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ABSTRACT

Agricultural practice in Bangladesh is largely dependent on the monsoonal 

rainfall. Historical data show that Bangladesh experienced severe droughts and 

floods during monsoon months. Crop losses were reported under both o f these 

extreme conditions. Intra-seasonal monsoonal rainfall variations also significantly 

affect rainfed rice productivity. Due to the immense importance of rainfed rice in 

annual crop production, it is essential to minimize crop and economic losses. 

Thus, studies of the monsoon’s impacts on rice productivity can provide significant 

information for crop planners and decision makers who are interested in devising 

strategies to minimize losses.

This project investigates intra-seasonal monsoonal rainfall variations and 

their impacts on the potential rainfed rice productivity in Bangladesh. A crop 

growth simulation model, the CERES-Rice, is applied to 16 meteorological 

stations located in the major rice growing regions and for eight transplanting dates 

to understand the dynamic relationships between the variable monsoonal rainfall 

and the rainfed rice and determine optimum transplanting date(s). The model 

applications reveal that rice yield decrease as the transplanting dates were moved 

well into the monsoon. The rate of decrease in yield is notable until July 15; 

thereafter, a very high decrease in yield occurs. Baseline estimates show, on the 

average, for a July 15 transplanting date, yield loss is 20.9% compared to a June 1

XIV



transplanting date. On the other hand, for an August 15 transplanting date, yield 

loss is 73.7% on the average compared to July 15 transplanting date. It is found 

that flowering/heading and maturing stage water stress play key role in determining 

yield. Further analyses show combined effect o f water stress on yield during these 

two stages is more severe compared to one of these stages. This study reports that 

early transplanting may ensure the availability sufficient soil water during 

flowering/heading and maturing stages and thus reduce crop loss. Moreover, 

applications of a decision making technique suggests that a ‘future year’ like 1986 

would be quite good for Bangladeshi farmers. Overall, the findings o f this study 

will enable crop planners and policy and decision makers to develop more effective 

plans to mitigate crop losses due to extreme climatic conditions.
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CHAPETR 1 

INTRODUCTION

Agriculture is a way of life in South Asia. Survival of the economies in this 

region largely depends on a stable agricultural sector. Intricate relationships 

between the societies of this region and agricultural activities can be found in 

Bangladesh. The agriculture sector in Bangladesh contributes 44% of the national 

Gross Domestic Product (GDP) and employs 56.5% o f the total employed labor 

force (Kurian, 1992). It is important to note that rice is the staple food in 

Bangladesh, like many other regions of South Asia, and obviously a very large 

section of the economy is involved in rice production. Furthermore, rainfed 

"aman' rice, among a number of other varieties o f seasonal rice, constitutes more 

than 50% of the total rice production in Bangladesh (Bangladesh Bureau of 

Statistics, 1989).

Rainfed rice production is largely dependent on the inter- and intra-annual 

behavior of the weather and climate, especially on the summer monsoon which is 

the predominant supplier of water. Seasonal rainfall totals, however, are not as 

critical to the development of rice plants as is the timing of rainfall. Furthermore, 

rice is dependent on rainwater for puddling during its initial growth stage whereas 

clear, dry conditions are required for optimal development during rice maturing 

and harvesting. In other words, inter- and intra-seasonal variations in monsoonal 

rainfall present significant uncertainty and risk in crop productivity. These



uncertainties and associated crop losses could be reduced by accurate forecasting 

and precise management decisions. It is important to note that long-lead time 

seasonal forecasting is not reliable (Johnson, 1998). However, studies of the past 

seasonal rainfall variations and their impacts on the crop growth and crop 

productivity can play a significant role in devising field-level management plans 

that may notably reduce crop losses in the future.

Moreover, in the absence of reliable long-lead time forecasting and in the 

event of abnormal weather conditions in the middle of the growing season, farmers 

need to make short-term adjustments to minimize crop loss. Study of past weather 

variations and their impacts on potential crop productivity will help to devise 

proper strategies which can be activated in the future during abnormal weather 

conditions to minimize losses. The present research project investigates intra- 

seasonal rainfall variations during the summer monsoon season in Bangladesh and 

their impacts on the rainfed aman rice plant growth and potential yield. A crop 

growth simulation model, the CERES-Rice (Ritchie et a i, 1987; and Tsuji et al., 

1994), is applied to 16 stations distributed over major rice growing regions of 

Bangladesh (Figures 1.1, and 1.2). These stations represent various precipitation 

regimes and soil characteristics and thus can be assumed as representative of 16 

rice growing regions. This application helps to understand the relationship 

between the changes in the summer monsoon, soil water availability, and 

rice plant growth and productivity. The monsoons for 1975 through 1987 are
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Figure 1.1. Bangladesh and South Asia.
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used as scenarios (thus 13 scenarios) to determine loss per scenario for each 

station. In addition, long-term crop productivity estimates allow one to identify 

climatically vulnerable rainfed rice growing regions in Bangladesh. A number of 

planting dates are proposed in response to the abnormal conditions that would 

minimize crop loss. These planting dates will allow farmers of Bangladesh to use 

their resources more efficiently. It is important to note that this research project 

adopts Kates’ (1985) framework for climate impacts studies (Figure 1.3a-b). A 

flow chart of the major components of this study is shown in Figure 1.4.

1.1. Objectives

Abnormal rainfall and associated drought and flooding causes substantial 

crop losses in Bangladesh {cf., Sah, 1987). The effect of abnormal rainfall on rice 

productivity becomes acute due to intra-seasonal variations. Thus, the 

determination of optimum planting dates is essential to optimize water availability, 

and hence to reduce crop loss due to abnormal monsoonal conditions.

In light of the above discussion, this study ;

a) investigates the impacts of intra-seasonal variations of monsoonal 

rainfall on the potential rainfed rice productivity in Bangladesh (the 

model assumes recommended supply of fertilizer and saturated soil at 

the time of transplant),

b) investigates the role of end-of-the-growing-season (end-of-season)



water stress on yield,

c) determines optimum planting dates for the reduction of crop losses 

under various abnormal conditions,

d) identifies climatically vulnerable rainfed rice growing sites, and

e) contributes in decision-making and resource re-allocation under 

variable weather and climate conditions.

It is important to note that the model assumes The Bangladesh Rice Research 

Institute (BRRI) recommended supply of fertilizer and saturated soil at the time of 

transplanting.

1.2. Significance of the study

1.2.1. Optimizing end-of-season yield by improved crop management.

Population pressure and demand of grain is a major concern for both scientists and 

society (Brown, 1997; Yoshino, 1998). It has been noted that technologically we 

have reached the plateau of crop productivity (Brown, 1997; Mann, 1999). In 

other words, limit of potential yield due to technological advances has been 

reached. However, due to environmental, technological, and economic 

constraints, many rice growing regions of the world are unable to attain their 

potential yield. Average yields in these regions reflect this situation (Brown, 

1997). Hence, opportunity exists for increasing the average yield by improving 

crop management. Brown (1997: 20) noted that Bangladesh could be one of the



few countries where the “greatest remaining potential appears to lie".

1.2.2. Impact analysis for short- and long-term adjustments. Abnormal 

behavior of weather and climate and their impact on the biophysical environment 

and, subsequently, on the socio-economic structure is a major concern for policy 

and decision makers. Climate impact analysis allows one to understand the nature 

and scale of effects of extreme weather and climate conditions on the biophysical 

environment. In addition, it allows decision makers to devise procedures to cope 

with extreme conditions and minimize crop and associated economic losses {cf., 

Kunkel et al., 1995). Thus, the impacts o f abnormal monsoonal conditions on rice 

plant growth and productivity and the identification of optimum management 

practice scenarios can help decision and policy makers devise potential loss 

minimizing plans for Bangladesh.

1.2.3. Physical relationship between rice crop productivity and climate 

during the monsoon season. There is a significant lack o f scientific work 

exploring interactions between the inter- and intra-seasonal monsoonal rainfall 

variations and rice productivity. Hence, the current study has been designed to 

monsoonal variations and rice crop productivity. Furthermore, there has been a 

major thrust in recent years towards understanding the planet earth as a system 

(Ghassam and Dozier, 1994). This new approach is providing the basis for a 

significant number of interdisciplinary research projects. Application of the 

CERES-Rice model (instead of purely statistical indices) for variable monsoon



a)

ImpactsClimate event Exposure units Response/adj ustments

b)

Impacts: 
Response 
of rice 
yield
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Rainfed rice in 
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Optimum 
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decision making
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rainfall
variability

Figure 1.3. Kates’ (1985) framework for climate impacts studies (a); Kates’ 
framework and components as adapted to the study of Bangladesh (b).
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Statement of the problem 
and objectives

Estimation of total regret and further 
suggestions for farmers in their decision making 
to reduce crop loss and resource re-allocation

The CERES-Rice model applications for 
baseline yield estimates; relationship between 
yield and rainfall variability; yield and water 
stress; and yield and transplanting dates

The CERES-Rice model application and 
evaluation of the model performance for yield, 
évapotranspiration, phenology, and harvest 
index estimates

Selection of meteorological stations 
representing major rice growing regions; 
preparation o f climate, soil and agronomic data 
for the CERES-Rice Model; selection of the 
transplanting dates

The CERES-Rice model applications for 197 5 
through 1987 for 16 selected stations; 
determination of relationship between yield and 
water stress; identification of optimum 
transplanting date(s) and climatically 
vulnerable rice growing regions

Figure 1.4. Flow chart of various components for the Bangladesh study.
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scenarios represents a step in this direction.

1.2.4. Model applications for rainfed conditions. A large number of 

modeling studies have focused on the impacts of weather variability on dry season 

irrigated rice. Moreover, by providing optimum management, it is possible to 

reduce losses of irrigated rice (as a result o f  temperature variability) to a minimum 

level. Hayes et al. (1982a) noted that with an optimum supply of water, 85% of 

maximum yield still can be attained under abnormal weather and soil conditions. It 

is also known that the timing of the availability of water is crucial for optimum rice 

yield. Application of the models for irrigated rice growing under optimum 

management did not permitted us to study the impacts of growing season rainfall 

variations on rice plant growth and productivity. Hence, this current application of 

the CERES-Rice model for rainfed rice during monsoon season will fill the void in 

the scientific literature related to rainfall variations and productivity.

It is important to note that despite the availability of a 'state-of-the-art' 

CERES-Rice model, it has never been applied extensively to estimate rainfed rice 

productivity in a dynamic environment such as the Indian summer monsoon. 

However, its application has been demonstrated in a limited way by Karim et al. 

(1996) and Hussain (1995). Karim et al. (1996) applied the CERES-Rice model 

for 2xC0z conditions to estimate rice yield while Hussain (1995) applied it for a 

few selected stations to determine impacts of various levels of fertilizer 

applications. These studies used daily weather data interpolated from the monthly

10



means as inputs to the model.

1.2.5. Regional-scale estimation of rice yield. Teijung et al. (1985) 

correctly noted that there is a significant scarcity in regional scale systematic 

studies that estimated yield. Many systematic studies estimating crop productivity, 

évapotranspiration, and irrigation water requirements are actually site-specific. 

The estimation of yield and related parameters for 16 sites can be used in future as 

a baseline to identify climatically vulnerable rice growing regions in Bangladesh.

11



CHAPTER 2 

BACKGROUND

2.1. The agro-ecological setting of rice farming in Bangladesh

Bangladesh is a deltaic country located in eastern South Asia and at the 

confluence of the three great rivers—  the Ganges, the Brahmaputra, and the Meghna. 

The annual monsoon rain supplies ample surface water during the summer monsoon 

months (June-October) through the hundreds of rivers and channels of Bangladesh. 

The storage of groundwater gets renewed every year by the monsoon rains and 

provides a very large potential source of irrigation water along with the surface water 

sources during the non-monsoon months. Currently, only 25% of the potential ground 

water is utilized in Bangladesh for irrigation (Rogers et al., 1989).

Farming in Bangladesh is largely subsistence in character. A survey by the 

Bangladesh Bureau of Statistics (BBS) showed that the net cultivated area for all crops 

in Bangladesh during 1984-85 was 8.64 million hectares and the total cultivated area 

was 13.15 million hectares (BBS, 1989). About 90% o f the land use in Bangladesh is 

under the category of farming, and 78% of the cultivated land is used for rice 

production (Choudhuri, 1988). As in many other South and Southeast Asian nations, 

rice is the staple food in densely populated (785 person km'^) Bangladesh; food 

production and rice production are synonymous.

Bangladesh's loamy alluvial soils are suitable for puddling, which is essential for 

rice cultivation. The hydroclimatic environment determines the availability of water

12



during diflferent growth stages of various rice crops. Soil fertility gets renewed every 

year largely by nutrients carried by flood waters from the over-flowing rivers during the 

monsoon. Bangladesh produces three major rice crops— the aus, the aman, and the 

boro, each with different lengths of growing seasons and growing-season climate 

conditions (Table 2.1).

Table 2.1. Important features of climate of Bangladesh during the three rice crop growing 
seasons.

Rice cropping 
seasons

Tm«

°c

T

°C

Srad

MJ m'  ̂day '

Precipitation
mm

Aus
(Mar-Aug)

34-31 16-26 14-23 1200-3100

Aman
(July-Nov)

34-28 26-16 14-19 1250-3000

Boro
(Dec-May/June)

24-34 10-26 14-23 250-550

Note: Tmax = mean maximum air temperature; T̂ m = mean minimum air temperature; Ŝ d = 
solar radiation. Range of values for T^n, and Srad represent respective increase and 
decrease as rice growing season progresses. Precipitation shows seasonal total (mm) with 
regional variation.

The ans, the aman, and the boro rice growing seasons are nearly synchronized 

with the three different climatic seasons namely, the spring (March-May), the summer 

monsoon (June-October), and the dry winter (November-February), respectively. 

Thus, rice production and yield in Bangladesh is largely dependent on the intra- and 

inter- seasonal behavior of the climate. For example, in 1987 and in 1988 the aus and 

the aman yields were greatly affected by severe flooding. The boro rice yield was also

13



affected by severe drought in 1989.

It is important to note that the aus, the aman, and the boro rice crops 

constitute nearly 20%, 54%, and 26%, respectively, of the total annual rice production 

(BBS, 1989). The farmers of Bangladesh typically cultivate the aus rice crop on the 

highest agricultural lands (3.1-5.0 meters above sea level), the aman on the medium 

high (1.1-3.0 meters above sea level) agricultural lands, and the boro on the lowest 

(0.0-1.0 meter above sea level) agricultural lands.

2.2. Importance of rice in Bangladesh’s agriculture and socio-economic structure

Hossain (1984) reported that the aus, the aman, and the boro production 

increased, on average, 2.4%, 1.3%, 8.8%, respectively, per year between 1949 to 

1984. In other words, in spite of the annual floodings during the summer monsoon and 

weather anomalies during the pre- and post-monsoon seasons, rice production has 

increased moderately over the last four decades. This progress has been achieved due 

to the rapid adaptation of high yielding varieties (HYV) of rice by Bangladeshi farmers, 

increased use of fertilizer and pesticide, and increasingly accessible irrigation facilities 

for the dry winter season and hot and dry pre-monsoon months. In 1976-77 1,216,000 

hectares of agricultural lands were provided with irrigation water by using both modem 

and traditional methods. In 1980-81 1,639,000 hectares of agricultural land were 

supplied with irrigation water and in 1984-85, this figure rose to 2,074,000 hectares. 

Furthermore, in 1962-63, 27,000 metric tons (2.5 kg ha'*) of synthetic fertilizer were
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applied to agricultural lands of Bangladesh. In 1975-76 this figure increased to 

216,000 metric tons (15 kg ha' )̂; in 1980-81 to 420,000 metric tons (32 kg ha’’), and 

in 1983-84 to 544,00 metric tons (36 kg ha ’) (Choudhuri, 1988).

However, successes in the agricultural sector over the last four decades in 

Bangladesh are not suflScient to sustain the fragile economy where the population 

growth rate is 2.5% per year (Kurian, 1992). Increasing grain production is barely 

maintaining, an equilibrium situation between life and death for most of this immense 

population (125 million). It is important to note that the rate of increase in yield in 

Bangladesh is relatively low compared to the other major rice-growing countries. Over 

the last four decades, per hectare rice yield in Bangladesh has increased 50% compared 

to 150%, 105%, 82% in Indonesia, India, and Pakistan, respectively. Meanwhile, the 

world rate has been about 120% (The Bangladesh Observer, 1988).

In addition to this grim picture, crop failure due to climatic fluctuations can 

wreak havoc on the economy. For example, rice farming provides employment for a 

large portion of the population in Bangladesh. Employment is higher in the rural rice 

farms during land preparation and harvesting stages. Hence, crop loss means less 

employment during harvesting seasons (Rahman, 1981). In addition, drought or 

unseasonable heavy rainfall and resultant flooding during land preparation stages forces 

farmers not to sow certain seasonal rice varieties and this results in cutback of potential 

employment opportunities.

Another issue related to the rice economy of Bangladesh is the question of
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availability and intake of food and the nutritional status of the population. Abdullah

(1989) found that household food consumption increases significantly during post 

harvest seasons and this results in improvement in the nutritional status of the 

population. Since rice constitutes the major share of food intake and nutrition, it is 

important to maintain high rice yields and to keep production steady (which is largely 

dependent on climate and other environmental and socio-economic factors). 

Furthermore, the level of production and yield of rice influence the buying capacity of 

families and food security. The World Bank (1986) noted that the immediate 

availability and ability to buy food are the key components of food security. One of the 

important steps to satisfy the above requirements would be the fulfillment of market 

demands by increased food production and eflScient supply to the market. This will 

keep the price stable, which is very important for millions of poor families. Mellor

(1990) found that India’s top 5% population of income distribution spends over two 

and a half times more money per capita annually on food grain purchasing for 

household consumption compared to the lowest 2%. It is important to note that the 

upper income classes allocate only 15% of their total expenditures to food grains while 

the lower income classes spend 54% of their total expenditures for the same purpose. 

From personal experience, the situation in Bangladesh is not very different from that in 

India.

Mellor (1990) also noted that the price of food increases rapidly when 

production declines. As a result the lowest income families experience a decline in real
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income since they spend larger shares of their income for buying food. On other hand, 

the upper income femilies experience an increase of income with rapidly rising food 

price as they largely control food markets and spend much less of a portion of their 

income to buy food compared to low income families. This situation readily creates a 

threat to the food security and causes social unrest.

Kurian (1992) reported that 86 percent of the population in Bangladesh lives 

below the poverty line. Thus, food security and steady food production is critical in 

keeping the already fragile socio-economic structure together. Since rice is the staple 

food and the dominant source of nutrition, it is crucial to have an adequate production 

and supply of rice in Bangladesh to maintain food security. In the context of these 

intense socio-economic pressures, it is very important to determine the affects of 

climatic fluctuations on the rainfed aman rice yield in a multiple cropping environment 

to minimize losses in the future. As noted previously, the CERES-Rice model is 

applied here to estimate the impacts of intra-seasonal rainfall variations on the aman 

rice productivity. The CERES-Rice model has been successfully applied to other 

important crop-growing region of the world {cf., Rosenzweig and Parry, 1994).

2.3. Monsoonal rainfall variations and rice production

Climate plays a vital role in determining crop production and optimum 

yield (Lockwood, 1985; Sakamoto et a/., 1980). Sah (1987) estimated that South 

Asia produces 65 percent of its grain output during the summer monsoon and that

17



success is critically dependent on the timing of the onset of the monsoon and its 

associated heavy rainfall. Seven rain-less days during the early part of the summer 

monsoon season after transplanting of rice seedlings can cause severe moisture 

stress which could potentially destroy up to 60% of the rice crop. This type of 

loss occurs frequently in different parts of the South Asian subcontinent. By 

contrast, an early arrival of the summer monsoon and the associated heavy rainfall 

also can be detrimental to young seedlings because they are still unable to cope 

with the deep flood water. Moreover, a late departure of the monsoon can 

significantly disrupt the maturing and harvesting and results in reduced yield.

Shukla (1987) examined dates for the onset of the monsoon over southern 

India (the state o f Kerala) from 1901 through 1978 and found the onset ranges 

from May 11 to June 18 (a 38 day period). Moreover, he found that fluctuations 

in the arrival date o f the monsoon of even a week can have an important effect on 

rice productivity. Similarly, departure dates for the monsoon vary from September 

25 to October 20 (25 days) and also have important effects on rice yields (Das et 

a i,  1987; 1988; Ramasastry et a i, 1983; 1984; 1985; 1986). These detrimental 

effects include wet fields and cloudy skies (increased pest infestations) which are 

harmful for maturing and harvesting stages.

Mowla (1978) showed the relationship between annual rainfall and rice 

production and loss between 1951-1974 in Bangladesh. He found that the 

increases and decreases of seasonal rainfall significantly influence rice production.
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Tanaka (1978) noted that anomalous (both high and low) rainfall with a standard 

deviation of +1.5 or -1.5 from normal was a cause of the bad harvests in 

Bangladesh. He explained the relationship between the large-scale atmospheric 

fluctuations and their impact on rainfall and rice yield in monsoon Asia by studying 

the correlation of rainfall between different parts of monsoon Asia and developing 

a Seasonal Monsoon Index based on these correlation coefficients for June, July 

and August. This index estimates the pattern of correlation coefficient variation 

among different regions. The correlation of the Seasonal Monsoon Index with 

national rice yield showed that Bangladesh, India, and Thailand were significantly 

influenced by large-scale precipitation fluctuations. Garnett and Khandekar (1992) 

presented a statistical analysis of the relationships between anomalies in large-scale 

atmospheric circulation, the Indian Monsoon, and worldwide grain yield including 

India. They found that an ENSO event results in low grain yield in India and 

Australia and high grain yield in North America due to unfavorable and favorable 

weather conditions, respectively.

Interestingly, these studies of Mowla (1978), Tanaka (1978), and Garnett 

and Khandekar (1992) have exclusively used seasonal total rainfall to estimate rice 

productivity and excluded the intra-seasonal variability of the monsoon. Such 

simple indices fail to include the dynamic relationship between the monsoon and 

rice plant growth. In addition, rapid changes in land-surface conditions associated 

with the precipitation amount, intensity and temporal distribution and their impacts
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on the soil-plant relationship are not represented properly in such simple analyses. 

For example, Krishnamurti et al. (1989) showed that during 1987, the monsoon 

arrived late and early-season precipitation was below normal. But later, part o f the 

monsoon of 1987 was marked by excessive rainfall (seasonal total rainfall was 

record breaking for most of the northeastern region of South Asia) which caused 

one of the worst flooding events in the recent history of northeastern India and 

Bangladesh. In situations such as this, intra-seasonal rainfall variability, rather than 

just the seasonal total (and indices based on seasonal total rainfall), would help to 

understand the relationships between rice crop growth and weather. As a result, 

this study investigates the impacts of intra-seasonal rainfall variations and their 

impacts on rainfed rice yield. The CERES-Rice model application also shows 

whether variable intra-annual weather patterns in Bangladesh influence various 

growth related parameters and which, in turn, affect productivity.

2.4. Monsoonal rainfall variations, impacts assessment, and response to 

minimize crop loss

Response farming, also known as short-term adjustment (as opposed to 

long-term adjustment or adaptation), can be satisfactorily applied to reduce crop 

loss due to abnormal rainfall during current crop growing season {cf., Stewart, 

1991). Stewart conducted a field study in Niamey, Niger and proposed a series of 

response scenarios to minimize crop loss. It is important to note that two types of
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adjustments exists — incidental and purposeful (Kates, 1985). When adjustments 

are made to cope with one or a series of problem(s) and they reduce vulnerability 

beyond their target, they are known as ‘incidental adjustments’. For example, 

application of fertilizer for a particular crop may become beneficial to another 

crop, to be cultivated in the same land. On the other hand, purposeful adjustments 

accept losses and distribute the impacts to other sectors. For example, when crop 

failure becomes evident to a farmer in the middle o f a growing-season, he/she may 

decide not to invest further for field management for this particular crop. Rather 

he/she decides to invest more on the next crop.

Jodha and Mascarenhas (1985) conducted a study on farmers’ adjustment 

strategies under variable rainfall condition in India and Tanzania. They noted that 

farmers’ adjustment strategies are connected to their perception o f climate 

variability. Under rainfed subsistence farming conditions, rainfall and its amount, 

timing, and duration are the pre-dominant climate/weather variables that influence 

farmers’ response strategies for adjustment. It is important to note that farmers 

start thinking about adjustment strategies after they experience unusual weather 

conditions (Jodha and Mascarenhas, 1985).

Under abnormal growing-season weather conditions farmers adopt largely 

two types of measures; risk/loss minimizing measures and risk/loss management 

measures. Risk/loss minimizing measures include salvage operation, mid-season 

corrections, and adjustments in operation, and cutback on resource use. On the
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other hand, risk/loss management measures include reduction in current 

commitments, resource augmentation, supplementary earning, and asset/inventory 

depletion. In addition to the farmers’ mid-season adjustment, institutions also can 

generate various adjusting options to cope under abnormal weather condition. 

Jodha and Mascarenhas (1985) suggested that these options should not be 

substitute for existing strategies rather they should be additional alternatives.

Climate impact assessment studies provide an opportunity for both farm 

level and institutional decision makers to understand the true nature o f the 

vulnerability of agriculture to extreme climate and weather conditions {cf, Stewart, 

1991; Easterling et al., 1993; and Kunkel et ai, 1995). This type of exercise may 

also enable institutional level decision-makers to devise appropriate adjustment 

strategies (in addition to farmers’ own experience-based responses). Kates (1985) 

proposed an impact model for climate impact assessment that consists of four sets 

o f study elements including climate events, exposure units, impacts and 

consequences, and adjustment responses. In the present study monsoonal rainfall 

variations are recognized as climate events, rainfed rice farming is the exposure 

unit, variations in rice productivity under abnormal conditions are impacts and 

consequences, and proposed management practices are adjustment responses 

(Figure 1.3a and b). Kates (1985) also noted that a significant absence of literature 

exists vis-a-vis scientific studies addressing climate impacts in developing nations. 

This observation is still largely correct even now. In addition, developing nations
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are significantly more vulnerable to abnormal climate conditions. Successful 

mitigation of the climate related damages require climate impacts assessment and 

resulting response strategies. By studying the impacts of abnormal monsoons on 

rainfed rice and devising suitable management practices, especially planting dates, 

for minimizing crop loss, this research project fulfills some of the void in scientific 

literature.

Scenario analysis using crop models can be very useful for assessment o f 

climate impacts on agriculture and subsequent response strategies. Model 

applications to various scenarios provide a longer lead time for impact analysts and 

decision makers to identify the impacts of variable weather conditions and develop 

response strategies (Lave and Epple, 1985). Impacts of various weather/climate 

scenarios on agricultural productivity can be performed in a number of ways. For 

example, we can use weather data from past extreme conditions as scenarios. In 

the present study I use data from 1975-1987 to examine the impacts of intra- and 

inter-seasonal variations of monsoonal rainfall and monsoon arrival and departure 

dates on rice plant growth and production. Furthermore, planting dates are 

selected as a response to these extreme conditions to minimize additional crop 

loss.

2.S. Crop-climate models for impacts studies

International concern about weather anomalies and resultant crop loss and
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hunger greatly galvanized the efforts to improve existing agro-climatic models and to 

develop new models for impact analysis, long-term planning, and operational use 

(Baier, 1983). These models can help to improve our understanding of climate 

variations and their interactions with local crop growth and crop productivity, and help 

farmers to adopt more suitable adjustment strategies. Furthermore, Baier (1983) noted 

that crop yield models are able (I) to assess potential crop productivity related to 

climate, (2) to monitor crop condition based on available current data, and (3) to 

determine impacts of climate variations.

Since the soil-crop-atmosphere system is complex and composed of many 

biological, physical and chemical processes, various types of models with different 

resolution, scope, and diagnostic and predictive abilities have been introduced (Teijung 

et ai, 1985). Most of these models can be grouped into two categories which 

represent the two ends of a modeling type continuum. One group represents empirical 

regression models which assume linear relationships between crop yields and 

environmental variables. Some examples of this type of model to predict rice yield can 

be found in the works of da Mota and da Silva (1980), Huda et al. (1975), Thompson 

(1975), Yao and Le Duc (1980). The empirical regression models are only applicable 

to the specific time and locations for which they were derived (Katz, 1977; Bakema 

and Jansen, 1987). The success of these models depends on the ‘representativeness of 

the input data, the selection of variables and the design of the model’ (Baier, 1983). 

Also, statistical models do not explain cause-and-effect relationships. However, when
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data availability is restricted and the need of interpretation of climate in terms of crop 

management is immediate, the empirical regression model can be very useful.

The other end of the continuum represents deterministic plant growth 

simulation models. Examples of this type of models include the Rice Clock Model of 

Gao et ai, (1992), the CORNGRO model of Childs et al. (1977) and revised by 

Kundu et al. (1982), the RICEMOD model of McMennamy (1980), the GRORYZ 

model of van Keulen (1978), the CERES-Rice model (Ritchie et ai, 1987), the 

MACROS model o f Penning de Vries et al. (1989), RICES YS model by Graf et al. 

(1990a and 1990b and 1991) and the works of Angus and Zandastra (1980) and Angus 

et al. (1990). The deterministic models are based upon the transfer of energy and mass 

within a multi-layered crop canopy and include the major plant physiological processes 

of photosynthesis, respiration, transpiration, and partitioning of photosynthates within 

plant storage sites (Hayes, 1982a). These models are sensitive to weather and 

management practice and are able to simulate daily growth and development of crop 

plants as they respond to daily weather conditions. In addition, this allows impact 

analysts to identify relationships among certain environmental conditions and crop 

growth. Moreover, deterministic crop models help to organize current information and 

to test hypotheses related to soil-plant-atmosphere interactions (Baier, 1983). Also, 

they can guide in explaining various field problems and limiting factors for crop growth 

and productivity. The input requirements of these models are usually very demanding. 

As a result, they are not easily applicable to regional studies despite many of the
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environmental and physiological processes involved in the growth of crops that can be 

satisfactorily summarized by these models.

Rosenberg (1982) recognized the need for the development of hybrid or 

parametric models which would combine both empirical and deterministic 

methodologies and enable scientists to study large-area crop productivity and water use 

with a reasonable degree of explanatory power. The YIELD model o f Hayes et al. 

(1982a, 1982b), the PADIWATER model of Bolton and Zandastra (1981), and the 

wetland rice model o f Angus and Zandastra (1980) represent such hybrid models. It 

should be noted that although most of the deterministic models had not been applied to 

estimate large area crop productivity, some attempts had been made to develop models 

that would be applicable to regional studies o f photosynthesis and/or yield, for 

example, Baier et al. ( 1976) and Band et al. (1981).

2,6. Crop-climate model-based studies in geography

Research in this particular area in geography was pioneered by Werner H. 

Teijung o f the University o f California, Los Angeles and his collaborating graduate 

students. They have developed a hybrid crop model for regional studies which is 

able to simulate growth and end-of-the season productivity of 11 crops {cf., Hayes 

et al, 1982a and 1982b). Furthermore, Teijung and his collaborators understood 

and emphasized the need for regional-scale application of crop models to estimate 

impacts o f climate. As a result, Teijung and his associates applied their model in
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China, Korea, Australia, the North American Great Plains, and California to 

estimate impacts o f climate change and climate variations on grain yield, crop 

water requirements, crop’s water use efficiency, and growth indicators (cf., Burt et 

al., 1980 and 1981; Liverman et al., 1986; Teijung et al., 1982, 1983, 1984a, b, c, 

d, e, f, and g, 1985, 1989; and Todhunter et a i, 1989). It is important to note that 

Terjung et al. initiated crop model-based studies on the impacts of climate change 

in the mid-70s when it was not the trend.

In the 1980s and 1990s crop-climate model-based studies have been 

continued by some o f  Teijung’s students and other geographers. Easterling et al. 

(1993) conducted a major study estimating the impacts of climate change on the 

crop productivity in the Great Plains of the United States. They have applied the 

EPIC (Williams et al., 1984) model to estimate regional productivity and used 

1930s climate data as analogue to climate change conditions. This study is 

popularly known as the MINK (IVIissouri, Iowa, Nebraska, and Kansas) study. 

Some of the significant contributions of this study include yield estimates after 

farm-level adjustments under enhanced CO2 condition, inter-industry linkages, and 

economic analysis o f the impacts.

The most notable contribution of Meams and her collaborators is the 

investigation of daily and inter-annual variability o f climate and their impacts on 

the crop-productivity. She and her associates used modeled weather data with 

various degrees of variability to conduct their tests for major crop growing regions
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of the United States for current and changed climate conditions {cf., Meams, 1992; 

Meams et a i, 1992 and 1996). Furthermore, Meams and her associates are 

currently completing a series of studies on the crop-climate relationship under 

changing climate conditions (Meams, 1997). These include, for example, 

development of scenarios from regional/global climate model outputs for various 

research groups, further studies on the high frequency variability under enhanced 

CO2 conditions and their impacts on the crop productivity, and up and down- 

scaling of observed and GCMs generated climate data and yield estimates (Meams, 

1997).

It is clear that a number of significant studies focusing on crop-climate 

relationships have been conducted in geography. However, most of these studies 

were performed for technologically advanced and climatically less vulnerable mid

latitude agricultural systems. On the other hand, there is a significant need for 

scientific studies on the crop-climate relationships in technologically less advanced 

and climatically more vulnerable tropical regions. Hence, this study not only 

addresses this need but also helps to improve our knowledge in crop-climate 

relationships under monsoonal conditions.
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CHAPTER 3 

THE CERES-Rice MODEL

The CERES-Rice model is representative o f  the current array of advanced 

physiologically-based rice crop growth simulation models. CERES-Rice has been 

widely applied to understand the relationship between rice and its environment 

(Bachelet and Gay, 1993; Rosenzweig and Parry, 1994). Bachelet and Gay (1993) 

applied this model to determine impacts of climate change in Asia. Rosenzweig 

and Parry (1994) investigated impacts of climate change on world- wide crop 

productivity by using the CERES-Rice and several other crop climate models. In 

addition, this model has also been successfully applied to a number o f 

country/regional studies to estimate the impacts o f climate change on rice 

productivity {cf., Baer et al., 1994; Escano and Buendia, 1994; Tongyai, 1994; 

Barry and Geng, 1995; Jin et a i, 1995; Seino, 1995; and Singh and Padilla, 1995). 

It is important to note that the CERES-Rice model is variety specific (e. g., BRI 1) 

and thus, is able to predict rice yield and rice plants response to various 

environmental conditions more accurately.

The model assumes that cultivar, soil water conditions, and crop 

management are primary influences on rice productivity (Bachelet and Gay, 1993). 

Climatic data requirements include daily precipitation, daily maximum and 

minimum air temperature, and daily solar radiation. CERES-Rice also requires 

information on soil characteristics to calculate évapotranspiration and other
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components of water balance, and detailed information on management practices 

which include cultivar, planting date, plant density, sowing depth, and nitrogen 

fertilization (Ritchie et a i ,  1987; Tsuji et a i, 1994; Hoogenboom et ai, 1995; and 

Hunte and Boote, 1998).

Table 3.1. Selected input data requirements for the CERJES-Rice model (modified fi"om 
_________Ritchie et al., 1987; and Tsuji et ai, 1994).________________________

Weather data;
Daily maximum and minimum air temperature 
Daily Precipitation 
Daily solar radiation

Pedological-hydrological data:
Soil classification 
Texture
Number of layers in soil profile 
Slope
Permeability 
Drainage 
Soil layer depth 
Soil horizon
Clay, silt, and sand content 
Bulk density
Saturated hydrauhc conductivity for each soil lav'er 
Total nitrogen for each layer 
pH of the soil in water for each layer 
Root quantity for each layer

Agronomic:
Transplanting date 
Row spacing 
Number of plants per hill 
Number of plants per square meter 
Age of seedling
Base temperature to estimate phenological stages 
Floodwater depth
Fertilizer application dates, amounts 
Planting depth
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The CERES-Rice model assumptions and key aspects of the model 

components have discussed in detail in a number o f studies {cf., Ritchie et ai, 

1987, 1998b; Singh, 1992; Singh and Padilla, 1995; Godwin and Singh, 1998; and 

Ritchie, 1998a). As a result, the following discussion presents a summarized 

outline of the relevant sections (to this research project) o f the model and it 

(discussion) is primarily based on the above studies. Moreover, since this study 

assumes an optimum supply of fertilizer, as recommended by the Bangladesh Rice 

Research Institute (BRRI), and focuses on the impacts of water availability, a 

description of the nitrogen sub-model will not be included in the following 

discussion. Therefore, the model description focuses primarily on the plant growth 

and water balance components.

3.1. Plant growth sub model

In the CERES-Rice model, rice plant development consists of two different 

features. These include phasic and morphological development. Phasic 

development represents changes in growth stages and is related to significant 

changes in the biomass partitioning pattern. The model assumes the major growth 

stages are juvenile, floral induction, heading, flowering, grain filling, maturing, and 

harvesting. Completion of these growth stages is determined by accumulation of 

heat or growing degree-days. Growing degree-day (GDD) is calculated from
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equations I, 2, and 3 by using a base temperature o f  9°C. When daily mean 

temperature, T, reaches 34°C a high mean temperature cutoflF function become 

activated and GDD values decrease linearly to zero at 44°C. These relationships 

can be described as follows:

GDD = 0.0 for T < 9 and T > 44 (I)

GDD = T -  9 for 9 < T < 34 (2)

GDD = (4 4 -T ) /1 0 (3 4 -T )  for 34 < T < 44 (3)

Morphological development includes the beginning and ending of various 

plant organ growth within a plant’s life cycle, and temperature plays a key role in 

this morphogenesis. It is important to note that water and nutrient stress also affect 

plant morphological development. The CERES-Rice simulates development of 

roots, leaves, tillers, and grains. Phasic and morphological development have been 

separated to identify differences in impacts of water or nutrient stresses on these 

processes.

Beer’s Law has been used to measure the solar radiation absorption. This 

can be expressed as follows:

I/Io = exp (-k X  LAI) (4)

where I/Io is light transmission ratio, k is extinction coefficient for rice plant

(0.625), and LAI is leaf area index. In this model potential dry matter production
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is a function of photosynthetically active radiation (PAR) which can be presented 

as follows;

DMpot = RUE X PAR x ( l-exp(k x LAI)) (5)

where DMpot is potential dry mattter production (g m'^) and RUE is radiation use 

efficiency (g MP^). The model assumes PAR (MJ m*̂ ) equals 50% o f incoming 

solar radiation. The CERES-Rice adjusts potential dry matter production for 

thermal stress, water and nitrogen deficiency to estimate actual dry matter 

production.

It is important to note that LAI is not an input to the model. It is simulated 

as a function of leaf tip appearance rate and leaf expansion growth (thus it is 

temperature driven). CERES-Rice assumes that leaf and stem growth are 

proportional and the proportionality changes as the crop grows. Assimilates 

stored in the stem are used by the plants partly or totally for grain filling depending 

on the degree o f environmental stress and resultant inadequate biomass 

production. In the beginning of a rice plant growth, a small fraction of assimilates 

gets partitioned to stems and it becomes large when leaf growth stops. Allocation 

of biomass into the root influences the density o f roots and their efficiency in 

supplying nutrients to shoots. The amount of allocation of biomass to roots also 

depends on the growth stage. It has been assumed that the allocation o f biomass 

to root decreases as the growing season progresses and the rice plant becomes



mature. It is also presumed that partitioning to roots will increase under water or 

nitrogen stress during all of the growth stages except during grainfilling stage. It is 

important to note that the model maintains a constant proportionality between root 

mass and length through the whole growing season. Finally, end-of-the season rice 

yield estimation is the product o f rice grain numbers (estimated from the panicle 

weight at maturity), individual kernel grain weight and the number of plants per 

unit area.

3.2. Soil water balance sub model

The soil water balance sub-model of the CERES-Rice calculates 

infiltration, runoff, drainage and évapotranspiration. The CERES-Rice estimates 

runoff using a modified Soil Conservation Service Curve Number Technique. The 

difference between daily precipitation and runoff provides estimates of infiltration. 

Water content at the drained upper limit determines the drainage. To estimate 

potential ET, the model offers the option of using the Priestly-Taylor method 

(Priestly and Taylor, 1972),

ETp = a[A/(A+7)](Rn + S) (7)

Where ETp is potential évapotranspiration, a  is an empirically derived constant, A 

is slope of saturation vapor pressure curve, y is psychrometric constant, Rn is net 

radiation, and S is soil heat flux. To estimate actual ET, Ritchie’s method (Ritchie,
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1972) has been incorporated in the model. Ritchie’s method can be described as 

follows;

E = Ep +  E, (E,o) (8)

given

Ep = Eo(-0.21 + 0.70 * (LAI ♦ 0.50) (8a)
E, =  p t‘' ^ - P ( t - 1 ) ‘'̂  (8b)
E,o = [A/(A + y)]R„o exp -0.398*LAI (8c)

where E is total évapotranspiration from the soil and plant surface, Ep is

transpiration from plant surfaces, E, is evaporation from below canopy soil surface

(when soil is drying), E,o is potential evaporation from below canopy soil surface,

Eo = potential evaporation calculated from Penman method, t is number of days, P

is a calculated coeffcient, dependent on hydraulic properties of soil. CERJES-Rice

estimates potential water uptake by roots and uses this parameter in conjunction

with potential transpiration to calculate a water stress deficit factor. This water

deficit factor is the ratio of potential root water uptake to potential transpiration.

This factor ranges from 0 to 1 and represents absence and the highest water stress,

respectively. The following chapters show the relationship between various

degrees of water stress and end-of-season yield.

3.3. Additional aspects of the model and yield estimate

The model integrates conditions measured with a daily temporal resolution 

over the duration of the growing season to estimate yield. In addition, the model
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is able to simulate rice plant physiological processes and the phasic growth o f the 

rice plant and soil-water balance at a daily temporal resolution. This allows 

identification of plant responses to various soil and atmospheric conditions and 

crop management practices.

After calibration o f the CERES-Rice model (Chapter 5), it is run for the 

rice growing regions o f  Bangladesh to confirm that it represents actual rice 

ecological conditions. Subsequently, it is applied to average monsoonal conditions 

to establish baseline estimates (Chapter 6) and to variable monsoonal conditions 

(Chapter 7) to determine their impacts and selection of optimum transplanting 

dates.
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CHAPTER 4

MONSOONAL RAINFALL CLIMATOLOGY AND SOILS OF

BANGLADESH

Webster (1987: 269) noted: "Of all the major weather phenomena on earth, 

the monsoon systems of Africa, Asia and Indonesia-Australia are the most 

vigorous, persistent, and energetic, with circulation features that are readily

identifiable over the entire Eastern Hemisphere during all seasons  Despite

variations in the intensity of the circulations from year to year, or in the amount of 

rainfall at any one location the annual monsoon cycle is most remarkable for its 

geographic and temporal consistency".

Considering this ‘geographic and temporal consistency’, the climate of 

Bangladesh can be divided into three seasons — (1) the spring (March-May), (2) 

the rainy monsoon (June-October), and (3) the dry winter (November-February) 

(Choudhuri, 1988; Manalo,1976). As previously noted, the aman rice growing 

season extends from July to November. Thus, the aman rice growing season starts 

during the early part o f the rainy summer monsoon season and persists through the 

early part of the dry winter season. The spring season and the dry winter season is 

the prelude and the epilogue, respectively, to the arrival and the withdrawal of the 

monsoon. As a result, this discussion on climate of Bangladesh starts with the
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spring season and continues with the summer monsoon and finishes with the winter 

season.

4.1. The Climate of Bangladesh

4.1.1. The spring season. The spring season is marked by violent 

thunderstorms, locally known as Nor'westers, that occur usually late in the 

afternoon or in the early evening(Islam, 1987; Choudhuri, 1988; Manalo, 1976). 

These thunderstorms are short in duration but intense in severity, with wind speeds 

of up to 96 km hr'\ Most of the rainfall during this season is associated with these 

thunderstorms. The Nor'westers can cause temperature drops of 9°C to 11°C, and 

in extreme cases up to 17°C (Rashid, 1977). Most of the time these storms are 

accompanied by hailstorms; hail of up to 50 mm in diameter and in extreme cases 

up to 80 mm in diameter is not unusual. April is the hottest month with average 

monthly temperature ranges between 31°C to 37°C. May is usually wetter than 

March or April. A distinct feature of May is the development of violent cyclones 

in the Bay of Bengal, many of which hit Bangladesh and ravage coastal areas with 

high storm surges and heavy rainfall.

4.1.2. The onset of the monsoon and variable rain. The onset of the 

monsoon in Bangladesh during the month of June is marked by heavy showers 

which continues until the end of the season in October. A study by Talukder et al. 

(1988) reports that July records the highest number of days with precipitation (362
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days). Two stations, Sylhet and Dhaka, receive the most rainfall during June (954 

and 420 mm, respectively) while the rest of the representative stations receive 

maximum rainfall in July. It is important to note that Bangladesh receives 74% to 

84% of its annual rainfall during the monsoon months (Islam, 1987). For example, 

Sylhet records an average rainfall of 2933 mm during monsoon months which is 

approximately 80% of the average annual total rainfall (3839 mm).

The early and late arrival of the monsoon may lead to the failure of boro, 

aiis and aman rice crops (Islam, 1987). The early arrival of the monsoon and 

associated rainfall causes flooding of the boro and the aits rice fields which results 

in crop loss. Bora rice requires dry soils during the harvesting period and 

transplanted aus seedlings are still too young to cope with the heavy onrush of 

flood water. On the other hand, the late arrival of the monsoon causes a shortage 

of water needed for growing aus rice crop and for puddling of the aman rice crop. 

Aman rice crop is cultivated during the monsoon months. A late departure of the 

monsoon also adversely affects aman rice yields because it results in clouded skies, 

above normal rainfall during the end of the season, and excessively wet crop fields 

which are particularly detrimental during late season maturing and harvesting 

(Islam, 1987).

The onset of monsoonal rains over Bangladesh exhibits a regional pattern. 

It is characterized by an earlier arrival in the eastern region than in the western 

region (Das et a i,  1987; Ahmed and Karmakar, 1993). In the eastern part of the
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country the rains usually arrive during the very end of May or in the very beginning 

of June; in the western part o f the country the monsoon sets in during any part of 

the first week o f June. So, overall, the monsoon typically arrives between 30 May 

and 7 June in Bangladesh. However, it is important to note that the arrival date 

varies from one year to another (Table 4.1).

Table 4.1. Arrival dates of the monsoon in Bangladesh.

Year Arrival date Source

1982 June 17 Ramasastry era/., 1983

1983 June 18 Ramasastry er a/., 1984

1984 June 4 Ramasastry era/., 1985

1985 June 6 Ramasastry er a/., 1986

1986 June 16 Das era/., 1987

1987 June 3 Das era/., 1988

Ahmed and Karmakar (1993) reported that the monsoon arrival dates in 

Bangladesh may deviate up to 2 weeks. They have used a data set starting from 

1958 through 1987. Lack of published data on the onset o f the monsoon in 

Bangladesh is an impediment to more extensive evaluation o f  the variability of the 

monsoon arrival. However, it is possible to examine at the extent of the 

fluctuations of the onset dates of the monsoon from the long term record of the
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southern Indian state o f Kerala India (presented in Chapter 3), since its long term 

average monsoon onset date coincides with the onset date of the monsoon for 

Bangladesh (Webster, 1987). The average complete withdrawal date of the 

monsoon from Bangladesh is the 2"“* week of October. Ahmed and Karmakar 

(1993) have noted that the withdrawal dates fluctuated up to nearly 2 weeks from 

their mean.

The regional distribution of rainfall in Bangladesh shows a distinct pattern 

(Figure 4.1). Some of the hilly extreme northeastern parts o f Bangladesh receive 

as much as 5800 mm rainfall annually while, in contrast, some of the extreme 

western parts of Bangladesh receive only 1400 mm of rainfall annually. Mean 

monthly rainfall for four representative stations (Figure 4.2a-d) have been prepared 

based on the long-term estimates provided by the Food and Agricultural 

Organizations (FAQ, 1987) of the United Nations. These figures show that, for all 

four stations, monthly total rainfall increases gradually during the spring season 

and reaches to its maximum during the monsoon season. It is also shown in these 

figures that rainfall decreases as monsoon season progress. Monthly total rainfall 

decreases significantly after the departure of the monsoon. Sylhet and Jessore 

records the highest and the lowest seasonal total rainfall during the monsoon, 

respectively. Local orography results in such higher rainfall in Sylhet. In addition, 

June or July is the wettest month of the monsoon season for all stations. Manalo 

(1976) shows that Sylhet and Jessore also receive the highest and the lowest
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Figure 4 .1. Mean annual distribution of rainfall in Bangladesh.
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seasonal total rainfall, respectively, during the spring. The northeastern parts o f 

Sylhet experience as high as 1400 mm of rainfall while the western parts of Jessore 

record only 200 mm of rainfall during this season (Figure 4.3). Mean summer 

monsoon (June-October) rainfall shows high incident rainfall (4600 mm) in the 

northeast and lower rainfall in the west (1200 mm) (Figure 4.4). The mean winter 

rainfall distribution pattern is mapped in Figure 4.5 and it is not substantially 

different from that o f the hot summer and the monsoon season. It is apparent that 

north- and south-eastern Bangladesh receive much higher rainfall than other parts 

of the country. Overall, the eastern part o f the country is much wetter than the 

western part.

To further illustrate the intra-seasonal distribution of rainfall during a 

monsoon season, Talukder et al. (1988) presented examples from Dhaka using a 

rainfall time series starting from 1965 through 1980 that July experienced 13 

events of above 300 mm rainfall while June August, September, and October 

recorded 9, 10, 5, and 1 such events, respectively (Table 4.2). This table also 

shows that June recorded 7 events of 200-300 mm of rainfall while July, August, 

September, and October recorded 2, 4, 5, and 4 such events, respectively. In 

addition, Talukder et al. (1988) showed that July records the highest number of 

rainy days in Dhaka (362) during the period 1965 through 1980 (Table 4.3). July 

also records the highest number of rainy day per month and the highest rainfall per 

rainy day.
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Figure 4.2a-d. Mean monthly rainfall for the four selected stations in Bangladesh.
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Figure 4.3. Mean spring season rainfall distribution in Bangladesh.
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Figure 4.5. Mean winter season rainfall distribution in Bangladesh.

48



Table 4.2. Frequency distribution of rainfall categories during monsoon months 
(1965-1980) for Dhaka (modified from Talukder et a i, 1988).

Months >300
mm

200-300
mm

100-200
mm

50-100
mm

50 < 
mm

June 9 7 —— —— ——

July 13 2 1 — —

August 10 4 1 1 ——

September 5 5 6 —— ——

October 1 4 7 4

Table 4.3. Total number o f rainy days, average rainy day per month, and rainfall
per rainy day for Dhaka (1965-80) (modified from Talukder et al. 
1988).

Month Total number of 
rainy days

Mean rainy day 
per month

Rainfall per rainy 
day (mm)

June 291 18 19.4
July ! 362 23 19.9
August 346 22 15.7
September 258 16 16.1
October 140 9 19.7

Table 4.4 presents some statistical characteristics of mean daily monsoonal 

rainfall for 1975 through 1987 for 16 stations. A detailed discussion on the source 

of this data set is presented later. It has been found that Rangpur’s and Comilla’s 

daily rainfall contains the highest and lowest variability, respectively. The highest 

and the lowest standard deviation of daily rainfall have been estimated for Maijdi 

Court and Comilla, respectively. These estimates are related to the second highest 

and the lowest seasonal rainfall totals, respectively. The table also shows that 

Sylhet and Comilla record the highest and the lowest daily mean precipitation for
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Table 4.4. Some statistical characteristics of the monsoonal rainfall in Bangladesh 
for the period o f 1975-87.

Station Seasonal total 
rainfall (mm)

Daily mean 
rainfall (mm)

Standard
deviation
(mm)

Coefficient of 
variation (%)

Dhaka 1794 11.72 12.43 106.0
Rangpur 2344 15.32 19.60 128.0
Jessore 1448 9.46 10.12 107.0
Khulna 1566 10.23 11.00 107.5
Chandpur 1978 12.92 13.57 105.0
Comilla 1417 9.26 6.46 69.8
Faridpur 1617 10.56 10.98 104.0
Mymensingh 1757 11.48 11.16 97.2
Maijdi Court 3542 23.15 26.51 114.5
Feni 2806 18.33 20.88 114.0
Sylhet 3699 24.17 22.24 92.0
Satkhira 1529 9.99 10.53 105.4
Barisal 1863 12.17 11.64 95.6
Bogra 1754 11.46 13.60 118.7
Dinajpur 1549 10.12 10.03 99.1
Ishwardi 1535 10.13 11.30 112.7

the whole monsoon season. As expected, Sylhet recorded the highest monsoon 

season total rainfall. As shown earlier, the eastern sector o f Bangladesh receives 

higher seasonal total rainfall compared to the western sector. Figures 4.6a-e 

present the temporal distribution of average daily rainfall recorded at five 

representative stations from 1975 through 1987. Day I represents June 1 which is 

the beginning of the monsoon season. The most common feature of figures 4.6a-e 

is heavy precipitation during the end of the first and the beginning of the second 

week of June. This is the indication of arrival o f the monsoon. Since these 

figures represent the daily mean, most o f the days of the monsoon record rainfall.
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Only a few days at the end of the monsoon season (which is end of the month of 

October) record no rainfall. It is also evident from the figures 4.6a-e that intra- 

seasonal monsoonal rainfall distribution contains a number of events of heavy 

rainfall and days of relatively low rainfall. Sylhet (Figure 4.6c) shows more 

frequent occurrence of heavy rainfall events than any other stations. These heavy 

rainfall events are reflected in the seasonal total rainfall o f Sylhet. The intra- 

seasonal fluctuations in rainfall are connected to synoptic and planetary scale 

behavior of the monsoonal circulation (cf.. Madden and Julian, 1972; Sikka and 

Gadgil, 1980; Webster, 1987; Webster a/., 1998).

From a rice farmer's view point in Bangladesh, a little below normal rainfall 

is far better than excessive rainfall because during a normal summer monsoon 

season, Bangladesh receives much more rainfall than it needs. Another important 

aspect of the monsoonal rainfall is that all excessively rainy summer monsoons do 

not always cause severe flooding, and in some cases slightly above normal rainfall 

or average seasonal rainfall could cause flooding. This occurs due to short period 

burst and related high intensity of rainfall and its distribution over the Ganges- 

Brahmaputra-Meghna catchment. It is important to note that the size of the whole 

catchment is 1,758,000 km^ while only 8% of the catchment is within the political 

boundary of Bangladesh. However, approximately all o f the total annual surface 

runoff of the whole catchment passes through Bangladesh (Rogers et al., 1989). 

Thus, excessive rainfall over the catchment outside o f the political boundary could
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cause severe flooding in Bangladesh. In 1987, the summer monsoon rainfall 

departure in Bangladesh was +40% and in 1988, it was +13% but the severity of 

the flood of 1988 was much greater than that of 1987 and the resultant loss of 

crop was immense too. This occurred due to the short-period burst of monsoon 

rainfall and heavy rainfall in the upper-catchment and resultant huge runoff through 

Bangladesh (B rammer, 1990).

The withdrawal of the monsoon in Bangladesh is marked by a sharp 

decrease of rainfall in October (Figures 4.2a-e). The monsoon trough starts to 

shift progressively to a southerly direction with the march of the thermal equator 

to the south. An important feature of the withdrawal of the monsoon in 

Bangladesh is the development of depressions and severe cyclonic storms and 

associated storm surges and downpours during the month of October. This is 

more like the onset of the summer monsoon. These storms very often result in a 

loss of the aman rice crop, which is ready to be harvested, due to high winds. The 

severe weather conditions cause lodging of the mature crop due to high wind, and 

flooding of the crop field due to intense rainfall during cyclonic storms. Storm 

surges flood coastal rice fields with saline water, which is detrimental to rice crop 

growth and yield. The salt that accumulates in the soil during the storm surges is 

not only harmful to standing crops but also reduces the fertility of soil for the 

longer period, which, in turn, reduces rice crop yield in those particular storm 

surge affected areas. The late withdrawal of the monsoon forces Bangladeshi
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farmers to practice late sowing and resultant late transplanting of the boro rice 

because of higher depth of water in the rice fields. The late sowing and 

transplanting results in a shorter growing season and lower yield.

4.1.3. The winter season. Winter in Bangladesh is less eventful compared 

to the hot summer and the monsoon seasons, except for the cyclonic storms in 

November. These storms are usually the most severe in Bangladesh. The 

November storm of 1970 is a classic example of the devastating power of such 

cyclones. A storm surge of 15 m was associated with this cyclone which drowned 

more than 500,000 people in coastal areas and destroyed over 400,000 hectares of 

harvestable rice crop which was inundated with salt water (Bryant, 1991).

During the winter season Bangladesh receives maximum sunshine because 

o f clear skies. Rainfall is very scant and is not more than 4% of the annual rainfall. 

In the low-lying areas, the harvest of the aman rice crop continues into November 

because it takes more time for the paddy fields to dry. The Boro rice crop season 

starts in December in general, but in relatively higher lands it starts in November 

because of the early drying of farm lands. The Boro rice crop in Bangladesh is 

mostly irrigated. Thus, the effects of climatic variability on boro rice crop is less 

than the aiis and aman rice crops.

4.2. Soils

In Bangladesh rice cultivation does not always follow soil type. Population 

pressure has forced Bangladeshi farmers to practice rice farming almost all over
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the country (Islam, 1965). Exceptions are the eastern hills and the southwestern 

mangrove forests which are also known as the Khulna Sundarbans or the 

Sundarbans. Although rice cultivation is widespread all over Bangladesh, the 

important role of soil type for rice yields is undeniable. The United Nations 

Development Program (UNDP) and Food and Agricultural Organization (FAQ) 

proposed a soil classification for Bangladesh in 1971 (Rashid, 1977). They 

classified the soils of Bangladesh in 20 categories.

Four soil types have been used in this study as inputs to the CERES-Rice 

model. These soil types include grey flood plain soil, non-calcareous dark-grey 

flood plain soil, non-calcareous alluvium, and grey terrace soil. Soils of Dhaka, 

Dinajpur, Khulna, Rangpur, Satkhira, Chandpur, and Feni have been identified as 

grey flood plain soils in this study. Rashid (1977) noted that this type of soil is 

agriculturally very productive. Two weeks of submergence makes the topsoil 

near- neutral and becomes medium to strongly acid during drying (Rashid, 1977). 

On the other hand, soils o f Comilla, Jessore, Faridpur, and Mymensingh have been 

identified as non-calcareous dark-grey flood plain soils. This type of soil is also 

becomes near-neutral when it is submerged for two weeks and becomes acid 

during dry conditions (Rashid, 1977). He also suggested that it is sticky when wet 

and crack widely under dry conditions. In addition, soils of Barisal, Maijdi Court, 

and Ishwardi are classified as non-calcareous alluvium and of Sylhet and Bogra are 

classified as grey terrace soils. Rashid (1977) noted that non-calcareous alluvium
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is silty or sandy and neutral to alkaline. Moreover, it suffers from poor 

permeability. Grey terrace soil is also slightly to strongly acid (Rashid, 1977). 

However, topsoil becomes near-neutral after near two weeks of continuous 

submergence. Since this study primarily focuses on precipitation variability, water 

availability, and yield, a detailed discussion on these soil types and their detailed 

physio-chemical characteristics is not provided in this dissertation.
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CHAPTERS

THE CERES-Rice MODEL PREPARATION FOR 

BANGLADESH APPLICATION

5.1. Scenario building, selection of the study period, and weather data

Scenarios can be constructed in various ways. This study uses an analogue 

approach to determine the impacts of the monsoonal rainfall variations on rainfed 

rice productivity. This approach has been successfully applied by several authors 

{cf., Easterling et al., 1993). It is important to note that climate scenarios are not 

predictions of future climate. However, these scenarios are internally consistent 

and depict a potentially plausible future climate which would allow us to estimate 

potential impacts of climate change on the human society (Wigley et al., 1986). 

This assessment is also applicable to the scenarios of the current study. The 

present study uses daily weather data from 1975 through 1987. Thus, the actual 

monsoonal conditions for the specified period will be used as scenarios. This 

period is marked by significant inter- and intra-aimual variations in the monsoonal 

rainfall {cf., Krishnamurti et a i, 1989, Matsumoto, 1992; and Shukla, 1989).

Matsumoto’s (1992) analysis shows that Bangladesh recorded up to +40% 

and -20% above and below normal rainfall, respectively, during the monsoon 

seasons of 1975 through 1987. Ahmad and Karmakar (1993) reported remarkable 

inter-annual variations in arrival and departure dates o f the monsoon in 

Bangladesh. In addition, they found that monsoon arrival and departure dates
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fluctuated nearly 2 weeks for various regions of Bangladesh during 1975-1987. 

Therefore, selection o f this period will not only serve the purpose of this study but 

also presents a ‘sample’ segment of time-series representing long-term monsoonal 

variations.

First, the model is calibrated and then applied the CERES-Rice model for 

16 stations representing major rice growing regions to determine baseline 

estimates. Subsequently, the model was run for the period 1975 through 1987 to 

identify impacts of intra-annual variations of precipitation on the rice plant growth 

and the final yield. The CERES-Rice model allows for an examination of the 

impacts of unusual monsoonal weather conditions on the following processes 

which include, among others, plant growth, phasic and morphological development 

of plants, and soil water balance. Outputs of the model include yield, above

ground biomass, dates of phasic development changes, soil water balance 

components, and an index of water stress. Subsequently, values of the

precipitation and water stress parameters were correlated to corresponding yield 

estimates to determine the strength of the relationship between rice productivity 

and precipitation.

To apply the model, daily surface weather data for Bangladesh including 

daily maximum and minimum temperature and daily precipitation for the period of 

1975 through 1987 for 16 stations were obtained from the Bangladesh 

Meteorological Department (BMD). A survey o f the temperature and
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precipitation data set shows that it contains missing data. It is important to note 

that, in most cases, missing data points are located in the non-monsoon months 

and the number of missing data points for each station is very small. However, the 

model requires a complete data set for the whole year even if there are no missing 

data for the growing season. As a result, this study adopted separate methods to 

estimate missing daily maximum and minimum temperature and precipitation data 

(Legates, 1998).

5.1.1. Estimation of missing precipitation data. To estimate missing 

precipitation data, daily average precipitation was first calculated for each of the 

16 stations based on the available data. Subsequently, the correlation between 

each station and the 15 other stations were calculated. At this stage, to estimate 

missing values for a particular station, the station with which this particular 

station’s (where precipitation data is missing) precipitation is highest correlated 

was identified. A ratio of average daily precipitation for these two stations then 

was multiplied by the recorded precipitation of the highest correlated station to 

estimate the missing value. This estimation method is similar to a double mass 

analysis (Linsley et a i, 1975).

P(B„t) =  (P(Bmc,n) /  P(Am«m )) * ?(A) (9)

where P(B«J is estimated daily precipitation for missing data of station B, P(Amcn) 

is mean daily precipitation for station A, P(Bmcan) is mean daily precipitation for 

station B, and P(A) is observed precipitation for station A.
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5.1.2. Estimation of missing daily maximum and minimum 

temperatures. Estimates of temperature is slightly different compared to the 

method used to obtain daily precipitation estimates for missing data. Daily average 

maximum temperature for each of the 16 stations was computed from available 

data and the correlations between each station and 15 other stations were 

calculated. To estimate missing values for a particular station, the station with 

which this particular station’s (where daily maximum temperature data is missing) 

maximum temperature is most highly correlated was identified. Finally, the 

estimate was obtained from

TCBcst) = T(A) + (T(Bm..n) -  T(Am«n)) ( 10)

where T(B«t) is estimated daily maximum temperature for a missing data point, 

and T(Amcan) and T(Bmcan) is average daily maximum temperature for station A and 

B, respectively. This method was also applied to estimate missing daily minimum 

temperature.

5.1.3. Estimation of daily solar radiation data. The BMD supplied daily 

solar radiation for seven stations from 1984 through 1990. A survey o f this data 

shows that the data quality is extremely poor and missing data points are 

widespread. However, many of the solar radiation estimation methods are
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temperature-based and region specific {cf.. Hook and McClendon, 1992; Bindi and 

Miglietta, 1991; Hodges et a i, 1985). To fulfill the model input data requirement. 

Black’s (1956) method was modified (Legates, 1998) to estimate solar radiation 

from the daily cloud cover data of 16 stations. This modified method

R, = R,o * .66667 * (.803 - .00340C - .00004580^) + .33333 * ELo (11)

where, R, is actual radiation at the earth’s surface, Rso is radiation at the top of the 

earth’s atmosphere, and C is cloud cover (percent). The .66667 and .33333 are 

direct and diffused beam radiation during summer monsoon months, respectively. 

These two terms have been added from Stanhill (1966) and resulted from earth-sun 

relationship during the summer months. It is important to note that cloud cover 

data were obtained from the BMD and that those data contained no missing 

observation.

5.1.4. Model validation of da ta  estimations procedures. A formal 

model validation procedure was not applied to determine the accuracy of these 

methods for a number of reasons. The volume of the missing data for growing 

season for each station for the time series is small. On the average 3.7% data is 

missing for each station except for Dinajpur (46% missing). This station reports 

unavailability o f data from 1975 through 1980. However, its data record is 

complete from 1981 through 1987. In addition, some of the missing data are
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located in the non-growing season months, and the model does not use non- 

monsoonal and non-growing season meteorological data for crop growth 

simulation. As a result, the impacts of these estimated data are minimal on the 

model simulated yield predictions. Furthermore, it was not possible to determine 

directly the accuracy of estimated solar radiation data due to the absence of 

reliably measured data. However, in a following section model’s yield estimates 

are evaluated satisfactory by comparing modeled and reported yield. The modeled 

yield also demonstrates that the accuracy of estimated meteorological variables is 

acceptable.

5.2. Soils, agronomic, and management data

Soils data have been collected from the Bangladesh Agricultural Research 

Council (BARG) (Hussain, 1997) and Hussain (1995). Agronomic and 

management data also have been collected from the BARG (Hussain, 1997). Table 

5.1 presents the agronomic and management data that were used as inputs during 

this study.

Planting dates relative to the temporal distribution of monsoonal rainfall 

can significantly influence the final rice yield. This distribution not only affects the 

availability of moisture from the monsoon rain but also the solar radiation and dry 

weather required during maturing and harvesting stage for optimum yield. It is 

important to note that the BRRI suggests that farmers transplant BRI 1 rainfed
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Table 5.1. Agronomie and management parameter input data for the study (after 
Hussain, 1997).

Agronomic and management parameter Input data
Transplanting date 06/01, 06/15, 07/01, 07/15, 08/01, 

08/07, 08/15, 08/23

Row spacing 20 cm
Number of plants per hill 6
Number of plants at emergence 44 m'^
Transplanting age 30 days
Base temperature to estimate 
phenological phases

9°C

Floodwater depth 15 cm
Planting depth 6 cm
Planting method transplanted

Fertilizer (N) application:

15 days after transplanting application depth: 15 cm 
application amount: 25 kg ha'*

25 days after transplanting application depth: 15 cm 
application amount: 30 kg ha'*

50 days after transplanting application depth: 15 cm 
application amount: 25 kg ha'*

aman rice between July 15 and August 15 (BRRI, 1995) for attaining an optimum 

yield. Six additional transplanting dates to identify optimum planting dates were 

incorporated in this study (Table 5.1). Initial model runs showed that yield 

decreases rapidly if the transplanting date is after July 15. To further monitor this 

decrease temporal resolution was increased for transplanting dates during the
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month of August.

5.3. The CERES-Rice model application and evaluation of its performance

This model has been previously successfully validated by Li-Ling (1987) 

and Jintrawet (1991). Recently Timsina et al. (1998) also evaluated the 

performance of the model by applying it to a Rice-Wheat sequence. The 

performance of the model is satisfactory. They collected experimental data from 

the field for BRI I and BRI4 aman rice grown under irrigated and rainfed 

conditions and under various levels of nitrogen application. These data were 

compared with the modeled yield for 1994 at Nashipur (25°48'N and 88°4'E) site 

in Bangladesh. Timsina et al. (1998) found that the root mean squared error 

(RMSE) between simulated and observed yield was 1279.8 kg ha'* and the RMSE 

between simulated and observed number of days to flowering and to maturity were 

4.3 and 2.3 days, respectively. They noted that some o f the overestimation of 

simulated yield was due to the model’s inability to incorporate insect damage and 

lodging as a result of high nitrogen (N) rates.

To evaluate the CERES-Rice model calibration and performance for the 

present study, it was applied to Joydebpur (24° N and 90°26'E), Bangladesh for 

the period 1975 through 1987. This model was run for eight selected transplanting 

dates and under a specified set of management conditions (Table 5.1). For the 

evaluation, yields were compared from a July 15 transplanting date. However,
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whenever available, recorded yield estimates from other comparable dates were 

also presented against simulated yield.

A primary reason for selecting this site is the availability of observed yield 

data. It is also important to note that the reported results of the field experiments 

that have been used to evaluate model performance are not completely comparable 

to the experiments conducted here. For example, in some cases transplanting 

dates are not exactly the same for field and model experiments, nor were fertilizer 

treatments the same in most cases. However, reported yields from various 

experiments were collected carefully so that they can be satisfactorily comparable 

to experiments performed here. For example, transplanting dates and management 

practices for the observed yield were required to be comparable to this study. Due 

to the unavailability of totally comparable experiments for all applications, 

however, standard statistical methods for model evaluation were not used in this 

analysis. Rather a qualitative evaluation is presented (Table 5.2). It is important 

to note that applications of this type are common in the scientific literature {cf., 

Easterling et a i, 1993; Mahmood and Hayes, 1995; Mahmood, 1997; and 

Mahmood, 1998).

The comparative analysis of simulated and observed yields show close 

agreements in most cases (Table 5.2). Discrepancies are caused by differences in 

model and field experimental set up and actual field conditions. It is also important 

to note that under favorable weather and management conditions farmers would
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Table 5.2. Comparison of simulated and observed yield.

Simulated Yield (t ha'') Observed Yield (t ha'')
07/15/1987: 3.7 3.8-4.2 (BRRI, 1990); nitrogen (N) 

applications experiment.

07/15/1986: 5.5 3.6-3.3 (BRRI, 1988); N application 
experiment.

06/15/1986: 7.3 6.7 (BRRI, 1988); transplanting date 
experiment.

08/01/1986: 2.6 2.94 (BRRI, 1988); transplanting date: 
07/25/1986.

08/07/1986: 3.8 3.62 (BRRI, 1988); transplanting date: 
08/10/1986.

07/15/1985: 3.4 3.4 (BRRI, 1987); N application 
experiment.

3.8 (BRRI, 1987); N application 
experiment.

08/01/1985: 1.5 4.25 (BRRI, 1987); transplanting date 
experiment.

08/15/1985: 1.3 3.8 (BRRI, 1987); transplanting date 
experiment.

4.8 (BRRI, 1987); transplanting date 
experiment.

07/15/83: 5.3 4.9—4.0 (BRRI, 1985c); fertilizer 
application experiment.

07/01/81: 4.7 3.8 (BRRI, 1985a); transplanting date: 
06/30/81; seedling age 20.
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attain yields up to 5.5-6.5 t ha'‘ (BRRI, 1995). Thus, in some cases, lower 

modeled yields (for the July 15 transplanting date) are the result of unfavorable 

weather conditions. For example, June and the first part of July were unusually 

dry months in 1987 (Krishnamurti et a i, 1989). As result, the model simulated 

lower yields (3.7 t ha '). Overall, based on close agreements between observed 

and simulated yields, it is possible to conclude that the modeled yield estimates are 

satisfactory.

Crop growth and phenology partly determine the availability of soil water 

and exposure to stressful conditions. Thus, evaluation of the model-estimated 

number of days to reach various growth stages is essential. Unfortunately, field 

experiments exactly matching these experiments conducted by running the 

CERES-Rice model are unavailable. However, performance of the CERES-Rice 

model is shown by presenting and analyzing data from comparable field 

experiments and modeled estimates (Table 5.3). To achieve this goal the results 

were compared from experiments at Nashipur (25°48'N and 88°4'E) conducted by 

Timsina et al. (1998) and model runs for Joydebpur (24° N and 90°26'E). It is 

important to note that the thermal environment largely determines phenological 

changes {cf.. De Datta, 1981; Yoshida, 1981) and that these two stations 

experience quite similar seasonal temperature regimes. This similarity is shown 

(Figures 5.1a-c) using temperature data from Dhaka (23°46'N and 90°23'E) and 

Dinajpur (25°39''N and 88°41'E). These two stations, Dhaka and Dinajpur, are
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only a few miles from Joydebpur and Nashipur, respectively. Table 5.3 presents 

the number of days to reach flowering/heading and physiological maturity stages as 

observed in the field and by the model. During both the field and model 

experiments, B R ll was transplanted on July 15. Applications o f N for field and 

model experiments are 90 and 80 kg ha '\ Field data are for 1994 while modeled 

estimates are for 1975 through 1987. The purpose of presenting modeled

estimates for 1975 through 1987 is to show that the model estimates are 

consistently reliable, as the seasonal thermal environment during the monsoon 

season does not fluctuate noticeably in Bangladesh at these stations.

It is clear that the model estimates are satisfactorily in agreement with the 

observed days to reach two phenological stages. The small disagreements are 

related to the fact that the observed and modeled values are not from the exactly 

similar thermal weather conditions, and the measurement and model runs were 

conducted over different years. In addition, the Nashipur experiment reports that 

the higher N applications result in a higher number of days to reach flowering and 

maturity stage (Timsina et al., 1998). I have already noted that seasonal total 

fertilizer application in Nashipur is higher compared to the modeled experiments. 

Thus, the discrepancies between observed and modeled days to reach to 

flowering/heading and maturity also may have resulted from the different amount 

o f N application during the growing season.
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Table 5 .3. Observed (Nashipur) and modeled (Joydebpur) lengths o f days to reach 
flowering/heading and physiological maturity stages after transplanting.

Observed days to 
reach flowering

Modeled days to 
reach flowering

Observed days to 
reach maturity

Modeled days to 
reach maturity

I
Year 1994; 97 Year 1975: 93 Year 1994: 128 Year 1975: 126

1976: 92 1976:124
1977:91 1977:125
1978:90 1978: 121
1979: 90 1979:122
1980;90 1980:124
1981: 89 1981:121
1982:90 1982: 122
1983:89 1983:121
1984:90 1984:121
1985:89 1985:121
1986:90 1986:121
1987: 88 1987:119

A comparison of modeled and observed harvest index was also conducted 

for comparable yields from Nashipur and Joydebpur, respectively. The harvest 

index can be defined as ratio of grain to straw {cf., Murata and Matsushima, 1975; 

De Datta, 1981; Yoshida, 1981). High ratio indicates a more balanced growth. 

The harvest index is approximately 0.5 for short improved varieties and 0.3 for tall 

traditional varieties (Yoshida, 1981). The Nashipur field experiment in 1994 and 

Joydebpur model run for 1987 records 4.1 and 3.7 t ha'' yields (July 15 is the 

transplanting date in both cases), respectively. Harvest Indices for Nashipur and 

Joydebpur experiments are 0.35 and 0.31, respectively. Thus, it appears, again, 

that the model performance is satisfactory.
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Water stress can significantly affect rice plant growth and yield. As shown 

in Chapter 3, the CERES-Rice model contains a detailed scheme for soil water 

balance calculation. In this scheme, daily, phenological, and seasonal 

évapotranspiration estimates play an important role in determining water stress and 

its impacts on the plant growth and yield. Thus, it is important that the model is 

calculating évapotranspiration correctly. Evapotranspiration data from the rice 

fields in Bangladesh are unavailable. However, monthly total evaporation data for 

Joydebpur for the period of 1978 through 1987, except 1986, has been reported by 

the BRRJ. After conducting an international level survey, Tomar and O’Tool 

(1979) determined a coefficient of 1.2 which can be used to  convert evaporation to 

évapotranspiration (ET = 1.2 x E) for lowland rice. Monthly pan evaporation 

reported by BRRJ was converted by using this method and present them in the 

form of growing season total (Table 5.4). Recorded evaporation data were 

summed for the months of July, August, September, and October for the time 

series and converted the grand total to seasonal évapotranspiration. It is important 

to note that evaporation data for 7 out of 9 years have been extracted from 

published figures. Model estimated growing season total évapotranspiration for a 

July 1 rice transplanting date to match the time period o f  recorded evaporation 

were subtracted. The model estimated length of growing season for July 1 

transplanting date ranges from 117 days to 123 days. In other words, the rice crop 

matures between October 25“* to October 3T‘. Estimates for average daily
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évapotranspiration for the growing period for observed and modeled seasonal data 

also were computed (Table 5.4).

Table 5.4. Model estimated and observed évapotranspiration and pan evaporation 
(Observed ET estimate = pan evaporation x 1.2).

Year Model estimated 
seasonal total ET 
(daily average) 

in mm

Observed seasonal 
total ET (daily 
average) 

in mm

Seasonal total pan 
evporation (daily 
average)

In mm
1978 726 811 676

(5.95) (6.59) (5.54) 
(BRRI, 1981)

1979 803 732 610^
(6.63) (5 95) 04 95)

(BRRI, 1982)
1980 885 798 665^

(7.19) (6.48) (5.40)
(BRRI, 1984)

1981 744 635 529
(6.20) (5 16) (4.30)

(BRRI, 1985a)
1982 789 768 640"

(6.52) (6 24) (5.20) 
(BRRI, 1985b)

1983 789 732 610"
(6.52) (5 95) (4 95)

(BRRI, 1985c)
1984 707 690 575"

(5.84) (5.60) (4.63) 
(BRRI, 1985d)

1985 786 660 550"
(6.49) (5 36) (4 47)

(BRRI, 1987)
1987 832 684 570"

(7.11) (5 56) (4 63)
(BRRI, 1990)

f  = evaporation data collected from a figure
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Table 5.5. Statistics for modeled and observed évapotranspiration.

Statistic Observed Simulated
Daily mean, mm 5.87 6.48
Standard deviation (daily ET) , mm 0.41 0.49
Mean seasonal total, mm 723 784
Standard deviation (seasonal ET), mm 61.11 54.55
RMSE (daily ET), mm 0.85
RMSE (seasonal total), mm 90

Mean, standard deviation, and RMSE for observed and modeled ET are 

presented in Table 5.5. These statistics show that agreement between modeled and 

observed data are quite satisfactory. Legates and McCabe (1999) have evaluated 

ET estimates by a number o f methods. A survey of ET estimates by this study and 

Legates and McCabe’s (1999) study also show that the ET estimates o f this study 

are satisfactory.

5.4. Summary

In short, weather and soils and agronomic input data for the model has 

been obtained from the Bangladesh Meteorological Department (BMD) and the 

Bangladesh Agricultural Research Council (BARC). Missing precipitation and 

maximum and minimum temperature data were estimated to complete these data 

sets. Solar radiation data has been estimated from the observed cloud cover data, 

which were also obtained from the BMD. After preparation o f  input data set, the 

CERES-Rice model was run for Joydebpur, Dhaka from 1975 through 1987.
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Subsequently, the modeled yields, ET, phenology, and harvest index estimates 

were compared and evaluated with observed data. It appears that the model 

estimates are satisfactory. In the context of satisfactory model estimation of yield 

and yield related growth parameters, baseline yields were estimated for 16 stations. 

These estimates and accompanying analysis are presented in the following chapter.

77



CHAPTER 6

THE CERES-Rice MODEL APPLICATION TO BANGLADESH FOR 

BASELINE YIELD ESTIMATES

6.1. Transplanting date and yield

For baseline estimates, daily average precipitation, daily average maximum 

and minimum temperature, and daily average solar radiation were calculated for all 

16 station from 1975 through 1987 which are distributed over the major rice 

growing regions in Bangladesh. Subsequently the model was run for each of these 

stations to determine baseline yields. These runs were conducted for 8 different 

transplanting dates (see Table 6.1) to identify suitable date(s) to attain optimum 

yield.

From Table 6.1 it is clear that Dinajpur and Sylhet report the highest (8413 

kg ha'^) and the lowest yield (5374 kg ha'^), respectively, if farmers transplant rice 

on the prepared field on June 1. Jessore, Khulna, Faridpur, Maijdi court, Satkhira, 

Barisal,and Dinajpur report yields over 8000 kg ha '\ while the rest of the stations 

except Sylhet, report above 7000 kg ha'. These estimates are quite high and 

related to the transplanting date. This is further illustrated later in the present 

chapter. Khulna and Sylhet report the highest (8131 kg ha ') and the lowest yield 

(5497 kg ha '), respectively, for the June 15 transplanting date. Under the June 15 

transplanting date Khulna, Comilla, Satkhira, and Dinajpur estimates yields over 

8000 kg ha ' while ten other stations estimate yields over 7000 kg ha''. Barisal and
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Table 6.1. Baseline yield estimates (kg ha' ) for eight transplanting dates for 16 
stations.

Station 06/01 06/15 07/01 07/15 08/01 08/07 08/15 08/23
Dhaka 7168 6932 6741 6335 3818 2752 1876 1312
Rangpur 7695 7556 6960 6700 3708 2319 1586 1465
Jessore 8045 7854 7688 6221 1988 1940 1553 1318
Khulna 8271 8131 7479 6640 3825 2462 1835 1451
Chand-
pur

7910 7595 7068 5776 2086 1993 1491 1377

Comilla 7904 8113 7605 5600 1969 2099 1434 1329
Faridpur 8144 7885 7391 6312 2600 2316 1900 1431
Mymen-
singh

7415 7381 7007 5020 2000 1686 1380 1299

Maijdi
Court

8168 7262 6579 6168 3150 2075 1403 1256

Feni 7336 7192 6679 6364 3586 2319 1664 1340
Sylhet 5374 5497 5357 5737 3831 2755 1553 1339
Satkhira 8209 8107 7454 6839 3741 2421 1982 1452
Barisal 8396 7841 7350 7075 4409 2932 1698 1453
Bogra 7600 7319 7164 5725 2148 1552 1352 1262
Dinajpur 8413 8067 7506 5993 2759 1851 1556 1531
Ishwardi 7917 7760 7227 4797 1581 1594 1324 1269

Ishwardi record the highest (7075 kg ha*‘) and the lowest yield (4797 kg ha'*) for 

the July 15 transplanting date, which marks the beginning of the BRRI 

recommended transplanting period. It is important to note that only Barisal 

reports over 7000 kg ha * yield for this date. On the other hand, 7 stations 

estimated an yield below 6000 kg ha-1. Satkhira and Ishwardi report the highest 

(1982 kg ha'*) and the lowest yields (1324 kg ka'*) for the August 15 transplanting 

date, which marks the end o f the BRRI recommended transplanting period for 

BRI 1 aman rice. These estimates also show that the range of yield (the highest 

and the lowest) for early transplanting is greater compared to the late transplanting
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dates. Stations located west o f 90°E benefit most if farmers transplant rice in June 

and the early part of July (Table 6.1). On the other hand, stations east of 90°E 

benefit most if farmers transplant rice during the early part of August. Relatively 

early departure of monsoon over the north-western and west-central part of 

Bangladesh results in early occurrence of moisture stress (Figures 6.1a, b). This 

causes the relatively higher yield losses in the northwestern and west-central 

Bangladesh. The monsoon departs a few days later over the eastern section of 

Bangladesh (Figure 6.l.b). Rice growing regions benefit from this extra moisture 

which helps to reduce water stress and results in relatively higher yields when 

farmers transplant rice during the first two weeks of August. In addition, early 

transplanting in June allows rice plants to grow under no or relatively very low 

moisture stress conditions in the northwestern and west-central Bangladesh during 

flowering/heading and maturing stage. These conditions allows to attain generally 

higher yields in these regions.

Yields also decline under average climatic condition as transplanting dates 

progress well in to the monsoon (Table 6.1). The BRRI also reports such a 

reduction from their field experiments (BRRI, 1988). This reduction in yield is 

significant if farmers transplant rice on July 15 instead o f June I . Furthermore, 

yield reduction is highly noticeable if farmers transplant rice on August 15 instead 

of July 15 (Figures 6.2a-e) as transplanting progresses from early June to late 

August for Dhaka, Jessore, Dinajpur, Sylhet, and Chandpur. As shown previously,
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each of these stations are located in different precipitation regimes (Figure 4.4).

Table 6.2 presents yield losses due to late transplanting under mean 

climatic conditions. Rice yield losses due to July 15 transplanting ranges from 

11.6% to 39.40% for the 16 regions while average yield loss is 21%. These 

estimates are derived by comparing June 1 and July 15 transplanting date yields. It 

is also found that rice yield loss values range from 69% to 77% if farmers 

transplant rice on August 15 (base yield for July 15 transplanting date). These 

estimates of crop loss also agree with the previous observation which stated that 

the range of yield estimates is greater for early transplanting dates compared to the 

late(BRRI, 1988).

6.2. Intra-seasonal rainfall variability and its role in baseline yield estimates

To determine the causes of yield loss due to transplanting date selection 

and to identify role o f intra-seasonal precipitation variability, a set o f analyses were 

conducted. These include (1) the identification of the relationship between yields 

for various transplanting dates and seasonal daily rainfall variability, (2) height of 

the largest rainfall sequence, (3) height of the second largest rainfall sequence, (4) 

timing of the largest rainfall sequence, (5) timing of the second largest rainfall 

sequence, and (6) time distance between these two peaks. In this study, standard 

deviation has been used as a measure of rainfall variability, which plays important 

role in seasonal distribution of soil water and thus plant growth.
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Table 6.2. Crop losses resulted from transplanting date selection.

Station Yield loss (%) due to 
07/15 transplanting (base 
yield for transplanting 
date: 06/01)

Yield loss (%) due to 
08/15 transplanting (base 
yield for transplanting 
date: 07/15)

Dhaka 11.63 70.38
Rangpur 12.94 76.32
Jessore 22.67 75.03
Khulna 19.71 72.36
Chandpur 26.97 74.18
Comilla 29.14 74.39
Faridpur 22.49 69.89
Mymensingh 32.30 72.50
Maijdi Court 24.48 77.25
Feni 13.24 73.85
Sylhet 6.75 (gain) 72.93
Satkhira 16.68 71.01
Barisal 15.73 76.00
Bogra 24.67 76.38
Oinajpur 28.76 74.03
Ishwardi 39.40 72.39

First and second largest rainfall sequence is the highest and the second 

highest peak rainfall, respectively, during a monsoon season. Each peak is defined 

by days with no rainfall at the both ends. For example, if one assumes a sequence 

of rainy and dry days as follows; 3, 2, 0, 13, 40, 80, 35, 25, 0, 1 mm, then the peak 

is defined by the two zeroes at the two ends of this sequence o f rainfall, which also 

contain the seasonal highest one day rainfall. Thus, the height o f the peak would 

be: 13 + 40 + 80 + 35 + 25 = 193 mm. If records show that there is no dry day, 

then the two lowest rainfall days at the both ends will be the start and end dates of 

a peak rainfall. For example, if one assume a sequence of rainy days as follows: 3,
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2, 1, 13, 40, 80, 35, 25, I, 4 mm, then the peak is defined by the I mm rain at the 

two ends of the sequence. Again, the height o f the peak would be; 13 + 40 + 80 + 

35 + 25 = 193 mm. The timing of the T* and 2"** peak is expressed in Julian days. 

The time delay between these two peaks is simply the number o f days between the 

occurrences of peak rainfall. These seasonal rainfall characteristics also influence 

soil water distribution and thus yield (Legates, 1999).

Correlation analyses were performed for (1) yield versus standard deviation 

of rainfall, (2) yield versus height of the T‘ peak, (3) yield versus height o f the 2"“* 

peak, (4) yield versus timing of the T‘ peak, (5) yield versus timing o f the 2"** peak, 

and (6) yield versus time delay between two peaks. Estimates from all 16 stations 

and for eight transplanting dates were used for this purpose. It was found that the 

correlation between yields and these parameters are generally very weak (Table 

6.3).

Table 6.3 also shows that for the July 1 transplanting date, r  ̂ values for 

yield versus precipitation standard deviation and yield versus timing o f the 2""* 

peak are 0.59 and 0.47, respectively. Further investigation indicated that these 

relationships are weak. It also needs to be noted that we cannot suggest that 

farmers change their farming practices based on only two near 0.5 revalues.
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Table 6.3. Correlation between yields for eight transplanting date and baseline 
seasonal precipitation parameters for all stations (n = 16).

Precipitation 
parameters 
vs. yield

06/01 06/15 07/01 07/15 08/01 08/07 08/15 08/23

Standard
deviation
(mm)

-.448 -.651 

r  = .42

-.769 

r  = .59

.120 .382 .193 -.174 -.258

Height of 
the 1*‘ peak 
(mm)

.024 -.245 -.306 .299 .266 .187 .022 -.081

Height of 
the 2"̂  peak 
(mm)

-.024 -.157 -.320 .360 .424 .178 .016 .007

Timing of 
the r ‘ peak 
(Julian day)

.130 .190 .269 -.083 -.088 -.184 -.292 .065

Timing of 
the 2"** peak 
(Julian day)

.506

r  = .26

626

r = 3 9

.686 

r  = .47

-.024 -.259 .345 .110 .275

Time delay 
between two 
peaks(day)

.442 .502 

r- = .25

.493 -.064 -.359 -.311 .161 .309

6.3. Soil water availability and yield

Soil is a medium from which plants extract most of its water for growth. 

The CERES-Rice model uses a soil water deficit factor, SW def (0-1), to determine 

the relationship between water availability and yield. Earlier, it has been shown, 

that SWdef is calculated from a ratio of potential root water uptake to potential 

transpiration. It is clear that a direct relationship between monsoon season 

precipitation and BRI 1 rice yield does not exist in Bangladesh. On the other hand.
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it is well-known that water availability plays a major role in rainfed lowland rice 

plant growth and yield {cf.. De Datta, 1981; Yoshida, 1981). Therefore, further 

investigation was conducted to identify the role of rain water in the form of soil 

water. To perform this analysis, the relationship between SWdef at the 

heading/flowering and grain-filling and maturing stage o f  rice plant growth and 

end-of-the season yield in Bangladesh was statistically quantified. It is important 

to note that rice plant and yield is most sensitive to water stress during the period a 

few days prior to heading/flowering to heading/flowering and during grain-filling 

and maturing stage (De Datta, 1981; Yoshida, 1981). Two sets of correlation 

estimates were computed to determine the relationship between water stress and 

yield. One set consists o f the correlation between baseline yields for the 16 

stations and S W def for flowering/heading (F/H) stages for the eight transplanting 

dates as well as the correlation between baseline yields for all stations and S W def 

for the grain-filling and maturing (GF&M) stage for the eight transplanting dates 

(Table 6.4). The other set consists of the correlation between baseline yield 

estimates for the eight transplanting dates for each station and S W def for the 

flowering/heading stage in addition to the correlation between baseline yield 

estimates for the eight transplanting dates for each station and S W def for the 

grain-filling and maturing stage (Table 6.5).

It is important to note that the analysis of variance (ANOVA) could be 

used to identify the interaction between water stress in both stages and yield.
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However, ANOVA requires that its independent variables be nominal variables. 

The water stress factor does not fulfill this requirement. As result, contingency 

tables were developed to compare means so that impacts of the combined effect 

of water stress could be determined (see Table 6.6a-d).

Table 6.4. Correlation between baseline yield estimates for the eight transplanting 
dates for 16 stations and S W d e f  estimates for flowering/heading and 
grain-filling and maturing stage.

Growth 
stage 
vs. yield

06/01 06/15 07/01 07/15 08/01 08/07 08/15 08/23

F/H X X X X -.956 -.950 -.851 -.308

GF&M X X .137 -.799 -710 -330 -.205 -.293

X = correlation could not be calculated because of no (‘0’) water stress

If farmers o f Bangladesh transplant rice on June 1 and June 15, and 

climatic condition is ‘normal’, then the plants will not experience any water stress 

during the flowering/heading and the grain-filling and maturing stage Table (6.4). 

For the July 1 transplanting date, rice plants do not experience any water stress 

during their flowering/heading while the grain-filling and maturing stage 

experience low water stress. Water stress is also absent during the 

flowering/heading stage for July 15 transplanting. However, water stress begins 

to appear noticeably at the grain-filling and maturing stage (Appendix A.I.) and 

thus starts to affect yield estimates. The correlation between water stress (shown 

by S W def)  and yield is much higher for the August 1 transplanting date and high
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water stress ( S W def approaching 1) reduces yield more noticeably. All of the 16 

stations experience high to severe water stress during the grain-filling and 

maturing stage (Appendix A.I.). Nevertheless, Table 6.4 shows a lower 

correlation between S W def at the maturing stage and yield, compared to between 

S W def at flowering/heading stage and yield for August 1 transplanting date. A 

number of relatively high and a number of relatively low water stress values exist 

during the flowering/heading stage and their associated low and high yields, 

respectively, resulted in a higher correlation. It is important to note that the crop 

loss for the August 1 transplanting date is the result o f combined water stress 

during the last two growth stages of rice plant life cycle.

As above, the correlation between yield and S W def for the 

flowering/heading stage was calculated for the August 7 and August 15 

transplanting dates. These values show that yields and S W def are negatively 

correlated. The cause is the same as discussed for the August 1 transplanting 

date. The correlation between yield and S W def for maturing stage is very low for 

August 8 and 15. In this case, the correlation values hide the fact that yields are 

consistently low and water stress is consistently high for the August 7 and August 

15 transplanting dates. Low correlation values for both growth stages for the 

August 23 transplanting can be explained similarly. It is interesting to note that 

water stress values for the flowering/heading stage are consistently lower 

compared to maturing stage for June, July, and up to mid-August transplanting
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dates with the exception o f August 23. This exception possibly resulted from low 

atmospheric moisture demand and extremely restricted physiological growth.

Water stress due to late transplanting and resultant yield loss can also be 

understand from example of Dhaka (Figure 6.3a-b). Compared to the July 15 

transplanting date (Figure 6.3a), the August 15 transplanting date (Figure 6.3b) 

resulted in sharp decline in daily transpiration before end of the vegetative phase 

and during the flowering/heading and maturing stage. This decline is caused by 

unavailability of soil water resulted from the low or no rainfall due to the 

departure of the monsoon. The sharp reduction in transpiration rate hampered 

rice plants’ physiological processes and resulted in low yield.

Correlation values (Table 6.5) do not show any particular regional pattern. 

However, it is clear that a negative high correlation exists between yield loss and 

water stress. In addition, the r  ̂values are also high. Thus, we can conclude that 

water stress plays a key role in determining BRI 1 rainfed transplanted aman rice. 

Figures 6.4a-j show this relationship between water stress during the 

flowering/heading and grain-filling and maturing stage and yield. During the 

monsoon season, it rains plentifully in Bangladesh and soil water availability is not 

limiting. As a result, intra-seasonal rainfall variability does not play a major role. 

However, by transplanting rice seedlings at the right time farmers can ensure an 

optimum yield. It is clear that water stress at the end o f the rice growing season 

due to late transplanting can significantly reduce yield. This is further illustrated
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a) Transplanting date: July 15 
(Yield: 6335 kg/ha)
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Figure 6.3a-b. Daily rainfall, soil evaporation, plant transpiration, and baseline 
yield estimates for Dhaka for two transplanting dates.
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in the following chapter.

As discussed above, contingency tables (Table 6.6a-d) o f yield estimates 

for 4 selected transplanting dates were created to demonstrate the combined 

impacts o f various levels of water stress on the yield during the flowering/heading 

and maturing stage. In these tables, high and low water stress occurrs when 

S W def ^ 0.6 and S W def < 0.6 , respectively. These definitions were developed 

through survey of yield and water stress relationship. It has been found that yield 

sharply declines when water stress is above 0.6 (cf. Figures 6.4a-j). Tables 6.6a-d 

shows that when water stress is low in both the flowering/heading and maturing 

stages, yield is high. Yield decreased (Table 6.6c) when water stress is reported 

for the maturing stage. Crop loss was severe when the model estimated higher 

water stress during the maturing stage (Table 6.6d). This severity of yield loss 

increases when both flowering/heading and maturing stage reports high water 

stress (Table 6.6d).
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Table 6.5. Correlation; yield vs. water stress for eight transplanting date and for 
16 stations.

Station Flowering/heading stage
00 (r=)

Maturing stage 
(0  ( / )

Dhaka -0.890 (0.79) -0.972 (0.94)

Rangpur -0.893 (0.80) -0.967 (0 93)

Jessore -0.977 (0 95) -0.986 (0.97)

BChulna -0.910 (0.82) -0.979 (0.96)

Chandpur -0.967 (0.93) -0.985 (0.97)

Comilla -0.963 (0.93) -0.984 (0.97)

Faridpur -0.958 (0.92) -0.989 (0.98)

Mymensingh -0.953 (0.91) -0.975 (0 95)

Maijdi Court -0.883 (0.78) -0.982 (0.96)

Feni -0.858 (0.74) -0.978 (0.96)

Sylhet -0.908 (0.82) -0.947 (0.90)

Satkhira -0.907 (0.82) -0.973 00 95)

Barisal -0.850 (0 72) -0.978 (0.96)

Bogra -0.960 (0.92) -0.984 (0.97)

Oinajpur -0.944 (0.89) -0.977 (0 95)

Iswardi -0.950 (0.90) -0.974 (0 95)
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Figure 6.4. Dhaka: baseline yield and water stress during the
flowering/heading (a), and the maturing stage (b).
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Figure 6.4. continued. Jessore; baseline yield and water stress during the
flowering/heading (c), and the maturing stage (d).
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Figure 6.4. continued. Dinajpur; baseline yield and water stress during the
flowering/heading (e), and the maturing stage (f).
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Figure 6.4. continued. Sylhet: baseline yield and water stress during the
flowering/heading (g), and the maturing stage (h).
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Table 6.6a. Baseline yield (kg ha'*) estimates for 16 stations for high and low water 
stress, categorized for stage 4 and stage 5 water stress 
conditions. Stage 4; Flowering/heading; Stage 5: Maturing.
Transplanting date; June I.

Stage 4: Low water stress Stage 4: High water stress
Stage 5: 
Low 
water 
stress

7168, 7695, 8045, 8271, 7910, 
7904, 8144, 7415, 8168, 7336, 
5374, 8209, 8396, 7600, 8413, 
7917.

Mean = 7748 kg ha'*

None

Stage 5: 
High 
water 
stress

None None

Table 6.6b. Baseline yield (kg ha'*) estimates for 16 stations for high and low water 
stress, categorized for stage 4 and stage 5 water stress 
conditions. Stage 4: Flowering/heading; Stage 5: Maturing.
Transplanting date: July 1.

Stage 4: Low water stress Stage 4: High water stress
Stage 5: 
Low 
water 
stress

6741, 6960, 7688, 7479, 7068, 
7605, 7391, 7007, 6579, 6679, 
5357, 7454, 7350, 7164, 7506, 
7227.

Mean = 7078 kg ha *

None

Stage 5: 
High 
water 
stress

None None
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Table 6.6c. Baseline yield (kg ha'^) estimates for 16 stations for high and low water 
stress, categorized for stage 4 and stage 5 water stress 
conditions. Stage 4: Flowering/heading; Stage 5; Maturing.
Transplanting date; July 15.

Stage 4: Low water stress Stage 4: High water stress
Stage 5: 
Low 
water 
stress

6335, 6700, 6221, 6640, 5776, 
5600, 6312, 5020, 6168, 6364, 
5737, 6839, 7075, 5725, 5993.

Mean = 6167 kg ha'*

None

Stage 5: 
High 
water 
stress

4797

Mean = 4797 kg ha * None

Table 6.6d. Baseline yield (kg ha'*) estimates for 16 stations for high and low water 
stress, categorized for stage 4 and stage 5 water stress 
conditions. Stage 4: Flowering/heading; Stage 5: Maturing.
Transplanting date: August 15.

Stage 4: Low water stress Stage 4: High water stress
Stage 5 : 
Low 
water 
stress

None None

Stage 5 : 
High 
water 
stress

2752, 2319, 2462, 2075, 2319, 
2755, 2421, 2932.

Mean = 2504 kg ha *

1940, 1993, 2099, 2316, 1686, 
1552, 1851, 1594.

Mean = 1879 kg ha'*
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6.4. Summary

The results presented in this chapter corroborate the findings of many other 

studies {cf., Jearakongman et al., 1995; Lilly and Fukai, 1994; Thangaraj et al., 

1990; Yambao and Ingram, 1988; and Gupta and Agarwal, 1989). Timsina et al. 

(1998) found in their field experiment that yield o f BRI 1 declines up to 49% under 

rainfed conditions compared to irrigated conditions due to water stress. In 

addition, Islam and Mondai (1992) suggested that monsoon season rice yield 

declines significantly in Bangladesh due to moisture stress during the flowering and 

maturing stage. Wonprasaid et al. (1996) reported physiological stress due to 

water deficit during grain-filling. Boonjung and Fukai (1996a, b) found from their 

field experiment that soil water deficit adversely effects growth, phenology, and 

final yield. They have noted that there was a 40% decrease in filled grains, and 

that grain mass was decreased by 20% due to the water stress. Wopereis et al. 

(1996) also reported from their field experiment that drought during the 

flowering/heading stage severely reduces yield. They found that number o f filled 

grains reduces significantly and this results in low yield.
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CHAPTER 7

TRANSPLANTING DATE, WATER STRESS, AND VULNERABILITY OF 

RICE PRODUCTIVITY IN BANGLADESH

7.1. Transplanting date, water stress, and yield

The role of water stress in predicting the final yield has become very clear 

from the analysis of baseline rice productivity estimates. As a result, further 

analyses have been conducted for all the stations and for the complete study period 

(1975-1987). Table 7.1 presents the correlation estimates between yield and water 

stress during the flowering/heading stage. The yield estimates o f Feni, Faridpur, 

Rangpur, Dinajpur, Rangpur, Mymensingh, Dhaka, and Dhaka, show the highest 

negative correlation with water stress during flowering/heading stage (4^ stage of 

growth in the model) for the transplanting dates of June 1, June 15, July I, July 15, 

August 1, August 7, August 15, and of August 23, respectively. In other words, 

yields in these eight regions are going to be the most affected due to water stress 

at the 4*̂  stage if farmers transplant rice on these respective dates. It is important 

to note that rice plants in Khulna and Maijdi Court and in Rangpur did not 

experience any water stress during the flower/heading stage when transplanted on 

June 1 and June 15, respectively. It has also been found that the yields of Barisal, 

Sylhet, Sylhet, Barisal, Mymensingh, Ishwardi, Bogra, and Ishwardi show the 

lowest correlation with water stress during the 4* stage o f  rice plant growth for
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Table 7.1. Correlation between yield and water stress during flowering/heading
stage under selected transplanting dates.

Station June 01 June 15 July 01 July 15
Dhaka -0.905 -0.900 -0.758 -0.872
Jessore -0.780 -0.811 -0.855 -0.917
Dinajpur -0.946 -0.781 -0.809 -0.942
Mymensingh -0.692 -0.674 -0.754 -0.939
Comilla -0.841 -0.911 -0.833 -0.895
Faridpur -0.726 -0.934 -0.867 -0.890
Barisal -0.109 -0.501 -0.919 -0.751
Maijdi Court — — -0.832 -0.807 -0.793
Ishwardi -0.866 -0.841 -0.681 -0.959
Bogra -0.913 -0.797 -0.881 -0.894
BChulna — — -0.920 -0.829 -0.854
Rangpur 0.334 ——— -0.929 -0.848
Satkhira -0.745 -0.912 -0.651 -0.931
Chandpur -0.854 -0.863 -0.802 -0.918
Feni -0.964 -0.901 -0.864 -0.870
Sylhet -0.580 -0.629 -0.482 -0.860

Station August 01 August 07 August 15 August 23
Dhaka -0.932 -0.887 -0.992 -0.974
Jessore -0.793 -0.958 -0.964 -0.890
Dinajpur -0.962 -0.982 -0.987 -0.926
Mymensingh -0.704 -0.984 -0.976 -0.580
Comilla -0.874 -0.857 -0.927 -0.828
Faridpur -0.860 -0.981 -0.927 -0.844
Barisal -0.971 -0.961 -0.893 -0.639
Maijdi Court -0.975 -0.969 -0.962 -0.952
Ishwardi -0.955 -0.733 -0.295 0
Bogra -0.948 -0.931 -0.031 -0.133
BChulna -0.940 -0.870 -0.864 -0.814
Rangpur -0.987 -0.952 -0.655 0.859
Satkhira -0.941 -0.781 -0.981 -0.937
Chandpur -0.963 -0.929 -0.911 -0.586
Feni -0.897 -0.913 -0.892 -0.941
Sylhet -0.949 -0.915 -0.874 -0.946
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the transplanting dates o f June 1, June 15, July 1, July 15, August 1, August 7, 

August 15, and of August 23, respectively. However, the highest and lowest 

correlations between water stress during the 4* growth stage and yield alone did 

not explained the reduction of yield. Rather it can be explained by analyzing the 

combined impacts of water stress at the flowering/heading and maturing stages of 

rice plant growth. This is illustrated later in this chapter. Nevertheless, these 

correlation values can be used as important indicators of water stress and yield 

relationships by crop planners and policy makers. Furthermore, Table 7.2 presents 

the correlation estimates between water stress during the maturing stage and yield. 

This table shows productivity estimates for Khulna, Chandpur, Bogra, Faridpur, 

Jessore, Satkhira, Dinajpur, and Dinajpur maintain the highest negative correlation 

with water stress during the maturing stage for the transplanting dates o f June 1, 

June 15, July 1, July 15, August I, August 7, August 15, and of August 23, 

respectively. The lowest correlation values for these dates do not explain yield 

variations despite significant productivity reduction with progression of 

transplanting dates toward the end of the monsoon season. The reasons for such 

low values were discussed in Chapter 6.

To illustrate the impacts o f the combined effect o f water stress during 

flowering/heading and maturing stage, contingency tables for 4 transplanting dates 

including the June 1, July I, July 15, and August 15, and 5 selected stations 

including Dhaka, Jessore, Dinajpur, Sylhet, and Chandpur were created that
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Table 7.2. Correlation between yield and water stress during maturing stage under
selected transplanting dates.

Station June 01 June 15 July 01 July 15
Dhaka -0.916 -0.390 -0.839 -0.855
Jessore -0.833 -0.855 -0.948 -0.894
Dinajpur -0.891 -0.901 -0.858 -0.875
Mymensingh -0.602 -0.685 -0.877 -0.784
Comilla -0.931 -0.739 -0.925 -0.667
Faridpur -0.773 -0.951 -0.805 -0.932
Barisal -0.074 -0.873 -0.862 -0.867
Maijdi Court -0.764 -0.847 -0.866 -0.908
Ishwardi -0.814 -0.369 -0.644 -0.644
Bogra -0.611 -0.824 -0.953 -0.728
Khulna -0.918 -0.902 -0.948 -0.881
Rangpur -0.134 -0.879 -0.811 -0.817
Satkhira -0.859 -0.793 -0.941 -0.815
Chandpur -0.930 -0.970 -0.951 -0.899
Feni -0.873 -0.861 -0.771 -0.843
Sylhet -0.533 -0.546 -0.780 -0.792

Station August 01 August 07 August 15 August 23
Dhaka -0.704 -0.703 -0.068 0.218
Jessore -0.856 -0.879 -0.199 0.080
Dinajpur -0.100 -0.731 -0.799 -0.814
Mymensingh -0.688 -0.465 -0.210 0.219
Comilla -0.514 -0.514 -0.082 0.490
Faridpur -0.502 -0.385 -0.081 -0.038
Barisal -0.485 0.240 0.460 -0.479
Maijdi Court -0.821 -0.475 -0.428 -0.177
Ishwardi -0.070 -0.277 -0.138 -0.066
Bogra -0.201 -0.353 -0.090 -0.268
Khulna -0.501 -0.721 -0.755 0.119
Rangpur -0.307 -0.039 -0.219 -0.088
Satkhira -0.460 -0.916 -0.605 -0.142
Chandpur -0.401 -0.517 0.131 0.401
Feni -0.732 -0.713 -0.646 -0.400
Sylhet -0.141 -0.057 -0.008 -0.055
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represent various precipitation regimes {cf., Manalo, 1976). Table 7.3a-d shows 

that, in Dhaka, water stress at growth stages 4 and 5 afifects rainfed rice crop 

productivity, and that this effect becomes acute if we shift the transplanting date 

from the early part o f the monsoon season to the late (see also Figures 7.1a-d and 

7.2a-d). Table 7.3a shows low water stress when the farmers of Dhaka, 

Bangladesh transplant rice on June 1 and this results in the highest average yield 

(7565 ka ha ') compared to other transplanting dates. However, if farmers shift 

the transplanting date on July 1, at least in one case, they experience pronounced 

water stress (Figure 7.2b). It is also found that for the July 1 transplanting date, 

the average yield declines compared to the June 1 transplanting date during low 

water stress conditions for both the flowering/heading stage and the maturing 

stage. This trend continues for the July 15 transplanting date (Table 7.3c). Hence, 

an increase in the degree of water stress plays an important role in this yield 

reduction trend. Furthermore, cases of yield obtained under low water stress also 

decrease up to the July 15 transplanting date. By August 15, high water stress 

appears during at least one growth stage. It is important to note that number of 

cases of high water stress-affected yields increase as we shift transplanting dates 

well into the monsoon. For the July 15 transplanting date, there is only one case of 

high water stress-affected yield. This water stress occurs at both the 

flowering/heading and the maturing stage. On the other hand, for the August 15 

transplanting date, there are 9 yield estimates which are affected by high water
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stress at both stages. In addition, yield reduction is very noticeable when water 

stress is high at both stages compared to one growth stage (Table 7.3a-d). The 

effect of water stress at stage 4 and stage 5 has on the yield is also illustrated in 

Appendix B for Jessore, Dinajpur, Sylhet, and Chandpur.

Figures 7.3 to 7.10 show that effect of water stress during the flowering/ 

heading and maturing stage on yield for these four regions. These figures also 

show that yield decreases as water stress increases during the stage 4 and 5 with 

progress of transplanting dates into the monsoon. Rainfall-wise relatively dry 

Jessore (Figure 7.3b), Dinajpur (Figure 7.5b), and Chandpur (7.9b) experience a 

few events of high water stress during stage 4 even for the July 1 transplanting 

date. High water stress is most pronounced for the July 15 and August 15 

transplanting dates during both stage 4 and 5 growth phases for these four regions 

(Figures 7.2c-d to 7. lOc-d).
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Table 7.3a. Yield (kg ha ') estimates for Dhaka (1975-87) for high and low water
stress. Transplanting date; Junel.

Stage 4: Low water stress Stage 4: High water stress
Stage 5: 
Low 
water 
stress

8160, 7177, 4434, 7271, 8389, 
8287, 8152, 8221, 7744, 6900, 
8010, 7764, 7384.

Mean = 7565

None

Stage 5: 
High 
water 
stress

None None

Table 7.3b. Yield (kg ha'') estimates for Dhaka (1975-87) for high and low water 
stress. Transplanting date: July 1.

Stage 4: Low water stress Stage 4: High water stress
Stage 5: 
Low 
water 
stress

7722, 5616, 6498, 6292, 7713, 
8271, 6622, 7461, 3555, 7154, 
7747, 7259.

Mean = 6826

None

Stage 5: 
High 
water 
stress

5661.

Mean = 5661
None
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Table 7.3c. Yield (kg ha'̂ ) estimates for Dhaka (1975-87) for high and low water
stress. Transplanting date: July 15.

Stage 4: Low water stress Stage 4: High water stress
Stage 5: 7508, 6828, 5219, 8109, 4446,
Low 7014, 6959, 6092.
water None
stress Mean = 6522.

Stage 5: 3439, 4976, 2483, 4123. 2237
High
water Mean= 3755 Mean = 2237
stress

Table 7.3d. Yield (kg ha‘‘) estimates for Dhaka (1975-87) for high and low water 
stress. Transplanting date: August 15.

Stage 4: Low water stress Stage 4: High water stress
Stage 5 : 1406,1419
Low
water None Mean = 1412
stress

Stage 5: 3576, 4854 2014, 1446, 1969, 1441, 1977,
High 1525, 1364, 1420, 1758
water Mean = 4215
stress Mean = 1657
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c)
Transplanting data; July 15
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Figure 7.2a-d. Dhaka; Water stress during the maturing stage and yield.
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Transplanting data : July 15
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Figure 7.3a-d. Jessore: Water stress during the flowering/heading stage and yield.
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Transplanting date: July 15
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Figure 7.4a-d. Jessore; Water stress during the maturing stage and yield.
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Figure 7.5a-d. Dinajpur; Water stress during the flowering/heading stage and yield.
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Figure 7.6a-d. Dinajpur: Water stress during the maturing stage and yield.
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Figure 7.7a-d. Sylhet: Water stress during the flowering/heading stage and yield.
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Figure 7.8a-d. Sylhet; Water stress during the maturing stage and yield.
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Tables B. 1-4 (Appendix B) suggest that the regional variations in yields 

are not very strikingly different in Bangladesh. In other words, a moderate region- 

to-region variation exists. For the June 1 transplanting date, the highest and the 

lowest yields under low water stress conditions during stages 4 and 5 range 

between 7694 to 6031 kg ha '\ Yield range is between 7694 to 7416 kg ha ' for 

Dhaka, Dinajpur, and Chandpur while Jessore and Sylhet fall in the lower end. For 

the July 15 and August 15 transplanting dates yields range between 6522 to 4718 

kg ha ' and between 4215 to 2576 kg ha'', respectively, for low water stress 

conditions during the flowering/heading and maturing stages. Moreover, under 

high water stress conditions at stages 4 and 5, yields range between 4564 to 2290, 

2237 to 1486, and 1265 to 1657 kg ha'' for the June 1, July 15, and the August 15 

transplanting dates, respectively. Dhaka consistently recorded relatively higher 

yields under combined low water stress conditions for transplanting dates shown in 

the Tables (Appendix B. 1-4). This occurs possibly due to the season-wide well 

distribution of rainfall and the absence of extreme weather conditions. The model- 

estimated yields for Jessore and Sylhet are frequently low compared to the yields 

for other stations. Smaller rainfall amount in Jessore results in such a low yield. 

On the other hand, excessive rainfall and low solar radiation and soil conditions 

possibly caused lower yields in Sylhet.
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7.2. Transplanting date and yield vulnerability

The coeflFcient o f variation (CV) has been calculated for 16 stations as a 

measure to estimate yield variability and vulnerability (Table 7.4). The higher and 

lower variability represents the higher and the lower vulnerability. All stations, 

except Mymensingh, show the lowest variability in yield for the June 1 

transplanting date. Rangpur, Rangpur, Dhaka, Sylhet, Ishwardi, Ishwardi, 

Rangpur, and Bogra show the lowest variabilities in yield for the June 1, June 15, 

July 1, July 15, August 1, August 7, August 15, and August 23 transplanting dates, 

respectively. On the other hand, Mymensingh, Mymensingh, Mymensingh, 

Chandpur, Maijdi Court, Jessore, Satkhira, and Feni show the highest variabilities 

in yield for the June 1, June 15, July 1, July 15, August 1, August 7, August 15, 

and August 23 transplanting dates, respectively. It is important to note that higher 

and lower CVs for various stations do not represent higher and lower yields. 

Rather it helps us to understand crop yield vulnerability of a particular region and 

allow crop planners to devise strategies to minimize crop and financial loss of 

individual farmers. From the table, that crop yield variability increases during the 

Bangladesh Rice Research Institute (BRRI) recommended optimum transplanting 

period which starts in July 15 and ends in August 15. Relatively, lower variability 

in the end and after the end of this period results from steady country-wide low 

yield.
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Table 7.4. Coefficient o f Variation (%) of yields for eight transplanting dates.

Station June 01 June 15 July 01 July 15
Dhaka 13.84 16.21 18.70 36.00
Rangpur 5.84 9.81 25.96 41.67
Jessore 20.03 31.83 46.59 57.50
Khulna 10.00 24.70 38.50 55.16
Chandpur 17.57 33.41 46.98 66.04
Comilla 29.93 42.97 47.48 56.04
Faridpur 14.65 31.80 45.70 53.92
Mymensingh 42.67 50.97 59.74 57.39
Maijdi Court 7.62 18.59 32.01 48.49
Feni 24.01 32.27 40.93 55.44
Sylhet 10.46 13.78 22.30 34.01
Satkhira 18.11 29.01 34.31 60.03
Barisal 5.90 11.77 39.04 45.87
Bogra 23.03 27.17 37.72 54.44
Dinajpur 23.58 27.54 41.13 57.10
Ishwardi 26.49 28.78 37.38 60.83

Station August 01 August 07 August 15 August 23
Dhaka 45.95 49.56 51.61 35.44
Rangpur 46.27 63.46 8.68 17.42
Jessore 52.28 72.69 58.05 42.80
Khulna 56.09 31.38 56.53 48.23
Chandpur 57.37 49.31 40.77 22.54
Comilla 50.60 54.63 50.23 40.20
Faridpur 53.66 60.68 41.42 27.81
Mymensingh 34.94 53.32 49.71 22.81
Maijdi Court 72.33 69.59 54.16 38.89
Feni 64.97 69.54 64.55 59.69
Sylhet 38.85 36.22 36.13 36.33
Satkhira 44.64 61.61 68.17 49.21
Barisal 51.96 46.48 23.59 21.68
Bogra 31.57 26.34 12.71 13.73
Dinajpur 39.55 43.69 42.47 32.05
Ishwardi 31.32 17.76 16.56 14.30
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Thus, it is clear from the discussions in Chapters 6 and 7 that early 

transplanting of aman rice is the key to success. It allows plants to obtain 

sufficient moisture from the soil during the flowering/heading and maturing stages 

which leads to a higher yield. As reported in the baseline estimates, yield sharply 

declines after the July 15. Therefore, wherever land is unoccupied by another 

crop, farmers should transplant rice plants during the early part o f the monsoon 

season. Early transplanting also results in less variability in yield which reduces 

crop vulnerability.
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CHAPTER 8

DECISION MAKING BY FARMERS UNDER VARIABLE WEATHER 

CONDITION IN BANGLADESH

Decision making and planning under uncertain weather conditions has 

always been a difficult task for farmers and policy makers. As a result, a large 

number o f methods have been developed to cope with uncertain environmental 

conditions and their impacts on agriculture {cf., Thornton and Wilkens, 1998; 

Davis et al., 1997; Muchow and Bellamy, 1991; Barry, 1984; and Eddy and 

Shanon, 1975). In addition, many of these methods are based on a Game 

Theoretic approach. These methods largely address the issues related to multiple- 

cropping agriculture where farmers can choose from a series o f crops depending 

on the weather of a particular area. Moreover, in some cases, these methods are 

suitable for capital-intensive farming {cf., Larson and Mapp, 1997; Teague et ai, 

1995). The land use and farming practices in Bangladesh during monsoon season 

are different from these situations. Agricultural activities are largely subsistence in 

nature and land use is predominantly under a monoculture category. In other 

words, farmers of Bangladesh cultivate rice under any type o f weather condition 

for their survival and their choices are restricted (Mapp, 1999). Moreover, 

applications of a variety of risk and vulnerability assessment techniques may be 

inappropriate (Mapp, 1999). The results of this study show that in a given year 

farmers would obtain higher yields if they transplanted rice during the early part of
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the monsoon season. However, inter-seasonal variations in the yields for all eight 

transplanting dates have been recorded.

Thus further assistance can be given to farmers in Bangladesh to estimate 

what would be the potential loss under a particular monsoon season. This would 

also allow farmers to re-allocate their resources for their most efScient use. In the 

context of the restricted choices available to the Bangladeshi farmers. Savage’s 

game theory-based method was modified (cf., liberty, 1985; Anderson etal., 1977; 

and Halter and Dean, 1971) to estimate the annual yield loss for a certain monsoon 

season. This method allows farmers to estimate the amount of aggregated 

potential loss that they may experience if they had known future monsoon season 

weather conditions. Savage’s method appears sufficiently cautious and 

conservative enough to fairly represent the mindset of a subsistence farmer.

The unreliability of long-lead forecast has already been noted at the very 

beginning of this dissertation. However, it is important to note in the past long- 

lead monsoon forecast were made by using the sea surface temperature (SST), the 

Southern Oscillation Index (SOI), Eurasian snowfall and snow cover, and various 

other parameters o f large-scale atmospheric circulation (Krishnamurti and Surgi, 

1987). Among these, SOI based forecasts show certain degree of promise 

(Morrissey, 1999). These forecasts largely predict the strength of the monsoon 

(below normal, above normal, normal seasonal rainfall). These forecasts can play 

an important role in farmers’ decision making since end-of-the growing season soil
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water availability largely determines yield. For this analysis, it has been assumed 

that each monsoon season to be a scenario (thus 13 scenarios) in which they may 

re-appear in the future. Thus, if farmers know the strength o f a future monsoon, 

the results would help them to know the potential loss that may occur. Moreover, 

this early estimation will help them to decide how they will invest their resources in 

the future.

The calculation procedure of the modified Savage’s method is straight

forward. Each yield estimate has been subtracted from the highest estimate for 

each transplanting date for each thirteen scenarios. Thus, potential loss estimates 

for each transplanting date were calculated as well as 104 potential yield loss 

estimates for each station. Yield loss estimates for eight transplanting dates for 

each scenario are added to calculate seasonal total potential yield loss. This is also 

known as total regret. Table 8.1 presents the estimates o f seasonal total regret for 

each year/scenario for all 16 stations. It shows that 1986 was a good year for 

farmers of Bangladesh. During this year, 11 of 16 stations recorded the lowest 

total regret while 5 stations recorded the second-lowest total regret. Eleven 

stations which record the lowest total regret are Dhaka, Jessore, Khulna, Comilla, 

Faridpur, Mymensingh, Maijdi Court, Satkhira, Bogra, Dinajpur, and Ishwardi. 

On the other hand, 1981 was not a good year for the farmers. During this year, 6, 

3 and 3 stations record the highest, the 2"“* highest, and the 3"* highest total regret, 

respectively. In other words, if a long-lead forecast resembles a scenario like
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1986, then farmers can be assured that they will get a good return and their 

investment will be assured. In addition, if a forecast resembles 1981, then farmers 

should start thinking about how they are going to plan for the next season and if 

possible, an individual farmer consider for an alternative investment activity.

For further analysis. Figures 8.1a-b have been prepared to present the 

highest and the lowest minimum regret value for each station. The Figure 8.1a 

shows that the highest minimum regret generally increases as the transplanting date 

moves well into the monsoon season. This corroborates earlier findings of yield 

loss (see chapter 6 and 7). The lowest minimum regret also increases up to the 

early August transplanting dates (Figure 8.1b). The difference (range) between the 

highest and the lowest minimum regret decreases rapidly for August transplanting 

dates (Appendix C. 1). This results from the consistantly low yields for these 

transplanting dates.

In view of the above discussion, I believe that an impacts analysis with a 

modified game theoretic approach, and the use of the results in conjunction with 

long-lead forecasts may significantly improve decision making and proper resource 

allocation by the farmers of Bangladesh.
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Table 8.1. Estimated total regret (kg ha'^) for Bangladesh, {cf., Illberry, 1985, for

Station 1975 1976 1977 1978 1979 1980 1981
Dhaka 8827 23439 19448 18682 16561 6901 21731
Rang-
pur

8050 17707 12644 9403 9227 8958 17939

Jessore 22261 33585 27443 16979 18404 29903 25824
Khulna 25216 16911 36167 17890 26690 25526 29913
Chand
pur

32954 31153 23820 15757 19910 21181 27264

Comilla 7789 34628 27943 19201 16143 15650 32836
Farid
pur

10154 27236 20259 27423 21305 10386 24277

Mymen
singh

35949 14403 18703 23800 28253 26566 28690

Maijdi
Court

21243 22804 23841 21557 19559 17023 30863

Feni 351 22378 25290 22700 33169 43491 32690
Sylhet 7361 2338 10253 13708 15319 12103 20689
Satkhira 18801 30338 25679 13179 34172 32139 23989
Barisal 1424 14396 7698 12834 11335 5626 24563
Bogra 12585 14804 12399 29884 LI1871 15122 14278
Dinaj
pur

12512 23468 23968 20396 17410 22785 26243

Ish
wardi

16673 8655 20784 15542 12952 12280 11319
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Station 1982 1983 1984 1985 1986 1987
Dhaka 10673 13633 27292 18808 3090 15365
Rang-
pur

14362 1908 11751 9721 4029 2835

Jessore 33629 12645 25611 14218 3626 18581
Khulna 24580 9493 26231 21469 2154 19468
Chand
pur

19135 2397 22116 16336 5548 13923

Comilla 25442 9737 19896 23721 5545 9434
Farid
pur

28997 12666 18566 25226 1933 17445

Mymen
singh

21243 11911 12736 11510 874 8266

Maijdi
Court

23567 23042 23544 23150 8196 21091

Feni 26302 16016 25866 30817 12998 24649
Sylhet 18009 9675 9946 13188 7250 11337
Satkhira 23577 11755 25706 17149 1985 20327
Barisal 22209 7148 23375 13227 4642 14346
Bogra 21041 3726 12584 7309 3268 16440
Dinaj
pur

21950 10446 18236 8220 8129 11473

Ish
wardi

18989 2826 10892 10195 6584 10771
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CHAPTER 9 

SUMMARY AND CONCLUSIONS

The CERES-Rice model was applied to determine the impacts of intra- 

seasonal monsoonal rainfall variability and soil water availability on the potential 

rainfed rice productivity in Bangladesh. The study assumed BRRI-recommended 

fertilizer supply and saturated and puddled soils during transplanting, and eight 

dates were used to identify optimum transplanting date(s) for rainfed rice. A 

method was developed by modifying Savage’s game theory based approach to 

determine the highest and the lowest total regret which would help farmers make 

more efficient resource allocations if a long-lead forecast is provided. The 

CERES-Rice model was calibrated to represent agro-ecological conditions in 

Bangladesh. The model’s performance was evaluated for yield estimation, length 

o f growing season, phenology, harvest index, and évapotranspiration. From the 

evaluation, it appears that the model estimations are satisfactory.

The CERES-Rice model was applied to daily average climatic conditions 

for 16 representative stations in Bangladesh to obtain baseline estimates for the 

major growing regions. Baseline estimates reveal that rice yield decrease as the 

transplanting dates were moved well into the monsoon. The rate of decrease in 

yield is notable until July 15; thereafter, a very high decrease in yield occurs. On 

the average, for a July 15 transplanting date, yield loss is 20.9% compared to a
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June I transplanting date. On the other hand, for an August 15 transplanting date, 

yield loss is 73.7% on the average compared to July 15 transplanting date.

To determine the impacts o f intra-seasonal rainfall variability on rice 

productivity, a series of correlation analyses were conducted using six monsoon 

season precipitation parameters and yields for each date and each station. The 

monsoon season precipitation parameters that were used include standard 

deviation of daily rainfall, height of the largest and second largest rainfall squence, 

timing of these two sequences o f rainfall, and the time delay between these two 

sequences. The correlation values are very low in most cases. Thus, intra- 

seasonal rainfall variability does not effect rainfed rice productivity.

The role of soil water also was investigated, since it is the medium from 

which plants obtain their moisture requirements for growth. It is known that the 

rice plant is very sensitive to water stress during the flowering/heading stage (stage 

4) and the maturing stage (stage 5). As a result, correlation analyses were 

conducted to identify relationships between yield and water stress during these two 

stages. It became evident from this analysis that water stress at the end of the 

growing season plays a key role in the final yield estimation. Low (high) water 

stress during the flowering/heading and maturing stages for June (July and August) 

transplanting dates resulted in higher (lower) yields. Late transplanting pushes the 

flowering/ heading and maturing stages well into the dry winter season and thus
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causes water stress. Thus, end-of-season water availability, rather than intra- 

seasonal variability, plays the key role in determining final yield.

To further understand the combined role of water stress during stages 4 

and 5 on yield, a series of contingency tables were prepared. These tables show 

that a higher yield can be obtained when rice is transplanted early in the monsoon 

season. Low or no water stresses at both stages help attain these yields. On the 

other hand, water stress at either one of the two stages (stages 4 and 5) reduced 

the yield noticeably. Water stress during both stages 4 and 5 reduced yields the 

most. The results from this study corroborate findings of various other field 

experiments.

The CERES-Rice model then was applied to a weather data set from 1975 

through 1987. These applications were conducted for all 16 stations and 8 

transplanting dates. The yield estimates are strongly correlated with the severity of 

water stress. Analyses of results also show that early transplanting produces 

higher yields due to low or no water stress during stages 4 and 5. On the other 

hand, water stress in both stages 4 and 5 results in the lowest yields. In short, the 

findings are similar to the analysis for baseline yield estimates.

The coefficient of variation o f yields for each transplanting date and for 

each station also were computed. Higher and the lower variability of yields
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represent the higher and the lower vulnerability. Vulnerability in yields increase as 

the transplanting dates are moved further into the monsoon season.

Making decisions under variable weather conditions has always been a 

difficult task for the farmers and policy makers. In the case of Bangladesh, the 

underlying agro-ecological conditions for decision making during monsoon season 

are restrictive. The farming practice is subsistence in nature and land use is largely 

under a monoculture category. Moreover, this study shows that early 

transplanting generally ensures a higher yield. In this context, farmers can be 

assisted by providing information on the potential loss under a particular monsoon 

season. A modified version of Savage’s game theory was used for the analysis; 

each year was considered as a scenario. Based on the lowest and the highest 

regret estimates for each region, a ‘future year’ like 1986 would be quite good for 

Bangladeshi farmers. On the other hand, a ‘future year’ resembling 1981 will 

cause potential crop loss. This type of estimation, in conjunction with an accurate 

long-lead time forecast, would allow Bangladeshi farmers to adopt a resource 

allocation plan that would help them more efficiently to overcome losses from 

unfavorable weather conditions.

Two future research areas have been identified. A data set for a longer 

time period should be obtained, which would provide a normal distribution of 

yields as predicted through application of the CERES-Rice model. This would 

allow for an improved risk assessment of rainfed rice productivity. One limitation
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of the CERES-Rice model is its inability to take into account the effect o f long- 

lasting submergence of rice fields. As a result, this model is not applicable to 

deep-water rice yield simulation which is common in certain parts of Asia including 

Bangladesh. Research involving improvement of this particular aspect also would 

be worthwhile.
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APPENDIX A.

Table A. 1. Yield vs. water stress during growth stage 4 (flowering/heading) and

Station Yield 
June 01 
kg ha'^

Growth 
stage 4 
June 01

Growth 
stage 5 
June 01

Yield 
June 15
kg ha*'

Growth 
stage 4 
June15

Growth 
stage 5 
June 15

Dhaka 7168 0 0 6932 0 0
Rangpur 7695 0 0 7556 0 0
Jessore 8045 0 0 7854 0 0
Khulna 8271 0 0 8131 0 0
Chandpur 7910 0 0 7495 0 0
Comilla 7904 0 0 8113 0 0
Faridpur 8144 0 0 7885 0 0
Mymensingh 7415 0 0 7381 0 0
Maijdi Court 8168 0 0 7262 0 0
Feni 7336 0 0 7192 0 0
Sylhet 5374 0 0 5497 0 0
Satkhira 8209 0 0 8107 0 0
Barisal 8396 0 0 7841 0 0
Bogra 7600 0 0 7319 0 0
Dinajpur 8413 0 0 8067 0 0
Ishwardi 7917 0 0 7760 0 0
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Table A. 1. Continued... Yield vs. water stress during growth stage 4

Station Yield 
July 01 
kg ha‘‘

Growth 
stage 4 
July 0 1

Growth 
stage 5 
July 01

Yield 
July 15 
kg ha '

Growth 
stage 4 
July 15

Growth 
stage 5 
July 15

Dhaka 6714 0 0 6335 0 .087
Rangpur 6960 0 0 6700 0 .116
Jessore 7688 0 0 6221 0 .394
Khulna 7479 0 0 6640 0 .132
Chandpur 7068 0 0 5776 0 .416
Comilla 7605 0 .043 5600 0 .523
Faridpur 7391 0 0 6312 0 .328
Mymensingh 7007 0 .050 5020 0 .582
Maijdi Court 6579 0 0 6168 0 .159
Feni 6679 0 0 6364 0 .139
Sylhet 5357 0 0 5737 0 0
Satkhira 7454 0 0 6839 0 .140
Barisal 7350 0 0 7075 0 .034
Bogra 7164 0 0 5725 0 .436
Dinajpur 7506 0 0 5993 0 .419
Ishwardi 7227 0 .108 4797 0 .690
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Table A. 1. Continued... Yield vs. water stress during growth stage 4

Station Yield 
Aug 01 
kg ha"'

Growth 
stage 4 
Aug 01

Growth 
stage 5 
Aug 01

Yield 
Aug 15 
kg ha'*

Growth 
stage 4 
Aug 07

Growth 
stage 5 
Aug 07

Dhaka 3818 .068 .746 2752 .319 .865
Rangpur 3708 .045 .823 2319 .502 .844
Jessore 1988 .675 .868 1940 .733 .938
Khulna 3825 .141 .793 2462 .481 .889
Chandpur 2086 .583 .812 1993 .697 .896
Comilla 1969 .834 .804 2099 .653 .919
Faridpur 2600 .508 .800 2316 .609 .932
Mymensingh 2000 .591 .903 1686 .801 .872
Maijdi Court 3150 .136 .840 2075 .463 .938
Feni 3586 .011 .780 2319 .396 .891
Sylhet 3831 0 .676 2755 .208 .796
Satkhira 3741 .147 .799 2421 .470 .896
Barisal 4409 0 .772 2932 .225 .950
Bogra 2148 .516 .930 1552 .877 .941
Dinajpur 2759 .398 .869 1851 .812 .869
Ishwardi 1581 .888 .899 1594 .833 .936
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Table A. 1. Continued.... Yield vs. water stress during growth stage 4
(maturing)

Station Yield 
Aug 15 
kg ha '

Growth 
stage 4 
Aug 15

Growth 
stage 5 
Aug 15

Yield 
Aug 23 
kg ha '

Growth 
stage 4 
Aug 23

Growth 
stage 5 
Aug 23

Dhaka 1876 .645 .867 1312 .938 .859
Rangpur 1586 .870 .845 1465 .893 .810
Jessore 1553 .775 .865 1318 .957 .867
Khulna 1835 .713 .880 1451 .924 .878
Chandpur 1491 .796 882 1377 .911 .849
Comilla 1434 .912 .914 1329 .951 .904
Faridpur 1900 .648 .893 1431 .954 .894
Mymensingh 1380 .934 .865 1299 .925 .828
Maijdi Court 1403 .876 .970 1256 .923 .995
Feni 1664 .703 .880 1340 .897 .869
Sylhet 1553 .767 .832 1339 .851 .832
Satkhira 1982 .706 .864 1452 .929 .868
Barisal 1698 .822 .986 1453 .936 .999
Bogra 1352 .947 .903 1262 .961 .901
Dinajpur 1556 .904 .845 1431 .900 .793
Ishwardi 1324 .864 .920 1269 .960 .887
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APPENDIX B

Table B. la.Yield (kg ha'*) estimates for Jessore (1975-87) for high and low water
stress. Transplanting date; June 1.

Stage 4: Low water stress Stage 4: High water stress
Stage 5 : 
Low 
water 
stress

5856, 4913, 5835, 5894, 7566, 
7327, 4335, 7561, 7090, 8083, 
5820, 7634.

Mean = 6493

4564

Mean = 4564

Stage 5: 
High 
water 
stress

None None

Table B. lb. Yield (kg ha'*) estimates for Jessore (1975-87) for high and low 
water stress. Transplanting date: July 01.

Stage 4: Low water stress Stage 4: High water stress
Stage 5: 
Low 
water 
stress

5856, 7354, 6277, 3276, 7690, 
6516, 7297, 5690.

Mean = 6244
None

Stage 5: 
High 
water 
stress

3530, 2672, 2886. 

Mean = 3029

1660, 1661. 

Mean = 1660
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Table B. le. Yield (kg ha'*) estimates for Jessore (1975-87) for high and low
water stress. Transplanting date; July 15.

Stage 4: Low water stress Stage 4: High water stress
Stage 5 : 5574, 6143, 5054, 6552, 3606. 3873, 3505.
Low
water Mean = 5386 Mean = 3689
stress

Stage 5: 1295, 1418, 2572, 1431, 1294,
High 1688.
water None
stress Mean =1616

Table B. Id. Yield (kg ha'*) estimates for Jessore (1975-87) for high and low 
water stress. Transplanting date: August 15.

Stage 4: Low water stress Stage 4: High water stress
Stage 5 : 1612.
Low
water None Mean = 1612
stress

Stage 5: 4419. 1092, 860, 1238, 1353, 1199,
High 1134, 1305, 1339, 1579, 1511,
water Mean = 4419 1295.
stress

Mean = 1265
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Table B. 2a.Yield (kg ha'*) estimates for Dinajpur (1975-87) for high and low
water stress. Transplanting date: June 1.

Stage 4: Low water stress Stage 4: High water stress
Stage 5: 
Low 
water 
stress

8179, 5541, 6337, 7938, 8227, 
6180, 7928, 7512, 7621, 7924, 
8024, 7583.

Mean = 7416
Stage 5: 
High 
water 
stress

2290.

Mean = 2290

Table B. 2b. Yield (kg ha'*) estimates for Dinajpur (1975-87) for high and low 
water stress. Transplanting date: July 1.

Stage 4: Low water stress Stage 4: High water stress
Stage 5: 6957, 7142, 6955, 7886, 7147. 2653.
Low
water Mean = 7217 Mean = 2653
stress

Stage 5: 3694, 4172, 3781, 5421, 2472, 1798.
High 5415.
water
stress Mean = 4159 Mean = 1798
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Table B. 2c. Yield (kg ha ') estimates for Dinajpur (1975-87) for high and low
water stress. Transplanting date; July 15.

Stage 4: Low water stress Stage 4: High water stress
Stage 5: 4710, 6656, 6554, 6697, 6063. 2680, 2722.
Low
water Mean — 4932 Mean = 2701
stress

Stage 5: 2482, 2391. 1595, 1803, 2052, 1516.
High
water Mean = 2436 Mean =1741
stress

Table B. 2d. Yield (kg ha ') estimates for Dinajpur (1975-87) for high and low 
water stress. Transplanting date: August 15.

Stage 4: Low water stress Stage 4: High water stress
Stage 5: 4156. 1569, 1531, 1670.
Low
water Mean = 4156 Mean =1590
stress

Stage 5 : 1580, 1516, 1462, 1321, 1305,
High 1779, 1479, 1797, 1585.
water None
stress Mean = 1536
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Table B. 3a. Yield (kg ha ') estimates for Sylhet (1975-87) for high and low water
stress. Transplanting date; June 1.

Stage 4: Low water stress Stage 4: High water stress
Stage 5: 
Low 
water 
stress

6277, 7264, 5615, 5642, 5778, 
4899, 6099, 6067, 5779, 5569, 
6058, 7134, 6220.

Mean = 6031

None

Stage 5: 
High 
water 
stress

None None

Table B. 3b. Yield (kg ha ') estimates for Sylhet (1975-87) for high and low water 
stress. Transplanting date: July 1.

Stage 4: Low water stress Stage 4: High water stressW.. , . _ , W
Stage 5: 
Low 
water 
stress

5689, 6778, 5297, 5029, 4855, 
4735, 5479, 5915, 5285, 5709, 
4176.

Mean = 5359

None

Stage 5: 
High 
water 
stress

2646, 3217 

Mean = 2931 None
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Table B. 3c. Yield (kg ha‘‘) estimates for Sylhet (1975-87) for high and low water
stress. Transplanting date: July 15.

Stage 4: Low water stress Stage 4: High water stress
Stage 5: 4515, 5180, 4544, 5344, 5362,
Low 4628, 3787, 4388.
water None
stress Mean = 4718

Stage 5: 3327, 2769, 3886. 1288, 1684.
High
water Mean = 3327 Mean = 1486
stress

Table B. 3d. Yield (kg ha'^) estimates for Sylhet (1975-87) for high and low water 
stress. Transplanting date: August 15.

Stage 4: Low water stress Stage 4: High water stress
Stage 5: 1082, 1080, 2022.
Low
water None Mean = 1394
stress

Stage 5: 2212, 2922. 1625, 1224, 1468, 1140, 1248,
High 1266, 1557, 2493.
water Mean = 2567
stress Mean = 1502

173



Table B. 4a.Yield (kg ha'*) estimates for Chandpur (1975-87) for high and low
water stress. Transplanting date: June I.

Stage 4: Low water stress Stage 4: High water stress
Stage 5: 
Low 
water 
stress

6941, 7711, 7764, 7990, 7284, 
7882, 7901, 7055, 8447, 7068, 
8589.

Mean = 7694

None

Stage 5: 
High 
water 
stress

4295, 4934. 

Mean = 4614 None

Table B. 4b. Yield (kg ha'*) estimates for Chandpur (1975-87) for high and low 
water stress. Transplanting date: July 01.

Stage 4: Low water stress Stage 4: High water stress
Stage 5: 
Low 
water 
stress

7458, 7839, 6231, 7925, 6985. 

Mean = 7288 None

Stage 5: 
High 
water 
stress

3895, 4958, 4477, 4056, 3904. 

Mean = 4258

2057, 1604, 1712. 

Mean =1791
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Table B. 4c. Yield (kg ha*') estimates for Chandpur (1975-87) for high and low
water stress. Transplanting date; July 15.

Stage 4; Low water stress Stage 4: High water stress
Stage 5: 
Low 
water 
stress

7386, 6679, 4142. 

Mean = 6069 None

Stage 5: 
High 
water 
stress

4613, 2344, 2285, 3030. 

Mean = 3068

1449, 1515, 1538, 2158, 1435, 
1489.

Mean = 1597

Table B. 4d. Yield (kg ha ') estimates for Chandpur (1975-87) for high and low 
water stress. Transplanting date: August 15.

Stage 4: Low water stress Stage 4: High water stress
Stage 5: 
Low 
water 
stress

None

1693.

Mean = 1693

Stage 5: 
High 
water 
stress

2293, 2382, 3424, 4005. 

Mean = 3026

1365, 1596, 1380, 1436, 1469, 
1646, 1572, 2175.

Mean =1580
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APPENDIX C

Table C. 1. The Highest and the lowest regret for the eight transplanting dates.
Station 06/01 

Highest min.
Regret 

Lowest min. 
Regret

06/15 
Highest min.

Regret 
Lowest min. 

Regret

07/01 
Highest min.

Regret 
Lowest min. 

regret

07/15 
Highest min.

Regret 
Lowest min 

Regret
Dhaka 3955 4319 4716 5872

102 148 524 601
Rangpur 1698 2179 4532 5478

142 107 49 89
Jessore 3519 5508 6030 5258

449 624 336 409
Khulna 3058 5906 4791 5880

222 140 109 152
Chandpur 4294 6158 6321 5951

142 70 86 707
Comilla 6183 6871 6085 5152

34 591 93 420
Faridpur 3386 5671 6138 4861

307 194 282 207
Mymensingh 7162 6786 6315 5291

132 99 525 599
Maijdi Court 2325 5079 4135 5213

195 342 87 3169
Feni 6583 6554 5662 5386

107 22 92 388
Sylhet 2365 2738 4132 4134

195 603 863 18
Satkhira 3982 6355 4945 6099

104 135 115 507
Barisal 1855 2429 6418 6654

15 281 129 972
Bogra 4013 4462 5942 5006

65 280 437 1090
Dinajpur 5937 5767 6088 5181

48 94 714 41
Ishwardi 5002 4594 4736 4781

298 270 316 738
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Table c . 1. Continued...
Station 08/01 

Highest min.
Regret 

Lowest min. 
Regret

08/07 
Highest min.

Regret 
Lowest min. 

Regret

08/15 
Highest min.

Regret 
Lowest min. 

regret

08/23 
Highest min.

regret 
Lowest min. 

regret
Dhaka 3675 3860 3490 2302

411 1512 1278 1832
Rangpur 2952 1532 340 1059

167 46 4 561
Jessore 3600 4665 3559 2395

2272 4018 2807 1424
Khuina 4146 4719 4389 3326

1229 2123 3544 2384
Chandpur 4368 2890 2640 1309

3320 220 581 303
Comilla 3811 3323 2895 2189

2722 185 384 181
Faridpur 3541 4135 2847 1802

1304 2873 1601 1116
Mymensingh 2362 3631 3199 1203

771 2244 1874 216
Maijdi Court 5213 4302 3064 1729

3169 1376 859 110
Feni 5316 5408 5105 4400

2924 2438 2603 3025
Sylhet 2826 2001 1840 1967

705 321 429 939
Satkhira 2458 4867 4871 3372

123 3011 3733 2675
Barisal 3772 3170 1492 1351

791 311 426 811
Bogra 1529 1371 685 506

361 310 210 27
Dinajpur 2792 3088 2851 2253

987 1978 2359 1547
Ishwardi 1576 782 765 749

693 8 24 73
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