
INFORMATION TO U SERS

This manuscript has been reproduced from the microfilm master. UMI films the

text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print colored or poor quality illustrations and

photographs, print bleedthrough, substandard margins, and improper alignment

can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and

there are missing pages, these will be noted. Also, if unauthorized copyright

material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning

the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced

xerographicaily in this copy. Higher quality 6" x 9” black and white photographic

prints are available for any photographs or illustrations appearing in this copy for

an additional charge. Contact UMI directly to order.

Bell & Howell Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

UMJ
800-521-0600

UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

TRANSACTION MANAGEMENT

IN MOBILE MULTIDATABASES

A Dissertation

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment o f the requirements for the

degree o f

Doctor o f Philosophy

By
RAVI A. DIRCKZE
Norman, Oklahoma

1999

UMI N um ber 9952412

UMI*
UMI Microform9952412

Copyright 2000 by Bell & Howell Information and Learning Company.
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United S ta tes Code.

Bell & Howell Information and Leaming Com pany
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

© Copyright by RAVI A. DIRCKZE 1999
AU Rights Reserved

TRANSACTION MANAGEMENT
IN MOBILE MULTIDATABASES

A Dissertation APPROVED FOR THE
DEPARTMENT OF COMPUTER SCIENCE

BY

Le^ruenwald, Committee Chair

Adedeji B^Bàdiru

Sudarshan Dhail

S. Lakshmivarahan

C {
Deborah Trytten

ACKNOWLEDGEMENT

Inspiradoa, knowledge, and encouragement are drawn from many sources. At the very

beginning of this dissertation I would like to acknowledge some of the people who encouraged

me to pursue my doctorate, those who inspired me, and those who helped me achieve a wealth

of knowledge.

First, I would like to thank my advisor Dr. Le Gruenwald. At every stage, you provided

me with the advice and guidance that I needed to enhance my knowledge and to improve my

research. It was certainly a pleasant and fiuitful leaming experience. I would also like to thank

the rest of my committee, Drs. A. Badiru, S. Dhall, S. Lakshmivarahan, and D. Trytten, who

have supported and enriched my doctoral study in more ways than one.

Next, I would like to thank my parents for their love and support in all my endeavors.

You have been my primary source of encouragement during my entire college education. 1

would also like to say a BIG thanks you to my wife and daughter for their patience love and

support (especially your patience!). You never fail inspire me. 1 would also like to thank my

sister who has been by my side at all times.

Finally, 1 would like to thank the OU database group for their support and wish them

good luck in their endeavors. Go GUDB!

IV

Table of Content

1 Problem Statement 1

1.1 Objective I

1.2 Organization 2

1.3 Motivation 3

1.4 The Mobile Computing Environment 6

1.5 The Mobile Multidatabase Architecture.. 7

1.6 Transaction Management Issues 9

1.6.1 Multidatabase Design Restrictions 10

1.6.2 The ACID Properties 11

1.6.2.1 Atomicity 12

1.6.2.2 Isolation 13

1.6.2.3 Consistency and Durability 15

1.6.3 Disconnection and Migration 15

1.7 Summary of Transaction Management Issues 16

1.8 Contributions 17

2 Literature Review 19

2.1 Semantic Atomicity 19

2.2 Serializability Theory 21

2.3 Advanced Transaction Models.. 26

2.3.1 The Basic Transaction Model 27

2.3.2 The Open Nested Transaction Model 28

2.3.3 The Multi-Level Transaction Model 28

2.4 Transaction Management Techniques 29

2.4.1 An Agent Based Approach 30

2.4.2 The Cluster Model 30

2.4.3 The Semantic-Based Transaction Processing Scheme 31

2.4.4 Reporting Transactions and Co-Transactions 32

2.4.5 The Multidatabase Transaction Processing Manager Technique 33

2.4.6 The Kangaroo Model 34

2.4.7 A Pre-Conunit Model 35

2.5 Summary of Review 36

3. Transaction Management in the MMDB Environment... 37

3.1 Overview.. 37

3.2 The Model 38

3.3 The Global Transaction Manager... 38

3.4 the Atomicity and Isolation Properties 43

3.4.1 The PGSG Algorithm 46

3.4.2 A Sample Execution of the PGSG Algorithm S1

3.4.3 Proof of Correctness 52

3.4.4 Concurrent Executions of the PGSG algorithm 54

3.4.5 Restricting tiie Growth of the SSGs 59

3.5 Summary and Conclusion.. 62

4 The Semantic Pre-Serialization Transaction Management Technique 64

4.1 Overview 64

4.2 The Atomicity and Isolation Properties.. 65

4.2.1 The PGSG Algorithm 66

4.3 Summary and Conclusion 69

5 Analytical Evaluation 70

5.1 The General MMDB Transaction Model 70

5.2 Values o f Model Parameters 75

5.3 Transaction Models Tailored to Individual Techniques 78

5.3.1 The PS Tedinique 78

5.3.2 The Semantic-PS Technique 80

5.3.3 The Kangaroo Model 82

5.4 Evaluation Results 83

5.4.1 Service Time 83

5.4.2 Varying the Number of Site-transactions in a Global Transaction........................... 84

5.4.3 Varying the Number of Disconnection 6 r a Global Transaction 85

5.4.4 Varying the Number of Migrations for a Global Transaction 86

5.4.5 Varying Communication Time on Static Network 87

5.4.6 Varying Probability of Conflict 89

VI

s.5 Summary and Conclusion... 90

6 Simulation.. 91

6 .1 The Simulation Model... 91

6.2 The Common Simulation Model.. 94

6.3 Tailored Simulation Models... 96

6.3.1 The Disconnection and Migration Model.. 96

6.3.2 Simulation Model for the PS Technique.. 97

6.3.2.1 The ARENA Model for the PS Technique 97

6.3.2.2 The PGSG Java Application ICO

6.3.3 Simulation Model for the Semantic-PS Technique 101

6.3.3.1 The ARENA Model for the Semantic-PS Technique 102

6.3.3 2 The Java Application 103

6.3.4 Simulation Model for the Kangaroo Technique 104

6.4 The Simulation Environment 106

6.5 Service Time for Global Transactions 108

6.6 Hypothesis Testing... 110

6.6.1 Hypothesis Test for the PS Technique.. 110

6.6.1 Hypothesis Test for the Semantic-PS Technique.. 111

6.7 Evaluation of Pre-Serialization 112

6.7.1 Ideal Length of Vital Stage for Global Transactions... 113

6.7.2 Varying the Inter-Arrival Time 115

6.7.3 Varying Mobile to Static Transaction Ratio 116

6.7.4 Varying the Probability o f Conflicts 116

6.8 Summary and Conclusion 117

7 Conclusion and Future Research 119

7.1 Transaction Management in the MMDB Environment 120

7.2 The PS and Semantic-PS techniques 121

7.3 Feature Comparison with Existing techniques 124

7.4 Performance Analysis and Simulation 124

7.5 Future Research 126

7.5.1 Emerging Computing Models 127

vu

7.5.2 Cellular Communication Architecture 127

Bibliography 129

vui

Abstra ct

The Internet and advances in wireless communication technology have transformed

many &cets of the computer environment. Virtual connectivity through the internet has lead to a

new genre of software systems, i.e., cooperating autonomous systems - systems that cooperate

with each other to provide extended services to the user. Multidatabase systems - a set of

databases that cooperate with each other in order to provide a single logical view of the

underlying information - is an example of such systems. Advances in wireless communication

technology dictate that the services available to the wired user be made available to the mobile

user.

This dissertation studies transaction management in the mobile Multidatabase

environment. That is, it studies the management of transactions within the context of the mobile

and Multidatabase environments. Two new transaction management techniques for the mobile

Multidatabase environment i.e., the PS and Semantic-PS techniques are proposed. These

techniques define two new states (Disconnected and Suspended) to address the discormectivity

of the mobile user. A new Partial Global Serialization Graph algorithm is introduced to verify

the isolation property o f global transactions. This algorithm verifies the serializability of a

global transaction by constructing a partial global serialization graph. This algorithm relies on

the propagation of (serialization) information to ensure that the partial graph contains sufEcient

information to verify serializability of global transactions. The unfair treatment o f mobile

transactions due to their prolonged execution time is minimized tfirou^ pre-serialization. Pre­

serialization allows mobile transactions to establish their serialization order prior to completing

their execution.

IX

Finally, analytical evaluation and simulation is carried out to study the performance of

these techniques and to compare their performance to that of the Kangaroo [DHB97] technique.

Although the PS and Semantic-PS techniques enforce the isolation property, the evaluation

results establish that the service time for these techniques in not significantly greater than that of

the Kangaroo technique. In addition, the simulation establishes that pre-serialization effectively

minimizes the unfair treatment of mobile transactions.

Chapter 1

P ro b le m S ta te m e n t

1.1 Objective

On August 19-21, 1998, a group of 16 distinguished database system researchers from

academe, industry, and government including J. Gray, M. Stonebraker, P. Bernstein, H. Garcia-

Molina, and J. UUman met at Asilomar, California, to assess the database system research

agenda for the next decade. The goal of the meeting was to discuss the current database system

research agenda and to report their recommendations. The group discussed their

recommendations in [Bernstein et.al.98] where they encouraged the database community to

eschew the incremental, “delta-X” research that focuses on improving some widely understood

idea X. Instead, they challenged the database community to explore problems whose main

applications are decades ofr ̂ and to pursue highly innovative and speculative research. In foct,

the “grand challenge” proposed by the group is “Make it easy for everyone to store organize

access and analyze the majority of human information on-line”. Although the research

documented in this dissertation commenced long before the Asilomar meeting, its contributions

are in foct, a direct response to this grand challenge.

In the Asilomar report the authors state that in the future, billions of web clients will be

accessing millions of databases, and that the Web will be one large federated system. This

research studies transaction management in a multidatabase environment that supports both

static and mobile users. The multidatabase architecture defined in this research resembles the

federated system of the Asilomar report The primary objectives of this research are fourfold;

first to identify the issues related to transaction management in a multidatabase environment

that supports both static and mobile users; second, to develop two transaction management

techniques that addresses all identified issues; third, to develop analytical and simulation

models and to evaluate the performance of the proposed techniques and to compare their

performance to that o f techniques existing in the current literature; and fourth, to develop

guidelines to help users and future researchers.

1.2 Organization

This dissertation is divided into seven chapters. The following paragraphs provide an

overview of each chapter in the dissertation:

The problem statement is presented in the remainder of this chapter. First, the mobile

computing environment and the mobile computing architecture will be discussed. Next, the

issues related to transaction management in the mobile multidatabase environment will be

identified. These issues foil into three categories: multidatabase design restrictions; the ACID

properties; and disconnection and migration issues.

Chapter 2 presents the state-of-the-art of related work. Specifically it discusses

semantic atomicity and serializability theory, advanced transaction models and existing

transaction management techniques that are applicable to the mobile multidatabase

environment.

Two transaction management techniques that address all the issues will be developed in

Chapters 3 and 4. The Pre-Serialization (PS) transaction management technique will be

developed in Chapter 3. The shortcomings of the PS technique will be identified and a

Semantic-PS technique that overcomes these shortcomings will be developed in Chapter 4.

The performance of these techniques will be evaluated in Chapters 5 aixl 6. Analytical

models will be developed in Chapter 5 and used to study die performance of the PS and

Semantic-PS techniques. Simulation models will be developed in Chapter 6 and used to validate

the evaluation in Chapter S. The evaluation will also develop guidelines to assist future

researches.

This dissertation will be concluded in Chapter 7. First, concluding remarks of the author

will be presented. This will be followed by a discussion of future research issues.

1.3 Motivation

The Asilomar Report [Bernstein et.al.98] predicts that in the future billions o f users will

access millions o f databases in order to access and analyze the vast information available on­

line. This multidatabase environment consists of a set of autonomous databases connected to a

fixed (wired) network that cooperate with each other to provide extended services to users. For

example, users will be able to verify entire travel itineraries that include round-trip airline

tickets, hotel reservations, and rental car reservations, all in one transaction. Obviously, such a

transaction will need to access multiple independent database systems. The rapid advances in

wireless technology and the availability of mobile palmtops dictates that that the services

available to the static user be made available to the mobile user. It is also expected that millions

of users will be carrying mobile computers often called personal assistants, to carry out their

day to day activities [IB94]. Each mobile computer will be equipped with a wireless connection

to the information networks [IB94]. The mobile user will demand access to the information on

the fixed system fiom anywhere and at any time. The multidatabase environment is no

exception.

The distinguishing characteristic of mobile computing is the wireless communication

medium that makes it possible for a mobile user to communicate with a static (wired) computer

system through some wireless communication medium. In today's busy, technology dominated

and communication intensive business environment, wireless computing offers numerous

possibilities for the multidatabase environment.

For example assume the following scenario. A business traveler is commuting on a

commercial airline firom city A to city B. During the flight, the commuter decides to invest his

or her annual bonus in the Stock Market. This person will first acce-jS some information systems

to determine the best investment opportunity. Once a deter.mnation is made, the person will

need to execute a global transaction that accesses his or her personal bank account (or brokerage

account) to obtain the funds, the NYSE database to execute the sale, and the sellers account to

deposit the value of the stock. The person may also need to access some personal database to

record information on the transaction.

The transaction manager is a vital compment of any Database Management System

(DBMS). It is responsible for providing reliable and consistent units o f computing to users. The

characteristics of the mobile computing environment affects the conventional responsibilities of

die transaction manager. They introduce new issues that need to be addressed by the transaction

manager, i.e., disconnection and migration. The wireless communication medium is

characterized by firequent disconnections that occur during the execution of a user session.

These disconnections caimot be treated as communication medium feilures that result in aborted

transactions as in conventional wired systems. The ability to migrate during the execution of a

user session is unique to the mobile computing environment. In order to accommodate mobile

users, the transaction manager of the Mobile MultiDataBase System (MMDBS) needs to view

disconnection and migration as routine events that occur during the normal course of execution

of a transaction. Bbwever, in some cases disconnection may represent unrecoverable fitilures.

Upon disconnection the MMDBS needs to determine the status o f the user. If the user is

expected to reconnect, the transaction should be temporarily suspended. If the user is not

expected to reconnect, the transaction may be aborted. Erroneous decisions about the status of

die disconnected user are likely to be made as the actual status can only be predicted after

disconnection. Thus, such transactions should not be aborted until tiiey interfere with the

execution of otiier transactions. Upon reconnection, suspended transactions should be allowed

to resume execution fiom the point o f suspension. Further, transactions should be allowed to

resume execution from a location different than the location at which the user was situated prior

to the disconnection.

In addition, disconnection and migration affect the execution behavior of the system.

Disconnection and migration prolong the execution time of transactions of mobile users. Also,

mobile transactions are expected to be interactive by nature, i.e., pause for input from the user

[Chry93], For example, the stock broker will determine the quantity of shares to be purchased

only after verifying the price per share. Thus, Long Lived Transactions (LLTs) [PB94] need to

be supported. The length of execution affects concurrency control as well. The probability of a

transaction conflicting with other transactions in the system is proportional to the length of

execution of that transaction. As a result, transactions of mobile users are more likely to cause a

consistency violation [DG98] and therefiore, are more likely to be aborted. In order to maintain a

notion of frtimess, the transaction manager needs to minimize this victimization of mobile

transactions due to their prolonged execution.

Existing Mobile multidatabase (MMDB) transaction management techniques that are

found in the literature address some of the issues that have been identified. However, none of

the techniques addresses all these issues. In frict, all reviewed techniques frtil to address the

unfrtir treatment of mobile transactions due to their prolonged execution, nor do they ensure the

consistency of the transactions. In order to facilitate mobile users access to the information

systems available on-line, it is necessary to re-visit transaction management issues in this new

environment and to provide solutions that address all requirements.

1.4 The Mobile Computing Environment

The gmerai mobile computing model consists of two distinct sets of entities: a fixed

network system and a continuously changing set of mobile hosts (Figure 1-1). The fixed

networking system consists of a collection of static computers connected by a wired networic.

Some units on the static network have the capability of communicating with the mobile units

through a wireless medium. These units are called base stations or mobile support stations

(MSS). The area covered by an MSS is called a cell [PB95]. The wireless communication

medium between the MSS and the mobile user includes cellular architecture, radio transmission

over FM, satellite services, and wireless LAN. Although current wireless communication

technology is &irly reliable, it is not as robust as the communication mediums used in the static

systems. It is also limited in bandwidth compared to wired networks. During the course of

execution the mobile user is likely to migrate fiom cell to cell. The mobile user will be

connected to no more than one MSS at any given time. The process involved in transferring a

user fiom one MSS to another is called a hand-off.

MSS MSS MSS

Mobile U i« t„
Cell

Fixed Network

I Fixed Server Fixed ServerFixed User

Figure l-I: The Mobile Computing Environment

The mobile hosts are portable computers that vary in size, processing power, memory,

etc. The typical mobile computer will have limited resources compared to its desktop

counterparts [PB9S-2], These limitations include battery power, processing power, volatile

memory, disk space, network bandwidth, etc. Due to the unreliability of the communication

medium as well as limited resources available, the mobile user will be characterized by

frequent disconnections and will operate in one of many modes ranging from highly connected

to disconnected. However, a characteristic of these modes of operation is that they are

foreseeable [PB93]. For example, the MSS will be able to predict that the user is going out of

range by monitoring the strength of the signal. On the other hand, if the user decides to

disconnect in order to conserve scarce resources, the MSS could easily be informed of this

decision prior to disconnection.

1.5 The Mobile Multidatabase Architecture

A multidatabase system (MDBS) is a collection of autonomous database systems

(called local database systems, or LDBSs) that are connected to a fixed network (Figure 1-2). In

many cases, an MDBS is the result of shifting priorities, and the need of an organization to be

part of a larger information system [ERS98]. The need to be part o f a larger information system

arises primarily for two reasons: one, organizations may acquire or merge with other

organizations creating the need for a new global information system; and two, competition

forces organizations to take advantage of the Internet to provide cooperating information

systems foat cater to the growing information needs o f users.

In the MDBS, the respective LDBSs retain complete control over their databases. Each

autorxxnous database nuy be viewed as an independent site in the network. These databases

operate in difforent environments, and may use different data models, data manipulation

fitcilities, transaction management and concurrency control mechanisms, [GR93], Existing

users - referred to as local users - will continue to access these databases through their

respective LDBSs. The execution of local transactions submitted by local users will be

transparent to any external process. Users who simultaneously access multiple databases -

referred to as global users - do so by submitting global transactions to the multidatabase

Management System (MDBMS).

Global User

global queries

MDBMS

GTM

local queries obal subqueries

LDBS 1

local queries

LDBSn

Figure 1-2: Multidatabase System

The MDBMS is a set of software modules existing on the fixed network that cooperates

with the local LDBSs in order to project an illusion of a single database to the global user.

Global users are allowed only limited access to the individual databases. For example, although

global users will be allowed to make reservations on a cotiunercial airline database system, they

will not be allowed to execute ad-hoc queries that could compromise sensitive infermation.

Each local database provides a service interfece that specifies the operations accepted by the

LDBS and the services provided to the MDBMS. The Mobile Multidatabase system (MMDBS)

is simply an MDBS that supports both static and mobile users. The database management

system or DBMS of an MMDBS is referred to as a Mobile Multidatabase Management System

(MMDBMS).

The Global Transaction Manager (GTM) is a software component of the MMDBMS

that manages the execution of global transactions. A global transaction consists of a set of

queries, each of which is a legal operation accepted by some service interface of an LDBS in

the system. Queries o f a global transaction may be grouped together to form logical units of

execution called sub-transactions. Any subset o f queries of a global transaction that access the

same LDBS may be executed as a single transaction with respect to that site and will form a

logical unit called a site-transaction. As users migrate from one MSS to another, queries of a

global transaction may be submitted from different MSSs (Figure 1-3). Such transactions will

be referred to as migrating transactions. The notation Q \ is used to represent the j* query of

global transaction k.

Global Transaction GTl
Queries submitted from MSS 1 Queries submitted from MSS 2

! • • • . Q̂ mf • • ;k ̂ ####*# # # # >•••••** * » • • • • • • • • • • • •

LDBS 1 LDBS 2 LDBSn

Figure 1-3: Migrating Global Transaction

1.6 Transaction Management Issues

hi database theory, a transaction is defined as an independent, consistait and reliable

unit o f computing [PB9S]. The definition of a transaction gives a strong indication of the

primary responsibilities of the transaction manager, i.e., to provide consistent and reliable

access to the data within its domain. Generally, this can be achieved by enforcing die ACID

(Atomicity, Consistency, Isolation, and Durability) properties [GR93]. Atomicity requires that

either all operations of a transaction execute successfully or none at all. Consistency requires

that a successful transaction not violate any consistency constraints defined on the database.

Isolation requires that the effect of executing a set of transactions concurrently be equivalent to

that of executing the same set of transactions in some serial order. Durability requires that all

changes made by a successful transaction be permanently reflected in the database. However,

the applicability of ACID in the MMDB environment has been questioned. Not that ACID is

unenforceable, but because it is expected that ACID will be enforced using too many aborts,

resulting in a system that is perfectly consistent, but gets only a small fiaction of useful work

done [DHB97]. In addition to providing consistent and reliable access to the data, the Mobile

MultiDataBase System (MMDBS) needs to address disconnection and migrating transactions.

These reasons provide the motivation to revisit the requirements o f the GTM in the MMDB

environment. In the remainder of this section, a more detailed discussion of these issues will be

provided.

1.6.1 Multidatabase Design Restrictions

Local autonomy is the main feature that distinguishes multidatabase systems from

conventional distributed database systems [BMS92]. Local autonomy dictates that no changes

can be made to the local DBMSs in order to support the multidatabase system. A distinction

can be made between structural design and execution aspects o f local autonomy [ERS98]:

Structural design autonomy refers to the ability of an LDBS to choose its own design with

respect to issues such as data model, query language, etc.; Execution autonomy refers to the

ability of an LDBS to execute transactions without interference. The MMDBMS cannot violate

the structural design and execution autonomy of the local LDBSs. Local autonomy can be

violated in four different ways:

10

• Preservation Infiingement (PI) - The GTM requires that modifications be made to LDBSs

and existing (local) software.

• Execution Infiingement (El) - The GTM infiringes upon the execution fixedom of the

LDBS. For example, an LDBS may be prevented from aborting a site-transaction that

executed at that site.

• Security Infiingement (SI) - An LDBS is not allowed to control access to one or more data

items within its domain.

• Transparency Infiingement (TI) - The GTM requires the LDBSs to furnish control

information such as serialization graphs.

The multidatabase environment give rise to other issues that need to be addressed as

well. The vast number o f LDBSs that could potentially be part of a MMDBS, the autonomy o f

the LDBSs, and the geographic distance that may separate the LDBSs make centralized

algorithms or even distributed algorithms that require the cooperation of all sites, practically

unacceptable. The global transaction management schemes that provide consistent and reliable

units of computing to global users need to be de-centralized in nature, and need to minimize the

cooperation required to perform its tasks.

1.6.2 The ACID Properties

As mentioned befi>re, if a transaction is guaranteed to satisfy the ACID properties it is

then a consistent and reliable unit of computing. Enforcing the ACID properties in the MMDB

environment is compounded by three fiuAors:

1. Enfi)rcing the ACID properties in a distributed environment requires the cooperation o f

each site. For example, to enforce the atomicity property, the sites at Wiich a global

transactions executes site-transactions need to cooperate in order to ensure a consistent

II

final outcome i.e., global abort or commit. The autonomy requirement of the MMDBS

limits the level o f cooperation that can be achieved between the LDBSs.

2. Disconnection and migration of the mobile user alters the structure of (mobile) global

transactions. For example, it prolongs the execution of a global transaction. This prolonged

execution afiects the behavior of the system, i.e., the transaction is likely to retain resources

for longer periods of time, thus limiting concurrency.

3. The vast number o f potential LDBSs that form a MMDBS and their geographic dispersion

further limits the level of cooperation that can be achieved. It makes it practically

impossible to implement any centralized algorithms or even distributed algorithms that

require the cooperation of all sites.

As it is difficult to enforce the ACID properties in the MMDB environment, the

applicability of ACID to this environment has been argued. Further, in [DH95] the authors

make a compelling argument for providing unrestricted access to data in this otvironment:

“Returning dirty data tagged with appropriate warnings is much more useful than returning an

ABORT message ...” . Thus, it is necessary for the transaction management process of the

MMDBS to support a spectrum of correctness criterion with respect to the ACID properties.

Next, each of the ACID properties will be discussed individually.

1.6.2.I Atomicity

The atomicity property requires that either all operations of a transaction execute

successfully, or diat they are all aborted (and all changes made by the transaction are erased

from the system). In the MMDB environment, atomicity requires that either all site-transactions

of a global transaction execute successfully, or that they are all aborted. Thus, all sites at which

a global transaction executes site-transactions need to corporate in order to ensure that the same

outcome is recorded at all sites. It has been debated vdiether, in the MMDB oivirooment, strict

12

atomicity can be enforced without violating local autonomy [BHS92], One side o f the argument

is that the prepared-to-commit operation will become standard in most DBMSs and therefore

provide the necessary cooperation to enforce strict atomicity. In essence, the local LDBS

relinquishes its right to unilaterally abort the (site) transaction after the transaction enters the

prepared-to-commit state. However as the transaction is not yet committed, it may be aborted if

required to do so by the MMDBMS. The other side to the argument is that the prepared-to-

commit operation causes an execution infringement upon the LDBS and that there will always

be databases whose autonomy is critical and will not export the prepared-to-commit operation.

1.6.2.2 Isolation

The isolation property requires that the concurrent execution of any set o f transactions

be equivalent to some serial execution of the same set of transactions. That is, intermediate

results of a transaction must not be visible to other concurrently executing transactions. Once

again, enforcing the isolation property in the MMDB environment is difBcult for two reasons:

1. Local transactions executed by the LDBSs are transparent to the MMDB system and

therefore cannot be considered by any global algorithm.

2. The execution order of concurrent site-transactions of global transactions is not visible to

the MMDB system.

In addition, to ensure that the local (LDBS) isolation property is not violated by a

global transaction, it is necessary to execute all queries of a global transaction that access the

same site as a single ACID transaction with respect to that LDBS. In other words, it is

necessary to limit each global transaction to no more than one site-tiansaction per site. Else, the

LDBS may execute local transactions between the separate site-transactions o f a single global

transaction. This violates the local isolation property as the local transactions are able to view

intermediate results o f the global transaction. This violation cannot be detected by the LDBS as

13

it views each site-transactioas as a separate logical unit of computing. From the perspective of

the MMDBs, diese separate site-transactions belong to the same (global) logical unit of

computing whose intermediate results should not be made visible.

As argued before, in order to provide unrestricted access to data in the MMDB

environment, it is necessary to support a wide range of correctness criterion with respect to the

isolation property. Note that global transactions with unrestricted access that write data back to

the databases may compromise the accuracy of the databases as the transaction may have read

inconsistent data. If the system demands that the correctness of the databases not be

compromised, unrestricted access should be limited to read-only transactions. Thus, only the

data returned to the user will be compromised. As this requirement is application specific, any

proposed technique should provide a wide range of correctness criterion and let the designers of

the individual MMDBSs define the level of correctness that needs to be enforced.

Disconnection and migration affect the execution time of a transaction which, in turn,

affects the enforcement of the isolation property. As the duration of execution o f a transaction

increases, the possibility of the transaction conflicting with other transactions increases. If an

optimistic concurrency control protocol - a protocol that checks for violations o f the isolation

property at the time of the transaction’s commit - is used, transactions of mobile users are more

likely to be aborted due to their prolonged execution time. If a pessimistic concurrency control

protocol - a protocol that does not allow a transaction to violate the isolation property during its

execudom - is used, the average response time and throughput of the system will deteriorate as

transactioas will be blocked for extended periods of time by transactions of mobile users. In

order to maintain a notion of foimess, the MMDB system needs to minimize the ill-effects

caused by disconnection and migration.

14

1.6.2.3 Consistency and Durability

As a consequence of autonomy, we can assume that no data integrity constraints are

defined on data items residing at dififermt LDBSs [DE89], As each LDBS will ensure that the

site-transactions executed at its respective site do not violate any local integrity constraints,

global transactions will, by de&ult, satisfy the consistency property. Thus, the MMDB system

is relieved of this responsibility. Similarly, the MMDB system can rely on the durability

property of the LDBSs to ensure durability of committed global transactions.

1.6.3 Disconnection and Migration

Unlike disconnection in the static environment, disconnection in the mobile

environment cannot be treated as &ilures that result in aborted transactions. The transaction

manager of the MMDBS should allow transactions to be halted at arbitrary points during its

execution. Upon re-connection, halted transactions should be allowed to resume execution fixxn

where they left off. In order to support migration, the transaction management process should

allow halted transactions to resume execution ftom a location different from the location at

which the previous execution was halted. All responses that cannot be delivered due to

disconnection need to be logged by the MMDBS and be delivered to the user upon re­

connection.

To fully support disconnection, it is not sufBcient to simply allow disconnection to

occur at arbitrary points during the execution of a transaction. In some cases, disconnection will

be due to catastrophic ftulures, or catastrophic frilures may occur during the period of

disconnection. Halted transactions are not resumed after catastrophic frilures. Therefore, the

MMDBS needs to determine the status of its disconnected users periodically. When a

catastrophic frilure is deemed to have occurred, the MMDBS may terminate any associated

transactions. Although disconnection is foreseeable, erroneous decisions are bound to be made

15

as the true status of the user cannot be verified after disconnection. Thus, not only should the

MMDBS acconunodate disconnection but should also minimize the affects of such erroneous

decisions. These affects can be minimized by postponing the abort of a transaction until it

obstructs the execution o f other transactions.

Frequent disconnection and migration will prolong the execution time of global

transactions. In addition, global transactions are expected to be interactive by nature, i.e., pause

for input by the user [Chry93]. To support mobile users, the GTM will need to support long-

lived Transactions (LLT) [PB94]. As concurrent transactions compete for resources, prolonged

execution limits concurrency if resources obtained by transactions - such as locks - are not

released in a timely fiishion. The blocking of a transaction’s execution must be minimized in

order to increase concurrency [MB98]. Therefore, site-transactions should be allowed to

commit early so that resources can be released immediately after the site-transaction has

completed its execution.

1.7 Summary of Transaction Management Issues

The transaction management process of the MMDBS needs to enforce the atomicity

and isolation properties with respect to global transactions. In fact, it is necessary to provide the

functionality to enforce a range of correctness criterion with respect to atomicity and isolation.

Disconnection needs to be viewed as an event that occurs during the normal execution sequence

of a Uansaction. To support migration, the disconnected user should be allowed to resume

execution fitxn a different location. Untimely abortions caused by erroneous decisions on

catastrophic ftulures to mobile users needs to be at least minimized, if not eliminated. Any ill-

affects due to the prolonged execution caused by disconnection and migration needs to be

minimized. In addition, the autonomy of the LDBSs must not be compromised. Also, any

16

algorithms used in the MMDB environment need to be de-centralized in nature and need to

minimize the level of cooperation/coordination required by the sites.

Note that, as the local databases are autonomous, site-transactions are executed

independent of each other by the respective LDBSs. As a result, each site-transaction can be

considered as a consistent and reliable unit of computing with respect to that LDBS. That is,

each site-transaction is guaranteed to be an ACID unit o f computing with respect to the LDBS

at which it executed. This does not guarantee that global transactions will be ACID with respect

to the global database. However, the local ACID nature o f the site-transactions can be exploited

by the MMDBS in order to provide globally ACID (global) transactions.

1.8 Contributions

This section summarizes the major contributions of this dissertation. This research

proposes two new transaction management techniques for the mobile multidatabase

environment. These techniques are based on the multi-level transaction model. As the multi­

level transaction model requires all sub-transactions be compensatable, these techniques require

sub-transactions of a global transaction to be compensatable.

The proposed transaction management techniques introduce three new concepts. First, it

introduces the notion o f suspended execution of transactions. Suspended transactions are not

aborted until they interfere with the execution of other transactions. As the status of a

disconnected user can only be predicted, suspending the execution of global transactions instead

of aborting their execution minimizes erroneous aborts. Second, it introduces pre-serialization

which is used to minimize the unfair treatment o f mobile transactions. Pre-serialization allows

mobile transactions to establish their serialization order prior to completing their execution.

Third, it introduces the Partial Global Serialization Graph (PGSG) algorithm that enforces the

atomicity and isolation properties of global transactions. This algorithm is unique in that it

17

verifies the serializability of a global transaction by constructing a partial global serialization

graph - a serialization graph that represents only a subset o f the global serialization scheme. The

PGSG algorithm relies on serialization information propagation in order to ensure that the all

isolation property violations are detected.

As new algorithms and concepts are proposed, extensive analysis and simulation is

carried out. This research develops analytical and simulation models that can be used to study

transaction managemœt in the mobile multidatabase environment.

The analytical and simulation experiments establish that the cost of enforcing the

isolation property is minimal. The simulation results also indicate that the concept of pre­

serialization minimizes the unfair treatment of mobile transactions due to their prolonged

execution.

18

Chapter 2

L i t e r a tu r e R eview

In this section, relevant work will be discussed. As stated in Section 1.6.2.1, it has been

argued whether strict atomicity can be enforced in the multidatabase environment without

violating local autonomy. Without taking sides in that argument, the techniques proposed in this

research will base its correctness criterion on semantic atomicity [LKS91] - an alternate

criterion that is more suitable for the MMDB environment. Semantic atomicity will be

discussed in Section 2.1. Serializability will be the correctness criterion used to enforce the

isolation property in the proposed techniques. Serializability will be discussed in Section 2.2. A

(global) transaction in the MMDB environment is a collection of (site) transactions that are

executed as independent (local) transactions by the LDBSs. However, the global transaction

needs to be executed as a reliable and consistent unit of computing by the MMDBS. The flat

transaction model used in traditional databases is not suitable for the MMDB environment as it

provides only one level o f control. The transaction model proposed in this research is based on

the Nested transaction model [MossSl] which will be introduced in Section 2.3. Finally, seven

transaction management techniques that are applicable to the MMDB environment will be

summarized in Section 2.4.

2.1 Semantic Atomicity

In order to enforce conventional atomicity, the GTM must ensure that either all sub­

transactions of a global transaction are committed or that they are all aborted. Enforcing

atomicity is difficult as each (autonomous) site retains the right to abort a (site) transaction

executed under it’s supervision at any time prior to a successful conunit at that site. An alternate

19

criterion to conventional atomicity is semantic atomicity [LKS91], Semantic atomicity requires

one of the following conditions to be satisfied by each (global) transaction:

1. Either all sub-transactions are aborted or each sub-transaction is committed or retried;

2. Either all sub-transactions are committed or each sub-transactions is aborted or

compensated for

A compensatable transaction is a transaction whose effects can be undone after it has

committed by executing a compensating transaction. For example, a sub-transaction that

reserves a seat in an airline reservation system is compensatable as reservation can be canceled

which, in effect, undoes the reservation. A re-triable sub-transaction is one which is guaranteed

to succeed if retried a sufficient number of times. For example, a sub-transaction that credits a

bank account is a re-triable sub-transaction as money can always be credited to a bank account

provided that the account exists.

Semantic atomicity is more suitable than conventional atomicity for the multidatabase

environment for two reasons: First, semantic atomicity is easier to implement in this

environment as it does not require the cooperation o f the autonomous sites in order to ensure

that either all sub-transactions commit or that they all abort. The following cases will illustrate

this point:

• Let us take the case where all sub-transactions are re-triable. Then, if an LDBS decides to

abort a sub-transaction, then this sub-transaction can be retired until it executes

successfully, satisfying condition 1 of semantic atomicity.

• Let us take the case where all sub-transactions are compensatable. Then, if an LDBS

decides to abort a sub-transaction, then all committed sub-transactions can be compensated

and all active sub-transactions are aborted, satisfying condition 2 of semantic atomicity.

This, in effect, erases the entire execution of the transaction fixxn the global system.

20

Second, semantic atomicity is ideally suited for the MMDB environment as it allows

site-transactions to commit independently, releasing (local) resources held by that site-

transaction in a timely 6shion. This increases local as well as global concurrency.

The transaction management techniques proposed in this research implement condition

2 of semantic atomicity. Condition 2 is chosen for the following reasons:

• Most transactions executed on the Internet, a prevalent multidatabase environment, are

inherently compensatable. For example, any reservation type transactions are

compensatable as the reservation can be cancelled; most purchase type transactions are

compensatable as most purchases are not final as most purchases can be cancelled within a

certain time period.

• In a concurrent environment, strict isolation cannot be enforced under condition 1 of

semantic atomicity. The atomicity and isolation property of a transactions cannot be

verified until the transaction completes the execution of its last sub-transaction. However

under condition 1, a transaction may commit at any point at which all outstanding sub-

transactions are retriable. Although the transaction may not violate the isolation property at

the point of commit, a consequent retriable sub-transaction may violate the isolation

property. This violation can only be resolved by aborting one or more of the transactions

involved in the isolation property violation. If all transactions involved in the violation have

already committed, die violation cannot be resolved.

2.2 SerializabOity Theory

Serializability is the most frequently used correctness criterion to verify isolation

[0V9I]. To state it simply, the execution of a set of transactions is said to be serial if all

operations of each transaction are executed consecutively [UllmSS]. The omcurrent execution

of a set of transactions is said to be serializable if its effect is equivalent to that of some serial

21

schedule of the same set o f transactions. In this section, a formal definition of serializability will

be provided. First, it is necessary to introduce some basic terminology. The terminology defined

in this section is consistent with the definitions in [BHG87].

Definitioa 2.1: Let T = {T,, Tj, ..., T,} be a set of transactions. A history H over T is a partial

ordering with respect to ordering relation such that:

1. H contains precisely the operations submitted by T, i.e., all operations ofT,, 7%,..., Tn;

2. H honors all operation orderings specified by each transaction in T, that is, if operation Ok,

appears before Okj in transaction T ,̂ then Ok appears before Ok, in any history that

contains Tk; and

3. For every pair o f conflicting operations 0; and Oj where Oi appears before Oj in the

execution order of T, then Oi -> Oj is in H.

To illustrate this definition, consider the following example.

Example 2.1: Let T = {T„ Tj} be a set of (two) transactions such that:

Ti => R,(a), R,(b), W,(a), W,(b), C.

T ,=>R,(a),W ,(a),q

where R(x) represents a read operation on x, W(x) represents a read operation on x, and C

represents a commit operation. Assume that the operations of T are executed in the following

order

R,(a). R,(b), Wi(a), W # , C„ R,(a), Wj(a), C,

Then, the history H over T is shown in Figure 2-1.

22

R,(a) -4. R,(y) -> W,(a) -4- Wi(b) -> C.
i
R ,(a)-> W j(a)-> q

Figure 2-1: History aver transaction set T

Definition 2.2: The execution of a set of transactions is said to be serial if the transactions are

executed in some serial order.

Note that the execution of transactions T, and T, in Example 2-1 is serial.

Definition 2.3: Let O; and Oj be two operations in transactions T, and Tj respectively. Oi and Oj

are said to conflict (directly) if Oi and Oj both access the same data object X and at least one is

a write operation that modifies the value of X.

Note that operations Wi(a) and R,(a) in T conflict as they access the same data object

and one operation is a write. Also, if Oi and Oj conflict and Oj and Ok conflict, then Oi and Ok

are said to conflict indirectly.

Definition 2.4: Two histories H and are said to be conflict equivalent if they are defined

over the same set o f transactions and conflicting operations (of non aborted transactions) are

ordered in the same way in both histories.

Definition 2.5: The concurrent execution of a set of transactions is said to be serializ/able if its

history is conflict equivalent to some serial schedule of the same set of transactions.

23

The following example will be used to illustrate a non serial but serializable schedule.

Example 2.2: Let T = {Ti, Tj} be a set of transactions as described in Example 2-1. However, in

this case, assume that the operations of T are executed in the following order;

R,(a), R,(b), W,(a), R^(a), W,(a), Q. W.(b), C.

The history is said to be serializable as it is defined over the same set of transactions

T and is conflict equivalent to the history H of the serial execution of T. In fact, the history

of T in Example 2-2 is the same as the history H in Example 2-1. Note that non conflicting

operations in a history can be rearranged in any order without affecting the outcome of any of

the transactions.

Definition 2.6: Two transactions Ti and T, are said to conflict if they contain conflicting

operations.

Definition 2.7: The serialization graph (SO) for a history H, denoted by SG(H), is a directed

graph whose nodes represent committed transactions in H and whose edges T, Tj (i ^ j)

represent conflicting transactions T, and Tj such that the conflicting operation of Ti precedes the

conflicting operation of Tj.

Example 2 J : Let H be the history given in Figure 2-1. Then SG(H) is the graph T, -> Tj.

Next, a fundamental theorem of serializability is presented. A rigorous proof of this

theorem can be fixind in [BHG87].

Theorem 2.1: A history H is said to be serializable iff SG(H) is acyclic.

24

The serializability theory presented above cannot be applied directly to the

multidatabase environment as this environment consists of two levels o f execution. At the local

level, each local serializability graph SG| consists of local transactions and site-transactions of

global transactions that have been submitted to that site. At the global level, the global

serializability graph SG, consists of global transactions. The global serializability graph does

not contain any local transactions as the execution of local transactions at the LDBS is

transparent to the MDBS. In order for the execution of a set of local and global transactions to

be serializable in the multidatabase environment, the following conditions must be satisfied

[MRKS92]:

1. The local serialization graphs must be acyclic, that is, the concurrent execution o f local and

global transactions within each local LDBS must be serializable; and

2. The global serialization graph must be acyclic, that is, conflicting global transactions must

be serialized in the same order at all sites at which they conflict.

A simple example will be used to illustrate condition 2;

Example 2.4; Let S, and S% be two sites in a multidatabase system where S| contains data item a

and S% contains data item b. Let GT = (GTi, GTj} be two global transactions such that

GT, => R,(a), W,(b), Ci and

GTj=>R,(a),Wj(a), R,(b)C,

Assume that the operations of GTi and GT, are executed by the respective LDBSs in the

following order

Si =» Ri(a), Rj(a), W,(a), Q , C, and

S2=>W.(b), R,(b), Cj, Ci

Then, GS, over GT is given by the graph GT, -> GT, as the execution of conflicting operations

of GTi precedes the execution of conflicting operations of GT, at both sites. However, if the

operations of G T and GTj are executed in the following order

25

Si => R,(a), Rj(a), W,(a), C„ C, and

S2=>R,(b),W.(b),C„ C.

then GT, and GTj are not serializable and SG, contains a cycle.

Each LDBS guarantees that all transactions (local and site-transactions) executed at that

site do not violate the ACID properties. Thus, it is assured that the concurrent execution of

transactions within each LDBS is Serializable and, therefore, condition 1 is satisfied by all

LDBSs of the MMDBS. However, since the GTM has no knowledge of the execution order of

site-transactions within the local LDBSs, condition 2 cannot be verified without taking

additional steps to determine the serialization order of site-transactions within each site.

2.3 Advanced Transaction Models

In the traditional fiat transaction model, a transaction consists of a begin operation, a set

of read and write operations that are executed sequentially, followed by a single commit

operation or an abort operation that un-does the effect of the entire transaction. All committed

transactions are required to satisfy the ACID properties. This model is called fiat because there

is only one level o f control [GR93]. Either all operations succeed and the transaction is

committed, or all operations are aborted. Flat transactions are the simplest type of transactions

[GR93]. It does not provide the flexibility required for the multidatabase and mobile computing

environments. It does not allow sets of operations to be executed as independent transactions

under the supervision o f autonomous DBMSs. As a transaction needs to be executed as a single

atomic unit, atomicity cannot be enforced in the multidatabase environment without the

cooperation of the constituent DBMSs. This model does not allow for a wide range of

correctness criterion wifo respect to the atomicity and isolation properties to be supported.

26

To overcome these limitations, the nested transaction model has been proposed

[MossSl, MMP83]. A nested transaction consists of a set of sub-transactions each of which is

either a nested transaction or a flat transaction. Therefore, the whole transaction forms a tree

and is called a transaction tree. The transaction at the root of the tree is called a top-level

transaction-, others are called sub-transactions. Sub-transactions at the leaf level are flat

transactions. A sub-transaction’s predecessor is called a parent-, a sub-transaction at the next

lower level is called a child. In [MossSl], primitive database operations can only be contained

within the leaf level sub-transactions. In [GR93], this restriction is not observed. In this

research, the model defined in [GR93] will be followed as it is less restrictive. The nested

transaction model allows potential internal parallelism to be exploited. It contains a control

structure that allows operations to be grouped together and executed independently.

Modifications to the commit protocol of the nested transaction model have been

proposed. Each naodification gives rise to a variation of the nested transaction model. These

variations are detailed below:

2.3.1 The Basic Nested Transaction Model

In this model, each sub-transaction is committed or aborted independently [GR93],

However, its commit does not take effect unless its parent transaction commits. Therefore, by

inductioii, a sub-transaction can finally commit only if the top-level transaction commits

[GR93]. When a sub-transaction is committed, its results are made accessible only to its parent

If a sub-transaction is aborted, then all its (child) sub-transactions are aborted r%ardless of their

local commit status. Note that a sub-transaction may commit even if one or more of its sub­

transactions are aborted.

As the commit o f sub-transactions do not take efkct until the top-level transaction is

committed, this model poses a major limitation with respect to the MMDB environment. That

27

is, access to the data items modified by the committed sub-transactions needs to be regulated by

the GTM. This cannot be achieved without violating local database autonomy.

2.3.2 The Open Nested Transaction Model

The open nested transaction model [GR93] is a liberal version of the nested transaction

model that allows each sub-transaction to commit early, independent of the outcome of its

parent transaction. Thus, a sub-transaction may ranain committed even if the parent transaction

is aborted.

This model eliminates the limitations of the basic nested transaction model. That is, it

allows sub-transactions' to commit independently in the multidatabase environment as the

outcome of sub-transactions commit status is not influenced by the outcome of their parent.

However, this model violates the atomicity property of transactions. The results of a sub­

transaction may persist in the database even if the top-level transaction is aborted.

2.3.3 The Multi-Level Transaction Model

The multi-level transaction model is an extension of the nested transaction model

[GR93]. This model allows sub-transactions to commit early as well. However, it assumes the

existence of a compensating transaction that can semantically reverse the effects of committed

sub-transactions in the event that the parent transaction is aborted. The compensating

transaction guarantees that all updates made by committed sub-transactions can be revoked in

the event that the top-level transaction 6ils.

This model is ideally suited for the multidatabase environment for three reasons:

1. It allows sub-transactions to commit early;

2. Atomicity can be enforced without the cooperation o f the autonomous DBMSs as commits

of sub-transactions can be reversed;

28

3. It allows a wide range of correctness criteria - with respect to the atomicity and isolation

properties.

2.4 Transaction Management Techniques

In this section, a brief review of transaction management techniques applicable to the

MMDB environment found in the current literature will be carried out. These techniques will

be examined with respect to disconnection and migration support, LLT support, enforcement of

the atomicity and isolation properties, and local database autonomy violations. The review will

be summarized in Table 2-1.

In this section, the terms Full and Partial will be used to express the level of

disconnection and migration support provided by each technique. Partial will be used to

indicate that the technique allows for disconnection/migration but does not address all the

related issues. The term Full will be used to indicate that the technique addresses all related

issues. The issues related to disconnection are:

1. Arbitrary disconnection should be supported;

2. Disconnection that represent catastrophic failures need to be addressed;

3. Any ill-effect caused by the extended duration of transaction «cecution needs to be

minimized.

The issues related to migration are:

1. Transactions should be allowed to halt their execution at one MSS and resume their

execution firom another MSS at arbitrary points;

2. Any ill-effect caused by the extended duration of transaction execution needs to be

minimized.

VAR, STR and None will be used to express the level of atomicity/isolation provided by

each technique. VAR states that a spectrum of correctness criteria is supported; STR states that

29

only strict atomicity/isolatioa is supported; and None states that atomicity/isolation is not

enforced.

2.4.1 An Agent Based Approach

The technique presented in [PB9S-2] is based on agent-based distributed computing.

An agent is an object that encapsulates data and procedures that the receiving computer

executes. Formally, an agent is a quadruple (D, M, SD, P), where D is a set of data, M is a set

of methods, SD is a set of structural dependencies, and P is a set of break and relocation points.

A global transaction can be visualized as an agent that consists of sub-agents. Agents may be

submitted from various sites including mobile stations. Agent-based computation is

decentralized as the agents themselves communicate with each other in order to provide

consistent and reliable computing. A set of structural dependencies allows the user to define

critical methods that, upon failure, cause the entire agent to fiul. It can also be used to define

compensating methods that are executed to compensate for already committed methods. Thus,

this model supports early commits o f its sub-agents and the spectrum of atomicity. In order to

support migration, relocation points are pre-defined within the agent. This does not allow for

arbitrary relocation of the mobile user. As a result, it does not fully support migration. The

executions of Agents can be isolated fi-om each other by ensuring that concurrent execution

occurs within the pre-defined breakpoints. Yet, the isolation property cannot be enforced

globally as the execution of local transactions is transparent to the external agents. This

technique does not violate any local autonomy requirements.

2.4.2 The Ouster Modd

Aldmugh [PB9S] focuses on a distributed database with replication under central

control, it introduces many interesting ideas applicable to the multidatabase environment as

30

well. In this technique, closely located data is grouped as a cluster. Clusters are defined

dynamically as mobile users connect and disconnect at different locations. Full consistency is

maintained within a cluster. However, different degrees of consistency are defined for

replicated data located at different clusters. This will increase the availability of data and

consequently performance at the cost of consistency. Transactions are defined as either strict or

weak. Strict transactions are allowed to access only consistent copies of a data item and, thus,

produce only consistent results. Weak transactions are allowed to access copies of data items

that are inconsistent within an acceptable limit and, thus, may also produce inconsistent results.

If only strict transactions are allowed, the isolation property is ensured and all copies of a data

item are consistent. If weak transactions are allowed, multiple inconsistent copies of a data item

are produced. Weak transactions provide the necessary flexibility to support a spectrum of

atomicity and isolation criterion. Weak transactions are first committed at the cluster level and

then at the global level. As weak transactions committed at the cluster level may be aborted

during the global commit phase, weak transactions may be used only when compensating

transactions are available; otherwise, cascading aborts of weak transactions could occur.

As a cluster maintains its own copy of data items, LLTs may be executed as weak

transactions within that cluster without the undesirable effects o f data contention. As this

technique fiacuses on distributed databases under central control, the autonomy restriction does

not apply. However, it must be noted that this technique causes an El weak transactions

committed at the cluster level may be aborted during the global commit, and PI as this

technique requires the local DBMSs to be modified to support clusters.

2.4,3 The Semantic-Based Transaction Processing Scheme

The sonantic based transaction processing scheme [WC94] addresses transaction

processing for the general mobile database environment in which the constituent sites may or

31

may not be autonomous. Here, the authors exploit the semantics of data objects and operations

defined on them to support autonomous mobile transactions that are executed on the mobile

hosts and to increase concurrency. A 'master copy’ of each object resides on a stationary

database server. These objects are split into disjoint fiagments that are handed out to the mobile

hosts which manipulate the fiagments within defined consistency conditions. Upon completing

the required operations, the fiagments are returned to the server and combined with the rest of

the data objects using a merge operation. Not all data objects can be fiagmented and operated

upon independently. Sets, stacks, and queues are a few examples of fiagmentable objects. This

scheme is limited in its applicability as it works only in environments where those data can be

fiagmented and operated upon independently.

Disconnected operations and LLTs are supported by allowing the mobile user to cache

data objects required for computation on the local machine. Communication cost is minimized

as only the (fiagmented) portion of the data objects required for the computation is obtained by

the mobile host. As different consistency conditions may be specified for operating upon the

fiagmented objects, the fiiU spectrum of atomicity can be supported. However, as the objects

are split into disjoint fiagments, only strict isolation can be supported. As this technique is not

designed specifically for the multidatabase environment, it violates the autonomy of the local

databases. Modifications need to be made to the local DBMSs in order to support

fiagmentation. In addition, this technique requires the cooperation of the local DBMSs - an El

violation.

2.4.4 Reporting Transactions and Co-Transactions

The technique proposed in [Chiy93] is based on the open nested model and supports

two additional types o f transactions, namely, reporting transactions and co-transactions. These

new types of transactions allow concurrent global transactions to share partial results improving

32

coacunency. In this model, sub-transactions can be committed or aborted independently. Each

sub-transaction is either compensatable or non-compensatable. Non-compensatable sub­

transactions are not allowed to commit their effects on objects when they commit. This is an El

with respect to the autonomy requirements. Sub-transactions are further categorized as either

vital or non-vital. A transaction can commit only if all its vital sub-transactions commit and

only after the statuses of non-vital sub-transactions are known. Thus, this model supports a

spectrum of atomicity. The authors assume that sub-transactions of different global transactions

can interleave their execution in any arbitrary order, eliminating the need to address the

isolation property.

2.4.5 The Multidatabase Transaction Processing Manager Technique

The multidatabase Transaction Processing Manager (MDSTPM) technique proposed in

[YZ94] is based on a Message and Queuing Facility (MQF) to manage global transactions

submitted by mobile workstations. The site that a global transaction is initiated is designated as

the coordinator site for that transaction and schedules and executes the transaction on behalf o f

the mobile unit. Transactions submitted by mobile users are placed in an Input Queue by the

coordinator site. These transactions are then transferred to the Active Queue during execution.

Once the transaction has been completed, it is placed in the Suspend Queue while the two-

phase commit (2PC) protocol is executed [GR93]. Upon completion of the commit protocol,

the transaction and its outcome are placed in the Output Queue. The user may disconnect at any

time during the execution of the transaction. Upon re-connection, the user may query the status

of the transaction. The outcome of the transaction and any results produced are kept in the

Output Queue which could be delivered to the user.

The use of queues allows the MDSTPM model to explicitly handle disconnection. As

the execution of a transaction is coordinated by die initial site, transactions cannot migrate with

33

the user. Instead, all communications with respect to a global transaction need to be forwarded

to the coordinator site. As all operations of a transaction need to be submitted before execution

may begin, LLTs that involve human interaction cannot be supported. This publication does not

discuss enforcing the isolation property. Although the two-phase commit protocol is to be used,

the authors do not discuss the implementation details of this commit protocol. Note that the

two-phase commit protocol (2PC) provides only strict atomicity. This approach does not violate

any autonomy requirements of the local DBMSs. However, as the implementation details of the

2PC are unknown, no definitive conclusion can be drawn.

2.4.6 The Kangaroo Model

The model presented in [DHB97] is based on the open nested model and is the first

model to capture the movement behavior of the mobile user. A global transaction (referred to as

Kangaroo transactions) consists of a set of Joey transactions, each consisting o f all operations

executed within the boundaries of one MSS. Each Joey transaction consists of one or more sub­

transactions. As each Joey transaction contains all sub-transactions that are submitted fi-om

some MSS, the set o f Joey transactions capture the migration of the global transaction. As a

Joey consists o f sub-transactions, this technique does not address arbitrary migration that may

occur in the middle o f a sub-transaction. A Joey transaction may be committed independently.

Kangaroo transactions execute in two different modes: Compensating mode and Split mode.

Under die Compensating mode, the fiiilure of any Joey transaction o f a Kangaroo transaction

causes all its committed Joeys to be compensated and all its other active Joeys to be aborted.

Under the Split mode, all committed Joeys will not be compensated and the decision to commit

or abort any active Joeys is left up to the component DBMSs. These modes provide a full

spectrum of atomicity. However, under the Split mode, component DBMSs may be left in an

inconsistent state. Neither mode enforces the isolation property.

34

2.4.7 A Pre-Commit Model

The transaction model presented in [MB98] addresses transaction management in the

mobile database environment in general. It does not specifically address the MMDB

environment. This technique introduces a pre-read, pre-write, and a pre-commit operation to

address the issues of mobile computing. Transactions of mobile users are initiated by the MH

read or pre-read data values, manipulate the data that has been read and then pre-write modified

values at the MH. Once all pre-write values have been declared, the transactions pre-commit at

which point, all pre-write values are transmitted to the MSS. The MSS will then complete the

transactions, i.e., write all values to the database and commit the transactions. A pre-write does

not update the state o f the physical data object but only declares its modified value. Once a

transaction pre-commits, its pre-write values are written to a pre-write buffer maintained in the

MSS and are made visible to other concurrent transactions executing at that MH and the

respective MSS. A transactions read will return a pre-read value if the latest value available

has not been written to the database as yet; otherwise, the value residing in the database (read

value) will be returned. All pre-committed transactions are guaranteed to commit by the MSS.

This transaction model does not fully support disconnection as it does not address

disconnection that represents catastrophic fitilures. It addresses the concurrency limitation

caused by the extended duration of mobile transactions by maintaining a pre-write buffer and

making the pre-write values visible upon pre-commit. However, the pre-write values are visible

only to those transactions that are executing in that MH or MSS. Note that this limits

concurrency at the LDBS level. As this technique is not specifically designed for the MMDB

environment, it does not address the autonomy requirement In feet, this technique violates El

as transactions are pre-committed by the MSS which guarantees feat the pre-conunitted

transactitm will not be aborted. In fee MMDB environment this cannot be achieved without the

35

unilateral cooperation of the LDBSs. This technique enforces the strict atomicity and strict

isolation. It does not provide the functionality to enforce a range of correctness criterion. As

pre-committed transactions do not abort, no undo recovery or compensating transactions need

to be performed.

2.5 Summary of Review

As shown in Table 2-1, none of the reviewed techniques enforces the isolation property

without violating the autonomy of the local databases. In 6ct, four of the seven techniques

reviewed do not enforce the isolation property at all. As a result, conflicts have no effect on the

outcome of transactions and, therefore, lengthy executions do not incur any ill-efiects.

However, as the isolation property is not enforced, the consistency of the databases is

compromised. In addition, all techniques do not address disconnections that represent

catastrophic failures. It is assumed that a disconnection will always be followed by a

subsequent re-connection. Moreover, performance analysis has not been conducted in any of

these studies.

Technique Disctn Migrtn Autonomy

Violated

LLT

Support

Atomicity

Level

Isolation

Level
Agent-Based Access [PB9S-2] Partial Partial No Yes VAR None
The Cluster Model [PB9S] Partial Partial EI/PI Yes VAR VAR
Semantic based TP [WC94] Partial Partial EIÆ»! Yes VAR STR
TP in Mobile Env [Ctary93] Partial FuU El Yes VAR None
MDSTMP [YZ94I Partial Full No No STR None
Kangaroo Model [DHB97] Partial Partial No Yes VAR None
Pre-commit model [MB98] Partial FuU Yes Yes STR STR

Tabu 2-1 : Summary o f Mobile Database Transaction Models

36

Chapter 3

T r a n s a c t io n M an ag em en t in t h e MMDB E n v iro n m en t

In this chapter, the Pre-Serialization Transaction Management (PS) technique will be

introduced. This technique fully addresses disconnection and migration, minimizes any

prejudices against LLTs, provides the full range of correctness criterion with respect to the

atomicity and isolation properties, and conforms to all multidatabase design restrictions. The

Partial Global Serialization Graph (PGSG) algorithm which is used to verify the atomicity and

isolation properties will be presented in Section 3.1.4.1. This algorithm is a graph-based

algorithm that verifies isolation by analyzing serializability graphs of only a subset of the nodes

in the system. In order to ensure that all isolation violations are detected, the algorithm

propagates serializability information during the commit o f global transactions.

3.1 Overview

The Global Transaction Manager (GTM) of the PS technique is divided into two

layers: the Global Coordinator (GC) layer manages the overall execution of global transactions

aixl disconnection and migration of mobile users, and the Site Manager (SM) layer supervises

the execution of site-transactions. Global transactions are initiated at the GC layer. The GC

layer will submit the site-transactions to the SM layer. The SM layer submits the site-

transactions to the respective LDBS, and forwards the outcome of the site-transactions to the

GC layer. Global transactions are based on the multi-level transaction model. Site-transactions

are categorized as either vital or non-vital [Chry93]. All vital site-transactions must succeed for

the global transaction to succeed. However, the 6ilure o f a non-vital site-transaction does not

cause the global transaction to fiul. The interval in which all vital site-transactions are executed

37

is referred to as the vital phase of the transaction. For simplicity, all LLTs will be considered to

be mobile global transactions, and all non-LLTs will be considered as static global transactions.

Two new states • Disconnected and Suspended - are introduced to address

disconnection and uncertainty about reconnection. Upon disconnection, global transactions are

placed in the Disconnected state by the GC layer. Whenever a catastrophic Êûlure is deemed to

have occurred, global transactions associated with that connection are placed in the Suspended

state. Suspended global transactions are not aborted until they interfere with the execution of

other global transactions, thus minimizing erroneous termination.

The Partial Global Serialization Graph (PGSG) algorithm is used to verify the A/I

properties of a global transaction. This algorithm is based on the optimistic approach and

enforces the range o f correctness criterion. If the A/I properties have not been violated the

algorithm establishes the transaction's serialization order in the global serialization scheme.

Note that the algorithm does not maintain a global serialization graph. Each site maintains a Site

Serialization Graph (SSG) that contains partial global serialization information. The global

serialization scheme can be obtained through the union of all SSGs - a very costly operation.

However, the PGSG algorithm does not construct the entire global serialization scheme in order

to verify isolation; it only constructs a partial global serialization scheme - hence its name.

A static global transaction initiates the PGSG algorithm at the end of its execution. If

the A/I properties can be verified, the transaction’s serialization order is roistered in the global

serialization scheme - henceforth referred to as being toggled • and the transaction is committed;

otherwise, it is aborted. However, a mobile global transaction initiates the PGSG algorithm at

the end o f its vital phase. If the A/I properties can be verified, the transaction is toggled and

execution continues; otherwise it is aborted. A toggled mobile global transaction is allowed to

initiate only ncm-vital site transactions. At the end o f execution of a toggled mobile global

transaction, the transaction executes the PGSG algorithm a second time to verify whether any of

38

the Doa-vital site-transactions executed after being toggled violate the established serialization

order. Any (non-vital) site-transaction that violates this order is at>orted. As only non-vital site-

transactions are initiated after being toggled, the global transaction is guaranteed to commit.

The toggle operation minimizes the ill-effects of extended executions of mobile global

transactions as they are allowed to establish their serialization order prior to completing their

execution.

3.2 The Model

Glot)al transactions are based on the Multi-Level transaction model. This model is

ideally suited for the MMDB environment for three reasons;

1. Atomicity can be enforced without the cooperation o f the LDBSs as sub-transactions are

compensatable;

2. It allows sub-transactions to commit early, independent o f the global transaction;

3. it provides the flexibility to accommodate a wide range o f A/I criteria.

In the proposed model, all operations of a global transaction accessing the same LDBS

constitute a site-transaction (analogous to sub-transaction) that is compensatable and will be

executed as a single transaction with respect to that site. This will ensure that the global

transaction does not execute more than one ACID transaction at any LDBS. In addition, all site-

transactions will be cat%orized as either vital or non-vital [Chry93]. Vital site-transactions are

site-transactions drat must succeed in order for the global transaction to succeed. The abort of

non-vital site-transactions does not force the global transaction to be aborted.

3.3 The Global Transaction Manager

The Global Transaction Manager (GTM) consists o f two layers: a Global Coordinator

(GC) layer and a Site Manager (SM) layer (Figure 3-1). The GC layer consists of a set of Global

39

Transaction Coordinators (GTCs) such that there exists a GTC at each MSS and any other static

node to which global users may connect. All external users connect to the MMDBS via some

GTC. The GTC is responsible for the overall execution of all global transactions of users

currently connected to it. The GTC will submit site-transactions to the respective sites, handle

disconnection and migration, log responses that cannot be delivered to the disconnected user,

enforce the A/I, etc. The SM layer consists of a set of Site Transaction Managers (STMs) such

that there exists an STM at each participating LDBS. The STMs receive site-transactions from

the GTCs, submit the site-transactions to the respective LDBSs and oversee their execution.

MSS 1
GTC I

Static Node MSS 2
GTC 3 GTC 2

GC layer
SM layer

Global Transaction
Manager

STM I STM 2
Service Interface 1 Service Interface 2

Local DBMS 1 Local DBMS 2

Site A SiteB

Figure 3-1: Global Transaction Manager

Each global transaction can be in one of five states: 1) Active - the user is connected

and execution continues; 2) Disconnected - the user is disconnected, but the disconnection was

predicted and re-connection is expected; 3) Suspended - the user is disconnected and is deemed

to have encountered a catastrophic fitilure; 4) Committed - the transaction committed

successfully; and S) Aborted - the transaction is aborted. Note that the states Disconnected and

Suspended do not apply to global transactions of static users.

40

When a global transaction is initiated by a user, the respective GTC creates a global

data structure to keep track of the information required to supervise its overall execution. The

Global Data Structure is given in Table 3-1.

GTID global transaction identifier
G T T ype Mobile (LLT) or static (non-LLTs)
GT Status current state of global transaction
Isolation Verified specifies whether isolation has been verified
Site List respective site of each site-transaction
STID List respective STID of each site-transaction
Critical List specifies vital/non-vital for each site-transaction
STID Status List respective status of each site-transaction
Response List list of undelivered responses, if any

Table 3-1: Global Data Structure

When a user migrates to a new cell, the user will supply the current MSS with the

identity of the previous MSS. The GTC at the current MSS will obtain the associated Global

Data Structure from the previous GTC and assume the responsibility of the overall execution.

The STM at each site supervises the execution of site-transactions submitted to that site.

Each LDBS defines the set of operations accepted by that LDBS. Each site-transaction can be in

one of finir states: 1) Active - the site-transaction is active; 2) Completed - the site-transaction

has conunitted at the local database but the global transaction has not oxninitted; 3) Aborted -

the site-transaction is aborted; or 4) Committed - the site-transaction and the respective global

transaction have committed. Each STM will maintain a Site Table containing infiumation on all

site-transactions submitted to it. For each site-transaction, the fiiUowing information will be

collected:

GTID respective GTID
STID assigned STID
MSS ID current MSS to which user is connected
STID Status current state of site-transaction
Compensating Transaction compensating transaction o f site-transaction

Table 3-2: Site Table Structure

41

The GTC submits all site-transactions and their compensating (site) transactions to the

respective STMs. Upon completion of each site-transaction, the STM will submit a commit

operation to the LDBS and consequently update the STTD_Status to reflect the outcome of the

local COTimit operation, i.e., marked Completed or Aborted. The outcome will then be conveyed

to the GTC to be recorded in the Global Data Structure. Site-transactions are committed locally

independent of the future outcome of the global transaction in order to ensure that local

resources are released in a timely manner.

Whenever a user disconnects, the respective GT Status is mariced as Disconnected. The

execution of Disconnected transactions are not halted. All responses received after

disconnection are placed in the Response_List. Upon reconnection, the GT_Status of

Disconnected transactions will be set to Active, all responses in the Response_List are delivered

to the user, and execution proceeds. At any time during a period of disconnection if the

MMDBS determines that a catastrophic 6ilure has occurred, the respective GT_Status is

marked as Suspended and the execution is halted, i.e., no new site-transactions are initiated.

Suspended global transactions are not aborted until they obstruct the execution of other global

transactions. This will minimize the number of unnecessary aborts caused by erroneous

decisions.

To verify the A/I properties of a global transaction, the respective GTC will execute the

Partial Global Serialization Graph (PGSG) algorithm. This algorithm verifies the A/I properties

widi respect to all successful site-transactions o f a global transaction. A static global

transactions initiates the PGSG algorithm at the end of its execution. If die A/I properties have

not been violated, the transaction's serialization order is roistered in die global serialization

scheme (i.e., toggled) and it is committed; otherwise it is aborted. In the case of a mobile global

transaction, the PGSG algorithm is initiated at the end of its vital phase. If either if the A/I

42

properties have been violated, the mobile global transaction is aborted; otherwise the mobile

global transaction is toggled, the Isolation_Verified field o f the respective Global Structure is

set to true, and execution is allowed to continue. After being toggled, a mobile global

transaction may initiate only non-vital site-transactions. As a toggled mobile global transaction

establishes its serialization order in the global serialization scheme, it is guaranteed to commit.

At the end of its execution, each toggled mobile global transaction initiates the PGSG algorithm

the second time to verify that the (non-vital) site-transactions executed after being toggled do

not violate the already established serialization order. If any site-transaction violates this order,

it is aborted. However, as it is non-vital, its abort does not cause the global transaction to be

aborted. A toggled mobile global transaction is aborted only if it obstructs the execution of

another global transaction while it is in the Suspended state. As mobile global transactions are

allowed to establish their serialization order prior to completing their execution, the prejudicial

treatment of mobile global transactions is minimized.

3.4 the Atomicity and Isolation Properties

In this Section, the PGSG algorithm used to enforce the A/I properties will be

introduced. First, an overview of the algorithm is presented. Details of the algorithm will be

provided in subsequent sub-sections.

As stated previously, it has been argued that strict atomicity cannot be implemented in

the multidatabase environment without violating local autonomy. Without taking sides in that

argument, die atomicity property of the PS technique will be based on condition 2 of semantic

atomicity. That is, either all site-transactions are committed, or all site-transactions are aborted

or compensated for. Condition 2 of semantic atomicity is chosen as it allows (compensatable)

site-transactions to be committed even before the decision to commit the global transaction is

reached.

43

The isolation property is based on seriaiizability. In Chapter 2 it was stated that in order

for a set of local and global transactions to be serializable in the multidatabase environment, all

local serialization graphs must be acyclic and the global serialization graph which contains only

global transactions must be acyclic. In Chapter 1 it was stated that all transactions executed by

the local LDBSs will satisfy the ACID properties. This guarantees that all local serialization

graphs will be acyclic. Therefore, the MMDBMS needs only to œsure that the global

serialization graph that represents global transaction serialization order at the local sites is

acyclic.

To capture the local serialization scheme, each STM maintains a Site Serialization

Graph (SSG). The SSG is an ordered graph that reflects foe execution order of site-transactions

at that site. The combination of all SSGs represents the global serialization order o f all global

transactions. The rxxks in the SSG represent global transactions and are categorized as either

Accessed or Propagated. Accessed nodes represent transactions that execute vital site-

transactions at that site. Propagated nodes are nodes that get copied to foe SSG whenever foe

STM participates in the PGSG algorithm. The edges in the SSG represent the serialization order

of the global transactions.

The PGSG algorithm will first verify semantic atomicity of the transaction to be toggled

or committed, say Ti. That is, the PGSG algorithm verifies that all vital site-transactions of T,

have successfully committed at the respective LDBSs, i.e., marked Completed. If all vital site-

transactions are marked Completed, the atomicity property is satisfied; otherwise, all Completed

site-transactions of Ti (vital and non-vital) are compensated and T| is aborted.

The foct foat the abort of a non-vital site-transaction does o(* cause the global

transaction to be aborted is actually a violation of condition 2 o f semantic atomicity. However,

the need for fois can be argued as follows. In Chapter 2, it was argued that the GTM needs to

support the foil range o f A/I properties. If all site-transactions are classified as vital, then all

44

site-transactions must succeed in order for the global transaction to succeed and condition 2 is

strictly adhered to. If on the other hand ail site-transactions are classified as non-vital, then

unrestricted access is supported. By allowing a global transaction to consist of any combination

of vital and non-vital site-transactions, the PS technique supports the full range of the A/I

properties.

To verify seriaiizability of T„ the PGSG algorithm constructs the Partial Global

Serialization (PGS) graph. The nodes in the PSG graph represent a subset of global transactions

and the edges represent their serialization order. The PGS graph is constructed by combining

Predecessor graphs obtained firom the SSGs at all STMs at which T, executed site-transactions

successfully - hencefiirth referred to as Primary sites. Each Predecessor graph contains T„ all

nodes that precede Ti in that SSG, and additional serialization information obtained firom other

STMs with respect to propagated nodes in that SSG that are Active (henceforth referred to as

Candidate nodes). These sites are referred to as Secondary sites.

After constructing the PGS graph, the algorithm verifies whether Ti violates the

established serialization order of all committed and toggled transactions. Violations are

represented as cycles that consist of T, and other toggled or conunitted transactions. If cycles are

detected, the algorithm will attempt to break these cycles by aborting Suspended (toggled)

mobile global transactions as they are obstructing the execution o f another global transaction.

Note that all transactions mariced as Suspended have not been committed and therefore can be

aborted. If one or more cycles cannot be broken by aborting Suspended transactions, all

Completed site-transactions of Ti are compensated and the global transaction is aborted. If there

are no cycles or all cycles can be resolved, the Isolation_Verified field is set to True, the global

transaction is committed or toggled, and Ae PGS graph is sait to all participating STMs , i.e.,

all Primary and Secondary sites. At each site, serialization information contained in the PSG

graph is copied to its SSG - henceforth referred to as propagation.

45

Propagatioa is a fiindamental part of the PGSG algorithm and ensures that ail cycles are

detected even though the global serialization scheme is only partially represented in each PSG

graph. Whenever a global transaction Ti establishes its serialization order in the global

serialization scheme, propagation is designed to copy all active nodes T, that appear before T, in

the PGS graph (i.e., conflict with and precede T, in the serialization order) to other participating

SSGs. The motivation behind propagation is the following. Some active transaction Tj that

precedes T in the serialization order when T, was toggled may initiate other conflicting site-

transactions in the future such that it now appears after T, in the global serialization scheme,

thus causing a cycle. However, propagation will ensure that when the last transaction in the

cycle attempts to establish its serialization order, the cycle will be in the PGS graph as:

1. Propagation copies preceding serialization information to all participating SSGs.

2. In a cycle, any node precedes all other nodes.

Therefore, the cycle is detected and the global transaction is aborted. Note that the key to the

algorithm is to identify those nodes to which the "preceding" serialization information needs to

be copied. The nodes to which the PGSG needs to propagate information are all Active nodes

that precede T, in the PGS graph.

3.4.1 The PGSG Algorithm

As die execution order o f site-transactions within the local databases are transparent to

all external processes, the STM cannot determine the local serialization order by any direct

means. However, the execution order of site-transactions within the local LDBS may be

obtained implicitly by forcing conflicts among the site-transactions by using a data item called a

ticket [GRS91] maintained at each she. Each site-transaction is required to read die tick^ at that

LDBS, increment its value and write the new value back as part of its execution. The ticket

value read by the site-transaction indicates its serialization order at that she [BMS92] with

46

respect to other site-transactions and will be used to construct the SSG. Note that, any site-

transaction that violates the serialization order represented by its ticket will be aborted by the

LDBS as all sites enforce the ACID properties on all local transactions.

The SSG at each site is a directed graph whose nodes represent the respective GTIDs of

site-transactions and edges represent (forced) conflicts between the respective site-transactions

executed at that site (i.e„ ticket values). For example, there exists T,-»Tz in some SSG if and

only if global transactions T, and 7% access at least one common site and the ticket obtained by

the site-transaction of T, is less than the ticket obtained by the site-transaction of Tz. The

information contained within each node is given is Table 3-3. Each node in the SSG is

cat%orized as either an Accessed node or a Propagated node. An Accessed node represents a

global transaction that executed a site-transaction at that site. A Propagated node represents a

global transaction whose serialization order was copied to the SSG during the execution of the

PGSG algorithm. Next, certain terms used in the algorithm are defined.

GTID Respective global transaction ID
GT Status status of global transaction
Isolation Veri commit intent of global transaction
Node Categor Accessed or Propagated
Site ID If Access, then this Site ID; Else the Propagated Site ID

TabU 3-3: SSG Node

Definttioa 1: We say that Tj is reachable from Ti in graph G if there is a path from Ti to Tj in

G, i.e., Ti—>...^Tj.

Definition 2: ReachablefTjJ is a (directed) sub-graph o f an SSG that contains node Tj and all

nodes T such that Tj is reachable from T in the SSG.

47

Definition 3: a Candidate node is any Propagated node whose GT Status is not Committed.

Definition 4: Let G, and Gj be two graphs with node sets Ni and Nj and edge sets Ej and E,

respectively. The operation G = MergefGt, Gj} results in a new graph G(N, E) such that N = Ni

u Nj and E = Ei w E, where vj is the union operator. (G does not contain duplicate edges).

Definition 5: The graph Predecessor(T ̂ is the sub-graph ReachabIe(Tj) of the SSG at site

Sm Merged with all Predecessor(Tk, S J graphs where Tk is a Candidate node in Reachable(Tj)

and So is the respective propagated site of Tk. Formally,

Predecessor(Tj, SnJ = { G = Reachab!e(Tj) I Merge (G, Predecessor(Tk, So)) V Candidate nodes

Tk in Reachable(Tj) where So is the Site_ID of T k}

In the graph Predecessor(T%, Sy), T, is referred to as the requested root node.

Definition 6: The list PList(Tj, SIJ is a list (maintained at site Sm) whose elements represent

sites firom which Predecessor graphs were obtained in order to construct Predecessor(Tj, Sm).

The PGSG algorithm consists of two modules: the GlobalCoordinator module

constructs the PGS graph fiom the Predecessor graphs and verifies the A/I properties, and the

RequestPredecessor module constructs the Predecessor graphs. The GlobalCoordinator module

is executed by the GTC that supervised the execution o f the global transactions at the time that

the commit or toggle operation was initiated. Ti rq>resents the global transaction to be

committed or toggled and the Request argument specifies it is to be committed or toggled. First,

this algorithm verifies that all vital siteHransactions have been Completed. Next, the algpridim

obtains the Predecessor graphs firom all Primary sites at which Ti successfully executed site-

transactions. Each Primary site executes the RequestPredecessor algorithm to construct the

48

Predecessor graph and submits it to the GTC. The PGSG algorithm will then verify

seriaiizability and either toggle, commit, or abort the global transaction. If the global transaction

is to be committed or toggled, the PGS graph is sent to all participating sites so that the required

serialization information is propagated.

Algorithm 3-1: GlobalCoordinator (Tj, Request)
/• Verifies the A/I properties */
/* first, verify atomicity */
I f any critical site-transaction has been aborted

Send ABORT (TJ to ail sites in SiteJList /* Abort all site-transactions */
Else

I* next, verify isolation */
fo r all site Sm in Site List where T, is marked Completed, obtain PredecessorfT^ S J

by executing the Request Predecessorff^ algorithm
Generate PGSG by Merging all Predecessorff ̂ S J
Check fo r cycles w. r. t. T . Committed nodes and Togged nodes
I f cycles are detected

I f cycles can be broken by aborting Suspended global transactions or
non-vital site-transactions ofT j

Mark GTJStatus o f Suspended nodes as Aborted in PGSG
Else /* isolation violated */

Send ABORT (TJ to all sites in Site List /* Abort all site-transactions */
Exit Algorithm

E n d lf
End I f
/* A/I properties verified *i
Mark Isolation_Verified in Global Structure and node Tj in PGS graph as True
I* Propagate success and serialization information */
Send “SUCCESS" and PGS graph to sites in S iteJJst where T is marked Completed

E n d lf
End [PGSG Algorithm}

For Transaction Ti, The GlobalCoordinator module initiates RequestPredecessorfT,, S=)

at all primary sites Sm. In turn, each site S» will initiate RequestPredecessorflj, St) for aU

candidate nodes Tj (propagated fiom Site S J in Predecessor(Ti, Sm). If Predecessor(T,, S J

49

contains any Candidate nodes Tk, then the Secondaiy site initiates RfiquestPredecessor(Tk, Sp)

for all Candidate nodes Tk. All SpS are also categorized as Secondary sites. Finally, Secondary

sites Sn submit their graphs to the Primary sites which submit Predecessor(T„ So) to the

GlobalCoordinator module. Each site then awaits the outcome of the Commit of Toggle

operation. If T, is to be committed or toggled, each site (Primary and Secondary) will copy

propagation information by merging ReachabIe(Tx) of the returned PGS graph with

Reachable(T%) of its SSG where T% represents the requested root node for the Predecessor graph

submitted by that site. For example, T% represents global transaction T̂ in all Primary sites.

Algorithm 3-2: Request Predecesscr(Tj, S«)
I* Construct Predecessor graph */
Construct Predecessor(Tf S J , PDst(Tj, S J
Submit Predecessor(Tf S J to requester
Wait fo r Reply from requester
I f Reply is ABORT (T) I* site-transaction is to be aborted */

IfT i is Accessed node in SSG /* this is a Primary site */
Abort Tj i f Active or compensate Tj i f Completed

E n d lf
Send ABORT (T^ to all sites in PList(T ̂S J /• inform all Secondary sites */

Else I* global transaction is to be toggled */
IfT i is Accessed node in SSG I* this is a Primary site */

Mark Isolation Verified as True
E n d lf
I* Primary and Secondary copy serialization information */
SSG = Merge(SSG, Reachable(T) o f received PGS graph)
Update status o f Candidate nodes in ReachablefT)
Send ‘SUCCESS’ and PGS graph to all sites in PListfT» S J

E n d lf
End { Request Predecessor}

SO

3.4.2 A Sample Execution of the PGSG Algorithm

In this example, the MMDBS consists of 3 sites labeled S, through S3. There are 3

active global transactions labeled T, through T3 in the system. For simplicity, we assume that

each transaction accesses two sites, all site-transactions at each site conflict with each other, and

that all transactions have completed their execution but have not yet committed. The algorithm

is illustrated in Table 3-4. The initial SSG at each site is given in row one. For example, at site

S3, T3->Ti indicates that T3 and T, conflict and that T3 is serialized before T,. Initially, all

nodes are Accessed nodes. Rows two through four reflects the SSGs after the completion of the

PGSG algorithm of the transaction given in column one. If a site does not participate in the

PGSG algorithm, it will not have an entry in the corresponding row as the SSG does not change.

The Site_ID of Propagated nodes is given in brackets below the respective node. The last

column reflects the PGS graph that is constructed at each stage. A [C] below the respective

node in the PGS graph states that the node is to be committed and a [A] states that the node is to

be aborted.

In this example T, executes the PGSG algorithm first, T3 second, and Tz third. For the

commit of T,, Si and S% participate as Primary sites. The Predecessor graph submitted by S| is

T3->Ti, and the Predecessor graph submitted by Sz is T |. As there are no cycles in the PSG

graph that is constructed by combining the two Predecessor graphs, Ti commits successfully.

After Ae commit, the PGS graph is sent to all participating sites, i.e., Si and S%. At each site, the

nodes in the PSG graph that are not in Predecessor(T|, S%) are copied (propagated) to the SSG.

Next, fi>r die commit o f T3, Si and S3 participate as Primary sites. Once again, as there are no

cycles in the PSG graph, T3 is committed and node T% is propagated to Si. Next, for the commit

of Tz, Sz and S3 participate as Primary sites. As Predecessor(T3, Sz) Sz has an Active propagated

node in its SSG widi SiteJED Si (i.e., T3 which when propagated to Sz was Active and therefore,

still deemed to be active). Si will participate as a Secondary site. Here, die PSG graph will

51

contain a cycle involving Tj and therefore, Ti will be aborted and removed form the SSGs at all

sites as part of the Propagation process. Note that the cycle will not be detected if this example

is carried out without Propagation.

s, Sj S j PGS graph
Initial SSGs Tj->T, T |—»Tj T j- ^ T j
Commit o f T| Tj-^T, T j—>T I—>Tj

[S,l
Tj->T,

[Cl
Commit o f T3 T j—>Tj ^ T i

fSsl
Tj->Tj Tj->Tj

[Cl
Commit ofT% T j—>Ti Tj-^T,

[S,]
T j T j—►Tj—>T |—►Tj

[A1
Tiütle 3-4: Sample execution o f PGSG algorithm

3.4 J Proof of Correctness

Lemma 1: Let Ti— be in the SSG at some site Sj. Then, T began its execution at S, prior to

the completion o f T,’s execution at Sj and therefore, prior to the (global) commit of Sj.

Proof: In order for T-^Tj to exist, T must have obtained a ticket that is less than the ticket

obtained by Tj. Therefore, Ti b%an its execution at Sj prior to Tj completing its execution at Sj.

Theorem 1: Let T = {T,, T%,..., To} be a set of transactions that cause a cycle. Assume that T%

dirouÿi T , commit successfully and that T, is the last transaction in T to attempt to commit.

Then T, will be a Candidate node in some PredecessorfTi,, S%) used to construct the PGS graph.

Thus, the cycle will be detected.

Proof: For simplicity, let us assume that each transaction executes at exactly two sites such tiiat

the cycle

52

c ■ T i->Ti->...->Tb->Ti is produced.

By Theorem 1, for all Tq that have completed their execution, there exists Tp-^T, for some T, in

T in the SSG at some site Sq at which Tq executed. When Tq executes the PGSG algorithm, T, is

in Predecessor(T^ Sq) used to construct the PGS graph. Now, either T , is committed, or not

committed.

If Tp is not committed then T , will be added as a Candidate node to all the SSGs at which T,

executed.

If Tp is committed, then, by Theorem 1, there exists a T„ in S such that To,->Tp at some site Sm

at which Tp executed. Once again, either Tm was committed or not committed at the time of Tp's

commit. If Tm was not committed, then Tm was propagated to S„ at the time of Tp’s commit and,

as a result, will be in PredecessorfTq, Sq) at the time of Tq’s commit and will be added as a

Candidate node to all SSGs at which Tq executed. If Tm was committed, we may repeat this

argument. As the conflicts are cyclic, PredecessorfTq, Sq) used to construct the PGSG when Tq

attempts to commit will always contain a non-committed node from T which will then be added

as a Candidate node to all SSGs at which Tq executed.

Now let Ti attempt to commit at site Si and Sn where Ti-^Tj and T,->T, exist, respectively.

Then, as To is committed, the SSG at S, will contain a Candidate node - say T% with respective

site Sx • in its PredecessorfTi, Sn). If T* committed after its propagation to site Sn, then the SSG

at Sx would, in turn, contain a Candidate node. Finally, as the only node in the cycle that is

currently active is T |, the Predecessor(Ti, Sn) constructed at site S» will contain Ti as an

Accessed node as well as a Candidate node. Therefore, Predecessor(T|, So) will contain the

entire cycle. Thus, the PGS graph will contain the cycle. As all nodes except T | are committed,

the cycle will be detected.

53

3.4.4 Concurrent Executions of the PGSG algorithm

In tbe preceding sections it was assumed that the PGSG algorithm always executed in

isolation, that is, each instance of the GlobalCoordinator algorithm (and its respective

RequestPredecessor algorithms) executed without interference from other instances of the

algorithm. This section removes this assumption, studies its effects, and extends the algorithm

to prevent the loss of information during propagation that may result from concurrent

executions.

In the MMDBS environment, it is possible that multiple GTCs may execute the PGSG

algorithm on bdialf of different global transactions at the same time. The concurrent execution

of the PGSG algorithm may cause conflict information being propagated to be lost or ignored

resulting in cycles going undetected. This will be illustrated using the sample execution

presented in Section 3.1.4.2 and altering its execution as follows: Let us assume that global

transaction T, has committed and that T% and T] have completed their execution but have not

committed. See Table 3-5 for the SSGs at each site after T, has committed.

s, S2 S3 PGS graph
Initial SSGs T3—>Ti T |—»T] Tz-»T3
After Commit ofT, T3->Ti T 3̂ T i —>Tj

rs,i
T2—̂Ts T3-*T,

Td}le 3-5: SSGs after Ti has committed

Next, let us assume that T% and T3 initiate the PGSG algorithm concurrently. Table 3-6

illustrates the execution of the algorithm. Row 3 and Row 4 contain the PGS graphs for T] and

T« respectively. A in a cell indicates that that site participates in the commit of the

respective transaction. Assuming that propagation from the commit of one transaction does not

54

overwrite the infonnation propagated from the commit of the other transaction, row 5 contains

the SSGs after ail transactions have committed.

Note that, neither PGS graph contains the cycle as the PGS for T% does not contain the

information that would have been propagated had T} committed before T% and vise versa.

Therefore, both T% and T3 will be allowed to commit.

s , & S3 P G S graph
After Commit ofT , T 3—>T i T 3—♦ T i—> T i

[S .]

T]—>T]

Commit ofT] « « T 2-)> T 3

[C]
Commit ofT% « « « T 3- > T , - » T z

[C]
T i - ^ T] —» T |

[S3I

T 3—►Ti—>T j

[S ,]

T 3—>T i —>T j—>T]

(S . l [S3]

Table 3-6: Concurrent conunit o f T2 and Tm

To address this issue, the algorithm needs to ensure that global transactions whose PGS

graphs contain at least one common node (i.e., the same node from the same SSG) do not

execute the PGSG algorithm at the same time. Global transactions whose PGS graphs are

disjoint may execute the PGSG algorithm concurrently as established by the next theorem and

the following discussion.

Theorem 2: If the PGS graphs of global transactions Ti and Tj are disjoint (i.e., do not de-net

contain any common node), dien the node set Si containing all nodes in Reachable(Ti) where Ti

is modified by the Propagation phase o f Ti and the node set Sj containing all nodes in

Reachable(Tj) where T/ is modified by the Propagation phase of Tj are also disjoint.

55

Proof: Let us assume the contrary. Assume that Si and Sj contain a common node representing

global transaction T%. As propagation copies only those nodes contained in the PGS (and as it

copies information only to nodes contained in the PGS), T% must exist in the PGS of both T, and

Tj. Clearly, this is a contradiction and therefore. Si and Sj must be disjoint.

This theorem states that if the PSG graphs of any two global transactions are disjoint,

then the nodes modified during the propagation phase are also disjoint. Therefore, if the PGS

graphs of two or more transactions that execute the PGSG algorithm concurrently are disjoint,

then the SSG graphs after a concurrent execution would not be any difibrent had the PGSG

algorithms executed in some serial order.

To ensure that global transactions whose PGS graphs contain at least one conunon node

do not execute the PGSG concurrently, a simple lock mechanism is employed. Each node in the

SSG is associated with an exclusive lock. Each primary site Sm that executes Request

Predecessor(Tj, Sm) needs to obtain a lock on T, and all nodes in all Predecessor graphs used to

construct Predecessor(Tj, Sm) This simple locking mechanism will ensure that transactions

whose PGS graphs are not disjoint will not be allowed to execute the PGSG algorithm

concurrently as stated in the next theorem.

Theorem 3: If global transaction Ti obtains all locks necessary to construct its PGS graph Gi,

then DO other transaction Tj whose PGS graph Gj has at least one common node with Gi can

obtain all locks necessary to construct its PGS graph.

Proof: Let us assume the contrary. Assume that Global Coordinators GTCi and GTQ execute

the PGSG algorithm concurrently for Ti and Tj respectively, and that G, and Gj have at least one

56

common node N .̂ This implies that both GTC, and GTCj have obtained an exclusive lock on N .̂

This contradicts the definition of "exclusive" lock and therefore carmot occur.

The updated GlobalCoordinator algorithm and RequestPredecessor algorithm are given

below. The statements diat have been added are in bold text.

Algorithm 3-3: GlobalCoordinator (Tj, Request)
/• Verifies the A/I properties */
/• first, verify atomicity */
Ifcmy critical site-transaction has been aborted

Send ABORT (TJ to all sites in SiteJList I* Abort all site-transactions *1
Else

/* next, verify isolation */
Loop

For all site Sm in SiteJList where Tj is marked Completed, obtain Predecessor(Tf S J
by executing the Request Predecessorffp S J algorithm
I f any a te returns SH ARE-VIO IATIO N send SH ARE-VIOLATIO N to all sites

While some site returns SHARE-VIOLATION
Generate PGSG by Merging all PredecessorCTj, S J
Check fo r cycles w.r.t. T j, Committed nodes and Togged nodes
I f cycles are detected

I f cycles can be broken by aborting Suspended global transactions or
non-vital site-transactions o fT j
Mark GTJStatus o f Suspended nodes as Aborted in PGSG

Else /* isolation violated */
Send Abort (TJ to all sites in SiteJList /* Abort all site-transactions */
Exit Algorithm

E n d lf
E n d lf
I* A/I properties verified *i
M ark Isolation_Verified in Global Structure and nock Tj in PGS graph as True
I* Propagate success and serialization information *l
Send "Success " cmd PGS graph to sites in S iteJJst where Tj is marked Completed

E n d lf
End {PGSG Algorithm}

57

Algorithm 3-4: RequestPredecessorfTj, S .)
/• Coostiuct Predecessor graph */
Obtain Exclusive locks on Reachableflj)
I f any lock cannot be obtained

Release all locks and return SHARE-VIOLATION
ExU

Else
Construct PredecessorfTj, S J , PListfTj, S J
I f any site returns SHARE-VIOLATION

Release all locks and return SHARE-VIOLATION
Exit

E n d lf
Submit Predecessor(Tf S J to requester
Wait fo r Reply from requester

I f reply is SHARE-VIOLATION
Release all locks and send SHARE-VIOLA TION to all sites in PListfTj, S J
Exit

Else I f Reply is ABORT(TJ I* site-transaction is to be aborted •/
IfT , is Accessed node in SSG /• this is a Primary site */

Abort Tj ifA ctive or compensate Tj i f Completed
E n d lf
Release all locks
Send ABORT (Tj) to all sites in PLisifT, S J I* inform all Secondary sites */

Else /* global transaction is to be toggled */
IfT i is Accessed node in SSG /• this is a Primary site •/

Mark Isolation_Verified as True
E n d lf
I* Propagate serializatioa information */
SSG = Merge(SSG, Reachable(T) o f received PGS graph)
Update status o f Candidate nodes in ReachablefT)
Release a lilocks
Send ‘SUCCESS' and PGS graph to all sites in PListfT> S J

E n d lf
E n d lf
End { Request Predecessor)

S8

Note that if at any time a necessary lock carmot be obtained, the PGSG algorithm

releases all locks that have been obtained and starts over. This will ensure that the algorithm

does not cause any deadlocks in the system.

3.4.5 Restricting the Growth of the SSGs

The difference in philosophies in pessimistic vs. optimistic concurrency control

approaches can be generalized as preventive vs. cure. Pessimistic concurrency control

algorithms are based on the assumption that it is more cost-effective to prevent isolation

property violations. On the other hand, optimistic concurrency control algorithms are based on

the assumption that it is more cost-effective to detect isolation property violations and take the

necessary corrective measures. The PGSG algorithm introduced in this research is based on the

optimistic philosophy.

In general, optimistic approaches can be categorized as either forward-examination or

backward-examination. Forward-examination algorithms verify the seriaiizability of a

transaction T, by looking at the serialization order o f Ti and all active transactions in the system.

Forward-examination algorithms detect a potential violation and resolve the violation by

aborting some transaction involved in this potential violation. For example, if active

transactions T, and Tj conflict at some site where Tj is serialized before T, and Ti and Tj do not

conflict at any other site, then it may seem that Ti can be committed as there is no seriaiizability

violation. Yet if Ti is committed, a seriaiizability violation could occur in the future if T,

executes at some odier site at which Ti executed and Tj is serialized after T,. This violation will

not be detected when Tj attempts to commit as the algorithm is based on forward-examination

and Ti has already committed. Therefore, when Ti attempts to commit, if Ti conflict with

another transaction Tj at some site wtere Tj is serialized before Ti, forward-examination

59

protocols will abort either T. or Tj even though there is no violation at this point in order to

prevent any seriaiizability violation occurring in the future.

On the other hand, backward-examination algorithms verify the seriaiizability of a

transaction T, by looking at the serialization order o f T, and all committed transactions in the

system. The advantage of backward-examination algorithms is that a transaction is aborted only

if a real violation exists (as opposed to a potential violation). However, the disadvantage of the

backward-examination algorithms is that, as the number of committed transactions in the

system increases, the overhead required to verify seriaiizability increases.

The PGSG algorithm verifies seriaiizability based on the backward-examination

approach. Therefore, the algorithm needs to address the growth in overhead over time. This is

achieved by "trimming" the SSGs during the execution of the PGSG algorithm, thereby limiting

the set of committed transactions that need to be considered. The basis behind this trimming is

presented in the next theorem:

Theorem 4: Let node o; representing committed transaction T, be a node in some SSG. o; can

be a node in a cycle in the PGS of some global transaction Tj only if there exists a Candidate

node in Predecessorfn*).

Proof: Let us assume the contrary. Assume that Ti is committed, there is no Candidate node in

Predecessorfoj), diat Oj is a node in a cycle in the PSG of Tj, and that Tj is the last node in diat

cycle that attempts to commit Then by Theorem 1, Tj will be a Candidate code in some

PredecessorfTj., S^J used to construct the PGS graph. As n* is a node in the cycle, % must be in

the PredecessorfTj., S%) that contains the cycle. Therefore, Tj must be in Predecessorfoj). Clearly,

this is a ctmtradiction. Therefore, if Tj is committed and there is no Candidate node in its

PredecessorfTj graph, it cannot be a node in a cycle.

60

As stated in tbe previous theorem, any node in an SSG representing a committed global

transaction that does not contain a Candidate node in its Predecessor graph cannot be a node in

a cycle. Therefore, it (and ail nodes in its Predecessor) can be removed from that SSG. The

PGSG algorithm trims its graphs as follows: Whenever an STM S% executes Request

Predecessor(T,, S%), the Request Predecessor algorithm trims the PredecessorfTj) by removing

any committed node Ti in PredecessorfTj) such that Ti * Tj and ReachablefT,) contains no

Candidate Nodes. Thus, any node that, by Theorem 2, cannot be a node in any cycle is removed

from the SSG.

The updated RequestPredecessor algorithm is given below. Once again, the statements

that have been added are in bold text.

Algorithm 3-5: RequestPredecessor(Tj, S .)
/• Construct Predecessor graph */
Obtain Exclusive lock on ReachablefT])
I f any lock cannot be obtained

Release all locks and return SHARE-VIOLATION
Exit

Else
Construct PredecessorfTj S J , PListfTj, S J
I f any site returns SHARE-VIOLATION

Release all locks and return SHARE-VIOLATION
Exit

E n d lf
Submit PredecessorfTj S J to requester
Wait fo r Reply from requester

I f reply is SHARE-VIOLATION
Release all locks and send SHARE-VIOLATION to all sites in PListfTj S J
Exit

Else IfReplyisABO RTfTj) /* site-transaction is to be aborted */
IfT i is Accessed node in 5SG /* dûs is a Primary site */

Abort Tj ifActive or compensate Tj i f Completed

61

E n d lf
Release all locks
Send ABORT (T) to all sites in PListfTi, S J I* inform all Secondary sites */

Else !* global transaction is to be toggled */
IfT , is Accessed node in SSG I* this is a Primary site •/

M ark Isolation_Verifted as True
E n d lf
I* Propagate serialization information */
SSG = Merge(SSG, ReachablefT) o f received PGS graph)
Update status o f Candidate nodes in ReachablefT)
Remove a llT iin ReachablefT) such that T ,^T p T its committed and

ReachablefT) contains no Candidate Nodes
Release all locks
Send 'SUCCESS' and PGS graph to all sites in PListfTj, S J

E n d lf
E n d lf
End { Request Predecessor)

3.5 Summary and Conclusion

This chapter proposes a new transaction management technique called Pre-Serialization

(PS) for the mobile multidatabase environment The global transaction model of the PS

technique is based on the multi-level transaction model, which requires site-transactions to be

compensatable. The multi-level transaction model allows site-transactions to be committed prior

to the decision to commit their global transaction, releasing local resources in a timely manner.

Site-transactions are cat%orized as either vital or non-vital. The vital phase of a global

transaction contains the entire ocecution between the first and last vital site-transaction of that

global transaction. This cat%orization gives the PS technique the flexibility to enforce the full

range of atomicity and isolation correctness criteria.

This technique introduces two new states to address the disconnectivity of the mobile

user. Whenever a disconnection occurs, all global transactions o f that user are placed in the

Disconnected state. I f at any stage it is deemed tiiat the disconnected user has encountered a

62

catastrophic &ilure, these transactions are placed in the Suspended state. As catastrophic

6 ilures can only be predicted, Suspended transactions are not aborted until they interfere with

the execution o f other transactions. This minimizes unnecessary aborts caused by erroneous

predictions.

This chapter proposes a new algorithm called PGSG that enforces the atomicity and

isolation properties o f global transactions in the MMDB environment? This algorithm verifies

serializability by constructing a partial global serialization graph. This graph does not contain

the complete serialization scheme of the MMDBS. Instead, it contains all the serialization

inArmation with respect to the transaction whose isolation property is being verified. This

algorithm ensures that all cycles will be detected even though the complete serialization scheme

in not reflected in the PGS throuÿr propagation which is the dissemination of serializability

information. In order to minimize mobile global transactions being penalized due to their

prolonged execution, the PS technique allows mobile transactions to establish their serialization

order in the global serialization scheme at the end of their vital phase.

63

Chapter 4

The Sem antic Pre-Serialization Transaction Managem ent Technique

The PS technique has two major limitations. First, mobile global transactions incur

additional overhead as opposed to static global transactions as mobile global transactions need

to execute the PGSG algorithm twice. Second, this technique provides limited concurrency as

each site employs a single ticket to serialize all site-transactions that execute at that site. In this

section a Semantic Pre-Serialization (Semantic-PS) transaction management technique is

proposed. The Semantic-PS technique is a modified version of the PS technique that overcomes

the noted limitations o f the PS technique.

4.1 Overview

The Semantic-PS differs fiom the PS technique in two areas - both relate to the

enforcement of the A/I properties. First, in order to address the additional execution overiiead

incurred by mobile global transactions, the Semantic-PS technique further relaxes the A/I

properties. That is, the Semantic-PS technique enforces the A/I properties only on the set of

vital site-tiansactions of a global transaction. Therefore, all global transactions (mobile and

static) need to execute the PGSG algorithm only once. Mobile global transactions execute the

PGSG algorithm at the end of their vital stage. Static global transactions execute the PGSG

algorithm at the end of their execution. Mobile global transactions are allowed to initiate non-

vital site-transactions after being toggled.

Second, the Semantic-PS technique employs a modified version of the ticket method to

improve concurrency. In this version, each LDBS maintains a set of tickets and forces conflicts

only between site-tianactioos that potentially conflict with each other. It does not force

64

conflicts between all site-transactions that execute at that LDBS, thereby increasing

concurroicy.

Next, a detailed description of the enforcement of the A/I properties is provided. The

transaction model and the GTM architecture is identical to that of the PS techniques.

4.2 The Atomicity and Isolation Properties

The A/I properties of the Semantic-PS technique are enforced on the set of vital site-

transactions only. This does not limit the scope of the technique. It still provides the full range

of correctness criteria as well. That is, if all site-transactions of a global transaction are

cat^orized as vital, then strict A/I is enforced. On the other hand if all site-transactions o f a

global transaction are categorized as non-vital, then the A/I properties will not be enforced. This

technique differs from the PS technique as follows: The PS technique enforces the A/I

properties on all site-transactions that are completed successfully, i.e., all vital site-transactions

and all non-vital site-transactions that complete execution successfully. Thus, the entire global

transaction is executed as a consistent unit of computing. The Semantic-PS technique enforces

the A/I properties on the set of vital site-transactions only. Therefore, only the set of vital site-

transactions is executed as a consistent unit of computing. Although the Semantic-PS technique

reduces the execution overhead and increases concurrency, its application is limited. It can only

be used in environments where non-vital site-transactions do not cause any inconsistencies or,

where the inconsistencies caused by the non-vital site-transactions can be tolerated.

As in the PS technique, the atomicity property of the Semantic-PS technique is based on

condition 2 of semantic atomicity, and the isolation property is based on (global) serializability

of global transactions. In die Semantic-PS technique, each site maintains an SSG graph as well.

However, in Semantic-PS, only die execution of vital site-transactions is recorded in each SSG.

The execution o f non-vital site transactions is not recorded in the SSG. The Semantic-PS

65

technique enforces the isolation property by executing the modified PGSG algorithm described

below.

In Semantic-PS, all global transactions execute the PGSG algorithm only once. Mobile

global transactions execute the PGSG algorithm at the end of their vital stage while static global

transactions execute the PGSG algorithm at the end of their execution. The PGSG algorithm

will first verify semantic atomicity of the transaction to be toggled - say Tj. That is, the PGSG

algorithm verifies that all vital site-transactions of T, have successfully committed at the

LDBSs, i.e., marked Completed. If all vital site-transactions are marked Completed, the

atomicity property is satisfied; else, all Completed site-transactions of T* (vital and non-vital)

are compensated and Ti is aborted.

Next, the PGSG algorithm will construct the Partial Global Serialization (PGS) graph to

verify serializability of T*. Note that only the execution of vital site-transactions are represented

in the PSG graph. After constructing the PGS graph, the PGSG algorithm will look for

serializability violation in the PSG graph. Violations are represented as cycles that consist of T,

and other toggled or committed transactions. If cycles are detected, the algorithm will attempt to

break these cycles by aborting Suspended mobile global transactions as they are obstructing the

execution o f another global transaction. If the cycles cannot be broken, all Completed site-

transactions are compensated and the global transaction is aborted. If there are no cycles or the

cycles can be resolved, the lsolatioo_Verified field is set to True, the global transaction is

toggled, and the PGS graph is sent to all participating sites so that serialization iitformation is

propagated. Toggled mobile transactions are committed at the end of tiieir execution.

4.2.1 The PGSG Algorithm

In the Semantic-PS technique, the execution order of site-transactions within the local

LDBSs is obtained by using an enhanced version of the ticket method used in the PS technique.

66

Along with the operations accepted by each LDBS, the service interâce provides conflict

inhumation with respect to the exported operations. That is, each service inter&ce groups the

exported operations in to a set of groups G such that all operations in any group potentially

conflict with other. For example, if operation 0 | and o% access some table t in the LDBS, then 0 |

and 02 could potentially access the same data item in t. Therefore, o, and 0 2 need to appear in at

least one group in G. Formally, the service inter&ce specifies a set of operations O = {o,,... Om}

accepted by that site and a set of groups G = {g ,,... go} such that for all gi in G, g. = { o \,..., o', |

o'x X = I..p in 0 and 0'% potentially conflicts with all operations in gi}. The LDBS maintains a

set T = {ti, ..., to} o f tickets such that ticket ti is associated with group gi in G. Note that an

operation may belong to one or more groups and therefore, be associated with more than one

ticket.

Each vital site-transaction is required to increment all tickets associated with each

operation in that site-transaction. Note that non-vital site-transactions do not read any tickets.

The ticket values read by the vital site-transaction indicates its serialization order with respect to

all other (potentially conflicting) vital site-transactions that execute at that site and will be used

to construct the SSG just as in the PS technique. However, as there are multiple tickets

associated with each site, all site-transactions that execute at the same site do not conflict with

each other. In affect, this multiple ticked method reduces the granularity of locking from the

LDBS to data items wifoin each LDBS.

The PGSG algorithm of the Semantic-PS technique is similar to that of the PS

technique. The differences are:

1. In order to construct die PSG for a global transaction, only the sites at which the global

transaction executed vital site-transactions need to submit Predecessor graphs

67

2. As non-vital site-tiansactioas cannot cause isolation property violations, the PGSG

algorithm of the Semantic-PS techniques does not attempt to resolve cycles in the PGS

graph by aborting non-vital site-transaction

3. The GlobalCoordinator propagates the PSG only to those sites at which the global

transaction executed vital site-transactions.

The PGSG algorithm of the Semantic-PS technique is given below. The statements that

have been added or modified are in bold text.

Algorithm 4-1: GlobalCoordinator (Tj, Request)
I* Verifies the A/I properties */
/* first, verify atomicity •/
I f any critical site-transaction has been aborted

Send ABORT (T) to a ll sites in Site_List I* Abort all site-transactions */
Else

I* next, verify isolation */
Loop

fo r all site Sm in Site_U st where 7} executed vital site-transactions, obtain
PredecessorfTj, S„J by executing the Request PredecessorfTj, S J algorithm

I f any site returns SHARE-VIOLATION send SHARE-VIOLATION to all sites
While some site returns SHARE-VIOLATION
Generate PGSG by Merging all PredecessorfTj, Sm)
Check fo r cycles w.r.t. 7}, Committed nodes and Togged nodes
I f cycles are detected

I f cycles can be broken by aborting Suspended global transactions
/* Does not attempt to resolve cycles by aborting non-vital site-transactions V

M ark GTJStatus o f Suspended nodes as Aborted in PGSG
Else /* isolation violated */

Send Abort (T^ to all sites in S iteJJst /* Abort all site-transactions */
Exit Algorithm

End I f
E n d lf
/* A/I properties verified •/
Mark IsolationJVerifled in Global Structure and node 7} in PGS graph as True
t* Propagate success and serialization information *!
Send “SU CCESS" and PGS graph to sites in S ite J J s t where 7}

68

executed vital siie-transacHons
E n d lf
End {PGSG Algorithm}

The Request Predecessor code is the same as in the PS technique. However, unlike in

the PS technique, the set of Primary sites in the Semantic-PS technique include only those sites

at which the global transaction executed its vital site-transactions. (The set of Primary sites in

the PS technique includes all sites at which die global transaction executed its site-transactions

successfully.)

4.3 Summary and Conclusion

This chapter introduces the Semantic-PS transaction management technique. This

technique proposes two changes to the PS technique in order to overcome its limitations. First,

the Semantic-PS technique does not force conflicts between all site-transactions that execute at

a given site (in order to obtain the local serialization order). Instead, it uses semantic

information about the operations exposed by the local inter&ces to increase concurrency.

Second, the Semantic-PS technique enforces atomicity and isolation only on the set of vital site-

transactions - a further relaxation of the A/I properties. As A/I is enforced only on the set of

vital site-transactions, mobile global transactions do not have to execute the PGSG algorithm a

second time as in the PS technique. Note that just as in the PS technique, the Semantic-PS

technique enforces die foil range of A/I correctness criteria.

69

Chapter 5

A n a ly t ic a l E v a lu a t io n

This chapter provides an analytical evaluation of the three transaction management techniques:

PS, PS-Semantic, and Kangaroo [DH95], The Kangaroo technique is chosen as it supports

unrestricted mobility and it does not violate local autonomy - vital requirements for the MMDB

environment. Prior to conducting the evaluation, the following steps are carried out: First, a

general MMDB transaction management evaluation model is developed; Second, the model

parameters’ values are determined; Third, the general MMDB transaction management

evaluation model is modified to accurately reflect each individual technique. Once the tailored

models have been developed, the performance of the three techniques is evaluated.

5.1 The General MMDB Transaction Management Evaluation Model

Analytical modeling allows one to abstract essential components of the system and to

model these components without regard to surrounding detail that one determines as

insignificant. Analytical models provide accurate estimations o f perfiarmance of a system at a

relatively low-cost. Once analytical models of some computational environment are presented,

these models can easily be used to evaluate the performance of different algorithms. This

reduces the time, effort, and cost of the initial evaluation.

As transaction management in the MMDB environment is relatively new, analytical

models of this environment for evaluating the performance o f transaction management

algorithms have not been developed. In this section, an analytical model of the general MMDB

transaction management environment will be developed. In this model the average service time

(STn,) of a global transaction - the average time taken by foe system to complete foe execution

of a global transaction - will be formulated with respect to the key components o f the MMDB

70

enviromnent that afièct the execution of global transactions. These components are:

communication time, execution time of site-transactions, the disconnection and relocation time,

and the time taken to execute the commit algorithm. The model is presented next.

Let GTeie be the average time taken to execute all site-transactions of a global

transaction and GT«— i, be the average time taken to commit a global transaction. Then, the

average service time o f a global transaction S T ^ is:

S T ^ = G T„ + GTô , (1)

Next, GTeu and GTcoomt need to be formulated. Let N« be the number of site-

transactions in a global transaction, EXE# be the average time taken to execute a site-transaction

and Tthsgc be the average time interval between the completion of one site-transaction and the

submission of the next site-transaction of the same global transaction. Then, in a static

environment GTm is:

G T „ = N n*E X E ^ + (N s t - l) * T o ^

That is, GToa is the number of site-transactions multiplied by the average execution

time of a site-transaction plus die think time between site-transactions, if any. However, GTm

in the mobile environment is affected by disconnection and migration and these need to be

accounted A r in the model. For simplicity, it is assumed diat, upon re-connection, all

outstanding messages will be exchanged before the next disconnection. This assumption

simplifies the model as follows: Although multiple disconnections may occur during the

execution o f a site-transaction, at most only one disconnection will cause a delay to any EXE#

or Tdmk- Let DLY# and DLY*t be the delay caused by a disconnection to EXE# and Tn## ,

71

respectively, and f**» and F ^ja , be the probability o f a disconnection occurring during EXE*

and Ttbàfc, respectively. Then GTae is given by;

G T„ = N„ * (EXE^ * DLY^) + (Nst - I) • *DLYu*)) (2)

Here, the potential delay caused by disconnection has been factored into EXE* and T*mk- The

potential delay is modeled as the probability of disconnection multiplied by the delay caused by

disconnection.

Next, we calculate DLY*, DLYd*, ?*&*, and P"***. First, it is necessary to calculate the

average delay caused by a disconnection (DCNdiy). DCNdiy is the average time of a

disconnection (DCN**) plus the time taken by the system to address reconnection and migration

(if any). Let Ndc* be the average number of disconnection during the execution o f a global

transaction, Ng^, such that Ng^ <= Nda> be the average migrations during the execution of a

global transaction, and RLu be the average time to address relocation. Then, DCNdiy is:

DCNjfy = DCNa, ^ (N ^ / N ^ * R L J (3)

DLY* and DLYu* are influenced by three Actors (Figure S-1): 1 - the total delay caused

by discoonectioa (DCN^y); 2 - the point within the current site-transaction at which the

discoonecticn occurs (X); and 3 -the length o f execution o f the current site-transaction (EXEst).

For example, in Figure S-1 (A), DLY* is 0 and in Figure 5-1 (B), DLY* is X + DCNdiy - EXE*.

Note that, a disconnection afiects EXE* only if X + DCNdiy > EXE*. Therefore, DLY*

is calculated by taking the probability that X + DCNdiy > EXE* multiplied by the average delay

to EXE* given that X + DCNdiy > EXE*. Let us consider the cases DCNdiy <= EXE* and DCNdiy

> EXE* separately. When DCNdiy <= EXE*. the probability that X + DCNdiy > EXE* is DCNdiy /

72

EXE# and the average delay given that X + DCNdiy > EXE# is DCNdiy /2 - that is, the average of

the minimum delay (i.e., 0) which occurs when X + DCNdiy = EXE# and the maximum delay

(i.e., DCNdiy) which occurs when the disconnectioa occurs at the very end of the execution of

the site-transaction, that is, X = EXE#. Thus:

DLYu = (DCNjfy/EXEst) * DCNoy/2 (4a)

When DCNdiy > EXE#, the probability that X + DCNdiy > EXE# is I and the average delay given

that X + DCNdiy > EXE# is (DCNdiy - EXE# + DCNdiy)/2 - that is, the average of the minimum

delay which occurs when the disconnection is at the very beginning of the site-transaction, and

the maximum delay which occurs when the discormecdon occurs at the very end of the

disconnection. Thus:

DLYn = I * (DCNjfy - EXEn + D C N ^ / 2 (4b)

Similarly, to formulate DLYu*, let us consider the case DCNdiy <= T*w, and the case

DCNdiy > Tdunk separately. When DCNdiy <= T*ink then DLYd* is:

DLYa* = (DCN^ / W * DCNjfy / 2 (5a)

When DCNdiy > T*w,. DLYd& is:

DLYu* = 1 * (DCNdfy - + DCNoiJ/ 2 (5b)

73

Finally, the probability of disconnectioa during EXE» and is formulated. Assume

that only one disconnectioa occurs during the execution of a global transaction. As

disconnection is equally likely to occur at any time, the probability of that disconnection

occurring during EXE» (P*den) is simply;

= EXE„/(N„*EXE^+ (N „ - D * W

Then, as N*» disconnection occur during the execution of EXEst, P̂ dcn) is:

P ^ ^ - N ^ * E X E n / (N ^ * E X E n + (N n - l) * T u ù ^ (6a)

Similarly, the probability of a disconnection occurring during Tg»* (P"^dcn) is:

= Tü^ / (N „ • EXEn + (N ^. I) • (6b)

In (4a) and (4b) we have formulated DLY», in (5a) and (5b) we have formulated

DLY*k, and in (6a) and (6b) we have formulated P^dcn, aod GT»» can now be obtained

from choosing the appropriate formulas for DLY» and DLY&k. Given RLqb and GT«.

for any technique, ST«, can be calculated from (I). Note that the values for RLo» EXE», and

GTcooBt will be modeled separately for each transaction management technique and then will be

used to derive the service time for the specific transaction management technique as described

in Section 5.3.

74

T /7 /////////-/7 //A ẐZZZZZZZZZZZZZl

DCNdiy

ËXÊ.

7///ZZ7A

1
DLY.

E 2 E X E .
DCNdiy

Figure 5-1; Relationship between DLY* and X

5.2 Values of Model Parameters

In this section, the values of the model parameters for evaluating transaction

management techniques in the MMDB environment are described. In order to simplify the

evaluation, the foUowii^ assumptions will be made about the environment:

• All sites in the MMDB environment are equally likely to be accessed

• All global transactions are mobile transactions and execute successfully at all sites

• All site-transactions are equivalent to those specified in TPC-C benchmark [TPC991

• Site-transactions of a global transaction are executed consecutively. Each subsequent site-

transaction is submitted to the MSS only after the results o f the previous site-transaction is

received and analyzed by the user (7 *0*).

The parameters used to construct the model and their de&ult values are listed in the

following table:

75

Parameter Description Default Values
ST«, avg. service time of a global transaction Calculated
GT«e avg. time taken to execute a global transaction Calculated
GTcoonut avg. time taken to commit a global transaction Calculated
N„ avg. number of site-transactions in a global transaction in

the same global transaction
4

EXE* avg. time taken to execution a site-transaction (includes
communication time between the user and MMDBS)

Calculated

Tihidc avg. time between receiving the results of a site-transaction
and submission of the next site-transaction

0

DCNttn avg. time between a disconnection and re-connection 0.1 second
DCNdiy avg. processing delay caused by a disconnection (includes

DCNob and processing time taken to address relocation etc.)
Calculated

RLun avg. time to address relocation Calculated
DLY* avg. delay added to EXE* due to disconnection Calculated

DLVd* avg. delay added to Tn»* due to disconnection 0

P"dm Probability of a disconnection occurring during EXE* Calculated

P“ da. Probability of a disconnection occurring during 0

Nden avg. Number o f disconnection for a global transaction rN*/3i
N„y avg. Number of migrations for a global transaction [NdmOl

avg. time to transmit a message on the static (wired)
networic

0.0001 seconds

' T - avg. time to transmit a message over the wireless medium 0.07 Seconds
avg. time to transmit a Predecessor graph (or propagate a
PGS graph) from site to site along the static network

0.001 seconds

EXEid avg. local execution time of a site-transaction 0.003 seconds

P-f Probability of a site-transaction conflicting with another 0.05
Table 5.1: Model Parameters and Their Values

As mobile computing is a relatively new area, the values for many of the parameters

used in the formulation o f the model are not known, (fore, educated guesses have bear used to

decide their defoult values. The rationale for choosing foe stated values is given below.

76

The value o f T»** has the same effect on all algorithms and therefore is set to 0

seconds. Similarly, the average delay due to disconnection that may be incurred between

receiving the results o f a site-transaction and the submission of the next site-transaction is set to

0 seconds. The average disconnection interval (DCN*n) is arbitrarily set to 0.1 second. Picking

an arbitrary value for DCNm, does not 6 vor any algorithm in any significant manner as it has a

the same effect on all transaction management techniques. The local execution time of a site-

transaction (EXEid) is obtained fiom the TPC-C Benchmark (TPC99]. TPC-C is the Transaction

Processing Performance Council's benchmark for Online Transaction Processing (OLTP)

evaluation. EXElcl was obtained by calculating the average response time (obtained firom the

throughput from TPC-C) for five popular databases running on small to medium size servers

(IBM DB2 on IBM AS400e, Informix OnLine 7.3 on Compaq ProLiant 5000, MS SQL Server

6.5 on Acer AcerAltos 19000Pro4, Oracle 7.3 on Sun UltraEnterprise 6000, and Sybase SQL

Server 11.5 on Compaq ProLiant 6000). Message transmission time over the static (wired)

network (T „ ,) and wireless network (T"n«J have been calculated assiuning that the average

size of a message is 1 Kb and that the static network is a 10 Mbps Ethernet and the wireless

communication medium is cellular telephony with a bandwidth of 14 Kbps [PS98]. The average

time to transmit a Predecessor graph or to propagate a PGS graph from one site to another along

the static network (10 Mbps Ediemet) is calculated assuming that the message is 10 Kb in size.

The probability that a disconnection occurring during T*mk (P"*dm) is set to 0 as Tum* is itself 0.

The defruik values for the average number of site-transactions in a global transaction

(N«), the average number of disconnection during the execution o f a global transaction (N*u),

the number o f migrations during the execution of a global transaction (No,), and the probability

of a site-transaction conflicting with another site transaction (Pod) have been arbitrarily chosen.

As these parameters have a significant effect on the service time of a global transaction, the

analytical evaluatioa will study the performance for a range o f values for each parameter.

77

5J Transaction Management Evaluation Models Tailored to Individual

Techniques

The analytical model developed in Section 5.1 is a general model used to evaluate the

performance of transaction management techniques in an MMDB environment. In this section,

this model will be tailored to describe the PS, Semantic-PS and Kangaroo model. Specifically,

EXEst, RLun, and GT«n=nt will be formulated separately for each technique.

5J.1 The PS Technique

In this section, EXE«, RLun, and GTcoamt, for the PS technique will be formulated. The

PS technique will incur two wireless messages to receive a site-transaction and submit its

outcome to the user. Each site-transaction will require two additional wired messages to submit

the site-transactions (and compensating transaction) and receive its outcome. Therefore, EXE#

is given by:

EXE^ = 2 * r + 2 * r _ + EXEic^

In the PS technique, relocation incurs 2 wired messages - one message requesting the

Global Structure and one to transfer this structure - and one wireless message to re-connect.

Therefore,

78

Next, GTooomt is calculated. Let GT», and GT«ai be the average time taken to verify the

isolation property and enforce the atomicity property respectively. Then the cost to execute the

PGSG algorithm (PGSGeo*) is:

PGSGco^ = GTam + GT„

However, the PS technique executes the PGSG algorithm twice for each technique. Therefore

GTcoBBut is given by:

G T ^ = 2* (G T ^ + G T ^

The atomicity property is enforced by sending two messages to all sites requesting the

status of the site-transactions and sending either an abort or commit. As these messages are sent

in parallel:

GTa^ = 2

Next, GTiM is formulated. To verify serializability of global transaction Tj, the PGSG

algorithm requests PredecessorfTj) from all sites at which the global transaction executed its

vital srte-transactioos. These sites will, in turn, request (in parallel) PredecessorfTO graph for all

Candidate nodes Tk in Predecessor(Tj). This process continues until there is no candidate node

in any Predecessor graph. At each (parallel) step of the algorithm, in order to have a candidate

node Tk in PredecessorfTj) three conditions must be satisfied:

1. Tk must conflict widi Tj

2. Tk must have executed prior to Tj at the site

79

3. Tk must be must be active.

Note that, in the PS technique, all site-transactions that execute at a site are forced to

conflict with each other. Therefore for all Tk that execute before T„ the probability that Tk

conflicts with Tj is 1. At each step of the algorithm, as Tk (of that step) executes prior to T, (of

that step) the probability that Tk is active decreases by a factor of 1/N* (where N« is the number

of site-transactions in a global transaction) as the time interval since the inidatioa of that Tk has

increased by EXE#. As requests and submissions of Predecessor graphs are carried out in

parallel for each Candidate node in any Predecessor graph, GT», is equivalent to the number of

(parallel) steps multiplied by the time taken to execute a step. The number of parallel steps is

determined by the probability that the Predecessor(Tj)'s of that step contains a Candidate node.

Each step in the algorithm incurs 3 messages: one to request the Predecessor graph, one to

submit the Predecessor graph to requesting site, and one to propagate the final outcome to that

site. Therefore, GTi#, is given by:

G T ^ = 3 * r ^ * l (3V#-0/N„

5.3.2 The Semantic-PS Technique

In this section, EXE#, RL*#, and GTomm,, for the Semantic-PS technique will be

formulated. Note that, as the execution of local site-transactions and the steps taken to relocate a

mobile user are foe same in both the PS and Semantic-PS techniques, EXE# and RLm, for

Semantic-PS are foe same as those o f the PS technique. Thus, EXE# and RL*# are given by:

EXE ̂= 2 * r « , + 2 ♦ r # , + EXEu.

80

However, as the Semantic-PS technique executes the PGSG algorithm only once for

each technique, GT»— it for Semantic-PS is given by:

GTeommU = GTaim + GTL,

Again, as the enforcement of the atomicity property is identical to that of the PS

technique, GT«b is given by;

G7’« .= 2 * r ^

Next, GTiio for the Semantic-PS technique is formulated. Although the algorithm is

identical to that o f the PS technique, the ticket algorithm used to implicitly obtain the

serialization order o f site-transactions is different The ticket algorithm of the Semantic-PS

technique does not generate conflicts between all site-transactions that execute at a site. In the

Semantic-PS technique, for all Tk that execute before Tj, the probability that Tk conflicts with Tj

is determined by the operation (conflict) grouping defined by the service interfiles of the

LDBSs. Ideally, the conflict grouping should result in only the operations that actually conflict

at foe local database being forced to conflict by the respective STM. Let us assun* that foe

probability o f conflicts between site-transactions at a site is given by P«nf. Then GTa, for the

Semantic-PS technique is given by:

G T ^ = 2 (Nn-V/%,

SI

5 ^ 3 The Kangaroo Model

Here we formulate EXEst, RLtm and for the Kangaroo Model introduced in

[DBH97] executing under the Compensating mode as this mode ensures atomicity. We assume

that Joey transactions consist of sub-transactions that are analogous to site-transactions. First we

calculate EXE«. For each site-transaction the mobile user submits the site-transaction to the

MSS which then submits it to the respective site, receives a response &om that site, and submits

the response to the user. Therefore,

EXEa = 2 * r ^ + 2 * r ^ + EXEu.

In this model, migration is handled by a hand-off process that requires a HandOff KT

(HOKT) record be written to the originator's (MSS requesting handoS) MSS’ log and a

ConTinuing KT (CTKT) record be written to the destination MSS’ log. These records ro ister

the transfer o f control of a global transaction from one MSS to another in their respective log

files and create a doubly linked list that describes the migration of the global transaction. The

communicatioa cost of writing the CTKT record is 0 as the global transactions is writing

information to the current MSS. However, to write the HOKT record into die previous MSS’

log the current MSS needs to send a message to the previous MSS along the static network. As

relocation incurs one wireless message in order to contact the new MSS, RJL«n is given by;

ELtm + VmÊg

To commit a global transaction, all log file entries for that global transaction need to be

freed. This requires that the entire doubly linked list related to that global transaction be

traversed. Therefore:

82

G T oo^ = 2 * (r ^ * N ^

5.4. Evaluation Results

In this section, the tailored analytical models will be used to examine the performance

of the PS and Semantic-PS techniques and to compare their performance to that o f the

Kangaroo technique. The de&ult values for the parameters used in the analytical model are

taken &om Table 5.1.

5.4.1 Service Time

First, the service time for the PS, Semantic-PS, and Kangaroo techniques will be

calculated (Chart S-1).

0.685

0.6720.675

0.665

Semantic-PS Kangaroo

Chart 5-1 : ST^, for Three Transaction Management Techniques

Although the Kangaroo technique has the best average service time, the PS and

Semantic-PS tedmiques are only marginally greater, i.e., 2% and 0.3%, respectively. This result

is somewhat counter-intuitive as one would expect the propagation of information during the

execution of the PGSG algorithm to utilize noticeable overhead. To clarify fois skepticism, the

83

average time taken to commit a global transaction is calculated (Chart 5-2). These results

explain why there is only a small discrepancy between ST^, for all techniques. That is, for all

three techniques GTeomnit is only a small fraction of the total execution time of a global

transaction.

0.0150.016
0.014
0.012

0.008
0.006
0.004 0.002
0.002

Semantic-PS Kangaroo

Chart 5-2 : GTooobm for Three Transaction Management Techniques

The execution of a global transaction is not very different in any technique. It is the

execution of the commit protocol that differs from one technique to another. Here, the time

taken to commit a global transaction by the PS technique is greater than the Kangaroo technique

by a frictor of 7.5, and the time taken by the Semantic-PS techrtique is greater tiian the Kangaroo

technique by a fector o f 2.5. This indicates considerable overhead. However, GTconnit accounts

for only 2% o f S T ,, for the PS technique and less than 1% for both the Semantic-PS and

Kangaroo techniques and therefore, the effect of propagation is hardly noticeable. Next, the

effect of die environmental parameters on ST«, will be studied.

5.4.2 Varying The Number of Site Transactions in a Global Transactions

Here, die effect of the size of die global transaction (i.e., N* - the number of site-

transaction in a global transaction) upon ST*, will be evaluated. Specifically, ST*, will be

calculated for N« = 2 ,4 ,6, 8,10 . For this analysis, Ndm Ng^ and Paf are set to the defiuih values

84

in Table 5.1. The service time for each technique is given in Table 5-2. These results indicate

that alAough the Kangaroo technique ofiers the best performance, ST«, for the PS technique is

only 1.6% greater than the Kangaroo technique and the PS technique is less than 1% greater

than the Kangaroo technique.

2 4 6 8 10
PS 0.394 0.715 1.0 1.332 1.702
Semantic-PS 0.385 0.70 0.987 1.306 1.687
Kangaroo 0.385 0.70 0.986 1.305 1.686

Table 5-2: Service Time fo r varying

5.4 J Varying Number of Disconnections for a Global Transaction

Next, STn, will be calculated for different values o f Ndn- As at most only one

disconnection can bave any affect on the execution of a site-transaction, the de&ult value for N̂ t

will be set to 10 in order to accommodate sufficient test cases, i.e., Ndcs = 2,4 , 6, 8, 10. is

set to 1. The service time for each technique with respect to N*n is given in Table 5.3. Again,

the difference in service time is insignificant - ST^, for foe PS technique is approximately 1%

greater than that of foe Kangaroo technique while the Semantic-PS techniques is less than 1%

greater than that o f the Kangaroo technique.

N . 2 4 6 8 10
PS 1.592 1.658 1.726 1.796 1.865
Semantic-PS 1.56 1.626 1.694 1.763 1.833
Kangaroo 1.56 1.625 1.693 1.762 1.832

Table 5-3: Service Time fo r varying Njo,

85

5.4.4 Varying Number of Migrations for a Global Transaction

Next, die effect o f the number of migrations during the course of execution of a global

transaction will be evaluated for each technique. As each migration also causes a disconnection,

Ndca will be set to the value of (i.e., N*. - N„^). Once again, as at most only one

disconnectioa (and therefore, at most one migration) can have any effect on the execution of a

site-transaction, the defoult value for N„ will be set to 10 in order to accommodate sufBcient test

cases, i.e., Ng^ = 2, 4, 6, 8, 10. The service time for each technique with respect to Ngy is given

in Table 5.4. Again, the difference in service time is insignificant - ST«, for the PS technique is

approximately 1% greater than that of the Kangaroo technique while the Semantic-PS

techniques is less than 1% greater than that of the Kangaroo technique.

N . 2 4 6 8 10
PS 1.662 1.859 2.057 2.254 2.451
Semantic-PS 1.630 1.827 2.025 2.222 2.419
Kangaroo 1.629 1.826 2.024 2.221 2.418

Table 5-4: Service Time for varying ALp

From the evaluations carried out in Sections 5.4.2, 5.4.3, and 5.4.3, it is clear that the

number of site transactions, die number of disconnections, and the number o f migrations have a

similar effect on ST«« for all techniques. This is due to the feet that, as concluded in Section

5.4.1, the time taken to commit a global transaction accounts for only a small percentage (<=

2%) of the total execution time of a global transaction in all techniques. A lthou^ the PS and

Semantic-PS techniques enforce die isolation property by executing the PGSG algorithm, the

overhead widi respect to propagatimi is not a dominant fector in ST«,. Next, ST«, will be

evaluated with respect to die average communication time on the static network f T — and the

86

probability o f conflicts for site-transactions (Pa^) to detennine their effect on die average

service time for the three techniques.

5.4.5 V arying T im e to T ransm it a M essage on the S ta tic N etw ork

In diis test the effect of the communication cost on the static network is evaluated for all

techniques. Specifically, ST«, will be calculated for = 0.01, 0.02, 0.03, 0.04, 0.05, 0.06.

Tnac is the time taken to transmit a 1 Kb message on the static message. Along with T g , it is

also necessary to vary the value of T*p ̂as it represents the time taken to transmit a 10Kb

message on the static network. Accordingly Tp^ is set to 10 * i.e., Tp^ = 0.1, 0.2, 0.3,

0.4,0.5, 0.6. The service time for each technique is given in Table 5-5.

T - 0.01 0.02 0.03 0.04 0.05 0.06
PS 2.3 3.93 5.56 7.19 8.82 10.45
Semantic-PS 0.82 0.96 1.11 1.26 1.41 1.55
Kangaroo 0.77 0.87 0.97 1.07 1.17 1.27

Table 5-5: Service Time for varying 7**,

This result indicates that the three techniques respond differently to changes to the

communication time on the static network (Figure 5-2). The results show that the

communication time on the static network has a much greater effect on the PS technique than

the Semantic-PS and Kangaroo technique. For each increment o f 0.01 seconds in the time taken

to transmit 1 Kb on the static network, ST«, of die PS technique increases by 1.63 seconds as

opposed to 0.145 seconds for the Semantic-PS technique and 0.1 seconds for die Kangaroo

technique. That is, the rate o f growth of ST«, for a 0.01 second increase per 1Kb message on

the static network is approximately 16 times greater for the PS technique than the Kangaroo

87

technique. In comparison, the Semantic-PS techniques is only 0.45 times greater than the

Kangaroo technique.

m 12
"ae 10
§ 8I 6

? 4
2

(0 0
0.01 0.02 0.03 0.04 0.05 0.06

Tsmsg

•PS
'Semantic-PS
•Kangaroo

Graph 5-2 : Service Time for varying Tsmsg

Unlike in the previous experiments, the rapid growth of ST*, of die PS technique with respect

to T*u, (T*p«J can be explained as follows: Unlike the Kangaroo the technique, the PS and

Semantic-PS techniques enforce the isolation property by executing the PGSG algorithm. The

PGSG algorithm utilizes information propagation to verify serializability. Serializability

information is propagated by passing messages between STCs and MSSs residing on die static

network. Therefore, any increases to T m , relative to the rest of die environment variables will

have an impact on ST*, for the PS and Semantic-PS techniques.

The foct that this impact is more prominent for the ST*, of the PS technique can be

explained as follows: The volume of infbrmatioa being propagated by the PGSG algorithm is

determined by the number of conflicts between site-transactions. In order to obtain local

serializatioa information, the PS and Semantic-PS techniques force conflicts between site-

transactions diat execute at die same site. The Semantic-PS technique forces conflicts only

88

between site-transactioas tfiat potentially conflict with each other. On the other hand, the PS

techniques forces conflicts between all site-transactioas that execute at each site. In addition, the

PS technique executes the PGSG algorithm twice, information is propagated a second time for

every global transaction.

5.4.6. Varying Probability of Conflicts

Finally, foe effect of the probability of conflicts between site-transactions is evaluated

for ail techniques. Specifically, Paf will be calculated for Par = 0.05, 0.1, 0.15, 0.2. 0.25, 0.3.

Here again, Nda N g , and are set to the defiuilt values in Table 5 .1. The service time for

each technique is given in Table 5-6. These results indicate that P«ur has no effect on the PS

technique and the Kangaroo technique (Graph 5-3). In the case of the PS technique, Pcnf has no

effect on the service time because all site-transactions that execute at a given site are forced to

conflict with each other as each LDBS maintains only one ticket. In the case of the Kangaroo

model Pcnf has no effect on the service time as this technique does not enforce the isolation

property. Thus, Pcnf affects only the Semantic-PS technique. However, the increase in ST«, for

the Semantic-PS technique is only marginal, i.e., an increase of 0.0004 seconds for every 5%

increase in the probability of conflicts. Once again, this is due to the fact that the time taken to

propagate infbrmatioa on the static network is relatively small compared to the time taken to

transmit a message on the wireless network as well as the time taken to address migration.

0.05 0.1 0.15 0.2 0.25 0.3
PS 0.6868 0.6868 0.6868 0.6868 0.6868 0.6868
Semantic-PS 0.6719 0.6723 0.6727 0.6731 0.6735 0.6739
Kangaroo 0.6715 0.6715 0.6715 0.6715 0.6715 0.6715

Table 5^: Service Time for varying Pa^

89

« 0.69
1 0.685

PS
SemantioPS
Kangarooa 0.67

3 0.665

Pcnf

Graph 5-3: Service Time Vs

5.5 Summary and Conclusion

In conclusion this analysis suggests that in certain environments, the average service time of

these techniques is comparable to the Kangaroo technique which does not enforce the isolation

property nor does it attempt to minimize the ill effects of the prolonged execution of mobile

global transactions. For the values of the model parameters developed in Section 5.2, ST«, of

the PS technique is only 2% greater than the Kangaroo technique and the Semantic-PS

technique is only 0.3% greater than that of the Kangaroo technique. In addition, these

experiments reveal that any changes to environment variables N« Ndm and No^. have a similar

effect on all three techniques. In each case, ST«, for the PS techniques was approximately 1%

greater than that of the Kangaroo technique; ST,,, for the Semantic-PS technique was less than

1% greater than that of the Kangaroo technique.

However, ST^, for the PS technique deteriorates rapidly widi respect to the communication

time on the static network. For every 0.01 second increase in the time taken to transmit 1 Kb

over the static network, the rate of change of ST», for the PS technique is approximately 16

times greater (1.63 seconds as opposed to 0.1 second) than that o f the Kangaroo technique; the

rate of charge of ST„g for the Semantic-PS technique is approximately 1.45 times greater than

that of die Kangaroo technique.

90

Chapter 6

S im u la tio n

This research introduces two new concepts to transaction management in the MMDB

environment. First, it introduces the notion of pre-serialization, that is, verifying the isolation

property of mobile transactions prior to their completing their execution. Second, it introduces

a new technique called the PGSG algorithm to verify the isolation property of global

transactions in large heterogeneous environments based on partial global serialization graphs

and information propagation. As new concepts are introduced it is important that, as part o f this

research, the PS and Semantic-PS techniques be simulated in order to observe (and learn about)

the behavior of these techniques and to make recommendations for future researchers.

The primary goals of the simulation are twofold: First, the simulation models will be

used to measure the service time of the PS, Semantic-PS, and Kangaroo techniques in order to

validate the analytical models developed in Section 5.1. Second, the simulation models for the

PS and Semantic-PS techniques will be used to study the effectiveness of pre-serialization in

achieving its design goal, i.e., minimizing the unfoir treatment o f mobile transactions due to

their extended execution time.

6.1 The Simulation Model

The ARENA [KSS98] simulation software is used to carry out the simulation

experiments. ARENA is a high-level simulator diat allows one to model discrete event-based

simulation models. The execution of a global transaction in the MMDB environment can be

defined by a sequence of discrete events that occur during its execution, i.e., its creation.

91

submissk» of a site-transaction, completion of a site-transaction, completion of the global

transaction, potential disconnection and migration, etc.. Therefore, the ARENA software can be

used to simulate the PS, Semantic-PS, and Kangaroo techniques. As ARENA is used for

simulation, the simulation models will be described using simulation constructs similar to those

available in the ARENA software. First, the basic ARENA constructs that are used to describe

the models will be introduced.

a) The Simulate Module

The Simulate module is used to control the simulation. This module is used to specify

the time of simulation, the number of runs in each simulation, the number of entities to be

created, etc.

b) The Create Module

The Create module is used to create entities. Entities are dynamic objects in the

simulation that are transferred ftom module to module in the simulation model. Each entity is

associated with zero or more attributes that define the state of the entity at any given time.

c) The Dispose Module

The Dispose module is used to remove entities from the simulation and to dispose

them. This module can also be used to collect statistics with respect to entities.

d) The Choose Module

When multiple simulation paths exist, the Choose module is used to determine the

appropriate path that the entity needs to take based on some criteria. The criteria used to

determine the path can be based on the current state o f the entity or some distribution fiinction.

92

e) The Assign Module

The Assign module is used to assign values to attributes of an entity.

0 The Delay Module

The Delay module is used to delay entities for some period of time before being sent to

the next module in the simulation.

g) The Station Module

The Station module passes entities that arrive at that module to the next module in the

simulation model. They perform no particular task and are used mainly to represent different

simulation paths.

h) The While End-While Modules

The While End-While module is used to model while loops in the simulation. The

entity remains in the While End-While loop as long as it satisfies the condition that is defined in

the While module.

i) The If End-IF Modules

The If End-If module is used to represent conditional statements. An entity that arrives

at an If module will pass th rou^ all nwdules encapsulated within the If End-IF module if it

satisfies the condition set forth in die If.

93

j) The Resource Module

The Resource module is used to represent resources available to entities in the

simulation.

k) The Seize and Release Modules

The Seize module is used to model entities seizing resources defined using the

Resource module. The Release module is used to release resources that have been seized by an

entity.

I) The Write Module

The Write Module is used to write information to a file. This module is used to record

the intermediate state of entities in an external file.

m) The Tally Module

The Tally module is used to collect statistics. These statistics are reported at the aid of

the simulation.

6.2 The Common Simulation Model

In order to eliminate repetition, the general simulation model will be described in this

section. The details of each transaction management technique will be described in subsequoit

sub-sections. The simulation process for all techniques can be broken into three steps; the

creation o f global transactions, the simulation o f global transactions, and the final deletion of

the global transactions from the simulation (Figure 6-1). In all simulation models, global

transactions are modeled as entities diat are created by the Create module. Each global

transaction is associated widi a set of attributes that are initialized by this module. They are

94

GTID, TransType, NumSites, SiteList, DcnDelay, and StaitTime. The GTID attribute is

assigned a unique (consecutive) identifier. The TransType is assigned either "Static" or

"Mobile" indicating that the transaction is either a static or mobile transaction.

CREATE
Simulation of

Global
Transactions

DISPOSE

SIMULATE RESOURCE

Figure 6-1: Overview o f Simulation Model

NumSites is assigned the number of site-transactions in that global transaction. Once

NumSites has been initialized the SiteList is assigned the list of sites that are to be accessed by

that transaction. Each SiteList is generated such that it does not contain duplicate sites. This

ensures that a global transaction does not access any site more than once during its execution as

required by the PS and Semantic-PS techniques. Each site to be accessed is assigned as vital or

non-vital indicating the type of site-transactions to be executed at that site. The attribute

DcnDelay is used to record 6 e time a site-transaction is to be delayed if a disconnection occurs.

This attribute is initially set to 0. Finally, the time on the simulation clock at which the global

transactions was created is assigned to the StartTime attribute.

After being created by the Create module, global transactions are transferred to the

Simulation of Global Transactions module. This module is used here to represent the simulation

of the execution o f global transactions fisr a given transaction managonent technique.

After completing the simulated execution, global transactions are transferred to the

Dispose rtKxlule. In dûs module, statistics such as the time taken to execute the global

95

transaction are collected before being disposed from the system. The Simulate module is used to

control each simulation process.

The Resource module is used to represent sites (i.e., STMs) in the MMDBS. In Section

5.1 it was determined that the average mid-size DBMS system is capable of executing an

average of 333 transactions per second. Therefore each resource in this simulation is modeled as

a resource with unbounded capacity. That is, each site is capable of executing multiple site-

transactions concurrently witiKxit any significant performance deterioration.

Tailored Simulation Models

6.3.1 Disconnection and Migration

In all techniques discormection and migration are modeled the same way. Therefore the

details of disconnection/migration (D/M) model will be presented in this section and be

represented as the D/M module in the tailored models.

During the execution of a site-transaction o f a mobile global transaction, the user may

be disconnected. This is modeled using the Choose module (Figure 6-2). The Choose module

decides between a continuous execution and disconnected execution modeled using the

Continuous and Disconnection Stations, respectively. If a resource is sent to the Disconnection

module, then die subsequent AddDelay Assign module assigns the delay to be incurred to the

DcnDday attribute.

In addition, each disconnection may represent a migration which is modeled using a

second Choose module. Once again entities will be sent to either a Migration or No Migration

module. If the entity arrives at the Migration module, die DcnDelay is further incremented at

the second AddDelay Assign module by the time taken to address migration. Finally, the entity

96

is delayed at the Delay module by the amount specified in the DcnDelay attribute, the DcnDelay

is reset to zero, and die entity is transferred to the next module in the simulation.

IComiî DUOU&

No M igradoPL-H -I^

LDisconncctionlHAddDelavM -C hoox

aoL

Migration

Figure 6-2: D/M module

6.3.2 Simulation Model for the PS Technique

This section details the "Simulation of Global Transactions" step of the common

simulation model for the PS technique. Due to the complexity of the PGSG algorithm,

especially propagation, the commit of global transactions cannot be simulated using ARENA

constructs. Therefore, the simulation is carried out in two steps. First, an ARENA model is used

to simulate the creation and execution of global transactions. This model simulates the entire

life of the global transaction except the execution of the PGSG algorithm. The simulation

records all relevant events - the creation of global transactions along with its type (i.e.. Static or

Mobile), die execution o f each site-transaction, the occurrence of disconnection and migration,

etc. - in an external file. Next, a Java application is used to simulate the PGSG algorithm by

reconstructing the entire execution sequence recorded by the ARENA simulation. This program

simulates the PGSG algorithm and adds the time taken to conunit die global transaction to the

service time recorded by ARENA.

97

6J.2.1 The ARENA Model of the PS Technique

Global Transactions created by the Create module are transferred to the Record module

labeled Rstait where their creation is recorded in an external text file labeled "PS.dat" (Figure 6-

3). For each global transaction, the triple <"CREATE", GTID, TransType> is recorded. For

GTID and TransType it is the attribute values that are recorded. Next, global transactions are

transferred to the Choose module. The Choose module will transfer the global transaction to the

appropriate path based on the value of the TransType attribute.

SMdly

1
Seize Rlicket Xdly Release SMdly

While

Static

Rstait

End While

Choose

Mobil^,

RESOURCE Rfinish

While EndWhUe

i
M ^y||Seize|RUcket|| Xdly |d /S Release MMdlyj If Toggle End If

Figure d>i; Simuiation o f Global Transactions - PS technique

The execution of static global transactions is mcxieled using a While End-While lcx>p.

Each loop simulates the execution of one site transaction. The simulation of a site-transaction

consists of six steps. First, the site transaction is transferred to the Delay module labeled SMdly

(Static Message delay) to simulate the time taken to submit the site-transaction to the STM

Next, the site-transaction will seize the resource representing that site at which it is supposed to

execute. This is modeled using the Seize module. Next, it is transferred to fee Record module

labeled Rticket where its execution at that site is recorded in PS.dat For each site-transaction

98

the quadruple <"EXECUTE", GTID, Siteld, Criticality> (where Criticaiity represents whether

the site-transactioa is vital or non-vital) is recorded. In essence, this step emulates the ticket

value obtained by the site transactions at the respective site. Next, the site-transaction is delayed

for some period of time to simulate its local execution. This is modeled using the Delay module

labeled Xdly. Next, the Release module is used to release the seized site back to the system.

Finally, the site-transaction is transferred to the Delay module labeled SMdly to simulate the

time taken to return the outcome of the site-transaction to the user.

Similar to static global transactions, the execution of mobile global transactions are

modeled using a While End-While loop as well. However, each loop consists of ten steps. First,

the site-transaction is transferred to the Delay module labeled MMdly (Mobile Message delay)

to simulate the time taken to submit the site-transaction to the user. The next Seize Record and

Xdly modules perform the same functions as in the simulation o f static transactions. The next

D/S module (Section 6.1.3) simulates potential disconnection and migration that may occur

during the execution o f site-transactions. At the end of site-transaction execution, the Release

module releases the site resource. The next three blocks model pre-serialization, i.e., the toggle

operation. The toggle operation is modeled using an If End-If block. If the last site-transaction

that was just simulated represents the last vital-site transaction o f a global transaction, then the

global transaction is toggled by the Record module labeled Toggle. This module records that the

global transaction is to be toggled in PS.dat. For each mobile global transaction to be toggled

the tuple <*TOGGLE", GTID> is recorded.

Upon completing their execution, global transactions (static and mobile) are transferred

to the Record module labeled Rfinish which records the completion of the simulation of the

global transaction in PS.dat For eadt global transaction, the triple <"COMMIT", GTID,

ServiceTime> where ServiceTime is foe time taken to simulate the global transaction (i.e..

99

current ARENA time - StartTime), is recorded. Each global transaction is then transferred to the

Dispose module to be removed firom the simulation.

6 3.2.2 The PGSG Java Application

Once the ARENA simulation is completed, the text file PS.dat contains the complete

ordered sequence of events necessary to trace the execution of all global transactions. This

sequence of events is used to simulate the PGSG algorithm using a Java application and to

determine the following: 1 - whether each global transaction is to be toggled committed or

aborted; 2 - what is the number of parallel steps (i.e., parallel message transmissions) executed

by the PGSG algorithm; and 3 • reporting the results of the simulation. This application is

described next.

First, the application creates a list of Site objects, each object represents a site in the

simulation envirorunent. Each Site object is associated with a Graph object that represents the

Site Serialization Graph (i.e., SSG). Initially, each Graph object contains an empty set of nodes.

The Java application then processes each entry in PS.dat file. The PS.dat file contains an

ordered list o f events where each event is one of the following types:

• <"CREATE", GTID, [Mobile or Static]> - global transaction of type Mobile or Static with

identifier GTID was created.

• <"EXECUTE", GTID, Siteld, [vital or non-vital]> - global transaction GTID executed a

site-transaction of type vital or non-vital at site Siteld.

• <*TOGGLE", GTID> - global transaction GTID executed the toggle operation.

• <"C0MM1T", GTID, ServiceTime> - global transaction GTID completed its execution. The

service time for the transaction is given by ServiceTime.

Each event is processed as follows. For each CREATE event, the application creates a

Global Transaction object with foe corresponding GTID and TransType. Eadi Global

100

Transactioa object contains an additional attribute named Propagation Count. This attribute is

used to keep a count of the number of parallel steps (i.e., parallel message transmissions)

executed by the PGSG algorithm when the transaction is toggled and/or committed. For each

EXECUTE event, the application adds a node labeled GTID in front of the SSG of the specified

site. Essentially, this represents the serialization order of the site-transaction at that site.

For each TCXKjLE and COMMIT event, the application executes the PGSG algorithm and

determines whether the global transaction is to be toggled committed or aborted. The complete

PGSG algorithm for the PS technique is given in Section 3.1.4.5. Each time the global

transaction executes the PGSG algorithm, the Propagation Count is updated accordingly. If the

global transaction is to be aborted, the corresponding Global Transaction object is marked as

Aborted. If the event is a TCXjGLE event and the PGSG algorithm succeeds, then the Global

Transaction is marked as Toggled. If the event is COMMIT and the operation is successful, then

the Global Transaction is marked as Committed and its execution time is set to the ARENA

service time.

Once all events in PS.dat have been processed the application processes all Global

Transaction objects and reports the final results of the simulation. For each simulation, the

following results are reported:

• The ratio o f static-global-transactions-aborted / static-global-transactions-simulated

• The ratio o f mobile-global-transactions-aborted/mobile-global-transactions-simulated

• The average service time of all successful global transactions. Here the service time of a

global transaction is the sum of the ARENA service time and the time taken to commit the

global transaction, i.e.. Propagation Count multiplied by the time taken to transmit one

message on die static network.

101

6.3.3 Simulation Model for the Semantic-PS Technique

This section details the "Simulation of Global Transactions" step o f the common

simulation model for the Semantic-PS technique. Once again, the simulation is carried out in

two steps. First, an ARENA model is used to simulate the creation and execution of global

transactions. Here, the sequence of events that occur during the ARENA simulation is written to

a file named SemPS.dat. Next, a Java application is used to simulate the PGSG algorithm by

reconstructing the entire execution sequence recorded by the ARENA simulation. This is

simulated as described in the following sub-sections.

6J.3.1 The ARENA Model of the Semantic-PS Technique

The execution process of global transactions in the Semantic-PS technique is very

similar to that of the PS technique. The differences between the PS and Semantic-PS techniques

are: 1 - The Semantic-PS technique enforces atomicity and isolation properties only on the set

of vital site-transactions; 2 - Mobile global transactions execute the PGSG algorithm only once

- during the toggle phase; and 3- The ticket method used to obtain the local serialization order

forces conflicts only between site-transactions (that execute at the same site and) potentially

conflict witii each other. Here, 2 and 3 are related to the execution o f the PGSG algorithm. As

the ARENA model does not simulate the execution of the PGSG algorithm, these do not have to

be modeled in die ARENA model.

In order to ensure that the A/I properties are enforced only on the set of vital site-

transactions, the ARENA model records only the execution of vital site-transactions in

SemPS.dat file. This can be modeled by encapsulating the Rticket Record module within an If

End-If block (Figure 6-4). If the site-transaction is a vital site-transaction, then it is recorded;

102

otherwise it is not. Note that the execution of non-vital site-transactions needs to be simulated in

ARENA as it afifects the service time of a global transaction.

SMdly Seize If Rticket End If Xdly Release SMdly

While

Static
1

Rstart ►Choose

Mobile

While

SMdly

End While

RESOURCE Rfinish

End While

MMdly S eizellf
T

Rticket I End If|| Xdly jp /S Release MMdly If Toggle [j in d lf

Figure 6-4: Simulation of Global Transactions - Semantic-PS technique

6.3J.2 The PGSG Java Application

The Java application that simulates the PGSG algorithm for the Semantic-PS technique

is very similar to that of the PS technique as well. The only differences are:

1. All site-transactions that execute at one site do not conflict with each other.

2. Mobile global transactions do not execute die PGSG algorithm during the commit phase.

These change are implemented as follows. The probability of a site-transaction

conflicting widi another site-transaction is defined by the envirorunent variable Pcnf. As each site

maintains multiple tickets that need to be distinguished, each Node object in the SSG graph is

associated with an integer variable called ticket. Whenever the Java application encounters an

EXECUTE event in the SemPS.dat file, diis event is processed by adding a Node object to the

SSG of that site with the respective GTID and the ticket is assigned a random integer value in

the range I..l/P<af. For example, if P^f = 0.1, i.e., there is a one-in-ten chance that a site-

103

transaction conflicts with another site-transaction at that site, then the ticket will be assigned a

random value in the range of 1..10. Unlike for the PS technique, nodes in the SSG are linked

only if they have the same ticket value. Therefore, the probability of a site-transaction

conflicting with another site-transaction that executes at the same site is 1/10, i.e., P^f.

The CREATE event and the TOGGLE event are processed identical to that o f the PS

technique. However, when a COMMIT is encountered, the application executes the PGSG

algorithm only if the TransType is Static as in Semantic-PS, mobile transactions do not execute

the PGSG during the commit. Note that the PGSG algorithm that is executed for each TOGGLE

or COMMIT event is the one defined for the Semantic-PS technique in Section 4.2.1.

6 J.4 Simulation Model for the Kangaroo Technique

This section details the "Simulation of Global Transactions" step of the common

simulation model for the Kangaroo technique. The entire simulation of the Kangaroo technique

is carried out using an ARENA model which is described below.

The Kangaroo technique does not distinguish between static global transactions and

mobile global transactions. Therefore, the simulation model contains only one path. In the

Kangaroo model site-transactions are encapsulated in a Joey transaction. In the Kangaroo

simulation model, in addition to the GTID, TransType, NumSites, SiteList, DcnDelay, and

StartTime attributes, each global transaction entity contains two additional attributes labeled

MigrationCount and MessageDelay. The MigrationCount attribute is used to keep track o f the

number of migrations that occur during the execution of a global transaction. The

MessageDelay attribute is assigned the time taken to submit a site-transaction on the appropriate

medium depending on the type o f global transactions. That is, for mobile transactions

MessageDelay is assigned tiie time taken to transmit a message on tiie wireless networic; for

104

stade transactions MessageDelay is assigned the time taken to transmit a message on the wired

network.

The execution o f a global transaction is simulated using a While End-While loop. Each

loop simulates the execution of a single site-transaction. The execution of a site-transaction

consists of seven steps (Figure 6-5). First, the site-transaction is delayed for a time period of

MessageDelay to simulate the submission of a site-transaction to the MMDBMS. This is

modeled using the Mdly Delay Module. Next, the global transaction seizes the Site which is

modeled using the Seize module; executes the site-transaction which is modeled using the

Delay module labeled Xdly; and releases the seized site which is modeled using the Release

module.

Next, potential disconnection and migration need to be modeled for mobile global

transactions. If the transaction is a mobile transaction (which is modeled using the If module),

then the potential disconnection and migration are modeled using the D/M module described in

Section 6.1.3. In this nxxlule if a migration does occur, the MigrationCount is incremented. In

essence, the MigrationCount represents the number of Joey transactions that are created for the

global transaction.

Once the global transaction has completed its execution, it is transferred to the Commit

nuxlule. This module is a Delay module and delays the transaction to simulate the execution of

the commit protocol. Each global transaction is delayed for a time period equivalent to the

commit time of the global transaction, i.e., 2 * MigrationCount * time taken to transmit a

message on the static network. Next, the global transaction is transferred to the Tally module

which collects statistics on the simulation, i.e., the average service time for global transactions

and the individual tallies for static and mobile transactions.

103

RESOURCE

While

Tally

Commit

End While

Mdly Seize Xdly Release Mdly If D/S IncrMC End If

Figure 6-5: Sim ulation o f Global Transactions - Kangaroo technique

6.4 The Simulation Environment

In this section the defiuilt values used to define the simulation enviromnent will be

documented. A summary of the parameters is presented in Table 6-1. As one of the primary

goals of this simulation is to study the effectiveness of pre-serialization, some parameter values

have been chosen especially to 6cilitate this goal. In essence, it was necessary to define a

simulation environment that provided a sufGcient number of isolation property violations so that

the effectiveness of pre-serialization could be studied.

The number of sites in the simulation environment is one such parameter. The typical

MMDB environment will consist of a very large number of sites. As the number of sites in the

system increases, the probability of isolation property violations decreases especially as it is

assumed that each site is equally likely to be accessed. Therefore it was necessary to perform

the simulation over a small number of sites in order to magnify isolation property violations.

The number of sites in this simulation (TotalSites) has been set to 10.

Global transactions are created based on an exponential distribution with a mean of 0.2

time units. The exponential distribution is chosen as it is often used to model inter-event times

106

in random arrival processes [KSS98], A probability distribution is used to label transactions as

either Static or M<*ile transactions.

A triangular distribution (with a minimum of 3, average of 4, and maximum of 5) has

been chosen to describe the number of site-transactions in a global transaction (NumSites). The

triangular distribution is chosen for two reasons: 1 - it is commonly used in situations in which

the exact fisrm of the distribution is not known [KSS98]; and 2 - it is bounded by a minimum

and maximum value. Note that on average 40 percent of the sites in the system are being

accessed by a global transaction. Once again, a high value has been chosen in order to magnify

the isolation property violations.

The execution time of a site-transaction is described using a triangular distribution. The

mean time for execution has been derived from the values given in Table 5.1.

The length of the vital stage of a global transaction (VT#,) is set to be 50% of the length

of the global transaction. This value has been chosen as initial simulation results indicate that

50% is the value for VT«, at which neither static nor global transactions will be penalized. The

average time o f disconnection has been taken fixxn the values given in Table 5.1.

The probability of a site-transaction conflicting with another site-transaction at the

same site (Pcnf) is set to 0.5. (Note that this parameter applies only to the Semantic-PS

technique.) Once again a high value is chosen to magnify the isolation property violations. The

parameters P*m, Pn#, T*aa«, T'an„ and T*p^ have been taken from Table 5.1. The length of a

simulation run (Leo) has been set to 7200 time units. Assuming that a time unit represents one

second, the length of a simulation run represents a 2-hour period.

Finally, as in the analytical evaluation, this simulation assumes that each site is equally

likely to be accessed by any site-transaction such diat a global transaction does submit two site-

transactions at the same site.

107

Parameter Description Default Value
TotalSites Number of sites in the MMDBS 10
GTi. Inter-arrival time of global transactions EXPO(0.2) time units
GT(*io The ration of mobile global transactions to static

global transactions
0.3/0.7

NumSites Number of site-transactions in a global transaction TR1A(3, 4, 5)
EXEw avg. local execution time of a site-transaction TRIA (0.001, 0.003. 0.005)
V Tc The size of the vital stage of a global transaction

(as a fraction of the total length)
0.5

DCNnn Avg. time between discormection and relocation 0 .1 time units
Parf Probability of a site-transaction conflicting with

anofoer site-transaction (at foe same site)
0.5

Pd. The probability of a disconnection during the
execution of a site-transaction

(f NumSites/3l)/NumSites

P“» The probability of a migration during the execution
of a site-transaction

fPd«/3l

Tnm avg. time to transmit a message on the static
(wired) network

0.0001 time units

T n .. avg. time to transmit a message over the wireless
medium

0.07 time units

avg. time to transmit a Predecessor graph (or
propagate a PGS graph) from site to site along the
static network

0.001 time units

Len Length of simulation 7200 time units
Table 6-1: Environment parameters fo r simulation

6.5 Service Time for Global Transactions

In this section, the simulation models will be used to obtain the service time (i.e., ST»,)

for the PS Semantic-PS and Kangaroo techniques. As the primary purpose of this experiment is

to validate the analytical model (and vice versa) by reproducing the experiment carried out in

Section 5.4.1 - Service Times, the MMDB environment will need to duplicate the same

environment The de&ult values will be taken from Table 6-1 for every parameter, except P=f

and GTnbo. as foe values represent the same environment defined in Table 5.1. In this

experiment Pcnf will be set to 0.05 - the value defined in Table 5.1. In foe experiment carried out

is Section 5.4.1, all global transactions are mobile global transactions. To duplicate this

scenario, GT^ia is set to I/O.

108

The simuladoo is repeated 20 times for each technique. The average ST«, is given in

Figure 6-6. These results show that the simulated ST«, for all techniques is less than the

analytical ST^,. However, this deviation is very minimal. That is, for the PS technique, ST^,

obtained firom the analytical model is only 1.3% greater than that obtained from the simulation

model. For the Semantic-PS and Kangaroo techniques, ST^, obtained from the analytical

models is less than 1% greater than that obtained fixxn the simulation models. Once again, it can

be concluded that ST^, for the PS and Semantic-PS technique is not significantly higher than

that of the Kangaroo technique.

•g 0.69
I 0.685
S 0.68
5 0.675
% 0.67
S 0.665
§ 0.66f 0.655

0.65

iLSSfi.

I Analytical
I Simulation

PS Semantic- Kangaroo
PS

Figure 6-6: ST«, for Three Transaction Management Techniques Using Analytical
Models and Simulation Models

Next, the 95% confidence interval over die 20 runs is calculated. The 95% confidence

interval fijr the PS technique is 0.677 ± 0.009. Thus 95% of the simulation results reside in the

interval (0.668 - 0.686). The 95% confidence interval for the Semantic-PS technique is 0.667 ±

0.006, i.e., (0.661 - 0.673). The 95% confidence interval for the Kangaroo technique is 0.665 ±

0.006, i.e., (0.659 - 0.671). Note that the ST^, obtained fixim the analytical model fiir each

technique is widiin the 95% confidence interval obtained fiom the simulation model. Thus, it

can be stated with cmifideoce that die simulation model complemoits the analytical model.

109

6.6 Hypothesis Testing

In the previous section it was concluded that the service times for the PS and Semantic-

PS techniques are not significandy higher than the service time of the Kangaroo technique. This

conclusion was drawn from an informal evaluation o f the simulation results. In this section,

hypothesis testing will be used to examine whether ST^g for the PS and Semantic-PS

techniques are significandy greater than that of the Kangaroo technique. Specifically, the

hypodiesis test concerning means will be used to determine whether it can be established that

ST«, for the PS and Semantic-PS techniques are different fixxn that of the Kangaroo technique

at the 0.05 level of significance.

6.6.1 Hypothesis Test for the PS Technique

In this section, the claim that ST^, for the PS technique is not significandy higher than

that of the Kangaroo technique is tested. As the aim of this hypothesis test is to establish that

STiv, for PS is not significandy higher, the null hypothesis will claim the contrary. That is, the

null hypothesis states that ST«, for the PS technique is significandy different than that o f the

Kangaroo technique. The null hypothesis Ho, and alternate hypothesis H, are stated as:

Ho: ST,v(for the PS technique # S T ^ for the Kangaroo technique (i.e., 0.665)

Hi: STng for the PS technique = ST*, for the Kangaroo technique

Let X be the sample mean of the PS technique, c be the variance, and n be size of the

population. Then die test statistic z is given by:

z = (x - ST*, for Kangaroo) / (rr / Vn)

no

A 0.05 level of significance defines a critical region 6 r z such that for any z < 1.645 the

null hypodiesis must be rejected in fiivor of the alternate hypothesis. For the PS technique, x =

0.677 and a - 0.0205. Consequently,

z = (0.0677 - 0.665) / (0.0205 / V20) = 0.13

As z < 1.645, the null hypothesis Ho must be rejected in fiivor of the alternate

hypothesis H, Thus it must be concluded that, at the 0.05 level of significance, ST«v, for the PS

technique is not different from that of the Kangaroo technique.

6.6.2 Hypothesis Test for the Semantic-PS Technique

In this section, the claim that ST«v, for the Semantic-PS technique is not significantly

higher than that of the Kangaroo technique is tested. Once again, the null hypothesis will claim

the contrary. That is, the null hypothesis states that ST^, for Semantic-PS is significantly

different than that of the Kangaroo technique. The null hypothesis Ho and alternate hypothesis

H i are stated as:

Ho: STwi for the Semantic-PS technique * ST*, for the Kangaroo technique (0.665)

H|: ST*, for the Semantic-PS technique = ST*, fiir the Kangaroo technique

For the Semantic-PS technique, x = 0.667 and <t= 0.0137. Consequently,

z =(0.0667 - 0.665)/(0.0137/ V20) = 0.2

111

Once again, as z < 1.645, the null hypothesis Ho must be rejected in &vor of the

alternate hypothesis H,. Thus, it must be conclutkd that at the 0.05 level of significance, the

STw, for the Semantic-PS technique is not different fixHn that of the Kangaroo technique.

6.7 Evaluation of Pre-Serialization

In this section the simulation model will be used to evaluate the effectiveness of pre­

serialization in minimizing the unfidr treatment o f mobile global transactions due to their

prolonged execution time. In order to measure its effectiveness, the ideal case needs to be

established.

Simply stated, the ideal case is to ensure that mobile global transactions are not

penalized in any manner due to their prolonged execution. With respect to the PS and Semantic-

PS techniques, this requires that the percentage o f mobile global transactions aborted due to

isolation property violations be equal to the percentage of static global transactions aborted due

to isolation property violations. Formally, let MT-Abort be the percentage of mobile global

transactions aborted during some time interval t, and ST-Abort be the percentage o f static global

transactions aborted during the same time interval t Then the penalty incurred by mobile global

transactions due to their extended execution time (MT-Penalty) can be represented as:

MT-Penalty = (MT-Aborts - ST-Aborts)

Note that MT-Penalty > 0 represents that mobile global transactions are penalized by

the concurrency control algorithm and MT-Penalty < 0 represents that mobile global

transactions are being fitvored by the algorithm. The ideal case is MT-Penalty = 0.

112

6.7.1 The Ideal Length of the Vital Stage for Global Transactions

This simulation attempts to identify the length of the vital stage of a global transactions

such that the ideal MT-Penalty is obtained. For this simulation, MT*Penalty will be calculated

for VTg, = (0.4, 0.5, 0.6, 0.7, 0.8). The defoult values are used for the rest o f the parameters.

The simulation is carried out 10 times for each value for each technique. The results of the

simulation for the PS technique are presented in Figure 6-7. The simulation results indicate that,

for the PS technique, the point at which mobile transactions are not penalized for their extended

execution time is when VT«, is O.S. That is, MT-Penalty is approximately 0 when the length of

foe vital stage spans no more than 50% of its entire length. Note that when VT$, is 40% of the

length of a global transaction, static transactions are being penalized by the PGSG algorithm.

0.06
0.05

I* 0.04
g 0.03

t r r“ tn r"
VTstg

Figure 6-7: M T-Penaity Vs V T ^ (PS technique)

Next, the same experiment is carried out for the Semantic-PS technique. The results of

this simulation are presented in Figure 6-8. Once again, the simulation results indicate that the

point at which neifoer mobile transactions nor static transactions are penalized by the PGSG

algorithm is when VT«, is 0.5.

113

-0.005 0.4

Figure 6 S : MT-Penalty Vs (Semantic-PS technique)

Now that the value of VT«, at which the ideal MT-Penalty is obtained has been

established, the confidence interval for this value of VT^, needs to be detemiined. The

confidence interval is a level of confidence with respect to the simulation and specifies the

probability that any given simulation run would produce a result within the confidence interval.

This simulation will establish the 95% confidence interval. To establish this confidence interval,

the simulation is carried out 20 times for each technique.

The 95% confidence interval for MT-Penalty for the PS technique when VTstg = 50%

is 0.002 ± 0.0039. That is, the range for MT-Penalty that includes 95% of the simulation results

for the PS technique is (-0.0019, 0.0059). The 95% confidence interval for MT-Penalty for the

Semantic-PS technique when VT«, = 50% is 0.000 ± 0.0015. That is, the range for MT-Penalty

that includes 95% of the simulation results for the Semantic-PS technique is (-0.0015,0.0015).

The above simulation establishes the length of the vital stage of a global transaction

such that neither mobile transactions nor static global transactions are penalized by the PGSG

algorithm and the 95% confidence interval for MT-Penalty. Next, simulations are carried out to

determine whefoer environment parameters that were arbitrarily chosen would drastically affect

the observed the ideal lengdi o f the vital stage, specifically GTim, GTnbo and P«=f.

114

6.7.2 Varying the Inter-Arrival Time

In the next experiment, the simulation is carried out for a range of global transaction

inter-arrival times in order to determine its effect on VT«,. Specifically, the simulation is carried

out for GTint = (0.2, 0.4, 0.6, 0.8, 1.0) for both techniques. Table 6-2 contains the MT-Penalty

for bodi techniques for the different inter-arrival times. These results indicate that the inter­

arrival time has no significant effect on the "fairness" of pre-serialization. Note that the results

fiar each simulation fidls within the 95% confidence interval established in the previous section.

GTiat 0.2 0.4 0.6 0.8 1.0
PS 0.003 O.OOl 0.003 0.002 0.001

Semantic-PS 0.00015 0.0004 0.001 0.0005 0.000

Table AfT-PenaÙy fo r varying inter-arrivai times

6.7.3 Varying the Mobile to Static Transaction Ratio

In the next experiment, the simulation is carried out for different values o f GT„tu - the

ratio of mobile global transactions to static global transactions in order to determine its effect on

VT^. Specifically, the simulation is carried out for GT„oo = (0.3/0.7, 0.4/0.6, 0.5/0.5, 0.6/0.4,

0.7/0.3) fi>r both techniques. Table 6-3 contains the MT-Penalty for both techniques for the

different inter-arrival times. Once again, the results fidi within the 95% confidence interval

obtained in die initial simulation, indicating that the ratio of mobile/static global transactions

has no significant effect on the "foimess” of pre-serialization.

GTnOo 0.3/0.7 0.4/0.6 0.5/0.5 0.6/0.4 0.7/0.3
PS 0.003 0.002 0.002 0.004 0.004
Semantic-PS 0.000 0.0001 0.001 0.000 0.000

Table 6-3: MT-Penalty for varying Mobile/Static ratios

115

6.7.4 Varying the Probability of Conflicts

In the next experiment, the simulation is carried out for difierent values of Paf - the

probability of a site-transaction conflicting with another site-transaction at the same site.

Specifically, the simulation is carried out for Pad’ = (0.1, 0.2, 0.3, 0.4, 0.5). As Pear has no

influence on the execution of the PS technique, this experiment is carried out only for the

Semantic-PS technique. Table 6-4 contains the MT-Penalty obtained fiom this experiment. For

Pof = 0 1 this simulation produced no aborts of global transactions. For Pcbt = 0.2, 0.3, 0.4, 0.5,

MT-Penalty fidls within the 95% confidence interval indicating that VT«, is not affected by Pof.

Pad 0.1 0.2 0.3 0.4 0.5
Semantic-PS 0.000 0.002 O.OOl 0.000 O.OOl

Table 6-3: MT-Penalty for varying Mobile/Static ratios

6.7.5 Varying the Disconnection Time

In the next experiment, the simulation is carried out for different values of DCNm - the

average time of disconnection. Specifically, the simulation is carried out for DCNoa = (0.2, 0.4,

0.8, 1.0, 1.2). These results indicate that the average time between disconnection and relocation

affects MT-Penahy (Figure 6-9). As the average disconnection time increases, MT-Penalty

increases as well.

116

0.015

0.01 PS
Sem-PS0.005

0.2 0.4 0.6 0.8

DCNtm

Figure 6-9; MT-Penalty for varying DCN(n

6.7.6 Varying the Wireless Communication Time

In the next experiment, the simulation is carried out for different values o f - the

time taken to transmit a message over the wireless network. Specifically, the simulation is

carried out for = (0.1, 0.2, 0.3, 1.4, 1.5). These results indicate that the time taken to

transmit a message over 6 e wireless communication network affects MT-Penalty (Figure 6-10).

As 'T'oac increases, MT-Penalty increases as well.

0.025

* 0.005

•PS
■Sem-PS

TWmsg

Figure 6-10: MT-Penalty for varying T"ni,

6.8 Summary and Conclusion

The simulations carried out in this section establishes that pre-serialization can

effectively reduce the unfoir treatment of nnobile global transactions due to their prolonged

117

execution. In âc t, it was shown that the PS and Semantic-PS techniques can effectively

eliminate ail un&ir treatment of mobile global transactions when the vital stage of a global

transaction is 50% of the total length of the global transaction. It was also shown that the inter­

arrival time, the ratio of mobile to static global transactions, and the probability of conflicts do

not have any drastic effect on the effectiveness o f pre-serialization for the default simulation

environment. This is to be expected as the execution o f mobile global transactions is identical to

that of static global transactions in both techniques except for the time taken to complete the

execution. The parameters GTm, GT^üo and P«nf do not affect the execution time of mobile

transactions. Therefore, they have no effect on MT-Penalty.

However, the simulation showed that DCNu and T ”oa« affect MT-Penalty. This can be

explained as follows. Pre-serialization is introduced to address the unfltir treatment o f mobile

transactions due to their prolonged executions. In effect, pre-serialization reduces the time

period within which a mobile global transaction can cause conflict violations, i.e., VTn,. The

ideal MT-Penalty is achieved at some ratio (between the time taken to complete the execution

of static global transactions and the VTk, of mobile transactions) at which the concurrency

control algorithm resolves conflict violations by aborting the same percentage of mobile and

static global transactions. Unlike GTb» GT^b» and Pad-, DCNu and 1*= , alter the interval VT*,

and therefore, change the point at which the ideal MT-Penalty occurs. In feet, it can be

concluded that any parameter that changes the ratio between the time taken to complete the

execution of static global transactions and the VTo, o f mobile transactions will affect the point

at which MT-Penalty is zero.

118

Chapter 7

C o n c lu s io n a n d F u tu r e R e s e a rc h

Current advances in technology has changed the conventional computing environment.

On the one hand the Internet has revolutionized connectivity and introduced the notion of

cooperating but autononous information systems. On die other hand rapid advances in wireless

communication teclmology has introduced the notion o f mobile computing. This dissertation

research studies database transaction management in the mobile multidatabase environment.

The major contributions of this research are fourfold. First, this dissertation research

studies the issues related to transaction management in the MMDB environment. Second, two

new transaction management techniques that address all identified issues are proposed. These

techniques introduce the following new concepts to transaction management;

1. It introduces two new states - Disconnected and Suspended • in order to address

disconnectivity of the wireless communication medium.

2. It introduces the notion of pre-serialization to address the prolonged execution of mobile

global transactions.

3. It introduces a new concurrency control algorithm based on partial global serialization

graphs and information propagation.

4. An analytical model of the MMDB environment is developed. Simulation models of the

proposed transaction management techniques are also developed. These models are used to

evaluate foe performance of the proposed techniques.

119

7.1 Transaction Management in the MMDB Environment

Transaction management is a core concept in the science of Database Management and

has been studied extensively in traditional database environments. Transactions are defined to

be consistent and reliable units of computing. In traditional systems, transactions satisfy this

definition if they adhere to the ACID properties. However, the cooperating federated computing

environriKot and the mobile computing environment introduce new issues that affect database

transaction management. The multidatabase environment requires cooperating database systems

to provide a single logical view of the information resources to the user without violating the

autonomy of the constituent database systems. The mobile database environment requires that

information available on the static network to wired users be made available to mobile users

who connect fiom anywhere at any time. Wireless communications are fiequently interrupted

by disconnection and migration. These disconnection and migration violate imderlying

presumptions about user connectivity that exists in wired systems. The natures o f these new

environments have raised legitimate questions ahout the applicability of the ACID properties.

Therefore, it is necessary to revisit the responsibilities of the global transaction management

process in light of the new environments.

The GTM of the MMDBS is responsible for enforcing the reliability and consistency of

global transactions. Unlike in traditional DBMSs, the GTM of the MMDBS does not have to

enfi)rce all the ACID properties for two reasons. As the constituent databases enforce the ACID

properties on the site-transactions that execute under their control, global transactions, by

defiuih, satisfy the consistency and durability properties. Therefore, foe GTM is responsible for

only the atomicity and isolation properties. However, the requirements of the new environments

dictate that the GTM enforces a range of correctness criteria with respect to the atomicity and

isolation properties, ranging from strict A/I to uiuestricted access.

120

In addition to die A/I properties, die GTM needs to address disconnectioa and migrating

transactions. Unlike in the static environment, disconnection in the mobile environment cannot

always be treated as Êülures that result in aborted transactions. In some cases, however,

disconnection will be caused by a catastrophic 6ilure. As the MMDBS can only predict

catastrophic dilutes, aborting disconnected transactions is likely to result in some untimely

terminations. The GTM needs to take appropriate steps to minimize such untimely terminations.

Disconnection and migration of the mobile user prolong the execution time of mobile

transactions as well. Consequmdy, this affects the enforcement of the isolation property. In

order to maintain a notion of tidmess, the concurrency control mechanism of the GTM must

minimize any un&ir treatment of transactions of mobile users.

Furthermore, the GTM must also conform to multidatabase design restrictions, i.e., the

autonomy of the LDBSs cannot be violated.

7.2 The PS and Semantic-PS techniques

This dissertation proposes two transaction management techniques, PS and PS-

Semantic, for the MMDB environment based on the Multi-Level transaction model. In this

transaction modeL global transactions consist of a set o f site-transactions such that each site-

transaction is executed as a single (consistent and reliable) transaction at some local DBMS.

Each site-transaction is cat%orized as vital or non-vital. The time between the first and last vital

site-transaction o f a global transaction constitute its vital phase. All vital site-transactions o f a

global transactioo must complete successfully in order for the global transa^on to complete its

execution successfully. As a global transaction can consist of any combination of vital and non-

vital site transactions, tiiese tedmiques can enforce a range of correctness criteria with respect

to the A/I properties.

121

The GTM of each technique consists of two layers: the Global Coordinator layer is

responsible for the overall execution and coordination o f global transactions, and the Site

Manager layer is responsible for managing the execution o f site-transactions at each site. This

research introduces two new states - Disconnected and Suspended - in order to address the

disconnectivity of wireless communications. Global transactions of a disconnected user are

placed in the Disconnected state until the user re-connects (at which time the global transaction

is set back to active), or until such time that the MMDBS determines that a catastrophic &ilure

has occurred. In the later case, the global transaction is placed in a Suspended state. In an effort

to minimize untimely aborts caused by erroneous decisions about the users' connectivity status.

Suspended transactions are not aborted until they interfere with the execution of other global

transactions.

The PGSG algoridun verifies the atomicity and isolation properties of global

transactions. The PGSG algorithm verifies the isolation property by constructing a partial global

serialization graph and relies on information propagation to ensure that all violations are

detected. The primary difference between the PS technique and the Semantic-PS technique lies

in the enforcement policy of the A/I properties.

In the PS technique, static global transactions execute the PGSG algorithm at the end of

their execution in order to verify the A/I properties. If A/I have not been violated die

transactions commits; otherwise the transactions are aborted. Mobile global transactions execute

the PGSG algorithm at the end of their vital stage. If A/I has not been violated, the global

transactions are toggled; otherwise they are aborted. The toggle opeiatioa roisters the global

transactions' serialization order in die global transaction serialization scheme. Upon completing

dieir execution, toggled mobile global transactions execute the PGSG algoridun a second time

in order to rectify any isolation property violations that diey may have caused after being

toggled. In the PS technique, the PGSG algorithm enforces A/I on all site-transactions o f a

122

global transaction. However, only vital site-transactions can cause a global transaction to be

aborted. As the local serialization o f site-transactions is transparent to the MMDBS, the PS

technique forces conflicts between all site-transactions that execute at each site using a local

ticket data item. The ticket value is then used to deduce the local serialization order.

The limitations o f foe PS technique are:

1. Mobile transactions utilize additional overhead as they execute the PGSG algorithm twice.

2. Concurrency is limited as all site-transactions that execute at each site are forced to conflict

with each other.

The Semantic-PS technique overcomes these limitations as follows. The Semantic-PS

technique enforces the A/1 properties only on the set of vital site-transactions of a global

transaction. As in the PS technique, the static global transactions execute the PGSG algorithm at

the end of their execution and mobile global transactions execute the PGSG algorithm at the end

of their vital stage. However unlike in the PS technique, mobile global transactions are not

required to execute the PGSG algorithm a second time as the Semantic-PS technique enforces

A/I only on the set of vital site-transactions. Toggled mobile global transactions are allowed to

commit at the end of their execution. In order to improve concurrency, the Semantic-PS

technique relies on semantic information about local data items to combine local operations

(executed by site-transactions) into groups that potentially conflict with each other and assign a

ticket to each group. Thus, foe Semantic-PS technique enforces conflicts only between site-

transactions that execute one or more operations from the same group.

As the PS and Semantic-PS techniques allow mobile global transactions to establish

their serialization order prior to completing their execution, these techniques minimize the

unfair treatment o f mobile global transactions due to their prolonged execution.

123

7.3 Feature Comparison with Existing Techniques

The MMDB environment is a relatively new area of research which encompasses

emerging technologies. Yet, it has received considerable attention firom the research

community. Many existing publications specifically address transaction management in the

MMDB environment. However, the proposed techniques fall short of meeting all the

requirements of the MMDB environment. To summarize their deficiencies, none o f the

techniques enfijrces the (global) isolation property. Thus, global transactions are not executed as

consistent units o f computing. In addition, disconnections that represent catastrophic dilutes are

not addressed. It is assumed that a disconnection will always be followed by a subsequmt re­

connection. The PS and Semantic-PS techniques are compared to the existing techniques in

Table-7-1.

Technique Disctn.
Support

Migrtn.
Support

Autonomy
Violated

Atomicity
Level

Isolation
Level

Agent-Based Access [PB9S-2] Partial Partial No VAR None
TP in Mobile Env [Chry93] Partial FuU Yes VAR None
MDSTMP [YZ94] Partial FuU No STR None
Kangaroo Model [DHB97] Partial Partial No VAR None
PS Technique FuU FuU No VAR VAR
Semantic-PS technique FuU FuU No VAR VAR

Table 7-1: Summary o f Mobile 14ulddatai tase Transaction Models

7.4 Performance Analysis and Simulation

hi this dissertation research, an analytical model of transaction management in an

MMDB environment is developed in Chapter S. This model is used to study the transaction

service time of the PS and Semantic-PS techniques and to compare their performance to that of

foe Kangaroo model. A simulation model is developed in Chapter 6 and is also used to study the

124

performance of the three techniques. This simulation model is then used to study the bdiavior of

the PS and Semantic-PS techniques.

The PGSG algorithm of the PS and Semantic-PS techniques requires serialization

information to be transmitted on the static network in order to construct the partial global

serialization graph and to propagate serialization information back to the participating sites. The

primary goal o f the analytical evaluation was to determine the cost (per global transaction) of

this information propagation with respect to the total execution time of the global transaction.

The initial analysis widi respect to global transaction length, number of disconnections, and

number of migrations indicated that the transaction service time and the rate of growth of the

service time for the PS and Semantic-PS techniques are comparable to those of the Kangaroo

technique. When the service time is evaluated with respect to the communication cost, the PS

and Semantic-PS still remain comparable to the Kangaroo model. However, it is evident that the

service time of the PS technique deteriorates more rapidly than the Semantic-PS and Kangaroo

technique. This can be attributed to the following;

1. The PS technique executes the PGSG algorithm twice for all mobile global transactions.

2. All site-transactions that execute at the same site are forced to conflict with each other.

The primary goal o f the simulation was to determine the length of the vital stage of

global transactions such that mobile global transactions are not penalized for their extended

execution time. The simulation model was also used to study the bdiavior of the PS and

Semantic-PS techniques with respect to related environment parameters. The simulation results

indicate that the length o f the vital stage such that mobile global transactions are not penalized

(i.e., MT-Penalty = 0) is 50% of the total length of foe global transactioa for bofo foe PS and

Semantic-PS technique. The 95% confidence interval for MT-Penalty when foe vital stage is

50% of the total lengfo of the global transaction is (-0.0019, 0.0059) for the PS technique and (-

0.0015, 0.0015) for foe Semantic-PS technique. The simulation demonstrated that the inter­

125

arrival time of global transactions, the ratio of static to mobile transactions, and the probability

of conflicts do not alter the ideal MT-Penalty in any significant way. However, it is evident that

MT-Penalty is afifected by DCNm and T"m,. This is due to the 6 c t that these parameters affect

the length o f the vital stage of mobile transactions.

In summary, the analytical nxxlel demonstrates that the communication cost incurred by

the respective PGSG algorithm of the PS and Semantic-PS techniques accounts for only a small

portion of the service time of the global transaction in environments where the communication

cost on the static network is relatively small. Thus, the PS and Semantic-PS techniques offer a

substantial advantage over existing techniques - they enforce the isolation property without

violating local DBMS autonomy - for little additional communication overhead. The

simulation demonstrates that pre-serialization is an effective technique that can be used to

minimize tire unfair treatment of mobile global transactions due to their prolonged execution

time.

7.5 Future Research

This research deals with transaction management in two rapidly changing computing

environments, i.e., the vastly expanding Internet environment and the wireless computing

environment Like any technology in its early stages, the Internet and wireless computing

environments are driven by innovations. In essence, these environments can be characterized as

revofaitiQoaiy environments rather than evolutionary environments. The volatile nature of these

rapidly dianging environments makes it difGcult for researchers to design evaluate and optimize

algorithms &*r the environments. It also makes it necessary for researchers to continuously re­

evaluate design criteria and to either alter proposed solutions to meet the needs of the changed

environments or propose new solutions. Accordingly, the future research of fois dissertation will

proceed in three directions: the requirements of the transaction manager need to be re-evaluated

126

with respect to emerging computing models; the PS and Semantic-PS techniques will be

tailored for the cellular communication architecture; these techniques need to be re-evaluated

for the new environment.

7.5.1 Emerging Computing Models

In today's Internet computing environment, electronic commerce (a.k.a., e-commerce)

has become a predominant application domain. Just as mobile computing has affected

transaction processing, e-commerce is beginning to influence transaction processing in the

multidatabase environment. The e-commerce transaction processing is called Internet

Transaction Processing (iTP). Although the transaction model is not yet fully understood, it is

expected that this nxxlel will be different from traditional online transactioa processing

(OLAP). As iTP evolves, the PS and Semantic-PS techniques need to be tailored to satisfy the

new requirements as iTP will be the predominant heterogeneous transaction processing

environment.

7.5.2 Cellular Communicatioa Architecture

Current trends indicate that the cellular communicatioa medium will be the

predominant communicatioa medium of mobile computing applications. Thus, it is reasonable

to optimize die PS and Semantic-PS techniques for the cellular communication architecture.

Ahhouÿi there are many cellular networks (e.g.. Sprint PCS and AT&T Digital Networks),

their underlying architecture is very similar. The cellular networic consists of cells - r iio n s that

are covered by a node that supports wireless communication. Cells are grouped to frirm clusters

and in turn, these clusters are grouped to fr3rm a hierarchy of clusters diat represents a tree of

clusters.

127

In order to minimize the overhead of information propagation, the research needs to

study a hybrid concurrency control algorithm that is based on information propagation (such as

in the PGSG algorithm) between clusters and some concurrency control algorithm that does not

require information propagation within a cluster of cells. The motivation of this algorithm is

diat it would eliminate the need for information propagation within a cluster of cells and yet

provide all the advantages of the PGSG algorithm with respect to the global environment (i.e.,

the cluster tree). In essence, each cluster is treated as a site in the current environment.

Information will need to be propagated only when transactions access sites covered by different

clusters.

128

B ibliography

[Adam94] N. R. Adam. "A New Dynamic Voting Algorithm for Distributed Database

Systems", IEEE Transactions on Knowledge and Data Engineering, Vol. 6, No. 3, June 1994.

[ABI94] A. Acbarya, B R. Badrinath, T. Imielinsld. "Checkpointing Distributed Applications

on Mobile Computing", Proc. of the Third International Conference on Parallel and Distributed

Systems, September 1994.

[AK93] R. Alonso, H. F. Korth. "Database System Issues in Nomadic Computing", SIGMOD

Record, May 1993.

[BAI94] B. R. Badrinath, A. Acharya, T. Imielinski. "Structuring Distributed Algorithms for

Mobile Hosts", Proc. Fourth International Conference on Distributed Computing Systems, May

1994.

[Bern et.al98] P. Bernstein, M. Brodie, S. Ceri, D DeWitt, M. Franklin, H. Garcia-Molina, J.

Gray, J. Held, J. Ifellerstein, H. Jagadish, M. Lesk, D. Maier, J. N au^ton, H. Pirahesh, M.

Stonebraker, J. UUman. "The Asilomar Report on Database Research". SIGMOD Record Vol.

27, No. 4 December 1998.

[BHG87] P. A. Bernstein, V. Hadzilacos, N. Goodman. "Concurrency Control and Recovery in

Database Systems". Addison-Wesley Publishing Company, 1987.

[BI94] D. Barbara, T. Imielinski. "Sleepers and Workaholics: Caching Strategies in Mobile

Environments", ACM SIGMOD, Vol. 23, No 2, June 1995.

[BMS92] Y. Breitbart H. Garcia-Molina, A. Silberschatz. "Overview of Multidatabase

Transaction Management", TR-92-2I, University of Texas at Austin.

[BR92] S. Ben-Hassen, M. Rusinkiewicz. "On Serializability of Distributed Nested

Transactions", Proc. 12th International Conference on Distributed Computing Systems, Japan

1992.

[BS88] Y. Breitbart, A. Silberschatz. "Multidatabase Update Issues", Proc. ACM SIGMOD

Conference on Management o f Data, Chicago 1988.

[Chry93] P. K. Chrysanthis. "Transaction Processing in Mobile Computing Environments",

IEEE Workshop on Advances in Parallel and Distributed Systems, October 1993.

[DE89] W. Du, A. K. Elmagarmid. "Quasi Serializability: A Correctness Criterion for Global

Concurrency Control in InterBase". Proceedings o f the IStii International Conference on

VLDB, Amsterdam, The Netherlands, August 1989

129

[DG98] R. Dirckze, L. Gruenwald. "Nomadic Transactioa Management • Examining the

Affects o f Mobility upon the ACID Properties” IEEE Potentials, April 1998.

[DG98-2] R. Dirckze, L. Gruenwald. "Disconnectioa and Migration in Mobile Multidatabases",

The World Goof, on Design and Process Technology, Germany, July 1998

[DG98-3] R_ Dirckze, L. Gruenwald. "A Toggle Transaction Management Technique for

Mobile Multidatabase", The 7th International Conference on Information and Knowledge

Management, Washington DC, November 1998.

[DG20Q0] R. Dirckze, L. Gruenwald. "A Pre-serialization Transaction Management Technique

for Mobile Multi-databases" To appear. Special issue on Software Architectures for Mobile

Applications, MONET 2000.

[DH9S] M. H. Dunham, A. Helal. "Mobile Computing and Databases: Anything New?",

SIGMOD Record, Vol. 24, No. 4, December 1995.

[DHB97] M. Dunham, A. Helal, S. Balakrishnan. "A Mobile Transaction Model that Captures

Both the Data and Movement Behavior ". Mobile Networks and Applications, Vol. 2, No. 2,

October 1997.

[DI99] R. Dirckze, S. Iyengar. "Metadata Repositories and Mobile Computing". 3"* World

Multiconference on Systemics, Cybernetics and Informatics and 5 th In t Conf. on Information

Systems Analysis and Synthesis. Orlando FL, August 1999.

[DSW92] A Deacon, H. Schek, G. Weikum. "Semantic-based Multilevel Transaction

Management in Federated Systems", Proc. 10th International Conference on Data Engineering,

Texas, 1992

[EJB95] A. Elmagarmid, J. Jing, 0 . Bukhres. "An EfiBcient and Reliable Reservation Algorithm

for Mobile Transactions", Proceedings of the 4th International Conference on Informatitm and

Knowledge Management, 1995.

[EJB95-2] A. Elmagarmid, J. Jing, O. Bukhres. "Distributed Lock Management for Mobile

Transactions", Proc. o f die 15di International Conference on Distributed Computing Systems,

Canada, June 1995.

[ERS98] A. Ehnargarmid, M. Rusinkiewicz, A. Sedi. "Management of Heterogeneous and

Autonomous Database Systems", Morgan Kaufinann Publishers, Inc. San Francisco CA, 1998.

[GR93] J. Gray, A. Reuter. "Transaction Processing: Concepts and Techniques". Morgan

Kaufinann Publishers, Inc. 1993.

130

[GRS91] D. Georgakapoious, M. Rusinkeiwicz, and A. Sheth. "On Serializability of

Multidatabase Transactkxis through Forced Local Conflicts", Proceedings of the 7 6

htOTiational Conference on Data Engineering, Kobe, Japan, 1991.

[HE95] A HeUd, M. Eich. "Supporting Mobile Transaction Processing in Databasse Systems",

Technical Report: TR-CSE-9S-003, University of Texas at Arlington, April 1995.

[IB92] T. Imielinski, R. B. Badrinath. "Querying in H i ^ y Mobile Distributed Environments"

Proc. Eighteenth VLDB Conference, Vancouver, Canada, 1992.

[IB94] T. Imielinski, R. B Badrinath. " Wireless Computing: Challenges in Data Management",

Communications of the ACM, Vol. 37, No. 10, October 1994.

[JNRS93] W. W. Jin, L. Ness, M. Rusinkiewicz, A Sheth. "Concurrency Control and Recovery

of Multidatabase Work Flows in Telecommunication Applications", ACM SIGMOD, Vol. 22,

No. 2 June 1993.

[KS93] P. Kumar, M. Satyanarayanan. "Log-Based Directory Resolution in the Coda File

System", Proc. Second International Conference on Parallel and Distributed Infermation

Systems, 1993.

[KSS98] Kehon, W. D , Sadowski, R. P., Sadowsld, D. A. "Simulation with Arena",

WCB/McGraw-Hill Publishers 1998.

[LKS91] E. Levy, H. F. Korth, A. Silberschatz. "An Optimistic Commit Protocol for

Distributed Transaction Managonent". Proceedings of ACM-SGMOD International Conference

on Management of Data, Colorado, May 1991.

[MB98] S. K. Madria, B. K. Bhargava. . "A Transaction Model for Mobile Computing".

IDEAS, 1998

[MMP83] E. T. Mueller, J. D. Moore, G. J. Popdc. "A Nested Transaction Mechanism for

Locus". Proc. 9th Symposium on Operating Systems Principals, ACM/SIGOPS, 1983

[MossSl] J. E. B. Moss. "Nested Transactions: An Approach to Reliable Computing". MTT,

LCS-TR-260,1981.

[MRSK92] S. Mefarotra, R. Rastogi, A. Silberschatz, H. F. Korth. "A Transaction Model for

hÆihidatabase Systems", Proc. 12th International Conference on Distributed Computing

Systems, Japan 1992

[NS9S] B. D. Noble, M. Satyanarayanan. "A Research Status Report on Adaptation for Mobile

Data Access", SIGMOD Record, Vol. 24, No. 4, December 1995.

[0V91] M. T. Ozsu, P Valduriez. "Principles of Distributed Database Systems" Prentice Hall,

Englewood Calif^ N J . 1991.

131

[PB93] E. Pitoura, B. Bbargava. "Dealing with Mobility: Issues and Research Challenges".

Technical Report CSD-TR-93-070, Purdue University 1993.

[PB94] E. Pitoura, B Bhargava. "Revising Transactioa Concepts for Mobile Computing",

Proceedings of the IEEE Woricshop on Mobile Systems and Applications, Santa Cruz, CA,

December 1994.

[PB9S] E. Pitoura, and B Bhargava. "Maintaining Consistency of Data in Mobile Distributed

Environments". 15th International Conference on Distributed Computing Systems, Canada,

June 1995.

[PB95-2] E. Pitoura, and B Bhargava. "A Framework for Providing Consistent and Recoverable

Agent-Based Access to Heterogeneous Mobile Databases". SIGMOD Record, September 1995.

[TPC99] Transaction Processing Performance Council, www.tpc.org

[Ullm88] J. D. UUman. "Principles of Database and Knowledge-Base Systems". Computer

Science Press, Inc.

[SS93] W. Schaad, H. Schek. "Federated Transaction Management using Open Nested

Transactions", Proc. Workshop on Interoperability of Database Systems and Database

Applications, Switzerland, 1993.

[WC94] G. D. Walbom and P. K. Chrysanthis. "Supporting Semantic-Based Transaction

Processing in Mobile Database Applications", 14th IEEE Symposium on Reliable Distributed

Systems, September 1994.

[WM85] R. E. Walpole, R. H. Mayers. "Probability and Statistics for Engineers and Scientists".

Macmillian Publishing Company, New York, 1985.

[WSDNR95] 0 . Wol&on, P. Sistla, S. Dao, K. Narayanan, R. Raj. "View Maintenance in

Mobile Computing". ACM SIGMOD Vol. 24, No. 4, December 1995.

[YZ94] L. H. Yeo, A Zaslavsky. "Submission of Transactions from Mobile Workstations in a

Cooperative MDB Processing Environment". 14th International Conference on Distributed

Computing Systems, Poland, June 1994.

[ZE93] A. Zhang, A. K. Elmagarmid. "A Theory o f Global Concurrency Control in

Multidatabase Systems”, The VLDB Journal, Vol. 2, No. 3, July 1993.

[ZNBB94] A. Zhang, M. Nodine, B. Bhargava, O. Bukhres. "Ensuring Relaxed Atomicity for

Flexible Transactions in Multidatabase Systems", ACM SIGMOD VoU 23, No. 2, June 1994.

132

http://www.tpc.org

