INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality $6^{\prime \prime} \times 9^{\prime \prime}$ black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

Bell \& Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA

UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

PERFORMANCE-DECLINE CURVE ANALYSIS OF VERTICAL AND HORIZONTAL WELLS IN ANISOTROPIC AND NATURALLY FRACTURED RESERVOIRS

A Dissertation
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the degree of Doctor of Philosophy

By

SCOTT BRADLEY CLINE
 Norman, Oklahoma 1999

UMI Microform 9952411
Copyright 2000 by Bell \& Howell Information and Learning Company.
All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

Bell \& Howell Information and Leaming Company
300 North Zeeb Road
P.O. Box 1346

Ann Arbor, Ml 48106-1346
© Copyright by SCOTT BRADLEY CLINE 1999

PERFORMANCE-DECLINE CURVE ANALYSIS OF VERTICAL AND HORIZONTAL WELLS
IN ANISOTROPIC AND NATURALLY FRACTURED RESERVOIRS

A Dissertation APPROVED FOR THE
SCHOOL OF PETROLEUM AND GEOLOGICAL ENGINEERING

Acknowledgements

I thank all faculty committee members for their various individual contributions during my tenure in the Petroleum Engineering Department and for putting up with a part time student for all these years. Foremost I thank Dr. Tiab for not only his challenging classes but for encouraging me to continue this project when, after unexpectedly leaving the petroleum industry, I could have easily given up. His persistent reminder to register each semester is the only reason I kept working. Thanks to Dr. Roy Knapp, who introduced me to simulation, who always stressed attention to detail and who may have finally succeeded in teaching me when to use the plural of "data". Thanks to Dr. John Pigott for hopefully transferring some of his keen ability to see the "big picture" when presented with seeming chaos. I have never met anyone else that could so clearly see the important concepts in the midst of overwhelming data. Thanks to Dr. Wiggins for his great production class which introduced me to Muskat, Fetkovich and VanEverdingen and Hurst. Those class notes have been invaluable to me. Thanks to Dr. Osisanya whose teaching style made learning so fun and who set a great example by his hard work ethic. Each of you influenced my life in a positive way and for that I am eternally grateful. Thank you.

I also thank my daughter Charlotte Anne Cline, now a freshman at the University of Rochester, and my son Thomas Ansiey Cline, a $10^{\text {th }}$ grade student in Rushville, New York. Thank you both for sacrificing many of our precious moments together over these past few years and occasionally, but not often enough, convincing me to take a break
from this project to see what was happening in your own lives. Thank you Cindy Stewart for encouraging me to continue the project, for helping with the daily routines so that I could keep going, and for your general love and support. And thanks to all the rest of my family and friends who put up with my bad moods, understood or at least tolerated it when I gave up family functions to work on this project and gave me moral support.

I tried my best to keep a balance between family, friends and work despite the difficult circumstances of the past few years but I took too much from all of you. I did not however take your help for granted and therefore I hope now that through the grace of God and his Son Jesus Christ that I can pass on to others some of what you have all given me. Thank you and God bless you all.

Table of Contents

Acknowledgements iv
Table of Contents. vi
List of Tables. x
List of Figures xiii
Abstract. xxi
CHAPTER ONE - Introduction 1
1.1 Introduction and Objectives. 1
CHAPTER TWO - Decline Curve Background. 3
2.1 History of Decline Curve Theory 3
2.2 Review of Decline Curve Methods. 3
2.3 Characteristics of Decline Analysis 6
2.4 Special Case of Solution Gas Drive Reservoirs. 8
CHAPTER THREE - Extending Analytical Solutions to Two Phase For Comparison With Reservoir Simulation Output 10
3.1 Introduction. 10
3.2 Two Phase Background and Theory. 12
3.3 Comparing Analytical Solutions to Two Phase Simulations. 16
3.4 Evaluation of Effective Horizontal Permeability Assumptions - Vertical Well Case. 21
3.5 Evaluation of Effective Horizontal Permeability Assumptions - Horizontal Well Case 21
CHAPTER FOUR - Decline Curve Theory 26
4.1 Depletion Rate Decline (Pseudosteady State - PSS) 26
4.2 Solution Gas Drive Meaning 33
4.3 Physical Meaning to Decline Analysis 34
4.3.1 Derivation of Fetkovich Type Decline Curves. 36
4.3.2 Reservoir Parameters From Type Curves 38
CHAPTER FIVE - Decline Curve Construction Analysis and Use
5.1 - Introduction. 43
5.2 - Theoretical Background for Dimensionless Solutions 43
5.2.1 Infinite Case 45
5.2.2 Solutions in Limited Reservoirs. 47
5.2.2.1 Conditions 48
5.3 Generation of the Fetkovich Type Curves 50
5.4 Use of Decline Curves in Calculation of Reservoir Parameters and Future Production Calculations 56
5.4.1 Calculation of transmissibility and apparent well bore radius. 56
5.4.2 Matching the PSS Portion - Calculation of N and Flow Rates.. 57
5.4.3 Pseudosteady State Type Curve Matching for Reserve Estimates 58
5.4.4 Field - Wide Applications 61
5.5 Extensions of Fetkovich Radial Type Curves to Other Reservoir Shapes and Well Positions 61
5.5.1 Introduction 61
5.5.2 Overview of Derivation 62
5.5.2.1 Use in Calculating Reserves and Reservoir Parameters. 75
5.5.2.2 Use in Determining Contributions of Solution Gas Energy and Mobility Function. 77
5.5.3 Extension to Fractured Reservoirs 79
5.6 Normalization Techniques. 82
5.7 Derivative Methods 83
5.7.1 Closed Boundary Case-Radial Solutions 84
5.7.2 Construction of the Derivative Dimensionless Decline Curves 86
5.7.3 Extension to Other Reservoir Shapes. 91
5.7.4 Use of the Derivative Curves in Reservoir Analysis. 91
5.7.5 Data Smoothing Techniques 92
5.7.6 Example of Derivative Use. 93
5.8 Chapter Summary 95
CHAPTER SIX - Horizontal Wells. 96
6.1 Various Horizontal Well Analytical Equations. 96
6.1.1 Mutalik-Joshi 96
6.1.2 Kuchuk et al. 98
6.1.3 Babu and Odeh 99
6.2 Aternative Method Using Effective Wellbore Radius Concept 103
6.3 Demonstration of Validity of 2-phase Horizontal Well Approximations 105
6.3.1 Validation Model Results and Discussion 106
6.4 Analysis of Analytical and Simulated Pseudosteady State Flow Equations for Horizontal Wells in Anisotropic Media 109
6.4.1 Anisotropic Experimental Results and Observations 110
6.4.2 Anisotropic Behavior Possibilities. 112
6.4.3 Background Theory into Effective Permeability 113
6.5 Need to Re-Consider Effective Horizontal Permeability in Limited Reservoirs. 115
6.6 Experimental Results and Observations of Variations in Simulated Output in Cases of Variable Horizontal Permeability Components 118
6.6.1 Experiments. 118
6.6.2 Effect of Grid Number 119
6.6.3 Effect of Model Size and Penetration Ratios 123
6.6.4 Discussion of Experiment Results 131
CHAPTER SEVEN - Horizontal Well Decline Curve Analysis. 132
7.1 Extension of Decline Analysis to Horizontal Wells 132
7.2 Dimensionless Decline Analysis Using the Horizontal Effective Wellbore Radius Concept and Application 133
7.3 Re-labeling of Decline Curves for Use in Decline Analysis. 135
7.4 Calculation of Reserves from Horizontal Well.Decline Curves 136
7.5 Comparison of Vertical and Horizontal Decline Curves 137
7.6 Decomposition of k_{x} and k_{y} 139
7.6.1 General Directional Permeability Background Discussion 140
7.6.2 Decomposing k_{x} and k_{y} 143
7.6.3 Studies in Anisotropic Media- $\mathrm{k}_{\mathrm{x}} \mathrm{k}_{\mathrm{y}}$ Experimental Results. 145
7.6.3.1 Visualization and Identification of Important Points on the Rate Decline Curves 146
7.6.3.2 Experiments with Two Well System 156
7.6.4 Determination of the Principle x and y Permeability Components 160
7.7 Application to Decline Analysis Methods for Horizontal Wells in Fractured Media 161
7.8 Extension to Determine Drainage Area 165
7.9 Chapter Summary 167
CHAPTER EIGHT - Extensions of Decline Curve Analysis to More
Complicated Reservoirs - Permeability Heterogeneity and Fractures 168
8.1 Introduction 168
8.1.1 Heterogeneous Formation Considerations 168
8.2 Geological Model of a Fractured System 170
8.3 Mathematical Introduction and Overview of the Fracture Model 174
8.4 Construction and Development of the Type Curves 177
8.4.1 Model Assumptions 177
8.4.2 Limiting Equations Used in Construction 178
8.4.3 New Dual Porosity Dimensionless Parameters 186
8.5 Applications 190
8.6 Experiments with Fractured Media 191
8.7 Model Descriptions 192
8.8 Simulation Output. 195
8.9 Analysis of Experimental Results 200
8.9.1 Matching of Experimental Rate-Time Data to Posten-Chen Type Curves 205
8.9.2 Comparison of Rate-Time and Cumulative-Time Data between Fracture Types 209
8.9.3 Comparison of the $\Delta \mathrm{q} / \mathrm{q}$ vs. $\mathrm{q}_{\text {cum }} / \mathrm{q}$ Data between Fracture Types 216
8.9.4 Comparison of Derivative Data between Fracture Types 228
8.9.5 Comparison of $\left(t_{p}+\Delta t\right) / \Delta t$ vs. Time Data between Fracture Types 239
8.10 Summary of Surface Diagram Interpretation. 242
8.11 Summary of Primary Diagnostic Indicators. 243
CHAPTER NINE - Summary and Conclusions. 245
9.1 Summary 245
9.2 Conclusions 251
9.3 Recommendations for Future Research. 251
NOMENCLATURE 253
REFERENCES 255
Appendix A: Derivation of Use of Inflow Performance in Two Phase Approximations 259
Appendix B: Algorithm for Estimating PVT Properties for use in Simulation 267
Appendix C: Guide To Estimating And Deriving The Reservoir Properties Needed In Reservoir Simulation and Two Phase Analytical Calculations From Field Production Data 285
Appendix D: Tabular Generalized Type Curve Solutions 311
Appendix E: Derivation of Generalized Dimensionless Decline for General Reservoir Shapes and Well Positions 334
Appendix F: Effective Wellbore Radius of a Horizontal Well. 343
Appendix G: Tabular Data-Fractured Reservoir Simulation Experiments. 352

List of Tables

Table 3.1 Tabular Simulation Pressure Output 20
Table 3.2 Tabular Simulation Saturation Output 20
Table 3.3 Vertical Comparison Output 20
Table 5.1 Shape Factors for Use in Generalized Decline Curves 69
Table 5.2 Correction Factors for Reservoir Shapes 82
Table 5.3 Derivative of Production Data from Golan Reference. 93
Table 7.1 Vertical and Horizontal Well Data 137
Table 7.2 Slopes of Various Portions of the Decline Curve 150
Table 7.3 Relation of Permeability Ratio to Cumulative Departure Times.. 159
Table 8.1 Simulation Model Parameters 193
Table 8.2 Graph Output Generated 197
Table 8.3 Type Curve Match Summary Information 207
Table 8.4 Predominant Characteristics of Rate-Time and Rate Cumulative Data Behavior 215
Table 8.5 Predominant Characteristics from $\Delta q / q$ versus $q_{\text {cum }} / q$ 227
Table 8.6 Predominant Characteristics of the Derivative Plots. 238
Table 8.7 Comparisons of $\left(t_{p}+\Delta t\right) / \Delta t$ Plots. 241
Table 8.8 Summary of Other Fracture Type Characteristics. 244
Table B-1 Sample PVT Program Output. 276
Table C-1 GOR Analysis for PVT Estimation 289
Table C-2 Program OILPROP Output 290
Table C-3 Example Core Analysis 293
Table C-4 Relative Permeability Estimates From Willhite General Form 293
Table C-5 Ratio Of Produced Fluid Flows 295
Table C-6 Gas-Oil Relative Permeability Data and Construction 300
Table C-7 Capillary Pressure Calculation Data 309
Table D-1 Tabular Data for Fetkovich Decline Type Curves Figures 5.1-5.4 312
Table D-2 Tabular Data for Fetkovich Decline Type Curves Figures 5.1-5.4 Transient Portion 314
Table D-3 Arps Depletion Solutions for Fetkovich Type Curves Figures 5.1-5.4 315
Table D-4 Equivalent Radial Transient Generalized Solutions Shape Factor 31.62 316
Table D-5 Depletion Solutions Generalized for Figure 5.9. 318
Table D-6 Depletion Solutions Generalized for Figure 5.7 322
Table D-7 Depletion Solutions Generalized for Figure 5.8 326
Table D-8 Derivative Solutions For Type Curve 330
Table D-9 Arps Derivative Solutions For Type Curve 333
Table G-1 Model 1 Type 1 Fracture Simulation Output and Calculations. 353
Table G-2 Model 1h Type 1h Fracture Simulation Output and Calculations. 356
Table G-3 Model \ln Type \ln Fracture Simulation Output and Calculations. 360
Table G-4 Model 1nh Type 1nh Fracture Simulation Output and Calculation. 364
Table G-5 Model 2 Type 2 Fracture Simulation Output and Calculations. 368
Table G-6 Model 2h Type 2h Fracture Simulation Output and Calculations. 372
Table G-7 Model 3 Type 3 Fracture Simulation Output and Calculations. 376

Table G-8 Model 3h Type 3h Fracture Simulation Output and Calculations.... 380
Table G-9 Model 4 Type 4h Fracture Simulation Output and Calculations..... 384

List of Figures

Figure 2.1 Cartesian Rate versus Cumulative 6
Figure 2.2 Log-Log Rate versus Cumulative 6
Figure 2.3 Cartesian Rate versus Time 6
Figure 2.4 Log-Log Rate versus Time 6
Figure 3.1 Viscosity and Formation Volume Factor as a Function of Pressure. 13
Figure 3.2 Mobility Factor as a Function of Pressure. 15
Figure 3.3 Relative Permeability versus Phase Saturation. 17
Figure 3.4 PVT Data as a Function of Pressure. 17
Figure 3.5 Relative Permeability-Viscosity-Formation Volume Factor Function versus Pressure 18
Figure 3.6 Oil Saturation versus Pressure 18
Figure 3.7 Rate versus Pressure for Vertical Well Case of Permeability Anisotropy but Constant Geometric Average Permeability. 19
Figure 3.8 Comparison of Simulated Rate versus Pressure for Cases of Anisotropic Horizontal Permeability but Constant Geometric Mean Permeability. 23
Figure 3.9 Comparison of Simulated with Analytical for Isotopic Permeability. 24
Figure 3.10 Comparison of Simulated and Analytical with Anisotropic Permeability 24
Figure 3.11 Comparison of Simulated and Analytical with Anisotropic Permeability 25
Figure 4.1 Dimensionless Rate versus Time. 28
Figure 4.2 Generalized Arps-Fetkovich Dimensionless Decline Curve 38
Figure 5.1 Dimensionless Rate versus Dimensionless Time. 47
Figure 5.2 Arps Depletion Decline for Values of b from 0 to 1 53
Figure 5.3 Fetkovich Type Curve - Transient and Depletion. 55
Figure 5.4 Final Composite Fetkovich Type Curve - Transient and Depletion. 55
Figure 5.5 Type Curve Matching 59
Figure 5.6 Generalized Type Curve Transient and Exponential Depletion for Circular Shape Factor 68
Figure 5.7 Generalized Type Curve Rectangular Shape Factor $\mathrm{x}: \mathrm{y}: 2: 1$ 72
Figure 5.8 Generalized Type Curve Rectangular Shape Factor $\mathrm{x}: \mathrm{y}: 4: 1$ 73
Figure 5.9 Generalized Type Curve Rectangular Shape Factor $\mathrm{x}: \mathrm{y}: 2: 1$ Off-Center Close to Boundary. 74
Figure 5.10 Composite Fetkovich Type Curve 78
Figure 5.11 Dimensionless Rate Derivative Radial Transient Portion 87
Figure 5.12 Derivative Type Curve Radial Case 87
Figure 5.13 Decline Dimensionless Rate Derivative Transient 88
Figure 5.14 Arps Derivative Decline Dimensionless Rate Decline 89
Figure 5.15 Composite Derivative Type Curve. 90
Figure 5.16 Example Production Data-Derivative Method. 94
Figure 5.17 Derivative Type Curve 94
Figure 6.1 Schematic Diagram of Fully Penetrating Vertical Well versus Equivalent Horizontal Well. 102
Figure 6.2 Comparison of Simulated Vertical and Equivalent Horizontal Flow Rates. 102
Figure 6.3 Simulated versus 2-Phase Analytical Equations $\mathrm{k}_{\mathrm{x}}=\mathrm{k}_{\mathrm{y}}=3.1 \mathrm{md}$, Geometric Mean Perm Constant 108
Figure 6.4 Simulated versus 2-Phase Analytical Equations $\mathrm{k}_{\mathrm{x}}=9.61, \mathrm{k}_{\mathrm{y}}=1$, Geometric Mean Perm. Constant 108
Figure 6.5 Simulated versus 2-Phase Analytical Equations $\mathrm{k}_{\mathrm{x}}=19.22, \mathrm{k}_{\mathrm{y}}=0.5$, Geometric Mean Perm. Constant. 109
Figure 6.6 Simulated Rates For Various x and y Permeability Contrasts but Constant Geometric Means 111
Figure 6.7 Deviation from Isotropic as \# Grid Blocks Increases $L=400 \mathrm{~h}=25$, $2 \mathrm{Xe} / \mathrm{L}=10$ Case 119
Figure 6.8 Deviation from Isotropic as \# Grid Blocks Increases $L=600 \mathrm{~h}=25$, $2 \mathrm{Xe} / \mathrm{L}=6.7$ Case 120
Figure 6.9 Deviation from Isotropic as \# Grid Blocks Increases L=1000 $\mathrm{h}=25,2 \mathrm{Xe} / \mathrm{L}=4$ Case 120
Figure 6.10 Variation in Rate-Pressure With Change in $\mathrm{k}_{\mathrm{x}} / \mathrm{k}_{\mathrm{y}}$ Ratio, L-1000, $2 \mathrm{Xe} / \mathrm{L}=4$ 121
Figure 6.11 Variation in Rate-Pressure With Change in $\mathrm{k}_{\mathbf{x}} / \mathrm{k}_{\mathrm{y}}, \mathrm{L}=1000$, $\mathrm{h}=100,2 \mathrm{Xe} / \mathrm{L}=19$ 121
Figure 6.12 Deviation from Isotropic as L Changes $\mathrm{k}_{\mathrm{x}} / \mathrm{k}_{\mathrm{y}}=3.1$ case above 1500 psi, h=25 122
Figure 6.13 Deviation from Isotropic as L Changes, $\mathrm{k}_{\mathrm{x}} / \mathrm{k}_{\mathrm{y}}=6.2$ case above 1500 psi, h=25 122
Figure 6.14 Deviation from Isotropic with Change in L above 1500 psia, $\mathrm{h}=25 \mathrm{ft}, 784$ grids, $2 \mathrm{Xe} / \mathrm{L}=4$ to 10 Small Model. 124
Figure 6.15 Deviation from Isotropic with Change in L above 1300 psia, $\mathrm{h}=25 \mathrm{ft}, 784$ grids, $2 \mathrm{Xe} / \mathrm{L}=4$ to 10 Small Model. 124
Figure 6.16 Deviation from Isotropic with Change in L above 1500 psia, $\mathrm{h}=100 \mathrm{ft}, 784$ grids, $2 \mathrm{Xe} / \mathrm{L}=4$ to 10 Small Model. 125
Figure 6.17 Deviation from Isotropic with Change in L above 1300 psia, $\mathrm{h}=100 \mathrm{f}, 784$ grids, $2 \mathrm{Xe} / \mathrm{L}=4$ tol0 Small Model. 125
Figure 6.18 Deviation from Isotropic with Change in L above 1500 psia , $\mathrm{h}=25 \mathrm{ft}, 784$ grids, $2 \mathrm{Xe} / \mathrm{L}=19$ to 48. 126
Figure 6.19 Deviation from Isotropic with Change in L above 1500 $\mathrm{psia}, \mathrm{h}=25 \mathrm{ft}, 784$ grids, $2 \mathrm{Xe} / \mathrm{L}=19$ to 48. 126
Figure 6.20 Deviation from Isotropic with Change in L above 1500 psia, h=100 ft, 784 grids, $2 \mathrm{Xe} / \mathrm{L}=19$ to 48. 127
Figure 6.21 Deviation from Isotropic with Change in L above 1500 psia, $\mathrm{h}=100 \mathrm{ft}, 784$ grids, $2 \mathrm{Xe} / \mathrm{L}=19$ to 48 127
Figure 6.22 Deviation Trend as Ld Varies With Chang in h, Small Model- $k_{x} / k_{y}=3.1$ 128
Figure 6.23 Deviation Trend as Ld and L/2Xe Varies - Small Model- $k_{x} / k_{l}=3.1$ 129
Figure 6.24 Deviation Trend as Ld and L/2Xe Varies - Small Model- $k_{x} / k_{y}=6.2$. 129
Figure 6.25 Deviation Trend as Ld and L/2Xe Varies - Large Model- $k_{x} / k_{y}=3.1$ 130
Figure 6.26 Deviation Trend as L_{d} and $\mathrm{L} / 2 \mathrm{Xe}$ Varies - Large Model- $\mathrm{k}_{\mathrm{x}} / \mathrm{k}_{\mathrm{y}}=6.2$. 130
Figure 7.1 Simulated Horizontal vs. Vertical Flow Rates-Same Reservoir Parameters 138
Figure 7.2 Generalized Type Curve Square Depletion 138
Figure 7.3 Equivalent Horizontal Wellbore Radius 143
Figure 7.4 Model Geometry 146
Figure 7.5 3 Well System $\mathrm{k}_{\mathrm{x}}=19.22, \mathrm{k}_{\mathrm{y}}=0.5 \mathrm{md}$, with Isotropic Case Displayed Geometric Mean Permeability is 3.1 md 147
Figure 7.6 3 Well System $\mathrm{k}_{\mathrm{x}}=19.22, \mathrm{k}_{\mathrm{y}}=0.5 \mathrm{md}$, Geometric Mean Permeability is 3.1 md 148
Figure 7.7 3 Well System $\mathrm{k}_{\mathrm{x}}=3.1, \mathrm{k}_{\mathrm{y}}=3.1 \mathrm{md}$, Isotropic Case Displayed Geometric Mean Permeability is 3.1 md 148
Figure 7.83 Well System $\mathrm{k}_{\mathrm{x}}=3.1, \mathrm{k}_{\mathrm{y}}=3.1 \mathrm{md}$, Geometric Mean Permeability is 3.1 md 149
Figure 7.9 Depiction of Slope Areas for Table 7. 149
Figures 7.10 to 7.13 - Anisotropic Pressure Distribution Profiles for Figure 7.5 151
Figures 7.14 to 7.17 - Anisotropic Pressure Distribution Profiles for Figure 7.5 152
Figures 7.18 to 7.21 Isotropic Case Pressure Distribution Profiles. 153
Figures 7.22 to 7.25 Isotropic Case Pressure Distribution Profiles. 154
Figure 7.263 Well System with Different Permeability Path Comparisons. 155
Figure 7.27 Productivity Index versus Time $\mathrm{k}_{\mathrm{x}}=19.22, \mathrm{k}_{\mathrm{x}}=0.5$ Case 155
Figure 7.282 Competing Wells along Different Permeability Paths Contrasted with Homogeneous Case Geometric Mean Permeability is Identical 157
Figure 7.292 Competing Wells Along Different Permeability Directions. 157
Figure 7.30 Cumulative Production Versus Time Different Permeability Path.. 157
Figure 7.312 Competing Wells along Different Permeability Paths Contrasted with Homogeneous Case Geometric Mean Permeability is Identical 158
Figure 7.322 Competing Wells Along Different Permeability Directions. 158
Figure 7.33 Cumulative Production Versus Time Different Permeability Path.. 158
Figure 7.342 Well Case of Wells Oriented along Permeability Paths, Equal Geometric Means 159
Figure 7.35 Dimensionless Pressure versus Time for Horizontal Wells. 164
Figure 7.36 Drainage Area Over Time 165
Figure 8.1 Posten-Chen Type Curve for Fractured Reservoir 172
Figure 8.2 Posten-Chen Decline Type Curve Reconstruction - Fractured Reservoir Model- ω (storage capacity) $=0.1$ 173
Figure 8.3 Comparison Fetkovich(dashed lines) with Posten-Chen Decline Type Curve Reconstruction - Fractured Reservoir Model-Storage Compressibility $\omega=0.1$ 183
Figure 8.4 Fracture Dimensionless Rate versus Dimensionless Time Horizontal Well. 186
Figure 8.6 Dimensionless Type Curve for Variations in Storage Compressibility 189
Figure 8.7 Dimensionless Type Curves for Variations in Fracture Intensity 189
Figures 8.8-16 Rate Time Plots For Various Fracture Types. 201
Figure 8.17 Composite Rate-Time Relationship Semi-Log Scale 204
Figure 8.18 Composite Rate-Time Relationship Log-Log Scale 204
Figure 8.19 Type Curve Matching Example 206
Figure 8.20 Comparison of the Effect of Matrix Permeability in Cases of Large Matrix Storage Capacity - Types 2 and 3 209
Figure 8.21 Early Time Comparison of the Effect of Matrix Permeability in Cases of Large Matrix Storage Capacity - Types 2 and 3 210
Figure 8.22 Late Time Comparison of the Effect of Matrix Permeability in Cases of Large Matrix Storage Capacity - Types 2 and 3 211
Figure 8.23 Comparison of the Cumulative Production Effects of Matrix Permeability in Cases of Large Matrix Storage Capacity - Types 2 and 3 212
Figure 8.24 Effect of Increasing Fracture Storage Capacity on Systems with Low Matrix Permeability 213
Figure 8.25 Effect of Increasing Fracture Storage Capacity from 1% to 18% of System Total 214
Figure 8.26 Model Types 2 (log-log) $\Delta p / q$ Compared to $\Delta q / q$ versus $q_{\text {cum }} / q$ 218
Figure 8.27 Model Type 3 (semi-log) $\Delta p / q$ Compared to $\Delta q / q$ versus $\mathrm{q}_{\text {cum }} / \mathrm{q}$. 218
Figure 8.28 Model Type 3 (log-log) $\Delta p / q$ Compared to $\Delta q / q$ versus $\mathrm{q}_{\mathrm{cum}} / \mathrm{q}$ 218
Figure 8.29 Type 1 Fracture Increasing Matrix Pore Volume Relative to Fracture Volume λ^{\prime} 220
Figure 8.30 Type 1 Fracture Increasing Matrix Pore Volume Relative to Fracture Volume λ^{\prime} 220
Figure 8.31 Expanded Type 1, \ln, 1nh Fracture Model-Effect of Increasing Matrix Pore Volume Relative to Fracture and Change in $\mathrm{k}_{\mathrm{f}} / \mathrm{k}_{\mathrm{m}}$ Log-Log. 221
Figure 8.32 Expanded Type 1, In, 1nh Fracture Model-Effect of Increasing Matrix Pore Volume Relative to Fracture and Change in $\mathrm{k}_{\mathrm{f}} / \mathrm{k}_{\mathrm{m}}$ Semi-Log. 221
Figure 8.33 Effect of Increasing Fracture Storage Capacity in Case of Poor Matrix Permeability Log-Log 222
Figure 8.34 Effect of Increasing Fracture Storage Capacity in Case of Poor Matrix Permeability Expanded Semi-Log 223
Figure 8.35 Effect of Increasing Matrix Permeability Relative to Fracture Permeability in Case of Large Matrix Storage Capacity 224
Figure 8.36 Cartesian Plot of $\Delta q / q$ versus $q_{\text {cum }} / q$ Showing Effect of Matrix Pore Volume on Slope 225
Figure 8.37 Expanded Cartesian Plot of $\Delta q / q$ versus $q_{\text {cum }} / q$, type 2 - Effect of Fracture-Matrix Permeability in Large Relative Matrix Pore Volume Case 226
Figure 8.38 First Derivative of Rate with respect to Time 229
Figure 8.39 Second Derivative of Cumulative with respect to Time 229
Figure 8.40 Q " versus Time-Effect of Change in $\mathrm{k}_{\mathrm{f}} \mathrm{k}_{\mathrm{m}}$, Large Constant Matrix Storage 230
Figure $8.41 Q^{* *}$ versus Time-Effect of Change in $k_{f} k_{m}$, Large Constant Matrix Storage 231
Figure $8.42(\Delta q / q)^{\prime}$ versus Time-Effect of Change in k_{f} / k_{m}, Large Constant Matrix Storage 231
Figure 8.43 Q'" versus time- Effect of Changing the Relative Matrix to Fracture Storage 232
Figure 8.44 Q"t versus time- Effect of Changing the Relative Matrix to Fracture Storage 233
Figure 8.45 ($\Delta q / q)^{\prime}$ versus time- Effect of Changing the Relative Matrix to Fracture Storage 233
Figure 8.46 Effect of Permeability Compartments Inside Fracture 234
Figure 8.47 Summary of Various Model Rate Derivatives 235
Figure 8.48 Plot of $\Delta \mathrm{q}$ and $\mathrm{q}^{\prime *} \mathrm{t}$ versus time for the models exhibiting $10,000 \mathrm{md}$ fracture permeability. 236
Figure 8.49 Plot of $\Delta q / q$ and $q{ }^{\prime *} t$ versus time for the models exhibiting $10,000 \mathrm{md}$ fracture permeability 237
Figure 8.50 Effect of Increase in Relative Matrix Storage Volume-Poor Matrix Permeability $-\Delta q$ versus $\left(t_{p}+\Delta t\right) / \Delta t$ 239
Figure 8.51 Effect of Change in Matrix Permeability in Case of Large Matrix Storage Capacity- $\Delta \mathrm{q}$ versus $\left(\mathrm{t}_{\mathrm{p}}+\Delta \mathrm{t}\right) / \Delta \mathrm{t}$ 240
Figure $8.52 \Delta q$ versus $\left(t_{p}+\Delta t\right) / \Delta t$ 241
Figure 8.53 Surface Diagram of Average Pressure across Model Day 18 242
Figure 8.54 Surface Diagram of Oil Saturation across Model Day 18. 242
Figure A-1 Mobility Function versus Pressure. 261
Figure C-1 Graph of PVT Data From Oilprop Program. 291
Figure C-2 Derived Relative Permeability Curves. 294
Figure C-3 Final Relative Permeability Curve. 296
Figure C-4 Gas Oil Relative Permeability. 300
Figure C-5 Change in IPR with Depletion. 305
Figure C-6 Saturation v. Depth Profile 310
Figure C-7 Capillary Pressure Profile. 310
Figure F1 Potential Flow to a Horizontal Well-Horizontal Plane. 345
Figure F-2 Division of 3D Horizontal Well Into Two 2-D Problems. 346

Abstract

This research extends previously developed dimensionless decline type curve concepts and techniques to more general cases of varying reservoir shapes, well locations and anisotropic permeability conditions. The research also introduces some novel approaches to estimating, from field production data, the simulation reservoir properties such as oilwater and gas-oil relative permeability relationships, PVT properties, and capillary pressure in the absence of laboratory measurements. Semi-analytical two-phase analytic equations are then developed that approximate the two phase flow in solution gas reservoirs for use as a "quick-look" tool to validate simulation model design by comparing expected and actual simulation output. Techniques and correlation curves based on simulation experiments are then generated to aid in proper simulation model design in cases where directional permeability is highly anisotropic. The last part of the research explores anisotropic and fracture permeability conditions for both vertical and horizontal wells where anisotropic and fractured reservoirs are modeled and studied in an effort to characterize fracture-matrix characteristics based on rate-time decline curve character.

It is not generally known that the "Fetkovich" decline type curves were developed for only single-phase radial systems with centrally located wells. This research derives the dimensionless decline rate and time relationships for the cases of more general reservoir geometry and well location. These relationships are then used to construct new type curves for various reservoir shapes and well locations. The data are then tabulated and
combined with "Arp's" depletion stems to form more general dimensionless decline curves and tabular data. A set of derivative curves is also generated, tabulated and plotted. These generalized decline curves are then modified for use with horizontal wells by incorporation of the equivalent well bore radius concept into the decline curve construction and display.

Extensive simulation experiments then demonstrate the effects of horizontal permeability anisotropy on well performance. The experiments confirmed the hypothesis that there are problems in properly simulating horizontal wells in horizontally anisotropic reservoirs. It is shown that unless the reservoir is extremely large in comparison to the length of the horizontal well, deviation from permeability isotropy in the principal x and y directions will yield results that deviate from that predicted by commonly accepted traditional geometric mean averaging. All analytical flow equations use the geometric mean permeability. Extensive experiments show however that as the contrast in x and y permeability increases, while maintaining a constant geometric mean horizontal permeability, the simulated horizontal flow rates deviate increasingly from one another. This deviation does not occur when simulating vertical wells. Graphical relationships showing the effect of permeability anisotropy as a function of dimensionless well length, grid block spacing etc. are presented based on the results of extensive simulation experiments.

Finally, the production rate decline characteristics of fractured reservoirs intersected by horizontal wells are studied through simulation experiments. Tables and charts are
produced that help classify each of four different fracture types through characteristic rate-time decline patterns. Pressure data is purposely ignored in an effort to utilize only data that would be typically available to the practicing engineer.

CHAPTER ONE

Introduction and Objectives

The two quantities one usually wishes to determine from decline curve analysis are remaining oil reserves and remaining productive life of the well or reservoir. The forecasts of reserves and future production are the most important items in a reservoir evaluation. Other desirable but normally difficult to determine reservoir parameters include permeability, drainage area, drainage shape and fracture characteristics. Reserve estimating methods are usually categorized into three families: analogy, volumetric, and performance techniques. Performance technique methods are usually further subdivided into simulation studies, material balance and decline-trend analysis.

Special problems occur with well prediction in anisotropic reservoirs particularly with well performance prediction in fractured reservoirs. The end of the infinite acting period is often abrupt and unpredictable. Post infinite acting flow is also quite variable depending on matrix supply support and micro fractures. Therefore decline curve analysis may give insight into fracture nature and type.

This research is primarily concerned with developing methods for better reservoir modeling and interpretation of decline curves using both analytical and empirical decline curve concepts for both vertical and horizontal wells in irregular shaped, anisotropic and fractured reservoirs. Specific attention is focused on reservoirs that in general exhibit
anisotropy in directional permeability. Recognition of fracture type from decline curves is also addressed. Inflow performance relations (IPR) and material balance concepts will also be addressed. Type curves, which combine 1) the rate and 2) rate derivative functions, or a group of terms involving these functions, with respect to time, or a group of terms involving time, will also be constructed for various reservoir systems. Adaptation to both vertical and horizontal wells will be addressed. Emphasis will be placed on developing equations and methods to forecast future performance, to calculate reserve estimates and ultimate recovery, classify fracture types and to identify permeability anisotropy. Both naturally fractured and heterogeneous media with vertical and horizontal wells will be examined.

CHAPTER TWO

Decline Curve Background

2.1 History of Decline Curve Theory

Decline curves are the most common means of forecasting production and estimating the value of oil and gas wells. The earliest literature reference to a mathematical decline analysis approach was by Arnold and Anderson in 1908. ${ }^{1}$ The various methods used to interpret decline curves have generally been regarded as empirical and not reliable. However, in 1980 Fetkovich demonstrated that decline curve analysis not only has a solid fundamental base but also provides a tool with more diagnostic power than had been previously suspected. Fetkovich constructed log-log type curves, which combine all the standard exponential, hyperbolic and harmonic decline equations developed by Arps with the analytical constant-pressure infinite and finite reservoir solutions. ${ }^{2,3} \mathrm{He}$ showed that log-log type curves could be analyzed by the type curve matching technique. His type curves were developed for radial reservoirs only. This research will extend these curves to all reservoir shapes and well positions.

2.2 Review of Decline Curve Methods

Decline curve analysis adds the time dimension to the analysis of well performance. Traditional decline curve analysis considers particular cases of production decline in wells producing with constant wellhead pressure that can be treated without explicit material balance calculations. Constant pressure production implies a continuous drop of
production rate with time. Production with constant wellhead pressure of a separator or a pipeline without the restriction of a choke is typical of low productivity wells and old high rate wells when wellhead pressure has already reached the minimum delivery pressure required to maintain flow. The constant flowing wellhead pressure that exists in practical problems does not correspond rigorously to a constant flowing bottomhole pressure, which is assumed in developing traditional deciine curve analysis. In fact, bottomhole pressure does change if the flow rate declines gradually and wellhead pressure is maintained constant. In many cases this is not a serious restriction as the changes are small and result in only minor losses of accuracy. However in many cases there is loss of accuracy and other methods must be developed to predict decline, ultimate recoveries and reserves in place.

From a practical standpoint, transient decline is only observed in wells with low permeability or during the early life of well production. Depletion decline, also known as pseudo steady state (PSS) decline, is observed for all wells producing by expansion, solution gas, gravity drainage or partial water drive. PSS decline occurs after the radius of drainage has reached the outer boundaries and the well is draining a constant reservoir volume.

Decline curve analysis assumes a tank type model. Important to the use of tank type models is the interpretation of a reservoir pressure or rate and production history to determine the oil in place and whether or not the reservoir has water influx. Tank type
models assume the 1) reservoir pore volume is constant, 2) the reservoir temperature is constant, 3) the reservoir has uniform porosity and relative permeability, 4) equilibrium conditions exist at all times in the reservoir. Pressure is assumed to be uniform throughout the reservoir. Deviations of decline or production performance curves from the homogeneous models may yield reservoir information.

It was first assumed that where water drive was absent, the pressure is proportional to the amount of remaining oil and that the productivity indices were constant throughout the well life. In such a hypothetical case, the relationship between cumulative oil produced and pressure would have to be linear and consequently, also the relationship between production rate and cumulative production. This linear relationship between rate and cumulative is typical of exponential or semi-log decline as will be shown later.

In most reservoirs, however, the aforementioned idealized conditions do not occur. Pressures usually are not proportional to the remaining oil, but seem to decline at gradually slower rates as the amount of remaining oil diminishes. At the same time the productivity indices are generally not constant, but show a tendency to decline as the reservoir is being depleted and the gas-oil ratios increase. The combined result of these two tendencies is a rate-cumulative relationship, which, instead of being a straight line on coordinate paper, shows up as a gentle curve, convex toward the origin.

2.3 Characteristics of Decline Analysis

Cumulative production and/or time are normally the independent variable (x) and production rate is the dependent variable (y). Figures 2.1-2.4 show the typical Cartesian and $\log -\log$ plots of rate-cumulative and rate-time plots. The two most commonly used curves are rate-time and rate-cumulative production curves.

Figure 2.1 Cartesian Rate versus Cumulative

Figare 2.3 Cartesian Rate versus Time

Figure 2.2 Log-Log Rate versus Cumulative

Figure $2.4 \log -\log$ Rate versus Time

Decline curve analysis is normally done by extrapolation of a performance trend that follows a certain pattern. For extrapolation purposes, this variable has to be 1) more or less a continuous function of the independent variable and 2) it must have a known endpoint. By plotting the continuously changing dependent variable (i.e. rate) vs. the independent variable (cumulative production or time) and extrapolating the trend until the known endpoint, an estimate of the remaining reserves, remaining life and future performance in time can be estimated. The method assumes that whatever caused the controlled trend of the curve in the past will continue in the future. This by nature then is empirical and mathematical expressions of the trend curve based on physical considerations are difficult and applicable in only a few simple cases.

Gradual changes in the production rate of a well may be caused by the 1) decreasing efficiency or effectiveness of the lifting equipment, 2) reduction of the productive index or increase in skin as a result of physical changes in the near well bore environment, 3) changes in bottomhole pressure, GOR, water percentage, or other reservoir conditions 4) Discontinuities in the outlying reservoir.

Production decline, caused by reservoir conditions, must be distinguished from that caused by wellbore conditions or failure of lifting equipment to be used for reserve estimation. When lifting equipment is operating properly and wellbore conditions are satisfactory, a declining production trend must reflect changing reservoir conditions and
the extrapolation of such a trend can then be a reliable guide to prediction of remaining reserves.

2.4 Special Case of Solution Gas Drive Reservoirs

A solution gas drive reservoir is an oil reservoir that undergoes primary depletion with the main reservoir energy supplied by 1) the release of gas from the oil and 2) the expansion of the in-place fluids as the reservoir pressure drops. This excludes reservoirs that have significant water influx, oil and gas segregation and gravity assistance. Solution gas drive is also called dispersed gas drive or internal gas drive because the gas come out of solution throughout the portion of the oil zone that has a pressure below the bubblepoint. Initially, pore space contains interstitial water plus oil that contains gas in solution because of pressure. No free gas is assumed to be present in the oil zone. As production continues, the reservoir pressure drops below the bubblepoint, the oil shrinks, the gas that comes out of solution fills part of the pore space and there is minor water expansion. The drive mechanism (gas evolution and expansion) is dispersed or scattered throughout the oil zone.

The evolved gas, less any produced gas, fills the pore space vacated by the produced oil and by shrinkage of the remaining oil. The amount of oil recovered depends on the amount of pore space occupied by gas $\left(S_{8}\right)$ and the oil shrinkage (B_{0} vs. pressure). Gasoil relative permeability characteristics and viscosity of oil and gas are important because
they determine the flowing GOR at a given S_{g} and thus the amount of free gas produced along with the oil.

Solution gas drive reservoir performance is characterized by 1) relatively rapid pressure decline, 2) low initial producing GOR rising to a much higher GOR, 3) oil production rates declining because of both 1 and 2,4) little or no water production, 5) relatively low oil recovery. These reservoirs are ideal secondary waterflood candidates and thus merit considerable research.

CHAPTER THREE

Extending Analytical Solutions to Two Phase for Comparison with Reservoir Simulation Output

3.1 Introduction

As mentioned previously, pseudosteady state, where pressure and thus well performance decreases with time, is the most common reservoir condition. Reservoir simulation is an important tool in reservoir modeling. However blindly jumping into simulation without accurately establishing reservoir and model parameters can lead to erroneous results. It is therefore desirable to develop and use simplified multi-phase analytical methods to estimate reasonable ranges of simulation results. In other words if the simulation yields performance data that deviate significantly from the basic muti-phase analytical methods presented in this paper then the model should be scrutinized for possible errors or simulation instabilities.

This chapter will demonstrate that pseudosteady state, multi-phase analytical approximations to vertical well fluid flow in both isotropic and anisotropic media closely match simulated results without the use of Muskat's pressure integral analysis. ${ }^{4}$ The modification of single phase analytical fluid flow equations to include pressure dependant relative permeability, viscosity and formation volume factor at arithmetically averaged reservoir pressure and phase saturation (presented in this research) give results close to those when using more complicated methods. Thus a "quick-check" method is provided for use in verifying simulation parameters such as proper grid spacing, grid size and reservoir parameters.

It will also be demonstrated that, for vertical wells, the use of this effective horizontal permeability, k_{h}, as the geometric average, results in simulated rate versus pressure data that match analytical results quite well in both isotropic and highly anisotropic conditions. Simulation experiments with Boast-VHS simulation software indicate that vertical well inflow performance predictions match those predicted with analytical equations quite well no matter what the contrast in k_{x} and k_{y} as long as the geometric average is the same in each case compared. The match is also excellent between various simulation experiments in which the geometric average is the same but the components k_{x} and k_{y} vary widely. This match is good both above and below the bubble point.

Experiments with horizontal wells indicate that the match is often not good with horizontal wells unless the simulation model is closely monitored. This may be a result of either a lack of sufficient grid blocks near the well bore or other misconceptions as to what constitutes effective permeability to a lateral well. The horizontal well aspects will be explored in more detail in chapters six and seven.

3.2 Two Phase Background and Theory

This simplified analysis incorporates the effects of pressure-saturation dependant variables such as relative permeability, formation volume factor and viscosity. Relative permeability is indirectly related to pressure through the saturation-pressure function. The equation for single-phase pseudosteady state flow of a vertical well in a rectangular drainage area is given by the following equation:

$$
q=\frac{0.007078 k_{h} h\left(\overline{P_{R}}-P_{w f}\right)}{\mu_{o} B_{o}\left(\ln \frac{r_{e}}{r_{w}}-0.738\right)}
$$

P_{R} is the average reservoir pressure. Craft and Hawkins showed that for pseudosteady state conditions, the volumetric average reservoir pressure occurs at about one half the distance to the external radius (0.42 R). ${ }^{5}$ It is very desirable to easily compute oil flow analytically, above and below the bubble point, for use in a "quick-check" comparison with simulated results since much of pseudosteady state flow occurs below the bubble point. In order to represent saturated oil flow in analytic equations it is necessary to begin with the pressure integral concept. Figure 3.1 shows that for solution gas drive reservoirs, viscosity and formation volume factors are pressure dependent properties. ${ }^{4}$

Figure 3.1 Viscosity and Formation Volume Factor as a Function of Pressure

For undersaturated conditions, the combined variation of viscosity and formation volume factor decreases approximately linearly with pressure. The above equation would then be modified above the bubble point as:

$$
q=\frac{0.007078 k_{h} h}{\left(\ln \frac{r_{e}}{r_{w}}-0.738\right)} \int \frac{d p}{\mu_{o} B_{0}}
$$

The integral is evahuated from P_{wf} to P_{e} (the pressure at the external boundary). Since $1 / \mu_{0} \mathrm{~B}_{0}$ is a straight line, the area is a trapezoid (fig 3.1), so the integral can be represented by:

$$
\int \frac{d p}{\mu_{0} B_{0}}=\frac{P_{e}-P_{w f}}{\left(\mu_{0} B_{o}\right)_{\bar{P}_{k}}}
$$

Where, $\frac{1}{\left(\mu_{o} B_{o}\right)_{\bar{P}_{A}}}$ is the value at an average pressure $\mathrm{P}_{\mathrm{R}}=\left(\mathrm{P}_{\mathrm{e}}+\mathrm{P}_{\mathrm{w}}\right) / 2$. The resulting inflow equation, at average reservoir pressure for pseudosteady state conditions becomes:

$$
q=\frac{0.007078 k_{h} h\left(\overline{P_{R}}-P_{w f}\right)}{\left(\mu_{0} B_{o}\right)_{\bar{P}_{R}}\left(\ln \frac{r_{e}}{r_{w}}-0.738\right)}
$$

Golan ${ }^{+}$(166) and Muskat et al ${ }^{7}$ note that below the bubble point. (i.e. saturated reservoir conditions) equation 3 would become (neglecting skin and turbulence effects):

$$
q=\frac{0.007078 h k_{h}}{\left(\ln \frac{r_{e}}{r_{w}}-0.738\right)} \int \frac{k_{r_{o}}}{\mu_{o} B_{o}} d p
$$

The integral is evaluated from P_{wf} to $\mathrm{P}_{\text {Rave }}$

As noted in the literature, solving the pressure integral is not a trivial procedure. ${ }^{4}$ Evinger and Muskat ${ }^{7}$ (1942) and later Vogel ${ }^{8}$ et al noted however that the pressure function could be accurately represented versus pressure by a straight line ranging from $\mathrm{K}_{0} / \mu_{0} B_{0}$ at reservoir pressure (up to the bubble point) to the origin. (Fig 3.2) However, if this is the case, there is no need to evaluate the integral this way. If the straight-line assumption is valid, the problem reduces to expressing the area under the trapezoid situation again, as in the above bubble point region. Appendix A shows the derivation and proof of the use of this approximation. It is shown in Appendix A that this method is equivalent to using the straight-line IPR relationship. Extensions to more complex curvature can be made.

Figure 3.2 Mobility Factor as a Function of Pressure

It is then only necessary to evaluate the $\mathrm{k}_{\mathrm{r}} / \mu_{0} \mathrm{~B}_{0}$ at the average reservoir pressure at any given time. It will be shown that this method will give a good approximation. Two phase flow can then be described above and below the bubble point by equation 3.6 if one substitutes $\left(k_{r 0} / \mu_{0} B_{0}\right)_{\text {ave }}$ evaluated at average reservoir pressure.

$$
q=\frac{0.007078 h_{k_{h}}\left(\overline{P_{R}}-P_{w j}\right)}{\left(\ln \frac{r_{e}}{r_{w}}-0.738\right)}\left[\frac{k_{r o}}{\left(\mu_{o} B_{o}\right)}\right]_{S_{o} \overline{P_{R}}}
$$

Therefore since one knows or assumes the mobility as a function of pressure and saturation that is imput to simulators one can use the same function to analytically check against simulation output. Actually it seems to that $k_{r o}$ should be computed at the average oil saturation at any given average pressure situation rather than at the average pressure as proposed in Muskat. Muskat never mentions this in his paper but the integral of $k_{r 0}$ should
not be from $P_{w f}$ to P_{e} but from $S_{o i}$ to $S_{o c}$ since $k_{r o}$ is only indirectly related to pressure through the saturation function.

In other words, the pressure integral in equation 3.5 can be approximated by $\left(k_{n 0} / B_{0} \mu_{0}\right)_{\text {ave }}$ where $k_{n 0}$ is taken as the relative permeability at the arithmetically averaged oil saturation across the simulation grid and $\mathrm{B}_{0} \mu_{0}$ is the value at average reservoir pressure over the entire simulation grid at any given time step as long as the straight line assumption is valid. Since a relative permeability function that is a function of fluid saturation is input to the simulator, knowing the average grid-block saturation yields the average relative permeability across the model to use in the equation for calculation purposes.

The averaging process is desirable because it is so easy to evaluate tabular simulation output in a spreadsheet. Typical simulators like Boastvhs provide tabular output that can be imported to spreadsheets and averaged over gridblocks in a single operation. ${ }^{5}$ Then the data can be input into the analytical equations and compared to simulator calculations. The main question then is whether or not the straight-line assumption is really valid. As a test, equation 3.6 was tested against the simulation output of some real field examples of relative permeability, viscosity and formation volume factor values.

3.3 Comparing Analytical Solutions with Two Phase Simulations

An 11 by 13 block model (Table 1) was tested using real field data as shown in figures 3.33.6. Figure 3.5 shows $\left(k_{r 0} / \mu_{0} B_{0}\right)$ as a function of average reservoir pressure where k_{00} is
derived from the simulation relative permeability function (defined in terms of fluid saturation) at the grid averaged oil saturation indicated in figure 3.6. Appendix B provides the reader with the algorithm to compute PVT properties.

Figure 3.3 Relative Permeability versus Phase Saturation

Figure 3.4 PVT Data as a Function of Pressure

Figure 3.5 Relative Permeability-Viscosity-Formation Volume Factor Function versus Pressure

Oil Saturation vs. Pressure

Figure 3.6 Oil Saturation versus Pressure
and Appendix C provides a good guide that has been developed for estimating, from oilfield data, all the necessary simulation inputs such as relative permeability, capillary pressure, etc. Tables 3.2 and 3.3 detail the typical simulation output from Boastvhs utilized to evaluate average saturation and pressures at any given time. Table 3.4 tabulates the actual simulation output values and the calculated analytical values. Figure 3.7 illustrates graphically the comparison of simulated oil rate vs. average reservoir pressure with analytical oil rates versus average pressure for the various models using the case of a vertical well. Average horizontal absolute permeability, k_{h} is 3.1 md in all cases although contrasts in directional permeability are varied in the simulation. Therefore using the values of $\left(k_{0} / \mu_{0} B_{0}\right)_{\text {ave }}$ at the grid-wide average reservoir pressure and saturation conditions seems to match actual simulated results very well thus confirming that the straight line assumption is reasonably a good approximation.

Figure 3.7 Rate versus Pressure for Vertical Well Case of Permeability Anisotropy bat Constant Geometric Average Permeability

Table 3.2 and 3.3 Saturation and Pressure Profiles-Tabular Outpat with Graphics from import to Erced Spreadsheet

4-71tic

Same Ka but diferent disitution
w

Day	vercon=1Ky=0.61. $K=1$ antxy $K x=1 \mathrm{Y}=0.1$						verty Ky=19.22 Kx=0 mratyical Retes						Mo	E0	Ko	So
	Rats		moil	Pate	Preasure	amail	Pate	Prewerr	mat							
31	383	4822	221	378	1857	21.8	380	1850	228	377.18	378		0.788			
62	333	1788	322	322	1760	31.2	330	1784	334	377.18 358.3	359	377	0.7808	2231	R	75
123	290	1634	51.3	288	1805	49.7	307	1678	529	329.88	327	359	0.788	8	72	\%
214	273	4551	77.1	281	1550	74.5	282	1580	72.6	304.28	304	311	0.7835	1.2286	0.71	\%
395	243	1499	123.5	-209	1500	118.8	248	1508	127.1	277.98	278	280		12	8	. 74
578	219	1483	185	208	1467	157.6	221	1473	169.4	25.44	257	258	0.77	1.2	0.88	0.73
90	178	1418	288.7	185	1420	2287	198	1420	241.8	221.48	222	222	0.7877	12138		. 72
1308	180	1378	300.7	163	1384	291.6	170	1382	305.3	194.15	195	195	0.8031	1.208	2.53	07
2304	137	1298	458.9	138	1303	438.7	131	1300	448.8	139.98	141	140	0.8561	1.191	0.42	$0 \cdot 8$
3400	121	1225	596.5	119	1252	578	104	1228	578.4	10213	108	102	0.872	1.1	34	85
5068	86	1067	859.5	90	1109	843.7	78	1102	811.7	51.507	523	51.9	0.838			. 82
850	50	886	1043	67	1013	1018	47	985	983.8	25	282	51.8 2.3	. 0.888		1	0.57

Table $\mathbf{3 . 3}$ Vertical Comparison Output

3.4 Evaluation of Effective Horizontal Permeability Assumptions - Vertical Well Case

Notice also that three cases of directional permeability distributions were simulated and compared in simulation illustrated in Figure 3.7. Figure 3.7 shows that they each match each other very well no matter what the contrast in k_{x} and k_{y} as long as the geometric average of k_{x} and k_{y} is constant. Overall the vertical simulations match both one another and the analytical results in both isotropic and anisotropic media. It is significant that the match is good for both isotopic and anisotropic media. This also indicates that the common assumption that the geometric mean of permeability $\left(k_{h}=\right.$ sqrt $\left(k_{x} k_{y}\right)$ is a valid assumption for a vertical well and that the simulator accurately describes this relationship.

3.5 Evaluation of Effective Horizontal Permeability Assumptions - Horizontal Well Case

Figure 3.8 however shows that the simulated results of horizontal wells do no not match each other for anisotropic media even when the geometric mean is the same. It will be shown through simulation experiments, that published analytical solutions to horizontal well inflow at least track simulated results in cases of isotropic permeability (again above and below the bubble point) but they do not match simulated horizontal results as well in cases of horizontally anisotropic permeabiity (figures 3.9.3.10,3.11). This phenomenon may result from 1) the difficulty in properly modeling a horizontal well in a simple simulator like Boast and 2) the fact that if the well length is not small in comparison to the size of the reservoir, the geometric mean will not approximate the actual effective horizontal permeability. For
instance if the reservoir is semi-infinite, no other wells compete for drainage area, the reservoir is thick, and the well length is short compared to the reservoir dimensions then the geometric average of permeability may work well. The horizontal well would then appear small compared to the reservoir as a whole and the geometric average would give proper results. This is almost never the case in reality. The discrepancy in flow predictions seems to be related to well length, degree of penetration, permeability contrast and distance to the reservoir boundaries. If the simulator allows a large number of grid blocks then grouping smaller blocks near the horizontal wellbore may minimize problem. However in a simulator with grid block limitations such as Boastvhs, it does not appear that the horizontal well can be accurately modeled in cases of direction permeability anisotropy when the wellbore is long compared to the reservoir dimensions. This will be dealt with in more detail in chapters seven and eight.

Nevertheless equation 3.6 provides a framework to calibrate simulator parameters and resulting output for a test of "reasonableness". This equation can be extended to use in horizontal wells, as will be demonstrated in chapter 6 and 7.

Figure 3.8 Comparison of Simulated Rate versus Pressure for Cases of Anisotropic Horizontal Permeability but Constant Geometric Mean Permeability

Figure 3.9 Comparison of Simulated with Analytical for Isotopic Permeability

Figure 3.10 Comparison of Simulated and Analytical with Anisotropic Permeability

Figure 3.11 Comparison of Simulated and Analytical with Anisotropic Permeability

CHAPTER FOUR

Decline Curve Theory

4.1 Depletion Rate Decline (Pseudosteady State-PSS)

Pressure decreases according to the following relation in the case of constant rate depletion for undersaturated reservoirs with no flow boundaries:

$$
P_{R}=P_{t}-\frac{q_{p} B_{o}}{A h \phi_{c_{t}}} t
$$

In cases of constant pressure depletion, the expression for undersaturated reservoir rate decline is expressed as:

$$
q_{o}(t)=\frac{k h\left[p_{c}(t)-p_{w f}\right]}{141.2 \mu_{0} B_{0}\left[\ln \left(r_{c} / r_{w a}\right)\right]}
$$

The material balance equation relates the cumulative production N_{p} to the pressure $\mathrm{P}_{\mathrm{e}}(\mathrm{t})$ at the external boundary of the reservoir. It expresses the cumulative production as a function of the apparent total compressibility of the system $c_{a x}$, the hydrocarbon pore volume $V_{p}(1-$ S_{w}), and the pressure drop in the reservoir $\mathrm{p}_{i}-\mathrm{p}_{\mathrm{e}}(\mathrm{t})$. Where c_{a} is the apparent total compressibility of the system which varies with $p_{c}(t)$

$$
N_{p}=V_{p}\left(1-S_{w}\right) c_{m a}\left[p_{t}-p_{f}(t)\right]
$$

More complicated expressions can be constructed for saturated oil reservoirs. Tracy ${ }^{9}$ (1955) and Tarner ${ }^{10}(1944)$.

Rate time behavior during depletion has been treated rigorously by mathematicians who solve the flow equations analytically for particular boundary conditions of no flow at the outer boundary and constant pressure at the inner boundary (wellbore). Fetkovich ${ }^{3}$ (1980) presented a useful form of the solution of Tsarevich and Kuranov ${ }^{11}$ (1966) to prepare type curves of dimensionless rate versus dimensionless time (Figure 4.1). Observation of the type curves shows that transition from the infinite acting transient to the PSS is instantaneous at $t_{p a s}$ at least for the radial case. Irregular outer geometry will affect the infinite acting period and may accelaerate true pseudo-steady state production. In contrast to Fetkovich's purely radial form. this research will show how to construct type curves to illustrate this irregular boundary phenomenon for various reservoir shape factors and well positions within the reservoir.

Fetkovich ${ }^{3}$ prepared a type curve of dimensionless rate versus dimensionless time using the following relationship (figure 4.1):

$$
\begin{gather*}
q_{D}=\frac{141.5 q \mu B}{k h\left(P_{t}-P_{w f}\right)} \\
t_{D}=\frac{0.00634 k t}{\phi \mu c_{t} r_{w a}^{2}}
\end{gather*}
$$

$$
r_{w a}=r_{w} e^{-s}
$$

$$
r_{w a}=\frac{x_{f}}{2}
$$

Figare 4.1 Dimensionless Rate versus Time ${ }^{3}$

An irregular outer geometry or off center well location can create a period of transition between transient and PSS production. This transition zone has not been the focus of much research but it may provide valuable information about the reservoir shape. Deviations from Fetkovich curves in the transition zone may indicate non-radial system geometry. The non-
radial relationships will be derived in chapter 5 and incorporated into a generalized decline curve system.

A general expression for PSS decline for constant pressure according to the analytical solution is:

$$
q_{D}=A e^{\cdot B t_{0}}
$$

Where A and B are constants defined by the ratio $r_{d} / r_{\text {wa }}$. Fetkovich developed expressions for A and B which reflect different ratios of $r_{d} / r_{w a}$. The higher the ratio the larger is the time to pseudosteady state $t_{\text {Dpss }}$.

$$
\begin{align*}
& A=\frac{1}{\ln \left(r_{e} / r_{w a}\right)-0.5} \\
& B=\frac{2 A}{\left(r_{e} / r_{w a}\right)^{2}-1}
\end{align*}
$$

The expressions for A and B reflect the observation that different ratios of $r_{r} / r_{w a}$ give different depletion stems. The higher the ratio of $r_{e} / r_{w_{B}}$, the larger the time to pseudosteady state $t_{D p s s}$ and the lower is q_{D} at the start of depletion.

Exponential decline, according to the analytical solution, is substantiated by many field observations. The primary observation in Arp's ${ }^{2}$ work (1945) suggested that three types of decline could express all conventional depletion declines: hyperbolic, exponential and
harmonic. The effective decline rate D_{e}, or $D_{\text {ei }}$ at initial conditions, for the three types of production-decline curves is related to the nominal decline rate D or D_{i} for initial conditions as follows.

$$
D_{z}=1-e^{-D}
$$

The nominal decline rate is the negative slope of the natural \log of q vs. time plot. The effective decline D_{e} is a stepwise function whereas D is a continuous function.

For hyperbolic decline

$$
D_{a}=l-\left(l+b D_{t}\right)^{-t . b}
$$

and for harmonic:

$$
D_{e t}=\frac{D_{1}}{1-D_{1}}
$$

Arps ${ }^{2}$ classifies three types of decline:
A.

Hyperbolic decline where the decline D is proportional to a fractional power b of the production rate.

$$
D=\frac{\frac{d q}{d t}}{q}=\left(\frac{D_{1}}{q_{1}^{b}}\right) q^{b}
$$

which upon integration becomes:

$$
q_{o}=\frac{q_{0 t}}{(1+b D t)^{\frac{1}{b}}}
$$

Where $q_{0 i}=\quad$ initial oil rate neglecting transient decline
$\mathrm{q}_{0}=$ rate at time t
$D=\quad$ decline constant (Nominal decline rate $=$ negative slope of $\ln q$ vs. time)
$\mathrm{b}=$ decline exponent
Subscript i denotes initial conditions.

On second integration the rate cumulative expression becomes:

$$
N_{p}=\frac{q_{i}^{b}}{(l-b) D_{i}}\left(q_{i}^{(l-b)}-q^{(l-b)}\right)
$$

and the time to abandonment becomes:

$$
t_{a}=\frac{\left(\frac{q_{1}}{q_{a}}\right)^{b}-1}{b D_{1}}
$$

and eliminating D_{i} :

$$
t_{a}=\frac{\left[\left(\frac{q_{1}}{q_{a}}\right)^{b}-l\right]}{b\left[\frac{q_{1}^{b}}{(1-b) N_{\rho a}}\left(q_{t}^{1-b}-q^{l-b}\right)\right]}
$$

4.18
B. Exponential $b=0$

Exponential decline exhibits a straight line on semi log plot of rate versus time. It is also called
constant percentage decline since it is characterized by the fact that the drop in production rate per unit of time is proportional to the production rate.

Constant percentage decline (exponential) the nominal decline rate D is constant of

$$
D=-\frac{d q / d t}{q}
$$

which after integration yields:

$$
q_{o}=q_{0,} e^{-D t}
$$

After a second integration the rate-cumulative expression for cumulative production at any time t is:

$$
N_{p}=\frac{q_{1}-q}{D}
$$

And the remaining life to abandonment time may be obtained by:

$$
t_{a}=\frac{\ln \left(\frac{q_{1}}{q_{a}}\right)}{D}
$$

or after eliminating D :

$$
t_{a}=\frac{N_{p a}}{q_{i}}\left(\frac{\frac{q_{1}}{q_{a}} \ln \frac{q_{i}}{q_{a}}}{\frac{q_{i}}{q_{a}}-1}\right)
$$

C. Harmonic $b=1$

For harmonic decline where $b=1$ the nominal decline rate D is proportional to the production rate or:

$$
D=\frac{\frac{d q}{d t}}{t}=\frac{D_{i}}{q_{i}} q
$$

or after integration:

$$
q_{0}=q_{o l} \frac{1}{(1+D t)}
$$

After a second integration the rate cumulative relationship becomes:

$$
N_{p}=\frac{q_{i}}{D_{1}} \ln \frac{q_{1}}{q}
$$

And time to abandonment t_{a} is:

$$
t_{a}=\frac{N_{p a}}{q_{i}}\left(\frac{\frac{q_{i}}{q_{a}}-1}{\ln \frac{q_{i}}{q_{a}}}\right)
$$

4.2 Solution Gas Drive Meaning

Arps ${ }^{2}$ did not give physical reasons for the three observed declines but he indicated that exponential $b=0$ was common and that b usually ranges from 0 to 0.5 in solution gas reservoirs. It has been observed that the b value in typical solution gas drive reservoirs
averages about 0.3 while a 0.5 value indicates water drive or gravity drainage. Exponential is the most rapid decline observed and thus exponential is used for the most conservative estimates for reserves. Recall that exponential decline implies that the total compressibility of the rock and fluid is the only mechanism providing pressure support for the system. Departure from exponential decline in solution gas reservoirs should then be useful in estimating the mobility function shown if figure 3.1 . This will be explored further in chapters 5 and 6.

4.3 Physical Meaning to Decline Analysis

Fetkovich ${ }^{3}$ expressed Arp's exponential decline equation in terms of reservoir variables and thus gave physical meaning to Arp's observations. He obtained the following expressions for the Arps empirical constants q_{01} and D.

$$
\begin{align*}
& q_{o t}=\frac{k h\left(p_{t}-p_{w f}\right)}{141.2 \mu_{o} B_{o}\left[\ln \left(r_{e} / r_{w a}\right)-0.5\right]} \\
& D=\frac{2(0.000264) k}{\phi \mu_{1} c_{u}\left(r_{e}^{2}-r_{w a}^{2}\right)\left[\ln \left(r_{e} / r_{w a}\right)-0.5\right]}
\end{align*}
$$

These expressions can be used to forecast rate decline if production data are not available to identify the actual decline trend.

Since the transition from infinite to PSS is practically instantaneous in the radial system, a natural extension of the decline type curve is to combine transient and depletion relations onto a single graph. Fetkovich did this and used the unit variable $t_{D d}$ and $q_{D d}$ to define the type curves. (Figure 4.2 Combined Fetkovich-Arps analysis)

Hyperbolic decline (10) results from natural and artificial driving energies that slow down the pressure depletion compared with the depletion caused by pure expansion of a slightly compressible oil. Hyperbolic decline is exhibited if the reservoir drive mechanism is solution gas drive, gas cap expansion, or water drive. It is also exhibited when the natural drive mechanism is supplemented by water or gas injection. The presence of these driving energies implies that total compressibility increases and recovery is improved compared with the pure oil expansion drive mechanism.

When plotted on semi-log paper (rate vs. time) data showing hyperbolic declines tend to curve upward while exponential decline is a straight line of unit slope. The hyperbolic upward curvature is illustrated on figures 2.1 and 2.3.

$$
D=-\frac{\ln \left[q_{0}(\dot{t}) / q_{o 1}\right]}{t}=-2.302 \frac{\log \left[q_{0}(\dot{t}) / q_{o t}\right]}{t}
$$

Where $t^{*}, q_{0}\left(t^{*}\right)$ is any rate-time point on the semi-log straight line and an intercept of.
$q_{a i}=q_{0}(t=0)$.

4.3.1 Derivation of Fetkovich Type Decline Curves

Arps equation for hyperbolic decline can also be expressed in terms of dimensionless variables and the coefficients of the analytical decline equation (4.4) to yield:

$$
q_{D d}=\frac{A}{\left(I+b B t_{D}\right)^{\frac{1}{b}}}
$$

To plot as a single type curve that exhibits exponential harmonic and hyperbolic declines, Fetkovich defined new dimensionless unit variable $q_{D d}$ and $t_{D d}$ where:

$$
q_{D d}=\frac{q_{o}}{q_{o t}}=\frac{q_{D}}{A}
$$

and

$$
t_{D d}=D t=B t_{D}
$$

Where A and B have been previously defined.
In terms of the unit variable for exponential decline:

$$
q_{D d}=e^{-t D d}
$$

and for hyperbolic decline:

$$
q_{D d}=\frac{I}{\left(I+b t_{D d}\right)^{1 / b}}
$$

Fetkovich plotted these equations as type curves with unit dimensionless variable for $b=0$ up to $\mathrm{b}=1$. (See Figure 4.2) Since the transition from infinite acting to PSS is practically instantaneous in a radial system, a natural extension is to combine transient with PSS onto a single graph

When the unit variable $\mathrm{q}_{\mathrm{Dd}}=\mathrm{q}_{\mathrm{D}} / \mathrm{A}$ and $\mathrm{t}_{\mathrm{Dd}}=\mathrm{Bt}_{\mathrm{D}}$ are expressed with previously defined A and B definitions then the units are related to the ratio $r_{e} / r_{w a}$ by:

$$
q_{D d}=\left[\ln \left(r_{e} / r_{w a}\right)-0.5\right] q_{D}=\left[\ln \left(\frac{r_{e}}{r_{w a}}\right)-0.5\right] \frac{l+1.2 \mu B q(t)}{k h\left(p_{i}-p_{w j}\right)}
$$

and

$$
t_{D d}=\frac{2}{\left[\left(r_{e} i r_{w a}\right)^{2}-1\right]\left[\ln \left(r_{e} / r_{w a}\right)-0.5\right.} t_{D}=\frac{\frac{0.00634 k t}{\phi \mu c_{1} r_{w a}^{2}}}{0.5\left[\left(\frac{r_{e}}{r_{w a}}\right)^{2}-I\left[\ln \left(\frac{r_{e}}{r_{w a}}\right)-0.5\right]\right.}
$$

Combining these expressions with those of Arps for the depletion period resulted in a general type curve for transient and depletion periods as in Fig 4.2.

Figure 4.2 Generalized Arps-Fetkovich Dimensionless Decline Curve ${ }^{3}$

4.3.2 Reservoir Parameters From Type Curves

Type curve match points can then be used be used to calculate permeability, skin and drainage radius which yields initial oil in place. Using $r_{e} / r_{w a}$ from the match, the transmissibility is determined from the match point by:

$$
\begin{align*}
& q_{D}=\frac{141.2 \mu B q(t)}{k h\left(P_{t}-P_{w f}\right)} \\
& q_{D d}=q_{D}\left[\ln \frac{r_{e}}{r_{w}}-\frac{1}{2}\right]
\end{align*}
$$

and combining yields:

$$
k h=\frac{141.2 \mu B}{\left(P_{t}-P_{w f}\right)}\left(\ln \frac{r_{e}}{r_{w}}-\frac{1}{2}\right)\left(\frac{q_{t}}{q_{d D}}\right)_{\text {match }}
$$

While the apparent wellbore radius is calculated from the following expressions:

$$
\begin{gather*}
t_{D}=\frac{0.00634 k z}{\phi \mu c_{t} r_{w}{ }^{2}} \\
t_{D d}=\frac{t_{D}}{\frac{1}{2}\left[\left(\frac{r_{e}}{r_{w}}\right)^{2}-1\left[\ln \left(\frac{r_{e}}{r_{w}}\right)-\frac{1}{2}\right]\right.}
\end{gather*}
$$

and combining to yield:

$$
r_{w a}^{2}=\frac{0.00634 k}{\phi \mu c_{t} \frac{1}{2}\left[\left(\frac{r_{e}}{r_{w a}}\right)^{2}-1\left[\ln \left(\frac{r_{e}}{r_{w a}}\right)-\frac{1}{2}\right]\right.}\left(\frac{t(d a y s)}{t_{d D}}\right)_{\text {macth }}
$$

from which $s=-\ln \left(r_{w} / r_{w}\right)$ and drainage radius is calculated as :

$$
r_{e}=r_{w a}\left(\frac{r_{e}}{r_{w a}}\right)_{\text {march }}
$$

By knowing the drainage radius then N reserves in place can be calculated from:

$$
N(w e l l)=\frac{\pi r_{e}^{2} h \phi\left(1-S_{w}\right)}{5.615 B_{o t}}
$$

An example of this calculation is shown in Section 5.4.1.

Thus Fetkovich ${ }^{3}$ gave physical meaning to decline curves in radial systems and showed that they could be combined with Arps empirical relationships in the pseudosteady state region. Methods to use the deviation from exponential decline to gain information about the fluid properties, relative permeability and pore volume are explored as part of Appendix C. These concepts will be extended to non-radial geometry and horizontal well analysis in chapters 5 and 6 . This should further enhance the decline curve matching process in non-radial reservoirs.

According to Mathews ${ }^{21}$, during pseudo steady state, the drainage volumes in a bounded reservoir are proportional to the rates of withdrawal from each drainage volume. Therefore the ratio $\mathrm{q} / \mathrm{N}_{\mathrm{pi}}$ will be identical for each well and, thus, the sum of the results from each well should give the same results as from analyzing the total lease or field production rate. Field experience often demonstrates how rapidly readjustments in drainage volumes can take place by changes in the production rate or depletion by offset wells. This of course assumes that the field is not stratified or separated by a fault or drastic anisotropy. The effect compartmentalization by permeability or stratification would be interesting to experiment with in the future.

It is not well known that the Fetkovich Type Curves are based on a strictly radial system operating above the bubble point with the well centrally located. It is obviously desirable to derive a more general case that would apply to any particular reservoir drainage shape such as rectangular, triangular, and reservoirs in which the well is displaced from the reservoir center. It would also be desirable to modify the curves for cases below the bubble point and extract information from that deviation from the strictly exponential case. In the radial case, the transition from infinite acting to pseudosteady state is almost instantaneous.

However in a non-radial reservoir the transition from infinite to pseudosteady state is prolonged. Significant error in type curve matching may result from using the radial form. In low permeability formations rapidly declining transient production can be confused with depletion and an attempt to fit the transient data to the depletion portion of the type curve will result in Arps " b " values that are unrealistically high. It is therefore desirable to properly define the full shape of the type curve over the transient and depletion period properly apply the techniques and analysis.

This method, shown in this section and fully derived in Appendix E utilizes shape factors derived for these various conditions such as shown in Earlouger's Table C-1 in Advances in Well Testing ${ }^{22}$. Application of these factors to the Fetkovich system is neither direct nor straightforward. A system was derived that will incorporate all reservoir shapes, positions and later will be applied to vertically fractured and horizontal wells using an equivalent well
bore radius concept. The complete derivation is shown in Appendix E and applications to actual field production data is detailed in Chapter 5.

CHAPTER FIVE

Decline Curve Construction, Analysis and Use

5.1 - Introduction

In chapters one and four it was shown that Fetkovich ${ }^{3}$ combined the transient analytical solution with the pseudo-steady state (boundary-dominated flow) to develop a single type curve system. In that work, Fetkovich developed the dimensionless terms, $q_{d \infty}$, the dimensionless flow rate and $t_{d D}$ the dimensionless time based on the initial flow rate and initial decline. Fetkovich developed his decline curves for radial geometry only. That derivation will be extended to a more general geometry and well position application. Reservoir parameters such as permeability, pore volume, skin etc were then extracted from the transient portion. Fetkovich indicated that reservoir parameters such as pore volume should not be computed until the onset of depletion when an approximation of the Arps ${ }^{1}$ decline exponent b could be made. Reservoir and fluid properties can affect the value of the decline exponent b. Solution gas increases the value of b so that the production tail is extended in time. Fractured reservoirs with matrix support also show extended tails.

5.2 Theoretical Background for Dimensionless Solutions

In 1949, Van Everdingen and Hurst ${ }^{17}$, first developed the equations used to generate the dimensionless pressure and time values that were later used in decline curves as shown in
subsequent section 5.3. These were later extended by Fetkovich ${ }^{3}$ to define dimensionless decline parameters. The theory began with the diffusivity equation, the application of certain boundary equations and the application of the Laplace transformation solution. The basic diffusivity equation is:

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial P}{\partial r}\right)=\frac{\phi \mu c}{k} \frac{\partial P}{\partial t}
$$

The treatment of the diffusivity equation had been essentially the application of the FourierBessel series. VanEverdingen and Hurst ${ }^{17,18}$ presented a new approach to the solution in the form of the Laplace transformation since it was recognized that Laplace transformations offered an easier approach. The primary case of interest in decline analysis was the solution to the constant terminal pressure case solved for both the infinite and limited reservoirs. The constant terminal pressure and the constant terminal rate cases are not independent of one another, as knowing the operational form of one, the other can be determined. The initial condition is that at time zero the pressure at all points in the formation is constant and equal to unity. The inner boundary condition is that when the well or reservoir is opened, the pressure at the well or reservoir boundary, $r_{D}=1$, immediately drops to zero and remains zero for the duration of the production history.

5.2.1 Infinite Case

The outer boundary case for the infinite reservoir is as the reservoir reaches infinity, the pressure drop is zero. This is expressed as:

$$
\lim (r e D \rightarrow \infty) P_{D}=0
$$

VanEverdingen and Hurst ${ }^{17}$ gave the solution in Laplace space:

$$
\bar{Q}_{D}=\frac{K_{1}(\sqrt{p})}{z^{3 / 2} K d(\sqrt{p})}
$$

where Q_{D} is the cumulative production, p is the Laplace transform variable and K_{o} and K_{1} are modified Bessel functions of the order zero and one. The application of Mellin's inversion formula to the equation yields the analytical expressions for Q_{D} :

$$
Q_{D}=\frac{4}{\pi^{2}} \int_{0}^{\infty} \frac{1-e^{-r^{2} L}}{u^{3}\left[J_{0}^{2}(u)+Y_{0}^{2}(u)\right]} d u
$$

where Jo and Yo are Besel functions of the first and second kind, respectively of order zero.

Since cumulative production Q_{D} is defined as:

$$
Q_{D}=\int_{0}^{t} q_{D}(t) d t
$$

the Laplace equivalent of q_{D} is:

$$
\bar{q}_{D}=\frac{K_{1}(\sqrt{p})}{z^{1 / 2} K_{o}(\sqrt{p})}
$$

This equation is inverted numerically by the Stehfest ${ }^{19}$ method to obtain the variation of q_{D} with t_{D}. The corresponding analytical expression is:

$$
q_{D}=\frac{4}{\pi^{2}} \int_{0}^{\infty} \frac{e^{-u^{i} D}}{u\left[J_{0}^{2}(u)+Y_{0}(u)\right]} d u
$$

The dimensionless flow rate q_{D} in field units is of course:

$$
q_{D}=\frac{141.2 \mu B q(t)}{k h\left(P_{t}-P_{w f}\right)}
$$

and the dimensionless time in field units is:

$$
t_{D}=\frac{0.00634 k t}{\phi \mu c_{t} r}
$$

After considerable work a program was used to invert these equations numerically using the Stehfest numerical Laplace algorithm. The results of this inversion yield values for infinite q_{D} versus to that are tabulated in the Appendix D and plotted on figure 5.1 as the infinite solutions. Notice the divergence of the solutions from the bounded solutions at increasing reservoir sizes (see limited reservoir theory next section.)

Figure 5.1 Dimensionless Rate versus Dimensionless Time

5.2.2 Solutions in Limited Reservoirs

The Fourier-Bessel type of expansions first developed the solutions for limited reservoirs of radial symmetry. VanEverdingen and Hurst ${ }^{17}$ showed how the solutions could be obtained more easily using the Laplace transformation.

5.2.2.1 Conditions

The limited reservoir case is essentially the case of no fluid flow across the exterior boundary where:

$$
\left(\frac{\partial P}{\partial \vec{\partial}}\right)_{r=r_{e}}=0
$$

The VanEverdingen and Hursts solution to the cumulative production in Laplace space was given by:

$$
Q_{D}=\frac{I_{1}\left(r_{e D} \sqrt{p}\right) K_{1}\left(r_{e D} \sqrt{p}-K_{1}\left(r_{\epsilon D} \sqrt{p}\right) I_{1} \sqrt{p}\right.}{p^{3 / 2}\left[K_{1}\left(r_{e D} \sqrt{p}\right) I_{o}(\sqrt{p})+I_{1}\left(r_{e D} \sqrt{p}\right) K_{o}(\sqrt{p})\right]}
$$

In order to apply Mellin's inversion formula, the first consideration is the roots of the denominator of this equation, which indicates the poles. Since the modified Bessel functions for positive real arguments are either increasing or decreasing, the bracketed term in the denominator does not indicate any poles for positive real values for p. An investigation of the integration along the negative real axis both for the upper and lower portions reveals that the above equation is an even function for which the integration along the paths is zero. However poles are indicated along the negative real axis and these residuals help make up the solution for the constant terminal pressure case for the limited radial system. The analytical solution reduces to:

$$
Q_{D}=\frac{r_{e D}^{2}-1}{2}-2 \sum_{a_{1}, a_{2}, e x}^{\infty}\left\{\frac{e^{-a_{n}^{2} t_{D}} J_{1}^{2}\left(a_{n}, r_{e D}\right)}{a_{n}^{2}\left[J_{0}^{2}\left(a_{n}\right)-J_{1}^{2}\left(a_{n}, r_{e D}\right)\right]}\right\}
$$

As with the infinite solution differentiation of cumulative production yields the Laplace and analytical solutions for dimensionless flow rate:

$$
\begin{gather*}
q_{D}=\frac{I_{1}\left(r_{e D} \sqrt{p}\right) K_{1}\left(r_{e D} \sqrt{p}-K_{1}\left(r_{e D} \sqrt{p}\right) I_{1} \sqrt{p}\right.}{\sqrt{p}\left[K_{1}\left(r_{e D} \sqrt{p}\right) I_{o}(\sqrt{p})+I_{1}\left(r_{e D} \sqrt{p}\right) K_{o}(\sqrt{p})\right]} \\
q_{D}=2 \sum_{a_{1}, a_{2}, e \text { ecc }}^{x}\left\{\frac{e^{-a^{2} t_{0}} J_{1}^{2}\left(a_{n}, r_{e D}\right)}{\left[J_{0}^{2}\left(a_{n}\right)-J_{1}^{2}\left(a_{n}, r_{e D}\right)\right]}\right\}
\end{gather*}
$$

Where the values of al, a 2 etc are determined as multiple roots of the equation :

$$
\left[J_{1}\left(a_{n} r_{e D}\right) Y_{0}\left(a_{n}\right)-Y_{1}\left(a_{n} r_{e D}\right) J_{0}\left(a_{n}\right)\right]=0
$$

Once the roots are found the summation is done for the various roots until convergence is obtained. The above two expressions are used to generate the solution for the closed boundary case for various distances to the external boundary. These are also shown in Figure 5.1.

5.3 Generation of Fetkovich Type Curves.

The method of generating the Fetkovich type curves is not a trivial process and is not widely known. The method must be understood and duplicated in order to extend the method to other shapes and well positions. The methodology of duplicating the Fetkovich curves is summarized as follows:

1. Generate the transient solutions for both infinite and closed reservoir systems by the methods of VanEverdingen and Hurst. Lee ${ }^{20}$ in his Appendix C Table C-5 published the tabular solutions to the finite radial system with closed exterior boundary. Those values are also tabulated in this Appendix D along with all the solutions needed for finite and infinite cases generated with the Stehfest algorithm and extensions to the general cases. Figure 5.1 showed a graph of the dimensionless rate vs. dimensionless time for the infinite and bounded reservoirs using the tabular results of Lee and those generated from the program. Notice that the finite reservoir solutions for increasingly large reservoirs (i.e. r_{eD} increasing) converge into the infinite solution at increasing dimensionless time values and decreasing dimensionless rate values. The solutions for the infinite case are common to the bounded case where the outer boundary has not been sensed by the well. As the distance to the outer boundary increases, the time taken to reach the pseudo-steady state flow increases. This construction is specifically for radial cases. This research will extend those solutions to other reservoir shapes.
2. The next step is to convert those dimensionless rates and times from the table into the new Fetkovich type dimensionless decline parameters $q_{D_{d}}$ and $t_{D d}$ by multiplying or dividing the dimensionless rate and time values in the table by the appropriate Fetkovich A and B values previously discussed in Chapter 4.

$$
q_{D d}=\frac{q_{0}}{q_{o r}}=\frac{q_{D}}{A}
$$

where A is given by:

$$
A=\frac{1}{\left[\ln \frac{r_{e}}{r_{w a}}-\frac{1}{2}\right]}=\frac{1}{c_{1}}
$$

and the dimensionless time scale

$$
t_{D d}=D t=B t_{D}
$$

where:

$$
B=\frac{2 A}{\left(\frac{r_{e}}{r_{w a}}\right)^{2}-1}=\frac{1}{0.5\left[\left(\frac{r_{e}}{r_{w a}}\right)^{2}-1\right]\left[\ln \frac{r_{e}}{r_{w a}}-0.5\right]}=\frac{2}{c_{2} c_{1}}
$$

This was shown in chapter four. The dimensionless rate and time is thus expressed
as:

$$
q_{D d}=\left[\ln \left(r_{e} / r_{w a}\right)-0.5\right] q_{D}=\frac{\frac{q(t)}{k h\left(p_{i}-p_{w f}\right)}}{141.2 \mu B\left[\ln \left(\frac{r_{e}}{r_{w a}}\right)-0.5\right]}
$$

and

$$
t_{D d}=\frac{2}{\left[\left(r_{e} / r_{w a}\right)^{2}-1\right]\left[\ln \left(r_{e} / r_{w a}\right)-0.5\right.} t_{D}=\frac{\frac{0.00634 k t}{\phi \mu c_{t} r_{w a}^{2}}}{0.5\left[\left(\frac{r_{e}}{r_{w a}}\right)^{2}-1\left[\ln \left(\frac{r_{e}}{r_{w a}}\right)-0.5\right]\right.}
$$

The tabular values used in these plots are shown in Appendix D.
3. Calculate the Arps empirical dimensionless time and rate from the expression:

$$
q_{o}=\frac{q_{0 t}}{(1+b D t)^{\frac{l}{b}}}
$$

or defined in dimensionless decline terms:

$$
q_{d o}=\frac{q_{1}}{q_{1}}=[1+b D t \infty]^{-1 / b}
$$

The decline D is assumed as unity in the calculation of the terms. These values are also computed in a spreadsheet and tabulated in the appendix D for all b values greater than zero and up to one. The exponential decline with $\mathrm{b}=0$ is calculated as:

$$
q_{d D}=e^{-t d D}
$$

The results are tabulated in the appendix D and plotted on figure 5.2.

Figure 5.2 Arps Depletion Decline for Values of b from 0 to 1

As discussed before, Fetkovich discovered that the analytical dimensionless rate solution converges with the empirical dimensionless exponential rate solution for pseudo-steady state by defining the dimensionless rate scale.

Combining these expressions from steps one and two with those of Arps for the depletion period resulted in a general type curve for transient and depletion periods (exponential decline only $b=0$) as reconstructed in Fig 5.3. The transient portion was generated for different sizes of drainage area by r_{cD}. Again the numerical results are shown tabular form in the appendix D . The complete set of tabular results is not available from any other source in the literature. Figure 5.4 shows the final composite curve for the transient and depletion stages.

Figure 5.3 Fetkovich Type Curve - Transient and Depletion

Figure 5.4 Final Composite Fetkovich Type Curve - Transient and Depletion

5.4 Use of Decline Curves in the Calculation of Reservoir Parameters and

Future Production Calculations

The type curves can be used to calculate reservoir parameters such as permeability and apparent well bore radius. Data from the infinite acting portion of the type curve is used for these calculations. However points from both the infinite and pseudosteady state portion are needed for the best curve fitting.

5.4.1 Calculation of Transmissibility and Apparent Well Bore Radius

As previously derived:

$$
k h=\frac{141.2 \mu B}{\left(P_{t}-P_{w f^{\prime}}\right)}\left(\ln \frac{r_{e}}{r_{w}}-\frac{1}{2}\right)\left(\frac{q_{t}}{q_{d D}}\right)_{\text {maxch }}
$$

and apparent well bore radius is expressed as:

$$
r_{w a}^{2}=\frac{0.00634 k}{\phi \mu c_{t} \frac{1}{2}\left[\left(\frac{r_{s}}{r_{w a}}\right)^{2}-1\left[\ln \left(\frac{r_{e}}{r_{\mathrm{wa}}}\right)-\frac{1}{2}\right]\right.}\left(\frac{t(\text { days })}{t_{d D}}\right)_{\text {manch }}
$$

In each case $r_{d D}=r_{e} / r_{w a}$ is read from the type curve match.

For example:

If from the type curve match, $r_{d} / r_{w a}$ is best represented by $50, q_{p d}$ is $0.54, q_{i}$ is 10,000 BOPM (333 BOPD) and $\frac{\left(P_{t}-P_{w f}\right)}{\mu B}=7259$ from reservoir production data. then from equation above kh is $40.5 \mathrm{md}-\mathrm{ft}$. Then knowing the thickness h . yields k .

Likewise if the corresponding time match points are $t=10$ months (300 days) and $t_{D d}=1.22$ with $r_{d} / r_{w e}=50$, and reservoir characteristics are porosity of 10.1%, viscosity of 1 cp and total compressibility of $20 \times 10-6$, and permeability is 0.33 md then the apparent well bore radius is: 1.042 feet.

5.4.2 Matching the PSS Portion for Calculation of N and Future Flow Rates

The drainage radius can then be calculated from the following expression:

$$
r_{e}=r_{w a}\left(\frac{r_{e}}{r_{w a}}\right)_{\text {murch }}
$$

In the above example, with $r_{d} / r_{w a}=50$ from the match of the transient portion of the curve, $r_{w a}$ from the previous step $=1.042$ then the drainage area is $r_{e}=52$ feet.

The reserves in place can then be determined by the expression ${ }^{4}$ (399)

$$
N(w e l l)=\frac{\pi r_{e}^{2} h \phi(1-S w)}{5.615 B_{o l}}
$$

or by:

$$
N=\frac{A \phi c_{t} h P_{i}}{5.615 B}
$$

5.4.3 Pseudosteady State Type Curve Matching for Reserve Estimates

Fetkovich type expressions can be adapted to determine initial reserves in place and forecast future flow rates. Then if we know the cumulative production, the remaining reserves in place can be calculated. Using a data set from the Fetkovich paper ${ }^{3}$, the match (fig 5.5) followed the $b=0.5$ type curve.

Future producing rates can than be read directly from the real time scale on which the data are plotted. q_{i} and D_{i} can be determined from the match points and that data can be used to determine the reserves. The following match points were obtained:

$$
\mathrm{q}_{\mathrm{t}}=1000 \mathrm{BOPM}, \mathrm{q}_{\mathrm{Dd}}=0.033
$$

Therefore:

$$
q_{D d}=0.033=\frac{q(t)}{q i}=\frac{1000 B O P M}{q_{i}}
$$

Figure 5.5 Type Curve Matching
therefore the initial production rate is:

$$
\mathrm{q}_{\mathrm{i}}=30,303 \mathrm{BOPM}
$$

and the time match points were:

$$
t_{D d}=12, t=100 \text { months }
$$

therefore the initial decline rate is:

$$
D_{1}=\frac{t_{D d}}{t}=\frac{12}{100 \mathrm{months}}=0.12
$$

Once the initial decline rate and initial production rate are known, the initial reserves in place can be calculated since the cumulative oil in place would be the integration of the initial flow rate expression:

$$
N_{p}=\int_{0}^{t} q_{t}=q_{t}\left[1+b D_{t} t\right]^{-\frac{1}{b}}
$$

which yields the expression for the hyperbolic ($0<b<1$) expression for cumulative oil produced.

$$
N_{p}=\frac{q_{i}^{b}}{(1-b) D_{i}}\left(q_{1}^{1-b}-q^{1-b}\right)
$$

If the initial oil in place is defined as the cumulative oil produced to a reservoir pressure of zero, then the expression reduces to:

$$
N_{p t}=\frac{q_{i}}{(1-b) D_{t}}
$$

Therefore using the above match points along the $b=0.5$ curve we have:

$$
N_{p t}=\frac{30,303_{i}}{(1-0.5) * 0.12}=505,050
$$

If the decline is exponential then the expression reduces even further. Alternate methods for calculating pore volume and thus reserves with a known initial oil saturation above and below the bubble point are presented in Appendix C. Methods of using the type curve matches for computing oil relative permeability are also presented in Appendix C.

5.4.4 Field Wide Application

According to Mathews ${ }^{21}$, during pseudo steady state, the drainage volumes in a bounded reservoir are proportional to the rates of withdrawal from each drainage volume. Therefore the ratio $q_{q} / N_{p i}$ will be identical for each well and, thus, the sum of the results from each well should give the same results as from analyzing the total lease or field production rate. Field experience often demonstrates how rapidly readjustments in drainage volumes can take place by changes in the production rate or depletion by offset wells. This of course assumes that the field is not stratified or separated by a fault or drastic anisotropy. The effect compartmentalization by permeability or stratification would be interesting to experiment with in the future.

5.5 Extensions of Fetkovich Radial Type Curves to Other Reservoirs Shapes and
 Well Positions

5.5.1 Introduction

It is not well known that the Fetkovich Type Curves are based on a strictly radial system operating above the bubble point with the well centrally located. It is obviously desirable to derive a more general case that would apply to any particular reservoir drainage shape such as rectangular, triangular, and reservoirs in which the well is displaced from the reservoir center. It would also be desirable to modify the curves for cases below the bubble point and
extract information from that deviation from the strictly exponential case. In the radial case, the transition from infinite acting to pseudosteady state is almost instantaneous. However in a non-radial reservoir the transition from infinite to pseudosteady state is prolonged. Significant error in type curve matching may result from using the radial form. In low permeabiity formations rapidly declining transient production can be confused with depletion and an antempt to fit the transient data to the depletion portion of the type curve will result in Arps " b " values that are unrealistically high. It is therefore desirable to properly define the full shape of the type curve over the transient and depletion period properly apply the techniques and analysis.

This method. shown in this section and fully derived in Appendix E utilizes shape factors derived for these various conditions such as shown in Earlouger's Table C-1 in Advances in Well Testing ${ }^{22}$. Application of these factors to the Fetkovich system is neither direct nor straightforward. A system was derived that will incorporate all reservoir shapes, positions and later will be applied to vertically fractured and horizontal wells using an equivalent well bore radius concept. The complete derivation is shown in Appendix E.

5.5.2 Overview of Derivation

Recall that the productivity and decline theory of the previous section Fetkovich defined $q_{p d}$ as:

$$
q_{D d}=\frac{q(t)}{q_{t} \max }=\frac{141.3 \mu B q(t)}{k h\left(P_{1}-P_{w f}\right.}\left[\ln \frac{r_{e}}{r_{w}}-\frac{1}{2}\right]=q_{D}\left[\ln \frac{r_{e}}{r_{w}}-\frac{1}{2}\right]=q_{D} c_{1}
$$

In a similar manner the dimensionless time $t_{D d}$ was defined as:
or:

$$
t_{d D}=t_{D} \frac{2}{c_{1} c_{2}}
$$

Now instead of using the radial form one begins with a more general equation in terms of the shape factors and drainage area A such as that found on page 243 in Craft and Hawkins ${ }^{6}$ so that:

$$
q(t)=\frac{k h\left(\bar{P}_{R}-P_{w f}\right)}{162.6 \mu B}\left[\log \frac{4 A}{1.781 C_{d} r_{w}^{2}}\right]
$$

Then applying the Fetkovich definition above and converting constants to Fetkovich's definitions of q_{D} :

$$
q_{D d}=\frac{q(t)}{q_{i \max }}=q_{D}\left[1.151\left[\log \frac{4 A}{1.781 C_{A} r_{w}^{2}}\right]\right]=\frac{141.3 \mu B q(t)}{k h\left(P_{1}-P_{w f}\right.}\left[1.151 \log \frac{4 A}{1.781 C_{A} r_{w}^{2}}\right]
$$

Or condensing notation:

$$
q_{D d}=q_{D}\left[1.151\left[\log \frac{4 A}{1.781 C_{A} r_{w}^{2}}\right]\right]=q_{D}\left(1.1511 c_{1}^{\prime}\right)
$$

where c_{1} is:

$$
\dot{c_{1}}=\log \frac{4 A}{1.781 C_{.1} r_{w}^{2}}
$$

The equivalent Fetkovich form was:

$$
q_{D d}=q_{D}\left[\ln \frac{r_{e}}{r_{w}}-\frac{1}{2}\right]=q_{d} c_{1}
$$

Where c_{1} was:

$$
c_{1}=\left[\ln \frac{r_{e}}{r_{w}}-\frac{1}{2}\right]
$$

Likewise the dimensionless time decline can be derived in a manner similar to that of Fetkovich but in terms of the reservoir shape and drainage size factors:

$$
t_{D d}=\left[\frac{q_{t \text { max }}}{N_{p t}}\right] t=D_{i} t
$$

where :

$$
q_{t \max }=\frac{k h P_{i}}{162.6 \mu B}\left[\frac{1}{\log \frac{4 A}{1.781 C_{A} r_{w}^{2}}}\right]
$$

and :

$$
N_{t}=\frac{A \phi c_{t} h P_{t}}{5.615 B}
$$

and applying the definition of $t_{D d}$ and converting constants:

$$
\begin{gathered}
t_{D d}=\frac{q_{t \max }}{N_{t}} t=\frac{0.00634 k t}{\phi \mu c_{t} A}\left[\frac{5.44678}{\log \frac{4 A}{1.781 C_{A} r_{w}^{2}}}\right] \\
t_{D d}=\frac{0.00634 k t}{\phi \mu c_{t} r_{w}^{2}} \frac{r_{w}^{2}}{A}\left[\frac{5.44678}{\log \frac{4 A}{1.781 C_{A} r_{w}^{2}}}\right]=t_{D} \frac{r_{w}^{2}}{A}\left[\frac{5.44678}{\log \frac{4 A}{1.781 C_{A} r_{w}^{2}}}\right]
\end{gathered}
$$

or putting in a similar arrangement to that of the Fetkovich radial form:

$$
t_{D d}=\frac{t_{D}}{\frac{\operatorname{A}}{r_{w}^{2}} \frac{\log \frac{4 A}{1.781 C_{A} r_{w}^{2}}}{5.44678}}=\frac{t_{D}}{\frac{0.183594 A}{r_{w}^{2}} \log \frac{4 A}{1.781 C_{A} r_{w}^{2}}}=\frac{t_{D}}{0.183594\left(c_{1} c_{2}^{\prime}\right)}
$$

Where c_{2} is

$$
c_{2}=\frac{A}{r_{w}^{2}}
$$

As compared to c_{2} in the Fetkovich radial case:

$$
c_{:}=\frac{r_{e}}{r_{w}^{2}}-1
$$

And:

$$
c_{1}=\log \frac{4 A}{1.781 C_{A} r_{w}^{2}}
$$

Again comparing this to the Fetkovich equivalent forms one notes the similarities:

$$
c_{1}=\ln \frac{r_{c}}{r_{w}}-\frac{1}{2}
$$

The complete derivation of the more general shape and well location case is shown in the Appendix E.

Now if the drainage area can then be expressed in terms of the equivalent radial system $r_{e D}=T_{d} / r_{w}$ then the published values of q_{D} and t_{D} can be converted directly to decline dimensionless terms for any drainage shape and can also be extended to fractured vertical wells and horizontal wells as will be demonstrated. Therefore define the equivalent drainage area for the radial system as:

$$
A=\pi\left(r_{e}^{2}-r_{w}^{2}\right)=\pi r_{e}^{2}-\pi r_{w}^{2}
$$

and rearranging:

$$
\frac{A}{r_{w}^{2}}=\pi\left(\frac{r_{e}}{r_{w}}\right)^{2}-\pi=\pi\left(\left(\frac{r_{e}}{r_{w}}\right)^{2}-1\right)
$$

Therefore using the radial solutions to q_{D} and t_{D} at the various $r_{e D}=r_{e} / r_{w}$ values and the new constants c_{1} and $c_{2}{ }^{1}$ we can find equivalent expressions in terms of $A / r_{w}{ }^{2}$ and the various shape factors.

Decline curve construction using the shape factor approach has confirmed that when the circular shape factor is used, the above derivation is identical to the Fetkovich radial form. Figure 5.6 is the equivalent radial form using the above derivation with the centrally located circular shape factor $A=31.62$. It is identical to the Fetkovich radial solution in figure 5.2. Tabular data for all rectangular comparisons from equations above are provided in the appendix D. Shape Factors are shown in Table 5.1. These shape factors are used for the transition and depletion portions of the type curve. The infinite portion retains the radial form without shape factor adjustment. The change to shape factors is valid for $t_{D A}=\frac{r_{w}^{2}}{A}$ greater than 0.025 for a rectangular shape factor of $\mathrm{x}: \mathrm{y}=$ $2: 1$ and 0.01 for a rectangular shape factor of $x: y=4: 1$. This corresponds to a $t_{D d}$ range from 0.4 to 0.2 on the generalized type curves in the transition and depletion area.

Figure 5.6 Generalized Type Curve -Circular Shape Factor, Well Centered, CA=31.62

Thus the dimensionless decline type curves can now be generated for any drainage shape and well bore position if a shape factor is available. Shape factors are available for a wide range of reservoir situations. For instance the shape factor C_{A} is 31.62 for a circle, 30.8828 for a square, 21.8369 for a rectangle of dimensions $\mathrm{x}_{\mathrm{e}} / \mathrm{y}_{\mathrm{e}}=1 / 2$, and 5.379 for a rectangle of dimensions $x_{e} / y_{e}=1 / 4$. These various shape and well location factors C_{A} are reproduced in Table 5.1^{22}.

The decline curves have been presented in terms of $A / r_{w}{ }^{2}$ or alternatively sqrtA/rw and the equivalent $r_{e} / r_{w}=r_{e D} . A / r_{w}{ }^{2}$ seems more appropriate for rectangular reservoir shapes. During the transient period the radial solution would still be used as the reservoir boundaries have not yet affected the drainage. However the transient period can be very short with some reservoir shapes with wells near the boundary as will be shown. As the reservoir boundaries are felt a transition period will occur before pseudosteady state is observed. It is this early transition zone that will indicate deviation from radial system and the portion that is most pertinent to this generalized shape method. Theoretically it should be possible to extract reservoir shape information from deviation from radial dimensionless decline curves.

If the well bore radius is small compared to the reservoir size then the area can be approximated by:

$$
A \approx \pi \pi_{e}^{2} \therefore \frac{A}{r_{w}^{2}}=\pi \frac{r_{e}^{2}}{r_{w}^{2}}
$$

or upon rearranging:

$$
r_{e D}=\frac{r_{e}}{r_{\omega}}=\frac{\sqrt{A}}{\sqrt{\pi} r_{\omega}}
$$

This provides the solution in terms more similar to the Fetkovich type curves. However the more exact solution is necessary when considering horizontal wells since one can define the horizontal well in terms of an apparent well bore radius.

Figures 5.7 and 5.8 show the dimensionless decline curve results of applying the above relationships for a rectangle of dimensions $\mathrm{x}_{\mathrm{c}} / \mathrm{y}_{\mathrm{c}}=0.5$ and $\mathrm{x}_{\mathrm{c}} / \mathrm{y}_{\mathrm{c}}=0.25$ respectively. Figure 5.9 shows the case where the C_{A} value is very small in a rectangular reservoir with the well close to the boundary $\left(\mathrm{C}_{\mathrm{A}}=10.8374\right)$. Notice how the transition zone from infinite to finite acting has shifted to the left as the time to PSS has decreased. Also notice that for small values of r_{eD} such as 50 . the infinite and finite solutions do not converge as well. The difference between a rectangle of dimension ration 2 to 1 is not easily distinguished from the radial solution. The method is most useful when the geometry departs significantly from radial or the well is close to a boundary. Reservoir parameters can then be calculated from the type curve match points in the usual way.

Figure 5.7 Generalized Type Curve-Rectangualar Shape Factor x:y 2:1 Offcenter close to boundary, CA=10.374

Figure 5.8 Generalized Type Curve -Rectangualar Shape Factor x:y 4:1 Well Centered, CA=5.3790

Figure 5.9 Generalized Type Curve-Rectangualar Shape Factor x:y 4:1 Offcenter close to boundary, CA=2.6896

5.5.2.1 Use in Calculating Reserves and Reservoir Parameters

The transmissibility (kh) and permeability (if reservoir thickness is known) can be computed by solving the my dimensionless decline equation for kh and using the match point:

$$
q_{D d}=q_{D}\left[1.151 \log \frac{4 A}{1.781 C_{A} r_{w}^{2}}\right]=\frac{1413 \mu B q(t)}{k h\left(P_{t}-P_{w f}\right)} 1.151 \log \frac{4 A}{1.781 C_{A} r_{w}^{2}}
$$

and solving for kh :

$$
k h=\frac{1413 \mu B}{P_{1}-P_{w j^{\prime}}} 1151 \log \frac{4 A}{1.181 C_{A} r_{w}^{2}}\left(\frac{q(t)}{q_{D d}}\right)_{\text {march }}
$$

Since we know $\mathrm{A} / \mathrm{r}_{w}{ }^{2}$, the match point, and the shape factor we can compute kh for the particular reservoir conditions.

The apparent well bore radius, drainage area and initial reserves can then be computed from the dimensionless decline parameter $t_{D d}$ and the match points. Ultimate reserves are then computed from the difference between initial reserves and cumulative reserves. $r_{w z}$ is computed from the following relationship derived for the more general shape factor form:

Since t_{D} is defined before as:

$$
t_{D d}=\frac{t_{D}}{\frac{0.183594 A}{r_{w}^{2}} \log \frac{4 A}{1.781 C_{A} r_{w}^{2}}}
$$

Now inserting the definition of t_{D} :

$$
t_{D}=\frac{0.0063 k t}{\phi \mu c_{t} r_{w a}^{2}}
$$

Solving the dimensionless time equation for $\mathrm{r}_{\mathrm{wa}}{ }^{2}$:

$$
\left.r_{w a}^{2}=\frac{0.00634 k}{\phi \mu c_{t} \frac{A}{r_{w}^{2}}\left(\frac{\log \frac{4 A}{1.781 C_{A} r_{w}^{2}}}{5.44678}\right.}\right)\left(\frac{t}{t_{D d}}\right)_{\text {match }}
$$

We know the ratio $\mathrm{A} / \mathrm{r}_{w}{ }^{2}$ and $\mathrm{t} / \mathrm{tdd}_{\text {d }}$ from the type curve match points therefore we can compute the apparent well bore radius, $r_{\text {wa }}$. This apparent well bore radius will be used later.

Now since we know $r_{w a}$ we can calculate the drainage area A since from knowing $A / r_{w}{ }^{2}$ from the type curve match and computing $\mathrm{r}_{\mathrm{w}}{ }^{2}$ we can solve for the drainage area A by:

$$
A=r_{w a}^{2}\left(\frac{A}{r_{w a}^{2}}\right)_{\text {macch }}
$$

This allows for the computation of the original reserves in place from the relationship:

$$
N=\frac{A \phi c_{t} h P_{i}}{5.615 B}
$$

5.5.2.2 Use in Determining Contributions of Solution Gas Energy and Mobility Function

The decline path will be exponential where $b=0$ and the Fetkovich solutions converge when the only reservoir energy is the compressibility of the rock and fluid. In a solution gas reservoir where water drive is absent the decline path will be more hyperbolic where b values of 0 to 0.5 exist. This deviation from $b=0$ can give information that can be used in determining the mobility-pressure function that was described in chapter 3 and the appendix C. This concept can be shown in the following figure 5.10 .

Cormposite Fetkovich Type Curve Transient and Exponential Depletion

Figure 5.10 Compsite Fetkovich Type Curve

Where $\Delta q_{D d}$ represents the difference from the actual path and that predicted with no energy in the system other than the fluid and rock compressibility. The solution gas provides additional pressure support that more than offsets the increased resistance from the reduction in $\mathrm{k}_{\mathrm{r}} /\left(\mu_{0} B_{0}\right)$ with a reduction in pressure and oil saturation. Also with a purely exponential decline with no additional drive energy, the IPR will be constant with declining pressure. Field experience indicates that the IPR does change with depletion since exponential depletion is rare. Once the decline path is known from the above chart, the difference between the decline path and the predicted exponential path should give information about the pressure mobility function and adjustments to IPR over time without the need for well testing techniques.

$$
\int \frac{k_{r o}}{\mu_{o} B_{o}} d p \cong \frac{\left(P_{R}-P_{v o}\right) k_{r o}}{\left(\mu_{o} B_{o}\right)_{P_{1}}}
$$

Some of these ideas as well as some methods for estimating the relative permeability to oil are discussed in more detail in the guide to reservoir parameters in appendix C .

5.5.3 Extension to Fractured Wells

Fetkovich showed an example, which indicated that the "Arps b" value in pseudosteady state condition did not change with a fractured well but the $r_{e D}=r e / r_{w a}$ did shift to a smaller match ratio. He used type curves to indicate that the reserves increased as a
result of the increase in the effective well bore radius and the resulting shift of the curve to lower values of $r_{c D}=r_{e} / r_{w a}$. But reserves do not seem to increase in direct proportion to the increase in producing rate as a result of the treatment. He did not derive a relationship to account for these conditions. However if the effective or apparent well bore radius can be calculated after fracture stimulation then the same curves can be used.

As with the dimensionless pressure evaluation of reservoirs that have been fracture stimulated, the $\mathrm{A} / \mathrm{r}_{\mathrm{w}}{ }^{2}$ term can be replaced by $\mathrm{x}_{\mathrm{c}}{ }^{2} / \mathrm{x}_{\mathrm{f}}{ }^{2}$ or by $\mathrm{A} / \mathrm{x}_{\mathrm{f}}{ }^{2}$ in the equations in the previous section and the same type of analysis could be applied as for the vertical well. Alternatively the fractured well approximations could be used to generate the q_{D} and to terms as follows:

$$
q_{D}=\frac{1}{P_{D}}=\frac{1}{2 \pi t_{D .4}+\frac{1}{\left.2 \ln \left(\frac{x_{e}}{x_{f}}\right)^{2}\right]+\frac{1}{2} \frac{2.2458}{C_{f}}}}
$$

for the pseudosteady state portion and :

$$
q_{D}=\frac{1}{P_{D}}=\frac{1}{2 \pi t_{D A}+\left[\frac{1}{\left.2 \ln \left(\frac{x_{f}}{x_{f}}\right)^{2}\right]+0.80907}\right]}
$$

for the transient portion. The Fetkovich type curves can then be plotted using the standard relationship adjusted for the differences in $t_{D A}$ and t_{D} :

$$
q_{D d}=q_{D}\left[115 \log \left(\frac{4 A}{1.781 C_{A} x_{f}^{2}}\right)\right]
$$

and

$$
t_{D d}=\frac{t_{D}}{\left(\frac{A}{x_{j}^{2}}\right)^{\log \frac{4 A}{1.781 C_{A} x_{f}^{2}}} \frac{5.44678}{}}
$$

where t_{D} is related to $t_{D A}$ by:

$$
t_{D A}=t_{D} \frac{x_{f}^{2}}{A} \text { or } \frac{x_{f}^{2}}{x_{e}^{2}}
$$

Appropriate decline dimensionless graphs can then be easily generated. The following table 5.4 for vertical fractured wells gives the shape factors for variations in reservoir shape and size. These tabular values are a compilation of various experiments, Table C. 1 values of Earlougher ${ }^{22}$ (modified) and Joshi ${ }^{23}$ Table 7-3.

C_{f}	$\mathrm{x}_{\mathrm{d}} / \mathrm{y}_{\mathrm{e}}$					
$\mathrm{x}_{\mathrm{N}} / \mathrm{x}_{\mathrm{e}}$	l	2	3	5	10	20
0.1	2.020	1.4100	0.751	0.2110	0.0026	0.000005
0.3	1.820	1.3611	0.836	0.2860	0.0205	0.000140
0.5	1.600	1.2890	0.924	0.6050	0.1179	0.010550
0.7	1.320	1.1100	0.880	0.5960	0.3000	0.122600
1.0	0.791	0.6662	0.528	0.3640	0.2010	0.106300

Table 5.2 Correction Factors for Reservoir Shapes

Therefore the type curves can be generated for any rectangular reservoir shape and fracture penetration ratio using the methods developed in the previous sections.

5.6 Normalization Techniques

Flowing bottomhole pressure may vary simultaneously with production rate. If the pressure varies in a smooth manner, rate decline can be treated with a constant pressure type curve if the rate used in the curve is normalized by pressure drop according to the relationship:

$$
q_{n}=\frac{q_{0}(t)}{\left[P_{1}-P_{w f}\right]}
$$

Strictly speaking normalization should only be used during the infinite acting period. Golan and experience show that this use after the onset of PSS does not cause a problem since simultaneous pressure and rate decline usually stabilizes to a constant pressure condition before PSS state condition is reached. Normalization can not be used when flowing pressure changes stepwise. Superposition is used then. This normalization process will be extended in the horizontal well technique sections.

5.7 Derivative Methods

In the previous chapter the Fetkovich type curves were generated using the solutions of VanEverdingen and Hurst. This section attempts to derive and use the derivative type curves for both the vertical and horizontal well cases. The use of derivative curves for pressure transient analysis is not new. Tiab ${ }^{24,25,26}$, Bourdet etc presented derivative type curves and direct synthesis techniques for pressure analysis. These methods typically involve the log-log plot of the derivative of a dimensionless pressure or group of terms vs. dimensionless time or a group of terms involving time. The derivative techniques often have more curvature and definition and thus it is easier to obtain unique characteristic type curve matches. However because of the noisy nature of production
data derivative curves have had limited usefulness. Nevertheless for the sake of completeness the derivative type curves should be presented.

Decline analysis utilizes flow rate or cumulative production vs. time rather than pressure. Of course the dimensionless pressure P_{D} is simply the reciprocal of dimensionless rate q_{D} with a constant applied. Production rate data are much more difficult to uniquely match since conditions are not always ideal. Common data problems are related to such things as well shut-in periods, variations in well bore flowing pressures, mechanical problems, workovers, and erratic daily production recording. It is possible that rate derivative techniques may help in decline analysis using the methods of Fetkovich. Therefore the following methods are presented.

5.7.1 Closed boundary Case

The derivative of VanEverdingen and Hurst's relationships of sections 5.3.1 and 5.3.2 are given as:

$$
\frac{\partial q_{D}}{a_{D}}=-2 \sum_{a_{1}, a_{i}, e c c}^{x}\left[\frac{a_{n}^{2} e^{-a a_{i}^{2} t_{D}} J_{1}^{2}\left(a_{n}, r_{t D}\right.}{J_{0}^{2}\left(a_{n}\right)-J_{1}^{2}\left(a_{n}, r_{e D}\right)}\right]
$$

Recalling from the previous section that Fetkovich defined the parameters from conversion from dimensionless to type curve dimensionless using the following:

$$
A=\frac{1}{\left[\ln \frac{r_{e}}{r_{w a}}-\frac{1}{2}\right]}
$$

and :

$$
B=\frac{2 A}{\left(\frac{r_{e}}{r_{w a}}\right)^{2}-1}=\frac{1}{0.5\left[\left(\frac{r_{e}}{r_{w a}}\right)^{2}-1\left[\ln \frac{r_{e}}{r_{w a}}-0.5\right]\right.}
$$

5.72

It should be possible to easily convert the derivative of the closed boundary case to type curve dimensionless form since:

$$
q_{D d}=\frac{q_{0}}{q_{o t}}=\frac{q_{D}}{A}
$$

so that :

$$
\frac{\hat{\partial} q_{D d}}{\partial_{D d}}=q_{D d}^{\prime}=\frac{\partial q_{D}}{\partial_{D}}\left[\frac{1}{A}\right]=\frac{\partial q_{D}}{\partial_{D}}\left[\ln \frac{r_{e}}{r_{w a}}-\frac{1}{2}\right]
$$

Likewise from the previous relationship:

$$
\begin{gather*}
t_{D d}=D t=B t_{D} \\
t_{D d}=\frac{t_{D}}{\left.\frac{1}{2}\left[\left(\frac{r_{e}}{r_{w a}}\right)^{2}-1\right] \ln \frac{r_{e}}{r_{w a}}-\frac{1}{2}\right]}
\end{gather*}
$$

$$
5.75
$$

It is customary to multiply the derivative by $t_{d d}$ for plotting at the same time scale as the traditional $q_{d D}$ vs. $t_{d D}$ plots for comparison. Therefore the form used in the analysis is:

$$
q_{D d} * t_{D d}=-q_{D} * t_{D} *\left[\ln \frac{r_{e}}{r_{w a}}-\frac{1}{2}\right]
$$

5.7.2 Construction of the Derivative Dimensionless Decline Curves

A computer program was written to compute the derivative as well as the q_{D} values from the VanEverdingen and Hurst relationships. This is done for the radial and then converted to the more general formulation for all reservoir shapes by the application of the appropriate shape and position terms.

Figure 5.11 shows the construction of the transient portion of the curve from the derivative of the radial solutions for various $r_{e D}$ values. Figure 5.12 shows the dimensionless decline rate derivative q pd plot. And figure 5.13 shows the dimensionless decline rate derivative $q_{D d}$ in the transient region multiplied by $t_{D d}$ for plotting purposes. Tabular data from the program generated values that are included again in Appendix D.

Figure 5.11 Dimensionless Rate Derivative Radial Transient Portion

Figure 5.12 Derivative Decline Type Curve Radial Case

Figure 5.13 Decline Dimensionless Rate Derivative Transient

The depletion portion of the derivative dimensionless decline curve can be constructed by simply differentiating the Arps equations for exponential, hyperbolic and harmonic declines. Therefore the following expressions give the derivatives of the Arps expressions:Exponential:

$$
\frac{\hat{a}_{D d}}{\hat{a}_{D d}}=-\frac{1}{e^{t_{D}}}
$$

Hyperbolic:

$$
\frac{\partial q_{D d}}{\partial_{D d}}=\frac{1}{\left(1+b t_{D d}\right)^{\frac{1}{b}+1}}
$$

Harmonic:

$$
\frac{\hat{q}_{d D}}{\partial_{D d}}=-\frac{1}{\left(1+t_{D d}\right)^{2}}
$$

These expressions are easily computed in a spreadsheet and displayed in figure 5.13 for the depletion portion of the dimensionless derivative decline type curve. The transient and depletion curves are then combined into one graph as shown in figure 5.14. Again notice that the expressions are multiplied by the dimensionless decline time for plotting purposes. Although the data are rather noisy, the depletion and transient portions converge at about time 0.1 .

Figure 5.14 Arps Derivative Decline Dimensionless Rate Decline

Figure 5.15 Compsosite Dimensionless Decline DerivativeType Curve - Transient and Depletion

5.7.3 Extension to Other Reservoir Shapes

The above construction can be extended to the other reservoir shapes by application of my methods from section 5.6. As the data are so noisy for even the radial case this has not been done in this research. However the extension is straightforward.

5.7.4 Use of the Derivative Curves in Reservoir Analysis

The use of the type curve in reservoir analysis was done in the previous sections. This section will explain the use of the derivative in the analysis. Limited success has been found in using derivatives for decline curve analysis. The derivative type curves primary use as an aid in picking the proper $r_{e D}$ and b curves for decline curve matching. This is done by first converting the field production data to a derivative and then matching to the derivative type curve.

The first step is to compute the numerical derivative of the production data using a derivative approach such as the three-point derivative as follows:

$$
t\left[\frac{\hat{\partial}}{\partial \partial t}\right]_{t}=t_{t}\left[\frac{\left(t_{1}-t_{t-1}\right) \Delta P_{t+1}}{\left(t_{t+1}-t_{t}\right)\left(t_{i+1}-t_{t-1}\right)}\right]+\left[\frac{\left(t_{t+1}+t_{t-1}-2 t_{t}\right) \Delta P_{t}}{\left(t_{t+1}-t_{i}\right)\left(t_{t}-t_{i-1}\right)}\right]-\left[\frac{\left(t_{i+1}-t_{t}\right) \Delta P_{t-1}}{\left(t_{t}-t_{t-1}\right)\left(t_{i+1}-t_{i-1}\right)}\right] 5.81
$$

This derivative will often give adequate results. If the derivative results in noisy data then certain smoothing techniques can be used.

5.7.5 Data Smoothing Techniques

Data smoothing techniques are varied. For instance one method to reduce noise might include using data points that are separated by at least 0.2 of a log cycle., rather than points that are immediately adjacent and using the natural logarithm of time.

$$
\left[\frac{\hat{\partial p}}{\partial t}\right]_{t}=\left[\frac{\hat{\partial}}{\partial \ln t}\right]_{t}
$$

So that the expression for the numerical differentiation would then be:

$$
\begin{aligned}
& t\left[\frac{\partial p}{\partial}\right]_{1}=\left[\frac{\partial p}{\partial \ln t}\right]_{1}=\frac{\ln \left(t_{t} / t_{t-k}\right) \Delta P_{t+1}}{\ln \left(t_{t+j} / t_{i}\right) \ln \left(t_{i+j} / t_{t-k}\right)}+\frac{\ln \left(t_{t+1} t_{i-k} / t_{i}^{2}\right) \Delta P}{\ln \left(t_{t+j} / t_{i}\right) \ln \left(t_{i} / t_{t-k}\right)}-\frac{\ln \left(t_{t+1} / t_{i}\right) \Delta P_{t-1}}{\ln \left(t_{t} / t_{t-k}\right) \ln \left(t_{t+j} / t_{t-k}\right)} \\
& \ln t_{i-1}-\ln t_{i}>=0.2 \\
& \ln t_{i+1}-\ln t_{i-k}>=0.2
\end{aligned}
$$

The value of 0.2 is known as the differentiation interval and could be replaced by smaller or larger values (usually between 0.1 and 0.5) with consequent differences in the smoothing of the noise. The differentiation interval may cause problems in determining the derivative for the last part of the derivative curve, since the data runs out within the
last differentiation interval. Therefore some noise is expected at the end of the data string.

The primary benefit of the derivative curve is for an aid in picking the proper $r_{e D}$ and b values with which to match and diagnosing characteristic reservoir types. The calculation of reservoir parameters is identical to the method discussed before. It is difficult to use the derivative type curve unless sufficient data is available in both the transient and depletion portions of the curve.

5.7.6 Example of Derivative Use

The table below is a data set from Golan's book ${ }^{+}$as noted in the table 5.3 below. Applying the above concepts and plotting results in the following graphs in figure 5.16 . Figure 5.17 is the derivative type curve developed in the prior sections.

Production Data from Golan page 393 Table E.4.5 $\mathrm{b}=0.5$ considered best match by author						
Detta T	Q/mo	Detraq	Q'	Q'alt	$t^{\circ} \mathrm{Q}$	t'Q'alt
0	0					
0.5	30000	30000	218.0000			
14	9000	39000	826.1702	1072.949	11566.38	15021.29
19.3	6532	45532	1004.7748	1024.402	19392.15	19770.96
25.1	4621	50153	691.6949	695.1959	17361.54	17449.42
31.1	3541	53694	477.8358	499.0876	14860.69	15521.6
38.5	2862	56556	370.5797	368.052	14267.32	14170
44.9	2252	58808	355.2586	356.0395	15951.11	15986.17
50.1	1869	60677	320.5556	323.3318	16059.83	16198.92
55.7	1593	62270	161.8235	224.2197	9013.571	12489.0
67.1	1158	63428	115.7368	1228158	7765.942	8240.939
74.7	1041	64469	945.2757	54.7368		

Table 5.3 Derivative of Production Data from Golan Reference

Figure 5.16 Example Production Data-Derivative Method

Derivative Type Curve Radial Case Transient and Depletion(Arps)

Figure 5.17 Dimensionless Decline Derivative Type Curve

The hope is that the derivative of the production data will help the user pick the appropriate "Arps b " value and the appropriate $r_{c D}$ or $A / r_{w}{ }^{2}$ term to be used in the analysis of reservoir parameters and production forecasting. An examination of the plot of the production derivative shows the same general curvature of the type curve but there is not sufficient data to really help in the transient portion of the curve. Therefore the usefulness in picking the reservoir radius is limited. If early production data can be obtained then this method should help.

5.8 Chapter Summary

This chapter and associated appendices provide one of the most comprehensive treatments of decline curve construction and use available. Compete theory, methodology and tabular data are provided for both Fetkovich type curves construction, extensions of type curve to all reservoir shapes and well positions as well as derivative type curves. These concepts will be extended to the analysis of horizontal wells in the next few chapters.

CHAPTER SIX

Horizontal Wells

6.1 Various Horizontal Well Analytical Equations

There are three popular PSS equations for horizontal well flow. These methods are summarized in the following sub-sections.

6.1.1 Method One: Infinite Conductivity Fracture Method

The method. introduced by Mutalik, Joshi et al ${ }^{27}$ assumes that a horizontal well is equivalent to an infinite conductivity fracture. The proposed equarion is an extension of fractured vertical well theory. Mutalik et al's equation for flow during pseudosteady state conditions is expressed as:

$$
q=\frac{0.007078 k_{h} h\left(\overline{P_{R}}-P_{w f}\right)}{\mu_{o} B_{o}\left(\ln \frac{r_{e}}{r_{w}}-A^{\prime}+s_{f}+s_{m}+s_{C A, h}-c^{\prime}+D q\right)}
$$

Where:

$$
r_{e}=\sqrt{\frac{A^{*} 43560}{\pi}}
$$

and
$s_{\mathrm{m}} \quad=\quad$ mechanical skin factor, dimensionless
$\mathrm{s}_{\mathrm{f}} \quad=\quad-\ln \left[L /\left(4 \mathrm{r}_{\mathrm{w}}\right)\right]=$ negative skin factor of an infinite conductivity fully penetrating fracture of length L .
$\mathrm{S}_{\mathrm{CAh}}=$ shape related skin factor
$c^{\prime}=\quad$ shape factor conversion constant $=1.386$
$\mathrm{A}^{\prime}=0.75$ for circular drainage areas
$=\quad 0.738$ for rectangular areas
$\mathrm{D}_{\mathrm{q}} \quad=\quad$ Near well turbulence factor

The skin factor $\mathrm{S}_{\mathrm{CA}, \mathrm{D}}$ is determined from published charts such as shown in Joshi's Horizontal Well Technology book ${ }^{23}$ (figures 7-5 to 7-7) for centrally located wells within drainage areas based on the ratios of $2 x_{e} / 2 y_{e}$ for each particular case. The Mutalik method gives the highest flow rates of the three published methods.

Again k_{h} is always in the formula and is assumed to be represented by the geometric mean of permeability in the principle x and y directions. The analytic equation would thus predict that no matter what the contrast between k_{x} and k_{y}, the solution should remain constant as long as the square root of $k_{x} k_{y}$ is the same and all other parameters remain constant as shown before. This is probably only the case when the horizontal well is small compared to the reservoir dimensions. The skin factor for shape considerations, $\mathrm{S}_{\mathrm{CAh}}$, only accounts for variations in vertical versus horizontal permeability. It does not account for average directional horizontal permeability, k_{h}, variations.

6.1.2 Method Two - Kuchuk Method

Another method, proposed by Kuchuk et al^{28} used the approximate infinite conductivity solution where constant wellbore pressure is obtained by averaging pressure values of the uniform flux solution along the well length. This equation gives the lowest flow rates of the various methods. The term B_{0} was left off the equation in the literature but it has been added to the equation below to convert the flow to surface conditions for proper comparison. These authors present the following equation to describe single-phase flow in a horizontal

$$
q_{h}=\frac{\left(\overline{P_{R}}-P_{w f}\right) k_{h} h}{70.6 B_{o} \mu_{0}\left(F+\frac{h}{0.5 L} \sqrt{\frac{k_{h}}{k_{v}}} s_{x}\right)}
$$

well.
Charts such as Table $7-6$ in Joshi's book give the F term. F is dependent on $y_{w} / 2 y_{e}, x_{w} / 2 x_{e}$, $\mathrm{L} / 4 \mathrm{x}_{\mathrm{e}}$, and $\left(\mathrm{y}_{\mathrm{e}} / \mathrm{x}_{\mathrm{e}}\right)^{*} \operatorname{sqrt}\left(\mathrm{k}_{\mathrm{x}} / \mathrm{k}_{\mathrm{y}}\right) . \mathrm{z}_{\mathrm{w}}, \mathrm{y}_{\mathrm{w}}$ and x_{w} are the distances from the center of the horizontal well to the boundaries of the reservoir in the $z y$, and x directions respectively. The sterm is calculated with the following equation.

$$
s_{x}=\ln \left[\left(\frac{\pi r_{w}}{h}\right)\left(1+\sqrt{\frac{k_{v}}{k_{h}}}\right) \sin \left(\frac{\pi z_{w}}{h}\right)\right]-\sqrt{\frac{k_{h}}{k_{v}}}\left(\frac{2 h}{L}\right)\left[\frac{1}{3}-\frac{z_{w}}{h}+\left(\frac{z_{w}}{h}\right)^{2}\right]
$$

Again k_{b} and k_{v} are considered but not variations in k_{x} and k_{y} other than geometrical averaging of k_{x} and k_{y} for k_{h}. This method seems especially poor at predicting rates above the bubble point for some reason.

6.1.3 Method Three

Another method was presented by Babu and Odeh ${ }^{29}$ which is based on a partially penetrating vertical well-turned sideways. This method yields flow rate results in between the MutalikJoshi and Kuchuk methods.

Babu and Odeh's ${ }^{29}$ equation is expressed as:

$$
q=\frac{.007078\left(2 X_{e}\right) \sqrt{k_{y} k_{v}}\left(P_{R}-P_{w f}\right)}{B_{o} \mu_{o} \ln \left(\sqrt{A} / r_{w}\right)+\ln C_{H}-0.75+s_{R}}
$$

C_{H} is the geometric shape factor given as:
$\ln C_{H}=6.28\left(\frac{2 y_{e}}{h}\right) \sqrt{\frac{k_{v}}{k_{y}}}\left[\frac{1}{3}-\left(\frac{y_{w}}{2 y_{e}}\right)+\left(\frac{y_{w}}{2 y_{e}}\right)\right]-\ln \left[\sin \left(180 \frac{z_{w}}{h}\right)\right]-0.5 \ln \left[\left(2 \frac{y_{e}}{h}\right) \sqrt{\frac{k_{v}}{k_{y}}}\right]-1.088$
S_{R} is the skin factor attributable to partial penetration. S_{R} will be zero when $L=2 x_{e}$ i.e. fully penetrating horizontal well. If L $<2 \mathrm{x}_{e}$ then the value depends on the two conditions:

Casel:

$$
2 \frac{y_{e}}{\sqrt{k_{y}}} \geq 1.5 \frac{x_{e}}{\sqrt{k_{x}}} « 0.75 \frac{h}{\sqrt{k_{v}}}
$$

Case 2:

$$
2 \frac{x_{e}}{\sqrt{k_{x}}} \geq 2.66 \frac{y_{e}}{\sqrt{k_{y}}}<1.33 \frac{h}{\sqrt{k_{v}}}
$$

Case 1

$$
\mathrm{S}_{\mathrm{R}}=\mathrm{PXYZ}+\mathrm{PXY} Y^{\prime}
$$

PXYZ is given by:

$$
\left.P X Y Z=\left[2 \frac{x_{e}}{L}-l\right] \ln \left(\frac{h}{r_{w}}\right)+0.25 \ln \left(\frac{k_{y}}{k_{v}}\right)-\ln \left(\sin \frac{180^{\circ} z_{w}}{h}\right)-1.84\right]
$$

The PXY' component is given by:

$$
\left.P^{\prime} X Y=\left(\frac{2\left(2 x_{e}\right)^{2}}{L h} \sqrt{\frac{k_{v}}{k_{x}}}\right) f f(x)+0.5\left[f\left(y_{l}\right)-f\left(y_{2}\right)\right]\right]
$$

x_{w} is the distance from the horizontal well mid point to the closest boundary in the x direction. Pressure computations are made at the mid point along the well length.

$$
x=\frac{L}{4 x_{e}} \quad y_{l}=\frac{4 x_{w}+L}{4 x_{e}} \quad y_{2}=\frac{4 x_{w}-L}{4 x_{e}}
$$

$$
\begin{gather*}
f(x)=-x\left[0.145+\ln (x)-0.137(x)^{2}\right] \\
f(y)=(2-y)\left[0.145+\ln (2-y)-0.137(2-y)^{2}\right] \\
\text { where } y=y l \text { or } y 2
\end{gather*}
$$

Case 2:

$$
S R=P X Y Z+P Y+P X Y
$$

PXYZ is calculated as above while PY comes from the relation:

$$
P Y=6.28 \frac{\left(2 x_{e}\right)^{2} \sqrt{k_{y} k_{v}}}{2 y_{e} h \quad k_{x}}\left[\left(\frac{1}{3}-\left(\frac{x_{w}}{2 x_{e}}\right)+\left(\frac{x_{w}}{2 x_{e}}\right)^{2}\right)+\frac{L}{48 x_{e}}\left(\frac{L}{2 x_{e}}-3\right)\right]
$$

x_{w} is the mid-point coordinate of the well. PXY is:

$$
\begin{gather*}
P X Y=\left(\frac{2 x_{e}}{L}-1\right) \frac{6.28\left(2 y_{e}\right)}{h} \sqrt{\frac{k_{v}}{k_{y}}}\left[\frac{1}{3}-\left(\frac{y_{w}}{2 y_{e}}\right)+\left(\frac{y_{w}}{2 y_{e}}\right)^{2}\right] \\
\text { For }\left[\operatorname{Min}\left\{\mathrm{y}_{\mathrm{w}},\left(2 \mathrm{y}_{\mathrm{e}}-\mathrm{y}_{\mathrm{w}}\right)\right\}=0.5 \mathrm{y}_{\mathrm{e}}\right.
\end{gather*}
$$

This method is predicated on the assumption that a "fully penetrating horizontal well should be identical in behavior to a fully penetrating vertical well, provided that the drainage volumes are similar and it is recognized that the horizontal well is parallel in the y direction while the vertical well is parallel to the z direction ${ }^{29}$. This basic assumption has been bothersome for several reasons as indicated in the following paragraph.

To test the assumption of this method, a comparison was made of the simulated results of a vertical well model to the equivalent horizontal model of the vertical well turned sideways. As suspected the results were not identical. Figure 6.1 illustrates the models used in the validation and comparison experiment. Figure 6.2 shows the comparison of the two cases. In general the equivalent horizontal well gave higher simulated flow results. Variations of pressure with depth were purposely omitted in the experiment, as this would make the
difference even larger than observed in thick formations. According to the Babu and Odeh's ${ }^{29}$ publication, they only tested the validity of the equivalency of a vertical well turned sideways in the transient regime.

Figure 6.1 Schematic Diagram of Fully Penetrating Vertical Well versus Equivalent Horizoatal Well

Figure 6.2 Comparison of Simulated Vertical and Equivalent Horizontal Flow Rates

This basic assumption of the Babu and Odeh^{29} method may not be valid for several reasons. First. the condition of equal drainage volumes does not seem sufficient. The drainage shape and dimensions would also have to be the same. When a vertical well is turned sideways the reservoir is then very thin horizontally compared to the vertical dimension and severe boundary effects may result. Generally a reservoir is thin compared to its horizontal areal size. If a vertical well is turned sideways then the dimensions in the y and z directions are then distorted compared to the x direction (parallel to the well). Second there are basic pressure differences to take into account. The pressure differences of a vertical versus horizontal slice can be different depending on the formation thickness. Third, there are gravity considerations.

The Babu and Odeh method is also very cumbersome to use. If analytical methods of accounting for horizontal permeability contrasts and situations below the bubble point could be adapted to vertical style methods then a easy and more accurate predictive model might result that could be used to verify, calibrate and validate simulation output.

6.2 Alternative Method Using Effective Wellbore Radius Concept

A horizontal well should be capable of being modeled in terms of familiar vertical equations by the introduction of an equivalent wellbore radius concept. The derivation of the effective radius of a horizontal well as adapted from Joshi ${ }^{30,32}$ is shown in appendix F. It will then be shown that the use of the equivalent well bore radius r_{w} in vertical style equations, modified
for incorporation of solution gas cases below the bubble point, is not only easier to use but is also accurate and thus useful in validating simulation models and simulation output.

The equivalent well bore radius of a horizontal well in comparison to a vertical well is expressed as:

$$
r_{w}=\frac{0.5 r_{e h} L}{\left.\left.q 1+\sqrt{1-\left[\frac{L}{2 a}\right]^{2}}\right] \frac{\beta h}{2 r_{w}}\right]^{\frac{\beta h}{2}}}
$$

where a is defined as:

$$
a=0.5 L\left[0.5+\sqrt{0.25+\left(\frac{2 r_{e h}}{L}\right)^{4}}\right]^{\frac{1}{2}}
$$

And

$$
\beta=\left(\frac{k_{h}}{k_{v}}\right)^{\prime}, \quad r_{e h}=\sqrt{\frac{A}{\pi}}
$$

Where A is in square feet. In a homogeneous reservoir the β term is unity and the apparent well bore radius expression reduces to:

$$
r_{w}=\frac{0.5 r_{e h} L}{\left.q\left[1+\sqrt{1-\left[\frac{L}{2 a}\right]^{2}}\right] \frac{h}{2 r_{w}}\right]^{\frac{h}{L}}}
$$

Therefore the equation for the horizontal well would then reduce to:

$$
q=\frac{0.007078 k_{h} h\left(\overline{P_{R}}-P_{w f}\right)}{\mu_{o} B_{o}\left(\ln \frac{r_{e}}{r_{w}^{\prime}}-0.75\right)}
$$

Where r_{w} is defined above and k_{eh} is as usual the geometric mean of the permeability in the principle x and y directions. As shown in chapter 3 this equation can be converted to a 2phase flow estimate by estimating and incorporating the mobility as a function of pressure and average saturation. Thus the generalized multi-phase equation approximation for a horizontal flow in terms of equivalent vertical well parameters should be:

$$
q=\frac{0.007078 k_{h} h\left(\overline{P_{R}}-P_{w f}\right)}{\left(\ln \frac{r_{e}}{r_{w}^{\prime}}-0.75\right)}\left(\frac{k_{r o}}{\mu_{o} B_{o}}\right)_{\text {Pave }}
$$

The other three published methods can also be modified to incorporate the 2 phase flow characteristics. As a validation check of this modification experimental comparisons will be shown as done previously for the vertical well case. The next section will detail validation comparisons for the isotropic results followed by an application to anisotropic cases.

6.3 Demonstration of Validity of 2-phase Horizontal Well Approximations

As a test of the validity and accuracy of these published equations and as a test of the more usable equivalent wellbore radius concept, simulation tests were conducted using horizontal wells in isotropic media compared to the analytical equations. Later anisotropic cases will be presented. Simulated results of each anisotropic model were compared with one another and
the 2-phase analytical results were then compared to simulated results. It is important to note that the k_{h} in the above equations is the absohute horizontal permeability, which must be multiplied by the relative permeability to the desired phase such as oil in this case. Therefore in equations 6.20 and 6.21 , for instance, k_{b} would be multiplied by $k_{r o}$ at each oil saturation point if the flow rate for oil is desired and by $1 /\left(\mu_{0} B_{0}\right)$ and average reservoir pressures as demonstrated previously for the vertical comparisons. This has been done in the analysis but is never presented or addressed in the various papers.

For this project, a test was conducted to see if these saturation and pressure averaged mobility functions would work as well with both vertical and horizontal wells. If the averaging process works as well for horizontal well conditions as it did for vertical wells then it will be easier to perform some other tests on absolute permeability anisotropy and extensions to decline analysis.

6.3.1 Validation Model Results and Discussion

The basic model parameters for horizontal test cases are given in Appendix E. Vertical permeability is 0.1 md in all cases. The average effective horizontal permeability in all cases is 3.1 md . A 15 by 17 by 3 -grid block model was used for the horizontal cases. Three models were tested. The first model depicts the isotropic model of constant permeabiity in both x and y direction ($\mathrm{k}_{\mathrm{x}}=\mathrm{k}_{\mathrm{y}}=3.1 \mathrm{md}$). Models 2 and 3 are the cases in which $\mathrm{k}_{\mathrm{y}}=9.61, \mathrm{k}_{\mathrm{x}}=1.0 \mathrm{md}$ and $\mathrm{k}_{\mathrm{y}}=19.22, \mathrm{k}_{\mathrm{x}}=0.5 \mathrm{md}$ but the average horizontal permeability was still $3.1 \mathrm{md}\left(\sqrt{ }\left(\mathrm{k}_{\mathrm{x}} \mathrm{k}_{\mathrm{y}}\right)\right)$ in all cases. The averaging process is desirable because it is so easy to evaluate in a spreadsheet.

Typical simulators give tabular output that can be imported to spreadsheets and averaged over gridblocks in a single operation. Typical simulation output was previously shown in Tables 3.2, 3.3.

Figures 6.3 through 6.5 show the oil rate vs. average pressure plot with the above model. Figure 6.3 is a comparison of the isotropic permeability case ($\mathrm{k}_{\mathrm{x}}=\mathrm{k}_{\mathrm{y}}=3.1 \mathrm{md}$) compared to the various 2-phase analytical equations presented in section 6.2 of this chapter. There are several things to note. First of all the match between the simulated output for the isotropic case of constant x and y permeability and the analytical results is not quite as good as with a vertical well for several of the methods. Note however that the equivalent wellbore radius incorporation using the 2-phase adaptation is one of the best matches to the simulated results. This is very important because it validates the idea that the equivalent wellbore 2phase analytical equations are reasonable approximations to actual reservoir performance. And because the equivalent wellbore concept is in terms of vertical well terminology and conventions it is immediately applicable to decline analysis as will be shown in chapter 7. In fact the equivalent wellbore radius concept will be shown to also give superior results to the other methods in the case of anisotropic media.

Figure 6.3 Simulated versus 2-Phase Analytical Equations $\mathbf{k}_{\mathbf{x}}=\mathbf{k}_{\mathbf{y}}=3.1 \mathrm{md}$, Geometric Mean Permeability Constant
\qquad
Simulated versus 2-Phase Analytical Equations $K x=49.22$, Ky=0.5, Geometric Mean Perm. Constant

Figure 6.4 Simulated versus 2-Phase Analytical Equations $\mathbf{k}_{\mathbf{s}}=19.22, \mathbf{k}_{\mathbf{y}}=1$,Geometric Mean Permeability Constant

Figure 6.5 Simulated versus 2-Phase Analytical Equations $k_{5}=9.61, k_{c}=1.0$, Geometric Mean Permeabitity Constant

6.4 Analysis of Analytical and Simulated Pseudosteady State Flow Equations for Horizontal Wells in Anisotropic media.

As mentioned in chapter 3, vertical well-modified 2-phase analytical solutions match simulated results quite well for fluid flow in both isotropic and highly anisotropic media above and below the bubble point. This showed that no matter what the contrast in k_{x} and k_{y}, the simulated rate vs. pressure results were essentially identical. Also the analytical computations were shown to be good estimates of simulated results. In contrast, analytical solutions to horizontal well flow generally follow simulated sohutions in isotropic media but do not match simulated horizontal results very well in horizontally anisotropic media. The mismatch is especially pronounced above the bubble point. What
is the cause of this phenomenon and what can be done to improve the match? Let's first look at the results and see what we can observe.

6.4.1 Anisotropic Experimental Results and Observations

Simulation experiments indicate that published analytical solutions to horizontal well inflow at least track simulated results in cases of isotropic permeability (again above and below the bubble point) (figure 6.3) but they do not match simulated horizontal results as well in cases of horizontally anisotropic permeability. Figures 6.3-6.5 illustrate the comparison of three horizontal permeability cases (single layer model) each with a geometric average of 3.1 m.d. but with varying degrees of anisotropy. Figure 6.4 shows the comparison with simulated $\mathrm{k}_{\mathrm{x}}=9.61 \mathrm{md}, \mathrm{k}_{\mathrm{y}}=1$ while figure 6.5 shows output for the case of $\mathrm{k}_{\mathrm{x}}=19.22, \mathrm{k}_{\mathrm{y}}=0.5$. Each case has the same geometric mean permeability. If k_{y} is set to a constant 9.61 md and k_{x} to 1.0 md , the match is very poor even though the horizontal average permeability remains at 3.1 md . The deviation between the simulation case and analytical results is even greater if k_{y} is magnified to 19.22 md vs. $\mathrm{k}_{\mathrm{x}}=0.5$ while keeping $\mathrm{k}_{\text {eh }}$ equal to 3.1 . Therefore the traditional use of a geometric average of k_{x} and k_{y} for the effective horizontal permeability is not a good approximation for the horizontal well at least when the wellbore is long in comparison the reservoir dimensions and the maximum grid block number is limited. Since no other parameters have been changed between models, the difference must be in the way $\mathrm{k}_{\text {eh }}$ is calculated for horizontal wells in the simulation or in some type of numerical or boundary effects due to model design. These are compared with two popular analytic prediction
methods discussed earlier in this chapter as well as the modified equivalent wellbore radius method presented in this chapter. Notice also in figure 6.6 that in each case, the simulated horizontal flow rates increase with increasing permeability perpendicular to the well bore despite constant horizontal geometric mean permeability. Theory would predict that anisotropy would not affect results as long and the geometric mean permeability remained constant. There are then two questions to answer. 1) Why do the analytical and simulated results vary and 2) why do the simulated results themselves vary when theory would predict that the permeability contrast would not affect results?

Simulated Rates For Various x and y Permeability Contrasts but Constant Geometric Means

Figure 6.6 Simalated Rates For Various \mathbf{x} and y Permeability Contrasts but Constant Geometric Means

6.4.2 Anisotropic Behavior Possibilities

As in the vertical well situation, each horizontal well analytical method requires the use of effective horizontal permeability, k_{b}, in the calculation. Perhaps one of the problems is a misconception as to what effective horizontal permeability is to a horizontal well Other possible explanations inciude the need to include more reservoir blocks in the vicinity of the wellbore and boundary effects when the well is close to the reservoir edge.

If the reservoir is semi-infinite, no other wells compete for drainage area, and the reservoir is thick, then the geometric average of permeability may work satisfactorily. The horizontal well would then appear small compared to the reservoir as a whole and the geometric average would give proper results. This is almost never the case in reality. In practice, reservoirs are limited compete for drainage area, and are anisotropic. The discrepancy in flow predictions may be a function of well length, degree of penetration, permeability contrast. distance to the reservoir boundaries and number of simulation blocks. This also demonstrates the usefulness of the 2-phase analytical approximations presented in this work as they help to validate simulation model parameters.

All published horizontal well inflow solutions use the geometric average for effective horizontal permeability. If the reservoir is very large compared to the horizontal well length, and the reservoir is isotropic, then the geometric average can be used. In simulation experiments, as the permeability perpendicular to the horizontal well increases over the
permeability parallel to the well bore, keeping the square root of $\mathrm{k}_{\mathrm{x}} \mathrm{k}_{\mathrm{y}}$ constant, the simulated flow rates increase dramatically while the analytical flow rate predictions remain fairly constant depending on the analytical method used. Simulation experiments were conducted to see if this discrepancy appears to be a function of primarily the x, y and z directional permeability contrast, the length of the horizontal well, the distance from the well to the reservoir boundaries and possibly other parameters such as grid size and number of grids in the model.

6.4.3 Background Theory into Effective Horizontal Permeability

In naturally fractured wells, the permeability along the fracture trend is larger than the direction perpendicular to the fractures. As such, a vertical well would drain more length along the fracture trend. Assuming a single phase, steady state flow, one can write the following equation.

$$
\frac{\partial}{\partial x}\left(k_{x} \frac{\hat{p}}{\partial x}\right)+\frac{\partial}{\partial y}\left(k_{y} \frac{\hat{\phi}}{\partial y}\right)=0
$$

Assuming non-variant values of k_{x} and k_{y} in the principal x and y directions one can rewrite the equation as:

$$
k_{x} \frac{\partial^{2} p}{\partial x^{2}}+k_{y} \frac{\partial^{2} p}{\partial y^{2}}=0
$$

and multiplying and dividing throughout by $\sqrt{ }\left(k_{x} k_{y}\right)$ the equation can be rewritten as:

$$
\sqrt{k_{x} k_{y}}\left[\sqrt{\frac{k_{x}}{k_{y}}} \frac{\partial^{2} p}{\partial x^{2}}+\sqrt{\frac{k_{y}}{k_{x}}} \frac{\partial^{2} p}{\partial y^{2}}\right]=0
$$

Which can be rearranged and transformed as follows:

$$
\sqrt{k_{x} k_{y}}\left[\frac{\partial^{2} p}{\partial x^{2}}+\frac{\partial^{2} p}{\partial y^{2}}\right]=0
$$

where:

$$
y^{\prime}=y \sqrt{\frac{k_{x}}{k_{y}}}
$$

Therefore in an anisotropic reservoir the effective horizontal permeability would be $V\left(k_{x} k_{y}\right)$ and the drainage length along the high permeabiity side is $\sqrt{ }\left(k_{x} / k_{y}\right)$ times the length along the low permeability side. Thus if the permeability along the fracture trend is 16 times greater than that perpendicular to the trend then the drainage length along the fracture trend is four times larger than the length perpendicular to the fracture trend.

A horizontal well drilled along the low permeability direction has the potential to drain a significantly larger area than a vertical well, resulting in a larger reserve for horizontal wells versus vertical wells. Now so far the above discussion concerns only a vertical well in anisotropic media. There is limited data for fractured vertical wells with which to calculate the time to reach pseudo-steady state. Horizontal well data are also not extensive.

6.5 Need to Re-Consider Effective Horizontal Permeability in Limited Reservoirs

Due to the longer well length, a horizontal well would drain a larger reservoir area than a vertical well within a given a specific time interval. If a vertical well drains a certain reservoir volume in a given time then that information can be used to calculate a horizontal well drainage area. A horizontal well can be looked at as a number of vertical wells drilled in succession. However unless the reservoir is very large compared to the horizontal well length a distortion may be introduced into the effective horizontal permeability that is not captured in the shape factor alone. As noted in the preceding sections, all horizontal well flow equations assume the square root effective horizontal permeability concept. Various shape and pseudo-skin factors have been developed to account for variations in reservoir shape, well penetration ratios and dimensionless well length but no studies have been performed to investigate the effect of contrasts in k_{x} and k_{y} on flow rates versus pressure. This is because it has been assumed that the effective horizontal permeability can be adequately described by the square root of permeability in the principle x and y directions.

This simple geometric average of permeability alone does not appear to work well for horizontal wells in simulation experiments involving Boast reservoir simulator. This is not just related to a shape factor to account for the degree of penetration of the horizontal well relative to the reservoir dimension. For instance Earlougher ${ }^{22}$ published shape factors for vertically fractured wells with different ratios of the fracture length X_{f} relative to the length of the reservoir in the direction parallel to the fracture. If the ratio of x_{f} to x_{e} was 0.5 (ie. the
fracture was half as long as the reservoir length parallel to the fracture) then the C_{A} factor in the equation was 1.662 compared to 2.654 when the fracture was very short and $x_{d} d x_{e}$ was 0.1 . This would also be the case with the horizontal well where the length varied in comparison to the reservoir \mathbf{x} dimension. However given a certain well or fracture length which would still yield a certain shape factor, the equations would all predict a certain constant behavior irrespective of the contrast in k_{x} and k_{y} as long as the square root of the product was constant. Likewise Joshi ${ }^{23}$ published various shape and skin factors (page 217219) for use in the traditional horizontal well flow rate equations. However all methods assume horizontal permeability is the square root of x and y permeability.

As previously shown, a reasonable match was obtained between analytical published equations modified by using the modified 2-phase equivalent wellbore radius approximation and simulated results for isotropic permeability. Theoretically equation 6.16 can be used for horizontal wells in both anisotropic and isotropic media. The only difference would be the deletion of the beta term in equation 6.16 for the isotropic case. However inspection of the beta term shows that this term is only introducing variations in the ratio of vertical to horizontal permeability. It does not account for variations in k_{x} and k_{y} distributions. As long as the effective horizontal permeability given by the square root of $k_{k} k_{y}$ is the same, the analytical results predict no change in flow rate with anisotropy. Clearly this is not always the case in reality. The beta term in the equation and the skin factors in the other methods only address the ratio of vertical and horizontal anisotropy, not the issue of horizontal anisotropy itself. The use of skin factors and Kuchuk's equation yield even worse results.

Simulation results indicate that a simple geometric averaging of x and y permeabiity does not suffice in the case of a horizontal well.

Notice in the various experiments that as the contrast in x and y permeability was increased (geometric mean constant), the flow rates diverged significantly, especially at higher pressures above the bubble point. This was perplexing and deserved further investigation. Intuition would also indicate that high permeability perpendicular to the horizontal wellbore would yield higher flow rates than equal but lower permeability in both directions. In other words if $\mathrm{k}_{\mathrm{x}}=9.61 \mathrm{md}$ perpendicular to the wellbore and $\mathrm{k}_{\mathrm{y}}=1 \mathrm{md}$ parallel to the wellbore one might intuitively expect higher flow rates than if $\mathrm{k}_{\mathrm{x}}=\mathrm{k}_{\mathrm{y}}=3.1 \mathrm{md}$ even though both cases give the same geometric mean k_{b} of 3.1 md . But analytical equations predict the same productivity no matter what the values of k_{x} and k_{y} as long as the square root of the product of $k_{x} k_{y}$ is the same.

There were several hypotheses to explain this divergence in flow rate versus average reservoir pressure. First it was thought that perhaps not enough grid blocks were used to define the model Secondly perhaps distortion was introduced when the well penetration was long compared to the reservoir dimensions. In other words if the well length was insignificant compared to the horizontal dimensions then perhaps the deviation would disappear. Thirdly perhaps the simulator itself is not designed properly to account for such variations. It was not possible to test the third possibility since no access to other simulators was possible but such a comparison should be made to determine if this is a simulator artifact.

6.5 Experimental Results and Observations of Variations in Simulated Output in Cases of Variable Horizontal Permeability Components

This phenomenon was first observed while preparing a class project in 1995. Though a class project paper was written on the subject the paper generated no real interest and it was uncertain what the results really meant. For the past four years the subject has periodically resurfaced in this research and since no flaws are apparent in the observation, the experimental analysis continued. As a test of the above theory that additional skin factors are needed to account for horizontal anisotropy, scores of simulation experiments were conducted in which the grid blocks, well length and, reservoir size was varied versus contrasts in x and y directional permeability. If the simulated results match analytical results in isotropic media as grids become more numerous then it will be apparent that the explanation lies only in the simulation model itself. The geometric mean would then be validated and discrepancies will be explained by simulation limitations. If this is not the case other explanations must be considered. The "quick-look" 2-phase approximations are used to check results.

6.6.1 Experiments

The first hypothesis tested was the effect of the number and size of the grid blocks used. Boast is limited to 810 grid blocks but this should be sufficient to test the hypothesis. Reservoirs ranging from as small as 0.8 square miles up to 3.6 square miles were tested using various permeability contrasts and well lengths ranging from 400 to 1000 feet (L/2 X_{e} ratios from 10 up to $50, \mathrm{~L} / 2 \mathrm{X}_{e}=0.02$ to 0.1). Details of the experimental parameters are available
from the author. The complete experimental output files are available for inspection and use by the reader however they are too voluminous to include in this document. The following sections summarize some of the findings from those studies.

6.6.2 Effect of Grid Number

The first thing to note is that as the contrast in k_{x} and k_{y} becomes more pronounced, the deviation from the isotropic case becomes more pronounced. However the effect of the number of grid blocks is relatively minor. Figures 6.7 through 6.9 show the effect of variations in the \# of grid block with increasing contrast in k_{x} and k_{y} (geometric mean constant).

Figure 6.7 Deviation from Isotropic as \# Grid Blocks Increases $L=400 \mathrm{~h}=25$, 2Xe/L=10 Case, Geometric Mean $k_{a} k_{y}$ Constant.

Figure 6.8 Deviation from Isotropic as \# Grid Blocks Increases $L=600 h=25$, 2Xe/L=6.7 Case Geometric Mean $k_{z} k_{y}$ Constant.

Figure 6.9 Deviation from Isotropic as \# Grid Blocks Increases $\mathrm{L}=1000 \mathrm{~h}=\mathbf{2 5}$, 2Xe/L=4 Case Geometric Mean $\mathrm{k}_{\mathbf{z}} \mathrm{k}_{\boldsymbol{y}}$ Constant.

Note that as the grid blocks increase, keeping the total model size constant, there is relatively little change in the average deviation from the isotropic case. Note also that the average deviation increases with increasing pressure but becomes less noticeable as the reservoir size increases relative to the well length. This can also be shown in the following figures 6.10 and 6.11 from one of the experiments.

Figure 6.10 Variation in Rate-Pressure With Change in k_{ν} / k_{y} Ratio, L-1000, 2Xe/L=4

Figure 6.11 V ariation in Rate-Pres sure With Change in $k x k y, L=1000, h=100$, 2 Xe 人 $=19$

Figure 6.11 Variation in Rate-Pressure With Change in $\mathbf{k}_{\boldsymbol{v}} / \mathrm{k}_{\boldsymbol{p}} \mathrm{L}=1000, \mathrm{~h}=100,2 \mathrm{Xe} / \mathrm{L}=19$

The following plots also show that although the deviation from isotropic increases with increasing well length relative to the reservoir dimensions, the effect of grid size and number is relatively insignificant for any given well length or dimensionless well length.

Figure 6.12 Deviation from Isotropic as L Changes $k_{\gamma} / k_{y}=3.1$ case above 1500 psi , $\mathrm{h}=\mathbf{2 5}$

Figure 6.13 Deviation from Isotropic as L Changes, $k_{\nu} / \mathrm{k}_{\mathrm{y}}=6.2$ case above $1500 \mathrm{psi}, \mathrm{h}=\mathbf{2 5}$

Similar results can be shown for other cases of larger reservoir to well-length ratios. More complete results are available from the author. Since the effect of grid spacing and
number is inconsequential hypothesis one is rejected and the experiments focused on variations in well length and reservoir size.

6.6.3 Effect of Model Size and Penetration Ratios

Dimensioniess well length L_{D} is defined as:

$$
L_{D}=\frac{L}{2 h} \sqrt{\frac{k_{v}}{k_{h}}}
$$

Where L is the horizontal well length and h is the reservoir thickness in feet.

Figures 6.7 through 6.13 demonstrated that although grid number is not that important. there is a general increase in divergence from the isotropic case as the permeability contrast increases and as the well length increases relative to the reservoir dimensions. This can be further demonstrated graphically by figures 6.14 through 6.15 which collectively show the deviation from isotropic for the smaller model where reservoir thickness is constant but the ratio of horizontal dimension to well length varies. These graphs show that for a given reservoir size, as the well length increases relative to the reservoir dimensions, the deviation in flow rates for a given pressure increasingly deviate from the isotropic case. It also shows the deviation is more pronounced as the anisotropy in k_{x} and k_{y} increases.

Figure 6.14 Deviation from Isotropic with Change in L above 1500 psia, $\mathrm{h}=\mathbf{2 5} \mathrm{ft} . \mathbf{7 8 4}$ grids, $\mathbf{2 X e} / \mathrm{L}=4$ to 10, Small Mode!

Deviation from is otropic with Change in L above $1300 \mathrm{psia}, \mathrm{h}=25 \mathrm{ft}$, 784 grids, $2 \times 1=4$ to 10

Figure 6.15 Deviation from Isotropic with Change in L above 1300 psia, $\mathrm{h}=\mathbf{2 5} \mathrm{ft}, \mathbf{7 8 4}$ grids, $\mathbf{2 X e / L = 4}$ to 10, Small Model

Similarly, figures 6.16 and 6.17 show that as the reservoir thickness increases from 25 ft in the previous figures, keeping other parameters constant, the trend to increasing deviation from the isotropic is the same although the deviation magnitude decreases.

Deviation from isotropic with Change in L above 1500 psia, $h=100$ th, 784 grids,

Figure 6.16 Deviation from Isotropic with Change in L above 1500 psia, h=100 ft, 784 grids,2Xe/L=4 tol 0, Small Model

Figure 6.17 Deviation from Isotropic with Change in L above 1300 psia, $\mathrm{h}=100 \mathrm{f}, 784$ grids, $2 \mathrm{Xe} / \mathrm{L}=4$ to10, Small Model

As the reservoir becomes larger and the ratio of $2 \mathrm{X}_{\mathrm{e}} / \mathrm{L}$ increases, the trend towards increasing deviation from isotropic with increasing well length and reservoir to well length ratio remains the same. However note that the magnitude of the relative deviation from isotropic diminishes. This is shown in figures 6.18-6.21.

Figure 6.18 Deviation from Isotropic with Change in L above 1500 psia, $\mathrm{h}=\mathbf{2 5} \mathrm{ft}, \mathbf{7 8 4}$ grids, $\mathbf{2 X e} / \mathrm{L}=19$ to 48, Large Model

Figure 6.19 Deviation from Isotropic with Change in L above 1500 psia, h=25 ft, 784 grids, 2Xe/L=19 to 48, Large Model

Again an increase in the reservoir thickness also diminishes the deviation from isotropic horizontal permeability as shown by contrasting figures 6.18 and 6.19 with 6.20-1.

Deviation from Is otropic with Change in L above $1500 \mathrm{psia}, \mathrm{h}=100 \mathrm{ft}$, 784 grids, $2 X_{e} \mathcal{A}=19$ to 48

Figure 6.20 Deviation from Isotropic with Change in L above 1500 psia, $\mathrm{h}=100 \mathrm{ft}, \mathbf{7 8 4}$ grids, $2 \mathrm{Xe} / \mathrm{L}=19$ to 48, Large Model

Figure 6.21 Deviation from Isotropic with Change in L above 1500 psia, $h=100 \mathrm{ft}, 784$ grids, $2 \mathrm{Xe} / L=19$ to 48, Large Model

These trends can also be portrayed in more familiar horizontal well terminology as shown in figures 6.22 through 6.25. Though not plotted here, this same general trend toward increasing deviation from isotropic is seen as k_{x} / k_{y} increases and L_{d} increases for any given thickness. Note however the decrease in deviation from isotropic as the thickness increases. The trends are not as clear at lower reservoir pressures however.

Figure 6.22 Deviation Trend as L_{d} Varies with Different Thickness (h) - Small Model-

If one tries to make a comparison of changes in deviation as a result of changes in L_{d} (essentially showing change in $\mathrm{L} / 2 \mathrm{~h}$) for any constant ratio of $\mathrm{L} / 2 \mathrm{Xe}$ within model types, some confusing results are seen. For instance if one plots the deviation from isotropic of identical well length to horizontal reservoir width ratios, against L_{d} (essentially $\mathrm{L} / 2 \mathrm{~h}$ i.e.combinations of L from $400-1000$ and h from 25 to 100) it is apparent that certain trends are evident that are confusing. Figures 6.23 through 6.26 show the comparisons.

Figure 6.23 Deviation Trend as L_{d} and $L / 2 X e$ Varies - Small Model- $k_{v} / k_{y}=3.1$

Figure 6.24 Deviation Trend as L_{d} and L/2Xe Varies - Small Model-ks/k $=6.2$

Figure 6.25 Deviation Trend as L_{d} and $L / 2 X e$ Varies - Large Model- $k_{y} / k_{y}=3.1$

Figure 6.26 Deviation Trend as L_{d} and $L / 2 X e$ Varies - Large Model $k_{v} / k_{y}=6.2$

6.6.4 Discussion of Experiment Results

Though the expected trend of generally increasing deviation from isotropic, as the ratio of $\mathrm{L} / 2 \mathrm{Xe}$ increases (ie the well length increases with respect to the horizontal dimensions), the unexpected trend is that within each L/2Xe group the deviation decreases with increasing $L_{d}(L / 2 h)$. This is confusing but must be a function of the change in h .

The more important things to note in these experiments are:

1. The deviation from the isotropic case increases as the well length increases for any given reservoir thickness and dimension.
2. The deviation becomes more severe with increasing contrast in k_{x} and k_{y}.
3. The deviation becomes more severe with decreasing reservoir thickness given a constant well length and horizontal dimension reservoir dimension.
4. The deviation becomes more severe with increasing reservoir pressure.
5. The grid number and size has a relatively minor effect.
6. The flow rate versus pressure deviation from the isotropic horizontal permeability case increases as the ratio of well length to reservoir dimension increases (i.e. the well more fully penetrates the horizontal dimension).
7. The deviation becomes more severe as the contrast in k_{x} and k_{y} increases.
8. The deviation becomes more apparent as reservoir pressure increases above the bubble point.

More extensive experiments could be conducted. However until such time as it is determined whether or not these deviations are due to an artifact of the simulator or to a fundamental misconception about effective horizontal permeability, it is sufficient to note that care must be used in interpreting horizontal well simulations in horizontally anisotropic media. Anisotropic permeability is the most common reservoir condition. Traditional theory and analytical equations do not predict that flow rates should vary with changes in horizontal permeability as long as the geometric average of k_{x} and k_{y} is constant. Experiments show that as the reservoir becomes large compared to the well length that the deviation becomes less. However the reservoir must become far greater in size relative to the well length than is normally found in practice. With a horizontal well 1000 feet long and a reservoir 19 times that length, the deviation from isotropic case was still significant and the deviation increased as the contrast in k_{x} and k_{y} became more pronounced. A comparison of these experiments with other horizontal well simulators would be needed to further study this phenomenon. If the results are the same then more time could be justified in finding empirical correction factors to use with analytical equations.

CHAPTER SEVEN

Horizontal Well Decline Curve Analysis And Studies in Permeability Anisotropy

7.1 Extension of Decline Analysis to Horizontal Wells

If a fractured vertical well increases production rates and increases cumulative production over a certain time period then a horizontal well should have a similar result. In fact if a horizontal well is sufficiently long, (i.e. $L_{D}>10$) then the performance of a horizontal well approaches that of a fully penetrating infinite-conductivity fracture and the shape factors will approach those given for fractured wells.

Dimensionless well length L_{D} is defined as:

$$
L_{D}=\frac{L}{2 h} \sqrt{\frac{k_{v}}{k_{h}}}
$$

Where L is the horizontal well length and h is the reservoir thickness in feet. And the previously derived general dimensionless decline anatysis should be immediately applicable to a horizontal well by defining the horizontal well in terms of an apparent well bore radius as long as the dimensionless well length is relatively small in comparison to the reservoir dimensions.

7.2 Dimensionless Decline Analysis Using the Horizontal Effective Wellbore Radius Concept and Application

Since it was shown in section 6.2 that an equivalent wellbore radius well could represent the horizontal well it should be possible to extend the generalized decline curve analysis to horizontal wells. Recall that the equivalent well bore radius was expressed as:

$$
r_{w}=\frac{0.5 r_{e h} L}{a\left[1+\sqrt{1-\left[\frac{L}{2 a}\right]^{2}}\left[\frac{\beta h}{2 r_{w}}\right]^{\frac{\beta h}{L}}\right.}
$$

And the single-phase flow rate was defined in terms of this wellbore radius as:

$$
q=\frac{0.007078 k_{h} h\left(\overline{P_{R}}-P_{w f}\right)}{\mu_{o} B_{o}\left(\ln \frac{r_{e}}{r_{w}^{\prime}}-0.75\right)}
$$

Therefore it is only necessary to follow the derivations of the dimensionless decline curve for vertical wells and the extension to horizontal wells is immediate with incorporation of the equivalent welibore radius. Then as with the radial case, the dimensionless decline rate and time are given by the following expressions (derived in chapters 4 and 5) by just replacing the well bore radius by the effective well bore radius to a horizontal well:

$$
q_{D d}=q_{D}\left[\ln \frac{r_{e}}{r_{w}^{\prime}}-\frac{1}{2}\right]
$$

or the more general version for other drainage shapes derived in this research:

$$
q_{D d}=\frac{q(t)}{q_{t \max }}=q_{D}\left[1151\left[\log \frac{4 A}{1.781 C_{A} r_{w}^{2}}\right]\right]
$$

And the decline dimensionless time is:

$$
t_{D d}=\frac{t_{D}}{\left.\frac{1}{2}\left[\left(\frac{r_{e}}{r_{w}}\right)^{2}-1\right] \ln \left(\frac{r_{e}}{r_{w}^{\prime}}\right)-\frac{1}{2}\right]}
$$

or again for more general drainage shapes derived in my previous work:

$$
t_{D d}=\frac{0.00634 k t}{\phi \mu c_{r} r_{w}^{2}} \frac{r_{w}^{2}}{A}\left[\frac{5.44678}{\log \frac{4 A}{1.781 C_{A} r_{w}^{2}}}\right]=t_{D} \frac{r_{w}^{2}}{A}\left[\frac{5.44678}{\log \frac{4 A}{1.781 C_{A} r_{w}^{2}}}\right]
$$

Where the r_{w} has been replaced by the equivalent well bore radius r_{w}. This method will give results that compare well with more laborious equations involving charts and shape factors described in the literature and Joshi's book ${ }^{23}$. However as previously
demonstrated (figures 6.3-6.5) the use of the modified r_{w} method will yield results as good as the more tedious horizontal shape factors in conjunction with skin factors.

7.3 Re-labeling of Decline Curves for Use in Decline Analysis

The horizontal decline curves then are identical to the previously generated vertical case but relabeled in terms of as A / r_{w} or r_{e} / r_{w} instead of r_{e} / r_{w}. The curves in terms of A are more appropriate to the linear reservoir convention used with horizontal wells as well as more adaptable to the general shape factors that were previously introduced. The only difference with a horizontal well then is that the apparent well bore radius will be greater than that of the equivalent vertical well. That means the ratio $r_{e} / r_{w a}\left(r_{e D}\right)$ will decrease on the dimensionless decline type curves. k_{h} and r_{wa} should be calculated exactly as they are for the vertical well except the r_{wn} calculated is a pseudo radius equivalent given by the above expression. Then using the following techniques as with the vertical well we can determine the effect of the horizontal over the vertical well. Therefore the transmissibility can be expressed as:

$$
k h=\frac{141.3 \mu B}{P_{1}-P_{w f}} 1.151 \log \frac{4 A}{1.181 C_{A} r_{w}^{2 .}}\left(\frac{q(t)}{q_{D d}}\right)_{\text {match }}
$$

Since we know $A / r_{w}{ }^{2}$ from the type curve match, the match point of $q(t) / q_{D d}$, and the shape factor from the proper curve match we can compute kh for the particular reservoir conditions as we did previously for the vertical well case.

The apparent well bore radius, drainage area and initial reserves can then be computed from the dimensionless decline parameter $t_{D d}$ and the match points. We know $\mathrm{A} / \mathrm{r}_{w}{ }^{2}$ and $t / t_{D d}$ from the type curve match point therefore we can compute the apparent well bore radius r_{wa}

$$
r_{w a}^{2}=\frac{0.00634 k}{\phi \mu c_{r} \frac{A}{r_{w}^{2}}\left(\frac{\log \frac{4 A}{1.781 C_{A} r_{w}^{\prime 2}}}{5.44678}\right.}\left(\frac{t}{t_{\partial d}}\right)_{\text {masci }}
$$

Now since we have computed $r_{w a}$ we can calculate the drainage area since from knowing $\mathrm{A} / \mathrm{r}_{\mathrm{w}^{2}}{ }^{2}$ and computing $\mathrm{r}_{\mathrm{wa}}{ }^{2}$ we can solve for the drainage area A by:

$$
A=r_{w a}^{2}\left(\frac{A}{r_{w a}^{2}}\right)_{\operatorname{march}}
$$

7.4 Calculation of Reserves from Horizontal Well Decline Curves

Remaining reserves are then computed from the difference between initial reserves and cumulative reserves. This allows for the computation of the original reserves in place from the relationship:

$$
N=\frac{A \phi c_{t} h P_{1}}{5.615 B}
$$

7.5 Comparison of Vertical and Horizontal Decline Curves

Theoretically then the horizontal and vertical well \log-log plots should overlie one another in the pseudosteady state region just as Fetkovich theorized for vertically fractured wells. In other words they would have the same Arps " b " value but exhibit different $r_{e} / r_{w}\left(r_{e D}\right.$. or the equivalent $A / r^{2}{ }_{w}$) values and thus different $q_{D d}$ values.

Several horizontal simulation models were conducted to investigate this theory of method equivalency. The simulated vertical vs. horizontal well data of Table 7.1 is graphed in Figure 7.1 and shows this phenomenon.

Table 7.1 Simulated Vertical and Horizontal Well Data

Figure 7.1 Simulated Horizontal vs. Vertical Flow Rates-Same Reservoir Parameters

Figure 7.2 Generalized Type Curve Square Depletion

Though the simulation could have been run longer, it still shows the essential effect of a vertical vs. horizontal well on the identical reservoir parameters and size. When Figure 7.2, the dimensionless decline curve, is plotted at the same scale as figure 7.1 a type curve match is made. Using the match points for the vertical well vs. the horizontal well and applying the relationships presented in sections 7.2 through 7.4 yields a match of r_{ed} of 10 for the horizontal well and $r_{e d}$ of 50 for the vertical well. This verifies the prediction of the previous statement that r_{c} would decrease for the horizontal well because of a larger apparent wellbore radius. Therefore the value of the $r_{c D}$ match can then be used to determine the apparent effective wellbore radius r_{wa} from the time match points and kh from the rate matches. Once the apparent well bore radius of the horizontal well is determined it can be multiplied by the $\mathrm{r}_{\mathrm{e} D}$ match point to determine the drainage radius and then used to calculate the reserves as shown in previous chapters.

7.6 Decomposition of $k_{\mathbf{r}}$ and $k_{\mathbf{y}}$

If the horizontal well is long in comparison to the reservoir dimensions then the drainage shape and well penetration factors become important as was shown in the previous chapter. The horizontal shape expressions can then be incorporated as functions of the following factors:

1. Drainage area shape: $2 X_{d} / 2 Y_{e}$ where x and y are the half-length of the reservoir in the x and y directions respectively.
2. Well Penetration ratio: $L / 2 x_{e}$
3. Dimensionless well length defined before as: $L_{D}=\frac{L}{2 h} \sqrt{\frac{k_{v}}{k_{h}}}$

Methods to predict the performance of horizontal wells in anisotropic, naturally fractured reservoirs require knowledge of or assumptions regarding k_{x} and k_{y} since rectangular drainage shapes are usually assumed. And k_{x} and k_{y} will determine, to a large extent, the dimensions of the drainage shape. The basic drainage shape is defined as $2 \mathrm{X}_{\mathrm{e}} / 2 \mathrm{Y}_{\mathrm{e}}$. Unfortunately the horizontal permeability components k_{x} and k_{y} ($\mathrm{k}_{\mathrm{h}}=\mathrm{sqrt}\left(\mathrm{k}_{\mathrm{x}} \mathrm{k}_{\mathrm{y}}\right)$) are rarely known. Interference test data, which can provide k_{x} and k_{y} information, is also rarely available. However it may be possible to estimate these directional permeabilities if drainage shapes can be inferred from an analysis of actual production decline curve characteristics among offset wells.

7.6.1 General Directional Permeability Background Discussion

Several methods have been introduced to determine productivity and predict future horizontal well performance in anisotropic naturally fractured reservoirs. These methods require assumptions as to directional permeability, $\mathrm{k}_{\mathrm{x}}, \mathrm{k}_{\mathrm{y}}, \mathrm{k}_{\mathrm{z}}$ which are almost never known. It seems that we should be able to perform the inverse and determine reservoir drainage area and shape, and thus infer directional permeabilities, if sufficient production history is known. Predicting the total drainage area around the producing well should be obtainable. However a prediction of how this drainage area is distributed
may be difficult to determine. Distribution depends on the value of k_{x} and k_{y}. The larger the value of $\mathrm{k}_{\mathrm{y}} / \mathrm{k}_{\mathrm{x}}$ the longer the drainage distance along the high permeability y direction. A literature review indicates no other attempts to obtain this information with horizontal wells in anisotropic media.

Indeed a determination of reservoir shape and k_{x}, k_{y}, k_{z} could then be used to input to established predictive equations to predict future production more accurately. Also most models seem to ignore relative permeability. The permeability in these equations in fact should be replaced with relative permeability but this is often not done.

Recall that Arps ${ }^{1 / 2}$ and Fetkovich ${ }^{3}$ developed decline curve equations, based on pseudosteady state theory as early as 1945 , which are still used today. As previously discussed. these relations take the form of:

$$
q=\frac{q_{i}}{\left(1+b D_{i} t\right)^{1 / b}}
$$

where:

$$
D_{1}=\frac{0.00634 k}{0.5 \phi \mu c_{t} r_{w}^{2}\left(\frac{r_{e}}{r_{w}^{2}}-1\right)\left(\ln \frac{r_{e}}{r_{w}}-0.5\right)}
$$

For a horizontal well, the effective well bore radius r_{w} ' can be expressed as:

$$
r_{w}=\frac{0.5 r_{e h} \frac{L}{a}}{\left(1+\sqrt{1-\left(\frac{0.5 L}{a}\right)^{2}}\right)\left(0.5 \beta \frac{h}{r_{w}}\right)^{\frac{\beta \hbar}{L}}}
$$

and

$$
\begin{gathered}
a=0.5 L\left(0.5+\sqrt{0.25+\left(\frac{2 r_{e h}}{L}\right)^{4}}\right)^{0.5} \\
\beta=\left(\frac{k_{h}}{k_{v}}\right)^{0.5} \\
\\
k_{h}=\sqrt{k_{x} k_{y}}
\end{gathered}
$$

where r_{eh} is the equivalent drainage area of the horizontal well. If vertical wells are available in the area traditional test methods and production data can give an estimate of the total drainage area. For instance if the drainage area of a vertical well is 40 acres then the equivalent vertical radius, $r_{e v}$ is 745 feet by using the relationship ${ }^{6}$:

$$
\begin{gather*}
\text { AreaofCircle }=\pi r_{v v}=\text { acres }^{*} 43560 \\
r_{v v}=\sqrt{\frac{A^{*} 43560}{\pi}}
\end{gather*}
$$

Joshi presents a method for finding the equivalent horizontal well drainage area based on a rectangle bounded on the long sides by semi-circles ${ }^{23}$. Now applying that $r_{e v}$ to the diagram below, the following relationships can be derived:

$$
A=\frac{\pi r_{v}{ }^{2}+2 L r_{e v}}{43560}
$$

Figure 7.3 Equivalent Horizontal Wellbore Radius

In the above example the equivalent horizontal wellbore radius, r_{eh}, would be 1014 feet for a lateral well of 1000 feet and $r_{e v}$ of 745 feet.

7.6.2 Decomposing k_{I} and k_{y}

With this equivalent radius information, r_{eh}, it is possible to insert into equation 7.14 to solve for r_{w}. If the reservoir thickness is 100 feet this would yield $r_{w}=406 /(100 \beta)^{0.2 \beta}$.

Now r_{w} can be obtained by the decline curve methods introduced in Section 7.3 to solve for $\beta=\left(k_{y} / k_{x}\right)^{0.5 .}$ Once k_{h} is found in this manner one can concentrate on decomposing k_{h} into k_{x} and k_{y} if rectangular or elliptical drainage shape is assumed which is reasonable in horizontal wells in naturally fractured reservoirs as well as many drainage shapes in vertical well situations.

It can be shown that the drainage shape is dictated by the contrast in k_{x} and k_{y} so that: ${ }^{23}$

$$
\frac{2 Y_{e}}{2 X_{e}}=\sqrt{\frac{k_{y}}{k_{x}}}
$$

Therefore it seems that it should be possible to decompose k_{x} and k_{y} if there are competing wells with sufficient drainage history to identify the time to competition for drainage area. The hypothesis is that there should be an observable break in the production decline or cumulative versus time plots when wells begin competing for drainage. In other words there should be some type of interference imprint or deviation from the drainage area predicted from early time rate and cumulative data (see figure 7.36 for example). Or alternatively if several wells experience interference at roughly the same time, the distance between the two wells should give the ratio of $2 \mathrm{Y}_{d} / 2 \mathrm{X}_{e}$ by approximately:

$$
\frac{t_{y \text { in }}}{t_{x \text { in }}} \frac{2 Y_{e}}{2 X_{e}}=\sqrt{\frac{k_{y}}{k_{x}}}
$$

$$
2 X_{e} * 2 Y_{e}=A * 43560
$$

where t is the interference time in the various directions. Vector analysis could be applied to resolve the potential angular problems.

If the time or distance ratio is known then the relative relationship between k_{x} and k_{v} should be obtainable. For instance if the time/distance ratios are 3 then $\mathrm{k}_{\mathrm{y}}=9 \mathrm{k}_{\mathrm{x}}$. Extensive simulation experiments and pressure versus time visualization analysis were conducted to study this hypothesis. The complete graphical output and tabular experimental output is very voluminous but is available from the author.

7.6.3 Studies in Anisotropic Media - $\mathbf{k}_{\mathbf{x}} \mathbf{k y}_{\mathbf{y}}$ Experimental Results

Numerous experiments were conducted to study the effects of horizontal anisotropy on well performance with the objective of finding ways to decompose k_{x} and k_{y} using production data that would normally be available to the practicing engineer. Normal data available would be limited to fluid rates, cumulative production volumes and time. Monthly production data are all that can be expected after the first few months of production. Although not published, daily rates are often kept by the operator for early time periods and can be obtained by contacting operators. Thus this analysis will be restricted to that data that can be normally obtained. Unfortunately pressure data are
rarely available. Pressure will be used in this analysis but only as a visualization technique to illustrate the various rate decline points of the rate decline curves.

7.6.3.1 Visualization and Identification of Important Points - Rate Decline Curves

A $14,000 \mathrm{ft}$. by $14,000 \mathrm{ft}$. 3 -well system was tested with orientation as in figure 7.4 . The wells are equal distance from each other (3000 feet) and oriented along separate permeability paths, which would be realistic in some field spacing units initially.

Figure 7.4 Model Geometry

The following graphs depict the rate-time, cumulative-time and pressure distribution versus time. The case of $\mathrm{k}_{\mathrm{x}}=19.22, \mathrm{k}_{\mathrm{y}}=0.5$ (geometric mean 3.1 md) is contrasted with the isotropic case of 3.1 md . Figures 7.5 and 7.7 show the rate-time plot for the anisotropic and isotropic cases respectively. Figures 7.6 and 7.8 are the cumulative
versus time plot for the anisotropic and isotropic cases respectively. The times to the various slope changes are noted on Figure 7.5 and 7.7 and visual pressure distribution diagrams are plotted for each of these times in figures 7.10 to 7.17 for the anisotropic case and 7.18 through 7.26 for the isotropic case. Figure 7.9 shows the various portions of the rate time curve for which slopes are calculated for each well in the model.

Figure 7.53 Well System kar=19.22, ky=0.5 md, with Isotropic Case Displayed Geometric Mean Permeability is 3.1 md

Figure 7.6 shows the effect of the rates illustrated in figure 7.5. Notice the dramatic departure in cumulative production where the well (q1) that is oriented along the low permeability path with respect to q 2 retains its higher rates and therefore its higher cumulative production compared to well q 3 along the high permeability path. This shows the clear mark of drainage competition more quickly along the high permeability
path. Compare this to figure 7.8 which shows the cumulative departure between wells at a much later time with the isotropic case.

Figure 7.63 Well System $\mathbf{k x}=19.22$, $\mathrm{ky}=0.5 \mathrm{md}$, Geometric Mean Permeability is 3.1 md

Figure 7.73 Well System kx=3.1, ky=3.1 md, Isotropic Case Displayed Geometric Mean Permeability is 3.1 md

Figure $7.8 \mathbf{3}$ Well System $\mathbf{k x}=3.1$, $\mathrm{ky}=3.1 \mathrm{md}$, Geometric Mean Permeability is 3.1 md

Figure 7.9 Depiction of Slope Areas for Table 7.

Table 7.2 shows the various slopes and departure times of cumulative production between the various competing paths of the two cases as well as the slopes for an intermediate case of $k_{x}=9.61$ and $k_{y}=1.0 \mathrm{md}$. Figures 7.10 through 7.25 show the pressure distribution profiles that help in understanding what is happening in the model at the various time steps. Figures 7.36 and 7.27 illustrate the effect on the productivity index.

Table 7.2 Slopes of Varions Portions of the Decline Curve

The data suggest that the cumulative time versus departure time comparison can give a rough approximation of the ratio of permeability in the x and y directions.

Figures 7.10 to 7.13 - Anisotropic Pressure Distribution Profiles for Figare 7.5

Figures 7.14 to 7.17 - Anisotropic Pressure Distribution Profiles for Figure 7.5

Figures 7.18 to 7.21 Isotropic Case Pressure Distribution Profiles

Figures 7.22 to 7.25 Isotropic Case Pressure Distribution Profiles

Figure 7.26 3 Well System with Different Permeability Path Comparisons

7.6.3.2 Anisotropic Experiments in Two Well System

The same type of analysis can be conducted for the case of a two well system in which the two wells are parallel to the x and y directional permeability. In other words the experiment involves wells q 1 and q 2 alone and then q 2 and q 3 alone from the previous model. Then the same type of analysis is shown below for the various anisotropic cases.

Figure 7.282 Competing Wells Along Different Permeability Paths Contrasted with Isotropic Case Geometric Mean Permeability is Identical

Figure 7.292 Competing Wells Along Different Permeability Directions

Figure 7.30 Cumulative Production Versus Time Different Permeability Path

Figure 7.31 2 Competing Wells Along Different Permeability Paths Contrasted with Lsotropic Case Geometric Mean Permeability is Identical

Figure 7.322 Competing Wells Along Different Permeability Directions

Figure 7.33 Camulative Production Versus Time Different Permeability Path

Figure 7.342 Well Case of Wells Oriented Along Permeability Paths, Equal Geometric Means

Table 7.3 shows the times at which the various wells along certain permeability paths depart from the isotropic case. Note that the ratio of the times (distance between wells is identical) seems to follow the ratio of the square root of the permeability ratios in the x and y directions.

Permeabillty Constrast (geometric mean both 3.1 md)	$0.5,19.22$	$1,9.61$
Sqrt (ko/ky)	6.2	3.1
Departure Times from Isotropic	406	345
Departure Times from Each Other	2602	1138
Time Ratio	6.4	3.3

Table 7.3 Relation of Permeability Ratio to Cumulative Departure Times

The method thus seems to give a rough approximation to directional permeability.

7.6.4 Determination of the Principle X and Y Permeability Components

If three values of permeability can be determined and the angle between those three values is known then the permeability in the principle x and y directions can be determined by application of rock mechanics techniques. (homework in Rock Mechanics, 1995) For instance in the following diagram:

If three points (strain or permeability) and the angles between the observation points are known a Mohr circle approach can be used to calculate the principle values. Alternatively rock mechanics homework indicated that a matrix solution could be used
also. These methods used strain values but extension to permeability values should work also.

$$
\begin{aligned}
& \begin{array}{l}
k_{A} \\
k_{B}= \\
k_{V}
\end{array}=\left(\begin{array}{lll}
\cos ^{2} \alpha_{A} & \sin ^{2} \alpha_{A} & \frac{\sin 2 \alpha_{A}}{2} \\
\cos ^{2} \alpha_{B} & \sin ^{2} \alpha_{B} & \frac{\sin 2 \alpha_{B}}{2} \\
\cos ^{2} \alpha_{C} & \sin ^{2} \alpha_{C} & \frac{\sin 2 \alpha_{C}}{2}
\end{array}\right)\left(\begin{array}{l}
k_{x} \\
k_{y} \\
k_{x y}
\end{array}\right) \\
& k x \\
& k y=\left(\begin{array}{lll}
\cos ^{2} \alpha_{A} & \sin ^{2} \alpha_{A} & \frac{\sin 2 \alpha_{A}}{2} \\
\cos ^{2} \alpha_{B} & \sin ^{2} \alpha_{B} & \frac{\sin 2 \alpha_{B}}{2} \\
k x y \\
\cos ^{2} \alpha_{C} & \sin ^{2} \alpha_{C} & \frac{\sin 2 \alpha_{C}}{2}
\end{array}\right)^{-1}\left(\begin{array}{l}
k_{A} \\
k_{B} \\
k_{C}
\end{array}\right)
\end{aligned}
$$

This vields $k_{x}=46$ and $k_{y}=61$ and $k_{x y}=16$. This in turn can be used to compute k_{1} and k_{2} as 64 and 42 md. Alternatively the Mohr circle can be used to arrive at the same results.

7.7 Application to Decline Analysis Methods for Horizontal Wells in Fractured Reservoirs

When a well is first put on production, the pressure transient travels away from the well towards the well drainage boundaries. Once the pressure transient has reached all the drainage boundaries then the average reservoir pressure starts dropping with time. This flow period before the well sees the drainage boundary is known as the transient state.

Depletion state is the post-transient flow period and is also known as the pseudosteady state flow period.

For mathematical treatment, either constant flowing well bore pressure or constant production rates are normally assumed. A constant production rate implies that flowing bottom hole and wellhead pressures are declining with time. This is typical of fields where the production level is limited by such things as production allowable or critical rates due to gas/water coning problems. A constant bottomhole flowing pressure is the more typical situation. Actually this is in reality a constant flowing wellhead pressure which is maintained constant against the backpressure of a production facilities. This constant wellhead pressure implies a decline in production rates.

Type curves for horizontal well flow in a closed rectangle have been constructed in the past. As discussed before these do not model the fractured reservoir well but serve as a starting point for analysis. The methods essentially involve solving the dimensionless pressure solution P_{d} using the exact mathematical solution of the Laplace transform of the constant production rate equation ${ }^{33,39,40}$. The objective is to calculate dimensionless pressure, P_{D} and dimensionless rate q_{D} for different values of dimensionless time t_{D}. This is done by taking any dimensionless time t_{D}, calculating the dimensionless pressure, converting to dimensionless rate ($\mathrm{q}_{\mathrm{D}}=1 / \mathrm{P}_{\mathrm{D}}$) then converting to real rates.

If k_{h} can be determined, then the following procedure can be used to generate well performance predictions for horizontal wells with the aid of published type curves.

1. Calculate t_{D} from the various user specified time steps using the following equation:

$$
t_{D}=\frac{0.001055 k t}{\phi \mu c_{t} L^{2}}
$$

2. Determine L_{D} :

$$
L_{D}=\frac{L}{2 h}\left(\frac{K_{v}}{K_{h}}\right)^{0.5}
$$

3. Calculate the term $\mathrm{L} / 2 \mathrm{X}_{e}=\mathrm{L} / \mathrm{r}_{\text {eh }}$, approximated $b y=\mathrm{L} / \mathrm{A}^{0.5}$
4. Calculate $r_{w D}=r_{w} / h$
5. Use the proper type curve (Figure 7.35) corresponding to the well specifications L_{D} and $L / 2 X_{c}$ (from step 2 and 3) (similar to the one shown in Figure 7.33 from ref 32 and 34) to determine q_{D} corresponding to the t_{D} calculated in step one.

Figure 7.35 Dimensionless Pressure versus Time for Horizontal Wells From Refs 32.34
6. Calculate q from the q_{D} value determined in step 5 from the following equation:

$$
q_{D}=\frac{1+1.3 \mu B q}{k h\left(p_{1}-p_{w f}\right)}
$$

7. Repeat the calculation for various times (days) and plot as cumulative oil production versus time. This procedure can be repeated for any desired drainage area A and well parameters. For a particular well that is 1500 feet long, 35 feet thick, permeability of 0.7 , figure 7.4 shows the predicted production at any particular time for various drainage size assumptions.

Figure 7.36 Predicted Performance Based on Actual Drainage Area Over Time versus Actual

Thus for a particular set of horizontal well lengths and reservoir parameters the performance can be predicted at any particular drainage size. Notice the deviation of the actual well production from the early time data. This is a result of the well beginning to sense the drainage area from competing wells. These times to drainage competition can be plotted to outline a drainage shape and the permeability contrast can be inferred.

7.8 Extension to Determine Drainage Area - Homogeneous and
 Fractured Reservoirs

The above method can be modified to predict the drainage area of a well and reservoir parameters in naturally fractured reservoirs by using the fractured type curve since the behavior of horizontal wells approaches that of the infinite conductivity fractured
vertical well with long well lengths in thin reservoirs. Thus a set of performance type curves for various reservoir sizes can be constructed just as above in figure 7.36 .

Then actual production data from the well can then be compared to the predicted curves for various reservoir sizes to determine the best fit. These can also be used to heip identify interference in drainage areas that were referred to in a previous section. The method of construction for fractured wells is as follows:

Repeat steps one through four as above. Instead of step 5. use the fully penetrating vertical fracture type curve. Repeat step six above then repeat for various times and plot as cumulative oil versus time for various drainage areas A again. Then plot the actual production profile on the same graph (Figure 7.36 dashed line) and see which drainage area fits best and note at which time if any the curve deviates from the best fit drainage area. Any flattening as shown in the diagram indicates a reduction in original drainage area. This can be attributable to the time at which drainage areas begin overlapping because of well competition. That information can be used as described in Section 7.6 and 7.7 to decompose k_{x} and k_{y}. It is especially useful if several wells are available to gauge changes versus direction and distance.

7.9 Chapter Summary

The determination of directional permeability in an anisotropic reservoir is a difficult but important problem. Knowledge of this directional permeability can lead to better production prediction and design of proper well spacing. Without interference testing there is currently no direct way to estimate the directional permeability k_{x} and k_{y}. Decline curve analysis of wells that compete for drainage area provides a method of roughly estimating drainage shape and therefore directional permeability.

CHAPTER EIGHT

Extensions of Decline Curve Analysis To More Complicated Reservoirs -Permeability Heterogeneity And Fractures

8.1 Introduction

The decline curve analysis of this research has so far dealt with vertical and horizontal wells in homogeneous-isotropic and anisotropic reservoirs of constant directional permeability. More common situations involve highly heterogeneous formations where permeability variations are erratic and sometimes compartmentalized. Other common situations involve fractures of various types. This chapter will explore rate decline behavior in heterogeneous and fractured reservoirs through simulation experiments in controlled models. The analysis seeks to characterize various fracture types through characteristics exhibited in certain plotting techniques as well as type curve matching utilizing type curves developed by Poston and Chen for fractured reservoirs. ${ }^{43,44,45}$

8.1.1 Heterogeneous Formation Considerations

Heterogeneous formations can give rise to serious problems in the decline curve analysis and ultimate recovery projections. Heterogeneity can stem from either reservoir layering or rapid changes in spatial permeability within the reservoir ${ }^{38}$. Material balance is also predicated on the single tank model. Reservoir heterogeneity can also give rise to pressure gradients within the reservoir resulting in non-linearity of the pressure vs.
cumulative production plots. This leads to misinterpretation of future production and ultimate recoveries in low permeability and heterogeneous formations.

Scatter and curvature (which is also rate dependent) in the pressure decline vs. cumulative production plots can sometimes be attributed to pressure gradients in tight or heterogeneous reservoirs. It was already noted that late time deviations from early time decline curve predictions occur in reservoirs exhibiting drainage overlap. Scatter and curvature may contain valuable information that can be used to understand the heterogeneity, better predict reserves and forecast future development potential.

Experiments will be conducted with a number of models containing various types of heterogeneity in solution gas oil reservoirs. Experiments that model various fracture types and blocks of varying permeability are especially stressed in this chapter. The decline curves associated with production from those models will be analyzed in detail. Many plotting schemes are introduced in this chapter tin an effort to help identify particular reservoir characteristics. For instance rather than plotting simply rate vs. time, the rate decline can be compared with actual rate as a function of rate-cumulative-time functions. Some of the normalization techniques of the previous chapter will also be applied in an effort to present the data in a form more suitable for well test analysis. However pressure is purposely ignored in the analysis since the purpose is to utilize only the rate decline data that is commonly available to the practicing engineer.

8.2 Geological Model of a Fractured System

Decline curves used to predict future production from fractured flow regimes should model those geological-physical regimes. In other words the model should depict the geological system if possible. Poston and Chen ${ }^{43.44 .45}$ developed a naturally fractured reservoir model composed of a major and a least one additional minor fracture system and a matrix system of smaller blocks. Type curves were developed to represent a combination of flow through a major fracture system with infinite conductivity, linear flow through a set of lesser subsidiary micro-fractures and flow from the matrix block system. Flow from this system would also be predominately linear rather than radial. Flow from the macro fracture would not affect the shape of the curve since it is treated as infinite acting.

The authors noted that one would expect a horizontal well to intersect a greater number of fractures and thus have a different characteristic decline curve. However their analysis of Austin Chalk wells indicated that this was not the case. Rather, the family of curves that they developed matched for both horizontal and vertical wells except for the early data which is due (according to them) to the transient period being masked in the horizontal wells. This was confirmed by the simulation experiments.

Their model consists of the following attributes:

1) Major fracture with infinite conductivity
2) At least one minor fracture system with linear flow and
3) Rock matrix composed of small blocks
4) Linear rather than radial flow model

To summarize, the objective of their model is to:

1) Couple a single fracture type model to a dual porosity type model.
2) The model should consider the spatially dependent fracture orientation, connectivity, distribution and intensity of fractures.
3) Differentiate between the bounded PSS and transient flow and to predict future producing characteristics.
4) Distinguish macro from micro fractures.

The model would encompass the following assumptions:

1) The wellbore encountered macro fracture is a vertical plane of zero thickness with height equal to the formation thickness and of finite length in the lateral direction.
2) The fracture parallel to the drainage boundary. Uniform flux. infinite conductivity, or uniform flux can be used.
3) Micro fractures are more or less connected and continuous.
4) Production is from the wellbore fractures only. Micro-fractures feed the macro- fractures. Matrix acts as supporting sources to feed the fractures with fluid.
5) Constant pressure production condition.

Chen and Poston developed the following type curves representing the expected producing characteristics for a reservoir of this type ${ }^{41,42 .+3}$. (Figure 8.1)

Figure 8.1 Poston-Chen Type Curve for Fractured Reservoir ${ }^{\text {al }}$

Three flow regimes would be recognized from these type curves but the flow from the macro-fracture would be treated as infinite acting and thus does not affect the curve shape:

Regime One: Unsteady state flow from the micro-fractures.
Regime Two: Transition of the flow system from mainly the micro-fractures to mainly the matrix.

Regime Three: Pseudo-steady state boundary dominated matrix flow.

Type curves should not only permit differentiation of the pseudosteady sate and transient region but also aid in the estimation of future producing characteristics.

Figure 8.2 (reconstruction method explained later) shows the various theorized parts of the curve for the case of storage capacity of 0.1 and various degrees of fracture intensity as defined by Poston and Chen.

Figure 8.2 Poston-Chen Decline Type Curve Reconstruction - Fractured Reservoir Model- ω (storage capacity) $=0.1$

Four fracture system types have been proposed and will be investigated. ${ }^{49}$
Type One: Fractures provide the significant reservoir storage capacity and permeability, which is thought to be characterized by high flow rate and short reservoir life. $k_{p} \ggg k_{m}$ and $\phi_{f} \ggg>\phi_{m}$

Type Two: The matrix has good permeability and provides a good feed to the fracture system. High flow rates and longer reservoir life should result.

Type Three: The matrix permeability is low but contains most of the oil. The fractures contain high permeability.

Type Four: The fractures are filled with minerals and partition the formation into blocks.

These various types of fractures will be studied in this chapter.

8.3 Mathematical Introduction and Overview of the Poston-Chen Fracture Model ${ }^{\text {41,42.43 }}$

A Laplace and Green's function approach is used to provide analytical solutions for the model problem. The details as well as the formulation and construction of the type curves are summarized in the next section. The decline curve dimensionless rate and dimensionless time corresponding to the rectangular coordinates are defined respectively as:

$$
q_{d D}=\beta: q_{D}
$$

and

$$
t_{d D}=t_{D} /\left(\beta_{1} \beta_{2}\right)
$$

where the normalizing factors are:

$$
\begin{align*}
& \beta_{l}=\left(16 / \pi^{3}\right) /\left(y_{e} / x_{f}\right) \\
& \beta_{2}=(\pi / 4) /\left(y_{e} / x_{f}\right)
\end{align*}
$$

The dimensionless rate for the model is given as:

$$
q_{D}\left(t_{D}\right)=\frac{141.2 B \mu q(t)}{k_{f} h\left(p_{t}-p_{w f}\right)}
$$

or rearranging and substituting for the normalizing factors and rectangular coordinates:

$$
q_{d D}=\left(\frac{\pi}{4} \frac{y_{e}}{x_{j}}\right) \frac{l A 1.2 B \mu q(t)}{k_{i} h\left(p_{i}-p_{w f}\right)}
$$

Note the similarity with the Fetkovich decline dimensionless decline:

$$
q_{D d}=\left[\ln \left(\frac{r_{e}}{r_{w a}}\right)-0.5\right] \frac{l+1.2 \mu B q(t)}{k h\left(p_{i}-p_{w f}\right)}
$$

or using my more general form:

$$
q_{D d}=\frac{141.3 \mu B q(t)}{k h\left(P_{t}-P_{w f}\right.}\left[1.151 \log \frac{4 A}{1.781 C_{A} r_{w}^{2}}\right]
$$

Where $p_{w i}$ is the constant bottom hole pressure and $q(t)$ is the time dependent production rate at the wellbore. The dimensionless time is given as:

$$
t_{D}=\frac{0.00633 k_{f} t}{\mu\left(\phi c_{t}\right)_{f} x_{f}^{2}}
$$

or rearranging and substituting for the normalizing factors and rectangular coordinates

$$
t_{d D}=\frac{0.00633 k_{f} t}{\mu\left(\phi c_{t}\right)_{f} x_{f}^{2}\left(\frac{2 y_{e}}{\pi x_{f}}\right)^{2}}
$$

These relationships, similar to the form of Fetkovich's radial systems and my general system equations, appear to be rectangular and linear. Note the similarities to the dimensionless decline time Fetkovich type equivalents reproduced below.

$$
t_{D d}=\frac{0.00634 k t}{\phi \mu c_{t} r_{w}^{2}}\left[\frac{1}{\frac{1}{2}\left[\left(\frac{r_{e}}{r_{w}}\right)^{2}-1\right]\left[\ln \left(\frac{r_{e}}{r_{w}}\right)-\frac{1}{2}\right]}\right]
$$

or using my more general form:

$$
t_{D d}=\frac{0.00634 k t}{\phi \mu c_{r} r_{w}^{2}} \frac{r_{w}^{2}}{A}\left[\frac{5.44678}{\log \frac{4 A}{1.781 C_{A} r_{w}^{2}}}\right]=t_{D} \frac{r_{w}^{2}}{A}\left[\frac{5.44678}{\log \frac{4 A}{1.781 C_{A} r_{w}^{2}}}\right]
$$

and putting in a similar arrangement to that of the Fetkovich radial form:

$$
t_{D d}=\frac{t_{D}}{\frac{A}{r_{w}^{2}} \frac{\log \frac{4 A}{1.781 C_{A} r_{w}^{2}}}{5.44678}}=\frac{t_{D}}{\frac{0.183594 A}{r_{w}^{2}} \log \frac{4 A}{1.781 C_{A} r_{w}^{2}}}=\frac{t_{D}}{0.183594\left(c_{1} c_{2}\right)}
$$

8.4 Construction and Development of the Decline Curves

Poston and Chen developed type curves based on the fractured reservoir model ${ }^{41}$ The solution to the dimensionless rate and rime are based on an iterative calculation of the Laplace transform of the constant production rate equations. Conversion to dimensionless decline parameters follows in a manner similar to that of Fetkovich. An extension to horizontal wells in the transient regime is investigated utilizing the equivalent wellbore radius concept.

8.4.1 Model Assumptions

There are two basic groups of assumptions regarding the geometry and rock properties of the model as follows:

1. A horizontal, uniform thickness, naturally fractured reservoir completely filled with a fluid of small and constant compressibility and constant viscosity, bounded by an upper and lower impermeable strata is considered. The drainage area is assumed rectangular with closed outer boundaries. The wellbore fracture is represented by a vertical place of zero thickness in the y direction with a height equal to the formation thickness and of finite length in the lateral x directions and symmetrical with respect to the wellbore and parallel to the drainage boundary.
2. The micro-fractures are more or less connected and are considered as a continuous network. Uniform spheres are used to approximate the geometry of the matrix blocks. The permeability of the fractures is much larger than that of the matrix blocks. In other words the micro fracture network is visualized as a large-scale version of a conventional intergranular porous medium. Such a continuum model implies that both the size and permeability of the intervening matrix blocks are small enough to avoid disturbance of the macroscopic flow. Fluid flow toward the well and wellbore fracture in the reservoir is considered entirely through the natural fracture network. The fluid in the matrix blocks acts a source to the natural fracture network. Communication between the matrix blocks is not allowed. The mathematical formulation is developed in SPE paper 23527^{+2}. The wellbore-intercepted fracture is assumed to extend over the entire vertical extent of the formation but is bed contained. Both infinite conductivity and uniform-flux conditions are considered.

8.4.2 Limiting Equations Used in Construction

By solving the governing equation by the Laplace domain instantaneous source and Green's function with product solution approach and defining dimensionless parameters as defined in the previous section, the authors develop the dimensionless rate equation of a fully penetrating fracture intersecting the wellbore as:

$$
\bar{q}_{D}(s)=\frac{2}{\pi y_{e D}} \frac{1}{s}\left[y_{e D} \sqrt{s f(s)} \operatorname{th}\left(y_{E D} \sqrt{s f(s)}\right)\right]
$$

where the decline curve dimensionless rate and time are given as before as:

$$
q_{d D}=\beta_{2} q_{D}=q_{D} \frac{\pi v_{e}}{4 x_{j}}
$$

and the dimensionless time is:

$$
t_{d D}=\frac{t_{I D}}{\beta_{1} \beta_{2}}=\frac{4 x_{j}^{2} t_{j D}}{y_{e}^{2}}
$$

Seven limiting forms can be derived from which the decline curves are constructed in a similar way to that of Fetkovich type curves. These limiting forms can be shown to be dependent on two parameters ω and γ as previously defined. These parameters are the storage expansion ratio and the inter-porosity flow or fracture intensity parameters. These two parameters characterize the behavior of the dual porosity system. The seven limiting forms with the constraints are expressed below:

Infinite Region:

$$
q_{D}\left(t_{f \mathcal{D}}\right)=\frac{2}{\pi^{2 / 3}} \frac{1}{\sqrt{t_{\mathcal{D}}}}:\left[t_{f \mathcal{D}}<\frac{1}{(3 \lambda \omega}\right]
$$

This limiting form corresponds to the approximations of $(3 \lambda \omega / \mathrm{s}) \lll 1$ and hence $f(s)=1$.

$$
\begin{gathered}
q_{D}\left(t_{f D}\right)=\frac{2}{\pi^{2 / 3}} \frac{1}{\sqrt{t_{f D}}}+\frac{\sqrt{3 \lambda \omega}}{\pi} ;\left[\frac{1}{3 \lambda \omega}<t_{f D}<\frac{0.3 \omega}{\lambda}\right] \\
q_{D}\left(t_{f D}\right)=\frac{2(\lambda \omega)^{1 / 4}}{\pi \Gamma(3 / 4)} \frac{1}{t_{f D}^{1 / 4}} ;\left[t_{f D}>\frac{03 \omega}{\lambda}\right]
\end{gathered}
$$

where Γ is the Gumma function and $\Gamma(3 / 4)$ is 1.225420 .

The finite acting limiting forms are:

$$
\begin{align*}
& q_{D}\left(t_{f D}\right)=\frac{1}{\beta_{2}} \sum_{n=1}^{\infty} \exp \left[-(2 n-1)^{2} \frac{t_{f D}}{\beta_{1} \beta_{2}}\right] \\
& q_{D}\left(t_{f D}\right)=\frac{1}{\beta_{2}} \sum_{n=1}^{x} \exp \left[-(2 n-1)^{2} \frac{\omega t_{f D}}{\beta_{1} \beta_{2}}\right]
\end{align*}
$$

$$
q_{D}\left(t_{f D}\right)=\frac{1}{\beta_{2}} \sum_{n=1}^{\infty} \frac{1}{a} \exp \left[\frac{-(2 n-1)^{2}}{a} \frac{\omega t_{f D}}{\beta_{1} \beta_{2}}\right]
$$

and

$$
q_{D}\left(t_{f D}\right)=\frac{1}{\beta_{2}} \sum_{n=1}^{\infty} \frac{\gamma}{\gamma-(2 n-1)^{2}} \operatorname{erf}\left[b \sqrt{\frac{t_{f D}}{\beta_{1} \beta_{2}}}\right] \exp \left[b^{2} \frac{t_{f D}}{\beta_{1} \beta_{2}}\right]
$$

where:

$$
\begin{gather*}
a=1+(2 n-1)^{2} \frac{3}{5} \frac{(1-\omega)^{3}}{\omega} \frac{1}{\gamma} \\
b=\frac{(2 n-1)^{2} \sqrt{\gamma}}{\gamma-(2 n-1)^{2}}
\end{gather*}
$$

$$
\gamma=3 \lambda \omega \beta_{1} \beta_{2}=3 \lambda[(1-\omega) / \omega] \beta_{1} \beta_{2}
$$

$$
\beta_{1}=\frac{16 y_{e D}}{\pi^{j}}
$$

$$
\beta_{2}=\frac{\pi y_{* D}}{4}
$$

If the erfc function is approximated as $\operatorname{erfc}(z) \approx \exp (-z)^{2} / \sqrt{ } \pi z$ for large values of the argument then the last limiting equation can be approximated by:

$$
q_{D}\left(t_{f D}\right)=\frac{1}{\beta_{2}} \sum_{n=1}^{\infty} \frac{\sqrt{\gamma / \pi}}{(2 n-1)^{2}} \frac{1}{\sqrt{t_{f D} /\left(\beta_{1} \beta_{2}\right)}}
$$

The limiting equations can then be plotted for various ranges of reservoir size and limiting parameters just as with the Fetkovich construction where the $q_{D d}$ was constructed for increasing reservoir size $r_{e D}$. The fracture dimensionless curves are constructed for increasing $y_{e} / x_{\mathfrak{f}}$.

$$
q_{d D}=\beta_{2} q_{D}=q_{D} \frac{\pi \nu_{e}}{4 x_{f}}
$$

and the dimensionless time is:

$$
t_{d D}=\frac{t_{D D}}{\beta_{1} \beta_{2}}=\frac{4 x_{f}^{2} t_{\mathcal{D}}}{y_{e}^{2}}
$$

The lines will converge and overlap. The values of the limiting areas can then be extracted and re-plotted to form the Type curve shown in figure 8.3 which closely replicates the Poston and Chen curves in Figure 8.1.

The Poston-Chen curve for a storage compressibility of 0.1 with superimposed Fetkovich type curve is shown in figure 8.3. Note the convergence of the two type curves in the depletion period for low values of fracture intensity. The transient period is also markedly different in the fractured regime.

Figure 8.3 Comparison Fetkovich (dashed lines) with Poston-Chen Decline Type Carve Reconstruction Fractured Reservoir Model-Storage Compressibility $\boldsymbol{\omega}=0.1$

An examination of the curves indicates that the Poston and Chen curves treat the initial period, as infinite acting which is not always typical of a horizontal well in fractured media. As the simulation experiments indicate even with fracture permeability of as much as 4000 md the initial flow does not always follow the early time Poston-Chen curves but does match the late time portions very well. The examples in their published papers from Austin Chalk reservoirs also did not match the early time behavior but similar to the simulation experiments showed a much "flatter" early time slopes. However the combined Fetkovich type superimposed on the Poston Chen curves in Figure 8.3 do provide the extremes to compare. The actual early time path of a fractured well will be somewhere in between the two cases. Since the curves are primarily being used to classify fracture types this is not a serious limitation but does present some difficulties in curve matching.

If the dimensionless well length is known then an altemative early time behavior can be approximated using the Poston Chen's Fetkovich equivalent dimensionless constants and applying the horizontal dimensionless rate and time values

$$
\begin{gather*}
q_{d D}=\left(\frac{\pi}{4} \frac{y_{e}}{x_{f}}\right) \frac{141.2 B \mu q(t)}{k_{f} h\left(p_{i}-p_{w f}\right)}=\left(\frac{\pi}{4} \frac{y_{e}}{x_{f}}\right) q_{D} \\
t_{d D}=\frac{0.00633 k_{f} t}{\mu\left(\phi c_{t}\right)_{f} x_{f}^{2}\left(\frac{2 y_{e}}{\pi x_{f}}\right)^{2}}=\frac{t_{D}}{\left(\frac{2 y_{e}}{\pi x_{f}}\right)^{2}}
\end{gather*}
$$

similar to values from figure 7.33 of the previous chapter.

Reproduced Figure $7.33^{32.24}$

The Poston-Chen early time infinite conductivity assumptions are more similar to using the fully penetrating infinite conductivity fracture such as shown in figure 8.4. ${ }^{33}$

Figure 8.4 Fracture Dimensionless Rate versus Dimensionless Time Horizontal Wells ${ }^{33}$

Thus a more reasonable early time curve falls in between the Fetkovich type curve and the Poston-Chen early time. This preserves the Poston Chen late time behavior but changes the early time behavior to that actually seen in some of the field and in the simulation experiments.

8.4.3 New Dual Porosity Dimensionless Parameters

For the standard homogeneous type curve models of Arps and Fetkovich there is just one correlation parameter r_{d} / r_{w} or $\sqrt{ } \mathrm{A} / r_{w}$ for the more general case in the transient portion and one parameter "b" for the pseudosteady state decline solution. Dimensionless parameters characterizing a dual porosity behavior are traditionally defined as the 1) storage expansion ratio ω and 2) the inter-porosity flow parameter λ. The storage capacity expansion factor is defined as:

$$
\omega=\frac{\left(\phi c_{t}\right)_{f}}{\left(\phi c_{t}\right)_{f}+\left(\phi c_{t}\right)_{m}}=\frac{\left(\phi c_{t}\right)_{f}}{\left(\phi c_{t}\right)_{t}}
$$

which is known as the ratio of storage expansion of the fracture system to the total system. For many fractured systems (Type 3 fractures) the fracture porosity is low and the storage expansion ratio is just the ratio of $\phi_{d} / \phi_{\mathrm{m}}$. The presence of fluid influx from the matrix blocks will thus override the compressibility effect and produce a production "tail".

A useful variation of this storage expansion factor is:

$$
\omega^{\cdot}=(1-\omega) / \omega=\left(\phi_{c t}\right)_{m} /\left(\phi_{c t}\right)_{\mathrm{r}}
$$

Thus ω is based on expressions for inter-porosity flow and storage compressibility. The term defines the difference between the fracture and matrix flow. which can theoretically be used to characterize the type of fracture system.

For a formation such as the Austin Chalk which has low fracture porosity ϕ_{f} but good fracture permeability $\mathbf{k}_{\mathbf{f}}$ (type 3) and often also has good matrix support, values of ω averages about 10^{-3}. The Austin Chalk has fracture porosity of about 0.005 . So ω is approximately $(\phi)_{\AA}^{d}(\phi)_{m}$ or $0.005 / 0.16$. The presence of fluid influx from the matrix blocks will override the compressibility effect and produce a production tail in such cases.

The second limiting parameter λ can be re-characterized and defined as γ. The γ term is proportional to the fracture intensity, FI, and is thus a direct indicator of fracture intensity if the matrix and fracture compressibility are the same and ω is of the order 10^{-3}. The smaller the value of γ the smaller the production rate, life of the well and thus less tail on the decline curve. A large value of γ can imply a high fracture intensity and good fracture connectivity and tends to be characteristic of small values of storage expansion ratio. Thus according to Posten and Chen, the extended production tailing is a result of primarily matrix fluid contribution and not compressibility effects.
γ is related to the inter-porosity parameter λ and ω^{\wedge} by:

$$
\begin{gather*}
\gamma=3 \lambda \omega \cdot \beta_{1} \beta_{2}=3 \lambda \beta_{1} \beta_{2}(1-\omega) / \omega \\
\gamma=(F I)^{2} x_{f}^{\prime} \frac{k_{m}\left(\phi c_{t}\right)_{m}}{k_{f}\left(\phi c_{t}\right)_{f}} \beta_{l} \beta_{2}=\left(\frac{6}{\pi} \frac{y_{e}}{l_{c}}\right)^{2} \frac{k_{m}}{k_{f}} \frac{\left(\phi c_{t}\right)_{m}}{\left(\phi c_{t}\right)_{f}}
\end{gather*}
$$

Poston and Chen state that in the Austin Chalk. γ can often be a direct indicator of fracture intensity if the ratio of $k_{m} \phi_{m} \mathcal{C}_{m} / k_{q} \phi_{\mathfrak{G}_{\mathrm{f}}}$ is approximately one. Whether this is a common occurrence is unknown however it will be tested in the simulation experiments.

Figures 8.4 and 8.5 show Poston and Chen's general storage compressibility ω and fracture intensity relationships.

t_{0}

Fig. 8 - Ideallied Change in Fracture Storage-Compressibiling Term, a.

Fig. 9 - Idedized Change in Fracture Intensity Term. γ.

Figures 8.6 and 8.7 Dimensionless Type Curves for Variations in Storage Compressibility and Fracture Intensity 4

8.5 Application

The Austin Chalk of south Texas and the Viola of Oklahoma provide two good contrasting fractured carbonate examples. The Austin Chalk exhibits high initial production from the fracture system followed by a steep drop off in production as the fracture systems are depleted. The Austin Chalk does, in many cases, continue to provide some support to production from the matrix after the steep initial drop. However. the Viola rate drop-off is very abrupt and provides little post drop off production support from the outlying matrix system. Once the fracture system is depleted the wells are usually abruptly uneconomic. Presumably the matrix permeability is too limited to provide pressure support.

The unique feature of the dual fracture - matrix type curves lies in the abrupt decline followed by the extended production tail of the decline curve for certain storage compressibility conditions. The author's indicate that the tail is a consequence of the matrix contribution in this formulation. The simulation experiments indicate that the tail may also be a result of the solution gas effect. Naturally fractured reservoirs with small matrix permeability would display a pronounced fall off later in the life of the well.

Recall that the Poston Chen models use the following relationships:

$$
q_{d D}=\left(\frac{\pi}{4} \frac{y_{e}}{x_{f}}\right) \frac{l+1.2 B \mu q(t)}{k_{f} h\left(p_{i}-p_{w f}\right)}
$$

$$
t_{D}=\frac{0.00633 k_{f} t}{\mu\left(\phi c_{t}\right)_{f} x_{f}^{2}}
$$

with correlation parameters:

$$
\begin{gather*}
\omega=\frac{\left(\phi c_{t}\right)_{f}}{\left(\phi c_{t}\right)_{f}+\left(\phi c_{t}\right)_{m}}=\frac{\left(\phi c_{t}\right)_{i}}{\left(\phi c_{t}\right)_{t}} \\
\gamma=(F I)^{2} x_{f}^{2} \frac{k_{m}\left(\phi c_{t}\right)_{m}}{k_{f}\left(\phi c_{t}\right)_{f}} \beta_{t} \beta=\left(\frac{\sigma}{\pi} \frac{y_{e}}{l_{c}}\right)^{2} \frac{k_{m}}{k_{f}} \frac{\left(\phi c_{t}\right)_{m}}{\left(\phi c_{t}\right)_{f}}
\end{gather*}
$$

Poston and Chen used these type curves and drew certain conclusions based on matching of data for Austin Chalk production data. Since actual reservoirs are heterogeneous and anisotropic in unknown ways, simulation experimentation offers a method to test and properly validate the type curve model. Only then can they be used to help characterize fracture types. Comparisons of short and long term production decline curves are useful.

8.6 Experiments with Fractured Media

In an effort to both test the Poston Chen Type curves, to try to classify the various fracture types by decline curve characteristics and to possibly modify the Poston Chen curves to a more realistic early time behavior, simulation models were constructed for
each fracture type. The type curves were then applied to each experimental output and comparisons are made between various graphical output of the various fracture types. Recall that the fractures were classified by types into the following four categories. ${ }^{+9}$

Type One: Fractures provide the majority of the movable reservoir storage capacity and permeability, which is characterized by high flow rate and short reservoir life. $\mathrm{k}_{\mathrm{p}} \ggg \mathrm{k}_{\mathrm{m}}$ and $\phi_{\mathrm{f}} \ggg>\phi_{\mathrm{m}}$

Type Two: The matrix has good permeability and provides a good feed to the fracture system. High flow rates and longer reservoir life result.

Type Three: The matrix permeability is low but contains most of the oil. The fractures contain high permeability.

Type Four: The fractures are filled with minerals and partition the formation into blocks.

Unfortunately it was difficult to model an extreme case type 1 fracture where there was almost no storage capacity in the matrix while keeping other parameters fairly constant. However it was possible to model a system that contained a large part of the storage capacity in the fracture (18\%) relative to the type two and three fractures cases where fracture storage was only 1%. A reasonable qualitative comparison could thus be obtained. This is not considered a serious limitation since even in very tight formations such as the Viola of Oklahoma there is significant though immovable oil in the matrix.

8.7 Model Descriptions

To properly compare and classify the various fracture types it was necessary to construct models that contained, as much as feasible, identical characteristics such as
reservoir dimensions, total pore volume, total fluid volumes, initial fluid saturation, grid spacing, grid number and PVT parameters. In other words the experiments were designed to test fracture type classifications in a scenario that compared only the relative changes in matrix and fracture storage capacity and permeability by keeping the sum total reservoir rock and fluid volumes and initial saturation identical. Therefore models were constructed as follows:

All models contained 784 grid blocks (near the capacity of the boastvhs simulator) in a nearly square reservoir. The total system oil in place was a constant 3.37 million stock tank barrels and initial gas in solution was 1.5 bscf in all cases. Relative matrix-fracture pore volume was adjusted to maintain a constant total system pore volume within each model but was distributed between the fracture and matrix to fit the model type as well as possible according to the following generalized summary table 8.1. The initial reservoir pressure is 2000 psia and bubble point is 1600 psia. The horizontal reservoir length to horizontal well length ratio $\mathrm{X}_{\mathrm{e}} / \mathrm{L}$ was a constant 8.5 for all cases.

Constant OOIP is $\mathbf{3 . 3 7}$ Million Stock Tank Barrels

Model	Order of untial q Highest -1	Marnx k md	Frocture k md	cosprooiph	Storage Fuctor ${ }^{\circ}$	$\begin{aligned} & k_{-1} / k_{m} \\ & 1 / \lambda \end{aligned}$	$\overline{k_{w} / k_{p}}$	k_{p}	Fracture Intensity
Type 1	6	0.1	1000	4\%	036	10000	0001	44.6	. 00036
Type 1/	5	0.1	4000	4\%	. 036	40000	. 000025	178.1	. 00036
Type In	4	0.1	1000	18\%	. 146	10000	. 0001	177.6	0015
Type lhn	3	0.1	4000	18\%	. 146	40000	. 000025	710.4	. 0015
Type 2	2	10.1	1000	1\%	. 007	100	. 01	18.62	. 00038
Type 2h	1	10.1	4000	1\%	. 007	400	. 0025	44.43	. 00038
Type 3	8	0.1	1000	1\%	007	10000	. 0001	8.7	00038
Type 3h	7	0.1	4000	1\%	. 007	40000	. 000025	34.52	. 00038
Type 4		10.1		1%	. 007	400	0025	34.43	. 00038

Table 8.1 Simulation Model Parameters

It was shown in the master's thesis that as the fracture intensity increases, the performance derived oil relative permeability approaches a straight line between zero and irreducible liquid saturation. ${ }^{12}$ Low fracture intensity wells have $k_{r 0}$ similar to laboratory determined matrix curves. Wells with higher fracture intensity generally exhibit more favorable k_{ro} at high gas saturation and approach straight lines. As the degree of fracturing increases, $\mathrm{k}_{\mathrm{g}} / \mathrm{k}_{\mathrm{o}}$ becomes more unfavorable toward oil recovery. In this case however the relative permeability curves were kept constant in the experiments to avoid introducing an unknown parameter. The effect of the relative permeability in the matrix versus the fracture could be investigated later.

The author has used traditional fractured reservoir parameters in Table 8.1 as well as defined several variables that are variations of the traditional fracture parameters. Traditional parameters include as storage coefficient, ω. fracture transfer rate, λ, fracture intensity term $\nu=\frac{\phi_{1}-\phi_{m}}{1-\phi_{m}}$, and Poston Chen correlation, parameter $\gamma^{+4,47,+8}$ The fracture intensity term requires a calculation of the total system porosity using the pore volume weighted porosity of the fracture and matrix. Modified parameters are also used since it is difficult to estimate the compressibility. A simple storage factor $\omega^{\prime \prime}=\frac{V_{f} \phi_{f}}{V_{f} \phi_{f}+V_{m} \phi_{m}}$ is used for discussion purposes to show the relationship of fracture porosity to total system porosity. This is essentially the same as the traditional ω without the compressibility terms (see equation 8.40). The oil filled fracture pore vohume to total system pore volume (ooipdooiph) can also approximate the storage coefficient. This term allows a more direct conceptual
comparison of the various experimental outputs. Likewise the traditional $\lambda=\mathrm{cr}^{2}{ }_{w} \mathrm{k}_{\mathrm{m}} / \mathrm{k}_{\mathrm{f}}$, which is an indication of fluid transfer rate from matrix to fractures is simplified in the discussions to $\lambda=k_{m} / k_{f}$ for conceptual clarity since only one well dimension is used. This term is then further modified to incorporate pore volume weighted permeability for the system. This should provide another possible useful parameter to classify the system in the presence of a horizontal well that intersects both matrix and fractures.

For instance $k_{p v}$, for comparison purposes. will be defined as the pore volume weighted bulk permeability:

$$
k_{p v t}=\frac{\Sigma k_{f} V_{p v i}+\Sigma k_{m} V_{p u m}}{V_{p v t}}
$$

$V_{p v f}=$ Pore volume of fracture
$\mathrm{V}_{\mathrm{pvm}}=$ Pore volume of matrix
$\mathrm{V}_{\mathrm{pt}}=$ Total model pore volume

All of these various traditional and modified parameter values are shown in table 8.1 so that a comparison can be made as the individual model outputs are compared and contrasted. It will be useful to refer to Table 8.1 during the discussion of the graphical output.

8.8 Simulation Output

The reservoir simulation output is too voluminous to include in this report but the following sections summarize some of the main points of the various experiments. More
complete tabular simulation output and calculations are included in the appendix G. More complete experimental and graphical output is available from the author.

The experimental output collected consisted of tabular pressure, oil, gas, water rate and cumulative data as well as phase saturation data for each time step. That output was input to spreadsheets and used in various calculations that were graphed. As mentioned before, pressure data was collected to help in the analysis of the rate data but is not used in the characterization since this type of data will not be available for most reservoir situations. Even valuable early time daily rate data are hard to obtain. One can only reasonably expect to have monthly rate and cumulative production data after the first year of production and occasionally some sporadic bottomhole shut-in pressure data. Since most domestic onshore wells produce at maximum rate limited only by separator backpressure, flowing wellhead pressures are of little value and can give misleading results. Poston and Chen used those values in their analysis but the general applicability and availability of such data is questionable. This analysis is restricted to data that can be obtained by the practicing from traditional public data sources. Graphical output for each fracture experiment as well as tabular results (included in Appendix G) consisted of the information listed in Table 8.3. Only selected output that was deemed most relevant is included in this report.

Graph Type	Cartesian	Semi-Log	$\log -\log$
Oil Rate versus Time: q vs. t	X	X	\mathbf{X}
Oil and Gas Rate versus Cumulative: q vs. qumm, $^{\text {a }}$	X	X	X
Cumulative Oil and Gas vs. Time: $\mathrm{quan}_{\text {ms. }}$ vs.	\mathbf{X}	X	X
Oil Rate q vs. ($\iota_{p}+\Delta 1 \mathrm{~V}$ Jr Note: not well testing definition (see report body)			X
Pressure Average vs. ($\left.\iota_{p}+\Delta t\right) / \Delta t$ Note: not well resting definition		X	X
Oil Rate Change dy vs. (t_{p} TAl) it Note: not weil testing definition (see report body)			X
Average Reservoir Pressure versus Cumulative Oil: \mathbf{P} vs. quam $^{\text {a }}$	X		X
Oil Rate Change/Oil Rate versus Cumulative Oil/Rate: (1 q/q) vs $\mathrm{q}_{\text {ama }} / \mathrm{q}$	X	X	X
Pressure Change/Rate vs Cumulative Oil/Rate: ($\Delta \mathrm{p} / \mathrm{q}$) vs $\mathrm{q}_{\text {cum }} / q$		X	X
Pressure Change vs time: Δp vs. t		X	X
Oil Rate Change vs time: Iq vs. t		X	\mathbf{X}
Oil Rase Change vs Pressure Change: 19 vs. Ip		X	X
Preasure Change vs Cumulative: Δp vs. $q_{\text {vum }}$		X	X
Pressure Change vs square root of time: Δp vs. sqrt t		X	X
Oil Rate Derivative versus Cumulative Oil: q^{\dagger} vs. $q_{\text {coum }}$ (also smoothed)		X	X
Oil Rate Derivative versus Time: q° vs. I (also smoothed)		X	X
Pressure ${ }_{\text {am }}$ Oil Rate Derivative versus Time: P' vs. P (also smoothed)		X	\mathbf{X}
Oil Rate Derivative * Time vs Cumulative Oil: $q^{\prime \prime}{ }^{\text {'t }}$ vs. $q_{\text {cum }}$		X	\mathbf{X}
Oil Rate Change/Oil Rate Derivative versus Time: (Sq/q) ${ }^{\text {a }}$ it		X	X

Table 8.2 Graph Output Generated

Surface diagrams of the pressure and saturation conditions for each grid block at selected time steps were also utilized in the analysis. The primary graphs that proved diagnostic in classifying the fracture types were the rate-time, cumulative-time, rate derivative-time, rate- $\left(t_{p}+\Delta t\right) / \Delta t, \Delta q$-time and the $(\Delta q / q)$ vs. $\left(q_{\text {cum }} / q\right)$ plots. Note that t_{p}
is not the traditional well test parameter but rather defined as $t_{p}=\left[\left(q_{\text {cum }} / q\right)+\Delta t\right] / \Delta t$. The physical significance, if any, of this parameter is unknown but it seemed to have some value in classifying the reservoirs.

The ($\Delta \mathrm{q} / \mathrm{q}$) vs. ($\mathrm{q}_{\mathrm{cum}} / \mathrm{q}$) plots were generated to approach the problem from a normalization and material balance standpoint that seems to have some semi-quantitative usefulness. This type of plot presents the data in a manner similar to well test analysis. A plot of $\log (\Delta \mathrm{p} / \mathrm{q})$ or $(\Delta \mathrm{q} / \mathrm{q})$ vs. $\log \left(\mathrm{q}_{\mathrm{cum}} / \mathrm{q}\right)$ (or the inverse) should transfer the data to data suitable for well test analysis. If pressure was available then linear flow would be characterized by $1 / 2$ slope and pseudosteady state exponential decline would exhibit unit slope. Plateaus in the plot could be characteristic of possible hierarchical fracture systems and dual porosity character should be visible. Qualitative extension to rate data may be possible.

Decline curves were developed under the assumption of constant flowing bottom hole pressure but most wells declining to production capability, exhibit decreasing tubing head pressure which reflects a declining flowing bottom hole pressure. Therefore a normalization technique should be useful. Normalizing the flow rates by dividing the production rates by the change in tubing head pressure $\left(\mathrm{FTHP}_{\text {initial }}-\mathrm{FTH}_{\text {curreat }}\right)$ was used by Poston and Chen to approximate the constant flowing bottomhole pressure assumptions. Though this is an ideal situation, using that data to approximate actual bottomhole flowing pressures is dangerous since practically speaking most US wells
decline to pipeline or separator pressure very quickly and produce against a constant backpressure.

Since this type of data are not often available, this work modified the method to use rate divided by changes in rate ($q / \Delta q$), (or the inverse) which seem to approximate the general shape of the $q i \Delta p$ curves. Although this ($q / \Delta q$) cannot be used in a strictly quantitative sense it does give relative characteristics of the various fracture types. The normalization should also magnify the changes in storage compressibility and fracture intensity terms.

If the material balance equation is arranged in the form of a straight line for PSS flow then a Cartesian plot of $\Delta \mathrm{p} / \mathrm{q} \mathrm{vs} . \mathrm{q}_{\mathrm{cum}} / \mathrm{q}$ should yield a straight line of slope m that defines the matrix pore volume where the slope $(m)=5.615^{*}\left(B_{d} / V_{p} c_{t}\right)$ where V_{p} is the pore volume. The rate of change of $\Delta q / q$ vs. cumulative q / q is plotted as an approximation to such pressure data. As such the actual pore volume can not be computed exactly but the relative slope can be used for qualitative interpretation.

As with the derivative of pressure $(\Delta \mathrm{p} / \mathrm{dt})$, the derivative of rate with respect to time ($\Delta \mathrm{q} / \mathrm{dt}$) should give an indication of the storage compressibility since pressure and rate are related quantities. The deeper the trough on the pressure derivative plots the lower the storage factor (i.e. lower fracture storage). This parameter can also be seen on the semi-log pressure-time plot as a double straight line offset. The larger the offset the
lower the storage factor and the more time delayed is the offset to the lower value of λ. Although pressure is not used here it was hoped that the ($\Delta q / q$) vs. $\log \left(q_{\text {cum }} / q\right)$ plot would transfers the rate data to a pseudo-pressure plot which will exhibit the same phenomenon. These topics will be discussed in more detail as each graph is discussed.

8.9 Analysis of Experimental Results

To summarize, the analysis consists of an examination of the following types of data:

1. Simulation experiments to approximate rate decline performance of four different fracture types.
2. Type curve matching of the rate-time experimental output to the Poston-ChenFetkovich curves.
3. Comparison to conclusions and results obtained by Poston and Chen from actual field data from Austin Chalk reservoirs.
4. Graphical analysis of various calculation data from simulation output.
5. Visualization of pressure and saturation profiles using surface diagrams from simulation tabular output.

Figures 8.9 through 8.16 show the basic rate versus time data for the various fracture experiments on log-log plots. This is the first data to examine for general comparison between the experiments.

Figure 8.8 - Rate Time Plots Type 1

Figure 8.10-Rate Time Plots Type 1n

Figure 8.9 - Rate Time Plots Type 1h

Figure 8.11 - Rate Time Plots Type 1nh

Figure 8.12-Rate Time Plots Type 2

Figure 8.14 - Rate Time Plots Type 3

Figure 8.13-Rate Time Plots Type $\mathbf{2 h}$

Figure 8.15 - Rate Time Plots Type 3h

Figure 8.16 Rate Time Plots Type 4h

This rate-time output indicates that though there are distinct differences between model types there is very little difference in curve shape within each type of model when only fracture permeability is increased from 1000 to 4000 md (i.e. type 1 versus type 1 h). However there are significant differences between fracture types. Type 1 fractures predictably show modest initial production rates followed by steep decline. Figures 8.17 and 8.18 show the composite curve for all model types superimposed on both semi-log and log-log scales.

Figure 8.17 Composite Rate-Time Relationship Semi-Log Scale

Figure 8.18 Composite Rate-Time Relationship Log-Log Scale

8.9.1 Matching of Experimental Rate-Time Data to Poston-Chen Type Curves

Figure 8.18 shows the expected trends based on the Poston-Chen type curves where the pseudo-fracture intensity term, γ, is increasing as the curves flatten out for any given storage compressibility coefficient, ω. Likewise as the transfer rate $\lambda=k_{m} / k_{f}$ decreases (ω held constant), the curves flatten at late times. Also for a given fracture intensity the flattening of the curves indicates larger fracture storage capacity. Other broad features to note include the high initial rate exhibited by the type 2 -fracture case where both the matrix and the fractures exhibit good permeability and the fracture storage capacity is low relative to the matrix. Also note that when the fracture storage increases to almost 20% of total pore volume the flow rate approaches that of the type two case but decreases very rapidly while the type two continues on a less steep decline rate presumably due to the matrix contribution.

The Poston-Chen and superimposed Fetkovich type curves were overlaid on the rate time output at the appropriate scales for comparison. For instance the following diagrams show the type curves plotted at the same scale as the rate time output. When overlain the storage compressibility and fracture intensity terms can be matched and used for interpretation. Recall that Poston and Chen claimed that the parameter γ was a direct indicator of fracture intensity if ω is on the order of 10^{-3}. This claim will be checked in the analysis.

Figure 8.19 Type Curve Matching Example

This type curve matching process can be applied to each simulation model output. The following table illustrates the best matches of the rate-time data using the combined Fetkovich-Poston Chen type curve matches of the various models that were depicted in Table 8.1. Though the overall expected trends were present, the type curves did not prove useful in quantitative analysis.

Model Type	1	1h	1 n	1nh	2	2h	3	3h	4
ω			\oplus Values	\square_{0} Vahues	- Vabues	\bigcirc - Vabue	\oplus	¢	\triangle - Vaves
			Merge at	Merge mi	Merge a	Merge at			Merge a
			Lowy	Lowy	Lowy	Lowy			Lowy
			Value	Vahee	Values	Vaives			Values
Very Early Time	Felisonch	Felkowich			?	?	?	?	
Early Time					0.001	0.001	?	$?$	0.001
Middle-Late Time	0.01	0.01	0.01	0.01	0.001	0.001	0.01	0.01	. 001
Very Late Time	0.01	0.01	0.01	0.01	$?$?	0.01	0.01	. 001
γ									
Very Early Time	Fekonch	Fetkovch	0.001	0.001	$\mathrm{ReD}=10$	$\mathrm{R}_{\text {eD }}=10$	10	10	$\mathrm{Re}_{\text {e }}=10$
Early Time	10	10	0.001	0.001	10	10	10	10	10
Middle-Late Time	1	1	0.1	0.1	10	10	10	10	10
Very Late Time	1	1	0.1	0.1	0.001	0.001	10	10	0.001

Table 8.3 Type Curve Match Summary Information

Recall in figure 8.1 that the storage compressibility term converged at short times and large values of γ so that these values are not distinguishable on the Poston-Chen curves. Also as the storage compressibility term approaches values of 10^{-3}, the curves are only dependent on the γ term and can theoretically be used as a direct indicator of fracture intensity. At intermediate to late time the values of γ did seem to be an inverse indicator of fracture intensity. Poston and Chen also noted that storage compressibility remained fairly constant over time for any particular model but that fracture intensity seemed to increase after shut-in periods. They related this to the system "sensing" more fractures
further into the reservoir system with time. In general the type curve match to the experimental data of this study seemed to change over time to less fracture intensity at very late time values. Since only one type of fracture system was present in each model this change must indicate that over time the relative total compressibility of the matrix and fracture is changing over time in different ways with different fracture types. This could be the only explanation (assuming the type curves are valid) since the fracture intensity term was defined as $\gamma=(F I)^{2} x_{j}^{2} \frac{k_{m}}{k_{f}} \frac{\left(k_{f}\right)_{m}}{\left(\phi_{f}\right)_{j}}$ and all other parameters are invariant in the experiments. The implication is that the total compressibility in the fractures is increasing relative to the matrix over time for the cases of low matrix permeability and low fracture storage capacity. This should be reflected also by changing values of $\omega=\frac{\left(\left\langle c_{1}\right)_{m}\right.}{\left(\Delta \phi_{c}\right) f+\left(\phi_{1}\right)_{m}}$ however the observed values are in the range that merges into the main stem so that it is difficult to distinguish. These results are very confusing in light of the known experimental model parameters and cast some doubt on the use of the PostonChen curves for use as fracture storage compressibility and fracture intensity indicators.

In general it did not appear that the experimental results correlated precisely with these Poston and Chen curves except in a very general sense. However one could say that there was a general shift toward lower γ values as the fracture storage increased relative to the matrix and as the fracture intensity increased. There was also a decrease in the ω term as the matrix permeability increased which must be related to the compressibility of the system since permeability is not directly related by the definition.

8.9.2 Comparison of Rate-Time and Cumulative-Time Data

Figure 8.20 depicts the log-log rate-time behavior comparison of fracture systems with relatively high matrix storage capacity relative to the fracture storage capacity but with varying matrix permeability so that principally λ is contrasted.

Figure 8.20 Comparison of the Effect of Matrix Permeability in Cases of Large Matrix Storage Capacity - Types 2 and 3

The comparison shows the marked contrast of high initial rates for the cases where the matrix and fractures have high permeability compared to cases where only the fracture has high permeability. The decline paths cross at late times. Note that the effect of increasing the fracture permeability from 1000 to 4000 md , (decreasing λ) increases flow
rate within each group as expected by theory but notice that it is a relatively minor effect compared to increasing the matrix permeability.

Figures 8.21 and 8.22 show the magnified early and late time portions of the decline curves to better illustrate this phenomenon.

Figure 8.21 Early Time Comparison of the Effect of Matrix Permeability in Cases of Large Matrix Storage Capacity - Types 2 and 3

Notice in Figure 8.22 that the effect diminishes at late times and at very late times the curves even cross.

Figure 8.22 Late Time Comparison of the Effect of Matrix Permeability in Cases of Large Matrix Storage Capacity - Types 2 and 3

These effects can also be illustrated through the cumulative production versus time plots. Note in Figure 8.23 that the slope of the high matrix permeability case is very large compared to the low matrix permeability case. However they slowly converge at late times, presumably as the matrix and fractures have been depieted in the high permeability cases. Again the shift to higher cumulative production as a result of higher initial flow rates with increasing matrix permeability is shown.

Figure 8.23 Comparison of the Cumulative Production Effects of Matrix Permeability in Cases of Large Matrix Storage Capacity - Types 2 and 3

Figure 8.24 illustrates the effect of increases in the relative storage capacity of the fracture relative to the matrix system in cases where the matrix permeability is poor. As the storage capacity of the fracture increases from 1% to 18% of the total system storage capacity (total system ooip remaining constant) the initial flow rates increase substantially and shift the curves upward to the right. The rate-time behavior converges at late times as the fracture is depleted. As before the effect of the fracture permeability is less important than as associated matrix support even at early times.

Figure 8.24 Effect of Increasing Fracture Storage Capacity on Systems with Low Matrix Permeability

Notice how the effect of additional fracture storage results in a plateau in the rate decline followed by a rapid decline to the rate exhibited by the model containing less fracture storage.

Again a similar effect can be seen on the cumulative versus time plot shown in Figure 8.25. The curves are shifted upward and to the left as a result of the more rapid cumulative production build-up resulting from the higher flow rates.

Figure 8.25 Effect of Increasing Fracture Storage Capacity from $\mathbf{1 \%}$ to $\mathbf{1 8 \%}$ of System Total

Table 8.4 illustrates the predominant characteristics of the rate-time and cumulative time data for the various fracture types.

Type	Characteristics
1	- Modest initial rate but initial rate increasing and approaching Type 2 as ω^{\prime} approaches 0.15 . - Rapid initial decline followed by relatively long transition period. - Semi-log and log-log plots show four linear slope changes with steep early decline, a long zero slope transition, a long linear portion and a very late time low slope linear portion. The middle zero slope transition diminish as ω^{\prime} drops to 0.04 . - The cumulative-time plot exhibits an increasingly " S " shape with ω^{\prime} increasing and late time flattening but not as flat as type 2.
2	- High initial flow rates. - Very little early time character. Initial linear decline is short with very indistinct transition on log-log. Very modest early-middle slope change on semi-log plot only. - Low and prolonged subsequent decline rate compared to typel with a rapid rate decline at late time beginning later than type I but slope is greater and eventually crosses type 1 decline. - The cumulative-time plot is linear on \log - \log with very late time slope change to near zero slopes.
3	- Low initial rates. - Similar early characteristics to type 2 but lower initial rates and longer period of middle linear behavior with slope similar to type 2 but at lower rates. - Very late time slope increase after the curve crosses the type 2 plot. - The cumulative-time plot shows and early time linear slope changing to a steeper prolonged linear shape on $\log -\log$ until very late slope change. Curve converges to type 2 at late time
4	- No distinguishing characteristics from type 2.

Table 8.4 Predominant Characteristics of Rate-Time and Rate-Cumulative Data Behavior

8.9.3 Comparison of the $\Delta p / q$ vs. $q_{\text {cum }} / q$ Dam between Fracture Types

As mentioned before, the $\Delta \mathrm{p} / \mathrm{q}$ vs. $\mathrm{q}_{\mathrm{cum}} / \mathrm{q}$ plot is very useful in reservoir analysis of fracture type. calculation of pore volume and estimation of storage compressibility. However as noted, pressure data are almost never available to a practicing engineer. Therefore $\Delta q / q$ has been plotted as an approximation to $\Delta p / q$. A comparison of $\Delta q / q \mathrm{vs}$. $\mathrm{q}_{\text {cum }} / \mathrm{q}$ with $\Delta \mathrm{p} / \mathrm{q}$ vs. $\mathrm{q}_{\mathrm{cum}} / \mathrm{q}$ plots below (figures $8.25-8.28$) show that the plots are very similar in shape. The interesting thing to note is that if one uses rates instead of pressure. such as $\Delta q / q$ vs. $q_{c u m} / q$, then the same general patterns are seen in the plots. The later unit slope on the pressure plots corresponds to an exponential decline on the production curve. Although the unit pressure slopes are not exhibited on the rate declines, the semiunit linear characteristics are the same and can be used to classify the matrix-fracture system.

With this type of plot using pressure, one would typically expect a $1 / 2$ slope in the early time region characteristic of linear flow. Also the unit slope pseudosteady region is magnified. The late time would be characterized by exponential decline because the boundary effects are felt by the system. This would result in a unit slope on such plots. Figure 8.25 shows this early $1 / 2$ slope followed by a transition period and subsequent unit slope. Figure 8.26 shows the same type of plot using $\Delta q / q$, as an approximation for $\Delta p / q$ since the flowing pressure data are rarely available. Note that although the siopes are
not $1 / 2$ and unity, the curves do show the same basic shape and can be used to indicate the time at which pseudosteady state is obtained.

Note in figure 8.27 that the early time $1 / 2$ slope is not apparent on the graph. This is probably because of the small amount of oil in the fractures and the system senses the fracture depletion relatively quickly. There is also relatively little matrix permeability support. The unit slope is present but without an apparent transition zone. Conversely. the $\Delta \mathrm{q} / \mathrm{q}$ plot shown in figure 8.28 does show an early break in slope at approximately 62 days. Surface diagrams of the pressure field indicate that this corresponds to the time that the system first senses the exterior boundaries of the model. This phenomenon is not exhibited as well on the $\Delta p / q$ plot. But it does show the possible value of the $\Delta q / q$ type of diagram. which will be used to compare and contrast the various models.

Figure $\mathbf{8 . 2 5}$ Model Types 2 (semi-log) $\Delta \mathrm{p} / \mathrm{q}$ versus $\mathrm{q}_{\text {cum }} / \mathbf{q}$

Figure 8.27 Model Type 3 (semi-log) $\Delta p / q$ versus $q_{\text {cuan }} / q$

Figure 8.26 Model Types $2(\log -\log)$ $\Delta q / q$ versus $q_{\text {cum }} / q$

Figure 8.28 Model Type 3 (log-log) $\Delta q / q$ versus $q_{\text {cum }} / q$

The following section discusses an examination of the graphs of $\Delta q / q$ vs. $q_{c u m} / q$ plots for the various models. Figures 8.29 and 8.30 show the effect of changing the relative fracture to matrix storage volume, ω, but keeping the ratio of matrix to fracture permeability, λ constant. Note in both figures 8.29 and 8.30 that as the fracture storage capacity increases, there is a pronounced change in the shape and in fact a double offset character is exhibited even though the matrix permeability is very low. Also note that as the fracture storage is increased, that the time between the slope change is delayed. This shows that the time delay may indicate the relative contrast in fracture to matrix storage or an indicator of ω°. Also of note is that as λ increases, given a constant relative fracture to matrix storage ratio, there are an increase in the "width" of the transition zone. In other words there is more of a time delay from the onset of the first slope change to the second. Figure 8.31 and 8.32 show the $\log -\log$ and semi-log expanded views to better show these phenomenon. These diagrams illustrate an important discovery that the ratio of the $\Delta \mathrm{q} / \mathrm{q}$ for the beginning or the transition zone yields an indicator of the relative storage capacity of the fracture system. In other words on figure 8.31, the ratio of $\Delta q_{A} / q_{A}$ to $\Delta q_{B} / q_{B}$ is 4.38 (1.1698/0.2672), which corresponds to the ratio of the relative fracture storage capacities of the two models. Thus if one has a reference well, all other field well decline curves can be used as an indicator of relative fracture storage capacity.

Figure 8.29 Type 1 Fracture Increasing Matrix Pore Volume Relative to Fracture $\lambda^{\prime}=1 \mathrm{ee}^{-\boldsymbol{-}}$

Figure 8.30 Type 1 Fracture Increasing Matrix Pore Volume Relative to Fracture $\boldsymbol{\lambda}^{\prime}=2.5 \mathrm{ee}^{\boldsymbol{6}}$

Figure 8.31 Expanded Type 1,1n,1nh Fracture Model-Effect of Increasing Matrix Pore Volume Relative to Fracture and Change in $k_{\infty} / k_{m} \log -\log$

Figure 8.32 Expanded Type 1,1n,1nh Fracture Model-Effect of Increasing Matrix Pore Volume Relative to Fracture and Change in $\mathrm{k}_{\boldsymbol{\prime}} / \mathrm{k}_{\mathrm{m}}$ Semi-Log

Figure 8.33 shows the effect of increasing the fracture storage volume in cases of poor matrix permeability. Except for early time data, which is often not recorded, the slopes again show near unit slopes.

Figure 8.33 Effect of Increasing Fracture Storage Capacity in Case of Poor Matrix Permeability Log-Log

Figure 8.34 Effect of Increasing Fracture Storage Capacity in Case of Poor Matrix Permeability Expanded Semi-Log

Figure 8.35 shows the effect of changes in matrix permeability in cases of large matrix storage capacity relative to fracture storage capacity. Note the typical dual porosity offset in the slope for the Type 2 fracture.

Figure 8.35 Effect of Lncreasing Matriv/Fracture Permeability-Large Matrix Storage Capacity

The slope of the Cartesian plot can also give a qualitative indication of pore volume. Actual values of pore volume can be obtained if pressures instead of rate data are available. However using the same techniques on $\Delta \mathrm{q} / \mathrm{q}$ versus $\mathrm{q}_{\mathrm{ccum}} / \mathrm{q}$ data can give a relative value of pore volume between the fracture types from the relationship: slope $(\mathrm{m})=5.615^{*}\left(\mathrm{~B} / \mathrm{V}_{\mathrm{p}} \mathrm{c}_{\mathrm{t}}\right)$. In other words the matrix pore volume will be inversely proportional to the slope of the Cartesian straight-line portions at late time. The steeper the slope the less the V_{pm}.

Figure 8.36 Cartesian Plot of $\Delta q / q$ versus $q_{\text {cum }} / q$ Showing Effect of Matrix Pore Volume on Slope The graphs generally confirm that the late time slope increases with increasing fracture and decreasing matrix pore volume since the lower slope indicates more matrix pore
volume. However there is also an unexpected secondary effect related to λ since the slope steepens slightly with increasing fracture permeability (λ decreasing). This phenomenon is most apparent as the fracture volume increases to 18% of the total. Although the phenomenon is also seen on the Type 1 and 3 it is much less noticeable.

Figure 8.35 shows the Cartesian case of the Type 2 models. . Notice that the late time portion is again linear and the early time linear portion is not visible, as the duration is very short.

Figure 8.37 Expanded Cartesian Plot of $\Delta q / q$ versus q cum $/ \mathbf{q}$, type 2 - Effect of Fracture-Matrix Permeability in Large Relative Matrix Pore Volume Case

Table 8.5 summarizes the predominant characteristics from $\Delta q / q$ versus $q_{c u m} / q$ graphs that have been discussed.

Type	Cartesian	Semi-Log	Log-Log
1	- 2-linear slopes, intersecting at increasing $\Delta q / q$ as ω^{\prime} increases. - Intersection shifts to lower $\mathrm{q}_{\text {cant }} / \mathrm{q}$ and slope increases as λ ' decreases. - Late time linear slope increases as matrix pore volume increases.	- Early semi-linear slope with zero slope transition to later concave upward shape. - Zero slope transition disappears at low ω^{\prime}. - The early linear period remains as as ω ' shrinks until it disappears as the model approaches type 3. - Duration of the zero slope transition decreases slightly with increasing λ^{\prime} for a given ω^{\prime}	- Early semi-linear slope (approx. $1 / 2$ slope) with zero slope transition to later semi-linear shape. - Zero slope transition disappears at low ω. - The early linear period remains as as ω ' shrinks until it disappears as the model approaches type 3. - Duration of the zero slope transition decreases slightly with increasing λ^{\prime} for a given ω^{\prime}
2	- Early very short duration linear followed by prolonged linear slope that shifts to higher slope with decreasing λ^{\prime}	- Concave upward in entirety with shift to higher $d q / q$ with decreasing λ^{\prime}	- Double offset "dualporosity" unit slope shape is present with early and late time slopes almost parallel. - Transition zone offsets the two linear portions but is not zero slope.
3	- 2-linear slopes, intersecting at increasing dq / q as ω^{\prime} increases. - Intersection shifts to lower $\mathrm{q}_{\text {aurn }} / \mathrm{q}$ and slope increases as λ. decreases.	- Early, very short duration semi-linear slope but no zero slope transition. - Concave upward shape begins immediately after early linear.	- Early, very short duration semi-linear slope with change to prolonged linear middle-late time and shift to higher $\Delta q / q$ with decreasing λ '

Table 8.5 Predominant Characteristics from $\Delta q / q$ versus $q_{\text {cum }} / q$ Graphs

8.9.4 Comparison of Derivative Data between Fracture Types

The derivative of rate with respect to time is examined next. The rate derivative is often so noisy that it is useless in quantitative analysis. The derivatives of simulated rate data are no exception. However, qualitative comparisons between the various data can be made. Also an additional smoothing technique is introduced that seems to be useful. This technique involves not only using a smoothed derivative as introduced in Chapter 5 but utilizes the cumulative data instead of the rate data. Using cumulative data is itself a method of smoothing. And since cumulative production is the integral of rate data, taking the second derivative of the cumulative data appears to result in a better smoothed derivative of rate versus time. Figures 8.38 and 8.39 illustrate this concept. Notice the significant improvements in the derivative with the use of the second derivative of cumulative over the erratic nature of the simple smoothed rate derivative. This type of derivative will be used in the following analysis whenever it appears to offer a smoother pattern in the early time region. However the pure rate derivatives were always plotted for comparison in the analysis. The rate derivative analysis is followed by a comparison to the derivative of $\Delta q / q$ with respect to time. The derivative of $\Delta q / q$ with respect to time appears to offer some aid in better direct comparison with pressure derivative analysis.

Figure 8.38 First Derivative of Rate with respect to Time

Figure 8.39 Second Derivative of Cumulative with respect to Time

Figure 8.40 shows the rate derivative comparison of the Type 2 and Type 3 fracture models illustrating the effect of changes in the matrix permeability but constant low fracture to storage capacity ratio. Figure 8.41 shows the derivative plotted on a scale modified by time $\left(Q^{* *} t\right)$ to level the plot for analysis purposes Note that the depth of the minimum is slightly greater with the type2. Typically one expects the depth of the minimum to be the same when storage coefficient is identical so that compressibility factors must also be present. Also note that as $\lambda^{\prime}=k_{m} / k_{f}$ decreases (from Type 2 to Type 3), the minimum shifts to the right toward more time delay. The minimum delay is opposite on the ($\Delta \mathrm{q} / \mathrm{q})^{\prime}$ plot which is more consistent with pressure data. However the time delay is so small and happens at such an early time that it may not be useful in classifying the reservoir types.

Figure $8.40 Q^{"}$ versus Time-Effect of Change in k / k_{m}, Large Constant Matrix Storage

Figure $8.41 \mathbf{Q}^{\mathbf{*}} \boldsymbol{t}$ versus Time-Effect of Change in $\mathbf{k} / \mathbf{k}_{\mathrm{m}}$, Large Constant Matrix Storage

Figure $8.42(\Delta q / q)^{\text {i }}$ versus Time-Effect of Change in k / k_{m}, Large Constant Matrix Storage

Figures 8.43 . 8.44 and 8.45 show the effect of changing the relative storage capacity ω while the relative matrix to fracture permeability ratio remains constant. As expected the increase in ω (increasing fracture storage) shifts the minimum to a higher time delay, however the depth of the minimum also increases with increasing ω which is the opposite of that seen in pressure derivative data. Also note that the derivative minimum is time delayed and deeper and wider than either the Type 2 or Type 3.

Figure 8.43 Q" versus time- Effect of Changing the Relative Matrix to Fracture Storage

Figure 8.44 Q"*t versus time- Effect of Changing the Relative Matrix to Fracture Storage

Figure $8.45(\Delta q / q)^{\circ}$ versus time- Effect of Changing the Relative Matrix to Fracture Storage

Figure 8.46 shows the effect of the Type 4 case where the fracture has developed compartments or permeability barriers within the fracture. No effect was detected on the rate time plots of the previous sections. However there does appear to be an effect on the derivative curve. Note that the derivative contains many early spikes rather than one single spike. This may be useful in distinguishing this fracture type. The only difference in the two curves is the effect of placing several low permeability barriers in the fracture.

Figure 8.46 Effect of Permeability Compartments Inside Fracture-Q"*t Plot

In summary, the derivatives appear to have limited usefulness in quantitatively characterizing the fractures because of the early time data necessary to use the techniques and the erratic nature of the typical rate derivatives and even the cumulative production derivatives. As figure 8.47 indicates there are few distinguishing characteristics between the various fracture types except at very early times. However the depth and time delay to the minimums can be used in a qualitative sense to help characterize the fractures.

Figure 8.47 Comparison of Various Model Rate Derivatives - $\mathbf{q}^{\mathbf{\prime}} \mathbf{t}$

If the engineer is fortunate enough to have flow pressures then those can be used to apply more typical pressure derivative analysis for quantitative analysis of the reservoir.

Well test analysis employs techniques where Δp and $p^{\prime *} t$ are plotted so that the Δp vs. time, derivative early time unit slope, width, depth, and characteristic line intersections can yield values of fracture length, fracture permeability, well bore storage, as well as λ and $\omega .^{49}$ Very early time data are also needed in that analysis. Since neither pressure nor early time data are normally available, a plot of similar nature encompassing Δq and the rate derivative might at least yield some qualitative characteristics of the respective fracture types. Figure 8.48 is the plot of Δq and $q^{*} t$ versus time for the models exhibiting the $1 / \lambda^{\prime}=10,000$ permeability ratio case. Figure 8.49 is the plot of the

Figure 8.48 Plot of Δq and q '*t vs time-Models Exhibiting $\mathbf{1 0 , 0 0 0 ~ m d ~ F r a c t u r e ~ P e r m e a b i l i t y ~}$

 Permeability

An interesting feature of figure 8.49 is the way the Type \ln and Type 3 models converge at the end of the zero slope transition zone. The area between the two curves probably yields some measure of the fracture storage capacity since that is the only differing parameter. The derivative helps better locate the slope changes. Table 8.6 summarizes some of the distinguishing characteristics of the derivative plots.

Type	Characteristics	
1	\bulletMinimum is time delayed, longer duration and deeper than Types 2 and 3.	
2	\bullet	Early short duration rate derivative minimum. Shallow depth to minimum compared to Typel. Onset of minimum is very early
3	$\bullet \quad$Early short duration rate derivative minimum. Shallow depth to minimum compared to Typel but similar to Type 2. Onset of minimum is earliest and slightly before Type 2.	
4	\bulletNumerous early derivative spikes. Otherwise the same as Type 2.	

Table 8.6 Predominant Characteristics of the Derivative Plots

8.9.5 Comparison of q vs. $\left(t_{p}+\Delta t\right) / \Delta t$ Data between Fracture Types

Other distinguishing plots include the rate, q, and rate-change Δq versus $\left(t_{p}+\Delta t\right) / \Delta t$ plots. This t_{p} is not the same as that used in constant rate well testing but is rather an averaging type of function where t_{p} is the cumulative oil produced up to a certain time step divided by the current instantaneous producing rate. This quantity is then added to the cumulative producing time and divided by cumulative time. The physical significance, if any, of this plot is not known but it does seem to distinguish the various fracture types. The following graphs (figures 8.50-8.51) show the comparison.

Figure 8.50 Effect of Increase in Relative Matrix Storage Volume-Poor Matrix Permeability

Again the complete tabular output is in listed in appendix G. Table 8.7 describes the distinguishing characteristics for each type.

Figure $\mathbf{8 . 5 1}$ Effect of Change in Matrix Permeability in Case of Large Matrix Storage Capacity-q vs. $\left(t_{p}+\Delta t\right) / \Delta t$

The pressure and saturation surface diagrams in combination with the graphical and tabular data help illustrate what is happening throughout the reservoir model as a function of time and space at the inflection points. For instance, the tabular data help to identify the actual producing times for the $\left(t_{p}+\Delta t\right) / \Delta t$ minimums and reference to the pressure or saturation surface diagram helps interpret the physical significance of such points. This is also helpful in interpreting slope changes in the rate-time type plots. Compete surface diagrams of the pressure profiles are available from the author.

Model Type	Time Corresponding to $(\varsigma+\Delta t \Delta t)$ Minimam	Description
Type 1	Sharp Day 147	Tight (less than one q cycle) double minimum, double maximum curvature exhibiting a "snake" like appearance
Type 2	Day 576	Near linear elongated (3 q cycles) "bigdipper" pattern.
Type 3	Day 1308	Tight (less than one q log cycle) single minimum curvature "toboggan" pattern.
Type 4	Day 576	Same as Type 2

Table 8.7 Comparisons of (tp+dt)/dt Plots
This type of plot shows one of the most distinguishing signatures of the various fracture types as can be seen on figures 8.50 and 8.51. Similarly the Δq versus $\left(t_{p}+\Delta t\right) / \Delta t$ plots (figure 8.52) show some distinctive patterns that can be used in characterization.

Figure $8.52 \Delta q$ versus $\left(t_{p}+\Delta t\right) / \Delta t$

8.10 Discussion of the Surface Diagram Interpretation

The average grid block and saturation surface diagrams are helpful in identifying to various changes in the graphs that have been discussed. A few things that are illustrated by the surface diagrams that might not be obvious from general graphing techniques presented (figures 8.53 and 8.54). First of all the reservoir is sensing the pressure drop and saturation change throughout the fracture by day 18. Also the average reservoir pressure and saturation by grid block shows a pattern that is more elongated with type 1 and 3 than for type 2 and 4 where the matrix permeability support is better. All external boundaries are beginning to sense the pressure drop by day 125 for types 1 and 3 .

Figure 8.53 Surface Diagram of Average Pressure across Model Day 18

Figure 8.54 Surface Diagram of Oil Saturation across Model Day 18

8.11 Summary of Primary Diagnostic Indicators

The characteristic patterns of the various fracture types have been discussed in detail and summaries were presented in Tables 8.3-8.7. Although many more types of graphs were generated, as indicated in Table 8.2, the more diagnostic plots included rate-time. cumulative-time. $\Delta \mathrm{q} / \mathrm{q}$ vs. $\mathrm{q}_{\text {cum }} / \mathrm{q}, \mathrm{q}$ vs. $\left(\mathrm{t}_{\mathrm{p}}+\Delta \mathrm{t}\right) / \Delta \mathrm{t}$ plots, and various derivatives such as rate-time, cumulative-time, $\Delta \mathrm{q} / \mathrm{q}$-time, and $\Delta \mathrm{q}$-time plots. Table 8.8 summarizes some of the more distinctive points from the previous tables as well as some additional information from plots listed in Table 8.2 that were not discussed or presented. For a "quick-look" classification the $\left(t_{p}+\Delta t\right) / \Delta t$ plot gives a good indicator of general fracture type. More extensive experiments should be conducted to verify the general usefulness of this type of graph. Further experimentation with changes in well length down should also be pursued. Although initially it appeared that the Poston-Chen type curves could provide a framework for further rate decline analysis, after considerable work in duplicating and applying the curves it appeared that they were useful in only a limited qualitative sense. They do however allow better curve fitting of the late time "tail" section, which is characteristic of some dual porosity systems.

Type	Characteristics
!	- Modest initial rate but rate increasing and approaching type 2 as ω^{\prime} increases. - Rapid initial decline followed by relatively long transition period. - Semi-log and \log-log plots show four linear slope changes with steep early decline, a long zero slope transition, a long linear portion and a very late time low slope linear portion. The middle zero slope transition diminish as ω^{\prime} drops. - Cumulative versus time \log-log plot shows "s" curvature with ω " increasing and late time flanening but not as flat as type 2. - Early semi-linear \log-log slope with zero slope transition to later semi-linear shapes again. - The early log-log linear period remains as as $\omega^{\prime \prime}$ shrinks until it disappears as the model approaches type 3. - Double porosity offset parallel unit slope behavior is not present on $\log -\log$ dpq vs . qeum/q plot but unit slope late time is observed. If tangent drawn from begiming of ransition a double parallel slope can be created. - Cartesian 2 -linear slopes, intersecting at increasing $\Delta q / q$ as ω^{\prime} increases. - Approximate early half slope is observed on log-log plot. - Well-defined early time rate-time and rate-cumulative derivatrve minimum with "deep" minimum, time delayed and longer duration than type 2 and 3. - Poston-Chen fracture intensity \boldsymbol{y} term is low during middle-late time compared to type 2,3. - Poston-Chen storage compressibility term ω is fairly constant and higher than type 2 over time. - ($t_{p}+\Delta v / \Delta t$) shows tight (less than on q cycie) double minimum, double maximum curvature exhibiting a "snake" like appearance. - \quad Lq versus time log-log plot shows increased late time flattening from type 1 to type 3. - $\quad \leq q / q$ versus time log-log plot earty time deviation from linear seems to be an indicator of fracture storage volume.
2	- High initial rate - Very little earfy time character. Initial linear decline is short with very indistinct transition on log-log. Very modest early-middle stope change on semi-log plot only. - Low and prolonged subsequent decline rate compared to typel with a rapid rate decline at late time beginning later than type I but slope is greater and eventually crosses type I decline. - The cumulative-time plot is linear on log-log with very late time slope change to near zero slopes. - Double porosity offset parallel unit slope behavior is present on $\log -\log \Delta q / q$ vs. q cum $/ q$ plat but transition is not zero slope. - Cartesian early very short duration linear followed by prolonged linear siope. - Less well defined early time rate-time and rate-cumulative derivative with shallower minimum than type 1 . - Near linear elongated (3 q cycles) "big-dipper" patrern on ($\zeta_{p}+\Delta v / \Delta t$). - Poston-Chen fracture intensity term γ is high and appears to be more constant than type lexcept a very late time. - Poston-Chen storage compressibility term ω is generally lower than the type 1 or 3 . - The very early time type curve match is more "fedkovich" type than Poston-Chen fracture type. - \quad Iq versus time log-log plot shows increased late time flanening from type 1 to type 3.
3	- Low initial rates. - Similar early characteristics to type 2 but lower initial rates and longer period of middle linear behavior with slope similar to type 2 but at lower rates. - Very late time slope increase after the curve crosses the type 2 plot. - The cumulative-time plot shows and early time linear slope changing to a steeper prolonged linear shape on log-log until very late slope change. Curve converges to type 2 at late time. - Log-log early, very short duration semi-linear slope with change to prolonged linear middle-late time and shift to higher $\Delta q / q$ with decreasing λ°. - Double porosity offset paralled unit slope behavior is not present on $\log -\log \Delta p / q$ vs. $q_{\text {emm }} / q$ plot and unit slope late time is not observed but slope is close to unity. - Cartesian 2-linear slopes, intersecting at increasing $\Delta q / q$ as ω^{\prime} increases. - Poorty defined early time rate-time and rate-cumulative derivative minimum with erratic late time siope - Tight (less than one q log cycle) single minimum curvature "toboggan " pattern. - Poston-Chen fracture intensity term is high compared to type 1 and more consistent than type 2. - $\quad 1 q$ versus time $\log -\log$ plot shows increased late time flattening from type I to type 3.
4h	Same as Type 2 except derivative exhibits very "spiky" early nature

Table 8.8 Summary of Fracture Type Characteristics

Chapter 9

Summary and Conclusions

9.1 Summary

This research has resulted in several new contributions to the area of performance and decline curve analysis of both vertical and horizontal wells in anisotropic and fractured porous media. The important discoveries and future research ideas have been summarized by topic in the following sections.

Generalized Dimensionless Decline Curves

This area of research extends the previously developed dimensionless decline type curve concepts and techniques to more general cases of varying reservoir shapes and well locations. Fetkovich ${ }^{3}$ had previously derived dimensionless decline curves for single-phase radial systems with centrally located wells. He then combined these relationships with the empirical hyperbolic pseudo-steady state relationships of Arps, to formulate a combined dimensionless decline curve as previously shown in Chapter 5. This research derives the dimensionless decline rate and time relationships for the cases of more general reservoir geometry and well location. These relationships are then used to construct new type curves for various reservoir shapes and well locations for singlephase cases. The data are then tabulated and combined with the Arps depletion stems to form a more generalized dimensionless decline curve system. This is the only
publication that contains the complete set of tabulated dimensionless rate and time data for both infinite and bounded reservoir cases as well as the dimensionless decline rate and time data for the Fetkovich and new generalized type curves. The more generalized equations for calculation of transmissibility, permeability, reservoir area or radius and reserve estimation are also derived and presented for the first time in this research.

Chapter 5 figures show the effect of the more generalized dimensionless decline form as a shift in the single-phase pseudosteady state decline stem toward the origin for cases of increasing shape irregularity and wells closer to the boundaries. This effect manifests itself by an increasing deviation from the Fetkovich radial-well centered solution as the shape factor decreases. Without the use of such a system the user would choose the wrong depletion stem resulting in errors in the computation of reserves and permeability.

Solution Gas Reservoir Parameter Estimation

This research also introduces some novel approaches for estimating, from field production data, the simulation reservoir properties such as oil-water and gas-oil relative permeability, PVT properties, and capillary pressure in the absence of laboratory measurements. Appendix B and C contain the techniques and references for estimating all the reservoir properties needed for input to reservoir simulations. Of particular note are the techniques introduced to estimate flow rates in cases of two phase flow where a $\mathrm{k}_{\mathrm{r}} / \mu_{0} \mathrm{~B}_{\mathrm{o}}$ correlation as a function of grid block averaged pressure
and saturation is used to modify the single phase flow equation in cases above and below the bubble point in solution gas reservoirs. Experimental results show that these methods yield good approximations to simulated results. Also of note are the techniques for estimating relative permeability in cases of solution gas reservoirs.

Flow Rate Correction Factors in Cases of Horizontal Permeability Anisotropy

Extensive simulation experimentation confirms that corrections must be applied to traditional horizontal well inflow performance relationships in cases of horizontal permeability anisotropy. This research demonstrates that unless the reservoir is extremely large in comparison to the length of the horizontal well, deviation from permeability isotropy in the principal x and y directions will yield results that deviate from those predicted by commonly accepted geometric mean averaging. All analytical flow equations incorporate the geometric mean horizontal permeability concept and thus predict that if the geometric mean is constant, the flow rate will remain constant. As demonstrated in Chapter 6. extensive experiments demonstrate however that as the contrast in x and y permeability increases, while maintaining a constant geometric mean horizontal permeability, the simulated horizontal flow rates deviate increasingly from one another. With vertical wells however, the simulated flow rate remains constant no matter what the contrast in x and y permeability as long as the geometric mean permeability is invariant.

Graphical relationships are presented showing the effect of permeability anisotropy on flow rate as a function of dimensionless well length, grid block size and well to boundary ratios. The experiments also indicate that the deviance from isotropic cases increases above the bubble point pressure. This is an important observation that should lead the engineer to exercise caution when interpreting rate data.

Decomposition of x and y Directional Permeability

Chapter 7 introduces new techniques to estimate directional permeability contrasts from the decline characteristics of both horizontal and vertical wells that compete for drainage area. The techniques are validated with simulation data and an example from actual field data is introduced. The research shows both experimentally and mathematically that departures of cumulative production data trends from the early time trends of competing wells will indicate relative contrasts in directional permeability that is approximately related to the ratio of the square root of k_{y} / k_{x}. Dual and multi-well experiments illustrate this phenomenon. The concept is also expanded to horizontal wells and vertically fractured reservoirs using a method that makes use of the horizontal well decline type curves applied to cumulative-time production data.

Horizontal Well Decline Curve Analysis and Effective Wellbore Radius

This research also showed that the traditional pseudosteady state horizontal well equations that utilize skin factors to account for well length, dimensionless well length
and reservoir to well length can instead be expressed in terms of an effective wellbore radius. This concept not only allows the flow rate to be expressed in terms of one term that incorporates a number of skin factors but it is easier to use since the user does not need to use charts and graphs to determine skin factors. Therefore the generalized decline curves introduced in chapter 5 or Fetkovich radial type curves can be used directly with horizontal wells since the skin factors have been incorporated into the effective well bore radius. Theoretically then the horizontal and vertical well log-log plots should overlie one another in the pseudosteady state region just as Fetkovich theorized for vertically fractured wells. In other words they would have the same Arps " b " value but exhibit different r_{d} / r_{w} ($r_{c D}$, or the equivalent A / r^{2}) values and thus different $q_{D d}-t_{D d}$ match values. An example was introduced for isotropic conditions where the effect of the horizontal well was to shift the match to a lower $r_{e D}$ match value in the transient area thus resulting in the calculation of larger radius of drainage, r_{e}. It was found that this method did not work as well when the horizontal well length became very large in comparison to the reservoir size and the permeability field was anisotropic.

Fractured Reservoir Classifications

The simulated production rate decline characteristics of fractured reservoirs that are intersected by horizontal wells were studied through the use of simulation experiments. Tables and charts were produced that help classify each of four different fracture types through characteristic rate-cumulative-time decline patterns. Pressure data is purposely
ignored in an effort to utilize only data that would typically be available to the practicing engineer. Although many types of graphs were generated, as indicated in Table 8.2, the more diagnostic plots included rate-time, cumulative-time, $\Delta q / q$ vs. $q_{\text {cum }} / q, q$ vs. $\left(t_{p}+\Delta t\right) / \Delta t$ plots, and various derivatives such as rate-time, cumulativetime, $\Delta q / q$ - time, and Δq-time plots. These diagrams illustrate an important discovery that the ratio of the $\Delta \mathrm{q} / \mathrm{q}$ for the beginning of the transition zone yields an indicator of the relative storage capacity of the fracture system. Thus if one has a reference well. all other field well decline curves can be used as an indicator of relative fracture storage capacity. For a "quick-look" classification, the $\left(t_{p}+\Delta t\right) / \Delta t$ plot gives a good indicator of general fracture type. Poston and Chen's fractured reservoir type curves were plotted on the same graph as the Fetkovich type curves in an effort to classify fracture types. Though the Posten and Chen type curves proved less useful than anticipated the difference in the Fetkovich and Posten and Chen curves did provide some useful information.

9.2 Conclusions

1. The generalized decline curves confirm that the Fetkovich dimensionless decline type curves change significantly as the reservoir geometry and well location become more irregular.
2. The more generalized equations for calculation of transmissibility, permeability, reservoir area or radius and reserve estimation are also derived and presented for
the first time in this research which will result in more accurate parameter estimation in cases of non radial geometry.
3. All the required simulation PVT and relative permeability data can be calculated from production field data by the methods of Appendix B and C .
4. A two-phase flow approximation utilizing grid block averaged pressure and saturation has been developed to use with calibrating and validating simulation output in cases of solution gas reservoirs.
5. Graphical relationships showing the effect of permeability anisotropy on flow rate as a function of dimensionless well length, grid block size and well to boundary ratios are presented that will help better predict the horizontal flow rate in bounded and horizontally anisotropic reservoirs.
6. It is shown that the generalized dimensionless decline curves can be used with horizontal wells by introducing the equivalent horizontal well radius as long as the horizontal well length is not too long compared to the reservoir dimensions.
7. The research shows both experimentally and mathematically that departures of cumulative production data trends from the early time trends of competing wells will indicate relative contrasts in directional permeability that is approximately related to the ratio of the square root of $\mathrm{k}_{\mathrm{y}} / \mathrm{k}_{\mathrm{x}}$.
8. Fracture types can be classified and sometimes quantified by the use of certain plotting techniques and deviation from Fetkovich dimensionless type curve behavior.

9.3 Recommendations for Future Research

Although many new concepts have been introduced, there are still several areas that merit further investigation. First, the generalized decline formulation has not been incorporated into the Arps empirical hyperbolic stems since there is no simple mathematical formulation for the cases in which additional reservoir energy, besides the rock and fluid compressibility, is present. Presumably however a downward shift to the origin similar to that of the mathematically derived single-phase solution would occur. This could be explored in future research by the use of simulation experimentation and examination of the depletion stems in the case of various solution gas and water drive conditions for non-radial and non well centered situations. The departure of the dimensionless decline curves from the exponential single-phase solution should give relative permeability information and should be explored further. Secondly, future research should be conducted with other simulators to test the observation that as the contrast in X and y permeability increases, while maintaining a constant geometric mean horizontal permeability, the simulated horizontal flow rates deviate increasingly from one another. This has been observed in an extensive set of experiments but should be further investigated with other simulators. Thirdly, further research is needed in using the departure in the Arps depletion stems from the singlephase solution as a tool of estimating relative permeability and drive energy. Fourthly more research is needed in applying the Posten Chen-Fetkovich type curves for characterization of reservoirs. There is also a need for more research in extracting more quantitative information from the $\Delta q / q$ vs. $q_{\text {cum }} / q, q$ vs. $\left(t_{p}+\Delta t\right) / \Delta t$ plots.

NOMENCLATURE

A Well drainage area in acres
$\mathrm{A}^{\prime} \quad 0.75$ for circular drainage areas
0.738 for rectangular areas
$B_{0} \quad$ Oil formation volume factor
b Decline exponent(dimensionless) $b=0$ for exponential, $0<b<1$ for hyperbolic
$\mathrm{B}_{0} \quad$ Formation volume factor
c' Shape factor conversion constant $=1.386$
c_{t} Total compressibility
$\mathrm{c}_{\mathrm{f}} \quad$ Fracture compressibility
$\mathrm{c}_{\mathrm{m}} \quad$ Matrix compressibility
$D_{i} \quad$ Decline coefficient in days ${ }^{-1}$
$\mathrm{D}_{\mathrm{q}} \quad$ Near well turbulence factor
GOR Gas to oil ratio
h Reservoir thickness
IPR Inflow performance relationship
k Permeability, md
$\mathrm{k}_{\mathrm{v}} \quad$ Vertical permeability
$k_{h} \quad$ Horizontal permeability
$\mathrm{k}_{\mathrm{ro}} \quad$ Relative Permeability to Oil
$\mathrm{k}_{\mathrm{x}} \quad$ Permeability perpendicular to fractures(along well bore)
$\mathrm{k}_{\mathrm{y}} \quad$ Permeability along fractures(perpendicular to wellbore)
L Length of horizontal well
$L_{D} \quad$ Dimensionless well length
p_{D} Dimensionless pressure
$\mathrm{p}_{\mathrm{i}} \quad$ Initial reservoir pressure
$p_{\text {wf }}$ Well flowing pressure
PSS Pseudosteady state
q Oil production rate STB/day
q_{D} Dimensionless oil production rate
$q_{d D} \quad$ Decline Dimensionless oil rate
$q_{i} \quad$ Production rate at start of depletion STB/day
$r_{e} \quad$ Well drainage radius in feet
$r_{\text {eh }} \quad$ Horizontal well drainage radius
$r_{w} \quad$ Well radius in feet
$r_{w^{\prime}} \quad$ Effective well radius
S Saturation
$S_{\text {m }} \quad$ Mechanical skin factor, dimensionless
$\mathrm{s}_{\mathrm{f}} \quad-\ln \left[\mathrm{L} /\left(4 \mathrm{r}_{w}\right)\right]=$ negative skin factor of an infinite conductivity fully penetrating fracture of length L.
$\mathrm{S}_{\mathrm{CA}, \mathrm{h}}$ Shape related skin factor
$t \quad$ Time in hours
t_{D} Dimensionless time
$t_{\mathrm{da}} \quad$ Dimensionless time based on drainage area
$V_{p} \quad$ Pore Volume
$\mathrm{x}_{e} \mathrm{y}_{e}$ Half the drainage distance in the x and y direction
$\mathrm{x}_{\mathrm{w}}, \mathrm{y}_{\mathrm{w}}, \mathrm{z}_{\mathrm{w}}$ Distance of horizontal well center from drainage area boundaries in feet
$\mu \quad$ Viscosity
$\Delta \quad$ Change
$\lambda \quad$ Fluid transfer coefficient
$\rho_{w} \quad$ Water density
$p_{o} \quad$ Oil density
$\phi \quad$ Porosity
$\phi_{m} \quad$ Matrix Porosity
$\phi_{f} \quad$ Fracture Porosity
$\phi_{e} \quad$ Effective porosity
$\gamma \quad$ Poston-Chen Fracture Intensity
ω Storage Compressibility
ω Ratio of Matrix to Fracture Storage

REFERENCES

1. Arps, J. J.: "Analysis of Decline Curves", Petroleum Technology (September 1944), May 1944 TP 1758.
2. Arps, J.J. : "Analysis of Decline Curves," Petroleum Transactions, AIME, Vol. 160, 1945, 228-47.
3. Fetkovich, M..J.: "Decline Curve Analysis Using Type Curves," JPT, (June 1980). 1065-77.
4. Golan, M., Whitson, C.: Well Performance, $2^{\text {nd }}$ edition, Prentice Hall, Englewood Cliffs, NJ, (1991). (121)
5. Chang, M.M. et al, "User's Guide and Documentation Manual For Boastvhs for the PC", U.S. Department of Energy, (January 1992).
6. Craft, B.C., Hawkins, M., Terry, R.E.: Applied Petroleum Reservoir Engineering, $2^{\text {nd }}$ Edition, Prentice Hall, Englewood Cliffs, NJ (1991).
7. Evinger, H.H., Muskat, M.: "Calculation of Theoretical Productivity Factor" JPT (September 1941). SPE TP 1352.
8. Vogel, J.V.: "Inflow Performance Relationships for Solution Gas Drive Wells", JPT, (June 1968) 83-92.
9. Tracy, G.W.: "Simplified Form of the Material Balance Equation," Trans. AIME (1955), 204.243
10. Tarner, J.: "How Different Size Gas Caps and Pressure Maintenance Affect Amount of Recoverable Oil," Oil Weekly (June 12, 1944), 32.
11. Tsarevich, K.A.: "Calculation of the Flow Rates for the Center Well in a Circular Reservoir under Elastic Conditions," Problems in Reservoir Hydrodynamics, Part 1, Leningrad (1966) 9-34.
12. Cline, S.B.: "Reservoir Simulation as a Tool For Modifying Geological and Well Log Interpretations - A Fractured Pennsylvanian Sandstone Field Study", MS Thesis, University of Oklahoma, (1993).
13. Willhite, G. P: Waterflooding, SPE, Richardson, TX (1986)
14. Calhoun. J.C.: Fundamentals of Reservoir Engineering, University of Oklahoma Press, (1953)
15. Mattax, C.C., Dalton, D.L.: Reservoir Simulation, Monograph Series, SPE, Richardson, TX (1990) 13, 81.
16. Bass, D.M.: "Properties of Reservoir Rocks" Petroleum Engineering Handbook, SPE Richardson, TX (1992), 26-33.
17. Van Everdingen, A.F., Hurst, W.: "The Application of the Laplace Transformation to Flow Problems In Reservoirs", Petroleum Transactions, AIME, (December, 1949), TP 2732.
18. Van Everdingen, A.F.: "The Skin Effect and Its Influence on the Productive Capacity of a Well", Petroleum Transactions, AIME. Vol 198, (1953) TP 3581.
19. Stehfest, H.: "Algorithm 386: Numerical Inversion of Laplace Transforms," Communications of the ACM, 1970, 13, No. 1, 47-49.
20. Lee, J.: Well Testing, SPE Textbook Series, Dallas, TX (1982).
21. Matthews, C..S., Russell, D.G.: Pressure Buildup and Flow Tests in Wells, Monogrph Series, SPE Dallas TX (1967), 1.
22. Earlougher, R.C.: Advances in Well Test Analysis, SPE Mongraph Series, SPE, Dallas TX (1977).
23. Joshi, S.D.: Horizontal Well Technology, PennWell Publishing Co., Tulsa (1991) 34, 62-65. 292.
24. Tiab, D.: "Direct Type Curve Synthesis of Pressure Transient Tests", SPE 18992, SPE Rocky Mountain Symposium. Denver, CO (March 6-8, 1989).
25. Tiab, D., Puthigai, S.K. "Pressure Derivative Type Curves for Vertically Fractured Wells", SPE Formation Evaluation, (March 1988), 156-158.
26. Tiab, D.: "Analysis of Pressure and Pressure Derivative without Type Curve Matching-Vertically Fractured Wells in Closed Systems, SPE 26138, SPE meeting Anchorage Alaska, (May 1993).
27. Mutalik, P.N., Godbole, S.P. and Joshi, S.D.: "Effect of Drainage Area Shapes on Horizontal Well Productivity", SPE paper, 18301, SPE Annual Conference Houston TX, (October 1988).
28. Kuchuk, F.J., Goode. P.A., et al: "Pressure Transient Analysis and Inflow Performance for Horizontal Wells", SPE paper 18300 Houston, TX (October 1988).
29. Babu, D.K., Odeh, A.S.: "Productivity of a Horizontal Well", SPE paper 18298, Houston, (October 1988) 373-382.
30. Joshi. S.D.: "Augmentation of Well Productivity With Slant and Horizontal Wells". JPT, (June 1988).
31. Slichter, C.S.: "Theoretical Investigation of the Motion of Ground Water," $19^{\text {th }}$ annual report, U.S. Geological Survey (1897-1898) 301-84.
32. Joshi, S.D. "A Review of Horizontal Well and Drainhole Technology", Paper SPE 16868 SPE Annual Conference, Dallas 1987.
33. Joshi, S.D., Mutalik, P.N.: "Decline Curve Analysis Predicts Oil Recovery from Horizontal Wells". Oil and Gas Journal. (Sept. 7 ${ }^{\text {th }}$, 1992).
34. Lock, C.D. and Sawyer, W.K. "Constant Pressure Injection in a Fractured Reservoir. Paper SPE 5594. SPE Annual Meeting Dallas, (Sept 28 1975).
35. Gringarten, A.: "Interpretation of Tests in Fissured and Multilayered Reservoirs With Double Porosity Behavior: Theory and Practice", SPE 10044, JPT April, 1984 549564.
36. Camacho, R.G., Raghavan, R.: "Some Theoretical Results Useful in Analyzing Well Performance Under Solution Gas Drive". SPE Formation Evaluation, (June 1991). 190-191.
37. Camacho, R: "Constant Pressure Production in Solution Gas Drive Reservoirs: Transient Flow". SPE Formation Evaluation, (June 1991), 199-208.
38. Fetkovich. M.J.: "The Isochronal Testing of Oil Wells", SPE 4529. SPE Preprint. 1973.
39. Ozkan, E., Raghavan R.: "Horizontal Well Pressure Analysis", SPE Formation Evaluation, (December 1989), 567-575.
40. Russell, D.G.:"Transient Pressure Behavior in Vertically Fractured Reservoirs", JPT, Petroleum Transactions, October 1964, 1159-1170.
41. Mukherjee, H, Economides, M.:"A Parametric Comparison of Horizontal and Vertical Well Performance", SPE Formation Evaluation, (June 1991), 209-215.
42. Wiggins, M. "Generalized Inflow Performance Relationships for Three Phase Flow", SPE Reservoir Engineering, (August 1994), 181-182.
43. Poston, S.W., Chen, H.Y.: "Fitting Type Curves to Austin Chalk Wells", SPE paper 21653, presented SPE meeting, Oklahoma City (April 7-9. 1991) 227-235.
44. Chen, H.Y., Raghavan, R.: "An Application of the Product Solution Principle for Instantaneous Source and Green's Functions", SPE Formation Evaluation, (June 1991).
45. Poston, S.W., Chen, H.Y, Raghavan, R: " Mathematical Development of Austin Chalk Type Curves" SPE 23527, SPE preprint 1991.
46. Cline, S.B., Tiab, D.: "Quantification of the Relative Importance of Fracture and Matrix Flow Units to Reservoir Storage Capacity and Transmissibility", SPE 27716. Permian Basin Oil and Gas Recovery Conference, (March 1994) 775-790.
47. Da Prat, G., Cinco, L, Ramey, H.J.: :Decline Curve Analysis Using Type Curves for Two-Porosity Systems", SPE 9292, SPE Annual Meeting, Dallas TX (September 1980).
48. Agarwal, R.G., Gardner, D.C., et al: "Analyzing Well Production Data Using Combined-Type-Curve and Decline Curve Analysis Concepts", SPE Reservoir Evaluation and Engineering, (October 1999), 478-486.
49. Engler, T.W.: "Interpretation of Pressure Tests in Naturally Fractured Reservoirs by the Direct Synthesis Technique", PhD Dissertation, University of Oklahoma, (1995)

Appendix A

Derivation of the Saturated Analytic Approximation Equations and Relationship to IPR Relationships

As summarized in Chapter 3, for undersaturated conditions, the combined variation of viscosity and formation volume factor decreases approximately linearly with pressure as:

$$
q=\frac{0.007078 k_{h} h}{\left(\ln \frac{r_{e}}{r_{w}}-0.738\right)} \int \frac{d p}{\mu_{o} B_{o}}
$$

The integral is evaluated from $\mathrm{P}_{\text {wf }}$ to P_{c} (the pressure at the external boundary). Since $1 / \mu_{0} B_{0}$ is a straight line. the area is a trapezoid, so the integral can be represented by:

$$
\begin{equation*}
\int \frac{d p}{\mu_{o} B_{o}}=\frac{P_{e}-P_{w f}}{\left(\mu_{o} B_{o}\right)_{P_{g}}} \tag{2}
\end{equation*}
$$

Where,

$$
\frac{1}{\left(\mu_{o} B_{o}\right)_{P_{R}}}
$$

is the value at an average pressure $\mathrm{P}_{\mathrm{R}}=\left(\mathrm{P}_{\mathrm{e}}+\mathrm{P}_{\mathrm{wf}}\right) / 2$. The resulting inflow equation, at average reservoir pressure for pseudosteady state conditions becomes:

$$
q=\frac{0.007078 k_{h} h\left(\overline{P_{R}}-P_{w f}\right)}{\left(\mu_{o} B_{o}\right)_{P_{R}}\left(\ln \frac{r_{e}}{r_{w}}-0.738\right)}
$$

Golan ${ }^{4}(166)$ and Muskat et al ${ }^{7}$ note that below the bubble point, (i.e. saturated reservoir conditions) equation 3 would become (neglecting skin and turbulence effects):

$$
q=\frac{0.007078 h k_{h}}{\left(\ln \frac{r_{e}}{r_{w}}-0.738\right)} \int \frac{k_{r o}}{\mu_{o} B_{o}} d p
$$

The integral is evaluated from P_{wf} to $\mathrm{P}_{\text {Rave }}$.

Evinger and Muskat ${ }^{7}(1942)$ and later Vogel 8 et al (1976) noted that the pressure function could be accurately represented versus pressure by a straight line ranging from $k_{r 0} / \mu_{0} B_{0}$ at reservoir pressure (up to the bubble point) to the origin. (Fig A-1) However, if this is the case, there is no need to evaluate the integral this way. If the straight-line assumption is valid, the problem reduces to expressing the area under the trapezoid situation as shown below.

Figure A-1 Mobility Function versus Pressure

The area can be expressed as the sum of a triangle and rectangle:

$$
\begin{aligned}
& A=(\Delta P) f\left(p_{1}\right)+0.5(\Delta P)\left(f\left(p_{2}\right) f\left(p_{1}\right)\right) \\
& A=(\Delta P) f\left(p_{1}\right)+0.5(\Delta P) f\left(p_{2}\right)-0.5(\Delta P) f\left(p_{1}\right) \\
& A=0.5(\Delta P)\left(f\left(p_{1}\right)+f\left(p_{2}\right)\right) \\
& A=\Delta P\left(f\left(p_{1}\right)+f\left(p_{2}\right)\right) / 2 \\
& \text { Or substituting for the pressure functions: }
\end{aligned}
$$

$$
\text { Area }=\Delta P\left(\frac{k_{r o}}{\mu_{0} B_{o}}\right)_{a v e}
$$

The value of $\left(k_{r o} / \mu_{0} B_{0}\right)$ at any pressure can be obtained by calculating the slope of the line below the bubble point and multiplying by the pressure at the desired point.

Oil flow under saturated conditions can then be described above and below the bubble point if we substitute $\left(k_{r 0} / \mu_{0} B_{o}\right)_{\text {ave }}$ evaluated at average reservoir pressure $P_{R}-P_{w f}$ or simply P_{R} if flowing bottom hole pressure is low.

$$
q=\frac{0.007078 h_{k_{h}}}{\left(\ln \frac{r_{e}}{r_{w}}-0.738\right)}\left[\left(\overline{P_{R}}-P_{w j}\right)\left[\frac{k_{r o}}{\left(\mu_{o} B_{o}\right)}\right]\right]_{P_{\text {aves }_{w}}}
$$

or more generally:

$$
q_{o}=J\left(P_{R}-P_{w j}\right)
$$

Where J incorporates all of the terms in the above equation except the pressure differential so that:

$$
\begin{equation*}
J=\frac{0.007078 h_{k_{h}}}{\left(\ln \frac{r_{e}}{r_{w}}-0.738\right)}\left[\frac{k_{r_{o}}}{\left(\mu_{o} B_{o}\right)_{\text {ave }}}\right] \tag{A6}
\end{equation*}
$$

Therefore since we know the mobility as a function of pressure and saturation that is input to simulators we can use the same function to analytically check against simulation output. Actually it seems to me that K_{ro} should be computed at the average oil saturation at any given average pressure situation rather than at the average pressure as noted in Muskat'. Muskat never mentions this in his paper but perhaps the integral of $\mathrm{K}_{\text {ro }}$ should not be from $P_{w f}$ to P_{e} but from $S_{o i}$ to $S_{o c}$ since $K_{r o}$ is only indirectly related to pressure through the saturation function.

Now the above expression can be represented by the equivalent IPR depletion expression in terms of a backpressure constant C as follows:

Equation 4 can be written as:

$$
\begin{equation*}
q_{o}=C \int_{p_{-1}}^{p_{R}} \frac{k_{r o}}{\mu_{0} B_{o}} d p \tag{A7}
\end{equation*}
$$

Or as previously shown:

$$
q_{0}=C^{\prime} \text { Area Under Curve }
$$

Where C° is given as:

$$
C^{\prime}=\frac{0.007078 h k_{h}}{\left(\ln \frac{r_{e}}{r_{w}}-0.738\right)}
$$

Letting ($k_{r 0} / \mu_{0} B_{0}$) be denoted by $M_{P R}$ and $M_{\text {Pwf }}$ for the respective pressures, the area under the curve is represented by the relationship:

$$
\begin{gathered}
\text { Area }=\frac{1}{2}\left[\left(M_{P R}+\frac{M_{P R}}{P_{R}} P_{w j}\right)\left(P_{R}-P_{w f}\right)\right] \\
\text { Area }=\frac{1}{2}\left[\left(\frac{M_{P R}}{P_{R}} P_{R}+\frac{M_{P R} P_{w f} P_{R}}{P_{R}^{2}}\right)\left(P_{R}-P_{w f}\right)\right] \\
\text { Area }=\frac{M_{P R}}{2 P_{R}}\left(P_{R}+P_{w f}\right)\left(P_{R}-P_{w f}\right)
\end{gathered}
$$

Substituting this expression into the rate equation yields:

$$
\begin{equation*}
q_{0}=\frac{C^{*} M_{P R}}{2 P_{R}}\left(P_{R}^{2}-P_{w f}^{2}\right) \tag{Al1}
\end{equation*}
$$

Where C^{\prime} was previously defined. Combining the first terms and calling them C results in the equivalent to the pressure squared IPR relation:

$$
q_{o}=C\left(P_{R}^{2}-P_{w f}^{2}\right)
$$

Where C is defined below the bubble point as:

$$
C=\frac{k h}{141.2 \mu_{0} B_{0}} \frac{1}{2 P_{R}} M_{P R}=\frac{k h}{141.2 \mu_{0} B_{0}} \frac{1}{2 P_{R}} \int_{P_{0,}}^{P_{R}} \frac{k_{r o}}{\mu_{0} B_{o}} d p
$$

The addition of a turbulence term $\mathrm{Dq} \mathrm{q}_{0}$, the denominator of C and substitution into equation X . solving for q yields a back pressure equation with exponent n .

$$
q_{o}=C\left(P_{R}^{2}-P_{w f}^{2}\right)^{n}
$$

Where C is the backpressure constant approximated by:

$$
\begin{equation*}
C=\left[\frac{k h}{141.2} \frac{1}{2 P_{R}}\left(\frac{k_{r 0}}{\mu_{0} B_{0}}\right)\right]^{n} \tag{A14}
\end{equation*}
$$

For pseudosteady state, excluding damage and turbulence factors, the backpressure constant C varies only because of depletion and the resulting change in average $\left(\mathrm{k}_{\mathrm{r}} / \mu_{0} \mathrm{~B}_{0}\right)_{\text {ave. }}$ And as shown previously, these properties are evaluated at the average reservoir pressure. Plotting the well test data as q_{o} vs. ΔP^{2} on \log-log graphs determines the coefficient and the exponent of the backpressure equation.

This relationship can be useful in understanding the decline curves and relating Arps empirical decline curves with the exponential decline shown by Fetkovich. For instance the variation in the decline from the Fetkovich exponential decline is expressed by a "b" factor. The primary deviation is a result of the variation of $\mathrm{k}_{\mathrm{ro}} / \mu_{0} \mathrm{~B}_{0}$ with declining reservoir pressure under pseudosteady state conditions.

It is shown in chapter 4 that the rate is expressed by Arps ${ }^{1}$ as:

$$
\begin{equation*}
q=\frac{q_{1}}{\left(l+b D_{1}\right)^{\frac{l}{b}}} \tag{A15}
\end{equation*}
$$

or defined in dimensionless decline parameters:

$$
\begin{equation*}
q_{d D}=\frac{q_{t}}{q_{1}}=\left[1+b D t_{d D}\right]^{\frac{1}{b}} \tag{A16}
\end{equation*}
$$

The decline D is assumed as unity in the literature. Exponential decline where $b=0$ is the equivalent of the Fetkovich ${ }^{38,42}$ derivation is expressed in Arp's symbology as:

$$
q_{d D}=e^{-t_{d d}}
$$

Now applying the definition of t_{dD} :

$$
q_{d D}=\left[1+b \frac{0.0063 k t}{\frac{1}{2} \phi \mu c r_{w}^{2}\left(\left(\frac{r_{e}}{r_{w}}\right)^{2}-1\right)\left(\ln \frac{r_{e}}{r_{w}}-\frac{1}{2}\right)}\right]^{\frac{1}{6}}
$$

Appendix C will illustrate methods of using these IPR relationships in conjunction with the type curve matching to extract relative permeability data from the rate-time production data.

APPENDIX B

Program For Estimating Reservoir PVT Data

The following program, OILPROP, was written in Pascal 3.0. All the user must know is the following information: Reservoir temperature in degrees F , oil gravity [deg API], gas gravity [air=1.0], initial reservoir pressure [psia], and either the bubble point pressure [psia] or the initial solution gas-oil ratio (RSOI[scf/stb]). The program will then determine the complete surie of PVT oil and gas properties: solution gas to oil ratio (RSO[scf/stb]), oil formation volume factor (Bo[bbl/stb]), and oil phase viscosity for oil ($\mathrm{m}_{0}[\mathrm{cp}]$). If the pressure is below the bubble point then the program will also compute the following gas properties: the gas deviation factor Z . the gas formation volume factor $(\mathrm{Bg}[\mathrm{bbl} / \mathrm{scf}])$ and the gas phase viscosity ($\mathrm{m}_{\mathrm{g}}[\mathrm{cp}]$). The user may specify the beginning and ending pressures to evaluate and any number of equally spaced pressures in between.

This program utilizes equations for oil and gas properties that can be found in Craft. Hawkins and Terry ${ }^{6}$.

The program tirst prompts the user for the input data. The program then proceeds according to the following pseudo-code flow chart:

WHILE PRESSURE >= MINIMUM PRESSURE SPECIFIED DO BEGIN
 IF BUBBLE POINT PRESSURE IS GIVEN THEN CALCULATE RSO
 ELSE

USE RSOI TO CALCULATE BUBBLE POINT PRESSURE CALCULATE RSO

IF PRESSURE > BUBBLE POINT PRESSURE THEN BEGIN

RSO $=$ RSOB
CALC. OIL VIS. ABOVE BUBBLE
END
IF PRESSURE<=BUBBLE POINT THEN BEGIN

CALC. PSEUDO CRITICAL PROPS
CALC. THE Z FACTOR
CALC. GAS FORM. VOLUME FACTOR
CALC. THE GAS VISCOSITY
CALC. THE OIL VISCOSITY
END
CALCULATE THE OIL FORMATION VOLUME FACTOR
PRINT RESULTS
REPEAT PROCESS UNTIL ALL PRESSURE POINTS ARE EVALUATED
END

RSO is calculated by the following equation, 1.26, from Craft Hawkins and Terry ${ }^{6}$.

$$
R_{s o}=\gamma_{g}\left(\frac{P}{18(10)^{Y G}}\right)^{1.20+4}(s c f / s t b)
$$

$$
\begin{gathered}
\gamma_{\mathrm{g}}=\text { gas gravity } \\
\text { YG }=0.0091 \mathrm{~T}-0.0125 \rho_{0 \mathrm{API}} \\
\rho_{0}=\text { API oil gravity } \\
\mathrm{T}=\text { degrees Fahrenheit } \\
\mathrm{P}=\text { Pressure psia }
\end{gathered}
$$

Applicable Range

$$
\begin{gathered}
130<\mathrm{P}_{\text {bubble }}(\mathrm{psia})<7000 \\
100<\mathrm{T}^{\circ} \mathrm{F}<258 \\
20<\mathrm{GOR}(\mathrm{scf} / \text { stb })<1425 \\
16.5<\rho_{0}{ }^{\circ} \mathrm{API}<63.8 \\
0.59<\gamma_{\mathrm{B}}<0.95 \\
1.024<\text { Bo }(\mathrm{bbl} / \mathrm{stb})<2.05
\end{gathered}
$$

When RSOI is known but the bubble point pressure is unknown then the above equation is solved for the bubble point pressure.

The following equations are used to determine the oil viscosity below and above the bubble point pressure respectively.

1) $P<=P_{b}$

$$
A \mu_{o d}^{B}(c p)
$$

B2

$$
A=10.75\left(R_{s 0}+100\right)^{-0.515}
$$

$$
B=5.44\left(R_{\mathrm{so}}+150\right)^{-0.338}
$$

B4

$$
\log \left(\log \left(\mu_{o d}+1\right)\right)=1.8653-0.02508 \rho_{o A P 1}-0.5644 \log (T)
$$

Applicable Range

$$
59<T^{\circ} \mathrm{F}<176
$$

$$
-58<\mathrm{T}_{\text {pour }}{ }^{\circ} \mathrm{F}<59
$$

$$
5.0<\rho_{0} \mathrm{API}<58
$$

2) $\mathbf{P}>\mathbf{P}_{b}$

$$
\mu_{o}=\mu_{o b}\left(\frac{P}{P_{b}}\right)^{m}(c p)
$$

$$
\begin{gathered}
\mathrm{m}=2.6 \mathrm{P}^{(1.187)} \exp \left(-11.513-8.98\left(10^{-6}\right) \mathrm{P}\right) \\
\mu_{\mathrm{ob}}=\mu_{0} \text { at } \mathrm{P}_{\text {bubble }}
\end{gathered}
$$

Applicable Range

$$
126<\text { P psig }<9500
$$

$$
0.117<\mu_{0}<148
$$

$$
9.3<\text { GOR scf/stb < } 2199
$$

$$
15.3<\rho_{0} \mathrm{API}<59.5
$$

$$
0.511<\gamma_{\mathrm{g}}<1.351
$$

The Z factor is calculated using the Abou Kassem equation, (equation 1.10 Craft and Hawkins ${ }^{6}$). My program uses the Newton-Raphson method to find the root of that equation which provides the Z value. This is an iterative process that also requires the derivative of the equation. The user can specify the iteration stopping criteria and the maximum number of iterations. The explanation of the terms in the below listed Abou Kassem equation can be found in the program listing.

$$
Z=1+C_{1}\left(T_{p r}\right) \rho_{r}+C_{2}\left(T_{p r}\right) \rho_{r}^{2}-C_{3}\left(T_{p r}\right) \rho_{r}^{5}+C_{+}\left(\rho_{r}, T_{p r}\right) \quad \mathbf{B 8}
$$

Applicable range

$$
0.2<P_{\mathrm{pr}}<30
$$

$$
1.0<\mathrm{T}_{\mathrm{pr}}<3.0 \text { and } \mathrm{P}_{\mathrm{pr}}<1.0 \text { with } 0.7<\mathrm{T}_{\mathrm{pr}}<1.0
$$

$$
\text { poor results if } \mathrm{T}_{\mathrm{pr}}=1.0 \text { and } \mathrm{P}_{\mathrm{pr}}>1.0
$$

Once Z is calculated, the gas formation volume factor is found from the following equation:

$$
B_{\mathrm{g}}=0.00504\left(\frac{Z T}{P}\right)(\mathrm{bbls} / \mathrm{scf})
$$

$\mathrm{Z}=$ gas deviation factor

$$
\mathrm{T}={ }^{\circ} \text { Rankine }
$$

$\mathrm{P}=$ pressure psia

The gas viscosity is determined from the following relation:

$$
\mu_{g}=\left(10^{-}\right) \operatorname{Kexp}\left(X \rho^{r}\right)
$$ B10

$$
\begin{equation*}
\rho=1.4935(10)^{-3} \frac{P M W}{Z T} \tag{Bl1}
\end{equation*}
$$

$$
K=\frac{9.4+0.02 M W(T)^{1.5}}{209+19 M W+T}
$$

$$
\begin{gathered}
X=3.5+\frac{986}{T}+0.01 \mathrm{MW} \\
\mathrm{Y}=2.4-0.2 \mathrm{X} \\
\mathrm{P}=\text { Pressure } \\
\mathrm{T}=\text { Temperature }{ }^{\circ} \mathrm{R} \\
\mathrm{MW}=\text { molecular weight }
\end{gathered}
$$

B13

Applicable Range

$$
\begin{gathered}
100<\mathrm{P} \text { psia }<5000 \\
100<\mathrm{T}^{\circ} \mathrm{F}<340 \\
0.9<\mathrm{CO}_{2} \% \text { by mole }<3.2
\end{gathered}
$$

Z must already be corrected for contaminants

The oil formation volume factor is determined from the following equations: 1) $\mathbf{P}<\mathbf{P b}$

$$
\begin{align*}
& B_{o}=0.972+0.000147(F)^{1.175} \\
& F=R_{s 0}\left(\frac{\mu_{g}}{\mu_{o}}\right)^{0.5}+1.25 T
\end{align*}
$$

$$
\gamma_{0}=\frac{141.5}{131.5+\rho_{0 A P I}}
$$

2) $\mathrm{P}>\mathrm{Pb}$

$$
B_{o}=B_{o b} \exp \left(C_{o}\left(P_{b}-P\right)\right)
$$

$$
\mathrm{B}_{\mathrm{ob}}=\mathrm{B}_{0} \text { at } \mathrm{P}_{\text {bubble }}
$$

$$
C_{o}=\frac{5 R_{s o b}+17.2 T-1180 \gamma_{\mathrm{g}}-12.61 \rho_{0.4 P I}-1433}{P\left(10^{5}\right)}
$$

Applicable Range

$$
126<\text { P psig < } 9500
$$

$1.006<\mathrm{Bo} \mathrm{bbV} /$ stb <2.226
$9.3<$ GOR scf/stb < 2199
$15.3<\rho_{0 \mathrm{API}}<59.5$
$0.511<\gamma_{\mathrm{g}}<1.351$

The program was tested using the data provided in problem 1.20 in Craft, Hawkins and Terry ${ }^{\circ}$.

That input data was as follows:
Bubble Point Pressure $=\mathbf{2 8 0 0}$
Gas Gravity $=0.8$
Oil Gravity $=30 \mathrm{API}$
Temperature $=165^{\circ} \mathrm{F}$

The test was run assuming and initial reservoir pressure of 3200 psia and the minimum pressure of interest was 800 psia. The results are included in this report. The program was also tested by substituting the initial solution gas to oil ratio for the bubble point pressure. Excellent agreement was obtained.

The program is simple to use and offers a quick method to accurately calculate reservoir oil and gas properties at a wide variety of application ranges of pressure and temperature. These results may aid the user in understanding and evaluating various reservoir characteristics.

Table B-1 Sample PVT Program Output

PROGRAM OLLPROP(INPUT.OUTPUT);

\{\$I c:|pasiscottliNFO.TXT\}
VAR
СН, СНО:СHAR;
DEVICE:TEXT;
TRES,GASGRAV,PRESS,PBUB,PMIN,PMAX,ROOT, PPR.TPR.PPC,TPC.STOPER.C1,C2,C3,C4, BGI,RHO,MG,OILGRAV.BOB,BO,RSO,RSOI.RSOB,APIGRAV, ZN,OILVISC,MEWLIVE.MEWABOVE,MEWOBUB:REAL; ITERMAX:INTEGER:
(*ROOT is the first root estimate, STOPER is the iteration stopping criteria expressed as \% error, ITERMAX is the max \# of iterations*)

\{\$I c:\pasiscottlWHICHONE.PAS\}

PROCEDURE READATA:
(*This procedure prompts the user for the input data*)
BEGIN
WRITELN('INPUT RESERVOIR TEMP IN DEGREES F:');
READLN(TRES);
WRITELN(TNPUT GAS GRAVITY:'):
READLN(GASGRAV);
WRITELN('RESERVOIR PRESSURE:');
READLN(PRESS);
WRITELN('You may enter either Bubble Point pressure or solution gas ratio');
WRITELN('If you wish to enter bubble point pressure then type Y');
WRITELN('If not type N but you will then have to enter RSOI in the next step');
READLN(CHO);
IF $\left(\mathrm{CHO}={ }^{\prime} \mathrm{y} \mathrm{y}^{\prime}\right)$ OR $\left(\mathrm{CHO}={ }^{\prime} \mathrm{Y}\right.$ ') THEN
BEGIN
WRITELN('BUBBLE POINT PRESSURE=');
READLN(PBUB);
END
ELSE
BEGIN
WRITELN('RSOI=');
READLN(RSOI);
END;

WRITELN(TNPUT OILGRAVITY IN API UNITS');

```
    READLN(APIGRAV);
    WRITELN('MAX PRESSURE TO EVALUATE');
    READLN(PMAX);
    WRITELN('MIN PRESSURE TO EVALUATE';
    READLN(PMIN);
    WRITELN('NUMBER OF POINTS TO EVALUATE );
    READLN(N);
END;
```



```
PROCEDURE READATAZ;
(*this procedure reads in the Z factor estimate.stopper and max iterations*)
BEGIN
    WRITELN('SPECIFY THE INITIAL Z VALUE GUESS:');
    READLN(ROOT);
    WRITELN('SPECIFY THE % STOPPING CRITERIA FOR NEWTON
RAPHSON:';
    READLN(STOPER);
    WRITELN('SPECIFY THE MAXIMUM NUMBER OF ITERATIONS:';
    READLN(ITERMAX);
END;(*of readata*)
```


PROCEDURE WRITEDATA:
(*this procedure writes the input data to the printer or screen*)
BEGIN
WRITELN(DEVICE.THE INPUT DATA IS LISTED BELOW');
WRITELN(DEVICE);
WRITELN(DEVICE,THE FIRST Z ESTIMATE IS: ',ROOT:10:4);
WRITELN(DEVICE,THE \% STOPPING CRITERIA IS: 'STOPER:10:4);
WRITELN(DEVICE,THE MAX. \# ITERATIONS FOR Z IS: 'ITERMAX:10);
WRITELN(DEVICE,THE RESERVOIR PRESSURE (psia)IS ',PRESS:10:2);
WRITELN(DEVICE,THE RESERVOIR TEMPERATURE IS (DEG F)',TRES:10:2);
WRITELN(DEVICE,THE GAS GRAVITY IS ',GASGRAV:10:4);
WRITELN(DEVICE,THE API OIL GRAVITY IS ',APIGRAV:10:4);
IF ($\mathrm{CHO}=$ ' Y ') OR ($\mathrm{CHO}=$ ' y^{\prime}) THEN
WRITELN(DEVICE,THE BUBBLE POINT PRESSURE(psia) IS ',PBUB:10:2)
ELSE
WRITELN(DEVICE,'SOLUTION GAS RATIO (SCF/STB)RSOI IS ',RSOI:10:4);
WRITELN(DEVICE);
WRITELN(DEVICE,'***IF ZEROS APPEAR IN THE FOLLOWING TABLE IT MEANS***';

WRITELN(DEVICE,'***THAT THE PARAMETERS DO NOT APPLY AT THOSE ***');

FUNCTION DR(TRY:REAL):REAL;
(*This function evaluates Rho sub r in the Abou-Kassem equation*) BEGIN

DR: $=0.27 *$ PPR/(TRY*TPR);
END:

PROCEDURE PSEUDOCRITICAL:

(*This procedure calculates the pseudocritical values for use in the calculation of the Z factor*)
BEGIN
PPC:=756.8-131.0*GASGRAV-3.6*GASGRAV*GASGRAV:
TPC:=169.2+349.5*GASGRAV-74*GASGRAV*GASGRAV:
PPR:=PRESS/PPC;
TPR: $=(460+$ TRES $) / T P C$;
END;

PROCEDURE CONSTANTS:
(* The procedure calculates some of the terms that are used in the Abou-Kassem equation evaluated in function funcvalue*)
BEGIN
$\mathrm{Cl}:=0.3265-1.07 /$ TPR-(0.5339/(EXP(3*LN(TPR))) $)+$ (0.01569/(EXP(4*LN(TPR))))(0.05165/(EXP(5*LN(TPR)))); C2: $=0.5475-0.7361 /$ TPR $+(0.1844 /(T P R * T P R))$; C3: $=0.1056^{*}(-0.7361 / T P R+0.1844 /(T P R * T P R))$; END;

FUNCTION FUNCVALUE(TRY:REAL):REAL;
(*this function is specified by the user. We will find the root of this function later in the newtrap procedure. TRY is the root estimate input from the newtrap procedure*)
BEGIN

FUNCVALUE: $=$ TRY-($1+\mathrm{Cl}$ *DR(TRY)+C2*DR(TRY)*DR(TRY)C3*EXP(5*LN(DR(TRY))) +
(0.6134*(1+0.721*DR(TRY)*DR(TRY))*((DR(TRY)*DR(TRY))/ (EXP(3*LN(TPR))))*EXP(-0.721*DR(TRY)*DR(TRY))));
END; (*of function*)

FUNCTION DERIV(TD:REAL):REAL;
(*this is the derivative of the above function. The derivative is used in the calculation of the root. td is the root estimate input from procedure newtrap*)

BEGIN

DERIV:=1+(C1*DR(TD))/TD+(2*C2*DR(TD)*DR(TD))/TD(5*C3*EXP(5*LN(DR(TD))))/TD+ ((2*0.6234*DR(TD)*DR(TD))/ (TD*EXP(3*LN(TPR))))*
$\left(1+0.721^{*} \mathrm{DR}(\mathrm{TD}) * \mathrm{DR}(\mathrm{TD})-\operatorname{EXP}\left(2 * \mathrm{LN}\left(\left(0.721^{*} \mathrm{DR}(\mathrm{TD}) * \mathrm{DR}(\mathrm{TD})\right)\right)\right)\right)^{*}$ EXP(-0.721*DR(TD)*DR(TD));

```
END;(*of function*)
```


PROCEDURE GASFVF;
(*This procedure claculates the gas formation volume factor in $\mathrm{BBI} / \mathrm{SCF}^{*}$)
BEGIN
BGI: $=(0.00504 * Z *($ TRES +460$)) /$ PRESS;
END;

PROCEDURE MEWGAS:
(*This procedure calculates the gas viscocity in centipoise*)
var
MW.RHO.K.X, Y:REAL;
BEGIN
MW:=28.97*GASGRAV;
RHO:=1.4935*0.001*((PRESS*28.97*GASGRAV)/(Z*(460+TRES)));

$$
\mathrm{K}:=\left(\operatorname{EXP}\left(1.5^{*}(\operatorname{LN}((460+\mathrm{TRES})))\right)^{*}\left(9.4+0.02^{*} \mathrm{MW}\right)\right) /(209+19 * \mathrm{MW}+(460+\mathrm{TRES}))
$$

$\mathrm{X}:=3.5+(986 /(460+\mathrm{TRES}))+0.01 * \mathrm{MW}$;
$\mathrm{Y}:=2.4-0.2 * \mathrm{X}$;
MG: $=0.0001 *{ }^{*}{ }^{*} \operatorname{EXP}(X * E X P(Y * L N(R H O))$);
END;

PROCEDURE OILFVF:
(*This procedure calculates the oil formation volume factor Bo in BBL/STB*)
VAR
CO,F:REAL:
BEGIN
OLLGRAV:=141.5/(131.5+APIGRAV);
$\mathrm{F}:=\mathrm{RSO}$ *EXP(0.5*LN(GASGRAV/OILGRAV))+1.25*TRES;
$\mathrm{BO}:=0.972+0.000147^{*} \mathrm{EXP}\left(1.175^{*} \mathrm{LN}(\mathrm{F})\right.$);

```
    IF PRESS > PBUB THEN
    BEGIN
    CO:=(5*RSOB+17.2*TRES-1180*GASGRAV+12.61*OILGRAV-1433)/(PRESS*
    EXP(5*LN(10)));
    BO:=BO*EXP(CO*(PBUB-PRESS));
    END;
END;
```



```
PROCEDURE RSOBELOWBUB;
(*This procedure calculates the residual gas saturation at the
bubble point and below the bubble point*)
VAR
    YG:REAL;
BEGIN
    YG:=0.00091*TRES-0.0125*APIGRAV;
    RSO:=GASGRAV*EXP(1.204*LN((PRESS/(18*EXP(YG*LN(10)))))})
    RSOB:=GASGRAV*EXP(1.204*LN((PBUB/(18*EXP(YG*LN(10))))));
END;
(*
PROCEDURE PRESSBUB;
(*This procedure calculates the bubble point pressure if only the
initial residual gas saturation is known*)
VAR
    YG:REAL:
BEGIN
    YG:=0.00091*TRES-0.0125*APIGRAV;
    PBUB:=18*EXP(YG*LN(10))*EXP((1/1.204)*LN(RSOU/GASGRAV));
END;
```



```
PROCEDURE NEWTRAP(VAR XORIG,STOPIT:REAL;MAXIT:INTEGER);
(*this procedure calculates the root of a given function using
the Newton-Rhapson method. The procedure requires the input of
XORIG=original root estimate, STOPIT=stopping criteria, and
MAXIT= the max # of iterations.*)
    VAR
        ERAPROX,ROOTESTA:REAL;
        [TER:INTEGER:
BEGIN
    ITER:=0;
    ERAPROX:=1.1*STOPER;
        WHILE (ERAPROX>STOPER) AND (ITER<MAXIT) DO
            BEGIN
                    ROOTESTA:=XORIG-(FUNCVALUE(XORIG)/DERIV(XORIG));
```

```
        (*newtrapson equation where funcvalue is the function
        and deriv is the derivative of the function*)
        ITER:=[TER+1;
        IF ROOTESTA }\bigcirc0.0\mathrm{ THEN (*tests to avoid zero division*)
        ERAPROX:= ABS((ROOTESTA-XORIG)/ROOTESTA)*100;
        (*calculates the approx error from preceding estimate*)
        XORIG:=ROOTESTA;
        END;
    Z:=ROOTESTA;
END;(*end of newtrap procedure*)
(*----------------------------------------------------
PROCEDURE COMPARE(VAR ROOTESTA:REAL);
(*this procedure compares the function value with the calculated root
to zero. If it is close to zero the method has probably worked*)
BEGIN
    WRITELN(DEVICE);
    WRITELN(DEVICE,TF THE FUNCTION VALUE IS CLOSE TO ZERO THE
METHOD WORKS');
    WRITELN(DEVICE.THE FUNCTION VALUE WITH CALC. ROOT IS
',FUNCVALUE(ROOTESTA));
END;(*of compare*)
```



```
PROCEDURE OILVIS;
(*This procedure calculates the oil viscocity both below the bubble point (mewlive) and above the bubble point(mewabove)*)
VAR
CONST1.CONST2,CONST3.MEWOD,A,B,ABUB,BBUB,MFACT:REAL;
BEGIN
CONST1: \(=1.8635-0.025086^{*}\) APIGRAV-0.5644*(LN(TRES)/LN(10));
CONST2: \(=\) EXP(CONST1*LN(10));
CONST3:=EXP(CONST2*LN(10));
MEWOD:=CONST3-1.0;
\(\mathrm{A}:=10.715^{*} \operatorname{EXP}(-0.515 * \mathrm{LN}(\mathrm{RSO}+100))\);
\(\mathrm{B}:=5.44 * \operatorname{EXP}(-0.338 * \mathrm{LN}(\mathrm{RSO}+150))\);
MEWLIVE: =A*EXP(B*LN(MEWOD));
ABUB: \(=10.715 * \operatorname{EXP}\left(-0.515^{*} \mathrm{LN}(\mathrm{RSOB}+100)\right.\) );
BBUB: \(=5.44 * \operatorname{EXP}(-0.338 * \mathrm{LN}(\) RSOB +150\()\) );
MEWOBUB:=ABUB*EXP(BBUB*LN(MEWOD));
MFACT: \(=2.6^{*} \operatorname{EXP}(1.187 * \operatorname{LN}(P R E S S)\) )*EXP(-11.513-(8.98*0.00001*PRESS));
MEWABOVE:=MEWOBUB*EXP(MFACT*LN(PRESS/PBUB));
END;
```


PROCEDURE TITLES;
(*This procedure prints the output titles*)
BEGIN
WRITELN(DEVICE,'PRESSURE',' Z ',' GAS VISCOCITY',' BG ',
' BO '.' RSO',' OIL VIS ';;
WRITELN(DEVICE,' psia',' ',' cp ','bbl/scf,
' bbl/stb',' scf/stb',' cp ');
END:

PROCEDURE PRINTRESULTS:
(*This procedure prints the results to a printer or screen*)
BEGIN
WRITELN(DEVICE_PRESS:9:2,Z:9:4,MG:12:4.BGI:9:4,BO:9:4.RSO:9:4,OILVISC:9:4
;
END:
(*
*)
BEGIN(*of main control program*)
CHO:=' ${ }^{\prime}$:
WHICHONE(DEVICE);
READATA:
READATAZ:
WRITEDATA:
TITLES:
WHILE PRESS >= PMIN DO BEGIN
IF ($\mathrm{CHO}=$ ' y ') OR ($\mathrm{CHO}=$ ' Y ') THEN
RSOBELOWBUB
ELSE
PRESSBUB;
RSOBELOWBUB;
IF PRESS > PBUB THEN
BEGIN
RSO:=RSOB;
OILVIS;
OILVISC:=MEWABOVE;
$\mathrm{Z}:=0 ; \mathrm{MG}:=0 ; \mathrm{BGI}:=0$;
END:
IF PRESS < = PBUB THEN
BEGIN
PSEUDOCRITICAL;

```
            CONSTANTS;
            NEWTRAP(ROOT,STOPERITERMAX);
            GASFVF;
            MEWGAS;
            OILVIS;
            OLLVISC:=MEWLIVE;
            END;
    OILFVF;
    PRINTRESULTS:
    PRESS := PRESS-(PMAX-PMIN)/N;
    END;
END. (*of main*)
Z
PROCEDURE Whichone (VAR device: TEXT);
    (*This "INCLUDED" procedure enables the user to assign the output to
    either the console or printer. *)
VAR ch: CHAR:
        i: INTEGER;
BEGIN (* of whichone procedure *)
    CH:='';
    CLRSCR;
    WHILE (ch }\mp@subsup{\otimes}{}{\prime
        (ch }\mp@subsup{\nabla}{}{\prime
    BEGIN (* while *)
        FOR i:= 1 to 10 DO
            WRITELN;
        WRITE ('SELECT PRINTER OR CONSOLE (P/C) => '):
        READLN (ch);
        IF (ch = 'p') or (ch = 'P)
            THEN ASSIGN (device, 'LST:')
            ELSE
            BEGIN (* if*)
                WRITELN;
                WRITELN (TNVALID RESPONSE. PLEASE RETRY.');
                WRITELN;
            END;(* if*)
            END; (* while *)
            CLRSCR;
            REWRITE (device)
            END; (* of whichone procedure *)
```


Appendix C

Guide To Estimating and Deriving the Reservoir Properties Needed In Reservoir Simulation and Two-Phase Analytical Calculations from Field Production Data

Numerical simulations and two-phase analytical calculations such as presented in this dissertation require knowledge of certain fluid and rock properties. Normally these properties are not easily obtained or not available to the non-operating interests and thus must be estimated from production data This section presents several original and some widely used methods to estimate all the properties required for input to simulation experiments. Methods for estimating absohute permeability methods are not included but a comprehensive discussion is given in my MS thesis, 1993. ${ }^{12}$ A flow diagram of the process of estimating parameters is also given in that thesis.

Estimating PVT Data

PVT data can be generated from a simply a knowledge of the dead oil viscosity from a produced oil sample and produced gas-oil ratio (GOR) information obtained from production data. The details are described in the PVT section of this and my computer algorithms for calculation are shown in appendix B.

Relative Permeability Data

Two methods, depending on the type of data available to the engineer are presented for calculating relative permeability data are. One method can be used when there is a core analysis available. Core analysis is used but then modified to fit field production information. The other method assumes no knowledge of core information but only field evidence of produced fluids ratios. An example is provided in which the matrix relative permeability to oil and gas is determined based on observed residual oil saturations as noted on core analysis and connate water saturations calculated from logs. The relative permeability to oil endpoint can be taken as the lowest residual oil saturation from the core or analogy to other field data. The water endpoint can be used as the lowest water saturation calculated from log analysis in a field or analogous formation.

Capillary Pressure

Based on log calculated water saturation at various well locations and structure maps from a field, a capillary pressure relation can be developed to correspond to the transition zone found in the field or an analogous field. A discussion of the method and an example of capillary pressure curve estimation are shown in the capillary pressure section of this report. This capillary pressure curve was slightly modified to obtain a water saturation distribution that more closely resembled that calculated from well logs.

C. 2 RESERVOIR PROPERTIES

C.2.1 Discussion of the PVT Data

Pressure, volume and temperature data can be generated from dead oil viscosity, gas gravity, initial produced GOR's, and initial reservoir pressure and temperature. No other data are often available or necessary to generate the PVT relations.

In this example. a service company laboratory measured a dead oil viscosity of 2.53 cp at the formation temperature of 116 degrees F . This oil viscosity corresponds to an API gravity of 38.1-degree oil Gas gravity of 0.775 was estimated in this example based on the composition of the gas, which was primarily methane. Gas gravity can easily be estimated based on the composition. which will normally consist of predominantly methane, ethane and propane. The reader is referred to the Petroleum Engineering handbook for calculations using mole fractions.

Relative gas and oil production statistics can be obtained from operators or from the various state and private databases. This information should then be tabulated on a spreadsheet to identify producing gas to oil ratio (GOR) trends among wells within a field. GORs are then projected back to first production using linear or non-linear regression or trend analysis. This example (Table A-1) illustrates that the initial GOR was quite variable for the first reported
production from different wells. As the data indicate, no gas production was recorded for the field during the first six months of production. No pipeline was available during this time and gas was just vented to the atmosphere. Therefore the first GORs recorded in the field are likely higher than the initial solution GOR value. Therefore backward GOR projections were used to estimate an initial field GOR of 450 SCF/STB. This corresponds to a bubble point pressure of 1600 psia. Initial reservoir pressure was estimated as 1900 psia based on a normal pressure versus depth profile and comparison to initial pressures in fields of similar depth.

This example illustrates a logical and practical approach to estimating the information needed to input to the PVT program considering the typical set of data available to the engineer. Normally the initial GOR must be estimated from produced GORs some time after initial production the initial reservoir pressure must be estimated from knowledge of the pressure versus depth profile for an area, and the gas gravity must be approximated from knowledge of the gas composition. Once these estimates are computed the engineer can use the algorithm of Appendix B to compute the PVT properties needed for simulation experiments.

CUMMULATIVE OIL PRODUCTION AND GOR DATA
Shaded region Indicates backward projection of data
using regression techniques
Production tabulation of the first wells in the fied
Pipeline instalied in December 1983 gas flared unil that time

PROD	Aigner		Warren Wells		Warren W-4		Warren W-3A,3B,3C		Chenoweth$\mathrm{C}-1$	
DATE	CUM OIL	GOR	$\begin{aligned} & \text { CUM } \\ & \text { OIL } \end{aligned}$	GOR	CUM OIL	GOR	CUM OIL	GOR	$\begin{aligned} & \text { CUM } \\ & \text { OIL } \end{aligned}$	GOR
Jun-83			358457.5							
Jut-83			716	458.2						
Aug-83			1413	489						
Sep-83			2489	521.1						
Oct-83			3389	547.9						
Nov-83			4642	585.3						
Dec-83	6263	341.4	6995	655.5	2973		874			
Jan-84	15585	445.8	9159	720	5224		6678			
Feb-84	17854	471.2	9981	744.6	5896		8760		2004	160.5
Mar-84	21403	492	16298	933	7681	2521	13174	3690	4194	349.3
Apr-84	25536	590	20796	852	8678	1605	20027	2817	5814	489
May-84	30131	615	27662	1272	10843	2065	29690	2634	8157	691
Jun-84	34393	637	31806	1835	12591	3694	37380	2711	10540	817
Jul-84	39085	690	36020	2026	14335	3645	46610	2163	12788	760
Aug-84	43280	- 774	39087	2863	15601	4669	60177	2674	14863	1182
Sep-84	48148	- 754	41434	2851	16858	4423	70147	3342	16571	1105
Oct-84	-53199	9889	43621	3236	17920	- 5186	78598	3629	18218	1630
Nov-84	59625	- 1219	45264	4013	18797	- 5827	85118	4025	19738	1543
Dec-84	64048	- 1301	46516	4513	18797		91235	-3899	20862	2395
Jan-85										

Table C-1 GOR Analysis for PVT Estimation

Based on the estimated initial solution GOR, oil gravity, gas gravity and formation temperature, PVT properties were calculated using computer program OILPROP that uses the relations from Craft and Hawkins. ${ }^{6}$ (see attached OILPROP program listing in Appendix
B) Table 2 shows the output from this program for the example. These relations are graphed on Figure 1. Data computed by this method serve as reasonable estimates of the formation PVT properties to use in reservoir simulation.

PVT DATA						
PRESSURE pSia	z	$\begin{gathered} \text { GAS } \\ \text { VISCOSITY } \\ \text { co } \end{gathered}$	Bg bolvscf	Bo bblistb	RSO mef/stb	$\begin{gathered} \text { OIL } \\ \text { VISCOSITY } \\ \text { cp } \end{gathered}$
2000	0.0000	0.0000	0.0000	1.2216	0.4430	0.8005
1868	0.0000	0.0000	0.0000	1.2228	0.4430	0.7886
1735	0.0000	0.0000	0.0000	1.2242	0.4430	0.7775
1602	0.0000	0.0000	0.0000	1.2258	0.4430	0.7673
1470	0.7814	0.0151	0.0015	1.2227	0.4337	0.7691
1338	0.7955	0.0145	0.0017	1.1994	0.3871	0.8200
1205	0.8115	0.0140	0.0020	1.1769	0.3415	0.8789
1073	0.8291	0.0135	0.0022	1.1552	0.2969	0.9480
941	0.8480	0.0130	0.0026	1.1345	0.2534	1.0299
809	0.8680	0.0127	0.0031	1.1147	0.2111	1.1286
676	0.8887	0.0123	0.0038	1.0959	0.1703	1.2495
544	0.9100	0.0120	0.0049	1.0783	0.1310	1.4004
412	0.9316	0.0117	0.0066	1.0619	0.0937	1.5928
279	0.9535	0.0115	0.0099	1.047	0.0587	1.8428
147	0.9755	0.0114	0.0193	1.0339	0.0271	2.1686
14.7	0.9976	0.0112	0.1970	1.0236	0.0017	2.5529

Table C-2 Program OMPROP Output

Figure C-1 Graph of PVT Data From Oilprop Program

C.2.2 Oil-Water Relative Permeability Data

Relative permeability data can be generated empirically by using relationships that follow the general form as follows: A first estimate utilizes the following equations for water wet reservoirs from Willhite ${ }^{1}$

$$
\begin{array}{ll}
\mathrm{K}_{\mathrm{ro}}=(1-\mathrm{SwD})^{x} & \mathrm{C} \\
\mathrm{~K}_{\mathrm{rw}}=\mathrm{C} \mathrm{SwD}^{3 y} & \mathrm{C} 2
\end{array}
$$

$$
\begin{equation*}
S w D=\frac{S_{w}-S_{w}}{1-S_{o_{r}}-S_{w}} \tag{C3}
\end{equation*}
$$

$\mathrm{S}_{\mathrm{iw}}=$ irreducible water saturation
$\mathrm{S}_{\mathrm{or}}=$ residual oil saturation
$\mathrm{K}_{\mathrm{K}}=$ oil relative permeability
$\mathrm{K}_{\mathrm{rw}}=$ water relative permeability
where C is generally in the range of 0.78 , x between 2 and 3 and y between 3 and 4 .
The first task is then to derive estimates for the residual oil saturation S_{or} and irreducible water saturation in the particular geologic formation in question. In the example shown here, S_{or} was based on the core analysis (Table 3A). S_{or} was assumed to be the geometric mean of $1-\mathrm{S}_{\mathrm{w}}$ in the core. This is reasonable since presumably the core has been flushed by filtrate water during drilling thus reducing the zone to $\mathrm{S}_{\mathrm{or}} . \mathrm{S}_{\mathrm{iw}}$ was taken as the lowest water saturation found in the field from \log analysis.

The next step is to modify the exponents in the equation by trial and error until the curves that are generated explain the field phenomenon that is observed. The first try using the exponents of $\mathrm{x}=2.56$ and $\mathrm{y}=3.72$ with $\mathrm{C}=0.78$ did not explain the example field production.(see Table 5C and Figure 2C). Field experience suggested that water was not produced until reaching 48$50 \%$ water saturation levels. The Willite ${ }^{13}$ relationships indicated that water flow would equal oil flow at 41% water saturation. This was not reasonable based on field experience. This points out the danger of using relations without verifying them with actual field experience and
shows the way to use field production data and well log calculations to calibrate generalized relationships.

EXAMPLE CORE ANALYSIS

SAMPLE	DEPTH	POROSITY	PERM TO AIR(md)	WATER	GRAIN	predict	
		$\%$	HORIZ	VERT	SAT	DENSITY	
1	4655	2.40	0.11	0.01	81.50	2.76	0.224558
2	4656	7.10	0.16	0.11	72.80	2.65	3.480689
3	4657	10.10	0.16	0.57	67.00	2.65	8.481165
4	4658	10.80	8.30	14.00	52.80	2.65	10.04609
5	4659	9.30	10.00	10.00	41.80	2.66	6.884807
6	4660	10.30	14.00	14.00	48.10	2.67	8.911997
7	4661	12.20	9.90	4.70	57.80	2.66	13.66994
8	4662	11.70	13.00	4.10	46.60	2.66	12.29819
9	4663	13.30	51.00	39.00	45.90	2.66	17.00233
10	4664	7.30	9.20	6.20	44.00	2.70	3.73381
11	4665	4.00	0.27	0.34	57.10	2.73	0.816471
12	4666	5.60	7.20	0.02	62.50	2.65	1.910762
13	4667	5.60	0.10	1.78	76.60	3.06	1.910762

Table C-3 Example Core Analysis
RELATIVE PERMEABILITY ESTMMATES FROM WILLHITE GENERAL FORM

SWIRR= 0.2
SOR= $\quad 0.39$

SW	SWD	KO	KW
0.200	0.000	0.910	0.000
0.210	0.024	0.875	0.000
0.260	0.146	0.706	0.000
0.300	0.244	0.582	0.000
0.350	0.366	0.439	0.001
0.400	0.488	0.312	0.006
0.450	0.610	0.202	0.026
0.500	0.732	0.111	0.085
0.550	0.854	0.042	0.232
0.583	0.934	0.012	0.417
0.584	0.937	0.011	0.425

Table C-4 Relative Permeability Estimates from Willhite General Form

Figure C-2 Derived Retative Permeability Curves

Based on the water saturation calculations from log analysis and a comparison of those values with production data (Table C-5) it was apparent that the relative permeability data needed to be adjusted from that predicted by the initial equations. Based on the core analysis, the residual oil saturation of $39 \%(61 \% \mathrm{SW})$ was again chosen as one endpoint. The other endpoint was chosen as 80% oil saturation based on the highest log calculated oil saturation in the field. However, details of the curves were adjusted between endpoints by changing the constants and exponents in the equations to reflect the production actually found in the field. For instance, production and \log analysis indicated that water was almost immobile up to 48% water saturation and then rose rapidly with increasing water saturation. Changing the constants and exponents on the generalized relative permeability relations resulted in the relative permeability curve shown in Figure 3A. This curve explained observed production in the field with the few exceptions and honored the petrophysical data.

	RATIO	F PRODU	UCED FLU	UID FLOW				
				INITIAL			RATIO OF FL	UIDS
WELL NAME	AVE.	AVE.	OIL	WATER		GAS	OILWTR	OILGAS
	PERM(md)	Sw(\%)	BOPD	BWPD		MCFD		
Aigner 1-25	21.07	22.98	832			950		0.88
Warren 3C-24	18.71	25.14	210			300		0.70
Warren 3A-24	20.79	26.13	216			700		0.31
Aigner 4-25	11.99	26.78	144			210		0.69
Habben 1-30	11.02	31.00	330					
Warren 6-30	10.99	33.70	181		0	500		0.36
Warren 18-25	11.35	40.48	231		25	493	9.24	0.47
Warren 4C-24	15.40	41.10	223			200		1.12
COP 1-23	9.80	42.00	19		8		2.38	
Habben 2-30	7.62	42.44	141		53		2.66	
Warren 4A-24	7.74	43.50	130			100		1.30
Bridal 1-26	9.90	43.90	20		20	35	1.00	0.57
Warren 4-24	10.90	46.70	205			175		1.17
Spudds 2-24	3.56	46.70						
Aigner 5-25	8.80	47.90	300		5	120	60.00	2.50
Spudds 1-24	6.33	48.00						
Luster 2-30	5.65	48.62	12		35		0.34	
Grace 1-A-25	9.10	49.21	241			100		2.41
Aigner 3-25	11.67	49.30	180		15	90	12.00	2.00
Habben 4-30	4.28	49.50	94		40	98	2.35	0.96
Chenoweth 1-23	13.24	49.88	130		30	100	4.33	1.30
Heppler 1-23	7.99	50.11	36		2		18.00	
Habben 3-30	6.67	51.20						
Warren1-25	4.95	51.60	47		20	175	2.35	0.27
Warren 1C-24	13.61	53.10	300		0	200		1.50
Forney 1-23	5.41	54.52	20		20	30	1.00	0.67
Warren 6A-30	4.06	58.14	130			100		1.30
Ruth 1-23	10.38	58.17						
Ruth 2-23	20.79	59.00		0				
Spudds 3-24	7.90	62.91						
Warren 5A-25	0.00	66.30						
Reba 1-26	10.46	66.87	40			50		0.80
Luster 1-30	4.66	71.00		6	20	20	0.30	0.30
Warren 1A-25	5.32	71.70	150		0	200		0.75
Warren 2-26	5.50	71.80	42		30	190	$0 \quad 1.40$	0.22
Chenoweth 2-23	5.92	75.70	135		20	110	- 6.75	1.23
Endres 1-26	6.92	77.00	42		2		21.00	
Chenoweth 3-23	3.90	85.41	33	3	10	80	$0 \quad 3.30$	- 0.41
Warren 2A-26	5.25	87.13	60	0	10	42	26.00	-1.43

Table C-5 Ratio Of Produced Fluid Flows

Figure C-3 Final Relative Permeability Curve

Often a fracture system is also present which requires a separate relative permeability curve. In this example because oil was produced from some wells at up to 75% water saturation even though the core data indicated that oil flow should cease at 61% water saturation. This results from the fracture system. In the fractures, both oil and water flow at higher relative saturation than in the matrix. To account for this, a separate linear relative permeability curve was used for the fractures that allowed oil to flow at higher water saturation than in the matrix. Conversely, water flowed at higher oil saturation. This is a reasonable explanation for the oil flow in wells with high water saturation.

C 2.2.3 Using Producing Gas Oil Ratio to Determine Relative Permeability to Oil-Gas Curves

The producing gas-oil ratio is known to be a function of reservoir pressure and reservoir saturation. If one assumes that the pressure gradient is the same through both the gas and the oil phase, a radial flow system with incremental thickness $d r$, reservoir pressure P and pressure gradient $\mathrm{dp} / \mathrm{dr}$ in $\mathrm{psi} / \mathrm{ft}$, a total of q_{0} reservoir barrels per day flowing past the radius r and q_{g} barrels of reservoir gas per day flowing past the radius r then applying Darcy's law the following expressions can be written for the velocity of oil and gas (v) respectively ${ }^{14}$:

$$
\begin{align*}
& \nu_{o}=\frac{q_{o}}{2 \pi h}=\frac{-7.07 k_{o} d p}{2 \pi \mu_{o} d r} \tag{C4}\\
& v_{g}=\frac{q_{g}}{2 \pi r h}=\frac{-7.07 k_{g} d p}{2 \pi \mu_{\mathrm{g}} d r} \tag{C5}
\end{align*}
$$

The stock tank oil produced per day Q_{o} is of course q_{d} / B where B is the formation volume factor. The standard cubic feet of gas produced per day Q_{g} will be equal to the rate of movement of the reservoir gas converted to surface conditions plus the gas which is evolved from the oil produced, or:

$$
\begin{equation*}
Q_{g}=\frac{q_{g}}{v}+r Q_{o} \tag{C6}
\end{equation*}
$$

where r is the gas in solution at the current pressure expressed as SCF/STB.

The producing gas-oil ratio is by definition however, the quotient Q_{g} / Q_{0} so by dividing the above equation through by $Q_{0}=q_{0} B$ and substituting into the oil and gas velocity relationships yields the following useful relationship:

$$
\begin{equation*}
R=\frac{q_{g} B}{q_{o} v}+r=\frac{k_{g} \mu_{o} B}{k_{o} \mu_{g} v}+r \tag{C7}
\end{equation*}
$$

The quantities in this equation are only valid at the pressure and temperature existing at radius r. ${ }^{14}$ Since these quantities are really not measurable and only an average pressure is measurable by shutting in the well other assumptions are necessary. If the value of $\Delta \mathrm{P}$ across the system approaches zero as a limit then one vahe of P , the average pressure would suffice to define the system. Therefore the assumption means that the production is occurring at zero pressure differential. This is often a reasonable approximation in practice.

In summary the assumptions are that 1) the pressure draw-down is zero, 2) the gas and oil are uniformly distributed 3) the gas and oil are flowing according to equilibrium relative permeability, and 4) the pressure gradients in the gas are the same as those in the oil phase. The above-derived equation can be re-written as:

$$
\begin{equation*}
\frac{k_{g}}{k_{o}}=(R-r) \frac{\mu_{g} v}{\mu_{0} B} \tag{C8}
\end{equation*}
$$

From material balance considerations the average oil saturation S_{o} can be expressed as:

$$
\begin{equation*}
S_{o}=\frac{(N-\Delta N) B}{\text { PoreVolume }}=\frac{(N-\Delta N) B}{N B_{o}\left(1-S_{w}\right)}=\left(1-\frac{\Delta N}{N}\right) \frac{B}{B_{o}}\left(1-S_{w}\right) \tag{C9}
\end{equation*}
$$

These last two expressions involve only the average pressure at any given time, the cumulative production and the producing gas-oil ratio at a given time. The water saturation is assumed constant. Calculations of k_{g} / k_{0} and S_{o} made at a number of times in the reservoir's history can be plotted to give the expected relationship. This is normally done on semi-log scale ${ }^{14}$. The following example provides an illustration of how the method works. The field data are tabulated in Table C-6. Using the average pressure, produced gas, production and formation volume factor a gas to oil relative permeability curve can be constructed as shown in figure C 4.

Table C-6 Gas-Oil Relative Permeability Data and Construction

Figure C-4 Gas Oil Relative Permeability

C 2.2.4 Use of Decline Curves in Determining Contributions of Solution Gas Energy and Estimating Mobility Functions

The rate decline path will be exponential where $b=0$ and the Fetkovich radial solutions and Arps empirical solutions converge when the only reservoir energy is the compressibility of the rock and fluid. (See chapter 5 for my more general sohutions) In a solution gas reservoir where water drive is absent the decline path will be more hyperbolic where b values of 0 to 0.5 exist. This deviation from $\mathrm{b}=0$ should give information that can be used in determining

Figure 5.10 Composite Fetkovich Type Curve Transient and Exponential Depletion

Figure 5.10 Composite Fetkovich Type Curve Transient and Exponential Depletion
the mobility-pressure function that was described in chapter 3 and the appendix A. This concept can be shown in reproduced figure 5.10 where $\Delta q_{D d}$ and $\Delta t_{D d}$ represent the deviation from the actual path and that predicted exponential path with no energy in the system other than the fluid and rock compressibility. The solution gas provides additional pressure support that more than offsets the increased resistance from the reduction in $\mathrm{k}_{\mathrm{r}}\left(\mu_{0} B_{0}\right)$ with a reduction in pressure and oil saturation. Also with a purely exponential decline with no additional drive energy, the IPR will be constant with declining pressure. Field experience indicates that the IPR does change with depletion since exponential depletion is rare. Once the decline path is known from the above chart the difference between the decline path and the predicted exponential path should give information about the pressure mobility function and adjustments to IPR over time without the need for well testing techniques.

$$
\begin{equation*}
\int \frac{k_{r}}{\mu_{o} B_{o}} d p \cong \frac{\left(P_{R}-P_{w f}\right) k_{r o}}{\left(\mu_{o} B_{o}\right)_{P_{m}}} \tag{C 10}
\end{equation*}
$$

Determination of Relative Permeability from Rate-Time Decline Data

In order to determine the ratio of $k_{8} / k_{0}, k_{r 0}, k_{r g}$ from rate-time data one needs to know the original oil in place, the current oil saturation and the productivity factor. The analysis (after Fetkovich work)uses the concept that once a well and its offsets have reached pseudo-steady state flow, a no-flow boundary will result at a distance between all wells. The distance to the
boundary of no-flow will depend on the flow rate of each offset well. Thus drainage volume of each well should remain constant if all wells are on decline and continue producing wide open against a common backpressure. If one assumes decline below the bubble point is proportional to:

$$
\begin{equation*}
\frac{\left(\overline{P_{R}}-P_{w}\right)}{\mu_{o} B_{o}} \tag{C11}
\end{equation*}
$$

then the Pore Volume V_{p} can be determined from the expression:

$$
V_{p}=\frac{5.615 \mu_{o} B_{o}}{\left(\mu c_{t}\right)_{\overline{P_{R}}}\left(\overline{P_{R}}-P_{w j}\right)} \frac{t}{t_{d D}} \frac{q(t)}{q_{D d}}
$$

and the reserves in place are computed from:

$$
\begin{equation*}
V=\frac{V_{p}\left(1-S_{w}\right)}{B_{o r}} \tag{Cl}
\end{equation*}
$$

The productivity factor is obtained from: ${ }^{38}$

$$
\begin{equation*}
P F=\frac{7.08 k h}{\ln \frac{r_{e}}{r_{w^{\prime}}}-\frac{1}{2}}=\frac{\mu_{o} B_{o}}{\bar{P}-P_{w f}} \frac{q(t)}{q_{D d}} \tag{C14}
\end{equation*}
$$

The relative permeability is then estimated from:

$$
\begin{equation*}
k_{r o}=\frac{q_{o}\left(\mu_{o} B_{o}\right)}{P F\left(\bar{P}-P_{w j}\right)} \tag{C 15}
\end{equation*}
$$

A more rigorous approach uses the $m(p)$ relationship from Fetkovich's isochronal testing of wells paper. ${ }^{38}$ Pore volume is thus expressed as:

$$
\begin{equation*}
V_{p}=\frac{5.615\left[\frac{q(t)}{q_{D d}} \frac{t}{t_{D d}}\right]}{\left(\mu_{o} c_{t}\right)_{\bar{P}_{R}}\left[\frac{\overline{P_{R}}-P_{B}}{\left(\mu_{o} B_{o}\right)_{P_{R} P_{o}}}+\frac{P_{b}^{2}-P_{w j}^{2}}{2 P_{b}\left(\mu_{o} B_{o}\right)_{P_{0}}}\right]} \tag{C16}
\end{equation*}
$$

And N is calculated in the same way using the above equation.

The productivity factor PF is then estimated by:

$$
\begin{equation*}
P F=\frac{7.08 \mathrm{kh}}{\ln \frac{r_{\varepsilon}}{r_{w^{\prime}}}}=\frac{\frac{q(t)}{q_{D d}}}{\left[\frac{\overline{P_{R}}-P_{B}}{\left(\mu_{o} B_{o}\right)_{\overline{P_{R} P_{o}}}}+\frac{P_{b}^{2}-P_{w f}^{2}}{2 P_{b}\left(\mu_{o} B_{o}\right)_{P_{o}}}\right]} \tag{C 17}
\end{equation*}
$$

The relative permeability to oil is then computed below the bubble point by:

$$
\begin{equation*}
k_{r o}=\frac{2 \overline{P_{R}}\left(\mu_{0} B_{o}\right)_{\overline{P_{R}}} q_{o}}{P F\left(P_{R}^{2}-P_{w f}^{2}\right)} \tag{C18}
\end{equation*}
$$

For each production period examined the new value of k_{r} is calculated and the relative permeability relation is computed and plotted as a function of saturation.

C 2.2.5 Use in Adjusting the IPR Curve with Depletion

It is well established that the inflow performance curve changes with decreasing reservoir pressure.

Figure C-5 ${ }^{4}$ Change in IPR with Depletion

In Appendix A it was shown that the IPR relations can be expressed as:

$$
q_{o}=\frac{k h}{141.2 \mu_{o} B_{o}} \frac{1}{2 P_{R}}\left(P_{R}^{2}-P_{w f}^{2}\right) k_{P R} \frac{1}{\ln \frac{r_{e}}{r_{w}}-\frac{3}{4}}
$$

or:

$$
\begin{equation*}
q_{o}=C\left(P_{R}^{2}-P_{w f}^{2}\right) \tag{C19}
\end{equation*}
$$

$$
\begin{equation*}
q_{o}=C\left(P_{R}^{2}-P_{w f}^{2}\right) \tag{C19}
\end{equation*}
$$

Where:

$$
C=\frac{k h}{141.2 \mu_{o} B_{o}} \frac{1}{2 P_{R}} k_{P R} \frac{1}{\ln \frac{r_{e}}{r_{w}}-\frac{3}{4}}
$$

As the reservoir pressure drops the resistance to oil flow increases since the ratio of $\frac{k_{r o}}{\mu_{0} B_{o}}$ decreases as the average pressure decreases. Therefore the change in IPR with declining pressure should be related to the change in $\frac{k_{r o}}{\mu_{0} B_{o}}$ that can be predicted from either the decline path method or the empirical method from field data presented earlier. Thus the IPR relation at any particular reservoir pressure should be expressed as:

$$
\begin{equation*}
q_{o}=C^{\prime}\left(P_{R}^{2}-P_{w f}^{2}\right) \tag{C21}
\end{equation*}
$$

where:

$$
\begin{equation*}
q_{o}=q_{o \max }\left(\frac{\frac{k_{r o}}{\mu_{o} B_{o}} n e w}{\frac{k_{r o}}{\mu_{o} B_{o}} o l d}\right)\left(\frac{P_{R} n e w}{P_{R} o l d}\right)\left(1-\frac{P_{w j}}{P_{R}}\right)^{n} \tag{C22}
\end{equation*}
$$

And if the IPRs are known then the inverse can be applied to determine the change in mobility function over time using the above relationship. Mattax and Datton ${ }^{15}$ presented a similar form previously developed by Whitson and Golan for above the bubble point conditions in which:

$$
\begin{equation*}
J_{F}=\frac{\left(\frac{k_{r o}}{\mu_{o} B_{o}}\right)_{F}}{\left(\frac{k_{m}}{\mu_{o} B_{o}}\right)_{P}} J_{P} \tag{C 23}
\end{equation*}
$$

Thus the relationship can be used to determine the productivity at any future date (J_{F}) if the mobility functions are known. Conversely it should be possible to infer the mobility functions if the performance functions are known. Mattax and Dalton indicate that the relationship can be used with small error below the bubble point also.

C 2.2.5 Capillary Pressure Estimation

Capillary pressure can be thought of as a force per unit area resulting from the interaction of surface forces and the geometry of the medium in which they exist ${ }^{16}$. The effect of the capillary pressure relationship is to distribute the saturation properly over the depth of the reservoir. Although capillary pressure is not used in the analytical equations presented in this research, it is often needed in the numerical simulations. The following presents my method of determining capillary pressure without core experiments. The capillary pressure can be estimated from reservoir data alone by calculating the length of the oil to water transition zone and knowing the oil-water density contrast. The density is determined from an oil and water sample while the height of the oil column and transition zone is determined from production data and well \log water saturation calculations. A transition zone of approximately 80 feet occurs in this example reservoir. The structurally highest well in the field occurs at a subsea depth of about

3510 feet. Based on log analysis, the water saturation gradually increases from a low of about 20% at the structurally highest part of the field to nearly 100% over about an 80 -foot transition zone. The exact oil-water contact is unknown but is estimated to be 3590 feet subsea.

Capillary pressure is determined from the relationship $P_{c}=\left(\rho_{w}-\rho_{o}\right) g h=\frac{2 o \cos \theta}{R}$. Based on oil and water density differences, the 80 foot transition zone of the example and the equations for capilary pressure, a preliminary curve can be developed to distribute the saturations across the transition zone as calculated from log analysis. It is a good idea to draw a map projection of the average water saturations within the field and to overlay this map on the structure map to make sure the two functions roughly agree. Table C-7 shows the results of the calculation. Figure C-6 shows the field average water saturation change with depth. Figure C-7 shows the capilary pressure curve calculated from the length of the transition zone and the oil and water density differences. Slight modifications to this capillary pressure data may be necessary to obtain an initial water saturation distribution that match the water saturation map generated from log analysis.

CAPILLARY PRESSURE DATA

PC=DELTA DENSITY"g*h= 2*sigma*cos/R OIL DENSITY $=\quad 50.33 \# /$ cubic ft. WATER DENSITY $=\quad 71.76$ \#/cubic ft. TRANSITION ZONE $=80 \mathrm{FT}$.

WATER SAT. \%	SUBSEA DEPTH	Pc Psi
20	3510	11.91
25	3520	10.42
30	3530	8.93
35	3540	7.44
40	3550	5.95
47	3560	4.46
53	3565	3.72
60	3570	2.98
75	3580	1.49
100	3590	0.00

Table C-7 Capillary Pressure Calculation Data

Figure C-6 Saturation v. Depth Profile

Figure C-7 Capillary Pressure Profile

APPENDIX D

Tabular Generalized Type Curve Solutions

Table D-1 Tabular Data for Fetkovich Decline Type Curves Figures 5.1-5.4

Ifinte vatee from program, finits depletion vatues doeec syerem from table e. 5 Lee weitesting book ruil 20
Redta Casens

$\begin{aligned} & c q \\ & e 2 \\ & r 0=200 \end{aligned}$	4.78939 18999.5 200				5.71961 125000 500			$\begin{aligned} & E 1 \\ & \& \\ & 2 \end{aligned}$	$\begin{array}{r} 6.40778 \\ 500000 \\ 1000 \end{array}$		
0	10	10	000	10	10	40	00	10	10	∞	010
10000	0.10421	0.1943	0.93231	100000	0.13098	0.1586	0.09481	30000	0.00938	0.1773	1.1381
13000	0.13547	0.188	0.80248	130000	0.18198	0.1498	0.85805	40000	0.01248	0.1729	1.1078
18000	0.16673	0.182	0.87329	180000	0.22300	0.1435	0.82006	50000	0.01561	0.1887	1.0874
20000	0.20841	0.1742	0.83687	200000	0.27890	0.1354	0.77378	100000	0.03121	0.1604	1.0278
24000	0.25008	0.1888	0.80056	240000	0.33598	0.1277	0.72978	200000	0.08242	0.1518	0.9727
30000	0.31262	0.1562	0.7495	300000	0.41898	0.117	0.80881	300000	0.00384	0.1484	0.9381
40000	0.41682	0.1401	0.67224	400000	0.55997	0.1012	0.57832	400000	0.12486	0.1418	0.90734
50000	0.52103	0.1236	0.50307	500000	0.60098	0.0875	0.50003	500000	0.15808	0.1371	0.8785
00000	0.62523	0.1128	0.54029	000000	0.83098	0.0750	0.43202	600000	0.18727	0.1327	0.85037
80000	0.83365	0.0005	0.43425	800000	1.11894	0.0585	0.32288	700000	0.21840	0.1285	08234
100000	1.04208	0.0728	0.34932	1000000	1.30098	0.0422	0.24118	800000	02497	0.1244	0.79712
130000	1.35468	0.0624	0.25143	1300000	1.8189	0.0873	0.15801	900000	0.28081	0.1204	0.77148
160000	186729	0.0078	Q.18138	1800000	223088	0.0176	0.10058	1000000	0.31212	0.1188	0.74714
200000	208412	0.024	0.11708	2000000	279885	0.0008	0.058	1400000	0.43897	0.1024	0.85815
240000	2.50094	0.0138	0.0082	2400000	3.35082	0.0055	0.03143	2000000	0.62424	0.0844	0.54087
300000	3.12817	0.0082	0.03936	3000000	4.19978	0.0023	0.01314	2400000	0.74008	0.0741	0.47489
400000	4.16823	0.0028	0.0134	4000000	550971	0.0005	0.00288	3000000	0.83837	0.081	0.30087
500000	5.21029	0.0009	0.00432	5000000	0.98903	0.0001	0.00067	4000000	124840	0.0442	0.28322
								5000000	1.58081	0032	0.20505
								700000	2.18485	0.0167	0.10701
								8400000	202183	0.0108	0.08782
								TE+07	3.12122	0.0003	0.04037
								1.4E+07	4.30071	0.0077	0.01080
								2E+07	6.2924	0.0004	0.00256
								3E+07	238388	0.0001	0.00089

Table D-1 Tabular Data for Fetkovich Decline Type Curves Figures 5.1 - 5.4 Continued
 Ractir Ceses

Table D-2 Tabular Data for Fetkovich Decline Type Curves Figures 5.1-5.4 Transient Portion

C1	1.8028			249873		341202		4.10517		4.79832		6.40778	
2	49.5			199.5		1249.5		1989.5		19680.5		500000	
1 m		$\begin{gathered} 10 \text { rub } 10 \\ \text { vansient } \\ \hline \end{gathered}$		20		$\begin{gathered} 50 \text { reD } 50 \\ \quad \text { transient } \\ \hline \end{gathered}$		100		200		1000	
\square	\oplus	± 0	90	10	400	100	00	W0	900	10	90	10	900
0.01	6.1288	0.0001	11.0479	2 E 05	15.2961	23E-06	20.919	4.9E-07	25.1602	1 E 07	29.4086	3.12.09	30.2725
0.1	22488	0.0011	4.05365	0.0002	5.6124	23E.06	757288	4.9E-08	923171	1E.08	10.7905	3.1E.08	14.4098
1	0.88443	0.0712	1.77452	0.00201	245887	0.00023	3.3680	4.9E-05	4.04125	tE.05	4.72361	3.16 .07	8.30790
10	0.53392	0.1121	0.58244	0.02008	133252	0.00235	182175	0.00049	218183	0.0001	2.58192	31E-08	3.42123
100	0.34558	1.1207	0.6229	0.20084	088243	0.02346	117808	0.00487	1.41858	000104	185819	3.1E-05	221428
1000	0.25088	11.207	0.45238	200844	Q62633	0.23458	0.85028	0.04872	1.03023	001042	1.20419	0.00031	180808
10000	2.19593	11207	235319	200844	348899	234559	280885	0.48724	2.80433	210427	2940:3	000312	:25547
100000	0.16037	1120.7	0.28908	200.844	0.40024	23.4559	0.54718	4.87230	0.65835	1.04208	0.78951	0.03121	$10278 t$
1000000	0.13581	11207	0.24445	2008.44	0.33845	234.559	0.4027	48.7239	0.5687	104208	0.6507	0.31212	0.88898
1E+07	0.11742	112072	0.21188	20084	0.29305	2345.50	0.40054	487239	0.48203	104.208	0.58342	3.12122	07524
1 $\mathrm{E}+08$	0.10351	$1 \mathrm{E} \times 08$	0.18859	200844	0.25833	23455.1	0.35318	4872.39	042483	1042.08	049887	31.2122	0.66327
$1 \mathrm{E}+\infty$	000253	$1 \mathrm{E}+07$	0.1868	2008441	023094	234559	0.31572	48723.9	0.37888	10420.6	0464	312122	0.58289
$1 \mathrm{E}+10$	0.08365	1E+08	0.15078	2E-07	0.20878	2345588	0.28543	487238	0.34341	104200	0.40139	3121.22	0.53803
1E+19	0.07832	$1 \mathrm{E}+\infty$	0.13758	2E+08	0.19048	23E+07	0.28042	4872382	0.31332	1042058	0.36823	31212.2	0.48807
$1 E+12$	0.07017	1E+10	0.12540	$2 \mathrm{E}+09$	Q 17513	2.3E+08	0.23943	4.9E+07	028807	1E+07	033671	312122	0.44965

Table D-3 Arps Depletion Solutions for Fetkovich Type Curves Figures 5.1-5.4
erpe asplation sondions from proqram

0 vilues	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.0	1
W0	Q00	900	9 do	90	900	90	9 dD	9 CO	ato	Q00	qdo
0.1	0.90484	0.8053	0.90673	0.90817	0.9088	0.90703	0.90745	0.80787	0.90328	0.80809	0.80900
0.5	0.60853	0.6138	0.62092	0.62759	0.83384	0.84	0.64579	0.65134	0.85868	0.68176	0.85887
1	0.36788	0.3855	0.40188	0.41705	0.4312	0.44444	0.45888	0.48858	0.47983	0.48009	0.5
1.5	022313	0.2472	0.26033	0.28087	0.30889	0.32885	034300	0.35862	0.37323	0.38898	04
2	0.13534	0.1615	0.18503	0.20974	0.23005	0.25	0.22972	0.28631	0.30280	0.31854	0.33333
25	0.08208	0.1074	0.13180	0.15184	0.17678	0.19753	0.21715	0.23574	0.25328	0.26992	0.28571
3	0.04879	0.0725	0.08537	0.11771	0.1303	0.16	0.17978	0.18863	0.2168	0.2337	0.25
35	20302	00097	007043	008137	0.11207	0.13223	2.15:73	0.77048	2.18848	2305:2	02222
,	0.01832	0.0348	0.05292	0.07221	0.08174	0.11111	0.13008	0.1485	0.16032	0.18349	0.2
45	0.07111	0.0243	0.04039	0.05786	0.07823	0.08467	0.11298	0.13094	0.14844	0.18541	0.18182
5	0.00374	0.0173	0.00125	0.04716	0.08415	0.06163	0.08021	0.19684	0.13375	0.15044	0.16887
5.5	6.50409	0.0125	0.02449	0.03883	005450	0.07111	0.08786	0.1048	0.12148	0.13788	0.15385
8	0.00248	0.0001	0.0194	003232	0.01894	0.0825	0.0786	0.09487	0.1111	0.12713	0.14288
6.5	0.0015	0.0067	0.01554	0.02718	0.04087	0.05636	0.07074	0.0684	0.10221	0.11788	0.13333
7	0.00091	0.005	0.01258	0.02308	0.03553	0.04838	0.03407	0.07821	0.00453	0.10984	0.125
75	0.00056	0.00037	0.01024	0.01887	0.03125	0.04432	0.05835	0.07295	0.08783	0.10277	0.11765
8	0.00034	0.0028	0.00842	0.01682	0.02788	0.04	0.05341	0.08749	0.08183	0.00853	0.11111
8.5	0.0002	0.0081	0.00897	0.01485	0.02462	0.03028	0.0481	0.00260	0.07872	0.09058	0.10528
8	0.00012	0.0016	0.00581	0.01275	0.02203	0.03308	0.04633	0.05844	0.07207	0.08588	0.1
9.5	7.5E-05	0.0013	0.00488	0.01118	0.01981	0.03025	0.042	0.06465	0.0078	0.08149	0.00524
10	4 SE-06	0.001	0.00412	0.00084	0.01780	0.02778	003904	0.06127	000415	0.07743	0.05091
20	2. 1ECO	2E.05	0.00032	0.00152	0.00412	0.00828	0.01381	0.02089	0.02887	003796	0.04782
30	9.4E-14	1E-06	$59 \mathrm{E}-05$	0.00046	0.00164	0.00391	0.00738	0.01209	0.01780	0.02488	0.03228
40	4.2E-18	1E.07	17 ESO	0.00018	0.00084	0.00227	0.00468	0.00814	0.01284	001809	002439
50	1. GE-22	2E-08	62E.08	9.7E-0	0.00049	0.00148	0.00327	0.00508	0.00084	0.01421	001961
60	8.8E.27	4E-09	2.7E.08	3.SEQS	0.00032	0.00108	0.00843	00048d	$0.0077 t$	0.01165	0.07639
70	$4 E \cdot 31$	9E-10	$13 E .06$	3 4E-06	0.00022	0.00077	0.00189	000374	0.00838	0.00084	0.01408
80	1.8E-36	3E-10	TE.07	2.2E-05	0.00016	0.00058	0.00152	0.0031	0.00642	0.0085	0.01235
80	82E-40	1E-10	4E-07	1 SE-0	0.00012	0.00047	0.00126	0.00283	0.00460	0.00747	0.01089
100	3.7E-44	4E-11	24E97	1.1E-O	9.3E-05	0.00038	0.00108	0.00227	000412	0.00888	0.0000

Table D-4 Equivalent Radial Transient Generalized Solutions Shape Factor 31.62

31.62 Equrvent Recaein Trunsent Region									
logem		1.34421927		1.949557		274635034		334854085	
	c10	76.7585332	76.852982	24866158	448.02358	3968.51412	3050.9477	193117745	192739233
	C1	1.54733087		2.244135		3.16132387		3.85450514	
fekkovich constants									
irfore	Anw2	341017873		1253.4855		7850.84004		31412.7849	
ct		1.55258509		2.2457323	.	316200301		3.85517019	
-2		4.5		1995		1248.5		4899.5	
reo		10	10	20			50	100	
10	∞	10	00°	MD	0×0	4	400	4	- 10
0.01	6.1288	0.00013028	9.4834358	2229E.05	13.754078	2.5262E-08	19.375438	$5.1782 \mathrm{E}-07$	23.6238765
0.1	22488	0.00130282	3.4798375	0.0002229	5.0468109	2.5282E-05	71091851	$5.1782 \mathrm{E}-08$	868801118
1	0.88443	001302829	1.5232389	0.0022888	2.2081838	0.00025282	3.1121021	5.1782E-05	3.79449049
10	0.53382	0.13028207	08281509	0.0222885	1.1981886	0.0025282	1687894	0.00051782	2.05798738
100	0.34558	1.3028207	0.5348068	0.2228851	0.7754833	0.025282	10824271	0.00517818	13318828
1000	0.25086	13.028207	0.3883181	22288515	0.5631881	0.25262002	0.7933658	0.05178188	0.98732881
10000	- 019593	13028207	03031685	22.288515	0.4306834	252520022	0.6193882	0.5178188	0.75521319
100000	-0.16037	1302.8207	0.2481454	222.88515	03508918	252620022	0.5088815	5.17818805	061814699
1000000	- 0.13581	13028.207	0.2008335	2728.8515	0.3043272	252620022	0.4287071	517818805	0.52270044
10000000	- 0.17742	130282.07	0.1816876	22288515	02635063	2528.20022	0.3712026	517818805	045250690
100000000	- 0.10351	13028207	0.1801642	222885.15	0.2322904	25292.0022	03272288	5178.18805	030897983
1 $\mathrm{E}+09$	- 0.002533	13028207	0.1431782	2228851.5	0.2076585	252820.022	0.2925288	517818806	035888892
1E+10	- 0.083653	130282070	0.1294388	22288515	01877286	2526200.22	0.2684542	517818805	0322 M 4082
1E+19	10.076324	1302820095	0.1180985	222885150	0.1712814	25262002.2	0.2412848	517818805	0.2919125
1E+12	20.070173	$13028 \mathrm{E}+10$	0.1085808	2229E+09	0.1574777	258220002	0.2218386	51781880.5	0.27048218

Table D-4 Equivalent Radial Transient Generalized Solutions Shape Factor 31.62 Continued

Table D-5 Depletion Solutions Generalized for Figure 5.9

Now actaptaion of Fetkonch for Other Shapee-Rectungtar $x y=2: 1$ Well Neer Boundary-Figure 5.9

Degretion Regon Steme Vanouak Resarvor Seres

Table D-5 Depletion Solutions Generalized for Figure 5.9 Continued

Table D-5 Depletion Solutions Generalized for Figure 5.9 Continned

logtom	5211560113	10 mm			5.813820107		
cice	7514774837	683073.28		cte	3353175.435	3078874.581	
${ }^{1}$	5.800025098			C1	6.082058451		
Ifekovicn constants				fotkonch constants			
Anw-2	785305.0218			Atwn 2	3141589.512		
ct	5.484808008			c1	6.157755279		
10	124009.5			0	489898.5		
reba 500	500		TeD= 1000		1000		
\pm	\pm	∞	0	15	10	9	ado
100000	0.133071184	0.1586	0.838447424	30000	0.008946743	0.773	1.188501883
130000	0.172892539	0.1488	0.888854049	40000	0011828581	0.1729	1.157058908
180000	0212913895	0.1435	0.880880187	50000	0.014811230	0.1687	1135642319
200000	0.208142388	0.1354	0.812288079	100000	0.028822478	0.1604	1.073408175
240000	0319370842	0.1277	0766075591	200000	0.050649858	0.1518	1.015854473
300000	0.389213563	0.117	0701888008	300000	0.009467433	0.1464	0.979717357
400000	0.532284737	0.1012	$080710 \div 4$	400000	0.119286911	0.1416	0.967505477
500500	0.685355621	0.0875	0.524814748	500000	0.149112389	0.1371	0.917481214
600000	0.788427105	0.0758	0.451528343	600000	0.178834857	01327	0.888036156
800000	1.084589474	0.0685	0.33894962	70000	0.209757345	0.1285	0.850929519
1000000	1330711842	0.0022	0253158884	800000	0.238579822	0.9244	0.832482074
1300000	1729825305	0.0273	0.163773401	900000	0.2884023	0.1204	0.805723837
1600000	2.129138947	0.0178	0.105562852	1000000	0.258224778	0.1168	0780294015
2000000	2.681423884	0.0038	0059780452	1400000	0417514689	0.1024	0.885288785
2400000	3.183708427	0.0053	0032904641	2000000	0.508449550	0.0844	0.584809733
3000000	3.982135527	0.0023	0.013797759	2400000	0.715730467	0.0741	0.408881531
4000000	5.322847368	0.0005	0.008909513	3000000	0.804674334	0.061	0.408215508
5000000	6.653550219	00001	0.000580803	4000000	- 182809112	0.0442	0.295789888
				5000000	1.48112389	0.032	0.21414587
				7000000	2087573446	0.0167	0.111757378
				8400000	2505088138	0.0106	0.07093582
				1000000	298247781	0.0083	0.042158988
				14000000	4.175146893	0.0017	0.011378490
				20000000	5.864495561	0.0004	0002678823
				30000000	2.946743342	0.0007	0,000660200

Table D-5 Depletion Solutions Generalized for Figure 5.9 Continued

logremm	7.813620837			logem	9.813020841		
eter	450873858.2	4230170144		ETE	50802982197	53814627319	
c1	8,904258946			81	1129845895		
reikovich constants				lefkovich constants			
AMW ${ }^{2}$	314159262.2			A/w-2	31415828533		
c1	8. 460340372			C1	10.78292546		
2	490800895			2	5000000000		
rob $=10000$	10000			$\begin{aligned} & \text { nD }=105 \\ & \text { fepetion } \end{aligned}$	100000		
\bigcirc	± 0	90	80	D	10	40	900
3000000	0008858690	0.1283	1.135874805	140000000	0.002473358	01017	1448849875
4000000	0008875508	0.124	1.115288100	200000000	0.003533383	01	1.129645808
5000000	0.011094488	0.1222	1.085088443	240000000	0.004240059	0099	1118348438
8000000	0.013313397	0.121	1.088305332	300000000	0.005300074	0.008	1.107052977
8000000	0.017751196	0.1988	1.068517983	350000000	0.00818342	0.0079	1.098888164
10000000	0.022189898	0.1174	1055828	400000000	0.007058785	00868	1.091237935
12000000	0025626794	0.1162	1045132880	500000000	0.008833457	00058	1.079941478
14000000	0.081054593	0.1152	1036138831	600000000	0.010800148	00048	1.070904309
18000000	0.035502382	0.1143	1028043797	700000000	0.01238884	00041	1082986787
18000000	0.089940191	01135	1.00084838	800000000	0.014133531	0.0035	1058218812
20000000	0.04437798	0.1128	1014552409	840000000	0014840207	00933	105395862
24000000	0.053253588	0.1115	1002859872	900000000	0.015900222	0093	1.050570882
30000000	0.086586885	0.1098	0987569632	1000000000	0.017888914	0.0925	1000822453
40000000	008875598	0.1071	0.883286133	1400000000	0.024733679	0.0011	102010741
50000000	0.110944975	0.106	0.944397189	2000000000	0035333827	0.0096	1012162722
70000000	0.155322965	0.0008	0.897627043	3000000000	0.053000741	0.0877	0.00080845
80000000	0.17751188	0.0075	0.876940247	4000000000	0.070867855	0.0881	0.972825116
90000000	0.189700958	00852	0.858253452	5000000000	0.089334588	0.0845	0.954550781
100000000	0.22188988	0.083	0.836468062	8000000000	0.108001482	00029	0.83047844
120000000	028828794	0.0887	0.797790789	7000000000	0.123888398	0.0814	0.918531759
140000000	0.31084593	00846	0.780914307	8000000000	0.141335300	0.0790	0.50258707
170000000	0.377212916	0.0788	0.708747805	-9000000000	0.150002223	00784	0.885642382
200000000	0.443778909	0.0734	0.880178607	10000000000	0.178608137	0077	0.868827338
240000000	0.532535881	0.0888	0.600818490	13000000000	0.229080878	0.0728	0.822382212
300000000	0.685089851	0.058	0521667019	18000000000	0.282670819	0.0889	0.778328002
400000000	0887550801	0.0458	0.41183700	20000000000	0.353338273	0.0839	0.721843727
500000000	1.109449752	00362	0.325502174	24000000000	0.424005928	0.0594	0.871009882
600000000	1.331338702	0.0286	0.257235808	313000000000	0.53000741	0.0531	0.50984197
700000000	1553229852	0.0228	0.203270252	240000000000	0.708678567	0.041	0.48817386
800000000	1.775119602	0.0178	0.180097809	-50000000000	0.88334588	0.0388	0.413450308
1000000000	2218800503	0.0119	0.009836274	4 60000000000	1.05001482	0.0304	0.34341235
1400000000	3.108450304	0.0043	0.038875313	370000000000	1.236683057	0.0053	0.285000419
2000000000	4.437796008	0.0011	0.000893885	58000000000	1.413353094	0.021	0.237225638
300000000	6.858688509	0.0001	0000809128	6 10000000000	1.56000023	0.0174	0.10855838
				1E+11	1.768801307	0.0145	0.16378685
				$1.3 \mathrm{E}+11$	225080877	0.0083	0.003780800

Table D-6 Depletion Solutions Generalized for Figure 5.7 Continued

New actaptanon of Febrouch for rectengular shape $x y=21$ Well at Centar Figure 5.7
Iffinter vaines from irifout, finve values from table C-S Lee book
Deplation Region Stams Vanous Reservar Sizes

Table D-6 Depletion Solutions Generalized for Figure 5.7 Continued

Table D-6 Depletion Solutions Generalized for Figure 5.7 Continued

logam	4.907283231			logem 5.508354525			
cier	707804.0059	683073.28 elc2			3177881. 198	3078874.581	
Ct	5.548785238	C1			6.341817994		
fexkovich corstaris		lekovich consiant					
Anw ${ }^{2}$	785305.0218		Anw 2		3141589512		
c1	5.484608098		ct		6.157755279		
2	1240995		Q		490999.5		
$1 \sim 0=500$	500		$180=1000$		1000		
D	10	90	∞	(1)	40	Q	∞
100000	0.141321968	0.1588	0.884598788	30000	0.009440846	0.1773	1.12440439
130000	0.18371858	0.1498	0.846188029	40000	0.012587795	0.1729	1008500331
160000	0.228115151	0.1435	0.810000882	50000	0015734744	0.1697	
200000	0.282843838	0.1354	0.784845521	100000	003440048		1076200514
240000						Q.180	101727808
240000	0.338172728	0.1277	0.724349875	200000	0082938876	0.1516	0.988887971
300000	0.423966908	0.117	0.680907873	300000	0.094408464	01464	0.928442154
400000	0.555287877	0.9012	0.571857008	400000	0.125877882	01416	0.898001428
500000	0.708609846	0.0875	0494288708	500000	0.15734744	0.1371	0.869463247
000000	0.847931815	00758	0.427048164	600000	0.188818827	0.1327	0841558248
800000	1.130575754	00565	0.310158368	700000	0.220288415	01285	0.814823612
1000000	1413219692	00422	0.238378737	800000	0.251753903	01244	0.789822158
1300000	- 8371858	00073	0.154211837	900000	0.283225381	01204	0.783554886
1800000	2.281151507	0.0176	000041862	1000000	0.314694879	0.1168	0.739455978
2000000	2.828439384	00098	0.055358095	1400000	0.440572831	0.1024	0.649402163
2400000	3.301727289	00055	0.031088318	2000000	0.629389758	0.0844	0.535248939
3000000	4.239050076	00023	0.012982208	2400000	0.75526771	0.0741	0.489928713
+000000	5.652878788	00005	0.002824300	3000000	0.944084837	0.081	0.388850898
5000000	706808846	0.0009	0.000584879	4000000	1258779516	00042	0.280308355
				5000000	1.573474305	0.032	0.202938176
				1000000	2202884153	0.0167	0.10500836
				8400000	2.813438584	0.0706	0087223271
				10000000	3.48894879	0.0083	0.030863163
				14000000	4.405728308	00017	0010781091
				20000000	6.29389758	0.0004	0000538727
				3000000	9.44084637	0.0001	0.000834182

Table D-6 Depletion Solutions Generalized for Figure 5.7 Continued

logrem	7.500354965				9.509354836	53814627319	
erce	433124417.1	423077014.4	Cl^{2}		54848038085		
${ }^{\circ}$	8.644018489	C1			10.94621849		
Hetkowch constarts		felkowch constarts					
ATwn	3141582822	ATw/2			31415028533		
C1	8480340372	c1			10.78292546		
2	48900900.5	2			5000000000		
$1 \mathrm{CO}=10000$	10000	$\begin{aligned} & \text { roD }=105 \\ & \text { cepunton } \end{aligned}$			100000		
\pm	60	90	$\infty 0$	©	10	90	aco
3000000	0008928416	0.1263	1.091739535	140000000	0.002532507	0.1017	1113230421
4000000	0.009235222	0.124	1.071858293	200000000	0.003846439	0.1	1094621848
5000000	0.011544027	0.1222	1058290059	240000000	0.004375726	0.009	1.083675631
6000000	0.013852832	0.121	1045926237	300000000	0.005469658	0.058	1.072729412
8000000	0018470443	0.1188	1028809386	350000000	0.008381287	0.0979	1.082877848
10000000	0023088054	0.1174	1.014807771	400000000	0.007292877	0.0086	1.057404706
12000000	0.027705885	01162	1.004434948	500000000	0.009118008	0.0058	1046458488
14000000	0052323276	0.1152	0.90578093	600000000	0.010838316	0.0948	1.037701513
18000000	0.036840837	0.143	0.888011313	700000000	0.012762535	0.0941	103003816
18000000	0.041538487	0.1135	0.981058088	800000000	0014585754	00005	1023671429
20000000	0046176108	0.1128	0975045286	840000000	0.015315042	00033	1021282185
24000000	0.05541133	0.1115	0.983808081	900000000	0.018409873	0.003	101799832
30000000	0.089284162	01008	0.94817323	1000000000	0.018232183	0.0885	1012525211
40000000	0.002352217	0.1071	0.92577438	1400000000	0.02552507	0.0011	0.987200505
50000000	0.15540271	0.106	0.807621941	2000000000	00038484385	0.0808	0.880781977
70000000	0.161616375	00098	0.862673045	3000000000	0.054608578	0.0877	0.859983382
80000000	0.184704433	0.0975	0.842781803	4000000000	0072928771	0.0881	0.942489412
90000000	0.207782487	0.0052	082291058	5000000000	0.001180984	0.0845	0.924935483
100000000	0.230890542	0.093	0.803683718	6000000000	0.100308158	0.0828	0.907441513
120000000	0.27705685	00887	0.78872444	7000000000	0.127625348	0.0814	0.881022185
140000000	0.323238758	0084	0.731283884	8000000000	0.145857542	0.0798	0.874602858
170000000	0.302498921	0.0788	0.881148857	9000000000	0.184098734	0.0784	0.8581835
200000000	0461761083	0.0734	0.834470957	10000000000	0.182321927	0077	284285882
240000000	0.5541133	0.0088	0.577420435	13000000000	0.237078505	0.0728	0.798894700
300000000	0.668841625	0.058	0.501353072	18000000000	0.291715083	0.0889	0.75419445
400000000	0.923522188	0.0458	0.308608047	20000000000	0.384843854	0.0839	0.60046330
500000000	1.154402708	0.0362	0.312913400	24000000000	0.437572825	0.0504	0.65020537
600000000	1.38528325	0.0288	0.247218989	30000000000	0.516885781	0.0531	0.581244202
700000000	1618163791	0.022	0.185354818	40000000000	0.729287700	0.0441	0.482728230
800000000	1847044333	0.0178	0.153883578	50000000000	0.911608638	0.0386	0.40063159
1000000000	230880546	0.0111	0.006948605	80000000000	1003581583	0.0304	0.35278504
1400000000	3232327583	0.0043	0.03716028	70000000000	127825349	0.0253	0.27883032
2000000000	4.817810832	0.0011	0.00960812	80000000000	1458575417	0.021	0.22987058
3000000000	8.828498249	0.0001	0.000884402	10000000000	184089734	0.0174	0.180488202
				1E+11	1.823219271	0.0145	0.158720168
				1.3E+11	2370185053	0.0083	0.000853813
				1. $6 E+11$	2917150834	0.0048	0.052541848

Table D-7 Depletion Solutions Generalized for Figure 5.8

New actapemen of Fexconch for rectungutar shape xy=4:1 Figure 5.8
infinte values from infqut, finte values from tible c-5 Lee book
Depiaton Regon Stens Venous Rejervar Sizes

Table D-7 Depletion Solutions Generalized for Figure 5.8 Continued

Table D-7 Depletion Solutions Generalized for Figure 5.8 Continued

logrom	5.515782672		logram		6.117843888		
cter	796344.8187	683073.28		C122	3528845. 282	3078874.581	
-	8.348217433			c1	7002250180		
felkowen constarts				felikonch constans			
Anw-2	785395.0218			ATw 2	3141589.512		
c	5.464808008			c1	8.157755278		
2	124898.5			2	4990995		
racosen	500			$\mathrm{raO}=1000$	1000		
\square	± 10	90	0×0	©	4 CD	9	00
100000	0.125731629	0.586	0.90928745	30000	0.008501848	0.1773	1248590959
130000	0.183451118	0.1408	0.981112772	40000	0.011336785	0.1729	1.247605058
180000	0.201170607	0.1435	0.911112702	50000	0014160744	0.1697	1195088857
200000	0.251403250	0.1354	0.85068404	100000	0.028338488	0.1604	112957683
240000	0.301755911	0.1277	0810795088	200000	0058878976	0.1518	1089013578
300000	0.377194888	0.117	0.74285844	300000	0085018464	01464	1030885428
400000	0.502928518	0.1012	0.842540804	400000	0.113357952	01418	0.967182827
500000	0.628658147	0.0875	0.555558525	500000	0.14190744	09371	0.965492501
600000	0.754389776	0.0758	0.480000838	600000	0.170038028	0.1327	0.9345006
800000	1005853035	0.0585	0.358730785	700000	0.158378416	0.1285	0.004929149
1000000	1257318294	00422	0.287938978	800000	0.228715804	01244	0878055824
1300000	1834511182	0.0273	0.173333836	800000	0.255055382	0.1204	0847898923
1600000	2.011708071	0.0178	0.11174627	1000000	0.28339488	0.1188	0821128372
2000000	2.514032588	0.0098	0062222331	1400000	0.398752832	0.1084	0721128419
2400000	3.017950106	0.0055	0.034920696	2000000	050878978	00844	0594385916
3000000	3771948882	0.0023	0.0148032	2400000	0680147712	0.0741	0.521830739
4000000	5029285178	0.0005	0.003174609	3000000	085018464	0.081	0429577282
5000000	6.28858147	00001	0.000634922	4 4000000	$\uparrow 133578519$	0.0442	0311287458
				5000000	1418974380	0032	0.225352006
				7000000	1.983784150	00167	0117605578
				8400000	2.380516091	0.0108	0074847852
				10000000	2.833048796	00083	004388178
,				14000000	3.987528318	0.0017	0.011971825
				20000000	5.687897597	0.0004	00028188
				30000000	0.501846308	0.0001	0.000704225

Table D-7 Depletion Solutions Generalized for Figure 5.8 Continued

109pam	B.177844386	logherm			10.1173444	53814827319	
cter	408220858.2	4230170144	ctes		58357682217		
ct	9.344450884	ct			11.84685080		
rexcowch constarss		tukovch conatants					
Anw ${ }^{\text {a }}$	314159262.2	A/w-2			37415026533		
c1	8.480340372	c1			10.76282546		
12	48999990.5	02			5000000000		
1200 $=10000$	10000	$\begin{aligned} & \text { reol } 1155 \\ & \text { cegivecon } \end{aligned}$			100000		
\square	10	90	00	0	40	∞	000
3000000	0.008407238	0.1283	1.180204129	140000000	0.002398889	0.1017	1.184484375
4000000	0.008542977	0.124	1.158711885	200000000	0.003427141	01	1184885089
5000000	0.010878729	0.1222	1.141891874	240000000	0.004112500	0.009	1.153018418
6000000	0.012814485	0.121	1.130678533	300000000	0.005140719	0.008	1.141371788
8000000	0017005954	0.1182	1.110120741	350000000	0.005987497	0.0971	1130888782
10000000	0.021367482	0.1174	109703851	400000000	0003854282	00088	1.125088457
12000000	0.025628831	0.1162	1.085825160	500000000	0.008567652	00056	1.113418808
14000000	0.029500418	0.1152	1076480719	600000000	0.010281423	0.0048	1.104102485
16000000	0.034171008	0.1143	1088070713	700000000	0.011904983	00047	100508883
18000000	0038443308	0.1135	1000585153	800000000	0.013708564	0.0835	10898818391
20000000	0042714885	0.1128	1054054037	840000000	0.014393962	00083	1088832509
24000000	0.051257832	0.1115	1041908251	\$00000000	0.015422134	0.003	1083138514
30000000	0.084072327	0.1098	1028080838	1000000000	0017135705	00825	1077315189
40000000	0.08512977	0.1071	1000790888	1400000000	0.023809968	00911	1081009e78
50000000	0106787212	0.105	0891187322	2000000000	0.034271400	00898	; 043539902
70000000	0.1405020097	0.0008	0.642578178	3000000000	0.051407114	0.0877	1021411288
80000000	0.170859539	00075	0.91108382	4000000000	0.088542818	0.0081	1002776624
90000000	0182216989	0.0962	0.889581705	5000000000	0.095678573	00045	0894141983
100000000	0.213574424	0.003	0.869033914	6000000000	0.102814227	00889	0.885507342
120000000	0.256280309	0.0887	0.828852776	7000000000	0.119949832	0.0814	0948037388
140000000	0.290004193	00846	0.760540528	- 8000000000	0.137085636	00798	0.83056730
170000000	0.36307852	0.0788	0.736342714	- 9000000000	0.154221344	0.0784	0.013097414
200000000	0.427148848	0.0134	0.88589288	10000000000	0.171357045	0.071	0808792108
240000000	0.512578617	0.0888	0.024200308	13000000000	0.222784150	0.0728	084787617
300000000	0.840723271	0058	0.54187814	16000000000	0.274171273	0.0889	0802454232
400000000	0.854297605	0.0458	0.47873841	120000000000	0.342774001	0.0838	0.741220978
500000000	1087872119	0.0362	0.338200115	1 24000000000	0.411258809	00504	0.681831051
600000000	1281446543	0.0286	0.26725129	20000000000	0.514071136	0.0531	0.818137152
700000000	1496020068	0.0228	0.211184585	1 40000000000	0685138182	0.041	0.513817296
800000000	1.70858639	0.0178	0.16833122	250000000000	0.858785227	0.0388	0.428257415
1000000000	2136741238	0.0191	0.108723403	300000000000	1.028102272	0.0504	0.354058181
1400000000	2900041803	0.0043	0.040181138	8 70000000000	1.190490318	0.0253	0.294630282
2000000000	4271488478	0.0011	0.010278868	680000000000	1.370858383	0.621	0.24457863
3000000000	6.407232713	0.0001	0.000934445	590000000000	1.502213408	0.0774	0.202851722
				1E+19	1.713570454	0.0145	0.168878435
				1.3E+11	222784150	0.0083	0.008667201
				$16 E+11$	2.741712726	0.0048	0.055903823

Table D-8 Derivative Solutions for Type Curve

ct		1.8025851		ct		2.48673227		c1		3.412023	
6	0°	QDO	वत"	\square	0°	$00{ }^{\circ}$	Q0.0]	\square°	$\oplus{ }^{\circ}$	90 d	qDe ${ }^{-10}$
897E-05				6.03E.05				700E-05			
1.01E.04	29775.045	53672.053	5.41E+00	1.00E-04	13000.0852	3244.7321	3.28E+00	9.38E-05	5179.71844	17873.52	$168 E+00$
1.12E-04	28155.888	47148.211	5.28E+00	121E-94	9628.41694	24524.1050	298E+00	1.17E-04	3875.76078	12511.78	1.47E $+\infty$
2.24E-04	10875.902	19244.222	4.31E+00	1.41E-04	7772.58857	15398.2502	273E+00	1.41E-O4	2746.94690	9270.285	1.30E+C0
338E-O4	5241.0200	2447.3868	$318 E+00$	1.61E.04	6350.84695	158495148	255E+00	1.84E-OS	2222.341	7582.679	$1.25 E+\infty$
4.48E-04	3299.2985	5947.2683	267E+00	1.81E.04	5319.76953	13276.7206	240E+00	1.88E-04	1828.57308	8580.338	123E+00
5.60E.04	2329.7772	4199.6217	236E+00	201EO	4676.77a78	11871.977	234E+00	235E-04	1397.80888	4780.355	1 12E+00
6.72E-04	1780.9755	3174.3081	2.13E+00	4.02E.04	1023.1715	4709.72118	1.93E+00	4.00E-04	571.768351	1960.887	0.9152
7 S5E-04	1382.854	2510.7392	1.97E $+\infty$	603E-04	952.946898	2378.30481	$143 E+00$	7 OAE-OS	290444828	991.0044	088735
8.97E-04	1138.0888	2057.4622	1.84E+00	8.03E-04	604.887328	1500.62185	$1.21 \mathrm{E}+00$	9.38E-04	187.61749	840.1347	0.8008
1.01 E 03	183.16004	1718.1521	1.73E+00	1.00E.03	429.33879	10714007	1.00E+00	1.17E-03	135.375153	481.9031	0.54172
1.12E-03	83848814	1511.408	$1.60 \mathrm{E}+00$	121E-03	317272174	791826404	0.95423	$141 \mathrm{E}-03$	104288374	355.7695	0.50071
2.24E.03	344.65141	621.2836	$1.30 \mathrm{E}+\infty 0$	1.41E.03	250.548272	647762990	0.91000	1.84E-03	83.7849334	285.8781	0.46838
$3.38 \mathrm{E}-03$	170.74072	307.77487	1.03E+00	1.61E-C3	225281315	582191934	0.90333	1.88E-03	69.4728752	237.0424	0.44481
$448 E-03$	108.40747	185.41388	0.87802	201E.03	163.252198	407433778	0.81828	211E-03	58.8900003	201.2419	0.42482
5.80E-03	76.948077	138.70728	0.77728	4.00503	68.7813323	168.688328	0.88940	235E.03	52.3375457	178.5760	0.41887
8.72E.03	56.875003	102.5222	0.88830	6.03E-03	33.8061586	84.8181933	0.50086	4.608 .03	22.9781905	78.40211	0.3878
7 85E-03	46504399	83.828122	0.65794	2.03E-03	21.9055018	54.6702889	0.43921	7048.08	121825843	41.58719	0.2925
$8.97 \mathrm{E}-03$	40.377147	72.783243	0.85258	$1.00 E 02$	158198759	30.4821749	0.38848	$938 \mathrm{E}-03$	8.08422472	2758358	0.2588
1.12E-02	29.2801	52743821	0.5911	121E-02	12.178453	30.3941582	0.38828	1.17E-08	5.94734046	20.29246	0.23789
2.24E02	11.868844	21.570883	0.48349	1.41E.02	9.78553815	24.4220784	034335	1.41E-C2	4.84812298	15.85974	0.22321
$3.36 \mathrm{E}-2$	6.0783893	10.858814	0.38830	181E02	8. 1001879	20.238362	0.32519	1.8AE-CP	378618075	12.97857	0.21211
448 CQ	3.9879484	70804813	0.31741	181 E - CR^{1}	6.88429028	17.1813454	0.31057	1.88E.CO	317368036	10.82867	0.2032
560E@	2833888	5.1005017	0.28826	2.01E-02	8.19618873	15.2813898	0.30857	2.11E-Q	27178362	9.27333	0.99578
8.72E@	2.1828838	3.9348334	0.28459	4.02E-02	288428063	88091959	0.2891	235E.02	2.42885006	8.287432	0.19439
786 E -2	1.7548086	31629935	0.24814	6.03E-02	142343808	3.56252021	0.21405	4.00E.02	11138237	3.800733	0.1783
8.97E-C2	1.4533199	2.6197328	0.23488	1.03E-02	0.04712208	23837831	0.1698	7005.02	0.61879097	2.111329	0.14857
0.10087	12380687	2.2281154	0.22475	100 E .09	0.70752129	1.78578371	0.17732	938 E -2	0.43894797	1480877	0.43988
0.11207	1. 1062800	2.9923262	-0.22328	0.12051	0.57221573	148808725	0.1721	$1.17 E \cdot 01$	0.3537087	1.208855	0.14154
0.22414	0.5045577	1.0717409	0.24022	0.14050	048187007	122782559	0.17262	0.14074	0.31184808	1.084374	0.1488
0.33822	04441272	0.80057	0.28017	0.18088	0.44188006	1.10231518	0.17712	0.16419	0.28858303	0.984052	0.18187
				0.18076	0.40883349	1.02041389	0.18445	0.18765	0.27386021	0.934772	0.17541
				0.20084	0.38885093	0.97288355	0.19541	0.21119	0.26384858	0.899578	0.18891
				0.40188	0.29780231	0.74323483	0.29855	0.23458	025800878	0.873508	0.20480

Table D-8 Derivative Solutions For Type Curve Continued

rec				0				100		1000	
01		4.10517		el		4.79831737				6. 407755	
10	$\square{ }^{\circ}$	000	प0¢	10	Φ	900	90.00	\square	0°	Q0 ${ }^{\text {d }}$	90×76
3.41E-05				$729 E-08$				6.24E-05		2562252	0.27644
390E-05	9286804	38123.00	$1.49 \mathrm{E}+00$	8.3AE.08	43018.727	208336.832	1.74E+00	0.38E-05	480.731		
4.87E.05	6727.817	27818.83	$1.35 E+00$	1.04E-08	314579456	15000.5.207	1.573	1.25E-04	312.7468	2004.005	0.2502
9.74E.05	2752.72	11300.39	1.10E+00	2.09E-05	8580.3808	41171.3902	1.2871	$156 \mathrm{E}-04$	234.0113	1499.487	0.23401
1.48E-04	1397.86	5738.455	0.83879	$3.13 E-05$	480261508	23624.3039	0.88054	1.87E-04	185.2384	1180.940	0.22228
$1.95 \mathrm{E}-94$	903.1022	3707.388	0.72257	4.17E-05	3378.34908	16210.391	0.84481	2.18E-04	152.4824	977.0890	0.21348
2.44 E .04	651.9838	2878.504	085205	5.21E.05	2539.956	12187.515	0.782	2.50E-04	128.7612	825.0701	0.20802
2.92E-04	501.9478	2080.58	0.80239	6.25E-05	2010.8371	864983457	0.70381	2.81E-04	111.2564	712.8974	0.20026
3.41E-94	400.1924	1655.173	0.58453	7 2AE-05	165012862	791783122	0.88007	3.12E-04	100.2208	642.1889	0.20044
3.50E-24	334.4677	1373047	0.5352	8.34E.05	1390.18073	0870.57832	0.6256	6.24E-94	4732527	303.2488	0.1893
4.39E.04	283.983	1186.717	0.51118	9.38E-05	1194.00202	5729.30257	0.50708	9.38E-04	2882487	171.8872	0.18096
4.87E-94	251.7544	1033485	0.50358	$1.04 \mathrm{E}-04$	588.789801	2825.20033	0.5888	125E-03	18.51982	118.6882	0.1482
9.74E-04	103.1395	423.4053	0.4728	208E-04	344.88851	1854.78858	0.51732	$1.58 E-03$	14.00108	89.71549	0.14001
1.48E-03	58.88818	240.8429	0.35204	$313 \mathrm{E}-04$	206.721436	987.118741	0.41145	1.87E-03	11.20356	7178063	0.13438
1950.03	38.894	159.6865	0.31119	4.17E-04	145.600081	888.635385	0.38401	2.18E-03	0.299093	50.58825	0.13019
2.4E-03	28.62409	197.5088	0.28827	5.21E-04	111.5814	535.402972	0.33475	250E-03	7900544	50.62475	0.12841
2928-03	2239803	91.94773	0.2888	6.25E-04	80.7408875	430.601298	0.3141	2.81E-03	8.850546	4380682	0.12331
341E-03	19.24733	74.90838	0.25549	729 E -04	74.570008	357814403	0.29818	312 E 00	6.175035	39.56811	0.1235
3.908 .03	15.27353	6270043	0.2444	$8.33 \mathrm{E}-04$	634852280	304.52831	0.2858	6.24E-03	2.997517	1920738	0.1199
$4.30 \mathrm{E}-03$	13.073	53.88688	0.23534	9.38E-04	56.0884037	234.236878	0.27538	9.36E-03	1.732491	11.10138	0.10395
$4.87 \mathrm{E}-03$	1169381	48.00500	0.2339	$1.04 E-03$	27.3235287	137.108953	0.27324	1.25E.02	1212513	7780483	0.097
9.74E-03	5.358458	22.00148	0.2144	208E-03	16.7087767	80.1844160	0.25081	0.01561	0.825080	5.927592	0.08251
$146 E-08$	2952241	12.11945	0.17715	3.13E-03	10.3488207	49.8817245	0.207	0.01873	0.742454	4.757462	0.08909
$195 \mathrm{E}-12$	2002137	3219087	016019	$4.17 E-03$	748579822	359672188	0.1874	002185	0.619928	3.972356	000879
24AE-02	1499848	615713	0.15	$5.215-03$	584158548	28.0298851	0.17525	0.02497	0.530038	3.386358	008481
2.225-02	-187308	4.874681	0.1425	6.25E-03	4.74885862	227848019	0.1682	0.02800	0.456888	2.92122	0.08208
341E02	0.977398	4012373	0.13885	$7296-03$	3.99838277	19.1855095	015094	0.03121	0.475797	2.864328	0.08316
3SOE 08	0.62742	3.388709	0.1324	9.34E-.03	3.43992207	16.5058378	0.1548	0.08242	0.224324	1437412	0.08073
	0.712429	2.92461	0.12825	$938 \mathrm{E}-03$	2.98340432	14.3776089	014083	0.00384	0.184171	1051987	0.0085
487 ECO	0.641935	2.635252	0.1284	1.04E-02	1.48337413	710588300	0.14934	0.12485	0.148073	0.955226	0.11828
974ECO2	0338688	136207	0.13488	200E-02	0.94530184	4.53585823	0.1418	0.15808	0.142411	0.992534	0.14249
$148 E-01$	0.245045	1005952	0.14704	313E-02	0.00223957	2.88973858	0.12045	0.18727	0.137536	0.881294	0.16504
0.1949	0.220623	0.905685	0.17852	417 E -2	0.44398806	213030556	0.111	0.21849	0.133111	0.852945	0.18836
0.24362	0.207549	0.852024	0.20757	5.21E-02	0.34359405	1.64887329	0.10672	0.2487	0.128838	0.825557	0.20814
0.29234	0.198924	0.808408	0.23833	C.25E-02	0.2940786	1.41108247	0.10308	028097	0.124811	0.799758	0.22408
0.34107	0.187101	0.788083	0.28197	$729 \mathrm{E}-02$	0.28198232	1.25712229	010293	031212	0.121126	0.77814	0.24225
0.38879	0.177627	0.729188	0.28423	$8.34 \mathrm{E}-02$	0.24088121	1.15478889	0.1048				
				$9.38 \mathrm{E}-02$	0.22898505	1.05864096	0.1083				
				0.10421	0.18522678	0.83977893	0.11419				
				0.20841	0.16387454	0.78832205	0.18523				
				0.31262	0.14694745	0.70510052	0.24582				
				0.41682			0.2939				

Table D-8 Derivative Solutions For Type Curve Continued

cis		$\begin{array}{r} 10000 \\ 8.71034037 \end{array}$	$\begin{aligned} & \infty \\ & 0 \\ & \hline 1 \end{aligned}$			$\begin{array}{r} 100000 \\ 11.0129255 \end{array}$	प00
0	\square	900	9 Cos	0	\square°	QDo	
1.34EES				728E-96			
207E.05	8925598	8122.91314	0.16788	9.08E.08	1120.1	12335.6314	0.11201
230E-05	843.9079	7350.72514	0.16878	109E.05	805.11	908787812	0.10081
4.50E.05	4075038	3549.48897	0.103	127E-05	757.52	834251101	0.10806
688E-05	235.4888	2051.27461	0.1413	1.45E-05	850.02	7158.50031	0.104
9.18E-05	164.4873	1432.73894	0.13150	183E-05	570.02	6277.53304	0.1028
1.15E-04	125.7357	1096.20077	0.12574	1.82E-05	514.56	5888.87885	0.10331
1.38E-04	101.0063	879.790688	0.12121	363E-06	256.75	2827.58532	0.1027
161E-04	84.25636	733.901574	0.11788	5.45E-05	152.25	1678.73134	0.00135
1.84E-04	12.00814	627197897	0.11521	7.28E-08	107.75	1186.62757	0.0882
207EOA	62.75584	548.624726	0.41296	2.08E-0	83.255	916.885099	0.08326
230E-04	58.94053	406.97143	0.14388	1.00E-04	67502	743.38207	0.081
4.58E-04	2795088	243458296	0.1118	$127 \mathrm{E}-94$	56.501	622.248088	00791
6806-0a	18.30958	112.345044	0.0084	$1.45 E 04$	48.751	538.894273	$n 078$
$9.18 E-04$	11.54836	100.508835	0.0024	: $83 E-04$	48.005	529.88885	0.07895
1.15E-03	8874297	72981440	0.08875	$1.82 \mathrm{E}-04$	42.91	472.901371	0.07729
1.38E-03	7150360	02.2820843	0.08881	3.63E-04	38.501	428.40859	0.0778
1.61E-03	5.975302	52.040011	0.08388	5.45E-04	17437	182.037884	0.08975
$184 E \sim 3$	5.150242	4.8803828	0.0824	7.2BE-OA	11.087	121.875616	0.083
207E-03	4.500243	30.1988451	0.081	9.08E-04	8.0312	88.4474546	0.08426
2.30E.03	4.057488	35.3421018	0.08115	1.000 .03	8.2404	88.7253585	0.0824
4.50E-03	2009094	17.8819380	0.0812	$1.27 E-\infty$	5.1043	58.2132898	0.08125
8.00603	1202477	10.4730053	0.07215	$1.45 E .03$	4.3144	475141588	0.0804
$018 E .03$	0.854948	74680422	0.0884	1.63E03	37407	41.1983108	0.05885
$115 E .02$	0.66748	572850178	0.08575	$1.82 \mathrm{E}-13$	3.3789	372222222	0.08084
$1.388-02$	0.532531	4.63852788	0.00391	3.03E-03	3.05	335097577	0069
181 E .02	0.450024	3.81086561	0.083	$5.45 E-13$	13782	15.156521	0.05505
$18 \mathrm{EEP2}$	0.385018	3.35383028	0.0898	728510	0.8733	8.81803197	0.0524
207E-02	0.335018	291812213	0.0803	9.08 E -13	0.6375	702114478	0.059
0.022981	0.304823	205511084	0.06088	100E-C2	0.115	457075091	0.0489
0.045822	0.166890	145374788	0.08878	0.012712	0.35	3.85462565	0048
0088884	0.122848	107004529	0.07371	0.014528	0.3605	33314878	0.0484
0.081845	0.112087	0.97814450	0.08805	0.01634	0.285	29185022	0.0477
0.11481	0.10778	0.8389426	0.1078	0.01818	0.2419	20836538	0.04837
0.1377	0.105008	0.81464034	0.12809	0008321	0.1324	1.4580821	0.05298
0.16073	0.102508	0.80283381	0.14351	0.054481	0.008	1.07955087	0.05882
0.18369	0.100058	0.87152267	0.16009	0.072812	0.0807	098758294	0.07174
0.20805	0.087778	0.85188159	0.176	0080802	0.0886	0.95380058	0.08861
0.22961	0005851	083315187	0.1813	0.10888	0.0848	0.93346182	0.10171
0.45022	0.078168	0.68345107	0.30407	0.12712	0.0832	0.9157489	0.11841
				0.14520	0.0816	0.80812775	0.13048
				0.1834	0.0801	0.88215850	0.14418
				0.1816	0.0788	0.88734581	0.15751
				0.38321	0.0057	0.72382388	0.2529
				0.5481	0.0546	0.60131056	0.3276
				0.72812	0.0454	0.46051819	0.36280
				0.90802	0.0377	0.4148587	0.375
				$100 \mathrm{E}+00$	0.0313	0.34400162	0.37528

Table D-9 Arps Derivative Solutions For Type Curve

bvies	0	0.1	02	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
0	9 Octid										
0.1	0.05048374	0.08063237	0.0888	0.08798	0.087173	0.088384	0.08561	0.084848	0.0841	0.08338591	0.08284
0.5	0.30328533	0.29233964	0.28224	0.27286	0.234141	0.250	0.24838	0.241238	0.234521	0.228194	0.22282
1	0.38787944	0.3504038	0.3348	0.32081	0.308009	0.298280	0.28555	0.275638	0.286483	0.25794088	0.25
1.5	0.33460524	0.32241483	0.31076	02998	0.288515	0.279883	027088	0.282407	0.254472	0.24701639	0.24
2	0.27087057	0.28017597	0.285e2	0.26092	0.255600	0.25	0.24429	0.238594	0.232891	022752531	022222
2.5	0.2052125	0.21474836	0.21048	0.22119	0.220971	0.219079	0.21745	0.214284	0.211065	0.20783347	0.20408
3	0.14938121	0.16739573	0.17881	0.18588	0.180951	0.192	0.19262	0.182227	0.191115	0.18989012	0.1875
3.5	0.10588084	0.12894285	0.145	0.158	0.163629	0.168298	0.17131	0.772958	0.173802	0.77350014	0.17284
4)	0.07325256	0.00877804	0.1778	0.93129	0.141141	0.148148	0.15303	0.15632	0.158398	0.15053285	0.18
4.5	0.04898048	0.07553783	0.09585	0.11098	0.122507	0.131088	0.13741	Q 0.141884	0.145214	0.14730819	0.14878
5	0.03388973	0.0578061	0.07813	0.09431	0.108817	0.118618	0.12402	0.129598	0.133748	0.13876725	0.13889
5.5	0.02247724	0.04433168	0.08413	0.08050	0.003829	0.104296	0.11248	0.118847	0.12373	0.12742989	0.13018 ${ }^{1}$
6	001487251	0.03410805	0.05292	0.00928	0082789	0.09375	0.10252	0.109468	0.114931	011818330	012245
0.5	0.00977235	0.02333844	0.04381	0.06084	$0.073-27$	0.084673	0.00388	0.101238	0.10716	0.11188074	0.11558
7	0.00638317	0.0201249	0.08683	0.05189	0.086442	0.078878	0.00825	0.003979	0.100250	0.10532406	0.10938
75	0.00414813	0.01590898	0.03072	0.04538	0058594	0.009981	0.07957	0.087541	0.0941	0.00840857	010381
8	0.0028837	0.0124478	0.0259	000089	0.052889	0.054	0.07367	0.081803	0.088577	0.00417322	0.0987
8.5	0.00172948	0.0097843	0.02194	0.03508	0.04757	0.058741	0.08812	0.078686	0.0838	0.08038838	003418
9	0.00111080	0.00772597	0.01868	003105	0.043111	0.054085	0.08374	0.072045	0078087	008503538	009
$950 \mathrm{E}+00$	0.00071100	0.00812834	0.01597	002759	0038208	0.049971	0.05955	0.087872	0.075007	0.08108392	0.00817
$1.00 E+01$	0.000434	0.00488281	0.01372	002461	0.03577	0.048296	0.05677	0.084080	0.071278	0.07742637	0.08264
200E+01	4. 1223E-08	00001129	000128	0.00435	0009145	0.015028	0.0814	0.027849	0.034082	0.03894285	0.04535
$300 \mathrm{E}+01$	28073E-12	7 1528E-08	0.00025	0.00138	0.003787	0.007324	0.01167	0.01848	0.021488	0.08842469	0.03122
$400 \mathrm{E}+01$	- 6083E-16	$8.192 \mathrm{E}-07$	$7.58-05$	0.0008	0.001875	0.004318	0.00748	0.011234	0015325	0.01958194	0.0238
300E +01	96437E-29	$13782 E-07$	2.8E-05	00003	0001178	0008845	0.00527	0.008308	0.011755	0.015442	0.01922
300E+01	5.2539E-25	3.034E-08	1.2E-06	000017	0.000788	0002014	0.00398	0.008474	0.00945	0.01270727	001612
7 OOE-01	27828E-29	B. $1491 \mathrm{E}-08$	8.1E-08	0.00017	0.000533	0.0015	0.00308	0.005238	0007841	0.01078580	0.01389
300E-0,	$14439 \mathrm{E}-33$	25493E-09	3.3E-08	7E.05	0.000388	0.007181	0.00248	0.004353	0006889	0.00931984	0.01218
$2000+01$	$73748 E \cdot 38$	9E-10	1.9E.06	48 E .08	0.000292	0.000925	0.00208	0003697	0.005778	0.00820293	0.01087
$100 E+02$	37201E-42	35049E-10	1.2E-08	3.4E.05	0.000227	0.000754	0.00173	0.003182	0.005089	000731553	20098
$5.00 \mathrm{E}+02$							000012	0.000329	0.000895	0.00124655	0.00199
$100 \mathrm{E}+03$							3.9E-05	0.000123	0000293	000057843	0.001

APPENDIX E

DERIVATION OF GENERALIZED DECLINE CURVE EQUATIONS

Derivation of Generalized Decline Curve Equations

Fetkovich ${ }^{3}$ (1980) presented a useful form of the solution of Tsarevich and Kuranov ${ }^{11}$ (1966) to prepare type curves of dimensionless rate versus dimensionless time. Observation of the type curves shows that transition from the infinite acting transient to the PSS is instantaneous at $t_{\text {psss }}$. Irregular outer geometry will however affect the infinite acting period and postpone true pseudo-steady state production and cause a transition zone. This research will show how to extend and construct type curves to illustrate this phenomenon for various reservoir shape factors and well positions with in the reservoir.

Fetkovich prepared a type curve of dimensionless rate versus dimensionless time using the following relationship ${ }^{4}$.

$$
\begin{gather*}
q_{D}=\frac{l 41.5 q \mu B}{k h\left(P_{1}-P_{w f}\right)} \\
t_{D}=\frac{0.00634 k t}{\phi \mu c_{t} r_{w a}^{2}} \\
r_{w a}=r_{w} e^{s} \\
r_{w a}=\frac{x_{j}}{2} \tag{E4}
\end{gather*}
$$

An irregular outer geometry or off center well location can create a period of transition between transient and PSS production. This transition zone has not been the focus of much research but it may provide valuable information about the reservoir shape and permit more accurate curve fitting.

A general expression for PSS decline for constant pressure according to the analytical solution is:

$$
q_{D}=A e^{-3 t_{D}}
$$

E5

Where A and B are constants defined by the ratio $r_{d} / r_{w a}$. Fetkovich developed expressions for A and B which reflect different ratios of $r_{d} / r_{w a}$. The higher the ratio the larger is the time to pseudosteady state tppss.

$$
\begin{aligned}
& A=\frac{1}{\ln \left(r_{e} i r_{w a}\right)-0.5} \\
& B=\frac{2 A}{\left(r_{e} / r_{w a}\right)^{2}-1}
\end{aligned}
$$

The expressions for A and B reflect the observation that different ratios of $r_{d} / r_{w z}$ give different depletion stems. The higher the ratio of $\mathrm{r}_{\mathrm{d}} \mathrm{r}_{\mathrm{wa}}$ the larger the time to pseudosteady state $t_{D} p s s$ and the lower is q_{D} at the start of depletion.

Exponential decline, according to the analytical solution, is substantiated by many field observations. The primary observation in Arp's ${ }^{1}$ work (1945) suggested that all conventional depletion declines can be expressed by three types of. hyperbolic, exponential and harmonic.

Perhaps not well known the Fetkovich Type Curves are based on a strictly radial system operating above the bubble point with the well centrally located. It is obviously desirable to derive a more general case that would apply to any particular reservoir drainage shape such as rectangular, triangular, and reservoirs in which the well is displaced from the reservoir center. It would also be desirable to modify the curves for cases below the bubble point. This method utilizes shape factors derived for these various conditions such as shown in Earlouger's Table C-1 in Advances in Well Testing. Application of these factors to the Fetkovich system is not straightforward. I have derived a system that will incorporate all reservoir shapes. positions and later will be applied to vertically fractured and horizontal wells using an equivalent well bore radius concept.

Based on the productivity and decline theory of the previous section Fetkovich defined qDdas:

$$
\begin{equation*}
q_{D d}=\frac{q(t)}{q_{1 \max }}=\frac{141.3 \mu B q(t)}{k h\left(P_{1}-P_{w f}\right.}\left[\ln \frac{r_{e}}{r_{w}}-\frac{1}{2}\right]=q_{D}\left[\ln \frac{r_{e}}{r_{w}}-\frac{1}{2}\right]=q_{D} c_{1} \tag{E8}
\end{equation*}
$$

Now instead of using the radial form let us begin with a more general equation such as that found on page 243 in Craft and Hawkins in terms of the shape factors and drainage area A so that:

$$
q(i)=\frac{k h\left(P_{t}-P_{w w^{\prime}}\right)}{162.6 \mu B}\left[\log \frac{4 A}{1.781 C_{. t} r_{w}^{2}}\right]=\frac{k h\left(P_{1}-P_{w f}\right)}{141.3 \mu B}\left[1.151 \log \frac{4 A}{1.781 C_{A} r_{w}^{2}}\right]
$$

Then applying the Fetkovich definition above and converting constants to Fetkovich's definitions of q_{D} :

$$
q_{D d}=\frac{q(t)}{q_{i}}=\frac{q(t)}{k h\left(p_{i}-p_{w j}\right)} \frac{4 A}{141.3 \mu B\left[1.151 \log \frac{4 A}{1.781 C_{t} r_{w}^{2}}\right]}
$$

But since:

$$
\begin{gathered}
q_{D}=\frac{141.3 \mu B q(t)}{k h\left(P_{t}-P_{w f}\right)} \\
q_{D d}=\frac{q(t)}{q_{t \max }}=q_{D}\left[1.151\left[\log \frac{4 A}{1.781 C_{A} r_{w}^{2}}\right]\right]
\end{gathered}
$$

Therefore we only need to adjust the dimensionless rate values of VanEverdingen and Hurst by the appropriate shape factors, well position and well radius. Since it is desirable
to present the more general forms in terms of $\mathrm{A} / \mathrm{r}_{\mathrm{w}}{ }^{2}$ the equivalent radial solutions to q_{D} and t_{D} at the various $r_{e D}=r_{e} / r_{w}$ values can be obtained by finding equivalent expressions in terms of $\mathrm{A} / \mathrm{r}_{\mathrm{w}}{ }^{2}$ and the various shape factors using the following relationship:

$$
\frac{A}{r_{w}^{2}}=\pi\left(\frac{r_{e}}{r_{w}}\right)^{2}-\pi=\pi\left(\left(\frac{r_{e}}{r_{w}}\right)^{2}-1\right)
$$

I have confirmed that when the circular shape factor is used, the above derivation is identical to the Fetkovich radial form. Compare Figures 5.6 with 5.2 in chapter 5.

In a similar manner the dimensionless time $t_{D d}$ was defined by Fetkovich as:

$$
\begin{aligned}
& t_{D d}=\left[\frac{q_{i \text { max }}}{N_{p 1}}\right] t=D_{i} t= \\
& \frac{0.00634 k t}{\phi \mu c_{t} r_{w}^{2}}\left[\frac{1}{\frac{1}{2}\left[\left(\frac{r_{e}}{r_{w}}\right)^{2}-1\right]\left[\ln \left(\frac{r_{e}}{r_{w}}\right)-\frac{1}{2}\right]}\right]=t_{D}\left[\frac{1}{\frac{1}{2}\left[\left(\frac{r_{e}}{r_{w}}\right)^{2}-1\right]\left[\ln \left(\frac{r_{e}}{r_{w}}\right)-\frac{1}{2}\right]}\right]
\end{aligned}
$$

or:

$$
t_{d D}=t_{D} \frac{2}{c_{1} c_{2}}
$$

Likewise the more general dimensionless time decline can be derived in a manner similar to that of Fetkovich but in terms of the reservoir shape and drainage size factors:

$$
\begin{equation*}
t_{D d}=\left[\frac{q_{1 \max }}{N_{p t}}\right] t=D_{i} t \tag{E16}
\end{equation*}
$$

where :

$$
q_{1 \max }=\frac{k h P_{1}}{162.6 \mu B}\left[\frac{1}{\log \frac{4 A}{1.781 C_{A} r_{w}^{2}}}\right]
$$

and :

$$
\begin{array}{r}
V_{t}=\frac{. t \phi c_{t} h P_{i}}{5.615 B} \\
t_{D d}=\frac{q_{1 \max }}{N_{t}} t=\frac{\frac{k h P_{i}}{162.6 \mu B}\left[\frac{1}{\log \frac{4 A}{1.781 C_{A} r_{w}^{2}}}\right]}{\frac{A \phi c_{t} h P_{i}}{5.615 B}} t \tag{E19}
\end{array}
$$

E18

$$
\begin{gathered}
t_{D d}=\frac{q_{1 \max }}{N_{t}} t=\frac{0.00634 k t}{\phi \mu c_{t} A}\left[\frac{5.44678}{\log \frac{4 A}{1.781 C_{A} r_{w}^{2}}}\right] \\
t_{D d}=\frac{0.00634 k t}{\phi \mu c_{t} r_{w}^{2}} \frac{r_{w}^{2}}{A}\left[\frac{5.44678}{\log \frac{4 A}{1.781 C_{A} r_{w}^{2}}}\right]=t_{D} \frac{r_{w}^{2}}{A}\left[\frac{5.44678}{\log \frac{4 A}{1.781 C_{A} r_{w}^{2}}}\right]
\end{gathered}
$$

or putting in a similar arrangement to that of the Fetkovich radial form:

$$
t_{D d}=\frac{t_{D}}{A^{r_{w}^{2}} \frac{\log \frac{4 A}{1.781 C_{A} r_{w}^{2}}}{5.44678}}=\frac{t_{D}}{\frac{0.183594 A}{r_{w}^{2}}} \log \frac{4 A}{1.781 C_{A} r_{w}^{2}}=\frac{t_{D}}{0.183594\left(c_{1} c_{2}\right)}
$$

Where c_{2} is

$$
c_{2}=\frac{A}{r_{w}^{2}}
$$

As compared to c_{2} in the Fetkovich radial case:

$$
c_{2}=\frac{r_{e}}{r_{w}^{2}}-1
$$

E24

And:

$$
c_{1}=\log \frac{4 A}{1.781 C_{A} r_{w}^{2}}
$$

Again comparing this to the Fetkovich equivalent forms one notes the similarities:

$$
\begin{equation*}
c_{1}=\ln \frac{r_{e}}{r_{w}}-\frac{1}{2} \tag{E25}
\end{equation*}
$$

APPENDIX F

BACKGROUND OF EFFECTIVE WELLBORE RADIUS OF A HORIZONTAL WELL

Derivation of Effective Wellbore Radius Of A Horizontal Well

The effective wellbore radius is the theoretical well radius required matching the observed production rate. Thus stimulated wells will have effective wellbore radius greater than the drilled wellbore radius, and damaged wells will have an effective wellbore radius smaller than the drilled wellbore radius.

Due to the longer well length, for a given time period under similar operating conditions. a horizontal well would drain a larger reservoir area than a vertical well. Then each horizontal well would drain either a square of a circular drainage area with a rectangular drainage area at the center. This concept implies that the reservoir thickness is considerably less than the length of the sides of the drainage area. It is possible to calculate the drainage area of a horizontal well by assuming an elliptical drainage area in the horizontal plane with each end of the well as a foci of a drainage ellipse.

Slicter ${ }^{31,41}$ showed that ellipses could represent constant pressure (constant porosity) curves (see Figures F-1, F-2) while the hyperbolas represent constant streamlines (constant potential) as:

$$
\begin{equation*}
w(z)=\phi+i \Psi=\cosh ^{-1}(z / \Delta r) \tag{F1}
\end{equation*}
$$

By definition $\mathbf{z - x}+\mathrm{iy}$. Substituting this into the equation and equation real and imaginary parts yields:

$$
\begin{array}{ll}
\mathrm{x}=\Delta \mathrm{r} \cosh \phi \cos \Psi & \mathrm{~F} 2 \\
\mathrm{y}=\Delta \mathrm{r} \sinh \phi \sin \Psi & \text { F3 }
\end{array}
$$

Figure F1 Potential Flow to a Horizontal Well-Horizontal plane

Figure F-2 Division of 3D Horizontal Well Into Two 2-D Problems

The equation with the hyperbolic function represents a classic equation of an ellipse, while the equation with the trigonometric functions represents the equation of the hyperbola. Therefore the above equations can be reformulated as

$$
\begin{aligned}
\phi & =\cosh ^{-1} \mathrm{H}^{\bullet} \\
\Psi & =\cos ^{-1} \mathrm{H}^{*}
\end{aligned}
$$

where:

$$
\begin{equation*}
H^{\bullet}=\left[\frac{x^{2}+y^{2}+\Delta r^{2+}-\sqrt{\left(x^{2}+y^{2}+\Delta r^{2}\right)^{2}-4 \Delta r^{2} x^{2}}}{2 \Delta r^{2}}\right]^{\vdots} \tag{F4}
\end{equation*}
$$

The plus sign refers to ϕ and the minus sign refers to Ψ. The pressure drop between drainage boundary and well, $\Delta \mathrm{p}$ is the same as p_{e} because wellbore pressure is assumed to be zero. The potential function ϕ is the same as the pressure, p . At drainage radius r_{eH} . half the major and minor axes of the ellipse of constant pressure are a and b. Hence the pressure at the drainage boundary p_{e} is:

$$
\begin{equation*}
p_{e}=\cosh ^{-1} \frac{a}{\Delta r}=\ln \frac{\left(a+\sqrt{a^{2}-\Delta r^{2}}\right)}{\Delta r} \tag{F5}
\end{equation*}
$$

Because wellbore pressure is assumed to be zero, the pressure drop between the drainage boundary and well, $\Delta \mathrm{p}$, is the same as p_{e} defined above.. Substituting this into Darcy's porous medium equation yields:

$$
q_{1}=\frac{2 \pi k_{0} \Delta p / \mu}{\ln \left(\frac{a+\sqrt{a^{2}-\Delta r^{2}}}{\Delta r}\right)}
$$

where Δr is the half length $=\mathrm{L} / 2$. Therefore this equation represents the flow to a horizontal well from a horizontal plane.

Since drainage radius in normally used in the calculations, the horizontal well drainage radius $\mathrm{r}_{\mathrm{e}} \mathrm{H}$ can be represented by equating the areas of a circle and ellipse which reduces to:

$$
\begin{equation*}
r_{e H}=\sqrt{a b} \tag{F7}
\end{equation*}
$$

where a and b are the major and minor axes of a drainage ellipse and $+/-\mathrm{L} / 2$ represent the foci of the drainage ellipse. Thus using the properties of an ellipse. b can be defined as:

$$
b=\sqrt{a^{2}-(L / 2)^{2}}
$$

which upon substituting into the radius equation above yields:

$$
\begin{equation*}
r_{e H}=a\left[1-(l / 2 a)^{2}\right]^{\frac{1}{4}} \tag{F9}
\end{equation*}
$$

If $L / 2 a$ is less than 0.5 , the effective horizontal radius is approximately equal to a. The flow in the vertical plan can be calculated in a similar manner and yields:

$$
q_{2}=\frac{2 \pi k \Delta p / \mu}{\ln \left(h / 2 r_{s}\right)}
$$

If we let k_{H} represent the horizontal permeability and K_{V} theoretical permeability in a reservoir of thickness h. then the influence of anisotropy in the horizontal versus vertical direction can be represented (Muscat) by the geometric mean of K_{V} and K_{H}. Therefore equation for q_{1} can be modified to:

$$
\begin{equation*}
q_{1}=\frac{2 \pi \sqrt{K_{l} K_{H}} h \Delta p /\left(\mu / B_{o}\right)}{\ln \left(\frac{a+\sqrt{a^{2}-(L / 2)^{2}}}{L / 2}\right)} \tag{F11}
\end{equation*}
$$

and for the vertical flow in a horizontal well of length L the vertical flow q_{2} can be represented as:

$$
\begin{equation*}
q_{2}=\frac{2 \pi \sqrt{k_{l} \cdot k_{H}} \Delta p /\left(\mu / B_{o}\right)}{\ln \left(h / 2 r_{s}\right)} \tag{F12}
\end{equation*}
$$

Now expressing q_{1} and q_{2} in terms of flow resistance and summing the results yields the flow of a horizontal well as:

$$
q_{H}=\frac{2 \pi k_{h} \Delta p /\left(\mu / B_{o}\right)}{\ln \left[\frac{a+\sqrt{a^{2}-(L / 2)^{2}}}{L / 2}\right]+\frac{\beta^{2} h}{L} \ln \frac{h}{2 r_{w}}}
$$

where :

$$
\begin{equation*}
\beta=\left(\frac{k_{h}}{k_{v}}\right)^{\frac{1}{2}} \tag{F14}
\end{equation*}
$$

The effective radius of a horizontal well can then be calculated by converting the productivity of a horizontal well into that of an equivalent vertical well. As demonstrated earlier the effective wellbore radius can be defined as:

$$
r_{w}=r_{w} e^{-s}
$$

or as shown from type curve matching, it can be obtained from the infinite acting portion of the type curve by:

$$
r_{w c}=\frac{r_{e}}{\left(\frac{r_{e}}{r_{w a}}\right)_{\text {mach }}}
$$

The following relationship equates the vertical well that is required to produce oil at the same rate as that of a horizontal well, assuming equal drainage volumes, equal actual well bore radii, and equal productivity indices, $(q / \Delta P)_{h}=(q / \Delta P)_{v}$.

$$
\left[\frac{2 \pi k_{h}}{\mu B \ln \left(\frac{r_{e}}{r_{w}^{\prime}}\right)}\right]_{v}=\left[\frac{2 \pi k_{h}}{\ln \left[\frac{a+\sqrt{a^{2}-(L / 2)^{2}}}{L / 2}\right]+(h / L) \ln \left[h /\left(2 r_{w}\right)\right]}\right]_{h}
$$

Solving for r_{w} ' yields:

$$
r_{w}=\frac{0.5 r_{e h} L}{\left.\left\{1+\sqrt{1-\left[\frac{L}{2 a}\right]^{2}}\right] \frac{h}{2 r_{w}}\right]^{\frac{h}{L}}}
$$

where:

$$
a=0.5 L\left[0.5+\sqrt{0.25+\left(\frac{2 r_{\text {eh }}}{L}\right)^{4}}\right]^{\frac{1}{2}}
$$

If the reservoir were anisotropic then the effective wellbore radius would be:

$$
r_{w}=\frac{0.5 r_{e h} L}{a\left[1+\sqrt{1-\left[\frac{L}{2 a}\right]^{2}}\left[\frac{\beta h}{2 r_{w}}\right]^{\frac{\beta h}{L}}\right.}
$$

where :

$$
\beta=\left(\frac{k_{h}}{k_{v}}\right)^{\frac{1}{2}}
$$

APPENDIX G
 Fracture Model Tabular Experimental Results

Mocter Type 1													
$\begin{aligned} & 28 \mathrm{Dy} \\ & 28 \end{aligned}$		phimasix 0.01 $w 0.038$ knatix 0.1 intracture 1000		$2 \mathrm{Xen} .9 .5$ San 0.73			3.373						
\square	average pressure	$\begin{aligned} & \text { armal a } \\ & \text { moo } \end{aligned}$	0000	gas rate mathe	amg gas mund	a nours	©	Φ	940	4090	$90 \mathrm{~m} / \mathrm{cos}^{\text {c }}$	(patara) $90 \mathrm{~m} / \mathrm{q}$	900m/09
6	1932	8.81	480	594	8.026	14		68	6.7847	0.147828	129.558	91915217	
8	1825	9.672	415	470	8.974	192	45	75	55333	0.180723	12888	23.30802	214.93
10	1820	10.42	380	410	9.904	240	80	80	4.75	0.210528	130.25	2742106	130.25
12	1914	1116	387	376	1057	288	83	68	42874	0.234332	129.767	30.40872	120
14	1910	1180	333	340	1137	336	97	90	4.0333	0.247934	132.119	32.75482	12258
18	1808	1261	380	318	12.01	384	100	94	38298	0.281111	134.149	3508778	128.1
18	1902	13.33	358	302	12.83	432	102	98	36539	0273743	138.02	37 23486	130.69
20	1898	1404	358	290	13.21	480	104	101	25248	0.283708	138.01	304382	135
22	1898	1475	353	281	13.78	528	107	105	33619	0.29745	140.476	417847	13785
24	1882	15.45	349	274	1433	576	119	108	3.2315	0.309456	143.056	48.25834	13818
26	1889	16.14	344	288	1487	624	116	111	30081	0.322874	145.405	46.9188	138.14
34	1880	1785	332	249	16.7	74	128	120	27887	0.36146	147083	5318285	13789
82	1849	2731	309	187	23.22	1488	151	150	19434	0.514583	171.781	88.38189	18086
123	1787	44.42	233	183	32.97	2852	227	213	10830	0.914163	208.545	180.8438	18568
214	1728	64.6	200	116	44.52	5136	257	272	07463	1330901	2375	318.2288	251.36
385	1638	96.08	143	92	63.68	9480	317	361	0.3981	2524476	206.15	8718889	303.09
576	1572	120.9	125	85	798	13824	336	428	0.2921	3424	262477	8872	360.9
902	1480	158.4	86	7	111.2	22808	374	520	0.1854	6046512	304.815	184188	423.53
1308	1434	187.3	74	61	134.3	31392	388	588	0.1307	7848849	330.918	2531.081	48523
2304	1303	250	58	41	181.9	55298	404	637	0.0878	11375	392485	468.288	619.81
3400	1306	303.4	40	33	223.3	81600	420	604	0.0576	1735	437176	7585	72238
5098	1217	4018	31	28	294.6	143004	429	783	0.0396	25.25808	513.156	1298129	988.6
8562	1150	474.4	27	21	353.1	206208	433	850	00318	31.48148	558.118	17570.37	1095.6
11188	1083	538.1	21	19	406.8	288512	430	907	00832	43.18048	501.060	25588.57	1221.2
13784	1048	5887	20	18	452.1	330816	440	962	0.021	478	618382	28435	1338
18380	1005	634.9	16	16	4973	303120	44	996	0.0181	621875	639.09	3088125	1430
18976	988	6757	15	15	5378	465424	44	1032	0.0145	68.8	654.748	45048.87	1518.4
21572	833	712.8	13	15	5773	517728	47	1087	00122	82.07688	688.135	5483846	1594.8
24168	807	745.8	12	14	6142	560032	40	1000	0.0109	81.5833	678.617	62150	1684.7

Table G-1 Model 1 Type 1 Frocture Simulation Oatput and Calculations

cena 1 cars	$\begin{aligned} & \text { amol } \\ & \text { mos } \end{aligned}$	0×19	0000	dayenctays (tora) C	sara	$\begin{aligned} & \text { nours } \\ & \text { sort da } \end{aligned}$	(1 dq/a)
6	8810	0	0.035197	4.192029	24494897	12	
8	9872	0.10843	0.038869	3.913253	2.8284271	13.85840846	
10	10420	0.21053	0.041687	3.742105	3.1822777	15.49193338	0.036243085
12	11180	0.25341	0.044832	353408	3.4681016	16.97058275	0.014172829
14	11880	0.28722	004712	333083	37416574	18.33030278	0.008092946
16	12610	0.27778	0048318	3180238	4	18.59561794	0.004424643
18	13330	0.28492	0.061525	3088501	42428407	20.78480860	0.003589263
20	14040	0.29213	0.053186	2.97199	4472138	21.8089023	0.004548987
22	14750	0.30312	0.056409	2.800305	48904158	22.97825050	0.008479188
24	15450	0.31806	0.057082	2844558	48809795	24	0.008523289
28	16140	0.33721	0.058761	2804562	50990195	24.97999189	0.008641513
31	17850	0.38554	0.06383	2714924	5.5677844	2727638339	0004207329
62	27310	0.48867	0.086358	2425514	78740078	38.57480304	0008389867
123	4420	0.97425	0.119194	2549949	11.090537	54.33231083	0.005114057
214	84800	128801	0.157407	248704	14.828738	71.68589147	0.004588147
395	96000	221878	0.220256	2700983	18874807	9736529156	0.00380805
578	;20900	268	0.272285	2.679167	24	1175735077	0003897722
942	158400	434884	0.351367	2.855888	30802018	150.350860	0.003464776
1308	187300	5.21822	0.3047	2.935077	36186283	1771778787	0.002103854
2304	250000	721429	0487351	2.937624	48	235.1510153	0.002525700
3400	303400	10.5	0.531394	3.230882	58.309519	285.6571371	0001724284
5086	401800	138387	0.843385	3.161858	7143383	379346807	0001086456
Oser	474400	16.037	0.73013	3.044080	02603042	454.1013103	0.00136095
11188	536100	20.9048	0.829828	3.281782	105.77334	518.1814354	0.001148481
13784	588700	22	0.908397	3.135447	11740828	575. 168083	0.00131842
16380	634800	2775	0.88005	3.422543	12798437	628.9628329	0.001478631
18978	675700	29.6867	1.088118	3373876	137.7534	674.8510947	0.00127785
21572	712900	34.3846	1143823	3542113	146.8741	719533182	0.001478831
24188	745800	373333	1.218758	3571562	15646081	781.5983193	

Table G-1 Model 1 Type I Fracture Simulation Output and Caleulations-Continned

$\begin{aligned} & \text { desta } 1 \text { amoll } \\ & \text { days mbo } \end{aligned}$												
		971	1999		q (deniv)	qut	ror	ratat	p'	dia	50	rpant
6	8810											
8	9872	2E+05	0.0004	0.00005	20000	20000	180000	180000	3	3	24	24
10	10020	$1 \mathrm{E}+05$	00008	$8.33 \mathrm{E}-05$	12000	12000	120000	120000	3	3	29	28
12	11160	51000	0.0028	0.000235	4250	4250	51000	51000	3	3	30	30
14	11880	24500	0.008	0.000571	1750	1750	24500	24500	2	2	28	28
16	12810	20000	00128	0.0008	1250	1250	20000	20000	2	2	32	32
18	13330	18000	0.018	0.001	1000	1000	18000	18000	2	2	32	32
20	14040	25000	0.078	0.0008	1250	1250	25000	25000	2	2	35	35
2	:4750	38500	20126	0.000571	1750	1750	38500	38500	2	2	39	38.
24	15450	54000	0.0107	0.000414	2250	2250	54000	54000	2	2	36	36
28	18140	6×257	0.0105	0.000406	2428.6	2479	63143	64257	1714288	158571	4.57143	41.229
31	17850	67281	0.0143	0.000461	972.22	2170	30130	67281	1.333333	1.72473	4133333	53467
62	27310	58529	0.088	0.001097	1076.	9198	68777	58529	101087	11324	8267391	70219
123	44420	$1 \mathrm{E}+05$	0.1401	0.001138	69737	878.2	85778	100019	0.743421	079018	91.44079	97192
214	64600	70580	0.6479	0.003028	330.88	330.3	70809	70880	0.544118	0.59595	1184412	12753
396	98000	85110	18332	0.004341	215.47	215.5	85110	65110	0.430939	0.43094	170.221	170.22
578	120800	58837	56581	0.008823	104.2	1018	60002	56837	0.290878	03308	1674298	19057
942	158400	65839	13.52	0.014353	69.672	69.67	65831	65031	0.188525	0.18852	1775002	17759
1308	187300	37713	45.385	0.034683	22.026	28.83	28811	37713	0.085803	011107	1123612	145.27
2304	250000	37828	140.33	0.080907	16.252	16.42	3746	37828	0.081185	0.08211	1409713	143.08
3400	303400	38400	30104	0.088542	6.7114	1129	23023	38400	0.039545	0.04675	1344529	158.94
5088	401800	15013	2384.7	0.300385	2.5030	2504	15013	15013	0.030046	0.03005	180.1572	180.16
8582	474400	16549	4481	0.5182	1928	1926	10548	10549	0.023883	0.02388	2052018	205.2
11180	538100	15084	8298.3	0.741774	1.3482	1.348	15084	15084	0098848	0.07885	2197951	219.8
13784	588700	13274	14313	10384	0.863	0.983	13274	13274	0.016949	0.09896	2336274	233.63
18380	634800	15774	17000	10384	0.853	0.983	15774	15774	0.015408	0.01581	252.3883	252.39
18978	675700	10085	32841	1.730887	0.5778	0.578	10985	10885	0.013887	007387	2081495	283.15
21572	712900	12485	37334	1730867	0.5778	0.578	12465	12465	0.012904	0.0129	278.3752	278.38

Table G-1 Model 1 Type 1 Fracture Simulation Oatput and Calculations-Continued

deys	Ormoon	Q mooth	Ormoon	0	$0 \times$
6					
8	-403	403			
10	372	372	8750	8750	87500
12	388	388	2375	52375	28500
14	383	363	1875	1875	20250
16	380	350	1250	1250	20000
18	358	358	1250	1250	22500
20	355	355	1250	1250	25000
22	353	353	1875	1875	41250
24	348	348	4946	4846.429	118744.29
28	333	333	0050	0309.288	164040.86
31	303	303	5070	8774	2720064
82	301	301	291	1504.5003	31279.019
123	-257	257	680	027.4475	77176.045
214	-206	206	467	372.7803	7977498
366	-158	158	221	12212878	87400.605
578	-128	123	142	118.4808	48250713
942	81	91		09.88672	06825052
1308	. 75	75		72535468	33163.827
2304	-58	56		413.93324	32102196
3400	46	46		88.295238	21403.609
5008	33	33		43.7838	22688466
8562	-28	26		22.10338	18072.072
11188	-22	22		11316818	14733687
13784	-19	19		- 1.012729	13859458
18380	.17	17		10.771803	12838859
18076	-15	15		33227378	
21572					

Table G-1 Model 1 Type I Fracture Simulation Output and Calcuiations -Continued

Moctel	ype in												
$\begin{aligned} & 28 \mathrm{by} \\ & 28 \end{aligned}$		phumatix knaifor \|fraceme	$\begin{aligned} & 0.01 \\ & 0.006 \\ & 0.9 \\ & 4000 \end{aligned}$	$2 \times e n$ Soi	8.5 0.75	(mmbo)	3.373						
$\begin{aligned} & \text { acmat } \\ & \text { asys } \end{aligned}$	average pressure	$\begin{aligned} & \text { datma } \\ & \text { arm od } \\ & \text { moo } \end{aligned}$	at rate bood	gas ratis medt	curn gas mand	a nous	09	dp		$00 / 9$	9 armmp	$\begin{aligned} & \text { q(ays) } \\ & q(0 \pi / q \end{aligned}$	cerm/da
8	1827	9151	475	602	8183	144		73	6.5068	0153684	125.356	19.28526	
8	1821	10.08	438	528	9.22	182	30	79	5.519	0.181193	127342	2307339	25795
10	1018	10.9	428	436	10.18	240	40	84	5.0714	0.197183	129.782	25.58695	222.45
12	1911	1173	419	391	11.04	288	58	88	4.7079	0.212411	131.798	2798523	200.48
14	1507	12.54	416	362	11.84	336	59	83	4.4731	0.223558	134.830	30.14423	21254
18	1902	13.35	414	343	1258	384	61	98	42245	0.238715	138.224	32.24638	218.85
18	1800	14.18	412	330	13.3	432	63	104	40782	0.245148	140188	3438883	24.76
20	1805	1488	408	322	14	480	67	105	3.8857	0.257353	142478	38.66657	23.28
22	1891	15.78	403	317	1467	528	72	100	3.6072	0.270471	144587	39.1087	218.89
24	1888	1654	398	313	15.34	576	79	112	35357	0.282828	147679	41.78788	209.37
28	1885	1731	389	308	15.96	624	86	$\uparrow 15$	33826	0.29603	150.522	4488871	201.28
31	1878	19.1	304	237	178	744	81	124	31774	0.314721	154.032	4847718	235.8
- 62	1837	30.54	353	230	25.31	1488	122	163	21858	0481758	187362	6. 61588	250.33
123	1785	51.24	302	157	38.47	2052	173	215	14047	0.711921	238.328	1696090	298.18
214	1728	78.34	243	140	48.81	5138	232	272	0.8834	1.119342	280.682	3141584	329.05
306	1841	1119	148	163	78.07	9480	327	350	04123	2425678	311888	7580811	342.2
576	1576	135.1	113	101	89.88	13824	382	424	0.2985	3752212	318.632	1196.575	3732
942	1494	173.4	93	84	127.7	22.00	382	508	0.1838	5.44088	342888	1884.518	453.93
1306	1441	2024	73	59	153.3	31388	408	560	0.1308	7857534	362.075	2772.603	503.48
2304	1350	208.9	57	53	200	55298	418	841	00088	11.24581	419.501	471754	8433
3400	1301	3206	48	23	2428	81600	427	609	0.0887	14.5825	458.655	6879187	750.82
5008	1207	419.9	29	27	320.6	143004	446	783	0.0388	27.34483	529.508	14479.31	04148
8582	1730	48.8	28	25	379.8	208208	449	881	00302	33.11538	574.797	10034.02	11022
11188	1003	553	22	18	433.3	288512	453	917	0.004	41.68182	600.053	25138.38	12208
13784	1035	6072	18	19	482	330816	457	985	0.0187	53.61111	029.223	33733.33	1328.7
16380	994	651.3	17	16	526.7	303120	458	1008	0.0169	50.17847	847416	38311.78	1422.1
18975	955	683.3	15	17	589.9	455424	400	1045	0.0144	09.60807	683445	46220	15072
21572	919	728.6	13	15	610.4	517728	482	1091	0012	83.15385	674008	58048.15	15771
24188	888	7818	12	15	648.9	580032	463	1114	00108	92.83333	683842	63483.33	1845.4

Table G-2 Moded 1 Type Ih Fractare Simulation Output and Calculations

	ood Type th by 28		prumarix 0.01 $w 0.036$ kmatux 0.1 Nfrectre 4000		2Xen 8.5 Sai 0.75		$\begin{gathered} \infty \\ (m m \infty) \end{gathered}$	3.373
cays	$\begin{gathered} \text { amal } \\ \text { mos } \end{gathered}$	009	40	cayshays 	sare	$\begin{aligned} & \text { nours } \\ & \text { sen at } \end{aligned}$	1/4	(009)
8	3151	0	0.037883	4.21087	2.4494897	2	3.00105263	
8	10080	0.08945	0.041124	3888174	28284271	13.85840646	0002203578	
10	10000	0.11508	0.043841	3.558885	3.1622777	15.49103338	0.002347418	0.011050503
12	11730	0.13385	0.048572	3.332936	34841016	16.97058275	0.008388835	0.00870086
14	12540	0.14183	0.048788	3.153150	37418574	18.33030278	0.002403848	0.00362861
16	13350	0.14734	0.051525	3.015300	4	19.50501794	0.002415458	0.002771425
18	14160	0.15291	0.053186	2.900385	4.2428407	20.78460980	0.002427184	0.004218173
20	14880	0.16422	0.055409	2.833333	4.472130	21.0008023	0.00245098	0.008438857
22	15780	0.17866	0.057841	2.771577	48006158	2297825050	0.00248139	0.008819816
24	16540	0.18948	0050322	2.74032	48089795	24	0.002525253	0.07080491
28	17310	0.22108	0.081008	2.711480	50080185	2497900199	0.002570004	0.00086983
31	18100	0.20558	0.008088	2.583779	5.5877844	27.27836330	0.002538071	0.003450148
62	30540	0.34581	0.089732	2.305413	78740079	39.57480304	0.002832881	0.003981900
123	51240	0.57285	0.120448	2.370422	11000537	54.33231003	0.003311258	0.004007381
214	78340	0.85473	0.157407	246802	14.628739	7188580147	0.000115228	0.008016955
305	111500	2.20946	0.218760	2.974129	19.874607	9736529158	0.008758757	0.008212175
576	135100	3.20354	0.250036	3075851	24	1175756077	0.008849558	0.003460950
942	173400	4.10753	0.338088	2.979318	30.692049	150.350560	0.010752688	0.003148588
1308	202400	5.50885	0.387825	3119727	36.186283	1771778787	0.01388863	0002388434
2304	288900	733333	0.47187	3004545	48	235.1510953	0.01754386	0.001618973
3400	320800	8.85883	0.537279	2884461	58.308519	285.6571371	0.020833333	0.0021793
5006	419800	15.3793	0.667001	3.414828	77433813	379346807	0.034462750	0.00161275
8682	494800	17.2802	0.755828	3215388	92.603042	454.1013103	0.038461538	0.001003775
11188	553000	20.5000	0.846722	3246728	108.77334	518.1814354	0.045454545	0.001563879
13784	607200	25.3889	0.938307	3.447282	11740528	573. 180063	0.055585858	0.001223087
16380	661300	28.8412	1.012072	3.338938	127.88437	E28.99288229	0.058823529	0.001016521
18978	803300	30.6867	1.004241	3.436700	137.7534	574.8510947	0.088688687	0.001855872
21572	728800	35.5385	1.176279	3508087	146.8741	719.533182	0.078923077	0.001524782
24168	761800	38.5833	1.257336	3628752	155.46081	781.5083103	0.08333333	

Table G-2 Model 1 Type Ih Fracture Simalation Ortpat and Calcuiations - Continued

detiet aum oil		the presiure dectine can be compered with action pressures as a function of tine									
deys	mbo	$1 / 9{ }^{+9}$	1k9 of	q (derv)	ctan	PG	ram	σ	$\mathrm{O}^{\prime} \mathrm{ar}$	P'p	roin
6	9151										
8	10050	0.0007	8. 16E-05	12250	12250	80000	98000	3	3	22	22
10	10000	0.0084	0.000235	4250	4250	42500	42500	3	3	25	25
12	11730	0.0048	0.0004	2500	2500	30000	30000	2	2	27	27
14	12540	0.0112	0.0008	1250	1250	17500	17500	2	2	32	32
16	13350	0.016	0001	1000	1000	16000	16000	2	2	32	32
18	14180	0.012	0.000887	1500	1500	27000	27000	2	2	32	32
20	14880	0.0088	0.00044	2250	2250	45000	45000	2	2	40	40
22	15780	00073	0.000333	3000	3000	58000	58000	2	:	39	39
24	18540	0.0068	0.000288	3500	3500	84000	84000	2	2	36	38
26	17310	00147	0.000452	28571	2214	74286	57571	1714286	158571	4457143	412291
31	19100	-0.048	.0.00748	1000	677	31000	.21000	1333333	9.72473	41.33333	53.467
62	30540	0.0535	0.000863	1000	1150	Q2000	71836	0.98913	112139	61.32800	69528
123	51240	0.1817	0.001315	72388	780.7	80013	93570	0.717105	0.78173	58.20305	93.692
214	78340	0.3525	0.001647	586.18	607	121162	129806	0.529412	0.57762	113291	12381
305	111800	1.0099	0.068785	359.12	359.1	141851	141851	0.41989	041889	165.858	186.86
578	135100	3.908	0.008781	100.55	1475	57918	84941	0.288739	031442	154.7834	18111
942	173400	17239	00183	54645	5464	51475	51475	0184426	0.18443	1737298	17373
1308	202400	29.541	0.022585	28432	44.28	34573	57915	0009119	012802	1298478	16745
2304	2888000	188.83	0.091132	1196	1233	27533	28388	0.088882	0.08833	154.1874	15743
3000	320000	42785	0125838	7584	7947	25785	27018	0.04117	0.04788	1398783	16308
5098	410000	1416.1	0.236	42373	4.237	25407	25407	0031202	0.0312	1870863	18700
8588	494000	6372.8	0.741714	13482	1.348	11584	11584	0023883	0.02388	205.2018	205.2
11188	553000	7281	0.649	- 15408	1541	17239	17239	0020081	0.02003	224.1048	2241
13784	607200	14313	10384	. 0.983	0.883	13274	13274	0.017142	0.01714	236.282	23828
18380	851300	28348	1730687	70.5778	0578	94646	94848	0.015408	0.01541	2523883	252.39
18978	863300	24631	1290	0.7704	0.77	14819	14619	0014445	0.01445	274.114	274.11
21572	728800	37334	1730887	7 05778	0.578	12485	;2406	0.01329	0.01329	286.684	288.68

Table G-2 Model 1 Type In Fracture Simulation Output and Calculations - Continued

$\begin{aligned} & \text { detal } t \\ & \text { days } \end{aligned}$	$\alpha_{\text {mmoat }}$	Q exmoth	Ormoon	$0 \times$
8				
8	437	437		
10	478	418		136812.5
12	-40	410		1253125
14	-405	405		12501250
16	-405	405		625625
18	-403	403		12501250
20	400	400		8751875
22	305	305		1253125
24	388	389		4284828.571
28	377	377		8083005.392
31	360	380		3000507.1304
62	350	350		230488.5175
123	314	314		728722.0733
214	. 249	249		633557.1077
396	. 162	162		366356.0315
578	. 120	120		1811288085
942	-2	82		6180.79009
1308	.78	76		3725.33205
2304	-67	57		1514.80088
3400	45	45		106.484455
5056	34	34		43637878
8582	. 25	26		22.290971
11188	-22	22		11.290951
13784	-19	19		10.971823
16380	-17	17		1077902
18078	-15	15		10.652885
21572	- 13	13		

Table G-3 Model 1 Type In Fractare Simulation Outpat and Calcalations

mocel Typein 28 by 28				infuctire 1000 phensorx 0.0089		$\begin{gathered} \text { kermetrex } 0.1 \\ 2 \times e n ~ a .5 \end{gathered}$		coxp 3373
cothe t	cum ${ }^{\text {a }}$			ceyalday			$\begin{aligned} & \text { nours } \\ & \text { sont of } \end{aligned}$	w 0.146
ders		mbo	0×10	∞	moratar	son a		
	6	10500	0	0.041124	3.170352	24494897	12	
	B	12130	010149	0.048025	3.0517502	2.8286271	13.858408	
	10	13470	0.28398	0.049889	3.091615	3.1622777	15.491833	
	12	14630	0.45357	0.053741	3.177083	3.4681018	16.970583	
	14	15820	0.71008	0.058524	3.343838	37418874	18.330303	
	16	18480	0.92897	0.050883	3.442230	4	19.505018	
	18	17300	1.02488	0083284	3.380824	4.2428407	20.78481	
	20	18080	108254	0088088	3323807	4472138	21908802	
	22	18850	112533	0.088947	3.237123	4.6004158	22.978251	
	24	18810	113080	0.071811	3.138982	4.8888795	24	
	26	20380	114211	0.074174	3.082753	5.0000105	24.979082	
	37	24510	9.18231	0.084588	2.775958	6.0827825	29.788328	
	48	28580	1.22404	0.094082	2.225883	8.9282032	33.941125	
	50	32810	1.20588	0.101928	2.467884	7.8891457	37629775	
	70	36870	121188	0.100262	2.423525	8.3688003	40.987803	
	91	40850	\$28014	0.116071	2.405747	0	44090815	
	52	44500	1.36828	0.122985	2.408092	9.501683	46.89938	
	103	48220	142985	0.129305	2.397479	10.148892	49719212	
	114	51880	148171	0.135074	2.388928	10.677078	52308787	
	125	55430	1. 52012	0.140901	2.372879	1118034	54.772258	
	136	58960	- 56975	0.146780	2.363000	11861804	57131427	
	147	62420	180084	0.152074	2358632	12.124356	50.30697	
	158	85820	185147	0.157407	2.35690	12.568805	81579217	
	168	68170	180538	0.162791	2.358285	13	63.686733	
	180	72450	1.75	0.187542	2.359787	13.418408	85.726707	
	191	75670	18089	0.173021	2.368131	13.820275	87.705244	
	222	84450	193883	0.18824	2.373305	14.800684	72.89315	
	253	82810	213077	0.19832	2410815	15.905974	7923039	
	284	100500	234079	0.210854	2458268	168523	82.55907	
	345	114800	276156	0.233808	2537678	18.574176	90.804505	
	408	127800	2.94579	0.255483	252344	20.149442	88.711701	
	772	188200	4.74850	0.358088	2730775	27784888	136.1776	
	1138	234500	633333	0.421464	2858428	33.734256	165.26343	
	1504	270400	8.57847	0.485209	3.195144	3 P 781438	189.98947	
	1870	297800	115811	0.508298	3.482207	43.243497	211.849	
	2236	319100	14.8538	0.54679	3744027	47286362	23165492	
	2502	330000	172929	0.581028	3.907012	251.008903	24989598	
	3609	370300	221900	0.063804	3.822192	60.811183	297.91274	
	4794	414000	25.2881	0.728808	3781798	60238717	339.19006	
	5850	448300	28.1333	0.782531	3.537088	76.746035	375.97872	
	5008	479300	29.1481	0.833181	3.541081	183582295	409.46795	
	8082	507100	320834	0.878600	3.550584	80898044	440.41798	
	9178	533700	33.0508	0.924828	3.433051	196.801879	460.33144	
	10274	558600	36	0.970443	3472702	210138074	488.5842	

Table G-3 Model 1 Type 1n Fracture Simulation Outpert and Calculations - Continued

Table G-3 Mode 1 Type la Fracture Simulation Output and Calculations - Continared

$\begin{aligned} & \text { artat amail } \\ & \text { apys mbo } \end{aligned}$		the preesure decine cin De compered with ectual pressures es a function of tme										
		at 1/4	714		σ (comv)	qut	eq	rater	\square	Dat	ros	robet
6	10800											
8	12130	3E+05	0.0002	2.35E-05	42500	42500	340000	340000	4	4	32	32
10	13470	4E+06	0.0002	223E-06	4750	44750	447500	447500	4	4	35	35
12	14630	SE+0\%	0.0003	2.38E-05	40000	42000	504000	504000	3	3	36	36
14	15620	5E+06	0.0004	29E-05	34500	34500	483000	483000	3	3	39	39
18	16480	3E+0S	0.0009	5.41E-05	18500	18500	298000	298000	3	3	48	48
18	17300	1E+05	0.0022	0.000121	8250	8050	148500	148500	3	3	50	50
20	18080	95000	0.0042	0.000211	4750	4750	95000	95000	3	3	50	50
22	18850	38600	0.0128	0.000571	1750	1750	30500	30500	3	3	35	55
24	18810	18000	0.032	0.001333	750	750	18000	18000	2	2	54	54
28	20380	24545	0.0275	0.001050	69231	944.1	18000	24545	1.802308	1.94406	4	50.545
37	24510	23545	0.0581	0.001571	636.36	038.4	23545	23545	1.545450	1.54545	57.18182	57.182
48	28580	8727	0.284	0.0055	18182	181.8	8727.3	8727.3	1.318182	1.31818	63.27273	63.273
59	32810	-6384	-0.649	0.011	+0.91	40.9	-6364	-6383.8	1.138364	113838	6704545	67.045
70	36870	38182	0.1283	0.001833	545.45	545.5	38182	38182	1045455	104545	73.18182	73.182
81	40850	88364	0.0742	0.000917	1000.9	1091	88384	88364	,	1	${ }^{81}$	89
92	44500	92000	0.002	0.009	1000	1000	82000	92000	0.954545	0.95455	87.81818	87818
103	48220	74800	0.1418	0.001375	72727	727.3	74809	74909	0.883636	0.88364	88.95155	88.955
114	51880	82182	0.208	0001833	545.15	545.5	62182	62182	0.818162	0.81818	93.27273	93.273
125	56430	58818	0.275	00022	45455	454.5	58818	58918	0.818182	0.81818	102.2727	102.27
136	58850	61818	0.2982	0.0022	454.55	454.5	61818	61818	0.772727	0.77273	105.0809	105.09
147	62420	73500	0.294	0.002	500	500	73500	73500	0.727273	0.72727	108.9091	108.91
158	85820	78000	0.316	0.002	500	500	78000	78000	0.727273	0.72727	114.9091	114.91
180	00170	94500	0.338	0.002	500	500	84500	84500	0.681818	0.68182	195.2273	115.23
180	72450	98182	0.33	0.001833	54.45	545.5	98182	88182	0.681818	0.68182	122.7273	122.73
191	75870	97874	0.3727	0.001961	452.38	512.4	68405	97874	0.828857	0.69732	122.7867	133.19
222	84450	1E+08	0.4588	0.002987	483.87	483.9	107418	107419	0.580845	0.58085	128.9032	128.9
253	92810	1E+05	0.4814	0.001824	548.30	548.4	138742	138742	0.548387	0.54839	138.7419	138.74
284	100500	1E+05	0.5583	0.001859	473.81	510.5	138591	144993	0.521739	0.53484	148.1730	1519
345	114800	1E+0S	1.1489	0.003324	300.82	300.8	103783	103783	0.483807	0.48361	186.8443	186.84
408	127800	67873	24296	0.005982	175.18	167.2	71129	67873	0.348946	0.44087	141.8721	178.99
772	188200	1E+06	5.9297	0.007881	130.19	1302	100508	100608	0254008	0.2541	188.1038	188.16
1138	234500	87903	14.718	0.012933	77.322	71.32	87983	87953	0.148175	0.14617	166.347	186.35
1504	270400	86130	23.778	0.01581	63.251	63.25	96130	86130	0.110658	0.11008	188.4282	188.43
1870	297500	83300	41.48	0.022182	15.082	45.08	84303	84303	0.008381	0.00938	183.9344	183.8
2236	319100	69704	81.087	0.038238	27.588	27.6	61704	61704	0.083333	0.08333	188.3333	188.33
2802	336800	45558	148.61	0.057114	11.58	17.51	30078	45558	0.08224	0.07174	181.9576	188.67
3000	378300	22775	600.45	0.16237	6.1588	8.150	22775	22775	0.04927	0.04927	1822007	1822
4794	414000	11154	2080.5	0.209804	23238	2.327	11154	11154	0.086486	0.0885	174.9836	174.86
5800	448300	10748	3227.7	0.548	1.8248	1.825	10748	10748	0030109	0.03012	177.340	177.3
0588	479300	17210	2835.8	0.405828	24035	2464	17210	17210	0.02846	0.02846	184.8485	184.85
8082	507100	11430	5714.8	0.707097	1.4142	1.414	11430	11430	0.023723	0.02372	191.7253	194.73
8178	533700	10888	7737.8	0.833077	1.1881	1.188	10888	10888	0.022354	0.0235	205.1651	206.17

$\begin{aligned} & \text { deltat } \\ & \text { dipys } \end{aligned}$	am		α^{*}	σ	2 smocits	
	Q smocon	-asmoor			O'smooth	
6						
8	778	778				
10	825	625	45000	45000	45000	450000
12	-538	538	-40000	40000	40000	480000
14	485	485	-29375	28375	29375	411250
16	420	420	-18875	16875	18875	270000
18	308	308	8125	8125	8125	148250
20	-388	388	3750	3750	3750	75000
22	383	383	-1250	1250	1250	27500
24	383	383	2578671	-257.8671	-258	61888172
28	384	384	821.678	821.6783	-273	21303636
37	372	372	687.711	687.7114	680	25815321
48	368	368	-144828	144.6281	145	8642 1488
59	389	309	-123.967	123.9880	124	73140496
70	385	365	678512	578.5124	579	40485.888
89	356	358	879.074	871.0744	979	78657025
92	344	344	971.074	071.0744	971	89338.843
103	335	335	.743.802	7438017	744	7861157
174	328	328	. 55781	5578512	558	63505.041
125	322	322	454.545	454.5455	455	58818.182
136	318	318	454.545	454.5455	455	61818182
147	312	312	-495 888	486.8678	496	72882.562
158	307	307	485888	406.8678	488	78347107
168	301	301	-516529	516.5289	517	87293.388
180	. 295	205	. 505.875	5056747	508	81021442
191	-290	290	452.451	452.4508	488	08418.098
222	278	278	-505.983	505.8327	508	11231705
253	-250	259	531.978	531.9775	532	136500.31
284	243	243	389308	3003459	447	14341423
345	. 222	222	324.31	324.3000	324	111888.91
408	. 204	204	-178.204	178.2035	279	72350623
772	. 146	148	-127014	127014	127	98054.798
1138	-119	111	81. 1834	81.18337	89	92388.679
1504	87	87	80.8642	60.66124	61	91223.884
1870	-67	67	-480972	46.09723	48	86201813
2236		53	-28.5083	28.50828	28	8391241
2808	- 46	40	-11.7292	11.72917	17	30819.306
3008	3 -36	36	6.44137	6.441373	6	23820.196
4794	31	- 39	-28929	2808902	3	13868.572
5800	- 29	29	-2.12285	2.122848	2	12503.58
5008	$8 \quad 27$	27	-208122	2.081224	2	14538.433
8082	2.25	525	-1.45888	1458887	1	11774.310
9178	$8 \quad 24$	- 24	-1.33198	1.331984	1	12224.945

Table G-3 Model 1 Type In Fracture Simulation Output and Caleulations - Contianed

Table G-4 Model 1 Type 1nh Fracture Simulation Output and Calculations

$\begin{aligned} & \text { model Type } 1 \mathrm{mh} \\ & 28 \text { by } 28 \end{aligned}$		$\begin{array}{r} w .146 \\ \text { prmasix } 0.0089 \end{array}$			$\begin{gathered} \text { Nftractire } 4000 \\ 2 \times \mathrm{L} .2 .5 \end{gathered}$		$\begin{aligned} & \hline \text { Konatix } 0.1 \\ & 0009.373 \end{aligned}$
	$\begin{array}{ll} \text { armail } \\ \text { moo } \end{array}$	00		Cayzatiys prapat 39	tor at	$\begin{aligned} & \text { nours } \\ & \text { sopt at } \end{aligned}$	$1 / 9$
8	11240	0	0.047669	3.036232	2494897	12	0.001086857
8	12980	0.10444	0.052632	2947779	2.8284271	13.85840846	0.00120048
10	14450	0.28094	0.058524	304088	3.1622777	1549198338	0.001412429
12	15590	0.55405	0.056883	3.200615	3484016	18.97058275	0.001860180
14	16730	0.87373	0.082800	3.433800	3.7418574	18.33030278	0.00203885
18	17620	100091	0.088098	3.502849	4	19.58591794	0.002272727
18	18480	1.14953	0.088947	3.308754	4.2426407	20.78480960	0.002338449
20	19330	1.18471	0.071811	3.274118	4472136	219085023	0.002352941
22	20180	1.18981	0.074114	3163378	4.6004158	22.57825058	0.002358481
24	21030	1.17484	0.078428	3.071513	48889795	24	0.002364085
28	21870	1.18000	0.078167	2.993258	50080195	24.97900190	0.002369888
37	26470	122222	0.089325	2728002	6.0827825	2979932885	0.002415469
48	30950	1.2439	0.088298	2.574808	6.9282032	33.9411255	0.002430024
59	35510	12276	0.108108	2.457299	7681457	37.62977544	0.002421308
70	40070	1.2278	0.114208	2.388088	8.3036003	40.88780308	0.002421308
81	44540	1.28858	0.121078	2387852	θ	44.00081537	0.002487562
92	48880	138504	0.128003	2385821	9.507883	48.8985605	0002570094
103	53100	1.42105	0.135074	2358688	10.148892	48.71921158	0.002631579
114	57240	148849	0.140901	2346127	10.677078	5230678732	0.002880086
125	61320	1.5	0.146780	2333043	11 18034	54.77225575	0.002717391
138	65340	1.53444	0.153403	2323529	11681994	57.13142743	0.002754821
147	68310	1.580883	0.158749	2.31703	12.124356	50.38688962	0.002793296
158	73220	1.60823	0.184144	2312788	12.589805	81.57921727	0.002832889
160	77080	16513	0.150501	2.314053	13	03.68673331	0.002881844
180	80840	168785	0.175088	2317041	13.46408	65.7267009	0.002932551
191	84550	1.74827	0.180638	2321403	13.820075	67.70524352	0002985075
222	94710	185714	0.194743	2.324812	14.808884	7299315036	0.0031055
253	104500	1.97735	0.208450	233871	15.805074	77.92303888	0.003236246
284	113900	208311	0.221001	2344023	18.8523	82.55008978	0.003361208
345	131500	2.27402	0.24533	2.358439	18.574176	c0.60050533	0.003558719
408	147800	2.35768	0.287427	232951	20.14842	98.71170143	0.00364883
772	222800	4.75	0.37931	2803756	27.784888	136.1175982	0.00625
1138	286300	9.45455	0.457728	3.659171	33730258	1652834261	0.011363838
1504	292800	13.8387	0.515152	4.140014	4 38.781438	180.980473	0.016129032
1870	312800	18.1687	0.56128	4.48282	- 43243497	219.9400028	0.020833333
2236	329200	19.9091	0.508721	4.346073	47288362	231.8549158	0.022727273
2502	344800	21.439	0.631321	4232035	51.008003	249.8950784	0.024390244
3888	384800	28.2189	0.708485	4.078987	- 00.811183	297.9127389	0.009583790
4794	423000	24.8887	0.785225	3.482522	269238717	330.1980585	0.028248588
5880	458400	30.3993	0.821484	3.658208	76.746335	376.9787228	0.034129803
0008	488500	33.4500	0.872869	3.618835	5 63.592285	400.4679475	0.007453184
8082	517800	33.8485	0.02123	3.427290	-89.809044	410.4178933	0.087878788
9178	545300	38.3162	0.888504	3.530052	295.801878	460.3314304	0.029735043
10274	559400	28008	1.014090	- 3.639117	7101.30074	486.5041052	0.047818048

Table G-4 Model 1 Type Inh Fractare Simulation Ontput and Calculations - Coatinved

Table G-4 Model 1 Type Inh Fracture Simulation Output and Calculations - Continned

$\begin{aligned} & \text { cotta } 1 \text { arnod } \\ & \text { cays mbo } \end{aligned}$		the pressure decine can be comparse with scuie proseures es a funcion of trie								
		1/49 1/4		(derv)	qat	ra'	rarat	p	pode pp	rotat
8	11240									
8	12980	0.0002	189E-25	53000	53000	424000	424000	4	432	32
10	14450	0.0002	1.68E-06	60250	60250	602500	802500	3	33	33
12	15800	0.0002	18 E-OS	54250	54250	851000	651000	3	333	33
14	16730	0.0004	2.03E-C5	38000	38000	532000	532000	3	3 30	39
16	17620	0.001	6.35E-05	15750	15750	252000	252000	3	344	44
18	18480	0.0048	0.000267	3750	3750	67500	87500	3	345	45
20	10330	0.02	0.007	1000	1000	20000	20000	2	245	45
22	20180	0.044	3.002	500	500	11000	11000	2	24	44
24	21030	0.048	0.002	500	500	12000	12000	2	242	42
28	21870	0.0376	0.001444	602.31	535	18000	13009	1.682308	; 53497	38909
37	28470	0.0878	0001833	545.45	545.5	20182	20182	1.545455	4.54545 57.18182	57182
48	30980	1068	0.022	45.465	45.45	21818	2181.8	1272727	1.27273 61.00091	61004
50	35510	0.433	0.00733	-136.4	-138	8045	80455	1181818	1.1818260 .72727	69.727
70	40070	0.14	0.002	500	500	35000	36000	1.000909	1.0808178 .38334	76.384
81	44540	0.0743	0.000817	1080.9	1091	88394	88364	1	189	81
02	48880	0.092	0.001	1000	1000	02000	82000	1	122	92
103	53100	0.1416	0.001375	72727	7273	74800	74008	0.508091	0.9090993 .63638	83636
114	57240	0.200	0001833	545.45	545.5	62182	62182	0.818182	0.81818183 .27273	03273
125	61320	0.275	0.0022	45455	454.5	58818	58818	0.883838	0.883841079545	10795
136	65340	0.2992	0.0022	45455	4545	61818	61818	0818182	0.81818111 .2727	11127
147	69310	0.3234	0.0022	454.55	4545	68818	68818	0.727273	0.72727100 .8001	10891
158	73220	0.316	0.002	500	500	78000	78000	0.727273	0.72727114 .9081	11491
168	77080	0.3098	0.001833	54545	54.5	92182	22182	0.727273	072727122.9091	122.91
180	80840	0.33	0.001833	545.45	545.5	98182	98182	0.727273	0.727271309081	130.91
191	84550	0.4222	0.002211	452.38	5124	88408	97874	0.608687	0.705771273333	134.8
222	94710	0.5294	0.002385	419.35	419.4	83007	83097	0.629032	0.62903139 .6452	13065
253	104500	0.6847	0.002627	380.65	380.6	98303	98303	0.580846	0.50006140 .0032	146.9
284	113600	0.9331	0.003286	304.35	3228	88435	91685	0.532600	0.540371512800	153.48
345	131500	1.725	0.005	200	200	60000	68000	0.401803	0.4018180 .6721	16967
406	147800	1.4327	0.003529	283.37	1429	115049	56000	0.36534	0.44341493279	180.02
772	222800	30382	0.003835	254.1	254.1	198164	198184	0.281429	0.291422172588	21728
1138	208300	8.5002	0.007469	133.88	133.9	152366	152365	0.177598	0.1778200 .1038	202.1
1504	292800	27.523	0.0183	54.645	54.64	82188	82186	0.124317	0.124321869727	188.97
1870	312000	76.047	0.040687	24.59	24.50	45084	45084	0.084262	0.004281762705	178.27
2236	329200	233.82	0.104571	9.5628	9.583	21383	24383	0.075137	0.07514188 .0055	188.01
2502	344800	372.95	0.143333	8.9787	7789	18153	20288	0.054036	0.083541406005	165.33
3808	384800	14475	0.391429	2.5547	2555	9447.4	9474.4	0.04243	0.04243150 .8951	158.9
4794	423000	2335.2	0.487171	2.0529	2053	9841.7	cent. 7	0033759	0.03378181 .8412	161.84
5800	458400	1484	0.251954	3980	3589	23377	23377	0.029863	0.02988174 .6578	174.88
6588	489500	5280.5	0.755862	1.323	1.323	82424	9242.4	0.088004	0.028181 .6815	181.68
8082	517900	5338.4	0.03420	1.5055	1.505	12187	12187	0.023723	0.02372191 .7203	191.73
9178	545300	3725.6	0.405928	2.4035	2484	22810	22810	0.021898	002192009781	200.98

dens		$\sim_{\text {- }}^{\text {comoct }}$	0	${ }^{\circ}$	C^{0} amocth
8					
8	-603	803			
10	678	678	-58125	58125	58125
12	-670	570	48750	48750	48750
14	-43	483	33125	33125	33125
16	438	438	-13750	13750	13750
18	-28	428	3125	3125	3125
20	425	425	825	625	625
22	425	25	825	625	625
24	-423	423	-1319.93	1319.93	1320
28	-20	420	811.888	6118881	1248
37	-115	415	+00.509	400.5088	401
48	-111	417	82.6446	82.64463	83
50	-413	413	206812	20.66118	21
70	-10	410	657851	557.8512	558
81	-400	400	971.074	971.0744	871
82	389	389	-029.752	829.7521	930
103	380	380	.702479	7024793	702
114	374	374	-53718	5371901	537
125	388	388	+75207	478.2088	475
138	-303	363	154545	454.5455	455
147	-358	358	485.888	496.8678	488
158	352	352	63719	5371807	537
109	346	348	63718	5371807	537
180	340	340	628.885	528.6849	527
181	335	335	44.77	44.7703	491
222	322	322	407428	4074254	407
253	310	310	378.005	379.0054	379
288	-298	290	335.083	3350827	349
345	-279	279	-318.329	316.3295	316
408	-280	280	-273.884	273.8639	305
772	-162	162	. 224.114	224.1141	224
1138	-8	88	-134.550	134.5581	135
1504	63	63	62.7072	02.70716	63
1870	-50	50	28.3148	26.31481	26
2236	4	44	-118824	11.68237	12
2502	41	41	688885	5.688054	7
3000	36	36	3.3648	3.384789	3
4794	34	34	2.84315	2613155	3
5880	30	30	2.97815	2.976751	3
6088	-27	27	-181087	1.810085	2
8082	-26	28	-1.88459	1.684979	2
8178	23	23	21847	2164473	2

Table G-4 Model I Type lat Fracture Simulation Output and Calcuiations -Contianed

$\begin{aligned} & \text { moced Typen } \\ & 28 \text { by } 28 \end{aligned}$									940	4	90 amos	m(daya) $90 \mathrm{~m} / \mathrm{q}$	
		primant w vemand idtracture	$\begin{array}{r} 0.11 \\ 0.007 \\ 0.9 \\ 1000 \end{array}$	2×02 Soi	2.5 capprim $\infty$$0.75$		3.373	∞					
detra : deys	verage prescure	delta q arm on mbo	onr bopo	gas rata mok	am gas mmef	athours	09						coumioa
8	1863	73:8	:548	308	3.345	:4		:3:	: 288	-08850:	36.2044	a.514212	
8	1838	16.18	144	974	17.15	182	104	162	8.8138	0.12188	99.9383	1121191	155.67
10	1814	18.95	1321	950	13.12	240	227	188	71022	Q 140802	101.882	14.34519	83.48
12	1792	29.55	1289	804	1472	288	259	208	6.1971	0181365	103.608	16.74839	83.205
14	1779	24.1	1253	824	18.33	336	295	229	54718	0.182781	105.24	19.23384	81885
16	1751	26.55	1220	727	17.89	384	323	248	48008	0.204088	108.627	21.7823	80.945
18	1732	28.93	1183	744	1941	432	385	288	43308	0.230430	107948	24.87532	75.143
20	1714	31.23	1183	499	20.7	480	385	286	4.1364	0.241758	109.186	2838898	85.582
22	1608	33.55	1152	639	21.9	528	308	302	3.8148	0262153	111083	2912326	84722
24	1882	3582	1163	558	22.98	578	385	318	3.6572	0.273431	112842	30.79868	83039
28	1687	3795	1084	630	2432	824	434	333	31952	0.31297	113884	35.68729	78.409
31	1634	43.14	1005	545	27.7	744	493	388	2.8825	0.346919	117.869	40.891	87.505
62	1541	70.88	793	459	43.56	1488	755	459	17277	0578815	153.987	89.12960	29.616
123	1483	114.6	697	339	6749	2962	857	517	1.3482	0.74775	227.683	16×4169	134.67
214	1430	171.8	501	300	98.58	5138	957	570	10388	0.884467	301404	2908937	17952
395	1365	288.4	481	212	143.9	9480	1087	645	0.7457	1340958	416.124	558.0042	251.55
578	1297	351.8	430	214	184.8	13824	1109	703	06245	1801367	500.427	6043867	317.22
942	1203	494.2	349	168	258.5	22808	119	797	04378	2283688	620.075	1416.018	412.18
1309	1129	6118	290	153	3195	31302	1258	879	0.333	3003448	702411	2109.655	48833
2304	969	8458	179	216	4883	55288	1388	1031	0.1736	5.75977	820.360	4725.14	61782
3400	812	1007	111	224	719.7	89800	1437	1188	00084	10.7027	847.843	9072.072	700.77
5088	519	1179	38	128	1181	143804	1510	1480	0.0253	30.18421	791807	31028.32	780.79
8602	362	124	17	54	1371	208208	1531	1638	0.0104	96.35294	759.463	73178.47	812.54
11188	298	1276	9.2	34	1488	268512	1539	1702	00034	185	749.708	138805.7	82922
13784	288	1296	0	22	1558	330818	15×2	1734	00035	289	748.828	2158333	83982
16360	254	1300	4.8	17.2	1608	358120	1543	1748	0.0027	303.75	74.714	272708.3	848.24
18975	246	1320	4	14.3	1647	458424	1544	1754	0.0023	4385	752.508	330000	854.82
21572	239	1330	3.3	11.9	1681	517728	1545	1781	0.0078	533.6384	755.253	403030.3	891.01
24168	233	1337	28	10.2	1700	580032	1545	1787	0.0076	601.0714	758.65	477500	88578

Table G-5 Moded 2 Type 2 Fracture Simalation Output and Caleulations

Table G-5 Model 2 Type 2 Fracture Simulation Output and Calculations - Contineed

cethat amoil		The pressure decine can be compered with ecusi prestures as a function of ume									
cays	mbo	1/971	140	q (00ntr)	प鳥	ra	rcar	ס	pr ant	to	Trem
8	13180										
8	18190	00001	1.78E-05	58750	56750	454000	454000	12	12	98	98
10	18950	0.0003	2.58E-05	38750	38750	387500	387500	12	12	115	115
12	21550	0.0007	5.88E-05	17000	17000	204000	204000	11	11	129	129
14	24100	0.0008	58E.05	17250	17250	241500	241500	10	10	144	148
16	28550	0.0007	$444 \mathrm{E}-05$	22500	22500	380000	380000	10	10	158	158
18	28930	00019	0.000108	9250	9250	188500	168500	9	9	167	167
20	31230	20073	2.000384	2750	3750	55000	55000	3	2	170	: 35
22	33550	00044	0.0002	5000	5000	110000	110000	8	8	178	176
24	35820	0.0011	4.5SE-05	22000	22000	528000	528000	8	8	188	188
28	37050	0.0017	6.48E-05	15429	35879	401143	1838657	6857143	724286	178.2857	188.31
31	43140	00041	0.000133	75278	2724	233381	84439	35	6.1	1085	1891
62	70880	0.0158	0000257	3881.3	6134	241281	300313	1841304	230052	101.7809	143.19
123	114800	0.0926	0000752	1328.8	1410	163461	173388	0.730263	0.80297	89.82237	98.766
214	171800	0.2885	0001259	79412	978.5	180941	208389	0470588	0.52819	1007059	112.61
305	288400	0.9407	0002382	419.89	4199	185858	165856	0.387403	0.3674	1451243	145.12
578	351800	23880	0004144	24132	236.6	138008	136299	0.277879	0.29039	180.0585	172.45
942	494200	48278	0004913	203.55	203.6	191746	191746	0.229500	0.22951	216.1967	218.2
1308	811800	10.479	0008012	124.82	147.8	163250	193384	0.171808	0.19102	224.7225	24888
2304	845800	26927	0011887	85.584	8793	197140	202580	0.15153	0.15236	349.1243	35104
3400	1E+06	89.027	0008184	38109	5197	129848	176700	0.124052	0.13514	$\langle 29.7788$	45948
5008	$1 \mathrm{E}+\infty 8$	33118	0.055234	18.105	181	108556	108556	0086872	008887	5196841	51988
8592	1E+08	15489	0.180278	5.547	5.547	47600	47800	0041025	004102	3524838	35248
11188	$1 \mathrm{E}+08$	52807	0.472	2.1188	2.119	23703	23703	0.01849	0.01848	2088650	208.87
13784	1E+06	18285	4.18	0.8475	0.847	11881	11881	0.008475	000847	116.8138	11689
18380	1E+08	42522	2508	0.3852	0.395	6309.7	6300.7	0.003852	0.00385	63.09707	63.097
18978	$1 E+\infty$	65862	3461333	0.2889	0.289	5482.3	54823	0.002889	0.00889	54.8228	54623
21572	1E+08	93335	4.326887	0.2311	0.231	48858	40958	0.002504	0.0085	54.0131	54.013

Table G-5 Model 2 Type 2 Fracture Simulation Outpat and Calculations - Continned

cone t cays	C's smooth	Oxmocth	σ^{*}	2 smocth Of mook	00°
E					
8	-1443	1443			
10	-1340	1340	38750	38750	387500
12	- 1288	1288	22500	22500	270000
14	-1250	1250	20000	20000	280000
16	-1208	1208	20000	20000	320000
18	-1970	1170	13125	13125	236250
20	-1150	1155	5625	5825	112500
22	-1948	1148	13750	13750	302500
24	-1100	1100	22554	22584	541285.71
28	. 1057	1057	11828	17545	307486.97
31	. 10.7	9017	0288	7732	194299.17
62	832	832	3629	4780	22502778
123	683	683	1545	1837	180015.62
214	687	597	684	818	11.3303 .86
396	487	497	441	41	174350.45
578	-37	437	280	297	140577.1
942	355	355	180	180	17880754
1308	-298	298	119	142	15585529
2304	- 193	183	84	88	182750.27
3400	-123	123	40	54	135799.95
5806	46	46	20	20	120571.68
8582	-19	19	7	7	50284047
11188	-10	10	2	2	28862.14
13784	6	8	-	1	13294.722
16380	6	5	0	0	
18978	4	4	1	1	
21572					

Table G-5 Model 2 Type 2 Fracture Simulation Output and Calcalations - Continued

Table G-6 Model 2 Type 2b Fracture Simulation Output and Calcuiations

moder Typezh 28 by 28							
daran : days	amol moo 0			ctaystay: ($\mathrm{p}+\mathrm{a}$) k		nours sort at	
8	:4840	2	$2.08895 ?$	2388593	2449489:	$: 2$	0.00056179
8	18270	0.06205	0.104972	2352619	28286271	13.85640646	0.000598659
10	21520	0.1049	0.122334	2335818	3. 1822777	15.48193338	0.000620732
12	24770	0.10003	0.138952	2.286085	34641018	1897056275	0.000623053
14	27810	0.14887	0.154088	2287837	3.7416574	18.33030278	0.000645996
16	30970	0.17803	0.168907	2.281003	4	19.59501794	0.000681813
18	33940	0.19143	0.182732	2.262085	4.2428407	2078480888	0.000880344
20	38880	022505	0.195457	2280088	4472136	21.9088023	0000888231
22	30870	0.29843	0.207729	2313315	4.6804158	22.97825059	0.000728332
24	42440	0.29455	0.219512	2.288069	48989785	24	0.000727273
28	45160	03244	0230012	2282353	5.0000195	2497909189	0000744048
31	51200	042857	0.254705	2325532	5.5877644	2727836339	0000800358
62	88030	0.78938	0.315789	2.379305	78740078	38.57480304	0000994036
123	142400	107814	0372684	2312612	11.080537	54.33231083	0.007133797
214	218000	137017	0431639	2344002	14.628739	71.68589147	0.001331558
395	330600	177259	0.528718	2339858	19.874807	9736529158	0.001557632
578	444200	2.2983	0.610308	2428112	24	1175755077	0.001851852
942	812100	3.6114	0788784	2.680388	30.692019	150.350580	0002580074
1308	736800	4.91362	0.823077	2.871602	38.168283	1771778787	0003322259
2304	850800	0.47050	1378121	3448959	48	235.1510153	0.005882353
3400	1089000	18.7778	2025718	4581503	58309518	285.8571379	0.011111111
5896	1230000	62.5714	4.11509	8.328313	77.433843	379.346807	0.005714288
8858	1277000	143715	5.734007	13.08347	92.893042	454.1013103	0081300813
11188	1302000	233.211	6.033588	1831246	105.77334	518.1814354	0.13157884
13784	1318000	311281	7.054516	1778783	11740528	575.168083	0175438588
16380	1332000	385.957	7.33333	18.67787	12798437	628.8928229	0.217301304
18976	1343000	480.081	7583601	20.128	1377534	674.8510947	0.27027027
21572	1352000	588.333	777180	21.80128	14688741	719.533182	0.333333333
24168	1350000	883.615	7.928571	22.82745	155.46081	781.5983193	0.384615385

Table G-6 Model 2 Type 2h Fracture Simulation Output and Calculations - Continued

Colta : deys	arm oil mbo	ste presture dectre cin be comperse with scum preserues as a funcion of trie									
		14 q		q (darv)	dan	ra	rorat	p	ptat	to	rpat
8	14840										
8	18270	0.0002	237E-05	42250	42250	338000	338000	15	15	116	116
10	21520	0.0008	5.63E.05	17750	17750	177500	177500	14	14	135	135
12	24770	0.0008	6.35E-05	15750	15750	189000	188000	12	12	147	147
14	27910	0.0008	4285.05	23500	23500	329000	329000	11	11	158	156
18	30970	0.0012	7.41E.05	13500	13500	218000	218000	11	11	188	168
18	33840	0.0012	6.95 .05	14500	14500	281000	281000	10	10	171	179
20	38880	00007	331 E 05	30250	30250	605000	605000	9	9	175	175
22	38870	0.0011	5.13E-05	10500	18600	129000	429000	8	8	182	182
24	42400	0.0033	0.000138	7250	7250	174000	174000	8	8	180	180
25	45160	0.0016	6E05	18429	18671	479143	433457	6.571429	8.82857	170.8571	17754
31	51200	00017	5.57E.05	93888	17953	291058	558544	294444	5.84285	91.27778	181.12
42	88030	00107	0000172	3068.5	5818	245304	360728	1.48913	1.93075	9232609	118.71
123	142400	0.0885	0.000557	1877	1786	206348	220750	0.809211	0.88292	9953200	108.6
214	216000	01846	0.000863	882.35	1159	188824	248115	0.540441	0.59956	115.854	128.31
308	330800	0.677	0.001718	582.87	5829	230235	230235	042817	0.42818	168.1298	160.13
576	44200	11158	0.001937	468.01	5163	289572	297385	0.325411	035083	1874360	20208
942	612100	2.8851	0.003083	328.5	328.5	307588	307586	0.275958	02758	250.9500	250.95
1308	736900	6.375	0004874	158.59	205.2	207436	258371	0213858	0.23757	279.4628	31088
2304	180800	22.227	0.000647	100.86	103.7	232382	238829	0.181108	0.18287	4174073	421.32
3400	1 $\mathrm{E}+\infty 8$	58.203	0.017198	38462	5841	130760	198808	0.121885	0.14636	414.4006	40781
5058	$1 E+08$	400.68	0.088821	14.985	1497	80732	89732	0.070108	0.07011	420.3687	420.37
18592	1E+08	2188.7	0.25151	38291	3.829	33750	33750	0.024826	0.02485	213.4761	213.48
11488	1 $\mathrm{+}+08$	88012	0.788887	1.2712	1.271	14222	14222	0.000438	0.0084	105.5878	105.59
13784	1E+08	23858	1730087	0.5778	0.578	7884.6	7584.6	0.004237	000424	50.40678	58.407
16380	1E+08	42522	2.598	0.3852	0.388	6309.7	6309.7	0.002888	0.00239	473228	47323
18078	$1 E+08$	61577	3.245	0.3082	0.308	58×7.8	5947.8	0.002311	0.00231	43.85624	43.858
21572	$1 E+\infty$	101820	4.72	0.2119	0.212	4570.3	4570.3	0001733	0.00173	37.39308	37.394

Table G-6 Model 2 Type 2h Fracture Simuiation Output and Calculations - Continued

dowe: cays	a. mmoan	Comoan	0	2 smoots Q° smocth	0
6					
8	-1670	1670			
10	-1625	1625	18125	${ }^{18125}$	181250
12	-1598	1598	18750	18750	225000
14	-1550	1550	22500	22500	315000
18	-1500	1508	18125	18125	280000
18	-1478	1478	18750	18750	337500
20	-1430	1433	21875	21875	437500
2	-1380	1380	15000	15000	330000
24	-1373	1373	18357	1835	4057143
26	-1317	1317	25178	28849	684568.37
31	-1198	1198	7228	21345	224086.11
2	-1058	1088	341	3878	214805.47
123	878	878	1906	2241	234111.55
294	.767	767	910	1003	19467473
395	630	630	830	633	25020444
578	638	538	429	487	242744.88
942	± 00	400	312	312	288780.25
1308	309	300	180	216	213358.79
2304	-178	178	88	109	2580288
3400	-104	104	39	55	132070.19
5080	-34	34	17	17	10058834
8502	. 14	14	5	5	43347475
11188	8	8	2	2	17431404
13784	6	8	1	1	8204.038
18380	5	5	0	0	
18076	4	4	1	1	
21572					

Table G-6 Model 2 Type 2h Fracture Simulation Output and Calcuiations - Continued

$\begin{array}{\|l} \text { moded Typas } \\ 28 \mathrm{by} \\ 28 \end{array}$	$\overline{p o 3}$	phunatix 0.11$\begin{aligned} & \quad \omega 0.007 \\ & \text { inmeotx } 0.1 \\ & \text { intrecure } 1000 \end{aligned}$		2×0. 8.5 Sa 0.75		$\begin{aligned} & \infty 019 \text { P.373 } \\ & \text { (mmbo) } \end{aligned}$							
	average pressure	dolta q amol mbo	oll rate Dopd	gas ratic malt	arm ges mand	al hours	09	¢	9	914	qammet	p(deys) gam/a	caumica
¢	1835	75	365	562	7822	144		∞	5.6154	0.178082	116.452	20.73873	
8	1831	8.242	322	420	8.843	192	43	69	46867	0.214286	119.448	25.50627	19187
10	1828	8.888	278	351	9.5	240	87	72	38817	0.258983	123.139	31.89200	107.97
14	1923	10.01	254	239	10.53	336	101	77	34288	0.291887	130	3791687	99.109
16	1921	10.53	254	219	10.88	384	111	79	32152	0.311024	133.291	4145868	94.885
18	1918	11.05	232	254	11.34	432	133	81	28842	0.340138	138.42	47.22931	83.083
20	1818	11.53	238	194	11.72	480	127	84	2.8333	0352941	137262	48.44538	80.787
22	1915	12	218	202	1207	528	147	85	25847	0388908	141.178	55.04587	81.033
24	1913	12.48	225	188	1235	578	140	87	25882	0.388887	143.448	5548887	\$0.143
26	1919	12.94	213	183	12.64	624	152	89	23033	0.41784	145.383	60.75117	85.132
31	1908	13.83	209	145	12.76	744	156	94	2.2234	0449781	147128	68.17225	88.654
62	1885	19.45	188	96	174	1488	197	115	1.4609	0.684524	160.13	115.7738	89.731
123	1854	28.88	146	71	22.54	2962	219	140	1	1	198.438	1864384	130.88
214	1820	40.41	121	8	28.75	5136	244	180	0.6722	1487803	224.5	3338980	185.61
305	1780	5003	68	56	3941	9480	277	231	0.381	2625	255.541	870.7955	213.1
576	1729	73.47	70	48	48.88	13824	295	271	02583	3871129	271107	1040.571	2405
942	1886	98.83	54	41	63.07	22808	319	334	0.1617	6.185185	289.97	1790. 148	31135
1308	1617	116.3	51	31	74.13	31362	314	383	0.1332	7508804	303.655	2280.382	370.38
2304	1527	155.3	38	25	1036	56296	327	473	0.0603	12.44737	328.33	4086.842	474.92
3400	1469	190	30	17	124.1	81800	335	531	0.0585	17.7	357815	6333.333	58716
5005	1381	2543	20	16	1706	143004	345	619	00323	30.95	410.824	12715	7371
8582	1329	3028	18.6	9.3	2028	208208	34.4	671	0.0277	36.07527	451.287	182795	674.13
11188	1280	347.8	15.3	13.3	2324	268512	349.7	711	0.0215	46.47050	480.17	22732.03	19055
13784	1252	3827	12.6	8.6	2623	330816	3524	748	0.0168	59.36508	511.631	30373.02	1088
16380	1222	4138	11.7	8.7	2883	303120	363.3	778	0.015	68.40573	532.005	36378.07	11715
18978	1188	44.5	11.8	8.8	3075	455124	353.2	804	0.0147	88.13558	552.861	37609.49	1258. 5
21572	1169	473.1	10	9.1	330.5	517728	365	831	0.012	83.1	500.314	47310	1332.7
24168	- 1145	487.3	8.9	8.1	3622	580032	358.1	856	0.0104	86.08742	581.637	56878.4	41306.5

Table G-7 Model 3 Type 3 Fracture Simulation Outpat and Cakealations

Table G-7 Model 3 Type 3 Fracture Simulation Output and Calculations - Continued

detrat amod tays mbo		Une preasere cectine can be compered with ecusa pressures as a funcion of time									
		1404		G (carnv)	cat	ra	ram	\square	prat	5	rpan
6	7570										
8	8242	0.0004		21750	21750	174000	174000	2	2	14	14.
10	6858	0.007	0.000103	8887	15833	96887	158333	1	1	13	14.
14	10010	0.0035	0.00025	4000	4500	58000	63000	1	1	16	15
16	10530	0008	0.000125	8000	8000	128000	128000	1	1	16	16
18	11050	0.0045	0.00025	4000	4000	72000	72000	,	1	23	23
20	11530	0.0057	0.000288	3500	3500	70000	70000	;	1	20	20
22	12000	00088	0000308	3250	3250	71500	71500	\uparrow	1	17	17
24	12480	0.0192	0.0008	1250	1250	30000	30000	1	1	24	24.
26	12940	0.0114	0000438	2285.7	4514	59429	117371	1	1	26	26
31	13830	0.0248	00008	1250	872.6	38750	27050	0.72222	0.9552	2238860	28811
62	19450	00905	000148	884.78	9005	42457	61804	0.585217	08204	3504348	38485
123	28380	0.3978	0003234	309.21	326.2	38033	40119	0.427632	0.45418	52.59888	55.886
214	40410	10038	000460	213.24	2438	45632	52175	03125	0.34289	68.875	73379
395	59030	2.8037	0.007088	140.88	140.9	55649	55849	0.251381	025138	99.29358	99.296
578	73470	9.2688	0.018088	82.157	8101	35803	48880	0.1883	020483	1084607	11798
942	98830	36.292	0.038526	25.958	25.98	24451	24451	0.153005	0.13301	144.131;	144.13
4308	118300	111.34	0.085125	11747	9507	15388	12428	0.102058	0.12218	133489	159.82
2304	155300	22952	0098819	10.038	10.39	23128	23762	0070746	007254	162.9981	16712
3400	190000	60738	0.206111	4.8754	6.278	16578	21338	0039545	004727	1344529	180.73
5088	254300	27308	0.455430	21957	2.108	13185	13165	0.028886	0.08886	181578	16166
88582	302800	94914	1104881	0.8052	0.505	77778	7778	0.01772	001772	152.2465	152.25
11188	347800	9881.3	0885333	1.1558	1.158	12929	12829	0014831	0.01483	185.9237	185.92
13784	382700	19880	144222	0.6034	0.603	95575	98575	0012904	0.0129	1778752	17788
18380	413800	108308	6.48	0.1541	0.154	2523.9	2523.9	0010780	0.01078	178.6718	176.87
18976	44×500	57955	3.054118	0.3274	0.327	6213.3	6213.3	0010208	0.01021	193.7072	183.71
21572	473100	38821	1780345	0.5588	0.55	12049	12040	0008823	0.00982	2118975	2118

Table G-7 Model 3 Type 3 Fracture Simulation Output and Calculations - Continued

$\begin{aligned} & \text { detta }: \\ & \text { derys } \end{aligned}$	Ofimoth	Ormocth	0	2 smoots Or moon	009
8					
8	324	324			
10	303	303	922	9778	92222.222
14	-289	280	722	5778	101111.11
16	-280	250	4087	4687	74086.687
18	-250	250	5625	5825	101250
20	238	238	3125	3125	62500
22	-239	238	825	625	13750
24	-235	235	5589	5589	134142.86
28	-215	215	8078	9188	210016.9
31	. 178	178	1221	6351	37849.388
82	-171	171	393	375	24354.648
123	-142	142	335	381	41286.184
214	-120	120	187	215	40118.604
388	$\bigcirc 1$	81	128	128	49858.61
576	. 74	74	60	77	34534775
942	-50	50	34	34	3270.07
1308	48	49	17	22	22014316
2304	36	36	9	10	21816532
3400	30	30	4	5	12785686
5996	. 22	22	2	2	1340352
8502	-18	18	1	1	1048384
11188	-15	15	1	1	11371916
13784	. 13	13	,	1	9255.1715
16380	12	12	0	0	41928084
18976	.11	11	0	0	0335.455
21572	-10	10	2	2	47374294

Table G-7 Model 3 Type 3 Fractare Simulation Oqtput and Calculations - Continued

Table G-8 Model 3 Type 3h Fracture Simulatioa Output and Caleulations

	octal Type 3n by 28		Chimatix 0.11 2×012.5 $\omega 0.007$				$\begin{aligned} & \infty \times 1.373 \\ & \text { (mmbol) } \end{aligned}$
cotha: cays	arn ot mbo cola	4		daydidays ($p+$ +it)		nours $\operatorname{son} a$	1/9
3	7897	\bigcirc	0.034126	4.4818182	24484867	12	0.00261550
8	8850	0.03562	0.036250	3.985419	28284271	13.85640646	0000739728
10	9303	0.24752	0.037883	4.1	3.1622777	15.48183338	0.00330033
14	10810	0.24752	0.041124	3548328	3.7418574	12.33030278	0.00330033
16	11410	0.27273	0002753	3.401094	4	19.59591794	0.003387003
18	11800	0.3125	0.043841	3312888	4.2428407	20.78480868	0.003472222
20	12500	0.33099	0.044832	321831	4.472136	21.8088023	0.003521127
22	13170	0.35484	0.048025	3.14585	4.0504158	22.97825050	0003582229
24	13720	0.35979	0.04712	3058356	48080795	24	0.003587122
28	14280	0.34043	0.048218	2.948901	50000195	24.87990190	0.003546090
31	15500	047858	0.050972	2.953125	5.567764	2727838339	0.00380625
62	22840	0.8439	0.003284	2781275	78740079	38.57460304	0.004878049
123	33560	155405	0.081081	2843581	11.000537	54.33231083	0.008758757
214	48500	1.85313	0.101828	2007576	14.628739	71.68580147	0.0078125
305	84740	3.68867	0.135718	3.003441	19.874607	97.36529158	0.012345879
578	79040	3.80000	0.162115	2.782107	24	1175755077	0.012897013
842	103700	5.40878	0.208273	2885804	30.602019	150.350369	0.018949153
1309	123400	750097	0243781	3.144148	33.166283	1771778787	0.002727273
2304	180800	10.1178	0.318658	3062686	48	235.1510153	0.009411785
3400	198800	13.5385	0.367980	3.228244	50.309810	285.6571379	0.038161538
5088	250000	17.8	0.457725	3.159773	77.433843	379.346807	0.05
8588	300000	18.5436	0.512850	2964548	92.603042	454.1013103	0.054347828
11188	353200	25.080	0.563722	3.17721	105.77334	518.1814354	Q068065517
13784	387000	29.4839	0.60001	3.284786	117.40588	575168003	0.000645161
18380	418300	30.2397	0.848808	3.110518	127.90437	628.8028729	0029844838
18976	49800	34	0.688341	3.195289	1377534	674.8510947	0.002592583
21572	477100	35.090	0.724138	3.147248	1468749	710.533182	0.007087379
24168	500000	42.9535	0.750015	3.408071	155.40081	761.5903193	0.11627807

Tuble G-8 Model 3 Type 3h Fractare Simalation Outpat and Caicuiations - Continued

derta 1 days	am ol mbo	the pressure decine can be compered with ectum prestures as a function of time									
		1/994		¢ (derv)	qat	ra	roran	ロ	p at	5	roan
8	7897										
8	8859	0.0004	5.33E-95	18750	18750	150000	150000	2	2	14	14
10	9363	0.0005	4.84E-05	10333	20887	103333	208687	2	2	15	15
14	10810	0.007	0.0005	1000	2000	14000	28000	2	2	21	29.
16	11410	0.0043	0.000287	3750	3750	80000	80000	1	,	20	20
18	11980	0.0055	0.000308	3250	3250	58500	58500	1	1	18	18
20	12800	0.0089	0.000444	2250	2250	45000	45000	1	1	20	20
27	13170	00147	0000887	1500	1500	33000	33000	4	,	2	23
24	13720	0.032	-0.00133	-750	-750	-18000	-18000	1	1	24	24
28	14290	0.455	0.0175	31429	57.14	81714	1485.7	1	1	28	28
31	15500	0.0088	0000212	2130.8	4706	66308	145094	0.75	0.05068	23.25	29.75
62	22840	0.0441	0.000711	1773.8	1406	72783	87152	0.578087	0.64179	3571730	39791
123	33580	0.1899	0.001544	508.58	647.6	(2300	79658	0.434211	04588	5340780	58408
214	48500	0.918	0.00429	216.32	233.1	52713	40800	0327208	0.35675	70.02208	76.139
395	84740	2.8037	0.007008	140.88	140.9	55849	55849	0.259830	0.25987	102.5691	10257
576	79040	18545	0032196	40.218	3106	23168	17897	0.1883	0.20483	108.4607	11798
942	103700	20.893	0.022182	45082	45.08	42467	42407	0.154372	0.15437	145.418	145.42
1308	123400	40.038	0.030611	18.355	32.67	24000	42730	0.102058	0.12397	133.480	162.08
2304	180800	283.76	0.114479	86042	8.735	19824	20128	0.08979	0.07158	180.7964	16489
3400	198800	584.34	0.171805	3782	5.819	12883	18783	0038818	0.04686	136.3738	150.32
5008	250000	4008.2	0.683158	14638	1 4B6	8778.9	8776	0.026085	0.02898	1618796	161.68
8592	308000	8110.8	0.944	1.0803	1050	9401.7	0101.7	0.017912	0.07781	1539014	153.9
11188	353200	9881.3	0.865333	11536	1.156	12929	12929	0015218	0.01522	170.2334	170.23
13784	387000	29818	2103333	0.4622	0.462	63716	63716	0.012712	0.01271	175.2203	175.22
18380	418300	53153	3.245	0.3082	0.308	50478	50478	0.010978	0.01098	179.8287	17983
18978	49800	54735	2.884444	0.3467	0.347	6578.7	6578.7	0010208	0.01021	18.7072	189.71
21572	477400	50910	238	0.4237	0.424	9140.7	9140.7	0,009438	0.0094	203.5678	200.59

Table G-8 Model 3 Type 3h Fracture Simaiation Output and Caleulations - Contiaued

detat 1 chys	\sim_{0} smocth	Ormooth	σ	2 smoches Or smooth
8				
8	374	374		
10	3383	303	9319	7472
14	318	318	11292	11417
18	-295	295	5148	5146
78	-298	290	0	0
20	-295	296	4375	4375
22	-280	280	3750	3750
24	-280	280	1829	1821
28	-273	273	5880	4450
31	-240	240	1858	5682
62	-213	213	828	854
123	-164	164	557	637
214	-128	128	273	334
366	+0	90	147	147
578	.75	75	54	68
942	81	61	35	35
1308	49	40	19	28
2304	35	35	9	10
3400	30	30	4	4
5986	-22	22	2	2
8582	-18	18	1	1
11188	- 15	15	,	1
13784	. 13	13	;	1
16380	-12	12	0	0
18978	-11	11	0	0
21572	. 10	10	2	2

Table G-8 Model 3 Type 3h Fracture Simulation Output and Calenlations - Continned

modi Typodh													
$28 \mathrm{dy}$		phimertix kinatox Vtrecture	0.11 0.007 10.1 4000 k pertisons	2×22 So	275	(mmbo)	373						
$\begin{aligned} & \text { comant } \\ & \text { ceays } \end{aligned}$	average pressurto	data 9 amal mos	all rato bopd	gas rue math	ang ges mmd	ar hours	© 9	¢	9×0	0009	9 armmp	p(cays) $90 \mathrm{~m} / \mathrm{c}$	90.mios
9	1842	1478	1773	1141	102	144		158	11222	0089114	835404	8330153	
8	1812	1818	1608	1223	12.68	182	107	188	8.8617	0.112845	86.7553	10.91837	170
10	1784	2141	1588	1185	15.08	240	187	216	73428	0.338162	091204	1340937	114.49
12	1759	2488	1807	1085	1708	288	188	241	6.868	0149869	102324	1534538	148.55
14	1735	2778	1513	1091	19.2	336	280	285	5.7004	0175148	10.755	18.34785	108.77
18	1713	3077	1513	888	21.19	384	260	287	5.2718	0.18988	107.213	20.33708	11835
18	1808	33.79	1488	808	22.92	432	277	307	4.873	0.205214	110.085	22.5080	12198
20	1975	30.73	1453	921	2469	480	320	325	4.4708	0.223675	113.015	25.27873	114.78
22	1858	3053	1410	87	28.49	528	303	342	4.1228	0.24553	115.585	2803546	108.9
24	1842	42.29	1411	591	28.08	576	362	358	3.9413	0.253721	118.101	2986458	1168
28	1629	4507	1302	688	29.24	624	381	371	3.752	0288523	121.482	32.37787	118.29
31	1507	5138	1245	803	34.09	744	528	403	3.0883	0323095	127418	41.24498	97254
62	1527	8808	1007	604	5407	1488	788	478	21023	047567	179.582	85.42205	112.3
123	1458	142	887	458	85.88	2962	008	542	1.5006	0.62514	281009	163.7832	758.73
214	1388	215.1	758	380	123.5	5138	1015	602	12591	0794106	357300	283.7731	21192
306	1312	337.9	610	330	185	9480	1183	888	0.8888	1.127869	491.134	553.9344	290.54
576	124	40.9	536	283	238.	13824	1237	758	0.700	141048	583.207	822.5746	366.43
942	1135	808.2	388	280	333	22868	1385	886	0.4488	2.229381	700800	1562371	43769
1308	1005	730.9	300	271	4275	31362	1473	958	0.3741	3.183333	78634	2438333	4082
2304	848	985.1	173	280	6052	55298	1600	1152	0.1502	6.65098	829.08	5520.800	50894
3400	689	1005	92	234	950.5	81600	1681	1331	0.0891	14.48730	822.69	11002.17	8514
5888	306	1228	29	96	1340	143804	1744	1804	0.0181	\$8.31034	78658	42348	704.13
8592	299	127	12.8	43.6	1508	208208	1780	1701	00074	135	750.735	101349.2	725.4
11188	253	1302	7.6	288	1504	268512	1785	1737	0.0044	228.5578	740.568	171315.8	73751
1378	249	1319	5.7	20.9	1853	330816	1787	1751	0.0033	307:83	753.284	2314035	748.34
18380	241	1332	48	16.2	1700	303120	1788	1759	0.0026	3823913	757.248	280585.2	753.22
18978	234	1343	3.7	13.4	1738	456424	1780	478	0.0029	4772973	780.478	382973	750.08
21572	228	1351	3	109	1770	517728	1770	1772	0.0017	500.6007	782.415	450333.3	783.28
24188	224	1358	2.6	9.4	179	500032	1770	178	0.0015	683.0760	78.84	522307.7	787.08

Table G-9 Model 4 Type fh Fracture Simuintion Output and Calenalations

model Typein 28 by 28							$\begin{aligned} & 00003.373 \\ & (\text { mimeo }) \end{aligned}$
corsa : days	arm oid mbo		0	caysuctays (tpratat		nours sort al	
ิิ	14780	5	0585776	2388356	24494867	12	
8	18180	0.08423	0.103753	2364786	28284271	13.85840846	
10	21410	0.11791	0.121078	2349937	3.1822777	15.48193338	
12	24660	01033	0.13701	2.27878	3.4641016	16.87056275	
14	27760	0.17184	0152738	2310547	37416574	1833030278	
16	30770	0.17184	0.187542	2.271087	4	19.59591794	
18	33790	0.18518	0.181335	2254828	4.2428407	20.78460989	
20	36730	0.22023	0.19403	2.283807	4472138	21.9089023	
22	30530	0.25745	0208273	2.274330	4.6004158	22.97825050	
24	42280	0.25858	0218027	2248524	48888795	24	
28	45070	0.27371	0.227747	2.245303	50890195	2497989190	
31	51350	0.4241	0.252348	2.330483	55877844	27.27636338	
62	88000	0.78088	0.314924	2377775	78740079	38.57480304	
123	142000	104888	0.371742	233157	11000537	54.33231083	
214	215100	133005	0430815	2328042	14828739	7188589147	
395	337900	180858	0.52438	2.402368	19874807	9738529158	
578	440000	230784	0.607717	2428081	24	1175755077	
942	608200	358050	0.762115	2658588	30.602019	150.350669	
1308	730800	4.81	0.913878	2.86284	36.168283	1771778787	
2304	985100	924855	1358497	3.300185	48	235.1510153	
3400	1005000	18.2717	1.889537	4.500830	58.309519	2856571371	
5080	1278000	80.1379	4.050505	8.062179	7733843	379.346807	
8592	1277000	139.714	5.888803	1279576	82803012	454.1013103	
11188	1302000	232.269	6.804563	16.31246	10577334	518.1814364	
13784	1319000	310053	7082129	1778788	117.40628	575.186063	
18380	1332000	384.435	7298755	18.87787	127.98437	828.9828278	
18978	1343000	478.188	7547009	20.128	1377534	6748510947	
21572	1351000	590	77183	21.87583	148.8741	719.533182	
24168	1358000	680.923	7.928571	2281954	158.46081	761.5883183	

Table G-9 Model 4 Type 4h Fracture Simulation Output and Cakculations - Continued

$\begin{aligned} & \text { deta } t \\ & \text { anys } \end{aligned}$	am ai mbo										
		$1 / 80$		व (denv)	qat	ra	$\mathrm{rc}_{\text {det }}$	-	- ${ }^{\text {m }}$	rior	rpom
8	14780										
8	18190	0.0002	214E-05	46750	46750	374000	374000	15	15	116	118
10	21410	0.0007	6.78E-05	14750	14750	147500	147500	13	13	133	133
12	24680	0.0007	5.48E-05	18250	18250	219000	219000	12	12	147	147
14	27780	0.0008	4.28E-05	23500	23500	329000	329000	12	12	161	161
16	30770	0.0038	0.000235	4250	4250	68000	88000	11	11	168	168
18	33780	0.0012	6.87E-95	15000	15000	270000	270000	10	10	171	179
20	38730	0.0009	4.ESE.S	21500	2:500	430000	430000	a	3	175	125
22	30630	0.0021	9.52E-05	10500	10500	231000	231000	8	8	182	182
24	42280	0.0053	0.000222	1500	4500	108000	108000	7	7	174	174
28	45070	0.0077	$6.50 E-05$	23714	15188	818571	304829	8.428571	6.47143	157.1429	188.28
31	51350	00012	379E.08	10894	26383	331528	817872	3	585161	83	1814
62	68020	000108	0.000171	4108.7	5884	254738	383556	1.51087	1.97353	89.67381	122.36
123	142000	0.0863	0.000539	16382	1855	201403	228131	0809214	088298	99.53280	108.6
214	275100	01999	0.000934	94485	1071	202189	229715	0.538785	0.59771	114.8678	127.91
396	337800	0.8441	0.001634	81328	813.3	242238	242238	0.425414	0.42541	1680387	16804
576	440000	1.414	0.002455	405.85	4074	233770	234640	0.323583	034982	188.3838	20155
942	606200	2.9218	0.003102	322.4	322.4	303705	303705	0.271858	0.27186	258.0902	256.09
1308	730800	6.2259	000476	15786	210.1	208476	274799	0.21072	0.23297	275.6211	30473
2304	955100	22.509	0.009805	99.428	102	229078	234882	0.179732	0.18138	414.1033	4179
3400	1E+08	57462	0.0160	39.003	50.17	132817	201178	0.122427	0.14808	418.2514	496.58
5008	$1 \mathrm{E}+\infty$	39208	0.08539	15.293	15.29	91085	91506	0.071263	0.07126	4272958	4273
8592	1E+08	20848	0242817	4.1217	4122	35414	35414	0025816	002562	2200085	220.1
11188	1E+08	3418.8	0.752464	1.379	1.329	14888	14888	0.00083	0.00063	1077427	10774
13784	$1 \mathrm{E}+08$	23858	1.730687	0.5778	0.578	7984.6	7984.6	0.004237	0.00424	59.40678	58.407
18380	$1 \mathrm{E}+\infty$	42572	2.508	0.3052	0.305	6309.7	63097	0.002880	0.00239	47.3228	47.323
18978	$1 E+\infty$	61577	3.245	0.3082	0.308	58478	58478	0.002504	0.0025	47.5131	47.513
21572	1E+06	101820	4.72	0.2119	0.212	4570.3	4570.3	0.001828	0.00183	415486	41.549

Table G-9 Model 4 Type 4h Fracture Simuiation Oatput and Calculations - Continued

Table G-9 Model 4 Type 4h Fracture Simulation Ortput and Calculations - Continued

