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Abstract

Knowledge of the in-situ stress field is often, critical in several aspects of well 

design, being one of the most important parameters in reservoir management: well- 

bore stabiUty, hydraulic fracture propagation and production optimization. The 

economic importance of reliable in-situ stress measurements can be gaged by the 

high cost involved in decisions like: defining the well locations and attitudes with 

respect to the target reservoir; determ ining the proper drilling fluid density; sand 

control in poorly and unconsolidated reservoirs; and, optimum production and re­

covery.

Recent research done by the oil industry has improved the accuracy of such in- 

situ stress measurements. Equipment and methodologies have been developed in 

the last 50 years, based upon physical principles that would allow the computation 

of the stress field from rock samples relaxation, or from measurements performed on 

the rock formation itself in the field. This study concentrates on a  core-based tech­

nique: the anelastic strain  recovery (ASR), with emphasis on the stress magnitudes 

determination only.

Anelastic strains are caused by the formation of a microcrack population in the 

core, due to the stress relief after coring, when the rock samples expand in all di­

rections. Modelling the rock behavior for computing the in-situ stress magnitudes 

from ASR focused on the viscoelastic aspects of the physical process. Nevertheless,
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core contraction, has been reported in many occasions, indicating that other pro­

cesses may aflFect the rock behavior under specific conditions, which are not well 

represented by a  viscoelastic approach.

Recognizing the potential relevance of pore pressure effects when dealing with 

rocks, a  new procedure is presented for simulating the rock anelastic strain behavior 

using a  fully coupled poroviscoelastic model. One needs to realize that the fluid 

th a t is allowed to escape during core retrieval introduces a  contraction which could 

mask or even overshadow the rock expansion due to the stress relief. Different rocks 

and field conditions were simulated by the model indicating that, depending on the 

rock permeability and the initial stress field, pore pressure diffusion can provide an 

explanation for observed rock contractions.

A new formulation is also proposed for computing the in-situ stress magnitudes 

based on the back-analysis of anelastic strain measurements; the rock anelastic 

strains generated by the poroviscoelastic model are adjusted to experimental strain 

measurements through a  multidimensional fitting algorithm, leading to the original 

stress magnitudes by optimizing the curve-fitting. The validity of this approach was 

checked using a  synthetic example, confirm ing the method reliability.

T he procedure has been applied to field samples from Brazil’s Northeast onshore 

wells, where the purely viscoelastic approach was unable to compute the stress mag­

nitudes due to core shrinkage. Compression tests were carried out in the laboratory 

in order to determ ine  the rock elastic, viscoelastic and poroelastic parameters neces­

sary for the rock characterization in the poroviscoelastic model. The obtained strain 

curve-fittings were very reasonable, and the computed stresses were confirmed via 

other sources of information: regional shallow earthquakes and microfracturing.

In spite of the simplifying assumptions (plane strain and radial fluid flow are 

two of the  most im portant ones), the method was able to  fill a  gap by considering
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coTipled poroviscoelastic effects in the anelastic process. Further investigations are 

proposed, like adding therm al effects and  a  more careful examination of the rock 

experimental creep behavior, in order to improve the model representativeness.
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Chapter 1 

Introduction

In-Situ stresses are basically the result of the burial and lithification of sedimen­

tary materials. Temperature changes, chemical and physicochemical processes, like 

mineral precipitation and recrystallization, are constantly modifying the rock struc­

ture and, consequently, the stress field. Tectonic movements aflFect the stress field 

by creating faults, fractures and foldings, which added to erosion, may generate 

a complex geological pattern resulting in directional tectonic stress components. 

Rigorously speaking, the in-situ stresses should be measured a t each specific depth 

where any further excavation is planned. In regions with low tectonic activity or 

similar geological structures, the local in-situ stress, measured at one particular lo­

cation, can be extrapolated to other sites, allowing the engineer to improve the new 

excavation design from already available data.

Knowledge of the in-situ stress is extremely important for civil and mining en­

gineering applications, not only for safety purposes, but also for allowing larger 

percentage of minerals recovery. The in-situ stress estimation is, nevertheless, a  dif­

ficult job. Several methods were developed for measuring the in-situ stress field a t 

shallow depths (Lama and Vutukuri, 1978a; Goodman, 1980), leaving the petroleum 

engineering the task of developing the techniques necessary for deeper and harsher 

environments.



1.1 Relevance of In-Situ Stress Measurements in 
the Oil Industry

It is recognized nowadays th a t in-situ stresses play a major role in  practically all 

the stages of oil exploration, deeply affecting the success rate in well drilling and 

well stimulation, as well as affecting oil production (Warpinski and Teufel, 1986 and

1991).

Roegiers and Vandamme (1999) pointed out tha t even estim ating the reserves- 

in-place must take into account the increase in  the effective in-situ stresses, during 

well production, which will obviously affect the to tal amount of recoverable hydro­

carbons.

According to Guenot and Santarelli (1988), the in-situ stress field, together 

with the rock mechanical strength, strongly affects wellbore stability. Economi­

cally speaking, Fjær et a i (1992) pointed out th a t it would be interesting if several 

wells could be drilled from just one offshore platform, achieving different targets. 

The borehole inclination, nevertheless, is very often limited by stability considera­

tions, when the stress concentration due to the  in-situ stress field combined with 

the wellbore orientation and the rock mechanical strength may become unbearable 

(Ong and Roegiers, 1996). However, there are also situations where conventional 

vertical wells may fail due to extremely high horizontal in-situ stress anisotropy, 

and the targeted reservoir can only be achieved via a  deviated borehole (Roegiers 

and Vandamme, 1999). One way to overcome this problem, and sometimes the only 

one, is to align the well with the most favorable direction, i.e., m inim izing the stress 

contrast a t the wellbore wall.

In spite of the great importance in drilling, the most evident influence of in- 

situ stresses in oil exploration comes from well stimulation by hydraulic fracturing. 

In-Situ stresses play a  major role defining the fracture dim ensions, orientation and



the breakdown pressure for initiating the hydraulic fracture a t the  borehole wall, 

as attested by a  huge number of researchers, among which Hubbert and Willis 

(1957), Haimson (1978), Nolte (1982), Haimson and Huang (1989) and Yale and 

Ryan (1994). The success of a  hydraulic fractmring treatment is so much dependent 

on the in-situ stresses th a t nricrohydratilic fracturing tests are routinely performed 

before larger hydrofrac stimulations, in order to obtain stress d a ta  for optimizing 

the design of the main fracturing (Daneshy et aL, 1986).

Once a  hydraulic fracture is propagated away from the wellbore, it will become 

perpendicular to the direction of the minimiiTn in-situ stress (Hubbert and Willis 

1957, Haimson, 1978). Based on this, whenever the need of hydraulic fracturing for 

production enhancement is foreseen, the well locations with respect to the target 

reservoir must be defined according to the  in-situ stress orientation, in order to 

achieve an optimum drainage area (Smith, 1979), as shown in Figure 1 .1 , while still 

maintaining stability and guarantee operational success. Roegiers and Vandamme 

(1999), evaluated the gain in production to be  as high as 30 %, whenever the drilling 

pattern  was defined according to the most favorable direction for fracturing.

In the early years of hydraulic fracturing, it was assumed th a t hydraulic fractures 

propagated with a  constant height, confined to  the pay zone due to shale barriers 

above and below the reservoir rock. This initial concept was contradicted later on: 

although there was a  natural barrier helping to confine the fracture height, the main 

factor was the horizontal in-situ stress contrast a t different depths (Nolte, 1982).

Several evidences of the major influence of in-situ stresses in hydraulic fracture 

containment were confirmed via laboratory experiments. (Warpinski et aL, 1982a), 

mineback field tests (Warpinski et a i, 1982b, Warpinski and Teufel, 1991) and 

numerical studies (Yew and Chiou, 1983; Ben Naceur and Toubul, 1987; Fung et 

a i, 1987; Vandamme et aL, 1987; Mukherjee et aL, 1992). Figure 1.2 shows the



fracture behavior observed in mineback ecperiments.

Drainage areas from 
infill wells considering 
the fracture direction

Drainage areas from 
original wells

Drainage area from 
standard infill well

Figure 1 . 1 : Taking advantage of knowing the fracture orientation for optimizing on 
the well placement.

In-Situ stresses are also relevant for estimating well stability during produc­

tion. Reservoirs constituted of unconsolidated or poorly consolidated sandstones 

can produce large amounts of formation particles, leading to premature erosion of 

the surface equipment, costly oil-sand separator and sometimes total collapse of the 

well, due to the cavities generated around the casing (Cook et oL, 1994). Sanding is 

a complex phenomenon, being a  function of the pressure drawdown and the stress 

concentration around the perforations, which in turn  is dictated by the original in- 

situ stress field, as well as the ‘stress cage’ around the borehole, among other rock 

mechanical parameters (Coates and Denoo, 1981; M orita et oL, 1987; Pennington 

and Edwards, 1994).
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Figure 1.2: Hydraulic fracture behavior after Warpinski and Teufel (1991), as ob­
served in mineback experiments.

1.2 Inferring the Principal In-Situ Stresses

Any stress state can be represented by three mutually perpendicular components, 

called principal stresses: <ti, <T2  and <7 3 , respectively the maximum, intermediate and 

minimum principal stress components. From now on, every time the term ‘in-situ 

stresses’ is mentioned in this dissertation, they must be understood, also, as the 

principal stresses a t a  specific depth.

Calculating the vertical in-situ stress from the overburden due to the weight 

of the overlying rock material is a  common practice in the oil industry, generally 

performed by integrating the density log from a  nearby well (Bruce, 1990):

[  p(z)^dz 
J o

(1.1)

where.



<Tz is the to tal vertical overburden; 
p is the rock density; 
g is the acceleration of gravity; and, 
z  is the depth m easured from the surface.

Equation (1.1) is very acceptable when the analyzed region is free from tecton­

ics effects due to geological anomalies. Brady and Brown (1985) pointed out, for 

example, that the vertical stress component might be less than the value calculated 

from Equation (1.1) in the axial plane of an  anticlinal fold.

The effective^ horizontal stresses, and  can be assumed to depend only on 

the rock elastic behavior, as a  first approximation. Thus, a  basin without tectonic 

deformations will have equal horizontal stress magnitudes in any direction. Fur­

thermore, a’j. and will be  a  function of due to Poisson’s effects (Roegiers and 

Vandamme, 1999):

0 ^ =  0 ^ =  K qo'̂  (1.3)

where K q can be deduced from the equations of elasticity. Assuming, for example 

Ex = Ey =  0 , provides:

<ri =  <7 ;  =  (1-4)

where u is the m aterial Poisson’s ratio.

Equation (1.4) gives 0  <  fQ) <  1 , since 0 < 1/  < 0.5. The ratio between the 

average horizontal and vertical stresses, however, can vary significantly: from 0 . 2  to 

1.5, a t larger depths, and from about 1 up to 10 or 12 a t shallow depths (Fjaer et aL,

1992). Equation (1.4) is, therefore, a  very rough estimate, implicitly assuming that

^Blot’s effective stress law states that:

<Ti=ai—aiP (1 .2 )
where:

a \  is the effective stress in the Wirection;
(Ti is the total stress in the »-direction;
ai is the effective stress coefficient in the Wirection;and,
p  is the pore pressure.



the sediments deform elastically and the rock properties remained constant over 

geological times. In fact, as mentioned before, erosion, diagenesis and cementation 

are a  few examples of common processes th a t m ay produce a quite remarkable 

horizontal stress anisotropy, leading to cr̂  ^  ^

Determining the horizontal in-situ stresses became, then, a  ‘m ust’ for the oil in­

dustry. A total of 20 techniques used in the oil industry are listed in Table 1.1 (Hill 

et aL, 1994; Roegiers and Vandamme, 1999). The utilization of any technique, nev­

ertheless, is restricted by the ‘built-in’ theoretical assumptions, testing conditions, 

experimental limitations and m athem atical modelling inherent to each method, as 

discussed in Chapter 2.

Most of the m ethods presented in Table 1.1 are capable of providing only the 

in-situ stress orientation. Three methods, nevertheless are more general: Anelastic 

Strain Recovery (ASR); DiSerential Strain Curve Analysis (DSCA); and microhy- 

draulic fracturing, allowing also the computation of the in-situ stress magnitudes. 

The ASR method has a  m ajor advantage over the other methods since it allows 

inferring the stress magnitudes, provided th a t the stress reHef mechanism is well 

understood, whatever the well inclination.

In a  typical ASR test, the deformation of core samples is monitored for 48 hours 

after removal from the coring barrel. Figure 1.3 shows the portable equipment used 

by Petrobras for running ASR tests in the field (TerraTek, 1995).

If the sample is isotropic and homogeneous, and the strain recovery can be as­

sumed linear viscoelastic, the strain  relief will be uniform with time. Thus, the 

principal strain orientations determined by the ASR test will be aligned with the 

principal in-situ stress (Warpinski and Teufel, 1986; El Rabaa, 1988). A few models 

for inferring the in-situ stress magnitudes from the relative magnitudes of the princi­

pal strains measured in the ASR test were developed by Blanton (1983), Warpinski



Table 1.1: In-situ stress determination methods.
 Core-Based Methods_____________________

1  anelastic strain recovery (ASR)
2  differential strain curve analysis (DSCA)
3 circumferential velocity anisotropy (OVA)
4 differential wave velocity analysis (DWVA)
5 axial point load test
6  pétrographie examination of microcracks
7 overcoring of archived core
8  drilling induced fractures in core
9 direct observation of overcored open-hole stress test fractures 

__________________ Borehole-Based Techniques _____________
1 0  microhydraulic fracturing_________________________________
1 1  borehole breakouts
1 2  borehole deformation
13 borehole imaging of drilling induced fractures
14 directional gamma-ray logging____________________________

__________________ Near-Wellbore Techniques__________________
15 microseismic logging
16 earth  tilt survey_________________________________________

_____________________Geological Indicators_____________________
17 earthquake focal mechanisms
18 fault slip data
19 surface mapping of neotectonic joints
2 0  volcanic vent alignment___________________________________

8
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Figure 1.3: ASR testing  equipm ent, l l i e  box on the  left hokLs the tem pera tu re  
controller an d  signal conditioners for the  d isplacem ent transducers. A lap top for 
d a ta  acquisition  is showm in the  cen ter. Up to  two sam ples m ay he placed in the 
sam ple cham ber on the  right, which has th e  purpose o f keeping tem pera tu re  an d  
hum idity  constan t d u rin g  th e  ASR test. Each sam ple is in s tru m e n ta l w ith 12 Linear 
Variable D isplacem ent T ransducers (LV DT).



and Teufel, (1986) and M atsuld and Takeuchi (1990), based on the viscoelasticity 

theory.

A m ajor lim itation of the previous ASR models is the assum ption tha t rock 

samples will always expand after coring, due to  the stress relief. This assumption is 

implicit in the viscoelastic model for computing the stress magnitudes (Blanton and 

Teufel, 1986), leading to wrong values whenever the rock shows some contraction. 

Core contraction has been reported in many field cases (Blanton and Teufel, 1983: 

Lessi et aL, 1988; Perreau et aL, 1989; Butterworth et aL, 1991; Ramos et aL, 1994; 

Breretron, 1995); and  a  few attem pts have been made to explain it. Butterw orth et 

aL (1991) mentioned tha t, in some cases, this core contraction may be only appar­

ent, being caused by the spring loaded sensor tips, which may dig into the samples 

by deteriorating the  rock a t  the contact point. Assuming th a t the sensor tips are 

not influencing the  measurements, three additional potential factors have been con­

sidered to explain rock contraction: high Poisson’s ratio; tem perature changes; and 

poroelastic effects (Blanton, 1983 and 1986; W arpinski and Teufel, 1986; Breretron 

et aL, 1995).

Based solely on the  elasticity theory it is easy to see tha t rock contractions may 

occur in the direction of the  miniiniim in-situ stress for rocks w ith high Poisson’s 

ratio under high deviatoric stresses: the rock expansion due to the  relief of the 

minimum stress would be smaller than  the rock contraction due to  the expansion in 

the direction of the  maximum in-situ stress.

Correcting the  stra in  measurements for the tem perature variation is an initial 

step whenever analyzing ASR data. This is usually done by measuring the rock 

coefficient of linear therm al expansion, and adding or subtracting the  therm al de­

formation due to the tem perature changes fiom the to ta l strain measurement when 

performing ASR tests. A more appropriate way, however, would be to  consider the

10



therm al effects coupled to the rock deformation due to the stress relief and pore 

pressure diffusion.

Coupled effects of pore pressure diffusion and solid deformations have been, 

nevertheless, totally neglected by the current viscoelastic models for computing the 

stress magnitudes &om ASR. Several reasons may be listed for this, like assuming 

that pore volume deformations are too small or homogeneous, equally affecting 

the rock deformations in all the  directions, thus irrelevant for models using the 

relative magnitude of the principal strains as input for computing the stresses. It 

must also be noticed tha t the importance of the poroelasticity theory was not so 

widespread in the oil industry by the  80’s. In fact, only a  few pubUcations mentioned 

poroelasticity effects, mainly in hydraulic fracturing (Roegiers and Ishijima, 1983; 

Schmitt and Zoback, 1989; Detoumay et aL, 1989; Haimson and Huang, 1989; Boone 

and Detoumay, 1990; Boone et aL, 1991a and 1991b).

Advances in the poroelasticity theory after Detoumay and Cheng (1993), and 

the perception of its relevance when dealing with the deformations of porous media 

like saturated rocks, made this theory more and more palatable to petroleum related 

problems, improving the theoretical explanation of field problems and helping the 

understanding of the rock behavior in several oil field applications.

This dissertation focuses on the  application of the poroelasticity theory to the 

modeUing of the coring process. The purely mathematical approach, presented by 

Breretron (1995) for highlighting the poroelastic effects on the core deformation 

after coring, is taken several steps further: a  fully coupled poroelastic formulation 

for computing the radial strain in  qrlindrical geometries (previously derived by De­

toum ay and Cheng, 1993) is made time-dependent by the Viscoelastic Principle of 

Correspondence — VCP (as presented by Abousleiman et aL, 1996), constituting 

a new poroviscoelastic model for analyzing the effects of pore pressure diffusion in

11



ASR.

1.3 Potential Importance of Poroelasticity on the 
Anelastic Strain Recovery

It is easy to accept that changes in the pressure a t the core boundary during the trip 

of the coring barrel out of the borehole will cause a  pressure redistribution inside 

the core, up until a  new homogeneous pore pressure level is reached via diffusion. 

The pore pressure variation will most probably lead to changes in the pore volume. 

These changes may, in some cases, be large enough to affect the rock expansion due 

to the stress relief after coring. It is also easy to prove that the rate of the pore 

pressure diffusion depends mainly on the rock permeability and fluid viscosity; it 

will be faster for rocks with higher permeability and fluids with lower viscosities. 

In other words, poroelastic effects may be irrelevant for higher permeability rocks, 

since they will be over by the time the sample is brought to the surface.

After recognizing the importance of the pore fluid diffusion in ASR, it became 

a common practice for the oil service companies to wrap the sample up in plastic or 

to paint the core with impermeable paints, in order to avoid the loss of fluids during 

the ASR test (El Rabaa, 1986; Owen et aL, 1988). This procedure, nevertheless, 

is unable to stop the internal pressure redistribution process in low permeability 

rocks, started  when the sample was cored and slowly progressing even after the 

sample is removed from the coring barrel. The ASR results, thus, are not free 

from poroelastic effects in low permeability rocks. Breretron et aL (1995) showed 

that complex deformation patterns in ASR tests, presented in Figure 1.4, could be 

explained by a  combination of strains generated by stress relief and pore pressure 

variations, assuming that both processes compete with one another depending upon 

the magnitudes of the rock stresses, the permeability and the pore pressure.

12
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Figure 1.4: Anelastic strain  recovery from four different wells (BAS 11, 4, 5 and 12), 
after Breretron et al. (1995).
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Considering the anelastic strain from the purely viscoelastic model presented by 

Warpinski and Teufel (1989), to be in the form of:

e i t )  =  ^oo -  e  (1.5)

where £oo is the rock asymptotic strain level a t t  —+ oo and r  is the relaxation time 

for the anelastic deformation, both parameters being exclusively related to the stress 

relief. Assuming now the pore pressure response as:

/9(0 = -^oo| 1 -e ‘Â I (1.6)

where 0oo is the rock final strain  level and A is the pore pressure relaxation time, 

both constants are uniquely related to the pore pressure dissipation in this case. 

The to ta l strain  in a  hypothetical ASR test can then be represented by adding e(t) 

and The negative sign in Equation (1.6) means tha t the contraction caused 

by the pore pressure reduction is taken as negative, while the expansion caused by 

the stress relief computed by Equation (1.5) is taken as positive.

By playing with the time constants of these two equations ( r  and A), Breretron 

et aL (1995) showed that the deformation patterns in Figure 1.4 can be reproduced 

from Equations (1.5) and (1.6) for three difierent cases (Figures 1.5 to 1.10).

Curve ‘C ’, in Figure 1.5, shows that the initial contraction followed by expansion,

in the direction 1  of the ASR results for BAS 12 (Figure 1.4d), can be reproduced

if the m agnitude and relaxation time of the stress reÜef and pore pressure diffusion

process are such that:

Soo — 150; 
r  =  1 0 ;
/?oo =  25; and,
A =  0.5;

Assuming a larger recovery time, let’s say 10 hours, a  behavior similar to direc­

tions 1 to 5 in BAS 1 1  (Figure 1.4a), and directions 1  and  2  in BAS 5  (Figure 1.4c),

14



are reproduced in Figure 1.6. This figure presents the same curves as in Figure 1.5, 

but with a 1 0  hours measuring delay.

Assuming th a t the  magnitudes of the solid deformation due to the stress relief 

and pore pressure variation are the same (Soo =  /?<»)> but having the relaxation 

times given by; A =  3 r , the behavior shown in curve ‘C ’, Figure 1.8, which are 

derived from Figure 1.7, m atch the ones measured for BAS 4 (Figure 1.4b), showing 

pure contraction.

By keeping the relaxation times equal (A =  r) , and having (/?oo =  3eoo) in the 

last example, curves ‘C ’ from Figure 1.9 and 1.10 are comparable to the results for 

orientations 2, 3 and 4, in BAS 12 (Figure 1.4d).

Although purely m athem atical, this analysis proves tha t the pore pressure vari­

ation can provide a reasonable explanation for the ASR results. A more complete 

formulation, coupling  the pore fiuid diffusion and solid deformation, nevertheless, is 

still lacking in the in-situ stress determination literature. This formulation is exactly 

the subject of the present study, as shown in the next section.
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1.4 Objectives, Initial Assumptions and Disserta­
tion Outline

This dissertation presents a  new model for the ASR process under the poroviscoelas­

tic theory. The new approach intends to improve the simulation of the rock anelastic 

deformations. The rock viscoelastic behavior is represented by the modified Kelvin 

model (Fliigge, 1975), allowing each rock parameter to change independently dur­

ing the deformation process, contrary to the existing viscoelastic formulations which 

assume a  single viscoelastic function for the rock volumetric strain (Blanton, 1983 

and 1986).

The major advance with the poroviscoelastic approach is to provide a mechanical 

explanation for the core contraction, frequently observed in ASR tests, which none of 

the existing viscoelastic models (Blanton, 1983; Warpinski and Teufel, 1986) handle 

properly, since viscoelastic formulations cannot include pore shrinkage effects. The 

final goal of the new approach is to allow the computation of the stress magnitudes 

whatever the rock anelastic strains are: expansion, contraction or expansion and 

contraction mixed, filling a  gap in the existing ASR literature.

1.4.1 Objectives

T he objectives of this study can be sum m arized as follows:

•  Develop a model capable of reproducing any strain trajectory as a  function 

of the rock properties, initial stress field and drilling conditions, prescribed as 

boundary conditions during coring.

•  Define a  suitable set of rock properties for analyzing the coring process within 

a  poroviscoelastic approach from laboratory experiments and conduct a  para­

metric study.
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•  Verify the  influence of poroviscoelasticity in the rock anelastic strain  generated 

by coring.

•  Quantify, experimentally, the  creep efiect on the rock elastic properties in order 

to define the ones th a t may play some role in the anelastic deformations, and 

a ttribu te  an exclusive time-dependency function to them.

•  Confirm the importance of the pore pressure diffusion process in rock shrinkage 

by analyzing the strain response in different materials.

•  Compute the in-situ stresses from the anelastic strain measured in the ASR 

test based on the poroviscoelastic formulation.

•  Develop a  methodology for back-analyzing ASR field data  in order to compute 

the m agnitude of horizontal in-situ stresses.

•  Compute the horizontal in-situ stresses for specific depths in five Petrobras’ 

wells.

1.4.2 Assumptions

The geometry analyzed in this dissertation is cylindrical, and the principal stresses 

are assumed to  be longitudinal and  radial to the cylinder axis. In the  case of a 

vertical wellbore, for example, the principal stresses would be exactly the vertical 

and horizontal ones.

Four initial assumptions are necessary for analyzing the coring process and con­

sequent anelastic strain recovery (a  few other assumptions are presented in Chapter 

3, since they are intrinsic to the poroelastic formulation discussed in th a t chapter):

1. Plane strain  conditions: the core was considered to be infinitely long; so that 

the vertical strain is negligible and does not affect the radial deformations.
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This assumption was kept on, even when considering the  3” x 6 ” sample used 

in the ASR test, as a  first approach.

2. Axisymmetry: the adopted poroelastic formulation is valid only for axisym- 

metric loading (Detoumay and Cheng, 1993), i.e., the stresses are defined 

based on the radial position. In order to adapt this condition to the rock 

actual stress field, the stresses were decomposed in hydrostatic and deviatoric 

components, represented respectively by Pq and So in Figure 1.11. While the 

hydrostatic loading (Figure 1.11b) leads to volumetric changes, and is very 

much affected by the pore fiuid, the rock response to the deviatoric loading 

(Figure 1 . 1 1 c) is completely elastic (Abousleiman et oL, 1996); hence, not 

influenced by the pore fiuid. Thus, based on the problem linearity, the hydro­

static case was solved by the poroviscoelastic approach and later on added to 

the viscoelastic solution for the deviatoric loading, simulating the actual stress 

field.

3. Homogeneity: whenever macro-variations in the rock constituent are detected, 

before or after the ASR test (sometimes rocks heterogeneities are not visible 

until the test is done and the samples are sawed), the results must be disre­

garded, since the measured strains, and thus the stress computation, would 

be affected by the local heterogeneities.

4. Isotropic: although it is also possible to consider poroelastic effects in trans­

versely isotropic rocks (Cui et oL, 1996; Cheng, 1997), the formulation de­

veloped in this dissertation assumes the rock to be isotropic, simplifying the 

equations, reducing the necessary input rock param eters and, consequently, 

the experimental tests.
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(a) (b) (c)

Figure 1 .1 1 : Decomposition of the  stress field around the core.

1.4.3 Dissertation Outline

Following the introductory chapter, Chapter 2 of this dissertation reviews several 

methods for in-situ stress determinations. T he methods are briefly described, high­

lighting their applications, procedures, advantages, weaknesses and limitations. Pre­

vious works, presenting and applying the ASR technique, are more deeply analyzed, 

since they constitute the basis for the study presented in this dissertation.

Chapter 3 describes the  poroelastic formulation and the viscoelastic model which 

are combined for constituting the new poroviscoelastic approach for the ASR pro­

cess. The boundary conditions for simulating the coring process are presented and 

introduced into the poroelasticity governing equations, providing closed-form solu­

tions for computing the radial strain a t the core outer surface, and the pore pressure 

distribution inside the core. This procedure is then inverted, allowing the computa­

tion of the original radial in-situ stress and the reservoir pressure.

A comparison between the results generated firom a Fortran code with the poro­

viscoelastic formulation and previous results from the literature are shown in Chap­

ter 4. The data from the Uterature is not related to coring, but to classical cylin­

der problems which were previously solved by Detoumay and Cheng (1993), and
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Abonsleiman et al. (1996). The long term  elastic and viscoelastic solutions are 

also compared to the code results, showing th a t the poroviscoelastic approach do 

converge to the elastic and viscoelastic values, as the pore pressure inside the core 

reaches an equilibrium with the environment.

A parametric study is also presented in C hapter 4 for comparing the code results 

with different rock input data. This study revealed that not considering some of the 

rock properties as time-dependent, as in the existing viscoelastic approach, makes 

a large difference in the strain pattern.

In Chapter 5 a methodology is presented for back-analyzing ASR data  in order 

to compute the horizontal in-situ stress magnitudes. The inversion problem is solved 

with the help of a  multidimensional numerical code — the Simplex algorithm. The 

method is successfully applied to ASR tests in five oil wells in Brazil, South America, 

which have presented complex ASR pattern.

The rock da ta  needed for the  computations in Chapter 5 were gathered from 

experimental tests on the samples previously tested for ASR. Chapter 6  presents 

the experimental procedures and results. The tests focused on getting the necessary 

input parameters for a standard data set for a  poroviscoelastic analysis. The per­

formed creep tests, aimed not only in providing the necessary input da ta  but also 

defining which rock elastic properties are more relevant for the process.

The summary and conclusions of the dissertation are presented in Chapter 7, as 

well as an outline for the extension of the realized work.
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Chapter 2 

Critical Literature Review

The determination of the underground stress field has always been a  challenging 

job for mining and civil engineering, but for the petroleum  industry the scenario is 

even more complex. Although several techniques are available for shallower depths 

excavation like overcoring and fiat-jack methods (Lama and Vutukuri, 1978a; Good­

man, 1980), oil wells can reach targets a t 4,700 m (Pereira, 1990) and offshore wells 

are drill nowadays a t more than  1,700 m below the sea level (Petroleum Review, 

1998), making in-situ stress measurements a  difficult and expensive task. In spite 

of the harsh environment, the oü industry has been able to develop a  few methods 

for inferring the in-situ stress field. Not all of them , nevertheless, are capable of 

providing a complete description of the stress field, i.e., magnitude and orientation 

of the principal stresses.

According to Hill et oL (1994), the available m ethods for inferring the origi­

nal stress field can be divided into core-based tests, like Anelastic Strain Recovery 

(ASR) and Differential Strain Curve Analysis (DSCA); borehole-based techniques, 

hke microhydraulic fracturing and breakouts from wireline logs; near-wellbore tech­

niques, which includes measuring the orientation of hydraulic fracturing initiation 

and propagation; and, regional geologic indicators, like existing faulting regime or 

even the world stress map.
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Core-based techniques are more economical, since they do not occupy the drilhole 

exclusively for the test, specially if coring is already plaimed for that specific well. 

On the other side, the results may be influenced by the testing environment, since 

the core is not anymore under the exact in-situ conditions. Borehole techniques have 

the initial advantage of gathering da ta  directly from the underground. Nevertheless, 

they are more expensive, because of the surface and  downhole equipment needed, 

and very often difficult to interpret.

Because of the uncertainties and limitations associated with each method, the 

industry tendency is to apply more than one technique in the same field and compare 

the results, increasing the d a ta  interpretation reliability. This procedure is not the 

best approach for the problem, but has been applied quite often (Bnimley et ai, 

1994; Zheng, 1999).

A description of some of the  most m m mon m ethods for inferring the in-situ 

stresses in oil wells is presented next, highlighting the physical background of each 

technique, its advantages and disadvantages.

2.1 Core-based Methods

Core-based methods for inferring the in-situ stresses are sometimes preferred when 

coring is already in the drillin g  schedule for, for example, geological description, like 

in the case of exploratory wells. There is a wide variety of core-based techniques, 

which most of the times can only provide the in-situ stress orientation. The ASR 

technique is analyzed with special emphasis in this chapter, not only because it 

can provide the complete stress field, but also because its physical background and 

theoretical formulation constitute the main subject of this dissertation. The DSCA 

is also discussed in details, since it usually represents and alternative to the ASR, 

also providing the complete stress tensor.
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2.1.1 Anelastic Strain Recovery (ASR)

The main goal of the ASR technique is to determine the in-situ stress field based on 

the rock deformations due to the  stress relief that naturally occurs after coring. The 

most accepted theoretical basis for the strain relaxation process assumes that sand 

grains become stressed during burial and lithify. The stored energy within the grain 

may vary in different directions, depending  on the amount of stress that was applied 

along each orientation. W hen a  rock stratum  is cored, the sand grains attem pt to 

expand elastically as soon as the existing stresses are relieved, but they are held 

back by the cement bond. Many of these bonds will eventually be broken, forming  

a microcrack population which is typically represented by an anelastic deformation 

process, where most of the microcracks are preferentially aligned with the previous 

stress field (HUl et al., 1994). Measuring the rock principal strains caused by such 

microcrak openings would lead to the direction of the principal stresses.

The idea of a  population of oriented microcracks spread throughout the whole 

core was confirmed through acoustic emission tests and P-wave velocity measure­

ments in the laboratory, which have presented a strong correspondence with the 

strain recovery pattern  (Teufel, 1983a and 1983b; Butterworth et aL, 1991). ASR 

tests on sub-cores plugged from a  core several years after its recovery, however, have 

also shown typical ASR curves (Butterworth et ai, 1991), leading to a  different line 

of thought regarding the physical mechanisms: only the outer part of the core would 

be involved in the relaxation process, and /o r the process may be significantly influ­

enced by paleostresses locked in the core. Nevertheless, none of these observations 

seems to be definitive, and the physical principles behind the ASR process are still 

open to investigations.

In spite of the lack of a  complete explanation for the process, the reliability of 

the stress field derived from ASR tests has been confirmed in many situations by
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comparison with other m ethods like hydrauhc fracturing (Blanton and Teufel, 1983; 

Teufel, 1985a), and lab tests with synthetic sandstones (Wang et oL, 1997). There 

are also occasions in which the ASR tests were unsuccessful: in unconsolidated sand­

stones (Ramos et a i ,  1994); because of a  long time gap between coring and testing 

(Bnimley et a i, 1994); and the impossibility of computing the stress magnitudes 

due to core contraction (Siqueira et a i, 1996a; 1996b; 1997a; 1997b; and, 1997c).

Testing Procedure

The testing procedure assumes th a t the strain  measured in the ASR test after 

removing the core from the coring barrel is proportional to the total strain  since 

coring, and hence, also proportional to the pre-existing state of stress. It should 

be emphasized, nevertheless, th a t this is only true if the rocks are also considered 

isotropic, homogeneous and linearly viscoelastic.

Since the strain variation after cutting the core decays exponentially with time, 

the ASR tests are performed as soon as the sample becomes available a t the drilling 

rig. To further reduce the time between coring and testing, the sample is usually 

taken from the bottom  part of the whole core, which is the last one to be cored 

before pulling the coring barrel.

The ASR test consists in acquiring the core deformation in several directions, un­

til the rock reaches equilibrium. The first ASR tests, nevertheless, were inconsistent 

due to the strain measuring procedure, which used strain gages glued to the sur­

face of imsealed saturated samples (Teufel, 1982 and 1983a). Silicon spray coating 

(Teufel, 1985a) or polyurethane wrapping (Teufel, 1985b) were then introduced in 

order to seal the core and avoid moisture evaporation; at the same time, strain gages 

were replaced by clip-on gauges, increasing the measurements reliabUity. Oil baths 

(Perreau et aL, 1989) or inert silicon-based fluids (Butterworth et aL, 1991) were 

later used in order to  control the  tem perature, humidity and external vibrations
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during the tests.

Gathering the Orientation o f the Principal In-Situ Stresses

Coring for ASR tests is generally oriented in order to  associate the strain direc­

tions measured in the test w ith the wellbore azimuth. W hen an  oriented coring tool 

is not available, geophysical logs like the formation microscanner and  paleomagnetic 

techniques can also be used for orienting the samples (B utterw orth et aL, 1991), 

even though w ith less accuracy. Considering, for example, the  stra in  measurement 

along six directions, the orientation of the principal strains would be obtained by 

computing the eigenvectors of:

H-
2

eL

(2.1)

2 2
where the superscript i means time step and the stra in  orientations are shown 

in Figure 2.1.

Figure 2.1: Typical orientation for the strain  measurements.

Computing the principal stress orientation from ASR tests can be considered 

fairly acciurate for isotropic homogeneous rocks (Teufel, 1982 and 1983a; El Rabaa
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and Meadows, 1986; Owen et oL, 1988; El Rabaa, 1988). Rock samples, however, 

may have hidden heterogeneities, not visible &om the core external surface, which 

can aSect the rock deformation anisotropically, m isleading the  principal strain ori­

entations. Several ASR results, for example, were discarded by Graves (1995), after 

examining samples previously tested for ASR and finding out inner heterogeneities.

Computing the Principal In-Situ Stress Magnitudes

The first formulation for computing the stress magnitudes from ASR tests was 

a viscoelastic approach presented by Blanton (1983), which was applied with rea­

sonable results (Blanton and Teufel, 1983; Teufel, 1983b, 1985a and 1985b). It is 

worth noticing, however, th a t only rock expansion was reported in the earlier appli­

cations, leaving the doubt if the method would work fine having the core presented 

contraction instead of expansion. Solutions were obtained for both isotropic and 

transversely isotropic cores, based on the following basic assumptions:

1 . the original in-situ stress was assumed to drop to the atmospheric pressure 

instantaneously a t the coring instant;

2 . the vertical stress was assumed to be one of the  principal stresses, equal to the 

overburden;

3. the anelastic strain, £ij(t), was equated to:

ea(t) =  Sija J ‘ V (t -  r ) ? ^ ^ d T  (2 .2 )

where:

Sijki is the compliance m atrix (function of the rock Young's modulus and 
Poisson’s ratio);
V (t — t ) is a  global compliance function;
(t — r )  is a  time interval; and,
^ki(t) is the effective stress history.
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A more realistic approach for the conditions immediately after coring is taken 

in this dissertation, considering an instantaneous drop from the original stresses 

and formation sta tic  pressure to the drilling fluid pressure, followed by a gradual 

decrease to the atm ospheric pressure as the core is retrieved. Assuming the vertical 

stress to be a principal one represents the situation in tectonically relaxed basins, 

which is very reasonable as a  first approach.

It is clear from Equation (2.2) tha t considerations on the  physical mechanisms 

involved in the anelastic process were intentionally avoided by choosing a global com­

pliance fimction. In opposition to this approach, a  spring-dashpot arrangement was 

used for simulating the rock anelastic behavior in this dissertation (Chapter 3), al­

lowing any of the rock elastic parameters (Young’s modulus, drained and tmdrained 

bulk modulus and grain bulk modulus) to represent the rock viscous characteristics..

A gradual linear unloading to the atmospheric pressure was also proposed in 

a new formulation by Blanton and Teufel (1986) and adopted by Terratek (1995), 

improving the viscoelastic model. Knowing the vertical effective stress à priori, 

the horizontal stresses (ogg and cr^) in this approach are given by:

1 0 2 2  — DVm ( 1  — a )  p
(̂ 22 — ^ 1

having:

Wij =

t ü i i  -  D V m { l - a ) p  

W 3 3  — D V m  (1 ~  Q:) P 
U/li —  D V m  (1 — 0c)p,

( 1  — 2u) A sij -I- uAskk

(2.3)

( 1  -+-%/) ( 1  -- 2u) 
f  A S i j  =  £ i j { t 2 )  —  £ i j ( t i )  

1  Aefc* =  ^kfcCh) — £kk(tl)

(2.4)

(2.5)

and.

~(^i ~  7b) — ( ( 2  — ?b)
Vm = Dr, I e n  -  e n (2.6)
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where:

D  is the compliance modulus {D = 1/E)  
ct is Biot’s effective stress coefficient; 
p is the porepressure; 
u  is the rock Poisson’s ratio;
A sij  and Askk  are the variations in the  principal and volumetric strains;
Dn and n  are the creep parameters of the analyzed rock;
(ti — To) is the time elapsed since the beginning of the ASR test and a 
referential time, tq;
(< 2  — To) is the time elapsed since the end of the ASR test and tq; and,
A t =  (fi -  To) .

Even though core contraction has been recognized and attribu ted  to high Pois­

son’s ratios and high deviatoric stresses. Equations (2.3) to (2.6) show that the 

above method m ay fail whenever the rock shows contraction: since D  and V m  are 

positive constants, having negative values for A sij and Ae** (Equations 2.5) may 

change the sign between the horizontal and vertical principal stresses, related in 

Equation (2.3), leading to an absurd condition of a  tensile in-situ stress.

Warpinski and Teufel (1986) developed another viscoelastic model also applicable 

to cases with contraction in all gages, even though no considerations were made 

about the reasons for the rock shrinkage. The model was designed for vertical 

boreholes only, assuming three horizontal gauges and a  vertical one. Instead of only 

one global compliance function, as in Blanton’s model (1983), two independent creep 

compliances, one in distortion (Ji) and another one in dilatation (J 2 ), were defined 

for describing the rock viscoelastic behavior.

The idea of splitting the deformation into distortional and dilatational behavior 

is similar to the procedure followed in this dissertation, where the load was divided 

into deviatoric and hydrostatic loading in order to compute the original stresses 

(Chapter 5). W arpinski and Teufel (1989), nevertheless, considered the dilatational 

effects (which includes pore pressure dffiusion) irrelevant in the stress computation, 

which was based solely on distortional strains.
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The advantages and disadvantages of the two existing viscoelastic models were 

discussed in details by Blanton (1989) and W arpinski & Teufel (1989), highlighting 

that B lanton’s model was applicable only in the  absence of pore fluid diffusion and 

core contraction. Even though more general, computing J\ and J 2 for Warpinski 

& Teufel’s model is somehow cumbersome, and was still to be optimized by the 

authors.

Further developments on Warpinski and Teufel’s model (1989) were presented by 

Matsuki and Takeuchi (1990 and 1991), for com puting the in-situ stress field from 

ASR tests on deviated wells a t a  geothermal field in Japan. In spite of a  completely 

different testing setup, w ith cubic samples and stra in  gages, the formulation was the 

same as in W arpinski and Teufel’s model (1989), and there were no concerns with 

poroelastic effects.

Pore pressure effects were first investigated by Breretron (1995), with a  simple 

m athem atical approach for reproducing ASR patterns observed in cores from off­

shore wells in the  Indian Ocean. The good m atching obtained by representing the 

rock behavior with emphasis on the pore pressure diffusion (Figures 1.5 to 1.10), 

together with advances in the application of the  poroelasticity theory to rock me­

chanics problems (D etoum ay and Cheng, 1993; Abousleiman et oL, 1996), motivated 

the search for a  new and more complete formulation.

Summary o f the Method Advantages

1. possibility of determining the complete stress field with just one test;

2. test is relatively easy and cheap to perform;

3. there is no need for altering the job schedule for the well, since the samples 

can be obtained using coring for other purposes. Nevertheless, oriented coring 

tools should be used.
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4. can be applied in situations where microfrac is not recom m ended for stress 

measurements: (i) due to the risk of severe borehole stability problems, stuck 

tools and well control (uncased open holes); (ii) diflSculties for isolating a 

specific zone;

5. can be used in deviated wells provided that the strain  relaxation is measured 

along a minimum of six directions, in order to allow the computation of the 

full strain tensor (Equation 2.1);

6. greater accuracy for determining the principal stress orientations; and,

7. the test is non-destructive: the samples remain available for any other purpose 

after the ASR test.

A SR Limitations

1. the physical principles are not completely understood: several factors remain 

undefined, as anisotropy eSects in the thermal and pore pressure difiusion 

processes;

2. only applicable in well consofidated rocks: ASR tests on unconsolidated and 

poorly consolidated sandstones presented transducer embedment in the soft 

m atrix and absence of measurable strains (Ramos et aL, 1994);

3. need of oriented cores: the tools for oriented coring are not completely reliable, 

sometimes rotation or lack of scribe marks makes part of the core useless (Owen 

et aL, 1988; Ramos et al., 1994);

4. the models for computing the stress magnitudes are complex, needing several 

rock parameters as input data;

33



5. cores with a microcrack fabric due to tectonics or other causes cannot be tested 

since the stress would be released by the existing fractures, with no relation 

to the original stresses orientations (Warpinski and Teufel, 1986: El Rabaa. 

1986: Kuhlman et a i,  1992);

6. the validity of asstuning a linear viscoelastic behavior for rocks may be ques­

tionable: if the principal strain directions change during the test it should be 

discarded because of anisotropic viscous behavior:

7. the error calculating the Tninimnm in-situ stress magnitude is higher than 

measiurements with microfracturing; and,

8. large time lost between drilling and starting the test may result in small dis­

placements during the test, affecting the accuracy of the strain measiurements 

(Bnimley et a i, 1994).

2.1.2 Differential Strain Curve Analysis

The Differential Strain Curve Analysis (DSCA) is a laboratory technique also based 

on the formation of an oriented population of microcracks in the core due to the 

in-situ stress relief upon coring. The DSCA consists in analyzing the strain versus 

pressure curves from hydrostatic compression tests on rock samples. These tests 

intend to revert the expansion process by compressing the rocks beyond its original 

state of stress. Since only dry rock samples are tested in the DSCA, no considerations 

are made regarding pore pressure diffusion effects. Thus, rock contraction after 

coring does not affect the  method, allowing for a  much simpler formulation in the 

stress calculation.

Two main assumptions are made in the DSCA technique: the volumetric density 

of the microcracks is proportional to the in-situ stress magnitudes; and, subjecting 

the sample to a hydrostatic pressurization would revert the expansion process in
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any specific direction (Strickland and Ren, 1980), i.e., the deformation caused by 

closing the microcracks is considered analogous to the deformation in the opening 

phase. The first assumption was confirmed by acoustic emission experiments (Teufel, 

1989), and allow the computation of the in-situ stress ratio by considering it to 

be proportional to the ratio between the magnitude of the strains generated by 

closing the cracks in the compression test. The second hypothesis assumes that 

the strain relaxation process is reversible. The creation of irregular surfaces in 

the microcrack opening phase, however, will surely demand more energy for being 

closed, configuring an irreversible process.

The intrinsic assumptions for the  DSCA method, nevertheless, appears to be 

good enough for the needs of the oil industry, and the technique has provided good 

results in several conditions (Strickland and Ren, 1980; Ren and Roegiers, 1983; 

Teufel, 1984; Owen et ai, 1988; Kuhlm an et aL, 1992).

Testing Procedure

Samples for the  DSCA test are generally cubic, although cylindrical cores have 

also been used (Ramos and Rathmell, 1989). Strain gages are glued onto the samples 

for measuring the strain  in several directions, allowing also a statistical analysis of 

the obtained results because of the  dupUcity in the  measuring directions (Figure 

2 .2).

The hydrostatic compression curve for sedimentary rocks generally presents two 

distinct slopes, separated by a transition zone (Figure 2.3): the initial slope is 

a ttributed  to the closing of microcracks and pore spaces, while the last slope is 

considered to represent the intrinsic compressibUity of the constituent minerals in 

the rock matrix. Assuming a linear crack closure, the strain due to the cracks alone 

can be computed for each measured direction by subtracting out the matrix portion
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Figure 2.2: Strain gage positioning on the cubic sample, 

from the to ta l strain  (Strickland and Ren, 1980; Ren and Roegiers, 1983):

A 4  =  A 4  -  A 4  (2.7)

where:

A 4  is the  specific strain change (per unit of pressure) due to the complete 
or partial closing of all the cracks in the tj-direction;
A 4  is the to ta l specific strain change (m atrix plus cracks and pores) 
in the i-direction; and,
A 4  is the m atrix specific strain change in the i-direction;.

Determining the In-Situ Stress Field

Similarly to the procedure for the ASR, the principal strain magnitudes are 

computed by the eigenvalues of the matrix presented in Equation (2.1), while the 

principal strain orientations are given by the eigenvectors of the same matrix. Tak­

ing advantage of the extra strain measurements, several matrixes can be solved, 

increasing the results reliabUity.

Once the ratio between the principal strains are known, the ratio between the
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Figure 2.3: Typical compression curve for sedimentary rock samples.

principal stress magnitudes can also be computed, considering the stress-strain re­

lations from linear elasticity. The in-situ stress field will be completely defined if 

another source of data, like micro&acturing, provides the m inim um  in-situ stress.

It must be pointed out that although the ASR and DSCA methods are based 

on the same basic principles, a  few differences between this two methods, shown 

in Table 2.1, must be taken into account whenever comparing their results. These 

differences arise from the fact that rock formations may have been subjected to 

larger stresses in its geological history, leaving a microcracking pattern tha t would 

be reflected in a testing procedure like the DSCA.

Table 2.1: Comparison between ASR and DSCA methods.
DSCA ASR

- reflects the cumulative effect of 
all loadings and unloadings
in the stress history of the rock;

- based on the rock complete 
strain relief;

- limited to the present state of stress;

- only the strain ocurring after recovering 
the core from the well is considered;

Summary o f the DSCA Capabüities

1. good reliabUity when compared to  other methods;
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2. free &om poroelastic and therm al eSects;

3. the results are easier to analyze; and,

4. cheaper when compared to microfracturing.

Summary o f the Method Disadvantages

1 . need of some kind of core orientation, as in the ASR method;

2. like the  ASR technique, the DSCA method cannot be used if a  microcrack fab­

ric can be detected a t depth, before coring. Perreau et aL (1989), for example, 

obtained stress orientations 90" from the correct azim uth when applying the 

DSCA and ASR methods, because of naturally fractured samples;

3. preparing cubic samples is more difficult than  using cylindrical cores;

4. poorly cemented rocks are not suitable for epoxy-bonding of strain gages;

5. strain  gages are not very practical for rock testing, i.e., the test setup is more 

complex when compared to the  ASR ready-to-use apparatus. The construction 

of a strain  measuring ring for triaxial testing with rock cubes would improve 

this aspect; and,

6 . large strains cannot be measured by strain gages (Ramos et aL, 1994).

2.2 Field Methods

Hydraulic fracturing and breakout analyses are two of the most applied field methods 

for in-situ stress determination (Haimson, 1988; Nolte, 1989). While microhydraulic 

fracturing is the  most reliable technique for gathering the minimum in-situ stress 

magnitude (Warpinski, 1989), breakouts can provide the orientation of the horizon­

tal in-situ stresses (Gough and Bell, 1982). The rock mechanics literature for the
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oil industry presents an impressive amount of research about in-situ stress determi­

nation based on hydraulic fracturing and quite a  few on breakout analyses. Only a 

few aspects of both  methods principles, advantages and limitations, are presented 

in this section, to be compared to the ASR technique.

2.2.1 Hydraulic Microfracturing

Small volume injection jobs have been extensively used by the oil industry preceding 

major fracturing treatm ents, serving to diagnose the fracturing behavior of mainly 

low-permeabUity, hard  rock formations, and allowing the determination of the min­

imum in-situ stress magnitude ((TAmin), from the pressure decline curve (Warpinski 

and Smith, 1989).

The most interesting feature of hydraulic fracturing is determining the rock 

strength under the in-situ conditions. The logistic complexity of a hydrofrac, nev­

ertheless, makes other methods, like core-based methods, more attractive and eco­

nomical.

Experimental Procedure

A microfrac test can be defined as a  hydrofrac job where no more than 500 1 of 

fracturing fluid are pumped into a  portion of the borehole, sealed off with a  straddle 

packer, a t a  flow rate  lower than 50 1 per minute (de Bree, 1989). As the internal 

fluid pressure increases, the tangential stress a t the borehole wall becomes tensile 

a t a  critical region, according to the ‘Kirsch solution’ (Goodman, 1980), initiating 

the fractine. If more fluid is pum ped into the formation, the fracture will propagate 

perpendicular to the m inim um  far-fleld stress, since this direction requires the least 

pressure to fracture the formation. In vertical wellbores, the fracture trace at the 

borehole wall coincides with the m inim um  far-fleld stress (Figure 2 .4 ), allowing the 

determ ination of the stress orientation from borehole methods.

Situations do exist in which microfracturing cannot be applied: open hole mi-
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Figure 2.4: Vertical hydraulic fracture.

crofractiu’ing are generally preferred, because there is no interference from perfora­

tion damages, casing and cement annulus (Warpinski, 1989), but stability concerns 

and potential well control problems may prioritize cementing and casing the bore­

hole. Moreover, the interaction between the drilling fluid and shaly formations very 

often produces an irregular borehole diameter, causing problems to packer installa­

tion and potential leaks tha t can mask the pressure curve (Bloch et oL, 1997).

Computing the In-Situ Stress Magnitudes

The theoretical pressure-time curve for microfracturing allows identifying the 

breakdown pressure at which the crack is formed. Pa, the instantaneous shut-in 

pressure, ISIP, immediately after pumping stops and eventually a  reopening pres­

sure, p ., if more than  one cycle is performed (Figure 2.5).

Considering the fracture to propagate perpendicular to the m inim nm  in-situ 

stress, the ISIP  recorded in the field can be assumed equal to (Thmm (Comet and 

Valete, 1984; Warpinski, 1989; Ekonomides and Nolte, 1989). Nevertheless, the
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Figure 2.5: Ideal pressure-time curve (as recorded from the surface): is the
breakdown pressure; Py. is the re-opening pressure; and ISIP  is the instantaneous 
shut-in pressure.

interpretation of the  pressure records is not always straightforward, mainly if the 

rock perm eabihty allows high fluid flow into the formation, disturbing the pattern  

of the pressure-time curve. Even though several methods have been developed 

for improving the pressure decline analysis, and the correct ISIP determination 

(Warpinski and Smith, 1989), the stress computation may become rather subjective.

Microfracs can also provide the maximum horizontal in-situ stress magnitude 

{(^HMAx) from Equations (2.8) or (2.9) (Haimson and Huang, 1990; Economides and 

Nolte, 1989), which are valid only for uncased boreholes, where the pressure record 

is not affected by the perforations. If the borehole wall is assumed impermeable 

due to mudcake buildup, one must use Equation 2.8; on the other hand, assuming 

that there are no barriers to fluid flow into the formation during the fracturing, 

poroelastic effects must be considered, and Equation (2.9) should be used:

—  3< 7> in iin  —  O ^ H M A X  +  ^ 0  ~  P (2.8)
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p  _  3<Tfcnun — Ô HMAX + T q — 2tJP
2(1 -  T])  ̂ ^

where:

Pb is the breakdown pressure, measured when the fracture starts to 
propagate;
(^hmin ÎS assumed equal to the ISIP-,
Tq is the rock tensile strength, which can be obtained from rock laboratory 
tests or assumed as Tq = Pb — Pr (Goodman, 1980); 
p  is the pore pressure; and,
77 is the poroelastic stress coefficient, defined as:

where Poisson’s ratio, 1/  , and Biot’s poroelastic effective stress coefficient, a , 

must be determined from laboratory tests.

Gathering the In-Situ Stress Orientation

There are several m ethods for detecting the fracture orientation from hydrofrac 

jobs. They can be subdivided into real-time methods, like: tiltm eters and downhole 

seismic tools (Lacy, 1984), and post-test m ethods, like: impression packers (Meehan, 

1994); borehole televiewers; multiple radioactive tracer logs; gamma ray logs and 

pulse neutron logs (Mullen et aL, 1996; Morales et ol., 1997) and overcoring (Yale 

et aL, 1992). The techniques based on the fracture trace along the  wellbore wall are 

only applicable to vertical boreholes, since the fracture at the wall is aligned to the 

far-field m inim um  in-situ stress. Most of these methods, nevertheless, may fail with 

microfracs, because of the small dimensions of the created fractures. Determining 

the horizontal stress orientation from microfracs remain thus, a  m ajor shortcoming 

for the method.

Hydraulic Fracturing Advantages fo r  Computing the In-Situ Stress Field

1. most reliable m ethod for directly determ ining (Thmin (Teufel, 1982); and,

2 . the stress is determ ined exactly under the in-situ conditions.
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Hydraulic Fracturing Major Drawbacks fo r  Computing the In-Situ Stress Field

1 . stopping the drilling job and removing the drilling string for a microfrac test 

means increasing the rig operational time, and therefore the drilling cost, be­

sides running into potential well stability problems;

2 . borehole sloughing and creep in shale formations can make it difficiilt to isolate 

the zone of interest in order to perform the microfrac (Khulman, 1990); and,

3. need of a  larger hydrofrac combined to another technique for verifying the 

stress orientation.

2.2.2 Breakouts

Breakouts are defined as intervals where the cross-section of vertical wellbores is non- 

circular due to fracturing of the borehole wall, as a  consequence of a  non-hydrostatic 

horizontal stress field. Based once more on the ‘Kirsch solution’ for circular openings 

imder compression (Goodman, 1980), and low borehole internal pressure, the rock 

spalling in breakouts can be associated to the orientation of the minimum horizontal 

in-situ stress, since the tangential stress concentration produces a  critical region in 

tha t direction.

Wellbore breakouts have been observed in several areas of North America and 

Europe (Gough and Bell, 1982; Podrouzeck and Bell, 1985; Bell and Babcock, 1986; 

Paillet and Kim, 1987; Bell, 1990; Bell et aL, 1992; Zoback and Peska, 1995; Fe- 

jerskov and Bratli, 1998) and analyzed by experimental tests (Haimson and Her­

rick, 1989; M artin et oL, 1994), proving to be a  reliable indicator of the horizontal 

principal stress orientations. In opposition to  ASR strain measurements, the rock 

deformation in breakouts is huge and clearly identifies the stress orientation, with­

out having to compute the strain tensor. Breakouts occurrence, nevertheless, is
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conditioned by the horizontal stress contrast: it has to be large enough so th a t the 

stresses at the critical region may exceed the rock strength, leading to failure.

The borehole elongation (Figure 2.6) can be identified by several com m ercial 

logging tools, like the conventional four-arms dipmeter, and more sophisticated log­

ging tools, which can send images of the borehole wall to the surface based upon 

changes on the formation microresistivity (Morrison and Thibodaux, 1984; Seiler 

et a l, 1994); difierences in the acoustic travel tim e a t a  cross section of the well­

bore (Taylor, 1983); and, echoes am plitude from ultrasonic scanners (Hayman et al., 

1994).

Figiue 2.6: Breakout cross-section: the long axis of the breakout is parallel to the 
minimum horizontal principal stress.

It is important to correctly distinguish between breakouts and other causes of 

borehole eUipticity, including drilling pipe wear and washouts. Fejerskov and Bratli 

(1998), for example, reported a  large problem for differentiating borehole breakouts 

from drilling-induced keyseats even a t low hole inclination. Bell et a l (1992), 

proposed a limiting inclination of 5° in order to allow breakout identification in a 

well.

Also the rock permeability seems to play some role in breakout identification:

44



Podrouzek and Bell (1985) pointed out th a t more permeable sandstones usually have 

a limited amount of breakouts because of the strengthening provided by mudcake 

armouring of the borehole walls. Bell et aL (1991) confirmed that there is a  higher 

probability of detecting breakouts in brittle rocks like shale, shale-rich or carbonate 

intervals than in sandstones.

Using breakouts for establishing the horizontal in-situ stress orientations for a 

specific region requires studying a  large number of wells (depending on the size of 

the area 25 to 50 wells may be needed, according to Bell et n i, 1991) in order to 

confirm the observations. Furthermore, each well must show breakouts over several 

thousands meters, in  order to provide a  reliable statistical analysis and lead to the 

stress distribution pattern . There are situations, however, where even a  positive 

breakout identification may be helpless for determining the stress orientations: Bell 

et al. (1992) a ttributed  the inconsistent breakout results for the stress regime of the 

southwestern part of the Aquitaine Basin (FYance), to both weak horizontal stress 

anisotropy and geomechanical discontinuities.

Several researchers attem pted to  define a  correlation between breakouts and in- 

situ stress magnitudes (Zoback et aL, 1985; Haimson and Herrick, 1989; Haimson 

and Song, 1995; Zoback and Peska, 1995). None of these works, nevertheless, an­

alyzed the kinematical aspect of failure (Detoumay and Roegiers, 1986), relating 

only the size and shape of the breakouts to the  stress field. Furthermore, based on 

the numerical simulations by Zheng et aL (1988), breakouts cross-sections cannot 

be uniquely related to the magnitude of the original in-situ stress, i.e., the same rock 

imder the same initial stress condition can produce different breakouts geometries, 

depending on the rock stress history.

Computing the stress magnitudes from breakouts seems to be in a  stage even 

more initial than in the ASR method. The initial consensus of a  shear failure
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(Zheng et aL, 1988; Haimson and Song, 1993) has been revised by Germanovich et 

al. (1994), indicating th a t breakouts are most probably caused by the tensile failure 

of pre-existing cracks, which propagate parallel to the free surface of the borehole. 

A better imderstanding of the mechanisms behind breakouts is still required before 

computing the stress magnitudes, and the  m ethod remains, nowadays, as a  valuable 

tool for determining only the horizontal in-situ stress orientation.

Advantages o f Using Breakouts fo r  In-Situ Stress Determination

1. the principal horizontal stress orientation is detected under in-situ conditions, 

improving the method reliability;

2. the method has been widely validated for vertical wellbores; and,

3. in-situ stress information can be gathered from logging tools routinely used 

for analyzing borehole eUipticity.

Disadvantages o f Using Breakouts fo r  In-Situ Stress Determination

1. only the stress field orientation is provided;

2. only applicable for vertical boreholes;

3. not always available since it depends on the stress anisotropy and rock strength; 

and,

4. can be erroneously identified from driU pipe wear, keyseats and washouts.
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Chapter 3 

A Poroviscoelastic Formulation for 
the Strain Relaxation Process

The principal steps for deriving the poroviscoelastic equations for the strain relax­

ation process are explained in this chapter. The indicia! notation, as defined by 

Chen and Saleeb (1982), was used in most of the cases, in order to abbreviate the 

equations. Nevertheless, the extended form of the vectors’ and tensors’ components 

was also used in a  few key-equations for a better comprehension of the physical 

meaning.

Since the main goal of the  model was to verify the influence of the pore fluid diffu­

sion on the core deformations, the governing equations and parameters are presented 

for the case of fully coupled poroelasticity. In order to be more realistic, the rock 

properties are allowed to change during the core relaxation, i.e., a time-dependence 

(viscous behavior) was also included by means of the Viscoelastic Correspondence 

Principle — VCP (Flügge, 1975); providing, finally, the  complete poroviscoelastic 

solution.

The core deformations are modelled from the initial coring time until they be­

come negligibly small; this process may be shorter or longer, depending on the rock 

permeability and mechanical properties^. The boundary conditions for the model

^Experimental results on siltstones presented negligible strains after 12 hours testing (Butter- 
worth et oL, 1991); the anelastic strain was completed within 6 to 10 hours in unconsolidated
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axe the variation in the stress and pore pressure a t the core outer surface, during 

tripping out of the borehole. These conditions, together with the rock properties 

and the chosen viscous model, are assumed to define a  specific radial displacement 

versus time curve, and then lead to a  unique estim ate of the in-situ stresses.

Although numerical solutions using finite or boundary elements are applied in 

most poroelasticity problems, the geometry analyzed in this dissertation is suffi­

ciently simple, that a  closed-form solution could be derived. The differential equa­

tions were solved in the Laplace domain, and then numerically inverted to the time 

domain, via the Stehfest inversion method (Stehfest, 1970b).

The model main ou tputs are:

(i) the radial displacements for the complete anelastic process. This behavior

will then be compared to the available viscoelastic approach; quantifying the 

influence of poroelasticity to the ASR process;

(ii) the pore pressure distribution history, in an a ttem pt to explain the core defor­

mation pattern; and,

(Hi) the in-situ radial stress or initial reservoir pressure from the radial displace­

ments measured in the  field with the ASR device; comparing with the stresses 

predicted by the conventional viscoelastic models.

3.1 Modeling the Coring Process

Modeling the coring process took into account two distinct types of deformations the 

core exhibits when cut away from the rock mass: elastic, in a  first stage, and anelastic 

as a  second and final stage. The stress and pore pressure a t the core boundary were 

assumed to drop instantaneously to the drilling fluid pressure as coring started.

sandstones (Ramos et oL, 1994); while tests on shales in a Saskatchian potash mine still presented 
measurables strains after 10 days (Roegiers, 1999).

48



whatever the drilling conditions; overbalanced, balanced or imderbaianced. A linear 

pressure decline was further assumed during the trip out of the borehole.

3.1.1 Strain Variation

The strain behavior^ immediately after coring is shown in Figure 3.1. The elastic 

process is represented by a  straight line from A to B, a t the coring instant (t =  ro), 

while the anelastic process, which begins with the sample still inside the coring bar­

rel, is represented from B to E. At C (t =  t i)  the sample reaches the surface, and 

the preparation for the ASR test takes from C to  D (f =  t{): generally speaking, 

two pieces of the whole core are cut, polyurethane wrapped or painted for prevent­

ing moisture evaporation, and  placed into the ASR constant temperature testing 

chamber. The displacement transducers are then adjusted around the sample, as 

shown in Figure 3.2, and the  data  acquisition is performed from D to E (£ =  £2 ), 

when the strain variation becomes négligeable.

The reason why sea lin g  paint is applied for preventing moisture evaporation is 

to avoid pore deformations due to diffusion and subsequent pore pressure redis­

tribution. W hatever the process used for avoiding m oisture evaporation from the 

sample surface, pore fluid redistribution in an A SR  test can n ot be avoided, since it 

has already started a t the moment of drilling, and continued throughout tripping, 

because of the pore pressure variation a t the core external surface.

3.1.2 Stress and Pore Pressure Variation

The original radial stresses a t  the core boundary were assumed to become instan­

taneously equal to the drilling fluid pressure a t the instant of coring, as well as the 

pore pressure at the core surface. The core is then under a  hydrostatic stress field,

having the total radial stress equal to the pore pressure a t the core surface and equal

^(i) the rock temperature can be assumed to equalize before the test;
(ii) vibration effects during the tests are minimized by the testing apparatus design.
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Figure 3.1: Strain variation during coring.

Figure 3.2: A rock sample wrapped in plastic and instrumented with the displace­
ment transducers.
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to the drilling fluid pressure a t the coring depth. As the whole core travels up to 

the smface, the drilling fluid pressure is gradually reduced to zero. The variation 

in the drilling fluid pressure, during the trip out of the borehole, was modelled as 

linear, i.e.;

where.

dp/dt is the variation in the drilling fluid pressure; 
p is the drilling fluid density; 
g is the local gravity acceleration; and, 
dh /d t is the coring barrel speed (assumed to be constant).

The negative sign in Equation (3.1) indicates that p is decreasing with time.

Figrure 3.3 shows schematically the assumed changes in the radial stress and pore

pressure at the core surface for overbalanced, balanced and underbalanced drilling

conditions^.

3.2 Poroviscoelastic Approach

Whenever the pore pressure a t the core external surface changes, the pressure inside 

the core is affected, leading to a  diffusion-type redistribution process. As discussed 

in the literature review chapter, the solid deformations due to changes in the pore 

pressiure inside the rock are greatly overlooked by purely viscoelastic models for 

computing stresses from the rock anelastic deformations. A more accurate approach 

must take poroviscoelastic effects into account, considering that the strains measured 

in ASR do include pore deformations (although sometimes negligible), because of 

the unavoidable pore pressure redistribution during coring.

The mechanical response of a fluid-saturated porous material to changes in the 

pressure and/or flow across its boundaries is governed by a coupled time-dependent

an impermeable mudcake covers the core an alternative boundary condition should be taken 
considering the no-Sow condition.
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(7 = total stress;
p = pore pressure;
<7r = radial stress;
PfM= reservoir pressure;
Pdf = drilling fluid pressure at coring for; 

o - overbalanced drilling 
b • balanced drilling 
u - underbalanced drilling

To = time when the sample is cored;
X, = time when the sample reaches the

surface;
A x  = X, -Xo= recovery time

Time

Figure 3.3: Total stress and pore pressure histories at the external surface of a  core 
during coring and tripping out of the  borehole.

deform ation/difhision process. Reductions in the pore pressure during tripping, for 

example, will lead to shrinkage of the pore volume, potentially masking some or all 

of the overall expansion due to  the stress relief process. The influence of porovis- 

coelasticity is obviously dependent on the rock physical and mechanical properties, 

as well as on the pore fluid viscosity. Tem perature effects can also play an impor­

tant role in the rock deformations occurring after coring. Nevertheless, tem perature 

effects are not analyzed in this dissertation.

T he main questions to be answered by the poroviscoelastic model are:

(i) In  which types of rocks can the strain  generated by poroviscoelastic effects 

significantly affect the total strain  measured in the ASR test?

(ii) W hat error is incurred when the poroviscoelastic effects are ignored? and, 

(Hi) Is there a  way to overcome the complexity of computing in-situ stresses

using a  poroviscoelastic approach for the ASR test?
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The poroviscoelastic model utilized in this study is based on the linear poroelastic 

analysis for cylindrical rock cores published by Detoumay and Cheng (1993). The 

coupled poroelasticity theory, in turn, can be seen as an extension of the elasticity 

theory, bu t adding the coupling of the porous media deformations with the huid 

flow through the pore spaces. A few assumptions are necessary for the application 

of linear poroelasticity to the cylinder problem:

•  axisymmetric geometry;

•  porous media is considered isotropic and homogeneous;

•  small strains and displacements, so th a t they can be assumed to be linear;

•  plane strain  conditions;

•  strains and stresses are proportional;

•  body forces can be neglected;

•  pores are interconnected in such a  way th a t there is free flow;

•  porous media is fully saturated;

•  pore fluid is Newtonian and incompressible; and,

•  tem perature variations are not taken into account.

Under these assumptions, the rock deformations are further assumed to be ho­

mogeneous in the radial direction (independent of the angular position) and the 

radial strains are obviously only a  function of the radial position in the rock. In 

other words, the situation analyzed is th a t of equal horizontal stresses. The plane 

strain condition is a simplifying assumption which is applicable to ASR once the 

core length is much larger than  the diam eter, while still in the coring barrel. Since
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the rock was previously assumed to be isotropic and homogeneous, there is no rea­

son to believe tha t the pore pressure diffusion process will not be equally spread 

throughout the whole sample.

3.2.1 Governing Equations in Poroelasticity

The modern poroelasticity theory was initiated by Biot (1941), and a new formu­

lation was presented by Rice and Cleary (1976), redefining some of the physical 

constants in the way they are used in this dissertation. Four independent constants 

plus the rock permeability are necessary for deriving all the relevant parameters 

in an isotropic poroelastic medium. It should be noted, however, that the basic 

constants cannot be randomly chosen: two of them  m ust represent the rock drained 

behavior, while the two others must be associated to the  fiuid flow aspects.

Another two aspects were still considered in this dissertation for determining the 

basic constants: (i) facility and reliabüity for measuring the constants in the labo­

ratory; and, (ii) need of including the viscous effects into the governing equations. 

The chosen basic parameters, finally, were:

Yoimg’s modulus, E , 
bulk modulus, AT; 
grain bulk modulus, AT,; 
grain bulk modulus, A^; 
undrained bulk modulus, Ku, and, 
rock permeability, k.

The set of governing equations for analyzing the stress-strain behavior in the cou­

pled theory of linear poroelasticity includes the basic equations of fiuid mechanics, 

fluid flow in porous media and rock mechanics. These equations are:

•  Equilibrium equation:

—  0  ( 3 . 2 )
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•  Darcy’s law:

qi =  -« p ,i (3-3)

where,

qi is the flowrate in the Xi-direction;
K is the mobility, defined as the  ratio between the rock permeability 
and the fluid absolute viscosity (k /p ); and, 

is the pressure gradient in the  i-direction.

Continuity equation:

^  +  9i.i =  0 (3.4)

where Ç, is defined as the change in the fluid volume per unit volume of porous 

material during the difiFusive fluid mass transport, computed as:

C =  ^  (3.5)

where A V]r is the aunount of fluid entering or leaving a Representative Elementary 

Volume-REV* ; and V  is the volume of the REV.

• Constitutive equations for poroelasticity:

The stress-strain relationship can be w ritten as:

2,Gi/
<Tij =  2 G £ ij -h  ̂^  — ocpSij (3-6)

where,

G  is the shear modulus;
1/  is Poisson’s ratio;
6ij is the Kronecker delta function {6ij =  1 for i =  j  and 
6ij =  0 for i ^  j);  and,
Q is Biot’s effective stress coeflficient, which for isotropic 
rocks is given by:

‘'REV is an infinitesimal cell, large enough when compared to the pore and to grain sizes to be 
considered representative-
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( x = l  — ~  (3.7)

where K  is the bulk modulus and Ka is the grain modulus.

It is interesting to note th a t having the pore pressure p =  0 in Equation (3.6)

will reproduce the elastic constitutive equations. Equation (3.6) can also be written

in terms of the fluid content variation as:

2Gi/
aij =  2Geij 4- — aMÇÔij (3.8)

where M  is known as B iot’s modulus, given by:

and i/u is the  undrained Poisson’s ratio.

•  A Navier-type equation for the displacement Uj is obtained by substituting 

Equation (3.8) in Eîquation (3.2):

GV^Ui +  , ^  Uk,ki =  ocM Q  (3.10)

The diffusion equation for the fluid content is then given by:

^ - c V 2 c  =  0 (3.11)

where c is the rock diflFusivity, given by:

Under hydrostatic stress conditions, which results in an axisymmetric problem, 

the Laplacian operator is given by:

+ ;A)
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Application of such Laplace transformation, to the various quantities involved in 

Equation (3.11) allows the time derivative to be elim inated:

C(0) (3-14)

where,

£  denotes the Laplace transform;
" represents the function in the Laplace domain; 
s is the Laplace variable; and,
C(0) =  0.

Using (3-13) and (3.14), Equation (3.11) can be rewritten as:

The general solution of Equation (3.15) has already been derived by Detoumay 

and Cheng (1993) as:

C =  ^ i / o ( 0  (3-16)

where.

D i is an integration constant;

lo is the modified Bessel function of first kind and order zero;

(3.17)

and, R is the rock core external radius.

A relationship between the volumetric strain and the variation of fluid content 

can be obtained by considering the Navier Elquation (3.10) in the radial direction 

only:

s - A l  » ■ •>

where,
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T] is the poroelastic stress coefficient, given by:

S  is the storage coefficient, computed as:

The volumetric strain in the Laplace domain can be written by substituting 

Equation (3.16) into Equation (3.18), and integrating both sides of the resulting 

expression:

ë = +  D , (3.21)

The volumetric strain, e, can be written in cylindrical coordinates as:

S =  Sr +  Sg 4- Sz (3.22)

Considering the symmetry of the cylinder problem in the above:

dur

< e« =  — (3.23)
T

dvj

Taking into account the plane strain assumption, i.e.:

£z = 0 (3.24)

The voliunetric strain can be finally derived by replacing Elquations (3.23) and 

(3.24) into Equation (3.22):

(n v ) (3.25)r  Or

The radial displacements in the Laplace domain are then obtained by integrating 

Equation (3.25) using Equation (3.21):

ÜT =  (3.26)
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where D\ and D 2 are integration constants to  be defined by the boundary conditions.

Two boundary conditions are needed for computing D\ and Dg. They will be 

initially imposed as the variation of pore pressure and radial stress at the core 

external sxirface.

The variation o f pore pressure can also be w ritten as:

p =  M  (C -  ae) (3.27)

Using the strain definitions for the plane stra in  problem (Equations 3.22 to 3.24) 

and transforming Equation (3.27) into the Laplace domain:

p  =  M

From Equation (3.26):

dû t]Di 
^  “  ~GS / o ( 0 - +  ^  (3.29)e J 2

Finally, the expression for the pore pressure variation is obtained in the Laplace 

domain by inserting Equations (3.16), (3.29) and (3.26) into Equation (3.28):

P = Di [m /o (0  ( 1  -  ^ ) ]  -  a U D i  (3.30)

The radial stresses can be derived from Equation (3.8) in cylindrical coordinates 

and for plane strain conditions:

0(^1/
a r  =  2 G e r  4- (e^ +  e e ) -  aMÇ  (3.31 )

1 —

Equation (3.31) can then be rearranged and transformed into the Laplace domain, 

giving:

- = ̂ ‘1 [(rfë: - T ) +  '3.32)

Summarizing, the integration constants D \ and D 2 can now be computed from 

the initial boundary conditions through Equations (3.30) and (3.32).
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3.2.2 Boundary Conditions

The general procedure for analyzing linear poroelasticity problems should take into 

account the linear characteristics and isolate the physical phenomena by consid­

ering several fimdamental loading modes. These modes are then superimposed, 

representing a  variety of boundary conditions. Table 3.1 shows a total of eight dif­

ferent loading modes a t the cylinder external surface, as described by Abousleiman 

and Cui (1998).

Table 3.1: Loading modes utilized in th e  cylinder problem.

Mode <Tr P £z Qr
I

LA
0

0
II

IIA
0
0

Po(i)
Q(t)/2rrr

III -Sbcos2^ SosinTB
IV

rvA
0 e(t)

£(t) 0
Obs.: compression is assumed negative.

where,

cTj. is the radial stress;
Tro andTrr sxe the shear stresses; 
p is the pore pressurein the rock sample;
£z is the axial strain  imposed on the rock sample;
Qr is the radial flow a t the cylinder surface;
Po(t) is a  time-dependent radial loading on the  cylinder surface;
5o is the am plitude of a  sinusoidal loading;
P o ( t )  is a  time-dependent radial loading on the  cylinder surface; 
e{t) is an axial strain  rate; and,
Q{t) is the fluid flow rate across the cylinder surface per unit depth.

Modes I and II can represent the  coring problem under hydrostatic conditions, 

having the radial stress and pore pressure at the core surface as boundary conditions. 

Modes lA and IIA can also represent the coring problem, having the fluid flow 

at the core external surface, instead of the pore pressure, as a  second boimdary
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Table 3.2: Sum m ary of the boundary conditions a t the core surface.

Mode Boundary Condition
I and n radial stress 

pore pressure
LA and IIA radial stress 

flow rate
m radial stress 

tangential stress
IV pore pressure 

axial strain rate
IVA axial strain rate 

flow rate

condition. These four initial modes (I to IIA) are plane strain  problems, since the 

strain perpendicular to  the r^-plane is assumed to be zero.

Mode III deals w ith the deviatoric stresses, which are vectorial components, 

not affecting the rock volume (Roegiers and Vandamme, 1999): and thus, were 

not included in the poroelastic analysis. Nevertheless, they will be added later on 

(chapter 5), to fully describe the actual stress field obtained from ASR data.

Modes rV and IVA consider generalized plane strain conditions (the axial strain 

is not a function of th e  radial position), typical of laboratory compression tests under 

constant axial strain  rate; this will not be used for simulating the coring process.

Table 3.2 summarizes the boundary conditions for eauii loading mode. Only 

loading Modes I and II were used as boundary conditions for the  poroelastic analysis 

of the coring problem, leaving Modes LA, IIA for future work.

The final derivation for the radial displacement equation in Modes I and II is 

presented next: constants D l and D2 are evaluated from a  set of two equations, 

according to the known boundary condition, finally providing the desired formula.

M ode I: boundary conditions: <Tr =  —Po(^); po =  0 a t r  =  jR:
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Radial displacements:

Letting ^  =  0 in Equation (3.30), and =  —Po(s) in Equation (3.32), the 

following system, of two equations is set up and solved for D\ and Dg:

h iÂ Ï
1 — 2f/u

(3.33)

Dx ^M/o(^) ^1 — — 0CMD2  = 0

The radial displacement for loading Mode I is given by replacing D i and Dg from 

Elquations (3.33) into Equation (3.26):

^  ~  77 m  (3.34)
(1 - . / )  W ) - 2 K - W  ^

where Pq is a  function of the Laplace variable, s, to be defined by the variation 

imposed on the radial stress during coring.

Equation (3.34) can be checked for large times a t r  =  i î  (at the core boundary): 

letting É —» 0 0  means s  0; then knowing th a t /o(0) =  1 and /i(0 ) =  0, and 

applying L'Hospital rule (Abramowitz and Stegun, 1970) for computing lim =
X—0 X

0, the linear elastic solution is retrieved (the complete derivation of this equation 

under the linear elasticity theory is shown in Appendix A):

Ur =  (1 -  2„) (3.35)

For small times, when the rock behavior is mostly undrained: t —* 0 and, hence, 

s —> 0 0 , and the displacement is still given by Equation (3.35), replacing u by

Pore pressure variations:

W ith D \ and Dg from Elquations (3.33) now substituted into Equation (3.30), 

the pore pressure is given by:

- _  ^ ------ a -J l ),[ W ) - / o ( 0 1  (3.36)
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M o d e  II : boundary conditions: <Tr =  0; p  =  Po(t)  a t r  =  A:

Radial displacements:

Applying the Laplace transform to the  boundary conditions once more: p = 

Po{s), and âr =  0. Another system of two equations can be solved for Di and Dg, 

using Equation (3.30) and Equation (3.32) again:

 ̂ , (3.37)

po =  D l  ^ A f /o (^ )  ^ 1  — “  0 C M D 2

Likewise Mode I, the radial displacements for Mode II are given by replacing Di 

and Ü 2 from Equations (3.37) into Equation (3.26):

2 r ,( l  - < / ) ( ! -  2 ^ „ )  W ) / 0  +  ^

TTW\ (3.38)

Pore pressure variations:

Replacing D \ and D 2  from Equations (3.37) in Elquation (3.30):

(1 — u )  /o ( 0  — 2(i/„ — u )  

p =  Po (3-39)
(1 — u) Iq{/3) — 2 (i/u — u) —

T im e -d e p e n d e n t b o u n d a ry  co n d itio n s

Computing the radial displacement and pore pressure distributions in the poroelastic 

formulation for both Modes I and II is now a  question o f defining the time-dependent 

boimdary conditions. They must be defined in the time domain first, and then 

transformed to the Laplace domain.

a) Boundary conditions in the time domain:
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It is im portant to realize th a t the general poroelastic formulation assumes only 

a  variation of the initial radial stress and pore pressure, without taking into account 

the initial sta te  itself. In other words, the theory of poroelasticity, as presented, 

is always dealing with ‘deltas’, over the initial conditions. The initial stress state, 

nevertheless, is exactly the final goal of simulating the  coring process, and the way 

for including the initial stress and pore pressure in the  poroelasticity equations was 

to subtract two ‘delta’ loadings; the first one consisted in inputting a constant 

condition (initial subsurface radial stress and reservoir pressure); while the second 

one imposes a  two-step function, ending a t the constant initial condition. The first 

loading minus the second perfectly simulates the decrease in the stresses during 

coring. The second loading pattern  was suitably chosen for representing the three 

possible drilling conditions: overbalanced, balanced and underbalanced.

Figiues 3.4 to 3.7 show the loading decomposition for simulating the coring 

process, where:

(Tr is the  radial stress a t the core external surface;
Pdf is the drilling fluid pressure;
t* is the recovery time (time for the cored sample to reach surface, when 
the pressure at the core external radius becomes atmospheric); and.
Pres is the initial reservoir pressure.

%

timeI»
-►
time time

Figure 3.4: Variation of the radial stress a t the core boundary.
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Pdf
i
I
I

'res

timet*

'res res

timetime
Pres ” Pdf

Figure 3.5: Variation of the pore pressure a t the core boundary during overbalanced 
drilling.

timef

Pms

tune

Pres

timef

Figiure 3.6: Variation of the pore pressure a t the core boundary during balanced 
drilling.

I
I

res

timet*

'resres

time time

Figure 3.7: Variation of the pore pressure a t the core boundary during underbal­
anced drilling.
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As stated above. Figures 3.5 to 3.7 present the boundary conditions for comput­

ing the stresses and pore pressures histories in the core. W hen computing the core 

radial displacements, nevertheless, the core initial dimensions are not important, 

and the variation imposed by the second loading pattern  can be applied alone for 

identifying rock expansion or contraction, simply by assuming th a t decreasing the 

radial stress leads to core expansion while decreasing the pore pressure means over­

all contraction. This convention sign will be applied later on, still in this chapter, 

for deriving the radial displacements for Modes I and II combined.

Fimctions Po{t) and  po(t), respectively the change in the radial stress and pore 

pressure at the core boundary, can then be defined by a single general equation, 

which will reproduce the  variation in pressure and stress shown in Figures 3.4 to 

3.7, depending on the  drilling fiuid pressure and reservoir pressure input:

4 P
(Lo — Pdf) t

f +  (Lo — Pdf) H(t)-

Lq — (Lo — Pdf) t
+  (Lo — Pdf) H {t -  f )  -h LoH{t

(3.40)

where,

L represents the  rock stresses a t the core external surface;
Lo is the in-situ radial stress (<r,.) or reservoir pressure (pra»); and,
H{t) is the Heaviside step function, defined as:

H{t) =  0, for t <  0

H (t)  =  1, for t >  0

H {t — t*) =  0, for t <  t*

H (t -  f )  =  1, for t  > f  
The generality of Equation (3.40) can be checked out by confirming that it

reproduces the pore pressure history a t the core boundary for each drilling condition,

before it reaches the surface (t < t*):

(3.41)

i) overbalanced drilling
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The pressure variation in this case is such that:

Pres — Pdf < 0 (3-42)

Using Equation (3.42) into Equation (3.40), and assuming (t <  t*), gives:

P  =  + ( p _ - p ^ )  ( 3 .4 3 )

which is the equation of a line, as shown in Figure 3.8a, that correctly reproduces 

the pressiure variation in Figure 3.5.

ii) balanced drilling 

For this condition one has:

Pres — PflEf =  0 (3.44)

Using Equation (3.44) into (3.40):

P =  ^  (3.45)

which is the equation of a  line passing through the origin of the pressure versus time 

plot, shown in Figure 3.8b, that matches the variation represented in Figure 3.6.

Hi) underbalanced condition 

In this situation:

Pres — Pdf > 0 (3.46)

Replacing Equation (3.46) into Equation (3.40) reproduces exactly the same pressure 

variation as in the overbalanced case (Elquation 3.43), but now pra > Pdf a t the

coring instant, and the pressure variation shown in Figure 3.8c is identical to the

one presented in Figure 3.7.

b) Boundary conditions in the Laplace domain:
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res

Pres ” (Pres “ P d f )

tim e

Pres -  Pdf

(a)

res

tim e

(b)

res

-  (Pres -  P d f)res

Pres ■ Pdf

tim e

(C)

Figure 3.8: Variation of the pore pressure a t the core boundary for different drilling 
conditions before reaching the surface: (a) overbalanced drilling; (b) balanced 
driUing; (c) underbalanced drilling.
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The next step is to  define P q and pq, respectively the change in the radial stress 

and pore pressiure at the  core boundary, in the Laplace domain. The Laplace trans­

form of a Heaviside function is given by (Kreyszig, 1993):

{
£  [H{t -  k)] =  - e - ^

(3.47)

where A: is a constant.

Using Equation (3.47) into Equation (3.40) gives the boundary conditions for 

the stress and pore pressure variation in the Laplace domain for loading Modes I 

and II, respectively:

Fo =  ^  s

s

(1  -  

t*s

(1 -

t ‘s

- 1
s

+ Pres

(3.48)

(3.49)

Radial displacements

and pore pressure distributions

The boimdary conditions for computing the radial displacements and pore pressure 

distributions are completely defined by E^quations (3.48) and (3.49) in terms of the 

in-situ radial stress, (Tr, the initial reservoir pressure, pra», the drilling fluid pressure. 

Pdf - and the recovery time, V.

i) Radial displacements:

Inserting Equation (3.48) into Equation (3.34) gives the radial displacement for 

Mode I loading:
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( 1 - e — )
F I  ‘ 4 -s j  2 G

( 1  — 2 //„) ( 1  — u) I q(0) 4- 2  (i'u — A (0

(1 — t/) Iq{0 ) — 2 (i/u — u) i m

(3.50)

It is tisefiil to simplify the above expression by defining;

T F A C ^  =  ^  
s

( 1 1
t*s

Ds — (1 — y) Iq(/3) — 2 {u-u — v) h m
0

(3.51)

D 4  =  (1 — 2i/u) (1 — I/) /o(/3) 4- 2 (i/u — I/)

leading to a new form of Equation (3.50); i.e.:

By the same token, inserting E]quation (3.49) into Ek^uation (3.38) gives the 

radial displacements for Mode II:

Ûr =  IPdf ( 1 - e — )
4- 1 / i ( 0I r  2f/«) Io(/3)/0+  ^

Pres I ”   Ç

(3.53)

Using once more the simplifying expressions from (3.51), and defining also:

(3.54)Ds =  277(1 -  I/) (1 -  2i/„)
0  ■ e

a new form of Equation (3.53), analogous to Equation (3.52), can be written as:

r  Ds
Ur = {t f a c  4- (3.55)

2 G D 3

A simple and straightforward expression can be finally  w ritten for the to tal radial 

displacements for Modes I and II combined:

r
Ur =

2 GD3
{ D I S T I L  -  D 5 P T I L ) (3.56)
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where,

and.

S T  I L  =  T F A C  +  — (3.57)

P T I L  = T F A C  +  ^  (3.58)
s

The negative sign inside Equation (3.56) means only that Modes I and II have 

different effects on the rock deformations. In other words, rock expansion, due to 

the radial stress relief (expressed by the term  D IS T IL ), was considered positive, 

while rock contraction, due to th e  pore pressure decrease (expressed by the term 

D 5 P T IL ), was considered negative.

ii) Pore pressure distribution'.

The pore pressure variation due to Mode I loading can be equated by introducing 

Equation (3.48) into Equation (3.36):

— f/) [Iq{P) — -fo(f)]

(1 — u) Iq{0) — 2 (i/u — f/)
(3.59)

0

Defining now:

Dg =  ( 1  -  v) [ W )  -  loiO] (3.60)

and using T F A C  and D 3 , previously defined in Equations (3.51), Equation (3.59)

can be simpUfied to:

p  =  ^  {t f a c  4- y )  (3.61)

The pore pressure in loading Mode II can be obtained by inserting Equation

(3.49) into Equation (3.39):

(1 — I / )  /o(^) — 2(i/„ — I / ) -

s
/  (1 — I/) Iq{0) — 2 (i/u — f/) —
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Defining:

D : =  (1 -  u) loiO  -  2 K  -  (3.63)

Equation (3.62) simplifies to:

p =  ^  ( t F A C  +  (3.64)

The pore pressure variation for Modes I and II combined is then given by adding 

Equations 3.61 and 3.64:

p-= (Di s t i l  ^ D r P T iL )
D i

where S T IL  and P T IL  are given by Equations (3.57) and (3.58), respectively.

Equation (3.65) is analogous to the one obtained for the radial displacements 

(Equation 3.56). In the pore pressure analysis, nevertheless, both loading Modes 

I and II generate the same type of pore pressure variation (decreasing the radial

stress and the pore pressure a t the core boundary reduces the pore pressure inside

the core), the terms D IS T IL  and D rP T IL  must then be added.

In-Situ radial stress and 

initial reservoir pressure

i) In-Situ radial stress:

The in-situ radial stresses can be computed now as a  function of the radial 

displacements and the reservoir initial pressure (for Modes I and II combined) by 

simply expressing the stress from Equation (3.56), using Equation (3.57):

( 2 GD 3 —  +  D 5 P T 1 A  
—  =  ^ ^ ^  -  T F A C  (3.66)
S  Z?4

The numerical inversion of the right-hand side of Equation (3.66) will give, then, 

the desired in-situ radial stress, since:

- 1  (3.67)
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ii) Initial pore-pressure:

The same procedure can be adopted for computing the initial reservoir pressure 

as a function of the radial displacements, expressing it from Equation (3.56), and 

using Equation (3.58):

^  ^  -  T F A C  (3.68)
S Z/5

Inverting now the right hand side of Equation (3.68) will give the initial reservoir 

pressure:

£ " " ( Y ) = P r  (3.69)

3.3 Including the Viscoelastic Effects

Until now the analysis of the coring process has been restricted to poroelastic effects. 

The anelastic process, however, is characterized by time-dependent deformations, in 

which the rock properties are most probably not constant. The rock viscous char­

acteristics may then play some role in the deformation process. A simple way to 

include the viscous effect in the poroelastic equations is to use the Viscoelastic Cor­

respondent Principle (VCP). This m ethod states that the governing equations for an 

elastic problem can also be used for deriving the viscoelastic response, if the elastic 

constants are replaced by their time-dependent equivalent functions, expressed in 

terms of the Laplace transforms (Fliigge, 1975). This idea can be further extended 

to the poroelastic formulation, and the poroviscoelastic response would be obtained 

by replacing the poroelastic constants by their poroviscoelastic correspondent ones.

A basic question to be answered before applying the viscoelasticity theory is 

the kind of time-dependence that is under consideration, i.e., is the viscous stress- 

strain behavior of rocks governed by linear or non-linear differential equations? The 

strain response of ASR tests is generally assumed to be exponential (Warpinski,
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1986; Waxpinski and Teufel, 1986; Breretron, 1995), and this can be confirmed by 

examining the field data  presented in this dissertation (C hapter 5), regardless of the 

expansion/contraction characteristics of these curves. Since exponential solutions 

are typically derived from linear constitutive equations (Fliigge, 1975), the linear 

theory of viscoelasticity will be assumed in the analysis of the  cylindrical problem.

Viscous efiects are present whenever a  material shows increasing deformation 

under constant loading (creep). In order to compute the creep constants it is neces­

sary, first, to define a proper viscoelastic model. According to  Fliigge (1975) several 

viscoelastic models can be applied for representing the  behavior of solid materials 

(Kelvin solid; 3-parameter solid; 4-parameter solid etc.). T hey all show a combina­

tion of the basic elements: springs and dashpots, for simulating, respectively, the 

elastic and the viscous aspects of the sohd deformation.

The model chosen in this dissertation is the linear three-param eter solid model 

(also called modified Kelvin model), shown in Figure 3.9, which is considered to 

better represent an exponential relaxation process like ASR (Flügge, 1975; Warpin­

ski, 1986; Warpinski and Teufel, 1986; Abousleiman et al., 1996). The question now 

is which rock property is responsible for creep: is it only a  bulk characteristic? a 

solid grain property? or bo th  of them? Two sources of information can be used 

for answering these questions: the experimental tests, shown in Chapter 6, where 

the creep behavior was measured for several rock properties; and the parametric 

analysis, shown in Chapter 4, where the viscous behavior was a ttributed  to different 

rock parameters and the results compared. The viscoelastic formulation is presented 

here in terms of the bulk m odulus and the volumetric strain , which are considered 

to best represent the rock ‘bulk’ behavior in the anelastic deformation process. This 

analysis, however, is totally analogous if any of the other four elastic constants {E, 

G, Kg, Au), is chosen for describing the material viscoelastic behavior.
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The model is composed of two parts: a  spring and a Kelvin element (spring 

and dashpot in a parallel configuration) in series, having K i  and K 2 as the spring 

constants and h k  as the dashpot viscosity coeflhcient. Pc is the confining pressure 

applied to the system.

It

Figure 3.9: Three-parameter modified Kelvin model.

If a three-parameter solid model is loaded, an instantaneous elastic deformation, 

s ', appears due to the spring constant K i-

P c  =  K i e ' (3.70)

If Pc is kept constant for period of time, the initial deformation (s') is followed 

by a ‘delayed elastic behavior’, when K 2 and fj,fc start to play some role and the 

stress-strain equation for the Kelvin element is given by:

Pc = K2e" + fMKé"

The total strain is given by the sum of the strains in each element:

(3.71)

£ =  e' + e" (3.72)
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The constitutive relation for the model is derived by applying the Laplace trans­

form to Equations (3.70) and (3.71), considering K \, ^ 2  and tifc to be constants:

A  =  (AT, +  s^K )i"  ‘ '

Rearranging and adding Equations (3.73) leads to:

Pc{ ^ 2  +  Sflic) +  Pcf^l =  (Ül2 +  Sflfc) +  (-^2 +  K \ (3.74)

T ran sfo rm in g  Equation (3.74) back into the time domain, and using Equation 

(3.72), gives:

(K i + K 2 )Pc + f^tK^c =  (3.75)

Considering now:

Pc =  PccH{t) (3.76)

where,
Pco is a constant; and,
H (£) is the Heaviside unit step function, given by:(

( H (t) — 0, £ <  0 /m
\H-(£) =  1, £ >  0  ̂ ^

The total strain for the model can be finally derived in the  Laplace domain, by 

inserting Equation (3.76) into Equation (3.75) and applying the Laplace transform:

{ K i  4- K 2 ) +  s f i f c
i  =  Pc

where:

K1K2 -i- sKiflK
(3.78)

Pc =  —  (3.79)s

The correspondent bulk modulus can be explicited by inverting Ekjuation (3.78):

K 1 K 2  4-  s K i f l K

e
(3.80)

(Üfi 4- K 2 ) 4-

Having derived the viscoelastic correspondent param eter, it is necessary to define 

a procedure for determining the model constants: K i, K 2  and /x/c. Assuming that
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the relationship between the confining pressure and volumetric strain under creep 

can be described by:

e(t) =  P c ^ m  (3.81)

where J{t) is the compliance function in strain  per unit of applied pressure, and is 

written as (Fliigge, 1975):

/  K 2 t '

The coefficients o f  J{t) can be empirically evaluated by fitting the strain versus tim e 

curve in creep tests where is known (Abousleiman et aL, 1996). At time < =  0, 

from Equation (3.82):

J ( t  =  0) =  (3.83)

and then:

K i =  —  =  K  (3.84)

In other words, t  =  0 means the b eginning of the creep phase, which can also be 

understood as the ending of the elastic region, where K \  =  K .

K 2 can be computed by knowing K i  and considering tha t for longer times, as 

t —+ 0 0 :

J{t —*• 0 0 ) =  -rr* 4- -=p- (3.85)
K \ 1 ^ 2

In order to get an explicit form for K 2 it is necessary to insert Equation (3.85) 

into Equation (3.82), giving:

K 2 =  (3.86)

where Koo is defined as Pc/ eoo, and is always smaller than  K i, since for longer times

the material will show a  larger deformation, i.e.:

£oo >  El leads to ATi =  —  >  Koo =  —  (3.87)
El Eoo
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The limiting case would be when the m aterial shows no creep: K^o = K i, and then 

K 2 is infinitely large.

The viscosity coefficient, can be determined using K \  and previously 

calculated, and J{t) taken from the curve-fitting equation a t any time t:

K it
(3.88)

In -t- 1 — K iJ (t)

It is clear, from the equations just derived for the viscoelastic approach, that 

including viscous efiects in the governing equations of poroelasticity will increase 

the number of parameters needed to fully describe the rock deformation process: at 

least two more constants (K 2 , and fifc) are needed if K i  is not constant.

3.3.1 Relationship Among the Poroelastic Parameters

Several theoretical approaches can be applied depending on which basic parameter 

or which combination of basic param eters is chosen for exhibiting the rock ‘primary’ 

\iscous characteristics, as described by the modified Kelvin model. The remaining  

param eters will also have a  ‘secondary’ time-dependency, since they are expressed by 

constitutive relations, available in the rock mechanics and poroelasticity literature 

(Biot, 1941; Jaeger and Cook, 1979; Detoumay and Cheng, 1993), as a  function of 

the basic parameters.

Assiuning, for example, E , K , Kg and K ^  to be the basic input parameters for a 

poroviscoelastic analysis, and  choosing the bulk modulus K  as the only rock property 

exhibiting a  primary viscous behavior, the viscoelastic correspondent parameters 

would be given by the following set of expressions:

(3,89)
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â  =  1 -  ^  (3.91)
K ,  

- 2(

2{ZK^-k-G)
P. =  (3-92)

» = 5 i r W b F i

3.3.2 Solutions in the Time-domain

Because of the complexity of the equations in the Laplace domain, there’s no ana­

lytical inversion method for computing displacements and/or pressure distributions 

in the time domain. A numerical inversion is then necessary. The Stehfest algo­

rithm, first published in January 1970 (Stehfest, 1970a), and corrected in Octo­

ber 1970 (Stehfest, 1970b) was chosen due to i t’s relative simplicity, wide appli­

cation and easier programming (Detoumay and Cheng, 1993; Ferreira, 1996; Cui 

and Abousleiman, 1998). The general form of the numerical inversion is (Stehfest, 

1970b):
û ^ro \  _îL r /’«/./'oM

(3.96)
 ̂ i=i L 

where,
■.«09(2)IF{t) is the numerical inversion of the Laplace transform F  

- — is the Laplace variable, s;

t

=    (3.97)
6  ( % - t )  !(Ar)!(fc -  1)!(: -  k)\{2 k  -  i)l
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b =  integer ^  ^  (3.98)

j  =  min ( t , 0  (3.99)

( (3.100) n  =  even

Theoretically speaking, the greater the value of n, the higher the accuracy of 

F{t). Typical values for n, when dealing w ith equations in the poroelasticity theory, 

range between 8 and 16 (Ferreira, 1996). Several tests were performed comparing the 

numerical inversion of functions with known analytical inversion and the stabUity of 

the poroviscoelastic solutions for different values of n. Identical results were found 

for n between 8 and 12, and n  =  8 was adopted in this dissertation. Figures 3.10 

and 3.11 show the code fluxogram.
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read input parameters

definition o f Stehfest function

Laplace inversion procedure

is the basic input 
time-dependent 3,

apply viscoelastic  
model

subfunction for computing the poroelastic and 
viscoelastic  solutions in the Laplace domain

subroutine for factorial 
calculation

subroutine for computing the  
modified B esse l function of 

the first kind, order zero

subroutine for computing the  
modified B esse l function of  

the first kind, first order

Figure 3.10: Fluxogram of the code main routines.
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M and P are input parameters for defining the desired calculation.
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Chapter 4 

Model Validation and Parametric 
Analysis

A Fortran code has been developed for solving the poroelastic and poroviscoelastic 

axisymmetry equations derived in the previous chapter for a  cylindrical geometry. 

Loading modes I, II, III and IV, presented in Table 3.1, can be computed isolated or 

combined, depending on a flag condition deflned in the input data file. Mode III, as 

stated  before, does not affect the pore pressure, and is not included in this chapter, 

although included in the developed code. Mode IV is presented just for comparison 

with the published literature.

The code outputs an ASCII table with only two colu m n s: time and the desired 

solution. Table 4.1 lists the solutions tha t are presented in this dissertation. This 

output is then used as an input for a graphic software package, for plotting the 

curves presented in the next sections.

Table 4.1: Program output.

O utput
Modes I, II and IV Modes I and II

poroelastic poroviscoelastic elastic viscoelastic
Radial displacement / /

Pore pressure distribution / /
In-Situ radial stress / / /

Initial reservoir pressure /
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The four basic poroelastic parameters used in the code are exactly the ones 

defined in Chapter 3: E . K .  and These parameters can be independently 

assumed to be constant or time-dependent, according to the modified Kelvin model, 

if their viscous characteristics are available from experimental tests. In this case, 

the input data file should provide E i. Eo. fie- K i. Ko- I-ik - etc.. depending on which 

parameters have the time-dependency attribute. The rock permeability, k. is the 

fifth rock physical property needed as input data . The complete (standard) input 

da ta  for the developed code is shown from Table 4.2^ to Table 4.4.

Table 4.2: Rock properties needed for the poroelastic and poroviscoelastic approach.

Elastic E K Ks
Viscoelastic E \, E 2 , /J-E ^1j K o, f^K, Ksl- KaO. 11K
Permeability k

Table 4.3: Pore fluid data  and cylindical geo met r\'.

Pore fluid data Cylinder geometry-
viscosity, /z/ core diameter. D

Table 4.4: Boimdary conditions needed for computing specific solutions under load­
ing Modes I and II.

Radial displacement and 
pore pressiure distribution

In-Situ 
radial stress

Initial 
reservoir pressure

o-r(t) ILrit) U r(t)
Pres i^) Pres{^) (Tr{t)

r t ’ f

Pdf Pdf Pdf

4.1 Model Validation

Three procedures were applied for validating the Fortran code:

*[f. for example, Young's modulus is assumed to be constant, the code takes E  =  £ i; if the 
I)ulk modulus is assumed constant K  =  K i i  and so on.
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(i) The pore pressure distribution and the radial displacements computed by the 

code were compared to previous results published by Detoumay and Cheng (1993) 

and Abousleiman et oL (1996), using the same rock input d a ta  and boundary 

conditions.

(ii) The poroelastic and poroviscoelastic solutions for larger times were compared 

to the elastic and viscoelastic solutions, respectively. Since the effects of pore pres­

sure must be dissipated for larger times, one should expect the poroelastic solutions 

to provide exactly the same results as the elastic ones, while the poroviscoelastic 

solutions should be identical to the  viscoelastic ones, if the same viscous model is 

applied.

(Hi) An ‘inversion-check’ was performed by using the radial displacements gen­

erated by specific initial stresses, reservoir pressure and drilling conditions, as input 

da ta  for gathering the same initial conditions back. This check is very interesting, 

since it shows the code ability for providing the initial stresses as a  function of the 

rock strain, ultim ate goal of an ASR analysis.

4.1.1 Literature Comparison

Loading Modes I, II and IV have been chosen for comparing the results of the 

developed code w ith the published literature, since the solution for these modes 

is available for specific boundary conditions: (i) constant load for Modes I and 

II (P (i) =  Pq and p(t) =  po); and, (ii) constant axial strain rate for Mode IV 

(e(t) =  So)- Detoumay and Cheng (1993) have derived the poroelastic solutions for 

Modes I and II, while Abousleiman et aL (1996) have derived the poroelastic solution 

for Mode IV and the poroviscoelastic solutions for Modes I, II and IV. T he literature 

comparison is not related to the coring process, since the poroviscoelasticity theory 

has never been applied to coring before. It is intended to be a  check on the program 

output.
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(i) Comparison with Detoumay and Cheng (1993):

The pore pressure distribution a t the center of a  cylindrical rock sample was 

presented by Detoumay and Cheng (1993) for Mode I loading, in the poroelastic 

approach, together with the curve for the homogeneous diffusion. The input data 

for this simulation is shown in Table 4.5^.

Table 4.5: Conditions for the comparison with Detoumay and Cheng (1993).

Poisson’s ratio 1/  =  0.15
Undrained Poisson’s ratio i/„ =  0.31
Diffusivity coefficient c =  10”^ m^ /s
Loading (Tr = Po
Sample diameter D — 2 cm

The pore pressure at the center of the cylinder was obtained by letting r  =  0 in 

Equation (3.36) and transforming the boundary condition into the Laplace domain:

Po =  — (4.1)

The pure diffusion solution was computed in the Laplace domain (Detoumay 

and Cheng, 1993) and can be written as:

/o(e)l
W )

(4.2)

The curves shown in Figure 4.1 perfectly match the published results.

An interesting feature of Figure 4.1 is the initial rise in pore pressure in the 

poroelastic solution, compared to the monotonie pressure decline in the pure dif­

fusion solution. This effect, known as the Mandel-Cryer effect (Cui et al., 1996; 

Cui and Abousleiman, 1998), can be explained considering that the pore pressure

^It should be noted that although only three rock parameters are presented in this table as 
input data for the poroelastic solution, the difiiisivity coefficient is not a primary data, depending 
not only on the drained and undrained Poisson s ratios, but also on the rock shear modulus, 
permeability and Biot’s effective stress coefficient, as shown in Equation (3.12). This brings the 
number of needed parameters back to four, plus the permeability, as stated before.
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1.2

Pore Pressure Distribution

  Poroelastic
 Pure diffusion

\  Detoumay and Clieng (1993)

Poroelastic 
Pure diffusion

1E-3 IE-2 IE-1 
Time (sec)

1E+0 1E +1

Figure 4.1: Pore pressure a t the center of a cylindrical core under Mode I loading: 
poroelastic approach and pure diffusion solution.
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dissipation starts near the  rock external surface. Due to the compatibility require­

ment. as the core outer layer experiences a stress relief, load is transferred to the 

inner layer, causing an additional pore pressure rise before the excess pore pressure 

is dissipated and the  sample returns to its initial condition.

(ii) Comparison with Abousleiman et aL (1996):

Abousleiman et al. (1996) presented the solutions for the radial displacements 

and pore pressure distributions of a  cylindrical rock sample using both the poroelas­

tic and poroviscoelastic approaches, in Modes I, II and IV. The properties of three 

different rock types were used by these authors in their simulation: Berea sandstone, 

Danian Chalk and a  typical shale from the North Sea, having a constant load as 

boundary condition for the radial stress and pore pressure.

In order to compare their results with the ones from the code developed in this 

dissertation, the input d a ta  had to be  modified, in order to use exactly the same 

basic input parameters. Table 4.6 shows the rock input parameters utihzed by 

Abousleiman et al. (1996), while Table 4.7 shows the fluid properties used in the 

simulations. The sample radius was taken as 10 cm.

Table 4.6: Rock d a ta  for the comparison with Abousleiman et al. (1996).

Rock type G
(10® Pa)

K  
(10® Pa)

Ks 
(10̂ ® Pa)

0
(%)

k
(mVs)

Berea sandstone 6.0 8.0 3.6 19.0 1.9x10-®
Danian Chalk 2.2 3.3 1.2 23.0 1.0x10-12
Shale 0.8 1.1 3.4 30.0 1.0x10-1®

Table 4.7: Fluid properties.

Fluid
(Pa. sec)

K f
(Pa)

W ater l.OE-3 3.3E09

Since the rock porosity, 0, and the fluid compressibiUty, K f,  were used as input

8 8



data, instead of an undrained rock param eter (like the undrained bulk modulus, 

chosen in this dissertation), it was necessary to compute Skempton's pore pressure 

coefficient, B , from:

B  = K (4.3)

where.

K  is the rock bulk modulus;
Ks is the grain bulk modulus;
4> is the rock porosity; and,
K f is the fluid compressibility.

This way, the undrained Poisson’s ratio, !/«> could be computed from:

3u ■+■ a B ( l  — 2u) (4.4)
3 -  a B ( l  -  2u)

Poroelastic solution:

The solution for the radial displacements and pore pressure distributions under 

the poroelasticity theory was computed according to Table 4.8. The boundary 

conditions are:

Table 4.8: Equations used for the solving the poroelastic problem.

Mode Radial
displacement

Pore pressure 
distribution

I 3.34 3.36
II 3.38 3.39

{
Pq =  — , for Mode I 

s
Po = — , for Mode II s

(4.5)

In Mode IV, an axial strain rate êo =  0.01 fie /  sec, typical for uniaxial compres­

sion tests, was simulated, and the equations for computing the  radial displacements
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and pore pressure distributions are (Abousleiman et oL, 1996):

i/„ (I  — I/)  Io(0) — (f/u — I/)r
Ur = Eq

h W )  , / i ( 0

2s2 D z
(4.6)

r) 1 / 3

Poroviscoelastic solution:

The rock viscoelastic behavior was restricted by Abousleiman et aL (1996) to 

the bulk modulus, assuming K 2 =  K i = K  and fiK /1 ^ 2  — 2 days, in the modified 

Kelvin model, for aU the  three rock types. Based on the VCP, already discussed in 

Chapter 3. the same equations showed in Table 4.8 for deriving the poroelastic solu­

tion, were applied again for computing the poroviscoelastic solution, with the same 

boimdary conditions. In this case, nevertheless, the corresponding rock parameters 

were utilized.

The plots obtained, shown from Figures 4.2 to 4.7, exactly reproduce the poro­

viscoelastic and poroelastic results presented by Abousleiman et a i (1996).

90



8.0E-10

£  6.0E-10

| îre o.
g- g  4.0E-10 
1  8-

1!
&

Radial Displaoefnent
(I-

poroviMoelastic
poroelastic
Abousleiman et al. (1996)
poroviscoelastic
poroelastic

2.0E-10

O.OE+0

CHALK

Time (sec)

Figure 4.2: Radial displacement as a function of tim e for Mode I loading.
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4.1.2 Long Term Solution

The total displacement computed from the poroelastic solution in mixed Modes I 

and II must reproduce the classical elastic solution allowing sufficient time for the 

pore pressure to equilibrate all over the core, after a  change in the core boundary 

stress and/or pore pressure.

In order to verify if this behavior was reproduced by the developed code, the 

poroelastic solution was computed assuming E, K , Kg, and the permeability, 

k, as the basic rock da ta  input. The rock properties used in the simulation are 

presented in Table 4.9 (Abousleiman et aL, 1996), while the hypothetical boundary 

conditions are shown in Table 4.10.

Table 4.9: Rock properties used in the simulation.

Rock type E
(10* Pa)

K
(10® Pa)

Ks
(10̂ ® Pa) (10® Pa)

k
(m^/s)

Sandstone 14.40 8 .0 0 3.60 15.25 1 .0  X 1 0 “ ^^

Chalk 5.40 3.30 1 .2 0 7.70 1.0 X 10-^’
Shale 1.85 1 .1 0 3.40 9.25 1 .0  X 1 0 “ ^^

Table 4.10: Boundary conditions for the comparison between poroelastic and elastic 
solution.

(MPa)
Pres

(MPa)
Pdf

(MPa)
t*

(hours)
1.30 1.27 1.27 2:00

The elastic solution was computed by Equation (A. 14), derived in Appendix A, 

which was apphed in two ways: the  first one, by considering the initial radial stress 

and pore pressure as time-dependent, according to Elquation 3.40; and secondly, as­

suming constant stress and constant pore pressure, as a  ‘quick’ check. The material 

properties needed for applying Equation (A. 14) were taken from the d a ta  given in
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Table 4.9, using:

G  =

u —

3 K E  
9 K - E  

Z K - 2 0  
2 {ZK  +  G) 

K
Oc = 1 —

K s

(4.8)

(4.9) 

(4.10)

The parameters resulting from these calculations are shown in Table 4.11.

Table 4.11: Rock parameters for computing the radial displacement in the poroe­
lastic and elastic solution.

Rock type G
(GPa)

u O r

Sandstone
Chalk
Shale

6.00
2.20
0.76

0.20
0-23
0.22

0.78
0.72
0.97

Figmes 4.8 and 4.9 show a  good m atch between the poroelastic and the two elas­

tic solutions. The larger the rock permeability, the faster the pore pressure dissipates 

and poroelastic and elastic solutions become the same, as expected. The elastic so­

lution, with a constant load as boundary condition, is a  very simplified assumption, 

missing the whole deformation process, indicating only the final displacement.

Based on the VCP, the poroviscoelastic and viscoelastic solutions were computed 

from the poroelastic and elastic solutions, assuming once more tha t K 2 — K.\ =  K  

and that yLicjK^ =  2 days, in the modified Kelvin model. Figures 4.10 and 4.11 

show a good match between the  poroviscoelastic and the viscoelastic approach. The 

curves, as a m atter of fact, are identical for higher permeability rocks, like chalk 

and sandstone, while in shales they m atch only for larger times.
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stone and a chalk sample.
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sample.
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4.1.3 The Inversion Check

The inversion check aimed a t verifying the code ability for computing the radial 

in-situ stress and the reservoir initial pressure from a  given radial displacement. A 

hypothetical stress field was initially defined and the numerical radial displacement 

computed from Modes I and II combined. This data, was then used as input for 

reproducing the initial stress field.

The inversion process was tested for a  shale sample (the shale properties used 

in this simulation are shown in Table 4.9), in the poroviscoelastic approach. Once 

more the time-dependent behavior was restricted to the bulk modulus, having K 2 = 

K i = K  and h k / K 2 =  2 days. The boundary and drilling hypothetical conditions 

applied for computing the radial displacement are listed in Table 4.12.

Table 4.12: Boundary conditions for computing the radial displacement.

In-Situ radial stress <Tr =  5.0 MPa
Initial reservoir pressure Prea =  1 27 M Pa

Recovery time t* = 8  hours
Core radius r  =  0.1 m

Drilling fluid pressure:
Overbalanced drilling p«y =  2.0 MPa

Balanced drilling Ptff =  1.27 M Pa
Underbalanced drilling Pjf =  1.0 MPa

According to Equations (3.66) and (3.67), the radial in-situ stress computed in 

this inversion check must be constant, as confirmed by Figure 4.12. By the same 

token, the reservoir initial pressure, computed by Equations (3.68) and (3.69), must 

also be constant, as shown in Figure 4.13. This test confirms the method capability 

for computing the initial stresses from the displacement data.
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analyzed case.
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4.2 Parametric Analyses

It has been sta ted  before th a t the shape of the s tra in  versus time curve is important 

because it defines a  unique in-situ stress-anelastic strain  relationship. Based on this, 

parametric analyses were carried out aim ing at identifying the conditions tha t can 

influence the  anelastic strain  behavior. The analyzed conditions were based on:

(i) choosing different sets of rock properties as input data;

(a) defining the time-dependent rock properties;

(in) the drilling conditions (overbalanced, balanced and underbalanced);

(iv) the  ratio  between the  in-situ radial stress and the  initial reservoir pressure; 

and,

(v) recovery time;

Although E, K ,  Ks, and have already been defined as the ‘standard’ set of 

input rock properties, the shear modulus, G, was also included in these parametric 

analyses, to make it more general.

The viscous behavior was assumed as:

{, (4.11)
f ix  =  2 days 

where X  = E , G, K ,  Kg,

The rock input param eters for the parametric analyses are shown in Table 4.13: 

the shale d a ta  is from Abousleiman et aL (1996), while the sandstone parameters 

were taken from well C (Chapter 6).

Table 4.13: Rock d a ta  used in the param etric study.

Rock Type E K G Ks k 0
(GPa) (GPa) (GPa) (GPa) (GPa) (mVs) (%)

Shale 1.85 1.10 0.75 34.0 9.25 1.0x10“ *̂ 30.0
Sandstone 2.65 - 0.43 112.0 - 1.0x10-^= 19.0
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In order to verify the influence of each of the basic parameters on the radial strain, 

a series of cases were performed by varying the time-dependent input parameters, 

as shown in Table 4.14. Several ratios of in-situ stress/reservoir pressure as well as 

drilling conditions were tested.

Table 4.14: Analyzed input conditions.

Case Time-Dependent
Param eter

Constant
Param eter

1 E
2 K  and E
3 K E , Kg, AT„

4a G(G2 =  Gi) K ,K g ,K u
4b G{G2 =  3Gi) K ,K g ,K ,,
5a K  and G{G2 — Gi) Kg,K,g
5b K  and G(Gz =  3<?i) Kg,Ku
6 K ,E ,K „ K u -

Figure 4.14 shows that assuming the time-dependent properties as the bulk mod­

ulus and /o r Yoimg’s modulus will lead to small difierences a t the end of the anelastic 

strain recovery process. The same can be said about choosing K{t)  and/or G{t) as 

the primary time-dependent properties (Figure 4.15). Comparing these two figures, 

it can be seen that the final strain will be exactly the same, whenever the same 

conditions (4.11) are taken into account for all the three parameters {K, E  and G). 

In reality, one should not expect different rock properties to have exactly the same 

\ariation, although the results are still very similar, when one assumes, for example, 

that G2 =  3Gi (case b in Figure 4.15).
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A  more general assumption considering all the four basic elastic parameters as 

time-dependent is presented in Figure 4.16, for different ratios between the initial 

radial stress and the reservoir pressure. Once more, the effect on the strain versus 

time ciuve is very small. The situation where the initial radial stress and the 

reservoir pressiure are almost the same (stress/ pressure =  1.02) is shown in greater 

detail in Figure 4.17. This figure shows tha t the relationship between the initial 

radial stress and the reservoir pressure plays an im portant role in defining if the rock 

deformation pattern will show expansion, sh rinkage  or a  combination of both. A 

large stress relief will dom inate the process, leading to core expansion only, whenever 

the in-situ radial stress is much larger than  the initial reservoir pressure. If the ratio 

initial stress/reservoir pressure is close to 1, and depending on the rock physical 

properties, pronounced rock shrinkage may occur.
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Figure 4.16: Comparison of the radial strain as a  function of time assuming 2 and 
4 time-dependent parameters.
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Figure 4.17: Comparison of the radial stra in  as a  function of time for 2 and 4 
time-dependent parameters and initial stress/ reservoir pressure =  1.02.
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The influence of the  creep parameters in the radial strain is shown in Figure 

4.18. As expected, the final strain is just a  function of the ratio K^jKx. higher 

K ojK \  leads to larger radial strains. T he term  is related to the process

duration: keeping K-ifKx constant, higher leads to a  faster stress stabilization. 

When K ijK x  is large { K i f K \ = \ l  in Figure 4.18), the radial displacement becomes 

insensitive to i i j

Figmres 4.19 and 4.20 show that the drilling condition can only produce a  small 

variation in the deformation pattern (less than  1%) for a relatively short period of 

time.

Sandstone
1 2   recoveiy time * 4.5 h

tMlanoed drilling (case 3)

H/K2 K2ri<1

2
•I

a
œ
.2■o
IT

Figure 4.18: Influence of the creep param eters on the strain versus time curve 
assuming only K(t).
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Figure 4.19: Influence of the drilling conditions on the radial strain as a  function of 
time for a  sandstone sample.
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Figure 4.20: Influence of the drilling conditions on the radial strain as a  function of 
time for a shale sample.
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The sensitivity of the radial deformations with respect to Biot’s coefficient, a, 

was also tested. Three different conditions were verified:

(i) a  =  a (t) , computed from Equation (3.91) and assuming K  =  K{t)-

(ii) a  = oro, where oq is the initial value of a, obtained from Equation (3.91) 

for K { t  = l  sec); and,

(Hi) a. = a f ,  where a /  is the final value of a ,  also computed 

from Equation (3.91) for K ( t  =  9 E  4- 6 sec).

Figure 4.21 shows th a t a  variation of only 1.6 % of q  (otq =  0.968; a /  =  0.984), 

but it can lead to quite different shapes and magnitudes of the strain versus time 

curve. The rock final strain  can be up to 100% greater when o-o =  0.968 is used, 

instead of a(i).

4.3 Summary

Summarizing Chapter 4, it can be said th a t all the goals were attained in the vali­

dation procedure:

(i) previous literature results were matched;

(ii) the numerical long-term solution was identical to the analytical one; and, 

(iiij the inversion perfectly reproduced the hypothetical input stress field.

The interesting conclusions regarding the param etric analyses are:

(i) there is no need for using more than  one rock property for including the rock 

viscoelastic characteristics;

(iij the anelastic stra in  curve is very sensitive to  the ratio between the initial 

radial stress and  the reservoir pressure: higher ratios meaning negfigible 

deformations due to  pore contraction;

(iii) the creep param eters play an  im portant role in the anelastic strain pattern;

(iv) the drilling conditions can only produce a  small variation in the beginn ing
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of the rock deformations. After a  certain, time the rock strain pattern is 

unique for overbalanced, balanced and underbalanced drilling conditions;

(v) Biot’s coefficient, which has been usually neglected by the oil industry, plays 

an im portant role in the ASR, whenever poroelastic effects are relevant; and,

(vi) low permeability rocks, like shales, or rocks with high clay content, are 

most prone to present shrinkage in the ASR.
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Figure 4.21: Influence of Biot’s coefficient on the radial strain  as a  function of time 
for the poroviscoelastic approach.
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Chapter 5 

Model Application: Field Cases

Up to now the poroviscoelastic model has been used only for determining the influ­

ence of poroviscoelasticity in the ASR process after coring, using synthetic examples. 

In this chapter it will be applied for computing the maximum and minimum hor­

izontal in-situ stresses, cru max  and c/unm, from ASR actual measurements in the 

field.

Due to the model limitations, the stress field in the previous analyses was as- 

smned to be hydrostatic, and loading Modes I and II, which are the only ones that 

may present poroelastic effects, were enough for describing the rock deformation. 

This led to the computation of the hydrostatic component of the in-situ stress, Pq. 

In order to enable the model to compute a more general stress field, it was necessary 

to add Mode III (which is free from poroelastic effects), for representing the strains 

caused by the deviatoric stresses, S q.

Considering now that the stress field around the core can be decomposed as 

shown in Figure 1.11, and knowing that:
n  _  f^H M AX +  O’Aimin •To —

So —
<^HMAX — O'/imm

2
the principal horizontal in-situ stresses can be finally computed as:

{Ô HMAX = Pq + Sq , .
< T h n . i n = P o - 5 o   ̂ ^
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where P q is the hydrostatic stress component and S q is the deviatoric stress compo­

nent. as presented in Table 3.1, assuming further tha t 9 = 0° corresponds to (Thmax^ 

and consequently 9 =  90° is associated with (Thmm-

The application can be summarized in the following steps:

1. Coring rock samples;

2. Measurement of anelastic strains as soon as the rock sample is retrieved from 

downhole. Although the ASR test is able to provide the rock strains in six 

directions {£xx, Saa, 6 %, £cc, and £ ^ ) ,  as shown in Figure 5.1a, only S n , 

£aa and £yy, are needed for the 2-D solution (Figure 5.1b):

3. Com putation of the principal strains in the horizontal plane, Su and 6 2 2 ? for 

each time interval, according to (Goodman, 1980):

£ 1 1  =
(5.3)

^xx +
^22 — ------ 2------

£ x x  ^ y y

where.

^xy —
£ x x  4"  ^ y y (5.4)

4. Determination of the hydrostatic and deviatoric anelastic strains, spp  and 

COD, using:
£ p p  =

£dd =

c i l  ~h £22  

2
^11  —  £’22

(5.5)

5. Determination of the hydrostatic and deviatoric stresses, P q and S q, from £pp 

and £dd, via an inversion method, as described in the next section;

6 . Com putation of ct̂ m ax  and <Thmm from Equation 5.2;
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1. Comparison of the obtained stresses w ith other field data  as well as regional 

geological trends.

(a) (b)

Figure 5.1: (a) ASR measuring orientations; (b) directions considered for the hori­
zontal stresses calculation, based on the model plane strain assumption.

5.1 The Inverse Problem

The theory of inverse m od eling  (also known as back-analysis) allows inferring caus­

ing actions and initial conditions by matching a  model to experimental observa­

tions. T he determination of the hydrostatic and deviatoric in-situ stresses from the 

hydrostatic and deviatoric anelastic strains is a  typical inverse problem. Figure 5.2 

presents a  scheme that helps understanding the concept of an inverse problem.

Several methods were tested for computing the  horizontal in-situ stresses with 

the poroviscoelastic model, in order to define the most valid technique. If the rock 

radial strain  could be transform ed into the Laplace domain, then, computing in- 

situ stresses from the stress relief data  would be done by simply applying Equation

(3.66). A large effort was m ade in this direction: the radial strain from ASR data  

were curve-fitted by polynomial functions and transform ed into the Laplace domain 

for calculating the initial stresses. This approach had a  m ajor drawback, since it
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Figure 5.2: Schematic representation of direct and inverse problems.

needed the complete core deformation as input, i.e., the whole strain history since 

coring, while the ASR test can only provide the strain occurring after the core is 

retrieved and instrumented a t the rig surface. In order to make the strains computed 

by the model and the ASR field data comparable, the displacements in Equation

(3.66) were considered as (Figure 5.3):

=  ^ASH -  *r(s*) (5.6)

where s is the Laplace variable and s* corresponds to t*, the starting time for 

the ASR test. Nevertheless, s* cannot be computed for a  single point, t*, since 

the Laplace transform is a  mapping function; and, therefore, the procedure was 

abandoned.

Other procediures were then analyzed aiming a t the hydrostatic and deviatoric 

stresses that would produce the best curve-fittings for the strains generated by the 

model and the ones observed in the ASR test, i.e., m inim izin g  the error (err) given 

by:

I ^ruODEL (5.7)
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Figure 5.3: S train history :(a) since coring (t* =  time instant when the ASR test 
starts); and (b) strain measured by the ASR test.

Assiuning the possibility of reaching err = 0, and using root finding algorithms 

such as the Newton Raphson method (Press, 1992), produced poor curve-fitting 

results and stress values which were unrealistic. This was attributed to divergence 

of the root-finding algorithm and inaccuracy of the experimentally determined rock 

parameters.

The Levenberg-Marquardt method (Finsterle, 1999) was attem pted next, con­

sidering the lab-derived rock properties as initial guesses and allowing the method 

to modify them  in order to give more flexibility to the stress computation. The 

idea is that whenever changes in the lab-derived rock parameter lead to a better 

curve-fitting, it can be assumed as a  valid correction to experimental errors. The 

computed stresses were more realistic in this case, but the curve-fitting was still 

unsatisfactory, and a  third method was chosen: the simplex minimization algorithm 

(Caceci and Cacheris, 1984). This approach has been proven to be always conver­

gent and is indicated for multidimensional m inim ization problems, which is exactly
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the inverse problem imder analysis, if one consider the rock properties as fitting pa­

rameters, together with the in-situ stresses. According to Shah and Hoek’s (1992) 

application to the Hoek-Brown. failure criterion, the simplex algorithm is also ap­

propriate for fitting non-linear curves, like the ones derived from ASR tests and the 

pororiscoelastic model.

This method can be visualized as a  geometric figure consisting of n 4-1 vertices in 

the n-dimensional space (Figure 5.4), i.e., each vertex has n-coordinates, constituted 

by the initial guesses of each variable. The figure shape changes as the method 

searches for the minimum error defined in Equation (5.7), expanding or contracting, 

as well as reflecting the vertices while moving in the n-dimensional space (Figure 

5.5).

(a) (b) (c) (d)

Figure 5.4: (a) a  3D (fom: vertices) simplex figure a t the beginning of a step; (b) 
after an expansion; (c) contraction; and (d) reflection.

5.1.1 Synthetic Example

A synthetic example has been used in order to validate the application of the simplex 

method for computing the original stresses using the poroviscoelastic model. The 

theoretical strains in both hydrostatic and deviatoric loading were generated by 

the poroviscoelastic model assuming the rock param eters mentioned in Table 5.1, 

simulating an ASR ciurve to be fitted by the simplex code. A sensitivity analysis of 

the inversion process was also performed by varying:
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Figure 5.5: An example of the simplex moving in the response surface's contour 
plot, after Caceci and Cacheris (1984).

•  the space dimension (number of rock parameters considered to be variable);

•  the rock parameters; and,

•  the initial guess for each rock param eter.

The input rock d a ta  were chosen w ithin the seven rock parameters needed for 

fully describing the poroviscoelastic problem {Ei, E2 , fiE, K , Kg, K ^, &), plus the 

hydrostatic or deviatoric stress (Pq or Sq). In other words, the simplex geometric 

figiure in the synthetic example had a maximum of nine vertices with eight coor­

dinates each. The objective function was defined as the total error, e rr^ .^ , given 

by:

e r r .T O T =E (5.8)
t=i

where,

77. is the to ta l number of adjusted points;
- ’’'S Y N is the radial strain calculated by the synthetic example; and.
'^ M O D B L is the radial strain generated by the inversion method
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Table 5.1: Input d a ta  for the synthetic example.

(A)
UMAX
(psi)

^hxain
(psi)

Po
(psi)

Pdri
(psi)

tree
(sec)

tpre
(sec)

ttest
(h)

3,000 2,400 1,800 1,300 1,500 10,000 0.0 27
El

(GPa)
Bn

(GPa)
P£T

(10^GPa.sec)
K

(GPa)
AT.

(GPa) (GPa)
k

(md)
P f 

(Pa. sec)
2.65 46.0 6.21 5.7 171.2 40.0 3.1 20E-3

Po =  +  =  14 4g MPa

Sq =  ~  =  2.07 MPa
z =  coring depth;
^HMAX — maximum in-situ horizontal stress;
<7'/imin =  minimum in-situ horizontal stress;
Po =  reservoir static pressure;
Pirx =  drilling fluid pressure; 
tree =  recovery time;
t-pre. =  time for sample preparation before the ASR test; 
Ueat — duration of the synthetic ASR test;
Po =  hydrostatic stress component;
So = deviatoric stress component.
Core diameter: £> =  0.1 m

Determination o f the Synthetic Hydrostatic Stress from Back-analysis

A total of 15 data  files with different initial guesses for the rock parameters 

(presented in Appendix B) were used for testing the program limitations when 

reproducing the synthetic hydrostatic stress. Table 5.2 shows the computed stresses 

and the total errors, according to Equation 5.8, for each input data  set. The obtained 

curve-fittings are shown in Figures 5.6 and 5.7.

Analysis o f the Results

The back-analysis was able to perfectly fit the synthetic hydrostatic strain curve 

for most of the chosen adjusting parameters, as shown in Figures 5.6 and 5.7. For 

some cases the fit was not so good, but the inaccuracies were never higher than 

0.056%, which is perfectly acceptable. In fact, the hydrostatic stress computed by 

the inversion method was always very close (most of times identical) to the stress
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Table 5.2: Hydrostatic stress computed for the synthetic example with the simplex 
code.

Input d a ta  file Variable rock 
parameter

Computed stress 
(MPa)

Iterations Total error
i f^ )

guess-Pl * 14.48 0 44.04 X 10-^3
guess-P2 * * 14.48 463 22.06 X 10“®
guess-P3 * * * 14.48 472 48.02 X 10“®
guess-P4 E l 14.48 748 24.09 X 10“®
guess-Po E l ,  £ 2 14.61 737 104.5 X 10-2
guess-P6 E l ,  He 14.55 709 109.1 X 10-2
guess-P7 Ek 14.48 303 29.98 X 10-1
guess-P8 HE 14.48 726 24.06 X 10“®
guess-P9 E^, He 14.48 713 65.08 X 10-2

guess-PlO E l ,  E 2 , He 14.32 313 53.98 X 10-1
guess-Pll K 19.80 278 29.20 X 10-1
guess-Pl2 Ks 14.53 361 96.50 X 10-2
guess-Pl 3 Ku 14.48 441 166.3 X 10-®
guess-P14 k 14.48 444 70.82 X 10“®
guess-Pl5 E l ,  £ 2 , He  

K , K „  k
14.13 346 54.52 X 10-1

* constant rock parameters anc hydrostatic stress (original va ues).
f  ̂  u ii iy  Liit; d t i c a a  la  oujuaLCU.»
* **  only the stress is adjusted from mostly negative initial values.
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Figure 5.6: Curve-fittings for the synthetic hydrostatic strain (the plots have been 
splitted in two figures, for clarity purpose).
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Figure 5.7: Ciirve-fittings for the synthetic hydrostatic strain (remaining curves).
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predefined in the synthetic example, even when the initial guesses were far from the 

expected value, proving the method reliability.

Two observations deserved further investigations:

1) the final average values for the adjusted rock properties, presented in Table 

5.3, were slightly different from the synthetic ones shown in Table 5.1. Although 

this could be expected whenever fitting experimental data, it was a  surprise in the 

synthetic example;

2) the computed stress using the bulk modulus, ÜT, as the only adjusting variable 

(input data file guess-P ll), was far from the synthetic stress, as shown in Table 5.2.

Table 5.3: Computed average parameters in each run.

Input data file E l
(GPa)

E2
(GPa)

f^E
(lO^GPa)

K
(GPa)

Ks
(GPa)

Ku
(GPa)

k
(md)

Synthetic 2.65 46.00 6.21 5.7 171.2 40.0 3.1
guess-P4
guess-P5

2.65
3.76 62.07

guess-P6 3.28 4.65
guess-P7 60.84
guess-P8
guess-P9 60.84

6.21
9.30

guess-PiO 1.16 59.22 4.33
guess-Pll
guess-P12
guess-Pl3

11.51
204.9

54.80
guess-Pl4
guess-P15 1.03 57.36 4.12 5.51 171.2 39.13

2.68
2.91

Both observations were verified throughout a second sensitivity analysis, per­

formed in the following way (Velloso, 1999): the objective function was evaluated 

for only two variables a t a  time, one of them was always the hydrostatic stress, while 

the other was chosen among the rock parameters. Figure 5.8 shows a  typical con­

tour plot, obtained for all the rock parameters, excepting the  bulk modulus. This 

figure indicates that the analyzed inversion problem is ill-posed for the input data:
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rhe? objective function could be minimized for the correct stress \^ u e  by any value 

of the rock parameters, within ±10%  of the correct one. In other words, the rock 

parameters adopted as input d a ta  are strongly correlated, and several combinations 

of them can lead to the correct stress and produce a  good curve-fitting, explaining 

observation (1).

The contour plot for the rock bulk modulus, shown in Figure 5.9, indicates that 

wrong initial stresses can be obtained depending on the bulk modulus, even though 

properly minimizing the objective function. Therefore, there is not a unique solution 

when the bulk modulus is the only adjusting rock parameter, explaining observation

(2 ).

Handling observation (2) is simple: the bulk modulus should not be used as 

one of the adjusting parameters in the back-analysis. Fixing observation (1), how­

ever. is a little more complex: Eisenhamer (1996), Finsterle (1999) and Press et al. 

(1999) pointed out that establishing a  termination criteria is not a  simple task in 

multidimensional minimization routines, since the variables carmot be treated inde­

pendently. Because of this, one cannot expect to have simultaneous convergence in 

all the adjusting parameters.

Actually, depending on the analyzed problem, the simplex method may only find 

a local minimiun, instead of the global one. In order to check on the existence of 

local minima in the in-situ stress back-analysis, the simplex code was modified from 

its original version: after reaching convergence with the intrinsic formulation, new 

coefficients were automatically defined for carrying on the expansion, contraction 

and reflection processes further on, allowing the algorithm to escape from local 

minima. The final solution, however, had no change at all, meaning the absence of 

local minima problems.
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Figure 5.8: Typical contour plots for the  objective function having the dimension- 
less hydrostatic stress and any dim ensionless rock param eter as adjusting variables 
(exception for the bulk modulus).

Smnmarizing th e  analysis, the computed stresses and the ciurve-fittings were 

very reasonable, even though the rock parameters were not exactly the same at 

the end of the calculations. In order to preserve the physical meaning of the rock 

parameters penalty functions (which will be presented in section 5.2) must be used 

whenever applying the  m ethod to field or experimental data , when the variations 

in the parameters could be larger. The stresses computed in the field apphcations 

should be checked using geological da ta  and other field tests, like microhydrauHc 

fracturing and leakoff tests, in order to increase the rehability.

Deviatoric Stress
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The parameters considered as initial guesses for computing the deviatoric stress 

were not the same ones used in the hydrostatic problem. This is because Mode III 

is purely elastic and, therefore, there is no sense in using parameters like grain bulk 

modulus, undrained bulk modulus and permeabihty, which only refer to the rock 

poroelastic behavior. The code ability for reproducing the theoretical deviatoric 

stress was tested with 6 initial guess da ta  sets, presented in Appendix B. Table 

5.4 shows the computed stresses, while Figure 5.10 presents the c\uve-fittings for 

the synthetic deviatoric strain. The results are very good, probably because the 

stress-strain relationship imder this loading mode do not include poroelastic effects, 

being thus, much simpler.

Table 5.4: Deviatoric stress calculated by the simplex code.

Input data  file Variable rock 
parameter

Deviatoric stress 
(MPa)

Iterations Error

guess-Sl * 2.07 0 36.60 X 10-13
guess-S2 ** 2.07 396 32.40 X 10-4
guess-S3 * * * 2.07 443 30.40 X 10-4
guess-S4 E l 2.07 555 30.80 X 10-4
guess-S5 E2 2.07 900 24.20 X 10-4
guess-S6 E l ,  E 2 , flE 2.07 558 26.40 X 10-4

* constant rock parameters and deviatoric stress (original values).
** only the stress is adjusted.
* * * only the stress is adjusted from guess values far from the correct one.
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Figure 5.10: Curve-fitting for the  synthetic deviatoric strain.
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5.2 Field Cases

The poroviscoelastic model and the inversion algorithm were both applied to Petro- 

bras’ ASR data. The field tests were carried out between 1995 and 1997 (Siqueira et 

al., 1996a; 1996b; 1997a; 1997b; and, 1997c), in the Potiguar and Sergipe-Alagoas 

Basins, depicted in Figure 5.11, gathering only the in-situ stress orientations, a t that 

time. The stress magnitudes were not computed due to the lack of understanding 

of why the rock contracted, which occurred in most tests.

The observed rock shrinkage was a  surprise mainly because most samples were 

sandstones with good permeability. DRX tests analyzed by Anjos and Silva (1998) 

detected a high percentage of interstitial clays, which could be held responsible for 

a slow fluid diffusion process, leading to such sample contractions.

The strain curves from the ASR tests are presented in Appendix C. The rock 

properties needed as input data  for the model were experimentally obtained from 

lab compression tests, presented in Chapter 6, and used as initial guesses to fit the 

ASR experimental curves, with the simplex algorithm.

As discussed in the synthetic example, a  few penalty functions were included in 

the inversion algorithm for curve-fitting purposes, in order to ensure the physical 

meaning of the rock properties, modified in the  adjusting process. The use of penalty 

fimctions when curve-fitting experimental d a ta  through back-analysis is quite com­

mon (Shah and Hoek, 1991; Nascimento, 1998), assuring an acceptable range for 

the variables in each iteration. The way they work is quite simple: whenever a 

simplex iteration computes a value out of a  prescribed range, a  large dimensionless 

error (10^°) is attributed to the current iteration, obUging the code to go on inter­

acting, until reaching convergence within the variables’ prescribed ranges. Three 

restrictions were defined according to the rock mechanics constitutive relationships, 

presented in Chapter 3:
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• Restriction #  1:

ZK - E > Q  (5.9)

where K  is the  bulk modulus and E  is Young's modulus. This equation guaran­

tees positive real values for Poisson s ratio and shear modulus;

•  Restriction #  2:

K , - K > Q  (5.10)

where is the grain bulk modulus. Elquation 5.10 assures a  positive Biot's 

coefBcient; and,

• Restriction #  3:

0.5 > i/ji>  u (5.11)

where u-u, and u are the undrained and drained Poisson’s ratio.

The initial guesses for the variable rock param eters in the input datafile were 

defined within ±10% of the lab-derived values, according to Eisenhamer (1996) 

recommendation. The initial guesses for the  hydrostatic and deviatoric stresses 

were randomly taken as ±10% of the following reference values:

dPofdz =  0.7 psi/ft;
(5.12)

dS^jdz  =  0.1 psi/ft{
which, in tium, were based on the following estimates:

dxTyfdz =  1.0 psi/ft; 

d^HMAxldz =  0.8 psi/ft; (5.13)

d(Thmmldz =  0.6 psi/ft.
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Figure 5.11: Location of the Potiguar and Sergipe-Alagoas Basins in Brazil.

5.2.1 Computing the In-Situ Horizontal Stresses for Weils 
A and B

The motivation for the  ASR tests in wells A and B was the perspective of drilling 

horizontal wells in the  held, aiming a t the reservoir portion underneath the Açu 

River, in order to improve the drainage (Figure 5.12). The stress held was thus 

necessary for dehning the optimum orientation of the horizontal wells.

The ASR measurements for well A (Figures C.2 and C.3 from Appendix C) 

show an initial rock expansion, followed by contraction, w ithout stabilization dur­

ing approximately 12 hours. The strain  behavior for well B presented large rock 

contractions (Figiures C.4 and C.5 from Appendix C), w ith a  slight tendency for 

stabilization a t the end of the 36 hours testing period. The combination of a  com-
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!

Figure 5.12: Field location, of wells A and B, showing also horizontal wells already 
drilled (wells # 1 , 3 , 5  and 7), and to be drilled (wells # 2 , 4 , 6  and 8).

plex strain  behavior, rock shrinkage and incomplete field testing (without the final 

strain stabilization) was an exception to the smooth expansion predicted by con­

ventional viscoelastic modelling (Blanton, 1983; Blanton and Teufel, 1983; Teufel, 

1983b).

The field conditions and the rock input data  for the back-analyses of the two 

wells are shown in Tables 5.5 and 5.6. Two sandstone samples were tested for 

each well, resulting in the horizontal stresses shown in Table 5.7. The curve-fitting 

obtained for both the hydrostatic and deviatoric anelastic strains for each sample 

are presented in Figures 5.13 to 5.16.

Analyses o f the Results from  Wells A  and B

As expected by the  shallow coring depths (185.1 m for well A and 193.2 m for well 

B), the computed horizontal stresses indicate an almost hydrostatic stress field. It
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Table 5.5: Input d a ta  for well A (from C hapter 6).

z (JV D Po Pdri tree tpre ttest
(m) (MPa) (m) (MPa) (MPa) (hour) (hour) (hour)

185.1 4.06 0.1 1.26 2.1 7.3 5.0 12.2
El Ez f^E K k Pf

(GPa) (GPa) (10®GPa.sec) (GPa) (GPa) (GPa) (md) (Pa.sec)
1.23 4.73 11.24 9.4 185.5 16.55 15.4 900

Table 5.6: Input d a ta  for well B (from Chapter 6).

z (T v D Po P d r i tr e e tp r e tte s t
(m) (MPa) (m) (MPa) (MPa) (hour) (hour) (hour)

193.2 4.24 0.1 1.31 2.1 16.2 2.0 35.0
El E2 PE K K s k P f

(GPa) (GPa) (10®GPa.sec) (GPa) (GPa) (GPa) (md) (Pa.sec)
1.08 2.48 9.88 2.0 156.9 63.45 8.9 900

Table 5.7: Horizontal stresses computed for wells A and B.

Sample Hydrostatic Stress 
(MPa)

Deviatoric Stress 
(MPa) (MPa)

^hmin
(MPa)

A-1 3.55 0.88 4.43 2.67
A-2 4.19 0.62 4.81 3.57

Average - A 3.87 0.75 4.62 3.12
B-1 3.63 2.1E-8 3.63 3.63
B-2 4.43 0.07 4.50 4.36

Average - B 4.03 0.035 4.06 3.99
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Figure 5.13: Ciirve-fitting for the hydrostatic and deviatoric strains from well A, 
sample #  1.
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sample #  2.

141



400

&
c  -400

WELLB 
(sample #1)

A  ASR-hydrostatic 
□  ASR-deviatoric 

model - hydrostatic 
— model-deviatoric

-800

-1200
OE+0 46* 4 86*4

Time (sec)
16*5 26+5

Figure 5.15: Curve-fitting for the hydrostatic and deviatoric strains firom well B, 
sample #  1.
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Figure 5.16: Ciirve-fitting for the hydrostatic and deviatoric strains from well B, 
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is not a  surprise either that the maximum horizontal stress in well A is even higher 

than the vertical one. which would reflect the partial unloading of the overburden 

due to erosion, as pointed out by Roegiers and Vandamme (1999). and is also typical 

of shallow depths.

The qualitative aspect of the obtained results is further corroborated by Lima 

.Veto’s (1997) observations, who based himself on a detailed analysis of shallow 

seismic events in the region stating that the regional stress field follows the (Thmax  >

> tr/imin: conditions.

The variation in the  in-situ stresses computed for each well are larger than ex­

pected (from 8% to 25%), considering the samples good visual homogeneity (Figures 

D.l to D.4 from Appendix D). This stress variation can only be attributed to in­

herent minor heterogeneities. The average hydrostatic stresses computed for wells 

.A and B are w ithin 12.1%, while the relative difference between the average devia­

toric stresses is 21.8%. These differences are also high, but easier to explain, since 

according to a  Petrobras’ database (SIGEO, 1999), well A was practically vertical, 

while well B had an inclination of 23.12° at the coring depth. Considering then 

the plane strain assiunption in the poroviscoelastic model, the stresses computed 

for well A are in a plane which is 23.12° from the stress plane in well B, and imder 

these circumstances, one cannot expect more than similar values when comparing 

the stresses calculated for wells A and B.

Four horizontal wells have already been successfully drilled (wells #  1 .3 ,5  and 

7 in Figure 5.12), assuming a quasi-hydrostatic in-situ stress field in this particular 

field, and four more will be drilled (wells #  2, 4, 6 and 8 in Figiue 5.12) in the near 

future.
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5.2.2 Computing the In-Situ Horizontal Stresses for Well C

The sandstones cored from well C presented a strain recovery pattern which is close 

to conventional predictions (Figure C.6 and C.7 from Appendix C): sample C-1 

expanded in all directions while sample C-2 had a  short initial contraction followed 

by expansion in the vertical and inclined directions, and a  small strain variation in 

the horizontal directions.

The input data  used for computing the in-situ stresses in well C are shown 

in Table 5.8. Table 5.9 presents the calculated stresses while Figmres 5.17 and 5.18 

show the obtained curve-fittings. The horizontal stresses computed for this well were 

compared with the results of 8 hydrofrac tests realized nearby (Lima Neto, 1998), 

which provided an average maximum and m inim um  horizontal stresses of (Thmax =  

13.26 ±3.10 MPa and (Z/imia =  8.53 ±1.91 MPa. These values fully encompass the 

stresses computed from samples C-1 and C-2. The relatively better comparison 

among the average stress from microfrac tests and the stresses computed for sample 

C-1 is corroborated by the good curve-fitting for both hydrostatic and deviatoric 

strains shown in Figure 5.17. The curve-fitting is also good for the deviatoric strain 

in sample C-2 (Figure 5.18), but the same is not true for the hydrostatic strain 

curve. This can be explained by the non-homogeneous anelastic strain behavior in 

the ASR tests (Figure C.7 from Appendix C), generating a  weird deviatoric strain 

cur\'e, which the model is imable to fit.

Table 5.8: Input data  for well C (from Chapter 6).

z (Tv D Po P dri irec ^pre ^ASR
(m) (MPa) (m) (MPa) (MPa) (hour) (hour) (hour)

480.1 10.86 0.1 4.70 5.4 14.0 1.8 25.2
E l E 2 ME K K s K ^ k M/

(GPa) (GPa) (10®GPa.sec) (GPa) (GPa) (GPa) (md) (Pa.sec)
2.65 46.0 6.21 5.7 171.2 40.0 3.1 20.0
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Table 5.9: Horizontal stresses computed for well C.

Sample Hydrostatic Stress 
(MPa)

Deviatoric Stress 
(MPa)

O’H  M A X
(MPa) (MPa)

C-1 9.4 0.55 9.95 8.95
C-2 10.3 0.64 10.94 9.66
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Figure 5.17: Ciuwe-fitting for the hydrostatic and deviatoric strains from well C, 
sample #  1.
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Figure 5.18: Ciirve-fitting for the  hydrostatic and deviatoric strain  from well C, 
sample #  2.
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5.2.3 Computing the In-Situ Horizontal Stresses for Well D

Wells D and E are located in the Sergipe-Alagoas basin (Figure 5.19), which is 

characterized by several fam ilies of fractures, making it difficult to compare the cal­

culated stresses, since different tectonic components could be present. Two distinct 

ASR tests have been nm  for the sandstones cored from well D: one w ith samples D-I 

and D-2, from an average coring depth of 512.6 m, and another one with samples 

D-3 and D-4, cored at approximately 537.0 m. Figures C.8 to C .l l ,  from Appendix 

C, show the complete strain  curves for the ASR tests. The input param eters for 

the back-analyses are presented in Table 5.10, while the stress results are shown in 

Table 5.11.

The ciurve-httings for the  ASR tests with samples D-1 and D-2 (Figures 5.20 and 

5.21) are very reasonable, but the same is not true for samples D-3 and  D-4, mainly 

for the deviatoric strain fitting (Figures 5.22 and 5.23). In order to analyze the 

adjusting difficulties, the strain  curves for the horizontal directions in all the four 

samples were amplified (Figures 5.24 to 5.27), highlighting an oscillating behavior 

in the strain cmrves for samples D-3 and D-4, in contrast to the strain  pattern  

observed for samples D-1 and D-2. This strain oscillation cannot be a  fimction of 

any monotonie diffusion process, mechanical malfunction of the testing apparatus, 

or even rock heterogeneity, and was attributed to temperature oscillations inside 

the testing chamber. It should be noted that in spite of the strain oscillations and 

the considerable rock heterogeneities, identified by visual inspection of the tested 

samples (Figxures D.5 and D.6 in Appendix D), the model was still able to provide 

an average fitting, which corresponded to reasonable stresses.
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Figure 5.19: Location of wells D and E.

Table 5.10: Input d a ta  for well D (from Chapter 6).

Samples z (Tv D Po Pdri tree tpre tASR
(m) (MPa) (m) (MPa) (MPa) (hour) (hour) (hour)

D l, D2 512.6 11.7 0.1 3.5 4.9 6.5 2.3 35.5
D3, D4 537.0 11.8 0.1 3.7 5.1 5.8 2.2 56.7

E ATi Mjc ^ 2 K , AT* k Pf
(GPa) (GPa) (10®GPa.sec) (GPa) (GPa) (GPa) (md) (Pa.sec)
0.23 10.21 2.09 31.76 106.9 0.14 9.1 10.0
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Table 5.11: Horizontal stresses com puted for well D.

Sample Hydrostatic Stress 
(MPa)

Deviatoric Stress 
(MPa)

<̂ HMAX
(MPa)

^hmin
(MPa)

D-1 10.62 9.3E-6 10.62 10.62
D-2 10.84 3.92 14.76 6.92
D-3 8.07 0.058 8.65 8.01
D-4 8.32 0.066 8.38 8.28
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Figure 5.20: Ciuve-fitting for the hydrostatic and deviatoric strain from well D, 
sample #  1

150



100

50

1
a  -50

-100

-150

-200
2E+4

■iitîîüîii

WELLD 
(sample #2)

model - hydrostatic 
—  — model-deviatoric 

A  ASR-hydrostatic 
□  ASR-deviatoric

A /VW YV\

A E M 6EM 
Time (sec)

GEM 1E+5
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Figure 5.22: Ciirve-fitting for the hydrostatic and deviatoric strain  from well D, 
sample #  3.
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5.2.4 Computing the In-Situ Horizontal Stresses for Well E

The ASR tests in well E were requested, for helping defining the preferential orienta­

tion of hydraulic fracturing propagation in the  field, with the final goal of designing 

a  system of injection wells. Two conglomerate samples from this well (see Figure 

5-28), have been tested: the ASR’s in all the  six directions are shown in Figures 

C.12 and C.13 from Appendix C. The input d a ta  for the back-analysis is shown in 

Table 5.12; the obtained stresses are shown in Table 5.13, and the curve-fittings are 

presented in Figures 5.29 and 5.30.

Once again thermal effects could be noticed during the ASR tests (Figures 5.31 

and 5.32), associated with the low overall deform ation of sample E l. The computed 

hydrostatic stresses are within a  reasonable range (5%), but the same is not true 

for the deviatoric stresses, which are considerably different in each sample. The 

visual observation of the tested samples (Figures D.9 and D.IO from Appendix D) 

confirmed that the cores from well E were not of the adequate type for ASR tests: 

they were very heterogeneous, with a  high probability of strong anisotropic strain 

behavior, due to different grain sizes and compositions. This can certainly explain 

the difference in the computed horizontal stresses for the two samples.
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Table 5.12: Input da ta  for well E (from Chapter 6).

z (T v D Po P d r i ^ rec ^pre tASR
(m) (MPa) (m) (MPa) (MPa) (hour) (hour) (hour)

505.3 11.43 0.1 3.43 4.81 4.7 2.0 60.9
E l E h y-E K K , ATu k P /

(GPa) (GPa) (10®GPa.sec) (GPa) (GPa) (GPa) (md) (Pa.sec)
11.23 4.73 11.24 9.4 185.5 16.55 15.4 900.0

Table 5.13: Horizontal stresses computed for well E.

Sample Hydrostatic Stress 
(MPa)

Deviatoric Stress 
(MPa)

Ô HMAX
(MPa)

ĥzaxTL
(MPa)

E-1 11.41 0.073 11.47 11.34
E-2 11.99 3.92 14.76 6.92
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Figure 5.29: Ciirve-fitting for the hydrostatic and deviatoric strain  from well E, 
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Figure 5.30: Ciirve-fitting for the hydrostatic and deviatoric strain from well E, 
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5.3 Conclusions

1. Very good results were obtained from back-analyzing the hydrostatic synthetic 

stress case: the average computed stress was within 0.1 % of the original value 

while the standard deviation was 0.8 %. The original deviatoric stress was 

perfectly matched by the inversion process.

2. The analyzed inverse problem is somewhat ill-posed, since the correct stress 

value can be achieved for different sets of input data. Therefore, penalty 

functions were defined in order to keep the  rock properties in an acceptable 

range of variation, according to the experimental data.

3. The horizontal stresses computed for the case histories were confirmed by other 

sources (shallow seismic events and microfracturing), whenever available.

4. Even with samples which were not appropriate for ASR tests (showing pre­

existing fractures and large heterogeneities), and also problematic ASR tests 

(temperature fluctuation), the method was still able to provide reasonable 

strains and stresses.

5. The developed Fbrtran code (presented in Appendix E) is very efficient, taking 

less than 5 minutes for running most of the  cases discussed in this chapter.
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Chapter 6 

Laboratory Results

A laboratory testing program was carried out in order to determine the mechanical 

properties of the rocks previously tested for the ASR, providing thus, the required 

input d a ta  for the stress computation (Chapter 5).

The tests were defined by taking into account th a t four independent constitu­

tive constants (Young’s modulus, E, bulk modulus, K ,  undrained Poisson’s ratio, 

//, and grain compressibility, Ka) plus the rock permeabiUty, are suflScient for de­

riving all the relevant parameters for an isotropic poroelastic analysis. Including 

time-dependent properties for two of the basic constants {E  and K ), required four 

more parameters (Eg, Eg, Mic), according to the three-param eter solid model, 

totalizing eight rock constants to be obtained from the lab tests.

Table 6.1 siunmarizes the tests which were carried out and the parameters ob­

tained on each one of them. Some extra rock da ta  (Poisson’s ratio, i/, undrained 

bulk modulus, E „, and undrained Young’s modulus, E„) were generated from the 

laboratory tests, providing more than the m in im u m  number of needed parameters. 

The rock petrophysical characteristics are shown in Table 6.2. They were provided 

by Petrobras’ Research Center — CENPES.
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T able 6.1: T est schedule and respective param eters.

Test
Condition

Uniaxial
Compression

Hydrostatic
Compression

TViaxial
Compression

Creep
Test

Unconfined E ,u E2 , fiE
Drained K ^2, fiK

Undrained Ku
Unjacketed K ,
s =  solid constituent (grain); u  =  undrained

Table 6.2: Porosity and permeability of the tested samples.

Well Sample k
# # (%) (md)
A 1 & 2 17.8 15-4
B 3 &: 4 19.1 8.9
C 5 17.1 3.1
D 6 & 7 13.5 9.3
E 8 & 9 11.0 71.2

6.1 Testing Procedure

A total of 9 samples were available, representing 5 different wells. The number of 

samples per well was extremely low (maximum of two); hence, a  careful experimental 

procedmre was elaborated for using the same samples in more than  one test, without 

letting the rock mechanical properties being affected by the previous test. The main 

concern was to avoid plastic deformations tha t could change the  rock characteristics, 

and make the subsequent tests not representative: the axial stress in unconfined 

compression tests, was always kept under the elastic limit, saving the sample for 

further testing; and, the maximum stress in confined compression tests was lower 

in the first tests, gradually increasing in the following ones. The test sequence is 

sho%Ti in Table 6.3.
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Table 6.3: Test sequence.

Well Sample Test Sequence
# # 1st 2nd 3rd 4th 5th
A 1 K Euj K ,

2 E ,u K , K , - -
B 3 E ,u K ATu K ,

4 E ,u Ks - -
C 5 E , y - - - -
D 6 E ,u - - - -

7 Eji^ f/u K , K K i, (1 -
E 8 E ,u Ku K , -

9 E ,u - - - -

The tests were performed on right cylindrical samples, 2 inches in diameter and 

approximately 4 inches long. The samples were surface-grinded to assure that top 

and bottom were perfectly plane, parallel to each other and perpendicular to the 

longitudinal axis; oven-dried for 4 hours a t 150° F, for cleaning the pores from 

the original pore fluid; and, flnally, saturated with mineral oil. Table 6.4 shows 

the samples’ geometrical characteristics, while Figure 6.1 summarizes the sample 

preparation procedures.

Table 6.4: Geometrical characteristics of the tested samples.

WeU Sample Depth Rock Type Diameter Length
# # (m) (mm) (mm)
A 1 185.07 sandstone 50.29 98.04

2 185.19 sandstone 50.29 97.79
B 3 193.06 sandstone 50.55 111.00

4 193.09 sandstone 50.04 108.97
C 5 480.10 sandstone 50.55 108.97
D 6 510.78 sandstone 50.55 108.97

7 536.39 sandstone 50.55 116.08
E 8 505.30 conglomerate 50.55 118.36

9 505.38 conglomerate 50.55 114.81

167



CUTTING
4 in. rock plug cut from the whole core 

(original length = 1 m)

CORING
2 in. diam. sample cored from the rock plug 

(original diam = 4 in.)

GRINDING
sample top and bottom 

surfaces polished

CLEANING
sample oven-dried (150° F for 4 hours)

SATURATION
sample submitted to 50 mm Hg vacuum and 
saturated with mineral oil previously de-aired

Figure 6.1: Procedures for sample preparation.
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6.1.1 Uniaxial Compression Tests

The iiniaxial compression tests were performed on a  319.25A /T  MTS testing frame 

with capacity for applying up to 55 kip in compression. The samples were placed 

on top of the actuator and then compressed against the crossbar under constant 

displacement rate. Figure 6.2 shows the loading frame.

Figure 6.2: Loading frame MTS 319.025A /T , used for the uniaxial compression
tests.

The goal of the uniaxial compression test was to determine Young's modulus 

and Poisson’s ratio for each well. These two param eters are the most fundamental 

ones for describing the  rock elastic behavior, being traditionally computed at 50% 

of the maximiun stress attained in the  test, for comparison purposes (ISRM, 1979).

Whenever possible, the tests were performed within the rock elastic limit. The 

rock behavior was monitored by plotting and carefully observing the curve axial

169



load versvs displacement; as soon as a  linear trend was clearly defined,^ the  test was 

interrupted, saving the  sample for further tests.

The rock axial stra in  was computed by:

A f
6=(% ) =  — p :  X 100 (6.1)

where:

^ax(%) is the axial strain  in percentage;
A^corr is the actuato r displacement (in inches),calibrated via an aluminum 

standard sample (the calibration procedure is shown in AppendixG); and, 
£ is the sample axial length (also in inches).

The rock lateral displacement was computed w ith the  following expression:

e ia t(% )  =  X 100 (6 .2)irU

where:

^iat{%) is the lateral strain  in percentage;
Aiper is the change in the perimeter dimension (ininches); and,
D  is the sample diam eter (in inches).

The changes in the sample lateral perimeter, A£per, due to the compression load,

were measiured with a  special chain-type lateral extensometer, depicted in Figure 6.3.

The calibration of the lateral extensometer is also shown in Appendix G.

^Typical stress-strain curves for compression of porous materials always present an initial non­
linear region (slightly convex upwards), due to the closure of microcracks, followed by a linear 
region, in which the stress-strain behavior is considered to be linear elastic. Immediately after the 
linear region the sample develop plastic irreversible deformations.
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Figure 6.3: Rock sample instrumented for the uniaxial test.

The modulus of elasticity, or Young's modulus, £?, was computed tangent to the 

stress-strain curve in the linear region (Jaeger and Cook, 1979):

E  =
dcT

dSax
(6.3)

where:

{
dcr is the change in the axial stress; and,
cfeai is the correspondent change in the axial strain.

Poisson’s ratio, u, was computed by:

u —
^ l a t
ASax

(6.4)

Figure 6.4 shows schematically how the stress and strain intervals are related for 

computing E  and i/.
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Aa

G|at Aslat ^ a x

Figure 6.4: Gathering the stress and strain  values for computing the elastic param­
eters from uniaxial tests.

6.1.2 Hydrostatic Compression Tests

Hydrostatic compression tests were run  in a  triaxial cell, with a  capacity of 68 

MPa confining pressure. The cell was installed in the 315.02 MTS loading frame 

(Figure 6.5), which is capable of applying up to 270 tons in axial compression. 

The parameters determined by this test were the drained and undrained rock bulk 

moduli. Hydrostatic unjacketed tests were also run for gathering the grain bulk 

modulus.

The procedure for the hydrostatic compression tests consisted in measuring the 

sample radial and axial deformations under increasing confining pressure. For the 

drained test, a  valve connecting the  sample pore fluid to the atmospheric pressiure 

was left open; while for undrained tests it was closed.

The sample preparation for the confined tests consisted of the following steps:

1) A thermoshrinkable teflon membrane was adjusted around the rock sample
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U f tR tn f i ^

LVDT
Trw w dueer
(intariMl)

Fig\ire 6.5: Loading frame MTS 315.02 utilized in the triaxial compression tests.
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for isolating the rock pore fluid from the confining fluid. Before this, a  special 

rubber was wrapped around the top and bottom  part of the 2” sample, to ensure a 

smooth transition from the top and lower 2 | ” steel caps, and avoid puncturing the 

membrane in sharp comers, when applying the confining pressure;

2) Two steel wires were firmly tightened to the top and lower caps to secure the 

membrane in place, and prevent confining fluid leaks to the pore fluid line;

3) Next, the two LVDTs and the lateral extensometer were installed for measur­

ing the axial and lateral strains,

4) The instrumented sample, shown in Figure 6.6, was finally placed inside the 

triaxial cell, immersed in the confining fluid, and installed in the testing frame.

Figiure 6.6: Sample instrumented for the hydrostatic and triaxial tests

The axial strain was computed by averaging the two LVDT’s outputs (the LVDTs 

calibration is also shown in Appendix G).
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The rock bulk moduli (drained, undrained and unjacketed) were computed by:

(6.5)de

de

- *  = f

drained

undrained  (®-®)

(6.7)unjacketed

where:
dPc is the variation in the confining pressure; 
e is the volumetric strain, computed as:{

e =  eax +  2 eiat (6.8)

It is worth noting that there is a  difference in the terminology about unjacketed 

tests: some authors (Abousleiman and Cheng, 1992) assume that since the confining  

fltiid is free to flow into the rock pores, the test should be considered drained, while 

some others call it undrained (Zimmerman, 1991). In this work it is assumed that 

a drained test is a  test where the pore pressure increment is zero throughout the 

whole test. Since the pore pressure increment in the unjacketed test is not null, but 

equal to the confining pressure increment, the test was considered to be undrained.

6.1.3 Triaxial Compression Tests

The triaxial compression tests were performed in accordance to the suggestions 

from the International Society of Rock Mechanics (ISRM, 1983). The tests had two 

distinct stages: 1 - application of a hydrostatic confining pressure until reaching 

the confining pressure specified for the test; and, 2 - additional axial loading. The 

procediure for the first stage was described in the previous section. The application 

of the axial load, also called deviatoric load, leads to stress-strain curves similar 

to the ones obtained in the uniaxial tests; allowing thus, for the computation of 

Yoimg’s modulus and Poisson’s ratio under confined conditions. The tests were
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nin tinder drained and iindrained conditions, allowing the determination of the 

iindrained Poisson’s ratio, chosen as an initial param eter for the poroviscoelastic 

approach. Once more the tests were kept within the elastic region, monitored by 

checking in real-time the linearity of the curves axial displacement versus load and 

lateral displacement versus load.

6.1.4 Creep Compression Tests

The creep tests were nm  under both unconfined and confined (drained) conditions, 

aiming a t the parameters for the  viscoelastic model (B 2 , f is  and Kz, Creep 

tests were also performed on unjacketed samples, for checking on the creep behavior 

for the solid grain. The samples tested under creep were not utilized for any further 

test, since the rock mechanical and physical characteristics were definitively modified 

by the plasticity induced during the tests.

The imconfined creep tests were run immediately after the uniaxial compression 

tests. The samples were left under uniaxial constant load and the axial strain 

was monitored with time until stabilization (around 17 hours). The procedure for 

the confined creep test was to raise the confining pressure to approximately the 

overburden stress and keep it constant for a  period of time long enough for detecting 

a constant volumetric strain. The param eters necessary for the poroviscoelastic!ty 

governing equations were obtained by curve-fitting the experimental da ta  points 

(Chapter 3).

6.2 Discussion of the Experimental Results

The analysis of the experimental da ta  focuses on four items:

1) the values obtained for the mechanical parameters;

2) the procedure for computing the mechanical parameters;
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3) the testing procedure; and,

4) the shape of the  stress-strain curves.

6.2.1 Uniaxial Compression Tests

The results of the uniaxial compression tests are summarized in Table 6.5. Fig­

ures F .l to F.9 from Appendix F show the experimental stress-strain curves.

Table 6.5: Elastic constants from uniaxial compression tests.

Well
#

Sample
#

Young’s Modulus 
(MPa)

Poisson’s Ratio

A 1 1.04 0.17
2 1.42 0.11

B 3 1.01 0.07
4 1.16 0.49

C 5 0.34 0.30
D 6 0.34 0.27

7 0.12 0.00
E 8 10.40 0.25

9 12.06 0.04

1) Analysis o f the calculated elastic parameters

The values obtained for Young’s modulus (Table 6.5) are relatively coherent 

within samples of the same well; the largest difference being 27% for well A. The 

results for Poisson’s ratio, nevertheless, present a much larger variation. In order 

to confirm the measured values, the tests on samples 1, 2, 4, and 7 were repeated. 

Figures 6.7 to 6.10 show that the angular coefficient of the stress-strain curves ob­

tained from different tests are practically identical, indicating a  good reproducibihty 

for the elastic parameters. The dispersed results were then totally  attributed to the 

sample characteristics.

2) Analysis of the procedure fo r  computing the elastic parameters

The standard way for determining Young’s modulus and Poisson’s ratio is by 

plotting a tangent to each of the stress-strain curves a t 50% of the rupture load and
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then computing the angular coeflScient (ISRM, 1979). This procedture, nevertheless, 

was not entirely applied, since the same sample was going to be used in other tests, 

and the loading was interrupted before the sample rupture. Both E  and u  were still 

computed in the linear region, which was well defined in most of the plots.

3) Analysis o f the testing procedure

W ith the exception for sample 01, all the uniaxial compression tests were carried 

out before any other test, as shown in Table 6.3. This excluded the possibility 

of having a distortion in the elastic constants. The elastic parameters were very 

reasonable even for sample 01, in the  sense that they are similar to the ones computed 

for sample 02, from the same well.

4) Analysis of the shape o f the stress-strain curves

The classical upward concavity in the first part of the stress versus axial strain 

curves was always present. This curvature is due to the closure of the internal mi­

crocracks in the initial loading stage (Lama and Vutukuri, 1978b), and is especially 

pronounced in samples 02, 03 and 04 (Figures F.2, F.3 and F.4).

The conglomerate samples (samples 08 and 09) are much stiffer than the other 

rested rocks, as indicated by the high Young’s modulus shown in Table 6.5. The 

contribution of the testing equipment compressibility to the total measured strain 

is much higher; in this case the correction in the stress versus axial strain  curve is 

larger than in the other tests, as seen in Figures F.8 and F.9.

In spite of the special attention for keeping the unieixial compression tests within 

the samples elastic limit, it can be seen from the downward concavity on the stress 

versus lateral strain of Figure F.6, tha t this sample was tested beyond the linear 

elastic zone, having a sudden rupture shortly after 750 psi of axial stress.

178



160

140

120

100

g
«g 80 
<D
CO

60

40

20

0
- 0.10

2nd cycle.

1st cycle
3rd cycle if

UNIAXIAL COMPRESSION 
TEST-CYCLED 

(SAMPLE 01)

stress vs axial strain (test) 

stress vs axial strain (corrected) 
stress vs lateral strain

0.200.00 0.10 0.30 0.40
Strain (%)

Figure 6.7: Cycled uniaxial compression test on sample 01.
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Figure 6.8: Cycled uniaxial compression test on sample 02.
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Figure 6.9: Cycled uniaxial compression test on sample 04.
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Figure 6.10: Cycled uniaxial compression test on sample 07.
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6.2.2 Hydrostatic Compression Tests

The bulk moduli computed from the hydrostatic compression tests are shown in 

Table 6.6. Figiures F.IO to F.23 show the curves confining pressure versus volumetric 

strain for each test.

Table 6.6: Bulk modulus from hydrostatic compression tests.

WeU
#

Sample
#

Confining 
Pressure (MPa)(^)

Drained Bulk 
Modulus 

(GPa)

Undr. Bulk 
Modulus 

(GPa)

Grain Bulk 
Modulus 

(GPa)Drained Undr.

A

1 27.59
67.59
42.07

3.93
16.55

275.86
2 55.17

62.07
14.90

95.55

B

3 33.10
38.62
54.48

2.00
63.45

111.72
4 40.69 202.07

D 7
82.76

62.07
6.41

106.90

E
8 68.96

41.38
24.14

245.52
9 62.07 266.21

this is the  maximum confining pressure attained  during the t ^ t .

1) Analysis o f the calculated elastic parameters

The hydrostatic tests determined three rock bulk moduli: drained, undrained 

and the grain bulk. The results shown in Table 6.6 agree very well with the expected 

relationship:

K < K ^ < K s (6.9)

The first inequafity in Equation (6.9) can be understood by considering that the 

pore fluid trapped in the rock pores, in the  undrained conditions, will increase the 

pore pressiue as a frmction of the confining pressure. This pore pressure build up 

will then contribute to decrease the compressibility of the overall rock-fluid system.
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i.e.: A' <  A'„. The other relationship, Ku < Kg. was mathematically proved by 

Zimmerman (1991). analyzing the strain induced in the rock bulk and pore volume 

for the Iindrained case.

2) Analysis of the procedure fo r computing the elastic parameters

The three bulk moduli were computed in the linear portion of the confining 

pressure versus volumetric strain  curve, using Equations (6.5), (6.6) and (6.7). Ac­

cording to Zimmerman (1991) drained and undrained tests in sandstones have a  lin­

ear region of the confining presstne versus volumetric strain curve located between 

6.000 to 12.000 psi. However, the lower limit predicted by Zimmerman (1991) is 

not clear from the experimental results. The linear region was already established 

before 6.000 psi for several of the tested sandstones, indicating that this limit may 

have been affected by some other factors, like the testing condition and the sample 

preservation.

3) Analysis of the testing procedure

The hydrostatic compression tests were generally run after the uniaxial compres­

sion tests, with the exception of sample 01. This procedure does not seems to have 

affected the final results, since the stress-strain behavior was typical for the test 

under analysis. In other words, the uniaxial compression tests did not leave plastic 

deformations.

4) Analysis of the shape o f the stress-strain curves

A. small upward concavity can be seen in the initial part of the stress-strain plots 

for the drained and undrained tests. This non-linear region, nevertheless, is much 

less evident than in the tmiaxial tests, as expected, because of the stiffening effect 

of the confining pressure.

The good linearity obtained in the stress-strain plots for the unjacketed test was 

already expected due to the samples relatively high permeability, as shown in Table
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6.2. Since in this test the confining fluid is able to penetrate in the rock pore volume, 

any increment in the confining pressure will be  transm itted to the pore fluid, leading 

to an imiform isotropic dilation directly proportional to the pressure increment. In 

other words, the grain bulk modulus should be constant in the unjacketed test, 

although small non-linearity can be seen in the beginning of the tests (Figures F .I7 

to F.23). These are attributed to the existence of microcracks in the rock matrix.

6.2.3 Triaxial Compression Tests

The imdrained elastic parameters are  shown in Table 6.7. The stress-strain curves 

are shown from Figure F.24 to F.27.

Table 6.7: Undrained elastic constants from triaxial compression tests.

WeU
#

Sample
#

Confining 
Pressure (MPa) (GPa)

A 1 27.59 3.86 0.11
B 3 0.44 3.17 0.13
D 7 6.90 23.72 0.21
E 8 68.96 30.90 0.27

1) Analysis o f the calculated elastic parameters

The imdrained elastic constants, computed from the triaxial compression tests, 

are presented again in Table 6.8 together w ith the elastic constants computed from 

the imiaxial compression tests. It can be seen tha t undrained Young’s moduli are 

always higher than the unconflned ones, while Poisson’s ratio are smaller in the 

confined tests. Theoretically speaking, both undrained constants were expected to 

be higher than  the imconfined ones. One possible explanation for the low Poisson’s 

ratio is the combining effect of the lateral confining pressure (tendency to reduce 

Poisson’s ratio by restraining the rock lateral deformation) and the possibility of 

not having the sample 100 % saturated. Air inside the pores may have allowed 

larger axial deformations. Whatever the reason, the decreasing of Poisson’s ratio as

185



a function of the confining pressure have been reported before by Bloch (1993) in 

imdrained tests on sandstones, for confining pressures between 300 and 6,000 psi.

Table 6.8: Comparison between the elastic param eter from drained uniaxial com­
pression and imdrained triaxial compression tests.

Well
#

Yoimg’s Modulus 
(GPa)

Poisson’s Ratio

Unconfined^^) Confined Unconfined^^^ Confined
A 1.23 3.86 0.14 0.11
B 1.08 3.17 0.28 0.13
D 0.34^^> 23.72 0.27(2) 0.21
E 11.86 30.90 0.14 0.27

 ̂ ) average of two samples, 
sample 06 only.

2) Analysis o f the procedure fo r computing the elastic parameters

The elastic parameters were computed in the same way as in the uniaxial com­

pression tests (Figure 6.4): a  linear region was visually defined in the stress-strain 

curves and Equations (6.3) and (6.4) were applied according to Figure 6.4.

3) Analysis o f the testing procedure

After computing low Poisson’s ratio for some of the tests, the samples were re­

saturated and the tests repeated. The results, nevertheless, were exactly the same, 

meaning either tha t the sample saturation was not responsible for the low values 

of Poisson’s ratio or that the saturation process was unable to reach 100%. The 

explanation for a  satmration lower than 100% may then be attributed to the lack of 

a  better cleaning process, that would have allowed the saturation fluid to penetrate 

in all the pore volume.

4) Analysis o f the shape o f the stress-strain curves

Since the triaxial tests were run after an initial hydrostatic pressurization, most of 

the microcracks in the rock were already closed since the beginning of the deviatoric 

loading phase, as shown in Figures F.24 to  F.27. A downward concavity can be seen
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ill rho stress versus axial strain  curves for samples 01 (Figure F.24) and 08 (Figure 

F.27) meaning that the rock is departing from the linear region, but not necessarily 

from the elastic region.

6.2.4 Creep Compression Tests

Generally speaking, creep tests (Lama and Vutulnuri, 1978a) are characterized by 

ail exponential behavior: the linear increase in the deformation during the first 

stage of the test (when the sample is subm itted to an initial constant loading rate), 

is replaced by a gradual approach to an asym ptotic value, as soon as the load is 

kept constant. The creep constants, presented in Table 6.9, were computed by 

curve-fitting the experimental d a ta  and by applying the methodology described in 

Chapter 3.

Table 6.9: Creep constants for the three-param eter solid model.

Sample
#

Test Type 
#

Young's Modulus 
(GPa)

Bulk Modulus 
(GPa)

Viscosity
(10^GPa.sec)

El E2 K i K .
5 unconfined 2.65 46.00 - - 6.21
9 12.06 13.98 - - 11.24
7 confined - - 10.21 31.76 2.09

Unconfined creep compression tests:

The difference between the  creep behavior shown in Figures F.28 and F.29 is 

certainly due to the material properties: sample 09 is a conglomerate, with a much 

higher Young's modulus (E =12.06 MPa) than  sample 05, (E =  0.34 MPa): thus, 

sample 05 is expected to be much more ductile than  sample 09, explaining the larger 

strain variation. Another interesting aspect of these two plots is the homogeneous 

behavior of the sandstone deformation, as compared to the quasi-erratic behavior of 

the conglomerate. This can be attributed to the large variation of the conglomerate 

grain size, generating a more irregular pattern  of slippage in the grain boundaries.
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Confined Creep Compression Tests:

The creep test tinder drained hydrostatic compression (Figure F.30) produced a 

very homogeneous volumetric strain  versus time plot, perhaps because the micro- 

cracks were previously closed by the confining pressure in the earlier stages of the 

tost.

Unjacketed Creep Compression Tests:

The results of the hydrostatic creep compression tests w ith the unjacketed sam­

ples. nevertheless, are very atypical, suggesting that the solid mineral grain does not 

present creep behavior. As a  m atter of fact, a  small decrease in the deformation can 

be seen under constant loading (Figures F.31 to F.33), meaning that the samples 

had somehow^ recovered' with time some of the strain imposed in the initial loading. 

This behavior can only be a ttributed  to the imiformization of the pore pressure in 

a partly saturated sample: the initial reduction in the sample bulk volume is slowly 

recovered as the air spaces are filled in by the confining oil, increasing the pore 

pressure and generating a certain amoimt of dilation.
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Chapter 7 

Conclusions and 
Recommendations

1. Inferring the in-situ stresses is a  difficult task for the petroleum industry. Most 

of the operating and service companies use as many methods as possible in 

order to increase the interpretation reliability of field and laboratory tests. 

Determining the in-situ stress orientations is less complex than computing its 

magnitudes.

2. A few models have been developed in the past for analyzing the rock anelas- 

tic strain behavior after coring, achieving good results whenever the rock has 

expanded due to the stress relief. Rock contraction was also observed and 

properly attributed to pore pressure diflFusion and thermal effects. Neverthe­

less, a  model capable of computing the  stress magnitudes whatever the strain 

pattern was still missing in the rock mechanics literature.

3. The theory of coupled poroelasticity has been associated to a  viscoelastic 

model for representing the rock deformation process after coring. The formu­

lation was able to simulate rock expansion, contraction and their combination.

4. Five independent rock elastic parameters: Young’s modulus; drained bulk 

modulus; imdrained bulk modulus; grain bulk modulus; plus the rock per-
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meability were defined as input for the poroelastic approach. The chosen 

viscoelastic model required two more parameters for each rock property as­

sumed to have a  viscous characteristics, in order to fulfill the spring-dashpot 

scheme.

5. Several laboratory compression tests were carried out in order to provide the 

necessary input rock data. The rock viscous behavior was identified in the 

drained bulk modulus as well as in the Young’s m odulus through creep tests. 

No evidence of creep was detected in the grain bulk modulus.

6. Depending on the rock type and the initial stress conditions, the changes in 

the pore voliune can be of the same order of magnitude as the expansion due 

to the stress relief; affecting thus, the rock overall deformation.

7. The probability of having noticeable poroelastic effects in the ASR test was 

higher for rocks with low permeability, because the fluid diflFusion process is 

slow enough to affect the ASR test long after core retrieval.

8. An inversion method was defined combining the simplex algorithm and the 

poroviscoelastic model for computing the hydrostatic and deviatoric in-situ 

stresses from ASR data. The method was first validated with a synthetic 

example, showing tha t the correct stress values and good curve-fittings can 

be obtained in spite of small changes in the rock input parameters, which 

are adjusted in the multidimensional minimization process carried out by the 

algorithm. The Fortran code is shown in Appendix E.

9. Petrobras’ field cases, which have been sitting aside, awaiting for a  solution 

able to handle the complex rock strain behavior, were analyzed by the new 

formulation having the experimentally determined rock properties and ASR
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measurements as input data. The results were validated by other field infor­

mation as well as geological analyses of the tested samples, confirming the 

method applicability.

7.1 Achieved Goals

The main achievements presented in this dissertation can be summarized as follows:

•  A model capable of reproducing any strain trajectory in the ASR process 

after coring has been developed in Fortran. The method is based on the rock 

properties; the initial stresses; the drilling fluid pressiue a t the coring depth: 

and, the ASR m easiuing data;

•  A suitable set of rock properties has been deflned for analyzing the rock anelas- 

tic strain behavior: from experimental observations its viscoelastic behavior 

was a ttributed to  the  drained bulk modulus and to the Yoimg’s modulus;

•  The parametric study indicated the conditions in which poroviscoelastic effects 

should be taken into account: low rock permeabilities and small differences 

among the horizontal in-situ stresses and the pore fluid pressiue;

•  An inversion algorithm, also written in Fortran, was successfully applied to­

gether with the  poroviscoelastic model for computing the horizontal in-situ 

stresses from ASR field measiuements, working fine even for complex strain 

patterns, which could not be analyzed by conventional viscoelastic methods;

7.2 Model Limitations

Leaving the restrictions for analyzing ASR data  aside, since they are not intrinsic 

to the presented work, the m ajor limitations in the developed model can be listed 

as:
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•  Only radial fluid, flow and, consequently, plane strain condition was included 

in the poroelastic formulation, not considering thus, the influence of the rock 

axial strain. Even though the axial in-situ stress can be very often assumed 

as the overburden stress, the rock horizontal and vertical strains are linked by 

Poisson’s ratio, which should somehow aflfect the ASR process and thus, the 

computation of the horizontal in-situ stresses;

•  Thermal efiects were not included in the model, although tem perature usually 

decreases from the underground to the surface and may, consequently, play 

some role in the shrinkage process:

7.3 Recommendations

1. Rock stresses inferred by the back-analysis presented in this dissertation should 

be compared to other sources of information in order to check on the results 

reliability. This procedure would help confirming the validity of the curve- 

fitting generated by the m ethod, which may be reasonable even for imrealistic 

stress values, since the inverse analysis was identified as an ill-posed problem 

for the utilized input rock data.

2. Thermal efiects may be very im portant as dem onstrated by the strain oscilla­

tions presented in Chapter 5, which were caused by small tem perature oscil­

lations (±1 °C). In some regions, the temperature gradient can be as much as 

38 °C/km  (Souza, 1988). Therefore, the strain caused by the  rock cooling off 

diuing tripping out of the hole should be evaluated. A complete formulation 

would have to couple the tem perature difiiision process to the rock anelastic 

strain due to the stress relief, and to the poroelastic efiects. Furthermore, in­

cluding the thermal efiects would need experimental determ ination of the rock
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thermal expansion coefficient, which would become, then, another adjusting 

parameter in the back-analysis.

3. Including the axial strain  in the model is another recommendation even though 

difficult in a  near future. This improvement means abandoning the plane 

strain assumption and the radial flow consideration, which would lead to a  

new poroelastic formulation, not yet developed.

4. New rock creep tests should be conducted with larger observation times to 

confirm the lack of viscous e& cts in the grain bulk modulus and also in the 

imdrained bulk modulus.

5. The experimental determination of the rock elastic parameters should have 

been done a t the in-situ estimated stresses, rather then in the elastic region, 

in order to be more representative. The final in-situ stress computation, nev­

ertheless, was not affected, because of the adjusting process in the multidi­

mensional back-analysis.
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Appendix A 

Long Term Solution

Once the excess pore pressure is allowed to drain for larger periods of time, the 

rock samples achieve a  final equilibrium sta te  with the external load. The radial 

displacements computed &om the  poroelastic approach should then reproduce the 

elastic solution w ith the same boundary conditions.

The linear elasticity constitutive equation presented in Chapter 3 (E^quation 3.6) 

can be rewritten in terms of strain as:

V 1 — 2z/
2 G S i j  =  <Tij — “  Y + 1 / '

which for the radial direction becomes:

1
2G (Tt —

u . , 1  — 2u
(<Tz +  +  tT r ) +  Q , . .. P

1 + 1 / '  ‘  "  1 + 1 /  

The radial displacement, Ur, is then computed by:

XLr =  ^  £ f d r ,

giving the radial displacement of the  lateral surface at r  =  H:

R  I 1/ , . . l - 2 i /  ■
“  2G r  “ +“TT7T’’,

Considering now the axial strain  given by:

1 r u .  . 1 — 2u
“  2G h  -  + “TnTP
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and assuming plane strain  and hydrostatic conditions; i.e.:

Eg =  0; and, (A.6)

(Tr =  (Tg = —P (t) (A.7)

the axial stress can be computed as:

(Tg =  2l/(Tr +  op (A.8)

For Mode I loading, the pore pressure increment is null:

p  — 0,  (A.9)

and the radial displacement can be finally computed by replacing Equations (A.9), 

(A.8) and (A.7) into Equation (A.4):

—P R
u r = ^ - ^ { l - 2 u )  (A.10)

For Mode II loading, the radial and the tangential stresses are null:

(Tr =  (Tg =  0, (A .ll)

and the pore pressure total increment, p  =  p(t), generates only radial displacements

and axial stress. The axial stresses is computed by replacing Equations (A.6) and

(A .ll) , into (A.5), giving:

(Tg =  — {1 — 2u) a p ,  (A. 12)

The radial displacement for Mode II is finally computed by replacing Equations (A. 12) 

and (A .ll) into (A.4):

t£r =  ^  (1 — 2i/) a  (A. 13)

The long term radial displacement in both modes I and II was verified by adding

Equations (A. 10) and (A. 13):

u . =  (op  -  P ) ^  (1 -  21/) (A. 14)
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It should be noted th a t compression was assumed to be negative in Equation 

(A. 14), according to the convention used for deriving the poroviscoelastic model. 

The radial load P  and the pore pressure p can assumed constant or time-dependent.

The viscoelastic solution, for comparing with the poroviscoelastic approach, can 

be obtained by simply replacing the elastic parameters in Equation (A. 14) — a, G 

and u — by their correspondent ones; ô , G  and P.
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Appendix B 

Initial Guesses for the Synthetic 
Example

B.l Initial Guesses for computing the Hydrostatic 
Synthetic Stresses

Table B .l: Guess file P I .

E l
(GPa)

E2
(GPa)

f^E
(10®GPa.sec)

K
(GPa)

K ,
(GPa) (GPa)

k
(md)

Stress
(Pa)

2.65 46.0 6.21 5.7 171.2 40.0 3.1 14.48

Table B.2: Guess file P2.

E l
(GPa)

Ez
(GPa)

fJ-E
(10®GPa.sec)

K
(GPa)

Ks
(GPa) (GPa)

k
(md)

S tress
(Pa)

2.65 46.0 6.21 5.7 171.2 40.0 3.1 10.0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 11.0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 12.0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 13.0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 14.0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 15.0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 16.0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 17.0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 18.0
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Table B.3: Guess file P3.

E ,
(GPa)

Bn
(GPa) (IO®GPa.sec)

K
(GPa)

K ,
(GPa)

ATu
(GPa)

k
(md)

Stress
(Pa)

2.65 46.0 6.21 5.7 171.2 40.0 3.1 -10.0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 11.0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 -12.0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 13.0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 -14.0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 15.0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 -16.0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 17.0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 -18.0

Table B.4: Guess file P4.

El
(GPa)

E i
(GPa)

f^E
(10®GPa.sec)

K
(GPa)

K ,
(GPa)

Ku
(GPa)

k
(md)

Stress
(Pa)

0.2 46.0 6.21 5.7 171.2 40.0 3.1 10.0
0.4 46.0 6.21 5.7 171.2 40.0 3.1 11.0
0.6 46.0 6.21 5.7 171.2 40.0 3.1 12.0
0.8 46.0 6.21 5.7 171.2 40.0 3.1 13.0
1.0 46.0 6.21 5.7 171.2 40.0 3.1 14.0
1.0 46.0 6.21 5.7 171.2 40.0 3.1 15.0
1.5 46.0 6.21 5.7 171.2 40.0 3.1 16.0
2.0 46.0 6.21 5.7 171.2 40.0 3.1 17.0
2.5 46.0 6.21 5.7 171.2 40.0 3.1 18.0

Table B.5: Guess file P5.

El
(GPa)

E2
(GPa)

fiE
(10®GPa.sec)

K
(GPa)

K ,
(GPa) (GPa)

k
(md)

Stress
(Pa)

0.2 16.0 6.21 5.7 171.2 40.0 3.1 10.0
0.4 26.0 6.21 5.7 171.2 40.0 3.1 11.0
0.6 36.0 6.21 5.7 171.2 40.0 3.1 12.0
0.8 46.0 6.21 5.7 171.2 40.0 3.1 13.0
1.0 56.0 6.21 5.7 171.2 40.0 3.1 14.0
1.0 66.0 6.21 5.7 171.2 40.0 3.1 15.0
1.5 76.0 6.21 5.7 171.2 40.0 3.1 16.0
2.0 86.0 6.21 5.7 171.2 40.0 3.1 17.0
2.5 96.0 6.21 5.7 171.2 40.0 3.1 18.0
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Table B.6: Guess file P6.

Ex
(GPa) (GPa)

f^E
(10®GPa.sec)

K
(GPa) (GPa) (GPa)

k
(md)

S tress
(Pa)

0.2 46.0 0.5 5.7 171.2 40.0 3.1 10.0
0.4 46.0 1.0 5.7 171.2 40.0 3.1 11.0
0.6 46.0 2.0 5.7 171.2 40.0 3.1 12.0
0.8 46.0 3.0 5.7 171.2 40.0 3.1 13.0
1.0 46.0 4.0 5.7 171.2 40-0 3.1 14.0
1.0 46.0 5.0 5.7 171.2 40.0 3.1 15.0
1.5 46.0 6.0 5.7 171.2 40.0 3.1 16.0
2.0 46.0 7.0 5.7 171.2 40.0 3.1 17.0
2.5 46.0 8-0 5.7 171.2 40.0 3.1 18.0

Table B.7: Guess file P7.

El
(GPa)

E2
(GPa)

f^E
(10®GPa.sec)

K
(GPa)

Ks
(GPa) (GPa)

k
(md)

S tress
(Pa)

2.65 16.0 6.21 5.7 171.2 40.0 3.1 10.0
2.65 26.0 6.21 5.7 171.2 40.0 3.1 11.0
2.65 36.0 6.21 5.7 171.2 40.0 3.1 12.0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 13.0
2.65 56.0 6.21 5.7 171.2 40.0 3.1 14.0
2.65 66.0 6.21 5.7 171.2 40.0 3.1 15.0
2.65 76.0 6.21 5.7 171.2 40.0 3.1 16.0
2.65 86.0 6.21 5.7 171.2 40.0 3.1 17.0
2.65 96.0 6.21 5.7 171.2 40.0 3.1 18.0

Table B.8: Guess file P8.

E l
(GPa)

E2
(GPa)

f^E
(10®GPa.sec)

K
(GPa)

K ,
(GPa) (GPa)

k
(md)

Stress
(Pa)

2.65 46.0 0.5 5.7 171.2 40.0 3.1 10.0
2.65 46.0 1.0 5.7 171.2 40.0 3.1 11.0
2.65 46.0 2.0 5.7 171.2 40.0 3.1 12.0
2.65 46.0 3.0 5.7 171.2 40.0 3.1 13.0
2.65 46.0 4.0 5.7 171.2 40.0 3.1 14.0
2.65 46.0 5.0 5.7 171.2 40.0 3.1 15-0
2.65 46.0 6-0 5.7 171.2 40.0 3.1 16-0
2.65 46.0 7.0 5.7 171.2 40.0 3.1 17.0
2.65 46.0 8-0 5.7 171.2 40.0 3.1 18.0
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Table B.9: Guess file P9.

Ex
(GPa)

Ek
(GPa)

Ms
(IO®GPa.sec)

K
(GPa)

K ,
(GPa) (GPa)

k
(md)

S tre ss
(Pa)

2.65 16.0 0.5 5.7 171.2 40.0 3.1 10.0
2.65 26.0 1.0 5.7 171.2 40.0 3.1 11.0
2.65 36.0 2.0 5.7 171.2 40.0 3.1 12.0
2.65 46.0 3.0 5.7 171.2 40.0 3.1 13.0
2.65 56.0 4.0 5.7 171.2 40.0 3.1 14.0
2.65 66.0 5.0 5.7 171.2 40.0 3.1 15.0
2.65 76.0 6.0 5.7 171.2 40.0 3.1 16.0
2.65 86.0 7.0 5.7 171.2 40.0 3.1 17.0
2.65 96.0 8-0 5.7 171.2 40.0 3.1 18.0

Table B.IO: Guess file PlO.

Ex
(GPa)

E2
(GPa)

Ms
(10®GPa.sec)

K
(GPa)

AT.
(GPa) (GPa)

k
(md)

S tress
(Pa)

0.2 16.0 0.5 5.7 171.2 40.0 3.1 10.0
0.4 26.0 1.0 5.7 171.2 40.0 3.1 11.0
0.6 36.0 2.0 5.7 171.2 40.0 3.1 12.0
0.8 46.0 3.0 5.7 171.2 40.0 3.1 13.0
1.0 56.0 4.0 5.7 171.2 40.0 3.1 14.0
1.0 66.0 5.0 5.7 171.2 40.0 3.1 15.0
1.5 76.0 6.0 5.7 171.2 40.0 3.1 16.0
2.0 86.0 7.0 5.7 171.2 40.0 3.1 17.0
2.5 96.0 8.0 5.7 171.2 40.0 3.1 18.0

Table B .l l :  Guess file P l l .

Ex
(GPa)

E2
(GPa)

Ms
(10®GPa.sec)

K
(GPa)

K ,
(GPa) (GPa)

k
(md)

S tress
(Pa)

2.65 46.0 6.21 1.7 171.2 40.0 3.1 10.0
2.65 46.0 6.21 3.7 171.2 40.0 3.1 11.0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 12.0
2.65 46.0 6.21 7.7 171.2 40.0 3.1 13.0
2.65 46.0 6.21 9.7 171.2 40.0 3.1 14.0
2.65 46.0 6.21 2.7 171.2 40.0 3.1 15.0
2.65 46.0 6.21 4.7 171.2 40.0 3.1 16.0
2.65 46.0 6.21 6.7 171.2 40.0 3.1 17.0
2.65 46.0 6.21 8.7 171.2 40.0 3.1 18.0
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Table B.12: Guess file P12.

E,
(GPa)

Eg
(GPa)

f^E
(lO^GPa-sec)

K
(GPa)

Ks
(GPa) (GPa)

k
(md)

S tress
(Pa)

2.65 46.0 6.21 5.7 100.0 40.0 3.1 10.0
2.65 46.0 6-21 5.7 180.0 40.0 3.1 11.0
2.65 46.0 6.21 5.7 200.0 40.0 3.1 12.0
2.65 46.0 6.21 5.7 220.0 40.0 3.1 13.0
2.65 46.0 6.21 5.7 280.0 40.0 3.1 14.0
2.65 46.0 6.21 5.7 150-0 40.0 3.1 15.0
2.65 46.0 6.21 5.7 190.0 40.0 3.1 16.0
2.65 46.0 6.21 5.7 210.0 40.0 3.1 17.0
2.65 46.0 6.21 5.7 250.0 40.0 3.1 18.0

Table B.13: Guess file P13.

El
(GPa)

Ez
(GPa)

f^E
(10®GPa.sec)

K
(GPa)

K ,
(GPa) (GPa)

k
(md)

S tress
(Pa)

2.65 46.0 6.21 5.7 171.2 10.0 3.1 10.0
2.65 46.0 6.21 5.7 171.2 30.0 3.1 11.0
2.65 46.0 6.21 5.7 171.2 50.0 3.1 12.0
2.65 46.0 6.21 5.7 171.2 70.0 3.1 13.0
2.65 46.0 6.21 5.7 171.2 90.0 3.1 14.0
2.65 46.0 6.21 5.7 171.2 20.0 3-1 15-0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 16.0
2.65 46.0 6.21 5.7 171.2 60.0 3.1 17.0
2.65 46.0 6.21 5.7 171.2 80.0 3.1 18.0

Table B.14: Guess file P14.

El
(GPa)

Ez
(GPa)

f^E
(10®GPa.sec)

K
(GPa)

K .
(GPa) (GPa)

k
(md)

S tress
(Pa)

2.65 46.0 6.21 5.7 171.2 40.0 0.05 10.0
2.65 46.0 6.21 5.7 171.2 40.0 0.5 11.0
2.65 46-0 6.21 5.7 171.2 40.0 2.0 12.0
2.65 46.0 6.21 5.7 171.2 40.0 4.0 13.0
2.65 46.0 6.21 5.7 171.2 40.0 6.0 14.0
2.65 46.0 6.21 5.7 171.2 40.0 0.1 15.0
2.65 46.0 6.21 5.7 171.2 40.0 1.0 16.0
2.65 46.0 6.21 5-7 171.2 40.0 3.0 17.0
2.65 46.0 6.21 5.7 171.2 40.0 5.0 18.0
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Table B.15: Guess file PIS .

Ex
(GPa)

E2
(GPa)

fJ'E
(10®GPa.sec)

K
(GPa) (GPa)

Ku
(GPa)

k
(md)

Stress
(Pa)

0.2 16.0 0.5 1.7 100.0 10.0 0.05 10.0
0.4 26.0 1.0 3.7 180.0 30.0 0.5 11.0
0.6 36.0 2.0 5.7 200.0 50.0 2.0 12.0
0.8 46.0 3.0 7.7 220.0 70.0 4.0 13.0
1.0 56.0 4.0 9.7 280.0 90.0 6.0 14.0
1.0 66.0 5.0 2.7 150.0 20.0 0.1 15.0
1.5 76.0 6.0 4.7 190.0 40.0 1.0 16.0
2.0 86.0 7.0 6.7 210.0 60.0 3.0 17.0
2.5 96.0 8.0 8.7 250.0 80.0 5.0 18.0

B.2 Initial Guesses for Computing the Deviatoric 
Synthetic Stresses

Table B.16: Guess file SI.

Ex
(GPa)

Eo
(GPa)

f^B
(10®GPa.sec)

K
(GPa)

K ,
(GPa) (GPa)

k
(md)

Stress
(Pa)

2.65 46.0 6.21 5.7 171.2 40.0 3.1 2.07

Table B.17: Guess file 82.

Ex
(GPa)

E2
(GPa) (10®GPa.sec)

K
(GPa)

K ,
(GPa) (GPa)

k
(md)

Stress
(Pa)

2.65 46.0 6.21 5.7 171.2 40.0 3.1 1.0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 2.0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 3.0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 4.0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 5.0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 6.0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 7.0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 8.0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 9.0
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Table B.18: Guess file S3.

El
(GPa)

E2
(GPa)

f^E
(10®GPa.sec)

K
(GPa)

K ,
(GPa)

Ku
(GPa)

k
(md)

S tre ss
(Pa)

2.65 46.0 6.21 5.7 171.2 40.0 3.1 10.0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 30.0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 18.0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 45.0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 25.0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 60.0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 72.0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 80.0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 65.0

Table B.19; Guess file 84.

El
(GPa)

E2
(GPa)

Ac
(10®GPa.sec)

K
(GPa)

Ks
(GPa)

ATu
(GPa)

k
(md)

S tre ss
(Pa)

6.50 46.0 6.21 5.7 171.2 40.0 3.1 1.0
3.00 46.0 6.21 5.7 171.2 40.0 3.1 2.0
4.80 46.0 6.21 5.7 171.2 40.0 3.1 3.0

12.00 46.0 6.21 5.7 171.2 40.0 3.1 4.0
2.32 46.0 6.21 5.7 171.2 40.0 3.1 5.0
4.95 46.0 6.21 5.7 171.2 40.0 3.1 6.0
8.67 46.0 6.21 5.7 171.2 40.0 3.1 7.0
7.44 46.0 6.21 5.7 171.2 40.0 3.1 8.0
1.00 46.0 6.21 5.7 171.2 40.0 3.1 9.0
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Table B.20: Guess file S5.

El
(GPa)

E2
(GPa)

f^E
(10®GPa.sec)

K
(GPa)

K ,
(GPa) (GPa)

k
(md)

S tre ss
(Pa)

2.65 16.0 6.21 5.7 171.2 40.0 3.1 1.0
2-65 26.0 6.21 5.7 171.2 40.0 3.1 2.0
2.65 36.0 6.21 5.7 171.2 40.0 3.1 3.0
2.65 46.0 6.21 5.7 171.2 40.0 3.1 4.0
2.65 6-0 6.21 5.7 171.2 40.0 3.1 5.0
2.65 4.0 6.21 5.7 171.2 40.0 3.1 6.0
2.65 10.0 6.21 5.7 171.2 40.0 3.1 7.0
2.65 80.0 6.21 5.7 171.2 40.0 3.1 8.0
2.65 1.0 6.21 5.7 171.2 40.0 3.1 9.0

Table B.21: Guess file S6.

El
(GPa)

Ez
(GPa) (10®GPa.sec)

K
(G Pa)

Ks
(GPa) (GPa)

k
(md)

S tre ss
(Pa)

6.50 16.0 0.12 5.7 171.2 40.0 3.1 1.0
3.00 26.0 2.21 5.7 171.2 40.0 3.1 2.0
4.80 36.0 32.1 5.7 171.2 40.0 3.1 3.0

12.00 46.0 4.21 5.7 171.2 40.0 3.1 4.0
2.32 6.0 5.21 5.7 171.2 40.0 3.1 5.0
4.95 4.0 6.21 5.7 171.2 40.0 3.1 6.0
8.67 10.0 5.21 5.7 171.2 40.0 3.1 7.0
7.44 80.0 6.89 5.7 171.2 40.0 3.1 8.0
1.00 1.0 8.12 5.7 171.2 40.0 3.1 9.0
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Appendix C 

Field Results

This Appendix presents the complete plots of ASR tests m ade by Petrobras in the 

Potignar and Sergipe-Alagoas Basins. The horizontal strains &om these plots were 

used as input da ta  in the back-analyses discussed in Chapter 5 for computing the 

in-situ horizontal stresses in the respective wells, a t the cored depths. Two samples 

were tested for each well, w ith the exception of well D, where a  total of four samples 

have been tested a t different depths. The plots show the rough strain da ta  in six 

directions:

• vertical (Sz^);

•  horizontal ^aa, ^yy)', and,

•  inclined ( Ew,, ecc)-

which were computed with the help of a  steel frame supporting a total of 12 

LVDTs, two in each direction, as shown in Figure C .l.
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Figure C .l: Sample support for measuring the strains in the ASR test. 

A SR  curves fo r the samples from  well A:
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Figure C.2: Anelastic S train  Recovery for well A, sam ple #  I.
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Figure C.3: Anelastic Strain Recovery for well A, sample #  2. 

ASR curves fo r  the samples from  well B:
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Figure C.4: A nelastic S train  Recovery for well B, sam ple #  I.
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Figure C.5: Anelastic S train Recovery for well B, sample #  2. 

A SR  curves fo r  the samples from  well C:
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Figure C.6: Anelastic S train  Recovery for well C, sample #  1.
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A SR curves fo r  the samples from well D:
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Figiure C.8: Anelastic Strain Recovery for well D, sample #  1.
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Figure C.IO: A nelastic Strain Recovery for well D, sam ple #  3.
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A SR  curves fo r the samples from  well E:
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Figure C.12: Anelastic S train Recovery for well E, sample #  1.
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Appendix D 

Brief Description of the Tested 
Ssunples

Macroscopic analyses were sufficient for checking on the sample’s characteristics; the 

rock heterogeneity was clear for samples from wells D and E, while the others were 

considered homogeneous (Figures D .l to D.IO). This observation helped understand 

the differences in the stresses computed for samples cored just a  few centimeters 

apart, in the same well.

The sandstones from wells A and B presented quartz, K-feldspars, clay minerals, 

calcite, dolomite and small amounts of plagioclase, pyrite and halite. The clay 

minerals detected by the DRX analysis were: smectite, irregular mixed-layers of 

illite-smectite (I/S) and caulinite. Petrographically speaking, the sandstones from 

these wells are medium-grained, well-sorted and without rock fragments, as shown 

from Figures D .l to D.4. The main issue detected in the petrographical analyses was 

the high amount of interstitial clay, covering the grains or filling the intergranular 

spaces, which could be responsible for the rock contraction observed in the ASR 

tests.

The samples from wells D and E presented a  fine-to-coarse grained sandstone 

with shale layers and conglomerates, showing also metamorphic rocks (Figures D.5 

to D.IO). The DRX test detected: quartz, clay minerals, plagioclasts, K-feldspars,
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dolomite and some pyrite, calcite and halite. A great am ount of rock fragments 

(quartzite, gnaisse and  mica-schist) were also found, indicating a  highly heteroge­

neous rock type and explaining why the  computed stresses were quite different in 

the samples from the same well, in these two cases.

Figure D.l: Well A, sample #  1: gray sandstone, medium-grained, well-sorted.
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Figure D.2: Well A, sample #  2: once again a  gray sandstone, medium-grained, 
weU-sorted.
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«

Figure D.3: Well B, sample #  1: also in this well the samples were classified as a 
gray sandstone, medium-grained, weU-sorted.
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Figure D.4: Well B, sample #  2: once more a  gray sandstone, medium-grained, 
well-sorted.
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Figure D.5: Well D, sample #  1: a  brownish sandstone, fine-grained, moderately 
well-sorted, rich in pelitic fragments.
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Figure D.6: Well D, sample #  2: a  brownish sandstone, fine-to-meditun grained, 
with shaly interlaminations, rich in peUtic fragments coarse sized.
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Figure D.7: Well D, sample #  3: a  brownish sandstone, mediiun-to-fine grained 
with centimetric lens of peUtic fragments coarse sized.
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Figure D.8: Well D, sample #  4: this sample presents three different Uthologies: 
A - shaly siltstone; B - fine grained sandstone with millimetric clay laminae; C - 
medium-grained sandstone with cross-beddings.
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Figure D.9: Well E, sample #  1: a  brownish conglomerate with 3 cm particles, 
fragments of metamorphic rocks, quartz, feldspar, mica and a  coarse sand m atrix .
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Figure D.IO: Well E, sample #  2: a brownish conglomerate with rounded particles 
(4.5 to 5 cm) partly cimented by dolomite, with fragments of metamorphic rocks, 
quartz, feldspar, mica and a  coarse sand m atrix  .
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Appendix E 

Fortran Code

This appendix briefly shows how the Fortran code works. Basically, three indepen­

dent horizontal anelastic strains (45® apart), generated by ASR measurements, are 

input to the code ( A S R  file in the block diagram  shown in Figure E .l). From these 

data, the principal horizontal strains are calculated ( P S T R A S R ) ,  as well as the 

hydrostatic and deviatoric s t r a in s  ( S T R A S R ) ,  fitted by a  curve generated by the 

poroviscoelastic model ( E Q U A  subfunction).

The input data for the model are the initial guesses ( G U E S S ) ,  and the rock 

constants inc lud ing the field data  ( C O N S T ) .  W ith the help of the simplex al­

gorithm ( S I M P L E X  subroutine) the difierence between the hydrostatic and de­

viatoric strains provided by the ASR, and the ones calculated by the model are 

minimized ( F U N K  subroutine). The results can be seen for each vertex of the 

simplex n-dimensional figure ( V E R T C ) ,  while the  average value for each adjusted 

param eter is also available (A V G ). The curve generated by the average values, i.e., 

the fitting curve, is stored in the file D I S P L .  Figure E .l shows a scheme for the 

Fortran code.
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OUTPUTINPUT

SUBFUNCTIONS/
SUBROUTINES

ASR AVG
FUNK

DISPL

EQUA

GUESS

CONST VERTC

STRASR

SIMPLEX

PSTRASR

BESSEL - I

BESSEL - 0

ROCKPARAFACTORIAL

MAIN CODE

Figure E .l: Schematics for the Fortran code.

The input and output files can be detailed in the following way:

Input Files

A S R .D A T  -  This file inputs the horizontal strains measured in the field with 

the ASR device. The file is constituted by four columns and n-rows (where n is 

the number of tim e steps taken in the field test), having the tim e instant and the 

corresponding strains in three independent orientations (45° apart): x , a  and y, in 

the format shown in Table E .l.

Table E .l: Format for the ASR input da ta  (3 first lines for sample #  A-1 data).

tim e
(sec)

Sx
(m£)

£a
(/^ )

Ey
( /^ )

44820.720 0.00OE4-00 O.OOOE+00 O.OOOE+00
45420.840 3.464E-I-00 1.178E+00 6.912E-001
46021.680 0.864E-H00 3.060E-I-00 2.065E+000

C O N S T .D A T  -  The rock constants which are not taken as adjusting parame­

ters are input in this file, together with the field conditions, as presented in Table
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E.2.

Table E.2: CONST file for com puting the synthetic hydrostatic example.

PARAMETER DESCRIPTION VALUE
PROBL problem type (e.g.. Mode I  4- H) 12

AK2 K i 5.7 GPa
AMIK Mk: 9.85E5 GPa
PZER reservoir pressure, Pre» 8.96 MPa
PDRI drilling fluid pressure, 10.34 MPa
TREC recovery time 10  ̂ sec
EXTR core external radius 0.05 m
VISCO fluid viscosity 20,000 Pa sec
NLIN number of lines in the original ASR file 100

G U E S S .D A T  -  According to the desired number of adjusting parameters, n, 

this file has n  -f 1 lines, e.g., the file corresponding to the  synthetic example for the 

hydrostatic stress -  guess file PIO, (from Table B.IO):

0.20 16. 0.5D5 5.7 171.2 40. 3.1 10.0.40 26. 1.D5 5.7 171.2 40. 3.1 11.0.60 36. 2.D5 5.7 171.2 40. 3.1 12.0.80 46. 3.D5 5.7 171.2 40. 3.1 13.1.00 56. 4.D5 5.7 171.2 40. 3.1 14.1.00 66. 5.D5 5.7 171.2 40. 3.1 15.1.50 76. 6.D5 5.7 171.2 40. 3.1 16.2.00 86. 7.D5 5.7 171.2 40. 3.1 17.2.50 96. 8.D5 5.7 171.2 40. 3.1 18.

Output Files

P S T R A S R .D A T  -  O utputs the principal strains in the  horizontal plane;

S T R A S R .D A T  — O utputs the deviatoric and  hydrostatic strains in the hori­

zontal plane;

R O C K P A R A .D A T  - O utputs the input rock param eters as a  check for the 

values read by the code;

V E R T C  .D A T -  This file contains the final value for each adjusting rock param­

eter a t each vertex of the n-dimensional Simplex figure a t the  moment the algorithm
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ends the iterative process (the global error becomes lower than the predefined tol­

erance), e.g., the file correspondent to the synthetic example PlO*:
1.162 59.216 433643.058
5.700 171.200 40.000
3.100 14.321
2.698E-007 313

1.162 59.216 433642.852
5.700 171.200 40.000
3.100 14.321
2.698E-007 313

1.162 59.216 433643.495
5.700 171.200 40.000
3.100 14.321
2.698E-007 313

1.162 59.216 433643.252
5.700 171.200 40.000
3.100 14.321
2.698E-007 313

1.162 59.216 433643.517
5.700 171.200 40.000
3.100 14.321
2 .698E-007 313

1.162 59.216 433642.210
5.700 171.200 40.000
3.100 14.321
2 .698E-007 313

1.162 59.216 433644.416
5.700 171.200 40.000
3.100 14.321
2.698E-007 313

1.162 59.216 433642.289
5.700 171.200 40.000
3.100 14.321
2.698E-007 313

1.162 59.216 433643.187
5.700 171.200 40.000
3.100 14.321
2.698E-007 313

* the data shown follows the exact output format from the Fortran code, corresponding to: E i , 
E g ,  Hk, E ,  Ks, Ku, k, error and the number of iterations {it =  313). It should be noted that the 
error here is in m eters, which converted to microstrains { l̂e) is exactly 53.98 x I0~ *, as shown in 
Table 5.2.
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A V G .D A T  -  The average values for the adjusted param eters in  each vertex, the

number of iterations and the global error are shown in this file, together with the

computed in-situ stresses, e.g., the da ta  for the PlO example, where the hydrostatic

stress was com puted as P  =  14.32 MPa, after 313 iterations:

hydrostatic stress computation.
1.162 313

59.216 313
433643.142 313

5 .700  313
171.200 313
40.000 313

3 .100  313
14.321 313
2.698E-007

D IS P L  -  T he instant time and the correspondent strain computed ft'om the

average adjusted parameters constitute this file, which will be used for plotting the

fitting curve, e.g., the data  used for plotting the curve for the P I  0-example (only

the first 10 rows are shown below):

10000 482.582
11628 483.938
13256 484.677
14884 485.067
16512 485.266
18140 485.363
19768 485.406
21396 485.422
23024 485.424
24652 485.420

The main program  is subdivided into 8 sections, all of them initiated by com­

ments in the  code, which are gathered by a  few steps of the m ain routine, the 

subfimctions and subroutines, as shown below:

1 - IN IT IA L  S T E P S

1.1 - OPEN ING THE INPUT FILES

1.2 - OPEN ING THE OU TPUT FILES

1.2.1 - PRINCIPAL STRAINS, HYDROSTATIC AND DEVIATORIC STRAINS
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AND CHECK ON THE ROCK PARAMETERS 

1.2.2 - RESULTS

1.3 - COMPUTING STRAINS FROM TH E ASR

2  -  A P P L Y I N G  T H E  S I M P L E X  M E T H O D  T O  T H E  O B J E C T I V E

F U N C T I O N

2.1 - PRINTING THE FINAL PARAMETERS AND ERROR FOR THE

CURVE-FITTING

2.2 - PLOTTING THE CURVE FROM THE MODEL

3  -  O B J E C T I V E  F U N C T I O N  ( G L O B A L  E R R O R  C O M P U T A T I O N )

4  -  L A P L A C E  D O M A I N  E Q U A T I O N S

-  T H E  P O R O V I S C O E L A S T I C  M O D E L

4.1 - COMPUTATION OF TH E POROELASTIC PARAMETERS

4.1.1 - TIM E-DEPENDENT BULK MODULUS (BULK)

4.1.2 - TIM E-DEPENDENT YOUNG’S MODULUS (Y)

4.1.3 - TIM E-DEPENDENT GRAIN BULK MODULUS (BG)

4.1.4 - TIM E-DEPENDENT UNDRAINED BULK MODULUS (UK)

4.1.5 - SHEAR MODULUS (G)

4.1.6 - POISSON S RATIO (PS)

4.1.7 - BIOT’S COEFFICIENT (ALFA)

4.1.8 - UNDRAINED POISSON RATIO (UP)

4.1.9 - SKEM PTON B-PARAMETER (SKEMB)

4.1.10 - POROELASTIC STRESS COEFFICIENT (E)

4.1.11 - BIOT MODULUS (BM)

4.1.12 - DIFFUSIVITY COEFFICIENT (DIFC)

4.2 - TYPICAL ARGUMENTS

4.3 - RADIAL DISPLACEMENTS IN MODES I AND H COMBINED
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4.4 - MODE III

5 -  F A C T O R I A L  C O M P U T A T I O N

6  -  M O D I F I E D  B E S S E L  F U N C T I O N  O P  T H E  F I R S T  K I N D  A N D

O R D E R  Z E R O

7  -  M O D I F I E D  B E S S E L  F U N C T I O N  O F  T H E  F I R S T  K I N D  A N D

F I R S T  O R D E R

8  -  S I M P L E X  S U B R O U T I N E

The complete Fortran code is shown below:

C SIMPASR.FOR
C

PROGRAM MAUROl 
IMPLICIT REAL ♦B(A-H.O-Z)
DIMENSION T(IOOO) ,STX(1000) .STA(IOOO) ,STY(1000), 
cSTXY(lOOO) ,8X1(1000) ,8X2(1000) ,str_P(1000) ,SXR(1000) , 
cstr.S(lOOO) ,X(9,8) .0(9) ,X1(8) ,XA(9) ,XS(9) ,Y(9), 
cUFIN(1000),V(30)
INTEGER I,K,B(30),J(30),N,M,IJ,NHLF

C
C 1 - INITIAL STEPS
C 1.1 - OPENING THE INPUT FILES
C

OPEN (UNIT « 1,FILE«’C:\CQNST.DAT’)
OPEN (UNIT « 2,FILE»’C:\GUESS.DATO OPEN (UNIT « 11,FILE»’C:\ASRDAT.DAT’)
READ (1,*)C(1) ,0(2) ,0(3) ,0(4) ,0(5) ,0(6) ,0(7) ,0(8) ,0(9)
DO 1 1=1,9
READ (2,*)X(I,1),X(I,2),X(I,3), 
c X(I,4),X(I,5),X(I,6),X(I,7),X(I,8)
1 CONTINUE 
TYPE=0(1)

C
C 1.1 - OPENING THE OUTPUT FILES
C 1.1.1 - PRINCIPAL STRAINS, HYDROSTATIC AND DEVIATORIC
C STRAINS AND CHECK ON THE ROOK PARAMETERS
C

OPEN (UNIT « 33,FILE«*0:\ PSTRASR. DAT ’)
OPEN (UNIT » 44,FILE»*0:\STRASR. DAT ’)
OPEN (UNIT « 55,FILE»’0:\ ROOKPARA.DAT’)

C
WRITE (55,00(1) ,0(2) ,0(3) ,0(4) ,0(5) ,0(6) ,0(7) ,0(8) ,0(9)
DO 12 1=1,9
WRITE(55,OXd.l) ,X(I,2) ,X(I,3) , 
c X(I,4),X(I,5),X(I,6),X(I,7),X(I,8)12 CONTINUE
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c
c 1 .1 .2  -  RESULTS
C

OPEN (UNIT - 6,FILE«»C:\ VERTC.DAT’)
OPEN (UNIT » 7,FILE«’C:\ DISPL.DAT’)
OPEN (UNIT * 8,FILE«’C:\AVG.DAT*)

C
C 1.2 - COMPUTING STRAINS FROM THE ASR
C (INITIAL TIME T(l) - RECOVERY + PREPARATION)C

DO 2 1=1. CO)
READ (11,*)T(I) ,STX(I) ,STA(I) ,STY(I)
STXY (I) » (STX(I) -2. *STA (I) +STY(I) ) /2.
STl (I) »(STX(I) +STY(I) ) n . +SQRT (STXY (I) **2+ 
c ((STX(I)-STY(I))/2.)**2)
ST2(I) *(STX(I)+STY(I) ) /2.-SQRT(STXY(I) **2+ 
c ( (STX(I)-STY(I) ) /2. ) **2)
str_P (I) * ( (STl (I)+ST2 (I) )/2. ) 
str_S(I)-((STl(I)-ST2(I))/2.)
WRITE (33,OT(I),STl(I),ST2(I)
WRITE (44,*)T(I) ,8tr_P(I) ,8tr_S(I)
IF (TYPE.EQ.12.)THEN 
STR(I)=str_P(I)
ELSE
STR(I)=str_S(I)
END IF

2 CONTINUE
C
C 2 - APPLYING THE SIMPLEX METHOD
C TO THE OBJECTIVE FUNCTIONC

DO 4 1=1,9 
DO 3 Jl=l.a 
X1(J1)=X(I,J1)

3 CONTINUE 
Y(I)=FUNK(X1,C.STR,T)

4 CONTINUE
CALL simpIex(X,Y,9,8,8,l.D-4.it,C,STR,T)C

C 2.1 - PRINTING THE FINAL PARAMETERS
C AND ERROR FOR THE CURVE-FITTINGC

YS=0.0 
DO 15 1=1,9
WRITE(6,*)X(I,1) ,X(I,2) ,X(I,3) ,X(I,4) ,X(I,5) , c X(I,6),X(I,7),X(I,8)
WRITE(6,*)Y(I),it
YS=YS+Y(I)15 CONTINUE
IF (C(l).EQ.12.)THENWRITE (*,*) ’’hidrostatic stress confutation*’
ELSE
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WRITE (*,*) ” deviatoric stress computation’’ END IF 
DO 17 JA=1.8 
XS(JA)=0.
DO 16 1*1,9
XS ( JA) =X(I, JA) +XS ( JA)

16 CONTINUE 
XA(JA)*XS(JA)/9.
WRITE (♦,*) XA(JA),it 
WRITE (8,*) XA(JA),it

17 CONTINUE
WRITE (*.*) YS/9.
WRITE (8,*) YS/9.

C
C 2.2 - PLOTTING THE CURVE FROM THE MODEL
C

AEl XA(1)
AE2 XA(2)AMIE XA(3)
AKl XAC4)AKS ae XAC5)
AKU XA(6)
PERM XAC7)
PLOAD XA(8)
PROBL C(l)
AK2 C(2)
AMIK 9 C(3)
PZER C(4)
PDRI as C(5)
TREC C(6)
EXTR C(7)
VISCO C(8)
NLIN C(9)
0GN=L0G(2.)
N=8
NHLF=N/2 
DO 19 1=1,N 
S0MA=0.0 
CREAL=(I+l)/2 
B(I)*AINT(CREAL)
J(I)=MIN(I,NHLF)
DO 18 K*B(I),J(I)SOMA*SOMA+ ( ( (K**NHLF) *FAC (2*K) ) / (FAC (NHLF-K) ♦FAC (K) ♦ 
cFAC (K-1) *FAC CI-K) *FAC (2*K-I) ) )

18 CONTINUEV(I)*(-1)♦♦(I+NHLF)*SOMA
19 CONTINUEDO 41 IJ*1,NLIN

S0MAT«0.0
TIN=T(IJ)
DO 31 M*1,N 
VAR=M*(OGN/TIN)
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SOMAT-CV(M) ♦ (EQÜACVAR. AEl, AKl,AKS, PERM, VISCO, EXTR, PROBL, 
c PZER,TREC,PLOAD,PDRI,AK2,AMIK,AE2,ANIE,AKU)))
c +SOMAT

31 CONTINUE
UFIN (IJ) *( COGN/TIN) *SOMAT)
WRITE (7,*)TIN,UFIN(IJ)-UFIN(1)

41 CONTINUE 
STOP 
END

C
C 3 - OBJECTIVE FUNCTION (GLOBAL ERROR COMPUTATION)
C

DOUBLE PRECISION FUNCTION FUNK(VX,VC,VASR,T)
IMPLICIT REAL *8(A-H,0-Z)
DIMENSION VX(8) ,VC(9) ,VASR(1000) ,UM0D(1000) ,T(1000) ,V(30) 
INTEGER BC30),J(30)AEl = VX(1)
AE2 » VX(2)
AMIE = VX(3)
AKl = VX(4)
AKS * VX(5)
AKU « VX(6)
PERM = VX(7)
PLOAD = VX(8)
PROBL * VC(1)
AK2 = VC (2)
AMIK * VC(3)
PZER = VC (4)
PDRI = VC (5)
TREC = VC (6)
EXTR = VC (7)
VISCO » VC(8)
NLIN = VC (9)
ERR0=0.
0GN=L0G(2.)
N=8
NHLF=N/2 
DO 20 1=1,N 
S0MA=0.0 
CREAL=(I+l)/2 
B(I)=AINT(CREAL)
J(I)=MIN(I,NHLF)
DO 10 K«B(I),J(I)
SQMA=SOMA+ ( ( (K**NHLF) *FAC(2*K) ) / (FAC (NHLF-K) *FAC (K) * 
cFAC (K-1) *FAC(I-K) *FAC (2*K-I) ) )

10 CONTINUE
V(I)=(-1)♦♦(I+NHLF)*SOMA 

20 CONTINUE
DO 40 IJ-1,NLIN
SOMAT-0.0
TIN«T(IJ)
DO 30 M«1,N
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VAR=M*(OGN/TIN)
SOMAT= (V (M) ♦ (EQUA (VAR, AEl. AKl. AKS. PERM. VISCO. EXTR, PROBL, 

c PZER.TREC,PLOAD,PDRI,AK2,AMIK,AE2,AMIE,AKU)))
c +SOMAT
IF (SOMAT .EQ. 0.0) THEN 
ERRO=1.E30 
GOTO 45 
END IF 

30 CONTINUE
UMOD (IJ) *( (OGN/TIN) *SOMAT)
ERRO=ERRO+ABS (UMODCIJ) -UMOD(l) -VASR(IJ) )

40 CONTINUE 
45 FUNK = ERRO 

ENDC
C 4 - LAPLACE DOMAIN EQUATIONS - THE POROVISCOELASTIC MODELC

DOUBLE PRECISION FUNCTION EQUA(S,Y1,BK1,BKG1,PE,VI,A,P, 
c PPIN,RECT,STIN,DRIP,BK2,
c VISK,Y2,VISY,UK1)
IMPLICIT REAL ♦8(A-H,0-Z)C

C 4.1 - COMPUTATION OF THE POROELASTIC PARAMETERSC
C 4.1.1 - TIME-DEPENDENT BULK MODULUS (BULK)C
C BULK=BK1* ( 1.+(VISK/BK2) *S)/((1. +BK1/BK2) + (VISK/BK2) *S)

BULK=BK1
IF (BULK.LE.0.0) THEN
EQUA=0.0
GOTO 5
END IF

C
C 4.1.2 - TIME-DEPENDENT YOUNG’S MODULUS (Y)
C

Y=Y1* ( 1. +(VISY/Y2) *S)/((1. +Y1/Y2) + (VISY/Y2) *S)
C Y=Y1

IF (Yl.LE.0.0) THEN
EQUA=0.0
GOTO 5
END IF
reKY * 3.*BULK-Y
IF (reKY .LE. 0.0) THEN
EQUA=0.0
GOTO 5
END IF

C
C 4.1.3 - TIME-DEPENDENT GRAIN BULK MODULUS (BG)
CC BG=BKG1* (1. + (VIKG/BKG2) *S) / ( (1. +BKG1/BKG2)+(VIKG/BKG2) *S)

BG=BKG1
reKKS = BG - BULK
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IF (rekks .LE. 0.0) THEN
EQUA=0.0
GOTO 5
END IF

C
C 4.1.4 - TIME-DEPENDENT UNDRAINED BULK MODULUS (UK)
C
C UK=UK1*(1.+CVIUK/UK2)*S)/((1.+UK1/UK2)+CVIUK/UK2)*S)

UK=UK1
IF (UKI.LE.0.0) THEN
EQUA=0.0
GOTO 5
END IF

C
C 4.1.5 - SHEAR MODULUS (G)
C

G=(3.*BULK*Y)/(9.*BULK-Y)
IF (G.LE.0.0) THEN
EQUA=0.0
GOTO 5
END IF

C
C 4.1.6 - POISSON’S RATIO (PS)
C

PS=(3.♦BULK-Y)/(6.*BULK)
IF (PS.LT.0.0) THEN
EQUA=0.0
GOTO 5
END IF
IF (PS.GT.0.5) THEN
EQUA=0.0
GOTO 5
END IF

C
C 4.1.7 - BIOT’S COEFFICIENT (ALFA)
C ALFA=1.-(BULK/BG)

IF (ALFA.LT.0.0) THEN
EQUA=0.0
GOTO 5
END IF

CC 4.1.8 - UNDRAINED POISSON RATIO (UP)
C UP=(3.♦UK-2.♦G)/(2.#(3.♦UK+G))

IF (UP .GT. 0.5 .or. UP .LE. PS) THEN
EQUA=0.0
GOTO 5
END IF

CC 4.1.9 - SKEMPTOM B-PARAMETER (SKEMB)
C
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SKEMB=(3.*(ÜP-PS))/(ALFA*(1.-2.*PS)*(1.+0P))C
C 4.1.10 - POROELASTIC STRESS COEFFICIENT (E)C

E=(ALFA*(1.-2.*PS))/C2.*(1.-PS))C
C 4.1.11 - BIOT'S MODULUS (BM)C

BM=2.*G*(UP-PS)/(ALFA**2*(1.-2. *UP)*(1.-2.*PS))C
C 4.1.12 - DIFFUSIVITY COEFFICIENT (DIFC)
C (PE is in md, VI is in PA.sec and G is in GPa)C

DIFC=(1.E-6*2.♦(PE/VI)*G*(1.-PS)*(UP-PS))/ 
c((ALFA**2)*((1.-2.*PS)**2)*(1. -UP))
IF (DIFC.LE.0-0) THEN
EQUA=0.0GOTO 5
END IF

C
C 4.2 - TYPICAL ARGUMENTSC

QSI=A*SQRT(S/DIFC)
BETA=QSI
D3= ( ( 1. -PS) *BESSIO (BETA) -2. * (UP-PS) *BESSI 1 (BETA) /BETA) 
D4=((1.-2.*UP)*(1.-PS)*BESSIO(BETA))+ 
c2.*((UP-PS)*(BESSIl(QSI)/QSI))
D5=2. *E* ( 1. -PS) * ( ( ( 1. -2. *UP) *BESSI 1 (BETA) /BETA) + 
c(BESSIl(QSI)/QSI))

C
C 4.3 - RADIAL DISPLACEMENT IN MODES I AND II COMBINED
C (STIN, PPIN and DRIP are in MPa, G is in GPa
C and since A is in m, EQUA is aü.so in m)C

IF(P.eq.l2.) THEM
TFAC= (DRIP/S) * ( ( (1. -EXP (-RECT*S) ) / (RECT*S) ) -1. )
STIL=TFAC+STIN/S
PTIL=TFAC+PPIN/SC

C EQUA FOR COMPUTING DISPLACEMENTS:C
C EQUA=(STIL*D4-PTIL*D5)*1.E-3*A/(2.*G*D3)C
C EQUA FOR COMPUTING MICROSTRAINS:
C (delta A/A)*1E6C

EQUA=(STIL*D4-PTIL*D5)*(1.E+3)/(2.*G*D3)END IF
C
C 4.4 - Mode III
C
C
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IF(P.eq.3.) THENTFAC-DRIP/S* ( ( (1. -EXP(-RECr*S) ) / (RECT*S) ) -1. ) 
STIL=TFAC+STIN/SC

C EQUA FOR COMPUTING DISPLACEMENTS:
C
C EQUA=STIL*1.E-3*A/(2.*G)C
C EQUA FOR COMPUTING MICROSTRAINS :
C (delta A/A)*1E6
C

EQUA=STIL*(1.E+3)/(2.*G)
END IF 

5 END
C
C 5 - FACTORIAL COMPUTATION
C DOUBLE PRECISION FUNCTION FAC(I)

IMPLICIT REAL ♦8(A-H,0-Z)
FAC=1.0
IF(I.LE.1)RETURN DO 10 J»2,I 
FAC=FAC*J 

10 CONTINUE
END

C
C 6 - MODIFIED BESSEL FUNCTION OF
C THE FIRST KIND AND ORDER ZERO
C

DOUBLE PRECISION FUNCTION BESSIO(X)
IMPLICIT REAL *8(A-H,0-Z)DATA PI, P2, P3,P4.P5,P6, P7/1. ODO, 3.5156229D0,3.0899424DO, 
cl. 2067492D0,0.2659732D0,0.360768D-1,0.45813D-2/
DATA Q1, Q2, Q3, Q4, Q5. Q6, Q7. Q8, Q9/0.39894228D0,0.1328592D-1. 
cO. 225319D-2, -0.157565D-2,0.916281D-2, -0.2057706D-1, 
cO. 2635537D-1, -0.1647633D-1,0.392377D-2/
IF (ABS(X).LT.3.75) THEM 
Y=(X/3.75)**2BESSI0=P1+Y* (P2+Y* (P3+Y* (P4+Y* (P5+Y* (P6+Y*P7) ))))
ELSE
AX=ABS(X)
Y=3.75/AXBESSIO=(EXP (AX) /SQRT(AX) ) * (Ql+Y* (Q2+Y* (Q3+Y* (Q4+Y* 
c(Q5+Y*(Q6+Y*(Q7+Y*(Q8+Y*Q9))))))))
ENDIF
END

C
C 7 - MODIFIED BESSEL FUNCTION OF 
C THE FIRST KIND AND FIRST ORDER
C

DOUBLE PRECISION FUNCTION BESSIl(X)
IMPLICIT REAL *8(A-H,0-Z)
DATA PI, P2.P3 ,P4,PS,P6, P7/0. 5D0.0.87890594D0,0.51498869D0,
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cO. 15084934D0,0.2658733D-1,0.301532D-2,0.32411D-3/
DATA Q1, Q2, Q3. Q4, Q5, Q6. Q7, Q8, Q9/0.39894228D0, -0.3988024D-1, 
c-0-362018D-2,0.163801D-2,-0.1031555D-1,0.2282967D-1, 
c-0.2895312D-1,0.1787654D-1,-0.4200590-2/
IF (ABS(X).LT.3.75) THEM 
Y=(X/3.75)**2
BESSI1=X* (Pl+Y* (P2+Y* (P3+Y* (P4+Y* (P5+Y* (P6+Y*P7) )))))
ELSE
AX=ABS(X)
Y=3.75/AX
BESSI1=(EXP (AX) /SQRT(AX) ) ♦ (Q1+Y*(Q2+Y* (Q3+Y* (Q4+Y* 
c (Q5+Y*(Q6+Y*(Q7+Y*(Q8+Y*Q9))))))))
IF (X. LT. 0. )BESSIl— BESSIl
END IF
ENDC

C 8 - SIMPLEX SUBROUTINE
C

SUBROUTINE sin^lex(p,y, , np,ndim,ftoi,iter,vc,vasr,t) 
IMPLICIT REAL *8(A-H,0-Z)DOUBLE PRECISION funk,ftoi,rtol,sum,svap,ysave,ytry,amotry 
INTEGER iter,mp,ndim,np,NMAX,ITMAX 
PARAMETER (NMAX-8,ITMAX«1000)
DIMENSION pCmp,np) ,y(mp) ,vc(9) ,vasr(1000) ,t(1000) ,psum(NMAX) , 
cpold(mp,np) ,yold(mp)
INTEGER i,ihi,ilo,inhi,j,m,n
pold = p
yold = y
IC0NT=0
A=1.0
ERROn-1.E-6 
iter=0

1 do 12 n-l,ndim 
sum=0.
do 11 m=l,ndim+l 
sum=sum+p (m, n)

11 continue 
psum(n)=8um

12 continue
2 ilo=l
if Cy(l).gt.y(2)) then
ihi=l
inhi =2
else
ihi=2
inhi=l
endif
do 13 i=l,ndim+l
if(y(i).le.yCilo)) ilo«i
if(y(i).gt.y(ihi)) then
inhi=ihi
ihi=i
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else if(y(i).gt.y(inhi)) then
if(i.ne.ihi) inhi*i
endif

13 continue
rtol=2. ♦abs (y (ihi) -y(ilo) ) / Cabs (y (ihi) ) +abs (y (ilo) ) ) 

C rtol=abs(y(ihi)-y(ilo))
C rtol=abs(y(ihi))

EMAX*y(ihi)
if (rtol.It.ERROn) then
swap=y(l)
y(l)=y(ilo)
y(ilo)»swap
do 14 n=l,ndim
swap=p(l,n)
p(l,n)=p(ilo,n)
p (ilo ,n) «swap

14 continue
C
C CHANGE IN THE SIMPLEX COEFFICIENTS
C FOR ESCAPING LOCAL MINIMA PROBLEMS
C
C if (EMAX.GT.ERROn) then
C A=A*1.5
C IC0NT=IC0NT+1
C y=yold
C p=pold
C WRITE (*,*) ’ICONT.ITER , ICONT, iter
C WRITE (*,*) 'ERRO MAX,A « EMAX.A
C iter*0
C pause
C else
C return
C endif

endif
if (iter.ge.ITMAX) then
write(*,*) ''ITMAX exceeded in simplex' '
write(*,*) 'rtol*',rtol
return
end if
iter=iter+2
AA*-1.*A
AB=2.*A
AC=0.5/Aytry=amotry (p ,y,psum,nqp,np,ndim, ihi, AA, vc, vasr, t) 
if (ytry.le.y(ilo)) thenytry*amotry (p, y, psum, mp, np, ndim, ihi, AH, vc, vasr, t )
else if (ytry.ge.y(inhi)) thenysave*y(ihi)ytry=amotry(p,y,psum,n^,np,ndim, ihi, AC, vc, vasr, t) 
if (ytry.ge.ysave) then 
do 16 i»l,ndim+l 
if(i ne.ilo)then
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do 15 j»l,ndiia
psum(j)*0.5*(p(i, j)+p(ilo, j)) p(i,j)=psum(j)

15 continue
y ( 1) =funk (psum, vc, vasr, t ) 
endif

16 continue 
iter*iter+ndim goto 1
endif
else
iter=iter-l 
endif 
goto 2 
END
DOUBLE PRECISION FUNCTION amotry(p,y,psum,mp,np,ndim,ihi,fac, 
cvc,vasr,t)
IMPLICIT REAL *8(A-H,0-Z)
INTEGER ihi,mp,ndim,np.NMAX
DOUBLE PRECISION fac, funk, f a d , fac2, ytry
PARAMETER (NMAX«8)
DIMENSION p(mp,np) ,psum(np) ,y(mp) ,vc(9) ,vasr(1000) , 
ct(lOOO) ,ptry(NMAX)INTEGER j
f ac 1= ( 1.-f ac)/ndim fac2=facl-fac 
do 11 j=l,ndim
ptry (j) =psum(j ) *f acl-p (ihi, j ) *fac2

11 continue
ytry=f unk (ptry, vc, vasr, t ) 
if (ytry.lt. y (ihi)) then 
y(ihi)=ytry 
do 12 j=l,ndim
psum ( j ) =psum(j ) -p (ihi, j ) +ptry ( j ) 
p(ihi, j)=ptry(j)

12 continue 
endif
amotry=ytry
return
END
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Appendix F 

Experimental Results

F.l Uniaxial Compression Tests

Figures F .l  to F.9 show the experimental and  the corrected stress-strain curves. 

Since the displacement used for computing the axial strain was not measured directly 

on the rock sample, but on the actuator of the  testing equipment, the measured 

values include the displacement of all the equipment parts involved the compression 

process. In order to isolate the rock axial stra in  from the to tal measured strain, 

the testing system was calibrated (the calibration method is shown in Appendix G), 

allowing the computation of the actual rock axial strain.
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Figure F .l: Stress-strain curves for the uniaxial compression test of sample 01.
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Figure F.2: Stress-strain curves for the uniaxial compression test of sample 02.
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Figure F.3: Stress-strain curves for the  uniaxial compression test of sample 03.
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Figure F.4: Stress-strain curves for the uniaxial compression test of sample 04.
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Figure F.5: Stress-strain curves for the  uniaxial compression test of sample 05.
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Figure F.7: Stress-strain curves for the uniaxial compression test of sample 07.
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F.2 Hydrostatic Compression Tests

Figures F.IO to F.23 show the confining pressure versus volumetric strain curves for 

each hydrostatic compression test.

F.2.1 Drained Hydrostatic Compression
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Figmre F.IO: Confining pressure versus volumetric strain for the drained hydrostatic 
compression test of sample 01.
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Figure F .l l :  Confining pressure versus volumetric strain for the drained hydrostatic 
compression test of sample 02.
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Figure F. 12: Confining pressure versus volumetric strain for the drained hydrostatic 
compression test of sample 03.
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Figure F.13: Confining pressure versus volumetric strain  for the drained hydrostatic 
compression test of sample 07.
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F.2.2 Undrained Hydrostatic Compression
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Figure F.14: Confining pressure versus volumetric strain for the undrained hydro­
static  compression test of sample 01.
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Figure F.15: Confining pressure versus volumetric strain for the undrained hydro­
static compression test of sample 03.
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Figure F.16: C onfin in g  pressure versus volumetric strain for the undrained hydro­
static compression test of sample 08.
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F.2.3 Unjacketed Hydrostatic Compression

The stress-strain curves used for computing the grain bulk modulus are shown from 

Figures (F.17) to (F.23).
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Figure F.17: Confining pressure versus volumetric strain for the unjacketed hydro­
static compression test of sample 01.
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Figure F. 18: Confining pressure versus volumetric strain  for the unjacketed hydro­
static compression test of sample 02.
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Figure F.19: Confining pressure versus volumetric stra in  for the unjacketed hydro­
static compression test of sample 03.
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Figure F.20: Confining pressure versus volumetric strain for the unjacketed hydro­
static compression test of sample 04.
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Figiire F.21: Confining pressure versus volumetric strain  for the unjacketed hydro­
static compression test of sample 07.
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Figure F.22: Confining pressure versus volumetric strain for the unjacketed hydro­
static compression test of sample 08.
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Figure F.23: Confining pressure versus volumetric strain for the unjacketed hydro­
static compression test of sample 09.
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F.3 Triaxial Compression Tests

The stress-strain curves for the triaxial compression tests are shown from Figure F.24 

to F.27.
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Figure F.24: Stress-strain curves for the undrained triaxial compression test - sample
01.
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Figure F.25: Stress-strain curves for the undrained triaxial compression tes t - sample 
03.
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Figure F.26: Stress-strain curves for the undrained triaxial compression test - sample
07.
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Figure F.27: Stress-strain curves for the undrained triaxial compression test - sample
08.
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F.4 Creep Compression Tests
F.4.1 Creep Tests Under Unconfined Compression
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Figure F.28: Unconfined creep compression test for sample 05.
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Figure F.29: Unœnfined creep compression test for sample 09.

289



F.4.2 Creep Tests Under Drained Hydrostatic Compression
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Figure F.30: Confined creep compression test for sample 07.
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Figure F.31: Creep test for sample 01, imjacketed under hydrostatic compression.
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Figure F .32: Creep test for sample 03, imjacketed under hydrostatic compression.

292



0 .0 5

0.04

I
1
E

3

0.03

0.02

0.01

0.00

Unjacketed Creep 
Compression Test 

(sample 09)

conf. pressure = 8,000 psi

O.OE+0 2.0E+4 4.0E+4
Time (sec)

6.0E+4

Figure F.33: Creep test for sample 09, imjacketed under hydrostatic compression.
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Appendix G 

System Calibration

Two loading frames have been used in the experimental testing program: an MTS 

319, for imiaxiaJ. compression tests; and an MTS 815, for triaxial compression tests. 

The axial displacement was calibrated in both equipments w ith a  standard aluminum 

sample, for which the elastic constants are known (provided by the manufacturer). 

The sample characteristics are shown in Table 0 .1 .

Table G .l: Aluminum sample characteristics.

Length (in) 4.250
Diameter (in) 2.125

Young's modulus (psi) 10.4E06
Poisson’s ratio 0.32

The calibration procedure was to simply run a  compression test in the alu­

minum elastic region, using the uniaxial set up for calibrating the MTS 319, and 

the triaxial set up for the calibration of the MTS 815 system. The experimental 

load-displacement curve for the aluminum sample was then compared with the curve 

plotted according to the aluminum elastic parameters, and the excess of displace­

ment was attributed to the accommodation of the testing system components.
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G.l Axial Displacement in the Uniaxial Compres­
sion Tests

In the tests with the MTS 319 loading firame, the  rock axial strain was derived 

from the actuator total displacement. Between the  actuator and the loading frame, 

nevertheless, there are several components, like spacers and caps, that reduce the 

system overall stifl&iess and contribute to the measured displacement. Although all 

these components are made of steel, the interface between them and also the inter­

face with the testing sample itself will always increase the system compressibUity. 

Figure G .l shows the difference in the measured strain  for the stress-strain curve 

based on the aluminum Young’s modulus and the experimental result from testing 

the standard sample.

295



8000

7000

6000

Influence of the Testing System 
(uniaxial compression test with 

the aluminum sample)

 using Young's modulus 10.4E6 psi

I  experimental

(OQ.
(/)
CO
2
w

5000

4000

3000

2000

/
1000 f I

influence of the testing systent stiffness

0 L  
0.00 0.10 0.20 0.30 0.40

Axial strain (%)
0.50 0.60

Figure G .l: Stress-strain curve for the uniaxial compression of the aluminum sample.
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T he calibration curve was calculated by subtracting the expected alumimun 

displacement from the total displacement obtained in the test, for each applied 

load, according to:

AZco/ =  AZtest — AZx/ (G .l)

where:

AZcoi is the amoimt of displacement due to the system influence:
< Alteat is the displacement measured in the aluminum test; and,

AZ^£, is the displacement according to the aluminum properties.

In order to have Alcai available for each rock test, a  polynomial fit (5th-degree)

was derived for expressing Alcai as a function of the appUed load. The ciuwe-fitting

is shown in Figure G.2, and the resulting polynomial is:

Alcai =  7.591 X 10-4 2.719 x 10'^L -  3.539 x

+3.048 X 10-^4£ 3  _  1  2 3 7  x  10~^®L4 +  1.885 x  10~-®L^ (G.2)

where L  is the load corresponding to the measured displacement.
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Figure G.2: Axial displacement as a function of load for the uniaxial compression 
of the aluminum standard.
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G.2 Axial Displacement for the l>iaxial Compres­
sion Tests

The axial displacement in the triaxial tests performed with the MTS 815 system 

were given by the averaged output of two LVDTs attached to the upper and lower 

steel caps, as shown in Figure 6.6. The linearity of each LVDT was verified with 

a  special micrometer (Figure G.3), generating the  calibration curve shown in Fig- 

lue G.4. These curves were obtained by the least square method, and the coefllcient 

of determ ination is also shown in Figure G.4.

Figiue G.3: Calibration of the LVDTs using a  high precision electronic Mitutoyo 
gauge.
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Figure G.4: Calibration of the LVDTs.
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The contribiitioQ of the testing system to the sample displacement was verified 

once more with the aluminum standard, following the same procedure used, for the 

imiaxial setup. Figiure G.5 shows the stress-strain curve for the aluminum standard 

in the triaxial setup.
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Figiure G.5: Stress-strain curves for the triaxial compression of the aluminum sample.
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A linear fit was obtained for computing the corrected displacement as a  function 

of the applied load, in the same way it was done for the uniaxial compression test. 

The linear fit (Figure G.6), is given by:

F  =  5.49 X +  1.5 x 10"^ (CL3)
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Figure G.6: Linear correction for the displacement measured in the triaxial system 
(MTS 815) as a  function of load.
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G.3 Lateral Displacement

The lateral extensometer was also calibrated by running a  uniaxial compression test 

with the almninum sample. Figure G.7 shows the experimental and the theoretical 

curves for the lateral strain of the aluminum sample. Comparing the plots it can 

be seen that the experimental curve is parallel to the theoretical one (Ae/at \theor =  

Asfot lexp ), thus, no correction was necessary for the rock tests. This result was 

already expected, since the lateral extensometer is directly attached to the rock 

sample, making the measurements free from the  influence of the testing system.
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Figure G.7: Stress versus lateral stra in  for the alum inum  sample.
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