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ABSTRACT

The Intemet and advances in wireless communication technology have transformed
many facets of the computer environment. Virtual connectivity through the internet has lead to a
new genre of software systems, i.e., cooperating autonomous systems - systems that cooperate
with each other to provide extended services to the user. Multidatabase systems - a set of
databases that cooperate with each other in order to provide a single logical view of the
underlying information - is an example of such systems.  Advances in wireless communication
technology dictate that the services available to the wired user be made available to the mobile
user.

This dissertation studies transaction management in the mobile Multidatabase
environment. That is, it studies the management of transactions within the context of the mobile
and Multidatabase environments. Two new transaction management techniques for the mobile
Muitidatabase environment i.e., the PS and Semantic-PS techniques are proposed. These
techniques define two new states (Disconnected and Suspended) to address the disconnectivity
of the mobile user. A new Partial Global Serialization Graph algorithm is introduced to verify
the isolation property of global transactions. This algorithm verifies the serializability of a
global transaction by constructing a partial global serialization graph. This algorithm relies on
the propagation of (serialization) information to ensure that the partial graph contains sufficient
information to verify serializability of global transactions. The unfair treatment of mobile
transactions due to their prolonged execution time is minimized through pre-serialization. Pre-
serialization allows mobile transactions to establish their serialization order prior to completing

their execution.



Finally, analytical evaluation and simulation is carried out to study the performance of
these techniques and to compare their performance to that of the Kangaroo [DHB97] technique.
Although the PS and Semantic-PS techniques enforce the isolation property, the evaluation
results establish that the service time for these techniques in not significantly greater than that of
the Kangaroo technique. In addition, the simulation establishes that pre-serialization effectively

minimizes the unfair treatment of mobile transactions.



Chapter 1

PROBLEM STATEMENT

1.1 Objective

On August 19-21, 1998, a group of 16 distinguished database system researchers from
academe, industry, and government including J. Gray, M. Stonebraker, P. Bemnstein, H. Garcia-
Molina, and J. Ullman met at Asilomar, California, to assess the database system research
agenda for the next decade. The goal of the meeting was to discuss the current database system
resecarch agenda and to report their recommendations. The group discussed their
recommendations in [Bernstein et.al. 98] where they encouraged the database community to
eschew the incremental, “delta-X” research that focuses on improving some widely understood
idea X. Instead, they challenged the database community to explore problems whose main
applications are decades off, and to pursue highly innovative and speculative research. In fact,
the “grand challenge” proposed by the group is “Make it easy for everyone to store organize
access and analyze the majority of human information on-line”. Although the research
documented in this dissertation commenced long before the Asilomar meeting, its contributions
are in fact, a direct response to this grand challenge.

In the Asilomar report the authors state that in the future, billions of web clients will be
accessing millions of databases, and that the Web will be one large federated system. This
research studies transaction management in a multidatabase environment that supports both
static and mobile users. The multidatabase architecture defined in this research resembles the
federated system of the Asilomar report. The primary objectives of this research are fourfold:
first, to identify the issues related to transaction management in a multidatabase environment
that supports both static and mobile users; second, to develop two transaction management

techniques that addresses all identified issues; third, to develop analytical and simulation



models and to evaluate the performance of the proposed techniques and to compare their
performance to that of techniques existing in the current literature, and fourth, to develop

guidelines to help users and future researchers.

1.2 Organization

This dissertation is divided into seven chapters. The following paragraphs provide an
overview of each chapter in the dissertation:

The problem statement is presented in the remainder of this chapter. First, the mobile
computing environment and the mobile computing architecture will be discussed. Next, the
issues related to transaction management in the mobile multidatabase environment will be
identified. These issues fall into three categories: multidatabase design restrictions; the ACID
properties; and disconnection and migration issues.

Chapter 2 presents the state-of-the-art of related work. Specifically it discusses
semantic atomicity and serializability theory, advanced transaction models and existing
transaction management techniques that are applicable to the mobile muitidatabase
environment.

Two transaction management techniques that address all the issues will be developed in
Chapters 3 and 4. The Pre-Serialization (PS) transaction management technique will be
developed in Chapter 3. The shortcomings of the PS technique will be identified and a
Semantic-PS technique that overcomes these shortcomings will be developed in Chapter 4.

The performance of these techniques will be evaluated in Chapters 5 and 6. Analytical
models will be developed in Chapter 5 and used to study the performance of the PS and
Semantic-PS techniques. Simulation models will be developed in Chapter 6 and used to validate

the evaluation in Chapter 5. The evaluation will also develop guidelines to assist future

researches.



This dissertation will be concluded in Chapter 7. First, concluding remarks of the author
will be presented. This will be followed by a discussion of future research issues.

1.3 Motivation

The Asilomar Report [Bernstein et.al.98] predicts that in the future billions of users will
access millions of databases in order to access and analyze the vast information available on-
line. This multidatabase environment consists of a set of autonomous databases connected to a
fixed (wired) network that cooperate with each other to provide extended services to users. For
example, users will be able to verify entire travel itineraries that include round-trip airline
tickets, hotel reservations, and rental car reservations, all in one transaction. Obviously, such a
transaction will need to access multiple independent database systems. The rapid advances in
wireless technology and the availability of mobile palmtops dictates that that the services
available to the static user be made available to the mobile user. It is also expected that millions
of users will be carrying mobile computers often called personal assistants, to carry out their
day to day activities [IB94]. Each mobile computer will be equipped with a wireless connection
to the information networks [IB94]. The mobile user will demand access to the information on
the fixed system from anywhere and at any time. The multidatabase environment is no
exception.

The distinguishing characteristic of mobile computing is the wireless communication
medium that makes it possible for a mobile user to communicate with a static (wired) computer
system through some wireless communication medium. In today’s busy, technology dominated
and communication intensive business environment, wireless computing offers numerous
possibilities for the multidatabase environment.

For example assume the following scenario. A business traveler is commuting on a

commercial airline from city A to city B. During the flight, the commuter decides to invest his



or her annual bonus in the Stock Market. This person will first acce:s some information systems
to determine the best investment opportunity. Once a detem.aination is made, the person will
need to execute a global transaction that accesses his or her personal bank account (or brokerage
account) to obtain the funds, the NYSE database to execute the sale, and the sellers account to
deposit the value of the stock. The person may also need to access some personal database to
record information on the transaction.

The transaction manager is a vital component of any Database Management System
(DBMS). It is responsible for providing reliable and consistent units of computing to users. The
characteristics of the mobile computing environment affects the conventional responsibilities of
the transaction manager. They introduce new issues that need to be addressed by the transaction
manager, i.e., disconnection and migration. The wireless communication medium is
characterized by frequent disconnections that occur during the execution of a user session.
These disconnections cannot be treated as communication medium failures that result in aborted
transactions as in conventional wired systems. The ability to migrate during the execution of a
user session is unique to the mobile computing environment. In order to accommodate mobile
users, the transaction manager of the Mobile MultiDataBase System (MMDBS) needs to view
disconnection and migration as routine events that occur during the normal course of execution
of a transaction. However, in some cases disconnection may represent unrecoverable failures.
Upon disconnection the MMDBS needs to determine the status of the user. If the user is
expected to reconnect, the transaction should be temporarily suspended. If the user is not
expected to reconnect, the transaction may be aborted. Erroneous decisions about the status of
the disconnected user are likely to be made as the actual status can only be predicted after
disconnection. Thus, such transactions should not be aborted until they interfere with the
execution of other transactions. Upon reconnection, suspended transactions should be allowed

to resume execution from the point of suspension. Further, transactions should be allowed to



resume execution from a location different than the location at which the user was situated prior
to the disconnection.

In addition, disconnection and migration affect the execution behavior of the system.
Disconnection and migration prolong the execution time of transactions of mobile users. Also,
mobile transactions are expected to be interactive by nature, i.e., pause for input from the user
[Chry93]. For example, the stock broker will determine the quantity of shares to be purchased
only after verifying the price per share. Thus, Long Lived Transactions (LLTs) [PB94] need to
be supported. The length of execution affects concurrency control as well. The probability of a
transaction conflicting with other transactions in the system is proportional to the length of
execution of that transaction. As a result, transactions of mobile users are more likely to cause a
consistency violation [DG98] and therefore, are more likely to be aborted. In order to maintain a
notion of faimess, the transaction manager needs to minimize this victimization of mobile
transactions due to their prolonged execution.

Existing Mobile multidatabase (MMDB) transaction management techniques that are
found in the literature address some of the issues that have been identified. However, none of
the techniques addresses all these issues. In fact, all reviewed techniques fail to address the
unfair treatment of mobile transactions due to their prolonged execution, nor do they ensure the
consistency of the transactions. In order to facilitate mobile users access to the information
systems available on-line, it is necessary to re-visit transaction management issues in this new

environment and to provide solutions that address all requirements.



1.4 The Mobile Computing Environment

The general mobile computing model consists of two distinct sets of entities: a fixed
network system and a continuously changing set of mobile hosts (Figure 1-1). The fixed
networking system consists of a collection of static computers connected by a wired network.
Some units on the static network have the capability of communicating with the mobile units
through a wireless medium. These units are called base stations or mobile support stations
(MSS). The area covered by an MSS is called a cell [PB95]. The wireless communication
medium between the MSS and the mobile user includes cellular architecture, radio transmission
over FM, satellite services, and wireless LAN. Although current wireless communication
technology is fairly reliable, it is not as robust as the communication mediums used in the static
systems. It is also limited in bandwidth compared to wired networks. During the course of
execution the mobile user is likely to migrate from cell to cell. The mobile user will be
connected to no more than one MSS at any given time. The process involved in transferring a

user from one MSS to another is called a hand-off.
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Figure 1-1: The Mobile Computing Environment



The mobile hosts are portable computers that vary in size, processing power, memory,
etc. The typical mobile computer will have limited resources compared to its desktop
counterparts [PB95-2]. These limitations include battery power, processing power, volatile
memory, disk space, network bandwidth, etc. Due to the unreliability of the communication
medium as well as limited resources available, the mobile user will be characterized by
frequent disconnections and will operate in one of many modes ranging from highly connected
to disconnected. However, a characteristic of these modes of operation is that they are
foreseeable [PB93]. For example, the MSS will be able to predict that the user is going out of
range by monitoring the strength of the signal. On the other hand, if the user decides to

disconnect in order to conserve scarce resources, the MSS could easily be informed of this

decision prior to disconnection.

1.5 The Mobile Multidatabase Architecture

A multidatabase system (MDBS) is a collection of autonomous database systems
(called local database systems, or LDBSs) that are connected to a fixed network (Figure 1-2). In
many cases, an MDBS is the result of shifting priorities, and the need of an organization to be
part of a larger information system (ERS98]. The need to be part of a larger information system
arises primarily for two reasons: one, organizations may acquire or merge with other
organizations creating the need for a new global information system; and two, competition
forces organizations to take advantage of the Internet to provide cooperating information
systems that cater to the growing information needs of users.

In the MDBS, the respective LDBSs retain complete control over their databases. Each
autonomous database may be viewed as an independent sitc in the network. These databases
operate in different environments, and may use different data models, data manipulation

facilities, transaction management and concurrency control mechanisms, etc. [GR93]. Existing



users - referred to as local users - will continue to access these databases through their
respective LDBSs. The execution of local transactions submitted by local users will be
transparent to any external process. Users who simultaneously access multiple databases -

referred to as global users - do so by submitting global transactions to the multidatabase
Management System (MDBMS).

| Global User I

global queries

.....................................................

local queries obal subqueries local queries
AN ~. 7/

LDBS 1 LDBS n

Figure 1-2: Multidatabase System

The MDBMS is a set of software modules existing on the fixed network that cooperates
with the local LDBSs in order to project an illusion of a single database to the global user.
Global users are allowed only limited access to the individual databases. For example, although
global users will be allowed to make reservations on a commercial airline database system, they
will not be allowed to execute ad-hoc queries that could compromise sensitive information.
Each local database provides a service interface that specifies the operations accepted by the
LDBS and the services provided to the MDBMS. The Mobile Multidatabase system (MMDBS)
is simply an MDBS that supports both static and mobile users. The database management
system or DBMS of an MMDBS is referred to as a Mobile Multidatabase Management System
(MMDBMS).



The Global Transaction Manager (GTM) is a software component of the MMDBMS
that manages the execution of global transactions. A global transaction consists of a set of
queries, each of which is a legal operation accepted by some service interface of an LDBS in
the system. Queries of a global transaction may be grouped together to form logical units of
execution called sub-transactions. Any subset of queries of a global transaction that access the
same LDBS may be executed as a single transaction with respect to that site and will form a
logical unit called a site-transaction. As users migrate from one MSS to another, queries of a
global transaction may be submitted from different MSSs (Figure 1-3). Such transactions will

be referred to as migrating transactions. The notation Q"; is used to represent the j* query of

global transaction k.
Global Transaction GT1
Queries submitted from MSS 1 Queries submitted from MSS 2
QR QL Qe QB Qo
T AR O S A - [ ARl B et \
™~ /T
LDBS 1 LDBS 2 LDBS n

Figure 1-3: Migrating Global Transaction

1.6 Transaction Management Issues

In database theory, a transaction is defined as an independent, consistent and reliable
unit of computing [PB95]. The definition of a transaction gives a strong indication of the
primary responsibilities of the transaction manager, i.e., to provide consistent and reliable
access to the data within its domain. Generally, this can be achieved by enforcing the ACID

(Atomicity, Consistency, Isolation, and Durability) properties [GR93]. Atomicity requires that



either all operations of a transaction execute successfully or none at all. Consistency requires
that a successful transaction not violate any consistency constraints defined on the database.
Isolation requires that the effect of executing a set of transactions concurrently be equivalent to
that of executing the same set of transactions in some serial order. Durability requires that all
changes made by a successful transaction be permanently reflected in the database. However,
the applicability of ACID in the MMDB environment has been questioned. Not that ACID is
unenforceable, but because it is expected that ACID will be enforced using too many aborts,
resulting in a system that is perfectly consistent, but gets only a small fraction of useful work
done [DHB97]. In addition to providing consistent and reliable access to the data, the Mobile
MultiDataBase System (MMDBS) needs to address disconnection and migrating transactions.
These reasons provide the motivation to revisit the requirements of the GTM in the MMDB

environment. In the remainder of this section, a more detailed discussion of these issues will be
provided.

1.6.1 Muitidatabase Design Restrictions

Local autonomy is the main feature that distinguishes multidatabase systems from
conventional distributed database systems [BMS92]. Local autonomy dictates that no changes
can be made to the local DBMSs in order to support the multidatabase system. A distinction
can be made between structural design and execution aspects of local autcnomy [ERS98):
Structural design autonomy refers to the ability of an LDBS to choose its own design with
respect to issues such as data model, query language, etc.; Execution autonomy refers to the
ability of an LDBS to execute transactions without interference. The MMDBMS cannot violate

the structural design and execution autonomy of the local LDBSs. Local autonomy can be
violated in four different ways:

10



e Preservation Infringement (PI) - The GTM requires that modifications be made to LDBSs
and existing (local) software.

e Execution Infringement (EI) - The GTM infringes upon the execution freedom of the
LDBS. For example, an LDBS may be prevented from aborting a site-transaction that
executed at that site.

s  Security Infringement (SI) - An LDBS is not allowed to control access to one or more data
items within its domain.

¢ Transparency Infringement (TI) - The GTM requires the LDBSs to furnish control
information such as serialization graphs.

The multidatabase environment give rise to other issues that need to be addressed as
well. The vast number of LDBSs that could potentially be part of a MMDBS, the autonomy of
the LDBSs, and the geographic distance that may separate the LDBSs make centralized
algorithms or even distributed algorithms that require the cooperation of all sites, practically
unacceptable. The global transaction management schemes that provide consistent and reliable
units of computing to global users need to be de-centralized in nature, and need to minimize the

cooperation required to perform its tasks.

1.6.2 The ACID Properties
As mentioned before, if a transaction is guaranteed to satisfy the ACID properties it is
then a consistent and reliable unit of computing. Enforcing the ACID properties in the MMDB
environment is compounded by three factors:
1. Enforcing the ACID properties in a distributed environment requires the cooperation of
each site. For example, to enforce the atomicity property, the sites at which a global

transactions executes site-transactions need to cooperate in order to ensure a consistent

11



final outcome i.e., global abort or commit. The autonomy requirement of the MMDBS
limits the level of cooperation that can be achieved between the LDBSs.

2. Disconnection and migration of the mobile user alters the structure of (mobile) global
transactions. For example, it prolongs the execution of a global transaction. This prolonged
execution affects the behavior of the system, i.e., the transaction is likely to retain resources
for longer periods of time, thus limiting concurrency.

3. The vast number of potential LDBSs that form a MMDBS and their geographic dispersion
further limits the level of cooperation that can be achieved. It makes it practically
impossible to implement any centralized algorithms or even distributed algorithms that
require the cooperation of all sites.

As it is difficult to enforce the ACID propertics in the MMDB environment, the
applicability of ACID to this environment has been argued. Further, in [DH95] the authors
make a compelling argument for providing unrestricted access to data in this environment:
“Returning dirty data tagged with appropriate warnings is much more useful than returning an
ABORT message ...”. Thus, it is necessary for the transaction management process of the
MMDRBS to support a spectrum of correctness criterion with respect to the ACID properties.
Next, each of the ACID properties will be discussed individually.

1.6.2.1 Atomicity

The atomicity property requires that either all operations of a transaction execute
successfully, or that they are all aborted (and all changes made by the transaction are erased
from the system). In the MMDB environment, atomicity requires that either all site-transactions
of a global transaction execute successfully, or that they are all aborted. Thus, all sites at which
a global transaction executes site-transactions need to corporate in order to ensure that the same

outcome is recorded at all sites. It has been debated whether, in the MMDB environment, strict

12



atomicity can be enforced without violating local autonomy {BHS92]. One side of the argument
is that the prepared-to-commit operation will become standard in most DBMSs and therefore
provide the necessary cooperation to enforce strict atomicity. In essence, the local LDBS
relinquishes its right to unilaterally abort the (site) transaction after the transaction enters the
prepared-to-commit state. However as the transaction is not yet committed, it may be aborted if
required to do so by the MMDBMS. The other side to the argument is that the prepared-to-
commit operation causes an execution infringement upon the LDBS and that there will always

be databases whose autonomy is critical and will not export the prepared-to-commit operation.

1.6.2.2 Isolation

The isolation property requires that the concurrent execution of any set of transactions
be equivalent to some senal execution of the same set of transactions. That is, intermediate
results of a transaction must not be visible to other concurrently executing transactions. Once
again, enforcing the isolation property in the MMDB environment is difficult for two reasons:

1. Local transactions executed by the LDBSs are transparent to the MMDB system and
therefore cannot be considered by any global algorithm.

2. The execution order of concurrent site-transactions of global transactions is not visible to
the MMDB system.

In addition, to ensure that the local (LDBS) isolation property is not violated by a
global transaction, it is necessary to execute all queries of a global transaction that access the
same site as a single ACID transaction with respect to that LDBS. In other words, it is
necessary to limit each global transaction to no more than one site-transaction per site. Else, the
LDBS may execute local transactions between the separate site-transactions of a single global
transaction. This violates the local isolation property as the local transactions are able to view

intermediate results of the global transaction. This violation cannot be detected by the LDBS as

13



it views each site-transactions as a separate logical unit of computing. From the perspective of
the MMDBs, these separate site-transactions belong to the same (global) logical unit of
computing whose intermediate results should not be made visible.

As argued before, in order to provide unrestricted access to data in the MMDB
environment, it is necessary to support a wide range of correctness criterion with respect to the
isolation property. Note that global transactions with unrestricted access that write data back to
the databases may compromise the accuracy of the databases as the transaction may have read
inconsistent data. If the system demands that the correctness of the databases not be
compromised, unrestricted access should be limited to read-only transactions. Thus, only the
data retumned to the user will be compromised. As this requirement is application specific, any
proposed technique should provide a wide range of correctness criterion and let the designers of
the individual MMDBSs define the level of correctness that needs to be enforced.

Disconnection and migration affect the execution time of a transaction which, in tum,
affects the enforcement of the isolation property. As the duration of execution of a transaction
increases, the possibility of the transaction conflicting with other transactions increases. If an
optimistic concurrency control protocol - a protocol that checks for violations of the isolation
property at the time of the transaction’s commit - is used, transactions of mobile users are more
likely to be aborted due to their prolonged execution time. If a pessimistic concurrency control
protocol - a protocol that does not allow a transaction to violate the isolation property during its
execution - is used, the average response time and throughput of the system will deteriorate as
transactions will be blocked for extended periods of time by transactions of mobile users. In
order to maintain a notion of fairness, the MMDB system needs to minimize the ill-effects
caused by disconnection and migration.

14



1.6.2.3 Consistency and Durability

As a consequence of autonomy, we can assume that no data integrity constraints are
defined on data items residing at different LDBSs [DE89]. As each LDBS will ensure that the
site-transactions executed at its respective site do not violate any local integrity constraints,
global transactions will, by default, satisfy the consistency property. Thus, the MMDB system
is relieved of this responsibility. Similarly, the MMDB system can rely on the durability

property of the LDBSs to ensure durability of committed global transactions.

1.6.3 Disconnection and Migration

Unlike disconnection in the static environment, disconnection in the mobile
environment cannot be treated as failures that result in aborted transactions. The transaction
manager of the MMDBS should allow transactions to be halted at arbitrary points during its
execution. Upon re-connection, halted transactions should be allowed to resume execution from
where they left off. In order to support migration, the transaction management process should
allow halted transactions to resume execution from a location different from the location at
which the previous execution was halted. All responses that cannot be delivered due to
disconnection need to be logged by the MMDBS and be delivered to the user upon re-
connection.

To fully support disconnection, it is not sufficient to simply allow disconnection to
occur at arbitrary points during the execution of a transaction. In some cases, disconnection will
be due to catastrophic failures, or catastrophic failures may occur during the period of
disconnection. Halted transactions are not resumed after catastrophic failures. Therefore, the
MMDBS needs to determine the status of its disconnected users periodically. When a
catastrophic failure is deemed to have occurred, the MMDBS may terminate any associated

transactions. Although disconnection is foreseeable, erroneous decisions are bound to be made
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as the true status of the user cannot be verified after disconnection. Thus, not only should the
MMDBS accommodate disconnection but should also minimize the affects of such erroneous
decisions. These affects can be minimized by postponing the abort of a transaction until it
obstructs the execution of other transactions.

Frequent disconnection and migration will prolong the execution time of global
transactions. In addition, global transactions are expected to be interactive by nature, i.c., pause
for input by the user {Chry93]. To support mobile users, the GTM will need to support long-
lived Transactions (LLT) [PB94]. As concurrent transactions compete for resources, prolonged
execution limits concurrency if resources obtained by transactions - such as locks - are not
released in a timely fashion. The blocking of a transaction’s execution must be minimized in
order to increase concurrency [MB98]. Therefore, site-transactions should be allowed to

commit early so that resources can be released immediately after the site-transaction has

completed its execution.

1.7 Summary of Transaction Management Issues

The transaction management process of the MMDBS needs to enforce the atomicity
and isolation properties with respect to global transactions. In fact, it is necessary to provide the
functionality to enforce a range of correctness criterion with respect to atomicity and isolation.
Disconnection needs to be viewed as an event that occurs during the normal execution sequence
of a transaction. To support migration, the disconnected user should be allowed to resume
execution from a different location. Untimely abortions caused by erroneous decisions on
catastrophic failures to mobile users needs to be at least minimized, if not eliminated. Any ill-
affects due to the prolonged execution caused by disconnection and migration needs to be

minimized. In addition, the autonomy of the LDBSs must not be compromised. Also, any
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algorithms used in the MMDB environment need to be de-centralized in nature and need to
minimize the level of cooperation/coordination required by the sites.

Note that, as the local databases are autonomous, site-transactions are executed
independent of each other by the respective LDBSs. As a result, each site-transaction can be
considered as a consistent and reliable unit of computing with respect to that LDBS. That is,
each site-transaction is guaranteed to be an ACID unit of computing with respect to the LDBS
at which it executed. This does not guarantee that global transactions will be ACID with respect
to the global database. However, the local ACID nature of the site-transactions can be exploited

by the MMDBS in order to provide globally ACID (global) transactions.

1.8 Contributions

This section summarizes the major contributions of this dissertation. This research
proposes two new transaction management techniques for the mobile multidatabase
environment. These techniques are based on the multi-level transaction model. As the multi-
level transaction model requires all sub-transactions be compensatable, these techniques require
sub-transactions of a global transaction to be compensatable.

The proposed transaction management techniques introduce three new concepts. First, it
introduces the notion of suspended execution of transactions. Suspended transactions are not
aborted until they interfere with the execution of other transactions. As the status of a
disconnected user can only be predicted, suspending the execution of global transactions instead
of aborting their execution minimizes erroneous aborts. Second, it introduces pre-serialization
which is used to minimize the unfair treatment of mobile transactions. Pre-serialization allows
mobile transactions to establish their serialization order prior to completing their execution.
Third, it introduces the Partial Global Serialization Graph (PGSG) algorithm that enforces the

atomicity and isolation properties of global transactions. This algorithm is unique in that it
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verifies the serializability of a global transaction by constructing a partial global senalization
graph - a serialization graph that represents only a subset of the global serialization scheme. The
PGSG algorithm relies on serialization information propagation in order to ensure that the all
isolation property violations are detected.

As new algorithms and concepts are proposed, extensive analysis and simulation is
carried out. This research develops analytical and simulation models that can be used to study
transaction management in the mobile multidatabase environment.

The analytical and simulation experiments establish that the cost of enforcing the
isolation property is minimal. The simulation results also indicate that the concept of pre-

serialization minimizes the unfair treatment of mobile transactions due to their prolonged

execution.
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Chapter 2

LITERATURE REVIEW

In this section, relevant work will be discussed. As stated in Section 1.6.2.1, it has been
argued whether strict atomicity can be enforced in the multidatabase environment without
violating local autonomy. Without taking sides in that argument, the techniques proposed in this
research will base its correctness criterion on semantic atomicity [LKS91] - an alternate
criterion that is more suitable for the MMDB environment. Semantic atomicity will be
discussed in Section 2.1. Serializability will be the correctness criterion used to enforce the
isolation property in the proposed techniques. Serializability will be discussed in Section 2.2. A
(global) transaction in the MMDB environment is a collection of (site) transactions that are
executed as independent (local) transactions by the LDBSs. However, the global transaction
needs to be executed as a reliable and consistent unit of computing by the MMDBS. The flat
transaction model used in traditional databases is not suitable for the MMDB environment as it
provides only one level of control. The transaction model proposed in this research is based on
the Nested transaction model {Moss81] which will be introduced in Section 2.3. Finally, seven

transaction management techniques that are applicable to the MMDB environment will be
summarized in Section 2.4.

2.1 Semantic Atomicity

In order to enforce conventional atomicity, the GTM must ensure that either all sub-
transactions of a global transaction are committed or that they are ail aborted. Enforcing
atomicity is difficult as each (autonomous) site retains the right to abort a (site) transaction

executed under it’s supervision at any time prior to a successful commit at that site. An alternate
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criterion to conventional atomicity is semantic atomicity {LKS91]. Semantic atomicity requires

one of the following conditions to be satisfied by each (global) transaction:

1. Either all sub-transactions are aborted or each sub-transaction is committed or retried;

2. Either all sub-transactions are committed or each sub-transactions is aborted or
compensated for.

A compensatable transaction is a transaction whose effects can be undone after it has
committed by executing a compensating transaction. For example, a sub-transaction that
reserves a seat in an airline reservation system is compensatable as reservation can be canceled
which, in effect, undoes the reservation. A re-triable sub-transaction is one which is guaranteed
to succeed if retried a sufficient number of times. For example, a sub-transaction that credits a
bank account is a re-triable sub-transaction as money can always be credited to a bank account
provided that the account exists.

Semantic atomicity is more suitable than conventional atomicity for the muitidatabase
environment for two reasons: First, semantic atomicity is easier to implement in this
environment as it does not require the cooperation of the autonomous sites in order to ensure
that either all sub-transactions commit or that they all abort. The following cases will illustrate
this point:

e Let us take the case where all sub-transactions are re-triable. Then, if an LDBS decides to
abort a sub-transaction, then this sub-transaction can be retired until it executes
successfully, satisfying condition 1 of semantic atomicity.

¢ Let us take the case where all sub-transactions are compensatable. Then, if an LDBS
decides to abort a sub-transaction, then all committed sub-transactions can be compensated
and all active sub-transactions are aborted, satisfying condition 2 of semantic atomicity.

This, in effect, erases the entire execution of the transaction from the global system.
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Second, semantic atomicity is ideally suited for the MMDB environment as it allows

site-transactions to commit independently, releasing (local) resources held by that site-

transaction in a timely fashion. This increases local as well as global concurrency.

The transaction management techniques proposed in this research implement condition

2 of semantic atomicity. Condition 2 is chosen for the following reasons:

Most transactions executed on the Internet, a prevalent multidatabase environment, are
inherently compensatable. For example, any reservation type transactions are
compensatable as the reservation can be cancelled; most purchase type transactions are
compensatable as most purchases are not final as most purchases can be cancelled within a
certain time period.

In a concurrent environment, strict isolation cannot be enforced under condition 1 of
semantic atomicity. The atomicity and isolation property of a transactions cannot be
verified until the transaction completes the execution of its last sub-transaction. However
under condition 1, a transaction may commit at any point at which all outstanding sub-
transactions are retriable. Although the transaction may not violate the isolation property at
the point of commit, a consequent retriable sub-transaction may violate the isolation
property. This violation can only be resolved by aborting one or more of the transactions
involved in the isolation property violation. If all transactions involved in the violation have

already committed, the violation cannot be resolved.

2.2 Serializability Theory

Serializability is the most frequently used correctness criterion to verify isolation

[OV91]. To state it simply, the execution of a set of transactions is said to be serial if all

operations of each transaction are executed consecutively [Ullm88]. The concurrent execution

of a set of transactions is said to be serializable if its effect is equivalent to that of some senal
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schedule of the same set of transactions. In this section, a formal definition of serializability will
be provided. First, it is necessary to introduce some basic terminology. The terminology defined

in this section is consistent with the definitions in [BHG87].

Definition 2.1: Let T = {T,, T,, ..., Ta} be a set of transactions. A history H over T is a partial

ordering with respect to ordering relation — such that:

1. H contains precisely the operations submitted by T, i.e., all operations of T, T, ..., Ts;

2. H honors all operation orderings specified by each transaction in T, that is, if operation Ok,
appears before Ok; in transaction T,, then Ok; appears before Ok; in any history that
contains Tk; and

3. For every pair of conflicting operations O; and O; where O; appears before O; in the

execution order of T, then O; — O; is in H.

To illustrate this definition, consider the following example.
Example 2.1: Let T = {T,, T;} be a set of (two) transactions such that:

Ti = R(a), Ry(b), W), Wi(b), C;

T, = Ra), Wj(a), C;
where R(x) represents a read operation on x, W(x) represents a read operation on x, and C
represents a commit operation. Assume that the operations of T are executed in the following
order:

Ri(a), Ri(b), Wi(a), Wi(b), C;, R(a), W), C;
Then, the history H over T is shown in Figure 2-1.



R(a) = R(y) = Wi(a) = Wi() - C
y

R,(a) - W,-(a) —-> Cj

Figure 2-1: History over transaction set T

Definition 2.2: The execution of a set of transactions is said to be serial if the transactions are

executed in some serial order.

Note that the execution of transactions T,and T, in Example 2-1 is serial.

Definition 2.3: Let O; and O; be two operations in transactions T; and T; respectively. O; and O;
are said to conflict (directly) if O; and O; both access the same data object X and at least one is
a write operation that modifies the value of X.

Note that operations Wi(a) and R,(a) in T conflict as they access the same data object
and one operation is a write. Also, if O; and O; conflict and O; and Ok conflict, then O; and O
are said to conflict indirectly.

Definition 2.4: Two histories H and H" are said to be conflict equivalent if they are defined
over the same set of transactions and conflicting operations (of non aborted transactions) are

ordered in the same way in both histories.

Definition 2.5: The concurrent execution of a set of transactions is said to be serializable if its

history is conflict equivalent to some serial schedule of the same set of transactions.

23



The following example will be used to illustrate a non serial but serializable schedule.
Example 2.2: Let T = {T;, T;} be a set of transactions as described in Example 2-1. However, in
this case, assume that the operations of T are executed in the following order:

R(a), R(b), Wi(a), R(a), W/(a), C;, W\(b), C;

The history H" is said to be serializable as it is defined over the same set of transactions
T and H” is conflict equivalent to the history H of the serial execution of T. In fact, the history
H” of T in Example 2-2 is the same as the history H in Example 2-1. Note that non conflicting

operations in a history can be rearranged in any order without affecting the outcome of any of

the transactions.

Definition 2.6: Two transactions T, and T; are said to conflict if they contain conflicting

operations.

Definition 2.7: The serialization graph (SG) for a history H, denoted by SG(H), is a directed
graph whose nodes represent committed transactions in H and whose edges T, = T; (i # j)
represent conflicting transactions T; and T, such that the conflicting operation of T; precedes the
conflicting operation of T;.

Example 2.3: Let H be the history given in Figure 2-1. Then SG(H) is the graph T; — T;.
Next, a fundamental theorem of serializability is presented. A rigorous proof of this
theorem can be found in [BHG87].

Theorem 2.1: A history H is said to be serializable iff SG(H) is acyclic.
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The serializability theory presented above cannot be applied directly to the
multidatabase environment as this environment consists of two levels of execution. At the local
level, each local serializability graph SG; consists of local transactions and site-transactions of
global transactions that have been submitted to that site. At the global level, the global
serializability graph SG; consists of global transactions. The global serializability graph does
not contain any local transactions as the execution of local transactions at the LDBS is
transparent to the MDBS. In order for the execution of a set of local and global transactions to
be serializable in the muitidatabase environment, the following conditions must be satisfied
[MRKS92}:

1. The local serialization graphs must be acyclic, that is, the concurrent execution of local and
global transactions within each local LDBS must be serializable; and

2. The global senalization graph must be acyclic, that is, conflicting global transactions must
be serialized in the same order at all sites at which they conflict.

A simple example will be used to illustrate condition 2:

Example 2.4: Let S; and S; be two sites in a multidatabase system where S, contains data item a
and S; contains data item b. Let GT = {GT,, GT;} be two global transactions such that

GT, = Ri(a), W,(b), C; and

GT; = Ri(a), Wj(a), R,(b) C,

Assume that the operations of GTi and GT, are executed by the respective LDBSs in the
following order:

Si = R(a), Ri(a), Wj(a), C;, C; and

§: = Wi(b), Rib), C;, G
Then, GS; over GT is given by the graph GT, - GT; as the execution of conflicting operations
of GT; precedes the execution of conflicting operations of GT; at both sites. However, if the
operations of GT; and GT;are executed in the following order:
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S = R.a), R@a), W,@a), C,, C; and
sz = Rj(b)s Wi(b): C), C|

then GT; and GT, are not serializable and SG; contains a cycle.

Each LDBS guarantees that all transactions (local and site-transactions) executed at that
site do not violate the ACID properties. Thus, it is assured that the concurrent execution of
transactions within each LDBS is Serializable and, therefore, condition 1 is satisfied by all
LDBSs of the MMDBS. However, since the GTM has no knowledge of the execution order of
site-transactions within the local LDBSs, condition 2 cannot be verified without taking

additional steps to determine the serialization order of site-transactions within each site.

2.3 Advanced Transaction Models

In the traditional flat transaction model, a transaction consists of a begin operation, a set
of read and write operations that are executed sequentially, followed by a single commit
operation or an abort operation that un-does the effect of the entire transaction. All committed
transactions are required to satisfy the ACID properties. This model is called flat because there
is only one level of control [GR93]. Either all operations succeed and the transaction is
committed, or all operations are aborted. Flat transactions are the simplest type of transactions
(GR93]. It does not provide the flexibility required for the muitidatabase and mobile computing
environments. It does not allow sets of operations to be executed as independent transactions
under the supervision of autonomous DBMSs. As a transaction needs to be executed as a single
atomic unit, atomicity cannot be enforced in the multidatabase environment without the
cooperation of the constituent DBMSs. This model does not allow for a wide range of

correctness criterion with respect to the atomicity and isolation properties to be supported.
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To overcome these limitations, the nested transaction model has been proposed
[Moss81, MMP83). A nested transaction consists of a set of sub-transactions each of which is
either a nested transaction or a flat transaction. Therefore, the whole transaction forms a tree
and is called a transaction tree. The transaction at the root of the tree is called a top-level
transaction; others are called sub-transactions. Sub-transactions at the leaf level are flat
transactions. A sub-transaction’s predecessor is called a parent; a sub-transaction at the next
lower level is called a child. In [Moss81], primitive database operations can only be contained
within the leaf level sub-transactions. In [GR93], this restriction is not observed. In this
research, the model defined in [GR93] will be followed as it is less restrictive. The nested
transaction model allows potential internal parallelism to be exploited. It contains a control
structure that allows operations to be grouped together and executed independently.

Modifications to the commit protocol of the nested transaction model have been

proposed. Each modification gives rise to a variation of the nested transaction model. These

varniations are detailed below:

2.3.1 The Basic Nested Transaction Model

In this model, each sub-transaction is committed or aborted independently [GR93].
However, its commit does not take effect unless its parent transaction commits. Therefore, by
induction, a sub-transaction can finally commit only if the top-level transaction commits
[GR93]. When a sub-transaction is committed, its results are made accessible only to its parent.
If a sub-transaction is aborted, then all its (child) sub-transactions are aborted regardless of their
local commit status. Note that a sub-transaction may commit even if one or more of its sub-
transactions are aborted.

As the commit of sub-transactions do not take effect until the top-level transaction is

committed, this model poses a major limitation with respect to the MMDB environment. That
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is, access to the data items modified by the committed sub-transactions needs to be regulated by
the GTM. This cannot be achieved without violating local database autonomy.

2.3.2 The Open Nested Transaction Model

The open nested transaction model [GR93] is a liberal version of the nested transaction
model that allows each sub-transaction to commit early, independent of the outcome of its
parent transaction. Thus, a sub-transaction may remain committed even if the parent transaction
is aborted.

This model eliminates the limitations of the basic nested transaction model. That is, it
allows sub-transactions' to commit independently in the multidatabase environment as the
outcome of sub-transactions commit status is not influenced by the outcome of their parent.
However, this model violates the atomicity property of transactions. The resuits of a sub-

transaction may persist in the database even if the top-level transaction is aborted.

2.3.3 The Multi-Level Transaction Model

The multi-level transaction model is an extension of the nested transaction model
[GR93]. This model allows sub-transactions to commit early as well. However, it assumes the
existence of a compensating transaction that can semantically reverse the effects of committed
sub-transactions in the event that the parent transaction is aborted. The compensating

transaction guarantees that all updates made by committed sub-transactions can be revoked in

the event that the top-level transaction fails.

This model is ideally suited for the multidatabase environment for three reasons:

1. Itallows sub-transactions to commit early;

2. Atomicity can be enforced without the cooperation of the autonomous DBMSs as commits
of sub-transactions can be reversed;
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3. It allows a wide range of correctness criteria - with respect to the atomicity and isolation

properties.

2.4 Transaction Management Techniques

In this section, a brief review of transaction management techniques applicable to the
MMDB environment found in the current literature will be carried out. These techniques wiil
be examined with respect to disconnection and migration support, LLT support, enforcement of
the atomicity and isolation properties, and local database autonomy violations. The review will
be summarized in Table 2-1.

In this section, the terms Full and Partial will be used to express the level of
disconnection and migration support provided by each technique. Partial will be used to
indicate that the technique allows for disconnection/migration but does not address all the
related issues. The term Full will be used to indicate that the technique addresses all related
issues. The issues related to disconnection are:

1. Arbitrary disconnection should be supported;
2. Disconnection that represent catastrophic failures need to be addressed;
3. Any ill-effect caused by the extended duration of transaction execution needs to be

The issues related to migration are:

1. Transactions should be allowed to halt their execution at one MSS and resume their
execution from another MSS at arbitrary points;
2. Any ill-effect caused by the extended duration of transaction execution needs to be

VAR, STR and None will be used to express the level of atomicity/isolation provided by

each technique. VAR states that a spectrum of correctness criteria is supported; STR states that
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only strict atomicity/isolation is supported; and None states that atomicity/isolation is not

enforced.

2.4.1 An Agent Based Approach

The technique presented in [PB95-2] is based on agent-based distributed computing.
An agent is an object that encapsulates data and procedures that the receiving computer
executes. Formally, an agent is a quadruple (D, M, SD, P), where D is a set of data, M is a set
of methods, SD is a set of structural dependencies, and P is a set of break and relocation points.
A global transaction can be visualized as an agent that consists of sub-agents. Agents may be
submitted from various sites including mobile stations. Agent-based computation is
decentralized as the agents themselves communicate with each other in order to provide
consistent and reliable computing. A set of structural dependencies allows the user to define
critical methods that, upon failure, cause the entire agent to fail. It can also be used to define
compensating methods that are executed to compensate for already committed methods. Thus,
this model supports early commits of its sub-agents and the spectrum of atomicity. In order to
support migration, relocation points are pre-defined within the agent. This does not allow for
arbitrary relocation of the mobile user. As a result, it does not fully support migration. The
executions of Agents can be isolated from each other by ensuring that concurrent execution
occurs within the pre-defined breakpoints. Yet, the isolation property cannot be enforced
globally as the execution of local transactions is transparent to the external agents. This

technique does not violate any local autonomy requirements.

2.4.2 The Cluster Model

Although [PB95] focuses on a distributed database with replication under central

control, it introduces many interesting ideas applicable to the multidatabase environment as
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well. In this technique, closely located data is grouped as a cluster. Clusters are defined
dynamically as mobile users connect and disconnect at different locations. Full consistency is
maintained within a cluster. However, different degrees of consistency are defined for
replicated data located at different clusters. This will increase the availability of data and
consequently performance at the cost of consistency. Transactions are defined as either strict or
weak. Strict transactions are allowed to access only consistent copies of a data item and, thus,
produce only consistent results. Weak transactions are allowed to access copies of data items
that are inconsistent within an acceptable limit and, thus, may also produce inconsistent results.
If only strict transactions are allowed, the isolation property is ensured and all copies of a data
item are consistent. If weak transactions are allowed, multiple inconsistent copies of a data item
are produced. Weak transactions provide the necessary flexibility to support a spectrum of
atomicity and isolation criterion. Weak transactions are first committed at the cluster level and
then at the global level. As weak transactions committed at the cluster level may be aborted
during the global commit phase, weak transactions may be used only when compensating
transactions are available; otherwise, cascading aborts of weak transactions could occur.

As a cluster maintains its own copy of data items, LLTs may be executed as weak
transactions within that cluster without the undesirable effects of data contention. As this
technique focuses on distributed databases under central control, the autonomy restriction does
not apply. However, it must be noted that this technique causes an EI weak transactions
committed at the cluster level may be aborted during the global commit, and PI as this
technique requires the local DBMSs to be modified to support clusters.

2.4.3 The Semantic-Based Transaction Processing Scheme

The semantic based transaction processing scheme [WC94] addresses transaction

processing for the general mobile database environment in which the constituent sites may or
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may not be autonomous. Here, the authors exploit the semantics of data objects and operations
defined on them to support autonomous mobile transactions that are executed on the mobile
hosts and to increase concurrency. A ‘master copy’ of each object resides on a stationary
database server. These objects are split into disjoint fragments that are handed out to the mobile
hosts which manipulate the fragments within defined consistency conditions. Upon completing
the required operations, the fragments are returned to the server and combined with the rest of
the data objects using a merge operation. Not all data objects can be fragmented and operated
upon independently. Sets, stacks, and queues are a few examples of fragmentable objects. This
scheme is limited in its applicability as it works only in environments where those data can be
fragmented and operated upon independently.

Disconnected operations and LLTs are supported by allowing the mobile user to cache
data objects required for computation on the local machine. Communication cost is minimized
as only the (fragmented) portion of the data objects required for the computation is obtained by
the mobile host. As different consistency conditions may be specified for operating upon the
fragmented objects, the full spectrum of atomicity can be supported. However, as the objects
are split into disjoint fragments, only strict isolation can be supported. As this technique is not
designed specifically for the multidatabase environment, it violates the autonomy of the local
databases. Modifications need to be made to the local DBMSs in order to support

fragmentation. In addition, this technique requires the cooperation of the local DBMSs - an EI

violation.

2.4.4 Reporting Transactions and Co-Transactions

The technique proposed in [Chry93] is based on the open nested model and supports
two additional types of transactions, namely, reporting transactions and co-transactions. These

new types of transactions allow concurrent global transactions to share partial results improving
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concurrency. In this model, sub-transactions can be committed or aborted independently. Each
sub-transaction is either compensatable or non-compensatable. Non-compensatable sub-
transactions are not allowed to commit their effects on objects when they commit. This is an EI
with respect to the autonomy requirements. Sub-transactions are further categorized as either
vital or non-vital. A transaction can commit only if all its vital sub-transactions commit and
only after the statuses of non-vital sub-transactions are known. Thus, this model supports a
spectrum of atomicity. The authors assume that sub-transactions of different global transactions

can interleave their execution in any arbitrary order, eliminating the need to address the

isolation property.

2.4.5 The Multidatabase Transaction Processing Manager Technique

The multidatabase Transaction Processing Manager (MDSTPM) technique proposed in
[YZ94] is based on a Message and Queuing Facility (MQF) to manage global transactions
submitted by mobile workstations. The site that a global transaction is initiated is designated as
the coordinator site for that transaction and schedules and executes the transaction on behaif of
the mobile unit. Transactions submitted by mobile users are placed in an Input Queue by the
coordinator site. These transactions are then transferred to the Active Queue during execution.
Once the transaction has been completed, it is placed in the Suspend Queue while the two-
phase commit (2PC) protocol is executed {GR93]. Upon completion of the commit protocol,
the transaction and its outcome are placed in the Output Queue. The user may disconnect at any
time during the execution of the transaction. Upon re-connection, the user may query the status
of the transaction. The outcome of the transaction and any results produced are kept in the
Output Queue which could be delivered to the user.

The use of queues allows the MDSTPM model to explicitly handle disconnection. As

the execution of a transaction is coordinated by the initial site, transactions cannot migrate with
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the user. Instead, all communications with respect to a global transaction need to be forwarded
to the coordinator site. As all operations of a transaction need to be submitted before execution
may begin, LLTs that involve human interaction cannot be supported. This publication does not
discuss enforcing the isolation property. Although the two-phase commit protocol is to be used,
the authors do not discuss the implementation details of this commit protocol. Note that the
two-phase commit protocol (2PC) provides only strict atomicity. This approach does not violate
any autonomy requirements of the local DBMSs. However, as the implementation details of the

2PC are unknown, no definitive conclusion can be drawn.

2.4.6 The Kangaroo Model

The model presented in [DHB97] is based on the open nested model and is the first
model to capture the movement behavior of the mobile user. A global transaction (referred to as
Kangaroo transactions) consists of a set of Joey transactions, each consisting of all operations
executed within the boundaries of one MSS. Each Joey transaction consists of one or more sub-
transactions. As each Joey transaction contains all sub-transactions that are submitted from
some MSS, the set of Joey transactions capture the migration of the global transaction. As a
Joey consists of sub-transactions, this technique does not address arbitrary migration that may
occur in the middle of a sub-transaction. A Joey transaction may be committed independently.
Kangaroo transactions execute in two different modes: Compensating mode and Split mode.
Under the Compensating mode, the failure of any Joey transaction of a Kangaroo transaction
causes all its committed Joeys to be compensated and all its other active Joeys to be aborted.
Under the Split mode, all committed Joeys will not be compensated and the decision to commit
or abort any active Joeys is left up to the component DBMSs. These modes provide a full
spectrum of atomicity. However, under the Split mode, component DBMSs may be left in an

inconsistent state. Neither mode enforces the isolation property.
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2.4.7 A Pre-Commit Model

The transaction model presented in [MB98] addresses transaction management in the
mobile database environment in general. It does not specifically address the MMDB
environment. This technique introduces a pre-read, pre-write, and a pre-commit operation to
address the issues of mobile computing. Transactions of mobile users are initiated by the MH
read or pre-read data values, manipulate the data that has been read and then pre-write modified
values at the MH. Once all pre-write values have been declared, the transactions pre-commit at
which point, all pre-write values are transmitted to the MSS. The MSS will then complete the
transactions, i.e., write all values to the database and commit the transactions. A pre-write does
not update the state of the physical data object but only declares its modified value. Once a
transaction pre-commits, its pre-write values are written to a pre-write buffer maintained in the
MSS and are made visible to other concurrent transactions executing at that MH and the
respective MSS. A transactions read will return a pre-read value if the latest value available
has not been written to the database as yet; otherwise, the value residing in the database (read
value) will be returned. All pre~committed transactions are guaranteed to commit by the MSS.

This transaction model does not fully support disconnection as it does not address
disconnection that represents catastrophic failures. It addresses the concurrency limitation
caused by the extended duration of mobile transactions by maintaining a pre-write buffer and
making the pre-write values visible upon pre-<commit. However, the pre-write values are visible
only to those transactions that are executing in that MH or MSS. Note that this limits
concurrency at the LDBS level. As this technique is not specifically designed for the MMDB
environment, it does not address the autonomy requirement. In fact, this technique violates EI
as transactions are pre-committed by the MSS which guarantees that the pre-committed

transaction will not be aborted. In the MMDB environment, this cannot be achieved without the
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unilateral cooperation of the LDBSs. This technique enforces the strict atomicity and strict
isolation. It does not provide the functionality to enforce a range of correctness criterion. As

pre-committed transactions do not abort, no undo recovery or compensating transactions need

to be performed.

2.5 Summary of Review

As shown in Table 2-1, none of the reviewed techniques enforces the isolation property
without viclating the autonomy of the local databases. In fact, four of the seven techniques
reviewed do not enforce the isolation property at all. As a result, conflicts have no effect on the
outcome of transactions and, therefore, lengthy executions do not incur any ill-effects.
However, as the isolation property is not enforced, the consistency of the databases is
compromised. In addition, all techniques do not address disconnections that represent
catastrophic failures. It is assumed that a disconnection will always be followed by a

subsequent re-connection. Moreover, performance analysis has not been conducted in any of

these studies.
Technique Disctn | Migrtn | Autonomy LLT Atomicity | Isolation
Violated Support | Level Level
Agent-Based Access {[PB95-2] Partial | Partial | No Yes VAR None
The Cluster Model [PB95] Partial | Partial | EL/PI Yes VAR VAR
Semantic based TP [WC94] Partial | Partial | E/PI Yes VAR STR
TP in Mobile Env {Chry93] Partial | Full | EI Yes VAR None
MDSTMP [YZ94] Partial [Full |No No STR None
Kangaroo Model [DHB97) Partial | Partial { No Yes VAR None
Pre-commit model [MB98] Partial |Full |Yes Yes STR STR

Table 2-1 : Summary of Mobile Database Transaction Models
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Chapter 3

TRANSACTION MANAGEMENT IN THE MMDB ENVIRONMENT

In this chapter, the Pre-Serialization Transaction Management (PS) technique will be
introduced. This technique fully addresses disconnection and migration, minimizes any
prejudices against LLTs, provides the full range of correctness criterion with respect to the
atomicity and isolation properties, and conforms to all multidatabase design restrictions. The
Partial Global Serialization Graph (PGSG) algorithm which is used to verify the atomicity and
isolation properties will be presented in Section 3.1.4.1. This algorithm is a graph-based
algorithm that verifies isolation by analyzing serializability graphs of only a subset of the nodes
in the system. In order to ensure that all isolation violations are detected, the algorithm

propagates serializability information during the commit of global transactions.

3.1 Overview

The Global Transaction Manager (GTM) of the PS technique is divided into two
layers: the Global Coordinator (GC) layer manages the overall execution of global transactions
and disconnection and migration of mobile users, and the Site Manager (SM) layer supervises
the execution of site-transactions. Global transactions are initiated at the GC layer. The GC
layer will submit the site-transactions to the SM layer. The SM layer submits the site-
transactions to the respective LDBS, and forwards the outcome of the site-transactions to the
GC layer. Global transactions are based on the multi-level transaction model. Site-transactions
are categorized as either vital or non-vital [Chry93]. All vital site-transactions must succeed for
the global transaction to succeed. However, the failure of a non-vital site-transaction does not

cause the global transaction to fail. The interval in which all vital site-transactions are executed
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is referred to as the vital phase of the transaction. For simplicity, all LLTs will be considered to
be mobile global transactions, and all non-LLTs will be considered as static global transactions.

Two new states - Disconnected and Suspended - are introduced to address
disconnection and uncertainty about reconnection. Upon disconnection, global transactions are
placed in the Disconnected state by the GC layer. Whenever a catastrophic failure is deemed to
have occurred, global transactions associated with that connection are placed in the Suspended
state. Suspended global transactions are not aborted until they interfere with the execution of
other global transactions, thus minimizing erroneous termination.

The Partial Global Serialization Graph (PGSG) algorithm is used to verify the A/l
properties of a global transaction. This algorithm is based on the optimistic approach and
enforces the range of correctness criterion. If the A/l properties have not been violated the
algorithm establishes the transaction's serialization order in the global serialization scheme.
Note that the algorithm does not maintain a global serialization graph. Each site maintains a Site
Serialization Graph (SSG) that contains partial global serialization information. The global
serialization scheme can be obtained through the union of all SSGs - a very costly operation.
However, the PGSG algorithm does not construct the entire global serialization scheme in order
to verify isolation; it only constructs a partial global serialization scheme - hence its name.

A static global transaction initiates the PGSG algorithm at the end of its execution. If
the A/I properties can be verified, the transaction’s serialization order is registered in the global
serialization scheme - henceforth referred to as being toggled - and the transaction is committed,
otherwise, it is aborted. However, a mobile global transaction initiates the PGSG algorithm at
the end of its vital phase. If the A/l properties can be verified, the transaction is toggled and
execution continues; otherwise it is aborted. A toggled mobile global transaction is allowed to
initiate only nom-vital site transactions. At the end of execution of a toggled mobile global

transaction, the transaction executes the PGSG algorithm a second time to verify whether any of
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the non-vital site-transactions executed after being toggled violate the established serialization
order. Any (non-vital) site-transaction that violates this order is aborted. As only non-vital site-
transactions are initiated after being toggled, the global transaction is guaranteed to commit.
The toggle operation minimizes the ill-effects of extended executions of mobile global

transactions as they are allowed to establish their serialization order prior to completing their

execution.

3.2 The Model

Global transactions are based on the Multi-Level transaction model. This model is
ideally suited for the MMDB environment for three reasons:

1. Atomicity can be enforced without the cooperation of the LDBSs as sub-transactions are
compensatable;

2. It allows sub-transactions to commit early, independent of the global transaction;

3. it provides the flexibility to accommodate a wide range of A/I criteria.

In the proposed model, all operations of a global transaction accessing the same LDBS
constitute a site-transaction (analogous to sub-transaction) that is compensatable and will be
executed as a single transaction with respect to that site. This will ensure that the global
transaction does not execute more than one ACID transaction at any LDBS. In addition, all site-
transactions will be categorized as either vital or non-vital [Chry93]. Vital site-transactions are
site-transactions that must succeed in order for the global transaction to succeed. The abort of

non-vital site-transactions does not force the global transaction to be aborted.

3.3 The Global Transaction Manager

The Global Transaction Manager (GTM) consists of two layers: a Global Coordinator

(GC) layer and a Site Manager (SM) layer (Figure 3-1). The GC layer consists of a set of Global
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Transaction Coordinators (GTCs) such that there exists a GTC at each MSS and any other static
node to which global users may connect. All external users connect to the MMDBS via some
GTC. The GTC is responsible for the overall execution of all global transactions of users
currently connected to it. The GTC will submit site-transactions to the respective sites, handle
disconnection and migration, log responses that cannot be delivered to the disconnected user,
enforce the A/l, etc. The SM layer consists of a set of Site Transaction Managers (STMs) such
that there exists an STM at each participating LDBS. The STMs receive site-transactions from

the GTCs, submit the site-transactions to the respective LDBSs and oversee their execution.

MSS 1 _. .| Static Node | == _ MSS 2

GTC1 GTC3 GTC2
GC layer Global Transaction
SM layer Manager
L stML | STM 2 E

Service Interface 1 Service Interface 2 |
Local DBMS 1 | Local DBMS 2
Site A Site B

Figure 3-1: Global Transaction Manager

Each global transaction can be in one of five states: 1) Active - the user is connected
and execution continues; 2) Disconnected - the user is disconnected, but the disconnection was
predicted and re-connection is expected; 3) Suspended - the user is disconnected and is deemed
to have encountered a catastrophic failure; 4) Committed - the transaction committed
successfully; and 5) Aborted - the transaction is aborted. Note that the states Disconnected and

Suspended do not apply to global transactions of static users.



When a global transaction is initiated by a user, the respective GTC creates a global
data structure to keep track of the information required to supervise its overall execution. The

Global Data Structure is given in Table 3-1.

GTID lobal transaction identifier

GT Type Mobile (LLT) or static (non-LLTs)

GT_Status current state of global transaction

Isolation Verified | specifies whether isolation has been verified
Site List respective site of each site-transaction

STID List respective STID of each site-transaction
Critical List specifies vital/non-vital for each site-transaction
STID Status List | respective status of each site-transaction
Response List list of undelivered responses, if any

Table 3-1: Global Data Structure

When a user migrates to a new cell, the user will supply the current MSS with the
identity of the previous MSS. The GTC at the current MSS will obtain the associated Global
Data Structure from the previous GTC and assume the responsibility of the overall execution.

The STM at each site supervises the execution of site-transactions submitted to that site.
Each LDBS defines the set of operations accepted by that LDBS. Each site-transaction can be in
one of four states: 1) Active - the site-transaction is active; 2) Completed - the site-transaction
has committed at the local database but the global transaction has not committed; 3) Aborted -
the site-transaction is aborted; or 4) Committed - the site-transaction and the respective global
transaction have committed. Each STM will maintain a Site Table containing information on all

site-transactions submitted to it. For each site-transaction, the following information will be
collected:

GTID respective GTID
STID assigned STID
MSS ID current MSS to which user is connected
STID Status current state of site-transaction
| Compensating Transaction | compensating transaction of site-transaction

Table 3-2: Site Table Structure
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The GTC submits all site-transactions and their compensating (site) transactions to the
respective STMs. Upon completion of each site-transaction, the STM will submit a commit
operation to the LDBS and consequently update the STID_Status to reflect the outcome of the
local commit operation, i.c., marked Completed or Aborted. The outcome will then be conveyed
to the GTC to be recorded in the Global Data Structure. Site-transactions are committed locally
independent of the future outcome of the global transaction in order to ensure that local
resources are released in a timely manner.

Whenever a user disconnects, the respective GT_Status is marked as Disconnected. The
execution of Disconnected transactions are not halted. All responses received after
disconnection are placed in the Response_List. Upon reconnection, the GT_Status of
Disconnected transactions will be set to Active, all responses in the Response_List are delivered
to the user, and execution proceeds. At any time during a period of disconnection if the
MMDBS determines that a catastrophic failure has occurred, the respective GT_Status is
marked as Suspended and the execution is halted, i.e., no new site-transactions are initiated.
Suspended global transactions are not aborted until they obstruct the execution of other global
transactions. This will minimize the number of unnecessary aborts caused by erroneous
decisions.

To verify the A/l properties of a global transaction, the respective GTC will execute the
Partial Global Serialization Graph (PGSG) algorithm. This algorithm verifies the A/l properties
with respect to all successful site-transactions of a global transaction. A static global
transactions initiates the PGSG algorithm at the end of its execution. If the A/l properties have
not been violated, the transaction's serialization order is registered in the global serialization
scheme (i.e., toggled) and it is committed; otherwise it is aborted. In the case of a mobile global
transaction, the PGSG algorithm is initiated at the end of its vital phase. If either if the A/l
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properties have been violated, the mobile global transaction is aborted; otherwise the mobile
global transaction is toggled, the Isolation_Verified field of the respective Global Structure is
set to true, and execution is allowed to continue. After being toggled, a mobile global
transaction may initiate only non-vital site-transactions. As a toggled mobile global transaction
establishes its serialization order in the global serialization scheme, it is guaranteed to commit.
At the end of its execution, each toggled mobile global transaction initiates the PGSG algorithm
the second time to verify that the (non-vital) site-transactions executed after being toggled do
not violate the already established serialization order. If any site-transaction violates this order,
it is aborted. However, as it is non-vital, its abort does not cause the global transaction to be
aborted. A toggled mobile global transaction is aborted only if it obstructs the execution of
another global transaction while it is in the Suspended state. As mobile global transactions are
allowed to establish their serialization order prior to completing their execution, the prejudicial

treatment of mobile global transactions is minimized.

3.4 the Atomicity and Isolation Properties

In this Section, the PGSG algorithm used to enforce the A/l properties will be
introduced. First, an overview of the algorithm is presented. Details of the algorithm will be
provided in subsequent sub-sections.

As stated previously, it has been argued that strict atomicity cannot be implemented in
the multidatabase environment without violating local autonomy. Without taking sides in that
argument, the atomicity property of the PS technique will be based on condition 2 of semantic
atomicity. That is, either all site-transactions are committed, or all site-transactions are aborted
or compensated for. Condition 2 of semantic atomicity is chosen as it allows (compensatable)
site-transactions to be committed even before the decision to commit the global transaction is

reached.
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The isolation property is based on serializability. In Chapter 2 it was stated that in order
for a set of local and global transactions to be serializable in the multidatabase environment, all
local serialization graphs must be acyclic and the global serialization graph which contains only
global transactions must be acyclic. In Chapter 1 it was stated that all transactions executed by
the local LDBSs will satisfy the ACID properties. This guarantees that all local serialization
graphs will be acyclic. Therefore, the MMDBMS needs only to ensure that the giobal
serialization graph that represents global transaction serialization order at the local sites is
acyclic.

To capture the local serialization scheme, each STM maintains a Site Seralization
Graph (SSG). The SSG is an ordered graph that reflects the execution order of site-transactions
at that site. The combination of all SSGs represents the global serialization order of all global
transactions. The nodes in the SSG represent global transactions and are categorized as either
Accessed or Propagated. Accessed nodes represent transactions that execute vital site-
transactions at that site. Propagated nodes are nodes that get copied to the SSG whenever the
STM participates in the PGSG algorithm. The edges in the SSG represent the serialization order
of the global transactions.

The PGSG algorithm will first verify semantic atomicity of the transaction to be toggled
or committed, say T;. That is, the PGSG algorithm verifies that all vital site-transactions of T,
have successfully committed at the respective LDBSs, i.e., marked Completed. If all vital site-
transactions are marked Completed, the atomicity property is satisfied; otherwise, all Completed
site-transactions of T; (vital and non-vital) are compensated and T, is aborted.

The fact that the abort of a nom-vital site-transaction does not cause the global
transaction to be aborted is actually a violation of condition 2 of semantic atomicity. However,
the need for this can be argued as follows. In Chapter 2, it was argued that the GTM needs to

support the full range of A/l properties. If all site-transactions are classified as vital, then all



site-transactions must succeed in order for the global transaction to succeed and condition 2 is
strictly adhered to. If on the other hand all site-transactions are classified as non-vital, then
unrestricted access is supported. By allowing a global transaction to consist of any combination
of vital and non-vital site-transactions, the PS technique supports the full range of the A/l
properties.

To verify serializability of T, the PGSG algorithm constructs the Partial Global
Senalization (PGS) graph. The nodes in the PSG graph represent a subset of global transactions
and the edges represent their senalization order. The PGS graph is constructed by combining
Predecessor graphs obtained from the SSGs at all STMs at which T; executed site-transactions
successfully - henceforth referred to as Primary sites. Each Predecessor graph contains T,, all
nodes that precede T; in that SSG, and additional serialization information obtained from other
STMs with respect to propagated nodes in that SSG that are Active (henceforth referred to as
Candidate nodes). These sites are referred to as Secondary sites.

After constructing the PGS graph, the algorithm verifies whether T; violates the
established serialization order of all committed and toggled transactions. Violations are
represented as cycles that consist of T, and other toggled or committed transactions. If cycles are
detected, the algorithm will attempt to break these cycles by aborting Suspended (toggled)
mobile global transactions as they are obstructing the execution of another global transaction.
Note that all transactions marked as Suspended have not been committed and therefore can be
aborted. If one or more cycles cannot be broken by aborting Suspended transactions, all
Completed site-transactions of T; are compensated and the global transaction is aborted. If there
are no cycles or all cycles can be resolved, the Isolation_Verified field is set to True, the global
transaction is committed or toggled, and the PGS graph is sent to all participating STMs , i.e.,
all Primary and Secondary sites. At each site, serialization information contained in the PSG

graph is copied to its SSG - henceforth referred to as propagation.
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Propagation is a fundamental part of the PGSG algorithm and ensures that all cycles are
detected even though the global serialization scheme is only partially represented in each PSG
graph. Whenever a global transaction T; establishes its serialization order in the global
serialization scheme, propagation is designed to copy all active nodes T; that appear before T, in
the PGS graph (i.e., conflict with and precede T; in the serialization order) to other participating
SSGs. The motivation behind propagation is the following. Some active transaction T; that
precedes T, in the serialization order when T, was toggled may initiate other conflicting site-
transactions in the future such that it now appears after T; in the global serialization scheme,
thus causing a cycle. However, propagation will ensure that when the last transaction in the
cycle attempts to establish its serialization order, the cycle will be in the PGS graph as:

1. Propagation copies preceding serialization information to all participating SSGs.

2. Inacycle, any node precedes all other nodes.

Therefore, the cycle is detected and the global transaction is aborted. Note that the key to the
algorithm is to identify those nodes to which the "preceding" serialization information needs to
be copied. The nodes to which the PGSG needs to propagate information are all Active nodes
that precede T; in the PGS graph.

3.4.1 The PGSG Algorithm

As the execution order of site-transactions within the local databases are transparent to
all external processes, the STM cannot determine the local serialization order by any direct
means. However, the execution order of site-transactions within the local LDBS may be
obtained implicitly by forcing conflicts among the site-transactions by using a data item called a
ticket [GRS91] maintained at each site. Each site-transaction is required to read the ticket at that
LDBS, increment its value and write the new value back as part of its execution. The ticket

value read by the site-transaction indicates its serialization order at that site [BMS92] with



respect to other site-transactions and will be used to construct the SSG. Note that, any site-
transaction that violates the serialization order represented by its ticket will be aborted by the
LDBS as all sites enforce the ACID properties on all local transactions.

The SSG at each site is a directed graph whose nodes represent the respective GTIDs of
site-transactions and edges represent (forced) conflicts between the respective site-transactions
executed at that site (i.e., ticket values). For example, there exists T,—T, in some SSG if and
only if global transactions T, and T, access at least one common site and the ticket obtained by
the site-transaction of T, is less than the ticket obtained by the site-transaction of T,. The
information contained within each node is given is Table 3-3. Each node in the SSG is
categorized as either an Accessed node or a Propagated node. An Accessed node represeats a
global transaction that executed a site-transaction at that site. A Propagated node represents a
global transaction whose serialization order was copied to the SSG during the execution of the

PGSG algorithm. Next, certain terms used in the algorithm are defined.

GTID Respective global transaction ID

GT Status status of global transaction

Isolation Veri | commit intent of global transaction

Node Categor | Accessed or Propagated

Site ID If Access, then this Site_ID; Else the Propagated Site_ID
Table 3-3: SSG Node

Definition 1: We say that T; is reachable from T; in graph G if there is a path from T; to Tjin

G, ie, Tim..oT;.

Definition 2: Reachable(T;) is a (directed) sub-graph of an SSG that contains node T; and all

nodes T; such that Tj is reachable from T; in the SSG.
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Definition 3: a Candidate node is any Propagated node whose GT_Status is not Committed.

Definition 4: Let G; and G; be two graphs with node sets N; and N; and edge scts E; and E;
respectively. The operation G = Merge(G, G)) results in a new graph G(N, E) such that N = N;

w N; and E = E; U E; where U is the union operator. (G does not contain duplicate edges).

Definition S: The graph Predecessor(T, Su) is the sub-graph Reachable(T)) of the SSG at site
Sm Merged with all Predecessor(Tk, S,) graphs where Ty is a Candidate node in Reachable(T))
and S, is the respective propagated site of T,. Formally,

Predecessor(T;, Sm) = { G = Reachable(T)) | Merge (G, Predecessor(T,, S,)) V Candidate nodes
Ty in Reachable(T;) where S, is the Site_ID of T, }

In the graph Predecessor(Ty, Sy), Tk is referred to as the requested root node.

Definition 6: The list PList(T, S,/ is a list (maintained at site S,,) whose elements represent

sites from which Predecessor graphs were obtained in order to construct Predecessor(T;, Su).

The PGSG algorithm consists of two modules: the GlobalCoordinator module
constructs the PGS graph from the Predecessor graphs and verifies the A/l properties, and the
RequestPredecessor module constructs the Predecessor graphs. The GlobalCoordinator module
is executed by the GTC that supervised the execution of the global transactions at the time that
the commit or toggle operation was initiated. T; represents the global transaction to be
committed or toggled and the Request argument specifies it is to be committed or toggled. First,
this algorithm verifies that all vital site-transactions have been Completed. Next, the algorithm
obtains the Predecessor graphs from all Primary sites at which T; successfully executed site-

transactions. Each Primary site executes the RequestPredecessor algorithm to construct the



Predecessor graph and submits it to the GTC. The PGSG algorithm will then verify
serializability and either toggle, commit, or abort the global transaction. If the global transaction
is to be committed or toggled, the PGS graph is sent to all participating sites so that the required
serialization information is propagated.

Algorithm 3-1: GlobalCoordinator (T,, Request)
/* Verifies the A/I properties */

/* first, verify atomicity */

If any critical site-transaction has been aborted

Send ABORT (T)) to all sites in Site_List /* Abort all site-transactions */
Else

I* next, verify isolation */

Jor all site S, in Site_List where T, is marked Completed, obtain Predecessor(T, S,)
by executing the Request Predecessor(T, S.) algorithm

Generate PGSG by Merging all Predecessor(T, S,)

Check for cycles w.r.t. T;, Committed nodes and Togged nodes

If cycles are detected

If cycles can be broken by aborting Suspended global transactions or
non-vital site-transactions of T;

Mark GT _Status of Suspended nodes as Aborted in PGSG
Else [* isolation violated */
Send ABORT (T) to all sites in Site_List /* Abort all site-transactions */
Exit Algorithm
End If
EndIf
I* A/1 properties verified */
Mark Isolation_Verified in Global Structure and node T, in PGS graph as True
/* Propagate success and serialization information */
Send “SUCCESS” and PGS graph to sites in Site_List where T, is marked Completed
EndIf
End {PGSG Algorithm)

For Transaction T;, The GlobalCoordinator module initiates RequestPredecessor(T,, Sw)
at all primary sites Sn. In tum, each site S, will initiate RequestPredecessor(T;, S,) for all
candidate nodes T; (propagated from Site S,) in Predecessor(T, Sm). If Predecessor(T,, Sa)

49



contains any Candidate nodes T, then the Secondary site initiates RequestPredecessor(Ty, Sp)
for all Candidate nodes Ty. All S;s are also categorized as Secondary sites. Finally, Secondary
sites S, submit their graphs to the Primary sites which submit Predecessor(T;, S.) to the

GlobalCoordinator module. Each site then awaits the outcome of the Commit of Toggle
operation. If T; is to be committed or toggled, each site (Primary and Secondary) will copy
propagation information by merging Reachable(T,) of the returned PGS graph with
Reachable(T,) of its SSG where T, represents the requested root node for the Predecessor graph

submitted by that site. For example, T, represents global transaction T; in all Primary sites.

Algorithm 3-2: Request Predecessor(T), S,)
/* Construct Predecessor graph */
Construct Predecessor(T, Sy), PList(T, Su)
Submit Predecessor(T; Su) to requester
Wait for Reply from requester
If Reply is ABORT (T)) I* site-transaction is to be aborted */

If T is Accessed node in SSG /* this is a Primary site */

Abort T; if Active or compensate T, if Completed

End If

Send ABORT (T)) to all sites in PList(T, S,) /* inform all Secondary sites */
Else /* global transaction is to be toggled */

If T is Accessed node in SSG |* this is a Primary site */

Mark Isolation_Verified as True

EndIf

/* Primary and Secondary copy serialization information */

SSG = Merge(SSG, Reachable(T)) of received PGS graph)

Update status of Candidate nodes in Reachable(T)

Send ‘SUCCESS’ and PGS graph to all sites in PList(T; Su)
End If
End { Request Predecessor}



3.4.2 A Sample Execution of the PGSG Algorithm

In this example, the MMDBS consists of 3 sites labeled S, through S;. There are 3
active global transactions labeled T, through T in the system. For simplicity, we assume that
each transaction accesses two sites, all site-transactions at each site conflict with each other, and
that all transactions have completed their execution but have not yet committed. The algorithm
is illustrated in Table 3-4. The initial SSG at each site is given in row one. For example, at site
S3, T3> T, indicates that T; and T, conflict and that T; is serialized before T,. Initially, all
nodes are Accessed nodes. Rows two through four reflects the SSGs after the completion of the
PGSG algorithm of the transaction given in column one. If a site does not participate in the
PGSG algorithm, it will not have an entry in the corresponding row as the SSG does not change.
The Site_ID of Propagated nodes is given in brackets below the respective node. The last
column reflects the PGS graph that is constructed at each stage. A [C] below the respective
node in the PGS graph states that the node is to be committed and a [A] states that the node is to
be aborted.

In this example T, executes the PGSG algorithm first, T; second, and T, third. For the
commit of T, S, and S; participate as Primary sites. The Predecessor graph submitted by S, is
T,—>T,, and the Predecessor graph submitted by S; is T,. As there are no cycles in the PSG
graph that is constructed by combining the two Predecessor graphs, T, commits successfully.
After the commit, the PGS graph is sent to all participating sites, i.e., S, and S,. At each site, the
nodes in the PSG graph that are not in Predecessor(T;, Sy) are copied (propagated) to the SSG.
Next, for the commit of T;, S, and S; participate as Primary sites. Once again, as there are no
cycles in the PSG graph, T; is committed and node T is propagated to S,. Next, for the commit
of Tz, S; and S; participate as Primary sites. As Predecessor(Ts, S») S; has an Active propagated
node in its SSG with Site_ID S, (i.e., T; which when propagated to S, was Active and therefore,

still deemed to be active), S, will participate as a Secondary site. Here, the PSG graph will
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contain a cycle involving T and therefore, T, will be aborted and removed form the SSGs at all

sites as part of the Propagation process. Note that the cycle will not be detected if this example

is carried out without Propagation.
S S; Ss PGS graph
Initial SSGs T;—)Tl Tl")Tz Tz_’TJ
Commit Ole T;—)Tl T;—)T|—)T2 TS—')TI
[Si]. [€]
Commit of T; T->T:-T, T-T; T-T;
[S3] 9]
Commit of Tz TS"PT] T;—)Tl T3 Tz—’Ts"’Tl"’TZ
[Si] [A]

Table 3-4: Sample execution of PGSG algorithm

3.4.3 Proof of Correctness

Lemma 1: Let T,—T; be in the SSG at some site S;. Then, T; began its execution at §; prior to

the completion of T;’s execution at S;and therefore, prior to the (global) commit of S;.

Proof: In order for Ti—>T; to exist, T; must have obtained a ticket that is less than the ticket

obtained by T;. Therefore, T; began its execution at S; prior to T;completing its execution at S;.

Theorem 1: Let T = {T), T3, ..., T.} be a set of transactions that cause a cycle. Assume that T,
through T, commit successfully and that T, is the last transaction in T to attempt to commit.
Then T, will be a Candidate node in some Predecessor(T),, Sx) used to construct the PGS graph.
Thus, the cycle will be detected.

Proof: For simplicity, let us assume that each transaction executes at exactly two sites such that

the cycle
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C = T\»T;—...oT,—T,is produced.

By Theorem 1, for all T, that have completed their execution, there exists T,—T, for some T, in
T in the SSG at some site S, at which T, executed. When T, executes the PGSG algorithm, T, is
in Predecessor(T, S,) used to construct the PGS graph. Now, either T, is committed, or not
committed.

If T, is not committed then T, will be added as a Candidate node to all the SSGs at which T,
executed.

If T, is committed, then, by Theorem 1, there exists a Ty, in S such that T,—T, at some site Sq,
at which T, executed. Once again, either T, was committed or not committed at the time of T,’s
commit. If T, was not committed, then T,, was propagated to S, at the time of T;,’s commit and,
as a result, will be in Predecessor(T,, S,) at the time of T,'s commit and will be added as a
Candidate node to all SSGs at which T, executed. If T, was committed, we may repeat this
argument. As the conflicts are cyclic, Predecessor(T,, Sg) used to construct the PGSG when T,
attempts to commit will always contain a non-committed node from T which will then be added
as a Candidate node to all SSGs at which T, executed.

Now let T, attempt to commit at site S, and Sn where T,—T; and T,—T, exist, respectively.
Then, as T, is committed, the SSG at S, will contain a Candidate node - say T, with respective
site S, - in its Predecessor(T), Sy). If Tx committed after its propagation to site S,, then the SSG
at S; would, in tumn, contain a Candidate node. Finally, as the only node in the cycle that is
currently active is Ty, the Predecessor(T;, S,) constructed at site S, will contain T, as an
Accessed node as well as a Candidate node. Therefore, Predecessor(T), S;) will contain the

entire cycle. Thus, the PGS graph will contain the cycle. As all nodes except T, are committed,
the cycle will be detected.
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3.4.4 Concurrent Executions of the PGSG algorithm

In the preceding sections it was assumed that the PGSG algorithm always executed in
isolation, that is, each instance of the GlobalCoordinator algorithm (and its respective
RequestPredecessor algorithms) executed without interference from other instances of the
algorithm. This section removes this assumption, studies its effects, and extends the algorithm
to prevent the loss of information during propagation that may result from concurrent
executions.

In the MMDBS environment, it is possible that multiple GTCs may execute the PGSG
algorithm on behalf of different global transactions at the same time. The concurrent execution
of the PGSG algorithm may cause conflict information being propagated to be lost or ignored
resulting in cycles going undetected. This will be illustrated using the sample execution
presented in Section 3.1.4.2 and altering its execution as follows: Let us assume that giobal
transaction T, has committed and that T; and T; have completed their execution but have not
committed. See Table 3-5 for the SSGs at each site after T, has committed.

S S, Sy PGS graph
Initial SSGs T:-T, T,»T, Tz—’TJ
After Commit of T, | T, T, T:-T»T; | T—-T; T;-T,
[S:]

Table 3-5: SSGs after T, has committed

Next, let us assume that T; and T; initiate the PGSG algorithm concurrently. Table 3-6
illustrates the execution of the algorithm. Row 3 and Row 4 contain the PGS graphs for T; and
T4 respectively. A "*" in a cell indicates that that site participates in the commit of the

respective transaction. Assuming that propagation from the commit of one transaction does not



overwrite the information propagated from the commit of the other transaction, row 5 contains
the SSGs after all transactions have committed.
Note that, neither PGS graph contains the cycle as the PGS for T; does not contain the

information that would have been propagated had T; committed before T, and vise versa.
Therefore, both T, and T; will be allowed to commit.

S, S 55 PGS graph
After Commit of T, | T;-T, T:-T-T, T;-T;
[S1]
Commit of T, * * T-T;
[€]
Commit of Tz * g * T;—)T| —)Tz
[C]
Tz-)T;—)T| T;—)Tl—)Tg T;—)Tr-)T;—)T;
[S3] [Si] [S:][S:]

Table 3-6: Concurrent commit of T; and T,

To address this issue, the algorithm needs to ensure that global transactions whose PGS
graphs contain at least one common node (i.c., the same node from the same SSG) do not
execute the PGSG algorithm at the same time. Global transactions whose PGS graphs are
disjoint may execute the PGSG algorithm concurrently as established by the next theorem and

the following discussion.

Theorem 2: If the PGS graphs of global transactions T; and T; are disjoint (i.c., do not de-net
contain any common node), then the node set S; containing all nodes in Reachable(T;) where T;
is modified by the Propagation phase of T; and the node set S; containing all nodes in

Reachable(T;) where T; is modified by the Propagation phase of T; are also disjoint.
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Proof: Let us assume the contrary. Assume that S; and S; contain a common node representing
global transaction T,. As propagation copies only those nodes contained in the PGS (and as it
copies information only to nodes contained in the PGS), T, must exist in the PGS of both T, and

T;. Clearly, this is a contradiction and therefore, S;and S; must be disjoint.

This theorem states that if the PSG graphs of any two global transactions are disjoint,
then the nodes modified during the propagation phase are also disjoint. Therefore, if the PGS
graphs of two or more transactions that execute the PGSG algorithm concurrently are disjoint,
then the SSG graphs after a concurrent execution would not be any different had the PGSG
algorithms executed in some serial order.

To ensure that global transactions whose PGS graphs contain at least one common node
do not execute the PGSG concurrently, a simple lock mechanism is employed. Each node in the
SSG is associated with an exclusive lock. Each primary site S, that executes Request
Predecessor(T;, Sx) needs to obtain a lock on T, and all nodes in all Predecessor graphs used to
construct Predecessor(Tj, Sm). This simple locking mechanism will ensure that transactions
whose PGS graphs are not disjoint will not be allowed to execute the PGSG algorithm

concurrently as stated in the next theorem.

Theorem 3: If global transaction T, obtains all locks necessary to construct its PGS graph G,
then no other transaction T; whose PGS graph G; has at least one common node with G; can

obtain all locks necessary to construct its PGS graph.

Proof: Let us assume the contrary. Assume that Global Coordinators GTC; and GTC; execute

the PGSG algorithm concurrently for T; and T; respectively, and that G; and G; have at least one



common node Ny. This implies that both GTC, and GTC; have obtained an exclusive lock on N,.

This coatradicts the definition of "exclusive” lock and therefore cannot occur.

The updated GlobalCoordinator algorithm and RequestPredecessor algorithm are given
below. The statements that have been added are in bold text.

Algorithm 3-3: GlobalCoordinator (T}, Request)
/* Verifies the A/l properties */
/* first, verify atomicity */
If any critical site-transaction has been aborted
Send ABORT (T)) to all sites in Site_List /* Abort all site-transactions */
Else
/* next, verify isolation */
Loop
For all site Su in Site_List where T, is marked Completed, obtain Predecessor(T, Su)
by executing the Request Predecessor(T, S,) algorithm
If any site returns SHARE-VIOLATION send SHARE-VIOLATION to all sites
While some site returns SHARE-VIOLATION
Generate PGSG by Merging all Predecessor(T;, Sw)
Check for cycles w.r.t. T;, Committed nodes and Togged nodes
If cycles are detected
If cycles can be broken by aborting Suspended global transactions or
non-vital site-transactions of T;
Mark GT _Status of Suspended nodes as Aborted in PGSG
Else I* isolation violated */
Send Abort (T)) to all sites in Site_List /* Abort all site-transactions */
Exit Algorithm
EndIf
Endlf
/* A/l properties verified */
Mark Isolation_Verified in Global Structure and node T, in PGS graph as True
/* Propagate success and serialization information */
Send “Success” and PGS graph (o sites in Site_List where T, is marked Completed
Endlf
End {PGSG Algorithm}
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Algorithm 3-4: RequestPredecessor(T), S..)
/* Construct Predecessor graph */
Obtain Exclusive locks on Reachable(T])
If any lock cannot be obtained
Release all locks and return SHARE-VIOLATION
Exit
Else
Construct Predecessor(T; S), PList(T; Ss)
If any site returns SHARE-VIOLATION
Release all locks and return SHARE-VIOLATION
Exit
End If
Submit Predecessor(T, Su) to requester
Wait for Reply from requester
If reply is SHARE-VIOLATION
Release all locks and send SHARE-VIOLATION to all sites in PList(T, S.)
Exit
Else If Reply is ABORT(T,) /* site-transaction is to be aborted */
If T, is Accessed node in SSG /* this is a Primary site */
Abort T, if Active or compensate T, if Completed
End If
Release all locks
Send ABORT (T)) to all sites in PLisy(T, S,) /* inform all Secondary sites */
Else [* global transaction is to be toggled */
If T, is Accessed node in SSG /* this is a Primary site */
Mark Isolation_Verified as True
End If
/* Propagate serialization information */
SSG = Merge(SSG, Reachable(T)) of received PGS graph)
Update status of Candidate nodes in Reachable(T)
Release all locks
Send ‘SUCCESS’ and PGS graph to all sites in PList(T;, Sy)
End If
EndIf
End { Request Predecessor}
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Note that if at any time a necessary lock cannot be obtained, the PGSG algorithm
releases all locks that have been obtained and starts over. This will ensure that the algorithm
does not cause any deadlocks in the system.

3.4.5 Restricting the Growth of the SSGs

The difference in philosophies in pessimistic vs. optimistic concurrency control
approaches can be generalized as preventive vs. cure. Pessimistic concurrency control
algorithms are based on the assumption that it is more cost-effective to prevent isolation
property violations. On the other hand, optimistic concurrency control algorithms are based on
the assumption that it is more cost-effective to detect isolation property violations and take the
necessary corrective measures. The PGSG algorithm introduced in this research is based on the
optimistic philosophy.

In general, optimistic approaches can be categorized as either forward-examination or
backward-examination. Forward-examination algorithms verify the serializability of a
transaction T; by looking at the serialization order of T; and all active transactions in the system.
Forward-examination algorithms detect a potential violation and resolve the violation by
aborting some transaction involved in this potential violation. For example, if active
transactions T; and T conflict at some site where T; is serialized before T; and T;and T; do not
conflict at any other site, then it may seem that T; can be committed as there is no serializability
violation. Yet if T; is committed, a serializability violation could occur in the future if T,
executes at some other site at which T; executed and T; is serialized after T;. This violation will
not be detected when T; attempts to commit as the algorithm is based on forward-examination
and T; has already committed. Therefore, when T; attempts to commit, if T; conflict with

another transaction T; at some site where T; is serialized before T;, forward-examination
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protocols will abort either T; or T, even though there is no violation at this point in order to
prevent any senalizability violation occurring in the future.

On the other hand, backward-examination algorithms verify the serializability of a
transaction T, by looking at the senalization order of T; and all committed transactions in the
system. The advantage of backward-examination algorithms is that a transaction is aborted only
if a real violation exists (as opposed to a potential violation). However, the disadvantage of the
backward-examination algorithms is that, as the number of committed transactions in the
system increases, the overhead required to verify serializability increases.

The PGSG algorithm verifies senializability based on the backward-examination
approach. Therefore, the algorithm needs to address the growth in overhead over time. This is
achieved by "trimming" the SSGs during the execution of the PGSG algorithm, thereby limiting
the set of committed transactions that need to be considered. The basis behind this trimming is
preseated in the next theorem:

Theorem 4: Let node n; representing committed transaction T, be a node in some SSG. n; can
be a node in a cycle in the PGS of some global transaction T; only if there exists a Candidate
node in Predecessor(n;).

Proof: Let us assume the contrary. Assume that T; is committed, there is no Candidate node in
Predecessor(n;), that n; is a node in a cycle in the PSG of Tj, and that T, is the last node in that
cycle that attempts to commit. Thea by Theorem 1, T; will be a Candidate node in some
Predecessor(T;, Sx) used to construct the PGS graph. As n; is a node in the cycle, n; must be in
the Predecessor(T;, Sy) that contains the cycle. Therefore, T; must be in Predecessor(n;). Clearly,
this is a contradiction. Therefore, if T; is committed and there is no Candidate node in its

Predecessor(T)) graph, it cannot be a node in a cycle.



As stated in the previous theorem, any node in an SSG representing a committed global
transaction that does not contain a Candidate node in its Predecessor graph cannot be a node in
a cycle. Therefore, it (and all nodes in its Predecessor) can be removed from that SSG. The
PGSG algorithm trims its graphs as follows: Whenever an STM §; executes Request
Predecessor(T;, S,), the Request Predecessor algorithm trims the Predecessor(T;) by removing
any committed node T; in Predecessor(T;) such that T; # T; and Reachable(T,) contains no

Candidate Nodes. Thus, any node that, by Theorem 2, cannot be a node in any cycle is removed
from the SSG.

The updated RequestPredecessor algorithm is given below. Once again, the statements
that have been added are in bold text.

Algorithm 3-5: RequestPredecessor(T), Sa)
/* Construct Predecessor graph */
Obtain Exclusive lock on Reachable(T})
If any lock cannot be obtained
Release all locks and return SHARE-VIOLATION
Exit
Else
Construct Predecessor(T, Sa), PList(T; Su)
If any site returns SHARE-VIOLATION
Release all locks and return SHARE-VIOLATION
Exit
Endlf
Submit Predecessor(T; S.) to requester
Wait for Reply from requester
If reply is SHARE-VIOLATION
Release all locks and send SHARE-VIOLATION to all sites in PList(T;, Su)
Exit
Else If Reply is ABORT(T;) [* site-transaction is to be aborted */
If T, is Accessed node in SSG /* this is a Primary site */
Abort T; if Active or compensate T; if Completed
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End If
Release all locks

Send ABORT (T)) to all sites in PList(T; S,) /* inform all Secondary sites */
Else /* global transaction is to be toggled */

IfT, is Accessed node in SSG /* this is a Primary site */

Mark Isolation_Verified as True

End If

/* Propagate serialization information */

SSG = Merge(SSG, Reachable(T,) of received PGS graph)

Update status of Candidate nodes in Reachable(T))

Remove all T; in Reachable(T) such that T; # T, T, is committed and

Reachable(T)) contains no Candidate Nodes
Release all locks

Send ‘SUCCESS’ and PGS graph to all sites in PList(T, Su)
Endlf
Endlf
End { Request Predecessor}

3.5 Summary and Conclusion

This chapter proposes a new transaction management technique called Pre-Serialization
(PS) for the mobile multidatabase environment The global transaction model of the PS
technique is based on the multi-level transaction model, which requires site-transactions to be
compensatable. The multi-level transaction model allows site-transactions to be committed prior
to the decision to commit their global transaction, releasing local resources in a timely manner.
Site-transactions are categorized as either vital or non-vital. The vital phase of a global
transaction contains the entire execution between the first and last vital site-transaction of that
global transaction. This categorization gives the PS technique the flexibility to enforce the full
range of atomicity and isolation correctness criteria.

This technique introduces two new states to address the disconnectivity of the mobile
user. Whenever a disconnection occurs, all global transactions of that user are placed in the

Disconnected state. If at any stage it is deemed that the disconnected user has encountered a
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catastrophic failure, these transactions are placed in the Suspended state. As catastrophic
failures can only be predicted, Suspended transactions are not aborted until they interfere with
the execution of other transactions. This minimizes unnecessary aborts caused by erroneous
predictions.

This chapter proposes a new algorithm called PGSG that enforces the atomicity and
isolation properties of global transactions in the MMDB environment: This algorithm verifies
serializability by constructing a partial global serialization graph. This graph does not contain
the complete serialization scheme of the MMDBS. Instead, it contains all the serialization
information with respect to the transaction whose isolation property is being verified. This
algorithm ensures that all cycles will be detected even though the complete serialization scheme
in not reflected in the PGS through propagation which is the dissemination of serializability
information. In order to minimize mobile global transactions being penalized due to their
prolonged execution, the PS technique allows mobile transactions to establish their senialization

order in the global serialization scheme at the end of their vital phase.
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Chapter 4

THE SEMANTIC PRE-SERIALIZATION TRANSACTION MANAGEMENT TECHNIQUE

The PS technique has two major limitations. First, mobile global transactions incur
additional overhead as opposed to static global transactions as mobile global transactions need
to execute the PGSG algorithm twice. Second, this technique provides limited concurrency as
each site employs a single ticket to serialize all site-transactions that execute at that site. In this
section a Semantic Pre-Serialization (Semantic-PS) transaction management technique is
proposed. The Semantic-PS technique is a modified version of the PS technique that overcomes
the noted limitations of the PS technique.

4.1 Overview

The Semantic-PS differs from the PS technique in two areas - both relate to the
enforcement of the A/l properties. First, in order to address the additional execution overhead
incurred by mobile global transactions, the Semantic-PS technique further relaxes the A/l
properties. That is, the Semantic-PS technique enforces the A/l properties only on the set of
vital site-transactions of a global transaction. Therefore, all global transactions (mobile and
static) need to execute the PGSG algorithm only once. Mobile global transactions execute the
PGSG algorithm at the end of their vital stage. Static global transactions execute the PGSG
algorithm at the end of their execution. Mobile global transactions are allowed to initiate non-
vital site-transactions after being toggled.

Second, the Semantic-PS technique employs a modified version of the ticket method to
improve concurrency. In this version, each LDBS maintains a set of tickets and forces conflicts

only between site-transactions that potentially conflict with each other. It does not force



conflicts between all site-transactions that execute at that LDBS, thereby increasing
concurrency.
Next, a detailed description of the enforcement of the A/I properties is provided. The

transaction model and the GTM architecture is identical to that of the PS techniques.

4.2 The Atomicity and Isolation Properties

The A/l properties of the Semantic-PS technique are enforced on the set of vital site-
transactions only. This does not limit the scope of the technique. It still provides the full range
of correctness criteria as well. That is, if all site-transactions of a global transaction are
categorized as vital, then strict A/l is enforced. On the other hand if all site-transactions of a
global transaction are categorized as non-vital, then the A/l properties will not be enforced. This
technique differs from the PS technique as follows: The PS technique enforces the A/I
properties on all site-transactions that are completed successfully, i.e., all vital site-transactions
and all non-vital site-transactions that complete execution successfully. Thus, the entire global
transaction is executed as a consistent unit of computing. The Semantic-PS technique enforces
the A/l properties on the set of vital site-transactions only. Therefore, only the set of vital site-
transactions is executed as a consistent unit of computing. Although the Semantic-PS technique
reduces the execution overhead and increases concurrency, its application is limited. It can only
be used in environments where non-vital site-transactions do not cause any inconsistencies or,
where the inconsistencies caused by the non-vital site-transactions can be tolerated.

As in the PS technique, the atomicity property of the Semantic-PS technique is based on
condition 2 of semantic atomicity, and the isolation property is based on (global) serializability
of global transactions. In the Semantic-PS technique, each site maintains an SSG graph as well.
However, in Semantic-PS, only the execution of vital site-transactions is recorded in each SSG.

The execution of non-vital site transactions is not recorded in the SSG. The Semantic-PS
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technique enforces the isolation property by executing the modified PGSG algorithm described
below.

In Semantic-PS, all global transactions execute the PGSG algorithm only once. Mobile
global transactions execute the PGSG algorithm at the end of their vital stage while static global
transactions execute the PGSG algorithm at the end of their execution. The PGSG algorithm
will first verify semantic atomicity of the transaction to be toggled - say T.. That is, the PGSG
algorithm verifies that all vital site-transactions of T, have successfully committed at the
LDBSs, i.e.,, marked Completed. If all vital site-transactions are marked Completed, the
atomicity property is satisfied; else, all Completed site-transactions of T; (vital and non-vital)
are compensated and T; is aborted.

Next, the PGSG algorithm will construct the Partial Global Serialization (PGS) graph to
verify serializability of Ti. Note that only the execution of vital site-transactions are represented
in the PSG graph. After constructing the PGS graph, the PGSG algorithm will look for
serializability violation in the PSG graph. Violations are represented as cycles that consist of T,
and other toggled or committed transactions. If cycles are detected, the algorithm will attempt to
break these cycles by aborting Suspended mobile global transactions as they are obstructing the
execution of another global transaction. If the cycles cannot be broken, all Completed site-
transactions are compensated and the global transaction is aborted. If there are no cycles or the
cycles can be resolved, the Isolation_Verified field is set to True, the global transaction is
toggled, and the PGS graph is sent to all participating sites so that serialization information is
propagated. Toggled mobile transactions are committed at the end of their execution.

4.2.1 The PGSG Algorithm

In the Semantic-PS technique, the execution order of site-transactions within the local
LDBSs is obtained by using an enhanced version of the ticket method used in the PS technique.



Along with the operations accepted by each LDBS, the service interface provides conflict
information with respect to the exported operations. That is, each service interface groups the
exported operations in to a set of groups G such that all operations in any group potentially
conflict with other. For example, if operation 0, and o, access some table t in the LDBS, then o,
and o, could potentially access the same data item in t. Therefore, 0, and o, need to appear in at
least one group in G. Formally, the service interface specifies a set of operations O = {o,, ... On}
accepted by that site and a set of groups G = {g,, ... g} such that for all g in G, g; = {0, ..., 0 |
o x = 1.p in O and o', potentially conflicts with all operations in g;}. The LDBS maintains a
set T = {t,, ..., t.} of tickets such that ticket t; is associated with group g; in G. Note that an
operation may belong to one or more groups and therefore, be associated with more than one
ticket.

Each vital site-transaction is required to increment all tickets associated with each
operation in that site-transaction. Note that non-vital site-transactions do not read any tickets.
The ticket values read by the vital site-transaction indicates its serialization order with respect to
all other (potentially conflicting) vital site-transactions that execute at that site and will be used
to construct the SSG just as in the PS technique. However, as there are multiple tickets
associated with each site, all site-transactions that execute at the same site do not conflict with
each other. In affect, this multiple ticked method reduces the granularity of locking from the
LDBS to data items within each LDBS.

The PGSG algorithm of the Semantic-PS technique is similar to that of the PS
technique. The differences are:

1. In order to construct the PSG for a global transaction, only the sites at which the global

transaction executed vital site-transactions need to submit Predecessor graphs
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2. As non-vital site-transactions cannot cause isolation property violations, the PGSG
algorithm of the Semantic-PS techniques does not attempt to resolve cycles in the PGS
graph by aborting non-vital site-transaction

3. The GlobalCoordinator propagates the PSG only to those sites at which the global
transaction executed vital site-transactions.

The PGSG algorithm of the Semantic-PS technique is given below. The statements that
have been added or modified are in bold text.

Algorithm 4-1: GlobalCoordinator (T;, Request)
/* Verifies the A/l properties */
/* first, verify atomicity */
If any critical site-transaction has been aborted
Send ABORT (T)) to all sites in Site_List /* Abort all site-transactions */
Else
/* next, verify isolation */
Loop
Jor all site S, in Site_List where T; executed vital site-transactions, obtain
Predecessor(T, S.) by executing the Request Predecessor(T, S,) algorithm
If any site returns SHARE-VIOLATION send SHARE-VIOLATION to all sites
While some site returns SHARE-VIOLATION
Generate PGSG by Merging all Predecessor(T;, Sx)
Check for cycles w.r.t. T;, Committed nodes and Togged nodes
If cycles are detected
If cycles can be broken by aborting Suspended global transactions
/* Does not attempt to resolve cycles by aborting non-vital site-transactions */
Mark GT _Status of Suspended nodes as Aborted in PGSG
Else /* isolation violated */
Send Abort (T)) to all sites in Site_List /* Abort all site-transactions */
Exit Algorithm
End If
End If
/% A/l properties verified */
Mark Isolation_Verified in Global Structure and node T, in PGS graph as True
/* Propagate success and serialization information */
Send “SUCCESS” and PGS graph to sites in Site_List where T;



executed vital site-transactions
EndIf
End {PGSG Algorithm}

The Request Predecessor code is the same as in the PS technique. However, unlike in
the PS technique, the set of Primary sites in the Semantic-PS technique include only those sites
at which the global transaction executed its vital site-transactions. (The set of Primary sites in
the PS technique includes all sites at which the global transaction executed its site-transactions

successfully.)

4.3 Summary and Conclusion

This chapter introduces the Semantic-PS transaction management technique. This
technique proposes two changes to the PS technique in order to overcome its limitations. First,
the Semantic-PS technique does not force conflicts between all site-transactions that execute at
a given site (in order to obtain the local senalization order). Instead, it uses semantic
information about the operations exposed by the local interfaces to increase concurrency.
Second, the Semantic-PS technique enforces atomicity and isolation only on the set of vital site-
transactions — a further relaxation of the A/l properties. As A/l is enforced only on the set of
vital site-transactions, mobile global transactions do not have to execute the PGSG algorithm a
second time as in the PS technique. Note that just as in the PS technique, the Semantic-PS

technique enforces the full range of A/l correctness criteria.
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Chapter 5

ANALYTICAL EVALUATION

This chapter provides an analytical evaluation of the three transaction management techniques:
PS, PS-Semantic, and Kangaroo [DH95]. The Kangaroo technique is chosen as it supports
unrestricted mobility and it does not violate local autonomy - vital requirements for the MMDB
environment. Prior to conducting the evaluation, the following steps are carried out: First, a
general MMDB transaction management evaluation model is developed; Second, the model
parameters’ values are determined; Third, the general MMDB transaction management
evaluation model is modified to accurately reflect each individual technique. Once the tailored

models have been developed, the performance of the three techniques is evaluated.

5.1 The General MMDB Transaction Management Evaluation Model

Analytical modeling allows one to abstract essential components of the system and to
model these components without regard to surrounding detail that one determines as
insignificant. Analytical models provide accurate estimations of performance of a system at a
relatively low—cost. Once analytical models of some computational environment are presented,
these models can ecasily be used to evaluate the performance of different algorithms. This
reduces the time, effort, and cost of the initial evaluation.

As transaction management in the MMDB environment is relatively new, analytical
models of this environment for evaluating the performance of transaction management
algorithms have not been developed. In this section, an analytical model of the general MMDB
transaction management environment will be developed. In this model the average service time
(ST.) of a global transaction - the average time taken by the system to complete the execution

of a global transaction - will be formulated with respect to the key components of the MMDB
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environment that affect the execution of global transactions. These components are:
communication time, execution time of site-transactions, the disconnection and relocation time,
and the time taken to execute the commit algorithm. The model is presented next.

Let GT.. be the average time taken to execute all site-transactions of a global
transaction and GTemm be the average time taken to commit a global transaction. Then, the

average service time of a global transaction ST, is:

STag = Gl + G oommt (1)

Next, GTeoe and GToex: Deed to be formulated. Let N, be the number of site-
transactions in a global transaction, EXE, be the average time taken to execute a site-transaction
and Tk be the average time interval between the completion of one site-transaction and the

submission of the next site-transaction of the same global transaction. Then, in a static

environment GT . iS:

GToy =Nuy *EXEy + (Nst- 1) * Time

That is, GTx, is the number of site-transactions multiplied by the average execution
time of a site-transaction plus the think time between site-transactions, if any. However, GTx.
in the mobile environment is affected by disconnection and migration and these need to be
accounted for in the model. For simplicity, it is assumed that, upon re-connection, all
outstanding messages will be exchanged before the next disconnection. This assumption
simplifies the model as follows: Although multiple disconnections may occur during the
execution of a site-transaction, at most only one disconnection will cause a delay to any EXE,

or Tank. Let DLY; and DLYyy be the delay caused by a disconnection to EXEx and T ,
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respectively, and P%;, and P* ., be the probability of a disconnection occurring during EXE,
and Ty , respectively. Then GT.,. is given by:

GTew = N * (EXEy +(P"un * DLY)) + (Nst - 1) * (Tt +(P™acn *DLYw))  (2)

Here, the potential delay caused by disconnection has been factored into EXE; and Ty The
potential delay is modeled as the probability of disconnection muitiplied by the delay caused by
disconnection.

Next, we calculate DLY,, DLY ., P*in, and P™,., First, it is necessary to calculate the
average delay caused by a disconnection (DCNay): DCNgy is the average time of a
disconnection (DCNy) plus the time taken by the system to address reconnection and migration
(if any). Let Nyn be the average number of disconnection during the execution of a global
transaction, Npg, such that Npg <= Nan be the average migrations during the execution of a

global transaction, and RL., be the average time to address relocation. Then, DCNgy is:

DCNay = DCN,.. + (N.,,/ng. . RL.J (3)

DLY, and DLY are influenced by three factors (Figure 5-1): 1 - the total delay caused
by disconnection (DCNg,); 2 - the point within the current site-transaction at which the
disconnection occurs (X); and 3 - the length of execution of the current site-transaction (EXEst).
For example, in Figure 5-1 (A), DLY, is 0 and in Figure 5-1 (B), DLY, is X + DCNay - EXE,.

Note that, a disconnection affects EXE, only if X + DCNay > EXE,. Therefore, DLY,
is calculated by taking the probability that X + DCNay > EXE, muitiplied by the average delay
to EXE, given that X + DCNgy, > EXE,. Let us consider the cases DCNg, <= EXE, and DCNgy
> EXE separately. When DCNgy <= EXE,, the probability that X + DCNay > EXEy is DCNay /

rp



EXE, and the average delay given that X + DCNay > EXEy is DCNg, /2 - that is, the average of
the minimum delay (i.e., 0) which occurs when X + DCNgy = EXE, and the maximum delay
(i.e., DCNgy) which occurs when the disconnection occurs at the very end of the execution of
the site-transaction, that is, X = EXE,. Thus:
DLY, = (DCNa,/ EXEst) * DCNa, /2 (4a)

When DCNay > EXE,, the probability that X + DCNgy, > EXE, is 1 and the average delay given
that X + DCNgy > EXE, is (DCNgy, - EXE, + DCNgy)/2 - that is, the average of the minimum
delay which occurs when the disconnection is at the very beginning of the site-transaction, and
the maximum delay which occurs when the disconnection occurs at the very end of the
disconnection. Thus:

DLYy =1 *(DCNgy - EXE; + DCNg,)/ 2 (4b)

Similarly, to formulate DLY, let us consider the case DCNgy, <= Ty and the case
DCNay > Tk separately. When DCNgy, <= Tinin then DLY w is:

DLY s = (DCNay/ Tun) * DCNgy, / 2 (3a)

When DCNgy > Tk, DLY i is:

DLY s = 1 * (DCNay - Tt + DCNagy)/ 2 (3b)
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Finally, the probability of disconnection during EXE, and Ty is formulated. Assume
that only one disconnection occurs during the execution of a global transaction. As
disconnection is equally likely to occur at any time, the probability of that disconnection
occurring during EXE,, (P*4y) is simply:

Plon=EXEg/(Ng* EXEy+ (No- 1) * Tount)
Then, as Ny, disconnection occur during the execution of EXEst, P*y,) is:
Pun = Nyon *EXEy/ (Ng * EXEy + (N - 1) * Toimt) (6a)

Similarly, the probability of a disconnection occurring during T (P™4s) is:

P% = Nin * Tt/ (Ng * EXEyy + (Na- 1) * Tiin) (6b)

In (4a) and (4b) we have formulated DLY,, in (5a) and (5b) we have formulated
DLYu, and in (6a) and (6b) we have formulated P*,, and P**s,. GT.,. can now be obtained
from choosing the appropriate formulas for DLY, and DLY w. Given GTcommi RLem and GTe,
for any technique, ST, can be calculated from (1). Note that the values for RLuy,, EXE,, and
GTeommit Will be modeled separately for each transaction management technique and then will be

used to derive the service time for the specific transaction management technique as described
in Section 5.3.

74



l(A)

L

ANNN

DLY,

Figure 5-1: Relationship between DLY, and X

5.2 Values of Model Parameters

In this section, the values of the model parameters for evaluating transaction
management techniques in the MMDB environment are described. In order to simplify the
evaluation, the following assumptions will be made about the environment:

e All sites in the MMDB environment are equally likely to be accessed

e All giobal transactions are mobile transactions and execute successfully at all sites

o  All site-transactions are equivalent to those specified in TPC-C benchmark [TPC99]

e Site-transactions of a global transaction are executed consecutively. Each subsequent site-
transaction is submitted to the MSS only after the results of the previous site-transaction is
received and analyzed by the user (Tuw).

The parameters used to construct the model and their default values are listed in the
following table:

75



Parameter | Description Default Values
STeg avg. service time of a global transaction Calculated
GTe avg. time taken to execute a global transaction Calculated
GT o avg. time taken to commit a global transaction Calculated
Na avg. number of site-transactions in a global transaction in | 4
the same global transaction
EXE« avg. time taken to execution a site-transaction (includes | Calculated
communication time between the user and MMDBS)
Tinink avg. time between receiving the results of a site-transaction | 0
and submission of the next site-transaction
DCNwm avg. time between a disconnection and re-connection 0.1 second
DCNay avg. processing delay caused by a disconnection (includes | Calculated
DCN., and processing time taken to address relocation etc.)
RLin avg. time to address relocation Calculated
DLY. avg. delay added to EXE, due to disconnection Calculated
DLYux avg. delay added to Ty due to disconnection 0
P Probability of a disconnection occurring during EXE, Calculated
P Probability of a disconnection occurring during T 0
Nin avg. Number of disconnection for a global transaction [NJ/3 |
Neg avg. Number of migrations for a global transaction | New/3 |
T o avg. time to transmit a message on the static (wired) | 0.0001 seconds
network
T o avg. time to transmit a message over the wireless medium | 0.07 Seconds
T avg. time to transmit a Predecessor graph (or propagate a | 0.001 seconds
PGS graph) from site to site along the static network
EXEw avg. local execution time of a site-transaction 0.003 seconds
P Probability of a site-transaction conflicting with another 0.05

Table 5.1: Model Parameters and Their Values

As mobile computing is a relatively new area, the values for many of the parameters

used in the formulation of the model are not known. Here, educated guesses have been used to

decide their default values. The rationale for choosing the stated values is given below.
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The value of Tyix has the same effect on all algorithms and therefore is set to 0
seconds. Similarly, the average delay due to disconnection that may be incurred between
receiving the results of a site-transaction and the submission of the next site-transaction is set to
0 seconds. The average disconnection interval (DCNy,) is arbitrarily set to 0.1 second. Picking
an arbitrary value for DCN,, does not favor any algorithm in any significant manner as it has a
the same effect on all transaction management techniques. The local execution time of a site-
transaction (EXE,.) is obtained from the TPC-C Benchmark [TPC99]. TPC-C is the Transaction
Processing Performance Council's benchmark for Online Transaction Processing (OLTP)
evaluation. EXElcl was obtained by calculating the average response time (obtained from the
throughput from TPC-C) for five popular databases running on small to medium size servers
(IBM DB2 on [BM AS400e, Informix OnLine 7.3 on Compaq ProLiant 5000, MS SQL Server
6.5 on Acer AcerAltos 19000Pro4, Oracle 7.3 on Sun UltraEnterprise 6000, and Sybase SQL
Server 11.5 on Compaq ProLiant 6000). Message transmission time over the static (wired)
network (T'mg) and wireless network (T"ng) have been calculated assuming that the average
size of a message is 1 Kb and that the static network is a 10 Mbps Ethernet and the wireless
communication medium is cellular telephony with a bandwidth of 14 Kbps [PS98]. The average
time to transmit a Predecessor graph or to propagate a PGS graph from one site to another along
the static network (10 Mbps Ethemnet) is calculated assuming that the message is 10 Kb in size.
The probability that a disconnection occurring during T (P** &) is set to 0 as Tein is itself 0.

The default values for the average number of site-transactions in a global transaction
(N), the average number of disconnection during the execution of a global transaction (Nya),
the number of migrations during the execution of a global transaction (Nyg), and the probability
of a site-transaction conflicting with another site transaction (Poy) have been arbitrarily chosen.
As these parameters have a significant effect on the service time of a global transaction, the
analytical evaluation will study the performance for a range of values for each parameter.



5.3 Transaction Management Evaluation Models Tailored to Individual

Techniques

The analytical model developed in Section 5.1 is a general model used to evaluate the
performance of transaction management techniques in an MMDB environment. In this section,
this model will be tailored to describe the PS, Semantic-PS and Kangaroo model. Specifically,
EXEst, RLun, and GT commic Will be formulated separately for each technique.

5.3.1 The PS Technique

In this section, EXEy, RLum, and GTeommit, for the PS technique will be formulated. The
PS technique will incur two wireless messages to receive a site-transaction and submit its
outcome to the user. Each site-transaction will require two additional wired messages to submit
the site-transactions (and compensating transaction) and receive its outcome. Therefore, EXE,

is given by:

EXEy =2 *T g+ 2* ey + EXEin

In the PS technique, relocation incurs 2 wired messages - one message requesting the
Global Structure and one to transfer this structure - and one wireless message to re-connect.

Therefore,

Rl =2*T g+ g
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Next, GTcomms 18 calculated. Let GTy and GT o, be the average time taken to verify the

isolation property and enforce the atomicity property respectively. Then the cost to execute the
PGSG algorithm (PGSGeo) is:

PGSGeost = GToom + GTin

However, the PS technique executes the PGSG algorithm twice for each technique. Therefore

GT commit is given by:

GT commit = 2% (GTom + GTiny)

The atomicity property is enforced by sending two messages to all sites requesting the
status of the site-transactions and sending either an abort or commit. As these messages are sent

in parallel:

GTm= 2‘7',..,.

Next, GTi is formulated. To verify serializability of global transaction T, the PGSG
algorithm requests Predecessor(T;) from all sites at which the global transaction executed its
vital site-transactions. These sites will, in turn, request (in parallel) Predecessor(T,) graph for all
Candidate nodes Ty in Predecessor(T;). This process continues until there is no candidate node
in any Predecessor graph. At each (parallel) step of the algorithm, in order to have a candidate
node Ty in Predecessor(T;) three conditions must be satisfied:

1. Tk must conflict with T;

2. Ti must have executed prior to T; at the site
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3. T must be must be active.

Note that, in the PS technique, all site-transactions that execute at a site are forced to
conflict with each other. Therefore for all T, that execute before T, the probability that T,
conflicts with T; is 1. At each step of the algorithm, as T (of that step) executes prior to T; (of
that step) the probability that T, is active decreases by a factor of 1/N, (where Ny, is the number
of site-transactions in a global transaction) as the time interval since the initiation of that Ty has
increased by EXE,. As requests and submissions of Predecessor graphs are carried out in
parallel for each Candidate node in any Predecessor graph, GT,, is equivalent to the number of
(parallel) steps multiplied by the time taken to execute a step. The number of parallel steps is
determined by the probability that the Predecessor(T;)'s of that step contains a Candidate node.
Each step in the algorithm incurs 3 messages: one to request the Predecessor graph, one to

submit the Predecessor graph to requesting site, and one to propagate the final outcome to that
site. Therefore, GT, is given by:

GTM =3 ‘rm *1 .ZN“:-O(Nn'i)/Nu

5.3.2 The Semantic-PS Technique

In this section, EXEy, RLy, and GTemms, for the Semantic-PS technique will be
formulated. Note that, as the execution of local site-transactions and the steps taken to relocate a
mobile user are the same in both the PS and Semantic-PS techniques, EXE, and RL, for

Semantic-PS are the same as those of the PS technique. Thus, EXE, and RL.y, are given by:
EXEy=2%T g+ 2% g + EXEs

RL,.=2‘T.“+T'.,



However, as the Semantic-PS technique executes the PGSG algorithm only once for
each technique, GTeommie for Semantic-PS is given by:

GTommt = GToom + GTix

Again, as the enforcement of the atomicity property is identical to that of the PS
technique, GT . is given by:

GTam= 2*Tuep

Next, GT, for the Semantic-PS technique is formulated. Although the algorithm is
identical to that of the PS technique, the ticket algorithm used to implicitly obtain the
serialization order of site-transactions is different. The ticket algorithm of the Semantic-PS
technique does not generate conflicts between all site-transactions that execute at a site. In the
Semantic-PS technique, for all T, that execute before T;, the probability that T conflicts with T;
is determined by the operation (conflict) grouping defined by the service interfaces of the
LDBSs. Ideally, the conflict grouping should result in only the operations that actually conflict
at the local database being forced to conflict by the respective STM. Let us assume that the
probability of conflicts between site-transactions at a site is given by Por. Then GTi, for the
Semantic-PS technique is given by:

GTy = 3 ‘rpgn ‘Pq‘Z""i-o(Nn-i)/Nn
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5.3.3 The Kangaroo Model

Here we formulate EXEst, RLy, and GTemm: for the Kangaroo Model introduced in
[DBH97] executing under the Compensating mode as this mode ensures atomicity. We assume
that Joey transactions consist of sub-transactions that are analogous to site-transactions. First we
calculate EXE,. For each site-transaction the mobile user submits the site-transaction to the
MSS which then submits it to the respective site, receives a response from that site. and submits

the response to the user. Therefore,

EXEy=2*Tug+2* T ueg + EXEis

In this model, migration is handled by a hand-off process that requires a HandOff KT
(HOKT) record be written to the originator's (MSS requesting handoff) MSS’ log and a
ConTinuing KT (CTKT) record be written to the destination MSS’ log. These records register
the transfer of control of a global transaction from one MSS to another in their respective log
files and create a doubly linked list that describes the migration of the global transaction. The
communication cost of writing the CTKT record is 0 as the global transactions is writing
information to the current MSS. However, to write the HOKT record into the previous MSS’
log the current MSS needs to send a message to the previous MSS along the static network. As

relocation incurs one wireless message in order to contact the new MSS, RLq, is given by:
RL.=T’.,+T.,
To commit a global transaction, all log file entries for that global transaction need to be

freed. This requires that the entire doubly linked list related to that global transaction be
traversed. Therefore:
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G ooummit = 2 * (T meg * Newgt)

5.4. Evaluation Results

In this section, the tailored analytical models will be used to examine the performance
of the PS and Semantic-PS techniques and to compare their performance to that of the

Kangaroo technique. The default values for the parameters used in the analytical model are
taken from Table S.1.

§.4.1 Service Time

First, the service time for the PS, Semantic-PS, and Kangaroo techniques will be
calculated (Chart 5-1).
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Chart 5-1 : ST, for Three Transaction Management Techniques

Although the Kangaroo technique has the best average service time, the PS and
Semantic-PS techniques are only marginally greater, i.c., 2% and 0.3%, respectively. This result
is somewhat counter-intuitive as one would expect the propagation of information during the
execution of the PGSG algorithm to utilize noticeable overhead. To clarify this skepticism, the



average time taken to commit a global transaction is calculated (Chart 5-2). These results
explain why there is only a small discrepancy between ST,y for all techniques. That is, for all
three techniques GTomms is only a small fraction of the total execution time of a global

transaction.
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Chart 5-2 : GT e for Three Transaction Management Techniques

The execution of a global transaction is not very different in any technique. It is the
execution of the commit protocol that differs from one technique to another. Here, the time
taken to commit a global transaction by the PS technique is greater than the Kangaroo technique
by a factor of 7.5, and the time taken by the Semantic-PS technique is greater than the Kangaroo
technique by a factor of 2.5. This indicates considerable overhead. However, GTeamm: accounts
for only 2% of STey for the PS technique and less than 1% for both the Semantic-PS and
Kangaroo techniques and therefore, the effect of propagation is hardly noticeable. Next, the
effect of the environmental parameters on ST, will be studied.

5.4.2 Varying The Number of Site Transactions in a Global Transactions
Here, the effect of the size of the global transaction (i.e., Ng - the number of site-
transaction in a global transaction) upon ST., will be evaluated. Specifically, STqy will be

calculated for Ni = 2, 4, 6, 8, 10. For this analysis, Ny Npg and Py are set to the default values



in Table 5.1. The service time for each technique is given in Table 5-2. These resuits indicate
that aithough the Kangaroo technique offers the best performance, ST, for the PS technique is
only 1.6% greater than the Kangaroo technique and the PS technique is less than 1% greater
than the Kangaroo technique.

N 2 r 6 8 10
PS 0.394 |0.715 | 1.0 | 1.332 | 1.702
Semantic-PS | 0.385 | 0.70 | 0.987 | 1.306 | 1.687
Kangaroo | 0.385 | 0.70_| 0.986 | 1.305 | 1.686

Table 5-2: Service Time for varying N,

5.4.3 Varying Number of Disconnections for a Global Transaction

Next, STy will be calculated for different values of Nyn. As at most only one
disconnection can have any affect on the execution of a site-transaction, the default value for N,
will be set to 10 in order to accommodate sufficient test cases, i.e., Nun =2, 4, 6, 8, 10. Npg is
set to 1. The service time for each technique with respect to Ny, is given in Table 5.3. Again,
the difference in service time is insignificant - ST,y for the PS technique is approximately 1%
greater than that of the Kangaroo technique while the Semantic-PS techniques is less than 1%
greater than that of the Kangaroo technique.

N, 2[4 [6 8 10
PS 1.592 | 1.658 | 1.726 | 1.796 | 1.865
Semantic-PS | 1.5 | 1626 | 1694 | 1.763 | 1.833

l(anggoo 1.56 | 1.625 | 1.693 | 1.762 | 1.832
Table 5-3: Service Time for varying N4,




5.4.4 Varying Number of Migratioas for a Global Transaction

Next, the effect of the number of migrations during the course of execution of a global
transaction will be evaluated for each technique. As each migration also causes a disconnection,
Nin will be set to the value of Nug (i.c., Nam = Npg). Once again, as at most only one
disconnection (and therefore, at most one migration) can have any effect on the execution of a
site-transaction, the default value for N, will be set to 10 in order to accommodate sufficient test
cases, i.c., Nug = 2, 4, 6, 8, 10. The service time for each technique with respect to Ny is given
in Table 5.4. Again, the difference in service time is insignificant - ST, for the PS technique is
approximately 1% greater than that of the Kangaroo technique while the Semantic-PS

techniques is less than 1% greater than that of the Kangaroo technique.

N. 2 3 3 3 10
PS 1662 | 1.859 | 2.057 | 2.254 | 2.451
Semantic-PS | 1.630 | 1.827 | 2.025 | 2.222 | 2.419
Kangaroo | 1.629 | 1.826 | 2.024 | 2.221 | 2.418

Table 5-4: Service Time for varying Ny,

From the evaluations carried out in Sections 5.4.2, 5.4.3, and 5.4.3, it is clear that the
number of site transactions, the number of disconnections, and the number of migrations have a
similar effect on ST, for all techniques. This is due to the fact that, as concluded in Section
5.4.1, the time taken to commit a global transaction accounts for only a small gercentage (<=
2%) of the total execution time of a global transaction in all techniques. Although the PS and
Semantic-PS techniques enforce the isolation property by executing the PGSG algorithm, the
overhead with respect to propagation is not a dominant factor in ST,,. Next, ST,, will be

evaluated with respect to the average communication time on the static network (T ) and the



probability of conflicts for site-transactions (Po) to determine their effect on the average
service time for the three techniques.

5.4.5 Varying Time to Transmit a Message on the Static Network

In this test the effect of the communication cost on the static network is evaluated for all
techniques. Specifically, ST., will be calculated for T = 0.01, 0.02, 0.03, 0.04, 0.05, 0.06.
T meg is the time taken to transmit a 1 Kb message on the static message. Along with T pe it is
also necessary to vary the value of T',, as it represents the time taken to transmit a 10Kb
message on the static network. Accordingly T g iS set to 10 * T, i€, T = 0.1, 0.2, 0.3,

0.4, 0.5, 0.6. The service time for each technique is given-in Table 5-5.

'I‘s 0.01 0.02 |0.03 &04 0.05 0.08
PS 23 393 |55 |7.19 | 8.82 10.45
Semantic-PS | 0.82 | 0.96 | 1.1 1 1 2§ 1.41 1 .5§
Kanggmo Q.77 1087 |0987 |1.07 | 1.17 1.27

Table 5-5: Service Time for varying T e,

This result indicates that the three techniques respond differently to changes to the
communication time on the static network (Figure S5-2). The results show that the
communication time on the static network has a much greater effect on the PS technique than
the Semantic-PS and Kangaroo technique. For each increment of 0.01 seconds in the time taken
to transmit 1 Kb on the static network, ST, of the PS technique increases by 1.63 seconds as
opposed to 0.145 seconds for the Semantic-PS technique and 0.1 seconds for the Kangaroo
technique. That is, the rate of growth of ST,, for a 0.01 second increase per 1Kb message on

the static network is approximately 16 times greater for the PS technique than the Kangaroo



technique. In comparison, the Semantic-PS techniques is only 0.45 times greater than the
Kangaroo technique.
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Graph 5-2 : Service Time for varying Tsmsg

Unlike in the previous experiments, the rapid growth of ST, of the PS technique with respect
t0 Tmg (T'pe) can be explained as follows: Unlike the Kangaroo the technique, the PS and
Semantic-PS techniques enforce the isolation property by executing the PGSG algorithm. The
PGSG algorithm utilizes information propagation to verify serializability. Serializability
information is propagated by passing messages between STCs and MSSs residing on the static
network. Therefore, any increases t0 T ne relative to the rest of the environment variables will
have an impact on ST, for the PS and Semantic-PS techniques.

The fact that this impact is more prominent for the ST, of the PS technique can be
explained as follows: The volume of information being propagated by the PGSG algorithm is
determined by the number of conflicts between site-transactions. In order to obtain local
serialization information, the PS and Semantic-PS techniques force conmflicts between site-

transactions that execute at the same site. The Semantic-PS technique forces conflicts only



between site-transactions that potentially conflict with each other. On the other hand, the PS
techniques forces conflicts between all site-transactions that execute at each site. In addition, the
PS technique executes the PGSG algorithm twice, information is propagated a second time for

every global transaction.

5.4.6. Varying Probability of Conflicts

Finally, the effect of the probability of conflicts between site-transactions is evaluated
for all techniques. Specifically, Py will be calculated for Por = 0.05, 0.1, 0.15, 0.2. 0.25, 0.3.
Here again, Nyn Nig and T'ne are set to the default values in Table 5.1. The service time for
each technique is given in Table 5-6. These results indicate that Py has no effect on the PS
technique and the Kangaroo technique (Graph 5-3). In the case of the PS technique, P bas no
effect on the service time because all site-transactions that execute at a given site are forced to
conflict with each other as each LDBS maintains only one ticket. In the case of the Kangaroo
model Py has no effect on the service time as this technique does not enforce the isolation
property. Thus, P affects only the Semantic-PS technique. However, the increase in ST, for
the Semantic-PS technique is only marginal, i.e., an increase of 0.0004 seconds for every 5%
increase in the probability of conflicts. Once again, this is due to the fact that the time taken to
propagate information on the static network is relatively small compared to the time taken to

transmit 2 message on the wireless network as well as the time taken to address migration.

Pear 0.05 0.1 0.15 0.2 025 [03

PS 0.6868 | 0.6868 | 0.6868 | 0.6868 | 0.6868 | 0.6868
Semantic-PS | 0.6719 | 0.6723 | 0.86727 | 0.6731 | 0.6735 | 0.6738
Kangaroo | 0.6715 | 06715 | 0.6715 | 0.6715 | 0.6715 | 0.6715

Table 5-6: Service Time for varying P,
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5.5 Summary and Conclusion

In conclusion this analysis suggests that in certain environments, the average service time of
these techniques is comparable to the Kangaroo technique which does not enforce the isolation
property nor does it attempt to minimize the ill effects of the prolonged execution of mobile
global transactions. For the values of the model parameters developed in Section 5.2, STy of
the PS technique is only 2% greater than the Kangaroo technique and the Semantic-PS
technique is only 0.3% greater than that of the Kangaroo technique. In addition, these
experiments reveal that any changes to environment variables Ny Ny and Npg, have a similar
effect on all three techniques. In each case, ST, for the PS techniques was approximately 1%
greater than that of the Kangaroo technique; ST,y for the Semantic-PS technique was less than
1% greater than that of the Kangaroo technique.

However, ST, for the PS technique deteriorates rapidly with respect to the communication
time on the static network. For every 0.01 second increase in the time taken to transmit 1 Kb
over the static network, the rate of change of ST, for the PS technique is approximately 16
times greater (1.63 seconds as opposed to 0.1 second) than that of the Kangaroo technique; the
rate of change of ST, for the Semantic-PS technique is approximately 1.45 times greater than
that of the Kangaroo technique.



Chapter 6

SIMULATION

This research introduces two new concepts to transaction management in the MMDB
environment. First, it introduces the notion of pre-serialization, that is, verifying the isolation
property of mobile transactions prior to their completing their execution. Second, it introduces
a new technique called the PGSG algorithm to verify the isolation property of global
transactions in large heterogencous environments based on partial global serialization graphs
and information propagation. As new concepts are introduced it is important that, as part of this
research, the PS and Semantic-PS techniques be simulated in order to observe (and leam about)
the behavior of these techniques and to make recommendations for future researchers.

The primary goals of the simulation are twofold: First, the simulation models will be
used to measure the service time of the PS, Semantic-PS, and Kangaroo techniques in order to
validate the analytical models developed in Section S.1. Second, the simulation models for the
PS and Semantic-PS techniques will be used to study the effectiveness of pre-serialization in

achieving its design goal, i.c., minimizing the unfair treatment of mobile transactions due to

their extended execution time.

6.1 The Simulation Model

The ARENA [KSS98] simulation software is used to carry out the simulation
experiments. ARENA is a high-level simulator that allows one to model discrete event-based
simulation models. The execution of a global transaction in the MMDB environment can be

defined by a sequence of discrete events that occur during its execution, i.e., its creation,
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submission of a site-transaction, completion of a site-transaction, completion of the global
transaction, potential disconnection and migration, etc.. Therefore, the ARENA software can be
used to simulate the PS, Semantic-PS, and Kangaroo techniques. As ARENA is used for
simulation, the simulation models will be described using simulation constructs similar to those

available in the ARENA software. First, the basic ARENA constructs that are used to describe
the models will be introduced.

a) The Simulate Module

The Simulate module is used to control the simulation. This module is used to specify

the time of simulation, the number of runs in each simulation, the number of entities to be
created, etc.

b) The Create Module

The Create module is used to create entities. Entities are dynamic objects in the
simulation that are transferred from module to module in the simulation model. Each entity is

associated with zero or more attributes that define the state of the entity at any given time.

¢) The Dispose Module

The Dispose module is used to remove entities from the simulation and to dispose
them. This module can also be used to collect statistics with respect to entities.

d) The Choose Module

When multiple simulation paths exist, the Choose module is used to determine the
appropriate path that the entity needs to take based on some criteria. The criteria used to

determine the path can be based on the current state of the entity or some distribution function.



e¢) The Assign Module

The Assign module is used to assign values to attributes of an entity.

f) The Delay Module

The Delay module is used to delay entities for some period of time before being sent to
the next module in the simulation.

g) The Station Module

The Station module passes entities that arrive at that module to the next module in the

simulation model. They perform no particular task and are used mainly to represent different
simulation paths.

h) The While End-While Modules

The While End-While module is used to model while loops in the simulation. The
entity remains in the While End-While loop as long as it satisfies the condition that is defined in
the While module.

i) The If End-IF Modules

The If End-If module is used to represent conditional statements. An entity that arrives

at an If module will pass through all modules encapsulated within the If End-IF module if it
satisfies the condition set forth in the If.
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j) The Resource Module

The Resource module is used to represent resources available to entities in the

simulation.

k) The Seize and Release Modules

The Seize module is used to model entities seizing resources defined using the
Resource module. The Release module is used to release resources that have been seized by an
entity.

1) The Write Module

The Write Module is used to write information to a file. This module is used to record

the intermediate state of entities in an external file.

m) The Tally Module

The Tally module is used to collect statistics. These statistics are reported at the end of
the simulation.

6.2 The Common Simulation Model

In order to eliminate repetition, the general simulation model will be described in this
section. The details of each transaction management technique will be described in subsequent
sub-sections. The simulation process for all techniques can be broken into three steps: the
creation of global transactions, the simulation of global transactions, and the final deletion of
the giobal transactions from the simulation (Figure 6-1). In all simulation models, global
transactions are modeled as entities that are created by the Create module. Each global

transaction is associated with a set of attributes that are initialized by this module. They are



GTID, TransType, NumSites, SiteList, DcnDelay, and StartTime. The GTID attribute is
assigned a unique (consecutive) identifier. The TransType is assigned either "Static" or

"Mobile” indicating that the transaction is either a static or mobile transaction.

Simulation of
CREATE Global

Transactions

[ SMULATE | | RESOURCE |

Figure 6-1: Overview of Simulation Model

NumSites is assigned the number of site-transactions in that global transaction. Once
NumSites has been initialized the SiteList is assigned the list of sites that are to be accessed by
that transaction. Each SiteList is generated such that it does not contain duplicate sites. This
ensures that a global transaction does not access any site more than once during its execution as
required by the PS and Semantic-PS techniques. Each site to be accessed is assigned as vital or
non-vital indicating the type of site-transactions to be executed at that site. The attribute
DcnDelay is used to record the time a site-transaction is to be delayed if a disconnection occurs.
This attribute is initially set to 0. Finally, the time on the simulation clock at which the global
transactions was created is assigned to the StartTime attribute.

After being created by the Create module, global transactions are transferred to the
Simulation of Global Transactions module. This module is used here to represent the simulation
of the execution of global transactions for a given transaction management technique.

After completing the simulated execution, global transactions are transferred to the

Dispose module. In this module, statistics such as the time taken to execute the global
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transaction are collected before being disposed from the system. The Simulate module is used to
coatrol each simulation process.

The Resource module is used to represent sites (i.e., STMs) in the MMDBS. In Section
5.1 it was determined that the average mid-sizz DBMS system is capable of executing an
average of 333 transactions per second. Therefore each resource in this simulation is modeled as
a resource with unbounded capacity. That is, each site is capable of executing multiple site-

transactions concurrently without any significant performance deterioration.

6.3 Tailored Simulation Models

6.3.1 Disconnection and Migration

In all techniques disconnection and migration are modeled the same way. Therefore the
details of disconnection/migration (D/M) model will be presented in this section and be
represented as the D/M module in the tailored models.

During the execution of a site-transaction of a mobile global transaction, the user may
be disconnected. This is modeled using the Choose module (Figure 6-2). The Choose module
decides between a continuous execution and disconnected execution modeled using the
Continuous and Disconnection Stations, respectively. If a resource is sent to the Disconnection
module, then the subsequent AddDelay Assign module assigns the delay to be incurred to the
DcnDelay attribute.

In addition, each disconnection may represent a migration which is modeled using a
second Choose module. Once again entities will be sent to either a Migration or No Migration
module. If the entity arrives at the Migration module, the DenDelay is further incremented at

the second AddDelay Assign module by the time taken to address migration. Finally, the entity



is delayed at the Delay module by the amount specified in the DenDelay attribute, the DenDelay

is reset to zero, and the entity is transferred to the next module in the simulation.

Site-TmnsactionL—-CE;]
! }
o ] G ]
Y
[__Migration |*tAddDelay!

Figure 6-2: D/M module

6.3.2 Simulation Model for the PS Technique

This section details the "Simulation of Global Transactions”" step of the common
simulation model for the PS technique. Due to the complexity of the PGSG algorithm,
especially propagation, the commit of global transactions cannot be simulated using ARENA
constructs. Therefore, the simulation is carried out in two steps. First, an ARENA model is used
to simulate the creation and execution of global transactions. This model simulates the entire
life of the global transaction except the execution of the PGSG algorithm. The simulation
records all relevant events - the creation of global transactions along with its type (i.e., Static or
Mobile), the execution of each site-transaction, the occurrence of disconnection and migration,
etc. - in an external file. Next, a Java application is used to simulate the PGSG algorithm by
reconstructing the entire execution sequence recorded by the ARENA simulation. This program
simulates the PGSG algorithm and adds the time taken to commit the global transaction to the
service time recorded by ARENA.



6.3.2.1 The ARENA Model of the PS Technique

Global Transactions created by the Create module are transferred to the Record module
labeled Rstart where their creation is recorded in an external text file labeled "PS .dat" (Figure 6-
3). For each global transaction, the triple <"CREATE", GTID, TransType> is recorded. For
GTID and TransType it is the attribute values that are recorded. Next, global transactions are
transferred to the Choose module. The Choose module will transfer the global transaction to the

appropriate path based on the value of the TransType attribute.

SMdly Seize| [Rticket Xdly | [Release SMdly
w‘“:‘ - *>  [End While
Statid i
Rstart |-»{Choose RESOURCE Rfinish
Mobil% Y
While - > End While
fl , ?
MMdly || Seize Rucket“ Xdly [D/s Eelme MMdly | If ||Toggle!|End If]

Figure 6-3: Simulation of Global Transactions - PS technique

The execution of static global transactions is modeled using a While End-While loop.
Each loop simulates the execution of one site transaction. The simulation of a site-transaction
consists of six steps. First, the site transaction is transferred to the Delay module labeled SMdly
(Static Message delay) to simulate the time taken to submit the site-transaction to the STM.
Next, the site-transaction will seize the resource representing that site at which it is supposed to
execute. This is modeled using the Seize module. Next, it is transferred to the Record module

labeled Rticket where its execution at that site is recorded in PS.dat. For each site-transaction



the quadruple <"EXECUTE", GTID, Siteld, Criticality> (where Criticality represents whether
the site-transaction is vital or non-vital) is recorded. In essence, this step emulates the ticket
value obtained by the site transactions at the respective site. Next, the site-transaction is delayed
for some period of time to simulate its local execution. This is modeled using the Delay module
labeled Xdly. Next, the Release module is used to release the seized site back to the system.
Finally, the site-transaction is transferred to the Delay module labeled SMdly to simulate the
time taken to return the outcome of the site-transaction to the user.

Similar to static global transactions, the execution of mobile global transactions are
modeled using a While End-While loop as well. However, each loop consists of ten steps. First,
the site-transaction is transferred to the Delay module labeled MMdly (Mobile Message delay)
to simulate the time taken to submit the site-transaction to the user. The next Seize Record and
Xdly modules perform the same functions as in the simulation of static transactions. The next
D/S module (Section 6.1.3) simulates potential disconnection and migration that may occur
during the execution of site-transactions. At the end of site-transaction execution, the Release
module releases the site resource. The next three blocks model pre-serialization, i.e., the toggle
operation. The toggle operation is modeled using an If End-If block. If the last site-transaction
that was just simulated represents the last vital-site transaction of a global transaction, then the
global transaction is toggled by the Record module labeled Toggle. This module records that the
global transaction is to be toggled in PS.dat. For each mobile global transaction to be toggled
the tuple <“TOGGLE", GTID> is recorded.

Upon completing their execution, global transactions (static and mobile) are transferred
to the Record module labeled Rfinish which records the completion of the simulation of the
global transaction in PS.dat. For each global transaction, the triple <"COMMIT", GTID,

ServiceTime> where ServiceTime is the time taken to simulate the global transaction (i.e.,



current ARENA time - StartTime), is recorded. Each global transaction is then transferred to the
Dispose module to be removed from the simulation.

6.3.2.2 The PGSG Java Application

Once the ARENA simulation is completed, the text file PS.dat contains the complete
ordered sequence of events necessary to trace the execution of all global transactions. This
sequence of events is used to simulate the PGSG algorithm using a Java application and to
determine the following: 1 - whether each global transaction is to be toggled committed or
aborted; 2 - what is the number of parallel steps (i.c., parallel message transmissions) executed
by the PGSG algorithm; and 3 - reporting the results of the simulation. This application is
described next.

First, the application creates a list of Site objects, each object represents a site in the
simulation environment. Each Site object is associated with a Graph object that represents the
Site Serialization Graph (i.e., SSG). Initially, each Graph object contains an empty set of nodes.
The Java application then processes each entry in PS.dat file. The PS.dat file contains an

ordered list of events where each event is one of the following types:

e <"CREATE", GTID, [Mobile or Static]> - global transaction of type Mobile or Static with
identifier GTID was created.

e <"EXECUTE", GTID, Siteld, [vital or non-vital]> - global transaction GTID executed a
site-transaction of type vital or non-vital at site Siteld.

¢ <"TOGGLE", GTID> - giobal transaction GTID executed the toggle operation.

¢ <"COMMIT", GTID, ServiceTime> - global transaction GTID completed its execution. The
service time for the transaction is given by ServiceTime.
Each event is processed as follows. For each CREATE event, the application creates a

Global Transaction object with the corresponding GTID and TransType. Each Global
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Transaction object contains an additional attribute named Propagation Count. This attribute is
used to keep a count of the number of parallel steps (i.c., parallel message transmissions)
executed by the PGSG algorithm when the transaction is toggled and/or committed. For each
EXECUTE event, the application adds a node labeled GTID in front of the SSG of the specified
site. Essentially, this represents the serialization order of the site-transaction at that site.

For each TOGGLE and COMMIT event, the application executes the PGSG algorithm and
determines whether the global transaction is to be toggled committed or aborted. The complete
PGSG algorithm for the PS technique is given in Section 3.1.4.5. Each time the global
transaction executes the PGSG algorithm, the Propagation Count is updated accordingly. If the
global transaction is to be aborted, the corresponding Global Transaction object is marked as
Aborted. If the event is a TOGGLE event and the PGSG algorithm succeeds, then the Global
Transaction is marked as Toggled. If the event is COMMIT and the operation is successful, then
the Global Transaction is marked as Committed and its execution time is set to the ARENA
service time.

Once all events in PS.dat have been processed the application processes all Global
Transaction objects and reports the final results of the simulation. For each simulation, the
following results are reported:

e The ratio of static-global-transactions-aborted / static-global-transactions-simulated

¢ The ratio of mobile-global-transactions-aborted / mobile-global-transactions-simulated

e The average service time of all successful global transactions. Here the service time of a
global transaction is the sum of the ARENA service time and the time taken to commit the
global transaction, i.c., Propagation Count multiplied by the time taken to transmit one

message on the static network.
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6.3.3 Simulation Model for the Semantic-PS Technique

This section details the "Simulation of Global Transactions" step of the common
simulation model for the Semantic-PS technique. Once again, the simulation is carried out in
two steps. First, an ARENA model is used to simulate the creation and execution of global
transactions. Here, the sequence of events that occur during the ARENA simulation is written to
a file named SemPS.dat. Next, a Java application is used to simulate the PGSG algorithm by
reconstructing the entire execution sequence recorded by the ARENA simulation. This is

simulated as described in the following sub-sections.

6.3.3.1 The ARENA Model of the Semantic-PS Technique

The execution process of global transactions in the Semantic-PS technique is very
similar to that of the PS technique. The differences between the PS and Semantic-PS techniques
are: 1 - The Semantic-PS technique enforces atomicity and isolation properties only on the set
of vital site-transactions; 2 — Mobile global transactions execute the PGSG algorithm only once
- during the toggle phase; and 3- The ticket method used to obtain the local serialization order
forces conflicts only between site-transactions (that execute at the same site and) potentially
conflict with each other. Here, 2 and 3 are related to the execution of the PGSG algorithm. As
the ARENA model does not simulate the execution of the PGSG algorithm, these do not have to
be modeled in the ARENA model.

In order to ensure that the A/l properties are enforced only on the set of vital site-
transactions, the ARENA model records only the execution of vital site-transactions in
SemPS dat file. This can be modeled by encapsulating the Rticket Record module within an If

End-If block (Figure 6-4). If the site-transaction is a vital site-transaction, then it is recorded;
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otherwise it is not. Note that the execution of non-vital site-transactions needs to be simulated in

ARENA as it affects the service time of a global transaction.

sMdly| [seize] [1f][Recket|[End 1f] [ Xdly | [Release] [smaly
- '
e - *  [End While
Sum'4 ‘
Rstart P{Choose RESOURCE Rfinish
Mobil{ '
While - »  [End While
% _ LB
MMdly |[Seize if]{ Reicket JEnd 1] Xdiy JD/s| [Retease]{Mmdly [[1f] [ Toggie[End 1f

Figure 6-4: Simulation of Global Transactions — Semantic-PS technique

6.3.3.2 The PGSG Java Application
The Java application that simulates the PGSG algorithm for the Semantic-PS technique
is very similar to that of the PS technique as well. The only differences are:
1. All site-transactions that execute at one site do not conflict with each other.
2. Mobile global transactions do not execute the PGSG algorithm during the commit phase.
These change are implemented as follows. The probability of a site-transaction
conflicting with another site-transaction is defined by the environment variable Pr. As each site
maintains multiple tickets that need to be distinguished, each Node object in the SSG graph is
associated with an integer variable called ticket. Whenever the Java application encounters an
EXECUTE event in the SemPS.dat file, this event is processed by adding a Node object to the
SSG of that site with the respective GTID and the ticket is assigned a random integer value in

the range 1..1/Pos. For example, if Por = 0.1, i.e., there is a one-in-ten chance that a site-
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transaction conflicts with another site-transaction at that site, then the ticket will be assigned a
random value in the range of 1..10. Unlike for the PS technique, nodes in the SSG are linked
only if they have the same ticket value. Therefore, the probability of a site-transaction
conflicting with another site-transaction that executes at the same site is 1/10, i.e., Py

The CREATE event and the TOGGLE event are processed identical to that of the PS
technique. However, when a COMMIT is encountered, the application executes the PGSG
algorithm only if the TransType is Static as in Semantic-PS, mobile transactions do not execute
the PGSG during the commit. Note that the PGSG algorithm that is executed for each TOGGLE

or COMMIT event is the one defined for the Semantic-PS technique in Section 4.2.1.

6.3.4 Simulation Model for the Kangaroo Technique

This section details the "Simulation of Global Transactions” step of the common
simulation model for the Kangaroo technique. The entire simulation of the Kangaroo technique
is carried out using an ARENA model which is described below.

The Kangaroo technique does not distinguish between static global transactions and
mobile global transactions. Therefore, the simulation model contains only one path. In the
Kangaroo model site-transactions are encapsulated in a Joey transaction. In the Kangaroo
simulation model, in addition to the GTID, TransType, NumSites, SiteList, DcnDelay, and
StartTime attributes, each global transaction entity contains two additional attributes labeled
MigrationCount and MessageDelay. The MigrationCount attribute is used to keep track of the
oumber of migrations that occur during the execution of a global transaction. The
MessageDelay attribute is assigned the time taken to submit a site-transaction on the appropriate
medium depending on the type of global transactions. That is, for mobile transactions

MessageDelay is assigned the time taken to transmit a message on the wireless network; for
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static transactions MessageDelay is assigned the time taken to transmit a message on the wired
network.

The execution of a global transaction is simulated using a While End-While loop. Each
loop simulates the execution of a single site-transaction. The execution of a site-transaction
consists of seven steps (Figure 6-5). First, the site-transaction is delayed for a time period of
MessageDelay to simulate the submission of a site-transaction to the MMDBMS. This is
modeled using the Mdly Delay Module. Next, the global transaction seizes the Site which is
modeled using the Seize module; executes the site-transaction which is modeled using the
Delay module labeled Xdly; and releases the seized site which is modeled using the Release
module.

Next, potential disconnection and migration need to be modeled for mobile global
transactions. If the transaction is a mobile transaction (which is modeled using the If module),
then the potential disconnection and migration are modeled using the D/M module described in
Section 6.1.3. In this module if a migration does occur, the MigrationCount is incremented. In
essence, the MigrationCount represents the number of Joey transactions that are created for the
global transaction.

Once the global transaction has completed its execution, it is transferred to the Commit
module. This module is a Delay module and delays the transaction to simulate the execution of
the commit protocol. Each global transaction is delayed for a time period equivalent to the
commit time of the global transaction, i.e., 2 * MigrationCount * time taken to transmit a
message on the static network. Next, the global transaction is transferred to the Tally module
which collects statistics on the simulation, i.e., the average service time for global transactions

and the individual tallies for static and mobile transactions.
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Figure 6-5: Simulation of Global Transactions — Kangaroo technique

6.4 The Simulation Environment

In this section the default values used to define the simulation environment will be
documented. A summary of the parameters is presented in Table 6-1. As one of the primary
goals of this simulation is to study the effectiveness of pre-serialization, some parameter values
have been chosen especially to facilitate this goal. In essence, it was necessary to define a
simulation environment that provided a sufficient number of isolation property violations so that
the effectiveness of pre-serialization could be studied.

The number of sites in the simulation environment is one such parameter. The typical
MMDB eavironment will consist of a very large number of sites. As the number of sites in the
system increases, the probability of isolation property violations decreases especially as it is
assumed that each site is equally likely to be accessed. Therefore it was necessary to perform
the simulation over a small number of sites in order to magnify isolation property violations.
The number of sites in this simulation (TotalSites) has been set to 10.

Global transactions are created based on an exponential distribution with a mean of 0.2

time units. The exponential distribution is chosen as it is often used to model inter-event times
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in random arrival processes [KSS98]. A probability distribution is used to label transactions as
either Static or Mobile transactions.

A triangular distribution (with a minimum of 3, average of 4, and maximum of 5) has
been chosen to describe the number of site-transactions in a global transaction (NumSites). The
triangular distribution is chosen for two reasons: 1 - it is commonly used in situations in which
the exact form of the distribution is not known [KSS98]; and 2 - it is bounded by a minimum
and maximum value. Note that on average 40 percent of the sites in the system are being
accessed by a global transaction. Once again, a high value has been chosen in order to magnify
the isolation property violations.

The execution time of a site-transaction is described using a triangular distribution. The
mean time for execution has been derived from the values given in Table 5.1.

The length of the vital stage of a global transaction (V) is set to be 50% of the length
of the global transaction. This value has been chosen as initial simulation results indicate that
50% is the value for VT, at which neither static nor global transactions will be penalized. The
average time of disconnection has been taken from the values given in Table 5.1.

The probability of a site-transaction conflicting with another site-transaction at the
same site (Poy) is set to 0.5. (Note that this parameter applies only to the Semantic-PS
technique.) Once again a high value is chosen to magnify the isolation property violations. The
parameters Pun, Pug, Tlmeg T meg, and T'pgn, have been taken from Table 5.1. The length of a
simulation run (Len) has been set to 7200 time units. Assuming that a time unit represents one
second, the length of a simulation run represents a 2-hour period.

Finally, as in the analytical evaluation, this simulation assumes that each site is equally
likely to be accessed by any site-transaction such that a global transaction does submit two site-

transactions at the same site.
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Parameter | Description Default Value
TotalSites | Number of sites in the MMDBS 10
GTix Inter-arrival time of global transactions EXPQ(0.2) time units
GToio The ration of mobile global transactions to static 0.3/0.7
obal transactions
NumSites Number of site-transactions in a global transaction | TRIA(3, 4, 5)
EXEwy avg. local execution time of a site-transaction TRIA (0.001, 0.003, 0.005)
VT The size of the vital stage of a global transaction 05
(as a fraction of the total length)
DCNim Avg. time between disconnection and relocation 0.1 time units
| Probability of a site-transaction conflicting with 0.5
another site-transaction (at the same site)
Pin The probability of a disconnection during the ¢ NumSites/3 [)/NumSites
execution of a site-transaction
Prg The probability of a migration during the execution |{Py./3 |
of a site-transaction
T oeg avg. time to transmit a message on the static | 0.0001 time units
| (wired) network
T g avg. time to transmit a message over the wireless | 0.07 time units
medium
T avg. time to transmit a Predecessor graph (or | 0.001 time units
propagate a PGS graph) from site to site along the
static network
Len Length of simulation

7200 time units

Table 6-1: Environment parameters for simulation

6.5 Service Time for Global Transactions

In this section, the simulation models will be used to obtain the service time (i.e., STey)

for the PS Semantic-PS and Kangaroo techniques. As the primary purpose of this experiment is

to validate the analytical model (and vice versa) by reproducing the experiment carried out in

Section 5.4.1 - Service Times, the MMDB environment will need to duplicate the same

environment. The default values will be taken from Table 6-1 for every parameter, except Poy

and GTngo, as the values represent the same environment defined in Table 5.1. In this

experiment P will be set to 0.05 - the value defined in Table 5.1. In the experiment carried out

is Section 5.4.1, all global transactions are mobile global transactions. To duplicate this

scenario, GT o is set to 1/0.
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The simulation is repeated 20 times for each technique. The average ST, is given in
Figure 6-6. These results show that the simulated ST, for all techniques is less than the
analytical ST,;. However, this deviation is very minimal. That is, for the PS technique, ST,y
obtained from the analytical model is only 1.3% greater than that obtained from the simulation
model. For the Semantic-PS and Kangaroo techniques, ST, obtained from the analytical
models is less than 1% greater than that obtained from the simulation models. Once again, it can

be concluded that ST, for the PS and Semantic-PS technique is not significantly higher than

that of the Kangaroo technique.
-
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Figure 6-6: ST, for Three Transaction Management Techniques Using Analytical
Models and Simulation Models

Next, the 95% confidence interval over the 20 runs is calculated. The 95% confidence
interval for the PS technique is 0.677 + 0.009. Thus 95% of the simulation results reside in the
interval (0.668 - 0.686). The 95% confidence interval for the Semartic-PS technique is 0.667 +
0.006, i.c., (0.661 - 0.673). The 95% confidence interval for the Kangaroo technique is 0.665 +
0.006, i.c., (0.659 - 0.671). Note that the ST, obtained from the analytical model for each
technique is within the 95% confidence interval obtained from the simulation model. Thus, it
can be stated with confidence that the simulation model complements the analytical model.
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6.6 Hypothesis Testing

In the previous section it was concluded that the service times for the PS and Semantic-
PS techniques are not significantly higher than the service time of the Kangaroo technique. This
conclusion was drawn from an informal evaluation of the simulation results. In this section,
hypothesis testing will be used to examine whether ST,,; for the PS and Semantic-PS
techniques are significantly greater than that of the Kangaroo technique. Specifically, the
hypothesis test concerning means will be used to determine whether it can be established that
ST, for the PS and Semantic-PS techniques are different from that of the Kangaroo technique
at the 0.05 level of significance.

6.6.1 Hypothesis Test for the PS Technique
In this section, the claim that ST, for the PS technique is not significantly higher than
that of the Kangaroo technique is tested. As the aim of this hypothesis test is to establish that
ST, for PS is not significantly higher, the null hypothesis will claim the contrary. That is, the
null hypothesis states that ST,.; for the PS technique is significantly different than that of the
Kangaroo technique. The null hypothesis Hy, and alternate hypothesis H, are stated as:
Ho: ST, for the PS technique # ST, for the Kangaroo technique (i.e., 0.665)

Hi: STy for the PS technique = ST, for the Kangaroo technique

Let x be the sample mean of the PS technique, o be the variance, and n be size of the

population. Then the test statistic z is given by:

z = (x - ST for Kangaroo) / (o / Vn)
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A 0.05 level of significance defines a critical region for z such that for any z < 1.645 the
null hypothesis must be rejected in favor of the alternate hypothesis. For the PS technique, x =

0.677 and o= 0.0205. Consequently,

z =(0.0677 - 0.665) / (0.0205 / ¥20)=0.13

As z < 1.645, the null hypothesis H, must be rejected in favor of the alternate
hypothesis H;. Thus it must be concluded that, at the 0.05 level of significance, ST, for the PS
technique is not different from that of the Kangaroo technique.

6.6.2 Hypothesis Test for the Semantic-PS Technique
In this section, the claim that ST, for the Semantic-PS technique is not significantly
higher than that of the Kangaroo technique is tested. Once again, the null hypothesis will claim

the contrary. That is, the null hypothesis states that ST,, for Semantic-PS is significantly

different than that of the Kangaroo technique. The null hypothesis H, and alternate hypothesis
H, are stated as:

Ho: STy for the Semantic-PS technique # ST, for the Kangaroo technique (0.665)

H;: STy for the Semantic-PS technique = ST, for the Kangaroo technique

For the Semantic-PS technique, x = 0.667 and o= 0.0137. Consequently,

z =(0.0667 - 0.665) / (0.0137/ ¥20)=0.2
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Once again, as z < 1.645, the null hypothesis H, must be rejected in favor of the
alternate hypothesis H,. Thus, it must be concluded that at the 0.05 level of significance, the

ST, for the Semantic-PS technique is not different from that of the Kangaroo technique.

6.7 Evaluation of Pre-Serialization

In this section the simulation model will be used to evaluate the effectiveness of pre-
serialization in minimizing the unfair treatment of mobile global transactions due to their
prolonged execution time. In order to measure its effectiveness, the ideal case needs to be
established.

Simply stated, the ideal case is to ensure that mobile global transactions are not
penalized in any manner due to their prolonged execution. With respect to the PS and Semantic-
PS techniques, this requires that the percentage of mobile global transactions aborted due to
isolation property violations be equal to the percentage of static global transactions aborted due
to isolation property violations. Formally, let MT-Abort be the percentage of mobile global
transactions aborted during some time interval t, and ST-Abort be the percentage of static global
transactions aborted during the same time interval t. Then the penalty incurred by mobile global

transactions due to their extended execution time (MT-Penalty) can be represented as:
MT-Penalty = (MT-Aborts - ST-Aborts)
Note that MT-Penalty > 0 represents that mobile global transactions are penalized by

the concurrency control algorithm and MT-Penalty < 0 represents that mobile global

transactions are being favored by the algorithm. The ideal case is MT-Penalty = 0.
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6.7.1 The Ideal Length of the Vital Stage for Global Transactions

This simulation attempts to identify the length of the vital stage of a global transactions
such that the ideal MT-Penalty is obtained. For this simulation, MT-Penalty will be calculated
for VT4 = (0.4, 0.5, 0.6, 0.7, 0.8). The default values are used for the rest of the parameters.
The simulation is carried out 10 times for each value for each technique. The results of the
simulation for the PS technique are presented in Figure 6-7. The simulation results indicate that,
for the PS technique, the point at which mobile transactions are not penalized for their extended
execution time is when VT is 0.5. That is, MT-Penalty is approximately 0 when the length of
the vital stage spans no more than 50% of its entire length. Note that when VT4 is 40% of the

length of a global transaction, static transactions are being penalized by the PGSG algorithm.
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Figure 6-7: MT-Penalty Vs VT 4 (PS technique)

Next, the same experiment is carried out for the Semantic-PS technique. The results of
this simulation are presented in Figure 6-8. Once again, the simulation results indicate that the
point at which neither mobile transactions nor static transactions are penalized by the PGSG
algorithm is when VT4 is 0.5.
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Figure 6-8: MT-Penalty Vs VT (Semantic-PS technique)

Now that the value of VT, at which the ideal MT-Penalty is obtained has been
established, the confidence interval for this value of VT, needs to be determined. The
confidence interval is a level of confidence with respect to the simulation and specifies the
probability that any given simulation run would produce a result within the confidence interval.
This simulation will establish the 95% confidence interval. To establish this confidence interval,
the simulation is carried out 20 times for each technique.

The 95% confidence interval for MT-Penalty for the PS technique when VTstg = 50%
is 0.002 + 0.0039. That is, the range for MT-Penalty that includes 95% of the simulation results
for the PS technique is (-0.0019, 0.0059). The 95% confidence interval for MT-Penalty for the
Semantic-PS technique when VT = 50% is 0.000 £ 0.0015. That is, the range for MT-Penalty
that includes 95% of the simulation results for the Semantic-PS technique is (-0.0015, 0.0015).

The above simulation establishes the length of the vital stage of a global transaction
such that neither mobile transactions nor static global transactions are penalized by the PGSG
algorithm and the 95% confidence interval for MT-Penalty. Next, simulations are carried out to
determine whether environment parameters that were arbitrarily chosen would drastically affect
the observed the ideal length of the vital stage, specifically GTx, GT oo and Poy.
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6.7.2 Varying the Inter-Arrival Time

In the next experiment, the simulation is carried out for a range of global transaction
inter-arrival times in order to determine its effect on VT,,. Specifically, the simulation is carried
out for GTx = (0.2, 0.4, 0.6, 0.8, 1.0) for both techniques. Table 6-2 contains the MT-Penalty
for both techniques for the different inter-arrival times. These results indicate that the inter-
arrival time has no significant effect on the "fairness” of pre-serialization. Note that the results

for each simulation falls within the 95% confidence interval established in the previous section.

GTix 0.2 04 0.6 0.8 1.0
PS 0.003 0.001 0.003 0.002 0.001
Semantic-PS 0.00015 0.0004 0.001 0.0005 0.000

Table 6-1: MT-Penalty for varying inter-arrival times

6.7.3 Varying the Mobile to Static Transaction Ratio

In the next experiment, the simulation is carried out for different values of GT oo - the
ratio of mobile giobal transactions to static global transactions in order to determine its effect on
VT4 Specifically, the simulation is carried out for GTni = (0.3/0.7, 0.4/0.6, 0.5/0.5, 0.6/0.4,
0.7/0.3) for both techniques. Table 6-3 contains the MT-Penalty for both techniques for the
different inter-arrival times. Once again, the results fall within the 95% confidence interval
obtained in the initial simulation, indicating that the ratio of mobile/static global transactions
has no significant effect on the "faimess" of pre-serialization.

GTruio 0.3/0.7 0.4/0.6 0.5/0.5 0.6/0.4 0.7/0.3
PS 0.003 0.002 0.002 0.004 0.004
Semantic-PS | 0.000 0.0001 0.001 0.000 0.000

Table 6-3: MT-Penalty for varying Mobile/Static ratios
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6.7.4 Varying the Probability of Conflicts

In the next experiment, the simulation is carried out for different values of Py - the
probability of a site-transaction conflicting with another site-transaction at the same site.
Specifically, the simulation is carried out for Par = (0.1, 0.2, 0.3, 0.4, 0.5). As P has no
influence on the execution of the PS technique, this experiment is carried out only for the
Semantic-PS technique. Table 6-4 contains the MT-Penalty obtained from this experiment. For
P = 0.1 this simulation produced no aborts of global transactions. For Por = 0.2, 0.3, 0.4, 0.5,

MT-Penalty falls within the 95% confidence interval indicating that VT, is not affected by Poy.
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Table 6-3: MT-Penalty for varying Mobile/Static ratios

6.7.5 Varying the Disconnection Time

In the next experiment, the simulation is carried out for different values of DCNy, - the
average time of disconnection. Specifically, the simulation is carried out for DCNy, = (0.2, 0.4,
0.8, 1.0, 1.2). These results indicate that the average time between disconnection and relocation

affects MT-Penalty (Figure 6-9). As the average disconnection time increases, MT-Penalty

increases as well.
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Figure 6-9: MT-Penalty for varying DCNy,
6.7.6 Varying the Wireless Communication Time
In the next experiment, the simulation is carried out for different values of T" e - the
time taken to transmit a message over the wireless network. Specifically, the simulation is
carried out for T e = (0.1, 0.2, 0.3, 1.4, 1.5). These results indicate that the time taken to

transmit a message over the wireless communication network affects MT-Penalty (Figure 6-10).

As T" g increases, MT-Penalty increases as well.
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Figure 6-10: MT-Penalty for varying T meg
6.8 Summary and Conclusion

The simulations carried out in this section establishes that pre-serialization can

effectively reduce the unfair treatment of mobile global transactions due to their prolonged
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execution. In fact, it was shown that the PS and Semantic-PS techniques can effectively
eliminate all unfair treatment of mobile global transactions when the vital stage of a global
transaction is 50% of the total length of the global transaction. It was also shown that the inter-
arrival time, the ratio of mobile to static global transactions, and the probability of conflicts do
not have any drastic effect on the effectiveness of pre-serialization for the default simulation
environment. This is to be expected as the execution of mobile global transactions is identical to
that of static global transactions in both techniques except for the time taken to complete the
execution. The parameters GTy, GTwi, and Por do not affect the execution time of mobile
transactions. Therefore, they have no effect on MT-Penalty.

However, the simulation showed that DCNy, and T" e affect MT-Penalty. This can be
explained as follows. Pre-serialization is introduced to address the unfair treatment of mobile
transactions due to their prolonged executions. In effect, pre-serialization reduces the time
period within which a mobile global transaction can cause conflict violations, i.e., VT4 The
ideal MT-Penalty is achieved at some ratio (between the time taken to complete the execution
of static global transactions and the VT, of mobile transactions) at which the concurrency
control algorithm resolves conflict violations by aborting the same percentage of mobile and
static global transactions. Unlike GTix GTrtio and Por, DCNum and T e alter the interval VT
and therefore, change the point at which the ideal MT-Penalty occurs. In fact, it can be
concluded that any parameter that changes the ratio between the time taken to complete the
execution of static global transactions and the VT, of mobile transactions will affect the point

at which MT-Penalty is zero.
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Chapter 7

CONCLUSION AND FUTURE RESEARCH

Current advances in technology has changed the conventional computing environment.
On the one hand the Internet has revolutionized connectivity and introduced the notion of
cooperating but autonomous information systems. On the other hand rapid advances in wireless
communication technology has introduced the notion of mobile computing. This dissertation
research studies database transaction management in the mobile multidatabase environment.

The major contributions of this research are fourfold. First, this dissertation research
studies the issues related to transaction management in the MMDB environment. Second, two
new transaction management techniques that address all identified issues are proposed. These
techniques introduce the following new concepts to transaction management:

1. It introduces two new states - Disconnected and Suspended - in order to address
disconnectivity of the wireless communication medium.

2. It introduces the notion of pre-serialization to address the prolonged execution of mobile
global transactions.

3. It introduces a new concurrency control algorithm based on partial global serialization
graphs and information propagation.

4. An analytical model of the MMDB environment is developed. Simulation models of the
proposed transaction management techniques are also developed. These models are used to
evaluate the performance of the proposed techniques.
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7.1 Transaction Management in the MMDB Environment

Transaction management is a core concept in the science of Database Management and
has been studied extensively in traditional database environments. Transactions are defined to
be consistent and reliable units of computing. In traditional systems, transactions satisfy this
definition if they adhere to the ACID properties. However, the cooperating federated computing
environment and the mobile computing environment introduce new issues that affect database
transaction management. The multidatabase environment requires cooperating database systems
to provide a single logical view of the information resources to the user without violating the
autonomy of the constituent database systems. The mobile database environment requires that
information available on the static network to wired users be made available to mobile users
who connect from anywhere at any time. Wireless communications are frequently interrupted
by disconnection and migration. These disconnection and migration violate underlying
presumptions about user connectivity that exists in wired systems. The natures of these new
environments have raised legitimate questions about the applicability of the ACID properties.
Therefore, it is necessary to revisit the responsibilities of the global transaction management
process in light of the new environments.

The GTM of the MMDBS is responsible for enforcing the reliability and consistency of
global transactions. Unlike in traditional DBMSs, the GTM of the MMDBS does not have to
enforce all the ACID properties for two reasons. As the constituent databases enforce the ACID
properties on the site-transactions that execute under their control, global transactions, by
default, satisfy the cousistency and durability properties. Therefore, the GTM is responsible for
only the atomicity and isolation properties. However, the requirements of the new environments
dictate that the GTM enforces a range of correctness criteria with respect to the atomicity and

isolation properties, ranging from strict A/l to unrestricted access.
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In addition to the A/l properties, the GTM needs to address disconnection and migrating
transactions. Unlike in the static environment, disconnection in the mobile environment cannot
always be treated as failures that result in aborted transactions. In some cases, however,
disconnection will be caused by a catastrophic failure. As the MMDBS can only predict
catastrophic failures, aborting disconnected transactions is likely to result in some untimely
terminations. The GTM needs to take appropriate steps to minimize such untimely terminations.
Disconnection and migration of the mobile user prolong the execution time of mobile
transactions as well. Consequently, this affects the enforcement of the isolation property. In
order to maintain a notion of faimess, the concurrency control mechanism of the GTM must
minimize any unfair treatment of transactions of mobile users.

Furthermore, the GTM must also conform to muitidatabase design restrictions, i.e., the
autonomy of the LDBSs cannot be violated.

7.2 The PS and Semantic-PS techniques

This dissertation proposes two transaction management techniques, PS and PS-
Semantic, for the MMDB environment based on the Multi-Level transaction model. In this
transaction model, global transactions consist of a set of site-transactions such that each site-
transaction is executed as a single (consistent and reliable) transaction at some local DBMS.
Each site-transaction is categorized as vital or non-vital. The time between the first and last vital
site-transaction of a global transaction constitute its vital phase. All vital site-transactions of a
global transaction must complete successfully in order for the global transaction to complete its
execution successfully. As a global transaction can consist of any combination of vital and non-
vital site transactions, these techniques can enforce a range of correctness criteria with respect
to the A/I properties.
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The GTM of each technique consists of two layers: the Global Coordinator layer is
responsible for the overall execution and coordination of global transactions, and the Site
Manager layer is responsible for managing the execution of site-transactions at each site. This
research introduces two new states - Disconnected and Suspended - in order to address the
disconnectivity of wireless communications. Global transactions of a disconnected user are
placed in the Disconnected state until the user re-connects (at which time the global transaction
is set back to active), or until such time that the MMDBS determines that a catastrophic failure
has occurred. In the later case, the global transaction is placed in a Suspended state. In an effort
to minimize untimely aborts caused by erroneous decisions about the users' connectivity status,
Suspended transactions are not aborted until they interfere with the execution of other global
transactions.

The PGSG algorithm verifies the atomicity and isolation properties of global
transactions. The PGSG algorithm verifies the isolation property by constructing a partial global
serialization graph and relies on information propagation to ensure that all violations are
detected. The primary difference between the PS technique and the Semantic-PS technique lies
in the enforcement policy of the A/l properties.

In the PS technique, static global transactions execute the PGSG algorithm at the end of
their execution in order to verify the A/l properties. If A/1 have not been violated the
transactions commits; otherwise the transactions are aborted. Mobile global transactions execute
the PGSG algorithm at the end of their vital stage. If A/ has not been violated, the global
transactions are toggled; otherwise they are aborted. The toggle operation registers the global
transactions' serialization order in the global transaction serialization scheme. Upon completing
their execution, toggled mobile global transactions execute the PGSG algorithm a second time
in order to rectify any isolation property violations that they may have caused after being

toggled. In the PS technique, the PGSG algorithm enforces A/l on all site-transactions of a
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global transaction. However, only vital site-transactions can cause a global transaction to be
aborted. As the local serialization of site-transactions is transparent to the MMDBS, the PS
technique forces conflicts between all site-transactions that execute at each site using a local
ticket data item. The ticket value is then used to deduce the local serialization order.

The limitations of the PS technique are:

1. Mobile transactions utilize additional overhead as they execute the PGSG algorithm twice.
2. Concurrency is limited as all site-transactions that execute at each site are forced to conflict
with each other.

The Semantic-PS technique overcomes these limitations as follows. The Semantic-PS
technique enforces the A/l properties only on the set of vital site-transactions of a global
transaction. As in the PS technique, the static global transactions execute the PGSG algorithm at
the end of their execution and mobile global transactions execute the PGSG algorithm at the end
of their vital stage. However unlike in the PS technique, mobile global transactions are not
required to execute the PGSG algorithm a second time as the Semantic-PS technique enforces
A/l only on the set of vital site-transactions. Toggled mobile global transactions are allowed to
commit at the end of their execution. In order to improve concurrency, the Semantic-PS
technique relies on semantic information about local data items to combine local operations
(executed by site-transactions) into groups that potentially conflict with each other and assign a
ticket to each group. Thus, the Semantic-PS technique enforces conflicts only between site-
transactions that execute one or more operations from the same group.

As the PS and Semantic-PS techniques allow mobile global transactions to establish
their serialization order prior to completing their execution, these techniques minimize the

unfair treatment of mobile global transactions due to their prolonged execution.
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7.3 Feature Comparison with Existing Techniques

The MMDB environment is a relatively new area of research which encompasses
emerging technologies. Yet, it has received considerable attention from the research
community. Many existing publications specifically address transaction management in the
MMDB environment. However, the proposed techniques fall short of meeting all the
requirements of the MMDB environment. To summarize their deficiencies, none of the
techniques enforces the (global) isolation property. Thus, global transactions are not executed as
consistent units of computing. In addition, disconnections that represent catastrophic failures are
not addressed. It is assumed that a disconnection will always be followed by a subsequent re-

connection. The PS and Semantic-PS techniques are compared to the existing techniques in

Table-7-1.

Technique Disctn. | Migrn. | Autonomy | Atomicity | Isolation
Support | Support | Violated | Level Level

| Agent-Based Access [PB95-2] | Partial | Partial | No VAR None

TP in Mobile Env [Chry93] Partial | Full Yes VAR None

MDSTMP [YZ94] Partial | Full No STR None

Kangaroo Model [DHB97) Partial | Partial |No VAR None

PS Technique Full Full No VAR VAR

Semantic-PS technique Full Full No VAR VAR

Table 7-1: Summary of Mobile Multidatabase Transaction Models

7.4 Performance Analysis and Simulation

In this dissertation research, an analytical model of transaction management in an
MMDB environment is developed in Chapter 5. This model is used to study the transaction
service time of the PS and Semantic-PS techniques and to compare their performance to that of

the Kangaroo model. A simulation model is developed in Chapter 6 and is also used to study the
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performance of the three techniques. This simulation model is then used to study the behavior of
the PS and Semantic-PS techniques.

The PGSG algorithm of the PS and Semantic-PS techniques requires serialization
information to be transmitted on the static network in order to construct the partial global
serialization graph and to propagate serialization information back to the participating sites. The
primary goal of the analytical evaluation was to determine the cost (per global transaction) of
this information propagation with respect to the total execution time of the global transaction.
The initial analysis with respect to global transaction length, number of disconnections, and
number of migrations indicated that the transaction service time and the rate of growth of the
service time for the PS and Semantic-PS techniques are comparable to those of the Kangaroo
technique. When the service time is evaluated with respect to the communication cost, the PS
and Semantic-P$ still remain comparable to the Kangaroo model. However, it is evident that the
service time of the PS technique deteriorates more rapidly than the Semantic-PS and Kangaroo
technique. This can be attributed to the following:

1. The PS technique executes the PGSG algorithm twice for all mobile global transactions.
2. All site-transactions that execute at the same site are forced to conflict with each other.

The primary goal of the simulation was to determine the length of the vital stage of
global transactions such that mobile global transactions are not penalized for their extended
execution time. The simulation model was also used to study the behavior of the PS and
Semantic-PS techniques with respect to related environment parameters. The simulation results
indicate that the length of the vital stage such that mobile global transactions are not penalized
(i.c., MT-Penalty = 0) is 50% of the total length of the global transaction for both the PS and
Semantic-PS technique. The 95% confidence interval for MT-Penalty when the vital stage is
50% of the total length of the global transaction is (-0.0019, 0.0059) for the PS technique and (-

0.0015, 0.0015) for the Semantic-PS technique. The simulation demonstrated that the inter-
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arrival time of global transactions, the ratio of static to mobile transactions, and the probability
of conflicts do not alter the ideal MT-Penalty in any significant way. However, it is evident that
MT-Penalty is affected by DCN, and T . This is due to the fact that these parameters affect
the length of the vital stage of mobile transactions.

In summary, the analytical model demonstrates that the communication cost incurred by
the respective PGSG algorithm of the PS and Semantic-PS techniques accounts for only a small
portion of the service time of the global transaction in environments where the communication
cost on the static network is relatively small. Thus, the PS and Semantic-PS techniques offer a
substantial advantage over existing techniques - they enforce the isolation property without
violating local DBMS autonomy - for little additional communication overhead. The
simulation demonstrates that pre-serialization is an effective technique that can be used to
minimize the unfair treatment of mobile global transactions due to their prolonged execution

time.

1.5 Future Research

This research deals with transaction management in two rapidly changing computing
environments, i.c., the vastly expanding Internet environment and the wireless computing
environment. Like any technology in its early stages, the Internet and wireless computing
environments are driven by innovations. In essence, these environments can be characterized as
revolutionary environments rather than evolutionary environments. The volatile nature of these
rapidly changing environments makes it difficult for researchers to design evaluate and optimize
algorithms for the environments. It also makes it necessary for researchers to continuously re-
evaluate design criteria and to either alter proposed solutions to meet the needs of the changed
environments or propose new solutions. Accordingly, the future research of this dissertation will

proceed in three directions: the requirements of the transaction manager need to be re-¢valuated
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with respect to emerging computing models; the PS and Semantic-PS techniques will be
tailored for the cellular communication architecture; these techniques need to be re-evaluated

for the new environment.

7.5.1 Emerging Computing Models

In today's Internet computing environment, electronic commerce (a.k.a., e~<commerce)
has become a predominant application domain. Just as mobile computing has affected
transaction processing, e-commerce is beginning to influence transaction processing in the
multidatabase environment. The e-commerce transaction processing is called Internet
Transaction Processing (iTP). Although the transaction model is not yet fully understood, it is
expected that this model will be different from traditional online transaction processing
(OLAP). As iTP evolves, the PS and Semantic-PS techniques need to be tailored to satisfy the
new requirements as iTP will be the predominant heterogeneous transaction processing

environment.

1.5.2 Cellular Communication Architecture

Current trends indicate that the cellular communication medium will be the
predominant communication medium of mobile computing applications. Thus, it is reasonable
to optimize the PS and Semantic-PS techniques for the cellular communication architecture.
Although there are many cellular networks (e.g., Sprint PCS and AT&T Digital Networks),
their underlying architecture is very similar. The cellular network consists of cells - regions that
are covered by a node that supports wireless communication. Cells are grouped to form clusters

and in tumn, these clusters are grouped to form a hierarchy of clusters that represents a tree of

clusters.
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In order to minimize the overhead of information propagation, the research needs to
study a hybrid concurrency control algorithm that is based on information propagation (such as
in the PGSG algorithm) between clusters and some concurrency control algorithm that does not
require information propagation within a cluster of cells. The motivation of this algorithm is
that it would eliminate the need for information propagation within a cluster of cells and yet
provide all the advantages of the PGSG algorithm with respect to the global environment (i.c.,
the cluster tree). In essence, each cluster is treated as a site in the current environment.

Information will need to be propagated only when transactions access sites covered by different

clusters.
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