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ABSTRACT

One of the most significant contributors to the oil and gas industry as a 

primary means o f well production increase, is the hydraulic fracturing treatment. In 

essence, more then a million of such treatment operations have been conducted on 

over 44 % of the drilled wells. Nowadays, the costs of these operations, applied for 

the stimulation o f oil and gas wells, have significantly increased, along with the 

increase o f treatment size, pump rates and pressures, varying from fifteen thousands 

to more then one million dollars per operation. Consequently, a correct calibration of 

such operations is very important, and to ensure this, mini-fracture treatments are 

used.

Many models, describing the mathematics and application of a mini-fracture 

have been developed. However, a significant number of assumptions limit their 

applicability, and consequently often times they can not be used successfully for the 

delineation of fluid and reservoir properties necessary for the calibration of the actual 

fracturing operation.

The present study presents a coupled model for the determination o f fluid and 

reservoir properties, such as fracturing fluid efficiency, leak-off coefficient, fracture 

half-length, fracture width, spurt-loss coefficient, reservoir permeability and filter

cake resistance. In essence this model can be used for the analysis and interpretation 

of the fracturing fluid leak-off characteristics as well as the filter-cake reservoir flow 

based on pressure decline data from a minifrac test.

XVI



New equations for the analysis of fracturing fluid spurt loss and subsequent 

calculation of fracturing fluid and reservoir properties based on spurt loss, if 

identified, are introduced.

In addition, a new pressure derivative equation was derived and incorporated 

into the model. This is used as an alternate tool for the case in which classic minifrac 

analysis techniques fails to produce reasonable means of interpretation, which if used 

would result in unreliable fluid and reservoir properties sought from such a test.

A computer program was developed for the calculation of all parameters 

mentioned above and also to automatically curve-fit the main output and diagnostic 

plots of the model.

A step by step procedure is included and application of the model is 

demonstrated on real field data obtained from minifrac tests performed on several oil 

wells. The fluid and reservoir properties determined with this model, are verified by 

comparison with results obtained from post-fracture tests (i.e. build up, history 

matching).

Also, sensitivity analysis is performed, to enhance its applicability by 

indicating which parameters are playing a major role in the interpretation o f  a 

calibration treatment.
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CHAPTER I 

INTRODUCTION

1.1 Calibration Treatments

Hydraulic fracturing plays a major role in the oil and gas industry. Often times 

we hear that by applying this stimulating treatments to oil and gas wells, reserves are 

being increased, when in essence that is not the case. Instead, with the help of the 

hydraulic fracturing treatments, we make existent reserves exploitable, producible 

and consequently add a significant number of barrels of oil and millions of cubic feet 

of gas from reserves that would have otherwise not been economical to develop and 

produce.

As a method o f accelerating recovery, hydraulic fracturing requires a correct 

calibration of the actual treatment, which implies the prediction and determination of 

fluid and reservoir properties such as fluid efficiency, leak-off coefficient, spurt loss, 

fracture half-length, fracture width, reservoir permeability, in-situ stress, and filter

cake resistance. The dimensional and propagation characteristics of the hydraulic 

fracture constitute valuable information for a proper design o f the fracturing 

treatments.

A calibration treatment is a special case of hydraulic fracturing, which is 

executed without proppant before the actual stimulation treatment. Calibration 

treatments are generally performed for critical stimulations or at the beginning of a 

field wide program. The main objective o f the minifrac is to determine the hydraulic 

fracturing parameters necessary for the design of an effective fracture stimulation.



In essence, minifracs are composed o f two basic injection tests, which are 

conducted to ensure a reliable fracture analysis, a stress test and calibration 

treatment*. As far as the stress test is concerned, a step-rate injection procedure 

followed by flow-back or pressure decline analysis is used to determine the closure 

pressure which is equal to the minimum in-situ rock stress. Since all subsequent 

fracture analysis and proppant selection are using the closure pressure, it is very 

important that it be determined as accurately as possible.

Once the closure pressure is determined, a calibration test is 

performed. The test is conducted with the same fluid and at the same rate that will be 

used on the actual job. After the pumping period, following the shut-in, the pressure 

decline is monitored until closure is attained. The information obtained from the 

injection period is used for the identification o f the fracture geometry, as shown by 

Nolte and Smith^. The information is later used to determine which is the most 

appropriate model to use for the decline analysis, and also to diagnose the undesired 

occurrence of fissure opening and/or rapid height growth.

Fracture calibration, also known as minifrac, is used to help optimize the 

hydraulic fracture treatment design, since it provides critical information pertaining to 

the well to be treated. Minifrac pressure decline analysis, as presented by Nolte^’'*’̂ , 

first become popular in the I980’s and is used routinely today. An excellent review 

and detailed description o f the theoretical fi-amework and current application o f 

fracture pressure analysis is presented by Nolte^’̂ .

Numerous papers have been written on the subject of analyzing the pressure- 

decline data obtained from a calibration test, and a variety o f theoretical models have



been developed and presented. They address the uncertainties derived from ideal 

assumptions employed in their derivation.

Minifrac test procedure and analysis have been the subject o f considerable 

investigation and controversy, over the last eighteen years. In essence, despite the 

extensive work on the topic, and at least two international workshops^ on in-situ 

stress measurement, many uncertainties remain in the interpretation of hydraulic 

fracture injection tests. Several factors have been shown to influence the post shut-in, 

pressure decline behavior of vertical fractures, including: fluid injection rate, fluid 

rheology, reservoir permeability, fluid leak-off additives, fluid compressibility, fluid 

pressure, minimum horizontal in-situ stress, and the opening of natural fractures^.

Most minifrac analysis is based on Nolte’s equations, in essence based on the 

material balance during fracturing and closure. His most recent published paper® 

provides a technical frame work for adding after closure fracturing pressure-decline 

analysis, to the pre-treatment calibration testing sequence, that defines fracture 

geometry and fluid-loss characteristics.

The basic analysis o f decline data, is based on assumptions that fluid loss

depends on V f and it is independent of pressure. Also they consider the fracture area 

and closure pressure to be constants, and that the fluid is incompressible. However 

such assumptions, of the basic analysis employed for the interpretation o f pressure- 

decline data, is seldom met in practice.

Consequently, although deviations from these assumptions have been 

considered previously, he proposed a method'’ based on the consideration of the slope 

at strategic locations on the G-plot for pressure decline, in conjunction with available



information for the fluid and reservoir, standard well logs, pressure diagnostics, and 

treatment design improvements. In fact, a variety of pressure-time plots were 

prepared for the minifracs, using most o f the commonly applied graphical techniques 

(i.e. pressure, log pressure or pressure derivative vs. square root o f time, log time, 

Homer time, Nolte’s time function (G-function), DeBree, etc.)

Shlyapobersky et al.^, described a new model for the design and interpretation 

of hydraulic fracturing treatments and minifrac tests, using the fi'acture overpressure 

measured at shut-in to determine the apparent fleld-scale fracture toughness of the 

fractured interval.

The Nolte-Shlyapobersky technique can be used for the determination of fluid 

efficiency, leak-off coefficient, fracture half-length, and fracture width. However, the 

model has limitations and thus it is not suitable, in most o f the situations, for the 

following reasons;

Ideally, a plot o f the net pressure versus the G-fimction should be a straight 

line, as shown in Fig. 1 (a). However, when analyzing field data, the plot, in most 

cases it is not a straight line, but rather a curve as shown in Figs. I (b) and Fig. 2. It is 

believed, that one of the main reasons for the deviation from it’s expected linear 

behavior, is the ratio of the spatial net pressure (Ap^-) to the wellbore net pressure

(Ap) ,  and known as . A deviation from the ideal expected behavior, as shown in 

Nolte’s analysis^. Figs. (1.1a and 1.2) can be explained by the occurrence of fracture 

geometry changes, unlike the opinion of other authors who consider the ratio of



spatial average to the wellbore net pressure, =1 after shut in. If the net pressure in 

the fracture were the same at all points, then a value o f =1 would be valid.

Ou

(c) Height growth

Ou

(b )
Pressure- 
dependent 

'loss

G(Ato) Q(Ato>

Fig. l .I  Diagnostic from pressure decline data - Net 
pressure versus (Adapted from Nolte
at al.**)

However, Nolte^’'* showed that during and after pumping there is fluid flow 

from the wellbore region to the extremities of the fracture, and this generates a



pressure gradient until the fluid is completely lost in the formation. Figure 2.4 shows 

the simulated pressure and flow rate in a fracture both before and after shut-in^. In 

his study and analysis Nolte^ also shows that prior and after pumping has

different values due to flow rate and pressure gradient reduction in the entrance area 

of the fracture

Nolte'*’̂ ’*®, developed the equation of the dimensionless G-function as an 

integral for the lower and upper bounds (loss dominated and storage cases). When the 

model is solved with the aid of the hyper-geometrical function* both

the dimensionless shut-in time, and the fracture area growth power law

exponent, a ,  are simultaneously considered, and increased accuracy is expected. 

However a remarkable inconvenience can be generated if the plot of the fracture net 

pressure versus the G-function is a curve, and thus making difficult or unreliable the 

pressure decline analysis. Fig. 1.3. Consequently, other methods should be developed 

for the interpretation of fall-off data, when the classical approach does not lead to 

valid results.

In addition to that, the model does not consider the rheology of the polymer 

based fluid used to perform the calibration treatment of the well. Since a minifrac test 

uses an injection fluid with the same or similar properties, as the one used for the 

actual fracturing job, rheological properties and fluid behavior should be included.

Finally, the Nolte - Shlyapobersky fall-off analysis assumes that the spurt loss 

is zero, which in reality is expected to be approximately 80 % o f the entire leak-off in 

wells located on reservoirs with high permeability.



Consequently, the parameters determined from the intercept and slope o f this 

plots (i.e. fluid efficiency, rj, leak-off coefficient, C^, fracture half-length, Xj-, for

the PKN and KGD geometries, and Rç  for the Penny Shape or radial geometry), and

fracture width, , are not always reliable.

800

n m800

i  400

200

Fig. 1.2 Decline analysis-Net pressure versus 
(Adapted from Nolte at al.'̂ )



Mayerhofer et al. developed a model that considers the total pressure drop 

as a sum of pressure drops, Eq. (1.1), across the filter-cake, polymer invaded zone 

and the reservoir. The main output of the model consists o f two parameters, the 

reservoir permeability and the filter-cake resistance.

à p { t )  =   ( 1.1)

Nolte-Shlyapobersky 
= SPE 8341 =

4.20E+07

4.106*07

to 4.006*07 
O.

3.906+07

a. 3.806*07

3.706*07

1.365 1.465 1.565 1.665 1.765

g(dtD)

3.606*07

Fig. 1.3 Net pressure versus G-function of a case presented by Nolte 14

The method can thus differentiate between the two major factors of the leak-off 

process; the filter-cake and the reservoir permeability. However, the method is 

sensitive to deviations from its assumptions*^''^’*®, and therefore the analysis on the



same data sets as in the case of Nolte-Shlyapobersky’s technique, indicates that not 

always a straight line is obtained. Also, often times, when the straight line is well 

defined, a negative intercept may occur. In this case the filter cake resistance 

delineated from the intercept has no meaning (i.e. negative energy), and thus the 

reservoir permeability obtained from the slope of the plot, after fitting a straight line 

through zero intercept, is unreliable, since in such a case, the method does not 

differentiate between the two parameters, and attributes the entire resistance to the 

reservoir permeability.

Biot*^ presented a method based on Lagrange’s equation, which in essence 

shows the balance between work expanded and work done in the propagation of a two 

dimensional crack. However he only developed it for the KGD geometry and does not 

consider the rheology of the fracturing fluid. Later on Lee‘*‘̂ \ incorporated his 

model into the pressure decline analysis. He considers the rheological properties but 

does not assume direct proportionality between the width o f the created fracture and 

the pressure difference between instantaneous shut-in pressure and formation closure 

pressure.

1.2 Research Objectives

Research was undertaken to provide a more realistic and practical coupled 

model for the analysis o f the pressure decline from minifrac tests, for the 

determination of the fluid and reservoir properties, as stated earlier in this chapter.

The objectives o f this work are therefore:



1. To perform a critical review of the models available for the analysis of 

data sets, obtained from minifrac tests.

2. To present the essential theoretical aspects o f the fracture propagation, 

stress analysis, and minifrac technique.

3. To develop a more realistic model for the prediction of the fluid and 

reservoir properties from minifrac tests.

4. To develop equations for the determination o f fluid and reservoir 

properties from a minifrac test if the spurt loss is known.

5. To develop and include the pressure derivative, as an alternate method for 

the fall-off analysis and interpretation.

6. To develop a computer program for the efficient applicability of the 

model.

7. To apply the model to real field cases and thus assess its applicability .

8. To perform sensitivity analysis on all parameters used in the model, and 

thus identify which are the most critical and how significant is their impact 

on the modeling.

The objectives presented above are addressed individually in this work and 

collectively produce a coupled model for the prediction o f fluid and reservoir 

properties from minifrac tests.
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CHAPTER 2 

CRITICAL REVIEW OF MINIFRAC MODELS

This chapter describes currently available models and methods of analysis of 

the fracture calibration treatments (minifracs), used to predict the fluid and reservoir 

properties.

NoIte^’“ ’̂  ,with his innovative ideas, started a new industry of minifrac test 

performance and analysis and accelerated the development of fracture technology in 

the 1980’s. Initially he presented the basis for interpreting fracturing pressures, that 

permits identification of confmed-height extension, uncontrolled height growth, and a 

critical pressure. The analysis of fracturing pressure during injection shows 

information of the nature of the fracture’s growth (i.e. height confinement or growth, 

excessive fluid loss, or restricted extension). From pressure decline analysis, after 

fracturing, information on the fluid loss characteristics, fracture dimensions, fluid 

efficiency and fracture closure time and pressure can be obtained (Fig. 2.5).

The assumptions used by Nolte^ are summarized bellow;

1. A continuous rate o f fracture growth, Eq. (2.1), which requires a constant 

injection rate.

2. A continuous change of the ratio of fracture to fluid loss would not be 

violated by the subsequent penetration of an impermeable and higher - 

stress zone, generally the case for shale, for which both width and fluid 

loss would be relatively negligible.
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3. Spurt loss, the opening and closing o f  natural fractures, and pressure 

dependent loss, are not ejqplicitly considered.

4. Constant fr-acture area fr-om shut-in o f  injection to fracture closure.

The main formulas derived, based on the above assumptions, are:

The rate o f  fluid loss^  ̂ through an incremental area, d cc , at time, t , 

as shown in Fig. 2.2, and expressed by the Carter '̂* relation is:

...............................................................................................................

and following integration o f  Eq. (2.1) frrom zero to a , (ratio of the previous fracture 

area, a , to current frracture area, A  ) the following can be obtained:

^LU
2 Q X

VF
[2-y/ /̂^O 0  ~  V l —(%)]......................................................................(2.2)

L̂L =  [sin  ̂a ] .............................................................................................. (2.3)

Where Eq. (2.2) represents the leak-off rate at the upper bound (Le. power law 

exponent, e =1), and Eq. (2.3) represents the leak-off rate at the lower bound‘d (Le. e = 

1/2).

The fracture’s rate o f  areal growth follows the power law.
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T l t - { a l  A y  = a ‘ ....................................................................................................(2.4)

and can be bounded by either the assumption o f negligible fluid loss into the 

formation (upper bound), or predominant fluid loss (lower bound), as shown in Fig. 

2.3.

Using Eq. (2.2) and assuming that the permeable fracture area, Ap , does

not change significantly, from Eqs. (2.3, and 2.4), the rate of fluid loss is expressed 

as:

+   (2.5)
V*o V̂ O

=  +   (2-6)

and by integrating the dimensionless functions, Grom /g=0 (shut-

in), to t j j , the G-function is obtained:

S u^ d ) -  - l ] ............................................ (2.7)
0

for the upper bound, and

g, i!o)= ' h  k  V '.  = [(1 +  'D (1 +  f J - '"  +  -  ; r / 2 ] .................. (2.8)1
0

for the lower bound.
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The volume o f  fluid loss^̂’̂  ‘ during pumping, which can be obtained by 

the integration o f Eqs. (2.5 and 2.6) from /  = 0 to tp (pumping time), considering the

permeable fracture area, Ap :

^4.» =   (2.9)
0

for the upper bound, and

‘p
L̂PL ~   (2-10)

0

ft)r the lower bound.

The volume fluid loss after sAnf-m ° is foimd by the integration of 

Eqs. (2.5 and 2.6) between the time limits = 0  (A / =  0 ) and as follows:

L̂Si ~  ) ~  )]..........................................................................^

or

L̂SIU ~ L^p-^f>[^\Su^D)~ S w  (^o)]........................................................... (2.12)

for the upper bound, and

L̂SIL ~  ^  d ) ~  S lU^O^[........................................................... (2.13)
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for the lower bound.

Where:

S lu i^o ) “  4/3 for (upper bound)................................................................. (2.14)

and

S l u = 7T/ 2  for a  =1/2 (lower bound)........................................................... (2.15)

The fracture as a function o f the net pressure, ~ Pc)  ̂and

compliance, Cy, is:

 (2^16)

with the compliance derived as a function of strain modulus, E , ratio o f the average 

net pressure in the fracture to the wellbore flowing pressure, is substituted by

the fracture geometry type as shown bellow), and the fracture geometry as follows:

...............................................................................................( z n )

for the PKN geometry, where Ay is the fracture height.

 (2.18)

for the KGD geometry with JCy as the fracture half-length.
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^ /ff™ 4 i> (3 2 /3 îr= k
‘̂ fRAD =  ' " " "  i g -------— .............................................................................. P- '9 )

for the radial geometry, where Rj- is the fracture half-length.

The ratios of the average net pressure in the fracture to the wellbore 

flowing pressure, for each fracture geometry, are given as follows:

P npkn =  (2 « ' +  2 ) / {In'  +  3 +  a^)........................................................................ (2.20)

for the PKN geometry,

P n k g d  ~  0 -9 ............................................................................................................... (2.21)

for the KGD geometry, and

P n r a d  ~  !  3 2 ...................................................................................................................... (2.22)

for the radial geometry, where n is the fluid rheology index, and an exponent 

which is a function o f the fluid viscosity behavior (i.e. = 0 for the case of uniform

viscosity, and = 1 represents linearly decreasing viscosity from the wellbore to the 

tip of the fracture).

Pressure dependent loss coefficient^̂'̂  ̂ The above derivations assumed 

that the fluid loss coefficient was constant, and independent o f any variations.
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whereas is a function o f the difference between the fracturing fluid pressure and 

reservoir pressure, and therefore:

(2.23)

where:

/ =  1, f o r e  =  \ H .....................................................................................................(2.24)

/ =  2, f o r  e - \  

f l / 2 ,  incom pressible cake  
i =  3, f o r  e =  < 

[1 /16, com pressible cake

is the net pressure, p^ the closure pressure, and p^ the reservoir pressure.

Fan^^ also shown a relationship of the leak-off coefficient as a function of 

pressure as indicated by the following equation:

C , = . l ^ ( p ^ - P r ) .......................................................................................... (2.25)
V /rp

where:

(f> is the reservoir porosity, c^the fluid compressibility, ^ th e  reservoir permeability, 

p  the reservoir fluid viscosity, p^  the pressure at the fracture face, and p^ the 

initial reservoir pressure.
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Height growth Fig. 2.1 shows that two o f the models assume constant 

fracture height, h -̂, throughout pumping and shut-in. The KGD model, assumes no

width variation in the vertical direction (Fig. 2.1), and therefore the model assumes 

that the height is approximately the perforated interval with limited penetration^^, or it 

assumes that slip^^ occurs between the formations with no transfer o f shear stress. As 

a result height growth for this model will not occur. However vertical height and 

width changes are possible with the PKN model. Consequently, the appropriate 

height, hj-, io use is the height of the lower stress formation, generally the gross 

reservoir section, without including any additional growth of height.

Fluid loss from spurt and openine o f natural fractures In essence, two 

primary effects can cause increased loss during pumping; spurt loss and the opening 

of natural fractures at a specific value of the fluid pressure^^. Spurt loss occurs only 

during pumping and not after shut-in, when the fracture penetration is assumed to 

stop. Spurt is defined as volume lost per unit area, and thus has the dimension of 

width.

Nolte^^ distinguishes between fluid loss during pumping, , and after 

shut-in, , where;

^  =  [l + ^ / ( Q V ^ g o ) I ^ p   (2-26)
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Several critical aspects are to be observed here:

1. The absence, in some o f the field cases, of a straight line on the G-function plot. 

Figs. I.I (b) and 1.2, makes the decline analysis unreliable.

2. Negligible spurt loss, especially in the case o f high permeability reservoirs, 

where the fluid loss is attributed almost 80 % to the spurt loss, becomes an 

unacceptable assumption.

3. The ratio of the average net pressure in the fi-acture to the wellbore flowing 

pressure, , as given by Eqs. (2.20-2.22), should be unity if the net pressure in 

the fracture, were the same at all points. However, P^  can not be one, regardless

of the values o f <7, and n , the exponent for the power-law fiuid-flow model

described above. Consequently, the fluid rheology, although incorporated into the 

equation, is not well accounted for, and therefore a different approach should be 

employed.

Martins et al.^ ,̂ presented a pressure decline analysis method, for the case of a 

minifrac, which assumes the fracture to have evolved as a family o f confocal ellipses 

(Fig. 2.6). The concept was employed in conjunction with the principles developed 

by Nolte^’̂ ’̂̂ ,̂ and used to estimate the fracture geometry, fracture dimensions, and 

the loss of fracturing fluid. There are two critical key factors in this model: (1) the 

technique is presented for the case o f a minifrac pressure decline data obtained under 

the assumption that the length o f the fracture is the same order as the perforated 

interval, when the fracture propagation has been unaffected by the confining strata, 

and (2) that the evolution o f the fi-acture geometry is indeed in the form o f confocal
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ellipses. Both aspects are questionable. First, the model is based on laboratory 

investigation only, conducted by Daneshy^*, in the absence of confining strata, and 

which does not accurately resembles the reservoir conditions. Second, the assumption 

that the length of the fracture is the same order as the perforated interval, is not a 

certain phenomena.

Biot et al.^\ presented a new approach to the 2-D problem of fracture 

propagation based on Lagrangian methods. The Lagrangian formulation is based on 

the classical form o f Lagrange’s equations. In essence, he produced a basic equation 

that expresses the balance between work expanded and work done in propagating a 

2-D crack. Existing theories, assume linear elastic behavior o f the reservoir and 

ignores surface energy considerations at the crack tip and plastic deformation effects. 

Leak-off is treated as an independent process and merged with the fracture 

propagation problem by iterative methods. The Lagrangian method, is not restricted 

to elastic behavior, and leak-off can be included as a part o f the formulation. 

Therefore Biot includes leak-off by assuming a piston like displacement of the 

reservoir fluid by an incompressible fracture fluid filtrate, with a moving boundary 

between the two.

In essence, the Lagrangian formulation, from classical mechanics, states that:

d t - | ^  =  a ................................................................................................(2-27)

where:

L  =  Ef. - E p ..............................................................................................................(2.28)
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is the Lagrangian function given by the difference between the kinetic, Ef~, and 

potential energy, E p , of the system. Thus:

+  a ....................................................................................................... (2.29)
%

with Q. including all forces that are not derived from a potential function, D , the 

dissipation function, and representing all remaining forces. Substituting Eqs. 

(2.28 & 2.29) into Eq. (2.27), and considering the effects given by the kinetic energy 

negligible, Biot arrived at the desired Lagrangian equation for the purpose o f  his 

analysis:

dEp dD  ^

............................................................................................................................

Starting with Eq. (2.30), and introducing the fracture’s extension, b p , from — to 

+  Z/y as:

r  \
—  = 2 b ^ f { L [ j ) ............................................................................ (2.31)

)

where the function f { L j ^  specifies the shape o f the crack, and b^ is the fracture

half width as a function of the total crack volume, and assuming Poiseuille flow o f a 

Newtonian fluid in the fracture, as given by the following equation.
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=   (232)12/i dx

Biot derived a model for the KGD geometry, that can be regarded as a simple energy 

material balance:

2

/

o (2.33)
y

The above equation, represents the basic practical result of the Lagrangian analysis,

and it can be solved numerically for when the pressure distribution, — is
 ̂ dx

known. Furthermore, with known, the fracture width, bj-^, and pressure, p^,

can be determined. However, the method has significant limitations, since (I) it 

considers the flow Newtonian, and consequently can not account for the correct 

rheology of the fracturing fluid used to create the minifrac, (2) the model can only be 

applied for the KGD geometry, and the surface energy, is neglected.

Lee^^'^\ continued Biot’s work, and incorporated Biot’s energy balance 

equation into the pressure decline analysis (minifrac). At that time, minifrac analysis 

employed by most petroleum industry operators did not consider the rheological 

properties of the fracturing fluid, nor did Biot’s model, as stated earlier in this section. 

He observed, that the most severe consequence o f this omission was that the 

geometry determined by minifrac analysis differed from that o f the fracture design 

programs based on the same model.
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In essence, the method developed and presented by him, considers the 

following:

1. Rheological properties, and therefore the geometry determined from pressure 

decline analysis is in agreement with the fracture geometry determined by the 

fracture design programs.

2. The method does not consider the assumption that the created fracture width is 

proportional to the pressure difference between the instantaneous shut-in pressure 

and formation closure pressure. His claim is that when the pressure difference is 

in the order o f 1,000 psi, calculated fracture widths can be several times greater 

than the width found by the fracture design program that uses the same model.

In addition to the above,

1. His derived model considers the surface energy, E , negligible.

2. The method is only applicable for the KGD geometry.

Meyer and HageP^ presented asymptotic analytical and numerical solutions 

for two dimensional and three dimensional type hydraulic fracture geometries, and 

investigated with them the Geertsma Deklerk (KGD), Perkins-Kern-Nordgren 

(PKN), and a 3-D type model. In essence, they initially conducted model comparison 

and parametric studies, and presented simplified design formulae for benchmarking 

the above types of models. At that stage, they concluded that the KGD model is 

generally more applicable at low confining stresses (i.e. L / H > \ ) .  For large 

fracture length to height ratio, the KGD model predicts wider wellbore widths and 

shorter lengths than the PKN and 3-D type models.
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Later^, the same authors published a simulated minifrac analysis. Their work, 

introduced the momentum conservation equation and new aspects of fluid rheology. 

A new addition, was another form o f G-function:

G(a^,a^^,e)  =  { G i l ,a „ ,e ) -G { l /2 ,a , .^ ,d ) Y 2 a ,  - 1)+

G(a „2 , ac 2 , f f ) ..........................................................................(2-34)

Although, the above function is similar to Nolte’s ) function, it is evaluated at

the and . rather than fluid efficiency. On the other hand, from a numerical

method point of view, they considered the governing minifi’ac equations of mass and 

momentum of conservation, and solved them iteratively to match the measured 

closure time.

Finally, Hagel and Meyer^® presented an extension o f the minifrac procedures 

existent at that time, to improve the quality o f  analysis. They introduced a 

methodology based on history matching the pressure response during pumping and 

closure for the minifi'ac treatment. Basically they coupled the traditional minifi'ac 

analysis with a three dimensional hydraulic fi'acturing simulator. The fracture 

propagation solution, is coupled with the post injection pressure decline analysis. The 

aim is to reduce the number of parameter uncertainties, to delineate the appropriate 

fracture geometry model and perform parametric studies. In essence, the fi-acture- 

pressure analysis and procedures provided by their work, generally follow the theory 

of minifrac analysis originally formulated by N olte^’*'‘*̂ '̂̂ °

The following aspects can be denoted from their work:
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1. Noite’s G-function is a better choice since it accounts for the fracturing 

fluid efficiency (upper and lower bounds), parameter that plays a 

significant role in the pressure decline analysis.

2. Their method calls for iterations based on a guessed value for the leak-off 

coefficient, and is time consuming.

Castillo^\ introduced a modified fracture pressure decline analysis, including 

pressure-dependent fluid leak-off. He assumes that the leak-off coefficient is a 

pressure-dependent variable. However, his assumption is valid for the case in which 

the leak-off is controlled by a compressible filter cake, with the exception where leak- 

off is primarily controlled by filtrate viscosity, by an incompressible filter cake, or by 

reservoir permeability and compressibility.

Also, based on pressure derivative analysis, Castillo introduced new plots 

(Figs. 2.8 and 2.9), for fracture pressure decline analysis, used for the determination

of the fi’acture parameters(/57P, P*), required in the Nolte leak-off calculations.

The method is inconclusive, because we can not accurately delineate the fracture 

parameters from these plots. One main reason is the fact that he derived the pressure 

with respect to the G-function, thus making practically impossible analysis o f the 

pressure derivative as a function o f the shut-in time. And by no means, should use o f 

these plots replace the stress tests (i.e. pump-in flow-back test) used for the 

determination o f closure stress.

Moschovidis^^ developed a model for the interpretation of the pressure decline 

analysis, from minifrac treatments initiated at the interface o f two formations. He uses 

the type curve match method introduced by Nolte^, with a definition of effective or
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average leak-off coefficient and an equivalent fracture radius. In his model, the 

effective leak-off coefficient is the weighted average of the each formation, relative 

to the minifrac areas in both formations. Also, the equivalent fracture radius, is the 

radius o f a circle o f an area equal to the sum o f the areas o f the minifrac in the two 

formations.

The critical aspect here is the difficulty o f  establishing appropriate values for the 

parameters indicated above, since a value for each formation is practically impossible 

to define.

Shlyapobersky at proposes modifications to test procedures used in

the industry, at the time they published the paper, and presents techniques for design 

and analysis o f hydraulic fracture tests. The main aspect, sought in this case, was the 

determination of the overpressure and the total leak-off coefficient which are 

necessary for the overpressure calibrated design of hydraulic fi-acture stimulation. The 

work claims that the test procedures account for the real in-situ conditions of the 

borehole, formation and the created fi-acture. The benefit of the test procedure 

consists o f the fact that is performed as an on-site interactive process, meant to 

quantify as accurately as possible for the in-situ conditions, and such optimize the 

controlling test parameters, such as the pump rate and pumped volume.

The main assumptions associated with the procedure presented in this work

are:

I - The existence of a planar fi-acture:
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• The fracture is propagated far enough from the well, so that the initial

fracture orientation, at the wellbore, would not appreciably affect the

measurement o f  the minimum in-situ stress.

• The injection rate to be appropriately large to ensure that the dominant

main fracture is created rather than many small fractures.

• Non-ideal features o f the induced fracture, such as roughness and 

waviness of the fracture walls, are always present.

2. During injection the fracture area follows the power law, Eq. (2.4)

3. Shortly after shut-in the fracture propagation ceases and thus becomes 

negligible.

4. Uses the theory of elasticity to establish the pressure width relation.

5. Carter’s leak-off model is used with power law pressure dependent fluid 

loss coefficient^^ ̂

6. The compressibility o f fluid is considered to be constant.

The most critical assumption is the third from the above list, and thus its validity 

should be always verified during the minifrac test. The reason is simply the fact that 

there is no direct way to verify this assumption. Therefore, its validity and use are 

justifiable only if the results o f the fracture pressure decline analysis are consistent 

with and agree with other observations^^.

McLellan^'’ presented detailed analysis of three minifracs, and small acid 

fracturing. It is essential to note his findings, after applying the energy based model as 

presented by Shlyapobersky^^. They are as follows;
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1. Storage effects affect, in some cases, the unambiguous determination of the 

fracture closure pressure from the minifracs.

2. Multiple methods for selecting the fracture closure pressure from shut-in pressure 

decline data, necessary to avoid interpreting all slope changes as fracture closure 

phenomena.

Soliman et al.^  ̂ developed type curves for the analysis of minifracs in 

heterogeneous reservoirs. However, the method is limited to only one model, PKN, 

and in essence follows Nolte’s model with one exception, that is the leak-off 

coefficient is a function o f time but not as presented by Carter̂ ** (i.e. square root of 

time).

Gu outlined a 3-D fracturing numerical simulator for hydraulic fracture closure 

with application to minifrac analysis. He uses the Carter’s leak-off model and 

considers a variable fracture area, and variable in-situ stress, unlike the previous 

models presented. Gu states that when the fracture grows out of the uniform in-situ 

stress zone or stress contrasts occur inside the perforated zone, the fracture probably 

does not hold a constant area and it may shrink back from the high in-situ stress zones 

during the shut-in period. Therefore, the constant area assumption will not be valid. 

The study shows that the simulator results in plots with dual slopes (Fig. 2.10), 

instead of the ideal straight line slope.

However, the problem here is how can one accurately depict the correct slopes, 

since more then just two slopes can be drawn on a plot with such a curvature (Fig. 

2.10) ?
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Zhu et presented a mathematical model incorporating the effects of

temperature and fracturing fluid compressibility. From a theoretical point of view, the 

method has a remarkable level of interest, but in practice, how do we really account 

for changes in temperature and fracturing fluid compressibility, during the minifrac 

treatment? They also developed a comprehensive model o f minifrac pressure 

behavior with foam fracturing fluid, based on similar criteria.

Later, McLellan et al.^ presented a study regarding the pressure interpretation 

from minifrac tests in a naturally fractured gas reservoir. In essence, calculated 

bottomhole pressures are plotted against various time functions (Fig. 2.11), to 

determine the instantaneous shut-in pressure ( ISIP)  and fracture closure pressure 

(FCP ) ,  and the leak-off behavior of various fluid systems. Valuable findings are 

presented in their work. Leak-off behavior is shown to be dependent on several 

factors including the choice of fluid additives, the fracture closure pressure or 

minimum in-situ stress, the presence of natural fractures, and possibly the 

intermediate and major principal stress. Field case study indicated anomalously high 

propagation pressures observed during the minifrac test. These high pressures, are 

believed to have caused either natural fractures, or secondary fractures to open, 

resulting in nearly one magnitude greater leak-off coefficient than was calculated for 

lower bottomhole pressures in an earlier test in the same well.

Mayerhofer et al.̂ *̂̂ ® introduced a new methodology for the estimation o f the 

reservoir permeability from fracture calibration treatments. The methodology derives 

from the solution o f the diffusivity equation for a well with infinite conductivity 

vertical fracture, as a multi-rate injection, with a superimposed varying filter-cake
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skin effect. The transient reservoir response, which is the essential aspect, is then de

coupled and used to determine the reservoir permeability. The advantage of having a 

method for the determination o f reservoir permeability from a calibration treatment, is 

considerable. Often times, the estimation of the reservoir permeability is inaccessible 

because the candidate wells either do not flow (i.e. tight gas reservoirs) or a pre

treatment pressure transient test would be too long, and o f course expensive. The 

authors have shown that in a large range of reservoir permeabilities (from 0.1 md up 

to 10 md), and for specific field fracture face resistances, the majority o f the pressure 

gradient is in the reservoir. This is in contrast to the frequently published papers 

which sustain that the fracture filter-cake is predominant.

The total pressure gradient from the fracture into the reservoir is given by the 

following components:

^p{tJ  ) =  A p ^„(( , ) +  ) +  A p „ ( ( , ) .............................................(2.35)

where:

à p facSSj ) is the pressure drop across the filter cake

^ pin vz^ i)  is the pressure drop across the polymer invaded zone 

and

(f-j ) is the pressure drop across the reservoir

To asses the influence of the polymer invaded zone, laboratory experiments, using 

long cores, were performed‘̂ ’̂ ’̂̂ ®. It was determined that this zone is negligible for 

common fracturing fluids, and for cores with permeabilities up to 4md. Therefore, the
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filter-cake is the dominant component in the pressure drop across the fracture face, 

and consequently the polymer invaded zone pressure drop component, the second 

term of the right hand side of Eq.(2.35), is assumed negligible.

For the reservoir component, the Gringarten and Ramey‘*° early

time infinite conductivity vertical fracture solution is used as the dimensionless 

pressure;

r ——  \0 .000264Kkt
-  ^|^ D̂xf -  ~ Ï  (2-36)

Cinco-Ley and Samaniego'*^ fracture face skin effect was also modified to account for 

a varying fracture-face resistance:

 ̂~  ̂ — [:7r  (2.37)

where

Rd ( 0  =  - ^ ............................................................................................................... (2.38)

is a normalized resistance accounting for the approximate increase of the fi^cture- 

face resistance,

^ o (0  =  J ^ ............................................................................................................. (2.39)
m

At the end o f  pumping, =  1
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Combining Eqs. (2.36-2.39), with varying fracture area and varying leak-off rate, is 

the pressure change during pumping is obtained;

^ ( L )  =  A  - X L )  =

4 a . Z
y=i

^I^r, -  f y - lk(j)c^
+

.............................................(2 40)

Eq. (2.40) represents the superposition of the pressure drops in the formation resulting 

from each incremental change of the leak-off velocity, qi j /  A p j  during injection*^.

Dividing Eq. (2.40), after some algebraic arrangements, by „ — qi„ „ )

leads to a straight line (Fig. 2.12), when plotting the term on the left hand side vs. the 

summation term divided by i^F„Ro.n ~  on the right hand side. The

reservoir permeability can be determined from the slope, m , o f  this plot as follows:

k  =  8 4 .22 (727/ / (pcjrR'^............................................................................................ (2.41)

and the filter cake resistance, Rq , from the intercept, b :

Rq =  b /  2S2.47TjUj- ...................................................................................................(2.42)

A few aspects are to be noted here:
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I. The methodology, requires a significant level o f simulations, computations and 

plotting, based on estimated values for the fracture area, at any time during

the injection period as a function o f the volume injected, of the pressure drop and 

its derivative. Not only is the method difficult to apply, since often times none of 

the expected behavior matches the field data, but how can one determine the 

fracture area and the leak-off rate as the fracture grows? Also, there is no specific 

model used for the estimation of the fracture geometry.

2. The permeability and the filter-cake resistance, can only be determined if the plots 

of the field data match the simulated ones (see Figs. 1-8) of Mayerhofer et al.̂ ^

3. Nolte’s plot o f the net pressure versus the G-function, (Fig. 8) of Mayerhofer et 

al.^ ,̂ shows once again a curve instead o f a straight line, as expected from 

simulation. Therefore, a correct slope can not be delineated from it.

Thompson and Church' discussed the design, execution, and evaluation of 

minifracs in the field, presenting a practical approach and case study. The intend of 

there paper was to discuss the basic concept of the minifrac treatment. They 

suggested guidelines, on how to design a minifrac, record the bottomhole pressure 

(BHP), obtain closure and interpret the data.

Dusterhoft et al.'*̂  proposed improved minifrac analysis technique in high 

permeability formations. He observed that traditional minifrac analysis techniques fail 

to account for the correct fluid loss behavior o f the gels used to frac reservoirs with 

high permeability. Borate cross-linked fluids and linear HEC gels are by far the most 

commonly used fluids for such formations. They showed that extensive laboratory 

testing indicated that the fluid loss behavior o f these gels differ significantly from that
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described by conventional fluid loss models. Also noted was the fact that traditional 

minifrac analysis techniques fail to account for the correct fluid loss behavior of these 

gels, and consequently this can lead to severe errors in the estimation of leak-off 

parameters, resulting in over or under designed jobs. In the case of high permeability 

formations, the spurt loss (Fig. 2.13), can be a major part of the total fluid loss. For 

very high permeability (i.e. 300 md), the spurt loss may be as much as 90% of the 

total fluid loss. As far as the filter-cake coefficient, C ^, is concerned, it was 

suggested that the properties of the polymer filter-cake are fairly independent o f the 

formation permeability. Also, the authors stated that the fluid leak-off volume should 

not be considered proportional with the square root of time in the case of high 

permeability formations.

However, the mini&ac mass balance equation allows for the calculation of 

only one unknown (i.e. either spurt loss, or leak-off coefficient). Therefore, they 

proposed that the leak-off coefficient be determined fi-om the laboratory data, and the 

minifrac analysis to be used for the determination of the spurt loss. Finally, 

laboratory analysis indicated that the potential of minifrac using the conventional 

technique is not as severe for liner gels, as it is for the crosslinked gels.

Economides et al.'*̂  extended Mayerhofer’s technique from homogeneous to 

heterogeneous reservoirs, and presented a model for the interpretation of fracture 

calibration tests in naturally fractured reservoirs. The sequence of log-log diagnosis, 

followed by parameter computation from specialized plots, was the primary objective 

of the study. However, the work is only presenting theoretical modeling and no 

practical field case for the validation o f the method.
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Gu et modeled the determination of reservoir permeability from impulse 

fracture injection. However, it is essential to carefully analyze this aspect. In other 

words, a suggestion that impulse test analysis can be applied to injection tests in the 

same manner as in the case of much shorter injection times, requires consideration of 

the length of time needed to establish pseudo-radial flow. When the fracture created 

by the injection test is equal or exceeds 50 ft, it may take several hours, or even days, 

to observe the onset of a pseudo-radial flow. Yet, the radial flow response may occur 

within minutes of closure, and in that case, analysis after closure may offer

independent confirmation of the (kx^ Y ^ .

Abousleiman et al.'*̂  presented a theory and its application for the post

fracture pressure transient analysis, seeking the determination of the formation 

permeability by micro or mini-hydraulic fracturing. The proposed procedure, known 

as “impulse fracture test,” was employed. The benefit of the method, relies on the fact 

that the hydraulically induced fracture transverses the near wellbore damaged zone, 

and exposes a larger formation area to flow. Therefore, the formation permeability 

and the pressure of the reservoir, are expected to be more representative. The theory 

is based on the distribution o f sources with variable intensity along the fracture 

trajectory. The methodology presented is valuable, however it can not benefit the 

requirements of a fracture job design, since this is a post-fr-acture pressure transient 

analysis.

Vithal et al.^, continued Dusterhoft et al.^  ̂ work for the application of an 

improved minifiuc analysis technique in high permeability reservoirs. The main
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stated objective o f the methodology is the consideration of spurt loss and pressure 

decline analysis that is not limited to a function o f square root only. However, no 

specific solution is presented for the determination o f spurt loss.

Leshchyshyn et al.'*̂  looked at minifrac analysis of shear parting in Alberta 

reservoirs and its impact towards the on-site fracture design. Their objective was to 

address the early sand-off problem, that can be generated by exceeding leak-off (i.e.

higher than 0.005 f t  sjtim e  ). The high leak-off can be attributed to two factors:

1. High permeability

2. Induced shear fracturing near the wellbore

Two types o f  sand-off have been identified:

1. A sand-off generated by underestimation of the reservoir permeability followed 

by a leak-off that exceeds the fracture growth. Such wells tend to send-off from 

the fracture tip backwards, to the wellbore, known as the “tip screen-out.” 

Although this type of sand-off is usually undesirable, the propped fracture width 

is maximized, and results in maximum fracture conductivity.

2. The type o f sand-off is the one that takes place near the wellbore. Such wells 

usually become poor producers.

From a minifrac design and analysis point o f view, their work presents valuable 

information. Also one additional observation, made by the authors, deserves 

consideration for future modeling, that is the product fluid compressibility porosity 

used in composite analysis is an essential parameter for determining the boundary 

distance. No specific algorithm, or modeling is presented in their work.
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Poulsen'** presented a methodology of in-situ test for determining growth 

parameters for a hydraulic fracture. The applicability of this model is questionable for 

the following reasons:

1. It does not consider any form of relationship between the leak-off and pressure.

2. It assumes independence o f the fracture growth behavior, when in fact it is well

known that not to be the case.

3. It does not account for the fracture height, which is an indispensable parameter for

the PKN geometry.

Sunil et al.'*̂  on the subject o f ffac pack treatments, as one o f the most effective 

completion methods for the combined benefits of sand control and stimulation in the 

case o f high permeability formations, a calibration treatment evaluation methodology 

was presented. The main suggested steps are highlighted bellow:

1. Laboratory data and log estimates of stress.

2. Identification of near wellbore pressure losses.

3. Closure pressure determination: the preferred method suggested is a step/flow 

back rate test.

4. Pressure decline analysis: the traditional analytical decline analysis following 

a pump-in/shut-in calibration treatment is applied to obtain estimates of the 

fluid leak-off coefficient. The % rule, developed by Nolte et ah'*, is employed.

5. Reservoir flow diagnostic: if pseudo-radial flow is reached during the 

calibration treatment, the specialized plots presented in this work can be used 

to determine reservoir pressure and the formation transmissibility.
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6. Pressure history matching: the fracture parameter estimates, are to be refined

by making use of pressure history inversion.

7. Verification and evaluation of results.

Fan^^ showed an interpretation model for fracture calibration treatments for 

both low and high permeability reservoirs. The model describes fluid flow into 

the porous medium with consideration of a variable filter cake, non-Newtonian 

invasion effects, and superposition of fracture pressure. He does not make use of 

the leak-off model, instead chooses a pressure profile. The parameters determined 

by the application of this model are the reservoir permeability, filter cake 

resistance, and the leak-off coefficient as a function of the pressure drop across 

the filter cake. In essence, the reservoir permeability and filter cake resistance are 

determined in a similar manner as presented earlier by Mayerhofer^^'^^. Note that 

the plots used for the determination of the above parameters (Figs. 2.14 and 2.15), 

indicate the possibility o f a negative intercept which generates the same 

consequences observed earlier with regard to the Mayerhofer's technique*^’̂ .̂

Tinker et al.^° conducted minifrac tests and bottomhole treating pressure 

analysis for the improvement of the fracture stimulation design and execution. 

They made observations following the fracture stimulation of twenty five in-fill 

wells. The step-rate test was used for the identification of fracture extension rate 

and closure pressure. Minifrac tests were performed on every completion, and 

significant variation of the leak-off coefficient was observed. No modeling is 

presented in their work.
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Valko and Economides^* modeled the fluid leak-off delineation in high 

permeability fracturing. Starting with the original concept proposed by Carter, 

Howard and Fast^“*, their work reviewed the description of fracturing fluid leak- 

off in view o f modeling flow in porous media. It is shown how various linear 

leak-off models have been developed and why a new radial leak-off concept is 

necessary for high permeability formations. Using Laplace space methods the 

radial leak-off is analyzed and compared with the linear leak-off. The following 

main observations have been made:

1. A large discrepancy in calculated leak-off volumes (in the case of radial 

versus linear leak-off) is not an indication that the bulk leak-off coefficient 

approach gives unreasonable results.

2. The Mayerhofe et al. technique partly solves the decomposition problem 

(i.e. filter-cake resistance and reservoir pressure drop component, from 

which permeability is determined), for the reasons mentioned earlier in 

this section. Also, the second order derivative, generates a remarkable 

degree o f sensitivity resulting in plots that can not be of any use.

3. The radial model presented, is physically more sound than previous 

approaches. It predicts more leak-off than the linear model, and it shows 

an almost linear variation o f the leak-off volume with time, unlike the 

square-root type, or the G-frmction.

4. However in this work a rigorous procedure for the interpretation of the 

minifrac, in terms of radial leak-off was not presented.
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5. Mayerhofer et al. technique, as presented in this work, overestimates a few 

fold the reservoir permeability, and thus it requires further improvement.

Ispas et al.‘̂  continued the work developed by Valko et al.^*, and presented a 

methodology of fluid leak-off analysis in high permeability fracturing. The 

methodology is based on two previous published methods used for the determination 

o f the leak-off parameters from the pressure fall-off stage of calibration treatment. 

The first method is the well known technology, Nolte-Shlyapobersky, used to 

determine an overall leak-off coefficient. The second method is a modified -  

improved form of the Mayerhofer et al. t e c h n i q u e a n d  additional details will be 

later discussed in this work.

Nolte et al.^  ̂ extended the work and provided a study of after closure analysis 

o f fracture calibration tests. The paper provides a framework for adding the after 

closure fracturing pressure analysis to the pre-treatment calibration testing sequence 

that defines fracture geometry and fluid loss parameters. The after closure period 

contains the pseudo-linear flow period that is the focus of this work, and the pseudo- 

radial flow period that has been previously addressed in a comprehensive manner. 

The primary role for the linear flow is to define spurt loss and validate information 

available from other parts of the calibration treatment. Reservoir linear flow also 

provides the remaining and missing link for the fracturing chain o f events.

In summary, the following have been concluded based on the methodology 

and analysis presented in this paper;

1. After closure analysis has applications for low to high permeability 

reservoirs.
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2. The most significant contributions provided by after closure linear flow, 

are the only prospect for quantifying spurt-loss, a distinct information of 

closure time and pressure for a shut-in decline, and the validation of the 

fluid loss analysis by reservoir analysis.

3. An outline was provided for the proposed method of application and field 

cases examples were used to demonstrate the information provided and the 

synergy between various periods o f the calibration testing.

4. In addition to quantitative information, the after closure period provides a 

significant insight into the characteristics o f the fluid loss behavior. Thus, 

five distinct types o f behavior were identified and discussed.

Nolte’s work adds significant improvement, mainly when considering the 

methodology o f analysis for the after closure period. However, there is a very 

sensitive aspect to be considered, that is the non-uniqueness which can generate 

inconclusive results, including the determination of spurt loss. The non-uniqueness, 

referred to in this work, consists of the fact that different results can be obtain for a 

variety of parameters used for the simulation, as shown in their paper.
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CHAPTERS

HYDRAULIC FRACTURING -  THEORETICAL ASPECTS

3.1 Mechanics of Fracturing

The stress distribution, in an elastic medium, is based on the theory o f linear 

poro- elasticity as developed by Geertsma, Timoshenko, Sneddon, Griffith and 

others^^’̂ '*’̂ ’̂̂ '̂̂ ’̂̂ *. Let us consider an uncased vertical wellbore, under the action of 

horizontal in-situ stresses, cr^^ and (T ,^ , as shown in Fig. 3.1. The breakdown 

pressure, , will be given by the theory o f elasticity as foliowing^^’̂ *;

Pb -cr^ax + O V ................................................................................... (3.1)

where:

^min ~ rninimum in-situ stress 

‘̂ max~ maximum in-situ stress 

<Tj. = tensile failure stress of the rock

The theory o f liner fractures in non-porous media, or the equilibrium o f fractures 

in non-porous perfectly brittle materials, can help us (1) describe the stress 

distribution and deformation, under various loading conditions and (2) determine the 

stability of the fracture^^. Thus, approximating a linear fracture with a thin elliptic 

cut, and using the theory o f elasticity, strains and stresses can be calculated.

Sneddon^^’̂** presented a solution of the two dimensional stress problem for a 

linear fracture in a non-porous medium, loaded with fluid under pressure and
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subjected to compression at every location. For the case of uniform fluid pressure 

inside the fracture, and under plane strain conditions, he derived the following 

relation for the displacement in the direction perpendicular to the fracture;

1 -

y h ;
{ P f - S , ) ............................................. (3.2)

= displacement in the direction perpendicular to the fracture 

X  = distance along the fracture from the fracture center

Z/y = fracture half-length

Zy = fluid pressure in fracture

Sfj =  compressive stress applied at infinity 

= Poisson's ratio 

E = Young’s modulus

Eq. (3.2) represents an ellipse with maximum width at the center of the

wellbore.

GrifFit, Irwin, and Barenblatt^**’̂ ’̂̂ ,̂ presented the following methods for 

the elastic stress solution for the above presented system:

a) Griffith method

Using the energy balance, he determined the stability o f the fractures. 

Three forms of energy work are the main components of the balance equation (I) the
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work energy, from outside the system, (2) the surface energy and (3) the elastic strain

energy of the system. If no work is performed on the system, the increase in surface

energy associated with fracture extension, is to be provided by the strain energy, 

which will decrease. In the case work is done on the system, it will be absorbed by 

the strain energy and the surface energy, and thus both will increase. However, in 

both situations, the energy balance can be written as following^’:

.............................................................................................................................

U^ =  A yL ^ h „ ............................................................................................................ (3.4)

- S , y ..............................................................................(3.5)

where:

= surface energy of the fracture

Wj- = strain energy of the fracture

= thickness of the elastic material 

y  = specific surface energy o f the elastic material

and substituting Eqs. (3.1) and (3.5) into Eq. (3.3) gives the minimum pressure above 

which fractures extend, or the maximum pressure bellow which fractures are stable:

P , . = S , + . \   (3.6)
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b) Irwin Method

Invin further showed that fracture propagation conditions, as presented by 

Griffith, can be related to the stress distribution in the vicinity o f the fracture tip^  ̂

(Fig. 3.2), as follows;

..................................................................................................................................

where:

Tyy = normal vertical stress

K  = stress intensity factor, which is a function of fracture dimensions and loading, 

and for a linear fracture is given by:

^  = [Pfp  (3-8)

Also, the critical fracture toughness, K is considered, above which the fracture is 

bound to occur. Therefore, from Eq. (3.8), the fracture propagation pressure will be:

P , = S , + - ^ ^ ......................................................................................................(3.9)
/

c) Barenblatt method

Barenblatt^^ presents the most desirable solution to the problem o f fracture 

stability, because he took into account the cohesion forces at the fracture tip, and 

showed that the fracture must close perfectly at the tip and that the stress at that
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location remains finite.

For our case, a linear fracture loaded with fluid at a uniform pressure 

distribution inside o f it, and subjected to the compressional stress, Sf,, he derived the 

following equation that represents the fracture stability:

......................................................................................................

where C  is the cohesion modulus, also known as a material constant. 

Following the integration of Eq. (3.10), the propagation pressure becomes:

......................................................................................................................

A comparison of Eqs. (3.6), (3.9) and (3.11) can lead to a relationship between the 

specific surface energy, / ,  critical toughness, , and cohesion modulus, C  :

TuEy _7T ^2 ^2
= =  C = .............................................................................................. (3 12)

3.2 Fluid Pressure Profile

On the other hand, referring at Fig. 3.4, the maximum pressure is the 

initial breakdown pressure, , which is the pressure at which the fracture is being

induced at the wellbore. Following this, the pressure drops to a propagating pressure 

and continues until the pumps shut-in. This is the time when the pressure suddenly
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drops to a lower value but it continues to fallofF, due to fluid leak-off from the 

fracture into the reservoir, until it finally reaches the reservoir pressure. The pressure 

value, at which the fluid flow into the fracture has ceased, it’s called the instantaneous 

shut-in pressure (ISIP), which somewhat higher than the closure pressure, .

Yew^* indicated that Eq. (3.1) is valid for a perfectly elastic (brittle) 

medium, but in reality we have a porous medium through which fluid can flow.

Using the poroelasticity theory Schmidt and Zoback^* modified Eq. (3.1) as follows;

a) for formations that are impermeable to the fracturing fluid.

.........................................................................................................(3 , 13)
\ +  (p

b) and for the case of permeable formations.

-, Q 1 ~  2v

= -----------— -------- i - 2 .  - ............................................................
^ 1 -1 /

where:

Pp = pore pressure

(j) = porosity

= Poisson’s ratio for dry rock
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0C = \ ----- — = Biot’s constant, 1 > Of > 0 .

3.3 Constant Height Fracture Models

If the wellbore is fractured at depths bellow 4,000-5,000 ft, then the 

fracture is expected to have an horizontal profile, but since the depth at which 

fractures are performed is higher than 5,000 ft, the fracture will be vertical and 

perpendicular to the minimum in-situ stress (Fig. 3.1). Also, Warpinski et al.̂ '*’®̂ 

studied the main two factors that control the vertical growth o f the fracture, (I) the 

contrast in material properties and (2) the contrast in vertical distribution o f in-situ 

stress, and found the latest to be predominant. Laboratory investigation led the 

authors to conclude that an in-situ stress contrast, which exceeds 400 psi, is sufficient 

to contain the vertical growth o f the hydraulic fracture.

Three fracture models will be considered in this work: (I) the 

Khristianovic-Geertsma-de Klerk®'  ̂-KGD model (Fig. 3.5), Perkins-Kern- 

Nordgren^^'^^ -PBCN model (Fig. 3.6), and the Radial model (Figs. 3.7 and 3.8). The 

first two models are the basic constant height models. The radial geometry occurs 

when the vertical minimum in-situ stress has a uniform distribution, and is expected 

to take the shape of a circle. Mathematically is a two dimensional fracture similar to 

the constant height fracture models^*. Valko^* presented a mathematical relationship 

of the ratio of permeable to total fracture surface area, for a case in which the total 

fracture height is higher than the permeable fracture height (Fig. 3.8).
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63



Fig. 3.2 -  Normal stress at fracture tip, adapted from Hagoort'60
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Fig, 3.5 -  KGD constant height fracture model, adapted from Yew64



Fig. 3.6 -  The PKN constant height fracture model, adapted from Yeŵ ®
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CHAPTER 4

A COUPLED MODEL FOR THE PREDICTION OF FLUID AND 

RESERVOIR PROPERTIES FROM MINIFRAC TESTS

4.1 Introduction

Ispas et al.'^ presented an improved model o f  an earlier version of minifrac 

analysis. This paper is based on two methods, used for the determination of the lea- 

koff parameters from the pressure fall-off stage of a calibration treatment. The first 

method is the well known technology, which we have called the Nolte- 

Shlyapobersky^’̂ '*’̂  ̂ method to determine an overall leak-off coefficient. The second 

method is an improved form of the Mayerhofer et al.^^’̂  ̂technique, which attempts to 

de-couple the two main elements of the leak-off process; the filter-cake resistance and 

the transient flow in the formation.

4.2 Fracturing Fluid Coefficient 

Carter’s Leakoff Model

Carter (see the Appendix to the work of Howard and Fast^^ ), assumed that the leak

off velocity, ui, is given by:

.............................................................................................................................................
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where is the leak-off coefficient, and t is the elapsed time since the start of the

leak-off process. The integration o f Eqs. (4 .1 and 2.1) yields:

/—

S p ..................................................................................................(4.2)

Where is the volume o f fluid loss through the fracture’s surface, , and the

integration constant, S p , is the spurt loss coefficient.

Nolte and Economides^’̂ ° showed that application of Eq. (4.2) requires the 

tracking of the opening time o f  the different fracture elements during pumping. 

Therefore, if only the overall material balance is considered:

p; == 4- P I ....................................................................................................... (4 3)

we can re-write Eq. (4.2) to reflect the opening time distribution factor, fC as follows:

V . = V  +  k{2A^C, ^ ) + 2 A ^ S ^ .......................................................................... (4.4)

where V. is the injected volume o f fluid in one wing of the fracture, and V is the 

volume o f one fracture wing at the end of pumping. Note that the group 2ASp  is the 

equivalent of the amount o f loss volume due to spurt during treatment. This can also 

be expressed as 2ApW^, since the spurt loss is the loss volume per fracture face area, 

and represents the fracture width loss due to spurt for both fracture faces.
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The distribution factor, ^ , is a dimensionless coefficient and multiplied with 

the fracture fluid leak-off coefficient, , gives an equivalent fluid loss coefficient 

which will produce a total fluid loss during the pumping period.

On the other hand, the volume o f fracturing fluid lost during pumping can be 

written as ;̂

^   (4.5)

Further, a relationship was derived for the determination of the opening time 

distribution factor, fC, as a. function o f the fluid efficiency as follows:

— 7=—~ .................................................................................................(4.6)

or.

w
rj = ----- —7 = ......................  (4.7)

+ w + 2Sp

The above shows that the term 2KC^-y[t can be considered the leak-off 

width, while 25"^, the spurt width, . Note that the spurt loss has the units of

length since it represents the ratio of the lost volume to the unit fracture face area. In 

essence, spurt loss can be represented as point sources moving with the tips of the 

fracture during its propagation. The spurt loss will cease as soon as the fracture 

propagation stops. This differentiates the spurt loss from the fracture leak-off 

coefficient, since the latest is distributed over the complete fracture surface, and stops
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when the fracture closes. Noticeable is also the fact that the opening time distribution 

factor is only considered during the fluid pumping period, and it has a value o f I after 

shut-in.

There are two primary effects that can cause increased loss during pumping, 

and that is the spurt loss and the opening of natural fractures, at some values of fluid 

injection pressure. Nolte*̂  addressed this in the following terms;

If the decline analysis is performed bellow the opening/closing value of 

pressure, the inferred conditions for fluid loss would not reflect the increase of fluid 

loss area, when the Assures were open. The actual loss for this case should be based 

on the area given by the sum of the permeable or loss area, and the open fissure area. 

Fluid loss to spurt occurs, as mentioned above, when a portion of the formation is 

first fractured and is generally assumed to essentially occur instantaneously. 

Therefore spurt loss will occur only during pumping and not after shut-in, when the 

fracture penetration is assumed to stop. Nolte" derived an equation for the 

determination of the loss volume during pumping, , as follows:

^   (4.8)

where is the fluid loss coefficient without open fissures or spurt (generally 

determined in the lab or from decline analysis), is the ratio of permeable to 

fractured area, is the injection or pumping time, and is the G  -function, at a
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shut-in dimensionless time with it’s corresponding values for the upper and

lower boundaries^:

'4 / 3
go =1

. / 2 ......................................................................................................................................

From inspection o f Eq. (4.8) for the loss volume resulting from time dependent fluid 

loss, with the effect o f natural fractures opening during pwnping included, it follows 

that:

^  /(q  V ^ g o   (410)

where:

is the open fissure area, and

XT +   (4.11)

In the case where spurt loss, , is expected to be significant, the spurt components,

/C and /c^, can be estimated from laboratory data for corresponding values of leak-off 

and spurt, as a fimction o f the fiacturing fluid and formation. A value o f  xr^=l 

indicates the absence o f spurt loss, and =5 a significant spurt loss (up to 80-90 %

in high permeable reservoirs)'®.

When the model is applied to the pressure fell-off stage o f a calibration 

treatment, some assumptions have to be postulated concerning the evolution o f  the
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fracture face. The widely accepted assumption due to Nolte is that the evolution in 

time is according to a power law with a constant exponent, a  ,Eq. (2.4).

For such a case, V alkodeveloped the observed pressure equation in the 

wellbore during the fall-off period. This equation is based on Nolte- 

Shlyapobersky’ŝ ' °̂ theory;

Pw — (2-y/Q V ^ ) x , a )  =

K   (4.12)

where and /?^are the sand face (wellbore) pressure and the fracture closure 

pressure respectively; V. is the volume of fluid injected into one wing of the fracture; 

Aj- IS the fracture face area corresponding to one wing and one face, Jy  is the 

fracture stiffness coefficient, (inverse o f the compliance), t^ is the pumping time 

prior to the fall-off and is the dimensionless ratio of the shut-in time to the 

pumping time. The g{à t^ ,a )  function is a well-defined mathematical function 

related to the so- called Hyper-geometric function (later shown in this section). Note 

that the above equation, as given in earlier publications^* lacks two important 

parameters: (1) the ratio o f the permeable to fractured areas, , and the ratio of the

spatial pressure to wellbore average pressure, . They assumed a confined fracture 

(not always true), and therefore = \. Another assumption was that the average 

spatial pressure to wellbore average pressure become equal as soon as the fracture
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ceases to propagate (i.e. immediately after shut-in). This assumption is also 

questionable since the leak-ofF continues to take place after shut-in and until the 

fracture closes, and this sustains the fact that the ratio can not be considered equal to

one.

Formulas for the computation of the fracture compliance, Cj-, the fracture half

length (i.e. , corresponding to the PKN and KGD models, and , for the Radial

model) as well as the lost width, , the leak-ofF coefficient, , and the fluid

efficiency, T] , are presented in Appendix A.

The ratio o f the leak-ofF volume to the product is denoted by

S q(jOc) . Assuming that the fracture surface remains constant, after the fluid injection 

period, Nolte®'̂ '* extended the definition as follows;

.........................................................................................................

where is the injection time (end of pumping). At  is the shut-in time, and

is the sum of the volume loss during the injection and shut-in times. However if the 

spurt loss would be considered, the total loss could be larger. The dimensionless shut- 

in time is given by:

t ~ t
A ( o =  .............................................................................................................. (4.14)

P
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Since the fluid leaks off and does not return into the fracture, 

should be a monotonically increasing function. Therefore, if we consider an 

elementary surface, dA  (Fig. 2.2) which opens at time T , and the differential of the 

leak-ofF flow rate as;

^  =  -j  d A ............................................................................................. (4.15)

assuming that the history of the fracture surface growth (i.e. AÇt ) and or its inverse 

function t {A)  ), is known’*). Next, the leak-off flow rate through both fracture faces

will be given by the summation of each flow rate corresponding to surface elements 

at each other opening time, T , as follows:

A i t )  ^

..........................................................................................................

or,

(Jl =   (4.17)
i d t - T  dt

Note, that not all the fluid pumped into the fracture leaks-ofif and therefore the 

fracture grows at the following grow rate:
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, .ctw dA
R  (4-18)dt dt

and the additional loss due to spurt corresponding to each new fracture surface, 

during the injection period and until the fracture propagation will cease, will be given 

by;

..............................................................................................................................................

Carter '̂* derived a material balance in terms of flow rates, showing that the 

injection rate, q ., entering one wing of the fracture at time t is given by the sum o f 

all the leak-off rates and the growth rate of the fracture volume as follows:

+  +  +  ^ .............................................. (4.20)
i dt dt dt  ̂ dt

He found an analytical solution for Eq. (4.20), making the assumption that the 

fracture width is not variable (i.e. does not increase) while the fracture propagates. 

Thus the fracture face area at time t , A( t̂), will be given by the following equation:

4 C , '; r
(4.21)

where:

78



..............................................................................................................................

The value o f the fluid loss volume through the elementary surface, dA, is obtained by 

the integration of Eq. (4.16), which between the opening time, T ,  and the end of 

pumping, / becomes;

dV^ = d A \ - ^ à = d t .............................................................................................(4.23)
r  V /  -  T

where t  is the actual time. Integration o f Eq. (4.23) over the fractured face area, from 

zero to Ap (Fig. 2.2), gives the volume o f fluid leak-off with respect to the surface as 

follows:

Ap tp
^  =  2 j  d z d A ............................................................................................ (4.24)

0 r  V /  — T

and substituting Eq. (4.24) into Eq. (4.13), the g^icc)  function can now be derived 

as follows:

* "  '  '  1 ^ ............................................................................ (4.25)
\  0 Ĵfp -  T

where the opening time is given by Nolte^ as:
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T =  t . (4 .2 6 )

or, in dimensionless variables:

(4.27)

= (4.28)

^D= — (4.29)

A combination o f  Eqs. (4.25-4.29) yields:

& .(« )  =  J I dt.
0 yai

dAD .(4.30)

or.

 < - »

Using the definition of the Euler Gamma function, and the Mathematica package, the 

following approximation was developed and incorporated into the program of the 

coupled model:
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=   (4 .3 2 )

Both functions, { a )  and ( a ) , are shown in Appendix A.

In the case where At^ ^  0, Eq. (4.30) becomes:

g {A t^ ,a )= \ J
\ ° ^ ^ D  4 ^ D  J

(d/io...........................................................(4.3:3)

Nolte^ gave a solution of the above equation for the upper and lower bound (i.e. 

a  =  1 and Vz respectively, Eqs. 2.7 and 2.8). Valko and Economides" gave a closed 

solution of Eq. (4.33) for any value of OC as follows:

, j )  + 2 y i + Afp x f [i /2 ; g ; 1 + a ;  (l +
1 + 2a

where:

f [ i / 2 ; û:; 1 +  <ar; (l +  At^ ) ' ] i s  the hyper-geometric function.

The program used to solve Eq. (4.33) is shown in Appendix A. Using the definition 

and properties of the hyper-geometric function, presented by Abramovitz and 

Stegun^^ :

: [a M c-A  =  j (»-'(1 -  t T ‘- ' (1 -  t z ) - d t ........................(4.35)
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and using the Mathematica package, the hyper-geometric, H F , and 

functions can be computed as follows:

f  [l /  2 ;  a ;  1 +  a ;  (1 +  A /p  r  ] =  f
\ + a
« M l

1 2 a - 3

+ : dt
0 0

...............................................(/I 3(5)

1 1 2 a -3

( l  +  A r  ' i f /  2 d t1 4 iXL 11 I cJxL 0  M ( Hi 
_0 0

1 + 2a

(4.37)

Approximate values of the G-function, where computed for all

three geometries (PKN, KGD, and Radial), and are presented in Appendix A. Note 

that the fracture growth power law exponent,a, for the computation of the G- 

function of Eq. (4.34), has the following values: 4/3 for the PKN geometry, 2/3 for 

the KGD geometry, and 8/9 for the radial geometry. That corresponds to the case of a 

Newtonian fluid (i.e. the fluid theology index, I). However, in practice, the 

calibration treatment is performed with the same type of fluid that will later on be 

used for the actual fracture job, and thus the theology must be considered. Nolte** has 

shown that for injection of a power law fluid at a constant rate, the fracture growth 

power law exponent, û :, can be found analytically for all three basic geometry 

models. He shown that by taking a derivative with respect to time o f Eq. (4.26) in the
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limit of high and low fluid efficiency, T], will lead to the following values for a  :

(X = Vz for the PKN and KGD models

a  =V* for the radial model

for the lower bound (i.e. t] =  0), and

2/Î +  2
cc = --------- for the PKN model............................................................................... (4.38)

2/1 + 3

n + \
cc =  for the KGD model.................................................................................(4.39)

n + 2

and

2rt + 2cc — for the radial model..............................................................................(4.40)
3/7 + 6

Eqs. (4.38-4.40) were derived for the upper bound (i.e. fluid efficiency Tj = \)

In essence, the importance o f Eq. (4.12) is valid if it leads to a straight-line 

plot when pressure is plotted against the G-function. However, as mentioned earlier 

in this work, that is not always the case (see Figs. I . l b  and 1.2).

In the case when a plot of the net pressure versus the G-function is a straight 

line, the slope /n// contains relevant information regarding the leak-off coefficient. Cl. 

Except for the PKN model, however, this information is not readily available, 

because the fracture stiffness contains the yet unknown fracture half-length or radius 

(see Appendix Eqs. A18 and A19). Therefore an additional assumption is necessary
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to obtain the fracture extent. This assumption, postulated by Shlyapobersky, states 

that the spurt loss can be neglected and hence, the intercept 6// can be used to obtain 

the fracture extent. Since the no-spurt-Ioss assumption is an integral part of the 

methodology, the Nolte-Shlyapobersky method yields an essentially one-parameter 

description of the leak-off process.

4.3 Improved pressure decline model (Pw-II)

If Nolte’s assumption (i.e. that the fracture area will evolve based on the power law 

model, Eq. (4.36), at a constant value o f (X  following the shut-in time) is considered, 

then the fracture volume at the end of pumping is given by the total volume of fluid 

injected minus the sum o f the volume due to spurt loss and leak-of^ as follows;

y  =   (4.41)

or.

V =  2r^Aj.Sp -  Ir^AfC^  , a ) ....................................................(4.42)

where the dimensionless time, is given by Eq. (4.14), as shown earlier in this 

chapter.

The actual fracture volume is given by the product of the permeable fracture face 

area, A^ , considered constant during the fall off period, and the average width of the

fracture, w . Note that the maximum fracture width corresponds to the end of the 

pumping time:
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IP =  ty(f„ ) ................................................................................................................... (4.43)

and;

'4 ,  == fp jjy r ....................................................................................................................................... (4LZM)

where Ay is the fracture area, and the ratio between the permeable fracture area and 

the fracture area can be then written as follows:

..........................................................................................................

Therefore substituting Eqs. (4.43) and (4.4) into Eq. (4.42), the actual fracture volume 

will be given by:

AyW =  V. - I S ^ r ^ A y  - 2 r p A y C ^ ^ g { A t ^ , a ) ................................................ (4.46)

And a combination of Eqs. (4.13) and (4.46) yields:

^  ^  -  ^fpSp -  4 tg {A t^  , a ) ..............................................................(4.47)

Note that what determines the fracture width variation is the G-function, g ( A t^ ,a ) ,

the pumping time, t , the leak-off coefficient, , and the spurt loss, . We want to

find a way by which to estimate the average fracture width decrease (i.e. the fracture 

closure process, or pressure decline). This can be done considering the fact that the
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average fracture width, w , is directly proportional to the net pressure, (i.e. this is 

founded on the basic theory that describes the formation as a linear elastic medium^). 

Therefore, a relationship between the average fracture with, net pressure and fracture 

compliance, Cy , can be written as follows:

W = /?„C y.................................................................................................................... (4.48)

with::

Pn= P . -  Pa

where p / i s  the closure pressure, or minimum in-situ stress, Eqs. (3.13) and (3.14),

and the fracture compliance is given by Eqs. (2.17-2.19) for each fracture geometry. 

The fracture compliance coefficient is the inverse o f the fracture stiffness (i.e. 

stiffness can has the same role as Hook’s constant). Consequently, the linear 

relationship given by Eq. (4.48), leads to a new form o f Eq. (4.47), as a function of 

the net pressure, or:

PJI  =
j

x g (A /o ,a )  =

g(A t^ ,a) ................................................................................... (4.49)

A plot o f the wellbore pressure, P„II versus the G-function, Eq. (4.49), should 

result in a straight line o f slope, , and intercept, , if the fracture face area, 

fracture compliance and leak-off coefficient do not vary with time. From the slope
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one can then determine the leak-off coefficient, , and from the intercept the

fracture average width, w ,  the fracture half-length, JC^(for the PKN and KGD

geometries), or for the radial case, and the fracturing fluid efficiency, rj.

However, there are cases when a straight line can not be attained. Figs. (Lib,  1.2, and 

1.3), for reasons shown above and earlier in this work. Thus, if the plot is a curve, 

other means (See section 4.6) of analysis and interpretation should be employed to 

substitute for the above model (i.e. Eq. 4.49).

The above equation, although similar in format with the one derived earlier'^, Eq. 

(4.12), has the following new components in its structure, as a part of this work;

a) The ratio o f the fracture permeable to fracture height, , as shown by Eq. 

(4.45)

b) The ratio o f the spatial average to the wellbore net pressure, to account 

for the non-Newtonian fluid behavior. A derivative with respect to 

g(A t j^ ,a )  o f Eq. (4.49) will lead to :

.....................................................................................

Where cj- =  Cy-(y^^). This indicates that for a constant fracture face area, 

the only variable that can alter the linear behavior o f the pressure versus the 

G-function, is . Consequently a deviation from the ideal expected 

behavior as shown in Nolte’s analysis'*. Figs. ( I . l a  and 1.2) can be explained 

by the occurrence of fracture geometry changes, unlike the opinion of other
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authors*^ who consider the ratio of spatial average to the wellbore net 

pressure, =I after shut in. If the net pressure in the fracture were the 

same at all points, then a value o f/?^= l would be valid. However, Nolte^'^

showed that during and after pumping there is fluid flow from the wellbore 

region to the extremities of the fracture, and this generates a pressure 

gradient until the fluid is completely lost into formation. Fig. 2.4 shows the 

simulated pressure and flow rate in a fracture both before and after shut-in^. 

In his study and analysis Nolte^ also shows that prior and after pumping 

has different values due to flow rate and pressure gradient reduction in the 

entrance area of the fracture. Some authors erroneously consider the 

pressure reduction at shut-in a part o f the pressure drop through the 

perforations. In this sense note that the fracture average width is constant

immediately before and after shut-in. Consequently is equal to the ratio

of the net pressure immediately before and after shut-in. In this work, the 

ratio o f spatial average to the wellbore net pressure after shut-in, P^ =  P ^̂ ,̂

Eqs. (2.20-2.22) is considered, since we analyze the decline period of the 

test.

c) Fluid rheology consideration for the computation of the maximum fracture 

width, a function of the fracture average width, w . The index i is

used for the fracture geometry type. Pertinent equations are shown in 

section 4.4 of this chapter, and Appendix A.
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d) Spurt loss, S p , which can be implemented for all three geometries as shown 

in section 4.5 and Appendix A.

4.4 Non-Newtonian behavior of the fracturing fluid

A minifrac test implies the injection into the reservoir of a fluid with same or 

similar properties as the one later used for the completion of the actual frac Job. Since 

viscosity o f such fluids is one o f the most important qualities associated with the 

fracturing fluid. Non - Newtonian behavior must be considered. Therefore the 

pressure decline model, Eq. (4.49), can be improved by incorporating the above 

mentioned fluid behavior. To do so, we need to add one additional equation which 

relates the equivalent Newtonian viscosity, with the flow rate, assuming power 

law behavior.

4.4.1 Fracture width equations for the basic 2D fracture geometries

To best describe the propagation of hydraulically induced fracture, we need to 

combine elasticity, fluid flow, and the material balance. Given the fluid injection 

history of the minifrac test, we can predict the evolution with time o f the wellbore 

pressure and fracture dimensions. Since the height o f a the fracture will be considered 

fixed in this work, the models presented will predict the other two dimensions, 

fracture half-length, Xj- (i.e. PKN and KGD geometries) or (i.e. radial

geometry), and fracture average width, w  . From the elastic energy theory, the strain 

energy is the energy excess stored in the medium if  a fracture is present. Sneddon^^
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formulated a mathematical expression for a pressurized line crack which has an 

elliptical distribution, to evaluate the width o f the crack as:

w{x)  = - x ^ .............................................................................................. (4.51)
E

where is the constant pressure applied on the surface of both fracture faces from

the inside, (Fig. 3.2), c is  the fracture half-length (distance from the center o f the 

fracture to its tip, and x  is the variable distance from the center o f the fracture.

The volume of one wing o f  the fracture, V , can be found by integrating Eq. (4.51) 

multiplied with the height o f  the fracture:

............................................................. (4,52)
E E

The fracture average width can be found by dividing the fracture volume to its area:

W = -^ ................................................................................................(4.53)

The volume for one wing o f a radial crack is given by:

V =  - \  ' I r n r -  r "  ] d r  =   (4.54)2 J zr V / 1173E
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and the volume divided by area will yield the average fracture width:

..................................................................................(4.55)
7U

2 ,

Daneshy^*, Valko and Economides*‘, and other authors, showed that a shape factor, 

Y , is necessary to correct the average fracture width as a function o f it’s maximum 

value:

Y  =  t u / 5 for an elliptical cross sectional area (PKN geometry)...........................(4.56)

Y = Tu! A for a slot cross sectional area (KGD geometry).....................................(4.57)

and

Y = T u !  A for a radial cross sectional area (Radial geom etry)............................... (4.58)

4.4.1.1 PKN width equation

Perkins and Kem^^ considered zero net pressure at the tip of the fracture and 

the average fluid linear velocity at any location was approximated by the ratio o f the 

injection rate, in one wing, and the cross sectional area. Also the pressure drop of a 

Newtonian fluid in an elliptical cross sectional area is given by:

.....................(4.59)
L  ..............................................................................................

where, w^, is the maximum fracture width and is obtained from Eq. (4.51) at the
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wellbore (i.e. x =  0). Assuming C =  1 1 ., this becomes:

lh fP„
............................................................................................................. (4.(30)

Substituting Eq. (4.60) into Eq. (4.59) the following differential equation is obtained:

f  =  (4.61)
dx 7rh^p„

A solution of Eq. (4.61) is obtained by its integration between the wellbore and tip of 

the fracture, based on Perkins and Kem postulate that the net pressure at the tip of the 

fracture is zero:

1 1 3 2 ^ ^ ..........................................................................................(4 ,2 )
h f \  K

And combination of Eqs. (4.60) and (4.62) gives:

w.
..................................................................................

An estimated average fracture width, w , is given by the wellbore maximum width 

multiplied with a shape factor” , /  =  ttI 5 :

w = y w ,  =   (4.64)
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4.4.1.2 KGD width equation

In a similar manner, as in the case o f the PKN geometry, the maximum 

fracture width at the wellbore is estimated to be:

7t E^h
f

E^h
(4.65)

/

In this case the shape factor is considered as y  = 7u/A, and the average fracture 

width:

^  = yM>  ̂ =2 .534
f iqx^

E'^h
f

.(4.66)

4.4.1.3 Radial width equation

In this case, the fracture width equation is^ :̂

w =  2.664
E'^h

f

.(4.67)

and if we consider:

X^ — hj-12 = Rj-, Eq. (4.67) becomes:

w = 2 .2 4 1
\/dqRr .(4.68)
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4.4.2 Equivalent Newtonian viscosity

Also know as the effective or apparent viscosity, the equivalent Newtonian 

viscosity is defined by Hagen-Poiseuille law (i.e. Eq. (4.59) for an elliptical cross 

sectional area). Based on this law and assuming power law fluid behavior, the 

following equations o f the equivalent Newtonian viscosity for each geometry have 

been derived^

M-ePKN ~ ^
1 + (tt -  \)n n  ̂I n

n W w  J

n—I
.(4.69)

k n—I
f̂ eKGD ~ ^  '

~\-rln n

n

rt—I
.(4.70)

MeRAD = ^ 2
n—I 1 + 3n

n
................................................................ (4.71)

4.4.2.1 Modified maximum fracture width — PKN geometry

The average velocity, v , of the fluid through an elliptical cross sectional area 

open to flow, is given by the ratio o f the injection rate, q and the average cross

sectional area. Why :

V =
wh

.(4 .7 2 )

/
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The fracture average width, considering the shape factor, Eq. (4.56), is;

w = ^ w ^ = ( ^ l 5 ) w ^ .............................................................................................. (4-73)

and substituting Eqs. (4.69), (4.72), and (4.73) into Eq. (4.63), the maximum fracture 

width as a function o f the equivalent Newtonian viscosity is obtained:

= 3 .5 7 - : 12.5"-' /
1 +  n(^ - 1)

n
n

K

2n+2

.(4.74)

4.4.Z.2 Modified maximum fracture width — KGD geometry

The average velocity, v , of the fluid through a slot cross sectional area open 

to flow, is given by the ratio of the injection rate, q , and the average cross sectional

area, wh^ :

V =
wh

(4.75)
/

The fracture average width, considering the shape factor, Eq. (4.57), is:

vv = r  =  ( ; r /4 )w ^ .............................................................................................. (4.76)

and substituting Eqs. (4.70), (4.75), and (4.76) into Eq. (4.65), the maximum fracture 

width as a function o f the equivalent Newtonian viscosity is obtained:
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ŵKGD ~  3 .22 ' T  ?
' l 6

n—l

J Eh, ^ r )

2 n+2

.(4.77)

4.4.2.3 Modified maximum fracture width -  Radial geometry

In a similar manner, as shown above for the other two geometries, the average 

velocity, v ,  o f the fluid through a radial cross sectional area open to flow, is given by

the ratio o f the injection rate, q , and the average cross sectional area, Æ

TTŴ
.(4.78)

The fracture average width, considering the shape factor, Eq. (4.58), is;

w = y w ^ =  {k /A ) w^ ..............................................................................................(4.79)

and substituting Eqs. (4.71), (4.78), and (4.79) into Eq. (4.68), the maximum fracture 

width as a function of the equivalent Newtonian viscosity is obtained:

= 3 . 5 7 - : ( 4 r ) ^ 3 .2 2 5 " - '^n - I  j ^ f l + S n Y  n o 2 - n

n
q"R

f

2n+2

(4.80)

The above width equations, based on equivalent Newtonian viscosity, are 

incorporated into the main model.
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4.5 Spurt loss estimation

Inspection of Eqs. (4.49 and 4.53:4.55), shows that it is possible to evaluate the 

spurt loss as follows:

PKN geometry:

' pPKN 2 r

V K hMPKN

2E' ipN Pc ) .(4.81)

KGD geometry:

' pKGD 2r

RADIAL geometry:

’ pRAD
2 r _

V.
k R \ "hizE -  Pc )

.(4.82)

.(4.83)

Note that Eqs. (4.81:4.83) have two unknowns, the spurt loss and the half fracture 

length. Several alternatives for the incorporation of spurt loss into the model, Eq. 

(4.49), will be presented next.

4.5.1 Material balance approach

The spurt loss can be estimated if additional information could be obtained by
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coupling the end of the injection period with the instantaneous shut-in of a minifrac 

test^\ If the assumption that the fracture propagation will cease at the end of the 

pumping period is valid, then the average width should not change. Therefore the best 

straight line fit o f the pressure versus the G-function, Eq. (4.49) can be used as 

following;

ISIP =  b ^ +  (a , ) ............................................................................................(4.84)

where:

ISIP  is the instantaneous shut-in pressure and i is the index corresponding to the 

fracture geometry type.

4.5.1.1 Spurt loss approximation — PKN geometry

From Eq. (4.48) the average fracture width after injection can be estimated as:

w PKN
ISIP =  (ISIP - P c ) c . ...........................................................................................(4.85)

Combining Eqs. (A-2, 4.63 , 4.84, and 4.85) and solving for the fracture half length, 

yields:

Xj. = 0 .2 4 2
(b^ + 1 ,41495m ^ -  Pc)/3hf

E'
Eh. (4.86)

where: 1.41495 = — corresponding to a shut-in time. At  = 0.
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Substituting Eq. (4.86) into Eq. (4.81), leads to an estimate of the spurt loss as 

follows:

^PPKN ~ 2 r
4 . l 3 2 2 3 E % ^ f i h J b ^  - P c )kP̂PKN

+ 1.41495m„ -  P c f  IE '

.(4.87)

4.5.1.2 Spurt loss approximation — KGD geometry

From Eq. (4.48) the average fracture width after injection can be estimated as:

=  ( iS lP  -  P c ^ j . .......................................................................................... (4.88)

Combining Eqs. (A-3, 4.65 , 4.84, and 4.88) and solving for the fracture half length, 

X y. yields:

jCy.= 2.594
E'

2
f 1

J kgd^ n + 1.47837/»^ - f c ) l ^ v j
(4.89)

f 2 ^
where: 1.47837 = — corresponding to a shut-in time, = 0.

v 3 y

Substituting Eq. (4.89) into Eq. (4.82), leads to an estimate of the spurt loss as 

follows:

99



‘̂ Pkgd ~ 2r_
03S55{b^+\A7S37m^-PcyV.j3^2

KG D

4 . 0 7 4 6 E %  - P c j Y , P l h , E ' t ^ )  

{b^ +  1.47837/M^ -  P cY  PKGD
.(4.90)

4.5.1.3 Spurt loss approximation — Radial geometry

From Eq. (4.48) the average fracture width after injection can be estimated as:

-  (iSIP -  P c )c^ ...........................................................................................(4.91)

Combining Eqs. (A-4, 4.63 , 4.84, and 4.91) and solving for the fracture half length, 

yields:

R ^ = I A 4 7 E'
4/3

( f ^ K ]
1/3

. A o o k  +  1.37689/M^ - P c ) _
.(4.92)

where: 1.37689 = corresponding to a shut-in time, Af = 0.

Note that the derivations above contain a G-function corresponding to a  shut-in time, 

A/ = 0, since the ISIP  value is read at that specific time.

Substituting Eq. (4.92) into Eq. (4.83), leads to an estimate of the spurt loss as 

follows:

100



2r_
0.152K

'  E' ''
8/3

f  Kp ]
2/3

[ f c  +  137689m^, -  P c )p J

E'
3 7 6 8 9 / » -  P c ) p

E'

.(4.93)

4.5.2 Laboratory measurements

Perhaps the most relevant information one can obtain about spurt loss, is from 

a lab test performed on a core sample taken from the reservoir selected for hydraulic 

fracturing. Carter '̂^ has shown, Eqs. (4.2 and 4.94), that the filtrate volume, ,

through a core sample during a period o f time, t , will lead to the determination of 

spurt loss, . This can be obtained as the intercept o f a plot of the filtrate volume 

versus the square root o f time, as shown in Fig. 5.1.

Vfo = m 4 i  + .(4.94)

If the spurt loss can be evaluated, via one of the above indicated procedures or other
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methods (Le. Fig. C-43), then the fracture half length can be evaluated for each 

fracture geometry, as a function o f the spurt loss. This can be obtained from Eqs. 

(4.49 and 4.81:4.83) as follows:

I
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1  
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D
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Ui
<
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0J5
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< - 0  BA- 2 1.68 400
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UJ 40

A BA-27 2.69 100
(r A BA-29 6.20 100
o
u (a ) PERMEABILITY TO C,Q-

(b ) BEREA SANDSTONE 
ALL OTHER BANDERA 
SANDSTONE

TEST CONDITIONS:
FLOWING TEMPERATURE 125" F
ADDITIVE CONCENTRATION 4 Ib/bbl.

TIME , ymin

Fig. 4.1 -  Fluid loss characteristics, adapted from Carter '̂*
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4.5.3 Spurt loss from synergy analysis

Nolte*’̂ * provides a technical framework for adding after-closure fracturing- 

pressure analysis to the pre-treatment calibration-testing sequence that defines 

fracture geometry and fluid-loss characteristics. A companion paper* provides the 

general framework for applying this analysis and for its integration with the other 

parts of the testing sequence.

In his work, he shows that the after-closure period contains the reservoir 

pseudo-linear flow period that is the focus, and the pseudo-radial flow period that has 

been previously addressed in a comprehensive manner. Radial flow defines the 

reservoir parameters. The primary roles for linear-flow are to define spurt loss, after a 

calibration treatment, and to use the reservoir's perspective of the fracture length to 

validate information available from other parts o f the calibration sequence. The focus 

of this paper is on after-closure pseudo-linear flow. As discussed in the more general 

presentation, reservoir linear-flow provides the last link for the fracturing-pressure 

chain-of-events. This chain gives a continuum o f increasing information about the 

fracture geometry, fracturing fluid, and reservoir with feedback to validate or 

question prior information. The proposed timeline of events (and information) begins 

with a small-volume injection (for closure pressure) and shut-in (for reservoir 

transmissibility and initial pressure); pumping the fracture calibration treatment (for 

fracture geometry characteristics); the shut-in closure-decline (for total fluid-loss 

coefficient and fracture length to validate geometry); the period immediately after 

closure (for separating the various fluid-loss mechanisms and validating closure 

pressure); after-closure linear-flow (for spurt-loss and to validate fracture length); and
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in the case o f high-permeability, transitional flow (for validating various parameter 

combinations) and radial-flow (for validating reservoir transmissibility and initial 

pressure).

An effective and compact way of including spurt loss is to define a 

dimensionless spurt coefficient that depends on the spurt value (Sp, having the 

dimension o f length) and the total fluid-loss coefficient, as shown bellow and earlier 

in this work;

K =  l +  [ s ^ / { g „ C T ^ ) \ ;   (4.94a)

= (1 -  ; go -  f  -  «..................................... (4.94b)

These equations also show that the selected definition for the spurt coefficient 

produces a simple multiplication with the loss coefRcient. The definition also implies 

that for no spurt loss, at =  1, Eq. (4.94c) gives the interpretation for values greater 

than unity; e.g., fc =  5 reflects 80% o f the fluid loss, during pumping, coming from 

spurt-loss.

IVl-  = k - l } / * r ;  = ( * r - I X l - 7 ) / * r .......................................(4.94c)

The difficulty here consists o f the fact that the spurt loss coefficient,/f ,was 

determined emprrically(i.e. simulations®’̂ *) and of non-uniqueness when trying to 

delineate the correct slope corresponding to a pseudo-linear flow regime. However,
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the study presented by Nolte is very well documented and deserves further 

consideration.

4.5.4 Fracture half-length determination as a function of spurt loss — PKN

Substituting the spurt loss in Eq. (4.81) and solving for the fracture half-length 

leads to:

_ A.2
2 E X

.(4.95)

4.5.5 Fracture half-length determination as a function of spurt loss — KGD

A similar substitution of the spurt loss in Eq. (4.82), and solving for the 

fracture half-length, will result in:

IE'

7uh.!3{b^  - P J
.(4.96)

4.5.6 Fracture half-length determination as a function of spurt loss — Radial

If we substitute the spurt loss in Eq. (4.83), the following polynomial equation 

will result:
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A R ] -  +  B R ]  +  C  =  0 ........................................................................................................(4.97)

One real and two complex solutions where found solving Eq. (4.97):

_ (3W 4 5 ' +27/4"cV3C- 2 5 '  - 2 7 A ' c f '
^

V 2 5 ^  B
 7-----    —  - — ......................(4.98)
3y4(3^V 45 ' + 2 7 / 4 " c V 3 C - 2 5 ' - 2 7 A ^ c ]

„  _ ( l - / V 3 ) ( 3 ^ V 4 5 ' + 2 7 ^ " C V 3 C - 2 5 '  - 2 7 ^ ' c f "

6 /Ü /2

 ,  - ,   -  A ............... (4.99)
3v4V 4(3^V 45 ' +  27v4'C  VSC -  2 5 '  - 2 7 A ^ c ]

R  _ (1 +  /V 3 ) ^ X V 4 5 ' +  2 7 A^C^ISC -  2 5 ' -  2 7 A ^ c f '
'  6 XV2

 _  -  A  (4. .00)
3y4V 4(3X V 45' +  2 7 v 4 " c V 3 C - 2 5 '  -  27/1 " c j
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The real solution, Eq. (4.98), will be retained for the computation of the fracture half 

length, Rj-, where:

A =  \67cJ3{b  ̂ - P j ............................................................................................... (4.101)

B = 6K^Spr^E' ..................................................................................................... (4.102)

C  =  —3>V̂k  E ' ..........................................................................................................(4.103)

4.5.7 Spurt loss estimation by use of a high pressure simulator

Lord et al.^  ̂ describes the results of fluid-loss tests conducted with various 

hydraulic fracturing fluids through the use of a large-scale, high-temperature, high- 

pressure simulator that has several unique capabilities. Among these capabilities is 

the ability perform dynamic fluid loss experiments over a large surface area under

1,000 psi differential pressure. Fig. C-43 shows that significant spurt loss can be 

identified (i.e. 69 gal/100 fr^) in a porous medium that has only a permeability of 6.9 

md.

4.5.8 Spurt loss from empirical correlations

Ridha '̂* shows in his work empirical equations for the estimation o f spurt loss;

Sp =0.2510 ) without Matriseal
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Sp =0.5010 ~ Pi) with Matriseal

Inspection of the above equations clearly indicate that spurt loss is not a 

negligible fluid loss component, and that is direct proportional with the reservoir 

permeability.

4.6 Pressure derivative model

Castillo^ \  introduced a modified fracture pressure decline analysis model, 

including pressure-dependent fluid leak-off This is an improvement indeed, since 

Nolte’s initial derivations assumed the leak-off coefficient as a pressure-independent 

constant. However, his assumption is valid for the case in which the leak-off is 

controlled by a compressible filter cake, with the exception where leak-off is 

primarily controlled by filtrate viscosity, by an incompressible filter cake , or by 

reservoir permeability and compressibility.

Castillo introduced new pressure derivative plots (Figs. 2.8 and 2.9), for fracture 

pressure decline analysis, that determines the fracture parameters(AS7P, P  ), 

required in the Nolte leak-off calculations. In essence he took a derivative of the 

wellbore pressure with respect to the G-function and plotted this versus the shut-in 

time. His claim is that one can determine the fracture end of extension and the closure 

pressure with its corresponding time. However, a closer look at these plots, (Figs. 2.8 

and 2.9), show no uniqueness based on which one could infer the above parameters, 

and thus the method is inconclusive, because we can not accurately delineate the 

fracture parameters from these plots. And by no means, should use of these plots
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replace the stress tests (i.e. pump-in flow-back test) used for the determination of 

closure stress.

Instead, if we take a derivative with respect to time, and not the G-function, o f 

Eqs. (2.7 and 2.8), corresponding to the upper and lower limits, then the following 

can be obtained;

P J l  =  m ^ F { t ) j ......................................................................................................(4.104)

Eq. (4.104) should be a straight line o f slope, rUĵ  given by the following 

relationship:

.(4.105)

and

=

1/2 1/2

.(4.106)

for the upper bound, and

1 +  /

2 t ^ M -
r

1 +  — A rc  sin
\  p J

3 /2

1 +
V p J
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1
(

A rc  sin.

3/2  (4.107)

V J 

for the lower bound.

In the case where a plot of the pressure versus the G-function of Eq. (4.49) 

leads to a curve instead o f a straight line, any analysis would be inconclusive since no 

correct slope, or intercept, 6 ^ , can be delineated. Figs. (1.1b, 1.2, and 1.3).

Consequently, a plot o f  the pressure derivative, P„II , versus ^ (f)y  will enable us

to more accurately delineate the correct slope of a line that best fits the curve or a 

section of it. This is possible since Eq. (4.51) must have a zero intercept.

Note that only the pressure derivative for the upper bound can be used, since 

the lower bound , Eq. (4.54), is a function of A rcSin(\ +  f / f ^ ) ,  and can not

be computed for values of t / tp>0 .  However Nolte^’''* showed. Fig. 2.3, that the

difference between the two bounds is within acceptable limits (i.e. error less than 10 

%).

4.7 Filtercake-Reservoir Flow LeakofT Model

Mayerhofer*^’*̂ ’̂  ̂ published a filter-cake reservoir flow leak-off model. In his 

model he considers the total pressure drop between the fracture and the reservoir as 

follows:
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) =  lH>r̂  {t„ ) +  A p „  +  ................................................ (4.108)

where ^face iK)  the pressure drop across the fracture face dominated by the

filter-cake. It is considered steady-state in the sense, that it depends on the flow 

through the filter-cake, but not on its history. On the other hand, ) is the

pressure drop in the reservoir, having a truly transient nature (i.e. depending on not 

only the actual flow but also on the history of the leak-off process). The third 

component o f Eq. (4.108) is the pressure drop across the polymer invaded zone, 

^pinvziK)-  Its influence was s t u d i e d ^ a n d  found to be negligible.

In this approach the first term has one determinable parameter; the filter-cake 

resistance, Eq. (4.24), and the second term contains the other determinable parameter, 

the formation permeability, Eq. (4.27). While the first parameter is mostly the 

property of the fracturing fluid and can be affected by the composition, the second 

parameter is the property o f the formation and is a given for the fracturing engineer.

From the Mayerhofer et al.’̂ ’*̂  technique two parameters are sought: the filter- 

cake resistance,i?o , and the reservoir permeability. A short review of the main 

components of his model for pressure transient behavior is presented in chapter 2 of 

this work, Eqs. (2.35-2.42). However, the following observations are delineated in 

regard to the method:

1. The methodology, requires a significant level of simulations, computations and 

plotting, based on estimated values for the fracture area, at any time during

the injection period as a function of the volume injected, o f the pressure drop and 

its derivative. Not only is the method difficult to apply, since often times none of
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the expected behavior matches the field data, but how can one determine the 

fracture area and the leak-off rate as the fracture grows? In essence, during the 

fracture propagation the leak-off rates, , are not exactly known. We do not

even have the correct times, t j , corresponding to the 4-1 leak-off rates. Also,

there is no specific model used for the estimation of the fracture geometry.

2. The permeability and the filter-cake resistance, can only be determined if  the plots 

of the field data match the simulated ones (see Figs. 1-8) of Mayerhofer et al.'^

3. Another useful observation is in regard to the non-linearity of Nolte’s plot of the 

net pressure versus the G-function, (Fig. 8) of Mayerhofer et al.‘̂ , which shows 

once again a curve instead of a straight line. Therefore, a correct slope can not be 

delineated from it.

However the concepts and basics of Mayerhofer’s model are very valuable and used 

as a main platform for the derivation of the following improved filter-cake reservoir 

fluid flow model.

The pressure drop in the reservoir can be found from a pressure transient 

model for fluid injection into a porous medium for the case of infinite conductivity 

fracture. A general solution for the case of fluid injection through a fractured 

reservoir was developed and presented by Cinco-Ley and Meng^*. The equation was 

taken into Laplace domain, assuming equal length intervals, as follows:
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TC y=i
■E

(A % y
+  Ajc(x ^ -  /A r )

K  XDj

.................................................................................................................................... (4.109)

Writing this equation for every equal length interval of the fracture, a system 

of n equations is obtained. The system contains n +  \ unknowns. The first 

n unknowns consist of dimensionless flow rates per unit o f fracture length, q (.y),

for / =  1 , 2 , 3 , . and the «  +  l-th  unknown is Presj){.^)- In addition, we need to

consider the fact that the flow of a fracturing fluid passes through the filter-cake, 

built-up on the fracture face, before it reaches the reservoir. Therefore, an additional 

equation will describe the leak-off rate at a given time as follows:

" A r
W  = ....... (4.110)

f=l s

An inverted form o f Eq. (4.109) is well known and has the following form:

P re .J > = 4 ^ t l^  ......................................................................................................(4-111)

In essence the above solution can be obtained by solving the system of Eqs. (4.109 

and 4.110), or making use of a type curve®*.

Duhamel’s theorem enables us to treat the linearity o f the diffrisivity equation 

by the principle of superposition, as a sequence o f constant rates. The rate history is
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known while the actual leak-off rate, q^, is not. The above mentioned principle leads 

to the pressure drop across the reservoir, , given by the following equation:

r e s i t  ~  Q  j - x )  P  D ^ t  „ ~  ^-1 )û  ] .............................................. ( 4 ^ 2 )
/=>

Gingarten and Ramey’ solution for an infinite conductivity fracture can be also 

written as follows:

P d b n  -  tj-x } o h  2 -  W ............................................................ (4.
V ^tPr^n

113)

The dimensionless pressure, Eq. (4.113), is determined with respect to a 

dimensionless time which corresponds to an actual fracture half-length, at a time

and not tj  which is unknown. For the interpretation of the fall-off test, we have 

data points after shut-in time (i.e. n >n^),  where n/xs the index which

corresponds to the first pair of data immediately after shut-in, and n is the 

corresponding index for any other pair of data following shut-in. The data are 

considered until the fracture closes (i.e. closure time ).

The main focus will be on Eq. (4.108), with its main components defined as 

follows:

The filter-cake pressure drop term, as given by Mayerhofer'^, is:
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^ f ^ À O = q „  T ^ J r - ........................................................................................ (4.114)

where is the leak-off rate corresponding to a time , and is the filter-cake 

resistance, which was derived by Mayerhofer*^ based on analogy with the fracture 

face skin fector*^. And the second term is the pressure drop across the reservoir, as 

described by Eq. (4.112).

Substituting Eqs. (4.112) and (4.114) in Eq. (4.108) leads to:

~ 0 - i ) o ] ..................
V 4  y=l

I f  Eq. (4.115) is re-arranged as:

+  4 p „ . W = : ^ , P - ? .   (4.116)
VC A  VC

where:

‘S'-fei ~^oVz)(C ~^i)^o(C ~ c )  +

” * +  fen -l -  < ln -2  ) P d  (C  -  C -2 )  +  fen  “  ^n-1 )^D  (C  ~  C-1 )

then the actual leak-off rate for one wing can be determined:
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P r

=
nk^h^ • P d i ^ D n-^ D n~l  )  +  Z  ( ^ y  “  ^ / - l  ) / ^ D  [(^«  “  ^j-l  )o  l

y-i

. PrPolOn-^n-Jol1-^ +

Substituting Eq. (4.113) in Eq. (4.117) and re-arranging yields;

.(4.117)

9„ =

w—1 I 
^n-lPoVDn ^J~l\ ^  ' 2 (̂ n

y=l V r^tPr^n

1

[ 2  +

.(4.118)

The above equation can be used for the determination of the actual leak-off rate 

during both the propagation of the hydraulic fracture and closure. Mayerhofer*^ 

showed that the leak-off rates are a function of the observed decline pressure.

From the net pressure definition, Eq. (4.48) the fracture width is given by:

w, =  ‘̂ f P n = c A P M - ^ j ) ................................................................................... ( 4H9)

w. - > = < = A = cAPj- 2 - P j- , )  (4 120)

And also by the ratio between the leak-off volume and fracture face area as:
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and Wj_̂  =   (4.121)

The leak-off rate is given by the leak-off volume divided by time:

, , = ^ a „ d   (4.122)

Combining Eqs. (4.119-4.122) it follows that:

q ,  = Cf ......................................................................................... (4.123)

?3-i = Cf ^ .....................................................................................(4.124)

If we substitute Eq. (4.113) in Eq. (4.112), the pressure drop across the reservoir 

becomes:

.............................................

and with further substitution of the ratio of the permeable to total fracture areas, given 

by Eq. ( 4.45), Eq. (4.125) will be:
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^PrcsQn) =  ~  ) ................................... (4*26)
^ r 'V ^ / / = l  V A /^ r

To further proceed, we need to consider the fact that the leak-off rates during the 

fracture propagation are not known from 7 =  1 to +  \ .  Consequently one key

reasonable assumption must be made, and that is that the first + \ leak-off rates 

are equal to an apparent leak-off rate which can be computed via the previous model, 

Eq. (4.49), as a function o f the average leak-off width and fracture area:

...............................................................................................................(4.127)
p

From 7 =  1 to +  2 , the reservoir pressure drop can be written as:

...............................................................................(4.128)

and from j  — + 3 t o  n , substituting Eqs. (4.123 and 4.124) in Eq. (4.125) gives:
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1
1/2  -p

, &  "■ Af, At,.,
.(4.129)

Combining and re-arranging Eqs. (4.128) and (4.129) leads to:

AT,

r  \ i / 2 r -

P
/ i » + 2

+  Z ( ^ y  - t j -x )
y=2

1/2 -F

. 1/2

T ^  [ P j - X - P j )  { P j - 2 - P j - x ) , ,  , V/2

(4.130)

Where the total reservoir pressure can be written as the difference between the 

fracture pressure, , at time, , and the initial reservoir pressure, p.  :

^ p { t n ) = P n - P i ...................................................................................................(4 131)

The term in the first square bracket of Eq. (4.130) can be written as follows:
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y=2

r  \
Pn, \̂ -  Pn,^2

t —t V ” "j+i y
-  n̂̂ +I -  <Jn,+i -  Ĉ +1 ...........(4.132)

Earlier, we made the assumption that the first + 1  leak-off rates are equal to an 

apparent leak-off rate, and thus:

— n̂̂ +i —Qa.........................................................................................................(4.133)

Substituting Eqs. (4.127, 4.131, 4.132, and 4.133) in Eq. (4.130), and rearranging, 

results in the following filter-cake reservoir pressure equation:

+
2 r A t .  à t

r  M 1
1/2 y

A

Pn.^l -  Pn,*l

K -  J

1/2

y=ni+3

+
r  xi/2

J L

AO-i 

A,

+

P P

/2

or.
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p , - p ,
Pn-i -  P„ 2 / - / ,  k r j "

Af.

{ P n - l - P n \ [ ^

 ̂Pn. l̂ -  Pn,*2 ^L . V2 . ^  (Pj - l -Pj )  [Pj-2-Pj-l)
\ K - t n , . x )  +  A  — 7:-----------------t : ---------

j- r t  y

1/2

+ Wr

¥ r

r
P

I ': # / ,  J

-  (f„ ~^nsuj  

{Pn-l -  Pnlfptl
Af.3 /2  " .(4.134)

Following simple algebraic re-arrangements, Eq. (4.134) becomes;

=  ..................................

where the dependent variable is given by:

.(4.135)

y (n )= P ,  -  P, 

the intercept is:

(4.136)

the slope:

.(4.137)
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= .(4.138)

and the independent variable:

X { n ) =
r

P  J K  -  j

1/2

j=ns+3 At.
+

' f

.(4.139)

Equation (4.135) describes a straight line of intercept and slope (see Figs. C- 

5, C-10, C-15, C-17, and C-21).

The main output parameters of the above equation are the filter-cake 

resistance, determined fi"om the intercept, 6 ^ , and the reservoir permeability,

extracted fi-om the slope, of Eq. (4.140).

The necessary modeling equations are presented in Appendix B. They incorporate 

both cases, (1) no spurt loss assumption and (2) spurt loss identified, showed earlier 

in this work (i.e. section 4.5 of chapter 4). A complete set o f equations is presented 

for each fi-acture geometry.
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CHAPTERS 

METHODOLOGY AND COMPUTER PROGRAM

5.1 Methodology

Based on the algorithm presented in chapter 4 and Appendixes A and B o f this 

work, the following step by step procedure is recommended:

I. Following a minifrac test, acquire, confute and prepare the following 

required input parameters:

a) Pressure and time data pertinent to both the injection and the fell-ofif periods 

o f the minifrac, {P, t ) .

b) Injection flow rate, q , , and the total volume of fluid injected into the fracture,

c) Type o f fracturing fluid and its key rhelogical parameters (Le. n' and Æ ').

d) Formation porosity, (j).

e) Reservoir total compressibility, .

f) Reservoir fluid viscosity, fj. .̂

g) Fracturing fluid viscosity, / / j -.

h) Poisson’s ratio, v .

i) Young’s Modulus, E .

j) Fracture permeable height, h p .

k) Fracture height,/Zy.
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I) Pumping time,

m) Initial reservoir pressure, P,.

n. Convert the time data into shut-in time intervals (i.e. A/ )

in . Plot, on a cartesian graph, the pressure data versus time (i.e. Figs. C-1, C-6, C-

11, and C-I8).

IV. Filter the pressure-time data if necessary (i.e. if significant noise is shown -  

Fig. C-16).

V. Select the corresponding fall-off period fi"om the plot (i.e. Figs. C-1, C-6, C- 

II, andC-18).

VI. Determine the initial shut-in pressure from the pressure versus time plots (i.e. 

Figs. C-1, C-6, C-Il ,  and C-18).

Vn. Compute and plot, on a cartesian graph, the pressure versus , of 

the fall-off period (i.e. Figs. C-2, C-7, C-I2, C-19).

Vm. From Figs. C-2, C-7, C-12, C-19, identify the correct slope of the straight line

corresponding to the final closure period, and estimate the closure pressure 

and closure time.

EX. Plot on a log-log graph the net-pressure versus time (i.e. also known as the

Nolte-Smith plot - Figs. C-3, C-8, C-I3).

X. From Figs. C-3, C-8, C-I3), identify the fracture geometry which will be later

used for modeling purposes.
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5.1.1 PKN geometry

1. Compute the g'(A /p ,ûr) function corresponding to the fall-off period using Eq. 

(A-47).

2. Compute ( a )  for a  = 4/5, from Eq. (A-42).

3. Compute the pressure derivative, P^II, and F ( / )  functions using Eqs. (4.104 

and 4.106).

4. Plot the pressure derivative function, as P^II • p{t^  versus P { t Y  ,on a 

cartesian graph. Fig. C-22.

5. For pressure-time data corresponding to the decline period, plot the bottomhole 

pressure, versus the function (i.e. Figs. C-4, C-9, C-14, C-20, C-26).

6. If the plot from the previous step is a straight line, then delineate the slope, , 

and the intercept, 6^ from it.

7. If the plot from step 5 is a curve, instead of a straight line, a correct slope can not 

be identified. Therefore use P^II • P{t^ versus , Fig. C-22, to determine 

the pressure derivative slope, .

8. Compute the leak-off coefficient, , from the slope o f the pressure derivative

plot, using Eq. (4.105). Otherwise, calculate the leak-off coefficient from step 6 

using Eq. (A-17).
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9. Next, calculate the expected slopes and intercepts o f Figs. C-4, C-9, C-14, C-20, 

and C-26, using Eq. (4.49). To complete this step, the leak-off coefficient 

determined on step 8 is required.

10. Identify, as shown in the steps bellow, if the spurt loss is present (i.e. expected on 

reservoirs with medium to high permeabilities).

11. Estimate the spurt loss, Sp, as a function of the fracture half-length calculated at

the previous step using Eq. (4.87).

12. If  the spurt loss value is greater then zero , then calculate the fracture compliance, 

Cj- from eq. A-2.

13. Calculate the fracture half-length, X^, using Eq. (A-11).

14. Calculate the average fracture width, from Eq. (A-30)

15. Estimate the fluid efficiency, Tj, from Eq. (A-35).

16. From the second part o f the coupled model (i.e. filter-cake reservoir transient 

analysis). Compute and X{n(i))  from the fall-off period, using Eqs. (B- 

17 and B-20). Note that variables determined from the first part of the model, are 

used here (i.e. the average fracture width, and the fracture half length).

17. Plot K («(/)) versus X(n(j) )  on a cartesian graph (i.e. Figs. C-5, C-10, C-15, 

C-17, C-21, and C-27), and from the best straight line fit determine the slope,

, and the intercept, 6^  .

18. Next, calculate the filter-cake resistance, , from Eq. (B-18), and the reservoir 

permeability, k^, from Eq. (B-19).
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19. If the spurt loss is known, from a lab test, or another method of evaluation, 

compute the fracture half-length from Eq. (A-11) as a function of the spurt loss. 

Next, follow steps 14 through 18 as shown above.

20. If the spurt loss calculated from Eq. (4.87) has a negative value, or is unavailable 

from any other source, the entire algorithm will be based on a no-spurt loss 

assumption, as shown in the following steps.

21. Calculate the fracture half-length, x using Eq. (A-8).

22. Determine the leak-off coefficient, , from Eq. (A-17).

23. Calculate the fluid efficiency from Eq. A-27.

24. From the second part of the coupled model (i.e. filter-cake reservoir transient 

analysis). Compute Y(n(i)) and X (« (/))  from the fall-off period, using Eqs. (B- 

2 and B-5). Note that the variables determined from the first part of the model, 

are used here (i.e. the average fracture width, and the fracture half length).

25. Plot Y{n{ifj versus X (rt(/)) on a cartesian graph (i.e. Figs. C-5, C-15, C-17, C- 

21, and C-27), and from the best straight line fit, determine the slope, , and 

the intercept, 6^ .

26. Next, calculate the filter-cake resistance, , from Eq. (B-3), and the reservoir 

permeability, k ,̂ from Eq. (B-4).
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5.1.2 KGD geometry

1. Compute the , a )  function corresponding to the fall-ofFperiod using Eq.

(A-51).

2. Compute ( a )  for a  = 4/5, from Eq. (A-42).

3. Compute the pressure derivative, P„/I,  and functions using Eqs. (4.104 

and 4.106).

4. Plot the pressure derivative function, as - ^ ( f )  versus P ( t Y  ,on a

cartesian graph. Fig. C-22.

5. For pressure-time data corresponding to the decline period, plot the bottomhole 

pressure, versus the g (A t^ ,a )  function (i.e. Figs. C-4, C-9, C-14, C-20).

6. If the plot from the previous step is a straight line, then delineate the slope, , 

and the intercept, 6^  from it.

7. If the plot from step 5 is a curve, instead o f a straight line, a correct slope can not 

be identified. Therefore use a plot of P^Il ■ F { t)  versus P { t y , Fig. C-22, to 

determine the pressure derivative slope, .

8. Compute the leak-off coefficient, , from the slope of the pressure derivative

plot, using Eq. (4.105). Otherwise, calculate the leak-off coefficient from step 6 

using Eq. (A-18).
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9. Next, calculate the expected slopes and intercepts, of Figs. C-4, C-9, C-14, C-20, 

and C-26 using Eq. (4.49). To complete this step, the leak-off coefficient 

determined on step 8 is required.

10. Identify, as shown in the steps bellow, if  the spurt loss is present (i.e. expected on 

reservoirs with medium to high permeabilities).

11. Estimate the spurt loss, Sp, as a. function of the fi-acture half-length calculated at

the previous step using Eq. (4.87).

12. If the spurt loss value is greater then zero , then calculate the fracture compliance, 

Cyr from Eq. (A-3).

13. Calculate the fracture half-length, using Eq. (A-12).

14. Calculate the average fracture width, , from Eq. (A-31)

15. Estimate the fluid efficiency, T], from Eq. (A-35).

16. From the second part o f the coupled model (i.e. filter-cake reservoir transient 

analysis). Compute Y{n{ij) and X { n { i^  fi-om the fall-off period, using Eqs. (B- 

22 and B-25). Note that variables determined from the first part of the model, are 

used here (i.e. the average fi-acture width, and the fi-acture half length).

17. Plot 7 (/i(/)) versus X{n{i j )  on a cartesian graph (i.e. Figs. C-5, C-10, C-15, 

C-17, C-21, and C-27), and from the best straight line fit determine the slope, 

irij^ , and the intercept, .

18. Next, calculate the filter-cake resistance, , from Eq. (B-23), and the reservoir 

permeability, , fi-om Eq. (B-24).
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19. If the spurt loss is known, from a lab test, or another method of evaluation, 

compute the fracture half-length from Eq. (A-12) as a function of the spurt loss. 

Next, follow steps 14 through 18 as shown above.

20. If the spurt loss calculated from Eq. (4.87) has a negative value, or is unavailable 

from any other source, the entire algorithm will be based on a no-spurt loss 

assumption, as shown in the following steps.

21. Calculate the fracture half-length, Xr,  using Eq. (A-9).

22. Determine the leak-off coefficient, , from Eq. (A-18).

23. Calculate the fluid efficiency from Eq. A-28.

24. From the second part of the coupled model (i.e. filter-cake reservoir transient 

analysis). Compute Y(n(i)) and («(/)) from the fall-off period, using Eqs. (B- 

2 and B-5). Note that the variables determined from the first part of the model, 

are used here (i.e. the average fracture width, and the fi-acture half length).

25. Plot Y(n(i)) versus («(/)) on a cartesian graph (i.e. Figs. C-5, C-15, C-17, C- 

21, and C-27), and from the best straight line fit, determine the slope, , and 

the intercept, bj^ .

26. Next, calculate the filter-cake resistance, , from Eq. (B-3), and the reservoir 

permeability, from Eq. (B-4).
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5.1.3 Radial geometry

1. Compute the ,cc) function corresponding to the fall-oflFperiod using Eq. 

(A-53).

2. Compute g ’oCcif) for a  = 4/5, from Eq. (A-42).

3. Compute the pressure derivative, P^II, and F ( / )  functions using Eqs. (4.104 

and 4.106).

4. Plot the pressure derivative function, as P^H • F(t)  versus F ( tY  ,on a 

cartesian graph. Fig. C-22.

5. For pressure-time data corresponding to the decline period, plot the bottomhole 

pressure, versus the g ( A t ^ ,a )  function (i.e. Figs. C-4, C-9, C-14, C-20, and C- 

26).

6. If the plot from the previous step is a straight line, then delineate the slope, , 

and the intercept, from it.

7. If the plot from step 5 is a curve, instead of a straight line, a correct slope can not 

be identified. Therefore use a plot of P^II • F ( t ) versus F(t  Y , Figs. C-22, to 

determine the pressure derivative slope, .

8. Compute the leak-off coefficient, , from the slope o f the pressure derivative

plot, using Eq. (4.105). Otherwise, calculate the leak-off coefficient from step 6 

using Eq. (A-19).
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9. Next, calculate the expected slopes and intercepts, of Figs. C-4, C-9, C-14, C-20, 

and C-26 using Eq. (4.49). To complete this step, the leak-off coefficient 

determined on step 8 is required.

10. Identify, as shown in the steps bellow, if the spurt loss is present (i.e. expected on 

reservoirs with medium to high permeabilities).

11. Estimate the spurt loss, as a function o f the fracture half-length calculated at

the previous step using Eq. (4.87).

12. If  the spurt loss value is greater then zero , then calculate the fracture compliance, 

Cy from eq. A-3.

13. Calculate the fracture half-length, Rj-, using Eq. (A-13).

14. Calculate the average fracture width, , from Eq. (A-22)

15. Estimate the fluid efficiency, 77, from Eq. (A-29).

16. From the second part of the coupled model (i.e. filter-cake reservoir transient 

analysis). Compute F(«(/)) and («(/)) from the fall-off period, using Eqs. (B- 

27 and B-30). Note that the variables determined from the first part of the model, 

are used here (i.e. the average fracture width, and the fracture half length).

17. Plot F («(f)) versus on a cartesian graph (i.e. Figs. C-5, C-10, C-15,

C-17, C-21, and C-27), and from the best straight line fit determine the slope,

, and the intercept, 6^ .

18. Next, calculate the filter-cake resistance, , from Eq. (B-28), and the reservoir 

permeability, k^, from Eq. (B-29).
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19. If the spurt loss is known, from a lab test, or another method of evaluation, 

compute the fracture half-length from Eq. (A-13) as a function of the spurt loss. 

Next, follow steps 14 through 18 as shown above.

20. If the spurt loss calculated from Eq. (4.87) has a negative value, or is unavailable 

from any other source, the entire algorithm will be based on a no-spurt loss 

assumption, as shown in the following steps.

21. Calculate the fracture half-length, using Eq. (A-10).

22. Determine the leak-off coefficient, , from Eq. (A-19).

23. Calculate the fluid efficiency from Eq. A-37.

24. From the second part of the coupled model (i.e. filter-cake reservoir transient 

analysis). Compute («(/)) and («(/)) from the fall-off period, using Eqs. (B- 

12 and B-15). Note that the variables determined from the first part of the model, 

are used here (i.e. the average fracture width, and the fracture half length).

25. Plot F (« (/)) versus X { n { j^  on a cartesian graph (i.e. Figs. C-5, C-15, C-17, C- 

21, and C-27), and from the best straight line fit, determine the slope, , and 

the intercept, .

26. Next, calculate the filter-cake resistance, , from Eq. (B-13), and the reservoir 

permeability, from Eq. (B-14).

5.2 Computer Program for the coupled model

Based on the above methodology, a computer program, that incorporates both
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modeling techniques and is applicable for all three-fracture geometries, was 

developed. The main components of the program are shown in a flow chart. 

Appendix E, for each fracture geometry (i.e. PKN, KGD, and radial). The program is 

written in Fortran language and reads all the input parameters from one data file. In 

spite of a significant number of computations performed, a complete run takes no 

longer than one minute. All the required computations are performed by this program, 

including automatic curve fitting for both models (i.e. pressure decline analysis and 

filter-cake reservoir flow leak-off). Based on the best straight line fit o f both plots, the 

pressure versus G-function plot and F (/%(/)) versus X («(/)) plot, the program 

automatically computes the values of the slope and intercept. The only parts o f the 

algorithm that are not incorporated in this program are the data filtering procedure, 

and the pressure derivative for the following reasons:

1. Data filtering require complex mathematical algorithms capable of 

processing any type of curve obtained from a pressure time data set.

2. The same is true for the computation of the pressure derivative, since 

simple methods (i.e. two-point derivative or Bourdet et. Al ) are not 

satisfactory (i.e. significant noise makes it difficult to interpret the 

characteristics of the curve).

To complete the data filtering and pressure derivative computations, a commercial 

software (Jandel Scientific) was used.

A list of the input data, for the main program, is given in the previous section, 

step I (arm). The main output parameters are:
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1. pressure time data points, /?(/) , t(/)  , and ^/t(/)

2. g-function, and its corresponding shut-in time pairs, t(i)

3. spurt-loss, Sp,  fracture half-length, (for PKN and KGD geometry)

and for the radial geometry

4. average fracture width,

5. fluid leak-off coefficient,

6. fluid efficiency, 77

7. pairs of 7(«(/)) and X{n{if j  values corresponding to shut-in times,

from the filter-cake reservoir flow model

8. filter-cake resistance,

9. and reservoir permeability,

All variables (i.e. input and output parameters) are in oil field units.
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CHAPTER 6 

APPLICATIONS AND SENSITIVITY ANALYSIS

6.1 Applications

In this section the methodology shown in chapter 5 will be applied to fracture 

calibration treatments from five field cases. Additional information and final results, 

from the analysis o f each treatment, is shown in Appendix C.

6.1.1 Case M l

This is a calibration treatment applied to an oil well. The purpose of this job 

is, as stated earlier in this work, to collect information about the leak-off 

characteristics of the fracturing fluid (i.e. leak-off coefficient, C^, and fluid 

efficiency, 77). Determination of the fracture dimensions (i.e. fracture half-length, 

Xy , and average fracture width, ) and estimation o f the fracture geometry model

is also accomplished by means o f interpretation and analysis fi*om a minifrac test. The 

same test can enable us to compute the reservoir permeability, k^, and the filter-cake

resistance, R^. AiS a. result, it is critical that the subsequent fracturing job be 

conducted with the same fracturing fluid and used during the treatment.

The test was performed by injecting 3150 gallons (75 bbl) o f borate water 

base fracturing fluid (no proppant), at an approximate rate o f  16 bpm (pumping time 

was 4.7 minutes). This is a formation described by a porosity (j)= 20 %, reservoir
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fluid viscosity, / /  = 1.4 cp, initial reservoir pressure, = 2146 psi, and the fracture

permeable height, hp = 40 ft, and the fracture height, hj- = AS feet. The elastic

properties o f the porous medium are known as Young’s Modulus, E  = 1.00 x 10  ̂psi, 

and Poisson’s ratio, v  = 0.25. Other required parameters are shown in Table C-IA, 

Appendix C.

Following step one, collection o f  reservoir and fluid properties required as 

input data, a cartesian plot o f pressure versus time. Fig. C-1, was produced (see data 

in Table C-IB), and from it the pumping time, tp = 4.76 min, and initial shut-in

pressure, ISIP  = 3293 psi, were determined. It was found that a filtering o f  the 

pressure time data, as required by step 4 of the methodology (section 1, chapter 5) 

was not necessary. From the same plot, the corresponding fell-ofif period for analysis 

was selected between the initial shut-in pressure and the end of the pressure decline 

curve. A cartesian plot. Fig. (C-2), o f the fell-off pressure versus square root o f  time 

(data shown in Table C-IB, Appendix C), indicates that the approximate closure 

pressure (i.e. the corresponding value to the in-situ minimum stress) is = 2503 psi

at a closure time, =  11.3 minutes. The selection o f the closure pressure was done 

based on the profile o f  the curve (Le. second change o f slope) and confirmed by a  step 

rate test (data not provided in this work).

A log-log plot. Fig. C-3, o f the injection net pressure versus square root o f 

time (data shown in Table C-ID, Appendix C), enables us to determine that a radial 

geometry most likely occurred during the treatment (Le. a slight deviation towards a 

negative slope detected at the end o f the curve).
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Using Eqs. (A-42) and (A-53), the G-fiinctions, at a shut-in

t i m e ^  0, and goipc^ corresponding to a shut-in time, = 0 are computed 

(data are shown in Table C-IC). Following the above computations, an automated 

curve-fit of the fall-off pressure versus the G-flinction is performed by the computer 

program (see flow chart -  Appendix E). The program completes the entire series of 

calculations, regardless o f a best or worse fit obtained at this step. Next, an inspection 

of the cartesian plot. Fig. C-4, of the fall-off pressure versus the G-function, enables 

us to assess if the plot is a straight line or not. In this case, with the exception of the 

first 4 points, the plot indicates a straight line, and thus the application o f the pressure 

derivative (steps 3, 4, and 7, 8) is not necessary since the slope and the intercept can 

be clearly delineated from the graph. This is also automatically performed by the 

computer program, using Eq. (4.49). For our case an intercept, 6 ^ =  3131.24 psi and 

a slope, W^=-175 psi were determined.

A next step is to determine if there is spurt loss using the equation derived in 

this work, Eq. (4.93) as follows:

2(0 .352) '
O.I52(2.832£'-2)

1.07E6 v8/3

Lv 0.925(3 131.24 +1.37689 • (-175) -  2503. l)
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1/3
- 2 .4565(3131.24-2503.1)

1.07E6
4/3

0.925(3131.24 +1.37689 • (-175) -  2503. l)  ̂

1.07E6

0.925
1/3

"= -6.8E-03 ft = -5.8 gal/100 ft^

A negative value of the above, is an indication that the spurt loss could not be 

identified, and thus all computations will be performed based on a no spurt loss 

assumption as follows:

The fracture half-length using Eq. (A-10):

^  8(0.925X3 131.24 -  2503.1)

The fracture compliance using Eq. (A-3):

, = t e M - 9 . 7 2 E - 5 f t / p s i  
/  3 ;r(l.07E6)
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The fluid leak-off coefficient from Eq. (A -19):

3 (;r (0 .3 5 6 X y ^ X ^

The fracture average width from Eq. A-22:

i (66.2X0.925X-(-  175)Xl.377)_

The fracture fluid efficiency from Eq. (A-29):

7 . T = 1 - ,  , -6 1 .6 3 %
(3131 .24-2503 .1 )

The second part of the model consists of solving the main components of Eq.

(4.140), F (« ) and X{n)  for the fall-off period between the initial shut-in pressure 

and closure pressure. This again is automatically performed by the computer program 

(Table C-IC), as in the case of the G-function, followed by an automatic curve-fit. 

Then a cartesian plot of V(n) versus X ( n )  is produced. Fig. C-5. From the best 

straight line fit, the intercept, 6^ =0.2, and the slope, =2.439E+08. Next, the 

filter-cake resistance and the reservoir permeability are computed as follows:

The filter cake-resistance using Eq. (B-13);
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^ 4 ( 0 . 3 S 6 X 1 . 0 7 ^ 6 X 4 . 7 6 X 0 . 2 ) ^ ^ ^ ^ ^ 3
7t{662)

And the reservoir permeability from Eq. (B-14):

=9.431^3  ̂ 662
v2.439£8y

19.5 md
0.352

6.1.2 Case M2

This is a calibration treatment applied to the same oil well, only to an upper 

producing interval.

The test was performed by injecting 3150 gallons (75 bbl) o f  borate water 

base fracturing fluid (no proppant), at an approximate rate o f 23 bpm (pumping time 

was 3.3 minutes). This is a formation described by a porosity 20 %, reservoir

fluid viscosity, / /  = 1.4 cp, initial reservoir pressure, = 1768 psi, and the fracture

permeable height, hp=  32 ft, and fracture total height, = A6 feet. The elastic

properties o f the porous medium are known as Young’s Modulus, E  = 1.00 x 10  ̂psi, 

and Poisson’s ratio, v  = 0.25. Other required parameters are shown in Table C-2A, 

Appendix C.

Following step one, collection o f  reservoir and fluid properties required as 

input data, a cartesian plot o f pressure versus time. Fig. C-6, was produced (see data
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in Table C-2B), and from it the pumping time, t^ = 3 .3  min, and initial shut-in

pressure, ISIP  = 3298 psi were determined. It was found that a filtering of the 

pressure time data, as required by step 4 of the methodology (section I, chapter 5) 

was not necessary. From the same plot, the corresponding fall-off period for analysis 

was selected between the initial shut-in pressure and the end of the pressure decline 

curve. A cartesian plot. Fig. (C-7), o f the fall-off pressure versus square root of time 

(data shown in Table C-2B, Appendix C), indicates that the approximate closure 

pressure (i.e. the corresponding value to the in-situ minimum stress) isP^= 2923 psi 

at a closure time, = 2.7 minutes. The selection o f the closure pressure was done

based on the profile of the curve (change of slope) and confirmed by a step rate test 

(data not provided in this work).

A log-log plot. Fig. C-8, of the injection net pressure versus square root of 

time (data shown in Table C-2B, Appendix C), enables us to determine that a radial 

geometry most likely occurred during the treatment (i.e. a slight deviation towards a 

negative slope detected at the end of the curve).

Using Eqs. (A-42) and (A-53), the G-frmctions, g { A t^ ,a ) ,  at a shut-in

t i m e ^  0, and g^ipc^ corresponding to a shut-in time, = 0 are computed

(data are shown in Table C-2C). Following the above computations, an automated 

curve-fit of the fall-off pressure versus the G-function is performed by the computer 

program (see flow chart — Appendix E). The program completes the entire series of 

calculations, regardless o f a best or worse fit obtained at this step. Next, an inspection 

of the cartesian plot. Fig. C-9, of the fall-off pressure versus the G-function, enables
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us to assess if the plot is a straight line or not. In this case the plot also indicates a 

straight line, and thus an application of the pressure derivative (steps 3, 4, and 7, 8) is 

not necessary since the slope and the intercept can be clearly delineated from the 

graph. This is also automatically performed by the computer program, using Eq. 

(4.49). For our case an intercept, 6^ = 3545.5 psi and a slope, =-342.83 psi were 

determined.

A next step is to determine if there is spurt loss using Eq. (4.93) as follows:

S =
P  2(0.28S)

0 .1 5 2 (2 .8 3 2 ^ -2 )

X.01E6 .8 /3

0.925(3545.5 +1.37689 • (-342.83) -  2928.7)

I " —

- i l / 3
- 2 .4565(3545.5-2928.7)

1.07E6
.4/3

0.925(3545.5 +1.37689 • (-342.83) -  2928.?) 

1.07E6
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0.925
1 /3

-3 .3  lE -0 2  ft =  -2 6  g a l/1 0 0  ft^

Again, a negative value of the above, is an indication that the spurt loss could 

not be identified, and thus all computations will be performed based on a no spurt loss 

assumption as follows;

The fracture half-length using Eq. (A-10):

^  8 (0 .9 2 5 X3 5 4 5 .5  -  2928.7)

The fracture compliance using Eq. (A-3):

/  3 ;r(l.07E 6)

The fluid leak-off coefficient from Eq. (A-19):

Q  = - r _ = 3.46 E-02 f t / 4 ^
3(/r(0.288)(V 3jX l.07E6))

The fracture average width from Eq. A-22:
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=  1 2 (5 .3 3 ) (^ ^ -^ X 0 .9 2 5 X -( -3 4 2 )X i.3 7 7 )^ ^  ^3 ^

7u{ \ . 0 1 E 6 )

The fracture fluid efficiency from Eq. (A-29):

The second part of the model consists of solving the main components of Eq.

(4.140), Y{n)  and X { n \  for the fall-off period between the initial shut-in pressure 

and the closure pressure. This again is automatically performed by the computer 

program (Table C-2C), as in the case o f the G-function, followed by an automatic 

curve-fit, and a cartesian plot o f Y{n^ versus X{n^ is produced. Fig. C-10. From 

the best straight line fit, the intercept, 6^  =0.576, and the slope, =2.77E+08. 

Next, the filter-cake resistance and reservoir permeability are computed as follows:

The filter cake-resistance using Eq. (B-13):

=  < 0  :» « X '.0 7 g 6 p .3 X 0 .2 )_  3,s s e ^ 3  
;r(66.6)

And the reservoir permeability from Eq. (B-14):
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=9.431£13|
66.6

= 18.9 md
0.288

6.1.3 Case M3

This is a calibration treatment applied to a gas well at another location and a 

different formation type.

The test was performed by injecting 28350 gallons (675 bbl) o f borate water 

base fracturing fluid (no proppant), at an approximate rate o f  30 bpm (pumping time 

was 22.5 minutes). This is a formation described by a porosity ^  = 43 %, reservoir

fluid viscosity, / /  = 1.4 cp, initial reservoir pressure, p,. = 5500 psi, and the fracture

permeable height, hp = 95, and the fracture total height, Ay = 280 feet. The elastic

properties of the porous medium are known as Young's Modulus, E = 1.1 x 10*̂  psi, 

and Poisson’s ratio, v  = 0.27. Other required parameters are shown in Table C-3 A, 

Appendix C.

Following step one, collection o f  reservoir and fluid properties required as 

input data, a cartesian plot o f pressure versus time. Fig. C-11, was produced (see data 

in Table C-3B), and from it a  pumping time, tp = 22.5 min, and initial shut-in

pressure, ISIP = 6694 psi were determined. It was found that a filtering of the 

pressure time data, as required by step 4 o f the methodology (section 1, chapter 5) 

was necessary. The reason was a data noise that produced an unreliable plot of y ( p )  

versus X (n ) ,  Fig. C-15. From Fig. C-11, the corresponding fall-off period for
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analysis was selected between the initial shut-in pressure and the end o f the pressure 

decline curve. A cartesian plot. Fig. (C-12), of the fall-off pressure versus square root 

o f time (data shown in Table C-3B, Appendix C), indicates that the approximate 

closure pressure (i.e. the corresponding value to the in-situ minimum stress) is =

6388 psi at a closure time, t  ̂= 20.94 minutes. The selection of the closure pressure 

was done based on the profile o f the curve (i.e. second change o f slope) and 

confirmed by a step rate test (data not provided in this work).

A log-log plot. Fig. C-13, o f the injection net pressure versus square root of 

time (data shown in Table C-3B, Appendix C), enables us to determine that a radial 

geometry most likely occurred during the treatment (i.e. a negative slope of the 

curve).

Using Eq. (A-42) and (A-53), the G-fiinctions, at a shut-in

time Af^ #  0, and corresponding to a shut-in time, At^ = 0 are computed

(data are shown in Table C-3C). Following the above computations, an automated 

curve-fit of the fall-off pressure versus the G-function is performed by the computer 

program (see flow chart -  Appendix E). The program completes the entire series of 

calculations, regardless of a best or worse fit obtained at this step. Next, an inspection 

of the cartesian plot. Fig. C-14, o f the fall-off pressure versus the G-function, enables 

us to assess if the plot is a straight line or not. In this case, with the exception of the 

first 3 points, the plot indicates a straight line, and thus an application o f the pressure 

derivative (steps 3, 4, and 7, 8) is not necessary since the slope and the intercept can 

be clearly delineated from the graph. This is also automatically performed by the
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computer program, using Eq. (4.49). For our case an intercept, 6^ = 6964.64 psi and 

a slope, =-227.36 psi were determined.

A next step is to determine if there is spurt loss using Eq. (4.93) as follows:

P 2 (388 )
0.152(2.832£’- 2 )

\A E 6 .8 /3

0.925(6964.64 +1.37689 • (-227.36) -  6388),

1/3
- 2 .4565(6964 .64-6388)

1.07E6
4/3

0.925(6964.64 +1.37689 • (-227.36) -  6388)  ̂

1.LE6

0.925
1/3

► = -7.6E-02 ft = - 59 gal/100 ft^

A negative value o f the above, is an indication that the spurt loss could not be 

identified, and thus all computations will be performed based on a no spurt loss 

assumption as follows:
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The fracture half-length using Eq. (A-10);

, 3 (l.lg6X 3789.8) _  ^
^  8(0.925X6964.64 -  6388)

The fracture compliance using Eq. (A-3):

16(0,925X143)^
/  3;r(l.L£’6)

The fluid leak-off coefficient from Eq. (A-19):

^  8 ( 1 4 3 X - ( ^ X 3 6 ) )  ^3^

3(;r(0.3 8 8 X V ^ X l  • 1^^))

The fracture average width from Eq. A-22:

W =  1 2 ( 5 . 3 3 ) 6 i 2 M M = 7 . 6 E - 0 , m
;r(l.LE6)

The fracture fluid efficiency from Eq. (A-29):
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; , - = , _ ^ 2 Z M L 2 Z Z L = 4 5 . 7 %
(6 9 6 4 .6 4 -6 3 8 8 )

The second part of the model consists of solving the main components of Eq.

(4.140), Y{n)  and X{n^  for the fall-off period between the initial shut-in pressure 

and closure pressure. This again is automatically performed by the computer program 

(Table C-3C), as in the case of the G-fimction, followed by an automatic curve-fit. 

Then a cartesian plot of Y{n)  versus % (») is produced. Fig. C-15. Notice in this 

case the data noise. Fig. C-16, and its direct consequence reflected in Fig. C-15. Thus, 

data filtering becomes necessary. This was performed with a special two dimensional 

curve fitting software (Jandel Scientific). Next, the data were again input into the 

main computer program developed for the computation and analysis o f minifrac tests 

presented in this work. A new plot. Fig. C-17, was obtained which displays a very 

smooth straight line. From the best straight line fit, the intercept, 6 ^  =0.267, and the

slope, =6.66E+08. Next, the filter-cake resistance and reservoir permeability 

were computed as follows:

The filter cake-resistance using Eq. (B-13):

=  < 0 3 8 8 X 1 .^ 6 X 2 2 .5 X 0 .2 ) , ,

;r(l43)
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And the reservoir permeability from Eq. (B-14):

.2
• RAD r \  ̂o t m  ^  ^

lô .ô ô E s j  0.388
-9 .4 3 1 £ 1 3 | I -------- =11.2m d

6.1.4 Case M4

This is a calibration treatment applied to an oil well. The test was performed 

by injecting 21315 gallons (507.5 bbl) o f borate water base fracturing fluid (no 

proppant), at an approximate rate o f  15 bpm (pumping time was 35 minutes). This is 

a formation described by a porosity ^ = 2 3  %, reservoir fluid viscosity, = 1.6 cp,

initial reservoir pressure, p  ̂ = 3685 psi, and the fracture permeable height, hp=\2Q

ft, and the fracture total height, Ay=120 feet. The elastic properties of the porous

medium are known as Young’s Modulus, E  = 5.5 x 10  ̂psi, and Poisson’s ratio, v  = 

0.27. Other required parameters are shown in Table C-4 A, Appendix C.

Following step one (Le. collection of reservoir and fluid properties required as 

input data), a cartesian plot of pressure versus time. Fig. C-18, was produced (see data 

in Table C-4B). Unfortunately the injection part is not available for this case. 

However, the punning time was reported as = 35 min, and the initial shut-in

pressure, ISIP  = 5995 psi. It was found that a filtering of the pressure time data, as 

required by step 4 o f the methodology (section 1, chapter 5) was not necessary since a 

plot o f pressure versus the G-fiinction, Fig. C-20, shows a perfect straight line. From 

the same plot, the corresponding M l-off period for analysis was selected between the
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initial shut-in pressure and the end of the pressure decline curve. A cartesian plot. Fig. 

(C-19), of the fall-off pressure versus square root o f time (data shown in Table C-4B, 

Appendix C), indicates that the approximate closure pressure (i.e. the corresponding 

value to the in-situ minimum stress) is P^= 5225 psi at a closure time, t^= 42

minutes. The selection o f  the closure pressure was done based on the profile of the 

curve (i.e. second change o f slope).

A log-log plot o f the injection net pressure versus square root of time is not 

available due to lack o f pressure time data from the injection part of the test.

Using Eqs. (A-42) and (A-53), the G-flmctions, at a shut-in

t i m e #  0, and corresponding to a shut-in time, = 0 are computed

(data are shown in Table C-4C). Following the above computations, an automated 

curve-fit of the fall-off pressure versus the G-function is performed by the computer 

program (see flow chart — Appendix E). The program completes the entire series of 

calculations, regardless o f a best or worse fit obtained at this step. Next, an inspection 

of the cartesian plot. Fig. C-20, of the fall-off pressure versus the G-function, enables 

us to assess if the plot is a straight line or not. In this case the plot indicates a straight 

line, and thus an application of the pressure derivative (steps 3, 4, and 7, 8) is not 

necessary since the slope and the intercept can be clearly delineated from the graph. 

This is also automatically performed by the computer program, using Eq. (4.49). For 

our case an intercept, 6^ = 6505.83 psi and a slope, =-479.36 psi were 

determined.
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A next step is to determine if there is spurt loss, Eq. (4.93) as follows:

P  2(1.0 )
0 .1 5 2 (2 .8 3 2 £ -2 )

6.0E6 n8 /3

0.925(6505.83 +1.37689 - (-479.36) -  5225)

-,1/3
- 2.4565(6505.83 -  5225)

3.0E6
.4/3

0.925(6505.83 +1.37689 • (-479 .36) -  5225) 

3.0E6

0.925
1/3

►= -l.OlE-02 ft = - 78 gal/100 ft^

A negative value o f the spurt loss is an indication that the spurt loss could not 

be identified, and thus all computations will be performed based on a no spurt loss 

assumption as follows:

The fi-acture half-length using Eq. (A-10):
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^  I 3(6.0£6X2849.4) 
“  '18(0.925X6505.4 -  5225)

The fracture compliance using Eq. (A-4);

16(0.925Yi75) 
c ^ 4.24 E-5 ft/psi

/  37t(6.0F6)

The fluid leak-off coefficient from Eq. (A-19):

8 ( l 7 5 ^ t ^ = j , 0 , E - 0 3 / , / Æ
3(;t(iXa/35)(6.0£-6))

The fracture average width from Eq. A-22:

v ^ r  =  1 2 ( 5 . 3 3 ) M ^ 2 E £ ) M =  3.64 E-0. in
^(6.0F6)

The fracture fluid efficiency from Eq. (A-29):

( 4 7 9 j6 X l .3 7 7 X ,3 , , .^ ,
(6505.4-5225)
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Note that the ratio of the permeable to fractured height, , used in this case,

is one, since the fracture is contained in the permeable area.

The second part o f the model consists of solving the main components of Eq.

(4.140), Y{n)  and X { n \  for the fall-off period between the initial shut-in pressure 

and closure pressure. Again, as mentioned earlier, this step is automatically 

performed by the computer program and the output data are shown in Table C-4C. At 

this stage an automatic curve-fit follows. Next, a cartesian plot of Y{n)  versus 

is produced. Fig. C-21. From the best straight line fit, the intercept, Z>^^=1.89, 

and the slope, = 4.05E+08. Next, the filter-cake resistance and reservoir 

permeability were computed as follows:

The filter cake-resistance using Eq. (B-13):

3.05 E .05 p ./  -  ™ „ // ,
;r(l75)

And the reservoir permeability from Eq. (B-14):

=  9 .431£13(  175 Y  I
------------  - =  17.7 md

U .0 5 £ -8 j  1
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Pressure derivative

To test the reliability o f the pressure derivative model, developed as part o f this 

work, we need to select a case where a plot o f the fall-off pressure versus the G- 

function is a straight line. Another aspect to be considered, for validation purposes, is 

the selection of a data set where pressure time data from a minifrac test were analyzed 

previously. The data set selected and presented here as case M4, is from an oil well. 

In that study, using Nolte’s technique, a leak-off coefficient, C^=1.91 E-03

f t  ( 4 min was found. The results obtained with model presented in this research,

indicate a leak-off coefficient, C^=2.0I E-03 f t  f 4 min , as expected. A next step is

to make use of the pressure derivative model, Eqs. (4.104 — 4.107), and analyze the 

data assuming the pressure versus G-function plot was not a straight line, as shown in 

Fig. C-20, but rather a curve (i.e. Figs. 1.1 b, and 1.2). In such a case, a correct 

delineation of a slope and intercept is impossible, and a simple straight line fit trough 

the curve is unacceptable.

Using Eqs. (4.104 -  4.106), the derivative o f the pressure data with respect to 

time was computed (see data in Table C-4D) and a cartesian plot of F if)

versus F {tY  produced, as shown in Fig. C-22.

Next, a straight line was fit through zero intercept (note that this is a known 

point) and the leak-off coefficient, , was calculated using Eq. (4.105) as follows:
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2.06 E -03/ , / Æ
< r , y r . y  <1)V55

Noticeable is a good agreement between the value o f  the leak-ofif coefficient 

obtained by the use o f  the pressure derivative and the one obtained from the pressure 

versus G-frmction shown in this work earlier.

Also, as a result of post-fracture analysis, the fr»Uowing could be concluded 

regarding the results obtained from the minifrac tests and their interpretation with the 

coupled model presented here:

6.1.5 Case MS

This is a calibration treatment applied to an oil well at another location and a 

different formation type.

The test was performed by injecting 23000 gallons (547.6 bbl) of borate water 

base fracturing fluid (no proppant), at an approximate rate o f 30.4 bpm (pumping 

time was 18 minutes). This is a formation described by a porosity ^ = 4 1  %, reservoir

fluid viscosity, / /  = 1.6 cp, initial reservoir pressure, p , = 4930 psi, and the fracture

permeable height, 130, and the fracture total height, /Zy = 130 feet. The elastic

properties o f the porous medium are known as Y oung’s Modulus, E  = 6.5 x 10  ̂psi, 

and Poisson’s ratio, v  = 0.27. Other required parameters are shown in Table C-5A, 

Appendix C.
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Following step one, collection of reservoir and fluid properties required as 

input data, a cartesian plot of pressure versus time. Fig. C-23, was produced (see data 

in Table C-5B), and from it a pumping time, = 18 min, and initial shut-in pressure,

ISIP = 6040 psi were determined. A cartesian plot. Fig. (C-24), of the fall-off 

pressure versus square root o f time (data shown in Table C-5B, Appendix C), 

indicates that the approximate closure pressure (i.e. the corresponding value to the in- 

situ minimum stress) is P^= 5816 psi at a closure time, t^= 19.26 minutes. The

selection of the closure pressure was done based on the profile o f the curve (i.e. 

second change of slope) and confirmed by a step rate test (data not provided in this 

work).

A log-log plot. Fig. C-25, of the injection net pressure versus square root of 

time (data shown in Table C-3B, Appendix C), enables us to determine that a KGD 

geometry most likely occurred during the treatment (i.e. almost a flat slope of the 

curve).

Using Eq. (A-42) and (A-47), the G-functions, at a shut-in

time 0, and corresponding to a shut-in time, At^ = 0 are computed

(data are shown in Table C-5C). Following the above computations, an automated 

curve-fit o f the fall-off pressure versus the G-function is performed by the computer 

program (see flow chart -  Appendix E). The program completes the entire series of 

calculations, regardless o f a best or worse fit obtained at this step. Next, an inspection 

of the cartesian plot. Fig. C-26, of the fall-off pressure versus the G-fimction, enables 

us to assess if the plot is a straight line or not. In this case the application of the
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pressure derivative (steps 3, 4, and 7, 8) is not necessary since the slope and the 

intercept can be clearly delineated from the graph. This is also automatically 

performed by the computer program, using Eq. (4.49). For our case an intercept, 6^ =

6338.2 psi and a slope, =-207 psi were determined.

A next step is to determine if there is spurt loss using Eq. (4.90) as follows:

2(1.0)
0.3855[(4 .37-H .47837(-0 . 143) - 4)£'7p87.06(0.9)^

1/2

(4.076X4.48£9)[(4.37 -  4)^7
(87.06X0.2S6) 

(39.6X4 .48^ 9X1080)

1/2

[(4.37 + I.47837(- 0. 143) - 4) ^ 7] (0 .9)
>39.37=

= . 0 0 5 9 ^ = 4 .4
100

This time, a positive value of the above is an indication that there is spurt loss 

and thus all computations will be performed based on spurt loss analysis. Using the 

new equations derived in this work, the following can be calculated:

The fracture half-length, as a function of spurt loss, using Eq. (A-12):
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l{lE5]
KGD

[(■30XiX0.0059)F .  ^ - H 6 3 3 8 . 2  -  5^X3074.7) _

;t(i30X0.9X6338.2 -  58 lô)

= 139 ft

The fracture compliance using Eq. (A-3):

c = = 3.02 E-04 ft/psi
/  2(6.5£-5)

The fluid leak-off coefficient from Eq. (A-18):

Cr ---- r ( - l ( - 20?))= 8.21 E-03 ///V m in
^ 4(l)Vl8(6.5E5)

The fracture average width, as a function of spurt loss, from Eq. A-31:

 ̂ = | (139)(130) ~ [̂OX° 0059)3- (lX8.21£ -  03>VÏ8(l.478)]| 12 

= 6.62E-01 in

The fracture fluid efficiency from Eq. (A-36):
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_ .  2 0 7 (1 .4 7 8 )-2(1X0.0059) _  ,
'  3074.7

(139Xi 30X3.02£’- 0 4 )

The second part o f the model consists o f solving the main components o f Eq.

(4.140), V(n) and for the fall-off period between the initial shut-in pressure

and closure pressure. This again is automatically performed by the computer program 

(Table C-5C), as in the case of the G-fimction, followed by an automatic curve-fit. 

Then a cartesian plot o f F(/z) versus is produced. Fig. C-27. From the best

straight line fit, the intercept, 6^ =0.871, and the slope, = 1.33E-K)9. Next, the 

filter-cake resistance and reservoir permeability were computed as follows;

The filter cake-resistance, as a function o f spurt loss, using Eq. (B-23):

P^OD _
^SL ~

Tt
4 .44(1 X6.5£5X18XQ-871)

[; (̂i 3oXo.9X6338.2 -  5816)]

2(6.5g5)[ j[(l30X.X0.0059)F + ^130)0.9(6338^^-58 1 6 ^  _ (,3oXlXo 005,)

= 1.03 E+05 psi -  min /  f t

Finally, the reservoir permeability, as a function o f spurt loss, is given by Eq. (B-24):
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= ( 9  4 3 i £ i 3 / i V o . 8 7 l ) -
SL " \ i

2(6.5£5][j[(l30XlX0-0059)P + 4l30j0.9(633g-|16X3074.7j  _ )(o.oo59)“

7r(l30X0.9X6338.2-58l6)

= 1.03 md

Let us now see the results had no spurt loss been identified. To evaluate this, the 

computation of the above parameters (i.e. fluid and reservoir properties) will be 

repeated for the case of no spurt lose as follows:

The fracture half-length using Eq. (A-9):

^ I 2(6.5£5X3074.7) ~  ^
V;r(l30X0.9X6338.2-58I6)

The fracture compliance using Eq. (A-3):

c 1 3  e-04 ft/psi
/  2(6.5E5)

The fluid leak-off coefficient from Eq. (A-18):

162



Cr ---- r ( - l ( - 207))= 8.51 E-03 f t l 4 ^
^ 4(l)Vl8 (6.5^ 5)

The fracture average width from Eq. (A-2I):

= { (I'^ x t l o )  ■ -  03V Ï8(l.478)]| 12 = 6.86 E-01 in

The fracture fluid efficiency from Eq. (A-28):

(144x 130x 3 . 13^ - 04 )

And from the second part of the coupled model, the filter cake-resistance is obtained 

from Eq. (B-8);

R KGD  4 . 4 4 ( i X 6 . 5 ^ 5 X i 8 X 0 . 8 7 i )

NS n
2(6.5E5) 

;r(l30X.9(6338.2 -  5816X3074.7)

= 9.98 E+04 psi -  min /  f t

The reservoir permeability is given by Eq. (B-9):

K f f  =(9.431£13)|^|j(0.87l). I 2(6.5^ 5X3074.7)
^r(l30X0.9X6338.2 -  5816)

= 1.11 md
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In this case, the identification of spurt loss provides the opportunity for a complete 

evaluation of the final results, when compared with those obtained assuming no spurt 

loss. If the calculations were made based on no spurt loss assumption, the following 

observations could be made for this specific case:

a) The reservoir permeability is overestimated with 7.2 %

b) The fracture half-length is 5 ft longer

c) And the fi-acture width and fluid efficiency are 3.5 % wider, and 10.5 % 

greater than in the case when spurt loss is present

These results are as expected since the spurt loss in this case is not significant (i.e.

gal 
100

only 4 .4 ------ — ). Therefore, if the fluid and reservoir properties were evaluated as if

no spurt loss was present, the errors would not be significant. Another observation 

consists of the fact that the spurt loss found in this case is low. This is in agreement 

with the reservoir type (i.e. low permeability).

Following the analysis and interpretation of all five field cases presented above, 

the following can be concluded:

1. The reservoir permeabilities obtained from cases Ml and M2, are in good 

agreement with each other (i.e. 19.5 md for case Ml and 18.9 md for case 

M2). Note that both cases represent two productive intervals of the same 

well. They were also confirmed by results obtained from subsequent build

up tests performed at a later time following the actual fracturing job and a 

significant production time.

164



2. As far as the third case is concerned (i.e. M3), well tests analysis and history 

matching o f several wells, from that reservoir, indicated permeability values 

between 8 and 12 md. The permeability obtained from the minifrac test with 

the model presented in this study is II .2 md, and is in good agreement with 

the above.

3. For the fourth application, case M4, the permeability could not be confirmed 

from independent tests. However, excellent agreement is shown between the 

results (i.e. leak-off coefficient) obtained from both the pressure and 

pressure derivative models.

4. The analysis o f the last data set, case M5, led to permeability values o f 1.03 

and 1.11 md respectively, (i.e. based on spurt and no spurt loss analysis). 

This was confirmed by results obtained from build up tests and history 

matching analysis which indicated permeabilities from 1 to 4 md for that 

specific reservoir.

5. As stated earlier, parameters obtained from the first part o f the model (i.e 

fracture width and fracture half-length, which in turn are functions of the 

leak-off coefficient), are used in the second part (filter-cake reservoir flow). 

Their validity was indirectly confirmed by a good agreement of the reservoir 

permeability values obtained from both the coupled model presented here 

and from post-fracture tests.

6. A significant advantage of the improved Mayerhofer technique is that it 

differentiates between the filter cake and the reservoir permeability. Note 

that not one case, out o f five presented in this work, developed a negative
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intercept of the diagnostic cartesian plot of Y{n) versus % (»). A negative 

intercept, produced by the application of the original technique introduced 

by Mayerhofer, would imply a negative energy which is unrealistic. 

Comparative diagnostic plots are shown in Appendix C (see Figs. 33-42).

7. Negative values of the spurt loss, lead us to perform analysis based on no 

spurt loss assumption. If the spurt loss can be estimated, as shown in case 

M5, or from a lab test, then the new equations presented here can be 

successfully used for the estimation of more accurate fracture dimensions 

(i.e. fracture width and fracture half-length), and fluid and reservoir 

properties (i.e. leak-off coefficient, fluid efficiency, filter-cake resistance and 

reservoir permeability).

8. Although this coupled model has significant improvements, as opposed to 

its earlier versions*^’̂ ’̂̂ ,̂ there are situations in which the pressure-time data 

set shows relatively considerable noise (i.e. Fig. C-16). If  that is the case, a 

filtering operation of the original pressure-time data is recommended to aid 

the applicability o f the second part of the model. This can be done by 

various methods. In this work, the data were filtered making use o f a 2-D 

commercial filtering and curve-fitting software (Jandel Scientific). The 

results presented in Fig. C-I7, clearly show the benefits of these data 

processing, which are reflected by the reservoir permeability value obtained 

in this specific case.

9. The new pressure derivative equation, proved to be a reasonable alternate of 

the current pressure decline analysis, where a plot of the pressure versus the
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G-fùnction is a curve instead o f a straight line. For a better evaluation o f the 

applicability o f the pressure derivative equation, analysis were performed for 

all five filed cases. Cartesian plots o f the pressure derivative equation (i.e.

P '( t) -F ( t)  versus F { f f )  are shown in Appendix C (see Figs. C-28

through C-32) as well as the computations of the leak-off coefficient, .

Additionally, the final results obtained from both pressure and pressure 

derivative analysis is shown in Table-5G. Inspection of these results indicate 

that they are in good agreement, with the exception o f the first two field 

applications (i.e. cases MI and M2). This due to non-linearity generated by 

the first few points of the fall off pressure data, following the initial shut-in 

pressure.

10. Consideration of the ratio of the permeable fracture area to the total fracture 

area is also essential. Nolte included this in his original derivations, but the 

later developed model, based on Nolte-Shlyapobersky’s technique, did not. 

This parameter can affect results considerably (i.e. more than 50%) if the 

permeable fi-acture height and the fracture height are not the same (i.e. 

unconfined fracture).

11. The same is true regarding the ratio o f the spatial to wellbore average 

pressure ratio. This was also part o f the original Nolte’s derivations with 

consideration for the elastic properties of the formation (i.e. fracture 

compliance). However, for reasons presented earlier in this research, some 

authors believe it has a value o f one as soon as the fracture ceases to
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propagate. This assumption is not realistic since the leak-ofT continues to 

take place after shut-in and until the fracture closes. Consequently, this was 

incorporated into the equations derived for the coupled model presented in 

this work, to ensure a more realistic and accurate interpretation of the 

pressure decline analysis obtained from a minifrac test. Non-Newtonian 

aspects is also incorporated via this ratio (see Eqs. (A-5, A-6, and A-7)). 

Also modified relationships, for the estimation o f the average fracture width 

during the propagation, were derived in this work (Eqs. (4.73, 4.74, and 

4.77)) as a function of the equivalent Newtonian fracturing fluid viscosity. 

They are valid only for the fracture propagation (i.e. during injection).

12. Finally, the improved model derived for the filter-cake reservoir flow part, 

proves to be more accurate than its earlier versions. One of the most 

significant achievements of this improvement, consists of a correct 

separation between the effects of the pressure drop across the filter-cake (i.e. 

the filter cake resistance) and the pressure drop across the reservoir, thus 

enabling us to obtain reasonable values of the reservoir permeability.

6.2 Sensitivity Analysis

In addition to the decline data smoothing procedure described above, sensitivity 

analysis was applied to investigate the impact of the uncertainty of the input reservoir 

and treatment parameters. Accurate formation parameters are critical weather 

designing a stimulation or analyzing a calibration treatment. Shown in this research, 

are a few representative plots. Figs. D-1 -  D-8, for Case M l. The Poisson’s ratio, U
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and Young’s Modulus, E, affect the estimation o f the fracture extension, x^as shown

in Figs. D-1, and D2. For example, if Young’s Modulus is chosen to be E = I.OE+6 

psi, the fracture extension is approximately 66 ft, while for E = 5E+06 psi, the 

fracture half length increases to about 100 ft. It was found that Young’s Modulus is

critical for the estimation of the leak-off coefficient, , not only because it affects

directly the interpretation of the slope, but also because it has a secondary effect via 

the fi-acture extent. (Fig. D-3) and even a tertiary effect via the Vp ratio. Similarly, the 

estimate of the reservoir permeability, k, is also very sensitive to the elasticity 

modulus (Fig. 0-4.)

Figures D5-6 show sensitivities of the estimated parameters with respect to other 

input variables. It was also observed, that the reservoir initial pressure. Fig. D-7, 

formation fluid viscosity. Fig. D-8, porosity, and closure pressure are as critical as 

any other parameter in the model. While the sensitivity analysis results shown here is 

valid for one particular field case, similar trends were found in the other cases.
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CHAPTER?

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

This research was undertaken to address the study of minifrac tests for the 

determination of fluid and reservoir properties. The main objective of the minifrac is 

to determine the above mentioned hydraulic fracturing parameters necessary for the 

design of an effective fracture stimulation. Therefore a fracture calibration, also 

known as a minifrac test, is used to help optimize the hydraulic fracture treatment 

design, since it provides critical information pertaining to the well to be treated.

The potential niche for the application and interpretation of such test consists in 

the determination of fluid leak-off characteristics, (i.e. leak-off coefficient, spurt loss, 

fracturing fluid efficiency, and filter cake-resistance) , fracture dimensions (i.e. 

average fracture width and fracture half-length), and also a very valuable parameter, 

the reservoir permeability.

To overcome significant operational and economic constraints, generated by 

conventional well testing, the fracture calibration is used to achieve robust application 

with a minimal amount o f incremental cost or operational delay time. In essence, it is 

remarkable the fact that such a test does not require special equipment beyond that 

generally available on a drilling rig, or pumping operation and testing requirements of 

less then three to five hours. Not only that the conventional tests require considerable 

length of time, but short time tests such as a drill-steam or impulse test, often provide 

only small range (local estimates) of the formation properties, which in addition may
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very well be contaminated by local formation damage effects. One key parameter, the 

reservoir permeability, is expected to be more reliable when determined from a the 

fall-off analysis o f a minifrac test, since the fracture breaks the barriers formed by the 

near wellbore damage, and the area of investigation is obviously greater than just the 

borehole area itself.

Based on the results of this research, the following conclusions are offered;

I. An improved coupled model for the determination of fluid and reservoir 

properties from minifrac tests was developed. The model has two main 

components in its structure: (1) the pressure decline analysis based on Nolte- 

Shlyapobersky technique^’” ’*'*’̂ ,̂ and (2) the filter-cake reservoir flow (transient 

flow analysis) based on Mayerhofer's technique*^’̂ ®’̂ .̂ The improved model 

correctly delineates the separation o f the filter-cake component from the reservoir 

transient flow, and consequently reliable values o f the filter-cake resistance and 

reservoir permeability are obtained. Not a single case, out o f the five field 

minifrac tests presented in this work and analyzed by the improved model, show a 

negative intercept which would lead to erroneous values of the above two 

parameters (i.e. as is the case when using earlier versions for such analysis).

2. Spurt loss analysis is introduced in this research. New equations were developed 

for the determination of the fluid and reservoir properties from minifrac tests, 

when the spurt loss can be identified.

3. A new pressure derivative equation was developed. This can be used to correctly 

delineate the slope of a straight line from a plot of the pressure derivative versus a 

function of the shut-in time. From this slope, the leak-off coefficient can be
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determined and once this is known the rest of the fluid and reservoir properties 

can be calculated from the pressure equation.

4. Sensitivity analysis was performed to asses the most sensitive parameters and 

how they can affect the final interpretation of the minifrac test when using this 

coupled model.

5. Five field cases were used to demonstrate that the coupled model presented in this 

research is a versatile and simple tool, which can be used for the determination of 

fluid and reservoir properties from minifrac tests.

7.2 Recommendations

Following a review of the published technical papers and also work in the area of 

fracture calibration treatments, the following recommendations for future research 

are made:

A. Research and extend the interpretation of fall-off analysis based on Biot’s 

approach to the 2-D problem o f fracture propagation based on Lagrangian 

methods. The Lagrangian formulation is based on the classical form of 

Lagrange’s equations, Eqs. (2.27-2.30). In essence, he produced a basic equation 

that expresses the balance between work expanded and work done in propagating 

a 2-D crack. Existing theories, assume linear elastic behavior of the reservoir and 

ignores surface energy considerations at the crack tip and plastic deformation 

effects. Leak-off is treated as an independent process and merged with the 

fracture propagation problem by iterative methods. The Lagrangian method, is 

not restricted to elastic behavior, and leak-off can be included as a part o f the
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formulation. Therefore Biot includes leak-off by assuming a piston like 

displacement of the reservoir fluid by an incompressible fracture fluid filtrate, 

with a moving boundary between the two. continued Biot’s work, and

incorporated Biot’s energy balance equation into the pressure decline analysis, 

Eq. (2.33).

He solved Eq. (2.23) numerically for a KGD geometry and incorporated the 

correct rheology of the fracturing fluid used to create the minifrac. However his 

solution as well as Biot’s, assumes that the surface energy, E , can be neglected. On 

the other hand, the method should be extended for the other two geometries as well 

(i.e. PKN and Radial). Consequently two essentials steps need to be taken for the 

continuation of their work:

1. consideration of the crack shape function, / { L d ) of Eq. (2.23) and also of a 

corresponding definition of the fracture width. As far as the crack shape is 

concerned, the preceding analysis assumed that this was given. However this is 

not a prerequisite of the Lagrangian formulation^^. The crack shape can be 

determined by methods based on various assumptions, and for strict analysis 

Barrenblatt^^ conditions at the tip must be considered. He showed that to avoid 

infinite stress at the tip o f the fracture, the fluid flow can not extent all the way to 

the tip. The exact shape of the crack at the tip and over the rest of its length is 

determined by the fluid pressure distribution*^.

2. Regarding the PBCN model, the fracture width has an elliptical shape on a vertical 

direction. Fig. 3.6, and can be written as^ :̂
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w (x ,^ ,t)=  w { x , 0 , t ^ - ^ y ^ ..................................................................................(7.1)

where;

w{x,^,t)  is the fracture width at any position, ^ , ^ =  z f  and H'(x,0,^) is the

maximum fracture width at the centerline at any X  position. Further, this width can be 

expressed as a function o f the fracture opening pressure as follows:

.......................................................................................................... (7 2 )

where is a width opening pressure coefficient, u is Poisson’s ratio, G  the stress 

modulus, and the net pressure^^.

3. For the radial geometry, this can be approximated with a parabolic shape, in 

which case the fracture width is given as follows:

w (r ,t )=  w(0,rXl -   (7.3)

where the gamma coefficient varies from Vz (i.e. low fluid efficiency) to I (for high 

fluid efficiency)^^.

4. Regarding the neglected surface energy term, o f Eq. (7.1), Griffith”  showed 

an equation for the stability o f the fracture using the energy balance, Eq. (3.3). 

From this equation, the surface energy is:

.................................................................................................................................

where:
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f/y- = surface energy of the fracture (noted E  in Eq. (2.23))

h f  = thickness of the elastic material (fracture half-length in our case)

Y = specific surface energy o f the elastic material

The only unknown in Eq. (7.4) is the surface energy of the elastic material. 

This can be estimated approximately from the elastic constants or from the specific 

energy of evaporation. Experimental determinations o f y  have been made by

measuring the force needed for propagating a crack o f known dimensions and then 

applying Griffith energy argument. For cases not complicated by local plastic 

deformations (which of interest to us since we consider the reservoir an elastic 

medium), or by multiple fracturing at the crack tip (therefore not applicable in the 

case o f  naturally fractured reservoirs), the experimentally derived values o f y  agree 

reasonably well with theoretical predicted values, thus lending support to Griffith’s 

theory. Typical values for;^ of the order o f 10 Jm'^ have been reported for ceramics 

and rocks.

Therefore, knowing y  and following substitution of Eq. (7.4) in Eq. (2.23), 

Biot’s energy equation for the KGD geometry becomes;

A O .(7.5)
y

And from a numerical solution o f the above equation, a more accurate fracture half- 

length can be determined. A similar procedure needs to be employed for the other 

geometry types (i.e. PKN and Radial).
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B. Extend the pressure decline analysis between the shut-in and closure pressure, to 

the after-closure period. The latest published works known are by Valko'^ and 

Nolte*’̂ *. Nolte provides a technical framework for adding after-closure 

fracturing-pressure analysis to the pre-treatment calibration-testing sequence that 

defines fracture geometry and fluid-loss characteristics. A companion paper* 

provides the general framework for applying this analysis and for its integration 

with the other parts o f the testing sequence. In his work, he shows that the after

closure period contains the reservoir pseudo-linear flow period that is the focus, 

and the pseudo-radial flow period that has been previously addressed in a 

comprehensive marmer. Radial flow defines the reservoir parameters. The 

primary roles for linear-flow are to define spurt loss, after a calibration 

(“minifrac”) treatment, and to use the reservoir’s perspective o f the fracture 

length to validate information available from other parts of the calibration 

sequence. His work shows a valuable approach based on Carslaw and Jaeger^* 

formulation of heat conduction through a solid medium. The critical aspects with 

the methodology presented in Nolte’s work* is non-uniqueness when trying to 

identify the correct slope for both the linear and the radial flow regime, and an 

empirically determined spurt loss coefficient. Valko^\ claims that once the leak- 

off from the fracture into the reservoir stops, the fracture “remembers” the actual 

geometric distribution of the leak-off history less and less. Therefore the 

wellbore pressure can be calculated assuming an equivalent radius and applying 

the radial leak-off law. He solves this in a Laplace space with the convolution
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method. However, the work does not present a rigorous procedure to the problem 

of interpreting a calibration treatment in terms of radial leak-off.

C. Introduce the effects of the reservoir temperature on the analysis and 

interpretation of a minifrac test where incompressible fracturing fluids are used 

for injection. Zhu Ding^^ presented a comprehensive model to simulate pressure 

and temperature behavior and their interference in a minifrac test for the case 

when foams or other compressible fluids are injected during the test.
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Nomenclature

CL = exponent of fracture area growth, dimensionless
q̂ pp = apparent leak-off rate, ft^ I min
A^(0 = total pressure drop in the reservoir, psi

= a function similar to Nolte’s G-function, developed by

g K )  = g(^D=o)
a  g = Biot’s constant, I > a  > 0
P q = Biot’s shape constant
P q = Nolte’s ratio of average spatial pressure to wellbore average net

presure, p si  
Pf, = breakdown pressure, psi
C = cohesion modulus (material constant)
Cj- = compliance, p si!  f t
Sfj = compressive stress applied at infinity, psi
Œp = constant, 141.2, (oil field units)
a , = constant, 264x10'^ (oil field units)

Cg = corrected value of the leak-off coefficient, f t !  f  min
K = correction factor for C  while pumping, dimensionless
f C = critical toughness, psi
Lp = dimensionless distance along the fracture
f i^ o ) ~ dimensionless loss rate ratio
g ito )  — dimensionless loss volume function
Zg = dimensionless shut-in time
w(x) = displacement in the direction perpendicular to the fracture, in
D  = dissipation function
R = filter-cake resistance, p si -  min/ f t
Pf = fluid pressure in the fracture, psi
Q, = forces not derived from a dissipation function
Q, = forces not derived from a potential function, Ibf
qi = fraction of <7, =  <?„, contributing to leak-off only
Aj = fracture area, ft^
s = fracture face skin

= fracture half width, at the end of fracture entrance, in
Pfp = fracture propagation pressure, psi
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bg = fracture width as a function of x  and t , used by Biot, in
= general coordinates for the system 

a, A = general variable for the area

/^[l /  2;1 +  or; (1 +  )  ̂] = hypergeometric function
to = injection time, min

intercept, Nolte-Shlyapobersky model 
kinetic energy o f the system, f t  -Ibf
Lagrange’s function given by difference between kinetic and potential 
leak-off rate during closing, ft^ /  min 
leak-off velocity. Carter’s model, ftlvam . 
maximum in-situ stress, psi 
minimum in-situ stress, psi  
normal vertical stress, psi  

normalized filter-cake resistance, dimensionless 
open fisure area, ft^ 

permeable or loss area, ft^

permeable or loss rate, ft^
Poisson’s ratio
Potential energy of the system, f t  • Ibf 
= pressure drop across the filter-cake, p si
= pressure drop across the polymer invaded zone, psi
= pressure drop in the reservoir, p si
ratio o f average to wellbore net pressure, dimensionless 
ratio o f permeable are to the fracture area, dimensionless 
separation energy o f the system, f t  ■ Ibf 
slope, Nolte-Shlyapobersky model

specific surface energy o f the elastic medium, Ibf ! ft^  
spurt loss coefficient 
strain energy o f the fi-acture, f t  • Ibf 
stress intensity factor 
surface energy at the fi-acture face, f t  • Ib f
tensile failure stress of the rock, psi 
thickness o f the elastic material, in 
time to create the fracture area, min

E , = 
L

F̂n = 

^mh, =

^ d ( 0  = 

^pAk =

4  =
u =
Ep =

^faceiO

f  =
f p  
E  
m

y
Et
w.r
K
U f

h .
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=

p . =

n =
V =

=
Hr =

/ ( ^ o ) =
n
=

bfj —

Cl =
Ct =

E -

E' =

bf =
hp -

kr -

ttlM =
niM =
n =
n' =
«e =
Pc =
Pr =

qn =

Pf =
Ro =
'> =

‘S'p =
t —

viscosity degradation coefficient (<2, =1, linear viscosity; ûr, =0,
volume o f fracture from entrance to Lj- (i.e. x^)
wellbore pressure at shut-in, psi
fluid efficiency, dimensionless 
Poisson ratio, dimensionless 
porosity, dimensionless 
viscosity of reservoir fluid, cp
fracture half length, f t
fracture shape function

leak o f rate during pumping, ft^ /  min
intercept. Improved Mayerhofer’s technique 
intercept, Nolte-Shlyapobersky method
Carter leakofFcoefficient, f t  /  Vmin 
total reservoir compressibility, 1/ p si  
dimensionless 
Young’s Modulus, p si
plane strain modulus, p s i ,  £'=E/(l-v^)
energy o f the system
fracture height, f t
permeable height, f t
injection rate per one wing, gal /  min
reservoir permeability, m d
Meyer’*
slope, Mayerhofer et al. method
slope, Nolte method
index o f time step
generalized flow behavior index,
number o f time steps during pumping
closure pressure, p si
reservoir pressure, psi
leakoff rate from one wing through two faces, ft^ /  min 
radius o f a radial fracture, f t
reference filter-cake resistance at the end of pumping, psi — vcàn! f t  
ratio o f permeable to fracture area
fracture stiffness (proportionality constant in the pressure vs. width 
relationship p s i  /  f t
spurt loss coefficient, f f  ! ft^  
time, m in
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/p. tm — time at end of pumping, min
tn = time at (end of) step n, min

uniform viscosity)
F volume of one fracture wing, gal
Fi volume of injected fluid into I wing, gal
PFp, W = average fracture width at end of pumping, in

W l  = leak-off width, in
average fracture width at time step n, in

X p fracture half length at end of pumping, f t
X f fracture half length, f t
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Modeling Equations (Pressure Decline Analysis)

Pressure variation during the shut-in period:

PJI = Pc +
J ' /

x g ( A t o ,a )  =

................................................................................... (A-1)

Fracture compliance, Ĉ - corresponding to each fracture geometryJO .

^  P  PK N

'fP K N 1 É
(A-2)

for the PKN geometry, where is the fracture height.

'  fK G D

_  ^  P kgd

I E
(A-3)

for the KGD geometry with as the fracture half-length.

ffAM£>(32/3;r=>?
'fP A D

f

IE
(A-4)

for the radial geometry, where R -̂ is the fracture half-length

The ratios of the average net pressure in the fracture to the wellbore 

flowing pressure, for each fracture geometry, are given as follows:
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P npkn — (2 ^ ' +  2 )/(2 rt' +  3 +  ÛT,)......................................................................... (A-5)

for the PKN geometry,

P n k q d  = 0 - 9 ..............................................................................................................................................................................................( A - 6 )

for the KGD geometry, and

P n r a d  ~   (A-7)

for the radial geometry, where n is the fluid rheology index, and an exponent 

which is a function o f the fluid viscosity behavior (i.e. a^=0 for the case o f uniform 

viscosity, and <7^=1 represents linearly decreasing viscosity from the wellbore to the 

tip of the fracture).

Fracture half-length from the intercept, , o f Eq. (A-l):

L-1 No spurt loss case^ ’̂

PKN geometry

- P c ) .....................................................................................................■

KGD geometry

..........................................................................................
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RADIAL geometry

.(A -10)

L-1 Spurt loss case

PKN geometry

KGD Geometry

2 E ’
K̂GD
f̂SL

-  P ^ ,  - h .r^ S ,

.(A-I2)

Radial geometry

n R A D  _
/̂SL ~

^ (3v4V4B" + 27v4"cV 3C - 2B^ -  27y4"c)
3/1V2

4 -

_________________________   A .

3A( ^Ay/ 4B^ +  27 A ^ C ^ - 2 B ^  -  27
.(A-13)

where;
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A = -  P )̂........................................................................................ (A-14)

B =  6 7 T ^ S r E ' ....................................................................................................... (A-15)

C =  —3V-7T E ' ..........................................................................................................(A-16)

Leak-off coefficient from the slope, . o f  Eq. (A-l):

The leak-off coefficient, can be computed from Eq. (A-l) as follows:

PKN geometry

^  ~~A [7 ~V' ) ...........................................................................................................

KGD geometry

7J-C f r \
^  ~  X I7~u< / ................................................................................................^

RADIAL geometry

........................................................................................................

Fracture average width, M>, andfluid efficiency, T ], as a function of both the slope, 
m^, and the intercept, 6^ , ofEq. (A-l):
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E -l No spurt case

From Eqs. (4.46, and 4.47) the average fracture width is given by the 

difference between the maximum fracture width and the leak-off width, as follows:

PKN geometry:

= - ^ - 2 r , C , ^ g , ( 4 / 5 ) .............................................................. (A-20)

KGD geometry:

VS -  KGD, 2 /*^Q .yr^g-(,(2/3)..............................................................(A-21)
^jNs

Radial geometry:

- 2 r C , J t , g M I 9 ) .......................................................... (A-22)'N S
7U

2A*pQ,yr^g-(,(8/9).

where the leak-off width is:

w ™  = 2 / - , Q ^ g „ ( 4 / 5 ) ................................................................................. (A-23)
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= 2 r ^ Q V ^ g o (2 /3 ) ................................................................................. (A-24)

= 2 r ^ C , ^ g „ { S / 9 ) .................................................................................. (A-25)

The fluid efficiency is given by the ration between the volume of the fracture 

created and the volume of fluid injected:

V =   (A-26)

Dividing Eqs. (A-20: A-22) by the fracture compliance, Cy, and combining with Eqs. 

(A-l) and (A-26), it follows that for the:

PKN geometry

K, 2 r ^ C , ^ g , { 4 / 5 )

^ ^  = 1 +  (A-27)

h c h c■̂JNS -̂ JNS /

KGD geometry

K  2 ^ ,Q V ^ g o ( 2 /3 )  

nS° = — — iL----------- .  1 + '” v f g . ( 2 / 3 ) ..................(A-28)

-^JNS /  f i t s  ' V  /
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Radial geometry

V,

^  i , » » r g o ( 8 / 9 )
A/5~ y  —1+ y.  (A-29)

where from Eq. (A-l):

^  \PKN
h cĴNS '^T /

=  6^^ — from Eq. (A-l) and

^  \K G D

■̂ fNS 'V  /
=  6 ; : '" - ; 7 , , a n d

E-2 Spurt loss case

From Eqs. (4.46, and 4.47) the average fracture width is given by the 

difference between the maximum fracture width and the sum o f spurt width and leak

off width, as follows:
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PKN geometry: 

V.
W ir   2\r^S ̂  +  r ^ C ^ ^ p g ^ ) ....................................................... (A-30)tttPKN

KGD geometry: 

K
=-nz:nr- 2 [ r p S p + r p C - i^ ^ g ^ ( a ) ] .................................................. (A-31)77j K G D _____

SL K G D
■̂SL

Radial geometry:

-2[r^S„ + r ^ C ^ ^ g „ { a ) ..............................................(A-32)
^ { R ^ y

where the spurt width is:

.............................................................................................................. (A-3 3)

and the leak-off width is given by Eqs. (A-23: A-25).

The fluid efficiency is given by the ration between the volume of the fracture 

created and the volume of fluid injected:

K .
=  ....................................................................................................................... (A-34)

^  i

Dividing Eqs. (A-30; A-32) by the fracture compliance, and combining with Eqs. 

(A-l) and (A-34), it follows that for the;
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PKN geometry

n T '
x ™ A  c■̂SL / Y

K
Y =  1 + Y

K
X^^/2 c  ■̂SL ' y  /■

KGD Geometry

(A-3S)

V, 2 r Y . V ^ g . ( 4 / 5 )

_ -̂ SL f^ f Y Y
K

=  1 +

■̂SL '̂ Y /

mr g » ( 2 / 3 ) -
2r_S

P P

Y
K

•̂ SL '̂ Y /

Radial geometry

V, 2 r f i ^ ^ g , ( S / 9 )  2r^S,

.R A D K
ISL —

Y Y
K

Y

(A-36)
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1 +

m RAD
SL

'/■ (A-37)

Where for the PKN and KGD geometries: /  Ay (or =  1 if the fracture is

contained in the permeable layer) and for the RADIAL geometry

r h.
1 -

V I R f  J

0.5

+  ^ rc ’sin-
h.

2 R f
.(A-38)

(or =  1 if the fracture is contained in the permeable layer.)

G-function solution and approximations:

A) The following program, written in Mathematica language, was used to solve the 

G-frmction", Eq. (4.33):

(^Program GFUNCTION *)
Hl=SimpIify[-Integrate[l/Sqrt[tD-tauD|,{tD,I+dtD,tauD}lI/.tauD

->AD^(l/alpha)
BQ=Integrate[H 1, {AD,0,1} ]
G[x_,y_I :=H2A {dtD->x,aIpha->y}
G0[yj:=g[0,yl

Where:

I (  I+A/ dtr
d A a (A-39)
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2  (A-40)

l+A/
^ 1 -  \  j ^  (A-41)

and the following solutions were found;

...........................................................................................................

for a dimensionless time (i.e. ratio of shut-in to injection time) = 0, and

r[i + a]
4 a ^ A t^  +  2Vl + AfpX [ ^  

g ( A r „ t . )  = ----------------------------------------

1 2(2-3

1 -f- 2 a

.......................................................... (A-43)

for a dimensionless time (i.e. ratio of shut-in to injection time) Af^ ^  0.

Note that Eq. (A-48), given by Valko and Economides*^ is identical with Eq. 

(4.31) based on the special properties of the Gamma function.

The G-function values at a zero dimensionless shut-in time (i.e. A /^=  0) ,

used in the above equations are computed with Gamma function for each geometry 

as follows:
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PKN geometry

go
5

V-

■ * < § «
= 1.41495

KGD geometry

2 #  2 
3

r 2
3

1 +  2 r
v j y y

2^

L v j y j

= 1.47837

RADIAL geometry 

# 8

go
J

2 
9

-i2

j 8̂̂1 +  2 r 2
V .9; /

^  = 1.37689

B) For a dimensionless time (i.e. ratio of shut-in to injection time) = 0, using

the definition of the Euler Gamma fimction^^, and the Mathematica package, 

approximate computational values for the G-fiinction are given as follows;

For a dimensionless time (i.e. ratio o f shut-in to injection time) At^ = 0
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g i^ ia )  =  1.9+1.96458a +0.5141989a^+0.0286518a^...................................(A-44)

and

gM (<%) =0.95+1.565315 a  +0.7015294a^  +0.087314215 «^ +

1.42022x10'^ (A-45)

where:

.(A-46)

and for a dimensionless time (i.e. ratio o f shut-in to injection time) ^  0:

gu

g^f

r
^D->~ 

\ _____

^D->~

(A-47)

for the PKN geometry, where:

g u = 1.3442025+75.441875 d  +600.83415 +1228.4165 d^ +

725.0305 +89.360515  (A-48)

g/^
(  4 ^

A f g , -  = 0.9+52.11073 r/^+363.9545ûf^+513.3249i/'‘+159.35395r/^ +
V

6.1667255 ...............................................................................(A-49)
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V  ̂J

' “ - ÎV j y

.(A-50)

for the KGD geometry, where:

S n
^ 2 ^

A / „ , -  = 1.4044325+77.8472775^/+603.5863£/^+1 188.9535 c/^ +
V 3 j

681.8245 6/" 4-82.50085  (A-51)

r

and

V -jy
= 0.95+51.572175 d  +353 .78+486 .7553 +148.22945 d"̂  +

5 .6 6 1 5 7 2 5 - 0 .0 6 6 2 0 5 9 7 5 ...................................................(A-52)

g
gN

y .(A-53)

for the RADIAL geometry, where:

gN A r ^ ,-  
V ^y

= 1.3080455+73.9673 8 d  +598.728 +1251.492 d^ +

751.1656/"^+93.5272156^^...........................................................(A-54)

r
ghA

8
= 0.95+52.432875 d  +370.06015 d^ +529.359 d^ +166.1455 d^  + 

6.477866/^ -0.0767901156/^ ....................................................... (A-55)
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Modeling Equations (Filter-cake — Reservoir Flow Leak-Off Transient Analysis)

The following main formulas are incorporated into a computer program (see 

chapter 5 o f  this work).

In essence here we have both cases (I) no spurt loss and (2) spurt loss.

B-I No spurt loss

If no spurt loss is identified (see section 4.5), then the following equations are used: 

PKN geometry

Eq. (4.134) can be written as follows:

......................................................................... (B-i)

where the independent variable is:

....................................................................................(B-2)
P n -l -  Pn

A combination of Eqs. (2.17), (2.20), and (4.137), yields the filter-cake resistance:

4-F 'r t
n P K N  _ 2 ~ _ y P _ 2n' +  3 +  

2n' + 2 6 % .................................................................... (B-3)AT AS

Combining Eqs. (4.138), (4.139) and (A-2) gives the reservoir permeability:
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4 h

m
r

PKN
•(B-4)

^NS

and the independent variable;

=
2n'-h2

f ^ 'O
1/2

Pn^+l Pn^+2

_ 2 E p n '  + 3 + a,) t  — t'■n ‘ n̂ +1 y

1/2

y=/ij+3 A/

.1/2

0?„-I
2 n

-(B-5)

A’GD geometry 

Eq. (4.134) can be written as follows:

where the dependent variable is:

.(B-6)

P n -  P i (B-7)
P n-l -  Pn yj^p^n

A combination of Eqs. (2.18), (2.21), (4.137) and (A-9), yields the filter-cake 

resistance:
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nK G D  _  
NS

4.44£-V .r.  ( )
1/2

P P

K
.K G D
"l^NS (B-8)

Combining Eqs. (4.138), (4.139), (A-3), and (A-9), yields the reservoir permeability:

NS

l E ’V. \

' P Ï  ~P c]^

and the independent variable:

E

. 1/2
Pn.^l -  Pn,^2

f  iPj-i-P,) iPj-2-Pj-X, ,  -,
2 :  —

1/2

J=rij+3 At.

{ P n - l - P n ^ p f l
At_3/2 n

B-I Radial geometry

Eq. (4.134) can be written as follows:

(B-9)

(B-10)

where the dependent variable is:

209



iÆ4d p „ -  Pi Ar„

P n-l -  Pn
(B-12)

A combination of Eqs. (2.19), (2.22), (4.137), and (A-10) yields the filter-cake 

resistance:

4E'r t ^ĵ RAD
N S K

1/3

Mus

Combining Eqs. (4.138), (4.139), (A-4), and (A-10), yields the reservoir permeability:

,R A D
NS

3 E 'K
. 2 / 3

(B-14)

and the independent variable:

^ ( « ) T = § r
A

{̂ n +

^  ( P y - I - P y )  { P j - 2 - P j - X ^  . ,
2 ,  — :::----------------- ----------- iSn-^j- i)

1/2

J=n̂ +3 Ar.

RAD
NS

n R A D
^jNS

A c3 /2  n

(B-15)
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B U S purt loss

If spurt loss is identified (see section 4.5), then the following equations are used:

PKN geometry

Y { n f ^  = 6 ^  +/M PKN
Msl'

where the dependent variable is:

'KN
SL

P n -l -  P n  ^ |tp K
............................................................................. (B-I7)

A combination of Eqs. (2.17), (2.20), and (4.137), yields the filter-cake resistance:

n P K N  _ 2n'  +  3 + <3j 

2/7'+ 2
’PKN .(B-18)

Combining Eqs. (4.138), (4.139) and (A-2) gives the reservoir permeability:

j^P K N
SL

hf
m PKN

^SL
.(B-19)

From Eq. (4.134):

2 /7 '-h 2
2 E '(2 /7 '-h3  4 - a J

-I r  \ 1/2 r /
V F Mr <

- A

P n ,* l -  Pn,+2 

K  -  J
kn +
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2 .  ------    -  fy-t )
1/2

y=nj+3 A r Ar_i

(P n -l  - P r , y p t .
3 /2  

p-n
Ar

+

.(B-20)

B-I KGD geometry

K » ) r = * r .....................................................(b-2df̂ SL

where the dependent variable is:

.(B-22)
-  p„

A combination of Eqs. (2.18), (2.21), (4.137) and (A-12), yields the filter-cake 

resistance:

x)KGD _  4.44£"
^ S L ------------------

ar -- )
7t

2E' -  A / / - / ,

.(B-23)

Combining Eqs. (4.138), (4.139), (A-3), and (A-12), yields the reservoir permeability:
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Gives the reservoir permeability:

2E' ((v a )"+ -  kY. -  v a
- p . )

KGD

V

\ 2

.(B-24)

and the independent variable:

x { n f r ~ M
r

£ r _
/  \

Pn,^\ -
t —t V ” y

(f,-, -- f/ ) iPj-2-Pj-X. X 
/If, /lf,_, "

22
y=«j+3 Af

1/2

KGD
/̂SL (P«-l

Af_3 / 2  n

+

B~I Radial geometry

(B-25)

+  (B-26)
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where the dependent variable is:

r(n )r = P n - P i .(B-27)
P n-l -  Pn

A combination of Eqs. (2.19), (2.22), (4.137), and (A-I3), yields the filter-cake

resistance:

n R A D  __

^SL -
p p

K
+  D .

a
(B-28)

1 /

Combining Eqs. (4.138), (4.139) and (A-4) gives the reservoir permeability:

SL

- i 2

(B-29)

and the independent variable:

Mr ^ Pn,*l -  Pn,̂ 2 ^ 
t — t\  n nj+1 J

f. G’y-.-Py) {Pj-2-Pj-X, . s 1/2

J=ns+3

t̂ RAD

'y-i

w NS
nR A D
f̂SL { P n - l - P n ^ f n

3 /2

.(B-30)
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where:

D, =  6 A ^ A ^ [A B ^ + 1 1 A ^ C ^ C  -  2B^ -  2 7 / 4 " c f ................................ (B-31)

=  2V 2 B" -  2 B ^ A -4 (aB^ +  l lA ^ C ^ C  -  2B^ -  2 7 / î " c | ' ' ............. (B-32)

and

D 3 =  V ? { 3 / îV ( 4 5 ' +  27y4"c)3C  -  2 5 "  -  2 7 / l " c ] f ............................. (B-33)

Parameters X, 5 ,  and C are shown in Appendix A, Eqs. (A-14), (A-15), and (A- 

16).
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Applications-Input and Output Data

Table C-IA - Input parameters - case Ml

Parameter Description Units Value
(f> Reservoir porosity fraction 0.2

reserve total compressibility I/psi 7.69E-05

l r̂ reservoir fluid viscosity cp 1.4

fracture fluid viscosity cp 211

vol. o f injected fluid gal 3150

K permeable height ft 40

fracture height ft 45

pumping time min 4.76

K fracture closure time min 11.3

Pc closure pressure psi 2503.1

P. Initial reservoir pressure psi 2146

ISIP Initial shut-in pressure psi 3293

E Young's Modulus psi l.OE+06

u Poisson's ratio fraction 0.25

E' Plain-strain modulus psi 1.07+06

Fracture area - power law 

exponent

a RAD Model 8/9

n' low  behavior index fraction 0.5

K ' Ratio of shear stress to shear rate lb fs"-W 0.071

P rad Average pressure ratio (wellbore- 

tip)

0.925
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Table C-IB Fall off time - pressure data - case Ml

t fall-off 4 d t K t fall-off ^Jdi P .
min min V m in Psi min min vm in Psi

33.717 0.717 0.846 2911.201 53.333 20.333 4.509 2378.481
34.116 1.116 1.057 2788.290 53.733 20.733 4.553 2373.190
34.516 1.516 1.231 2744.804 54.133 21.133 4.597 2367.972
34.917 1.917 1.390 2705.542 54.533 21.533 4.640 2362.791
35.333 2.333 1.527 2670.278 54.933 21.933 4.683 2357.653
35.733 2.733 1.653 2655.856 55.333 22.333 4.726 2352.521
36.133 3.133 1.770 2652.025 55.733 22.733 4.768 2347.483
36.533 3.533 1.880 2647.234 56.133 23.133 4.810 2342.428
36.933 3.933 1.983 2641.118 56.533 23.533 4.851 2337.344
37.333 4.333 2.082 2635.042 56.933 23.933 4.892 2332.298
37.733 4.733 2.176 2628.585 57.333 24.333 4.933 2327.344
38.133 5.133 2.266 2615.313 57.733 24.733 4.973 2325.375
38.533 5.533 2.352 2608.689 58.133 25.133 5.013 2317.784
38.933 5.933 2.436 2600.928 58.533 25.533 5.053 2313.133
39.333 6.333 2.517 2593.764 58.933 25.933 5.092 2308.260
39.733 6.733 2.595 2585.988 59.333 26.333 5.132 2303.702
40.133 7.133 2.671 2578.937 59.733 26.733 5.170 2298.905
40.533 7.533 2.745 2571.202 60.133 27.133 5.209 2294.410
40.933 7.933 2.817 2564.018 60.533 27.533 5.247 2289.749
41.333 8.333 2.887 2557.210 60.933 27.933 5.285 2285.273
41.733 8.733 2.955 2551.132 61.333 28.333 5.323 2280.679
42.133 9.133 3.022 2544.665 61.733 28.733 5.360 2276.193
42.533 9.533 3.088 2538.022 62.133 29.133 5.398 2271.653
42.933 9.933 3.152 2532.241 62.533 29.533 5.434 2267.185
43.333 10.333 3.215 2526.230 62.933 29.933 5.471 2262.701
43.733 10.733 3.276 2519.609 63.333 30.333 5.508 2258.285
44.133 11.133 3.337 2513.068 63.733 30.733 5.544 2253.879
44.533 11.533 3.396 2507.066 64.133 31.133 5.580 2249.461
44.933 11.933 3.454 2500.952 64.533 31.533 5.615 2245.029
45.333 12.333 3.512 2494.939 64.933 31.933 5.651 2240.709
45.733 12.733 3.568 2488.93 1 65.333 32.333 5.686 2236.420
46.133 13.133 3.624 2482.848 65.733 32.733 5.721 2232.170
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46.533 13.533 3.679 2476.817 66.133 33.133 5.756 2227.978
46.933 13.933 3.733 2470.710 66.533 33.533 5.791 2223.775
47.333 14.333 3.786 2464.465 66.933 33.933 5.825 2219.627
47.733 14.733 3.838 2458.385 67.333 34.333 5.859 2215.507
48.133 15.133 3.890 2452.496 67.733 34.733 5.895 2211.407
48.533 15.533 3.941 2446.505 68.150 35.150 5.929 2207.166
48.933 15.933 3.992 2440.555 68.550 35.550 5.962 2203.120
49.333 16.333 4.041 2434.719 68.950 35.950 5.996 2199.088
49.733 16.733 4.091 2428.868 69.350 36.350 6.029 2195.058
50.133 17.133 4.139 2423.058 69.750 36.750 6.062 2191.078
50.533 17.533 4.187 2417.303 70.150 37.150 6.095 2187.163
50.933 17.933 4.235 2411.645 70.550 37.550 6.128 2183.250
51.333 18.333 4.282 2405.962 70.950 37.950 6.160 2179.401
51.733 18.733 4.328 2400.282 71.350 38.350 6.193 2175.554
52.133 19.133 4.374 2394.712 71.750 38.750 6.225 2171.716
52.533 19.533 4.420 2389.255 72.150 39.150 6.257 2167.917
52.933 19.933 4.465 2383.805 72.550 39.550 6.289 2164.138
72.950 39.950 6.321 2160.358 92.550 59.550 7.717 2002.980
73.350 40.350 6.352 2156.558 92.950 59.950 7.743 2000.167
73.750 40.750 6.384 2152.797 93.350 60.350 7.769 1997.432
74.150 41.150 6.415 2149.060 93.750 60.750 7.794 1994.719
74.550 41.550 6.446 2145.374 94.150 61.150 7.820 1991.976
74.950 41.950 6.477 2141.744 94.550 61.550 7.845 1989.260
75.350 42.350 6.506 2138.156 94.950 61.950 7.871 1986.541
75.733 42.733 6.537 2134.729 95.350 62.350 7.896 1983.827
76.133 43.133 6.568 2131.141 95.750 62.750 7.921 1981.136
76.533 43.533 6.598 2127.636 96.150 63.150 7.947 1978.470
76.933 43.933 6.628 2124.101 96.550 63.550 7.972 1975.807
77.333 44.333 6.658 2120.643 96.950 63.950 7.997 1973.167
77.733 44.733 6.688 2117.178 97.350 64.350 8.022 1970.554
78.133 45.133 6.718 2113.751 97.750 64.750 8.047 1967.943
78.533 45.533 6.748 2110.327 98.150 65.150 8.075 1965.333
78.933 45.933 6.781 2106.928 98.600 65.600 8.099 1962.408
79.383 46.383 6.811 2103.129 99.000 66.000 8.124 1959.838
79.783 46.783 6.840 2099.769 99.400 66.400 8.149 1957.261
80.183 47.183 6.869 2096.357 99.800 66.800 8.173 1954.700
80.583 47.583 6.898 2093.008 100.200 67.200 8.199 1952.149
80.983 47.983 6.927 2089.708 100.616 67.616 8.221 1949.543
81.383 48.383 6.956 2086.413 100.983 67.983 8.245 1947.234
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81.783 48.783 6.985 2083.072 101.383 68.383 8.269 1944.748
82.183 49.183 7.013 2079.791 101.783 68.783 8.294 1942.264
82.583 49.583 7.042 2076.552 102.183 69.183 8.318 1939.772
82.983 49.983 7.070 2073.356 102.583 69.583 8.342 1937.283
83.383 50.383 7.098 2070.207 102.983 69.983 8.366 1934.830
83.783 50.783 7.126 2067.074 103.383 70.383 8.389 1932.388
84.183 51.183 7.154 2063.954 103.783 70.783 8.413 1929.947
84.583 51.583 7.182 2060.871 104.183 71.183 8.437 1927.482
84.983 51.983 7.210 2057.765 104.583 71.583 8.461 1925.017
85.383 52.383 7.238 2054.680 104.983 71.983 8.484 1922.607
85.783 52.783 7.263 2051.650 105.383 72.383 8.508 1920.222
86.150 53.150 7.290 2048.905 105.783 72.783 8.531 1917.847
86.550 53.550 7.318 2045.923 106.183 73.183 8.555 1915.480
86.950 53.950 7.345 2042.980 106.583 73.583 8.578 1913.137
87.350 54.350 7.372 2040.057 106.983 73.983 8.601 1910.787
87.750 54.750 7.399 2037.156 107.383 74.383 8.625 1908.472
88.150 55.150 7.426 2034.236 107.783 74.783 8.648 1906.161
88.550 55.550 7.453 2031.317 108.183 75.183 8.671 1903.844
88.950 55.950 7.480 2028.434 108.583 75.583 8.694 1901.554
89.350 56.350 7.507 2025.550 108.983 75.983 8.717 1899.295
89.750 56.750 7.533 2022.652 109.383 76.383 8.740 1897.052
90.150 57.150 7.560 2019.772 109.783 76.783 8.763 1894.815
90.550 57.550 7.586 2016.947 110.183 77.183 8.785 1892.570
90.950 57.950 7.612 2014.171 110.583 77.583 8.808 1890.351
91.350 58.350 7.639 2011.414 110.983 77.983 8.831 1888.121
91.750 58.750 7.665 2008.611 111.383 78.383 8.853 1885.925
92.150 59.150 7.691 2005.790 111.783 78.783 8.876 1883.728

112.183 79.183 8.898 1881.560 118.183 85.183 9.229 1850.147
112.583 79.583 8.921 1879.375 118.583 85.583 9.251 1848.118
112.983 79.983 8.943 1877.215 118.983 85.983 9.273 1846.088
113.383 80.383 8.966 1875.055 119.383 86.383 9.294 1844.072
113.783 80.783 8.988 1872.904 119.783 86.783 9.316 1842.047
114.183 81.183 9.010 1870.777 120.183 87.183 9.337 1840.061
114.583 81.583 9.032 1868.664 120.583 87.583 9.359 1838.082
114.983 81.983 9.054 1866.538 120.983 87.983 9.380 1836.108
115.383 82.383 9.077 1864.472 121.383 88.383 9.401 1834.139
115.783 82.783 9.099 1862.405 121.783 88.783 9.422 1832.192
116.183 83.183 9.120 1860.358 122.183 89.183 9.444 1830.261
116.583 83.583 9.142 1858.318 122.583 89.583 9.465 1828.345
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116.983 83.983 9.164 1856.288 122.983 89.983 9.486 1826.442
117.383 84.383 9.186 1854.255 123.383 90.383 9.507 1824.655
117.783 84.783 9.208 1852.188 123.783 90.783 9.528 1822.702

Table C-IC G-fiinction and diagnostic functions - case Ml

G(A/^,a) P . P^FIT X (n ) r (« ) Y{n)
Psi Psi

0 3131.24 3131.24 0 0.176310 0.17631
2.07794 2911.2 2766.44 6.5E-10 0.453 0.33474
2.15877 2788.29 2752.25 3.1E-09 1.0064 0.9438
2.23646 2744.8 2738.61 4.5E-09 1.31031 1.28103
2.31143 2705.54 2725.45 5.7E-09 1.56065 1.55585
2.3869 2670.28 2712.21 6.7E-09 1.78952 1.80227
2.45699 2655.86 2699.9 7.6E-09 1.99189 2.01987
2.52511 2652.03 2687.94 8.4E-09 2.18054 2.22009
2.5914 2647.23 2676.3 9.2E-09 2.35871 2.40656
2.65596 2641.12 2664.97 9.9E-09 2.52844 2.58167
2.71891 2635.04 2653.92 l.lE-08 2.69136 2.74735
2.78038 2628.58 2643.13 l.lE-08 2.84874 2.90509
2.84053 2615.31 2632.57 1.2E-08 3.00168 3.05614
2.89944 2608.69 2622.23 1.2E-08 3.15071 3.20123
2.95712 2600.93 2612.1 1.3E-08 3.29647 3.34113
3.01365 2593.76 2602.18 1.4E-08 3.43961 3.47661
3.06911 2585.99 2592.44 1.4E-08 3.58044 3.6081
3.1236 2578.94 2582.87 1.5E-08 3.71937 3.73607
3.17718 2571.2 2573.47 1.5E-08 3.85653 3.86078
3.22982 2564.02 2564.23 1.6E-08 3.9924 3.98273
3.28159 2557.21 2555.14 1.6E-08 4.12719 4.1022
3.33254 2551.13 2546.19 1.7E-08 4.2611 4.21944
3.38273 2544.67 2537.38 1.7E-08 4.39405 4.33445
3.43222 2538.02 2528.69 1.8E-08 4.52656 4.44774
3.48096 2532.24 2520.14 1.8E-08 4.65888 4.55961
3.52901 2526.23 2511.7
3.5764 2519.61 2503.38
3.62319 2513.07 2495.17
3.6694 2507.07 2487.06
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Table C-ID Net pressure during injection - case MI

Pn
min psi
0.0565 2089.03
0.35655 3699.41
0.75646 3765.53
1.15636 3772.03
1.5565 3770.97
1.95653 3778.57
2.35655 3877.42
2.75645 3761.2
3.15636 3755.04
3.5565 3735.86

Table C-IE Synthesis of computed fluid and reservoir properties - case M l

& W Q V Ro K
f t f t  / psi f t in /f/vm in % ^psi — min)/ ft ntd

-6.8E-03 9.72E-05 66.2 2.81E-01 1.18E-02 61.63 6.95E+03 19.5
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Table C-2A - Input parameters - case M2

Parameter Description Units Value
<!> Reservoir porosity fraction 0.2

reserve total compressibility 1/psi 7.69E-05

Ar reservoir fluid viscosity cp 1.4

fracture fluid viscosity cp 211

V. vol. of injected fluid gal 3150

K permeable height ft 32

fracture height ft 32

h pumping time min 3.3

K fracture closure time min 2.7

Pc closure pressure psi 2928.7

p. Initial reservoir pressure psi 1768

ISIP Initial shut-in pressure psi 3298

E Young's Modulus psi l.OOE+06

u Poisson's ratio fraction 0.25

E' Plain-strain modulus psi 1.07E+06

Fracture area - power law 

exponent

a ^AD Model 4/5

n' low behavior index fraction 0.5

K ’ Ratio of shear stress to shear rate Lbf

s°-"/ft:

0.071

P rad Average pressure ratio (wellbore- 

tip)

0.925
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Table C-2B Fall o ff  time - pressure data - case M2

t fiU-off 4 d t P . t ^ d t P .
min min Vm in Psi min min Vm in Psi

2147.66 0.65771 0.811 3189.73 2150.62 3.62451 1.90382 2904.57
2147.69 0.69092 0.83121 3173.5 2150.66 3.65771 1.91252 2903.83
2147.72 0.72437 0.8511 3031.94 2150.69 3.69092 1.92118 2903.09
2147.76 0.75781 0.87052 3028.56 2150.72 3.72437 1.92986 2902.31
2147.79 0.79102 0.88939 3025.57 2150.76 3.75781 1.93851 2901.62
2147.82 0.82446 0.908 3022.79 2150.79 3.79102 1.94705 2900.88
2147.86 0.85767 0.9261 3020.06 2150.82 3.82446 1.95562 2900.15
2147.89 0.89111 0.94399 3017.72 2150.86 3.85767 1.96409 2899.49
2147.92 0.92432 0.96141 3015.42 2150.89 3.89111 1.97259 2898.78
2147.96 0.95776 0.97865 3013.21 2150.92 3.92432 1.98099 2898.08
2147.99 0.99121 0.9956 3011.2 2150.96 3.95776 1.98941 2897.4
2148.02 1.02441 1.01213 3009.11 2150.99 3.99121 1.9978 2896.67
2148.06 1.05762 1.02841 3007.16 2151.02 4.02441 2.00609 2896.02
2148.09 1.09106 1.04454 3005.22 2151.06 4.05762 2.01435 2895.34
2148.12 1.12451 1.06043 3003.16 2151.09 4.09106 2.02264 2894.71
2148.16 1.15771 1.07597 3001.3 2151.12 4.12451 2.03089 2894.11
2148.19 1.19092 1.09129 2999.34 2151.16 4.15771 2.03905 2893.47
2148.22 1.22437 1.10651 2997.33 2151.19 4.19092 2.04717 2892.84
2148.26 1.25781 1.12152 2995.47 2151.22 4.22437 2.05533 2892.19
2148.29 1.29102 1.13623 2993.42 2151.26 4.25781 2.06345 2891.52
2148.32 1.32446 1.15085 2991.47 2151.29 4.29102 2.07148 2890.97
2148.36 1.35767 1.16519 2989.52 2151.32 4.32446 2.07953 2890.36
2148.39 1.39111 1.17945 2987.4 2151.36 4.35767 2.0875 2889.75
2148.42 1.42432 1.19345 2985.51 2151.39 4.39111 2.0955 2889.24
2148.46 1.45776 1.20738 2983.58 2151.42 4.42432 2.10341 2888.68
2148.49 1.49121 1.22115 2981.58 2151.46 4.45776 2.11134 2888.02
2148.52 1.52441 1.23467 2979.74 2151.49 4.49121 2.11925 2887.36
2148.56 1.55762 1.24805 2977.79 2151.52 4.52441 2.12707 2886.71
2148.59 1.59106 1.26137 2975.95 2151.56 4.55762 2.13486 2886.15
2148.62 1.62451 1.27456 2974.2 2151.59 4.59106 2.14268 2885.55
2148.66 1.65771 1.28752 2972.32 2151.62 4.62451 2.15047 2884.95
2148.69 1.69092 1.30035 2970.62 2151.66 4.65771 2.15817 2884.4
2148.72 1.72437 1.31315 2968.93 2151.69 4.69092 2.16585 2883.78
2148.76 1.75781 1.32583 2967.17 2151.72 4.72437 2.17356 2883.23
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2148.79 1.79102 1.33829 2965.56 2151.76 4.75781 2.18124 2882.76
2148.82 1.82446 1.35073 2963.86 2151.79 4.79102 2.18884 2882.23
2148.86 1.85767 1.36296 2962.25 2151.82 4.82446 2.19647 2881.77
2148.89 1.89111 1.37518 2960.72 12151.86 4.85767 2.20401 2881.28
2148.92 1.92432 1.3872 2959.09 2151.89 4.89111 2.21159 2880.69
2148.96 1.95776 1.3992 2957.64 2151.92 4.92432 2.21908 2880.22
2148.99 1.99121 1.4111 2956.16 2151.96 4.95776 2.2266 2879.73
2149.02 2.02441 1.42282 2954.6 2151.99 4.99121 2.2341 2879.23
2149.06 2.05762 1.43444 2953.2 2152.02 5.02441 2.24152 2878.76
2149.09 2.09106 1.44605 2951.68 2152.06 5.05762 2.24891 2878.23
2149.12 2.12451 1.45757 2950.18 2152.09 5.09106 2.25634 2877.75
2149.16 2.15771 1.46892 2948.79 2152.12 5.12451 2.26374 2877.22
2149.19 2.19092 1.48017 2947.3 2152.16 5.15771 2.27106 2876.68
2149.22 2.22437 1.49143 2945.92 2152.19 5.19092 2.27836 2876.19
2149.26 2.25781 1.5026 2944.53 2152.22 5.22437 2.28569 2875.69
2149.29 2.29102 1.51361 2943.09 2152.26 5.25781 2.29299 2875.22
2149.32 2.32446 1.52462 2941.76 2152.29 5.29102 2.30022 2874.78
2149.36 2.35767 1.53547 2940.4 2152.32 5.32446 2.30748 2874.23
2149.39 2.39111 1.54632 2939.07 2152.36 5.35767 2.31466 2873.8
2149.42 2.42432 1.55702 2937.87 ^ 2152.39 5.39111 2.32188 2873.38
2149.46 2.45776 1.56773 2936.59 2152.42 5.42432 2.32902 2872.95
2149.49 2.49121 1.57836 2935.4 2152.46 5.45776 2.33619 2872.48
2149.52 2.52441 1.58884 2934.24 2152.49 5.49121 2.34333 2872.04
2149.56 2.55762 1.59926 2933.01 2152.52 5.52441 2.35041 2871.62
2149.59 2.59106 1.60968 2931.92 2152.56 5.55762 2.35746 2871.18
2149.62 2.62451 1.62003 2930.81 2152.59 5.59106 2.36454 2870.77
2149.66 2.65771 1.63025 2929.69 2152.62 5.62451 2.37161 2870.43
2149.69 2.69092 1.6404 2928.68 2152.66 5.65771 2.3786 2870.08
2149.72 2.72437 1.65057 2927.57 2152.69 5.69092 2.38556 2869.61
2149.76 2.75781 1.66067 2926.56 2152.72 5.72437 2.39256 2869.24
2149.79 2.79102 1.67063 2925.59 2152.76 5.75781 2.39954 2868.87
2149.82 2.82446 1.68061 2924.55 2152.79 5.79102 2.40645 2868.49
2149.86 2.85767 1.69046 2923.61 2152.82 5.82446 2.41339 2868.12
2149.89 2.89111 1.70033 2922.67 2152.86 5.85767 2.42026 2867.75
2149.92 2.92432 1.71006 2921.7 2152.89 5.89111 2.42716 2867.36
2149.96 2.95776 1.71982 2920.83 2152.92 5.92432 2.43399 2866.98
2149.99 2.99121 1.72951 2919.9 2152.96 5.95776 2.44085 2866.55
2150.02 3.02441 1.73908 2919.02 2152.99 5.99121 2.4477 2866.25
2150.06 3.05762 1.7486 2918.2 2153.02 6.02441 2.45447 2865.9
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2150.09 3.09106 1.75814 2917.31 2153.06 6.05762 2.46122 2865.57
2150.12 3.12451 1.76763 2916.5 2153.09 6.09106 2.46801 2865.28
2150.16 3.15771 1.777 2915.68 2153.12 6.12451 2.47478 2864.97
2150.19 3.19092 1.78631 2914.8 2153.16 6.15771 2.48147 2864.67
2150.22 3.22437 1.79565 2914.04 2153.19 6.19092 2.48816 2864.35
2150.26 3.25781 1.80494 2913.21 2153.22 6.22437 2.49487 2863.99
2150.29 3.29102 1.81412 2912.39 2153.26 6.25781 2.50156 2863.73
2150.32 3.32446 1.82331 2911.65 2153.29 6.29102 2.50819 2863.33
2150.36 3.35767 1.83239 2910.82 2153.32 6.32446 2.51485 2863
2150.39 3.39111 1.8415 2910.06 2153.36 6.35767 2.52144 2862.69
2150.42 3.42432 1.85049 2909.28 2153.39 6.39111 2.52807 2862.45
2150.46 3.45776 1.85951 2908.47 2153.42 6.42432 2.53462 2862.32
2150.49 3.49121 1.86848 2907.71 2153.46 6.45776 2.54121 2862.08
2150.52 3.52441 1.87734 2906.91 2153.49 6.49121 2.54779 2861.74
2150.56 3.55762 1.88616 2906.13 2153.52 6.52441 2.55429 2861.53
2150.59 3.59106 1.89501 2905.4 2153.56 6.55762 2.56078 2862.24

Table C-2C G-function and diagnostic functions - case M2

G(MD,a) P . P^FIT X ( n ) Y{n) Y(n)FIT

Psi Psi
0 3545.5 3545.5 0.00 5.76E-01 5.76E-01
1.51462 3031.94 3026.24 3.07E-09 1.49759 1.42E+00
1.5204 3028.56 3024.26 3.80E-09 1.64654 1.63E+00
1.5261 3025.57 3022.3 4.12E-09 1.71745 1.72E+00
1.53181 3022.79 3020.34 4.56E-09 1.85967 1.84E+00
1.53745 3020.06 3018.41 5.03E-09 2.02461 1.97E+00
1.5431 3017.72 3016.48 5.23E-09 2.07558 2.02E+00
1.54867 3015.42 3014.56 5.63E-09 2.21881 2.13E+00
1.55426 3013.21 3012.65 5.80E-09 2.2676 2.18E+00
1.55981 3011.2 3010.74 5.90E-09 2.28526 2.21E+00
1.5653 3009.11 3008.86 6.16E-09 2.37398 2.28E+00
1.57076 3007.16 3006.99 6.05E-09 2.30947 2.25E+00
1.57623 3005.22 3005.12 6.17E-09 2.34043 2.28E+00
1.58167 3003.16 3003.25 6.32E-09 2.38462 2.32E+00
1.58705 3001.3 3001.41 6.14E-09 2.29539 2.27E+00
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1.5924 2999.34 2999.57 6.33E-09 2.35574 2.33E+00
1.59777 2997.33 2997.73 6.26E-09 2.31508 2.31E+00
1.60311 2995.47 2995.9 6.15E-09 2.25552 2.28E+00
1.60839 2993.42 2994.09 6.32E-09 2.30594 2.32E+00
1.61368 2991.47 2992.28 6.09E-09 2.20187 2.26E+00
1.61891 2989.52 2990.48 6.20E-09 2.2276 2.29E+00
1.62416 2987.4 2988.69 6.51E-09 2.33094 2.38E+00
1.62934 2985.51 2986.91 6.37E-09 2.26627 2.34E+00
1.63454 2983.58 2985.13 6.50E-09 2.3033 2.37E+00
1.63972 2981.58 2983.35 6.57E-09 2.31764 2.39E+00
1.64484 2979.74 2981.6 6.60E-09 2.31891 2.40E+00
1.64994 2977.79 2979.85 6.98E-09 2.44935 2.51E+00
1.65505 2975.95 2978.09 6.88E-09 2.40576 2.48E+00
1.66015 2974.2 2976.35 6.95E-09 2.42309 2.50E+00
1.66519 2972.32 2974.62 7.34E-09 2.56024 2.61E+00
1.67021 2970.62 2972.9 7.24E-09 2.51707 2.58E+00
1.67524 2968.93 2971.17 7.38E-09 2.56006 2.62E+00
1.68026 2967.17 2969.45 7.50E-09 2.59828 2.65E+00
1.68522 2965.56 2967.75 7.49E-09 2.59058 2.65E+00
1.6902 2963.86 2966.05 7.87E-09 2.72288 2.75E+00
1.69512 2962.25 2964.36 7.81E-09 2.69759 2.74E+00
1.70006 2960.72 2962.66 8.00E-09 2.76018 2.79E+00
1.70495 2959.09 2960.99 8.41E-09 2.90378 2.90E+00
1.70985 2957.64 2959.31 8.07E-09 2.78014 2.8IE+00
1.71474 2956.16 2957.63 8.24E-09 2.83673 2.85E+00
1.71958 2954.6 2955.97 8.36E-09 2.87817 2.89E+00
1.7244 2953.2 2954.32 8.12E-09 2.78505 2.82E+00
1.72923 2951.68 2952.66 8.42E-09 2.89142 2.91E+00
1.73406 2950.18 2951.01 8.41E-09 2.88305 2.90E+00
1.73882 2948.79 2949.37 8.46E-09 2.89562 2.92E+00
1.74358 2947.3 2947.75 8.76E-09 3.00268 3.00E+00
1.74835 2945.92 2946.11 8.54E-09 2.92043 2.94E+00
1.75311 2944.53 2944.48 8.71E-09 2.97565 2.98E+00
1.75781 2943.09 2942.86 8.94E-09 3.05561 3.05E+00
1.76254 2941.76 2941.24 8.92E-09 3.04775 3.04E+00
1.76722 2940.4 2939.64 9.44E-09 3.23236 3.19E+00
1.77191 2939.07 2938.03 9.60E-09 3.28837 3.23E+00
1.77656 2937.87 2936.44 9.64E-09 3.30514 3.24E+00
1.78122 2936.59 2934.84 l.OlE-08 3.45303 3.36E+00
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1.78587 2935.4 2933.24 9.82E-09 3.37407 3.29E+00
1.79048 2934.24 2931.67 l.OlE-08 3.4795 3.38E+00
1.79507 2933.01 2930.09 l.OlE-08 3.4795 3.38E+00
1.79968 2931.92 2928.51
1.80427 2930.81 2926.94
1.80882 2929.69 2925.38

Table C-2D Net pressure during injection - case M2

Pn ‘̂inj Pn Pn
min psi min psi min psi
0.016602 2654.35 2.81665 3189.82 5.616699 3171.08
0.050049 2878.4 2.850098 3188.8 5.649658 3170.54
0.083252 3113.15 2.883545 3188.62 5.68335 3171.01
0.116699 3136.7 2.916748 3188.52 5.716797 3171.17
0.149658 3113.92 2.949707 3187.68 5.75 3170.6
0.18335 3113.36 2.983398 3188.05 5.783203 3171.1
0.216797 3117.76 3.016602 3187.59 5.81665 3170.96
0.25 3120.1 3.050049 3187.69 5.850098 3171.09
0.283203 3119.77 3.083252 3187.42 5.883545 3170.4
0.31665 3118.44 3.116699 3186.86 5.916748 3170.83
0.350098 3119.02 3.149658 3187.24 5.949707 3170.13
0.383545 3120.45 3.18335 3185.9 5.983398 3170.48
0.416748 3119.68 3.216797 3184.93 6.016602 3171.41
0.449707 3117.71 3.25 3183.57 6.050049 3171.83
0.483398 3119.12 3.283203 3183.58 6.083252 3171.33
0.516602 3121.35 3.31665 3182.94 6.116699 3171.44
0.550049 3122.71 3.350098 3183.57 6.149658 3172.7
0.583252 3123.99 3.383545 3182.86 6.18335 3172.4
0.616699 3124.67 3.416748 3182.65 6.216797 3172.07
0.649658 3125.05 3.449707 3182.68 6.25 3173.25
0.68335 3125.29 3.483398 3182.83 6.283203 3173.14
0.716797 3125.64 3.516602 3182.39 6.31665 3172.35
0.75 3126.23 3.550049 3180.56 6.350098 3171.66
0.783203 3127.5 3.583252 3178.99 6.383545 3172.52
0.81665 3129.25 3.616699 3176.51 6.416748 3172.67
0.850098 3129.72 3.649658 3173.3 6.449707 3172.93
0.883545 3130.16 3.68335 3170.4 6.483398 3173.68
0.916748 3131.3 3.716797 3166.55 6.516602 3173.66
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0.949707 3132.14 3.75 3163.25 6.550049 3173.77
0.983398 3133.38 3.783203 3160.18 6.583252 3173.11
1.016602 3135.01 3.81665 3159.37 6.616699 3173.5
1.050049 3136.12 3.850098 3160.75 6.649658 3173.96
1.083252 3136.49 3.883545 3161.58 6.68335 3173.85
1.116699 3137.76 3.916748 3161.52 6.716797 3173.75
1.149658 3140.38 3.949707 3161.27 6.75 3174.45
1.18335 3141.11 3.983398 3161.42 6.783203 3175.13
1.216797 3142.52 4.016602 3161.33 6.81665 3175.15
1.25 3142.95 4.050049 3161.45 6.850098 3175.37
1.283203 3143.77 4.083252 3160.44 6.883545 3175.47
1.31665 3144.3 4.116699 3160.37 6.916748 3175.77
1.350098 3145.11 4.149658 3162.22 6.949707 3176.41
1.383545 3145.98 4.18335 3163.89 6.983398 3175.75
1.416748 3147.16 4.216797 3164.35 7.016602 3175.93
1.449707 3149 4.25 3165.03 7.050049 3176.2
1.483398 3150.31 4.283203 3165.28 7.083252 3175.26
1.516602 3153.12 4.31665 3165.25 7.116699 3175.49
1.550049 3155.12 4.350098 3165.22 7.149658 3175.83
1.583252 3155.98 4.383545 3165.56 7.18335 3176.09
1.616699 3158.14 4.416748 3165.45 7.216797 3176.49
1.649658 3160.81 4.449707 3166.25 7.25 3176.93
1.68335 3162.14 4.483398 3166.52 7.283203 3177.07
1.716797 3163.56 4.516602 3166.66 7.31665 3178
1.75 3165.82 4.550049 3167.03 7.350098 3177.46
1.783203 3166.62 4.583252 3167.16 7.383545 3177.43
1.81665 3167.51 4.616699 3167.63 7.416748 3178.39
1.850098 3168.39 4.649658 3167.99 7.449707 3179.43
1.883545 3169.8 4.68335 3167.78 7.483398 3179.72
1.916748 3170.89 4.716797 3167.54 7.516602 3179.49
1.949707 3171.57 4.75 3168.17 7.550049 3180.76
1.983398 3170.99 4.783203 3167.62 7.583252 3181.49
2.016602 3172.33 4.81665 3167.83 7.616699 3181.19
2.050049 3173.89 4.850098 3169.12 7.649658 3182.04
2.083252 3175.15 4.883545 3169.02 7.68335 3181.72
2.116699 3176.7 4.916748 3168.78 7.716797 3182.69
2.149658 3177.85 4.949707 3168.93 7.75 3183.02
2.18335 3178.7 4.983398 3169.32 7.783203 3182.57
2.216797 3180.02 5.016602 3169.79 7.81665 3183.63
2.25 3181 5.050049 3169.38 7.850098 3184.58
2.283203 3181.8 5.083252 3170.4 7.883545 3183.54
2.31665 3183.14 5.116699 3170.17 7.916748 3184.26
2.350098 3184.85 5.149658 3170.58 7.949707 3184.36
2.383545 3185.45 5.18335 3170.8 7.983398 3184.82
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2.416748 3186.75 5.216797 3170.45 8.016602 3185.34
2.449707 3187.77 5.25 3170.59 8.050049 3185.1
2.483398 3188.46 5.283203 3170.67 8.083252 3184.99
2.516602 3189.14 5.31665 3169.63 8.116699 3185.53
2.550049 3189.16 5.350098 3 170.75 8.149658 3185.03
2.583252 3189.53 5.383545 3170.8 8.18335 3188.62
2.616699 3190.47 5.416748 3170.13 8.216797 3190.44
2.649658 3190.16 5.449707 3170.49 8.25 3186.15
2.68335 3188.88 5.483398 3171.34 8.283203 3189.12
2.716797 3189.3 5.516602 3171.28 8.31665 3182.55
2.75 3189.04 5.550049 3171.04 8.350098 3181.2
2.783203 3189.61 5.583252 3170.83 8.383545 3189.73

Table C-2E Synthesis o f computed fluid and reservoir properties - case M2

&
W Q 1 K

f t f t  /  psi f l in f t  ! Vmin % (^psi -  m in ) /  ft m d

-3 .3 1 E -0 2 9 .7 8 E - 0 5 6 6 .6 5 .5 3 E -0 1 3 .4 E -0 2 2 3 .6 5 3 .8 8 E + 0 3 1 8 .9
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Table C-3 A - Input parameters - case M3

Parameter Description Units Value
Reservoir porosity fraction 0.43

reserve total compressibility I/psi 6.5e-6

reservoir fluid viscosity cp 1.4

fracture fluid viscosity cp 224

V. vol. o f injected fluid gal 28350

K permeable height ft 95

fi'acture height ft 95

pumping time min 22.5

tc fi’acture closure time min 20.94

Pc closure pressure psi 6388

p, Initial reservoir pressure psi 5500

ISIP Initial shut-in pressure psi 6694

E Young's Modulus psi l.OE+06

u Poisson's ratio fraction 0.27

E' Plain-strain modulus psi 1.1+06

Fracture area - power law exponent

a RAD Model 8/9

n' flow behavior index fraction 0.5

K ' Ratio of shear stress to shear rate L b fs " W 0.0728

P rad Average pressure ratio (wellbore-tip) 0.925
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Table C-3B Fall off time - pressure data - case M3

t fall-off P . t fall-off ^ d t P .
min min Vmin Psi min min Vmin Psi

119.083 0.0833 0.28861 6622.2 122.167 3.1666 1.77949 6590.15
119.167 0.1666 0.40816 6677.93 122.25 3.25 1.80278 6591.68
119.25 0.25 0.5 6728.13 122.333 3.3333 1.82573 6591.68
119.333 0.3333 0.57732 6660.69 122.417 3.4166 1.84841 6590.46
119.417 0.4166 0.64545 6642.19 122.5 3.5 1.87083 6590.46
119.5 0.5 0.70711 6666.83 122.583 3.5833 1.89296 6587.67
119.583 0.5833 0.76374 6661.6 122.667 3.6666 1.91484 6586.76
119.667 0.6666 0.81645 6644.36 122.75 3.75 1.93649 6586.45
119.75 0.75 0.86603 6644.67 122.833 3.8333 1.95788 6587.98
119.833 0.8333 0.91285 6647.15 122.917 3.9166 1.97904 6585.54
119.917 0.9166 0.95739 6638.52 123 4 2 6581.84
120 1 1 6634.82 123.083 4.0833 2.02072 6583.06
120.083 1.0833 1.04082 6633.56 123.167 4.1666 2.04122 6581.84
120.167 1.1666 1.08009 6633.26 123.25 4.25 2.06155 6579.05
120.25 1.25 1.11803 6631.12 123.333 4.3333 2.08166 6580.31
120.333 1.3333 1.15469 6627.42 123.417 4.4166 2.10157 6578.14
120.417 1.4166 1.19021 6623.42 123.5 4.5 2.12132 6580.31
120.5 1.5 1.22474 6622.5 123.583 4.5833 2.14086 6579.05
120.583 1.5833 1.25829 6616.02 123.667 4.6666 2.16023 6578.14
120.667 1.6666 1.29097 6618.5 123.75 4.75 2.17945 6576.61
120.75 1.75 1.32288 6613.88 123.833 4.8333 2.19848 6577.83
120.833 1.8333 1.35399 6611.1 123.917 4.9166 2.21734 6572.91
120.917 1.9166 1.38441 6612.32 124 5 2.23607 6574.13
121 2 1.41421 6606.17 124.083 5.0833 2.25462 6573.21
121.083 2.0833 1.44336 6608.92 124.167 5.1666 2.27301 6572.91
121.167 2.1666 1.47194 6605.26 124.25 5.25 2.29129 6571.65
121.25 2.25 1.5 6602.78 124.333 5.3333 2.30939 6571.99
121.333 2.3333 1.52751 6604 124.417 5.4166 2.32736 6566.73
121.417 2.4166 1.55454 6603.69 124.5 5.5 2.34521 6570.43
121.5 2.5 1.58114 6602.47 124.583 5.5833 2.3629 6567.03
121.583 2.5833 1.60726 6597.55 124.667 5.6666 2.38046 6568.29
121.667 2.6666 1.63297 6601.56 124.75 5.75 2.39792 6566.73
121.75 2.75 1.65831 6595.38 124.833 5.8333 2.41522 6568.29

232



121.833 2.8333 1.68324 6596.6 124.917 5.9166 2.43241 6563.33
121.917 2.9166 1.70781 6597.55 125 6 2.44949 6562.11
122 3 1.73205 6591.68 125.083 6.0833 2.46643 6564.29
122.083 3.0833 1.75593 6591.68 125.167 6.1666 2.48326 6563.03
125.25 6.25 2.5 6559.33 128.667 9.6666 3.I091I 6525.15
125.333 6.3333 2.5166 6556.89 128.75 9.75 3.1225 6522.4
125.417 6.4166 2.5331 6557.19 128.833 9.83331 3.13581 6521.15
125.5 6.5 2.54951 6559.33 128.917 9.91658 3.14906 6523.93
125.583 6.5833 2.56579 6554.71 129 10 3.16228 6522.71
125.667 6.6666 2.58198 6559.67 129.083 10.0833 3.17542 6517.75
125.75 6.75 2.59808 6557.19 129.167 10.1666 3.18851 6517.44
125.833 6.8333 2.61406 6553.49 129.25 10.25 3.20156 6519.01
125.917 6.9166 2.62994 6553.49 129.333 10.3333 3.21455 6517.75
126 7 2.64575 6551.97 129.417 10.4166 3.22747 6516.53
126.083 7.0833 2.66145 6552.27 129.5 10.5 3.24037 6520.23
126.167 7.1666 2.67705 6553.49 129.583 10.5833 3.2532 6515 31
126.25 7.25 2.69258 6551.97 129.667 10.6666 3.26598 6515.31
126.333 7.3333 2.70801 6552.27 129.75 10.75 3.27872 6516.22
126.417 7.4166 2.72334 6546.09 129.833 10.8333 3.2914 6512.83
126.5 7.5 2.73861 6548.57 129.917 10.9166 3.30402 6512.83
126.583 7.5833 2.75378 6548.57 130 11 3.31662 6512.52
126.667 7.6666 2.76886 6547.01 130.083 11.0833 3.32916 6510.08
126.75 7.75 2.78388 6543.65 130.167 11.1666 3.34165 6511.61
126.833 7.8333 2.7988 6543.35 130.25 11.25 3.3541 6506.69
126.917 7.9166 2.81365 6542.39 130.333 11.3333 3.3665 6506.69
127 8 2.82843 6544.57 130.417 11.4166 3.37884 6505.43
127.083 8.0833 2.84311 6541.17 130.5 11.5 3.39116 6508.82
127.167 8.1666 2.85773 6538.39 130.583 11.5833 3.40343 6504.21
127.25 8.25 2.87228 6542.39 130.667 11.6666 3.41564 6504.21
127.333 8.3333 2.88675 6541.17 130.75 11.75 3.42783 6502.68
127.417 8.4166 2.90114 6536.25 130.833 11.8333 3.43996 6502.99
127.5 8.5 2.91548 6537.17 130.917 11.9166 3.45204 6501.42
127.583 8.5833 2.92973 6535.94 131 12 3.4641 6498.98
127.667 8.6666 2.94391 6535.03 131.083 12.0833 3.47611 6499.29
127.75 8.75 2.95804 6533.47 131.167 12.1666 3.48806 6500.51
127.833 8.8333 2.97209 6532.25 131.25 12.25 3.5 6500.51
127.917 8.9166 2.98607 6531.02 131.333 12.3333 3.51188 6496.81
128 9 3 6533.77 131.417 12.4166 3.52372 6494.36
128.083 9.08331 3.01385 6531.33 131.5 12.5 3.53553 6494.36
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128.167 9.1666 3.02764 6529.77 131.583 12.5833 3.5473 6494.06
128.25 9.25 3.04138 6530.07 131.667 12.6666 3.55902 6495.59
128.333 9.33331 3.05505 6531.02 131.75 12.75 3.57071 6489.44
128.417 9.41658 3.06864 6526.06 131.833 12.8333 3.58236 6489.14
128.5 9.5 3.08221 6528.85 131.917 12.9166 3.59396 6486.66
128.583 9.58331 3.09569 6523.62 132 13 3.60555 6488.19
132.083 13.0833 3.61709 6490.67 135.5 16.5 4.06202 6448.78
132.167 13.1666 3.62858 6486.96 135.583 16.5833 4.07226 6442.6
132.25 13.25 3.64005 6486.66 135.667 16.6666 4.08247 6442.6
132.333 13.3333 3.65148 6481.74 135.75 16.75 4.09268 6439.85
132.417 13.4166 3.66286 6482.04 135.833 16.8333 4.10284 6438.59
132.5 13.5 3.67423 6484.18 135.917 16.9166 4.11298 6439.85
132.583 13.5833 3.68555 6480.82 136 17 4.12311 6439.85
132.667 13.6666 3.69684 6478.34 136.083 17.0833 4.1332 6439.85
132.75 13.75 3.7081 6479.56 136.167 17.1666 4.14326 6438.9
132.833 13.8333 3.71932 6477.12 136.25 17.25 4.15331 6433.98
132.917 13.9166 3.73049 6479.26 136.333 17.3333 4.16333 6432.45
133 14 3.74166 6478.34 136.417 17.4166 4.17332 6433.67
133.083 14.0833 3.75277 6475.86 136.5 17.5 4.1833 6431.23
133.167 14.1666 3.76385 6471.86 136.583 17.5833 4.19325 6432.76
133.25 14.25 3.77492 6470.94 136.667 17.6666 4.20316 6431.23
133.333 14.3333 3.78594 6473.12 136.75 17.75 4.21307 6427.84
133.417 14.4166 3.79692 6468.5 136.833 17.8333 4.22295 6426.58
133.5 14.5 3.80789 6470.94 136.917 17.9166 4.2328 6423.83
133.583 14.5833 3.81881 6469.72 137 18 4.24264 6426.27
133.667 14.6666 3.8297 6468.5 137.083 18.0833 4.25245 6427.84
133.75 14.75 3.84057 6464.8 137.167 18.1666 4.26223 6423.83
133.833 14.8333 3.8514 6463.54 137.25 18.25 4.272 6420.44
133.917 14.9166 3.8622 6466.94 137.333 18.3333 4.28174 6420.13
134 15 3.87298 6464.8 137.417 18.4166 4.29145 6421.66
134.083 15.0833 3.88372 6463.54 137.5 18.5 4.30116 6419.22
134.167 15.1666 3.89443 6459.84 137.583 18.5833 4.31084 6416.74
134.25 15.25 3.90512 6458.62 137.667 18.6666 4.32049 6417.96
134.333 15.3333 3.91578 6457.4 137.75 18.75 4.33013 6414.26
134.417 15.4166 3.9264 6458.62 137.833 18.8333 4.33974 6414.26
134.5 15.5 3.937 6459.84 137.917 18.9166 4.34932 6414.26
134.583 15.5833 3.94757 6453.4 138 19 4.3589 6413.95
134.667 15.6666 3.9581 6453.7 138.083 19.0833 4.36845 6412.73
134.75 15.75 3.96863 6452.17 138.167 19.1666 4.37797 6412.73
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134.833 15.8333 3.97911 6452.17 138.25 19.25 4.38748 6409.03
134.917 15.9166 3 98956 6454.92 138.333 19.3333 4.39697 6408.11
135 16 4 6453.7 138.417 19.4166 4.40642 6409.34
135.083 16.0833 4.0104 6452.48 138.5 19.5 4.41588 6406.59
135.167 16.1666 4.02077 6450.92 138.583 19.5833 4.4253 6405.64
135.25 16.25 4.03113 6448.47 138.667 19.6666 4.4347 6401.63
135.333 16.3333 4.04145 6447.22 138.75 19.75 4.4441 6401.94
135.417 16.4166 4.05174 6445.08 138.833 19.8333 4.45346 6400.71
138.917 19.9166 4.4628 6400.71 142.333 23.3333 4.83046 6362.53
139 20 4.47214 6401.94 142.417 23.4166 4.83907 6362.23
139.083 20.0833 4.48144 6399.49 142.5 23.5 4.84768 6361
139.167 20.1666 4.49072 6395.49 142.583 23.5833 4.85627 6360.05
139.25 20.25 4.5 6395.79 142.667 23.6666 4.86483 6360.05
139.333 20.3333 4.50925 6394.57 142.75 23.75 4.8734 6361
139.417 20.4166 4.51847 6397.01 142.833 23.8333 4.88194 6358.83
139.5 20.5 4.52769 6393.31 142.917 23.9166 4.89046 6358.83
139.583 20.5833 4.53688 6392.09 143 24 4.89898 6358.83
139.667 20.6666 4.54605 6388.39 143.083 24.0833 4.90748 6356.35
139.75 20.75 4.55522 6393.01 143.167 24.1666 4.91595 6356.35
139.833 20.8333 4.56435 6390.87 143.25 24.25 4.92443 6352.69
139.917 20.9166 4.57346 6387.17 143.333 24.3333 4.93288 6356.04
140 21 4.58258 6388.39 143.417 24.4166 4.94131 6354.82
140.083 21.0833 4.59166 6383.47 143.5 24.5 4.94975 6351.12
140.167 21.1666 4.60072 6384.69 143.583 24.5833 4.95816 6352.69
140.25 21.25 4.60977 6385.95 143.667 24.6666 4.96655 6353.91
140.333 21.3333 4.6188 6383.17 143.75 24.75 4.97494 6348.68
140.417 21.4166 4.62781 6382.25 143.833 24.8333 4.9833 6348.99
140.5 21.5 4.63681 6378.25 143.917 24.9166 4.99165 6352.34
140.583 21.5833 4.64578 6379.77 144 25 5 6346.51
140.667 21.6666 4.65474 6378.25 144.083 25.0833 5.00832 6346.2
140.75 21.75 4.66369 6376.99 144.167 25.1666 5.01663 6347.42
140.833 21.8333 4.67261 6375.77 144.25 25.25 5.02494 6348.99
140.917 21.9166 4.68151 6378.55 144.333 25.3333 5.03322 6346.51
141 22 4.69042 6377.29 144.417 25.4166 5.04149 6344.98
141.083 22.0833 4.69929 6377.29 144.5 25.5 5.04975 6344.98
141.167 22.1666 4.70814 6374.85 144.583 25.5833 5.05799 6344.03
141.25 22.25 4.71699 6370.85 144.667 25.6666 5.06622 6342.81
141.333 22.3333 4.72581 5374.55 144.75 25.75 5.07445 6341.59
141.417 22.4166 4.73462 5369.63 144.833 25.8333 5.08265 6339.11
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141.5 22.5 4.74342 6370.85 144.917 25.9166 5.09083 6339.11
141.583 22.5833 4.75219 6368.37 145 26 5.09902 6340.37
141.667 22.6666 4.76094 6367.15 145.083 26.0833 5.10718 6338.8
141.75 22.75 4.7697 6371.15 145.167 26.1666 5.11533 6337.58
141.833 22.8333 4.77842 6369.93 145.25 26.25 5.12348 6337.58
141.917 22.9166 4.78713 6368.67 145.333 26.3333 5.1316 6337.89
142 23 4.79583 6368.37 145.417 26.4166 5.13971 6337.89
142.083 23.0833 4.80451 6367.45 145.5 26.5 5.14782 6337.58
142.167 23.1666 4.81317 6367.15 145.583 26.5833 5.1559 6334.19
142.25 23.25 4.82183 6361 145.667 26.6666 5.16397 6333.88
145.75 26.75 5.17204 6335.1 149.167 30.1666 5.49241 6305.84
145.833 26.8333 5.18009 6332.66 149.25 30.25 5.5 6304.32
145.917 26.9166 5.18812 6332.66 149.333 30.3333 5.50757 6300.62
146 27 5.19615 6334.19 149.417 30.4166 5.51512 6303.1
146.083 27.0833 5.20416 6328.96 149.5 30.5 5.52268 6304.62
146.167 27.1666 5.21216 6330.49 149.583 30.5833 5.53022 6298.44
146.25 27.25 5.22015 6330.49 149.667 30.6666 5.53774 6300.92
146.333 27.3333 5.22813 6329.27 149.75 30.75 5.54527 6298.14
146.417 27.4166 5.23608 6326.79 149.833 30.8333 5.55278 6300.62
146.5 27.5 5.24404 6326.48 149.917 30.9166 5.56027 6296.92
146.583 27.5833 5.25198 6326.79 150 31 5.56776 6299.7
146.667 27.6666 5.2599 6325.26 150.083 31.0833 5.57524 6297.22
146.75 27.75 5.26783 6325.56 150.167 31.1666 5.5827 6299.7
146 831 27.8333 5.27573 6325.56 150.25 31.25 5.59017 6299.7
146.917 27.9166 5.28361 6325.56 150.333 31.3333 5.59762 6294.48
147 28 5.2915 6321.56 150.417 31.4166 5.60505 6294.48
147.083 28.0833 5.29937 6321.56 150.5 31.5 5.61249 6296
147.167 28.1666 5.30722 6324.34 150.583 31.5833 5.6199 6293.52
147.25 28.25 5.31507 6321.86 150.667 31.6666 5.62731 6292.3
147.333 28.3333 5.3229 6320.34 150.75 31.75 5.63471 6292
147.417 28.4166 5.33072 6320.34 150.833 31.8333 5.6421 6294.48
147.5 28.5 5.33854 6321.56 150.917 31.9166 5.64948 6289.82
147.583 28.5833 5.34634 6315.42 151 32 5.65685 6292
147.667 28.6666 5.35412 6315.72 151.083 32.0833 5.66421 6290.77
147.75 28.75 5.3619 6319.08 151.167 32.1666 5.67156 6291.08
147.833 28.8333 5.36967 6316.64 151.25 32.25 5.67891 6289.52
147.917 28.9166 5.37741 6315.72 151.333 32.3333 5.68624 6286.12
148 29 5.38516 6316.64 151.417 32.4166 5.69356 6289.82
148.083 29.0833 5.39289 6314.46 151.5 32.5 5.70088 6289.82
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148.167 29.1666 5.40061 6312.94 151.583 32.5833 5.70818 6287.38
148.25 29.25 5.40833 6314.46 151.667 32.6666 5.71547 6284.9
148.333 29.3333 5.41602 6310.46 151.75 32.75 5.72276 6282.15
148.417 29.4166 5.42371 6309.54 151.833 32.8333 5.73004 6287.07
148.5 29.5 5.43139 6309.24 151.917 32.9166 5.7373 6284.6
148.583 29.5833 5.43905 6308.02 152 33 5.74456 6282.15
148.667 29.6666 5.4467 6309.24 152.083 33.0833 5.75181 6282.46
148.75 29.75 5.45436 6308.32 152.167 33.1666 5.75904 6283.37
148.833 29.8333 5.46199 6309.24 152.25 33.25 5.76628 6281.2
148.917 29.9166 5.46961 6309.54 152.333 33.3333 5.7735 6281.2
149 30 5.47723 6305.84 152.417 33.4166 5.78071 6281.2
149.083 30.0833 5.48483 6304.32 152.5 33.5 5.78792 6279.67
152.583 33.5833 5.79511 6277.5 156 37 6.08276 6257.51
152.667 33.6666 5.80229 6278.76 156.083 37.0833 6.08961 6256.56
152.75 33.75 5.80948 6279.98 156.167 37.1666 6.09644 6254.12
152.833 33.8333 5.81664 6277.5 156.25 37.25 6.10328 6259.04
152.917 33.9166 5.82379 6277.19 156.333 37.3333 6.1101 6258.73
153 34 5.83095 6279.98 156.417 37.4166 6.11691 6255.34
153.083 34.0833 5.83809 6276.28 156.5 37.5 6.12372 6255.03
153.167 34.1666 5.84522 6275.06 156.583 37.5833 6.13052 6255.03
153.25 34.25 5.85235 6275.97 156.667 37.6666 6.13731 6255.03
153.333 34.3333 5.85946 6275.97 156.75 37.75 6.1441 6254.12
153.417 34.4166 5.86656 6273.49 156.833 37.8333 6.15088 6254.12
153.5 34.5 5.87367 6275.06 156.917 37.9166 6.15764 6251.64
153.583 34.5833 5.88076 6271.05 157 38 6.16441 6253.81
153.667 34.6666 5.88783 6273.84 157.083 38.0833 6.17117 6250.42
153.75 34.75 5.89491 6273.49 157.167 38.1666 6.17791 6250.42
153.833 34.8333 5.90198 6272.58 157.25 38.25 6.18466 6248.85
153.917 34.9166 5.90903 6268.88 157.333 38.3333 6.19139 6250.11
154 35 5.91608 6271.05 157.417 38.4166 6.19811 6247.63
154.083 35.0833 5.92312 6271.05 157.5 38.5 6.20484 6250.11
154.167 35.1666 5.93014 6271.36 157.583 38.5833 6.21155 6249.19
154.25 35.25 5.93717 6268.57 157.667 38.6666 6.21825 6247.63
154.333 35.3333 5.94418 6266.13 157.75 38.75 6.22495 6249.19
154.417 35.4166 5.95118 6267.66 157.833 38.8333 6.23164 6247.63
154.5 35.5 5.95819 6265.18 157.917 38.9166 6.23832 6246.41
154.583 35.5833 5.96518 6268.88 158 39 6.245 6243.01
154.667 35.6666 5.97215 6267.66 158.083 39.0833 6.25166 6243.01
154.75 35.75 5.97913 6263.65 158.167 39.1666 6.25832 6244.23
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154.833 35.8333 5.98609 6267.66 158.25 39.25 6.26498 6245.49
154.917 35.9166 5.99304 6263.96 158.333 39.3333 6.27163 6247.63
155 36 6 6265.18 158.417 39.4166 6.27826 6241.79
155.083 36.0833 6.00694 6265.18 158.5 39.5 6.2849 6241.49
155.167 36.1666 6.01387 6259.95 158.583 39.5833 6.29153 6240.53
155.25 36.25 6.0208 6261.17 158.667 39.6666 6.29814 6241.49
155.333 36.3333 6.02771 6262.74 158.75 39.75 6.30476 6238.09
155.417 36.4166 6.03462 6262.74 158.833 39.8333 6.31136 6240.53
155.5 36.5 6.04152 6262.74 158.917 39.9166 6.31796 6239.31
155.583 36.5833 6.04841 6259.04 159 40 6.32456 6240.23
155.667 36.6666 6.05529 6257.82 159.083 40.0833 6.33114 6239.01
155.75 36.75 6.06218 6260.26 159.167 40.1666 6.33771 6238.09
155.833 36.8333 6.06905 6260.26 159.25 40.25 6.34429 6235.61
155.917 36.9166 6.0759 6259.95 159.333 40.3333 6.35085 6236.57
159.417 40.4166 6.3574 6234.39 162.833 43.8333 6.62067 6219.59
159.5 40.5 6.36396 6237.79 162.917 43.9166 6.62696 6216.85
159.583 40.5833 6.3705 6236.57 163 44 6.63325 6219.59
159.667 40.6666 6.37704 6236.87 163.083 44.0833 6.63953 6216.85
159.75 40.75 6.38357 6236.87 163.167 44.1666 6.6458 6214.37
159.833 40.8333 6.39009 6235.31 163.25 44.25 6.65207 6218.07
159.917 40.9166 6.39661 6233.17 163.333 44.3333 6.65833 6218.07

160 41 6.40312 6235.61 163.417 44.4166 6.66458 6214.67
160.083 41.0833 6.40963 6234.09 163.5 44.5 6.67083 6214.37
160.167 41.1666 6.41612 6232.87 163.583 44.5833 6.67707 6215.93

160.25 41.25 6.42262 6234.39 163.667 44.6666 6.68331 6214.67
160.333 41.3333 6.4291 6231.91 163.75 44.75 6.68954 6215.93
160.417 41.4166 6.43557 6233.17 163.833 44.8333 6.69577 6214.37

160.5 41.5 6.44205 6229.47 163.917 44.9166 6.70198 6214.67

160.583 41.5833 6.44851 6230.69 164 45 6.7082 6212.23
160.667 41.6666 6.45497 6234.09 164.083 45.0833 6.71441 6215.93
160.75 41.75 6.46142 6231.91 164.167 45.1666 6.72061 6213.45
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Table C-3C G-fiinction and diagnostic functions - case M3

G{ùJD^a] P . P^FIT X { n ) Y{n) Y(n)F!T

Psi psi
0 6.96E+03 6.96E+03 0 0.267164 0.267164

1.3968 6.67E+03 6.65E+03 4.74E-10 0.59032 0.5827846
1.403172 6.67E+03 6.65E+03 6.38E-10 0.656819 0.6915174
1.409452 6.66E+03 6.64E+03 7.32E-10 0.71551 0.7542616
1.415658 6.66E+03 6.64E+03 8.12E-10 0.768329 0.8072574
1.421783 6.66E+03 6.64E+03 8.82E-10 0.816438 0.8541919
1.427843 6.65E+03 6.64E+03 9.46E-10 0.860906 0.896801

1.43385 6.65E+03 6.64E+03 l.OlE-09 0.902366 0.9360617
1.439793 6.65E+03 6.64E+03 1.06E-09 0.940885 0.972342
1.445684 6.64E+03 6.64E+03 l.llE -09 0.977368 1.0064393
1.451531 6.64E+03 6.63E-I-03 1.16E-09 1.011757 1.0384601
1.457324 6.64E+03 6.63E+03 1.2E-09 1.044122 1.0685602
1.463073 6.64E+03 6.63E+03 1.25E-09 1.075213 1.0973271
1.468786 6.64E+03 6.63E+03 1.29E-09 1.10479 1.1246505

1.47445 6.63E+03 6.63E+03 1.33E-09 1.132936 1.1506421
1.480076 6.63E+03 6.63E+03 1.36E-09 1.159866 1.1754823
1.48567 6.63E+03 6.63E+03 1.4E-09 1.185957 1.1994773
1.49122 6.63E+03 6.63E+03 1.44E-09 1.210819 1.2223715

1.496735 6.63E+03 6.62E+03 1.47E-09 1.23484 1.244459
1.502223 6.62E+03 6.62E+03 1.5E-09 1.257899 1.265676

1.50767 6.62E+03 6.62E+03 1.53E-09 1.27992 1.2859811
1.513086 6.62E+03 6.62E+03 1.56E-09 1.301477 1.3058111
1.518476 6.62E+03 6.62E+03 1.59E-09 1.32261 1.3252025

1.52383 6.62E+03 6.62E+03 1.62E-09 1.342683 1.3436914
1.529154 6.62E+03 6.62E+03 1.64E-09 1.36198 1.3614981
1.534456 6.61E+03 6.62E+03 1.67E-09 1.380727 1.3788064
1.539723 6.61E+03 6.61E+03 1.7E-09 1.399205 1.3958337
1.544963 6.61E+03 6.61E+03 1.72E-09 1.417219 1.4124285
1.550182 6.61E+03 6.61E+03 1.74E-09 1.434271 1.4282199
1.555368 6.61E+03 6.61E+03 1.77E-09 1.450803 1.4435628
1.560529 6.61E+03 6.61E+03 1.79E-09 1.466981 1.4585775
1.565671 6.61E+03 6.61E+03 1.81E-09 1.483463 1.4737713
1.570783 6.60E+03 6.61E+03 1.83E-09 1.498473 1.4877811

1.57587 6.60E+03 6.61E+03 1.86E-09 1.513665 1.5018887
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1.58094 6.60E+03 6.61E+03 1.88E-09 1.528847 1.5159437
1.585981 6.60E+03 6.60E+03 1.9E-09 1.54232 1.5286384
1.590999 6.60E+03 6.60E+03 1.91E-09 1.556257 1.5416664
1.596001 6.60E+03 6.60E+0' 1.93E-09 1.570032 1.5545341
1.600976 6.60E+03 6.60E+03 1.95E-09 1.583194 1.5668927
1.605929 6.60E+03 6.60E+03 1.97E-09 1.596463 1.5793045
1.610867 6.59E+03 6.60E+03 1.99E-09 1.608843 1.5909928
1.615778 6.59E+03 6.60E+03 2.01E-09 1.620877 1.602393
1.620669 6.59E+03 6.60E+03 2.02E-09 1.632982 1.6138284
1.625546 6.59E+03 6.59E+03 2.04E-09 1.644827 1.6250362
1.630397 6.59E+03 6.59E+03 2.06E-09 1.65652 1.6361049

1.63523 6.59E+03 6.59E+03 2.07E-09 1.667451 1.6465534
1.640049 6.59E+03 6.59E+03 2.09E-09 1.678578 1.6571429
1.644843 6.59E+03 6.59E+03 2.1E-09 1.689079 1.6672233
1.649619 6.58E+03 6.59E+03 2.12E-09 1.699636 1.6773349
1.654383 6.58E+03 6.59E+03 2.13E-09 1.710304 1.6875178
1.659123 6.58E+03 6.59E+03 2.15E-09 1.720135 1.6970225
1.663846 6.58E+03 6.59E+03 2.16E-09 1.730017 1.7065591
1.668557 6.58E+03 6.59E+03 2.18E-09 1.73916 1.7154988
1.673245 6.58E+03 6.58E+03 2.19E-09 1.748812 1.7248404
1.677917 6.58E+03 6.58E+03 2.2E-09 1.758045 1.7338339
1.682577 6.58E+03 6.58E+03 2.22E-09 1.767388 1.742904
1.687216 6.58E+03 6.58E+03 2.23E-09 1.776612 1.7518696
1.691838 6.57E+03 6.58E+03 2.24E-09 1.784407 1.7596844
1.69645 6.57E+03 6.58E+03 2.26E-09 1.792886 1.768051
1.70104 6.57E+03 6.58E+03 2.27E-09 1.801754 1.7767218

1.705615 6.57E+03 6.58E+03 2.28E-09 1.809662 1.7846098
1.710181 6.57E+03 6.58E+03 2.29E-09 1.817682 1.7925851
1.714725 6.57E+03 6.57E+03 2.3E-09 1.82594 1.8007487
1.719255 6.57E+03 6.57E+03 2.32E-09 1.833206 1.808105
1.723775 6.57E+03 6.57E+03 2.33E-09 1.84068 1.815631
1.728276 6.57E+03 6.57E+03 2.34E-09 1.847866 1.8229241
1.732761 6.57E+03 6.57E+03 2.35E-09 1.855133 1.8302797
1.737239 6.56E+03 6.57E+03 2.36E-09 1.862535 1.8377405
1.741696 6.56E+03 6.57E+03 2.37E-09 1.868922 1.8443773

1.74614 6.56E+03 6.57E+03 2.38E-09 1.876544 1.8520132
1.750575 6.56E+03 6.57E+03 2.39E-09 1.88326 1.8589062
1.754991 6.56E+03 6.57E+03 2.4E-09 1.888953 1.864972
1.759394 6.56E+03 6.56E+03 2.41E-09 1.896514 1.8725586
1.763789 6.56E+03 6.56E+03 2.42E-09 1.902462 1.8788221
1.768166 6.56E+03 6.56E+03 2.43E-09 1.907799 1.8845963
1.772529 6.56E+03 6.56E+03 2.44E-09 1.91446 1.8914561
1.776885 6.56E+03 6.56E+03 2.45E-09 1.920789 1.8980357
1.781223 6.56E+03 6.56E+03 2.46E-09 1.926538 1.9041388
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1.785547 6.55E+03 6.56E+03 2.47E-09 1.931795 1.9098439
1.789866 6.55E+03 6.56E+03 2.48E-09 1.937867 1.9162198
1.794166 6.55E+03 6.56E+03 2.49E-09 1.943833 1.9225039
1.798454 6.55E+03 6.56E+03 2.5E-09 1.948674 1.9278636
1.802736 6.55E+03 6.55E+03 2.5E-09 1.953807 1.9334721

1.807 6.55E+03 6.55E+03 2.51E-09 1.958864 1.9390228
1.811252 6.55E+03 6.55E+03 2.52E-09 1.964749 1.945251
1.815498 6.55E+03 6.55E+03 2.53E-09 1 969536 1.9505721
1.819726 6.55E+03 6.55E+03 2.54E-09 1.974101 1.9557154
1.823944 6.55E+03 6.55E+03 2.55E-09 1.97952 1.9615676
1.828155 6.55E+03 6.55E+03 2.55E-09 1.983926 1.9665785
1.832349 6.54E+03 6.55E+03 2.56E-09 1.988835 1.972012
1.836533 6.54E+03 6.55E+03 2.57E-09 1.993259 1.9770442

1.84071 6.54E+03 6.55E+03 2.58E-09 1.997939 1.9822907
1.844872 6.54E+03 6.55E+03 2.58E-09 2.002295 1.987271
1.849023 6.54E+03 6.54E+03 2.59E-09 2.006869 1.9924323
1.853167 6.54E+03 6.54E+03 2.6E-09 2.011124 1.9973314
1.857296 6.54E+03 6.54E+03 2.61E-09 2.014373 2.0013999
1.861414 6.54E+03 6.54E+03 2.61E-09 2.019274 2.0068501
1.865528 6.54E+03 6.54E+03 2.62E-09 2.023053 2.0113618
1.869625 6.54E+03 6.54E+03 2.63E-09 2.027133 2.0161285
1.873713 6.54E+03 6.54E+03 2.63E-09 2.030712 2.0204818
1.877795 6.54E+03 6.54E+03 2.64E-09 2.03473 2.0252019
1.881861 6.53E+03 6.54E+03 2.65E-09 2.039853 2.0308437
1.885918 6.53E+03 6.54E+03 2.66E-09 2.042244 2.0341967

1.88997 6.53E+03 6.53E+03 2.66E-09 2.044986 2.0378639
1.894007 6.53E+03 6.53E+03 2.67E-09 2.049459 2.0429866
1.898035 6.53E+03 6.53E+03 2.67E-09 2.052872 2.0472142
1.902057 6.53E+03 6.53E+03 2.68E-09 2.056401 2.0515382
1.906065 6.53E+03 6.53E+03 2.69E-09 2.059436 2.055457
1.910063 6.53E+03 6.53E+03 2.69E-09 2.062554 2.0594476
1.914057 6.53E+03 6.53E+03 2.7E-09 2.066785 2.0643753
1.918037 6.53E+03 6.53E+03 2.71E-09 2.069391 2.0679333
1.922005 6.53E+03 6.53E+03 2.71E-09 2.072081 2.0715719
1.925972 6.53E+03 6.53E+03 2.72E-09 2.074934 2.0753529
1.929924 6.53E+03 6.53E+03 2.72E-09 2.079103 2.080246
1.933866 6.52E+03 6.52E+03 2.73 E-09 2.081764 2.0838592
1.937804 6.52E+03 6.52E+03 2.73E-09 2.083191 2.0864422
1.941729 6.52E+03 6.52E+03 2.74E-09 2.086905 2.0909713
1.945644 6.52E+03 6.52E+03 2.75E-09 2.089911 2.094894
1.949556 6.52E+03 6.52E+03 2.75E-09 2.092322 2.0983116
1.953455 6.52E+03 6.52E+03 2.76E-09 2.09601 2.1028173
1.957343 6.52E+03 6.52E+03 2.76E-09 2.098152 2.106008
1.961229 6.52E+03 6.52E+03 2.77E-09 2.0999 2.1088745
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1.965102 6.52E+03 6.52E+03 2.77E-09 2.102248 2.1122668
1.968964 6.52E+03 6.52E+03 2.78E-09 2.104717 2.1157589
1.972824 6.52E+03 6.52E+03 2.78E-09 2.108319 2.1202127
1.976672 6.52E+03 6.52E+03 2.79E-09 2.110609 2.1235458

1.98051 6.52E+03 6.51E+03 2.79E-09 2.11217 2.1262626
1.984345 6.52E+03 6.51E+03 2.8E-09 2.114228 2.1294153
1.988167 6.51E+03 6.51E+03 2.8E-09 2.116835 2.1330398

1.99198 6.51E+03 6.51E+03 2.81E-09 2.11871 2.1360421
1.995791 6.51E+03 6.51E+03 2.81 E-09 2.12092 2.1393326
1.999589 6.51E+03 6.51E+03 2.82E-09 2.123458 2.1429066
2.003378 6.51E+03 6.51E+03 2.82E-09 2.125264 2.1458503
2.007165 6.51E+03 6.51E+03 2.83E-09 2.127629 2.1492792
2.010939 6.51E+03 6.51E+03 2.83E-09 2.128704 2.1516086
2.014704 6.51E+03 6.51E+03 2.84E-09 2.130823 2.1548398
2.018468 6.51E+03 6.51E+03 2.84E-09 2.133333 2.1584092
2.022219 6.51E+03 6.50E+03 2.85E-09 2.134312 2.160658
2.025962 6.51E+03 6.50E+03 2.85E-09 2.136353 2.1638354
2.029702 6.51E+03 6.50E+03 2.86E-09 2.139015 2.1675438

2.03343 6.51E+03 6.50E+03 2.86E-09 2.140286 2.1700503
2.037149 6.51E+03 6.50E+03 2.86E-09 2.140806 2.1719184
2.040868 6.50E+03 6.50E+03 2.87E-09 2.142685 2.174974
2.044574 6.50E+03 6.50E+03 2.87E-09 2.144777 2.1782099
2.048271 6.50E+03 6.50E+03 2.88E-09 2.147053 2.1816022
2.051966 6.50E+03 6.50E+03 2.88E-09 2.148138 2.1839615
2.055651 6.50E+03 6.50E+03 2.88E-09 2.149599 2.1866577
2.059326 6.50E+03 6.50E+03 2.89E-09 2.151243 2.1895129

2.063 6.50E+03 6.50E+03 2.89E-09 2.152449 2.1919887
2.066663 6.50E+03 6.49E+03 2.9E-09 2.153802 2.1946036
2.070318 6.50E+03 6.49E+03 2.9E-09 2.1544 2.1965657

2.07397 6.50E+03 6.49E+03 2.9E-09 2.156676 2.1999899
2.077612 6.50E+03 6.49E+03 2.91E-09 2.158319 2.2028591
2.081244 6.50E+03 6.49E+03 2.91 E-09 2.158243 2.2042368
2.084877 6.50E+03 6.49E+03 2.91 E-09 2.159678 2.2069435
2.088498 6.50E+03 6.49E+03 2.92E-09 2.162182 2.2105794
2.092111 6.50E+03 6.49E+03
2.095722 6.49E+03 6.49E+03
2.099323 6.49E+03 6.49E+03
2.102914 6.49E+03 6.49E+03
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Table C-3D Net pressure during injection - case M3

P. Pn
min psi min psi min psi
0.016602 2654.35 2.81665 3189.82 5.616699 3171.08
0.009972 6983.486 7.926598 7149.807 15.8433 7133.785
0.0933 6990.581 8.010002 7142.102 15.9266 7133.479
0.176636 6977.307 8.0933 7151.027 16.01 7132.564
0.259972 7008.129 8.176605 7147.327 16.0933 7131.344
0.3433 7018.887 8.260002 7154.728 16.17661 7129.779
0.426628 7063.251 8.3433 7153.507 16.26 7133.785
0.509972 7070.957 8.426598 7148.281 16.3433 7133.785
0.5933 7118.717 8.510002 7154.423 16.4266 7133.785
0.676636 7118.717 8.5933 7159.648 16.51 7128.559
0.759972 7110.401 8.676605 7151.981 16.5933 7130.085
0.8433 7127.337 8.760002 7149.502 16.67661 7128.864
0.926628 7131.344 8.8433 7151.981 16.76 7133.785
1.009972 7132.259 8.926598 7153.507 16.8433 7127.644
1.0933 7138.706 9.010002 7150.723 16.9266 7131.038
1.176636 7143.322 9.0933 7148.586 17.01 7131.344
1.259972 7147.022 9.176605 7149.502 17.0933 7119.938
1.3433 7153.202 9.260002 7148.586 17.17661 7123.638
1.426628 7155.644 9.3433 7148.281 17.26 7128.864
1.509972 7153.507 9.426598 7150.723 17.3433 7129.779
1.5933 7158.428 9.510002 7147.327 17.4266 7131.344
1.676636 7167.965 9.5933 7142.406 17.51 7122.685
1.759972 7171.665 9.676605 7146.106 17.5933 7122.685
1.8433 7169.528 9.760002 7145.802 17.67661 7127.644
1.926628 7168.308 9.8433 7143.322 17.76 7129.779
2.009972 7179.371 9.926598 7143.665 17.8433 7132.564
2.0933 7183.071 10.01 7141.186 17.9266 7128.559
2.176636 7177.845 10.0933 7148.281 18.01 7126.385
2.259972 7181.851 10.17661 7139.965 18.0933 7121.464
2.3433 7183.071 10.26 7139.965 18.17661 7124.857
2.426628 7184.292 10.3433 7135.958 18.26 7125.164
2.509972 7189.251 10.4266 7143.665 18.3433 7127.644
2.5933 7185.551 10.51 7151.027 18.4266 7118.717
2.676636 7187.992 10.5933 7148.281 18.51 7129.779
2.759972 7187.992 10.67661 7139.66 18.5933 7126.079
2.8433 7184.292 10.76 7142.406 18.67661 7122.685
2.926628 7189.251 10.8433 7143.665 18.76 7125.164
3.009972 7185.551 10.9266 7144.886 18.8433 7123.943
3.0933 7189.251 11.01 7135.958 18.9266 7122.685
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3.176636 7186.466 11.0933 7138.706 19.01 7124.857
3.259972 7188.907 11.17661 7136.265 19.0933 7123.943
3.3433 7188.907 11.26 7143.665 19.17661 7126.385
3.426628 7182.766 11.3433 7137.485 19.26 7119.022
3.509972 7181.851 11.4266 7135.006 19.3433 7120.243
3.5933 7192.913 11.51 7133.785 19.4266 7119.022
3.676636 7183.986 11.5933 7136.265 19.51 7120.243
3.759972 7182.766 11.67661 7144.581 19.5933 7122.378
3.8433 7187.992 11.76 7142.406 19.67661 7129.779
3.926628 7184.292 11.8433 7135.006 19.76 7132.564
4.009972 7184.292 11.9266 7137.485 19.8433 7125.164
4.0933 7181.851 12.01 7137.18 19.9266 7127.337
4.176636 7180.286 12.0933 7143.322 20.01 7124.857
4.259972 7181.851 12.17661 7135.958 20.0933 7127.644
4.3433 7178.15 12.26 7133.785 20.17661 7128.559
4.426628 7180.592 12.3433 7132.564 20.26 7123.638
4.509972 7178.15 12.4266 7139.965 20.3433 7122.685
4.5933 7176.624 12.51 7141.186 20.4266 7124.857
4.676636 7174.145 12.5933 7139.965 20.51 7127.644
4 759972 7175.671 12.67661 7136.265 20.5933 7125.164
4.8433 7176.624 12.76 7135.958 20.67661 7119.022
4.926598 7178.15 12.8433 7139.66 20.76 7124.857
5.010002 7170.444 12.9266 7141.186 20.8433 7122.378
5.0933 7171.97 13.01 7136.265 20.9266 7128.864
5.176605 7170.749 13.0933 7138.706 21.01 7116.237
5.260002 7171.97 13.17661 7138.706 21.0933 7121.464
5.3433 7169.224 13.26 7138.706 21.17661 7115.017
5.426598 7168.308 13.3433 7136.265 21.26 7121.158
5.510002 7164.607 13.4266 7133.785 21.3433 7121.158
5.5933 7170.749 13.51 7137.485 21.4266 7123.638
5.676605 7171.97 13.5933 7137.485 21.51 7122.378
5.760002 7166.744 13.67661 7138.706 21.5933 7115.017
5.8433 7164.303 13.76 7140.881 21.67661 7119.022
5.926598 7166.744 13.8433 7135.958 21.76 7122.378
6.010002 7162.128 13.9266 7138.706 21.8433 7120.243
6.0933 7161.823 14.01 7133.785 21.9266 7125.164
6.176605 7165.523 14.0933 7134.7 22.01 7119.938
6.260002 7163.044 14.17661 7134.7 22.0933 7116.543
6.3433 7154.728 14.26 7138.706 22.17661 7116.543
6.426598 7149.807 14.3433 7140.881 22.26 7122.685
6.510002 7148.281 14.4266 7133.785 22.3433 7123.943
6.5933 7154.423 14.51 7132.259 22.4266 7123.943
6.676605 7149.502 14.5933 7133.479 22.51 7115.322
6.760002 7143.322 14.67661 7135.006 22.5933 7115.322
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6.8433 7142.406 14.76 7136.265 22.67661 7112.843
6.926598 7143.322 14.8433 7136.265 22.76 7115.322
7.010002 7138.706 14.9266 7135.006 22.8433 7111.622
7.0933 7146.106 15.01 7131.038 22.9266 7115.322
7.176605 7147.022 15.0933 7135.006 23.01 7108.836
7.260002 7142.406 15.17661 7134.7 23.0933 7107.922
7.3433 7135.958 15.26 7130.085 23.17661 7103
7.426598 7142.102 15.3433 7133.479 23.26 7103
7.510002 7143.665 15.4266 7127.644 23.3433 7099.3
7.5933 7141.186 15.51 7129.779 23.4266 7098.995
7.676605 7144.581 15.5933 7130.085 23.51 7094.378
7.760002 7143.665 15.67661 7132.259
7.8433 7148.586 15.67661 7132.259
7.926598 7149.807 15.76 7137.485

Table C-3E Synthesis o f computed fluid and reservoir properties - case M3

& W Q V

f t f t !  p si f t in 7?/Vmin % -  m in ) / ft md

- 7 .6 E -0 2 2 .0 4 E - 0 5 143 7 .6 1 E -0 1 1 .3 6 E -0 2 4 5 .7 1 .7 1 E + 0 4 1 1 .2
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Table C-4A - Input parameters - case M4

Parameter Description Units Value
(t> Reservoir porosity fraction 0.23

reserve total compressibility I/psi 5.6e-6

Mr reservoir fluid viscosity cp 1.6

M f fracture fluid viscosity cp 202

V, vol. o f  injected fluid gal 2I3I5

K permeable height ft 120

fracture height ft 120

pumping time min 35

K fracture closure time min 42

Pc closure pressure psi 5225

p . Initial reservoir pressure psi 3685

ISIP Initial shut-in pressure psi 5995

E Young's Modulus psi 5.56E+06

u Poisson's ratio fraction 0.27

E' Plain-strain modulus psi 6.0E+06

Fracture area - power law exponent

a RAD Model 8/9

n' flow behavior index fraction 0.5

K ' Ratio of shear stress to shear rate Lbfs“ Vft^ 0.064

P rad Average pressure ratio (wellbore-tip) 0.925
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Table C-4B Fall off time - pressure data - case M4

fall-off 4 d t K
min Vmin Psi

0.9 0.948683 5963
3.7 1.923538 5882
6.5 2.54951 5811
9.2 3.03315 5748
12 3.464102 5694
13.8 3.714835 5659
15.7 3.962323 5626
17.5 4.1833 5594
19.4 4.404543 5564
21.2 4.604346 5534
23 4.795832 5504
24.9 4.98999 5474
26.7 5.167204 5447
28.6 5.347897 5418
30.4 5.51362 5392
32.3 5.683309 5364
34.1 5.839521 5338
36 6 5314
37.8 6.14817 5291
39.6 6.292853 5269
41.5 6.442049 5247
43.3 6.580274 5228
46.1 6.789698 5200
48.9 6.992853 5174
51.6 7.183314 5148
54.4 7.375636 5126
57.2 7.563068 5106
59.9 7.739509 5087
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Table C-4C G-fiinction and diagnostic functions - case M4

c(A r^ .a ) P . P^FIT Y(n)FIT

Psi psi
0 6745.498 6745.498 0 1.828608 46508570
1.37689 5989.999 5960.788 l.OOE-09 2.303078 46508570
1.421438 5963.001 5935.4 1.47E-09 2.41817 46508570
1.542574 5882 5866.363 1.68E-09 2.504679 46508570
1.650304 5811 5804.966 1.79E-09 2.479944 46508570
1.746017 5748 5750.417 1.93 E-09 2.538408 46508570
1.838923 5693.999 5697.469 2.09E-09 2.659932 46508570
1.895852 5659 5665.024 2.28E-09 2.78311 46508570
1.953901 5626 5631.941 2.42E-09 2.849542 46508570
2.007165 5594 5601.585 2.48E-09 2.810671 46508570
2.061743 5564 5570.481 2.66E-09 2.951774 46508570
2.112029 5533.999 5541.822
2.161051 5504 5513.883
2.211533 5474 5485.113
2.258248 5447 5458.489
2.306472 5418 5431.006

Table C-4D Pressure derivative data -  case M4

F (t) p'o ■ H i f F (t) F i t f Pn ■ P {‘ f
0.85242 0.72662 -22.116 0.43499 0.18921 -6.0366
0.72639 0.52765 -17.759 0.42602 0.18149 -5.6786
0.65796 0.43291 -15.159 0.41803 0.17475 -5.3635
0.61107 0.37341 -13.295 0.41009 0.16818 -5.0538
0.57328 0.32865 -11.754 0.40299 0.1624 -4.7802
0.55288 0.30567 -10.911 0.39625 0.15702 -4.5243
0.53381 0.28495 -10.118 0.38951 0.15172 -4.2716
0.51764 0.26795 -9.4443 0.38344 0.14703 -4.0475
0.50221 0.25221 -8.8008 0.37455 0.14029 -3.7257
0.48889 0.23901 -8.2466 0.36626 0.13415 -3.4332
0.47666 0.2272 -7.739 0.35878 0.12873 -3.1759
0.46475 0.216 -7.2477 0.3515 0.12355 -2.9321
0.45431 0.2064 -6.8195 0.34466 0.11879 -2.7092
0.44405 0.19718 -6.4023 0.33843 0.11453 -2.5122
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Table C-4E Synthesis of computed fluid and reservoir properties - case M4

R f
W Q 1 K

f i  / psi f t in y?/Vmin % -  m i n ) / / f md

- l .O lE - 0 2 4 .2 4 E - 0 5 175 3 .6 4 E -O I 2 .0 1 E - 0 2 4 8 .4 8 3 .0 5 E + 0 5 1 7 .7
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Table C-5 A - Input parameters - case M5

Parameter Description Units Value
Reservoir porosity fraction 0.41

Cr reserve total compressibility I/psi 6.1e-6

reservoir fluid viscosity cp 1.6

fracture fluid viscosity cp 208

V. vol. of injected fluid gal 23000

K permeable height ft 95

fracture height ft 95

pumping time min 18

K fracture closure time min 19.26

Pc closure pressure psi 5816

p. Initial reservoir pressure psi 4930

ISIP Initial shut-in pressure psi 6040

E Young's Modulus psi 6.0E+05

u Poisson's ratio fraction 0.27

E' Plain-strain modulus psi 6.5+05

Fracture area - power law exponent

a KGD Model 2/3

n ’ flow behavior index fraction 0.55

K ' Ratio of shear stress to shear rate Lbfs^Vft-^ 0.0618

P kgd Average pressure ratio (wellbore-tip) 0.9
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Table C-5B Fall off time - pressure data - case M5

t ^  faU-off 4 d t K t fall-off- v ^ P .
min min Vmin Psi min min Vmin Psi

196.078 0.07843 0.28005 5970.25 220.085 24.0851 4.90766 5742.93
196.25 0.25009 0.50009 6030.99 220.245 24.2451 4.92393 5740.41

196.412 0.41174 0.64167 6105.07 220.417 24.4168 4.94133 5737.75
196.583 0.58347 0.76385 6056.7 220.577 24.5767 4.95749 5735.14
196.743 0.74342 0.86222 6034.18 220.749 24.7485 4.97479 5732.29
196.915 0.91509 0 9566 6030.75 220.918 24.9185 4.99184 5729.75
197.087 1.08675 1.04247 6019.69 221.078 25.0785 5.00784 5731.45
197.247 1.24676 1.11659 6017.2 221.25 25.2501 5.02495 5726.48
197.418 1.41843 1.19098 6020.38 221.41 25.4101 5.04084 5724.33
197.578 1.57845 1.25636 6014.13 221.582 25.5818 5.05784 5720.86
197.75 1.75011 1.32292 6010.1 221.73 25.7301 5.07249 5718.7

197.912 1.91174 1.38266 6006.58 221.913 25.9134 5.09052 5716.39
198.083 2.08345 1.44342 6003.38 222.085 26.0851 5.10736 5713.49
198.255 2.25511 1.5017 6000.27 222.245 26.2451 5.123 5710.86
198.415 2.41507 1.55405 5998.52 222.417 26.4168 5.13972 5708.2
198.587 2.58673 1.60833 5994.41 222.577 26.5768 5.15527 5705.89
198.747 2.74675 1.65733 5992.17 222.748 26.7484 5.17189 5705.68
198.918 2.91841 1.70834 5991.39 222.918 26.9184 5.1883 5701.45
199.078 3.07845 1.75455 5987.37 223.078 27.0784 5.20369 5698.99
199.238 3.23846 1.79957 5985.2 223.25 27.2501 5.22016 5695.94
199.41 3.41013 1.84665 5983.27 223.41 27.4101 5.23547 5692.88

199.582 3.58179 1.89256 5981.13 223.582 27.5818 5.25184 5694.87
199.743 3.74342 1.93479 5979.22 223.753 27.7534 5.26815 5688.71
199.915 3.91508 1.97866 5976.95 223.913 27.9135 5.28332 5686.78
200.087 4.08675 2.02157 5974.8 224.085 28.0851 5.29954 5682.97
200.247 4.24676 2.06077 5973.12 224.245 28.2451 5.31461 5680.29
200.418 4.41843 2.10201 5971.15 224.417 28.4167 5.33074 5677.65
200.578 4.57843 2.13973 5969.44 224.587 28.5868 5.34666 5674.71
200.75 4.75009 2.17947 5967.52 224.747 28.7467 5.3616 5671.87
200.91 4.91011 2.21588 5965.41 224.918 28.9184 5.37759 5669.85

201.082 5.08177 2.25428 5963.55 225.078 29.0784 5.39244 5670.86
201.253 5.25343 2.29204 5961.72 225.25 29.2501 5.40833 5666.32
201.413 5.41345 2.32668 5960.39 225.41 29.4101 5.42311 5663.45
201.587 5.58673 2.36363 5958.09 225.582 29.5817 5.43891 5659.93
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201.747 5.74676 2.39724 5955.85 225.753 29.7534 5.45467 5657.12
201.918 5.91843 2.43278 5953.82 225.913 29.9135 5.46932 5654.81
202.078 6.07844 2.46545 5951.92 226.083 30.0834 5.48484 5651.06
202.25 6.25011 2.50002 5949.91 226.255 30.2551 5.50046 5647.79
202.41 6.41013 2.53182 5948.37 226.415 30.4151 5.51499 5645.03

202.582 6.58179 2.5655 5946.15 226.587 30.5868 5.53053 5642.23
202.753 6.75345 2.59874 5944.14 226.747 30.7468 5.54498 5641.77
202.913 6.91347 2.62935 5942.22 226.918 30.9184 5.56044 5640.08
203.085 7.08513 2.66179 5942.48 227.078 31.0785 5.57481 5636.23
203.245 7.24509 2.69167 5938.75 227.248 31.2484 5.59003 5633.45
203.417 7.41675 2.72337 5936.85 227.42 31.4201 5.60536 5630.52
203.578 7.57843 2.7529 5934.91 227.58 31.5801 5.61962 5627.75
203.75 7.75009 2.7839 5932.77 227.752 31.7518 5.63487 5626.71

203.922 7.92175 2.81456 5930.79 227.912 31.9117 5.64905 5622.8
204.082 8.08177 2.84285 5928.8 228.083 32.0835 5.66423 5620.73
204.253 8.25343 2.87288 5926.6 228.243 32.2434 5.67833 5617.85
204.413 8.41345 2.9006 5924.7 228.413 32.4135 5.69328 5615.8
204.585 8.58512 2.93004 5924.71 228.585 32.5851 5.70834 5613.41
204.745 8.74507 2.95721 5921.37 228.745 32.7451 5.72233 5611.11
204.917 8.91673 2.98609 5919.13 228.917 32.9167 5.73731 5608.57
205.077 9.07676 3.01277 5917.15 229.077 33.0768 5.75124 5607.25
205.248 9.24841 3.04112 5914.63 229.248 33.2484 5.76615 5608.32
205.42 9.42007 3.06921 5912.57 229.418 33.4185 5.78087 5605.32
205.58 9.58011 3.09518 5913.89 229.578 33.5784 5.79469 5603.31

205.752 9.75175 3.12278 5908.54 229.75 33.7501 5.80948 5600.88
205.913 9.91346 3.14856 5907.37 229.91 33.9101 5.82324 5598.8
206.085 10.0851 3.17571 5905.29 230.082 34.0818 5.83796 5596.41
206.245 10.2451 3.2008 5903.42 230.253 34.2534 5.85264 5594.67
206.417 10.4167 3.2275 5901.39 230.413 34.4134 5.8663 5592.84
206.577 10.5768 3.25219 5899.89 230.583 34.5834 5.88077 5590.56
206.748 10.7484 3.27848 5899.02 230.743 34.7434 5.89436 5588.76
206.92 10.9201 3.30455 5896.74 230.915 34.9151 5.9089 5586.32
207.08 11.0801 3.32868 5894.85 231.087 35.0868 5.92341 5584.58

207.252 11.2518 3.35436 5892.58 231.247 35.2468 5.9369 5585.34
207.412 11.4118 3.37813 5890.63 231.417 35.4167 5.9512 5582.18
207.583 11.5834 3.40345 5888.8 231.577 35.5768 5.96463 5580.63
207.755 11.7551 3.42857 5887.42 231.748 35.7485 5.979 5578.45
207.903 11.9034 3.45013 5885.63 231.92 35.9201 5.99334 5576.21
208.087 12.0868 3.4766 5883.77 232.08 36.0801 6.00668 5574.71
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208.247 12.2467 3.49953 5881.8 232.252 36.2518 6.02095 5572.84
208.407 12.4068 3.52232 5880.08 232.41 36.4101 6.03408 5571.16
208.578 12.5784 3.54661 5877.97 232.582 36.5818 6.04829 5569.22
208.75 12.7501 3.57073 5876.27 232.753 36.7534 6.06246 5568.24

208.922 12.9217 3.59468 5876.07 232.913 36.9135 6.07565 5566.08
209.083 13.0834 3.61711 5873.64 233.085 37.0851 6.08976 5564.85
209.243 13.2435 3.63916 5871.79 233.243 37.2435 6.10274 5563.38
209.415 13.4151 3.66267 5869.73 233.415 37.4151 6.11679 5561.9
209.587 13.5868 3.68602 5867.91 233.587 37.5868 6.13081 5560.13
209.1A1 13.7468 3.70766 5866.83 233.747 37.7467 6.14384 5558.69
209.918 13.9185 3.73075 5864.66 233.918 37.9185 6.1578 5557.01
210.078 14.0784 3.75212 5863.09 234.077 38.0767 6.17064 5555.82
210.25 14.2501 3.77493 5860.8 234.248 38.2485 6.18454 5553.99
210.41 14.4101 3.79606 5860.65 234.42 38.4201 6.1984 5552.71

210.582 14.5818 3.81861 5858.05 234.58 38.5801 6.21129 5551.25
210.753 14.7534 3.84102 5855.97 234.752 38.7517 6.22509 5549.76
210.913 14.9134 3.86179 5853.86 234.91 38.9101 6.2378 5548.39
211.085 15.0851 3.88395 5852.02 235.082 39.0818 6.25154 5546.84
211.245 15.2451 3.9045 5849.77 235.253 39.2535 6.26526 5545.5
211.417 15.4168 3.92642 5848.21 235.413 39.4134 6.27801 5544.17
211.577 15.5767 3.94674 5850.62 235.585 39.5851 6.29167 5542.67
211.748 15.7485 3.96843 5845.1 235.743 39.7434 6.30424 5541.3
211.92 15.9201 3.99 5843.75 235.915 39.9151 6.31784 5540.11
212.08 16.0801 4.01 5841.89 236.087 40.0867 6.33141 5538.62

212.252 16.2517 4.03134 5839.3 236.247 40.2468 6.34403 5537.28
212.412 16.4118 4.05114 5837.56 236.417 40.4167 6.35741 5535.76
212.583 16.5834 4.07228 5835.41 236.577 40.5768 6.36999 5534.26
212.743 16.7434 4.09188 5833.47 236.748 40.7484 6.38345 5532.75
212.915 16.9151 4.1128 5835 236.92 40.9201 6.39688 5531.48
213.087 17.0868 4.13361 5830.4 237.08 41.0801 6.40938 5530.04
213.247 17.2468 4.15293 5828.84 237.25 41.2502 6.42263 5528.8
213.418 17.4184 4.17354 5826.61 237.398 41.3985 6.43416 5527.02
213.578 17.5785 4.19267 5824.52 237.582 41.5818 6.4484 5525.98
213.75 17.7501 4.21309 5823.42 237.753 41.7534 6.46169 5524.6
213.91 17.9101 4.23203 5820.3 237.913 41.9135 6.47406 5523.3

214.082 18.0817 4.25226 5818.37 238.072 42.0718 6.48628 5522.15
214.253 18.2535 4.27241 5816.53 238.243 42.2434 6.4995 5520.81
214.413 18.4134 4.29109 5814.16 238.415 42.4151 6.51269 5519.7
214.585 18.5851 4.31104 5812.21 238.587 42.5868 6.52585 5518.16
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214.745 18.7451 4.32956 5809.93 238.745 42.7452 6.53798 5517.03
214.917 18.9167 4.34934 5808.96 238.917 42.9167 6.55109 5515.63
215.077 19.0768 4.3677 5811.22 239.077 43.0768 6.56329 5514.4
215.248 19.2484 4.3873 5806.54 239.248 43.2484 6.57636 5513.08
215.42 19.4201 4.40682 5804.75 239.418 43.4184 6.58927 5511.77
215.58 19.5801 4.42494 5802.78 239.567 43.5667 6.60051 5510.65

215.752 19.7518 4.4443 5800.39 239.75 43.7501 6.61439 5509.17
215.912 19.9117 4.46226 5800.57 239.91 43.9102 6.62648 5508.07
216.083 20.0835 4.48146 5795.3 240.08 44.0801 6.63929 5506.4
216.243 20.2434 4.49927 5793.27 240.252 44.2518 6.6522 5505.5
216.415 20.4151 4.51831 5790.65 240.412 44.4118 6.66422 5504.25
216.587 20.5867 4.53726 5787.9 240.583 44.5834 6.67708 5503.18
216.747 20.7468 4.55486 5787.57 240.743 44.7434 6.68905 5501.99
216.918 20.9184 4.57367 5783.93 240.913 44.9135 6.70175 5500.66
217.078 21.0784 4.59113 5781.82 241.085 45.0852 6.71455 5499.62
217.25 21.2501 4.60978 5779.23 241.245 45.2452 6.72645 5498.48
217.41 21.4101 4.62711 5777.09 241.415 45.4151 6.73907 5497.33

217.582 21.5818 4.64562 5774.45 241.587 45.5868 6.7518 5496
217.753 21.7534 4.66406 5773.12 241.747 45.7468 6.76364 5495.02
217.913 21.9135 4.68118 5770.29 241.918 45.9185 6.77632 5493.94
218.083 22.0834 4.6993 5767.95 242.079 46.0785 6.78812 5492.88
218.243 22.2435 4.7163 5765.66 242.248 46.2484 6.80062 5491.44
218.415 22.4151 4.73446 5763.21 242.42 46.4201 6.81323 5490.51
218.587 22.5868 4.75256 5762.48 242.58 46.5801 6.82496 5488.85
218.747 22.7467 4.76935 5760.31 242.75 46.7501 6.8374 5488.05
218.918 22.9185 4.78732 5758.2 242.91 46.9101 6.8491 5486.98
219.078 23.0784 4.804 5755.95 243.082 47.0818 6.86162 5485.83
219.25 23.2501 4.82183 5753.37 243.253 47.2534 6.87411 5484.46
219.41 23.4101 4.8384 5751.23 243.412 47.4118 6.88562 5483.54

219.582 23.5818 4.85611 5748.79 243.583 47.5835 6.89808 5482.39
219.753 23.7534 4.87375 5747.39 243.744 47.7435 6.90967 5481.36
219.913 23.9134 4.89014 5745.29 243.915 47.9151 6.92208 5480.07
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Table C-5C G-flinction and diagnostic functions - case M5

g {m d ,o) P . P^FIT Y {n )F n

Psi psi
0 0 6346.16 0 0 0.87115

1.4685 6055.22 6037.32 6.7623 8E-10 1.91699 1.77113
1.48302 6049.69 6034.27 8.76065E-10 2.0353 2.03706
1.49633 6044.88 6031.47 9.75881E-10 2.13874 2.16991
1.51038 6040.03 6028.52 1.0558E-09 2.23553 2.27626
1.52423 6035.45 6025.6 1.12917E-09 2.32789 2.37391
1.53696 6031.38 6022.93 1.19091E-09 2.40825 2.45607
1.55044 6027.21 6020.09 1.25113E-09 2.4886 2.53621
1.56285 6023.48 6017.48 1.3035E-09 2.55953 2.60592

1.576 6019.62 6014.72 1.3553 lE-09 2.63093 2.67487
1.58824 6016.11 6012.14 1.40258E-09 2.69589 2.73778

1.6011 6012.51 6009.44 1.44651E-09 2.7584 2.79624
1.61382 6009.02 6006.76 1.48919E-09 2.81865 2.85304
1.62554 6005.86 6004.3 1.52721E-09 2.87266 2.90364

1.638 6002.55 6001.68 1.56573E-09 2.92768 2.95491
1.6495 5999.55 5999.26 1.59984E-09 2.97636 3.0003

1.66172 5996.41 5996.69 1.63361E-09 3.02547 3.04524
1.67301 5993.55 5994.31 1.66587E-09 3.07135 3.08818
1.68421 5990.75 5991.96 1.69666E-09 3.11507 3.12915
1.69611 5987.81 5989.46 1.72648E-09 3.15854 3.16884
1.7079 5984.93 5986.98 1.75561E-09 3.20055 3.20761

1.71892 5982.27 5984.66 1.78269E-09 3.23912 3.24364
1.73052 5979.5 5982.22 1.80909E-09 3.27774 3.27877
1.74203 5976.78 5979.8 1.83501E-09 3.3152 3.31327
1.75268 5974.29 5977.56 1.85846E-09 3.34905 3.34449
1.76401 5971.66 5975.18 1.88236E-09 3.38344 3.3763
1.77449 5969.25 5972.97 1.90394E-09 3.41437 3.40501
1.78566 5966.7 5970.62 1.92659E-09 3.44706 3.43516
1.79599 5964.36 5968.45 1.94733E-09 3.47636 3.46275

1.807 5961.89 5966.13 1.96764E-09 3.50571 3.48979
1.81793 5959.45 5963.84 1.98805E-09 3.53488 3.51694
1.82805 5957.21 5961.71 2.0066E-09 3.5614 3.54163
1.83894 5954.82 5959.42 2.02578E-09 3.5888 3.56717
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1.84892 5952.64 5957.32 2.04286E-09 3.61293 3.5899
1.85957 5950.33 5955.08 2.06069E-09 3.63814 3.61362
1.86942 5948.2 5953.01 2.07679E-09 3.66075 3.63505
1.87993 5945.95 5950.8 2.093 52E-09 3.68423 3.65732
1.88967 5943.87 5948.75 2.10902E-09 3.70552 3.67795
1.90005 5941.67 5946.57 2.12482E-09 3.72794 3.69897
1.91037 5939.49 5944.4 2 .14043E-09 3.74973 3.71974
1.91993 5937.49 5942.39 2.15451E-09 3.76923 3.73848
1.93012 5935.36 5940.24 2.16902E-09 3.7892 3.75779
1.93957 5933.39 5938.25 2.18221E-09 3.80719 3.77535
1.94965 5931.31 5936.13 2.19605E-09 3.82609 3.79376

1.9591 5929.36 5934.15 2.20894E-09 3.84333 3.81093
1.96906 5927.31 5932.05 2.22187E-09 3.86108 3.82813
1.97898 5925.29 5929.97 2.2348E-09 3.87857 3.84533
1.98817 5923.42 5928.03 2.24629E-09 3.89386 3.86063
1.99798 5921.43 5925.97 2.25813E-09 3.90947 3.87639
2.00707 5919.6 5924.06 2.26972E-09 3.92504 3.89182
2.01678 5917.64 5922.02 2.28105E-09 3.93985 3.90689
2.02578 5915.84 5920.12 2.29198E-09 3.9543 3.92143
2.03538 5913.92 5918.1 2.30299E-09 3.96863 3.93609

2.0443 5912.15 5916.23 2.31241E-09 3.98008 3.94862
2.05381 5910.26 5914.23 2.32345E-09 3.99483 3.96332
2.06327 5908.39 5912.24 2.33372E-09 4.00795 3.97699
2.07206 5906.66 5910.39 2.34285E-09 4.0193 3.98914
2.08143 5904.82 5908.42 2.35294E-09 4.03213 4.00257
2.09022 5903.1 5906.57 2.36174E-09 4.04299 4.01427
2.0995 5901.28 5904.62 2.371 lE-09 4.05457 4.02673

2.10812 5899.6 5902.81 2.3799E-09 4.06549 4.03845
2.11732 5897.82 5900.87 2.38888E-09 4.07643 4.05039
2.12586 5896.16 5899.08 2.39705E-09 4.08595 4.06127
2.13498 5894.4 5897.16 2.40573E-09 4.09668 4.07281
2.14405 5892.65 5895.25 2.41407E-09 4.10656 4.08391
2.15248 5891.04 5893.48 2.42154E-09 4.11519 4.09386
2.16147 5889.31 5891.59 2.42942E-09 4.12427 4.10435
2.16983 5887.71 5889.83 2.43679E-09 4.13242 4.11415
2.17875 5886.01 5887.95 2.44514E-09 4.14295 4.12526
2.18763 5884.32 5886.09 2.45254E-09 4.15096 4.13512
2.19527 5882.87 5884.48 2.45852E-09 4.15702 4.14308
2.20468 5881.09 5882.5 2.46698E-09 4.16746 4.15433
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2.21286 5879.54 5880.78 2.47337E-09 4.17401 4.16284
2.221 5878.01 5879.07 2.4793 8E-09 4.17984 4.17084

2.2297 5876.37 5877.24 2.48675E-09 4.18806 4.18065
2.23837 5874.74 5875.41 2.49336E-09 4.19523 4.18944

2.247 5873.12 5873.6 2.49988E-09 4.2023 4.19812
2.2551 5871.6 5871.9 2.506 lE-09 4.20856 4.2064

2.26308 5870.11 5870.22 2.51217E-09 4.21455 4.21448
2.27161 5868.52 5868.42 2.51812E-09 4.22062 4.22239
2.28011 5866.94 5866.64 2.52403E-09 4.22633 4.23025

2.288 5865.47 5864.98 2.53016E-09 4.23274 4.23842
2.29643 5863.91 5863.2 2.53564E-09 4.23773 4.24571
2.30426 5862.46 5861.56 2.54117E-09 4.24307 4.25306
2.31263 5860.91 5859.8 2.54722E-09 4.24907 4.26113
2.32041 5859.48 5858.16 2.55174E-09 4.25237 4.26714
2.32872 5857.95 5856.41 2.55742E-09 4.25797 4.27469
2.33699 5856.43 5854.67 2.56288E-09 4.26292 4.28196
2.34468 5855.02 5853.06 2.56752E-09 4.26675 4.28814

2.3529 5853.51 5851.33 2.57322E-09 4.27211 4.29572
2.36054 5852.11 5849.72 2.5781 lE-09 4.27638 4.30223

2.3687 5850.62 5848 2.58298E-09 4.28033 4.30872
2.37628 5849.24 5846.41 2.5871E-09 4.28296 4.3142
2.38439 5847.76 5844.71 2.59224E-09 4.28762 4.32103
2.39246 5846.29 5843.01 2.59698E-09 4.29132 4.32734
2.39996 5844.93 5841.43 2.60074E-09 4.29363 4.33235
2.40798 5843.47 5839.74 2.60568E-09 4.29767 4.33892
2.41544 5842.12 5838.18 2.61021E-09 4.30129 4.34495

2.4234 5840.68 5836.5 2.6143 lE-09 4.3039 4.35041
2.43081 5839.34 5834.94 2.61835E-09 4.30638 4.35578
2.43872 5837.91 5833.28 2.62279E-09 4.30983 4.36169
2.44661 5836.49 5831.62 2.62662E-09 4.31197 4.36679
2.45394 5835.16 5830.08 2.63108E-09 4.31545 4.37272
2.46178 5833.75 5828.43 2.63512E-09 4.31795 4.3781
2.46906 5832.45 5826.9 2.63872E-09 4.31998 4.38289
2.47685 5831.05 5825.26
2.48408 5829.75 5823.74
2.49182 5828.36 5822.11
2.49954 5826.98 5820.49
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Table C-5D Net pressure during injection - case M5

Pn P. P.
min psi min psi min psi
0.075012 1004.56 6.405014 1000.6 12.90001 977.5801
0.235031 959.3398 6.565033 1005.9 13.06003 980.7695
0.406693 944.5996 6.736694 1001.01 13.23337 980.2998
0.568329 969.8398 6.898315 999.2495 13.40503 981.5498
0.73999 970.0498 7.069977 996.8696 13.56667 980.5898

0.899994 968.7598 7.241638 997.8496 13.73833 982
1.071655 972.3799 7.403351 992.6094 13.89835 979.3696
1.233368 968.9697 7.575012 991.1494 14.07169 980.1094
1.405029 966.8999 7.735031 990.4697 14.23166 982.0498
1.564987 961.9199 7.908356 988.4497 14.40337 982.3198
1.736649 968.8599 8.068329 990.3296 14.565 983.9497
1.898346 973.48 8.23999 986.3999 14.73666 982.6694
2.070007 979.48 8.401688 988.5801 14.89838 988.1494
2.241669 983.4399 8.573349 987.2695 15.07004 983.96
2.401688 991.1494 8.733368 986.9097 15.23166 986.4897
2.575027 990.8599 8.906647 985.6094 15.40332 983.04
2.734985 994.1797 9.066666 986.9297 15.57498 986.7295
2.906647 997.4697 9.238327 987.02 15.73669 986.0801
3.066666 993.3198 9.400024 987.5898 15.90834 986.3896
3.240005 997.0298 9.571686 988.2695 16.06999 986.6094
3.40004 1003.22 9.731644 986.6494 16.24165 987.5698

3.571686 999.9199 9.904984 987.46 16.40167 991.2896
3.733322 1000.2 10.065 989.8296 16.575 995.2197
3.904984 997.48 10.23666 990.1895 16.73503 991 3696
4.065002 993.98 10.39836 987.8198 16.90837 990.2798
4.236664 986.02 10.57002 983.52 17.06833 996.3096
4.398376 982.54 10.74168 985.1196 17.24167 995.7397
4.570023 975.5698 10.90332 983.8198 17.40169 996.4697
4.741684 970.6797 11.07498 981.8799 17.57333 993.4297
4.901642 966.6494 11.235 977.6494 17.73499 997.2197
5.074997 960.1494 11.40836 978.0698 17.90665 997.8599
5 235016 958.1396 11.56838 977.1797 18.06834 999.4697
5.406677 955.4297 11.74004 980.2798 18.24001 994.8398
5.566681 961.3896 11.90166 977.5801 18.40166 995.2397
5.740021 972.1494 12.06168 973 18.57336 997.3496
5.899979 978.7695 12.23503 976.1597 18.735 991.9297
6.07164 985.54 12.40669 979.98 18.90666 992.9697

6.233353 992.3096 12.56665 977.0098 19.06838 993.2998
6.405014 1000.6 12.73999 980.1597 19.24004 986.1597
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Table C-5E Synthesis of computed fluid and reservoir properties - case M3

s . W Q 1 Ro k r

gal i  100 f t f t  ! psi f i in
f t !  4mm % (^psi -  m in )/ ft md

SPURT LOSS IDENTIFIED
4.4 2.83 E-04 139 6.62 E-01 8.21 E-03 42.2 1.03 E-K)5 1.03

NO SPURT LOSS ASSUMPTION
0.0 2.83 E-04 144 6.86 E-01 8.51 E-03 47.2 9.98 E+04 I.II

Table C-5F Synthesis and comparison of computed fluid and reservoir properties 
obtained from the old and new model

-fy W Q n K K

galnOQft^ f t  / psi f t in
f t  / vmin % {^pst -  m in )/ ft md

Case Ml - New Model
NO SPURT LOSS ASSUMPTION

-6.8E-03 8.99 E-05 66.2 2.81 E-01 I.I8E-02 61.6 6.95E-K03 19.5
Case Ml - Old Model

NO SPURT LOSS ASSUMPTION
0 9.72 E-05 52.5 2.24 E-01 6.46 E-03 61.5 <0 6.9

Case M2 - Mew Model
NO SPURT LOSS ASSUMPTION

-3.31E-02 9.05 E-05 66.6 5.53E-01 3.4E-02 23.7 3.88E-H)3 18.9
Case M2 - Old Model

NO SPURT LOSS ASSUMPTION
0 9.78 E-05 52.8 4.4 E-01 1.49 E-02 23.5 4.13 E-H)4 10.3

Case M3 -  New Model
NO SPURT LOSS ASSUMPTION

-7.6E-02 2.83 E-04 143 7.6 IE-01 1.36 E-02 45.7 I.7IE-H04 11.2
Case M3 - Old Model

NO SPURT LOSS ASSUMPTION
0 2.68 E-04 120 6.56 E-01 1.25 E-02 34.6 <0 6.3

Case M4 -  New Model
NO SPURT LOSS ASSUMPTION

-1.0 IE-02 4.53 E-05 175 3.64E-01 2.0 IE-02 48.4 3.05E-K)5 17.7
Case M4 - Old Model

NO SPURT LOSS ASSUMPTION
0 4.77 E-05 127 3.4 E-01 4.12 E-03 58.4 I.3E-^6 20

Case M5 -  New Model
SPURT LOSS IDENTIFIED

4.4 3.02 E-04 139 6.62 E-01 8.21 E-03 42.2 1.03 E-K)5 1.03
NO SPURT LOSS ASSUMPTION

0 3.13 E-04 144 6.86 E-01 8.51 E-03 45.7 9.98 E-K)4 1.11
Case M5 -  Old Model

NO SPURT LOSS ASSUMPTION
0 3.14 E-04 108 5.47 E-01 9.86 E-03 41.7 IT6E+5 1.45

259



4500
4000
3500
3000

%
^  2500
I  2000
K

1500
1000

500

80 1000 60 1204020 140

lîme, nm

Fig. C-1 Injection and Mi-ofif o f  a minifrac - Case M l
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Fig. C-2 Identification o f closure fi'om the feU-off o f  a minifirac - Case Ml
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Fig. C-3 Net pressure versus time — Case M l
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Fig. C-4 G-fünction o f  a minifrac test — Case Ml
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Fig. C-5 Fütercake -reservoir flow diagnostic plot — Case M l
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Fig. C-7 Identification o f closure fi’om the feU-ofif of a minifrac - Case M2
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Fig. C-8 Net pressure versus time -  Case M2
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Fig. C-9 G-fimction o f  a minifrac test — Case M2
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Fig. C-10 Fikercake -reservoir flow diagnostic plot — Case M2
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Fig. C-11 Injection and feU-ofif o f  a minifrac - Case MB

6700 
6650 4 
6600 
6550 4 

S. 6500 
£ 6450 
i  6400 
£  6350 

6300 
6250 
6200 
6150 4

I

Pc=6486psi 
; = 132 min

.1/2

8

Scpt(dt), rain

Fig. C-12 Identification o f  closure from the fell-off o f  a minifinc - Case MB
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Fig. C-13 Net pressure versus time — Case M3
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Fig. C-14 G-function of a minifrac test — Case M3
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Fig. C-15 Filtercake -reservoir flow diagnostic plot (significant noise)— Case M3
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Fig. C-16 Filter cake -reservoir flow diagnostic plot (data filtering)— Case M3
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Fig. C-17 Filter cake -reservoir flow diagnostic plot (after data filtering)- Case M3
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Fig. C-18 Fall-off o f  a minifrac test - Case M4
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Fig. C-20 G-function o f a minifrac test - Case M4
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Fig. C-21 Filter cake -reservoir flow diagnostic plot - Case M4
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Fig. C-22 Pressure derivative - Case M4
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Fig. C-23 Injection and fell-ofif o f a minifrac - Case M5
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Fig. C-24 Identification o f  closure from the fall-off o f  a mimfrac - Case M5
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Fig. C-25 Net pressure versus time — Case M5
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Fig. C-26 G-fimction o f  a minifrac test - Case M5
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Fig. C-27 Filter cake -reservoir flow diagnostic plot (after data filtering)- Case M5
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Fig. C-28 Pressure derivative — Case Ml

273



0
0.2 0.3 0.45

-10 

S  -15PL,
%. -20 
ëu -25 

-30 
-35 
-40

m'N = -125

Fig. C-29 Pressure derivative — Case M2
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Fig. C-30 Pressure derivative — Case M3
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Fig. C-31 Pressure derivative — Case M4
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Fig. C-32 Pressure derivative — Case M5
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Leak-off coefficient from pressure derivative anafysis

Using the slope, , from the pressure derivative plot. Figs. C-28 — C32 and 

Eq. (4.105), the leak-ofiF coefiScient, C ^, can be calculated for each data set as 

follows:

Case M l

Q  =  - 4 4 ^  =  -  20) .  e -03 / , / Æ
4(0.356)Æw

Case M2

Q  = -  =  1.93 E-02 / r / Æ f a
4(0 .2 8 8 > 7 n

Case M3

Q  =  - 4 &  =  _ (2 .0 4 £ -0 4 X 2 2 ^ -2 3 .3 )_ , , 
4 k  X V ^) 4(0.388>/S:5

Case M4

Q  = W  _ ( l : 2 4 £ - 0 5 p t M = 2 .06E -03 / , / Æ r
4 k W  < lV 3 5
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Case MS

r 7.74E-03 / , / Æ T
4(l)Vl8

Table - 5G

Evaluation o f the leak-off coefficient obtained from pressure and pressure derivative 

analysis

Case Pressure Pressure derivative

Q Q
/r/Vmin /?/Vmin

Ml 1.18E-02 2.97E-03
M2 3.40R-02 1.93R-02
M3 1.36E-02 1.45E-02
M4 2.01 E-03 2.06E-03
M5 8.21 E-03 7.74E-03
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Fig. C-33 Old filtercake — reservoir flow model - Case Ml

8
7

6
5

4

3

2

O.OOE+O 2.00E- 4.00B- 6.00E- 8.00E- l.OOE- 1.20E- 1.40E- 1.60E- 1.80E- 2.00E-
09 09 09 09 08

X(n)

08 08 08 08 08

Fig. C-34 New filtercake — reservoir flow model - Case Ml
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Fig. C-35 Old filtercake — reservoir flow model - Case M2
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Fig. C-36 New filtercake — reservoir flow model — Case M2
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Fig. C-37 Old filtercake — reservoir flow model - Case M3
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Fig. C-38 New filtercake -  reservoir flow model -  Case M3
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Fig. C-39 Old filtercake — reservoir flow model - Case M4
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Fig. C-40 New filtercake — reservoir flow model — Case M4
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Fig. C-41 Old filtercake — reservoir flow model - Case M5
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Fig. C-42 New filtercake — reservoir flow model — Case M5
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Sensitivity Anafysis

Sensitivity Analysis
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Fig. D-1 Fracture half-length — Poisson’s Ratio
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Fig. D-2 Fracture half-length — Young’s Modulus
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Sensitivity Analysis
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Fig. D-3 Leak-off coefficient — Young’s Modulus 
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Fig. D-4 Reservoir permeability — Young’s Modulus
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Sensitivity Analysis
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Fig. D-5 Fracture width — fracture height
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Fig. D-6 Reservoir permeability -  fiacture height
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Sensitivity Analysis
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Fig. D-7 Reservoir permeability — initial reservoir pressure
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Fig. D-8 Reservoir permeability — reservoir fluid viscosity
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Main Program

Read data file:

h p h f J p ,  tJ S I P , P,,P^, a ,

D ( i \ t ( i \ n .

Yes
PKN

No

Yes KGD

No

Yes
RAD

1 r

Spurt
Loss

Spurt
Loss

Spurt
Loss

Yes NoNo Yes NoYes

1 r 1 r
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Input niN. b\

Yes No

Spurt loss 
known

No

5AYes

No 4A

Enddo

Do I = I, n

Subroutine
GSER

Subroutine
GAMLN

Calculate xn 
Eq. 4.86

Subroutine 
FIT G

Calculate Sp 
Eq. 4.87

Subroutine
GAMMO

Subroutine
GF

Subroutine
GCF
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4A

1 r

I>1Yes

No

Enddo

Enddo

D(D

Enddo

Enddo
Enddo

SUM=0.0

Do 1=1, np-2

Y(n(I))=0.0
X(n(I))=0.0

Create template 
Do 1=1. no-2

Calculate
Y(n(I))
X (n (D )

Rearrange template 
Do 1=3, np-2

Rearrange template 
Do 1=3, np-2

Initialize SUM 
Do 1=1, np-2

Cl [ A-23]

Wl [Eqs. A-17, A-47]

77 [Eq. A-34

Calculate 
Xf [Eq. A-8]
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Print t(I), p(I), 8(1) 
p(D FIT, g(I) FIT, Y(n(I)) 
X(n(I)), Y(n(I) FIT

Fig. E-1 Flow chart of the modeling program

The above flow chart is for a PKN geometry. For the other two geometries, KGD and 

Radial, the flow chart is the same.
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