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ABSTRACT

The primary objective o f this work is to improve texture classification system performance. The work 

is extended to improve the accuracy with which the faulty components o f a printed circuit board are 

detected from a video sequence o f infrared images generated by warming the board at power up. The direct 

motivation of this research is to enhance the FAULT DETECTION and IDENTIFICATION (FDI) system 

performance based on classification o f  the components in the circuit boards. The classification problem 

may be divided into the stages o f feature extraction, dimensionality reduction and pattern recognition. 

Central to this work is that the signal representation plays a crucial role in the classification performance. 

Specifically, it is proposed that designing an optimal sub-band filterbank for fault detection and 

identification or texture classification improves the classification performance when the filterbank is used 

for that purpose.

The focus of this dissertation is on the design of subband filterbanks for feature extraction and 

classification of images. One o f the major conclusions o f the experiments is that the wavelet used for 

decomposing the images for classification plays a crucial role in the classification task. Furthermore, the 

commonly used octave band decomposition is evaluated against alternative decompositions. It is concluded 

that non-octave decompositions are generally superior. Also, the classification performance using various 

feature extraction techniques along with dimensionality reduction methods are compared. A quadrature 

mirror filterbank designed is tested in texture classification and fault detection, and results in superior 

classification performance compared to other filterbanks.

Optimal filters designed with image compression in mind do not guarantee optimality with respect to 

discrimination. Therefore, approaches for the design of optimal filterbanks with optimal discrimination are 

proposed. A simulated annealing algorithm is used to find the optimal filter coefficients by maximizing 

class separability. Algorithms are developed to find the optimal filterbank for a given dataset and to classify 

an unknown texture or to find if  the given conqjonent is faulty or not.

Performance of the proposed methods is demonstrated in extensive experiments, which justify the new 

approaches.
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CHAPTER 1 

INTRODUCTION

1.1 OBJECTIVES

The primary objective o f this work is to improve texture classification system performance. The design 

is applied to improve the accuracy with which faulty components o f a printed circuit board are detected 

using infrared images. The direct motivation o f this research is to enhance the FAULT DETECTION and 

IDENTIFICATION (FDI) system performance based on classification o f the conçonents in the circuit 

boards. Central to this work is the idea that the signal representation plays a crucial role in classification 

performance. Specifically, it is proposed that an optimal sub-band filterbank can be designed to improve 

fault detection and identification or texture classification performance.

In an effort to provide improved performance, this work seeks to generalize the Fault Detection 

problem. Correspondingly, some secondary objectives result:

• Demonstrate the efficacy o f the optimal sub-band filter on signal classification, explain the factors that 

effect the performance, and specify the optimum configuration for texture classification.

• Establish a better understanding of the fault detection and identification system and how the various 

factors influence system performance with respect to the optimal filters in the time-frequency domain.

This work accomplishes these objectives using a complement o f empirical and theoretical investigation.

1.2 PROBLEM DEFINITION

In industrial processes, the detection of defects in manufactured products or in the raw material can be 

crucially important. Manual visual inspection is often a tedious and laborious task; thus, automation is of 

great interest. As an example, consider an electronic industry manufacturing circuit boards. Operational 

costs for maintaining and repairing the circuit boards by testing each component in the circuit are expensive 

and time consuming. Automatic fault detection and identification is o f interest in a wide variety of 

applications such as control systems, image analysis, analysis o f radar signals, smart sensors, texture
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analysis, medicine, industry eic. To solve this problem, one needs to find a means to reduce the time and 

expense involved by automation and also to inqjrove the FDI system performance.

Most natural surfaces and naturally occurring patterns exhibit textiue. A texture recognition system 

will therefore be a natural part o f many computer vision systems. Some o f the applications o f the texture 

recognition systems are given here. In many cases o f  industrial inspection, the quality of a surface is well 

characterized by its texture. Hence, texture analysis plays an important role in inspection [1]. Images in 

medicine arise from non-intrusive techniques as x-ray, ultrasound, tomography etc. In several o f these 

image types, textural properties are important diagnostics [2]. Remote sensing is the measurement of 

properties o f a far distant object. Remote sensing techniques include satellite photography, seismic surveys, 

sonar surveys etc. Numerous approaches to texture recognition in remote sensing have been presented in 

the literature. Applications include terrain classification [3], cloud classification [4], and seismic pattern 

recognition [5].

1-3 INTRODUCTION

Pattern recognition is the study of theory and algorithms for automating the process o f recognition 

through efficient representation of relevant information and its analysis using intelligent schemes [6]. The 

success o f pattern recognition depends not only on the power o f the data processing algorithm, but also on 

the proper representation o f the input data so that all the salient aspects of the data for the specific task at 

hand are captured and utilized while all the irrelevant information is discarded. A general schematic of a 

classification process is shown in Figure 1.1. The first step is to find an effective and appropriate 

representation o f the signal or image, which is based on a given criterion, representing only the most 

relevant information in a compact form. The fact that classification systems with small numbers of 

parameters have better generalization, and so are computationally cost effective, and also can be trained 

and adapted faster are motivations for efficient feature extraction techniques [6].

Feature extraction [7] can also be thought o f as the transformation that replaces the measurements from 

various sources with features. One needs to combine information provided by various sources (or features) 

to obtain more reliable performance. In this dissertation, general methods o f pattern classification through 

optimal sub-band filter design are investigated.
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Figure 1.1. Structure of a Classifier

Recent developments have shown that wavelets are optimal or near optimal for solving a wide range of 

problems in compression, estimation and detection [8]. While previous contributions have shown that 

wavelets are a significant tool in solving a number o f problems in DSP, they have not addressed the 

problem of how to choose the wavelet basis for a given application. In contrast to classical transforms such 

as Fourier, cosine, Walsh, Hartley, Hadamard, etc., the wavelet transform is actually a class (or family) of 

transforms that are parameterized and can hence be tuned to a specific application. This freedom makes 

wavelets powerful, but with a limited theoretical imderstanding for why wavelets work; it also means that 

choosing the best wavelet transform or basis for a given application is difficult. Given that wavelets can be 

parameterized, one might ask; “What properties should the transform have?” While practical probletns 

typically have a well-defined knowledge of optimality, translating this into choosing an optimal wavelet 

basis is typically non-trivial.

One method for choosing the best wavelet transform for a given application would be to choose a time 

varying and signal dependent wavelet basis. Clearly, this would solve the problem, if for a given 

application a signal dependent optimization problem could be posed and solved in real time. However, in 

most applications, it is not obvious what the desired cost function should be. The more interesting and 

desirable solution (although sub-optimal to signal dependent design) is to find a robust solution for a given 

problem. Conceptually the wavelet design can be obtained in two distinctly different ways:

1. Find the optimal wavelet basis for a large class o f  signals that are representative (statistically) for the 

problem to be solved.

2. Design the wavelet basis such that it is near-optimal for the given problem based on implicit properties 

o f the basis rather than being explicitly signal dependent.

Excluding the consideration of special classes o f  functions and signals, neither o f these two problems 

has been analyzed in any detail. However, problem (I) can be solved theoretically if  a sufficiently rich
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class (statistically) o f test signals can be generated or obtained, an appropriate cost function defined, and 

one has the required computational resources and time.

The wavelet designs presented in this dissertation focus on situations where problem (1) can be 

successfully solved in that it considers the design o f  a wavelet basis with a proper cost function. In the 

following section, a short overview of the work acconçlished in the dissertation is given.

1.4 DISSERTATION OVERVIEW

As stated above, this dissertation addresses particular problems related to the design o f  sub-band filters 

with a given set o f goals. Each problem considered in this work addresses issues in wavelet theory dealing 

with alternative views on classical wavelet or sub-band filter design methods. Broadly speaking, the types 

of questions addressed here can be categorized into three different classes:

•  Influence of wavelet: For a given classification task or fault detection and identification system, what 

is the importance or role o f the wavelet? Can one in practice design an optimal wavelet that improves 

the performance o f  that system?

• Design of an O ptim al wavelet: How to design the optimal wavelet based on a more appropriate cost 

function for a given task or application?

• Configuration: What are the other factors that can influence the system performance in the time- 

frequency domain in the context of optimal wavelet basis? Can we specify the optimum configuration 

for signal classification or fault detection?

1.5 DISSERTATION OUTLINE

The dissertation is divided into four categories (sections): the introduction, literature review and 

necessary background, and methodology and applications. The methodology and application parts 

constitute the core part o f this work. The chapters are outlined according to their categories in the 

categorical order. That means, chapters introducing the problem are outlined first, followed by chapters that 

have literature review and the necessary backgroimd. Chapters and appendices with methodology are 

outlined and the chapters with applications follow methodology section. Finally, a chapter with conclusions 

and future work is outlined.
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1.5.1 INTRODUCTION

Chapter 1 introduces the problem of texture classification and fault detection. The objectives 

accomplished in the research are listed. A brief background of the general topic is presented. Also, a brief 

overview of the applications and approaches is presented.

1.5.2 BACKGROUND

Chapter 2 presents a detailed discussion o f signal representation for pattern classification. The 

problem is decomposed to feature extraction, dimensionality reduction and classification. It is emphasized 

that although an appropriate classifier is necessary, it is the signal representation that profoundly affects the 

classification performance o f a given problem. The importance of feature extraction and dimensionality 

reduction is introduced. Feature selection and feature projection methodologies for dimensionality 

reduction are presented.

Chapter 3 provides a mathematical background for wavelet and wavelet packet transforms. The 

necessity for choosing the optimal local basis for a given task (signal compression and signal classification) 

is presented and previous algorithms developed based on these lines are reviewed. In all these algorithms, 

the influence of the QMF filter used for the optimal local basis selection for the given task is ignored. This 

dissertation focuses on this issue.

1.5.3 METHODOLOGY

Chapter 4 presents the recently developed interesting algorithms that propose criterion dependent 

optimal local basis for texture classification. In this chapter, various factors involved in a classification 

system, namely feature extraction, dimensionality reduction methods, types o f classifiers, and the wavelet 

tree decomposition methods are analyzed. The influences of these parameters on the classification 

performance are studied thoroughly. A computationally simple algorithm is developed for classification 

and the performance is compared to that of the successful existing classification methods. This chapter sets 

the background for the next analysis in which we want to know the impact of the QMF filters. Some of the 

new studies and results in Chapter 4 are:
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• Study the influence of various factors involved in classification. These factors include feature 

extracting measures (e.g., L|-norm, F-norm, A-norm etc.), dimensionality reduction techniques (feature 

selection, feature projection) and the types o f classifiers (Euclidean distance, simplified Mahalanobis 

distance, and neural network) on classification system performance.

• Develop a computationally simple algorithm for classification.

• Compare the classification performance for various tree structures (WT, W PT etc.) with respect to 

feature extracting measures, dimensionality reduction techniques and types o f  classifiers.

Chapter 5 studies the influence o f using various QMF filters on texture classification performance. 

This study is conducted on several types of wavelet tree structures, i.e., the wavelet transform (octave tree), 

the uniform tree and the wavelet packet transform based on some criteria (e.g., energy, separability). Along 

with the influence of QMF filters on classification performance, other factors involved in the classification 

task as described in Chapter 4 are also studied. This chapter essentially emphasizes the effect o f QMF 

filters on texture classification and proves that the influence is significant with respect to the classification 

and sets the background for the necessity to design optimal sub-band filters for that pmpose. Some of the 

new studies and results in Chapter 5 are:

• Study the influence of sub-band filters on texture classification performance.

• The classification performance for various tree structures (WT, WPT etc.) with respect to various sub

band filter candidates are compared and WPT performs better than WT.

Chapter 6 considers the problem of designing wavelets based on class separability. The relationship 

between classification rate and class separability is established. Simulated annealing (SA) is used to find 

the optimal basis by maximizing the class separability and satisfying the QM F constraints, as there are 

many minima and maxima in the class separability with respect to the sub-band filters. An algorithm is 

developed to find an optimal wavelet basis given the data samples for a classification task. Some of the new 

studies and results in this chapter are:

• Establish an empirical relationship between classification performance and class separability.

• Design optimal sub-band filters based on class separability for classification using SA.

• Study the various parameters (e.g., step size, initial temperature, temperature reduction etc.) involved 

in the SA for convergence.
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• Develop an algorithm using the above mentioned design technique from the given data sets for 

classification.

Chapter 7 clearly elaborates the whole process o f  designing the optimal filter for a given data set for 

classification from scratch. It details the steps involved in training and classification for the final result.

Appendix A provides a comparison of the classification performance o f algorithms used in Chapter 4. 

These algorithms are energy-based tree decomposition and separability-based tree decomposition. The 

results reproduced in irrqjlementing these algorithms are compared with the results provided in previous 

work.

Appendix B presents the mathematical details involved in expressing the cost function, class 

separability in terms o f  sub-band filter coefficients, and the complexity involved in doing so to calculate the 

gradient o f the class separability with respect to the low pass filter coefficients. These mathematical details 

are introduced in Chapter 6 and are included in this appendix.

1.5.4 APPLICATIONS

Appendix C provides an important application o f signal classification. The fault detection and 

identification system, which is a special task requiring signal classification, is presented in this appendix. 

The approach of designing the optimal sub-band filter based on class separability is similar, except that the 

data involved is different. The performance is measured differently from the texture classification problem, 

and reflects either the number of times the faulty component is detected correctly or the separation between 

the faulty components in a bad board from the functioning ones. Some of the new results in this appendix 

are:

• Influence of the optimal sub-band filter on FDI system performance.

• Influence of feature extraction, dimensionality reduction, and various wavelet tree structures on FDI 

system performance.

Appendix D has more figures o f the second dataset (Fault identification analysis is performed on two 

sets o f circuit boards. Analysis and results on the first dataset is presented in detail in Appendix C and, for
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the second set, briefly in Appendix D) plotted using the results obtained in the analysis performed in 

Appendix C.

C hapter 8 provides the conclusions, listing the major contributions of the work and suggesting 

directions for future research. It is concluded that an optimal filterbank should be designed based on class 

discrimination rather than energy compaction when the filter is used for signal classification.
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CHAPTER 2 

SIGNAL REPRESENTATION FOR CLASSIFICATION

2.1. INTRODUCTION

Signal classification, signal compression, and noise removal are examples o f classic signal analysis 

problems. Each has been widely studied and each has a wide variety o f applications. For any aspect of 

signal analysis, the means by which the signal is represented is o f vital importance. In this chapter, I 

investigate methods to extract features that are relevant and discard the information that is irrelevant in the 

context of signal classification. Often, important features for classification are characterized by local 

information in the dual domains o f time and frequency.

The chapter is organized as follows. Section 2.2 provides a formulation of the problem of feature 

extraction and pattern recognition. Section 2.3 introduces pattern classification, and describes the 

advantages and drawbacks o f established techniques. In section 2.4, the importance of feature extraction to 

the success o f pattern classification is discussed. Dimensionality reduction is often a necessary complement 

to feature extraction, and this is discussed in section 2.5. Finally, section 2.6 summarizes the chapter.

2.2. PROBLEM FORMULATION

A pattern may be said to consist of N variables x = [x,,j:2 ,...,.r,v]^. This is the measurement vector, 

which may be the elements o f a sampled signal. Each pattern x  may be said to belong to one o f L classes, 

denoted by y/. We may then say that x e X  is the input signal space and y e y  = } is the

output response space, which is singly a collection of L class labels. Signal classification may be regarded 

as a function -> y , which assigns a class label to each input signal .reX.

Direct application o f the data in signal space is usually prohibitive due to high dimensionality of this 

space. Indeed, the signal space is highly redundant with respect to the response space. This implies the need
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to reduce the dimensionality of the problem. One must extract the features needed to discriminate the 

signals and discard everything else. This can greatly improve the performance o f  the chosen classifier and 

reduce complexity. Feature space is the space in between the signal space and the response space. A feature 

extractor is defined as a map from signal space to feature space, and the classifier is a map from feature 

space to response space. The classification process consists o f feature extraction followed by classification.

23 . PATTERN CLASSIFICATION

The task o f  classifying the data is central to many applications. The act o f  classification is tightly 

bound to the proper extraction o f relevant features from the unprocessed data. The basic blocks in a 

classification problem are depicted in Figure 2.1.

Input Signal Class
Feature

Extraction
Classify
Features

Figure 2.1. The classification problem

In this section, a brief overview of pattern classifiers is given. It is shown that feature extraction is 

fundamental to classifier performance; even the most adept classifier must have an appropriate and efficient 

representation of the input signal.

The practical methodologies that exist for pattern classification may be loosely grouped into three 

categories. Historically, the two classical methods are the statistical (or decision-theoretic) approach [7] and 

the structural (or syntactic) approach [9]. The third, and most recently established type o f pattern classifier 

is the learning (or neural) approach. Learning algorithms have their origins in perceptrons and adaptive 

linear elements [9], and have matured into the diverse field of neural networks [II ].

Statistical pattern  recognition is based upon the statistical analysis of the data to be classified. The 

data are assigned to a particular class by compiling a probabilistic model (estimating probability density 

functions) o f the data in N-dimensional space, and dividing the space into regions corresponding to each 

class according to some criterion. The major accomplishments in statistical pattern recognition include
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Bayesian classifiers, distance classifiers, and classification used in regression trees. These are examined in 

this chapter.

The syntactic approach on the other hand is based on utilizing the structure o f patterns and the 

interrelationships between the components o f a pattern. Syntactic pattern recognition involves identifying 

meaningful components or “primitives" o f the patterns, and developing a formal syntax or “grammar" 

describing the synthesis o f the patterns from their primitives. The preference here is to discuss structural 

methods in the context of feature extraction. From the perspective of this work, the development o f 

primitives and syntax is more a signal representation issue than a classification task. Section 2.4 

demonstrates the importance of structural representations in feature extraction.

Learning algorithm s almost invariably take the form o f artificial neural networks. Artificial neural 

network approaches may also be termed deterministic as opposed to statistical because the learning 

algorithms assume nothing about the statistical properties o f the pattern classes. It is shown, however, that 

statistical and neural network pattern classifiers are very similar in form and objective [ 1 1 ].

The intent o f this section is to illustrate the major features o f the most popular pattern classifiers in use 

today, and the differences between them that are important. Correspondingly, two representative classifiers 

are chosen to carry through the thesis based upon the ease with which they may be interpreted and their 

applicability to the texture classification problem.

2.3.1. BAYESIAN PATTERN CLASSIFICATION

The central problem in statistical pattern recognition is the development of decision functions from sets 

o f finite sample patterns of different classes so that the functions partition the input space into regions, each 

o f which contains the sample patterns belonging to each class. In general, the most information that can be 

known about the input space are the a posteriori probabilities P{yi\x) for / = I,..., L. This is the probability

that pattern x comes from class y,.

In this framework, pattern classification is posed as a statistical decision problem. One evaluates the L 

a posteriori probabilities and selects the largest. In general, the a posteriori probabilities P{yi\x) are not
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known, but may be calculated from the a priori probabilities P{yi) and the conditional density functions 

P{x\y,) using the Bayes’ theorem, which is [12].

P{x,yi) = P{yi)p{x\yi) = p{x)P{yi\x) (2.1)

Rearranging, we get

p  (2 .2 )
P{x)

where

L

p{x) = ^  P{yj)p{x\yj) (2.3)
y=i

Note that p(x) is the probability density function o f the input space that remains constant for all P{yi\x), so

it can be ignored for purposes o f discrimination. When the true class distributions are not known, the a 

priori probabilities are often made equal: P(K,) = I / Z, for / =

To summarize, Bayes’ decision mle is really nothing more than the implementation o f the decision 

functions:

di{x) = p{_x\y,)P{^yi), l= \ , . . .L  (2.4)

where a pattern x is assigned to class y; if for that pattern di(x)>dj(x) for all/# /. This Bayes’ decision rule

has the property that the probability of classification error is minimized, making Bayes’ classifier

statistically superior to any other. The Bayes classifier is illustrated in Figure 2.2.
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Figure 2. 2. A Bayesian Classifier

The challenge here lies in estimating the densities p{x\yi) from the training data. This is difficult, if 

not impossible, when the dimension of the input space N is large. The high dimensionality imposes the 

constraint that the number of training set examples must be much greater than N to get a reliable estimate 

of p(x\y,) .

2.3.1.1. The Gaussian Bayes Classifier [7]

If it is reasonable to assume a parametric form of the conditional probability density function p(x|>7 ) , 

then the Bayes classifier derived in the preceding section can take a more tractable form. A common 

assumption is that the densities p(x|y,) are multivariate normal (Gaussian). Although for some datasets it is 

not well suited to make this assumption, the normal distribution does represent an appropriate model for 

many practical applications.

Consider L classes o f patterns, governed by the multivariate normal density functions:

1
piAyi) = C/" {x-ntf) ( 2 .5 )

where each density is completely specified by its mean vector mi and its covariance matrix C/, which are 

defined as
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nil = (2 .6 )

and

Q  = £ ^ ( j r - m / ) ( x - /n , ) ^ j  (2.7)

where £ , [.] denotes the expectation operator over the patterns of class y,. Here, |q | indicates the

determinant of matrix Q. Sample patterns taken from a normal distribution tend to fall in a single cluster 

with its center determined by the mean vector and its shape defined by the covariance matrix. The loci of 

points o f constant density are hyper-ellipsoids with the principal axes in the directions o f the eigenvectors 

o f the covariance matrix and the lengths o f these axes determined by the eigenvalues.

According to equation (2.4), the decision function for class y, may be chosen as d,(x) = p{x\yi)P(yi) . 

In other words, we may use the form

4*(x) = \n[p{x\y,).P{y,)] = ln/7(x|y,) + ln£(y/) (2.8)

because In is monotonie.

Substituting equation (2.5) into equation (2.8) yields

4 t(x )  = InPfy^) —- ^ I n 2 ; r - —l n | Q | - —^(x -m jj )^C 7‘( x - m t ) j , k  =  1 , . . . ,  K  (2.9)

NSince the term -^In2 ;r does not depend on k, it can be eliminated, giving

4*(x) = InP {yk)-—\’i\Ci^\--^x-mi^)^C^^(,x-mi^'^ , k  =  I ,..., K. (2.10)

which is the Bayesian decision function for normally distributed patterns. These decision functions are 

hyper-quadratic, meaning that this Bayesian classifier can only place a quadratic discriminant function 

between pattern classes. If the pattern classes are truly characterized by normal densities, however, no other 

surfaces yield better results on an average basis. The quadratic decision functions are

rfi(x) = ln/’(y i) - |ln |Q |-Y X ^ C 7 'x  + .t^ C 7 ^ -y m fc ;r ''« * .^ =  L - X  (2 .1 1 )

If it is assumed that all covariance matrices are equal, Q  = C for A: = 1,...,K, it follows that the decision 

functions become

d*(x) = \n P{yn) + x^Cr^mn , k =  1,...,K (2.12)
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which represents a set o f linear discriminant functions. In this case, the decision surface is linear with 

respect to the input space, describing a hyper-plane. The normal Bayesian classifier is therefore often called 

linear discriminant analysis (LDA). The advantages of LDA are that it is interpreted and implemented 

easily, that it trains quickly with reasonably-sized datasets, and that no adjustment o f its architecture or 

training algorithm is required. Some constraints relevant to the applicability of LDA are that the 

assumptions of normal pattern densities must be reasonable; the data must be reasonably well clustered and 

linearly separable. It is sensitive to outliers and noise. The assumption o f identical covariance structures for 

all classes is also unrealistic in many cases.

2.3.2. ARTIFICIAL NEURAL NETWORKS

An artificial neural network (ANN) is a computational system inspired by the learning characteristics 

and the structure of biological neural networks. The applications o f ANNs as pattern classifiers are 

described in this section. Figure 2.3 shows the hierarchy of some artificial networks that have been used as 

pattern classifiers. The discussions o f ANNs are limited to those trained using supervised learning.

Neural Net Classifiers

Supervised

Perceptron

Î
Gaussân
Classifier

Multi-layer
Perceptron

t
K-nearest 
neighbor mixture

Unsupervised

\
Kohonen Self- 
organizing 
feature maps

K-means clustering algorithm

Figure 2.3. Taxonomy o f neural nets that can be used as classifiers. Classical algorithms, which are most similar to the
neural net models, are listed along the bottom.
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Such ANN’S are presented with a training set o fp  example pairs from the input space and the response 

space:

{ ( / '% /" ) .... . (2.13)

where p  is finite. If  class membership information is available during training, supervised methods, in 

general, fare better than unsupervised methods. This is due to the fact that knowledge of class membership 

aids the construction o f appropriate discriminant boundaries.

The strength of neural network based pattern classifiers lies in its applicability to problems involving 

arbitrary distributions o f data. Moreover, a firm understanding o f the pattern recognition properties of 

neural networks has emerged, relating their characteristics to Bayesian decision making.

O f all the ANN architectures that have been used as pattern classifiers, the most commonly used is the 

multilayer perceptron (MLP). In turn, the learning algorithm that is almost always used to train MLP is the 

backpropagation algorithm, which is a stochastic approximation o f the steepest descent algorithm. The 

MLP architecture and the backpropagation algorithm are the simplest and most extensively studied of all 

neural network paradigms. A MLP containing nonlinear activation functions is capable o f constructing 

arbitrarily complex decision boundaries in feature space for networks o f two layers or more. Some 

problems associated with the MLP and backpropagation are that training may be slow and that selection of 

the best network size may be difficult [ 1 1 ].

For the purpose of assessing the discriminatory nature of textures using a variety o f signal 

representations, a MLP network trained using a standard backpropagation algorithm suffices [10]. The 

following sections introduce MLP, the means by which it is trained, and its capabilities.

2.3.2.1. The Perceptron

The perceptron [13] is a feedforward network with one output neuron that leams a separating hyper- 

plane in a pattern space. As depicted in Figure 2.4, the perceptron forms a weighted sum o f the n 

components of the input vector x = [x,,x2 ,...,x;^]^ and adds a bias value, 0. The result is then passed 

through a nonlinearity f(«).
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X n

Figure 2.4. The Perceptron

Rosenblatt’s original model used a hard-limiting nonlinearity;

/ w - ' 'Lo , , 0

which is illustrated in Figure 2.5. When perceptrons are combined together in layers, it is more common to 

use the logistic sigmoidal nonlinearity:

(2.15)

This function is continuous and varies monotonically from 0 to 1 as s varies from - œ to œ . The gain of the 

sigmoid, P, determines the steepness o f the transition region; this is often set to 1. The main advantage of 

the sigmoid nonlinearity is that it is differentiable. This property has had an historical impact because it 

made it possible to derive a gradient search algorithm for networks with multiple layers.

Logistic SigmoidHand Limit

/  .

/

Sigmoid

Figure 2.5. Three common types of nonlinearity used as the activation function in an artificial neuron
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Another function belonging to the sigmoid family is the hyperbolic tangent sigmoid:

-  e~^
/ t a n h W =  ( 2 . 16)

the outputs o f which range from -1 to I. In many cases, networks which use the hyperbolic tangent sigmoid 

as a nonlinearity tend to learn faster than those which use the logistic sigmoid [14].

2.3.2.2. The Multilayer Perceptron

The capabilities o f single perceptrons are limited to linear decision boundaries, however, and are 

suitable only for problems requiring a simple linear division o f the pattern space. Many problems require a 

nonlinear partitioning o f  the pattern space. This can be achieved using a multilayer perceptron network, 

which cascades two or more layers o f perceptrons together, making it possible to partition the pattern space 

with arbitrarily complex decision boundaries. The individual perceptrons in the network are called neurons 

or nodes, and usually employ a sigmoid nonlinearity instead of a hard limiter. A typical MLP network 

architecture is depicted in Figure 2.6.

first
hidden layer second

hidden layer
Output layer

input

Figure 2.6. The architecture o f  a typical MLP network

The input vector feeds in to the first layer nodes; the outputs of this layer feed into each of the second 

layer nodes, and so on. Often, the nodes are fully connected between layers. The multiple nodes in the 

output layer correspond to multiple classes in a pattern recognition problem.

For classification problems, Lippmaim [13] demonstrated that a 2-layer MLP can implement arbitrary 

convex decision boundaries given a sufficient number o f hidden layer nodes. Essentially, each hidden layer
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node provides a linear boundary in pattern space, and each o f the boundaries may be nonlinearly connected 

in a smooth fashion with the others by the sigmoid nonlinearity.

Many algorithms have been developed which adapt the network weights so as to provide a suitable 

map between the set o f input vectors and the set of desired responses. In general, an algorithm is either 

supervised, in which case the desired response is available during the learning phase, or unsupervised, in 

which case clusters are formed from the input patterns. A training dataset o f textures includes knowledge of 

the actual class of movement, and therefore, our interest here is limited to supervised learning. The 

backpropagation algorithm is used to train the MLP in this work; it is briefly explained in the next section.

2.3.2.3. The Back-Propagation Training Algorithm

Back Propagation is a generalization o f the LMS algorithm [13]. It uses a gradient search technique to 

minimize a cost function equal to a mean square difference between the desired and the actual net outputs. 

The net is trained by initially selecting small random weights and internal thresholds and then presenting all 

training data repeatedly. Weights are adjusted after every trial using information specifying the correct 

class imtil the weights converge and the cost function is reduced to an acceptable value. An essential 

component o f the algorithm is the iterative method described in Figine 2.7 that propagates error terms 

required to adapt weights back from nodes in the output layer to nodes in lower layers.

2.3.2.4. Issues in MLP training

Learning Rate: The learning rates can be uniform throughout the network, or different for each layer or 

node. In general, it is difficult to determine the best learning rate, but a useful rule o f thumb is to make the 

learning rate for each node inversely proportional to the average magnitude o f the vector feeding the node. 

Many schemes that adapt the learning rate as a function o f the local ciuvatme of the error surface have been 

proposed [14]. The simplest approach is to add a momentiun term of the form a(w(^)-iv(A: - 1)) to each 

weight update, where 0  < a  < 1 . This term makes the current search direction an exponentially weighted 

average o f past directions, and helps keep the weights moving across flat portions o f the error surface after 

they have descended from steep portions.
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Stopping Criteria: The iterative process o f confuting the gradient and adjusting the weights is 

continued until a minimum is found in the error surface or a point determined to be sufficiently close. 

Several measures are candidates for stopping criteria. If the magnitude of the gradient falls below a chosen 

level, the algorithm may be terminated, as this may indicate that the minimum is being approached. Perhaps 

a more common stopping criterion is a lower threshold on the sum square error, J(w). This requires 

knowledge o f the minimum value o f J(w), which is not always available. One might consider stopping 

when a chosen number o f iterations have been performed. In this situation, the nmnber o f iterations must be 

determined by empirical evidence gathered from previous training sessions. There is no guarantee that the 

best network performance with respect to the network’s stun squared error reflects the set of weights 

yielding the best classification performance. Indeed, this is a limitation of the sum squared error cost 

function used by the back-propagation algorithm.

Hidden layer Nodes: The optimum number o f hidden layers is difficult to establish, and is strongly 

dependent on the nature of the data. The optimum size is that which would enable the network to capture 

only the underlying structure o f the data. The upper bound on the number o f hidden layer nodes should be 

less than the number of training samples, or the network simply memorizes the training samples, resulting 

in poor generalization. In addition to network architecture, generalization is affected by the number of 

patterns and the complexity o f the problem at hand.

2.3.3. OTHER CLASSIFIERS

Multi-layer perceptron neural networks and linear discriminant analysis are simple, yet effective 

pattern classifiers, and for this reason, they are widely used [10]. Many alternative approaches to pattern 

recognition exist however. Ultimately, the best classifier depends on the nature o f the data to be classified. 

The next section provides a brief review of other important classifiers, which offer slightly different 

approaches to the classification problem.
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A sigmoidal logistic nonlinearity is used where the function f(a) is

-  I +
Step 1. Initialize weights and offsets

Set al weights and node offsets to small random values.
Step 2. Present input and desired outputs

Present a continuous valued input vector and specify the desired outputs
. I f  the net is used as a classifier then all desired outputs are typically set to zero 

except for that corresponding to the class the input is from. That desired output is 1. The input 
could be new on each trial or samples from a training set could be presented cyclically until 
weights stabilize.

Step 3. Calculate actual outputs
Use the sigmoid nonlinearity from above and the formulas

output layer output 1/ = /

second hidden layer output

V k=0 
f  N , - l

V 7=0

0 < l <  M - \

0 < k < N - , - \

first hidden layer output xj = /
N - \

V 7 = 0

to calculate the outputs /o .y ,.............. -
Step 4. Adapt weights

Use a recursive algorithm starting at the output nodes and working back to the first hidden layer. 
Adjust weights by

W jjO  +  1) =  W ÿ ( / )  +  r j â j X j

where Wÿft) is the weight from the hidden node i or from an input node j  at time t, xj  is either the
output o f the node i or is an input, is the gain term, and Ô; is an error term for node j. If node j is an
output node, then

^7 =  y j i }  -  y j ) i d j  -  yj) ,  
where d, is the desired output o f node j and y, is the actual output.
If  node j  is an internal hidden node, then

S j= x 'j i l - x ) )Z ^ k ^ jk  .
k

where k is over all nodes in the layers above node j. Internal node thresholds are adapted in a 
similar manner by assuming they are connection weights on links from auxiliary constant-valued 
inputs. Convergence is sometimes faster if a momentum is added and weight changes are 
smoothed by

wÿ(r + 1) = + qSjXj + a(H^y(t) -  Ĥ y(t - 1) ) , where 0 < a < l.
Step 5. Repeat by going to step 2.

Figure 2.7. The Back-Prcpagarion Training Algorithm
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2.33.1. Distance classifiers

The motivation for using distance functions as a classification tool follows naturally from the notion 

that the similarity o f pattern vectors may be measured by their proximity. Pattern classification by distance 

functions can be expected to yield satisfactory results only when the classes tend to be well clustered. Since 

the proximity o f an unknown pattern to the patterns of a known class serves as a measure for its 

classification, these approaches are termed minimum-distance classifiers. The Euclidean distance between a 

given pattern vector x and the i* prototype vector is

A = |k-T ,i| = y l( .x -y i f( x -y i)  (2.17)

where y1.y2 .- -.yjc ate the prototypes o f the K pattern classes. A minimum-distance classifier computes the 

distance from an unknown pattern x to the prototype o f each class, which is the mean vector of the pattern 

vectors within each class, and assigns the pattern to the closest class.

The decision boundaries for minimum-distance classifiers are the perpendicular bisectors of the lines 

joining the prototypes o f  different classes. Therefore, minimum distance classifiers are a special case of 

linear classifiers, in which the decision boundaries are constrained to have this property.

Consider a set of sample patterns of known class membership .f;, j , where it is assumed that

each pattern belongs to one o f the classes y i.y i.—,yjc- The nearest-neighbor (NN) classification rule 

assigns a pattern x to the class o f its nearest neighbor, where r, es^,S2 ,■..,Sp is a nearest neighbor to x if

D(5,-,x) = min|D(jp,jc)|, p = \  P (2.18)

where D is any distance measure defined on the pattern space.

This is called the 1-NN mle since it employs only the class membership o f the nearest neighbor to x. A 

k-NN mle consists o f determining the k nearest neighbors, and classifying x according to the most 

prevalent class in this group.

One of the drawbacks of the k-NN methods is that, in order to provide a sufficiently rich set of 

exemplars, it is necessary to store a large set o f sample pattems o f known classification. In addition, the 

distances from each pattern to be classified to all the stored samples must be computed for classification. 

This represents a severe computational burden for large datasets.
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2.4. FEATURE EXTRACTION

2.4.1. THE IMPORTANCE OF FEATURE EXTRACTION

The preceding section explained the various techniques available for pattern classification. Before a 

pattern classifier can be properly designed or effectively used, it is necessary to consider the feature 

extraction and data reduction problems. Although feature extraction should be considered before a 

classifier is designed, a greater appreciation of the importance o f  feature extraction is gained when the 

order of presentation o f  the two topics has been reversed.

The goal is to eliminate a significant number o f dimensions o f  the multivariate data to obtain efficient 

representation o f  the underlying structure. In the context o f pattern classification, feature extraction consists 

o f choosing those features that are most effective for preserving class separability. Feature extraction 

methods can be divided into two groups: statistical and structural. Statistical feature extraction methods 

lend themselves to direct mathematical description and machine implementation. Among the significant 

contributions to statistical feature extraction are the orthogonal transform methods (the FFT, WT, singular 

value decomposition, etc.)

2.4.2. FEATURE EXTRACTION FOR CLASSIFICATION

When we have two or more classes of data, the goal o f feature extraction is to choose those features 

that are most effective for preserving class separability. This section explores the issues in selecting a 

feature set that accurately represents the data of interest. A feature set may be considered optimum in some 

sense if it maximizes or minimizes a chosen class labeling, class separability criterion.

Class separability criteria are essentially independent o f the coordinate systems [7]. Furthermore, class 

separability depends not only on the class distributions but also on the classifier used. For example, the 

optimum feature set for a lineal classifier may not be the optimum set for the other classifiers for the same 

distributions. In order to avoid this additional complexity, let us assume that we seek the optimum feature 

set with reference to the Bayes classifier, which results in the minimum error for the given distributions. 

Then, class separability becomes equivalent to the probability o f error due to the Bayes classifier, which is 

the best one can expect provided exact knowledge o f the a posteriori probabilities is available..
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Therefore, theoretically speaking, the Bayes error is the optimum measure for feature effectiveness. A 

major disadvantage o f the Bayes error as a criterion is the fact that an explicit mathematical expression is 

not available except for a very few special cases.

The criteria to evaluate the effectiveness of features must be a measure of the overlap or class 

separability among the distributions, and not a measiue o f  fit such as the mean-square error. The Bayes 

error is the best criterion to evaluate feature sets, and a posteriori probability functions are the ideal 

features. Unfortimately, the Bayes error is too complex mathematically, and therefore we need a simpler 

criterion associated with the systematic feature extraction algorithms. One such criterion is based on scatter 

matrices. It is simple in expression and gives systematic feature extraction algorithms.

There are two criteria types that are frequently used in practice. One type is based on a family of 

scatter matrices that are conceptually simple and give systematic feature extraction algoritfims. The criteria 

used measure the class separability of the L classes but do not relate directly to the Bayes error. The other 

type is a family o f  criteria that give upper bounds to the Bayes error. The Bhattacharyya distance is one of 

these criteria. However, these criteria are developed only for two-class problems, and they are based on the 

normality assumption [7].

2.4.2.1. Scatter Matrices and Separability Criteria

In discriminant analysis of statistics, within-class, between-class and mixture scatter matrices are used 

to formulate criteria for class separability [7]. A within-class scatter matrix shows the scatter o f samples 

around their respective class expected vectors, and is expressed as

L L

S .̂ = = (2.19)
(=1 t=i

On the other hand, a between-class scatter matrix is the scatter of the expected vectors around the mixture

mean as

5ft = ^  PiiMi -  (2 .2 0 )
1=1

where Mo represents the expected vector of the mixture distribution and is given by
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M,o = E{%) = ^ a A f , (2 .21)
(=1

In order to formulate class separability, these matrices need to be converted to a number. The number 

should be larger when the between-class scatter is larger or when the within-class scatter is smaller. There 

are several ways to do this, and typical criteria are the following:

J\ Sfj)

Vi = In

^3 = trS/, -  -  c)

Jd = trSh
trS^

(2 .22)

(2.23)

(2.24)

(2.25)

where |S| is the determinant o f 5, p is a Lagrange multiplier and c is a constant.

7i and Ji are invariant under any nonsingular linear transformation, while J 3 and V4 are dependent on 

the coordinate system The optimization o f V, and V, will result in the same linear features, i.e., the trace 

and determinant criteria produce the same linear features for signal representation. Furthermore, these 

optimal features are the same no matter which combination o f St, and is used [7], In this dissertation, J\ 

is used for optimization.

A pattern recognition system consists of two parts; a feature extractor and a classifier. If  we look at the 

feature extraction block closely, it consists of a feature extraction block and a dimensionality reduction 

block, which are shown in Figure 2.7.

input Classes
F e a tu re

C la s s i f ic a t io n
F e a tu re

E x tra c tio n
D im e n s io n a l i ty

Re du c t ion

Figure 2.8. Structure of a classifier
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2 ^ . DIMENSIONALITY REDUCTION

The best subset or combination of featiu-es for the pmpose of classification needs to be determined. 

Reducing the dimensionality o f the problem simplifies the task of the classifier. The main goal is to ensure 

that as much of the relevant information as possible is preserved in as few dimensions as possible. A 

classifier with fewer inputs has fewer adaptive parameters to be determined, leading to a classifier with 

better generalization properties. Dimensionality reduction strategies may be characterized as either feature 

selection or feature projection.

2.5.1. FEATURE SELECTION

The feature selection approach attempts to reduce the number of variables by selecting the best subset 

o f  the original feature set, according to some criterion. Feature selection necessarily consists o f two 

components [7].

1. A criterion must be established by which it is possible to judge whether one subset o f  features is better 

than another.

2. A systematic procedure must be found for searching through candidate subsets o f features.

Ideally, the selection criterion should be taken to be the probability o f misclassification. In practice, 

evaluation of this criterion is generally too complex, and we have to resort to simpler criteria such as those 

based upon class separability. Similarly, in an ideal situation the search procedure should consist of an 

exhaustive search o f all possible subsets. Exhaustive methods are often impractical due to computational 

complexity, and non-exhaustive searches and suboptimal searches are often used in practice [7].

2.5.2. FEATURE PROJECTION

As opposed to feature selection, which seeks to select the best subset o f the original feature space for 

class separability, the goal of feature projection methods is to determine the best combination of the 

original features to form a feature set. For classification, the projection should map the data into separate 

clusters, one per class, facilitating the classification task.
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2.5.2.1. Principal Components Analysis

Principal component analysis (PGA) [15] provides a linear map that minimizes the mean-square error 

(MMSE). PCA’s effectiveness in pattern recognition is due to its ability to eliminate linear dependencies 

and uncorrelated noise in the data.

2.5 2.2. Separability based Dimensionality Reduction

Unlike Mean Square Error (MSE), which is the most widely used criteria for signal representation, 

class separability measures are typically invariant under any non-singular linear or non-linear 

transformation. However, any singular mapping used for dimensionality reduction results in the loss of 

some discriminating information. Our objective is to find the mapping that for a given reduction in space 

dimensionality provides the maximum class separability. In other words, we are searching among all 

possible singular transformations for the best subspace, which preserves class separability as much as 

possible in the lowest possible dimensional space, as illustrated in Figure 2.8. So we are seeking a linear 

transformation A from R" to R™ with m<n such that

A : X c R " - * Y œ R’" (2.26)

A = argmin^^| J x  -  |  (2.27)

where Jx=t r {S^ )  and Jy=tr{S^)  are separabilities computed over the X and Y = A ^ X  spaces

respectively. Thus A optimizes Jy, i.e. minimizes the drop in cost | jy  -  incurred by the reduction in

the feature space dimensionality. It can be shown that for such an optimum A

I = y = I,...,n (2.28)

where the s and A.̂  s are the eigenvalues of the corresponding separation matrices and [7]. This 

observation and the fact that

Jy = tr(S^) = ^ ^ 2 ,̂  (2.29)
1=1

suggest that one can maximize (or minimize) Jy by taking the largest (or smallest) m eigenvalues o f S^. 

Note that the dimensionality m o f the resulting set of feature vectors is rank(S) = min(n, L-1), where L is 

number of classes in our training set.
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Therefore, the optimal linear transformation from the initial representation space in R" to a low- 

dimensional feature space in R” based on our selected separation measure results from projecting the input 

vectors x onto m eigenvectors corresponding to the m largest eigenvalues o f the separation matrix S^. 

These optimal vectors or direction can be obtained from a sufficiently rich training set and can be updated 

if needed.

C

A

SO SI 82 S3 X

Figure 2.9. Dimensionality Reduction o f  the feature vectors

2.6. SUMMARY

The intent of this chapter has been to provide a global perspective on the problem of signal 

classification, and to provide some insight into the issues specific to texture classification and fault 

identification. The aspects of the classification problem are perhaps seen with greater clarity by partitioning 

the task into the stages o f signal representation and classifier design. The process of signal classification 

consists of a feature extraction stage and a dimensionality reduction stage. It is proposed that the time- 

frequency domain provides a robust and versatile framework for feature extraction, with the expectation 

that this two-dimensional representation concentrates discriminant information more effectively than one

dimensional alternatives in either time or frequency. These time-frequency representations and the 

transforms with such representations are presented in the next chapter.
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CHAPTERS 

WAVELETS AND SUB-BAND FILTER BANKS

This chapter gives a short introduction to the fundamentals o f wavelets, sub-band filter banks and 

multiresolution analysis (MRA) [16]. The material presented in this chapter, although simplified, should be 

sufficient for understanding the fundamental principles of wavelets and sub-band filter banks. The chapter 

is only meant to serve as a building block for later chapters where individual aspects o f  the theory and the 

design of wavelets are treated more carefully as required in each chapter.

This chapter starts by expanding the signals in terms o f wavelet basis functions and proceeds by 

representing the signals in the time-ffequency plane. It reviews the fundamentals o f wavelet theory and 

defines the scaling and wavelet functions. It then goes on to present the sub-band filter banks and their 

relationship with wavelets. The chapter proceeds by discussing various wavelet design techniques based on 

different design criteria. The fast implementation is in fact one o f the primary reasons wavelets have 

attracted such an interest in signal processing, applied mathematics and engineering in general. Notice that 

in the interest o f making this introduction to wavelets and MRA as simple and as clear as possible, the 

entire chapter has been limited to the discussion of compactly supported orthogonal dyadic (2 -band) 

wavelets.

3.1. SERIES-EXPANSION OF SIGNALS

Given a signal from a space S and a set o f signals {(p;};ez for that space so that x  can be written as

jc = £a,-ip,. (3.1)
I

The set {Ç3,} is complete for the space S if  all signals x g S can be expanded as in (3.1). In that case, there

exists a dual set such that the expansion coefficients can be computed as

(3.2)
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when X and % are real discrete-time sequences, and

«I = (3.3)

when they are real continuous-time functions. The above expressions are the inner products o f the % 's 

with the signal x, denoted as < % ,x>. When the set { % } is orthonormal and complete, it is an orthonormal 

basis for S and the basis and its dual are the same, that is (?, = % . Then

) = <5['-y] (3.4)

where <5[i] equal I if i=0, and 0 otherwise. If the set is complete and the vectors (p; are linearly independent 

but not orthonormal, the basis is a biorthogonal basis, and the basis and its dual satisfy

) = <5['-y] (3.5)

What is a good basis for S? The answer depends on the class o f signals to be represented and on the choice 

o f a criterion for quality. However, in general a good basis is one that allows compact representation. 

Desirable properties o f the basis functions include computational efficiency, orthogonality, and good time- 

frequency localization. Expansions with some structure are o f interest for complexity reasons. That is, 

expansions where the various basis vectors are related to each other by some elementary operations such as 

shifting in time, scaling, and modulation are of interest [16].

3.2. TIME-FREQUENCY REPRESENTATIONS

The primary goal o f signal analysis is to extract information from a signal, relevant to a particular 

application. Time-frequency representations (TFR) combine time-domain and frequency-domain analyses 

to yield a potentially more revealing picture o f the temporal localization of a signal’s spectral 

characteristics. The time-frequency localization o f the basis functions and the amplitude o f their 

coefficients describe the signal’s TFR.

When calculating the signal expansion, localization [17] o f a given basis in time and frequency is the 

primary concern. The localization of a particular basis function is the spread of the function in time (IJ and

frequency (la). The intervals I, and la contain 90% of the energy o f the time and frequency domain
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functions, and are centered around the center o f gravity o f and . This is called a “tile” in the

time-frequency domain [16]. A shift in time results in shifting the tile while modulation shifts the tile in 

frequency. By scaling the function, both the shape and the localization of the tile are affected. The analysis 

functions of the wavelet transform are defined as

Va a
(3.6)

where the function y(t) is usually a band-pass filter. Thus, large a’s ( a » l )  correspond to long basis 

functions, and identify long-term trends in the signal to be analyzed. Small a ’s (0<a<l) lead to short term 

basis functions, which follow short term behavior of the signal (refer to Figure 3.1). This implies that: Scale 

is proportional to the duration of the basis functions used in the signal expansion or inversely proportional 

to the frequency. Scaling does not change the time-bandwidth product, it only exchanges one resolution for 

the other.

Frequency

/V - V  V
M  I

TÏ me

Figure 3.1 Shifts and scales o f  prototype Band-pass wavelet and Tilings o f  the Time-Frequency plane

TFRs may be divided into two groups by the nature of their transforms: linear methods (including the short- 

time Fourier transform and the wavelet transform) and quadratic methods (of which the Wigner-Ville 

distribution is fundamental). The concept central to linear methods is that o f decomposing a signal into 

time-ffequency atoms.
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3.2.1. THE SHORT-TIME FOURIER TRANSFORM

The short-time Fourier transform (STFT) was first adopted by Gabor [18] to define a two-dimensional 

time-frequency representation. The Fourier transform of the windowed signal x(r)g‘( r - t )  yields the 

STFT:

STFT{tJ)=  ^x{T )g \z-t)e -^ j‘̂ ^dT (3.7)

The STFT has many useful properties, including efficient computation. The main drawback o f  the STFT is 

that even the most carefully chosen sampling grid is nonetheless constrained by the fact that each cell in the 

time-frequency plane must have an identical shape. The division of the frequency domain for the STFT is 

shown in Figure 3.2.a.

3.2.2. THE WAVELET TRANSFORM

A fundamental property of the wavelet transform (WT) is that the time resolution At and the frequency 

resolution Af vary in the time-frequency plane. The dyadic wavelet transform is a constant relative 

bandwidth analysis with shifts and scales. The bandwidths of the analysis windows are spread 

logarithmically with respect to frequency, which is shown in Figure 3.2.b. To achieve changing time- 

frequency tiles because o f  the scaling, take a real band-pass filter with impulse response and zero mean

J^(O^/ = ^ ( 0 ) = 0 (3.8)

Thus, define the continuous wavelet transform as

1 r • , t —b
■J
R

where vy(t) is a prototype window referred to as the mother wavelet and a sR *  and b s R  . So

where y/aj>0) follows as in equation (3.6) and the factor is used to conserve norm. The analysis
•4a

determines the correlation of the signal with shifted and scaled versions o f the mother wavelet, shown in 

Figure 3.3. This zooming in and out property makes wavelets extremely powerful for analyzing both time
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and space localized phenomena as well as long term signal trends. The digital implementation o f the CWT 

can be computed directly by convolving the signal with a scaled and dilated version o f the mother wavelet, 

which is called Discrete Wavelet Transform (DWT).

STFT

Frequency
(a)

WT

fo Frequency

(b)

Figure 3.2. Division o f  the frequency domain for the STFT and the WT

translaticn 
-4------------------------►

(a)

d
i
1
a
t
i
o
n (b)

Figure 3.3. Dilation and translation
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3.2.3. THE WAVELET PACKET TRANSFORM

The wavelet packet transform (WPT) is a generalized version o f the CWT and the DWT. The 

transform is redundant, allowing one o f many orthogonal bases to be chosen. As a result, the tiling o f the 

time-ffequency plane is configurable; the partitioning of the frequency axis may take many forms to suit 

the needs of the application. This is illustrated in Figure 3.4.b.

Time Time
(a) (b)

Figure 3.4. The time-frequency plane tiling o f  (a) wavelet basis (b) an arbitrary wavelet packet basis

3.2.4. TIME-FREQUENCY REPRESENTATIONS FOR SIGNAL CLASSIFICATION

The fundamental purpose of featme extraction for classification is to emphasize the important 

information in the data, and to de-emphasize that which is irrelevant. This implies transforming the raw 

data into a domain that presents the information contained in the signal more clearly: a map, which 

concentrates and localizes information. Time-ffequency methods offer the ability to localize the energy 

distribution of a signal in time and frequency. The nature of the localization depends upon the method 

chosen.

The utility o f the TFR as a feature extractor for pattern classification lies in its ability to describe 

important structures in the time-frequency plane. This requires an appropriate tiling of the time-frequency 

plane [19]. The time-frequency tilings for the transforms are:

• The S I FT segments the time-frequency plane into rectangles o f fixed aspect ratio

• The wavelet transform allows greater frequency resolution at lower frequencies and better time

resolution at high resolutions
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• The wavelet packet transform permits an arbitrary segmentation of the frequency axis. The tiling is the 

result o f a basis selection procedure that optimizes a cost function chosen to evaluate the efficacy of 

the wavelet packet basis.

The time-frequency resolution o f all the above are bounded by the Heisenberg' uncertainty. To be a 

good feature extractor, the TFR must cluster the information within each group class, and provide maximal 

discrimination o f these clusters. When using the time-frequency plane as a feature space, it is imperative 

that the representation should provide good localization using as few TFR cells as possible to simplify the 

role of the pattern classifier.

33. M ULTIRESOLUTION

The basic idea o f multiresolution is successive approximation. A signal is written as a coarse 

approximation (typically a low-pass, subsampled version) plus a prediction error, which is the difference 

between the original signal and a prediction based on the coarse version. Reconstruction can be done by 

simply adding the prediction error to the prediction. This scheme can be iterated on the coarse version. The 

successive approximation approach is identical to wavelet decomposition since it performs a 

multiresolution analysis [20] on the signal. The decomposition into a coarse resolution, which gives an 

approximate but adequate version o f the full image, plus a difference or detail image, is conceptually very 

important. Coarse and detail subspaces are orthogonal to each other, i.e. the detail signal is the difference 

between the fine and the coarse version o f the signal. By applying the successive approximation 

recursively, the space o f input signals can be spaimed by spaces o f successive details at all resolutions. This 

follows because, as the detail resolution goes to infinity, the approximation error goes to zero.

The applications reported in this work are two-dimensional, which can be extended from one- 

dimensional signal decompositions. Following the separable filter case, the two-dimensional decomposition 

can be obtained by performing a one-dimensional decomposition separately in each dimension. For easy

' Iff(t) vanishes faster than as / ±œ, then > —, where equality holds only for Gaussian
Vr -

signals.
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understanding, all the discussion and mathematics involved in this chapter are limited to one-dimension, 

which can be extended to two dimensions using separable decomposition.

3.3.1. SCALING FUNCTION

The principles o f wavelet theory and multiresolution analysis [21] are best understood by first 

considering the function generating the multiresolution analysis, namely the scaling function, Vo(x). A 

family o f scaling functions can be generated by scaling and translating a function, possibly o f compact 

support (on a real Euclidean distance space, compact is equivalent to closed and bounded). A family of 

dyadic functions, tpoj.kfx), is defined by

y
= VofZ-'x-A :; V / . / reZ  (3.10)

In the above equation, the scaling factor 2 can be replaced by any integer M. If the support o f vpo(x ) is 

finite, then as j increases (decreases), e.g., as scale changes between fine and coarse, the translation step 

size decreases ( increases), and hence the scaling function ipo(x) can be localized in both space-time and 

scale-frequency.

The multiresolution resolution principles can be understood clearly by introducing a sequence of 

successive approximation spaces, Woj defined by

% ./ = span ipQjj, (x) (3.11)

Moreover, to generate a multiresolution analysis, the closed subspaces Woj should satisfy the following 

nesting property

- ^ 0.-2 C C IVqo c  c  1̂ 02 c... (3.12)

with

l i m %  ; = {0}, lim ifC  = L-(/{) (3.13)
/ —►-O0 ’ y—»-co

However, conditions (3.12) and (3.13) are not sufficient to define a multiresolution analysis. In fact, in 

addition to the above scale space relations each o f the scale spaces should be scaled versions o f the central 

space Wo.o- That is, if  /  e l}{R) the following must be true:
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«  /(x )e % .o  (3.14)

then a multiresolution analysis exists. Furthermore, if /(x)eW^ o. then / ( x - i )  e Wg o for all ke Z  and

hence from (3.14) this inq)lies that if /(x ) e t h e n  / ( x - 2 "^i) eW&j for all keZ. Finally, if one in

addition require that Vo(x) satisfy

-  k)dx = S{k) (3.15)
jR

then |v'o,y.*(.’̂ )}^^ is an orthonormal basis for Wo.j for all jeZ .

Clearly since e %  , ,  any function in the space Wo.o, spaimed by v)/o.o.k(x), can uniquely be

represented by a sum of basis functions in Wqj, namely Vo.i.k(x). Hence the fundamental scaling function, 

v|/o(x)= Vo.ofx), satisfies the two-scale dilation equation

WoM = > /2 ^  Aq(^)(/o(2x - k )  (3.16)
k

where ho is defined to be the scaling filter relating Wq.q and Wq., and determines the properties of vj/q. If ho 

is a finite length N sequence (FIR filter) then vj/o(x) has compact support. The dyadic difference equation 

given by (3.16) is the most fundamental relation in building up the theory of wavelet analysis. In Figure

3.5 the relation between the niultiresolution scale spaces given by (3.13)-(3.15) are pictorially illustrated.

Figure 3.5. Illustration o f the nesting o f the scale spaces Wqj

So far, we have only set forth the necessary and desired properties that a multiresolution 

decomposition should satisfy and we have not made any reference to the existence of such a sequence of
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spaces. In the following, the conditions on ho for the existence of multiresolution analysis are shown.

Daubechies [22] showed that if the scaling sequence ho was of finite length, N=2K, and furthermore

satisfied

Af-I
^A o(n) = > ^ (3.17)

^/io(/i)^{/j + 2/) = 5(/) (3.18)

then (3.16) is guaranteed to converge to a compactly supported function. Equation (3.17) is a necessary and 

sufficient condition for convergence o f (3.16) [23], (3.18) is only a necessary condition for

orthogonality of the scaling functions. We also observe that ho is a low-pass filter, that the frequency

response of ho at co=0 is Vz , and furthermore that the frequency response o f  ho must have a zero at (d=ti 

[21].

A filter ho satisfying (3.17) is often referred in the filter bank literature as a quadrature mirror filter 

(QMF) [24].

3.3.2. WAVELET FUNCTION

While the scaling function defines a sequence of nested spaces generating an MRA, the wavelets 

define difference spaces (differences between the nested scale spaces). From the previous section, we recall 

that the scaling function vi/o(x), or equivalently the scaling filter ho, uniquely specifies the multiresolution 

analysis. Associated with the scaling function is a family of wavelets,

7

(3.19)

and if we require that the wavelets and scaling functions are orthogonal imder integer translation

("o./.*, j.i, (;r)dx = 0 ,*2  e Z,i < j  (3.20)

then I is a basis for a subset of L^(R ). Now let

CHAPTER 3: WAVELETS AND SUB-BAND FILTER BANKS 38



iV̂ j  = span\(f  ̂jj^{x)

where W| j is the orthogonal complement o f Woj in W , a n d  hence

with

(3.21)

j ^ j

Moreover, by reason o f  (3.12) and (3.13)

^ -(« )=  = (3.22)

That is, L‘(R ) is decomposed into mutually orthogonal subspaces W ,j. It then follows that if  n > J then

n—I 
=  0

y=s-co
n—I

= % v @ 0 w i.,
j ^j

(3.23)

which is obtained by recursively applying (3.21) as a refinement o f the space Wqj spanned by 

(v'o.y.yt (-'■)} . It is also worth noting that the wavelet spaces W ,j inherit the scaling property from Woj,

/(2^x)effî.y «  /(%)eW{.o (3.24)

as well as the invariance under integer translation property. Hence, if  /(x )  e y then / ( x - 2  ■' A-)eW  ̂y for 

all keZ. The relation between Wgy and W i s  pictorially illustrated in Figure 3.6.

L'(R)

Figure 3.6. Illustration o f  the relationship between the scale spaces Woj and the wavelet difference spaces W ,j
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Clearly from (3.21) and Figure 3.6, WojCWqj.,., and hence any function in W ,j can be defined in terms 

o f the basis functions o f Wgj.,. In particular, the wavelets y/\{x) = (/, (,(%), are defined by the following 

dyadic scale recursion

t/i(x) = h\{k)>;/Q{2x-k) (3.25)
k e Z

and hi is the associated wavelet filter of real or complex coefficients relating the two spaces, W;.o and Wq ,. 

From (3.20) one can show, by applying (3.15), that necessarily

'^ho(k)h i(k-2D  = 0 (3.26)
k e Z

Using (3.26), a length N  orthogonal filter hi can be obtained [24] from the length N scaling filter hq and is 

given by

AiCO = ( - ! )% (  (3.27)

Also, if (3.17) and (3.18) are satisfied then (3.27) implies that

%]*,(*) = 0 (3.28)
k

and hence h| is a complementary high-pass filter. Using filter bank terminology, the filter pair hq and h| are

called a quadrature mirror filter bank (QMF).

A unique compactly supported 2-band wavelet basis exists when condition (3.17) holds if in addition

A/ yy
the — quadratic constraints given by (3.18) are satisfied. Satisfying (3.17) and (3.18) leaves —— I free

parameters for designing the scaling filter. However, it is not always clear what properties one should ask

q/q(x) to have. Finally, since v(/|(x) is generated by finite linear combinations o f vyq(x), mathematical 

properties of v(/i(x) can be derived from the properties o f q/q(x).

3.3.3. THE SCALING AND WAVELET FUNCTIONS

Although we rarely perform computation using the wavelet and the scaling function directly, we 

should be able to compute and display both of them. There are two fundamentally different methods for
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computing these functions [21]. The first method computes the values of the function on the dyadic rational 

and is based on the evaluation of (3.10) over the integers giving raise to

N-l
If/oik) = hj(_n)i^Q(2k - n )  (3.29)

The recursion is initialized with the solution to the eigenvector associated with the eigenvalue of unity of 

the eigenvalue problem obtained by evaluating (3.29) for k = 0,1,...,N-1. An alternative method for 

generating the functions is successive approximation. This is based on solving the basic recursive equation

(3.10) iteratively. That is, if (/*(x) denotes the k* iteration then

yv-i
V^o*(-t) =  V 2 2 ^ A ,( / j )v ^ ^ - ‘( 2 x - n )  ( 3 .3 0 )

fT=0

which in the limit converges to v)/o(x) independent of the shape o f the initializer y°(x ).

With either of these algorithms the actual functions can be computed and displayed. Figure 3.7 gives 

several examples o f classical Daubechies wavelets denoted by On where N indicates the length of the 

support.

3.4. WAVELET SELECTION

The choice o f mother wavelet depends very much on the nature o f the signals and the goal of the signal 

processing. The wavelet basis vectors have the following important properties.

1. Regularity: Wavelet regularity is also known as polynomial regularity or smoothness. A K- 

polynomially regular wavelet system is a wavelet system for which the first K wavelet moments 

vanish. Daubechies wavelet bases are called maximally regular wavelet bases or K-regular wavelet 

bases because they have a maximal number o f  wavelet moments set to zero.

2. Vanishing Moments: The first K discrete moments of h, are zero. That is choose ho such that the 

obtained h, satisfies the condition

Ml.^) = ^ n % ( n )  = 0 for k = Q,l,.,K-\ (3.31)
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Nwhere A: = — . Furthermore, Daubechies showed that setting = 0 for k = 0 ,...K-l  improves

the smoothness o f  the associated wavelets with increasing K [22]. By requiring that a maximum 

number o f moments vanished (K=N/2), Daubechies was able to design wavelets o f length N that could 

represent polynomials o f degree up to K-1 exactly. Although this enabled her to get good solutions, it 

is not clear that the vanishing moment property has particular advantages in signal processing. 

Although vanishing moments and smoothness are related, maximizing the number of vanishing 

moments does not yield optimal smoothness for the given number o f parameters [21].

3. Compact Support: Compactly supported functions on any real Euclidean distance space are nonzero 

only on a set that is both closed and bounded. This property is important for efficient and exact 

numerical implementation [25].

Some wavelets are better than others for specific applications, with respect to the properties listed 

above. In general, because o f these properties, wavelet bases generate very efficient and simple 

representations for piecewise smooth signals and images. The manner in which vanishing moments, 

regularity and compact support affect the wavelet’s efficacy as a basis for signal classification is not clear. 

One would expect that a wavelet that “looks like” the elemental components of the signals under 

consideration would be the most appropriate. For a given wavelet, it is reasonable to expect that the small 

scales would capture the local activity, while larger scales would model longer-duration trends in the 

signal. More important is the ability o f the wavelet basis to generate a TFR that clearly distinguishes 

signals in different classes. This requires that the wavelet functions appropriately model the signal, and that 

they be well localized and well behaved in the time-frequency plane.
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Figure 3.7. Daubechies Scaling and Wavelet functions D4 , D^, Dg, and D,a

3.5. TW O-CHANNEL FILTER BANKS

So far, we have been concerned with the wavelet bases and their properties. In this section, we 

examine computation with wavelets, and in particular an efficient algorithm for obtaining the approximated 

wavelet coefficients from samples o f the signals.

To compute the wavelet transform, one has to evaluate a nontrivial integral. However, it is well known 

that the wavelet transform coefficients can be approximated using a filter bank approach, giving rise to the 

familiar discrete wavelet transform (DWT). In fact, rather than having to evaluate the integral in (3.32), the
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discrete wavelet transform can be computed using only the scaling and wavelet filters. Hence, one does not 

have to deal explicitly with the scaling and wavelet function for most applications.

d i jx  = I  W dx  (3.32)

3.5.1. ANALYSIS FILTER BANK - DISCRETE WAVELET TRANSFORM

A relation between the transform coefficients and the scaling and wavelet filters can be derived from

(3.32) using (3.16) and (3.25).

j_
=  / ( x ) 2  2 ifr- ( 2 - i x -  k)dx

= f /(x )2 2  y /,.(„ )v ro (2 (2 - 'x -A :)-n )d r  
"  ttz

I  i= f /W22\h i i m - 2 k ) 2 2 y r o ( 2 J * ^ x - m ) d x

U + i)

= y  hj (m -  2t)j^ /(x )2  2 yro(2-'^x-m)ctc

=  X  im -  2^) {x)dx
meZ

=  yA,(m-2A:Xo.y+i/»
meZ

= ['I' 2 ]fe (^ -m ) *do,y+i/n L

(3.33)

Hence, the coarse resolution scaling and wavelet coefficients are obtained from the fine resolution 

scaling coefficients by way of convolution with the appropriate filter (time reversed) followed by time 

sampling or decimation by 2 (i2 ). In Figure 3.8 the procedure for computing the discrete wavelet transform 

coefficients is illustrated.
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Figure 3.8. Wavelet analysis or discrete wavelet transform

From the derivation o f the DWT algorithm given by (3.33) and Figure (3.8), we see that the DWT 

coefficients are computed without evaluating the integral.

3.5.2. SYNTHESIS FILTER BANK - INVERSE DISCRETE WAVELET TRANSFORM

Similar to the analysis filter bank or the DWT, the synthesis filter bank or signal reconstruction is 

obtained as a weighted sum of wavelet coefficients without the need to deal with the basis functions 

themselves. A function g(x) can be represented at the coarser scale (e.g., j-I)  in terms of both the scaling 

and wavelet functions as follows

S ( ^ )  =  Y ,  ^ Q . j - l . k  V  0 .y - l . i  ( x )  +  Y  ^ \ J - \ . k  V  i.y -i.k  ( ^ )  
keZ *eZ

( j - \ )  ( j - \ )
y-l „ . V' J 1 3 ... /T/-I= Y ^ o j - i . t ^  - x : - k ) + ‘ x - k )

k e Z  k e Z

j_ y
= Y ^ Q . i - \ x '^ 'Y K ( n ) '^ ^ ( 2 ^  x - ( l k + n ) ) +  Y<^\.i-\.k '^^YK(n)^Q('^^ x - d k  + n ))

keZ

I

f=0

iteZ

S  <y-i.k  2 2 x; A q -  2A:;v(/,-r2  ̂X -  
ie Z  /

(3.34)

Multiplying (3.34) by M/oj.m(x) on the left and right and integrating over x, it can be shown using (3.15) and

(3.20) that
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doj.k = X ]  Y^hi{k  -  2m)dij.
(3.35)

- Z K w l P * ' . , - " } } .
(=0

and hence the fine resolution scaling coefficients are obtained by up-sampling (T2)the coarse resolution 

scaling and wavelet coefficients by 2, convolving with the respective filters (i.e., ho and h,), and adding the 

result. In Figure 3.9 the synthesis or IDWT is illustrated graphically.

Quadrature mirror filters (QMF) allow a signal to be split into two down-sampled sub-band signals and 

then reconstructed without aliasing, although non-ideal filters are used. Any input signal can be 

transformed using a two-channel filter bank, with filters ho[n] and h,[n], followed by down-sampling by 2.

1.0.k

l.I.k

il.2Jc

Figure 3.9. Wavelet synthesis or IDWT

3.6. OPTIMAL DESIGN AND PERFORMANCE

No function can be perfectly localized in both the time and frequency domains [16]. The desired 

features of the design depend on the application imder consideration. The optimality concepts and their 

measures are constrained by the limits of time and frequency localization and the completeness 

requirements. The optimal criteria might be based on a single design measure or a set o f measures. Several 

optimality measures are reviewed here [26], [27], [28].
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3.6.1. ENERGY COMPACTION

The energy compaction measure is derived from rate-distortion theory and merges with the entropy 

minimization measure for Gaussian sources. The energy compaction measure for unitary transforms is

AT-I

criiTO
Grc =  =  r - - —  y  ( 3 .3 6 )

N - l  "'/•V

_ y=i

This is the ratio o f the arithmetic mean of the energy, in each sub-band to the geometric mean. This

measure is widely used in evaluating the performance o f  block and sub-band transforms. This measure 

shapes the frequency responses of the filter functions for the given input spectrum. Hence, the solution is a 

matched filter bank.

3.6.2. ALIASING ENERGY

Any realizable lossless decomposition technique performs an aliasing cancellation in order to achieve 

perfect reconstruction. Because o f the quantization (discarding) o f  some o f the subbands, non-canceled 

aliasing signal components may exist in the reconstructed signal in practice. The aliasing energy 

component at the reconstructed low-pass filter output is:

<̂ Ia = -  dfù (3.37)
^ -It

where Sxx(e’“ ) is the input spectrum. The optimal solution based on this measure minimizes the aliasing 

energy component o f the low-pass branch.

3.6.3. UNIT STEP RESPONSE

The time-local features of signals can be effectively represented witli bases that consist o f functions 

well localized in the time domain. The unit-step response o f  the filter is widely used as a measure o f time 

localization and is defined as

a{n) = h(n) * w(n) (3.38)
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where u(n) is the unit step function. The energy difference between the unit step response a(n) and the unit 

step function u(n) is expressed as

N - l

t=0
'ï .h(n)

n~0
- 1 (3.39)

E; becomes zero when h(n)=0(n). This is the best time-local solution with the worst frequency selectivity. 

This measure is a mathematical tool to monitor the time domain properties o f the designed filter.

3.6.4. ZERO-MEAN BAND-PASS AND HIGH-PASS FILTERS

Many practical signal sources have a significant spectral component at zero frequency. Therefore, an 

efficient decomposition technique should be able to represent the DC component with only basis functions. 

The high-pass filter of a two-band PR-QMF banks should be constrained to have zero-mean (or a DC gain 

o f zero) via

^ (-1 )"A (") = 0 (3.40)

This requirement implies that there must be at least one zero o f the low-pass prototype filter Hfe'”’) at C0=7i. 

That implies some degree of regularity in the context of wavelet transform theory.

3.6.5. UNCORRELATED SUB-BAND COEFFICIENTS

The Karhunen-Loeve Transform (KLT) is the imique example o f block transforms with perfectly 

uncorrelated transform coefficients for the given input statistics. The uncorrelatedness and maximum 

energy compaction requirements are available in the KLT solution. However, this is not the case with filter 

banks. The cross-correlation of the two sub-band signals yo(n), y,(n) at the same time index is

R J n )  Vn (3.41)

In general, there is more than one filter solution that satisfies the perfect decorrelation condition, Rlh(0)=0. 

The one that maximizes the objective function for optimization is the desired solution.
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3.6.6. MAXIMALLY FLAT FREQUENCY RESPONSE

The fundamental question is the degree o f  flatness in the frequency response. The sharpness of the 

transition band has been investigated since the inception o f filter design in the signal processing filed. The

most common tool for flamess is the number o f  z-plane zeros in the filter at 0)=7l. This condition forces the 

filter bank solution to have zero-mean for the band-pass and high-pass functions. This degree of 

smoothness might be necessary for some signal processing applications. Wavelet regularity was proposed 

as a measure of wavelet basis design. The number o f zeros at z = -1 in the low-pass prototype filter in a 

two-band PR-QMF bank was used as the design tool for wavelet and scaling bases. Daubechies proposed a

wavelet basis obtained by placing, the maximum possible number o f zeros o f the low-pass filter at (0=71. 

The following optimality measure is from [29].

3.6.7. TIME-FREQUENCY LOCALIZATION

The time and frequency centers and spreads are defined as

-n)-[x(n)|^

  ----------  (3-42)

and

  ---------------  (3.43)

All the measures of design discussed in this section merely shape time and frequency features of the filters 

or basis functions. They can be directly used as the design criteria.

3.7. BEST BASIS SELECTION

The power o f the wavelet packet transform is that a “best basis” can be chosen for a specific task if it 

can be properly identified from an ensemble o f  possible candidates. To determine the best basis, it is 

necessary to evaluate and compare the efficacy o f many bases. To this end, the cost function must be
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chosen to represent the goal o f the application. The best-basis selection algorithm has its origins in signal 

compression [30] and the cost functions [31], [32] associated with compression entail the use o f  some form 

o f entropy measure. This form o f  best basis algorithm is the simplest and is used to introduce the concept o f 

the best basis selection. Subsequently, it is shown how the algorithm may be modified to suit the 

classification problem. The best basis algorithm operates on a binary tree o f subspaces.

3.7.1. BEST BASIS SELECTION FOR SIGNAL COMPRESSION

The best basis selection algorithm operates on a single signal. The best-basis algorithm proposed by 

Coifman and Wickerhauser [30] is a divide and conquer search o f  a binary tree in which one begins with a 

fully decomposed tree, starts at the lowest level, and eliminates branches imtil an optimal solution is found.

The cost function associated with the pruning algorithm is based on entropy since the goal in signal 

compression is to maximize the information with respect to the chosen set of coordinate axes. A natural 

choice is the Shaimon entropy:

//(P) = J]p,log2A- (3.44)

where P={p} is a nonnegative sequence with = 1. Other entropy measures are possible [30] with

varying effects on the outcome o f the algorithm. A brief description o f the pruning algorithm follows.

Consider a single subspace Wj ̂  within a binary packet tree. Let q/j.k denote a set o f basis vectors 

belonging to the subspace Wj k, arranged in matrix form:

Let Aj_k represent the best basis for the signal x restricted to the span o f Yj.u let E be the chosen 

information cost function. The algorithm given in Figure 3.10 “prunes” the binary tree by comparing the 

cost function o f each parent node with its two children.

When the algorithm has completed, we have the best basis Ao.o for the signal x restricted to the span o f 

t̂ o.o = • The chosen best basis consists o f a disjoint set o f  subspaces, and each subspace Wj.k contains
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2"®  ̂ basis vectors. The total number o f basis functions is always N, where = 2"» is the length o f each 

signal X. To make this algorithm fast, the cost function E must be additive: £({x,î ) = ^  £T(x,) so that

(3.45)

This implies that a simple addition suffices instead of computing the cost o f  the union o f the nodes. The 

proof that this algorithm yields the best basis relative to an additive form o f  E may be found in [30]. Given 

the best basis, the transform must find only those coefficients corresponding to the chosen subspaces rather 

than all of the coefficients in the entire binary packet tree.

Given a signal x

Step 1. Choose a time-ffequency decomposition method. That is, specify a wavelet packet transform 

(QMF’s). Specify the depth o f the decomposition J, and an information cost function E.

Step 2. Decompose x into its binary packet tree, and obtain the coefficients {Yj.kX} for j  < J  and

0 < A < 2^ -  I .

Step 3. Begin at level J: set Ajj^ = (/y * for k = - 1.

Step 4. Determine the best subspaces Aj,k for j  = J-1,...,0, k = 0,...,2^-l by

V'y.* i f  E(v^y/) < E(/fy+_2t;:U,4y+ 2*

Figure 3.10. The Best Basis Algorithm

3.7.2. BEST BASIS SELECTION FOR CLASSIFICATION

Fundamental to the success o f any classifier is the quality o f the feature set with which it is provided. 

The desirable properties o f a feature set for classification are:

• the statistical distance between classes are maximized, and

• the feature set supplies the most important features while suppressing the redundant ones.
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These concepts are emphasized in Chapter 2. This previous section presented the adaptive basis 

selection algorithm for signal compression. This section presents an algorithm for selecting the best basis 

for signal classification.

3.7.2.1. Discriminant Measures

In order to determine the best basis for classification among the ensemble o f redundant bases in a 

complete packet decompositioti, it is necessary to establish a measure o f discriminant power. As explained 

in Chapter 2, the ideal criterion would be the probability of misclassification, evaluated upon each 

candidate basis. In practice, evaluation o f this criterion is generally too complex because o f its complex 

mathematical expression and one must resort to mathematically simpler criteria such as class separability. 

Additionally, an ideal evaluation would have each of the 2^ possible orthonormal bases compared in terms 

of the discriminant power. A suboptimal technique that requires far less computation is to prune the packet 

tree by evaluating the individual discriminability of each sub-band. This pruning algorithm is discussed in 

the next section.

It can be assumed that class separability is the most practical measure o f discriminant power as it has a 

closed form expression. An n-feature discriminant measure can be defined as D(p,q), where

p = ate measures used to represent the n features. If  p; and qj are scalars, then the

discriminant measure may take one o f  the following forms:

1. Relative Entropy:

D(p,q) = log— (3.46)
t t

Relative entropy measures the discrepancy o f p from q. The drawback to this measure is that it is not 

symmetric in p and q: characteristics o f the features in p with respect to q does not yield the same 

measure if the class order is reversed. This may tend to bias the relative entropy measure toward the 

activity in one class over that o f  another. This is desirable if the goal is to separate the signal from 

noise, but does not give a fair treatment o f the classes in a pattern recognition system.

2. Symmetric Relative Entropy:
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1=1 1=1

Symmetric relative entropy yields symmetric activity among the classes. 

3. Euclidean Distance:

D{p,q) = \p - q \  = ' ^ [ p i  - q i f  (3.48)
(=I

The Euclidean distance is another symmetric measure.

In general, it is necessary to discriminate from among more than two classes. To compute the

discrepancy between the distributions o f K classes, one must take pairwise combinations of D:

,=I y=,*i

3.T.2.2. The Local Discriminant Basis Algorithm

The local discriminant basis (LDB) algorithm originally developed by Saito [33] selects the binary 

wavelet packet tree, which most discriminates data from a given set of classes. The measure of class 

separability is conveyed by the discriminant measure D. In order to optimize the classification with respect 

to the time-frequency localization characteristics o f the wavelet packet basis, the input parameters to D are 

the time-frequency energy maps of each class.

Let . "i be a set o f training signals belonging to class c, where is the number o f patterns in that

class. The time-frequency energy map o f class c is a table o f positive real values indexed by (],k,n):

r^U,k,n) = - i ^ -------------- forj= 0 ,...,J,k= 0,...,2L l,n= 0,...,2 ''‘> "^ -I . (3.50)

(=1

That is, Tc is computed by accumulating the squares o f the transform coefficients for each entry in the 

binary packet tree (j,k,n), and normalizing by the total energy o f  the signal belonging to class c.

CHAPTER 3: WAVELETS AND SUB-BAND FILTER BANKS 53



Since the algorithm must choose the best set o f subspaces from the binary packet tree, the response 

from individual temporal locations from within a subspace must be added. For K classes, the overall 

discriminant measure for the subspace Wj ̂  is thus:

= 2]D(r,(y,A:,n) T ^ U M )  (3.51)
n=0

Let v|/j.fc denote a set o f basis vectors belonging to the subspace Wj ,̂ arranged in matrix form:

V'y.* =

Let Aj.k represent the LDB for the training set restricted to the span of and let be a work array 

containing the discriminant measure o f the node (j,k). The algorithm is shown in Figure 3.11. When step 3

Given a training dataset consisting o f K classes o f  signals

Stepl. Choose a time-frequency decomposition method. Specify the depth o f the decomposition J and the 

discriminant measure D.

Step2. Construct the time-frequency energy maps for c= l,..., K.

Step3.Begin at level J: set * and Ay * = for k=0,..., 2^-1.

Step4. Determine the best subspaces A for j= J-l,...,0 , k=0,... ,2̂  -1 by the following rule:

Set

^ j.k ̂  ^ j+2k + ̂ y+.2i+I -

(hen Ajj, = ,

else A j = Xy+I 2* + ^y+I.2* + t ^j.k -  ^j+\.2k + ‘̂ y+1.2*+l •

StepS. Order the N basis functions in the LDB by their power o f  discrimination

Step 6. Use the L (<<N) most discriminating basis functions in the LDB for classifier features.

Figure 3.11. The Local Discriminant Basis Algorithm
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has been completed, we have the best basis Ao.o which is the LDB restricted to the span of ^ q.o = - The

chosen LDB consists o f a disjoint set of subspaces, and each subspace  ̂ contains 2"°"  ̂ basis vectors. 

The total number o f basis functions is always N, where N = 2"° is the length o f each signal . Once the 

LDB has been selected, the N transform coefficients, each corresponding to a basis vector within the LDB, 

may be used as features for a classifier. It is desirable to reduce the dimensionality of the representation for 

a classifier feature set. In the algorithm this is done using feature selection methods. The basis functions in 

the LDB must be ranked to determine those that are the most important for classification. As with the 

discriminant measure used for selecting among subbands to determine the LDB, a measure of class 

separability is used to assess the discriminant power of each basis function within the LDB. The dimension 

o f the representation is reduced from N to L by keeping only the bases, which provide the most 

discriminant information in terms of the time-frequency energy distributions between classes. The best 

value o f L depends upon the problem, the nature of the data and the type o f the classifier. In general, this 

can be determined empirically.

Feature projection methods have not been used for dimensionality reduction. Certainly the information 

tends to be dispersed throughout the time-frequency plane; it is difficult to retain the class separability 

information in a low-dimensional feature set using feature selection. Feature projection methods may prove 

to be superior to feature selection methods as they seek to find the best combination of all features in a low

dimensional projection.

In all the algorithms discussed, the QMF-filters used are fixed. The influence of using different filters 

has not been studied with respect to any wavelet packet structure for the purpose o f discrimination or signal 

classification. The dissertation focuses on this study throughout the next chapters. Also, the influence of 

using measures other than the time-frequency energy maps, as well as their influence on discrimination of 

features needs to be studied. Initially, empirically it is shown that the role o f QMF filter is important in the 

task o f signal classification and then we proceed by designing the optimal wavelet based on class 

separability, which significantly improves the classification performance. We extend the work to use the 

same design technique for fault identification in printed circuit boards using infrared imaging.
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3.8. SUMMARY

This chapter has provided the background necessary to develop a means o f wavelet-based feature 

extraction for signal classification. The mathematics and concepts o f wavelet theory have been introduced, 

and extended to include the wavelet packet transform. It is shown that the basis can be determined 

optimally to localize discriminant information by pruning a packet decomposition according to a class 

separability criterion.

In the next chapter, various wavelet packet tree structures based on different criteria are analyzed. The 

performance o f the WT and WPT based feature sets are evaluated in the context of texture classification. 

This chapter also compares the performance o f feature projection based dimensionality reduction to the 

feature selection methods presented in the previous chapters. Finally, the influence of using various feature 

extracting measures on classification performance is studied.
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CHAPTER 4

CHOICE OF BEST BASIS FOR TEXTURE CLASSIFICATION

During last few years, there have been many studies o f classification of signals and images [34] - [39]. 

A variety o f descriptors based on statistical, structural, and spectral characteristics o f  the single or 

multidimensional signals are used to form the best sets o f  discriminant features. This chapter provides an 

analysis o f two multi-scale basis selection algorithms that are used to generate features for classification o f 

textures. The necessity to use criteria dependent basis algorithms for signal classification is presented in the 

Chapter 3. The chapter provides an investigation of the classification performance of feature extraction and 

dimensionality reduction strategies for the textures, which are the major blocks in a general classification 

system.

This chapter is organized as follows. Section 4.1 describes the textures used in analysis and motivates 

the use of multiresolution based methods and tree decompositions for texture classification. The criterion 

used for the wavelet tree decomposition should be chosen depending on the problem [40]. Energy-based 

tree decomposition algorithm developed by Kuo et.al [41], [42] is presented in Section 4.2. The optimal 

features are not known for a given problem. Hence, in Section 4.3 different feature sets are analyzed to 

extract features with appropriate information for texture classification. For signal classification purposes, 

the tree decomposition should be based on some signal-discrimination measure other than the energy o f the 

signal. A separability-based tree decomposition algorithm developed by Chellappa et.al [43], [44] is 

presented in Section 4.4. This algorithm uses class-separability as a criterion to decompose the signals. In 

each case, the parameters o f the feature extraction process are empirically optimized for the texture 

classification problem, based on the subject database acquired for this work. Correspondingly, the efficacy 

of the dimensionality reduction strategies is determined for each feature set. These feature extraction and 

dimensionality reduction strategies are prescribed in the context o f a Euclidean distance classifier. The 

features are based upon the wavelet packet transform that is presented in Section 4.5. Even though we 

know that criteria based wavelet tree decompositions are better for any given problem, the analysis is 

performed with the octave tree also for better understanding and performance conçarison. The octave tree
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based features and the corresponding results are discussed in Section 4.6. The relative performance o f each 

feature set for all the tree structures is compared in Section 4.7 to give a picture o f the best overall signal 

representation for texture classification. One can expect separability based tree decomposition methods 

yield better performance for texture classification. However, the complexity involved is high. A simple, 

new methodology developed for texture classification is presented in Section 4.8. Performance is 

summarized in Section 4.9.

4.1. NATURAL TEXTURE IMAGES

Textures provide important characteristics for object identification from biomedical images, satellite 

photographs and many other images. Their analysis is fundamental to many applications such as remote 

sensing, medical diagnosis etc. A large class of natural textures can be modeled as a quasi-periodic pattern 

and detected by highly concentrated spatial frequencies and orientations.

Study o f the human visual system indicates that spatial or firequency representation, which preserves 

both global and local information, is adequate for quasi-periodic signals. This observation has motivated 

researchers to develop multiresolution texture models. New algorithms such as methods with Gabor filters 

[45], [46], [47] and Wigner distribution have been proposed, and successful results have been reported. A 

spatial or frequency analysis known as wavelet theory has been applied to texture analysis in the last few 

years.

The wavelet and wavelet packet transform can be implemented efficiently with pyramid- and tree- 

structured algorithms and hence they are called pyramid and tree-structured wavelet transforms, 

respectively. The pyramid-structured wavelet transform decomposes a signal into a set o f frequency 

channels that have narrower bandwidths in the lower frequency region. The transform is suitable for signals 

consisting of smooth components, where most of the information is concentrated in the low frequency 

regions. However, it may not be suitable for quasi-periodic signals whose dominant frequencies are in the 

middle frequency region. To analyze quasi-periodic signals, the concept o f wavelet bases has been 

generalized to include a library o f modulated waveform orthonormal bases, called wavelet packet bases. 

Wavelet transforms and their generalized form, called wavelet packets, provide signal analysis through 

smooth partitioning of the phase plane along the frequency axis.
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The multiresolution-based, tree-structured wavelet transform helps one zoom into any desired 

frequency channels for further decomposition. It is usually urmecessary and expensive to decompose all 

subbands at each scale to achieve full decomposition (uniform decomposition). To avoid full 

decomposition, a criterion needs to be adopted to decide whether decomposition is needed for a particular 

sub-band. The tree-structured wavelet transform determines important channels dynamically according to a 

specific criterion and can be viewed as an adaptive multichannel method. Depending on the specific 

application, different criteria can be used to build the optimal or sub-optimal wavelet packet tree. Coifman 

and Wickerhauser [30] have used entropy as a measure o f energy spread among the transform coefficients 

for maximum energy compaction. For signal compression applications Vetterli et al. [40] suggest the 

minimization of the rate-distortion function as a criterion for basis tree selection. Tree-structured wavelet 

transforms based on different criteria are presented in Sections 4.2 and 4.4. The algorithm for the energy- 

based tree-structured wavelet transform basically follows [41]. The textures used in the analysis in all the 

algorithms are Brodatz textures [48], which are obtained from 

“http:.'7sipi.usc.eda'services/database/database.cgi”. These textures are shown in Figure 4.1.

4.2. ENERGY-BASED TREE-STRUCTURED WAVELET TRANSFORM

An appropriate way to perform the wavelet transform for textures is to detect the significant frequency 

channels and then decompose them further. In the tree-structured transform, only certain frequency bands 

are decomposed, depending on the deciding criteria. The averaged L,-norm is used as the energy function 

to locate dominant channels, which is defined as

/=]

where X  =  (x, ,...,x ^ )  .

Basic Algorithm:

1. Decompose a given textured image into four subimages using a 2-D wavelet transform. This can be 

viewed as the parent and children nodes in a tree.
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Figure 4. 1. Textures used in the analysis
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2. Calculate the energy o f each decomposed image using the equation (4.1). If the decomposed image is 

x(m,n), with 1< m< M and 1< n< N, the energy is

3. If  the energy in a subimage is significantly smaller than that which is present in the others, stop the 

decomposition in that band since it contains less information. This step can be achieved by comparing 

energy with the largest energy value in the same scale. That is, if e<Cenax, stop decomposing this 

region, where C is a constant less than I .

4. If the energy o f a subimage is significantly larger, the above decomposition procedure is applied to the 

subimage.

Practically, the size of the smallest subimages should be used as a stopping criterion for 

decomposition. If  the decomposed channel has a very small spatial size, the location and energy value of 

the feature may vary widely from sample to sample so that the feature may not be robust. Once the 

dominant chaimels o f  the textures are known, the features need to be extracted from these channels for 

classification.

4.2.1. FEATURE VECTOR

Each sample is decomposed with tlie tree-structured wavelet transform and the normalized energy is 

calculated at its leaves. Generate a representative energy map for each texture by averaging the energy 

maps over all the samples. Decompose the unknown texture with the tree-structured wavelet transform and 

construct its energy map. Pick up the first J dominant charmels, which are the leaf nodes in the energy map 

with the largest energy values as features. Denote this feature set by X  = ( x , ) . This feature set is 

used in classification.
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4.2.2. CLASSIFIER

Texture Classification Algorithm:

A simple texture classification algorithm follows from the above algorithm using fixed number o f 

featiures J.

• Learning Phase

1. Given m samples obtained from the same texture, decompose each sançle with the tree-structured 

wavelet transform and calculate the normalized energy at its leaves.

2. Generate a representative energy map for each texture by averaging the energy maps over all m 

samples.

3. Repeat the process for all textures.

•  Classification Phase

Decompose the unknown texture with the tree-structured wavelet transform and construct its energy map.

1. Pick up the first J dominant channels, which are the leaf nodes in the energy map with the largest

energy values as features. Denote this feature set by % = ( x ,  Xj )  .

2. For texture i in the database, pick up the energy values in the same channels and denote the energy

value by m,- = ( m^ ,  m, j  ) .

3. Calculate the discrimination function for textures in the candidate list by

£>,• = dis tan ce(X.  m, ) .  (4 .3)

4. Assign the unknown texture to texture i if D, < Dj for all j#i.

When the leaf node does not exist in the energy map of texture i in step 3, the texture i is discarded 

from the candidate list, because the energy value of the corresponding charmel is too low or too high.

Several distance functions can be used in equation (4.3). Euclidean distance and simplified 

Mahalanobis distance are popular and are used in this study.

Euclidean distance is given by
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J
Di = ^ (% y  - tni j  f -  . (4. 4)

7=1

The Mahalanobis distance is calculated using

Di = { x -  nii Y  C f  ' (x -  m,- ) (4. 5)

When the covariance matrix Q  o f  the feature set is a diagonal matrix, or equivalently the features are 

independent of each other, the Mahalanobis distance can be reduced to the form

y=i

where Cy is the variance of feature j in class i. For the case when C, is not diagonal but diagonally 

dominant, (4.6) is still a good measure.

4.2.3. RESULTS

Seven textures are obtained from the Brodatz texture album [48]. Each image is of size 512 x 512 

pixels with 256 gray levels. The mean o f the image is removed before processing.

One hundred sample images o f size 256 x 256 are chosen from the original image and used in training 

and classification with the leave-one-out algorithm in classification [7]. The energies o f the largest 5 

dominant channels of the unknown textures are used as the features and the two distance measures (4.4) 

and (4.6) are used for classification.

The Battle-Lemarie cubic spline wavelet basis function with 16 taps is used and the results are 

compared in Appendix A, in Table A-1 with the results given in reference [41] for Euclidean distance. For 

comparison purposes with reference [41], only seven textures are used. To see the effect o f the size o f 

window or sample size of the samples obtained from each original texture on the classification 

perfbnriance, three different window (w) sizes are tested using Battle-Lemarie 16 tap filter as shown in 

Table 4.1 and Table 4.2. The classification performance is the highest for window size 256 and poorest for 

w=64. This is related to the overlap area from sample to sample. For saiiqjie size equal to 256, the overlap 

area between samples is high compared to when the sample size is 64. The classification performance 

should be higher using the Mahalanobis distance compared to the Euclidean distance, as it uses the
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covariance of the features along with the mean in classifying the textures. The classification performance is 

higher for sample sizes 128 and 64 except for the sample size 256.

T able-4.1: Eu c l id e a n  D ista n c e

Texture Correct Classification Rate (%)
w=256 128 64

Brick 94 87 69
Grass 100 100 99
Sand 85 90 72
Wood Grain 100 93 85
Cloth 96 90 89
Leather 99 100 100
Raffia 100 96 76

Overall 96.29 93.71 84.3

T a ble -4.2: S im plified M a h a l a n o b is  D istance

Texture Correct Classification Rate (%)
w=256 128 64

Brick 100 100 87
Grass 100 100 100
Sand 75 87 64
Wood Grain 98 95 86
Cloth 94 80 87
Leather 100 100 100
Raffia 100 100 80

Overall 95.29 94.57 86.29
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43.  WAVELET PACKET BASED FEATURES

4.3.1. FEATURE EXTRACTION

Aside from the algorithm, one can argue about the appropriate choice o f the feature set for each node. 

Without claiming optimality, as reasonable choices we have used features based on the statistics of the sub

band signals, e.g., the L,-norm, F-norm and the A-norm (maximum o f the discrete wavelet transform 

coefficients in the subbands) of the wavelet coefficients, which are defined as [49]

W ,  (4 .7 )
|sl

(4. 8)

ML = m a x |x - |  (4 .9)

The feature vector is formed by calculating the features at the nodes using the above measures. 

Training and classification are performed using all these measures on the data set and the results are listed 

in the following Sections.

4.3.2. L.-NORM OF THE WAVELET SUB-BAND COEFFICIENTS

The Li-norms^ o f the discrete wavelet transform coefficients at the nodes are calculated, which form 

the feature vector. The percentage of correct classification rates are computed using B-L 16-tap wavelet 

and 4-tap Daubechies wavelet for window sizes 256 and 64 respectively.

 ̂Though the L,-norm is defined differently in Section 4.2, it is defined as in equation (4.1) by the authors 
in reference [41]. So, it has been used by that terminology in that section only. In the rest o f the sections, it 
has been renamed as absolute mean, and the Li-norm is defined as in equation (4.7).
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4.3.3. F-NORM OF WAVELET SUB-BAND COEFFICIENTS

The F-norm or the normalized energy of the discrete wavelet transform coefficients at the nodes is 

calculated. The percentage of correct classification rate is calculated using this measure for B-L 16-tap 

wavelet and 4-tap Daubechies wavelet. The percentage o f correct classification rates are calculated for 

window sizes 256 and 64.

4.3.4. A-NORM OF WAVELET SUB-BAND COEFFICIENTS

The maxima o f the discrete wavelet transform coefficients at the nodes form the feature vector. The 

performance is compared using this measure for the two wavelets. The percentage o f correct classification 

rates are calculated for window sizes 256 and 64 respectively.

4.3.5. COMPARISON OF PERFORMANCE

The correct percentage of classification rates for the seven textures are listed in Table 4.3 for all the 

above measures in Sections 4.3.2 to 4.3.4 for a window size o f 256. These results are obtained using the B- 

L 16 tap wavelet. The overall percentage listed in the last row shows the average performance of all the 

textures for the corresponding measure. These percentages are obtained using the Euclidean distance 

classifier. The same procedure is repeated using the above measure for a window size o f 64 and results are 

listed in Table 4.4.

The overall percentage of correct classification rates are compared in Table 4.5 for the two wavelets, 

B-L 16 tap and Daubechies 4-tap for all the measures and for window sizes 64 and 256 using the Euclidean 

distance classifier. The performance is much better using the Daubechies wavelet for the measures and for 

both window sizes. The absolute-sum measure seems to perform better than other measures for the B-L 

wavelet'and even for the Daubechies wavelet for window size 64.
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Texture

T a ble -4 3 :  E uclid ea n  D istance, w in d o w  siz e  =  256  

Correct Classification Rate (%)
Abs. mean Li-norm F-norm A-norm

Brick 94 100 78 44
Grass 100 100 100 100
Sand 85 70 74 61
Wood Grain 100 100 90 85
Cloth 96 85 89 79
Leather 99 95 100 75
Raffia 100 100 99 69

Overall 96.29 92.86 90 73.29

Texture

T a ble-4.4: E uc lidean  Distance , w in d o w  siz e  =  

Correct Classification Rate (%)

64

Abs. mean L[-norm F-norm A-norm

Brick 69 72 72 72
Grass 99 98 99 99
Sand 72 62 65 60
Wood Grain 85 51 88 89
Cloth 89 85 87 84
Leather 100 100 89 89
Raffia 76 57 61 53

Overall 84.3 75 80.14 78

Table-4.5: O v e r a l l  Pe r c en ta g e  o f  C orrect  C lassific atio n  u sin g  E u c lid ea n  D istance

Wavelet Window
Size

Abs. mean LI-norm F-norm A-non

B-L 64 84.30 75.00 80.14 78.00
256 96.29 92.86 90.00 73.29

Daubechies 64 90.86 84.00 87.14 81.43
256 96.85 98.14 97.57 88.29
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4.4. SEPARABILITY-BASED TREE-STRUCTURED W AVELET TRANSFORM

The algorithm for the separability-based tree-structured wavelet transform basically follows [43]. In 

Section 4.2, dominance o f the energy concentration in a sub-band is used as a criterion for further 

decomposition. However, for classification purposes, a criterion based on the difference between patterns 

or signals o f different classes, i.e. class separability, is preferable. One may observe relatively high energy 

subbands in which the desired signals are quite similar and subbands of relatively low average energies that 

contain significant information about the difference between the signals. The following algorithm is 

developed by selecting the tree basis depending on the class separability or discrimination. The next section 

gives a brief definition o f class separability.

4.4.1. CLASS SEPARABILITY

To design an efficient classification system, one has to select features that are most effective in 

capturing the salient differences between signals so that the signal clusters are well separated in the feature 

space.

A simple way o f  formulating a criterion for class-separability is based on within- and between-class 

scatter matrices [7]. The within-class scatter matrix shows the scatter of sample vectors (V) o f different 

classes around their respective mean vectors M.

L
P r{c = Cj  }S,-

/=1

where

Z i = E [ { y - M i ) i V - M i f \ C i ]  (4. 10)

represents the spread o f  feature vectors in the i* class. In addition, one can define the between-class scatter 

matrix as the scatter o f  the conditional mean vectors M; around the overall mean vector M
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L
Sb = ^ P r { C  = C ,} (A f-M y )(M -M ;)^  (4. 11)

j=l

In order to have good separability for classification, one needs to have “large” between-class scatter 

and “small” within-class scatter simultaneously. The cost function measuring the combined separability is

J  = Tr{S~^Sb)  (4.12)

Using J defined in equation (4.12) as the class separability criterion, the algorithm for basis selection can be 

summarized as follows. The basis selection algorithm is based on class separability rather than energy or 

entropy. At each level, accumulated tree-structured class separabilities obtained from the tree that includes 

a parent node and the one that includes its children are compared. Decomposition o f the sub-band is 

performed if it provides larger combined separability. The algorithm follows in the next section.

4.4.2. BASIS SELECTION ALGORITHM

Select an appropriate wavelet or QMF filter.

1. Perform one level o f decomposition on each terminal node.

2. For each parent node and children nodes, compute the feature sets.

3. Calculate the combined class separability (CCS) using all previously selected tree nodes with the

current (parent) node. Divide the parent node into children nodes. Calculate CCS using all previously

selected tree nodes excluding the parent node but including all its children nodes. Compare the 

obtained CCS’s with the parent node and with the children nodes (with out parent). Retain the tree that 

provides better separability. Thus, we retain the parent if it provided better CCS than its children; 

otherwise, we keep the children.

4. Repeat steps 2-4 for the updated tree until no further significant improvement of separation is observed 

byjdecomposing the terminal nodes. The iteration can be terminated earlier if the amount o f achieved 

separation is larger than a pre-selected threshold.
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4.4.2. FEATURE EXTRACTION

Once all the texture samples are decomposed based their combined class separability, features need to 

be extracted from the subbands of each sample for classification. The following features are used to 

compare the performance with the results reported in reference [43]. The features based on second order 

and third order central moments (n = 2 and 3) of the corresponding sub-band signals are calculated using

^  — jyy — 4̂ 2 ( ^ /  )' “  A 2 (^ /) ̂  I (4. 13)

where V denotes the feature vector with the features calculated from the chosen N subbands, depending on 

their CCS, Wj is the local window on the i'*' sub-band, and p% and p; are the second and third order central 

moments. On each sub-band, ffx) and are defined as the intensity value at the location x and the 

average intensity on window W centered at x respectively. For each sub-band, p2 shows the average 

energy, which is also called the F-norm in previous sections. The ratio pVpi roughly represents the 

information about the shape o f the spectrum in that sub-band.

4.4.3. DIMENSIONALITY REDUCTION

The feature reduction approach attempts to reduce the number of features by selecting the best subset 

of the original feature set according to some criterion.

Feature selection necessarily consists of two parts:

1. A criterion must be established by which it is possible to judge whether one subset o f the features is 

better than another.

2. A systematic procedure must be found for searching through the candidate subsets.

Ideally, the selection criterion should be the probability of mis-classification [7]. In practice, evaluation 

of this criterion is generally too computationally complex, and we must resort to simpler criteria such as 

those based upon class separability. Similarly, in an ideal situation, the search procedure should consist of 

an exhaustive search over all possible subsets. Exhaustive methods are often impractical due to
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computational complexity, and non-exhaustive searches and suboptimal searches are often used in practice

m -

A simple way o f formulating the class-separability criterion is based both on the within- and between- 

class scatter matrix. The within-class and between-class scatter matrices are as defined in equation 4.10 and 

4 .11. The combined class separability as defined in equation 4.12 is used as the criterion for dimensionality 

reduction.

Class separability meastnres are typically invariant under any nonsingular, linear or nonlinear 

transformation. However, any singular mapping used for dimensionality reduction results in the loss of 

some discrimination information. The objective is to find a mapping that, for a given reduction in space 

dimensionality, provides maximum separability [50]. Consequently, we are seeking a linear transformation 

A , which is non-invertible from R" to R"" with m<n such that

A : X  cz R'* y c  R'^^A  =argm in^^ {J x  (4. 14)

where J x  = t r ( S ^ )  and J y  = t r ( S ^ )  are separabilities computed over both X and Y=A^X. Thus, A

optimizes Jy, i.e., it minimizes the drop in the cost J x  -  incurred by the reduction in the feature

space dimensionality. It can be shown that [7] for such an optimum A

[ i f  je I i= l,...,m , j= l,...,n  (4.15)

where A.'̂  and are the eigenvalues o f the corresponding separation matrices and S \  The observation 

and the fact that

m

J y  = t r(S ^ ) = ^  Af (4. 16)
f=l

suggest that one can maximize Jy by taking the largest m eigenvalues o f  S^. Thus the corresponding 

eigenvectors form the transformation matrix A. The optimal linear transformation from R" to R"" based on 

our selected separation measure results from projecting the feature vectors X onto m eigenvectors 

corresponding to the m largest eigenvalues o f the separation matrix S^.
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4.4.4. CLASSIFIER

In some applications, even with the best separation achieved using the above method, clusters have 

some overlap. This is sometimes due to the inherent similarity between signals. In such cases, neural 

network classifiers are found to be efficient tools for representing the inherent uncertainties and similarities.

In classification, a simple multilayer feed-forward neural network is used as a classifier. At each 

neuron, a weighted sum of incoming activation levels plus a bias is passed through a sigmoidal non- 

linearit)'.

Y=f{W2f{W^X + @x) + Q2)

where

/ W  = -j T- (4. 17)1 + exp(-jr)

The W( and W; are connection weight matrices, and 0 , and 02 are the bias vectors corresponding to 

the hidden and output layers, respectively. The adaptive nonlinear mapping characteristics o f neural 

networks are utilized to create a set o f fuzzy hyperplanes in the feature space which tries to separate 

clusters. By combining outputs o f hidden nodes, which are primary membership tests, the output nodes 

form the fuzzy decision boundaries. In other words, the desired decision boundaries or nonlinear 

membership functions are formed in the process o f training (or adaptive adjustment of connection weights 

as well as bias vectors) of a neural network architecture. Supervised learning based on differences between 

an actual and a target output value for all classes is formed using a nonlinear optimization scheme that 

minimizes the total mean squared error.

In addition to the neural network classifier, a Euclidean distance classifier is also used to classify the 

textures, both for its simplicity and for comparison. The classification performance needs to be compared 

for separability-based tree decomposition and energy-based tree decomposition. Hence, the Euclidean 

distance classifier is used to classify the textures using the features extracted from the subbands with higher 

CCS. Also, the performance needs to be compared between the Euclidean distance classifier and Neural 

network classifier. If  the performance improvement achieved with the neural network is not significant, 

then the Euclidean distance classifier would be preferred because o f its lower computational complexity.
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4.4.5. RESULTS

Using the above algorithm, textures are decomposed using two, three and four levels. A Daubechies 

four-tap filter is used to perform the decompositions. Features are computed using the second and third 

central moments o f the image subbands and the dimensionality is reduced as described above. The four 

most important features are obtained. Using these features, a simple feed-forward neural network is 

designed [11]. Our database consists o f ten Brodatz [48] textures o f size 512x512. Each texture sample of 

size 64x64 is obtained from the larger texture image. Each o f the training and classification sets has 100 

samples. A four-input neural network with eight hidden and ten output neurons is used for the 

classificatioiL

The results are provided in Table-A.2 in Appendix A and compared to the results reported in reference 

[43]. The textures used in the database are not the same as in the reference [43]. Also, the wavelet and the 

depth o f the decomposition used in obtaining the results listed in [43] are unknown. Thus, exact 

reformulation o f the experiment for direct comparison is not possible.

4.5. WAVELET PACKET BASED FEATURES

4.5.1. FEATURE EXTRACTION

Aside from the algorithm, one can make arguments concerning the appropriate choice of the feature set 

for each node. Without claiming optimality, as reasonable choices we have used features based on the 

statistics of the sub-band signals. Features are extracted based on the statistics of the sub-band signals, e.g. 

the L|-norm and the A-norm (maximum of the discrete wavelet transform coefficients in the subbands) of 

the wavelet coefficients that are defined in Section 4.3.1. The feature vector is formed by calculating the 

features at the nodes using the above measures. The feature vectors are dimensionally reduced. Training 

and classification is performed using all these measures on the data set and the results are listed in the 

following sections.
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4.5.2. LrNORM OF THE WAVELET SUB-BAND COEFFICIENTS

The L|-nomis o f the discrete wavelet transform coefficients at the nodes are calculated and used to 

form the feature vector. The classification rate percentage is computed using the 4-tap Daubechies wavelet 

to do the decomposition. The overall classification rate percentage is calculated for window size 64 using 

the Euclidean distance classifier described in Section 2.3.3.

4.5.3. A-NORM OF WAVELET SUB-BAND COEFFICIENTS

The maxima o f the discrete wavelet transform coefficients at the nodes form the feature vector. The 

classification percentage is calculated using this measure for the Daubechies 4-tap wavelet.

4.5.4. ABSOLUTE SUM OF WAVELET SUB-BAND COEFHCIENTS

The absolute sum o f the discrete wavelet transform coefficients is defined as

/=1

where X  =  (.r, ) is the coefficient vector of N DWT coefficients of each sub-band. The absolute

sums at the nodes form the feature vector. The performance is measured using this measure for the 

Daubechies wavelet. The overall classification rate percentage is calculated for window size 64 using the 

Euclidean distance classifier.

4.5.5. COMPARISON OF PERFORMANCE

The classification rate performances of the textures are listed in Table 4.6 using p; (4 features) and p? 

and P3/P2 (8 features) for a window size of 64. These results are obtained using the Daubechies 4-tap 

wavelet. These percentages are compared using both the Euclidean distance classifier and the neural-net 

classifier. Extracting more features using both p% and p /pz  should increase the classification percentage. 

The classification rate improved by extracting 8 features compared to extracting 4 features for level 2 only. 

But the classification rate did not in^jrove by increasing the depth o f the sub-band tree. Also, it did not 

improve the classification performance when compared to the 4 feature case for levels 3 and 4. Also, using
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the neural network the classification performance should be better compared to using Euclidean distance 

classifier, as it is trained adaptively for the given data with known inputs and outputs. Using the neural 

network the results improved insignificantly only in the case o f level 3. In all other cases the Euclidean 

distance classifier performed better than the neural network.

The overall classification rates are compared for the Daubechies 4-tap wavelet for all the measures 

using the Euclidean distance classifier in Table 4.7. The results are compared for different levels o f the tree, 

i.e., for tree decompositions o f level 2, 3, and 4. The absolute sum measure gave a better performance for 

levels 2 and 3, whereas the L,-norm extracted better features for the level 4 decomposition that resulted in 

improved performance. As expected, the classification performance improved with the increase in depth of 

the tree except for the case o f extracting 8 features using p? and Ps/pz.

T a b l e -4.6: O v e r a l l  C lassifjcation  f o r  .all th e  f e a t u r e s  u sin g  E uclidean  D ista n c e  and
N e u r a l  N e t  C l a s s if ie r s

Level o f 
Decomposition

2
3
4

2
3
4

Feature

P2
F2
P2

Pz and pz/pz 
Pz and pz/pz 
pz and pz/pz

Classification (%)
Euclidean Distance Neural Net

97.3
97.3
97.8

97.8 
97.2 
97.1

96.8 
97.4
94.9

95.8
97.2
95.3

T able-4.7: O v e r a l l  C lassification  for  all  t h e  fe a t u r e s  u s i n g  Euclidean  D ist a n c e

Level of Feature
Decomposition

Classification (%)

2 Li-norm 92.9
3 Li-norm 96.9
4 Li-norm 98.3

2 A-norm 89.3
3 A-norm 96.5
4 A-norm 97.5

2 abs. stun 97.5
3 abs. sum 98.4
4 abs. sum 98.3
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4.6. WAVELET TRANSFORM

In this section, the textures are classified using the regular wavelet transform, which has an octave tree. 

This is done to compare the performance between the wavelet packet transform and the wavelet transform 

for texture classification. These results strongly suggest that there is a considerable performance gain that 

can be achieved by using criterion-based wavelet packet decomposition, especially the separability based 

decomposition for texture classification as opposed to an octave tree wavelet transform. Table 4.8 

compares the classification performance for the Daubechies 4-tap wavelet with the second level of 

decomposition using the Euclidean distance classifier both with and without dimensionality reduction. The 

classification performance is considerably improved using the dimensionality reduction technique for the 

octave tree structure.

4.7. COMPARISON AMONG THE W AVELET TREE BASES

In this section the performance of the three tree bases discussed so far are compared using the 

Daubechies 4-tap wavelet. The results are obtained using the F-norm for the second level decomposition 

and are classified using the Euclidean distance classifier. The results are listed in Table 4.9. The 

separability-based tree decomposition gives the best classification performance. However, the classification 

performance is comparable among the tree decompositions when dimensionally reduced features are used 

for classification. Once again, these results strongly suggest that the criterion-based wavelet packet 

decomposition is superior to the octave tree wavelet transform for purposes of texture classification.
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T a ble -4.8: O v e r a l l  C l a s s i f i c a t i o n  P e r f o r m a n c e  u s in g  F - n o r m

Level

2

2

No. of 
Features

7

7

Dimensionality
Reduction

No

Yes

Daubechies

83.50

95.20

Table-4.9: O v er a ll  C lassification  Perform ance  u sin g  F -norm  fo r  T r e e  B ases

Tree

Energy-Based Tree 

Separability-Based tree

Octave Tree

Feature Reduction Daubechies

Feature selection 87.14

Feature Selection 83.50

Using all features 87.30

Dimensionality Reduction 97.30

Using all features 83.50

Dimensionality Reduction 95.20
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4.8. A SIMPLE ALGORITHM  FO R  TEXTURE CLASSIFICATION

The classification performance was conçared in the previous sections for different measures using 

different tree structures. Two algorithms based on the tree-structured wavelet transform for classification 

were reviewed and analyzed. The classification performance is impressive. In this section, a simple 

algorithm is developed for texture classification that has significantly lower computational complexity 

compared to the previously reviewed algorithms. We develop our algorithm by addressing the three main 

issues of multichannel texture classification: 1) Feature extraction within each channel 2) Channel selection 

and 3) Feature combination among channels.

For signal analysis and classification problems, energy concentration in a sub-band has been used as a 

criterion for its further decomposition [41], i.e., at each level, subbands o f maximum energy are identified 

and decomposed further. In these schemes, the energy map o f the surviving subbands is used as the feature 

set.

However, for classification purposes, a criterion based on the difference between signals o f different 

classes is preferable. The desired signals may be quite similar in the high-energy bands and may contain 

significant information in the low energy bands. Instead o f decomposing the subbands further based on 

some criterion, e.g. energy concentration, only one level o f the wavelet transform decomposition is used 

and features are obtained from these subbands. The features in these subbands give significant information 

for texture classification. Many features may be required from these subbands to achieve similar 

performance to the tree-structured decomposition methods in classification. On the other hand, the average 

energy of the subbands may not be the best feature set for classification.

This section investigates the effectiveness of a separability-based measure for suitable wavelet basis 

selection. The chosen wavelet may not be optimal for representing or approximating individual signals and 

may not provide good performance for some other tasks, e.g. compression, identification and modeling.

4.8.1. FEATURE EXTRACTION

The measures used for comparison in this work are the Li-norm, F-norm and the A-norm o f the 

wavelet coefficients, which are defined in Section 4.3.1.
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The features are calculated from the four bands, low-low (LL), low-high (LH), high-low (HL) and 

high-high (HH) using these measures. A feature is extracted from a sub-band by calculating the norm of the 

coefficients in that sub-band. Specifically, four features are extracted from the four bands, one from each 

sub-band. The effect o f increasing the number o f features on the classification performance can be 

compared by extracting 16 features. This is done by dividing each sub-band into four equal regions (not 

subbands) from which one feature is obtained. These 16 features from 16 regions (4 features from each 

sub-band) give significant information for texture classification. Hence, one can achieve similar or better 

performance using more featimes instead of using the tree-structured decomposition based on some criteria, 

which will be demonstrated in section 4.8.2.

4.8.2. EXPERIMENTAL RESULTS

Seven textures are obtained from the Brodatz texture album [48]. Each image is of size 512 x 512 

pixels with 256 gray levels. The mean of the image is removed before processing.

One hundred sample images of size 256 x 256 are chosen from the original image and used in training 

and classification. Classification is performed using the leave-one-out algorithm [7]. In the training phase, 

the feature vector is calculated for all 100 samples. The mean o f these 100 feature vectors is calculated to 

represent this texture class. The average feature vector is calculated for all the texture classes in the 

database. In the classification phase, the feature vector is calculated for the test texture and the distances 

between the test feature vector and the feature vectors of the known texture classes are calculated. The test 

texture is classified as a particular class when the Euclidean distance between the test feature vector and the 

feature vector o f that class is less than the distance between the test feature vector and the feature vectors of 

the remaining texture classes. The Battle-Lemarie cubic spline wavelet basis function with 16 taps is used 

to calculate the discrete wavelet transform coefficients. This particular wavelet is chosen to compare the 

results with the performance using the Energy-based tree decomposition.

The classification performance is compared among the measures using 4 and 16 features. These results 

are also compared in Table 4.10 with the results using the tree-structiu-ed decorrç)osition from [41], which 

uses five features. One can observe that the performances are comparable using only the four features and 

with much less computational complexity. The classification performance is compared using 16 features
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with window size 256 for all the features in Table 4.11. The results are compared in tables 4.12 and 4.13 

when the texture sample size is 64 with 4 and 16 features for all the measures.

It can be observed that performance increases with increasing numbers o f features or with increasing 

sample size. The result implies that the classification rate is improved by incorporating the statistical 

information o f texture features.

T able-4.10: C la ssific a tio n  perfo rm ance  for  W indow  size  =  256  

Texture Correct Classification Rate {%)

Li-norm F-norm A-norm
Results 
From [2]

No.of features 4 4 4 5

Brick 100 94 60 98
Grass 100 100 100 96
Sand 95 90 98 92
Wood Grain 92 90 98 97
Cloth 93 90 100 100
Leather 100 100 100 100
Raffia 100 90 90 100

Overall 97.14 93.43 92.29 97.57

T able-4 .1I: C lassification  per fo r m a n c e  for  N um ber  o f  Features =  16, w in d o w  siz e  =  256

Texture Correct Classification Rate (%)
L|-norm F -norm A-norm

Brick 100 93 92
Grass 100 100 100
Sand 99 90 100
Wood Grain 100 93 100
Cloth 94 90 100
Leather 100 100 100
Raffia 100 91 100

Overall 99 93.86 98.86
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T a ble-4.12: C lassification  perfo rm ance  fo r  N u m ber  o f  Features =  4 , w in d o w  size  = 64

Texture Correct Classification Rate (%)
Li-norm F-norm A-norm

Brick 76 74 75
Grass 90 93 96
Sand 36 54 74
Wood Grain 54 79 90
Cloth 60 81 73
Leather 94 100 99
Raffia 67 86 88

Overall 68.14 81.00 85.00

E-4.13: C lassification  perfo rm ance  fo r  N u m ber  o f  Features = 1 6 ,  wi?

Texture Correct Classification Rate (%)
L|-norm F-norm A-norm

Brick 75 79 74
Grass 93 94 97
Sand 38 59 84
Wood Grain 66 83 98
Cloth 65 82 85
Leather 100 100 100
Raffia 79 89 90

Overall 73.71 83.00 89.71
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4.9. PERFORMANCE SUMMARY

The previous sections have described the apphcation of wavelet packet transform and wavelet 

transform based feature sets to the task of texture classification. Different parameters and their influence on 

the texture classification are studied. The parameters used in this study are the sample size o f each texture 

sample obtained from the original texture, the feature extracting measures, the number o f features extracted 

and the feature reduction methods. All of these parameters have considerable influence on the classification 

performance. Each measure may extract features, which may result in better classification performance for 

a particular combination o f the rest of the features. Overall, the F-norm seems to perform better for all 

cases. The classification rate decreases with decrease in sample size since it has lower overlapped 

information content among the texture samples. This can be improved by extracting features that give 

better information or by increasing the depth o f  the decomposition. When using time-frequency based 

features, dimensionality reduction improves the performance compared to the feature selection methods.
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CHAPTER 5

INFLUENCE OF WAVELET BASES AND WAVELET-BASED PARAMETERS

ON TEXTURE CLASSIFICATION

5.1. OPTIMAL FILTERS FO R CLASSIFICATION

The fundamental purpose o f feature extraction for classification is to emphasize the important 

information in the measured signal and to de-emphasize that which is irrelevant. This implies transforming 

the raw data into a domain that presents the information contained in the signal more clearly, i.e. mapping 

the raw data to concentrate and localize information. Time-frequency methods offer the ability to localize 

the energy distribution o f a signal in both time and frequency (space). The localization depends on the 

method chosen.

Our preliminary work has shown that feature extraction is crucial for correctly classifying a signal. To 

obtain features that have significant information for classification, the wavelet basis used to transform the 

raw data into the “wavelet” or “time-frequency” domain is important. We know that wavelet functions can 

be used for function approximation and finite energy signal representations that are useful in signal 

processing and system identification. The wavelet basis is generated by dilating and shifting a single 

mother wavelet function. The wavelet design is not unique and its design is related to that o f a symmetric 

FIR low pass filter. An appropriate selection of the wavelet for signal classification can result in maximal 

benefits in classification. Recently, the application o f wavelets and multirate filterbanks to multiscale 

feature extraction [51], [52], [53] has received significant attention. Wavelet based features have been 

shown to be efficient representations for compression, detection, classification and segmentation of signals 

and images [54]-[57]. Examples o f texture analysis and classification using wavelets and wavelet packets 

are given in [58]-[61]. Different wavelets may be suitable for classifying different sets of signals or images. 

So we need to find an optimal mother wavelet function to span the appropriate feature space for signal 

classification. Before the optimal wavelet basis is designed based on some as yet to be determined criterion.
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we need to study the effect of the mother wavelet function on the classification o f textures. This chapter 

focuses on studying the influence o f varying the wavelet bases on classification performance.

Let us start with the study o f the computationally simple algorithm developed in Section 4.8. In 

Section 5.2 we study the effect o f the mother wavelet function on the classification performance using this 

simple algorithm. Also, the other parameters that have influence on the classification are studied along with 

varying the mother wavelet. The influence o f wavelet bases on all the types o f tree decomposition 

algorithms is studied. This helps us understand if a particular tree decomposition algorithm gives better 

performance when a suitable wavelet is used. All the algorithms analyzed in the previous chapter are 

analyzed again in this chapter with respect to the mother wavelet, where as in the previous chapter the 

mother wavelet was fixed and other parameters involved in a general classification task were studied. 

Section 5.3 examines the energy-based wavelet packet tree algorithm and its performance for various 

wavelet bases. The separability-based wavelet packet tree is studied using various wavelets in Section 5.4. 

Though we know that separability-based tree decomposition is better for signal classification tasks, it is not 

known what the best tree structure is for classification when a suitable mother wavelet is used for tree 

decomposition. Hence, the textures are classified using the octave tree decomposition using various 

wavelets. This is analyzed in Section 5.5. When an appropriate wavelet is used for decomposition, the 

features extracted may have more relevant information for classification. The effect o f dimensionality 

reduction on classification performance is studied in Section 5.6.1. The effect of decomposing the wavelet 

tree into more depth is studied in Section 5.6.2. We have used varying database sizes (7 and 10 textures) to 

study the influence o f  increasing the database sizes on their classification performance using the same 

settings. This is shown in Section 5.6.3. The performance is compared and summarized for various 

parameters in Section 5.7. Our conclusion follows in Section 5.8.

5.2, WAVELET BASIS CHOICE

We are interested in finding the most suitable wavelet for texture classification and applying the 

identified wavelet to improve the classification performance o f  the textures. To achieve this, the wavelet 

has to be designed based on the properties of the data, i.e., the choice of the mother wavelet should be 

dependent on the properties o f the data set.
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To test the effect o f using different wavelet bases on the classification performance, different 4-tap 

wavelets with different transition band characters are chosen satisfying the constraints o f the Quadrature- 

Mirror Filters (QMF). These constraints are explained in detail in Chapter 3. The magnitude responses o f 

these filters are shown in Figure 5.1 and the filter coefficients are listed in Table 5.1. This set of w'avelets 

includes the Daubechies 4-tap wavelet. In all our plots, the last case o f h, i.e. h=24, is the Daubechies 4-tap 

wavelet. These wavelets are used instead of the B-L 16-tap wavelet used in the previous analysis and the 

procedure is repeated for all of the measures using 4 and 16 features. Figures 5.2 to 5.7 are plotted for 

measures Li-norm, F-norm, and A-norm, for sample size 256 and for number o f features equal to 4 and 16. 

In some o f the figures through out the dissertation colors are used for better clarity and understanding. 

Figure 5.2 shows the classification rate of all textures for various wavelets. Four features are extracted 

using Li-norm from 4 subbands with one-level wavelet decomposition. The classification performance 

varied considerably for the two textures cloth and sand across the wavelets, but is constant for the rest o f 

the textures in the database. The performance is the highest for all the wavelets for these eight textures. 

There is no improvement left that can be expected. This performance may be due to high sample size used 

ft-om the original texture. All the samples belonging to a class have large overlapping regions, which aids in 

classification, as they are tightly clustered. Similar performance can be observed using F-norm in Figure

5.3. However, the A-norm in Figure 5.4 could not classify well, even with so much overlapped information. 

Figures 5.5 to 5.7 show the plots with higher numbers of features extracted. That is, 16 features are 

extracted from 4 subbands and are used for classification. The performance improved significantly for both 

the best wavelet and Daubechies wavelet. Similar performance is observed when the sample size is 64. 

These results are not reported here, as they have similar performance.

The Figures 5.8-5.10 show the average classification o f all the textures in the database for various 

wavelets using L,-, F- and A-norms. The performance is compared for window sizes 64 and 256 and for 4 

and 16 features. The performance variation for the different wavelet bases is considerable in some cases. 

Figure 5.8 shows the overall classification rate using L,-norm for both the sample sizes 64 and 256 with 4 

and 16 features. The performance is the best for the sample size 256 with 16 features, as it has more 

overlapped information among the samples and also a greater number of features, which helped extract
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Figure 5. 1. Magnitude response o f  some o f  the filters used in the analysis.

T able-5,1: F ilter  coefficients used  in  t h e  analysis

7.8100000e-002
1.1210000e-001
1.4010000e-001
1.6910000e-001
1.9210000e-001
2.2410000e-001
2.5110000e-001
2.6010000e-001
2.8410000e-001
3.1510000e-00I
3.3310000e-001
3.7210000e-001
3.9210000e-001
4.2110000e-001
4.4710000e-001
4.5910000e-001
4-8300000e-001
4.8310000e-001
5.13l0000e-001
5.3910000e-001
5.6710000e-001
5.9010000e-001
6.2310000e-001
6.8210000e-001

7.6910000e-001
7.9210000e-001
7.9210000C-001
8.0610000e-001
8.4610000e-001
8.2610000e-001
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8.5310000e-001
8.3910000e-001
8.6310000e-001
8.4410000e-001
8.4510000e-001
8.3110000e-001
8.3650000e-001
8.4210000e-001
8.3310000e-001
8.1410000e-00l
7.9910000e-001
7.9810000e-001
7.71l0000e-001
7.3010000e-001

6.31100000-001
5.94100000-001
5.85100000-001 
5.55100000-001
4.85100000-001 
4.99100000-001 
4.54100000-001 
4.22100000-001 
4.51100000-001
3.90100000-001 
3.74100000-001
3.63100000-001
2.90100000-001 
2.97100000-001 
2.59100000-001 
2.75100000-001 
2.24100000-001 
2.08100000-001 
1.76100000-001 
1.80100000-001
1.63100000-001 
9.81000000-002 
1.02100000-001 
3.01000000-002

-6.40190000-002
-8.40020000-002
-1.02993000-001
-1.16069000-001
-1.09043000-001
-1.35045000-001
-1.35045000-001
-1.26991000-001
-1.52989000-001
-1.44064000-001
-1.45993000-001
-1.60035000-001
-1.30988000-001
-1.47992000-001
-1.37021000-001
-1.51063000-001
-1.29400000-001
-1.19065000-001
-1.07989000-001
-1.19065000-001
-1.15044000-001
-7.20750000-002
-8.20170000-002
-2.80640000-002
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more useful information for classification. The classification is poorest for sample size equal to 64 when 

only 4 features are extracted from the subbands. Clearly, the features did not contain enough information 

for classification in this case. As one can observe, the best wavelet was the first wavelet in Figure 5.8 for all 

the four curves. The same can be observed from the Figures 5.9 and 5.10 that the performance is best for 

the first case o f filter on the x-axis compared to the others in almost all o f  the observed cases. This wavelet 

has low-pass filter coefficients [0.0781 0.7691 0.6311 -0.0640]. Figure 5.11 shows the frequency response 

of this filter and the Daubechies 4-tap filter. Table 5.2 compares the minimum, maximum and change o f 

overall percentage o f classification for the different wavelet bases for all measures, different window sizes 

(w=256, 64) and different number o f features (4 and 16). The results are also compared to the performance 

using the Daubechies 4-tap wavelet. The classification performance is improved using various wavelets 

compared to the Daubechies wavelet even with the simple algorithm after one level of decomposition. In 

the next section the same experiment is conducted on the energy-based tree decomposition algorithm to 

study the influence o f the mother wavelet on the classification.

T a b l e -5 .2 : C o m p a r is o n  o f  O v e r a l l  c l a s s if ic a t io n  PERFORMANCE u s in g  a  s im p l e  a l g o r it h m

Min. Max. Variation Daubechies
% % % %

L|-norm  of 
Dwt coeff.

W=64, no=4 77.86 85.57 7.71 81.29
W=64, no=16 88.29 91.57 3.29 90.14
W=256,no=4 95.71 99.86 4.14 98.00
W=256, no=16 98.14 100 1.86 98.86

F-norm  of 
Dwt coeff.

W=64, no=4 86.00 90.43 4.43 86.29
W=64, no=16 88.57 93.29 4.71 89.00
W=256,no=4 97.00 98.00 1.00 97.14
W=256, no=I6 97.14 100.00 2.86 97.14

A-norm of 
Dwt coeff.

W=64, no=4 71.86 83.29 11.43 73.57
W=64, no=16 83.00 90.29 7.29 84.86
W=256,no=4 89.43 95.43 6.00 91.43
W=256, no=I6 96.43 99.57 3.14 97.29
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Figure 5.1. Texture Classification using the L i-nonn o f the DWT coefficients using four features.
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Figure 5.2. Texture Classification using the F-norm o f  the DWT coefficients and four features.
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Figure 5.3. Texture Classification using the A-norm o f  the DWT coefficients and four features.
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Figure 5.4. T exture C lassification  using the L i-norm  o f  the D W T C oefficients and 16 features.
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Figure 5.5. T exture C lassification  using the F -norm  o f  the D W T C oefficients and 16 features.
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Figure 5.6. T exture C lassification  using the A -norm  o f  the  D W T C oefficients and 16 features.
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Figure 5.8. Comparison of percentage of overall correct classification rate as a function of wavelet bases for different
window sizes and number of features.
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Figure 5.9. Comparison of % of overall correct classification rate as a function of wavelet bases for different window
sizes and number of features.
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Figure 5.10. Comparison of % of overall correct classification rate as a function of wavelet bases for different window
sizes and number of features.

CHAPTER 5: INFLUENCE OF WAVELET BASES AND WAVELET-BASED PARAMETERS ON 90
TEXTURE CLASSIFICATION



Magnitude R esponse
1.5

A
b
s  0.5

- Filter with the best % of correct classification 
. D aubechies Filter

0.70 0.1 0.2  0.3 0 .5 0.6 0.80.4 0.9 1
Normalized Frequency 

P h ase  R esponse
200

D
e  100 
9
 ̂ 0 

e

s  -10°

-200
0 0.1 0.2  0.3 0.5 0.6 0.7 0.80.4 0.9 1

Normalized Frequency

Figure 5.11. Magnitude and phase response o f  the filter with the best classification and the Daubechies filter.
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5 3 . EFFECT O F M OTHER WAVELET ON TEXTURE CLASSIFICATION USING ENERGY- 

BASED W AVELET-PACKET TREE

5.3.1. CHOICE OF MOTHER WAVELET FOR TEXTURE CLASSIFICATION

Using each mother wavelet, the energy based tree-structured deconçosition is applied to the textures 

in the database and both training and classification is performed. For each wavelet, the procedure described 

in Section 4.2.2 is repeated and the classification performance is calculated for all textures.

5.3.2. CLASSIFICATION PERFORMANCE AND RESULTS

The percentage o f  correct classification rate and the overall correct classification rate is compared for 

all o f the wavelets using different window sizes and either the Euclidean distance defined in equation (4.4) 

or the simplified Mahalanobis distance defined in equation (4.6) classifiers. The results are plotted in 

Figures 5.12 to 5.17. The overall classification rate is the average o f the classification rates o f all the 

textures in the database.

The overall classification rate varies from 95.57 to 97.71 for window size 256 using the Euclidean 

distance classifier. In other words, the classification rate increases by 2.14% from the worst wavelet basis 

to the best. The classification rate varies from 96.57 to 98.29, a 1.71% change using the simplified 

Mahalanobis distance.

The overall classification rate varies from 88.29% to 90.86% for window size 64 using the Euclidean 

distance classifier. The classification rate increases by 2.57% from the worst wavelet basis to the best. 

Using the simplified Mahalanobis distance, classification performance varies from 92.86% to 97.57%, 

which is a 4.71% variation.

The overall classification may not vary much with respect to the different wavelet bases, but a 

particular texture o f interest may show a considerably improved classification rate for a particular wavelet 

basis. In addition, using only the four-tap wavelet basis results in better (or at least equal) overall 

performance as compared to the Battle-Lemarie 16 tap wavelet in classification. This suggests that a
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particular wavelet may result in improved performance compared to others when used for a specific 

application. The question is: How much improvement is one looking for?
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Figure 5.1. Tree-Structured ciassifîcatioa for d ifferen t w avelet bases using E uclidean distance.
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Figure 5.17. Overall classification rate for window size 64.

5.3.3. COMPARISON OF PERFORMANCE

The percentages of correct classification rates for the Li-norm, F-norm and A-norm measures are 

plotted in Figures 5.18 to 5.23 for window sizes 256 and 64 respectively. The overall percentage of correct 

classification rate, i.e. the average o f the percentage of correct classification rates o f all the textures in the 

database is compared for all the measures. The overall classification percentages are plotted for different 

wavelets using the Li-norm, F-norm and A-norm measures for window sizes 256 and 64 in Figure 5.24. 

Table 5.3 compares the performance for all the features using different wavelets. The minimum and 

maximum percentage of correct classification, percentage of variation among the wavelets and the 

classification rate for the Daubechies four tap wavelet are listed in this table. Using various wavelets, the 

classification performance improves compared to the Daubechies filter using the energy-based wavelet 

packet tree decomposition. Both the F-norm and L,-norm perform equally well for window size 256, 

whereas the absolute sum seems to perform better for window size 64.
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Table-5 3 :  O v erall  classification  perform ance  using  energ y- based t r e e  decomposition

L |-aorm  of 
Dwt coefL
W=64, no=4 
W=256j30=4

Min. Max. 
% %

Variation
%

81.7 85.57 3.86
97.29 98.43 1.14

Daubechies
%

84.00
98.14

F-norm of 
Dwt coeff.
W=64, no=4 
W =256410=4

85.57 87.86 2.29
97.00 98.86 1.86

87.14
97.57

A-norm of 
Dwt coefil
W=64, no=4 
W=256jio=4

80.00
81.29

89.71
91.43

9.71
10.14

81.43
88.29

Abs. mean of 
Dwt coeff.
W=64, no=4 
W=256jio=4

88.29 90.86 2.57
95.57 97.71 2.14

90.86
96.85
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Figure 5.1. Tree-Structured classificatioa Using Li-norm for Window size 256 using Euclidean distance.

CHAPTER 5: INFLUENCE OF WAVELET BASES AND WAVELET-BASED PARAMETERS ON 96
TEXTURE CLASSIFICATION



Teccure Qasarfication u srtg  OWT
Grass \  Sand Raffia 

98 - \  '

WbodGi

96
%
C 94
0

*■ 92

: »
t

86
84

32̂ 20
Cases ofh

Figure 5.2. Tree-Structured classi6catîon using F-norm for window size 256 using Euclidean distance.
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Figure 5.3. Tree-Structured classification using A-norm for window size 256 using Euclidean distance.
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Figure 5.4, Tree-Structured classiScation using Li-nortn for window size 64 using Euclidean distance.
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Figure 5.6. Tree-Structured classification using A-norm for w indow  size  64 using Euclidean distance.
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Figure 5.7. O verall classification rate for all m easures and for w indow  sizes 256 and 64.
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5.4. EFFECT OF M OTHER W AVELET ON TEXTURE CLASSIFICATION USING 

SEPARABILITY-BASED WAVELET PACKET TRANSFORM

Using each mother wavelet, the separability-based tree-structured decomposition is applied to the 

textures in the database and both training and classification is performed. For each wavelet, the procedure 

described in Section 4.4.2 is repeated using the class separability-based measure. Then the features are 

dimensionally reduced and the classification percentage is calculated for all the textures.

5.4.1. CLASSIFICATION PERFORMANCE AND RESULTS

The overall classification results are listed in Table 5.4 for different wavelets using both the neural 

network and the Euclidean distance classifiers for featiues pz and P3/P2- Twenty-four wavelets are applied 

to the above algorithm for decomposition levels 2, 3 and 4. The minimum and maximum classification 

performances for these wavelets along with the Daubechies wavelet are compared. The classification 

percentage increased for the best wavelet by extracting 8 features using p? and p^p : compared to extracting 

4 features using only p?. Also, the performance did not decrease with an increase in the depth of the 

decomposition for the best wavelet unlike the case using the Daubechies wavelet with the Euclidean 

distance classifier. The classification performance using the neural network is comparable to the 

performance using the Euclidean distance for the best wavelet, which is not true for the Daubechies 

wavelet. The classification performance for the textures in the database is plotted in Figures 5.25-5.36 for 

various wavelets, levels and classifiers. The overall percentage of classification is plotted in Figures 5.37- 

5.43 for the various wavelets, levels, features and classifiers.

5.4.2. COMPARISON OF PERFORMANCE

The overall percentage o f correct classification rate (i.e. the average o f the percentage of correct 

classification rates o f all the textures in the database) is compared for all the measures. Table 5.5 compares 

the performance for all the features using different wavelets. The minimimi and maximum percentage o f 

correct classification and the classification rate for the Daubechies four-tap wavelet are listed in this table. 

The classification performance increased considerably using the best wavelet when compared to the
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Daubechies wavelet using all the measures for all the levels of decomposition. The highest performance for 

the best wavelet is 99.2% using the absolute sum measure at the fourth level of the tree decomposition 

using the Euclidean distance classifier. But, using either the F-norm or the features p? and P3/H2 results in a 

98.9% correct classification rate using just a second level o f decomposition.

T a b l e -5 .4 : O v e r a l l  C l a s s if ic a t io n  PERFORMANCE f o r  v a r io u s  l e v e l s  u s in g  e u c l id e a n

DISTANCE AND NEURAL NET CLASSIFIERS

Level of Feature Euclidean Distance Neural Net
Decomposition min. max. Daubechies min. max. Daubechies

% % % % % %

2 P2 96.3 98.4 97.3 77.6 98.4 96.8
3 97.0 98.3 97.3 93.0 98.2 97.4
4 P2 97.8 98.8 97.8 78.0 98.0 94.9

2 Pz and P3/P2 96.2 98.9 97.8 87.6 97.9 95.8
3 Pz and P3/P2 94.1 98.8 97.2 87.3 98.1 97.2
4 Pz and P3/P2 96.6 99.0 97.1 94.0 97.7 95.3

T a b l e -5 .5 : O v e r a l l  C l a s s if ic a t io n  P e r f o r m a n c e  u s in g  E u c l id e a n  D is t a n c e  f o r  v a r io u s

FEATURES FOR VARIOUS LEVELS 

Level o f Feature Euclidean Distance
Decomposition min. max. Daubechies

% % %

2 LI-norm 92.4 95.8 92.9
3 LI-norm 93.5 98.2 96.9
4 L|-norm 95.2 98.9 98.3

2 A-norm 8 6 .8 92.2 89.3
3 A-norm 94.3 97.4 96.5
4 A-norm 95.1 98.5 97.5

2 abs. sum 97.1 98.5 97.5
3 abs. sum 97.5 98.8 98.4
4 abs. sum 95.5 99.2 98.3
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Figure 5.1. Texnore classification using (ii and H3/IJ.2 for level 2 using Euclidean distance classifier.
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Figure 5.2. Texture classification using (Xi and n-j/ixi for level 3 using Euclidean distance classifier.
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Figure 5.3. Texture classification using p.; and ps/pz for level 4 using Euclidean distance classifier.
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Figure 5.4. T ex ture  classification using and for level 2 using Neural N et classifier.

%98-

C Œ 
t

Separabiity-Based Texture Classification

A i # . / :
V (' ■/

Cases of h

Figure 5.5. T ex ture  classification using p.2 and 113/H2 for level 3 using Neural Net classifier.
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Figure 5.6. T ex ture  classification using (ti and H3/H2 for level 4  using Neural Net classifier.
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Figure 5.7. Texture classification using for level 2 using Euclidean distance classifier.
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Figure 5.8. Texture classification using n: for level 3 using Euclidean distance classifier.
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Figure 5.9. Texture classification using pt: for level 4 using Euclidean distance classifier.
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Figure 5.10. Texture classification using jii ibr level 2 using Neural Net classifier.
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Figure 5. I I .  Texture classification using p.; for level 3 using Neural Net classifier.
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Figure 5.12. Texture classificatioa using 1̂% for level 4 using Neural Net classifier.
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Figure 5.37. Overall percentage o f  classification using and p /p ?  using Neural Net classifier.
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Figure 5.38. Overall percentage o f  classification using p ; using N eural N et classifier.
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Figure 5.39. O verall percentage o f  classification using p j and P 3/P 2  u sing  Euclidean distance classifier.
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Figure 5.43. Overall percentage o f  classification using absolute sum  using Euclidean distance classifier.

5.5. EFFECT O F M OTH ER WAVELET ON CLASSIFICATION USING W AVELET 

TRANSFORM

Using each mother wavelet, the pyramid decomposition is applied to the textures in the database and 

both training and classification is done. Features are extracted using the F-norm and the second level 

decomposition. Then the features are dimensionally reduced and the classification percentage is calculated 

for all textures.

Table 5.6 compares the classification performance for the Daubechies 4-tap wavelet with the second 

level o f decomposition using the Euclidean distance classifier with and without dimensionality reduction. 

The classification performance is considerably improved using the dimensionality reduction technique for 

the octave tree structure. Using various wavelets does not improve the classification performance 

considerably compared to that of the Daubechies wavelet for the pyramid tree.

The results are also compared by obtaining more features from each band using the procedure o f the 

algorithm developed in Section 4.6. The performance does not inçrove without the dimensionality 

reduction, even when more features are extracted. Also, the effect of increasing the database size is 

observed by adding three textures to the previous database. The performance decreases considerably in all 

cases. In other words, the performance decreases with an increase in database size, even when more 

features are extracted and dimensionally reduced.
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T a b le - 5 .6 :  O v e r a l l  C l a s s if ic a t io n  P e r f o r m a n c e  u s in g  F -n o r m  f o r  s e c o n d  l e v e l  o f

DECOMPOSITION

Level No. of DataBase Dimensionality Wavelets
Features Size Reduction min. max. mean median Daubechies

% % % % %

2 28 10 No 80.50 83.40 82.10 81.95 83.00
2 28 10 Yes 92.20 94.70 93.70 93.75 94.30

2 28 7 No 85.43 87.57 86.67 86.64 87.57
2 28 7 Yes 97.86 99.29 98.62 98.71 99.00

2 7 10 No 80.50 84.10 82.38 82.15 83.50
2 7 10 Yes 87.90 95.30 93.33 93.45 95.20

2 7 7 No 85.43 89.14 87.50 87.50 88.43
2 7 7 Yes 96.14 99.00 97.81 97.93 98.86

5.6. INFLUENCE O F VARIOUS PARAMETERS ON CLASSIFICATION

5.6.1 THE RELATIVE PERFORMANCE OF DIMENSIONALITY REDUCTION

As described in Section 2.5, an appropriate form of dimensionality reduction is crucial to the success 

of the wavelet transform as a basis for classification. The role of dimensionality reduction when using the 

wavelet transform is examined here. Three methods have been used to derive features from a wavelet 

decomposition that are also examined: a representation by wavelet transform local extrema, a 

representation by wavelet transform first order norm, and a representation by wavelet transform sub-band 

energy.

A reduction o f the wavelet transform using feature selection has been performed here using a class 

separability measure. The L,-norm, F-norm (sub-band energy) and A-norm (local extrema) are used as the 

feature extractors. Sixteen features are obtained from one level wavelet decomposition as explained in 

Section 5.2.1 for each measure and these 16 features are dimensionally reduced to four features. This 

dimensionality reduction is repeated for all the wavelets and performance statistics are obtained. The 

minimum, maximum, mean and median classification performances for the wavelets are obtained for the 

above methods. These results are conqsared in Table 5.7 to the corresponding results without the
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dimensionality reduction component. The percentage of correct classification rates for the three measures 

using the wavelets are plotted in Figures 5.44 to 5.46 and the overall percentages are plotted in Figure 5.47 

for window size 64.

The feature extraction using the F-norm measure seems to give better classification performance in the 

case of textures. It is presumed that a substantial degree of temporal dispersion is present in a set of signals. 

Computing the energy in each WT sub-band smooths the effects o f temporal shift, which might be the 

reason for the improvement in the performance.

5.6.2. THE DEPTH OF THE DECOMPOSITION

Aside from the selection of the mother wavelet, the only other adjustable parameter when performing 

the WT is the depth of the decomposition. For a signal of length N, the maximum depth o f decomposition 

is y  = log; A/. For each texture, a WT feature set is extracted from the full (uniform) WT decomposition at 

the second level. The test set average classification performance statistics are listed in Table 5.8 for 

decomposition levels 1 and 2 and for differing numbers o f features with and with out dimensionality 

reduction using the F-norm measure. The percentage of classification rates are plotted in Figure 5.48 for the 

second level decomposition using the F-norm for feature reduction.

Regardless o f the number of features, the classification performance improves by increasing depth of 

decomposition. It is clear that the frequency resolution in the subbands provided by full WT decomposition 

is useful for texture classification.

5.6.3. THE EFFECT OF INCREASING THE DATABASE SIZE

In this section, the effect o f increasing the database size, i.e. increasing the number of textures (classes) 

in the database on the classification performance is explored. Three more textures are added to the previous 

database, which has 7 textures. The classification performance is computed for these 10 textures using the 

measures for the first and second level decompositions for all the wavelets using the Euclidean distance 

classifier. They are listed in Table 5.9. The classification results are plotted in Figures 5.49 and 5.50 for the 

second level decomposition using 10 textures for the F-norm and feature reduction. Figure 5.51 shows the
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overall percentage o f  classification rates for a second level decomposition using 10 textures and Figure 

5.52 shows the performance for the first level decomposition using 7 textures only, both with and without 

the dimensionality reduction.

The results show that the classification performance increases with the depth o f the deconçosition. 

The first level o f decomposition may not provide enough information for classification when the textures in 

the database have overlapped clusters. The classification performance can be improved in the first level by 

extracting more features. Further improvement results when the dimensionality is reduced. In the second 

level of decomposition, extracting more features from the subbands does not increase the classification 

performance, even with dimensionality reduction. This implies that too many features are 

counterproductive and that obtaining the optimum number o f coefficients is crucial for classification 

performance. The optimum number of features varies for each level o f decomposition.

T a b l e -5 .7 : O v e r a l l  C l a s s if ic a t io n  P e r f o r m a n c e  w i t h  D im e n s io n a l it y  R e d u c t io n

Feature Dimensionality Wavelets
Reduction min. max. mean median Daubechies

% % % % %

F-norm No 88.57 93.29 90.20 89.93 89.00
Yes 89.43 98.57 93.66 93.29 90.86

L|-norm No 88.29 91.57 89.99 89.93 90.1
Yes 87.86 94.29 91.43 91.36 91.29

A-norm No 83.00 90.29 86.04 85.29 84.86
Yes 81.29 91.86 84.80 84.07 81.29
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Table-5.8: O v e r a l l  C lassificatio n  Pe r fo r m a n c e  u sing  F -norm  fo r  va r io u s  l e v e l s

Level No. of Dimensionality Wavelets
Features Reduction min. max. mean median Daubechies

% % % % %

1 4 No 86.00 90.43 87.71 87.57 86.29

1 16 No 88.57 93.29 90.20 89.93 89.00
1 16 Yes 89.43 98.57 93.66 93.29 90.86

2 16 No 90.57 91.86 91.13 91.14 91.43
2 16 Yes 97.86 99.57 98.83 98.86 99.00

2 64 No 93.43 93.86 93.68 93.71 93.86
2 64 Yes 99.57 99.86 99.72 99.71 99.71

Table-5.9: O v e r a l l  C la ssific a tio n  Perfo rm .a nc e USING F -norm  w it h  D a ta B a s e  S iz e  = 1 0

Level No. of Dimensionality Wavelets
Features Reduction min. max. mean median Daubechies

% % % % %

1 16 No 77.20 79.00 77.88 77.70 77.60
1 16 Yes 81.70 92.30 86.72 86.85 83.20

2 16 No 86.30 87.80 86.99 86.95 87.30
2 16 Yes 96.30 98.40 97.34 97.30 97.30

2
2

64
64

No
Yes

86.00 87.00 86.55 86.55
96.10 97.50 96.91 96.90

86.50
96.60
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Figure 5.1. Texture Gassi&cation using the F-norm of the DWT Coefficients and dlmensionally reduced four features.
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Figure 5.2. Texture Classification using the L|-norm of the DWT Coefficients and dimensionally reduced four features.
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Figure 5.3. Texture Classification using the A-norm of the DWT Coefficients and dimensionally reduced four features.
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Figure 5.6. Texture Classification for 10 textures using the F-norm for level 2.
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Figure 5.7. Texture Classification for 10 textures using the F-norm for level 2 and dimensionally reduced four features.
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5.7. PERFORMANCE SUMMARY

5.7.1. THE RELATIVE PERFORMANCE AMONG THE FEATURE SETS

The previous sections have described the applications o f the WT- (Wavelet Transform) and the WPT- 

(Wavelet Packet Transform) based features sets to the task o f textiure classification. Closely coupled with 

the use of featiue set is the means o f dimensionality reduction. When using time-frequency based 

representations, it is cracial that an appropriate form of dimensionality reduction be performed. It has been 

demonstrated that separability based feature projection or dimensionality reduction significantly improves 

the performance

The classification performances for all the features (L,-norm, F-norm and A-norm) using the uniform 

or wavelet packet decomposition and wavelet transform are listed in Table 5.10 using the second level 

decomposition. The results show that performances using these different measures are comparable, and the 

F-norm, which is the average energy across the subbands, outperforms the other measures when using any 

wavelet based decomposition along with the dimensionality reduction.

5.7.2. THE RELATIVE PERFORMANCE AMONG THE TREE STRUCTURES

When using the wavelets for analysis, a few parameters can be varied. These are the choice o f the 

mother wavelet, the depth o f the decomposition and the time-frequency tiling. Any image can be 

decomposed into an octave-tree using wavelets, or a wavelet packet tree or a full tree according to its time- 

frequency tiling. In this section, the performance of these three tree structures for texture classification are 

compared.

The results are compared using the F-norm, as it is shown to be the best measure in the previous 

analysis for texture classification. Only a second level decomposition is performed on the data. For the 

wavelet packet decomposition, in the second level all the bands are decomposed. This results in a uniform 

decomposition, which is a full tree. The results are compared for the octave tree (wavelet transform) and 

the full tree for the second level using the F-norm with or without dimensionality reduction. Only 7 features 

are obtained in the octave tree because it has seven bands in the two level decomposition, whereas the
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uniform tree has 16 bands resulting in 16 features. Even when the number o f  features extracted from each 

band is increased, there was no improvement in performance, which may indicate that the performance 

limit has been reached. The classification results are listed in Table 5.11 for the octave and full tree. The 

results show that the wavelet packet or the full-tree performs better when used for the texture classification.

5.7.3. THE RELATIVE PERFORMANCE AMONG THE CRITERIA FOR TREE DECOMPOSITION

Now, we know that the wavelet packet transform performs better than the wavelet transform for 

texture classification. But, to decompose any image using a wavelet packet tree, one needs to know the 

criterion with which the bands are decomposed. As we have shown in Chapter 4, the texture can be 

decomposed based on energy or separability or some other criterion. In this section, the classification 

performance is compared for wavelet packet decomposition based on energy and separability using an 

Energy-based tree decomposition algorithm [41] and a separability-based tree decomposition algorithm 

[43]. The results are compared in Table 5.12 for all wavelets using second level decomposition and the F- 

norm with and without dimensionality reduction. The feature reduction method used is feature selection, 

which means that the five best features are selected out o f all extracted features. The best features are the 

highest energy-valued features. Using the feature selection method, the energy based tree decomposition 

seems to be performing better than the separability-based algorithm. However, when the dimensionality 

reduction is used instead o f the feature selection method based on separability, the separability-based tree 

decomposition performs better than the other tree. Also, the separability-based dimensionality reduction 

outperforms the feature selection, so one prefers the separability-based decomposition for texture 

classification along with the dimensionality reduction.

5.7.4'. IMPORTANCE OF WAVELETS

One can observe from the tables 5 .11 and 5.12 that the choice o f  the mother wavelet is crucial 

irrespective of the wavelet tree chosen, the criterion for the tree, the level o f  decomposition, the feature 

extraction method, the number o f features extracted, or the feature reduction method. One can improve the 

classification performance by choosing the better, more suitable (sub-optimal) wavelet for the dataset. All
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other possible combinations o f parameters can be varied as in a typical classification task. The overall 

classification performance improvement may vary from 1% to 10% depending on the dataset and the 

parameters chosen to classify the dataset. The classification for individual textures may vary more than that 

for some textures, which are difficult to classify. It varies less for textures, which are highly clustered and 

are farther removed from the rest of the classes.

5.8. THE NECESSITY TO DESIGN FILTER BANKS

As one can observe from the above results, the performance varies considerably using different 

wavelets. Classification performance is not the best for either the four-tap Daubechies wavelet or the 

sixteen-tap Battle-Lemarie wavelet. Improvement in performance for all measures using different tree 

structures (for both energy-based tree and separability-based tree) can be observed for other wavelets 

compared to the Daubechies wavelets. The influence of mother wavelet on classification performance is 

significant in all cases. This is true for all the wavelet tree decomposition algorithms, various feature 

extracting measures, and sample sizes. The performance improvement is significant, even for the 

computationally simple algorithm This work has shown that designing a wavelet for a given application 

and applying that wavelet to the application improves the performance. The obtained wavelet may not give 

performance improvement for different sets o f data in other applications.

Thus, the original work described in this chapter has established the existence o f a wavelet that is both 

suitable for texture classification and capable o f delivering an appreciable performance gain as opposed to 

the standard wavelets. We want to find this wavelet that gives an improved performance for our 

application. How do we design this wavelet? What is the criterion that needs to be minimized or maximized 

to design this wavelet? Is it feasible to design such a wavelet? All these questions are addressed in the next 

chapter and the optimal or sub-optimal wavelet is designed for texture classification. A suitable criterion 

for finding the optimal wavelet is presented and is used to find the optimal wavelet.
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T a b le-5 .1 0 : C o m p a r iso n  o f o v e r a l l  C l a s s i f i c a t i o n  P e r fo r m a n c e  f o r  W T an d  W PT

No. of Reduced L,-Nonn F-Norm A-Norm
Features Features

Wavelet 
Transform

Wavelet Packet 
Transform

Octave Tree

Full Tree

% % %

7 4 90.90 95.30 84.40

16 4 95.80 98.40 92.20

: OVERALL C l a s s if ic a t io n  P e r f o r m a n c e  u s in g  F - n o r m  f o r  W a v e l e t  T r e e s

No. o f Dimensionality Wavelets
Features Reduction min. max. mean median Daubechies

% % % % %

7 No 80.50 84.10 82.38 82.15 83.50
7 Yes 87.90 95.30 93.33 93.45 95.20

28 No 80.50 83.40 82.10 81.95 83.00
28 Yes 92.20 94.70 93.70 93.75 94.30

16 No 86.30 87.80 86.99 86.95 87.30
16 Yes 96.30 98.40 97.34 97.30 97.30

64 No 86.00 87.00 86.55 86.55 86.50
64 Yes 96.10 97.50 96.91 96.90 96.60

TABLE-5.12: O v e r a l l  C l a s s if ic a t io n  P e r f o r m a n c e  u s in g  F -n o r .vi f o r  W a v e l e t - P a c k e t  T r e e

BASED o n  s o m e  CRITERIA

Tree Feature Reduction
min.
%

Wavelets
max.
%

Daubechies
%

Energy-Based Tree Feature selection 85.57 87.86 87.14

Separability-Based tree Feature Selection 80.60 84.10 83.50

Using all features 86.30 87.80 87.30

- Dimensionality
Reduction 96.3 98.4 97.3
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CHAPTER 6 

OPTIMAL FILTER BANKS

It was shown in Chapter 5 that the choice of the wavelet basis function is crucial for texture 

classification. The wavelet needs to be designed based on some criterion yet to be established. The chosen 

criterion should be dependent on the data sets in terms o f their separation and classification. Recently, 

various wavelets have been designed using different cost functions depending on the problem that needs to 

be solved [62], [63], [64]. In this chapter, an approach to the design of sub-band filters with optimal 

separation is proposed. In Section 6.1, the approach is outlined and in Section 6.2, the cost function used to 

design the filters is presented. The relationship between wavelets and the cost function with respect to the 

classification performance is established in Section 6.3. Once the cost function is chosen, it needs to be 

optimized. An appropriate optimization algorithm should be chosen to find the global maximum. In Section

6.4, the optimal sub-band filters are designed and the existing optimization techniques are briefly reviewed. 

The optimization algorithm (Simulated Annealing) used to find the global optimal solution for the problem 

is described in Section 6.5. The parameters and their effect on the performance of the simulated annealing 

algorithm are studied empirically in Section 6.6. This is required for proper convergence o f the 

optimization algorithm. An algorithm to find the optimal sub-band filter for a data set is developed in 

Section 6.7. The results are discussed in Section 6.8 and our conclusion follows in Section 6.9. 

Mathematical details in this chapter are presented in Appendix B.

6.1. OPTIMAL FILTERS BASED ON SEPARABILITY

It was shown in Chapter 5 that the choice of the wavelet basis function is crucial for signal 

classification irrespective of the wavelet decomposition methods, levels of decomposition, different 

measures used for feature extraction, and feature reduction methods. Designing sub-band filters for 

classifying the sources o f similar natiure as one group is addressed in this chapter. For good feature 

extraction, the wavelet must cluster the information within each class and it must provide maximal
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discrimination among these clusters. When using the time-frequency plane as the feature space, it is 

imperative that the representation provide good localization (to prevent any overlap in the information that 

may provide discrimination) using as few features as possible, to simplify the classification task. This 

problem can be solved by designing sub-band filter-banks so that the distance between the clusters is 

maximized. In other words, the sub-band filters need to be designed to cluster the signals that belong to a 

class and provide maximal separation between the clusters. The criterion chosen for the texture 

classification problem is discussed in the next section.

6.2. SEPARABILITY

When we have two or more classes, feature extraction consists o f  choosing those features that are most 

effective for preserving the class separability. Class separability criteria are essentially independent o f  the 

coordinate systems. Furthermore, class separability depends not only on the class distributions but also on 

the classifier implementation. For example, the optimum feature set for a lineal classifier may not be the 

optimum set for other classifiers (non-linear). In order to avoid this additional complexity, let us assume 

that we seek the optimum feature set with respect to the Bayes classifier, which results in the minimum 

error for the given distributions. Then, class separability becomes equivalent to the probability o f error due 

to the Bayes classifier, which is the best one can expect. Therefore, theoretically speaking, the Bayes error 

is the optimum measure for feature effectiveness. A major disadvantage o f the Bayes error as a criterion is 

the fact that an explicit mathematical expression is not available except in a very few special cases. The 

criteria to evaluate the effectiveness o f features must be a measure o f the overlap or class separability 

among the distributions, and not a measure of fit such as the mean-square error. The Bayes error is the best 

criterion to evaluate feature sets, and a posteriori probability functions are the ideal features. Unfortunately, 

the Bayes error is too complex, and therefore we need simpler criteria associated with systematic feature 

extraction algorithms. One such criterion is based on scatter matrices, which is simple and gives systematic 

feature extraction algorithms. The criteria used measure the class separability of L classes, but do not relate 

to the Bayes error directly. The class separability is defined in Section 2.4.2.1. Theoretically, class 

separability is an appropriate criterion for signal classification. Before we proceed with this criterion, let us 

examine the relationship between the wavelets and class separability for texture classification
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6 J .  RELATIONSHIP BETW EEN WAVELETS AND SEPARABILITY

Using the results obtained in the previous chapter, we can see the relationship between the mother 

wavelet basis and the class separability. The corresponding class separability should be the highest for the 

wavelet basis that gives the best classification performance. This simple test should give some direct 

proportionality between the wavelet basis and the class separability. That means the class separability is the 

highest using the best wavelet basis and is the least when using the worst wavelet basis. If the results 

confirm these initial conjectures, then we can design a wavelet basis based on class separability using the 

scatter matrices.

Figure 6.1 shows the percentage o f correct classification rate vs. different wavelet bases and between 

class separability vs. different wavelet bases. One can easily observe a definitive trend in these two curves. 

They may not be parallel, or the separability may not be the least at the worst wavelet, but at least it is the 

highest or near the highest at the best wavelet. Figure 6.2 shows the plots for the classification rate 

percentage, with-in class separability, between class separability and total separability as a function of the 

wavelet bases. Classification percentage variation with respect to between-class separability and class 

separability are shown in Figure 6.3.

The classification rate should be the highest for the wavelet with the highest separability. Though we 

expect a direct relationship between the classification rate and the total separability, that is observed only 

with respect to the between-class separability and the classification rate. Consequently, one can design sub

band filter banks by maximizing the between-class separability and achieve improved classification 

performance. These sub-band filters are designed depending on the dataset, the measure used to extract the 

features, and also on the classifier used.

CHAPTER 6: OPTIMAL FILTER BANKS 121



Relation Between Separability and Wâvetet B ases
1 o o a

N
o
r

I 0.995 

z
itage of Classificati

V
a 0.985

* 0.98

0975
2520

Different h

Figure 6.1. R elationship betw een the percentage o f  correct classification and betw een class separability  for different
w avelet bases.

Relation Between Separability and Wavelet Bases

Perceni of Classification

0.98
Separability Between Class

r 0 96

Separability Wfttim Class
I 0.94

e 0 92

Separability

u 0 88

0.86
20

Differenth

Figure 6.2. R elationship betw een the percentage o f  correct classification and class separabilities for different wavelet
bases.

CHAPTER 6: OPTIMAL FILTER BANKS 122



96.5

98

97 5

c 96.5

8.958.8 8.85
Between class separability

8.9

98 5

96

97 5

97

c 96.5

96
6660

Class separabiltty
6462

Figure 6.3. T he relationship between class separability  and %  classification rate.

6.4. DESIGN OF WAVELETS

One of the main ideas o f this study is to investigate the effectiveness o f a separability o r  discrimination 

based criterion for wavelet basis selection. The analysis compares projections of a set o f  signals onto 

waveforms and subsequent selection o f the wavelet basis corresponding to the projections that contain the 

most discriminatory information. This selection permits discrimination o f signals to a specified accuracy 

with the fewest waveforms. The wavelet basis selected based on class separability may not be optimal for 

representing or approximating individual signals.

In this section, we present our wavelet basis selection scheme, which tries to find the best wavelet 

basis for classification purposes. The wavelet basis is chosen that gives the best between-class separability. 

The between class separability is defined as

J t, = tracers (6.1)

where Sy is the between-class scatter matrix (the scatter of the conditional mean vectors M; o f  each class 

around the overall mean vector o f all the classes M), i.e..
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L
Sb = % P r{C  = C , ) (M -M ,) (M -M ^ f  (6.2)

1=1

The sub-band filters need to satisfy the following constraints.

N -l
^ A o ( n )  =V 2 (6.3)
«=0

N -\
'^ h iC n )h jin + 2 k )  = S i i - j ) S i k )  i , y e { 0 , l }  (6.4)
n=0

Hence, the optimal wavelet solution can be obtained by solving the following constrained optimization 

problem

^optimal ~  b ] (6. 5)

subject to equations (6.3) and (6.4).

One can observe firom Figure 6.3 that the cost function, which is the class separability, is not strictly 

concave or convex. It in general has a number of local maxima, some of which may lead to bad choices of 

the sequence ho. It is very difficult to define explicitly the expressions for the gradient of the cost function 

in terms of the coefficients ho- Before proceeding to other alternatives of optimization, let us try to express 

the cost function as a  function of ho. Please refer to Appendix-B for the approach used to calculate the 

gradient expressions. A gena^al closed form solution has not been found. This prevents the use o f gradient 

type optimization techniques. However, the major drawback with the gradient search is that it is likely to 

converge to a local optimum. Also, if the cost function is multimodal within the domain of interest, the 

number of available algorithms is reduced to very few. One can see from Figure 6.1 that the cost function

in the filter domain is multimodal and it has many local maxima.

A simple and widely used technique is to geno’ate a given number of different points inside the 

function domain, perform unimodal searches starting from each point, and then retain the best resulL All of 

the techniques, including the unimodal direct minimization algorithms such as Hooke and Jeeves [65] and 

Neldar and Mead [66], and the algorithms which evaluate the derivatives of the cost function [67], are 

efficient in the case o f functions with a few local maxima. However, when the problem has many variables 

and a large number of local maxima that are an increasing function of the number of variables, these
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techniques offer low efficiency and limited reliability. Simulated annealing (SA) has been in’oposed in the 

area of combinatorial c^timization where the cost function is deGned in a  discrete domain. This method is 

reported to perform well in the jffesence of a very high number of variables [68]. It is based on random 

evaluations of the cost function in such a way that transitions out of local maxima are possible. It is not 

guaranteed to converge to the global maximum, but if the function has many good near-optimal solutions, it 

generally Gnds one. In particular, this technique is able to discriminate between the “gross behavior” o f the 

function and the Gner “wrinkles.” First, it iterates in an area o f the funcuon where a global maximum 

should be present, following the gross behavior irrespectively of small local maxima found on the way. It 

then develops Gner details, Gnding a good, near-optimal local maximum, if not the global maximum itself. 

The constrained optimization problem posed by (6.5) can be solved by using this SA algorithm.

6.5. SIMULATED ANNEALING ALGORITHM

6.5.1. METHOD

Let X be a vector in R“ and let ( x j  ,X2 ) be its components. Let f(x) be the funcGon to maximize

and let oj <Xj < 6 ,  a„ < be its n variables each ranging in a  Gnite, conunuous interval. The

function f  does not need to be continuous, but it must be bounded. The SA algorithm is schematically 

shown in Figure 6.3. It proceeds iteratively through the points: xb, Xi, ..., Xj, ..., tending to the global 

maximum of the cost function. New candidate points are generated around the current point X; by applying 

random moves along each coordinate direction, in turn. The new coordinate values are unifœmly 

distributed in intervals centered around the corresponding coordinate of x;. The half-widths of these 

intervals along each coordinate are recorded in the step vector v. If the point falls outside the deGniUon 

domain of f, a new point is randomly generated until a point belonging to the deGnition domain is found. A 

candidate point x is accepted or rejected according to the Metropolis criterion [69], which is:
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F igure 6.4. The SA m inim ization algorithm .
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If the change in the cost function Af < 0, then accept the new point: Xj+i =x’; else accept the new point 

with probability:

p (A f  )  = ex p (-A f / T )

where Af = f(x')-f(x;) and T is a parameter called temperature.

At any fixed value o f T, the succession o f points Xq, x,, Xj, ... is not downhill except when T=0. For

values of T that are large compared to the mean value of I f(Xh)-f(Xk) I ( Xh and x  ̂ are points randomly 

chosen inside the definition domain o f  f) , almost all new points are accepted and the succession is a 

random sampling o f f.

The SA algorithm starts at a high temperature T given by the user. A sequence of points is then 

generated until a sort of equilibrium is approached; that is, a sequence o f  points Xj whose average value of 

the cost function f  reaches a stable value as i increases. During this phase, the step vector v^ is periodically 

adjusted to better follow the function behavior. The best point reached is recorded as Xopt- After thermal 

equilibrium, the temperature T is reduced and a new sequence o f moves is made starting from Xop„ until 

thermal equilibrium is reached again, and so on. The process is stopped at a temperature low enough that 

no more useful improvement can be expected, according to a stopping criterion.

The SA optimization algorithm can be considered analogous to the physical process by which a 

material changes state while minimizing energy. A slow, careful cooling brings the material to a highly 

ordered, crystalline state o f lowest energy. A rapid cooling instead yields defects and glass-like intrusions 

inside the material.

From an optimization point o f view, an iterative search accepting otily new points with lowest function 

values is like rapidly quenching a physical system at zero temperature. It is very likely to be stuck in a 

metastable, local minimum. On the contrary, SA permits uphill moves imder the control o f a temperature 

parameter. At higher ten^erature, only the gross behavior of the cost function is relevant to the search. As 

the temperature decreases, finer details can be developed yielding a quality final point. While the optimality 

o f the final point caiuiot be guaranteed, the method is able to proceed toward better minima even in the 

presence of many local minima. The detailed algorithm is described in the next section.
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6.5.2. ALGORITHM

Step 0 (Initialization)

Choose;

• A starting point Xq.

• A starting step vector Vq.

• A starting temperature Tq.

• A terminating criterion e and a number o f  successive temperature reductions to test for termination N .̂

• A test for step variation N, and a varying criterion c.

• A test for temperature reduction Nt and a reduction coefficient yt-

Set i, j, m, k to 0. i is the index denoting successive points, j  denotes successive cycles along every 

direction, m describes successive step adjustments, and k covers successive temperature reductions.

Set h to I. h is the index denoting the direction along which the trial point is generated, starting firom 

the last accepted point.

Compute fo  = / ( x g )  .

Set Xopt *0) fjpi fi)- 

Set Uu = 0, u = I,..., n.

Set f„* = Ç), u = 0, -1,..., -Nt+1.

Step I

Starting from the point Xj, generate a random point x ’ along the direction h: 

x’ = Xi + r Vttj, Ch

where r is a random number generated in the range [-1, 1] by a pseudo-random number generator; en is 

a vector o f the h* coordinate direction; and v,nj, is the component o f  the step vector v^ along the same 

direction.
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Step 2

If the h* coordinate o f x’ lies outside the definition o f f, that is, i f  Xt,’ < an or Xh’ > bh , then return to 

step 1.

Step 3

Compute f  - f(x’).

If  r  < fi, then accept the new point: 

set Xi_, = x’ , 

set fĵ i = f ,  

add I to i, 

add 1 to nh, 

if f  < fopt, then set

X o p t =  x ’ ,  

f o p t  -  C ,

endif;

else ( f  > fj) accept or reject the point with acceptance probability p (Metropolis move):

f  /■ - r ' \p = exp - i - ----
V ‘ k J

In practice, a pseudo-random number p ’ is generated in the range [0, I] and is compared with p. I f  p ’ < 

p, the point is accepted, otherwise rejected.

In the case o f acceptance:

set X{+, = x%

set fi+, = f ,

add 1 to i,

add 1 to n .̂

Step 4

Add 1 to h.
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If h < n, hen go to step I . 

else set h to 1 and add 1 to j.

Step 5

If j  < Ns, then go to step 1; 

else update the step vector v„,:

for each direction u the new step vector component v„ is

riu  /  N ^  - 0.6
Ô4

if rtu > 0.6M,

ifn„<0.4M ,

otherwise

Set Vm+l = v- , 

set j  to 0,

set n„ = 0, u = 1, . . . ,  n, 

add 1 to m.

The aim of these variations in step length is to maintain the average percentage of accepted moves at 

about one-half of the total number o f moves. The c„ parameter controls the step variation along each u* 

direction.

Step 6

If m < Nt, then go to step I ;

else, it is time to reduce the temperature T :̂

set Tk = Yt.Tic, where Yj is the reduction coefficient.

set ft* = fi,

add I to k,

set m to 0.
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It is worth noting that a temperature reduction occurs every Ns-Nt cycles of moves along every 

direction and after Ny step adjustments.

Step 7 (terminating criterion)

If:

u = l, . . . ,  Ne

f ’k -  fop, 

then stop the search; 

else:

add 1 to i, 

set Xj = Xop„ 

set fi = fop,.

Go to step I .

Reasonable values, found after some test optimizations (by Corana et.al.), of the parameters that 

control the simulated annealing are 

N s =  20.

Nt = max(IOO, 5*n).

Ci = 2, i=  I , ..., n.

Ne = 4.

Yt = 0.85.

6.5.3. STEP ADJUSTMENTS

In Monte Carlo simulations of fluids using the Metropolis approach, new configurations are generated 

trying to maintain a 1:1 rate between the accepted and rejected configurations [70]. A lower rate means that 

too many moves are rejected, thus wasting computational effort. A higher rate means the trial 

configurations are too close to the starting ones, thus having a small difference in energy compared to the 

temperature. This implies that the accepted configurations evolve too slowly, again wasting the
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computational effort. The same criterion is used in the SA algorithm. A 1:1 rate between accepted and 

rejected moves means that the algorithm is following the “function behavior” well.

In the SA algorithm, the trial points are generated along each coordinate direction in turn, 

independently from the other directions. A step vector v records the maximum increments possible along 

each direction and is adjusted every Ns th move to maintain the 1:1 ratio.

6.5.4. COMMENTS

This method needs many function evaluations, but it is able to find the global minimum o f test 

functions with an extremely high niunber o f local minima. SA can provide high reliability in the 

minimization o f  multimodal functions at high computational costs that linearly increase with the number o f 

dimensions of the problem. In combinatorial SA, it has been suggested that To should be o f the same order 

o f magnitude as the standard deviation of the cost function in its domain of definition [71]. A better 

approach could be to monitor the function behavior as the SA iteration proceeds. This can be done using 

the incremental ratio between the average value of the cost function and its square at the points accepted by 

the moves at a given temperature [69]. However, the performance o f  the algorithm is poor when following 

multimodal cost functions that have “valleys” that are not directed along the coordinate directions. This 

problem is due to the way new search points are generated. However, highly directional schemes might 

lose some of the flexibility o f  the random search procedure.

6.6 INFLUENCE OF PARAMETER SETTINGS ON PERFORM ANCE O F SIMULATED 

ANNEALING ALGORITHM

To get a good solution, the implementation o f the simulated aimealing algorithm must specify the 

parameter set for the cooling schedule. In general, the parameter set is specified by a “one variable at a 

time” strategy in the literature. It is assumed that the parameters are independent of each other and that the 

interaction effect among parameters may be ignored. Also, the above strategy does not take into account 

the computational time constraint allowed for getting a good solution. The parameter set imder the “one 

variable at a time” strategy is usually determined by how good a solution is.
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To find a better way to obtain a good parameter set, many procedures have been proposed for 

designing the parameter set [72] - [77]. One o f the techniques is to design the parameter set under the 

computational time constraint via application o f  the response surface methodology (RSM) [78].

The parameters and their effect on the performance and convergence o f  the simulated annealing 

algorithm for our application are studied empirically. The control parameter, which is the starting 

temperature and its decrement, is made as a function of the standard deviation o f  the class separability and 

is used in inqjlementing the algorithm. The reduction of the control parameter is a key indicator o f the 

stability of the annealing algorithm’s operation. The control parameter convergence should possess the 

characteristic large decreases for the initial steps and then exhibit much smaller decrements as the 

algorithm converges to a solution. This convergence pattern is reminiscent of the temperature convergence 

used in metal aimealing. The control parameter is decremented slowly so that the algorithm does not 

converge too quickly and to ensure that the iterations do not stick in a metastable local minimum.

Class separability convergence is another indicator of the performance o f the algorithm. That means, 

how well the cost function converges is an indication of the performance o f the algorithm. As an example, 

a test case is used to show the convergence of the cost function. The test case used is evaluation of the cost 

function, which is class separability. This is calculated for a database size o f seven textures using F-norm 

with single level decomposition and extracting four features. Figure 6.5 shows a representative separability 

convergence that demonstrates the overall gradual improvement in the class separability. The control 

parameter To and the initial step size used are 0.075 and 0.01, respectively. All the transitions are plotted. 

The convergence forces the value of the control parameter to approach zero, which then causes even fewer 

transitions to be accepted according to the Metropolis criterion. The convergence of the cost function is 

plotted in Figures 6.6 and 6.7 with different parameter settings. Figure 6.6 shows the convergence plot with 

To=0.75 and step size o f 0.001. As we increase the initial temperature, the number o f iterations needed for 

the cost function to converge to the global maximum is high when compared to a lower initial temperature. 

In addition, the number o f iterations also increases with a decrease in the initial step size. This property can 

be observed by comparing Figures 6.6 and 6.7, which cases both have the same initial temperature but 

different initial step sizes.
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To study the influence o f varying the temperature linearly, the temperature is reduced linearly at step 

sizes of 0.1 from an initial temperature o f 0.75. In another case, the temperature is kept constant through 

out the annealing process (i.e. all the random moves and the step changes) with an initial temperature of

0.75. These plots are shown in Figures 6.8 and 6.9. It can be observed from Figures 6.6 (exponential 

decrease in temperature) and 6.8 (constant temperature) that both the cases have the same number of 

iterations (approximately 1400 iterations). The cost function varies only between 47.00 and 49.00 when the 

temperature is reduced exponentially (Figure 6.6), where as the cost function varies between 45.00 and 

49.00 when the temperature is kept constant (Figure 6.8). Both these experiments are conducted with the 

same initial temperature and same initial step size. The highest cost function reached is 49.00 in both cases. 

However, the test with exponential temperature reduction reaches the ‘equilibrium’ for each Ns iterations 

before a change in the step size is attenqjted. The test with the same temperature reaches the maximum 

value of the cost function only a few times and does not reach ‘equilibrium.’ The importance o f reaching 

the maximum of the cost function is explained in the Section 6.8. The same observations can be made from 

Figure 6.9, which was produced with a linear temperature reduction schedule.

The next step in the study o f  the performance of annealing is an investigation of the reliability o f the 

results. It has been shown that annealing has the capability o f yielding impressive results. Simulated 

annealing, however, is a stochastic process, which implies that the output of such a system must be a 

random variable. The outcome of each trial corresponds to a realization of this random variable.

A figure of merit (FOM) can be defined for the final states o f each annealing trial in order to verify the 

functionality and reliability o f the annealing algorithm [79]. The FOM is defined as the ratio o f the standard 

deviation to the mean:

FOM = — .
n

Smaller values o f  FOM imply that the spread of the data is insignificant in comparison to the mean. 

The figure o f merit for the final states of the trail is small and implies that the algorithm is able to converge 

to approximately the same value for every mn. The standard deviation for the trails is 0.8893 and the mean 

is 47.4066, which yields FOM equal to 0.0188. This FOM is approximately equal to one fifty-third, which
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is analogous to a signal to noise ratio o f 53:1. A system demonstrating a signal to noise ratio o f 10:1 is 

considered to offer an acceptable performance for most applications.
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Figure 6.5. T he convergence o f  the class separability w ith initial tem perature 0.075 and w ith an initial step size  o f  0.01
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Figure 6.6. T he convergence o f  the class separability  w ith initial tem perature 0.75 and w ith an initial step size o f  0.001
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Figure 6.7. The convergence o f  the class separability  w ith initial tem perature 0.75 and with an initial step  size o f  0.01
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6.7. BEST WAVELET BASES FOR DISCRIMINATION

Now, we have an optimization algorithm, which can find the globally optimal or sub-optimal wavelet. 

In this section, we present an algorithm to design the best wavelet basis for classification purposes. 

Algorithm

1. Find an optimal filter-bank which maximizes the between class separability.

1.1. Start with some initial guess for the wavelet filter-bank.

1.2. Using SA algorithm, the between class separability is maximized. This is done according to the 

following steps:

1.2.1. The required number of samples is obtained from each texture for training and 

classification.

1.2.2. Using the initial guess of the wavelet, the DWT coefficients are calculated for all the 

texture samples in the database.

1.2.3. The features are extracted using one of the measures, either the L,-norm, F-norm, or A— 

norm.

1.2.4. The features can be reduced dimensionally by either separability-based dimensionality 

reduction or feature selection methods.

1.2.5. Using these features, the separability is calculated and used to find the optimal wavelet.

2. For the unknown texture to be classified into one of the texture classes in the database, calculate the 

DWT coefficients o f the unknown texture using the optimal wavelet.

3. Extract the features using the appropriate measure (i.e., consistent).

4. Using these features, classify the unknown texture.

When a new texture that is not in the database needs to be classified, the texture needs to be trained 

using the above algorithm and a new optimal wavelet is obtained for the updated database. This algorithm 

is independent of the wavelet tree decomposition method used to obtain the DWT coefficients, the feature 

extraction methods, and dimensionality reduction methods. Any of the tree decomposition methods 

discussed in Chapter 4 can be combined with this optimal filter-bank design algorithm. The idea of
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separability-based optimal filter design can be applied regardless of the criteria used for basis selection, 

e.g., it can be used on the pyramid wavelet transform, balanced or unbalanced wavelet packet trees.

6.8. RESULTS

Using SA, the class separability is maximized for a set o f textures and the global maximum is 

obtained. The optimization algorithm is repeated with different starting guesses for the filter coefficients for 

the same set of textures with the same parameters and the algorithm always converged to the same set of 

filter coefficients or very close to this set o f coefficients. By “close”, we mean that the filter coefficients are 

nearly identical with respect to their frequency responses and corresponding cost functions (class 

separability). The classification performances for the optimal filter, Daubechies filter and earlier sub- 

optimal filter are listed in Table 6.1. This is done for one level of decomposition using four features by 

extracting the features using the F-norm and without any dimensionality reduction techniques. The 

performance is the highest at the optimal wavelet, which is 90.86. The performance is 86.29 for Daubechies 

wavelet and the sub-optimal found using random search has 90.43. A considerable improvement in 

classification performance is achieved using the optimal wavelet compared to Daubechies wavelet. Even 

with the sub-optimal wavelet, the performance improvement is significant.

The classification performance using dimensionality reduction is 98.86 for the optimal wavelet, whose 

separability is 49.00 and the wavelet with separability 47.00 has classification performance o f 94.57. This 

means that reaching the separability at 49.00 is very important. When the near global maximum is reached, 

even a small change in the cost function may yield a significant difference in the classification 

performance. This is shown in Table 6.2, and is due to the non-linear relationship between the class- 

separability and classification. Hence, it is required to use the SA algorithm to find the global maximum in 

our case, due to large number o f local maxima. Using more iterations with exponential temperature 

reduction, the cost function can reach the global maximum at 49.00. The simulation with the same 

temperature may not yield this convergence.

The classification performance for the optimal wavelet is listed in Table 6.3 for levels 1 and 2 using 

the Li-norm, F-norm, and A-norm measures with feature reduction methods. The performance is the highest
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using the F-norm with second level of decomposition using 16 features. A comparable performance is 

achieved using the L,-norm and F-norm. However, the A-norm did not perform well in all the cases. The 

dimensionality reduction is very important for better classification, as it brings the most relevant 

information from all the features into only a few features. The performance improvement using 

dimensionality reduction is significant compared to either using all the features or the feature selection 

method.

To know the influence o f database size on the classification performance using the optimal wavelet, 

the database size is varied from 2-10 textures. That is, the optimal wavelet is foimd for varying databases 

and the corresponding classification performance is calculated. These are listed in Table 6.4 for one level 

using the F-norm. The same is done for two level decomposition using the F-norm and listed in Table 6.5. 

The performance as high as 100% is achieved when database has only two classes of textures. Even when 

the database size increased, the performance is consistently close to 98%-99%.

To illustrate what the optimal filters may look like, the frequency and phase responses o f the optimal 

filter are compared with the responses o f the four-tap Daubechies filter in Figure 6.10. It can be observed 

that the transition band characteristics for the optimal sub-band filter are different from that of the 

Daubechies filter.

It can be observed that, in various cases of texture classification, the optimal filter obtained is either 

very close to the Haar filter or a delayed Haar filter. The class separability and the corresponding 

classification performance achieved are very close in some cases and significantly different (optimal filter 

gave better classification performance than the Haar filter) in others for the Haar filter and the optimal 

filter. The work presented in this dissertation shows the superior performance o f the Haar filterbank with 

respect to texture classification. Although some work has been done for using the Haar in image 

compression problems, its full potential in feature extraction and image analysis problems has not been 

determined [80]. A complete study needs to be performed on the properties of the Haar wavelet and how its 

properties affect the classification performance.
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T a b l e -6 .1  : T h e  c l a s sif ic a t io n  P e r f o r m a n c e  u s in g  t h e  O p t im a l  W a v e l e t

Wavelet Classification Percentage
Optimal 90.8571

Daubechies 86.29
Previous observed best performance 
from among the 24 sampled wavelets

90.43

T a b l e -6 .2 : T h e  c l a s s if ic a t io n  P e r f o r m a n c e  u s in g  t h e  O p t im a l  W a v e l e t  w i t h

DIMENSIONALITY REDUCTION

Wavelet Classification Percentage
Optimal Wavelet with Cost function = 49.00 98.86
Optimal Wavelet with Cost function = 47.00 94.57

T a b l e - 6 3 :  C l a s s if ic a t io n  P e r f o r m a n c e  o f  t h e  O p t im a l  f il t e r  f o u n d  u s in g  S A  

AF - All Features; DR - Dimensionality Reduction; FS - Feature Selection

No. of levels Li-norm (%) F-norm (%) A-norm (%)

AF DR FS AF DR FS AF DR FS

1 66.14 93.00 56.43 90.86 98.86 78.43 82.14 83.29 62.86

2 78.86 99.29 75.00 91.14 99.43 86.00 94.14 96.29 86.86

T a b l e -6 .4 : C l a s s if ic a t io n  p e r f o r m a n c e  o f  t h e  o p t im a l  f il t e r  f o r  v a r io u s  n u m b e r  o f

TEXTURES IN THE DATABASE FOR LEVEL 1

No. of textures in the 
database

% of overall 
classification

2 100

4 96.5

7 98.86

10 91.4
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T a b l e -6 .5 : C l a s s if ic a t io n  p e r f o r m a n c e  o f  t h e  o p t im a l  f i l t e r  f o r  v a r io u s  n u m b e r  o f

TEXTURES IN THE DATABASE FOR LEVEL 2

No. of textures in the 
database

% o f overall 
classification

2 100

3 98.67

4 99.00

5 99.20

6 98.67

7 99.43

8 97.88

9 98.22

10 98.00
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Figure 6.10. Frequency and Phase response o f  optimal filter and Daubechies filter.
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6.9. CONCLUSION

Optimal sub-band filters are designed for textures with increased classification rates. The relationship 

between the classification rates and the class separabilities are shown. The advantage of having the class 

separability as the cost function is that it takes care of both the within-class and between-class scatter. The 

features extracted using the designed optimal sub-band filters based on the class-separability have all the 

information required for classification. A single optimal filter is designed for a set o f textures. The set may 

have any number o f  classes. The classification performance goes down with an increase in the number of 

classes in a data set. The classification performances are compared for different tree structures (Octave tree. 

Energy based tree, and Separability based tree). In addition, the impact o f  extracting differing numbers o f 

features is studied, along with variation o f the feature extractor. Also, the effect o f decomposing the 

optimal wavelet into more levels is studied and compared. The dimensionality reduction plays a major role 

in obtaining higher classification performance. The feature selection technique did not perform as well as 

the dimensionality reduction technique.

The simulated annealing algorithm is ideally suited for finding the optimal sub-band filters for 

classification. The simulated annealing algorithm yields maximal global class separability. The parameter 

settings needed in the simulated annealing algorithm are enqjirically chosen for the application. These 

parameters yield good global performance with an optimum trade off between the number o f iterations 

required to reach the global maximum and the final stopping error. The convergence characteristics o f both 

the class separability and the control parameter confirm the stability o f  the algorithm.
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CHAPTER 7 

AN ALGORITHM FOR OPTIMAL SUB-BAND FILTER DESIGN FOR SIGNAL 

CLASSIFICATION

This chapter provides the algorithm for optimal filter design for signal classification in detail. It 

elaborates the algorithm presented in Section 6.7, without involving detailed results and discussions. Given 

a data set, all the steps involved in the process to obtain the classification results are provided.

This is a generalized algorithm, which works for both texture classification and fault identification 

problems. Hence it has a wide range o f  applications in any signal classification, identification and detection 

problem. We present a fault detection and identification algorithm that automatically processes an unknown 

image by locating and identifying the faulty component, which is the same algorithm for classifying the 

textures. The heart of the algorithm is finding the optimal sub-band filters for signal classification and fault 

detection. These optimal filters are adapted to both the data and the pattern recognition problem. For 

identification or classification, the filters find the features that differentiate among the signals (e.g., 

textures, components). The filters are designed through a simultaneous decomposition o f a training set into 

a two-dimensional (2-D) wavelet expansion. This yields a representation that is explicitly 2-D and encodes 

information locally. The design is based on class separability of the features extracted in the wavelet 

domain. The identification module searches the database for the identity of the unknown signal using the 

optimal filters to make the identification. The algorithm is demonstrated on two sets o f  images. The first set 

is textures from the Brodatz texture album. The second set contains infrared images o f printed circuit 

boards. The algorithm follows in the next section.
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7.1. BEST WAVELET BASES FOR DISCRIMINATION

In this section, we present an algorithm to find the best wavelet basis for classification purposes. It has 

two phases. First, the optimal wavelet is designed based on the given data set for the problem at hand. Once 

the training is done to find the optimal wavelet based on class separability, the next phase is classification 

or fault identification o f the unknown signal (texture or component) using the optimal wavelet.

7.1.1. ALGORITHM FOR DESIGNING OPTIMAL FILTERS

1. The required number of samples is obtained from each class (texture or component) for training 

and classification.

2. Start with some initial guess of the wavelet filter-bank.

3. Using the initial guess of the wavelet, the DWT coefficients are calculated for all the samples in 

each class and for all the classes in the database. The tree structure and the depth of the 

decomposition can be chosen according to complexity and time constraints.

4. The features from the DWT coefficients for all samples are extracted using one o f the measures 

(L|-norm or F-norm or A-norm). The required number of features is extracted.

5. These features can be reduced dimensionally by either separability-based dimensionality reduction 

or feature selection methods before they are used to calculate the class separability.

6. Using these features, the separability is calculated. The separability is the cost function used to 

find the optimal wavelet. The simulated annealing algorithm is used to find the wavelet with the 

maximum class separability. The wavelet with the maximum class separability is the optimal 

wavelet for signal classification.

This algorithm is shown in flowchart form in Figure 7.1.

CHAPTER 7: AN ALGORITHM FOR OPTIMAL SUB-BAND FILTER DESIGN FOR SIGNAL 144
CLASSIFICATION



Initialize the filter 
coefficients with som e 
guess. G et all the data 
sam ples o f  all classes

C alcu la te  DWT coefficients 
o f  all the samples using the 
initial guess o f  filter 
coeffic ients.

Extract features using one o f  the 
m easures and  these can be reduced 
d im ensionally

C alcu la te  the class 
separability  (CS„)

U sing the SA
algorithm , change the
filter coefficients and
calculate  CS

lfC S > C S „

i d  the CO 

function converge?

Figure 7.1. Flow chart o f  the algorithm to find the optimal wavelet using SA algorithm.

CHAPTER 7: AN ALGORITHM FOR OPTIMAL SUB-BAND FILTER DESIGN FOR SIGNAL 145
CLASSIFICATION



7.1.2. ALGORITHM FOR CLASSIFICATION OR FAULT DETECTION

1. Find an optimal filter-bank that maximizes the class separability.

2. For the unknown texture to be classified into one o f the texture classes in the database, calculate the 

DWT coefficients o f  the unknown texture using the optimal wavelet Use the same tree structure and 

the same number o f  levels o f decomposition as in the training phase.

3. Extract the features using the same measure used to obtain the optimal wavelet. Also, use the same 

number of features and the same dimensionality reduction techniques as in the training phase.

4. These features are used to classify the unknown signal (texture or component). The distance or 

separation between the features corresponding to the unknown signal and the representative feature 

vector o f each class in the database is calculated. The unknown signal belongs to the class with the 

least distance or separation.

When a new signal (texture or component), which is not in the database needs to be classified, the 

signal needs to be trained using the above algorithm and a new optimal wavelet is obtained for the updated 

database. This algorithm is independent of the wavelet tree decomposition method used to obtain the DWT 

coefficients, the feature extraction methods, and dimensionality reduction methods. All o f the tree 

decomposition methods discussed in Chapter 4 can be combined with this optimal filter-bank design 

algorithm. The idea o f  a separability-based optimal filter design can be applied regardless o f the criteria 

used for the basis selection, e.g. it can be used on the pyramid wavelet transform, balanced or unbalanced 

wavelet packet trees.
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CHAPTER 8 

SUMMARY AND CONCLUSIONS

This dissertation presents several new design algorithms for subband filterbank optimization. The main 

goal is two fold: (i) Develop design techniques that give better understanding o f the classification and fault 

identification tasks and the cost functions associated with them, (ii) Design the optimal subband filterbanks 

based on the cost functions.

8.1. SUMMARY

A new class o f filterbanks, QMF filter banks, is proposed for texture classification. Various local-basis 

selection algorithms such as energy-based tree decomposition, separability-based tree decomposition are 

reviewed and analyzed. The performances of these algorithms are also compared with the standard octave 

tree decomposition. The classification problem may be divided into the stages o f feature extraction, 

dimensionality reduction and pattern recognition. Central to this work is that the signal representation plays 

a crucial role in classification performance.

The influence o f subband filterbanks on classification performance is studied. Also, various parameters 

involved in the classification system are studied. This study is conducted on several types o f wavelet tree 

structures, including the wavelet transform (octave tree), the uniform tree and the wavelet packet transform 

based on some criteria (e.g., energy, separability). These factors include feature extracting measures (e.g., 

Li-norm, F-norm, A-norm etc.), dimensionality reduction techniques (feature selection, feature projection) 

and the types of classifiers (Euclidean distance, simplified Mahalanobis distance, neural network) on 

classification system performance.

It is proposed that designing an optimal sub-band filterbank for fault detection and identification or 

texture classification improves the classification performance when the filterbank is used for that purpose. 

The optimal filterbank should be designed based on class discrimination rather than energy compaction.
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The relationship between classification rate and class separability is established. Simulated annealing (SA) 

is used to find the optimal basis by maximizing the class separability and satisfying the QMF constraints, as 

there are many minima and maxima in the class separability with respect to sub-band filters. An algorithm 

is developed to find an optimal wavelet basis given the data samples for a classification task.

An important application to the signal classification, fault detection and identification system is 

presented. The approach o f designing the optimal sub-band filter based on class separability is similar, 

except that the data involved is different. The performance is measured differently from the texture 

classification problem, which is either the number of times the faulty component is detected correctly or the 

separation between the faulty components in a bad board from the functioning ones. Influence o f  the 

optimal sub-band filter on FDl system performance is studied along with the influence of feature 

extraction, dimensionality reduction, and various wavelet tree structures on FDl system performance.

The performances o f the proposed methods are shown in extensive experiments. The results clearly 

justify the new approaches.

8.2. MAJOR CONTRIBUTIONS OF THE W ORK

• The influences o f various factors involved in classification are studied. These factors include feature- 

extracting measures (e.g., L,-norm, F-norm, A-norm etc.), dimensionality reduction techniques (feature 

selection, feature projection) and the types o f classifiers (Euclidean distance, simplified Mahalanobis 

distance, neural network) on classification system performance.

• A computationally simple algorithm for classification is developed.

• The classification performance for various tree structmes (WT, WPT etc.) with respect to feature

extracting measures, dimensionality reduction techniques and types o f classifiers is compared.

• The influence of sub-band filters on texture classification performance is studied.

• The classification performance for various tree structures (WT, W PT etc.) with respect to various sub

band filter candidates is compared.

•  An empirical relationship between the classification performance and the class separability is 

established.
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• Optimal sub-band filters based on class separability for classification using simulated aimealing are 

designed.

• The various parameters (e.g., step size, initial temperature, temperature reduction etc.) involved in the 

SA for convergence are studied.

• An algorithm using the above mentioned design technique from the given data sets for classification is 

developed.

• Influence o f the optimal sub-band filter on FDl system performance is studied.

• Influence o f feature extraction, dimensionality reduction, and various wavelet tree structures on FDl 

system performance is studied.

8-3. SUGGESTIONS FOR FURTHER RESEARCH

■ A few attempts at filter optimization with respect to the class separability criterion are made in 

Appendix-B. An iterative or closed form solution should be targeted. Furthermore, approaches based 

on the alternate expressions and derivations should be examined further.

■ The ultimate criterion in texture classification is the classification error rate. All optimization 

approaches in this dissertation have been with respect to criteria that are only indirectly related to the 

error rate. The optimal solutions are consequently optimal with respect to the error rate. Further effort 

should be put on minimum error optimization.

■ Similarly, in fault detection and identification, the goal is to identify the faulty component correctly 

with better accuracy. However, having a better understanding o f the circuit board and the design 

involved along with the functionality o f the circuit components helps improve the system performance. 

A neural network can be better trained with this information for better fault identification. More effort 

needs to be applied with respect to incorporating the printed circuit board information into the design 

and fault identification.

■ In various cases of texture classification, the optimal filter obtained is either the Haar filter or a delayed 

Haar filter. The work presented in this dissertation shows the superior performance of the Haar 

filterbank with respect to texture classification. We only attempt to understand why the Haar basis is
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better than all other wavelet basis system for the given application. A complete study needs to be 

performed on the properties of the Haar wavelet and how its properties affect performance.

Addressing these types o f questions using the available design techniques will possibly generate insight and 

help determine how the wavelet basis should be chosen for a particular application in future.
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APPENDIX A 

COMPARISON OF TEXTURE CLASSIFICATION PERFORMANCE

The Battle-Lemarie cubic spline wavelet basis function with 16 taps is used in energy based tree 

decomposition and the classification results are compared in Table A.1 with the results given in reference

[41] for the Euclidean distance. Only seven textures are used for comparison since these are the only 

textures that could be obtained with the same ID as in the reference [41].

T a BLE-A.1: COMPARISON OF CLASSIFICATION USING EUCLIDEAN DISTANCE

Texture

Brick
Grass
Sand
Wood Grain 
Cloth 
Leather 
Raffia

Overall

Correct Classification Rate (%)
Results Results from [41]

94
100
85
100
96
99
100

96.29

98
96 
92
97 
100 
100 
100

97.57

The classification results obtained using the separability based tree decomposition are conyared in 

Table-A.2 with the results in reference [43]. The textures used in the database are not the same as in this 

reference. Also, the wavelet and the depth of the decomposition used in obtaining the results listed in this 

reference are unknown for exact comparisoiL
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Ta b l e -a .2: C l a s s if ic a t io n  u s in g  a n d  ns/jiz (8  F e a t u r e s ) a n d  N e u r a l  N e t  C l a s s if ie r

Texture Results Our
From [43] Results

TI 100 92
T2 98 95
T3 99 98
T4 100 99
T5 100 99
T6 98 97
11 97 100
T8 100 92
T9 100 100
TIO 99 100

Average 99.1 97.2
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APPENDIX B 

MATHEMATICAL DETAILS OF CLASS SEPARABILITY

A good feature extractor should not only yield a large distance between the mean vectors o f the 

extracted feature vectors o f the classes (clusters), but also should yield low variances across the feature 

vectors in the classes (clusters). This is exactly what is expressed by class separability:

y  = r r ( S " ‘S è) (B. 1)

The within-class scatter matrix shows the scatter o f  sample vectors ( 10 o f different classes around then- 

respective mean or expected vectors A/:

L
Pr{C = Q } S w h e r e  I , = E[{V - M ,) ( K - M ,) ^  [C, ] (B. 2)

/=!

represents the spread o f  feature vectors in the i* class. In addition, one can define the between-class scatter 

matrix as the scatter o f  the conditional mean vectors Af, around the overall mean vector M:

L
S b = Y ^ F r { C  = C i ) { M - M i ) { M - M i f  . (B. 3)

/=1

In order to find optimal filter, the partial derivative o f the criterion, dJ(h)/dh, is equated to zero. The cost 

function J  needs to be expressed in terms of h so that the gradient o f the cost function can be calculated.

dS^ dh dSi, dh
+ _LA_ÜL_621_È. (B.4)
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where K is a set o f feature vectors of all the texture samples that belong to a class.

^  — { ^ i  — J ’ ( -  subbands }

Wi is the local window on the f* sub-band. On each sub-band, f(x) and f \ y  are defined as the intensity 

value at the location x  and the average intensity on window W  centered at x  respectively. For each sub

band, //j shows the average energy, which is also called the F-norm. Also, A/, is the mean vector of all the 

vectors in the ith class. 

dS,
dh

= Pr(C = C, ) |a /  -  A/,X.Af - M .  Y |c ,  |

8 (8 ,8 2 )8 8 , 8 (8 ,8 2 ) 8 8 2L

= I

L

= I
/ = /

B,

8 8 , 8 h 8 8 2  8 h

88 2
8 h

(B.6)

= i  Pr(C = C, ) A  _ M, Xm  -  M, )1c,-}
,=/ on I

where Af is the mean vector o f all the means of all the classes.

The complexity involved in expressing the separability and its gradient as functions of h, which are

needed for obtaining the optimal filter by solving the equation = 0 is substantial, if not intractable. 

Hence, one needs to look for other ways to optimize the cost function to find the optimal wavelet.
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APPENDIX C 

FAULT DETECTION AND IDENTIFICATION

Advanced diagnostic systems can improve the safety, reliability and reduce the cost o f operating 

sophisticated platforms such as a host o f  expensive commercial manufacturing systems. As an example, 

consider an electronic industry manufacturing circuit boards. Operational costs for maintaining and 

repairing the circuit boards by testing each component in the circuit are expensive and time consuming. In 

this chapter, we develop an algorithm and design wavelets using a data driven approach for fault detection 

and identification for printed circuit boards. This is a particular application o f the algorithm developed in 

Chapter 7. Fault detection and identification is o f interest in a wide variety o f applications such as control 

systems, image analysis, analysis of radar signals, smart sensors, texture analysis, medicine, industry, etc.

This appendix is organized as follows. Section C. 1 describes the infrared images used in the analysis 

for fault detection. The architecture o f the EDI algorithm showing the various blocks used is presented in 

section C.2. The image sequences o f  various boards may have different initial conditions such as starting 

temperature. Hence, the images need to be preprocessed before they can be analyzed. This is discussed is 

section C.3. The necessity to adapt a data driven approach for fault identification is presented in section 

C.4. The influence of various parameters on the FDI system performance is studied in sections C.4.1 to 

C.4.4. The measure required to develop an algorithm for improving the performance is presented in section 

C.5. The wavelet basis is designed using this technique in section C.6. The conclusion follows in section 

C.7.

C .l. INTRODUCTION

A 2-D image o f a printed circuit board representing intensities as a function o f position is captmed by a 

high-resolution infrared camera. Figure C .l.a shows the infrared image o f a typical printed circuit board 

and Figure C.l.b shows the infrared image of a component on the circuit board. Infirared thermal imaging 

systems operate on the basic principle that all objects above absolute zero (-273® C) radiate infiared energy.
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the intensity and wavelength of which are proportional to the temperature o f the object. Since infrared 

energy is

150

200

250

Figure C. I .a. Infrared Im age o f  a  prin ted  circuit board

Figure C .l.b . Infrared Im age o f  a  com ponen t in the circuit board
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not visible to the naked eye, some means must be provided to transform it to a visual image. Essentially, an 

infrared thermal imaging system consists of a camera that remotely picks up the infrared radiation being 

transmitted, detectors which transform the radiation to electric signals, an amplifier to boost the signal to 

suitable levels, and a monitor to view the visual image.

Most equipment failures in an industrial or commercial facility are accompanied by increased or 

decreased temperatures. Infrared thermal imaging can detect this change in temperature, and thus can be 

applied to a variety o f  areas. Since no physical contact is required between objects being scanned and the 

test equipment, it can be used during normal operation o f a facility.

The important task o f an FDI system is to identify or classify the faulty conçonents on the circuit 

boards. FDI systems can assist in fault localization and isolation. They are used to maintain the 

functionality of the system.

With the availability o f powerful computing platforms, feature processing has become an important 

part of many applications. Intelligent processing like fuzzy logic, neural networks and intelligent 

optimization techniques are aimed at accommodating a large gain in uncertainty while utilizing all of the 

available information about the system [81], [82], [83]. Due to the wide range o f time constants, analysis of 

such systems in the frequency domain alone would mask the sudden high frequency bursts. Unless the 

frequency domain resolution is very fine, slowly varying features can be masked in the dc bias. Likewise, 

analysis in the time domain would not reflect the periodicity of the features. Hence, analysis in only the 

frequency or time domain alone is not sufficient to capture features that are spread in a wide band of 

frequencies. Faults o f  these types require analysis simultaneously in both the time and frequency domains. 

This can be accomplished by using Wavelet Transform (WT) techniques. The WT uses a variable window 

size to analyze different frequencies. Moreover, it provides a wide choice o f wavelets for the best fit in 

different applications.

C.2. ARCHITECTURE O F THE FDI ALGORITHM

The basic blocks involved in the fault detection and identification system are given in Figure C.2. 

Details of the individual components are given in the following sections. The blocks used in the analysis
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section o f the FDI system are given Figure C.3. The first three blocks in Figure C.2 are discussed in section 

C.3 and the analysis block is presented in sections C.4, C.5 and C.9.

Decision

Data
Acquisition Segmentation Analysis

Pre
processing

Figure C .2. B asic B lock  D iagram  o f  the FDI system

W avelet
Feature

Extraction Classification

T est C om ponent Decision

Figure C.3. The blocks used in the  analysis o f  the Fault Identification System.

C 3 . PREPROCESSING

The images are captured using an infrared camera through time as the circuit board is powered. The 

circuit components brighten through time as they are powered up. The faulty components are either very 

bright or dark depending on whether the component is too hot or too cool. This could be due to open or 

short circuits. Not all of the components that are brighter or darker are necessarily faulty. Some are hot or 

cool as a consequence of logical function. The heat index is also dependent on the characteristics of the 

components and the manufacturing method. Some components can be very bright and still function. 

Consequently, one cannot look at the infrared images or sequences of a circuit board through time and 

identify the faulty component by locating the brightest or darkest component in that circuit board. 

Therefore, the approach is to compare the infiared images o f a faulty (bad) board and a functioning (good) 

board, and then identify those components that are the most different from the corresponding components 

on the good board. To do this, one has to properly align the boards to be conçared both in time and in 

space. To compare the components in a bad board with their corresponding components in a good board.
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these components have to be extracted from the whole board. For this, the board needs to be segmented so 

that the components can be extracted after registration and before analysis.

C.3.1. REGISTRATION

Most computer vision applications require the analysis of two or more images, whereby images are 

compared with one another to detect certain properties o f the involved projects [84]. To accomplish this, a 

proper alignment of the images must be found, which means a transformation to relate points o f one image 

with corresponding points o f another image is required. When the infrared images o f a good board and a 

bad board are captured through time, the boards may have different starting temperatures depending on the 

time the sequences are recorded. In addition, many other factors can influence the initial conditions o f the 

two boards, such as room temperature, the time the sequences are acquired, etc. Influences of all these 

factors can be nullified by registering the frames through time.

To register the pixels through time, a notch filter has been used [85], [86]. The problem with the notch 

filter is that the transient response distorts the filter output on start-up. Typically, a notch filter with the 

narrower 3-dB rejection bandwidth has a longer transient response at the filter output. However, we prefer 

a notch filter with a narrower 3-dB rejection bandwidth to faithfully notch out the dc frequency (the mean). 

With the limited number o f samples available (100 samples, i.e., 100 frames through time), the transient 

response exists until around 90 samples, which is undesirable.

To avoid this situation, a single order notch filter has been designed as follows. The transfer function 

of the single-order notch filter is [87]:

The corresponding difference equation is y(n) = x(n) -  x(n-l) + ry(n-l), with initial condition y(0) = 0. 

The parameter r can take values from 0 to I. With r equal to one, the response y(n) would be equal to the 

input with the mean subtracted. The pixels are time registered with the single-order notch filter with r equal 

to 0.99. The warm-up sequences are plotted through time for two good boards and a bad board in Figures 

C.4. a, b, c and d. The Figure C.4.a shows the warm-up sequence with time registration while Figure C.4.b. 

shows the same without time registration. One can observe that all the components do not have the same
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starting temperature. The same can be observed clearly in Figures C.4.c and d ^^iiere the plots are zoomed 

onto the first few firames.

Time registerad Boenls
20

Red « Bad Board 
Blue & Green - Good Boards

10

10 20 30 40 50 70 80 1000 60 90

Pfames through time

(a)

Boards wittxxt Time Registration

L,-no«m

30

Red -Bad Board

Blue & Green - Good BoardslOr

10 30 400 20 50 60 70 80 90 100
Frames through time

(b)

Figure C .La, b. W arm -up sequence  o f  the circu it board  com ponents w ith  an d  w ithout tim e registration.

Time registered Boards

L, - n 0  r m

2 -

2 53 4 6 7 8 9 101

Frames through time 

(C)

Boards wttho ut Time Registration

U - n 0  r m
2 -

2 3 54 6 7 101 8 9
Frames through time

(d)

F igure C.4.c, d. W arm-up sequence o f  the  circuit board  com ponents w ith and  w ithou t tim e registration zoom ed into
first few  firm es to  see the difference.
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c.3.2. SEGMENTATION

Each component in the printed circuit board must be identified so that the board can be registered to a 

template, which is called segmentation^. The segmentation is difficult because o f two factors: the infrared 

images have poor contrast, and the background color o f the images varies from region to region. These 

factors led to the use o f a connected component merging algorithm to locate the individual components. 

The connected conçonent-merging algorithm proved to be quite effective, but very computationally 

expensive. In order to make the algorithm more efficient, a morphological pyramid is used to reduce the 

amount o f computation. Figure C.5 shows the segmented image o f a circuit board.

Figure C.5. Segmented image o f  a printed circuit board

C.4. GENERALIZED DATA DRIVEN APPROACH

We know that analyzing the data in the wavelet domain gives better imderstanding and performance 

than looking at the data in the image domain. Also, local analysis is needed to identify the faulty 

component in a bad board. This means that the conq)onents that are likely to be faulty need to be 

segmented from the board after registration and analyzed for detection. However, the performance achieved
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using the Daubechies wavelet is not satisfactory. To improve the performance, one needs to look at the 

various parameters involved in analyzing the data in the wavelet domain that could influence the 

performance in identifying and detecting the faulty component in a bad board. These factors can be roughly 

divided into three categories. The three major categories are the parameters involved in the wavelet 

transform, the factors involved in feature extraction, and the classifier used. The major parameters involved 

in the wavelet transform are the mother wavelet, the depth of the decomposition, and the tree structure used 

to decompose the image (uniform, octave, criterion-based tree decomposition). The factors in the feature 

extraction block that could influence the performance are the measures used to extract features, the number 

o f features extracted, and the feature reduction methods. Finally, the type o f classifier used also has some 

influence on the fault detection.

All these parameters and their influences on fault identification system need to be studied. This helps 

us understand what needs to be done to improve the performance of the FDI system. All these parameters 

have considerable influence on the performance of the FDI system. However, the wavelet basis function 

used in the FDI system is crucial as explained in Section 5.1. Feature extraction is used to extract the 

information that is useful for identification and fault detection. To extract useful information, the 

information content o f the signal needs to be localized in the time and frequency domains, which is 

dependent on the type o f wavelet transform used. The influence o f the wavelet basis on the FDI system 

performance is studied first and the influence of the remaining factors are studied in conjunction with the 

wavelet used.

C.4.1. INFLUENCE OF WAVELET-BASIS ON FDI SYSTEM PERFORMANCE

We are interested in finding the most suitable wavelet for fault detection and identification (FDI) and 

applying the wavelet system to improve the FDI system performance for printed circuit boards. To achieve 

this the wavelet has to be designed based on the properties o f  the data. To test the effect o f different 

wavelet bases on FDI system performance, various 4-tap wavelets with different transition band 

characteristics are chosen satisfying the Quadrature Mirror Filter (QMF) constraints. This set o f wavelets

 ̂Thanks to Anthony Wright and Dr. Scott Acton for providing the segmentation algorithm and software.
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also includes the Daubechies 4-tap wavelet. In all our plots, the last case o f h, i.e. h=25, is the Daubechies 

4-tap wavelet.

Using each wavelet, the image sequences are transformed into the wavelet domain after pre

processing. Not all of the frames acquired through time need to be transformed into the wavelet domain for 

processing. One frame halfway through the warm-up sequence has enough information for fault 

identification. Two data sets, each with five good boards and five bad boards are used for experiments. One 

data set has 100 frames through time for ten boards and the second data set has 30 frames through time. For 

the first data set, the 50* frame is used for analysis while the 15* frame is used for the second data set. All 

the components that are likely to be faulty are located and they are segmented from the board. All these 

components are transformed into the wavelet domain using each wavelet. Once, the images are transformed 

into the wavelet domain, all the discrete wavelet transform coefficients are not needed for fault 

identification. Only the information that is required for fault identification needs to be emphasized and rest 

of the information needs to de-emphasized. A cmcial element in the data driven approach is the selection of 

an appropriate feature extractor. So, the features that have significant information for fault identification 

need to be extracted. The influence o f extracting features using different measures is studied later. A typical 

measure used for analysis is the energy of the discrete wavelet transform coefficients in a sub-band. Let us 

start with a simple analysis by using one level o f wavelet decomposition and extracting four features, one 

from each sub-band (LL, LH, HL, and HH) as shown in Figure C.6. These four features are used for fault 

identification. Now, the faulty component needs to be detected from all the components chosen for 

analysis.

LL LH

Feature 1 Feature 2

Feature 3 Feature 4

HL HH

Figure C.6. One-level Sub-band Tree and Feature map.
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This fault identification problem can be looked upon as a classification problem. Here, the classes are 

good and bad components. For each component, we have two classes. For effective fault detection, we need 

to possess an extensive database o f  good and bad components for each component under test. In such a 

case, each component in the bad board under test is classified as either a good or a bad component. This is 

done by calculating the separation between the test component and class-1 (the good component class) in 

the database, and the test component and class-2 (the bad component class) in the database. However, it is 

difficult to have a database with both good and bad components for at least a few components on the board. 

Hence, one needs to look at other alternatives for classification. One way to do that is to calculate the 

separation between each component under test in the bad board and the corresponding component in the 

good board. The component in the bad board with the most separation from the corresponding good 

component in the good board is most likely to be faulty. The Euclidean distance is used to calculate the 

separation between the components.

The performance o f the FDI system can be measured in two ways. One way is to calculate the number 

of times the faulty component is detected correctly i.e. the number o f correct decisions made. The second 

approach is to calculate the separation between the good and bad components (classes). In all our 

experiments, though we present the number o f correct decisions made, we focus on the separation between 

good and bad components due to the small number o f available boards in each category.

The plots in Figures C .l  to C.8 show the warm-up sequences of the faulty component and several other 

good components in a bad board and the corresponding good components in a good board consecutively. 

One can observe from the Figures C .l and C.8 that brighter or darker components in a bad board need not 

be the faulty components. So, just by looking at the bad board or the faulty component alone by itself, one 

cannot make a decision about the faulty component. The component in the bad board that is most different 

from the corresponding good component in the good board is the faulty component. Figure C.9 shows the 

distance between the corresponding components in good and bad boards through time.
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Figure C .l. Warm-up sequence o f different components in a bad board
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Figure C.2. Warm-up sequence of same components in a good board
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Figure C.3. Distance between corresponding components in good and bad boards
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It can be observed that the distance is very high between the faulty component and the corresponding 

component in a good board compared to the distances between remaining components. The distance is 

considerable enough for fault identification at the 15* frame, so the analysis can be done using just the 15* 

frame alone. Now, these distances are used to detect the fault and make the decision. These distances are 

calculated for each wavelet and the distances are plotted with respect to the wavelets for different boards in 

Figure C.IO.

It can be observed that three out o f five times all the wavelets found the faulty components correctly. 

In board-5, only a few wavelets detected the faulty component correctly. However, in board-4, the faulty 

component is not correctly detected by any wavelet. The advantage o f using different wavelets is not very 

clear from these plots except in board-5. To see the influence o f wavelets on the performance o f the FDI 

system, the separability is calculated. The separability is calculated as the separation between the faulty 

component and the average o f the rest of the good components in the bad board. We know that the distance 

has to be higher for the faulty component. Hence, the separability between the bad component and the 

average of the good components should be positive if  the faulty component has larger distance. For 

example, for boards-1, 2, 3 and 5, the faulty component has larger distance and so has positive separability. 

However, for board-4, the distance is not higher for the faulty component and so the decision made is 

wrong. In this case, the separability is negative. The higher the separability, the better the separation 

between bad and good components in the bad board and hence the better performance of the FDI system. 

The separability o f the faulty component is plotted for different wavelets for all five boards in Figure C. 11.
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Figure C.l. Distances of various components for different wavelets for five boards
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Figure CJ.. Separability of the bad component for various wavelets in five boards

The wavelet that could detect the faulty component correctly the highest number of times is the best 

wavelet. With the limited boards available for testing, the statistics are not sufficiently significant to base 

the decision on the number of decisions made correctly. Hence, the wavelet with highest separability is 

chosen as the best for fault identification. Table-C.l shows the statistics e.g., mean, maximum, minimum. 

etc. o f various wavelets considered in the experiments. The variation in performance for different wavelets 

is significant for some boards and insignificant in others. As explained earlier, negative separability 

indicates that the faulty component could not be detected correctly.
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T a BLE-C.1: FDI SYSTEM PERFORMANCE FOR VARIOUS WAVELETS USING F-NORM WITH ONE-LEVEL OF
D e c o m p o s it io n

Boards Max. 

(Optimal Wavelet)

Min. Mean Median Daubechies

Board-1 751.81 686.02 717.58 716.94 686.02

Board-2 92.31 79.51 85.63 85.41 79.51

Board-3 284.62 266.97 274.22 273.85 268.61

Board-4 -20.67 -23.02 -22.25 -22.31 -21.82

Board-5 16.83 16.38 16.60 16.59 16.45

In this experimenL board-5 needs separate explanation. Though the separability is positive for the 

faulty component in this board, there exists another good component on the same board with higher 

separation from its corresponding good component on the good board than the separation of the bad 

component from its corresponding good component on the good board. Most of the wavelets (including the 

Daubechies wavelet) failed to detect the faulty component correctly in this board. Only a few wavelets 

detected the faulty component correctly. This can be observed from subplot 5 in Figure C.l 1. The red curve 

indicates the separability o f a good component and the blue curve indicates the same for the faulty 

component. The wavelets with the blue curve higher than the red curve detected the bad component 

correctly. In this case, the best wavelet is the one that detected the faulty component correctly and the one 

that has higher difference between the blue (faulty) and red (good) curves. This difference has to be 

positive, i.e. the faulty component separation should be higher than that of the good component.

Extracting four features using the F-norm with one-level of wavelet decomposition alone resulted in 

improved separation between the faulty component and rest o f the good components in a bad board, when a 

suboptimal wavelet is used. However, the separation is significant only in three boards. As it is not known 

which measure is the best suited one for feature extraction for a particular application and data set, one 

needs to analyze other feature extracting measures to study the impact of these on system performance. The
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next two sections give details about the influence of extracting features with different measures and the 

influence o f extracting more features on the FDI system performance.

C.4.2. INFLUENCE OF FEATURE EXTRACTION METHODS ON FDI SYSTEM PERFORMANCE 

This section studies the influence o f  using different measures for feature extraction on the FDI system 

performance. Please refer to Section 4.3 for definitions o f  the various feature extraction measures used 

here. The measures used in the analysis are the Li-norm, the A-norm and the absolute sum. The 

methodology described in the above section for calculating the separability is repeated by using each 

measure instead o f using the F-norm. The separability results are plotted in Figures C.12-C.I4 using these 

three measures for the five boards. Features extracted using the Lj-norm and the A-norm have significant 

information for fault detection as they could detect the faulty component correctly in all boards except in 

board-4. Features using absolute sum did not yield as much useful information, as it could detect faulty 

component only in three boards. These separability values are summarized in Table-C.2. The best wavelet 

(sub-optimal) has increased the separability approximately by 10% from the separability given by the 

Daubechies wavelet.
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Figure C .I2. Separability plots for various wavelets with one-level decomposition using Li-norm
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T able-C .2: FDI sy st e m  perform ance  fo r  v a r io u s  w avelets  using  F -no rm  w it h  o ne-lev el  of
D e c o m po sit io n

Boards Max. 
(Optimal Wavelet)

Li-norm: l.Oe+004*

Min. Mean Median Daubechies

Board-1 38.74 35.79 37.13 37.26 35.92

Board-2 6.28 5.48 5.82 5.82 5.48

Board-3 2.95 2.62 2.77 2.78 2.62

Board-4 -0.13 -0.39 -0.31 -0.35 -0.27

Board-5 3.56 3.19 3.33 3.33 3.20

A-norm:

Board-1 5.34 4.59 4.95 4.97 4.79

Board-2 1.13 0.99 1.04 1.04 1.00

Board-3 0.21 0.14 0.17 0.16 0.15

Board-4 -0.16 -0.19 -0.18 -0.18 -0.17

Board-5 0.20 0.16 0.17 0.17 0.16

Absolute Sum:

Board-1 1.29 1.21 1.25 1.25 1.21

Board-2 0.02 0.0089 0.013 0.012 0.0089

Board-3 0.104 0.096 0.10 0.10 0.099

Board-4 0.0095 0.0066 0.0083 0.0083 0.0081

Board-5 0.122 0.114 0.118 0.118 0.117
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C.4.3. INFLUENCE OF NUMBER OF FEATURES EXTRACTED ON FDI SYSTEM PERFORMANCE

In this section, the influence o f extracting more features from each sub-band with the same wavelet 

tree and feature extraction methods on the FDI system performance is studied. Sixteen features are 

extracted instead of four features, four from each sub-band. Each sub-band is divided into four regions. 

Figure C .l5 shows the feature extraction strategy from the image subbands and regions.

The separability values are plotted for all the measures using the 16 features for various wavelets in 

Figure C .l6. The performance did not increase considerably either in detecting more faulty components 

correctly or the separability compared to the Daubechies wavelet. In fact, the measure A-norm could not 

detect the faulty component correctly for board-5. Thus, extracting more features with one level o f  tree 

decomposition did not improve the separability or faulty detection system performance over the case where 

only four features were used.
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C.4.3. INFLUENCE OF STRUCTURE AND DEPTH OF THE TREE ON FDI SYSTEM 

PERFORMANCE

In this section, the influence o f the depth of the wavelet tree or the level o f decotnposition on the FDI 

system performance is studied along with the type of tree used. With an increase in the depth o f the tree, 

the sub-bands are decomposed further and the finer details o f  the image are used for identification. Uniform 

and octave subband tree decompositions are used here for performance comparison. Figure C. 17 shows the 

tree structures o f the uniform and octave trees for second level o f decomposition. Sixteen features are 

extracted for the uniform tree structure and seven features for the octave band tree, one from each subband.

The variation o f separability across different wavelets is shown in Figures C .l8 and C .l9 for the 

uniform and octave trees, respectively. The uniform tree decomposition performed better in terms of 

separability and the number o f correctly made decisions than did the octave tree for the F- and L,- norm 

measures. For the other two measures, there is not much improvement.
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Ĵ̂ Cympone

0 20 40
Offferem Wavelets

0 20 40
Odferent Wavelets

icr BoaitO8.5, 3.4t
32S

P t.
28I

65 26
4040

20000

S 1500( 
» tOOO(

I
Good Componer l

850C
aooc

500C 7S0C

700C

500C
I 20 40
Oiffefent wavelets

I 20 40
Different Wavelets

icr Boardi
500G

1.02

400C 0.92

17 O.V
4040 2040

0 20 40
Different wavelets

1200

KXX
Bad Component

800

600
400

700 dood Componer
0 20 40

Différent W allets

SOC Good Comporrer i$ocS 500C

p. 4800

Bad^CtSnuonent

Good Componer

« ISO

Bad Component
0 20 40

Drfferent Wavelets
0 20 40

Otfferent wavelets
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Instead of extracting just seven featiures, the number of features extracted is increased to 28 to see the 

effect of using a two-level octave tree on the FDI system performance. The 28-feature extraction strategy is 

shown in Figure C.20. One feature is extracted from each region. Figure C.21 shows tire variation of the 

separability across the wavelets for all measures. As seen earlier, increasing the number o f features did not 

improve the FDI system performance.
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C.4.4. INFLUENCE OF WAVELET BASES ON FDI SYSTEM PERFORMANCE USING ENERGY- 

BASED TREE DECOMPOSITION

The typical pyramid-type wavelet transform recursively decomposes the signals in the low frequency 

subbands. If the faulty components do not have most o f their significant information in the low frequency 

region, further decomposition just in the lower frequency region like the conventional wavelet transform 

may not help much for the piupose of classification. To avoid a full decomposition, the tree is decomposed 

based on the energy o f the node. This tree decomposition identifies the energy dominant subbands. The 

detailed energy-based tree decomposition algorithm is described in Section 4.2.

The faulty components are decomposed until the subband size is equal to 16. This results in a 3-level 

tree stmctured wavelet transform. However, all the components under test have only their low frequency 

subbands decomposed, i.e. the tree stmctured wavelet transform has become the octave tree. This is due to
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the large amount o f low frequency content of the circuit components. This means that all the components 

have most of their energy in the low frequencies.

To classify the test component, the distances between the test component and the average good 

component (class-1) and the average bad component (class-2) are calculated using the features at the nodes 

o f the 3-level octave tree. Both classes (good and bad) have four components that are used in training and 

classification. The classification is performed using the leave-one-out algorithm. The classification 

experiment is conducted for all the feature extraction measures, i.e. the F-norm, Li-norm, A-norm and 

absolute sum. All the measures and wavelets classified all the four components correctly except when the A 

-norm was used, in which case the Daubechies wavelet could find the faulty components correctly only 3 

times while the optimal wavelet correctly identified all faulty components.

The separation between the bad component and the good component in a bad board from their counter 

parts in a good board is used to quantify the degree to which the optimal wavelet performed better than the 

others. This is shown in Figure C.22. The measures L,-norm and absolute sum seem to perform well 

compared to F-norm and A-norm. The separability values are summarized in Table-C.3. The separability is 

increased by as much as 13% from the Daubechies to the optimal wavelet.
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T a b l e -C J :  S e p a r a b il it y  S t a t ist ic s  u sin g  3 -l e v e l  E n e r g y - b a se d  t r e e  f o r  v a r io u s  w a v e l e t s

F-norm

L|-norm

A-norm

Absolute sum

Max. Min. Mean Median Daubechies

880.64 855.96 872.14 874.41 877.25
556.68 544.56 553.77 554.05 553.57
116.41 108.94 113.88 114.17 114.77
425.72 396.99 414.53 417.52 422.30

l.Ge+007 *
3.96 3.36 3.66 3.67 3.44
3.64 3.35 3.53 3.55 3.47
1.27 0.63 0.88 0.80 0.875
3.38 1.83 2.56 2.44 1.92

l.Oe+006 »
2.08 0.88 1.52 1.57 1.03
1.83 0.63 1.09 0.93 0.64
0.50 -0.18 0.11 0.10 -0.16
0.93 -0.06 0.33 0.11 0.04

1 .Oe+005 *
1.26 1.25 1.255 1.25 1.25
1.57 1.55 1.56 1.56 1.555
0.62 0.60 0.61 0.61 0.60
1.20 1.14 1.17 1.18 1.17

C.4.5. INFLUENCE OF WAVELET BASES ON FDI SYSTEM PERFORMANCE USING 

SEPARABILITY-BASED TREE DECOMPOSITION

In Section C.5.3., dominance of the energy concentration in a sub-band is used as a criterion for further 

decomposition. However, for fault identification purposes, a criterion based on the differences between the 

patterns (signals or components) o f different classes good and bad, i.e. class separability, is preferable. The 

components may be quite similar in the dominant energy bands and quite different in the low energy bands. 

Then, these low energy bands have significant information about the differences in the good and bad 

components that is needed for fault identification. The algorithm developed in Section 4.4.2 by selecting 

the tree basis depending on the class separability or discrimination is used.

To study the influence o f the mother wavelet on the FDI system performance using the separability- 

based tree structure, each mother wavelet is used and the separability-based tree decomposition is applied 

to the boards in the database. The database has 4 good boards and 4 bad boards. The number of boards 

available is not sufficient to calculate the separability, especially when the number of features extracted is
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greater than 4. So, 12 more boards are added to each class o f boards (good and bad), by taking the previous 

and next frames o f the current frame (image) as different boards belonging to the same class. For example, 

the image in the 50* ftame is used as the original board and the 49*, 51“, and 52"^ frames are used as 

different boards belonging to the same class. This is only valid when the fiame acquisition rate (number of 

frames acquired per second) is high, since the difference in the heat index o f the frames will not be 

significant in this case.

Using each wavelet, the separability based tree decomposition is performed for the second level. Many 

wavelets yielded a full tree, i.e. 16 bands, and some yielded as few as 10 bands. Only 10 bands exist due to 

the reason that the other 6 bands did not carry any information useful for separability. Sixteen (or ten) 

features are extracted from the sixteen (or ten) bands using F-norm or L,-norm or A-norm or absolute-mean. 

These final sixteen features are used for fault identification o f the boards. For all the wavelets, the fault 

identification rate is 100 percent. Thus, for all the 16 bad boards, the faulty conqjonent is identified 

correctly. However, to know the performance improvement using various wavelets, the separation between 

the bad and good components o f  corresponding bad and good boards is conçared. The higher the 

separation, the better the confidence with which the decision is made regarding the faulty component in the 

bad board. The total separation o f the 16 boards is plotted in Figiure C.23 as a function o f various wavelets 

for a level-2 decomposition. Four subplots are drawn for the feature extraction measures Lt-norm, F-norm, 

A-norm and absolute-mean, consecutively.
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The separation or the distance between the good and bad components is high for the optimal or sub- 

optimal wavelet compared to the Daubechies wavelet. This is due to the increased separability between the 

good and bad board clusters o f  the sub-optimal wavelet compared to that o f the Daubechies wavelet.

Figure C.24 shows the same data for a one-level decomposition for various wavelets. The same 

improvement in performance can be observed in this case. Figure C.25 shows the plots for a second level 

decomposition using various wavelets with dimensionality reduction. The 16 features extracted from the 16 

bands are dimensionally reduced to one feature that is used to calculate the distance or separation between 

the good and bad components. The separation between the good and bad components is considerably 

higher for the optimal wavelet compared to the Daubechies wavelet using only one feature.
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C.5. CLASS SEPARABILITY

From all previous experiments, one can observe and conclude that class separability is a useful 

measure for identifying the faulty components. We are interested in maximizing the distance or separation 

between the bad and good components. The wavelet with the highest distance is the optimal wavelet. If the 

class separability is also the highest for this wavelet, where the distance is the maximum, then the optimal 

wavelet can be designed by maximizing the class separability which in turn maximizes the distance. Figure 

C.26 shows the relation between the class separability and distance, and the between-class separability and 

distance. It can be observed that the relationship is nonlinear in both cases. The distance is the highest 

where the class separability is maximum or near maximum. So, the wavelet with the highest or near highest 

class separability is the optimal wavelet that results in the maximum distance between the good and bad 

components.
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Figure C.26. The total distance between the good and bad components for all 16 boards versus the class separabilities 
using second level o f  decomposition and dimensionality reduction for various wavelets

C.6. DESIGNING WAVELET BASIS FUNCTIONS FO R FAULT IDENTIFICATION

The optimal wavelet is obtained by maximizing the class separability using the simulated aimealing 

algorithm. The detailed simulated aimealing algorithm is described in Section 6.5. The distance between the 

good and bad components for the optimal wavelet is calculated. This is done for the F-norm, L|-norm and A
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-norm measures, with and without dimensionality reduction, and using a second level o f wavelet 

decomposition. These distances are listed in Table C.4. The L,-norm resulted in the maximum separation 

between the good and bad components in a bad board compared to other measures used. The 

dimensionality reduction techniques did not help improve the separation between the good and bad 

components. This may be due to the low correlation of the features extracted from the conqjonents.

T a b le - C .4 :  A v e r a g e  D i s t a n c e  b e t w e e n  g o o d  a n d  b a d  c o m p o n e n t s  f o r  a l l  b o a r d s  f o r  s e c o n d
LEVEL OF d e c o m p o s it io n  USING THE OPTIMAL WAVELET

Feature 
Extraction 
Method •«'

Distance Distance using 
dimensionally 
reduced features

F-norm 12353.0 292.63

Li-norm 116830.0 7966.1

A-norm 125.13 6.40

C.7. CONCLUSION

Optimal sub-band filters are designed for circuit components with increased separation between the 

good and bad components. This in turn increases the confidence in the decision made regarding the faulty 

component in a bad board. The relationship between the classification rates and the class separabilities are 

shown. The advantage o f having the class separability as the cost function is that it takes care o f both the 

within-class and between-class scatter. The features extracted using the designed optimal subband filters 

based on the class-separability have all the information required for class separation and classification. An 

optimal filter is designed for a set o f components. The set has two classes, good and bad components. The 

classification performances are compared for different tree structures (octave tree, energy based tree, and 

separability based tree). In addition, the impact of extracting differing numbers of features is studied along 

with our varying of the feature extractor. Also, the effect o f decomposing the optimal wavelet into more 

levels is studied and conçared. The dimensionality reduction did not play a major role in obtaining higher 

classification performance or class separation, as it did in the case o f texture classification
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The simulated annealing algorithm is ideally suited for finding the optimal subband filters for 

classification. The simulated annealing algorithm yields maximal global class separability. The parameter 

settings needed in the simulated annealing algorithm are empirically chosen for the application. These 

parameters yield good global performance with an optimum trade off between the number of iterations 

required to reach the global maximum and the final stopping error. The convergence characteristics of both 

the class separability and the control parameter confirm the stability o f  the algorithm.

a p p e n d i x  C: FAULT DETECTION AND IDENTIFICATION 192



APPENDIX D 

MORE PLOTS USING THE ANALYSIS IN APPENDIX C FOR ANOTHER SET 

OF BOARDS
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Figure D .l. Separability plots for various wavelets using F-, L,-, A-norms and absolute sum o f  DWT coefficients using
4  features with one level o f  decomposition
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Figure D.2. Separability plots for various wavelets using F-, L,-, A-norms and absolute sum o f DWT coefficients using
16 features with one level o f  decomposition
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Figure D.3. Separability plots for various wavelets using F-, L ,-. A-norms and absolute sum o f DW T coefficients using
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Figure D.5. Separability plots for various wavelets using F-, L,-, A-norms and absolute sum o f DWT coefficients using 
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