Penalty > 0 represents that mobile global transactions are penalized by 

the concurrency control algorithm and MT-Penalty < 0 represents that mobile global 

transactions are being fitvored by the algorithm. The ideal case is MT-Penalty = 0.
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6.7.1 The Ideal Length of the Vital Stage for Global Transactions

This simulation attempts to identify the length of the vital stage of a global transactions 

such that the ideal MT-Penalty is obtained. For this simulation, MT*Penalty will be calculated 

for VTg, = (0.4, 0.5, 0.6, 0.7, 0.8). The defoult values are used for the rest o f the parameters. 

The simulation is carried out 10 times for each value for each technique. The results of the 

simulation for the PS technique are presented in Figure 6-7. The simulation results indicate that, 

for the PS technique, the point at which mobile transactions are not penalized for their extended 

execution time is when VT«, is O.S. That is, MT-Penalty is approximately 0 when the length of 

foe vital stage spans no more than 50% of its entire length. Note that when VT$, is 40% of the 

length of a global transaction, static transactions are being penalized by the PGSG algorithm.

0.06 
0.05 

I* 0.04 
g 0.03

t r r“ tn r"
VTstg

Figure 6-7: M T-Penaity Vs V T ^ (PS technique)

Next, the same experiment is carried out for the Semantic-PS technique. The results of 

this simulation are presented in Figure 6-8. Once again, the simulation results indicate that the 

point at which neifoer mobile transactions nor static transactions are penalized by the PGSG 

algorithm is when VT«, is 0.5.

113



-0.005 0.4

Figure 6 S : MT-Penalty Vs (Semantic-PS technique)

Now that the value of VT«, at which the ideal MT-Penalty is obtained has been 

established, the confidence interval for this value of VT^, needs to be detemiined. The 

confidence interval is a level of confidence with respect to the simulation and specifies the 

probability that any given simulation run would produce a result within the confidence interval. 

This simulation will establish the 95% confidence interval. To establish this confidence interval, 

the simulation is carried out 20 times for each technique.

The 95% confidence interval for MT-Penalty for the PS technique when VTstg = 50% 

is 0.002 ± 0.0039. That is, the range for MT-Penalty that includes 95% of the simulation results 

for the PS technique is (-0.0019, 0.0059). The 95% confidence interval for MT-Penalty for the 

Semantic-PS technique when VT«, = 50% is 0.000 ± 0.0015. That is, the range for MT-Penalty 

that includes 95% of the simulation results for the Semantic-PS technique is (-0.0015,0.0015).

The above simulation establishes the length of the vital stage of a global transaction 

such that neither mobile transactions nor static global transactions are penalized by the PGSG 

algorithm and the 95% confidence interval for MT-Penalty. Next, simulations are carried out to 

determine whefoer environment parameters that were arbitrarily chosen would drastically affect 

the observed the ideal lengdi o f the vital stage, specifically GTim, GTnbo and P«=f.
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6.7.2 Varying the Inter-Arrival Time

In the next experiment, the simulation is carried out for a range of global transaction 

inter-arrival times in order to determine its effect on VT«,. Specifically, the simulation is carried 

out for GTint = (0.2, 0.4, 0.6, 0.8, 1.0) for both techniques. Table 6-2 contains the MT-Penalty 

for bodi techniques for the different inter-arrival times. These results indicate that the inter­

arrival time has no significant effect on the "fairness" of pre-serialization. Note that the results 

fiar each simulation fidls within the 95% confidence interval established in the previous section.

GTiat 0.2 0.4 0.6 0.8 1.0
PS 0.003 O.OOl 0.003 0.002 0.001

Semantic-PS 0.00015 0.0004 0.001 0.0005 0.000

Table AfT-PenaÙy fo r  varying inter-arrivai times

6.7.3 Varying the Mobile to Static Transaction Ratio

In the next experiment, the simulation is carried out for different values o f GT„tu - the 

ratio of mobile global transactions to static global transactions in order to determine its effect on 

VT^. Specifically, the simulation is carried out for GT„oo = (0.3/0.7, 0.4/0.6, 0.5/0.5, 0.6/0.4,

0.7/0.3) fi>r both techniques. Table 6-3 contains the MT-Penalty for both techniques for the 

different inter-arrival times. Once again, the results fidi within the 95% confidence interval 

obtained in die initial simulation, indicating that the ratio of mobile/static global transactions 

has no significant effect on the "foimess” of pre-serialization.

GTnOo 0.3/0.7 0.4/0.6 0.5/0.5 0.6/0.4 0.7/0.3
PS 0.003 0.002 0.002 0.004 0.004
Semantic-PS 0.000 0.0001 0.001 0.000 0.000

Table 6-3: MT-Penalty for varying Mobile/Static ratios
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6.7.4 Varying the Probability of Conflicts

In the next experiment, the simulation is carried out for difierent values of Paf - the 

probability of a  site-transaction conflicting with another site-transaction at the same site. 

Specifically, the simulation is carried out for Pad’ = (0.1, 0.2, 0.3, 0.4, 0.5). As Pear has no 

influence on the execution of the PS technique, this experiment is carried out only for the 

Semantic-PS technique. Table 6-4 contains the MT-Penalty obtained fiom this experiment. For 

Pof = 0 1 this simulation produced no aborts of global transactions. For Pcbt = 0.2, 0.3, 0.4, 0.5, 

MT-Penalty fidls within the 95% confidence interval indicating that VT«, is not affected by Pof.

Pad 0.1 0.2 0.3 0.4 0.5
Semantic-PS 0.000 0.002 O.OOl 0.000 O.OOl

Table 6-3: MT-Penalty for varying Mobile/Static ratios

6.7.5 Varying the Disconnection Time

In the next experiment, the simulation is carried out for different values of DCNm - the 

average time of disconnection. Specifically, the simulation is carried out for DCNoa = (0.2, 0.4,

0.8, 1.0, 1.2). These results indicate that the average time between disconnection and relocation 

affects MT-Penahy (Figure 6-9). As the average disconnection time increases, MT-Penalty 

increases as well.
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Figure 6-9; MT-Penalty for varying DCN(n

6.7.6 Varying the Wireless Communication Time

In the next experiment, the simulation is carried out for different values o f - the 

time taken to transmit a  message over the wireless network. Specifically, the simulation is 

carried out for = (0.1, 0.2, 0.3, 1.4, 1.5). These results indicate that the time taken to 

transmit a message over 6 e  wireless communication network affects MT-Penalty (Figure 6-10). 

As 'T'oac increases, MT-Penalty increases as well.

0.025

*  0.005

•PS
■Sem-PS

TWmsg

Figure 6-10: MT-Penalty for varying T"ni,

6.8 Summary and Conclusion

The simulations carried out in this section establishes that pre-serialization can 

effectively reduce the unfoir treatment of nnobile global transactions due to their prolonged

117



execution. In âc t, it was shown that the PS and Semantic-PS techniques can effectively 

eliminate ail un&ir treatment of mobile global transactions when the vital stage of a global 

transaction is 50% of the total length of the global transaction. It was also shown that the inter­

arrival time, the ratio of mobile to static global transactions, and the probability of conflicts do 

not have any drastic effect on the effectiveness o f pre-serialization for the default simulation 

environment. This is to be expected as the execution o f mobile global transactions is identical to 

that of static global transactions in both techniques except for the time taken to complete the 

execution. The parameters GTm, GT^üo and P«nf do not affect the execution time of mobile 

transactions. Therefore, they have no effect on MT-Penalty.

However, the simulation showed that DCNu and T ”oa« affect MT-Penalty. This can be 

explained as follows. Pre-serialization is introduced to address the unfltir treatment o f mobile 

transactions due to their prolonged executions. In effect, pre-serialization reduces the time 

period within which a mobile global transaction can cause conflict violations, i.e., VTn,. The 

ideal MT-Penalty is achieved at some ratio (between the time taken to complete the execution 

of static global transactions and the VTk,  of mobile transactions) at which the concurrency 

control algorithm resolves conflict violations by aborting the same percentage of mobile and 

static global transactions. Unlike GTb» GT^b» and Pad-, DCNu and 1*= , alter the interval VT*, 

and therefore, change the point at which the ideal MT-Penalty occurs. In feet, it can be 

concluded that any parameter that changes the ratio between the time taken to complete the 

execution of static global transactions and the VTo, o f mobile transactions will affect the point 

at which MT-Penalty is zero.
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Chapter 7 

C o n c lu s io n  a n d  F u tu r e  R e s e a rc h

Current advances in technology has changed the conventional computing environment. 

On the one hand the Internet has revolutionized connectivity and introduced the notion of 

cooperating but autononous information systems. On die other hand rapid advances in wireless 

communication teclmology has introduced the notion o f mobile computing. This dissertation 

research studies database transaction management in the mobile multidatabase environment.

The major contributions of this research are fourfold. First, this dissertation research 

studies the issues related to transaction management in the MMDB environment. Second, two 

new transaction management techniques that address all identified issues are proposed. These 

techniques introduce the following new concepts to transaction management;

1. It introduces two new states - Disconnected and Suspended • in order to address 

disconnectivity of the wireless communication medium.

2. It introduces the notion of pre-serialization to address the prolonged execution of mobile 

global transactions.

3. It introduces a new concurrency control algorithm based on partial global serialization 

graphs and information propagation.

4. An analytical model of the MMDB environment is developed. Simulation models of the 

proposed transaction management techniques are also developed. These models are used to 

evaluate foe performance of the proposed techniques.
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7.1 Transaction Management in the MMDB Environment

Transaction management is a core concept in the science of Database Management and 

has been studied extensively in traditional database environments. Transactions are defined to 

be consistent and reliable units of computing. In traditional systems, transactions satisfy this 

definition if they adhere to the ACID properties. However, the cooperating federated computing 

environriKot and the mobile computing environment introduce new issues that affect database 

transaction management. The multidatabase environment requires cooperating database systems 

to provide a single logical view of the information resources to the user without violating the 

autonomy of the constituent database systems. The mobile database environment requires that 

information available on the static network to wired users be made available to mobile users 

who connect fiom anywhere at any time. Wireless communications are fiequently interrupted 

by disconnection and migration. These disconnection and migration violate imderlying 

presumptions about user connectivity that exists in wired systems. The natures o f these new 

environments have raised legitimate questions ahout the applicability of the ACID properties. 

Therefore, it is necessary to revisit the responsibilities of the global transaction management 

process in light of the new environments.

The GTM of the MMDBS is responsible for enforcing the reliability and consistency of 

global transactions. Unlike in traditional DBMSs, the GTM of the MMDBS does not have to 

enfi)rce all the ACID properties for two reasons. As the constituent databases enforce the ACID 

properties on the site-transactions that execute under their control, global transactions, by 

defiuih, satisfy the consistency and durability properties. Therefore, foe GTM is responsible for 

only the atomicity and isolation properties. However, the requirements of the new environments 

dictate that the GTM enforces a  range of correctness criteria with respect to the atomicity and 

isolation properties, ranging from strict A/I to uiuestricted access.
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In addition to die A/I properties, die GTM needs to address disconnectioa and migrating 

transactions. Unlike in the static environment, disconnection in the mobile environment cannot 

always be treated as Êülures that result in aborted transactions. In some cases, however, 

disconnection will be caused by a catastrophic 6ilure. As the MMDBS can only predict 

catastrophic dilutes, aborting disconnected transactions is likely to result in some untimely 

terminations. The GTM needs to take appropriate steps to minimize such untimely terminations. 

Disconnection and migration of the mobile user prolong the execution time of mobile 

transactions as well. Consequmdy, this affects the enforcement of the isolation property. In 

order to maintain a notion of tidmess, the concurrency control mechanism of the GTM must 

minimize any un&ir treatment of transactions of mobile users.

Furthermore, the GTM must also conform to multidatabase design restrictions, i.e., the 

autonomy of the LDBSs cannot be violated.

7.2 The PS and Semantic-PS techniques

This dissertation proposes two transaction management techniques, PS and PS- 

Semantic, for the MMDB environment based on the Multi-Level transaction model. In this 

transaction modeL global transactions consist of a set o f site-transactions such that each site- 

transaction is executed as a single (consistent and reliable) transaction at some local DBMS. 

Each site-transaction is cat%orized as vital or non-vital. The time between the first and last vital 

site-transaction o f a  global transaction constitute its vital phase. All vital site-transactions o f a 

global transactioo must complete successfully in order for the global transa^on to complete its 

execution successfully. As a global transaction can consist of any combination of vital and non- 

vital site transactions, tiiese tedmiques can enforce a  range of correctness criteria with respect 

to the A/I properties.
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The GTM of each technique consists of two layers: the Global Coordinator layer is 

responsible for the overall execution and coordination o f global transactions, and the Site 

Manager layer is responsible for managing the execution o f site-transactions at each site. This 

research introduces two new states - Disconnected and Suspended - in order to address the 

disconnectivity of wireless communications. Global transactions of a disconnected user are 

placed in the Disconnected state until the user re-connects (at which time the global transaction 

is set back to active), or until such time that the MMDBS determines that a catastrophic &ilure 

has occurred. In the later case, the global transaction is placed in a Suspended state. In an effort 

to minimize untimely aborts caused by erroneous decisions about the users' connectivity status. 

Suspended transactions are not aborted until they interfere with the execution of other global 

transactions.

The PGSG algoridun verifies the atomicity and isolation properties of global 

transactions. The PGSG algorithm verifies the isolation property by constructing a partial global 

serialization graph and relies on information propagation to ensure that all violations are 

detected. The primary difference between the PS technique and the Semantic-PS technique lies 

in the enforcement policy of the A/I properties.

In the PS technique, static global transactions execute the PGSG algorithm at the end of 

their execution in order to verify the A/I properties. If A/I have not been violated die 

transactions commits; otherwise the transactions are aborted. Mobile global transactions execute 

the PGSG algorithm at the end of their vital stage. If A/I has not been violated, the global 

transactions are toggled; otherwise they are aborted. The toggle opeiatioa roisters the global 

transactions' serialization order in die global transaction serialization scheme. Upon completing 

dieir execution, toggled mobile global transactions execute the PGSG algoridun a  second time 

in order to rectify any isolation property violations that diey may have caused after being 

toggled. In the PS technique, the PGSG algorithm enforces A/I on all site-transactions o f a
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global transaction. However, only vital site-transactions can cause a global transaction to be 

aborted. As the local serialization o f site-transactions is transparent to the MMDBS, the PS 

technique forces conflicts between all site-transactions that execute at each site using a local 

ticket data item. The ticket value is then used to deduce the local serialization order.

The limitations o f foe PS technique are:

1. Mobile transactions utilize additional overhead as they execute the PGSG algorithm twice.

2. Concurrency is limited as all site-transactions that execute at each site are forced to conflict 

with each other.

The Semantic-PS technique overcomes these limitations as follows. The Semantic-PS 

technique enforces the A/1 properties only on the set of vital site-transactions of a global 

transaction. As in the PS technique, the static global transactions execute the PGSG algorithm at 

the end of their execution and mobile global transactions execute the PGSG algorithm at the end 

of their vital stage. However unlike in the PS technique, mobile global transactions are not 

required to execute the PGSG algorithm a second time as the Semantic-PS technique enforces 

A/I only on the set of vital site-transactions. Toggled mobile global transactions are allowed to 

commit at the end of their execution. In order to improve concurrency, the Semantic-PS 

technique relies on semantic information about local data items to combine local operations 

(executed by site-transactions) into groups that potentially conflict with each other and assign a 

ticket to each group. Thus, foe Semantic-PS technique enforces conflicts only between site- 

transactions that execute one or more operations from the same group.

As the PS and Semantic-PS techniques allow mobile global transactions to establish 

their serialization order prior to completing their execution, these techniques minimize the 

unfair treatment o f mobile global transactions due to their prolonged execution.
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7.3 Feature Comparison with Existing Techniques

The MMDB environment is a relatively new area of research which encompasses 

emerging technologies. Yet, it has received considerable attention firom the research 

community. Many existing publications specifically address transaction management in the 

MMDB environment. However, the proposed techniques fall short of meeting all the 

requirements of the MMDB environment. To summarize their deficiencies, none o f the 

techniques enfijrces the (global) isolation property. Thus, global transactions are not executed as 

consistent units o f computing. In addition, disconnections that represent catastrophic dilutes are 

not addressed. It is assumed that a disconnection will always be followed by a subsequmt re­

connection. The PS and Semantic-PS techniques are compared to the existing techniques in 

Table-7-1.

Technique Disctn.
Support

Migrtn.
Support

Autonomy
Violated

Atomicity
Level

Isolation
Level

Agent-Based Access [PB9S-2] Partial Partial No VAR None
TP in Mobile Env [Chry93] Partial FuU Yes VAR None
MDSTMP [YZ94] Partial FuU No STR None
Kangaroo Model [DHB97] Partial Partial No VAR None
PS Technique FuU FuU No VAR VAR
Semantic-PS technique FuU FuU No VAR VAR

Table 7-1: Summary o f Mobile 14ulddatai tase Transaction Models

7.4 Performance Analysis and Simulation

hi this dissertation research, an analytical model of transaction management in an 

MMDB environment is developed in Chapter S. This model is used to study the transaction 

service time of the PS and Semantic-PS techniques and to compare their performance to that of 

foe Kangaroo model. A simulation model is developed in Chapter 6 and is also used to study the
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performance of the three techniques. This simulation model is then used to study the bdiavior of 

the PS and Semantic-PS techniques.

The PGSG algorithm of the PS and Semantic-PS techniques requires serialization 

information to be transmitted on the static network in order to construct the partial global 

serialization graph and to propagate serialization information back to the participating sites. The 

primary goal o f the analytical evaluation was to determine the cost (per global transaction) of 

this information propagation with respect to the total execution time of the global transaction. 

The initial analysis widi respect to global transaction length, number of disconnections, and 

number of migrations indicated that the transaction service time and the rate of growth of the 

service time for the PS and Semantic-PS techniques are comparable to those of the Kangaroo 

technique. When the service time is evaluated with respect to the communication cost, the PS 

and Semantic-PS still remain comparable to the Kangaroo model. However, it is evident that the 

service time of the PS technique deteriorates more rapidly than the Semantic-PS and Kangaroo 

technique. This can be attributed to the following;

1. The PS technique executes the PGSG algorithm twice for all mobile global transactions.

2. All site-transactions that execute at the same site are forced to conflict with each other.

The primary goal o f the simulation was to determine the length of the vital stage of 

global transactions such that mobile global transactions are not penalized for their extended 

execution time. The simulation model was also used to study the bdiavior of the PS and 

Semantic-PS techniques with respect to related environment parameters. The simulation results 

indicate that the length o f the vital stage such that mobile global transactions are not penalized 

(i.e., MT-Penalty = 0) is 50% of the total length of foe global transactioa for bofo foe PS and 

Semantic-PS technique. The 95% confidence interval for MT-Penalty when foe vital stage is 

50% of the total lengfo of the global transaction is (-0.0019, 0.0059) for the PS technique and (- 

0.0015, 0.0015) for foe Semantic-PS technique. The simulation demonstrated that the inter­
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arrival time of global transactions, the ratio of static to mobile transactions, and the probability 

of conflicts do not alter the ideal MT-Penalty in any significant way. However, it is evident that 

MT-Penalty is afifected by DCNm and T"m,. This is due to the 6 c t that these parameters affect 

the length o f the vital stage of mobile transactions.

In summary, the analytical nxxlel demonstrates that the communication cost incurred by 

the respective PGSG algorithm of the PS and Semantic-PS techniques accounts for only a small 

portion of the service time of the global transaction in environments where the communication 

cost on the static network is relatively small. Thus, the PS and Semantic-PS techniques offer a 

substantial advantage over existing techniques -  they enforce the isolation property without 

violating local DBMS autonomy -  for little additional communication overhead. The 

simulation demonstrates that pre-serialization is an effective technique that can be used to 

minimize tire unfair treatment of mobile global transactions due to their prolonged execution 

time.

7.5 Future Research

This research deals with transaction management in two rapidly changing computing 

environments, i.e., the vastly expanding Internet environment and the wireless computing 

environment Like any technology in its early stages, the Internet and wireless computing 

environments are driven by innovations. In essence, these environments can be characterized as 

revofaitiQoaiy environments rather than evolutionary environments. The volatile nature of these 

rapidly dianging environments makes it difGcult for researchers to design evaluate and optimize 

algorithms &*r the environments. It also makes it necessary for researchers to continuously re­

evaluate design criteria and to either alter proposed solutions to meet the needs of the changed 

environments or propose new solutions. Accordingly, the future research of fois dissertation will 

proceed in three directions: the requirements of the transaction manager need to be re-evaluated
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with respect to emerging computing models; the PS and Semantic-PS techniques will be 

tailored for the cellular communication architecture; these techniques need to be re-evaluated 

for the new environment.

7.5.1 Emerging Computing Models

In today's Internet computing environment, electronic commerce (a.k.a., e-commerce) 

has become a predominant application domain. Just as mobile computing has affected 

transaction processing, e-commerce is beginning to influence transaction processing in the 

multidatabase environment. The e-commerce transaction processing is called Internet 

Transaction Processing (iTP). Although the transaction model is not yet fully understood, it is 

expected that this nxxlel will be different from traditional online transactioa processing 

(OLAP). As iTP evolves, the PS and Semantic-PS techniques need to be tailored to satisfy the 

new requirements as iTP will be the predominant heterogeneous transaction processing 

environment.

7.5.2 Cellular Communicatioa Architecture

Current trends indicate that the cellular communicatioa medium will be the 

predominant communicatioa medium of mobile computing applications. Thus, it is reasonable 

to optimize die PS and Semantic-PS techniques for the cellular communication architecture. 

Ahhouÿi there are many cellular networks (e.g.. Sprint PCS and AT&T Digital Networks), 

their underlying architecture is very similar. The cellular networic consists of cells -  r iio n s  that 

are covered by a  node that supports wireless communication. Cells are grouped to frirm clusters 

and in turn, these clusters are grouped to fr3rm a hierarchy of clusters diat represents a tree of 

clusters.
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In order to minimize the overhead of information propagation, the research needs to 

study a hybrid concurrency control algorithm that is based on information propagation (such as 

in the PGSG algorithm) between clusters and some concurrency control algorithm that does not 

require information propagation within a cluster of cells. The motivation of this algorithm is 

diat it would eliminate the need for information propagation within a cluster of cells and yet 

provide all the advantages of the PGSG algorithm with respect to the global environment (i.e., 

the cluster tree). In essence, each cluster is treated as a  site in the current environment. 

Information will need to be propagated only when transactions access sites covered by different 

clusters.
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