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ABSTRACT

This dissertation reports on two semi-independent studies of rotating
atmospheric convection.

The first is an analytical investigation of the linear stability and structure of
convection in a mean circular shear. The study is intended to complement the
classical theoretical work of Asai and to extend the Lilly and Davies-Jones
Beltrami solutions to consider the effects of buoyancy on disturbance helicity.
The method of normal modes is used to analyze the Boussinesq equations with
periodic lateral boundary conditions and free-slip, rigid vertical boundary
conditions. The most unstable modes are found to be transverse to the shear
vector at the channel center. At small Richardson numbers, the most unstable
modes are highly helical with helicity obtained from the mean flow, but
disturbance helicity decreases rapidly for Richardson numbers greater than
unity.

The second study is a numerical investigation of the formation of vertical
vortices in the convective boundary layer. In Nature, these vortices are typically
made visible by the presence of dust or other particulates. Observations indicate
that such vortices may be occurring, even in the absence of visible tracers. For
example, MacPherson and Betts point out instrument observations of invisible
boundary layer vertical vortices over a boreal forest. If boundary layer vertical
vortices are therefore ubiquitous in the atmosphere, they may play an important
role in boundary layer transports and evolution. However, these convective
vertical vortices have not often been pointed out in laboratory or numerical

simulations. Large-eddy simulations of convection, in the absence of imposed

Xvil



mean wind or other sources of angular momentum, are performed for the
purpose of investigating boundary layer vertical vortex formation. The
simulations are designed to resolve boundary layer convective cells and
embedded smaller-scale horizontal circulations. Simulated vertical vortices form
rather readily at the vertices of polygonal convective rings, where updrafts are
locally maximized. Although they have larger horizontal scale, these vortices
have vertical structure similar to observed dust devils. The results indicate that
boundary layer vertical vortices can form in the absence of surface or
temperature inhomogeneities or imposed sources of angular momentum. In at
least one case that is examined, the boundary layer height is elevated in the
vicinity of a vortex. Possible mechanisms for vertical vortex formation are

discussed.
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Chapter 1

Introduction

Of principal interest to many meteorologists is the answer to the question,
“How does an updraft begin to rotate and become an atmospheric vortex?”
Observations suggest that there are many ways in which this can occur, most
requiring both a source of buoyancy and a source of vorticity. The co-location of
these results in a helical or columnar vortex. Assuming a source of buoyancy is
provided, some of the vorticity generating processes might be categorized into
the following cases: 1) direct generation of vertical vorticity associated with the
existence of a horizontal shear zone; 2) vorticity generated by the interaction of
convection and a mean wind shear; or 3) vorticity generated in convection in the
absence of means winds. The first case is fairly straightforward and may be the
primary mechanism for landspouts (Brady and Szoke 1989) and some dust devils
(Barcilon and Drazin 1972). The more dynamically intriguing cases 2) and 3) are
examined in this dissertation.

This dissertation describes two studies of rotating atmospheric convection.
The first is an analytical investigation of the linear stability and structure of
convection embedded in a mean shear flow with a circular hodograph, which
was performed as a contribution to the classical theory. The second study
consists of a numerical investigation of the formation of vertical vortices in the
convective boundary layer. The background for these studies will now be
described.

The interaction of a convective updraft with a mean wind shear has been

used to explain the formation of rotating thunderstorms and has often been



studied using two idealized mean wind profiles. The first is a unidirectional
vertical wind shear (speed shear), or straight hodograph, and the second is a
wind shear turning at a constant rate with height (directional shear), or circular
hodograph. A characteristic of disturbances in a circular mean shear is that
streamwise vorticity is available to a disturbance updraft from its inception, in
contrast to the case of unidirectional mean shear. Thus, linear dynamics enable
the immediate rotation of an updraft and nonlinear forcing enhances this
process. A nonlinear analytical solution exists in the form of a Beltrami flow (a
solution in which the vorticity vector is parallel with the velocity vector).
However, the Beltrami solution is not very relevant to atmospheric flows, since it
does not involve buoyancy or dissipation. The linear equations permit the
examination of buoyancy effects on the helical nature of the solutions.

Many analytical studies of convection mean wind shears have been
performed, (e.g., Asai 1970 a, b, 1972) but none have considered the special case
of a circular hodograph for linear stability analysis. Thus, the linear stability and
structure of convection in a circular mean shear is examined and constitutes the
first study reported in this dissertation. However, the emphasis is not as much
on the stability properties of the flow, as on the helical characteristics of the
preferred solutions. The method of normal modes is used for the Boussinesq
equations and inviscid-nondiffusive solutions are emphasized. The vertical
boundary conditions are rigid, free-slip and conducting, while lateral conditions
are periodic. The stability results show two regimes that are separated by
negative Richardson Number of approximately unity; a buoyancy (shear)
dominated regime is characterized by growth rates that depend (do not depend)

strongly on negative Richardson Number. The geometry of the preferred



solution is a two-dimensional roll, transverse to the mean shear vector at the
center of the channel. For the case of a circular hodograph, disturbance helicity
(a measure of the covariance of the velocity and vorticity vectors) can be
obtained from the mean helicity and is proportional to the shear generation of
kinetic energy. The relative helicity (normalized helicity) is reduced where
buoyancy effects are maximized. However, the preferred solutions are highly
helical.

Convection in a unidirectional mean shear has been studied numerically, as
well as analytically, and has been applied to the formation of rotating
thunderstorms. The second study described in this dissertation was initially
motivated by unanswered questions regarding the role of moisture in the
nonlinear updraft splitting process that takes place for moist supercellular
convection in unidirectional mean wind shear. In such a mean shear, linear
theory can explain the generation of two vertical vorticity centers that straddle an
updraft center and lie in a plane perpendicular to the mean shear vector.
However, nonlinear processes based on pressure gradient forces are required to
explain the subsequent propagation of the updraft region, lateral to the mean
shear vector, that results in the co-location of the updraft and a vertical vorticity
center.

Prior work has implied that this nonlinear propagation process might be
intrinsically related to the presence of moisture and related phase changes in the
flow. In particular, Wu (1990) examined the disturbance helicity forcing terms
for numerical simulations of supercell thunderstorms in both unidirectional and
circular mean wind shears. She found that in the unidirectional (circular) mean

shear, disturbance helicity was forced most strongly by the buoyancy (helicity



exchange) term'. She concluded that for supercell thunderstorms that form in
unidirectional mean shear, the source of buoyancy forcing of disturbance helicity
is the cold pool, formed by evaporatively cooled downdraft air. Originally it was
thought that the formation of this cooled downdraft was responsible for the
splitting of the original updraft. Dust devil vortices are notably independent of
moisture processes and may form in essentially unidirectional boundary layer
shear (Maxworthy 1973). The generation of rotation for dry thermal convection
must differ somewhat from that of supercells.

Nevertheless, numerical simulations have showed that the nonlinear
splitting process can take place with only parameterized latent heat release
(Rotunno and Klemp 1982, hereafter RK82) and/or with the water-loading and
evaporation processes turned off (Rotunno and Klemp 1985). To take this a step
further, I performed a completely dry, coarse resolution, numerical simulation of a
buoyant thermal rising in a unidirectional mean shear without any
parameterization of latent heat release. The base state stratification was neutral
and set to 300 K. A summary of the simulation parameters in shown in Table 1.1.

(More details on the numerical model are given in Chapter 3 and Appendix A.)

Gridpts Ax Ay Az At 6, XT =yr zr Pr Wind
Shear

26x26x 1000 1000 500 6 35 10 L.5 0.33 Asin
26 (m) (m) (m) (s) (g %) (km) (km) RK82

Table 1.1. Summary of simulation parameters.

! However, the buoyant forcing of disturbance helicity is similar in concept to the stretching of
vorticity by divergence. The effect can only occur if there is some vorticity initially. Thus,
another source of disturbance helicity is required for convection in unidirectional mean shear.
Lilly (1994, unpublished) suggested that pressure forcing, although it vanishes globally, can
locally produce disturbance helicity. Once produced, buoyancy effects act strongly to enhance
the helicity of the disturbance.



It was found that the original updraft apparently does still split into two
local updraft maxima, (Fig. 1.1a) and that these updraft centers are associated
with vertical vorticity extrema (Fig. 1.1b). A Y-Z cross-section of the perturbation
pressure (Fig. 1.1c) shows two low pressure centers on the flanks of the updraft,
(as in Schlesinger 1980). These results provide evidence that something like the
supercell mechanism may be operating for dust devils that may form in
unidirectional wind shears in the absence of moisture processes.

However, Rotunno and Klemp (1985) found that updraft splitting did not
occur without the rain process if the dynamic forcing was too weak. Many
observational investigators have reported that the optimal conditions for dust
devil formation include very light or calm winds ( <5 m s, e.g., Sinclair 1969 ).
This leaves the question of the formation of vertical vortices (e.g., dust devils) in
weak winds and dry environments unexplained.

Despite the fact that the initial updraft split into two local updraft centers
(Fig. 1.1a), subsequent lateral propagation was minimal and may require a mean
temperature stratification (other than neutral) that promotes the preference of an
updraft over a downdraft in the vicinity of the low pressure centers on the
updraft flanks (Fig. 1.1c). (This issue is discussed in more detail in Chapter 3.)
Since there was not much lateral propagation for the case of a single convective
element in a unidirectional mean shear, it also seemed possitle that the
formation of dry dust devil-type vertical vortices might be dependent on the
mutual interaction of nearby convective elements (e.g., Shapiro and Kogan 1994)

or other dynamic processes, perhaps even in the absence of mean winds.
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Fig. 1.1. (a) X-Y Cross-section of the vertical velocity at z = 1750 m and t = 900 s.
Contours from -5.4 to 8.1 with interval 0.9 m s™.



XY Cross-Section of the Vertical Vorticity Field
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Fig. 1.1. (continued). (b) X-Y Cross-section of the vertical vorticity at z = 1750 m
and t = 900 s. Contours from -0.01 to 0.01 with interval 0.001 s™. Labels scaled by
10000.
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The mechanism for vertical vortex formation in the absence of mean
winds is especially intriguing, since this has not often been pointed out in prior
laboratory or numerical simulations of Rayleigh-Benard-type convection. Thus,
it was chosen as the topic of investigation and constitutes the second study of
rotating convection reported in this dissertation. After selecting this as the
specific topic of interest, other questions such as, “What is the source of vorticity
for these vortices?” and “Are vertical vortices more efficient transporters of heat
and momentum in convective boundary layers than nonrotating convection?”
became apparent. To address these and the question of vertical vortex formation
in the absence of means winds or other imposed sources of angular momentum,
Large Eddy Simulations (LES’s) of the Convective Boundary Layer (CBL) have
been performed. A desired consequence of this work is that the ubiquity and
importance of rotating convection to boundary layer and convective-scale
meteorology might be established.

Chapters 2 and 3 present the backgrounds, methodologies, results,
discussions, and summaries for the analytical study of convection in a mean
circular shear and for the numerical study of convective boundary layer vortices,

respectively. Chapter 4 contains a summary of the dissertation.



Chapter 2

The Linear Stability and Structure of Convection in a Circular Mean Shear
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Chapter 2

The Linear Stability and Structure of Convection in a Mean Circular Shear

2.1 Background

Observations and numerical simulations have shown that both shear and
buoyancy are important ingredients in the formation and maintenance of
supercell thunderstorms and that there may be some optimal combination of
both that is most conducive to severe rotating thunderstorms (e.g., Rasmussen
and Wilhelmson 1983 and others). Buoyancy is critical to the initial formation of
the convective storm and remains an principal energy source in the subsequent
storm evolution (e.g., Weisman and Klemp 1982; Rotunno and Klemp 1982; and
others). Wind shear is believed to provide an equally important source of storm
energy (Lilly and Jewett 1990) and is also a source of rotation for storms through
the tilting of horizontal vorticity (e.g., Browning and Landry 1963; Barnes 1968;
Davies-Jones 1984; and Rotunno and Klemp 1985).

Helicity, the covariance of the velocity and vorticity vectors in a flow,
characterizes severe storm structure and, when present in the mean flow, helps
determine storm rotation potential and the origins of updraft rotation (Lilly 1982,
1986a,b; Davies-Jones 1984, 1985). Strongly curved mean wind hodographs are
often observed to be associated with the formation of rotational storms (e.g.,
McCaul 1993). This study is largely motivated by that association.

The effects of wind shear on convection and the associated rotation-
generating mechanisms have often been studied through the use of two idealized

mean wind profiles. One is unidirectional shear, represented by a straight line
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hodograph, and the other is a constant wind speed flow, represented by a
circular hodograph with wind direction turning at a constant rate with height.
Of course, observed wind profiles are never as simple as these idealized profiles
but sometimes approach them. A typical wind profile associated with severe
thunderstorms in the Southern Plains has a curved region in the lower
troposphere surmounted at higher levels by a nearly unidirectional shear profile

(Maddox 1976).

2.1.1. Unidirectional shear

The unidirectional shear idealization was used in the earliest Klemp and
Wilhelmson (1978a) simulations of supercell-like storms and was also used in
their simulation of an observed storm that split repeatedly to form a line of
storms (Wilhelmson and Klemp 1981). The vorticity vector for a vertically
shearing mean flow is always to the left of and normal to the shear vector. If an
incipient storm updraft moves with the mean flow at some level, it lifts and
draws in vortex tubes from both sides to produce vertically oriented vortices on
either side of the updraft. Looking down the shear vector from above, the right
(left) side of the updraft will acquire counterclockwise (clockwise) rotation.
However, if the updraft begins to propagate in a direction transverse to the mean
shear vector, air parcels in the inflow may be assumed to originate from the
region in the direction of propagation and to possess vorticity parallel to that

component of motion, that is, streamwise vorticity. The flow then becomes
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helical in a coordinate frame tied to the updraft and the updraft develops a
vortex at or near its center.

This sequence evidently starts with a process of updraft splitting. In the
numerical simulations by Klemp and Wilhelmson (1978b), storm splitting
appeared to be associated with the formation of a central rain-filled downdraft.
Rotunno and Klemp (1982) found, however, that splitting can occur, although
somewhat more slowly, without the presence of a downdraft. The main factor in
the splitting process appears to be the nonlinear production of vertical pressure
gradients on both the right and left flanks of the updraft (Schlesinger 1980).
Midlevel pressure minima are attributed to rotation at midlevels that induces
low pressure on the updraft flanks according to a diagnostic pressure equation in
which the Laplacian of pressure is given by the difference between the square of
the vorticity vector and the square of the deformation tensor.

A similar argument using dynamically induced pressure gradients has
been made to explain discontinuous propagation of an updraft transverse to the
mean shear vector (Rotunno and Klemp 1985). The formation of low pressure to
the right and left of the main updraft promotes new updraft growth and thus
transverse propagation of the storm system. Lilly (1986b) used concepts of
vorticity generation and exchange, rather than pressure field generation, to
obtain essentially similar results.

Klemp and Wilhelmson (1978b) showed, from a similar pressure field
analysis, that hodograph curvature leads to enhancement of the half of a splitting
storm on the concave side of the hodograph. Rotunno and Klemp (1982)
extended this analysis and also showed that a pressure gradient relevant to

propagation develops in the direction of the local shear vector. For a
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unidirectional shear hodograph, this results in air rising in front of a storm and
descending to its rear, and helps explain updraft penetration through a capping
inversion.

The generation of vortices lateral to an updraft in a shear can be described
by linear dynamics, but the feedback processes which produce a rotating updraft
are inherently nonlinear. All linear analyses of convection in a unidirectional
shear have shown that, for large negative Richardson number, the most unstable
modes are rolls oriented downshear. For such modes, the shear neither
contributes to nor penalizes the convective dynamics, although it does allow
transfer of horizontal kinetic energy to the disturbance. All or nearly all
laboratory experiments conducted in broad channels at small to moderate
Rayleigh numbers support those results. Thus there is currently no satisfactory
connection between those experiments and observed supercell storm

phenomena.

2.1.2. Circular shear

In the circular hodograph case, rotation may develop in a convective
updraft without a precedent storm split if the storm propagation vector lies
within the circle since the mean vorticity must then always contain a component
along the inflow vector and, thus, is helical. Partially circular hodographs are
often associated with the development of supercell storms, which by definition
contain rotation about a vertical axis. Numerical simulations in a circular (Lilly

1982) or semicircular (Weisman and Klemp 1982; Droegemeier et al. 1993)
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hodograph environment have shown that a single rotating storm may develop,
not as the result of a split, provided the magnitude of the shear is sufficient, as
measured by a "bulk Richardson number” (as in Weisman and Klemp 1982). The
environments of the well-studied Del City tornadic storm (e.g., Klemp et al. 1981)
and the hurricane-generated tornadic storms studied by McCaul (1993) are
represented by nearly circular hodographs. For both cases numerical
simulations have been rather successful.

The mechanism for updraft rotation in a circular hodograph is simple and
has been demonstrated using linear theory by Lilly (1982) and Davies-Jones
(1984). A linearized vertical vorticity equation for a Boussinesq, incompressible

flow can be written as

02 =0,2 2.1)

where #; and @, are horizontal means of the horizontal velocity and vorticity

vectors, respectively, and &, and w, are disturbance quantities. For a circular
hodograph where & =-Mcos(Ax;)and &, = Msin(Ax;), the right-hand side is

proportional to the advection of vertical velocity; that is,

(2.2)

_—du, _,_du
— = A, —,
e ox, " ox,

so that a steady-state linear solution can exist with w, = Ay;. For clockwise

curvature where A >0 positive vorticity is generated upwind of the updraft and
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negative vorticity downwind. Since the parcels of air coming into the updraft
possess positive vorticity, the updraft will acquire cyclonic rotation.

Steady-state solutions of the inviscid Boussinesq equations of motion and
continuity for the circular mean hodograph exist in the form of Beltrami flows of
arbitrary amplitude (Lilly 1982, 1986b; Davies-Jones 1985). A flow that has

perfect correlation everywhere is a Beltrami flow, defined by o, = Au,, where A is

traditionally called the "abnormality,” but may be interpreted as a wavenumber.
The abnormality may not be constant, but if it is, the flow is also called Tkal. A
mean circular hodograph is a Tkal flow. Here we shall neglect the subcategory
distinction and call all Beltrami flows simply "Beltrami.” The sum of two flows
that are individually Beltrami flows remains Beltrami only if A is the same for
both (Truesdell 1954, 177). Such flows may appear quite different in geometrical
structure but may be combined in any ratio and any amplitude. For present
purposes, we consider the circular hodograph flow (horizontal velocity
components varying only with height) to be the "mean” state, with small
amplitude, three-dimensional "disturbances" superimposed on it. If both flows
are Beltrami, however, the distinction between mean and disturbance is
arbitrary.

A time-dependent solution for the viscous case was given by Shapiro
(1993), which is similar to Beltrami flow but decays. Although the Beltrami
solution is dynamically almost trivial, it nevertheless contains the same updraft-
vortex linkages described above. The Beltrami solution is, however, apparently

not maintainable in the presence of buoyancy effects. This can be seen from
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examination of the steady-state inviscid Boussinesq vorticity equation, which

may be written as

d
a—;(u 0, ~ U@, — €;:6)=0, (2.3)

J

where b is the buoyancy. In a Beltrami flow the first two terms in parentheses
must vanish, but this can only occur if the buoyancy is horizontally uniform. The
nature of disturbances embedded in a buoyantly unstable Beltrami mean flow

can, however, be examined within the linear framework.

2.1.3. Asai’s studies

Asai (1970a,b) found that for unstable stratification in unidirectional shear,
the preferred instability for large shear is somewhat incompatible with that for
large buoyant instability. The most unstable modes for large shear (small
positive or negative Richardson number) exhibit roll axes perpendicular to the
mean shear vector. For a strongly buoyant mean state (large negative
Richardson number) the preferred roll axes are aligned parallel to the shear
vector, for which the growth rates are identical to those without shear. Thus,
Asai concludes that the shear acts to inhibit convection. He and others consider
cases where the shear vector turns with height (e.g., Asai 1972; Wu et al. 1992),
but to our knowledge none have considered the special case of circular shear for

a linear stability analysis. The current study may be considered an extension of
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Asai (1972), but the emphasis is less on the disturbance stability than on the
structure of the eigenmodes.
In section 2 we describe the methodology, section 3 gives the results of the

analysis, and the conclusion is presented in section 4.

2.2. Methodology

A linear stability analysis is carried out to determine the stability
properties and structure of growing disturbances in a circular mean shear. The
method of normal modes is used to find the eigenvalues utilizing the linear
Boussinesq equations with or without viscosity and in neutral or unstable

stratification.

2.2.1. The mean state

The incompressible Boussinesq equations are linearized about a mean
wind state characterized by a circular hodograph, which is linearly unstable even
in the unstratified case, due to points of inflection in the profile. The equations
are cast in Cartesian coordinates, where x and y are the horizontal directions
and : is the vertical (note that where summation notation is used, 1 =x, 2 = y,

and 3 = z direction). The mean density is assumed to vary linearly in the z
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Fig. 2.1. (a) Mean-wind hodograph with veering wind with height and (b)
profiles of the mean wind components.
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direction only. The mean horizontal velocity is prescribed in the form used by

Lilly (1986b):

u=M sin[l(z - %):" v=M cos[/l(z - g) }, (2.4)

where u is the mean velocity in the x direction, v is the mean velocity in the y
direction; M (=1 in our system, which is made dimensionless) is the radius of the
hodograph. For most of our calculations we have chosen A, the angular extent of
the mean flow hodograph and also its dimensionless wavenumber, to be
m+3 = 5.44, or about 312°. Note that Lilly (1986b) found an analytical solution for
this mean flow to which the current solutions may be qualitatively compared.
(Also note that, in general, the solutions for the full circle hodograph were found
not to vary significantly from those of the 312° hodograph.) The mean
hodograph is shown in Fig. 2.1a. The mean vertical velocity W is zero. Points of
inflection in are evident in the ¥ and v component profiles of the mean flow,
which are shown in Fig. 2.1b.

The rationale for the choice of A is the following. We wish to allow
formation of a Beltrami disturbance with the same abnormality as that of the
mean flow. If the disturbance vertical wavenumber is not the same as the mean
Beltrami flow, then the possibility of a Beltrami disturbance and comparison
with the analytical solutions of Lilly (1986b) is precluded. This requires that the

square of the vector wavenumber of the disturbance be the same as A; that is,
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K=kl =k +k?+k, (2.5)

where the disturbance wavenumbers are denoted by primes and the mean by an
overbar. Thus, the vertical wavenumber of the mean flow k., must be greater
than the vertical wavenumber of the disturbance &/, which for our rigid upper
and lower boundary conditions is 7 or greater. Thus the limit for infinite
horizontal wavelength is a half-circle hodograph (Davies-Jones 1985). For a cubic

disturbance having horizontal half-wavelengths equal to the domain depth,

A=+ +==37% (2.6)

Note that the total horizontal wavenumber for the disturbance Beltrami flow is

then

K=k +k =27, Q2.7)

Thus, for disturbances with one horizontal dimension of variability the mean

flow wavelength is V2 times the domain depth.

2.2.2. The disturbance equations
The linearized Boussinesq disturbance equations are given by
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o _ 0 2>\, ,du on ,
(5[—+uj€r?—VEJu‘ + U, dx3 + 3 5i3b =0, (2.8)
d d 9* 2

—_—t T — "+ N~ ':0, 2.
(at+u’ 3% Kax?]b + N (2.9)

and

W _o, (2.10)
ox;

1

where u/’s are the disturbance velocities in the x, y, and z directions. The

buoyancy frequency is given by

N =-82F 2.11)

The pressure variable is defined by 7z = p’/p,, where p, is the reference density.
The buoyancy variable is denoted by b"=-gp’/p,, v is the kinematic viscosity

coefficient, and k denotes the thermal diffusivity.
All disturbance equations are made dimensionless by scaling by the

domain depth 4, a characteristic velocity scale (the mean wind speed) U, and the
buoyancy change over the depth of the domain Ab=-N’h, where we have set

N?*=-1. The Reynolds number Re, Prandtl number Pr, and Richardson number

22



Ri are defined as: Re = Uh/v, Ri =(hAb)/U* and Pr=v/k. The Rayleigh number

Ra is given by Ra = —(h3Ab)/(VK) = —PrRiRe’.

Wave solutions for the disturbance quantities are assumed in the form
A’ = A(z)expli (kx +k,y) + o, (2.12)

where A denotes the amplitude of any of u’, v/, w’, b, {’,and n’. The positive
real part of o is the amplification growth rate of the disturbance. The horizontal
wavenumber in the x (y) direction is k, (k,). Upon substitution of (2.12) into
(2.8)-(2.10), we first eliminate U and V, and then the pressure variable and the

following system of two equations and two unknowns, W and B, is obtained:

o+i(ka+k7)-Re™| L -k T _e|w—il ke EE e S0\ W eRiB =0,
: dz” dz” dz 7dz7

(2.13)

and
. _ — -1 -1 d? 2 7
[0’+1(qu +kvv)—Pr Re (-—,—k HB—W:O, (2.14)
’ daz

where k is the horizontal wavenumber, k*=k; +k;. The vertical vorticity

amplitude is obtained using
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{0' +i(kj +k,7)— Re"( 5', - kz)] Z= —i(kx ig‘i —k, ?) w. (2.15)
’ Z" 4 T az

The remaining velocity amplitudes are then found according to the following

equations:
U= ik‘z(kyz +k, ﬂ) (2.16)
<
and
V= -ik-l(kj —k, ﬂ) . (2.17)
T dz

The upper- and lower-disturbance boundary conditions are assumed to be
rigid and free slip. In addition, the buoyancy at the upper and lower boundaries

is held constant so that

W= =22 =""=B=0 at z=0 and 1. (2.18)

The ordinary differential equations, (2.13) and (2.14), and the boundary
conditions, (2.18), are approximated by finite-difference equations and then
written in the form of an eigenvalue problem. The maximum real part of the
eigenvalue is selected and is the growth rate of the most unstable disturbance,
while the corresponding eigenvectors are the disturbance amplitudes. The
number of vertical levels is n =50 unless otherwise stated. The procedure is very

similar to that described in the appendix of Asai (1970a) except for the use of an



improved eigenvalue solver. Therefore, we will not repeat all the details here,
but refer the reader to Asai (1970a). The newer GVCCG (IMSL library routine)
eigenvalue solver computes all the eigenvalues and eigenvectors of a generalized
complex eigensystem. The routine uses the LZ algorithm (Kaufman 1975) which
is based on the QR algorithm. It does not require matrix inversion and,
therefore, may be more appropriate for ill-conditioned systems. The LZ

algorithm is also more efficient for use with complex matrices.

2.2.3. Energy and helicity budgets

Helicity density, hereafter helicity, is formally defined as the scalar
product of velocity and vorticity, h = uw,;, where u, is the velocity vector and w,
is the vorticity vector. The development of helicity in an updraft-containing
disturbance can be examined through the use of the linearized-disturbance
helicity equation. First, we write the disturbance vorticity equation, which is

obtained by taking the curl of (2.8):

2 -— ’ —_ ’
(iwi—va-waugﬂ-a%-w'a“f % o. (2.19)

i ox, ' ox; 35,\7—3--8"’-3_8—.\7_]..:
Multiplication of (2.8) by ;, cross-multiplication of (2.8) and (2.19) by w; and ;,

and taking the horizontal mean result in the kinetic energy and helicity

equations, respectively,
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[ ]

du. a(” u; ) v( au.’] :
Yuu,—+—-——=-buy=-v| —| , (2.20)
dx, ox,

N

9,9\
dor  ox;

and

2 — -n_ T
9_v3 > (W] + 2ulu; ao, | —a—(n’wg - Bulu;) - 2b'w] = -2 oy ai) '
X3 dx, Ox, ox; Ox; |

I I I IV \' VI (2.21)

The horizontally averaged disturbance helicity is #@;. Terms III in both (2.20)

and (2.21) represent the exchange of energy or helicity between the disturbance
and the mean state and will be referred to as the "exchange” terms. Terms IV in
both equations represent vertical transport of energy and helicity between levels.
There is, however, the possible removal or generation of helicity at the boundary
by the pressure term. In the helicity equation, it contains a momentum flux term
and is somewhat arbitrary since the exchange term could be written in a form
that removes it. Terms V represent the source of energy and helicity due to
buoyancy effects. Lilly (1986b) speculatively defined a potential helicity that, like
potential energy, exchanges with the disturbance helicity. Terms VI of both
equations are denoted as "dissipation.” For helicity, that term may not
necessarily decrease the magnitude of total helicity, but it does so for each
wavenumber considered separately.

Equations (2.20) and (2.21) can be expressed in terms of the wave spectral

variables. From (2.15) it can be shown for the inviscid nondiffusive case that the
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product of ZB", where an asterisk denotes the complex conjugate, is imaginary
so that the vorticity buoyancy product [term V of (2.21)] identically vanishes.

Wu (1990) evaluated helicity budgets for simulated storms in mean-
shearing environments. She found that the exchange term is nearly zero for a
unidirectional shear case, with disturbance helicity generated mostly by the
buoyancy term, in perhaps surprising agreement with linear theoxg:: -For the
numerically simulated Del City storm, with a roughly circular hodograph, the
principal source of disturbance helicity is transfer from the mean state (Wu et al.
1992). Droegemeier et al. (1993) also showed transfer of helicity from a mean
state with a semicircular hodograph to a simulated convective storm.

We define the disturbance relative helicity (RH) to be the horizontally
averaged correlation between vector velocity and vorticity, or the mean cosine of

the angle between them. It is, therefore, a function of the vertical coordinate z:

RH(z) =| —— s |. (2.22)

Some insight can be obtained by assuming that the momentum flux, term
IIT of (2.21), can be adequately parameterized by an eddy viscosity assumption;

that is,

A L (2.23)

] dx3
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Then term III may be written as

| Gt (2.24)

The derivative product is a mean-state form of (au,. /ox; )(aa),. / ax,), also occurring

on the right-hand side of (2.21), which has been termed "superhelicity” by Hide
(1989). This quantity bears the same relationship to helicity as does enstrophy to
kinetic energy. Superhelicity is proportional to helicity for a circular mean
hodograph but otherwise can be determined algebraically or graphically from
the mean flow hodograph. It can be shown that a vertical integral of
superhelicity is not particularly sensitive to discontinuities in the vorticity. It is,
however, very sensitive to loops in the hodograph. As a measure of mean-
disturbance helicity exchange potential, the mean-state superhelicity might be
considered an improvement on helicity itself because it is independent of the
frame of reference. Its significance for this purpose depends, however, on the
momentum flux being downshear so that disturbance energy is obtained from
the mean state. This is generally found to be true for isolated three-dimensional
convective elements (Lemone 1984; Lilly and Jewett 1990), but not necessarily for
quasi-two-dimensional squall line convection (Lemone 1983). Emanuel (1994)
and Lilly (1986a) have found that the irrotational horizontal velocity components
feed energy from disturbance to mean state, with the opposite being true for the

nondivergent components.
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Whether or not (2.23) is a particularly useful relationship for a given flow
field, the helicity exchange terms, term III in (2.21), are proportional to those for
energy exchange if the mean flow is Beltrami.

In addition, Davies-Jones showed that vertically integrated helicity is
proportional to the area of the figure bounded by the hodograph and the wind
vectors at its bottom and top. Thus, for a closed hodograph it is proportional to
the total area within it, and this remains true within any reference frame. The
more nearly closed a hodograph is, the less sensitive helicity is to the reference

frame.

2.3. Results and Discussion

2.3.1. Unstable modes and phase speeds

Unless otherwise specified, the results are for inviscid and nondiffusive
equations, with varying Richardson number and wavenumbers. The most
interesting results are almost independent of Reynolds and Rayleigh numbers,
provided these are large enough to allow instability. Where finite Reynolds and
Rayleigh numbers are considered, the Prandtl number is always assumed unity.

Figure 2.2 shows the growth rate as a function of k.and k, for neutral

stratification Ri=0. The preferred solution, wavenumber =2.7, has roll axes

aligned with the y axis (k, =0), thus perpendicular to the mean shear vector at

the center of the channel in the x direction. We will call this the transverse
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Fig. 2.2. Growth Rate contours as a function of k,and k, for Ri =0 and n=90.
Minimum value is 0.0 and maximum value is 0.8. Contour interval is 0.05.
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mode, with k=0 identified as the longitudinal mode. Asai (1970b, 1972) found
that such a transverse instability was dominant for other types of mean shear
profiles at small —Ri. Here significant growth also occurs, however, for all other
orientations at about the same total wavenumber, due to shear in the other
directions.

Our disturbance solutions are thus obtained as periodic rolls having only
one horizontal dimension of variability, although the roll orientation may be
varied arbitrarily with respect to the mean flow. Many severe storms are, and
the Lilly-Davies-Jones Beltrami flow solution can be, fully three-dimensional.
Since linear disturbance solutions may be combined arbitrarily, it is possible to
obtain three-dimensional disturbances, of either square or rectangular planform,
by combining pairs of roll disturbances. Each member of these pairs must,
however, have the same growth rate. While this procedure adds no new
information to the individual modal solutions, it facilitates comparisons with the
more nonlinear phenomena. The propagation velocity of the synthesized three-
dimensional disturbances becomes the mean of its two components and, thus is
normal to two of the rectangular faces of its planform.

The direction of propagation of the most unstable solution is
perpendicular to the wavefronts and thus will be in the x direction (Fig. 2.2).
Figure 2.3 shows the magnitude of the propagation velocity plotted as a function

of k_versus k,, also for Ri=0. Values greater than k = 4.3 are not plotted since

these values are near the stability boundary, where the most unstable mode is

difficult to identify. The propagation speed of the wave of most unstable
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Fig. 2.3. Magnitude of the phase velocity vector plotted as a function of k, and
k,. Contour interval is 0.05. Minimum value is zero, and maximum value is 0.8;
Ri =0and n =50. Values for &£ >4.3 are not plotted.
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solution geometry (k, >&,) is a minimum, while the less unstable solutions
propagate at greater speeds (e.g., k, > k, will propagate in the y direction).

Figure 2.4 presents the growth rate for inviscid flow as a function of -Ri
and &, with k, =107. The values 10” are used for numerical convenience but

may be considered as nearly zero. Thus, if we envision Fig. 2.2 as extending out
of the page for variable Ri, this figure represents a vertical cut approximately
along the k_ axis. The figure shows a monotonic increase of growth rate with
increasing —Ri. This result appears to differ from that of Asai (1970a), who
found two regions of instability separated by —Ri=0.1, and a preference for
longitudinal modes for negative Ri larger than that. A more accurate comparison
of his results and ours shows, however, that they are not significantly different.
The mean flow Asai (1970b) uses for his “case a” is similar to our v component,
with points of inflection above and below the centerline. Figure 2.5a shows
growth rates for this case with finite diffusion and viscosity as in Asai’s (1970b)
Fig.2. The approximate wavenumber amplitude of maximum growth rate
k=+/8 is very close to our wavenumber of maximum instability. The best
comparison comes if Asai's wave direction is chosen along the mean shear, that
is, in the x direction. Figure 2.5b shows growth rate as a function of

wavenumber and —Ri, recalculated by us for this situation, with k, =107. The

comparison with Fig. 2.5a is qualitatively good. However, we have a separation
of instabilities at about —Ri =1.0 and our growth rates are larger because our
maximum shear is greater than that of Asai.

Asai's (1970b) Fig. 3 is presented here as Fig. 2.6, showing growth rates

plotted against all three dimensionless numbers for k, =k, =2. The peaks of the
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Fig. 2.4. Inviscid growth rate (x100) as a function of horizontal wavenumber and
negative Richardson Number for £, =0 and n=350. Minimum value is 0.001,

maximum is 1.701, and the contour interval is 0.1.
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Fig. 2.5. (a) Growth rate (x100) as a function of horizontal wavenumber and
negative Richardson Number for 4, =0, Ra = 10%, variable Re, and n=50.

Minimum value is 0.001, maximum is 1.201, and the contour interval is 0.1.
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Fig. 2.5. (continued). (b) Growth rate (x100) as a function of horizontal
wavenumber and negative Richardson Number for Asai's Case (a) as in Fig. 2 of
Asai (1970b) except &, =0, and n=50. Minimum value is 0.001, maximum is 1.701,

and the contour interval is 0.1.
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Fig. 2.6. Figure 3 of Asai (1970b). Stability diagram for case (a) in which
k,=k,=2 are adopted. Solid lines indicate amplification rates against the
Rayleigh number Ra and the Reynolds number Re. Slanting dashed line
illustrates the respective Richardson number Ri. Dotted line connecting a
minimum amplification rate for a given value of Ra separates the thermal
instability domain from the inertial. (Adapted from the J. Meteor. Soc. Japan.)
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o =0 and 0.1 curves illustrate Asai's principal point that the existence of a mean
shear suppresses the onset and growth of convective instability if Re and Ri are
varied holding Ra constant. On the other hand, if negative Ri is increased with
Re held constant, corresponding to vertical lines in Fig. 2.6, the growth rate
increases monotonically. Thus, there is no suppressing effect of convection on
shear-dominated modes, and the latter are steadily transformed into the former.
Our inviscid results can be considered to lie infinitely far to the upper right of the
curves in Fig. 2.6. On Fig. 2.7 we show plots of growth rate against Richardson
number, similar to Fig. 2.4, but for Re=10’. There is very little difference
between Figs. 2.4 and 2.7 except that the growth rates are a little smaller for the
finite Re cases. This shows that our inviscid results are qualitatively similar to
those holding Re constant and provides grounds for us to concentrate on the
inviscid solutions. The shape of the growth rate curves on the upper right of Fig.
2.4 indicates a second maximum at larger wavenumber. This corresponds to the
well-known result that growth rate is maximum for infinite wavenumber in an
inviscid nondiffusive fluid. This result is of no physical interest here and is
ignored.

Figure 2.8 (from Asai 1970b, Fig. 7) shows the variation of growth rate
with the wave vector direction for six values of Ri, and Fig. 2.9 shows a similar
plot for several values of negative Ri from our results. By use of a transformation
like that leading to the Squire theorem for pure shear flow, it can be shown that
Fig. 2.8 is a remapping of data along the Ra=10" line of Fig. 2.6. The
transformation consists of a rescaling of the dimensionless velocity field and Re

by the factor k,/k. The results allow an improved interpretation of Fig. 2.8. For
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Fig. 2.7. Growth rate (x100) as a function of horizontal wavenumber and negative
Richardson number for Pr = 1.0, Re = 10°, k£, =0 and n =50. Minimum value is

0.001, maximum is 1.701, and the contour interval is 0.1.
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Fig. 2.8. Figure 7 for case (a) of Asai (1970 b). Variations of amplification rates
with the ratio between the wavenumber in the x and y directions &, /k, for

different values of Ri. Here Ra = 10* and k =2+/2 are assumed. (Adapted from
the J. Meteor. Soc. Japan.)
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—Ri less than the value where the dotted line crosses Ra =10, about 0.2, the
Squire theorem holds; that is, the growth rate is always greater for the wave
vector parallel to the shear direction than for oblique wave vectors (sometimes

called a three-dimensional mode, in this case k, #0). For larger —Ri the Squire

theorem no longer holds, and the longitudinal wave vector is most unstable.

A comparison between Figs. 2.8 and 2.9 suggests a different behavior of
our and Asai's results, with transverse modes preferred in all our results except
at large —Ri, where the growth rate is nearly isotropic. This comparison may
also be somewhat misleading. For Asai's unidirectional shear, rotation of the
wave vector changes the amplitude, but not the shape, of the shear seen in its
direction. For our case that rotation does not change the amplitude of the mean
shear but changes its vertical location. For what we call the transverse mode, the
point of inflection and the strongest mean shear along the wave number vector
occur at the center of the channel, while for the longitudinal mode two maxima
occur closer to the edges. The preference for transverse modes at large —Ri
occurs because their energy transfer from the mean flow is more positive (or less

negative) than that for the longitudinal modes.

2.3.2. Eigenvector fields and helicity calculations
The vertical resolution necessary to obtain a consistent eigenvalue is

dependent on the particular parameter choices. At larger wavenumbers, at least

35 vertical levels were required to achieve a consistent growth rate with further

42



increases in resolution. Based on these results, n=50 was chosen for all

eigenvector calculations.

The linear eigenvector solutions are of arbitrary amplitude but, for
comparisons, are here normalized by requiring the total integrated disturbance

kinetic energy to be unity. The eigenvector fields associated with the inviscid
Beltrami solution at k =+27 and k, =0 are shown in Figs. 2.10a,b and are
essentially identical to those presented by Lilly (1986b). The modes are
convective rolls with longitudinal jets at the circulation centers, which are located
at the midlevel, z=0.5. The streamfunction for &, =0 (Fig. 2.10a) is plotted in
place of u’, and is defined such that dy’/dz=u«" and dy’/dx=-w’. The

streamfunction in the x — z plane is given by

e .29

where 71 is the y component of vorticity. The dimensionless, transformed

streamfunction equation is then

Y _ ey w2 (2.26)
dz” dz

The V' velocity is simply proportional to y’and is not shown. The disturbance
kinetic energy is shown in Fig. 2.10b. The kinetic energy and helicity exchange,

terms III in (2.20) and (2.21), are proportional.
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Fig. 2.10. Vertical Structure of the Beltrami perturbation solution for Ri = 0,
k =~2r7, and k, = 0. Eigenvector fields are plotted as a function of dimensionless

height (ordinate) and phase angle (abscissa). (a) Perturbation streamfunction;
labels are scaled by 10 000. Minimum is -0.09 and maximum is 0.09 with contour
interval of 0.01. (b) Profile of perturbation kinetic energy.
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We exhibit, in Figs. 2.11-2.13, results for three amplifying mode cases: one
(case I) at wavenumber /27, that of the Beltrami flow, and two (cases II and I1I)
at wavenumber 2.7, close to the fastest growing modes. Cases I and III are
evaluated for Ri=-0.1, for which energy exchanged with the mean shear flow is
expected to dominate, and case III is evaluated for Ri=-10.0, where buoyancy
forcing is expected to dominate. In each of Figs. 2.11-2.13, the vertical velocity,
buoyancy, v velocity, streamfunction in x -z plane, the helicity and relative
helicity, and kinetic energy source terms, are shown in six panels. All the results

are for inviscid, nondiffusive equations and &, = 0.

Figure 2.11 shows the eigenvector fields for case I, for which, from Fig. 2.4,
the growth rate is =0.2. The velocities, stream function, kinetic energy source
terms, relative helicity and helicity profiles are all similar to those of the Beltrami
solution except near the midlevel, where a thin buoyant region appears, and the
gradients of horizontal velocity are very sharp. The v velocity vanishes at the
midlevel point. Also a slight phase shift appears between the upper and lower
halves of the domain. The sharp gradients suggest that the eigenvector is not
fully resolved in that vicinity and may be nearly singular. Figures 2.11a (w’) and
2.11b (b") show that positively (negatively) buoyant fluid mostly coincides with
rising (sinking) motion. Thus potential energy feeds the disturbance, principally
near the midlevel, where the temperature extrema are located. From the slight
slope of the streamlines and the apparent negative correlation between
u'(=0y’/9z) and w’, mean kinetic energy is also being transferred to the
disturbance in the midlevel region. Thus, the mean flow also transfers helicity to

the disturbance in the midlevel region, even though that is where the helicity
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Fig. 2.11. Eigenvector fields for case I. The parameters are Ri

-0.1, k, =0,

k=+27, and n=350. (a) Vertical velocity with contour interval of 0.04. (b)

Buoyancy with contour interval of 0.2.
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nearly vanishes (Fig. 2.11e). These conclusions are confirmed by the kinetic
energy budget (Fig. 2.11f). These curves show that the maximum exchange of
disturbance energy from the mean flow is nearly twice as large as the maximum
buoyancy generation and extends over a much deeper region.

Figures 2.12 (case II) and 2.13 (case III) show the same fields as Fig. 2.11,
but for wavenumber & = 2.7, which is near that of maximum growth rate. In case
II, disturbance kinetic energy is obtained from the mean flow and relative
helicity is highest in the upper and lower portions and lowest in midlevels where
buoyancy is maximized. In case III, the buoyancy flux is strongly positive, the u
momentum flux appears to be downgradient, and the v momentum flux is
strongly so. This helps account for the continued positive enhancement of shear
forcing to instability. The vertical integral of the energy exchange is, from Fig.
2.13f, about equal to the energy obtained from buoyancy. Where shear
generation of kinetic energy is large, helicity is generated (Figs. 2.12e,f and
2.13e,f). The helicity is reduced over a larger depth, which is associated with
increased buoyancy effects over the domain. Yet, relative helicity values are near
or greater than 0.9 for a significant portion of the depth for both cases.

Table 2.1 summarizes the growth rates, the normalized values of
integrated energy conversions, and the vertically averaged relative helicity for
each of the three cases discussed above. The association of the conversion of
potential energy to kinetic and low relative helicity values is notable (previously
deduced by Davies-Jones 1984). These values were obtained by taking simple
vertical means of the profiles from Figs. 2.11-2.13.

We now show a few more figures to summarize the helicity results. The

globally averaged inviscid disturbance relative helicity [(2.22)] has been plotted
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Fig. 2.12 (continued). (c) Velocity in the y direction with contour interval of 0.06.
(d) Streamfunction (x1000) in x -z plane with contour interval of 0.01.
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Fig. 2.12 (continued). (e) Relative helicity (solid) and helicity (dashed) profiles. (f)
Kinetic energy exchange (solid) and buoyancy (dashed) term profiles.
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Fig. 2.13. Eigenvector fields for case IIl. The parameters are Ri = -10.0, &£, =0,

k=27, and n=50. (a) Vertical velocity with contour interval of 0.04. (b)
Buoyancy with contour interval of 0.02.
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Kinetic energy exchange (solid) and buoyancy (dashed) term profiles.
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Casel Case I Case II
-Ri 0.1 0.1 10.0
k V2 2.7 2.7
Growth Rate 0.2 0.85 1.7
PE->DKE 0.00081 0.00078 0.10356
MKE-DKE 0.01210 0.11806 0.12398
Overall RH 0.93714 0.89608 0.65140

Table 2.1. Identification of the three specific cases examined. For each case, the
magnitudes of the energy conversions and vertical mean of relative helicity are
presented.
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as function of k and —Ri and is shown in Fig. 2.14. The relative helicity is mostly
independent of Ri for the shear regime (smaller values of —Ri) for the smaller
wavenumbers plotted. There is also a small maximum near the Beltrami
wavenumber for the smallest —Ri. As the Richardson number approaches zero,
the relative helicity does in fact approach unity and the Lilly-Davies-Jones
Beltrami analytical solution is recovered. The relative helicity drops off rapidly
in the thermal regime as —Ri is increased. The maximum relative helicity occurs
for the zero wavenumber but is still large at the wavenumber of maximum
growth. Figure 2.15 is the same as Fig. 2.14 but with finite viscosity and
diffusivity as in Fig. 2.7. The effect is a decrease in the average relative helicity
for the largest and smallest wavenumbers, increase in the relative helicity for
small and moderate —Ri, and maintenance of the maximum near the Beltrami
wavenumber.

Note that the globally averaged relative helicity values (Fig. 2.14) that
correspond to the three cases are substantially lower than the simple vertical
profile means shown in Table 2.1. If we consider case I as an example, Fig. 2.11e
shows that the RH is highest away from the midlevel. But most of the energy is
located at midlevel. The simple vertical mean cannot represent this phenomenon
but, instead weights each vertical level equally. In the global average given by
(2.22), the levels where there is more energy are weighted more heavily in the
average. As a result, the average RH using the global average is smaller than the
average RH using a simple vertical mean of the RH profile. The analytical
solution of RH unity for the Beltrami parameters is approached more closely for
small —Ri using the simple vertical mean. This result suggests the need for a

more sophisticated helicity statistic.
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Fig. 2.14. Perturbation relative helicity contours (x1000) as a function of
Richardson number and horizontal wavenumber for k, = 0 and n=350 for the

inviscid case. Minimum is 0.001, maximum is 0.851, and contour interval is 0.05.

58



-Ri

[SURISSTARS NI RIRIRETSIRERsNNRAsREnISIIIIRIRISNITIRIANCNEERTNRTRIENIT 1uJ,L_|_u_|_u_uj_|_|_|_|_u_|_

1 2 3 4 S
k

0.1

Fig. 2.15. Perturbation relative helicity contours (x1000) as a function of
Richardson number and horizontal wavenumber for &, =0, n =50, Re = 10°> and

Pr =1.0. Minimum is 0.001, maximum is 0.851, and contour interval is 0.05.

59



Last, the dependence of globally averaged inviscid relative helicity [(2.22)]
on the preferred disturbance geometry is plotted in Fig. 2.16. For Ri=-0.1, RH is
greatest for transverse rolls, which are also the most unstable geometry. For the
thermally dominated flow (—Ri=10.0), the relative helicity is considerably
reduced and shows only slight dependence on orientation angle. Upon
comparison of Fig. 2.16 and Fig. 2.9, it is clear that the wave orientation of the

most rapidly growing modes tends to have nearly the highest relative helicity.

2.4. Summary

The stability and structure of convection in a circular mean shear is
investigated using the method of normal modes. The results may be considered
an extension of Asai's work for the special case of a circular hodograph with
emphasis on the eigenvector characteristics. In addition, the effects of buoyancy
on helical flows are examined in order to build on the Lilly-Davies-Jones
analytical Beltrami solutions. The effects of viscosity on the disturbance
characteristics are determined to be small, and inviscid solutions are
emphasized.

The preferred disturbance solutions are obtained as essentially two-
dimensional periodic rolls for small and moderate Richardson numbers and are
transverse to the shear vector at the center of the domain depth. For large
negative Richardson numbers, the most unstable solution is nearly independent
of orientation angle. It is possible to obtain fully three-dimensional solutions by

combining pairs of solutions provided they have the same growth rates.
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Two stability regimes, one dominated by buoyant effects and one
dominated by shear effects, are evident for this hodograph and are qualitatively
similar to the regimes presented by Asai (1970b). The thermal (shear) regime is
characterized by dependence (independence) of both growth rate and globally
averaged relative helicity on changes in Richardson number. The helicity and
kinetic energy properties for three cases, summarized in Table 2.1, were
examined. It was found that disturbance helicity is obtained from the mean flow
and is minimized in regions where buoyancy is largest. However, the relative
helicity values for the preferred solutions were near or greater than 0.9 for
significant portions of the depth, even for larger negative Richardson numbers.
Within the linear context, helicity cannot be generated by buoyancy {for the
inviscid nondiffusive case that the vorticity buoyancy product [term V of (2.21)]
identically vanishes}, but with a curved hodograph helicity generation is
proportional to energy transfer from the mean flow. Furthermore, growth rate
and disturbance relative helicity are strongly correlated (cf. Figs. 2.2. and 2.12, 2.4
and 2.13).

The concept of superhelicity is introduced as a measure of the mean-
disturbance helicity exchange potential and is independent of reference frame.
In addition, we point out that the more nearly closed a hodograph is, the less

sensitive helicity is to the reference frame.

The results of this study are intended to complement previous theoretical
work on the dynamics of rotating thunderstorms. The extension of these results
to such nonlinear features is inherently limited by the idealized assumptions of

dry, absolutely unstable flow. Nevertheless, the results add insight into the
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dynamics of updrafts in curved shear flows. Future work might include
extending the analysis to consider a mean stratification characterized by

conditional instability.
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Chapter 3

The Formation of Vertical Vortices in the Convective Boundary Layer

3.1. Background

This Chapter reports on of a study of atmospheric boundary layer vertical
vortices. These vortices are typically manifest as dust devils although there is
evidence that they exist with some frequency in the absence of visible flow
tracers (e.g., MacPherson and Betts 1997). The dust devil is one of the smaller-
scale members of the broad spectrum of columnar atmospheric vortices, which
includes tornadoes, waterspouts, landspouts, cold air funnels, steam devils, and
firewhirls. The dust devil is distinguished from tornadoes and waterspouts by
its independence of water vapor condensation. This may be partly a matter of
verbal definition, however, since some of the weaker shear line or gust front
vortices made visible by condensation may be dynamically similar to some dust
devils (e.g., Bluestein 1985; Brady and Szoke 1989). In addition, Wakimoto and
Wilson (1989) describe cases where dust whirls have formed beneath cumulus
convection and eventually evolved into non-supercell tornadoes. Whether the
dust devil is dynamically simpler than the moist vortices remains uncertain,
since it is embedded in a strongly heated boundary layer, which provides unique

complexities.
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3.1.1 Observations of dust devils and their environments

Optimal conditions for dust devil formation apparently include light to
moderate wind conditions and a large superadiabatic lapse rate near the surface,
with the latter reported by Ryan and Carroll (1970) to be up to 9000 times the dry
adiabatic lapse rate for dust devil environments in the Mojave Desert. From
Prandt]l mixing length theory, such conditions would be associated with large
sensible heat flux, which can be forced by strong solar heating on a dry surface.
Another possible source of large heat flux is cold air flowing over a warm
surface. Sinclair (1969) cites Grant (1949) for an example of a dust devil that
formed in the sub-Arctic with 60°F surface temperature. Cold funnels, vertical
vortices associated with shallow convection, (Hess et al. 1988) may also occur in
such conditions.

Many investigators have asserted that dust devils are not observed for
low-level ambient windspeeds greater than some value, for example, five meters
per second (Webb 1963; Sinclair 1969). Morton (1966) states that wind speeds
greater than seven to ten meters per second will break up the dust devil.

In a field observation study in the Mojave Desert, Carroll and Ryan (1970)
used a "vorticity meter," consisting of four low-density spheres at the ends of two
mutually perpendicular one meter rods, to measure vertical vorticity in the
environment of dust devils. They found good correlation between the sign of
vorticity from the meter and the sense of rotation of observed dust devils.

In laboratory and numerical simulations of ordinary thermal convection,
vertical vortices have not often been observed except in the presence of basic

vertical vorticity (Barcilon and Drazin, 1972) or some other well-defined source
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of angular momentum. Most of those were done at relatively low Rayleigh
number (Ra), 10° or less. However, from numerical simulations of Rayleigh-
Benard convection at Ra = 4 x 107 and greater, involving so-called "hard"
turbulence, Cortese and Balachandar (1993) observe vertical vortices without a
mean flow. Mason (1989) presented CBL, LES results that indicated the presence
of vertical vortices, but these were not discussed. In an earlier laboratory
simulation of convection with uniformly heated boundaries, no mean flow, and
Ra = 10°, Willis and Deardorff (1979) observed many transient rotating plumes at
the vertices between three convective cells. From these results, they concluded
that dust devils may form in the absence of surface temperature or roughness
inhomogeneities.

The intensity of dust devils can be as great as that of small tornadoes.
There have been reports of significant damage to houses (McGinnigle 1970) and
windows broken (Cooley 1971) by dust devils. Wind speeds recorded as a dust
devil passed over a meteorological recording station were as high as 41 m s™
(Ives 1947). A more typical value of measured tangential wind speed in a dust
devil is about 15 m s™ (Sinclair 1673). Dust devil diameters range between 10's of
cm and 30 m and heights range from a few meters to 1000 m or more (Sinclair
1964). Hess and Spillane (1990) report dust or grass, associated with dust devil
circulations, that was visible at heights of 1500-2400 m.

Regarding dust devil rotation and translation, there appears to be no
preferential direction of rotation except for the very largest diameter dust devils,
where there may be some preference for cyclonic rotation (Durward 1931; Flower
1936; Sinclair 1965). However, a very large multi-vortex dust devil, observed by

Fujita (1971), was anticyclonic and embedded in a mesoscale anticyclone.
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Sinclair (1969) observed that most dust devils translate in a direction that is
within 45 degrees of the mean wind direction. Flower (1936) and Maxworthy
(1973) observed that cyclonic dust devils appear to move to the right of the mean
wind and anticyclonic ones to the left. Most dust devils are reported to move

continuously and at a speed nearly equal to that of the mean wind.

3.1.2 Dynamics of dust devil formation

Sources of both buoyancy and vorticity are necessary for dust devil
existence. While the source of buoyancy undoubtedly lies in the superadiabatic
layer near the surface that is present in the environments of most observed dust
devils, the source of vorticity remains the principal issue of debate (Maxworthy
1973).

Ambient vertical vorticity sources have been proposed, based on the pre-
existence of horizontal shear zones (Barcilon and Drazin 1972), as well as the
direct generation of vertical vorticity by flow past elevated topography (Sinclair
1969; Hallet and Hoffer 1971) or smaller obstacles, such as buildings (Ives 1947).
Vertical vorticity may also be generated by tilting of ambient horizontal vorticity,
such as that associated with mean wind shear (Maxworthy 1973), differential
surface heating (inferred from the results of Snow and McClelland 1990), sea
breeze circulations (McGinnigle 1970) or other mesoscale features, or turbulence
(Busse 1972). Several authors (e.g., Carroll and Ryan 1970; Willis and Deardorff
1979; Cortese and Balachandar 1993; Shapiro and Kogan 1994) have proposed or

provided evidence that larger scale convective circulations that are not initially

68



rotational can generate vertical and/or tiltable horizontal vorticity. Some of
these proposed mechanisms for the generation of vertical vorticity and coaxial

updrafts will now be described.
3.1.2.1 Concentration of ambient vertical vorticity

This is the most straightforward mechanism. If net circulation exists
around the perimeter of some area, buoyant convection within that area will
concentrate the circulation and increase the local vorticity by stretching. There is
no obvious reason to assume that the initiation of penetrative convection will be
favored in such a region, but once it is established, rotational or helical
stabilization and increased efficiency may favor its maintenance and growth. If
this is the case, the presence of vortical boundary layer flows may play an
important role in heat and momentum transports in the boundary layer, and

consequently in convective initiation.
3.1.2.2 Convective tilting of mean flow horizontal vorticity

This concept, although proposed earlier, became accepted as the source of
rotation of supercell convective storms after the seminal numerical experiments
of Klemp and Wilhelmson (1978). This mechanism has been frequently
explained and illustrated (e.g., Lilly 1982, 1999; Davies-Jones 1984; and Klemp
1987) and is the generally accepted source of midlevel rotation for supercell
convective storms. An updraft rising through an environment with a mean

vertical shear develops a pair of counter-rotating vertical vorticity centers on
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either side of the updraft center relative to the mean shear vector. A schematic
illustration of this process, from Klemp (1987), has been reproduced here as Fig.
3.1. This evolution is quite general, based on linear theory, but extended to
nonlinear conditions by potential vorticity concepts (Rotunno and Klemp 1985).
In the case of a shear vector changing direction with height (curved hodograph),
Rotunno and Klemp (1985) showed that the vortex on the concave side of the
hodograph is favored in amplitude. For a circular or nearly circular hodograph,
it appears that only one vortex is formed, centered approximately coincidentally
with the updraft axis (Lilly 1986; Kanak and Lilly 1996).

The explanation of the observed coincidence of supercell updraft and
vortex centers is somewhat complex and perhaps not yet fully established, and
its applicability to dust devils is uncertain. One accepted concept is that if an
updraft can be induced to propagate with a component lateral to the mean shear
vector, then the vortex generation continues to the center of the updraft, which
also becomes the vortex center. At least two different mechanisms have been
proposed to explain such lateral motion.

In the presence of a mean wind near the surface, it is often observed that
the movement of the base of a dust devil vortex lags behind its propagation aloft,
so that it is fairly strongly tilted near the surface, becoming upright aloft.
Maxworthy (1973) invoked the Biot-Savart Law, which shows that for a curved
vortex, each segment generates a flow which advects other segments, leading to
vortex propagation in the direction of the vortex flow on the inside of the curve.

(A classical example is the propagation of a smoke ring.) From this reasoning, a
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Fig. 3.1. From Klemp (1987). Illustration of the development of rotation within a
simulated thunderstorm through vortex-line tilting. In the early stage, a vortex
pair forms from tilting of the horizontal vorticity associated with the mean shear.
(Adapted from Ann. Rev. Fluid Mech.)
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cyclonic (anticyclonic) vortex will have an induced motion to the right (left) of
the mean shear vector, in agreement with Maxworthy's field observations.

Rotunno and Klemp (1982) carried out an analysis, based on the pressure
field, of updraft motion in simulated supercell flows that has been generally
accepted. The vortex tilting mechanism predicts maximum vorticity where the
product of updraft amplitude and mean shear is the largest, which is always
above the surface. A maintained vortex center is necessarily a low-pressure
center. Thus a vertical pressure gradient develops and accelerates flow toward
the pressure minimum. Rotunno and Klemp did not clearly point out, however,
that downward acceleration is predicted above the vortex maximum. While it is
possible for an updraft to accelerate into the vortex center, attain its maximum
strength there and decelerate above it, it seems equally possible for a downdraft
to originate at higher levels, attain its maximum strength at the vortex center,
and decelerate below it. This would seemingly cause an updraft to be repelled
by a vortex. Such an event is seldom, if ever, observed in convective storms. The
reason is probably conditional instability (Lilly 1999). An updraft becomes
saturated and rises with positive buoyancy to high levels, while a downdraft is
and remains dry, and consumes kinetic energy as it descends.

Since a dust devil does not normally involve conditional instability, the
supercell mechanism for updraft migration may not apply. On the other hand,
in a boundary layer heated from below the static stability is normally negative in
about the lower half of the mixed layer and slightly positive above that. Thus, if
a vortex is formed by tilting of vorticity in the middle of the mixed layer, an

updraft may be expected to migrate into it or generate within it.
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3.1.2.3 Generation of vertical vorticity without a mean shear

Individual convective circulation cells are well-defined sources of
horizontal (azimuthal with respect to the updraft centers) vorticity, although the
horizontal flow field at a given level is irrotational. Cortese and Balachandar
(1993) propose that near the edges and intersections of convective cells, vertical
and horizontal shear may occur randomly and then be concentrated by smalil-
scale convective updrafts. A similar concept may explain the results of Willis
and Deardorff (1979).

Carroll and Ryan's (1970) interpretation of their vorticity meter data is that
the "environmental” vorticity that they measure is produced by convective cell
circulations. They conclude this based on observations taken over flat
topography in the absence of obvious mesoscale wind patterns. They state that
convective downdrafts diverge as they impinge on the ground surface and that
they typically do so in an asymmetric fashion with respect to the updraft centers,
perhaps due to minor surface inhomogeneities and/or momentum brought
down from upper levels. The latter process would require the presence of a
mean flow aloft. Areas of local shear would then be produced that might result
in vertical vorticity centers on the periphery of each convective element.

A related but different way in which the interaction of convective updrafts
could result in the production of vertical vorticity is presented by Shapiro and
Kogan (1994). In numerical simulations of merging convective clouds, they find
horizontal vorticity to be formed in rings around each updraft. Whenever two or
more convective circulation cells interact, the horizontal vortex lines are advected

upward at slower rates on the sides of the updrafts which are closest to each
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other. In this way the horizontal vorticity is tilted and vertical vorticity centers of
opposite signs are produced on the periphery of merging convective cells. This
mechanism could be applicable to the applicable to the dust devil environment
through the interaction of neighboring thermals and the associated convective
circulations. However, it would have to be modified to represent the open cell
convection that is characteristic of that environment. A subsequent process for
the co-location of these vorticity centers with updrafts is also required.

The interaction of boundary layer convective scale circulations, as well as
the tilting of mean vertical shear, could explain the generation of vertical
vorticity above the ground in dust devil environments. However, as in the case
for tornadogenesis, a mechanism must exist to explain the presence of vertical
vorticity near the ground for dust devil formation. Several tornado generation
mechanisms have been proposed and to varying extents justified by numerical
simulation results. For example, Davies-Jones (1982) argues that a downdraft
must be present to tilt horizontal vorticity into the vertical near the ground for
tornadogenesis to occur. Walko (1993) adds that downdraft tilting and
subsequent convergence must both occur for tornadogenesis. It is not obvious
whether or not these theories are applicable to dust devils. Within the dust devil
environment, however, wind shear and buoyancy both have extreme maxima at
the surface. This suggests that significant tilting could occur within the first few
meters above ground, and a vortex generated that low could be linked to the
surface by turbulent transfer.

This last case, of vertical vortex formation in the absence of mean winds, is

the dynamical regime chosen for study in this dissertation.
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3.1.3 Energetics and mechanism

The potential energy of the superadiabatic layer near the surface of dust
devil environments clearly provides energy for formation and maintenance of
the dust devil (Flower 1936; Battan 1958; Sinclair 1969; Ryan and Carroll 1970;
Emanuel 1988). Emanuel (1988) asserts that the source of energy for the dust
devil is the thermal disequilibrium between the surface and the overlying air,
which is the same as that for hurricanes. He also suggests that the dust devil
may be maintained in a similar fashion as the hurricane; that is, by a feedback
process between the vortex circulation and surface heat fluxes. Sinclair (1969)
comes to a similar conclusion by suggesting that vortex translation permits the
dust devil to continuously acquire new potential energy sources. He explains the
observed decrease in dust devil activity directly following a maximum in
occurrence, as due to depletion of the superadiabatic layer, which must recover
before dust devil frequency can again increase. The occasional existence of

stationary vortices must indicate a strong continuing source of buoyant energy.

A variety of mechanistic theories of dust devil vortex formation have been

proposed and are here described briefly without comment.

The optimality of high surface heat flux and low mean wind requires that
the Monin-Obukhov length (MO) must be small. Based on the analytical
solution for a plane sink vortex, Webb (1963) derives a condition for vortex

formation requiring that MO be small.
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Similarly, Deardorff (1978, cited by Hess and Spillane 1990) suggests that
a necessary condition for dust devil formation is that -h / MO be on the order of
100 or more, where h is the height of the convective boundary layer. Hess and

Spillane (1990) suggest that -h / MO need only be greater than 50.

Fitzjarrald (1973) proposed that there exists an optimal combination of
buoyancy and vorticity (Richardson Number) for the formation of dust devils.
This is perhaps similar to the optimal bulk Richardson numbers found for

supercell thunderstorms by Weisman and Klemp (1982).

Goody and Gierasch (1974) regard the non-rotating plume and the dust
devil as triggered by the same process but evolving into one or the other based
on the ambient thermal and dynamical conditions. They suggest that this
transition is accomplished by the suppression of turbulence by rotation at the
edge of the plume, which results in the contraction of the plume and the
concentration of ambient angular momentum. They derive a condition for the
transformation of a nonrotating thermal plume to a vortex based on the ambient

vorticity and Brunt-Vaisala frequency.

Kaimal and Businger (1970) proposed that vertical stretching at the back
edge of the plume concentrates vorticity, and if it is of sufficient magnitude will
transform a non-rotating plume into a dust devil. They provide an example of a
plume, which had a large enough value of vorticity to be considered to be in a

“transition” stage.
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Emanuel (1988) adds that a vortex will spin up only if the inflowing air
converges through a deep enough layer that frictional dissipation of the initial

angular momentum is overcome.

3.1.4 Heat and momentum transport by dust devils

Dust devils may be significant transporters of heat and momentum in the
atmosphere (e.g., Kaimal and Businger 1970; Smith and Leslie 1976). If rotating
thermals rise higher than non-rotating thermals (Porch 1974), they may control
growth of the boundary layer, which would be important to boundary layer
parameterizations. Observational studies by Sinclair (1969) and Kaimal and
Businger (1970) suggest that this may be true.

Kaimal and Businger (1970) performed a single case study comparison of
a non-rotating thermal plume and a dust devil, observed at two levels on a tall
tower. They found that the dust devil transported more heat and momentum at
both levels considered (5.66 and 22.6 m) than the nonrotating plume. Sinclair
(1969) reports that the heights of dust columns in dust devils are usually less
than 600 m but, in desert conditions with deep mixed layers, the thermal
updrafts associated with them are observed to extend as high as 4500 m.

Businger (1972) asserts that dust devils transport ten times as much heat
and momentum as non-rotating plumes. In contrast, however, Goody and

Gierasch (1974) suggest that plumes are much more efficient transporters of heat
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and momentum. Apparently, they conclude this from observations of the upper-
level diameters of the plume and dust devil.

The dynamic rationale for increased convective efficiency by dust devils
was provided by Ludlam and Scorer (1953), who proposed that rotation in a dust
devil inhibits mixing in an ascending updraft. Andre and Lesieur (1977)
concluded from turbulence closure studies that helical structures are less
dissipative than non-helical flow structures. Lilly (1986) proposed that this
concept applies to rotating convective storms and may be partly responsible for

their high energy and durability.

In summary, the following questions motivate this study of convective
boundary layer vortices: 1) Is vorticity generated by the larger scale convective
circulations (Cortese and Balachandar 1993)? 2) Can the proposed vorticity
generating mechanisms of Shapiro and Kogan (1994) and Carroll and Ryan
(1970) be applied to dust devil formation? 3) Is vortex formation favored at the
vertices of open cellular convective patterns (e.g., as in Willis and Deardorff 1979;
Hess and Spillane 1990; Cortese and Balachandar 1993)? 4) Do dust devils
transport more heat and momentum than non-rotating thermals? 5) Is this is so,
is the height of the boundary layer determined largely by the existence of vertical

vortices?
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3.2 Methodology
3.2.1 Numerical model description

A fully three-dimensional, nonhydrostatic numerical model has been
developed specifically for this research and is called “KANSAS” (KANak’s
System for Atmospheric Simulation). The model integrates the advective form of
the supercompressible equations for dry fluid motion (Anderson et al. 1985;
Droegemeier and Wilhelmson 1987; Droegemeier and Davies-Jones 1987).

The supercompressible system consists of prognostic equations for five
dependent variables: perturbation pressure, potential temperature, and three
Cartesian velocity components, u, v, and w. The mass continuity equation is
used in deriving a prognostic equation for perturbation pressure. Each variable
can be considered to be comprised of base state, perturbation, and subgrid-scale
(5GS) contributions. The base state satisfies the hydrostatic and ideal gas

equations.

3.2.1.1 Dynamical framework

The compressible equations for buoyant convection in a Cartesian

coordinate system may be written as

—i=—u»——‘—;—‘—5‘-3g+F ’, (31)
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where y, are the three Cartesian velocity components, p is pressure, g is gravity,
6 is the potential temperature, p is the density, F,=F, + F,and D, =D, D,

represent the sub-grid turbulent mixing terms and numerical filtering terms.
This fully compressible system permits both acoustic and gravity wave solutions.

Since the thermodynamic quantities vary more rapidly in the vertical than the
horizontal, they may be written as a sum of a base state variable which is a

function of z only and a perturbation from the base state,

8=6(z)+0'(x,y.2) (3.4)
and

p=p(z)+p (x.y.2). (3.5)

Upon substitution of (3.4) and (3.5), use of the base state hydrostatic equation,

and the neglect of terms containing products of perturbations, (3.1) is written as
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P o P P _5 L orF, (3. 6)

and the equation of state can now be written

p _pc 6 (3.7)

This unapproximated, fully compressible, prognostic system [(3.2), (3.3),
and (3.6)] is preferred. However, the computationally stable timestep is severely
restricted by the presence of acoustic wave solutions. In order to circumvent this
disadvantage, approximations which eliminate sound waves, such as the
anelastic approximation, are often used. However, the anelastic system requires
the diagnostic solution of an elliptic equation for the pressure variable, which can
be computationally intensive. An alternative to the anelastic system is the
supercompressible form of the equations, in which the sound wave propagation
speed is artificially reduced by adding a term to the continuity equation and thus
exaggerates the compressibility. The result is a prognostic equation for

perturbation pressure, which may be derived by taking the substantial derivative

of (3.7) and using (3.3),
_?E —_=2 3(514,-)
P T, Fot (3. 8)

{
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Note that other forcing terms for pressure have been neglected since they are

small (Klemp and Wilhelmson 1978). In (3.8), the speed of sound wave

propagation is defined as
g?= Z—”RT . 3.9)

and is reduced to 150 m s*'. Two possible interpretations of the reduction in

sound speed are that either the gas constant of the fluid is reduced, or that the
definition of absolute zero is reduced.

The equations of motion (3.6) may now be rewritten as

%utiz_u_?fi_iiw_ 9_,£_&J+F (3.10)

From the supercompressible system, eqns. (3.2), (3.8), and (3.10), the
anelastic system is recovered as cs approaches infinity (Anderson et al. 1985). By
comparing the supercompressible solution to the anelastic solution, Anderson et
al. (1985) find good agreement when the sound speed is chosen to be greater than
or equal to twice the speed of the fastest advection velocity. While the timestep
for the supercompressible system must be about half of the anelastic timestep,
the overall computational efficiency is still increased since the solution of the
diagnostic pressure equation is not required. As in the anelastic system, this

approximation results in the non-conservation of mass, but this effect is small as
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long as the sound speed is specified properly (Droegemeier and Davies-Jones

1987).

3.2.12  Subgrid turbulence parameterization

A modified first-order Smagorinsky turbulence closure (Lilly 1962;

Smagorinsky 1963) is used to represent SGS turbulent diffusion. The term F in

(3.10) is the sum of the subgrid turbulent mixing terms and a numerical filter.
Using the prime symbol here to denote SGS quantities, the subgrid mixing terms

E

is”

may be written as the gradient of the turbulent fluxes,

(3.11)

The turbulent fluxes may be parameterized in terms of the resolvable scale

(unprimed quantities) deformation tensor, D,

—uu; = T, - %Sijtu, where 7, =K, {(ﬂ+—’) —%6&} (3.12)

Similarly for (3.2), the subgrid mixing of potential temperature is parameterized

as,
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D&__a(u,,e)z_ B(Khi?_)=_éf£, (3.13)

The eddy mixing coefficients are K,, and K, in (3.12) and (3.13), respectively.
The modified Smagorinsky (Lilly 1962; Smagorinsky 1963) expression is used

to determine K,,,

K, =(kA) \[[mm{]p,.j(z —g—:,oﬂ . 3. 14)

[The formulation is similar to that used in the ARPS model (Xue et al. 1995) at the
Center for Analysis and Prediction of Storms (CAPS)]. The empirical constant, k,
is assigned to be 0.21 (Deardorff 1972). Pr is the Prandtl Number. The grid-scale

measure is denoted by A and in nearly isotropic turbulence (grid scales similar

in all directions) may be found using

A = 3/(AxbyAz). (3.15)

For dry, unsaturated motions, the Brunt-Vaiisald frequency N* is

N? = %%. (3. 16)
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The eddy diffusivity K,, in (3.13) is found from

K,=K,IP (3.17)

3213 Numerical Filters

An artifice of numerically integrated solutions is the spurious growth of
short-wavelength modes and of nonlinear instabilities. In order to compensate
for this, a model option for the use of a non-physical second- or fourth-order

numerical filter is available. The fourth-order filter term for momentum is

34u,.
=Ko 2 (3.18)

For potential temperature the fourth-order filter term is

‘0
Def = _KD —a—g‘-.

J

(3. 19)

The coefficient K, is found from the relation, K,At/Ax* =0.0025 (Klemp and

Wilhelmson 1978).
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When the fourth-order filter is used, the filter cannot be evaluated at two

or less gridpoints from any boundary. Therefore, a second-order filter

d*u,
R (3.20)
Xj
and
%0
D, =K,— 3.21
o D a_x ( )

is used for points near the boundary. No filtering is applied on the boundary.

In addition to the computational mixing terms, a Rayleigh damping filter
(Klemp and Lilly 1978) may be applied to a layer near the top boundary to damp
upward-propagating wave disturbances and to prevent wave reflection off of the
top boundary. This filter is applied only to perturbation quantities so that the

base state values are not affected. The form of this filter for velocity is

Fy = v(2)y, — u], (3.22)

and for potential temperature

Fy=v(2)[6-8], (3.23)
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where,

__) i2z, (3.24)

The height of the top boundary is z; and the lowest height at which Rayleigh
damping is applied is z,. This distance between z; and z, is typically 1/3 to 1/4

of the total domain depth. The e-folding time scale of damping at z, is 1/v,,.

3.2.14  Boundary conditions

KANSAS has several options for boundary conditions. The vertical
boundaries may be rigid, such that the normal velocity must vanish, or periodic
boundary conditions may be used. In the lateral directions, the boundaries may
be rigid, symmetric, periodic, or have open (radiative) boundary conditions
(Klemp and Wilhelmson 1978) of the form

,

ot

on,
—t=—~(u; +c, )X , (3.25)

J

and
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d0 20
L+, (3. 26)

where c, is the speed of the dominant gravity-wave mode and is positive or
negative depending on the boundary and associated direction of outflow. The
value of c, is determined by estimating (Nz;)/n, where N is the square root of

the Brunt-Viisild frequency. Equations (3.25) and (3.26) are applied only to the
normal advection terms. For other variables, normal derivatives at the
boundaries are computed using one-sided differences, and are lagged in time for
computational stability. For variables that are not normal velocities, the outflow
conditions do not include c,. For the case of inflow, u; +c,; =0 at the boundary,
since there is no flow information available outside the domain boundaries.
Finally, the subgrid scale fluxes normal to a lateral boundary or the top

boundary are set to zero. Fluxes at the lower boundary are described next.

3.2.1.5 Parameterization of the surface fluxes

The representation of surface fluxes of heat and momentum are important
in modeling the heated boundary layer. The surface fluxes are prescribed using

the bulk aerodynamic formulae, first proposed by Taylor (1916),
(1367) = Colul(i;. =) (3.27)
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and

(6, —6,)- (3. 28)

i;

(E)sfc =C

Surface fluxes are incorporated through the mixing terms. In particular,
they are used as the lower boundary conditions for velocity through the stress

tensor, and for 6 in the vertical gradient of H, in (3.13). An option also exists for

specifying a constant temperature at the lower boundary.

The supercompressible equations are cast on a Cartesian Arakawa C-grid
and velocity variables are integrated using a second-order, quadratic conserving
spatial discretization scheme, the "box" scheme (Kurihara and Holloway 1967),
and the centered-in-time leapfrog temporal scheme. Either the box scheme with
centered timestep or a sixth-order flux conservative Crowley scheme (Tremback
et al. 1987) with a forward timestep can be used to prognose potential
temperature. In addition, a monotonic flux corrector (Leonard 1991; Straka,
personal communication), a high-order operator that guarantees monotonicity,
can be used with the 6th-order Crowley scheme for potential temperature. A
time-splitting scheme (Klemp and Wilhelmson 1978) is implemented so that the
sound wave terms are integrated on a smaller timestep and the advective terms
on a larger timestep for greater computational efficiency. An Asselin time filter
(Asselin 1972) is applied to prevent solution decoupling. Further details of the
discretization of the model equations are given in the Appendix A. Results for

model validation tests are shown in Appendix B.
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3.2.2 Numerical experiment design

It is challenging to adequately resolve and simulate both the boundary
convective circulation cells and the concentration of angular momentum into a
dust devil-type vortex itself. The smallest scales of motion that need to be
represented are the diameter of a dust devil vortex and the Monin-Obukhov
(MO) length scale, which are typically of similar magnitude based on
observational data, such as that in Hess and Spillane (1990). (They report the
average dust devil diameter is approximately twice the MO length). Horizontal
and vertical resolution should be sufficient to resolve these in order to properly
represent the vortex (probably requiring mesh spacing on the order of a few
meters). At the larger end, the size of the simulation domain required to
represent the likely scale on which vortex formation processes occur will depend
on the actual sources of angular momentum. Therefore, both small vertical and
horizontal resolution, on the order of the Monin-Obukhov length (few meters to
~60 m for dust devil environments), and a large domain size that would
accommodate the simulation of multiple convective circulation cells (few km) are
desirable. Table 3.1 presents some selected values of reported MO lengths for
dust devil environments, dust devil diameters, and the number sampled, from
prior observational and theoretical studies. Where possible, the larger values of
MO associated with gust front or density current vortices has been omitted in

order to conservatively estimate the required numerical resolution.
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Numbers of dust
Researchers Diameter | Obukhov Length | devils in sample
Ryan & Carroll (1970) | up to 100m avg 8-10m >10 m Many
Lamberth (1966) 1-30 m Many (3 mnths of obs)
Sinclair (1969) <3mto>30m Many
Smith & Holmes 1961 150 m 1 (Radar)
Fujita (1971) 3040 m 1
Crozier (1970) 11-63 m 10
Deardorff (1978) Thy 1-50 m 10 m
Hess & Spillane (1990) 7-34 m 14.4-51.2 m Many

Table 3. 1: Dust devil Diameters and Monin-Obukhov Lengths

For practical considerations, the task has been divided into two separate
simulations of different domain sizes and resolutions, only the first of which is
addressed in this dissertation. The first focuses on the role of convective cell
patterns in the formation of vertical vortices. The purpose here is to resolve the
convective cell circulations and not necessarily dust devil-scale vortices. Finer
resolution would resolve many more complicated features in the flow and make
the task of identifying the role of larger-scale convective circulations in vortex
formation more difficult. The second simulation will be designed to focus on the
dynamics and maintenance of dust devil-scale CBL vertical vortices and will
require much finer resolution.

Thus, a Large Eddy Simulation (LES) of the convective boundary layer,
without imposed mean wind shears or other sources of angular momentum, has been
performed (hereafter, “SIM1”). Some of the simulation input parameters were
selected based on observational data of dust devils and the environments in
which they form, which was collected on the afternoon of 27 June 1995, near
Denver Colorado using a 3 cm mobile Doppler radar (Kanak 1996, informal

presentation). In the early afternoon, radar reflectivity of a polygonal-type
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convective pattern was observed. Subsequently, the environment and circulation
of a dust devil were scanned with the radar. The circulation represented by the
radar image (Fig. 3.2) was approximately 1.5 km wide and was visually
associated with the occurrence of a dust devil. The actual dust devil diameter
appeared to be much smaller. It may be surmised that the dust devil was
embedded in the larger-scale radar-sampled circulation. The circulation
persisted on the radar screen for about 20 minutes, while the visually observed
dust devil moved over a vegetated surface and disappeared from sight after
about five minutes.

With these observations in mind, an attempt was made to numerically
simulate such larger-scale convective circulation cells, and the "parent”
circulation of the dust devil. Therefore, a horizontal resolution of 35 m in both
the x and y directions was selected and a domain size of 3 km x 3 km x 2.1 km
was prescribed. The vertical grid resolution was stretched so that Az near the
bottom (top) of the domain was about 10 m (80.3 m). The time step was chosen
tobe0.1s.

For simplicity, the model surface pressure was set to 1000 mb and the
surface height was set equal to zero meters. The initial base state potential
temperature profile (Fig. 3.3) was dry adiabatic from the surface up to 900 m and
a stable layer with lapse rate -0.003 K m™ was prescribed above 900 m. This
choice was based on an atmospheric sounding, which was taken near the
occurrence of the observed Denver dust devil. The sounding exhibited a nearly
dry neutral lapse rate up to about 550 mb and light and variable winds
throughout the boundary layer depth. No mean wind was imposed in the

numerical simulation.
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Fig. 3.2
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Fig. 3.2. Doppler velocity from 3 cm mobile Doppler radar collected at 2104 UTC 27 June 27 1995 near
Denver International Airport. The range rings are 2 km apart. The anticyclonic circulation is located
approximately five kilometers from the radar, The maximum outbound velocity is about 8 m s (in orange)
and the maximum inbound velocity is about 9.0 m s* (in purple). The circulation region spans about 1.5 km,
A dust devil was visibly observed in approximately the same location as the radar indicated circulation, The
circulation persisted on radar for about 15 minutes after the dust column passed over a vegetated field and
was no longer visible to the eye.
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The prescribed initial disturbance condition was like that of Nieuwstadt et

al. (1991; hereafter, N91) for a convective boundary layer LES:

< -z i<, = =
6=90+0.1{1-;)7: and w= 0.17{1 Z”JW. i<y 0.844,_‘.0' (3.29)

zA
a 0 >z,

where 7, =0.041K, w, =1.46 ms”, z, =1.6 km, ©=v=0, and r(x,y)was a random
number uniformly distributed between -0.5 and 0.5. In the initial condition and

some of the results that follow, convective scalings have been used:

173
0 J and =% (3. 30)

A constant heat flux of 0.24 K m s was designated at the lower boundary
[as in Moeng and Sullivan (1994) for a highly convective boundary layer]. The
Rayleigh damping layer was used above z = 1500 m. The ratio of K, /K, was set
to 2.5 (K, =04K,) on the grounds that in an initially isotropic flow, the
generation of stress is reduced 60% by the pressure-velocity correlation, while
that of a scalar is not (Deardorff 1972 cites Lilly, personal communication). The
box scheme was used for the velocity and potential temperature equations.
Lateral boundary conditions were periodic. The fourth-order filter was used in
the horizontal directions to inhibit the growth of numerically generated small-

scale instabilities.
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A summary of the basic simulation parameters is provided in Table 3.2.

Gﬁdpts Lx Ly Lz Ax Ay AZgfe AZ[OP At T total Pr Qt
86x86x 3 3 2.1 35 35 10.5 80.3 0.1 ~2.0 04 0.24
48 (km) (km) (km) (m) (m) (m) (m) (s) hrs Kms-!

Table 3.2. Summary of simulation parameters for SIM1.

3.3 Results

3.3.1 Time series and Statistics

Selected statistical calculations are presented as a means of demonstrating
that the current simulation has properties typical of a convective boundary layer.

A time series of the domain averaged subgrid- and resolved-scale kinetic
energy is shown in Figs. 3.4 a and b, respectively. The curves indicate that the
simulated turbulence has become quasi-stationary by time t ~ 2000 s.

The simulated boundary layer height is estimated to be at about 1200 m.
Using this value, a convective turnover time according to ¢, =z, / w, is found to
be about 570 s, where w, is calculated to be about 2.11 m s*. The simulation is
carried out for a total of about 13 turnover times, or about two hours.

Figures 3.5 a and b shows the horizontally averaged resolved-scale
potential temperature and the resolved-scale vertical velocity at t = 2400 s,

respectively.

96



Turbulent Kmetlc Energy

R

12
a)
1

.89
.e8
.87

.86

TKE (m322/9%22)

.85

.84

.83

.82

.81

Resolved Scale Kmetlc Energy

Y

b)

HKE (m322/3232)

S
[

1508 §
2008 F
2500 §
3008 é
asee |
400 |
asoe |
5008 E

Lotas
o -3
= =
wn (]

5500

time (s)

Fig. 3.4. Domain avera §ed (a) turbulent kinetic energy (m? s?) and (b) resolved-
scale kinetic energy (m*s ?) as a function of time (seconds).

97



Potential Temperatur

2208 AR SRLANE BN S | T T vr1rrirtrtrrryygrruvryyoryory

2008

1808

AN IR AR N

16008

1400

1200

1008

LZNRS FRAN Mmas Bt e |

809

T

Height (m)

11

408

v 1 v

209

Fa—

Y

300.4
Jel.a

Vertical Velocity

2208 — T T T T T
2000

b)

1820

AL R B/

1608

A " 1 e da L

1400

1208

10e9

Height (m)

LENnS SN Sums R
) .

808

622

40e

T v v v T

20¢

SPVUN SRR TS |

)
0001 |-
.e0002 |
20203 |-
00004 [
00005 |
_000n6 -
o007 |-
00008 |-
20009
20010

(w)
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These mean profiles are nearly constant over most of the depth of the boundary
layer, which indicates that convection is efficient at transporting heat and
momentum away from the lower boundary where the constant heat flux is
prescribed. The sharpness of the inversion is not well represented by the
turbulence closure. This is likely due to the lack of any modification of the
mixing length near the inversion (e.g., as in N91). This issue is discussed further
below.

Figures 3.5 c-f shows profiles of horizontally averaged statistical quantities
that are averaged over 600 seconds (about 1 7, , as in N91) for the period
spanning t = 1800 s to t = 2400 s. The total (resolved-scale plus SGS) potential
temperature flux (Fig. 3.5 c) is nearly linear throughout the boundary layer
depth, which is consistent with a constant heating rate and the stationarity of the
turbulence (N91) for the time averaging period. There is a slight departure of the
profile from linearity near the surface. In preliminary tests with increased grid
resolution this effect was amplified. This phenomenon can again be attributed to
the fact that the mixing length in the subgrid turbulence closure is not modified
near the surface (or for changes in static stability). Ideally, the eddy length scale
should be proportional to the distance above the surface and this is often
enforced in LES’s. The maximum negative heat flux near the inversion is located
at about z = 1150 m, which can be defined as the top of the boundary layer
(Moeng and Sullivan 1994 and others).

The maximum in the total (resolved-scale plus SGS) vertical velocity
fluctuation variance profile (Fig. 3.5 d) occurs at about z = 400 m and this value is

in good agreement with other LESs of the convective boundary layer (e.g., N91).
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The resolved-scale third moment of the vertical velocity fluctuation profile
(Fig. 3.5 e) indicates a maximum in the upper mixed layer due to the presence of
non-equal areas of updrafts and downdrafts. In other words, there exist broad
weak downdrafts and strong narrow updrafts on a given horizontal plane in the
simulated convective boundary layer. Figure 3.5 f shows the vertical velocity
fluctuation skewness (resolved-scale only). As with other LES’s, the skewness
increases in the upper part of the mixed layer, which is inconsistent with
observations. Moeng and Rotunno (1990) offer an explanation for the LES results
given a heated boundary layer, characterized by a typical mean potential
temperature profile that is constant through the boundary layer and overlain by
an inversion. Near the heated surface, irregular polygonal rings of upward
motion exist, while at the inversion, only the most vigorous updrafts extend to
that height. Updrafts impinging on the inversion lose their kinetic energy and as
a result only weak and broadly distributed returning downdrafts exist among
the updrafts in the upper mixed layer. This would explain the increase in
skewness at these levels. Furthermore, Lemone (1990) suggests that, due to
domain size and periodic lateral boundary conditions, LES’s may not be able to
fully represent gravity wave interaction with the boundary layer that would
reduce the skewness near the inversion. In addition, Agee and Gluhovsky (1999)
state that the discrepancy may be caused by the limited domain sizes of LES's,
which eliminate the representation of larger-scale motions. To test this idea, they
filtered observational data to remove the larger-scale flow components and
found the skewness of the filtered observations to be more comparable with that

of LES’s.
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Fig. 3.5. (continued). Horizontally averaged and temporally averaged (over the
period of t = 1800 s to t = 2400 s) profiles of: (e) Resolved-scale third moment of
the vertical velocity fluctuation, (w'w'w’)/wl; and (f) skewness of the vertical

velocity fluctuation, (w'w'w’)/ (w'w’)*".

102



3.3.2 Flow fields

Some sample cross-sections of flow fields for selected times are now
presented. The total variables are contoured (rather than deviations from

horizontal means, which are often plotted in LES results).

3.3.2.1 Convective Cells

The transient behavior of the flow (simulation times prior to quasi-
stationary turbulence) exhibits some interesting features. The evolution is
characterized by broadening of the convective cell diameters (also documented
by Fiedler and Khairoutdinov 1994; Dérnbrack 1997; and others). Horizontal
cross-sections of vertical velocity show this effect nicely. (Cell broadening can
also be identified in the potential temperature fields.) Figures 3.6 a-d shows the
horizontal cross-sections of vertical velocity atz=53 matt=600s,t=1000s, t =
1400 s, and t = 2800 s. The most rapid cell broadening occurs between these
times. In the first few hundred seconds of simulation, the vertical velocity field
is characterized by small "bubbles" in which updraft and downdraft regions are
of about the same size, d ~ 300-400 m (Fig. 3.6 a). Att = 1000 s the cell shapes are
more rectangular and are about 300-600 m in horizontal scale (Fig. 3.6 b). After t
= 1400 s, (Fig. 3.6 c) the flow is clearly composed of polygonal convective
elements (or convective rings) that broaden from about 750 m to 1.5 km by 2800 s
(Fig. 3.6 d). Dornbrack explains the broadening process as a result of a large-

scale drift in which streaming motions, in one direction near the lower boundary
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XY Cross-Section of the Vertical Velocity Field
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Fig. 3.6. (a) X-Y Cross-sections of the vertical velocity at z =53 m and t = 600 s.
Contours from -0.32 to 0.28 with interval 0.04 m s™.
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Cross-Section of the Vertical Velocity Field
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Fig. 3.6. (continued). (b) X-Y Cross-sections of the vertical velocity at z = 5.3 m and
t = 1000 s. Contours from -0.4 to 0.24 with interval 0.04 ms™.
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XY Cross-Section of the Vertical Velocity Field
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Fig. 3.6. (continued). (c) X-Y Cross-sections of the vertical velocity at z = 5.3 m and
t = 1400 s. Contours from -0.36 to 0.28 with interval 0.04 m s™
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XY Cross-Section of the Vertical Velocity Field
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Fig. 3.6. (continued). (d) X-Y Cross-sections of the vertical velocity at z = 5.3 mand
t = 2800 s. Contours from -0.22 to 0.22 with interval 0.02 m s™.
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and the opposite direction near the upper boundary, create a large-scale shear
that acts in two directions. The shear acts to separate thermals at the mid-levels,
which results in cell broadening. A similar argument is made for updraft
broadening (or merging) in storm environments by Kogan and Shapiro (1996),
where they suggest that mutual advection is the responsible mechanism.
Although the cells are changing size with time, their spatial dimensions
are fairly consistent with the planforms of turbulent convection in the laboratory
experiments of Willis and Deardorff (1979, with Ra = 10° and Re = 1200). The
convective circulations, simulated by Willis and Deardorff (1979) and observed
by Webb (1984), are shown schematically in a Figure presented in Hess and
Spillane (1990) and it is reproduced here as Fig. 3.7. Willis and Deardorff report
a rather stationary cell pattern that has average open cell diameter of 1.2 # + 0.2
h, where h is the depth of the laboratory tank. If 4 is taken to be about 1200 m
(approximate height of the mixed layer) for the current simulation, downdraft
diameters would be expected to be about 1.4 km, which is supported by Fig.
3.6d. Willis and Deardorff also found updraft widths of 4 /5 ( = 240 m would be
predicted for the current simulation) and updrafts widths are found to be about

210 mat t = 2800 s.
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Schematic Diagram of Convective Flow Patterns
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Fig. 3.7. Reproduced from Hess and Spillane (1990). Schematic diagram of the
flow patterns for a strongly convective boundary layer. (Note that this has not
been drawn to scale.) (a) Vertical cross-section. The horizontal and vertical
dimensions of the convection cell are both approximately equal to 4. Interactions
between downdrafts and updrafts occur over horizontal and vertical dimensions
of ~h/10(=10|L}) and an updraft wall of height ~ /10 is formed. A layer of
strong windshear and temperature lapse rate occurs between the surface and
~h/100(=|L|)~h/100. A temperature inversion layer caps the boundary layer.

Vertical profiles of wind speed U and equivalent potential temperature 6, are
shown. (b) A three-dimensional view of the general areas of downdrafts and the
updraft walls. At the intersection of walls an updraft column is formed that
extends to the top of the boundary layer (based on the measurements of Webb,
1977) (Adapted from the J. Appl. Meteor.)
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3.3.2.2 Vertical Vortices

The most intriguing result of the current simulation is the presence of
vertical vortices which form at or near the vertices of the convective rings. This
was also observed in the laboratory experiments of Willis and Deardorff (1979).
For simplicity, a vortex is defined here as a closed circulation in the horizontal
velocity vectors. In this way, an attempt is made to distinguish between shear
and curvature vorticity, the latter being required for existence of a vortex.
[Although this definition may be rather arbitrary, it is a non-trivial task to
rigorously define a vortex (see Lugt 1979)].

Figure 3.8 shows the horizontal velocity vectors (for all results presented,
a vector at every other gridpoint is plotted) in the X-Y plane at the lowest
simulation level, z = Az/2 =53 m at (a) t =2000 s, (c) t =3800 s, and (e) t = 4800 s
and the associated vertical velocity contours in the X-Y plane atz=5.3 m at (b) t
= 2000 s, (d) t = 3800 s, and (f) t = 4800 s. These vortices are located at the
intersections, or vertices, of convective rings where local maxima of vertical
velocity are located. With time, the presence of a vortex modifies the updraft
ring structure by broadening the updraft region. Sometimes a "wrapping up” of
the updraft region occurs (e.g., Fig. 3.8 d) and this resembles, in some ways, the
"hook echo" in supercell thunderstorms.

The vortices appear at the lowest simulation level as early as t = 1000 s
with associated vertical vorticity magnitudes of about 0.04-0.05 s™. Figure 3.9
shows the domain maximum and minimum vertical vorticity as a function of
time. It is clear that the magnitude of vertical vorticity increases with time, but

less so after about 2000-2500 s. The local extrema in vertical vorticity correspond
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XY Cross-Section of the Horizontal Velocity Vectors
atz=53 mand t=2000s
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Fig. 3.8. (a) X-Y Cross-sections of horizontal velocity vecors atz =53 m and t =
2000 s. Maximum vector length is 419 m s™.
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XY Cross-Section of the Horizontal Velocity Vectors
atz=53mand t=3800s
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Fig. 3.8. (continued). (b) X-Y Cross-sections of horizontal velocity vectors at z=5.3
m and t = 3800 s. Maximum vector length is 401 ms™.
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XY Cross-Section of the Horizontal Velocity Vectors
atz=53mand t=4800s
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Fig. 3.8. (continued). (c) X-Y Cross-sections of horizontal velocity vectors at z = 5.3
m and t = 4800 s. Maximum vector length is 4.66 m s™.
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XY Cross-Section of the Vertical Velocity Field
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Fig. 3.8. (continued). (d) X-Y Cross-sections of vertical velocity atz=53 mand t=
2000 s. Contours from -0.27 to 0.24 by 0.03 m s™.
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%

Cross-Section of the Vertical Velocity Field
atz=53mand t=3800s
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Fig. 3.8. (continued). (e) X-Y Cross-sections of vertical velocity atz=53 mand t=
3800 s. Contours from -0.24 to -0.24 by 0.03 m s
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XY Cross-Section of the Vertical Velocity Field

1968 .9

y(m)

980 .0

Fig. 3.8. (continued). (f) X-Y Cross-sections of vertical velocity atz=53 mand t =
4800 s. Contours from -0.32 to 0.28 by 0.04 m s™.
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to the established vortices shown in Fig. 3.8. At some times there are three or
more vortices occurring simultaneously in the simulation, and in some cases
vortices appear to form at higher levels before they appear at the lowest
simulation level. This would be consistent with some of the proposed vorticity
tilting mechanisms that would predict vertical vorticity first above the surface
and subsequent evolution resulting in low-level vertical vorticity. The existence
of these vortices in the current simulation offers support for the conclusion of
Willis and Deardorff (1979) that surface roughness or inhomogeneities are not
necessary for the formation of dust devils.

Figure 3.10 shows an estimate of the number of vortices occurring at each
of the sampled times (every 100 s). These values were obtained by examining
visually the horizontal velocity vector fields at z = 5.3 m. There is a slight
decrease in the total number of simultaneously occurring vortices with time.
One might expect that as the convective cells broaden, there are less cell
intersection locations available as favored areas for vertical vortex formation.
This result supports this contention.

The cyclonic vortex, which occurs at time t = 4800 s, has been selected for
more in-depth examination. The vortex of interest is located at about x = 1313 m
and y = 1558 m in Fig. 3.8 e. The vortex diameter at this height is about 250 m.
Recall the size of the parent circulation observed using the mobile Doppler radar
was about 1.5 km and that most observed dust devil diameters are on the order
of tens of meters (Sinclair 1969). Therefore, the simulated circulation is of a size
that lies between these two scales of motion. The horizontal wind speeds
associated with the current simulated circulations are about 4-5 m s”. However,

it is expected that the wind speeds will strengthen and that the circulation
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Number of Circulations vs. Time
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Fig. 3.10. Estimated number of vertical vortices occurring simultaneously at z =
5.3 m for times sampled every 100 s.
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diameters will decrease with increased horizontal resolution. For example, the
angular momentum associated with the circulation shown in Fig. 3.8 e is
estimated to be about 500 m s, where the angular momentum is found from
multiplying the approximate radius of the circulation, 100 m, by the estimated
azimuthal velocity, 5 m s™. If the horizontal resolution is reduced such that a
vortex of radius 20 m can be resolved, by conservation of angular momentum, an
associated azimuthal velocity of 25 m s™ is expected.

Horizontal cross-sections of velocity vectors and vertical velocity at a
higher level (z = 311.5 m) are shown in Fig. 3.11. The cyclonic circulation present
at the lowest level (Fig. 3.8 e) is weaker at z = 311.5 m, but still clearly evident in
Fig. 3.11 a and lies between two anticyclonic circulations. There are several more
circulations at this height than at z = 5.3 m. Similar LES features were shown,
but not discussed, in Mason (1989) and his Fig. 2 is included as Fig. 3.12 here.
Figure 3.12 a and 3.12 b are X-Y cross-sections at z = 0.05 zj, and Fig. 3.12 cand d

are X-Y cross-sections at z = 0.4 zj, at a selected time after the turbulence has

become quasi-stationary. Figure 3.12 a and ¢ show lines parallel to the
instantaneous horizontal flow and Fig. 3.12 b and d show the associated vertical
velocity contours. The apparent horizontal circulations simulated by Mason also
occur at the vertices of the convective rings, with more swirling motion at the 0.4

zi level than at the 0.05 zj level. Mason used a horizontal resolution of 50 m and

a vertically stretched coordinate. His convective cells (Fig. 3.12 b) are

approximately 1-1.5 km in diameter at z = 0.05 zj, which is quite similar to the

diameter of the cells in the current study (Fig. 3.6 d).
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XY Cross-Section of the Horizontal Velocity Vectors
atz=311.5mand t=4800s
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Fig. 3.11.(a) X-Y Cross-sections of horizontal velocity vectors at t =4800 s and z
=311.5 m. Maximum vector length is 3.37 m s
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XY Cross-Section of the Vertical Velocity Field
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Lines Parallel to the . '
Instaneous Flow Direction Vertical Velocity

-
3
3
<

1001001}

JUTRTEOUNNY

JUSUVISRNVBUUBUINIBINITTI

[USSNEUTIRNNNN

z=04zi

Fig. 3.12. From Mason (1989) X-Y Cross-sections. (a) Lines parallel to the
instantaneous flow direction at z = 0.05 z;. (b) Vertical velocity at z = 0.05 z;.
Maximum value is 1.1 w, and contour interval is one-tenth of the maximum
value. (c) Lines parallel to the instantaneous flow direction at z = 0.4 z;. (d)
Vertical velocity at z = 0.4 z;. Maximum value is 2.1 w, and contour interval is
one-tenth the maximum value. (Adapted from J. Atmos. Sci.)
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The vertical structure of the vortex shown in Fig. 3.8 e is displayed in Fig.
3.13, which contains cross-sections of various fields at y = 1557.5 m and t = 4800
s. A warm (Fig. 3.13 a) updraft (Fig. 3.13 c) is associated with the vortex (Fig.
3.13 e) and extends to a height of about 1500 m. Interestingly, the updraft is
strongest and penetrates the highest in the region of the vortex. The inhibition of
down-scale energy cascade in a helical flow (Lilly 1986) would be consistent with
this result. The pressure field (Fig. 3.13 b) shows a definite pressure minimum
near the surface of the vortex.

The eddy mixing coefficient K, is contoured in Fig. 3.13 d. The local Km
maxima (values > 2 m*s™) in the vicinity of the vertical vortex have been shaded
for clarity. The turbulent mixing is maximized on the edges of the updraft where
the gradients of vertical velocity are large. There is an embedded local mixing
minimum that corresponds roughly with the center of the updraft. The variation
in the height of the boundary layer can also be estimated using Fig. 3.13 d. The
boundary layer height is estimated to be highest near the region where the vortex
circulation is occurring at lower levels. If this occurs for many cases in the
atmosphere, vortices such as dust devils could strongly influence the height of
the boundary layer. Willis and Deardorff (1979) found in their laboratory
simulation that the convective ring intersection points were associated with the
locations of more energetic vertical updrafts, the strongest of which sometimes
developed vertical vortices. These updrafts maintained their identity up to
heights somewhat exceeding the mean inversion base height. Therefore, one
could conclude that the existence of these intersection points may be more

pertinent to the maximum boundary layer height than the existence of a vortex.
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Fig. 3.13. X-Z Cross-sections at y = 1557.5 m at t = 4800 s. (a) Potential
temperature with contours from -1.4 to 3.2 by 0.2 K. (b) Perturbation pressure
with contours from -45.00 to 15.0 by 3.0 Pa.
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Vertical Velocity
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Fig. 3.13. (continued). X-Z Cross-sections at y = 1557.5 m at t = 4800 s. (c) Vertical
velocity with contours from -2.4 to 4.4 by 0.4 m s™. (d) Eddy mixing coefficient,
Km. Contours from 0.0 to 8.0 by 0.5 m*s™.
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Vertical Vorticity

1985.3 e)
: o
1}
1489 .0
~ e )
— 2:“\‘ D
E 992.6 QR ]
e 'u':\ = S
N RN e O
AN RN o
496 .3 gy / — O
4N - @
e (2 %A/
2.0 «L“/ \ i o nulu}uuuuun runé
2.9 980.9 1960.0 2940
x(m)

Fig. 3.13. (continued). X-Z Cross-sections at y = 1557.5 m at t = 4800 s. (e) Vertical
vorticity with contours from -0.027 to 0.117 by 0.009 s™. Labels scaled by 1000.
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But once a vortex is established at these locations, it may further enhance vertical
transports of heat and momentum. The three main vortices depicted in Fig. 3.8
have mixed results (not shown) for the question of elevated boundary layer
height over the location of vertical vortices.

The vertical vorticity field (Fig. 3.13 e) shows that the vortex column has a
slight tilt to the east with height. The vertical vorticity column is about 300 m
wide and is co-located with the updraft region up to ~ 600 m. Other vorticity
maxima are located aloft and are co-located with positive vertical velocity.
Anticyclonic vertical vorticity exists on either side of the vortex at low levels.

Despite the slight tilt with height, a local maximum in vertical velocity at z =

1684 m (Fig. 3.14) is approximately associated with the circulation at low-levels
(Fig. 3.8 ¢). This is further indication that for this low-level vortex, the updraft
penetrates higher in the vicinity of the vortex than at surrounding locations.

Transects at the lowest level (z = 5.3 m) were obtained and compared with
observational data from instrumented observing systems over which dust devils
passed (Sinclair 1973; Kaimal and Businger 1970). Transect data from the current
simulation is shown in Fig. 3.15 and the center of the vortex is at approximately
x = 1310 m. The potential temperature transect (Fig. 3.15 a) shows that the
vortex core is relatively warmer than its surroundings and this is consistent with
Sinclair's findings (1973, his Fig. 8, reproduced here as Fig. 3.16). As expected,
the center also exhibits low pressure (Fig. 3.15 b). The vertical velocity transect
(Fig. 3.15 c) shows that the central core updraft has a local minimum with
downdrafts on either side, just outside the core (similar to Kaimal and Businger
1970, their Fig. 2, reproduced here as Fig. 3.17). The local minimum in vertical

velocity at the vortex core is also identifiable in Sinclair’s data (Fig. 3.16).
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XY Cross-Section of the Vertical Velocity Field
atz=1684 mand t=4800 s
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Fig. 3.14. X-Y Cross-section of the vertical velocity at z = 1684 m and t = 4800 s.
Contours from -1.0 to 1.7 with interval 0.1 ms™.
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Perturbation Potential Temperature
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Fig. 3.15. Transects through the vortex along y = 15575 m and z=53 m at t =
4800 s. (a) Potential temperature (K). (b) Perturbation pressure (Pa).
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Vertical Velocity
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Fig. 3.15. (continued). Transects through the vortex along y = 1557.5 m and z =5.3
m at t = 4800 s. (c) Vertical velocity (m s1). (d) Vertical vorticity (s™).
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From Sinclair (1973)
Transects of Temperature, Pressure and Wind Velocity Components

/O'DD-Q' 16.2 m.
R AR 11
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Fig. 3.16. Reproduced from Slnclalr (1973) Temperature, pressure and wind
velocity transects obtained by penetration of a dust devil with a mobile
instrumented tower. The two temperature transects at the top were taken at
heights of 7, 17, and 31 ft levels. Transects of pressure differences from
environmental pressure were taken at heights of 7 and 31 ft. Wind velocities
were taken at heights of 7 and 31 ft. The tangential (radial) velocity is
represented by v (u) and the vertical velocity is denoted by w. The dust devil was
moving to the left at4.5 m s™. (Adapted from the J. Atmos.Sci.)
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From Kaimal and Businger (1970)
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Fig. 3.17. Reproduced from Kaimal and Businger (1970). a) Temperature
difference from the environmental temperature T’ transects at heights of 5.66 m
and 22.6 m. b) Vertical velocity w transects at heights of 5.66 m and 22.6 m.
Transects were obtained by passage of a dust devil over an instrumented tower.
(Adapted from the J. Appl. Meteor.)
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From Sinclair (1973)
Vertical Vorticity and Horizontal Divergence
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Fig. 3.18. Reproduced from Sinclair (1973). Vertical vorticity and horizontal
divergence calculated assuming axial symmetry from wind velocity transects at a
height of seven feet. Wind data were obtained by penetration of a dust devil with
a mobile instrumented tower. (Adapted from the J. Atmos.Sci.)
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Another feature is interest is the vertical vorticity transect (Fig. 3.15 d),
which is again very similar to Sinclair's observations, except reversed in sign for
his anticyclonic vortex (1973, his Fig. 13, reproduced here as Fig. 3.18). There are
two local anti-cyclonic vorticity regions just outside the cyclonic vorticity core
and such a s feature is evident in Sinclair’s data (Fig. 3.18) as well. In addition,
the vertical velocity maximum and vertical vorticity maximum (Fig. 3.15 c and d)
are spatially well correlated at this level, which indicates a vertical helical flow.
Based on this examination of the structure of the simulated circulations, it is

concluded that they have general characteristics similar to dust devil vortices.

3.3.2.3. Other Comments

Some of the mechanistic theories described in Section 3.1.3 are briefly
evaluated based on SIM1 results. The proposed criterion that — h /MO must be
greater than 100 (Deardorff 1978) or 50 (Hess and Spillane 1990) is assessed. An
estimate of -h/MO for SIM1 produces a value of 38. This value is even smaller
than that proposed by Hess and Spillane for the existence of vertical vortices.
Lilly (personal communication) proposed that the diameter of a vertical vortex
divided by MO must be greater than unity for a dust devil-type vortex to exist.

For SIM1, a value of 3.3 is approximated from d, /MO = 100m/30m =3.3. Thus,

this criterion holds for SIM1.
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In addition, from an animation of the horizontal velocity vectors, it is
apparent that the direction of vortex motion is along the branches of the
polygonal convective rings, where horizontal convergence is strongest. This
results leads to questions regarding the reported observed motion of dust devils
relative to a ambient wind direction (e.g., Sinclair 1969). If a measurement of
mean wind direction is obtained from a point measurement in a dust devil
environment characterized by convective patterns as in Fig. 3.8 ¢, then the
measured ambient wind could be from almost any direction. Therefore, it seems
very difficult to make conclusions and dynamical inferences (e.g., Maxworthy
1973) about the direction of translation of a dust devil relative to a mean wind in

such an environment.
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3.4 Results from higher resolution simulations

A second simulation (SIM2) was performed using higher horizontal
resolution. The number of gridpoints was 150 x 150 x 80 and in this case, no
vertical stretch was used. The horizontal resolution was increased to
Ax = Ay =20 m and the vertical resolution was fixed Az =15 m. Therefore, the
total height of the domain was reduced to 1200 m. The boundary depth
increased such that the top of the domain inhibited the numerical solution and
the simulation was terminated at time t = 4300 s. The Rayleigh damping layer
was set at height z=1060 m. All other model parameters and initial conditions

were as in the first simulation. The parameters for SIM2 are summarized in

Table 3.3.

Gridpts Ly Ly Ly Ax Ay az at  Tioal Pr Qe
150 x 3 3 1.2 20 20 15 0.1 ~1.5 0.4 0.24

150x80 (km)  (km)  (km) (m) (m) (m) (s) hrs Kms-!

Table 3.3. Summary of simulation parameters for SIM2.

The cell broadening (as in SIM1) of the horizontal scale of the polygonal
vertical velocity convective rings is shown in Fig. 3.19 for SIM2. At t=4000 s the
cells are about 1 km in diameter, while in SIM1 at t = 2800 s, the cells were
already 1.5 km in diameter. Since the resolved cell size at any given time is
smaller for SIM2, there are more cell intersection points, and thus more favored
locations for vortex formation. Indeed, there are more simultaneously occurring

vortices in SIM2. Figure 3.20 shows X-Y cross-sections horizontal velocity
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XY Cross-Section of the Vertical Velocity Field
atz=75mandt=600s
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Fig. 3.19. X-Y Cross-section of the (a) vertical velocity at z = 7.5 m and t = 600 s.
Contours from -0.32 to 0.28 with interval 0.04 m s™.

138



XY Cross-Section of the Vertical Velocity Field
atz=75mand t=1000s
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Fig. 3.19. (continued). (b) X-Y Cross-section of the vertical velocity at z = 7.5 m
and t = 1000 s. Contours from -0.8 to 0.56 with interval 0.08 m s™.
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XY Cross-Section of the Vertical Velocity Field
atz=75mand t=2400s
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Fig. 3.19. (continued). (c) X-Y Cross-section of the vertical \_/lelocity atz=75m
and t = 2400 s. Contours from -0.9 to 0.8 with interval 0.1 ms™.
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XY Cross-Section of the Vertical Velocity Field
atz=75mand t=4000s
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Fig. 3.19. (continued). (d) X-Y Cross-section of the vertical velocity at z = 7.5 m
and t = 4000 s. Contours from -0.63 to 0.56 with interval 0.07 m s™.
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Higher Resolution Simulation
XY Cross-Section of the Horizontal Velocity Vectors
atz=7.5mand t=3800s
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Fig. 3.20. (a) X-Y Cross-sections of horizontal velocity vectors atz=75mand t =
3800 s. Maximum vector length is 4.59 m s™.
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Higher Resolution Simulation
XY Cross-Section of the Vertical Velocity Field
atz=75mand t=3800s
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Fig. 3.20. (continued). (b) X-Y Cross-section of the vertical velocity at z = 7.5 m
and t = 3800 s. Contours from -0.63 to 0.49 with interval 0.07 m s™.
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Higher Resolution Simulation
XY Cross-Section of the Vertical Vorticity Field
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Fig. 3.20. (continued). (c) X-Y Cross-section of the vertical vorticity at z=7.5 m
and t = 3800 s. Contours from -0.2 to 0.24 by 0.02 s™.

144



vectors (Fig. 3.20 a), the vertical velocity field (Fig. 3.20 b), and the vertical
vorticity field (Fig. 3.20 c) at a time when there are many vortices occurring. The
vortices are approximately in a line, although of different senses of rotation (Fig.
3.20 c). Barcilon and Drazin (1972) report that dust devils have been observed to
occur in lines, but that all these had the same sense of rotation. In Fig. 3.20 a,
adjacent vortices have the same sense of rotation.

Vortices at two other times have been selected for further examination and
are shown in Fig. 3.21 (t = 3200 s) and 3.22 (t = 4200 s). At both times, there are
multiple vortices occurring. At t= 3200 s there are three vortices evident in Fig.
3.21 a that are located at approximately x = 1300 m and y = 1350 m. Two are
cyclonic and these two are separated by an anticyclonic circulation. Figure 3.21 c,
shows that there are two pairs of counter-rotating vorticity centers, but the
anticyclonic member of the leftmost pair does not have a closed circulation in
Fig. 3.21 a. The fact that vorticity center pairs are evident, even when there is a
closed circulation of only one sign of rotation, suggests that the formation
process for a single vortex may be preceded by the generation of a vorticity pair.
Consequent evolution could then result in the dominance of one sign of vorticity
over the other.

Similarly, Fig. 3.22 a shows a stronger vortex circulation (at about x= 2000
m and y = 1490 m) with an attendant vortex having the same sense of rotation.
From Fig. 3.22 ¢, it is evident that these two anti-cyclonic circulations are in fact
separated by a small cyclonic vorticity center that is not apparent in Fig. 3.22 a.
The northernmost vortex has a maximum tangential velocity of 5.1 m s™. Both
circulations are entirely embedded in the updraft region. From Fig. 3.22 b, it

appears as if there is a “wrapping in” of the downdraft region to the west of the
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circulation. This has qualitative similarities to the tornado vortex which is
associated with the wrapping in of the “dry slot”. The association of
deformation of the updraft ring regions with the presence of a vortex is evident
in both SIM1 and SIM2. .

X-Z Cross-sections of vortices at time t = 3200 s (t = 4200 s) and y = 1350 m
(y = 1490 m) are shown in Fig. 3.23 (Fig. 3.24). The vertical coordinate is
expanded by a factor of two for clarity. The two vortex pairs are clearly evident
from Fig. 3.23 e. These are associated with warm (Fig. 3.23 a) low pressure (Fig.
3. 23 b) updrafts (Fig. 3.23 c). The updraft is highest over the region where the
low-level vortices are occurring. The eddy mixing coefficient (Fig. 3.23 d)
indicates that the boundary layer height may be elevated in the region at which
the vortex near the surface is occurring. However, due to the
proximity of the upper boundary of the model, the solutions there may be
affected by the boundary condition and should be interpreted with caution.
Note also that there are several mid-boundary layer vortices that do not extend
to the surface (Fig. 3.23 e). Figure 3.23 f shows the vorticity vectors in the X-Z
plane. The two cyclonic vortices are distinguished by the upward directed
vorticity vectors over a depth of about 300 m.

At t = 4200 s the XZ cross-sections again show a warm (Fig 3.24 a), low-
pressure (Fig. 3.24 b) updraft (Fig. 3.24 c) associated with the circulation. The
eddy mixing coefficient (Fig. 3.24 d) does not show as distinct an elevation in
boundary layer height in the vicinity of the low-level vortex in this cross-section.
Fig. 3.24 e-f shows that the vortex at t = 4200 s is about twice as tall as those at t=
3200 s. This vortex is the strongest of the simulation and is associated with a

vorticity value of about 0.23 s™. It is about 100 m in diameter. There is a slight
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XY Cross-Section of the Horizontal Velocity Vectors
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Fig. 3.21. (a) X-Y Cross-sections of horizontal velocity vectorsatz=7.5mand t =
3200 s. Maximum vector length is 491 m s™.
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XY Cross-Section of the Vertical Velocity Field
atz=75mand t=3200s
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Fig. 3.21. (continued). (b) X-Y Cross-sections of vertical velocityatz=7.5mand t
= 3200 s. Contours from -0.63 to 0.56 by 0.07 m s™.
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XY Cross-Section of the Vertical Vorticity Field
atz=7.5mand t=3200s
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Fig. 3.21. (continued). (c) X-Y Cross-sections of vertical vorticity atz=75mand t
= 3200 s. Contours from -0.14 to 0.2 by 0.02 s™.
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XY Cross-Section of the Horizontal Velocity Vectors
atz=75mand t =4200s
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Fig. 3.22. (a) X-Y Cross-sections of horizontal velocity vectors atz=75mand t =
4200 s. Maximum vector length is 5.1 m s™.
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XY Cross-Section of the Vertical Velocity Field
= 4200 s
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Fig. 3.22. (continued). (b) X-Y Cross-sections of vertical velocity atz = 75mand t
= 4200 s. Contours from -0.54 to -0.48 by 0.06 m s
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XY Cross-Section of the Vertical Vorticity Field
atz=75mand t=4200s

2000 .8

y(m)

Fig. 3.22. (continued). (c) X-Y Cross-sections of vertical vorticity atz=7.5m and t
= 4200 s. Contours from -0.27 to -0.21 by 0.03 5.
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indication that the anticyclonic vortex is surrounded by regions of positive
vorticity. Figure 3.24 f clearly shows the downward directed vorticity vectors
associated with the vortex.

Overall, the SIM2 resolved smaller-scale features than SIM1 and contained
larger values of vorticity extrema. (In comparison, SIM1 maximum vertical
vorticity value at t = 4600 s was 0.12 s™, while SIM2 had maximum vertical
vorticity value of —0.29 s™at t = 4200 s.) The maximum horizontal velocity
components however, where not significantly increased in SIM2. (e.g., SIM1 had
total simulation horizontal velocity maximum of ~4.7 m s™, while SIM2 had total
simulation horizontal velocity maximum of 5.33 m s"'.) However, there were
more vortices at a given time in SIM2 than in SIM1. If this trend continues for
increasing resolution, it is possible that there may be a significant number of
vortices resolvable for very high resolution. If so, it might be plausible that
vertical vortices would have a even greater and more observable influence on the

evolution of the simulated convective boundary layer.
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Fig. 3.23. X-Z Cross-sections at y = 1350 m at t = 3200 s. (a) Potential temperature
with contours from —0.8 to 3.0 by 0.2 K. (b) Perturbation pressure with contours
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Fig. 3.23. (continued). X-Z Cross-sections at y = 1350 m at t = 3200 s. (c) Vgr_tical
velocity with contours from -3.0 to 4.5 by 0.5 m s™. (d) Eddy mixing coefficient,
Km. Contours from 0.0 to 42 by 0.2 m*s™.
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Vertical Vorticity
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Fig. 3.23. (continued). X-Z Cross-sections at y = 1350 m at t = 3200 s. (e) Vertical
vorticity with contours from -0.08 to 0.2 by 0.01 s™. Labels scaled by 1000. (f)
Vorticity vectors. Maximum vector length is 0.191 s
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Fig. 3.24. X-Z Cross-sections at y = 1490 m at t = 4200 s. (a) Potential temperature
with contours from -0.4 to 3.4 by 0.2 K. (b) Perturbation pressure with contours

from -55.00 to 25.0 by 5.0 Pa.
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Fig. 3.24. (continued). X-Z Cross-sections at y = 1490 m at t = 4200 s. (c) Vertical
velocity with contours from -2.5 to 5.5 by 0.5 m s™. (d) Eddy mixing coefficient,
Km. Contours from 0.0 to 5.1 by 0.3 m*s™.
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Fig. 3.24. (continued). X-Z Cross-sections at y = 1490 m at t = 4200 s. (e) Vertical
vorticity with contours from -0.28 to 0.04 by 0.02 s. Labels scaled by 1000. (f)
Vorticity vectors. Maximum vector length is 0.244 s™.
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3.5  Discussion - Possible sources of vorticity

After studying several other vortices that occurred in the simulations, and
the evolution of the variable fields at times prior to their maximum intensity, the
following conjectures with regard to formation processes have been developed.

Figure 3.25 shows a schematic diagram of the first proposed mechanism.
Figure 3.25 a (b) shows a three-dimensional (two-dimensional, horizontal plane)
schematic of the intersection region of the convective rings. A likely source of
vorticity for these vortices, which occur in the absence of mean winds, is the
larger convective cell circulations. These circulations create azimuthal horizontal
vorticity rings (a portion of which is represented by the dashed line in Fig. 3.25 a)
that are strongest near the updraft/downdraft intersections (where gradients of
vertical velocity are largest). The vortex rings may be advected by the inflow
toward the updraft regions. If the flow is stronger on one side of the updraft
ring, the vortex line on that side may be advected into the middle of the updraft
region (Fig. 3.25 b). There are often local updraft maxima at the vertices of the
rings. These local vertical velocity maxima could tilt the vortex line and result in
the formation of a vortex pair (Fig. 3.25 b) which would be embedded in the
updraft region. A subsequent mechanism may lead to a vorticity center of either
sign becoming co-located with the updraft maximum. The mechanism could be
similar in concept to the supercell mechanism (Fig. 3.1) that explains the

propagation of an updraft toward a vortex center.
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Fig. 3.25. Schematic diagram of the first proposed mechanism for the source of
vertical vorticity for vertical vortices in pure convection. a) Three-dimensional
schematic of a vertex (intersection region) of the polygonal convective rings. b)
Two-dimensional, horizontal plane schematic of a vertex (intersection region) of

the polygonal convective rings.
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Some support for this mechanism can be seen by comparing Fig. 321 b and
Fig. 3.21 ¢, where the largest valued vorticity centers lie entirely within the
updraft ring regions. This feature is further demonstrated in Fig. 3.26 where the
vertical vorticity pattern (Fig. 3.26 a) outlines the vertical velocity pattern (Fig.
3.26 b) and the local maxima of vertical vorticity lie at the vertices of the
convective rings. This may be somewhat misleading however, since the values
of vertical vorticity will obviously be largest in regions where vertical velocity is
largest due to stretching. An attempt was made to adjust the contour interval of
the vertical vorticity in order to discern a coherent pattern that might not lie
along the convective ring branches, but no such pattern was identifiable.

Additional support for the proposed mechanism may be seen in the
general pattern of vortex lines with respect to the convective cell pattern and
these are shown for two arbitrary times in both SIM1 (Fig.3.27 a, b) and SIM2
(Fig.3.27 ¢, d). These times were selected because they most clearly illustrate the
point. The horizontal vorticity vectors at the lowest level are strongest near the
largest horizontal gradient of vertical velocity. They are frequently directed
parallel to the updraft branches or rings. These vortex lines could then be
advected at these low levels inward to the interior of the updraft branch where
they may be tilted by local vertical velocity maxima at the updraft ring
intersections.

It was often observed that vortices were preferred at locations where the
updraft was separated by small distances. In other words, the angle between
updraft branches near the intersection points tended to be small. This would be
consistent with the fact that vorticity tilting terms would be strong where

gradients in vertical velocity were large, such as in these regions.
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Higher Resolution Simulation
XY Cross-Section of the Vertical Vorticity Field
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Fig. 3.26. X-Y Cross-sections of (a) vertical vorticity at z = 7.5 m and t = 3200 s.
Contours from -0.14 to 0.1 by 0.01 s™.
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Higher Resolution Simulation
XY Cross-Section of the Vertical Velocity
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Fig. 3.26. (continued) (b) X-Y Cross-sections of vertical velocity at z=7.5 m and t
= 3200 s. Contours from -0.81 to 0.72 by 0.09 m s™.
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First Simulation
XY Cross-Section of the Vertical Velocity Field
atz=53mand t=2000s
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Fig. 3.27. (a) X-Y Cross-sections SIM1 at z =53 m and t = 2000 s, vertical velocity,
contours from ~0.27 to 0.24 by 0.03 m s™.
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First Simulation
XY Cross-Section of the Horizontal Vorticity Vectors
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1200 s

Higher Resolution Simulation
XY Cross-Section of the Vertical Velocity Field
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Higher Resolution Simulation
XY Cross-Section of the Horizontal Vorticity Vectors

atz=75mand t=1200s
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Horizontal %
Velocity Vector =

Fig. 3.28. Sch,ex.natic diagram of the second proposed mechanism for the source of
vertical vorticity for vertical vortices in pure convection. a) Three-dimensional

schemziltic of a vertex (intersection region) of the polygonal convective rings. b)
Two-dimensional, horizontal plane schematic of a vertex (intersection region) of

the polygonal convective rings.
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A second possible conjecture for vertical vortex formation that might
reflect this dependence on angle is shown in Fig. 3.28. In this case, vertical shear
of horizontal winds in one branch, denoted A (Fig. 3.28 a), would be associated
with horizontal vorticity in the y-direction. Winds, flowing along and toward
the updraft maximum at the intersection point from the south (updraft branch
B), would then contain a streamwise component of vorticity. When tilted by the
updraft, the vorticity would be immediately co-located with the vertical velocity
local maximum and the updraft would acquire cyclonic rotation (Fig. 3.28 b).
Future work will include more analysis to evaluate the plausibility of these and

other conjectured mechanisms for vertical vortex formation in the convective

boundary layer.

3.6  Summary

Large Eddy Simulations (LES’s) of the convective boundary layer were
carried out for the purpose of examining vertical vortex formation. In particular,
a simulation (SIM1) having 35 m horizontal resolution and a simulation (SIM2)
having 20 m horizontal resolution were performed. -

The simulated open convective cells exhibit a cell broadening behavior
with time that has been documented in prior studies of turbulent convection. It
is suspected that a mechanism similar to the "updraft merger" process described
by Shapiro and Kogan (1994) occurs in the current simulations. In the case of
Shapiro and Kogan, the simulated updrafts were broad and the downdraft

region between them was narrow. In our case, the mechanism would be
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modified to explain the merger or broadening of downdrafts separated by
narrow updraft regions.

The most interesting results show that vertical vortices form at the
intersections of convective updraft rings and that these are locations of local
maxima in vertical velocity. More vortices are evident above the lowest level.
The vortices form in the absence of mean winds or surface inhomogeneities.
There is inconclusive evidence that the height of the boundary layer is
maximized in regions where vertical vortices exist. The structure of the
simulated circulations is consistent with observational data of dust devil
circulations.

Some limitations of this study include the fact that the mixing length in
the subgrid-scale turbulence parameterization was not modified in the region of
the potential temperature inversion. This is likely to have led to the "smearing
out” of the temperature gradient in that region. Based on the comparison with
the results of Mason (1989), in which mixing length adjustments were employed,
it is not believed that this critically influences the processes responsible for the
formation of vertical vortices.

Furthermore, as stated previously, the task has been divided into two
parts, and this Chapter reports on first part, which includes the simulations
designed to examine the suspected larger-convective scale vorticity generating
motions. As a result, the strengths of the simulated circulations are not as strong
as those observed with most dust devils. In addition, if very small-scale motions,
especially in the lowest few meters near the surface, are critical to the generation
of vertical vorticity and the subsequent alignment of a vortex center with an

updraft, the horizontal and vertical resolution may have been insufficient to
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represent vortex formation by these processes. If this is true, a more
sophisticated surface flux parameterization may be also be required in higher
resolution simulations.

In conclusion, the results of this work: 1) document the existence of these
vertical boundary layer vortices; 2) suggest that these vortices may be much
more common than prior work has implied; 3) show that vertical vortices can
form in the absence of imposed sources of angular momentum, mean winds or
surface inhomogeneities; and 4) provide guidance for the design of higher
resolution experiments to further investigate boundary layer vertical vortex

formation mechanisms.
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Chapter 4
Dissertation Summary

This dissertation reports on two semi-independent studies of rotating
atmospheric convection.

The first was an analytical investigation of the linear stability and structure of
convection embedded in a mean shear flow with a circular hodograph which
was performed as a contribution to the classical theory. This can be considered
an extension of Asai's work, but with emphasis on the rotational and helicity
features of the disturbances. It also examined the relevance of Beltrami flow
solutions presented previously by Lilly and Davies-Jones, which could not be
directly extended to consider the effects of buoyancy. The Boussinesq equations
were applied to neutrally and unstably stratified fluids, with emphasis placed on
the inviscid solutions. Upper and lower boundary conditions were free-slip and
rigid. Lateral conditions were periodic, which allowed casting the disturbance
equations into a horizontally periodic normal mode structure. The growth rates
and disturbance forms were generally fairly similar to the results presented by
Asai, except that the most unstable modes were nearly always oriented
transverse to the shear component at the channel center. The most rapidly
growing modes at small Richardson number were found to be highly helical,
with the helicity obtained from the Beltrami mean state. The helicity transfer
efficiency and disturbance relative helicity decreased rapidly, however, for

negative Richardson numbers greater than about one.
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The second study consisted of a numerical investigation of the formation
mechanisms of vertical vortices in the convective boundary layer. Large Eddy
Simulations (LES’s) of the convective boundary layer were performed with the
purpose of examining vertical vortex formation. The results of the study show
that vertical vortices formed readily at the vertices of simulated Rayleigh-
Benard-type convective cells. The formation of the vortices was independent of
inhomogenieties in surface roughness or temperature. In addition, an imposed
source of mean wind or angular momentum was not required for vortexgenesis.
Vertical vortices in the atmosphere (and in LESs) may be much more common
than prior work has implied and, if this is true, these vortices may play an
important role in boundary layer transports and evolution. This would have
impact on the design of boundary layer parameterizations in larger scale
numerical models and possibly on the prediction of the location of convective
thunderstorm initiation. Future work will include further investigation of the

formation and maintenance of these convective boundary layer vertical vortices.
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APPENDIX A
Finite Difference Form of the Equations
A.l. The numerical grid

An Arakawa-C grid (Arakawa and Lamb 1977) is used in which the
thermodynamic variables are solved at points that are staggered from the points
at which velocity is calculated (Fig. A.1). The boundaries are occupied by the
velocity points. This grid is convenient for the calculation of divergence, and
certain terms in the subgrid turbulence parameterization in that minimal
averaging of thermodynamic variables is required.

The following notation (Lilly 1965) will be used to present the spatial

discretization,

o = %[0(;:-!—11%—) +a)(x—n%):| (A. 1)

and

sut= Lo o) 1-n2) a2

where, ¢ is a dependent variable, x is one of the independent variables, x, y, or

z, Ax is an interval over which the operation is taken, and n is an integer.
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w(k+1,i,j)

u(k,i-172,j)
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(i-tr2g-12y | o)

w(k,I3}

Fig. A.1. Three-dimensional schematic diagram of the finite difference grid and
the locations of variables.
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A.2. Time integration of the supercompressible equations

Although the efficiency of integrating the equations is improved by the
supercompressible approximation, through the reduction of the sound speed,
model performance can be further enhanced. This is done by employing the
time-splitting technique (Klemp and Wilhelmson 1978), in which the terms
associated with the generation of sound waves are integrated on a “small”

timestep, while all other terms are integrated on a “large” timestep.

The large timestep integration scheme is centered-in-time (leapfrog) and

may be written for any variable,

oM =0 M+ Z(AI)F" (A. 3)

to which a time filter (Robert 1966; Asselin 1972) is applied to prevent the

possibility of solution decoupling at odd and even timesteps,

¢r'+A: = ¢I—A: + Z(Af)Fl.
r I 1t rar : -ar)|” (A. 4)
o' =9 +afo" - 20" +9"¥)
The first equation in (A.4) denotes a leapfrog step with the asterisk denoting the
terms which have not yet been smoothed by the second step. The two equations

may be combined and written using, @ =0.1 as
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¢ =(1-2a)¢" +a¢ —9""). (A.5)

The small timestep integration is the explicit forward-backward scheme
(Klemp and Wilhelmson 1978). The terms of (3.8) and (3.10) that are evaluated

on the small timestep are on the left hand side of the following:

(A. 6)

where, F, and F, include the advective, buoyancy, subgrid-scale mixing, and
filter terms that are computed on the large timestep. The terms included in F,

are small and are neglected as in Klemp and Wilhelmson (1978).

The finite difference form of these equations using the forward-backward

scheme is given by,

Sou+ %(&p)r =F; v+ ,:;"(fsvp)r =F Sw+=(6.0) =F,, (A.7)
' 2

and

5.p +c*p(6u+8v)" + 02(5: p‘v) =0 . (A.8)

The time interval of the small timesteps is At and there are n=2A:/A7 small

steps for each large timestep of interval Ar.
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A.3. Spatial discretization of the advective and buoyancy terms

Terms Fy, Fy, and Fw consist of the advective, buoyancy, subgrid scale

mixing, and filter terms, all of which are evaluated on the large timestep, with

mixing and filter terms lagged in time for numerical stability; that is,

F, = adv(t) + mix(t — Ar) + filt(t — At) + §,,buoy(z). (A.9)

In addition, equation (3.2) is evaluated entirely on the large timestep. First the
advective and buoyancy forcing terms for (3.10) are considered, which are also
written as (A.7).

For equations (A.7) the advective and buoyant terms are discretized using

the quadratic conserving “Box” method (Kurihara and Holloway 1967)

E=ua'du +vou +wou (A. 10)
E=uy +V6y +woy (A. 11)
— . = y — . '9—.: - p. N
F,=udw +vdw +wow +g = — L= (A.12)
’ - 6 c, p

Potential temperature advective terms are discretized using either the Box

method, centered-in-time, or the 6th-order, flux conservative Crowley scheme
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(Tremback et al. 1987) with a forward timestep. Note that when the Crowley
scheme is used, the subgrid mixing and filter terms for potential temperature are

calculated using the variables defined at the current time level. The advective

term of (3.2) can be written as

96 a(u,.e) du;
e 05 (A. 13)

[F}HIZ - F}-uz] ’ (A. 14)

where, the 6th-order Crowley scheme is used to define,

At «
I Ry E = ga(—ei-l +86,_, -376, - 376,,, +86,,, - 9;+3)
+%(—2¢9,._2 +256,_, - 2456, + 2456,,, - 256, + 26,.,)
a3
+=—(6,_, — 76,_, + 66, +66,,, - 76,,, +16,.,)
48\ 2 :
a-t
+——(6,., —116,_, + 286, -286,,, +116,, - 6,;)
1 (A. 15)
aS
+——(~6,_, +36,_, -26,-26,,, +36,,,-6,,)
240 : ?
aS
+—(-6,_, +56,_, - 106, +106,,, - 56,,, +6,,;)
720 ?
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where « is u;, =Ar/Ax;. At three points from the boundary, the fourth-order
Crowley advection is used and at two points from the boundary, the second-
order Crowley advection scheme is used.

In association with the Crowley scheme, a monotonic flux corrector
(Leonard 1991; Straka personal communication), a high-order operator that

guarantees monotonicity, is used for potential temperature.

A.4. Finite difference form of the subgrid turbulence parameterization

To maintain numerical stability the subgrid mixing terms are evaluated
using the previous time level.

Figure A.1 shows that the locations of 7,,, Ty, 73, D, D, D;;, K, and
K, are defined at the potential temperature point at the grid box center. H, is
defined at the « point, H, at the v point, and H, at the w point. Discretization of

the turbulent subgrid mixing terms for velocity is as follows:

e Deformation terms, D.:

U

ou ou  odv

D“ =23—x'=25xu Dlz =§;+§=5yu+5xv

D,, =2§vy-= 20,v Dy =%:—-+% =6 w+d.u (A. 16)
ow ow

D33=2§v—25:w D23=b—y—+5=5yw+5:v
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* Stress tensor components (tensor is symmetric for a regular Cartesian grid),

T‘-jl
2 Ou, o
T, = Km(Du g’g{]v T, =K, D,
Tn = Km(Dzz - %%} ty=K, Dy (A.17)
2 Ou, —ye
Ty = Km(Dss g_a_x—)’ » =K, Dy

H=K66; H,=K,68; H,=K, 560 (A. 18)

A5. Finite difference form of the numerical filters
To maintain computational stability the numerical filtering terms are also

evaluated using the previous time level.

The fourth-order numerical filter used follows that of Purser (1987),

D; = -Kp(8n® +6,,,9), (A.19)

where K, is found from (K,At/(Ax)*) = 0.0025 (Klemp and Wilhelmson 1978).

The template for the fourth-order derivative is
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0 =0, — 40, +60,—40,_ +0,_, (A. 20)

Near the boundary, the second-order filter is used,

D, =-K(5.0+5,9), (A.21)

which can be written as

5:.:‘1) =@ —20,+ 0., (A. 22)
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APPENDIX B

Model Validation

Validation tests have been performed for KANSAS including a series of
simple flow tests for symmetry and spurious solutions. KANSAS has also been
benchmarked against the SAM [Straka’s Atmospheric Model, Straka et al. (1993)]
for a simulation of a simple rising bubble, with and without mean wind shear.
Lastly, the results of a LES simulation are compared with those of Nieuwstadt et

al. (1991).

B.1. Uniform and oblique flow tests

A series of simple flow tests (described in Straka and Droegemeier 1991,
unpublished) were performed and consist of initial conditions using
combinations of u and/or v = +10 ms"'. These tests were designed to help to
insure that loop indexing and boundary conditions are handled properly in the
numerical model. All the runs were performed with 40 x 40 x 40 gridpoints, Ax=
Ay=1000m, Ar = 6 s and the total number of timesteps of integration was 200.
Lateral boundary conditions were open / radiative and rigid vertical conditions
were used. These simulations were run on the ECAS CrayJ90 and are expected
to be accurate to 64 bit precision. The model is successful is there were no

differences between the initial and final fields after 200 timesteps of integration.
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B.2. Single buoyant thermal

Next a simple simulation of a rising bubble was performed using
KANSAS for benchmark and symmetry tests. The results were compared with
those of the SAM for the same simulation.

In this test, a simple rising thermal specified as the initial condition in

Klemp and Wilhelmson (1978; hereafter KW78)

A6 = A8, cosz[%r—] r<l (B. 1)

where,

,e f[f-_ﬂ}(%%] J{’-‘Zc)' (B.2)
YU ox, Y Z,

was simulated. The subscript c refers to the location of the center of the thermal

and subscript r denotes the radial dimensions of the thermal in each Cartesian
direction. The thermal strength, Af,, was set to 2 °C. The initial bubble
parameters were xc= yc= 12500 m, zc = 1250m, xr = yr= 3000 m and zr = 1000
m. Boundary conditions were open lateral conditions with gravity wave speed
set to 12 ms™. Rigid semi-slip upper and lower boundary conditions were
prescribed. The domain size was 26 x 26 x 13 gridpoints, and resolution is Ax=

Ay =1000m, Az = 500m , with Az = 6s. The number of small timesteps was set to
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12 and the sound speed was reduced to 150 ms™. The base-state surface potential
temperature was 305 K and the base state surface pressure was set to 97500 Pa.
The base-state potential temperature profile was very similar to that of KW78

and is shown in Table B. 1.

p (mb) 6 (K)
948 305
895 305
844 305
796 307
750 309
706 311
664 313
624 315
587 317
551 319
517 323
485 329
455 337

Table B. 1. Initial Base State Potential Temperature Profile

Several experiments using different model configurations were performed
and the variable domain extrema at time = 1800 seconds are summarized in
Table B.2. The vapor variable was included in the tests here, but was not used in
the dry dissertation simulations. These runs were designed to test mainly the
turbulence closure in the presence of mean static stability changes and mean

shear. The performance of the boundary conditions was also considered in the
cases with mean shear. All Cases shown use the sounding shown in Table B. 1

except Case A. Cases A and B are dry and have the Smagorinsky turbulence
closure. Case C is the same as B except with a mean shear with u=-20ms™ near

the surface to u = 20 ms™ at the top of the domain. Case D (E) is the same as Case
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CASE A

CASE B

CASE C

CASE D

Min

Max

Min

Max

Min

Max

Min

Max

-0.057863

2.155786

-0.246244

2.366313

-0.302958

2.757188

-0.000055

1.816457

0.0

0.0

0.0

0.0

0.0

0.0

-3.3635

M

-11.016190

13.3492355

-95.1575

51.5034

-99.5113

60.3936

-54.7195

70,1524

-7.8787127

7.8787127

-6.113561

18.716982

-6.189371

19.620908

-9.487383

9.487383

-7.8787098

7.8787098

-8.572634

8.572634

-9.165696

9.165696

-9.481575

9.481575

-3.6282795

5.8387909

-3.769457

16.522141

-4.149321

18.129393

-4.003019

16.400047

594.55211

65.5589599

505.401764

Min

Max

-.1174622

4300842

-0.6437988

0.6647949

-2.151001

4.481079

-1.882935

1.921051

0.0

0.0

0.0

0.0

0.0

0.0

-3.369792

4.996581

-11.4025

12.3039

-2.2268

21224

0.0

3212,3993

-4.2865

42133

-7.974189

7.974189

-0.686720

0.686720

-16.320023

-18.38964

-1.684766

1.684766

-7.974187

7.974187

-0.686720

0.686720

-0.762780

0.762780

-1.684839

1,684839

-3.620363

6.002355

-0.444436

0.950582

-0.717385

0.972906

-1.123266

2.101229

0.0

610.0125

0.0

65.23405

0.0

512.7020

-0.37417

1473903

Table B.2. Comrs variables extrema for KANSAS and SAM for simulation of a buoyant thermal with variable
base state potential temperature.
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CASEE

KANSAS

CASEF

CASE G

Min

Max

Min

Max

Min

Max

-1.8694153

4.50140381

-1.1650696

0.59252930

-549987793

0.43081665

-0.5017857

M

-4.834203

M

0.0

0.0

0.0

5449.23535

-13.582806

16.0772724

-6.7721820

11.0923004

-24.910713

23,05086

-23.036306

23.0444756

-19.929466

21.4838123

-2.1382169

2.13821269

-3.8585782

3.8585782

-1.0615584

1.06155837

-1.1655247

1.23252082

-3.4099793

4.03110743

-0.6446258

0.54984957

0.0

506.556641

CASEE

0.0

0.0

CASEF

Min

Max

Min

Max

-2.014709

4.5600591

-1.163879

0.5927124

-.546521

0.4319153

-7.145969

3.376306

-4.831864

6.905262

0.0

0.0

0.0

3933.8062

-13.7344

15.9266

-6.7946

11.0771

-16.448467

19.068415

-3.983488

4.092145

-2,635054

1.481197

-0.910067

0.910067

-3.853786

3.853786

-1.062726

1.062726

-0.957574

1.174168

-3.407076

4.027468

-0.644684

0.54984957

-5.303372

484.9965

0.0

0.0

0.0

0.0

Table B.2 Continued.: Comparison of variables extrema for KANSAS and SAM for simulation of a buoyant thermal
with variable base state potential temperature.




B (C) except including vapor. Case F (G) is the same as E (C), but without the
Smagorinsky turbulence closure.

A second set of tests was performed to test the 6"-order Crowley scheme
for scalars and the 4™-order numerical filter. In this set 26 x 26 x 26 gridpoints
were used. The potential temperature was constant with height and set to 300 K.
The surface pressure was 96500. The resolution was Ax= Ay = 1000m,

Az = 500m, with Ar = 6s. The initial bubble parameters were xc= yc= 12500 m,
z¢ =1750m, xr = yr=10800 m and zr =2000 m. Boundary conditions were open
lateral conditions with gravity wave speed set to 30 m/s. Rigid semi-slip upper
and lower boundary conditions were prescribed. The variable extrema are
shown in Table B.3 at time t = 1080 s or about 180 timesteps.

Case H included the Smagorinsky closure and no mean wind shear. Case
I was the same as H except with a mean wind in the x-direction that varies from
0 ms™ near the surface to 10 ms™ at the top of the domain. Case J is like Case I
except that instead of the turbulence closure, a 4™-order numerical filter is used.
Case G is like Case A in that it has no mean wind shear, but it does not use the
turbulence closure. However, it includes the 6™-order Crowley numerical
scheme for scalars instead of the box scheme.

The variable extrema of KANSAS and SAM compare very well for most
cases. There are as many as seven matching digits (e.g. Case K). There are about
two matching digits for some of the runs using the Smagorinsky diffusion and
this is likely due to the significantly increased number of calculations and the

associated truncation error. Note also that the values of maximum K, calculated

198



KANSAS

CASEH CASEI

CASE]

CASEK

661

Min

Max

Min

Max

Min

Max

Min

Max

-0.057863

2.155786

-0.246244

2.366313

-0.302958

2.757188

-0.000055

1.816457

-48.7623

66.2078

-95.1575

51.5034

-99.5113

60.3936

-54.7195

70.1524

-8.910837

8.910837

-6.113561

18.716982

-6.189371

19.620908

-9.487383

9.487383

-8.910837

8.910837

-8.572634

8.572634

-9.165696

9.165696

-9.481575

9.481575

-3.373961

15.407157

-3.769457

16.522141

- -4.149321

18.129393

-4.003019

16.400047

CASEH CASE1 CASE] CASEK
Min Max Min Max Min Max Min Max
-0.060610 2.163421 -.2476391 2379751 -0.302957 2.757385 -0.000055 1.816457
-48.9438 66.5930 -96.9389 51.3527 -99.5164 60.4142 -54.7194 70.124
-8.957682 8.957682 m m M m -9.487382 9.487382
-8.957682 8.957682 -8.599605 8.599605 -9.165836 9.165836 -9.481574 9.481575
-3.383658 | 15.465333 | -3.795500 | 16.570355 | -4.149824 | 18.129571 | -5.003018 | 16.400048

Table B.3 Comparison of variables extrema for KANSAS and SAM for simulation of a buoyant thermal with
constant base state potential temperature to test the Smagorinsky turbulence closure.



by each of the models for Case A (Case B) were 368.12 m’s™ (358.27 m’s™) for
KANSAS and 366.69 m’s™ (358.59 m’s™) for SAM.

Other similar tests (not shown) were performed for the stretched
coordinate options, Rayleigh damping, and surface flux portions of the models

and similar comparisons were achieved.

B.3. LES test problem

In this test, we compared results of the KANSAS model with the results of
Nieuwstadt et al. 1991 (N91). Their paper compared four simulations of the
convective boundary layer. Descriptions of each of the four and that of the
KANSAS models and the simulation parameters are listed in Table B.4.
KANSAS and Mason use the Smagorinsky closure. All other models use higher
order turbulence closures. A major difference between KANSAS and the other
models is that KANSAS uses the supercompressible form of the equations of
motion while all the other models are Boussinesq models. The second main
difference is that KANSAS has no modification of the mixing length near the
surface or the inversion.

The initial condition is the same as that described in Chapter 3 for the
simulation of the convective boundary layer. However, the constant surface heat
flux is set to Q = 0.06 K ms-1.in N91. All other simulation parameters are listed
in Table B.4. Calculation of the horizontally averaged heat flux, vertical velocity

variance and horizontal u-velocity variance are averaged over a time interval of 1
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Comparison of LES Parameters

Mason Moeng Nieuwstadt Schumann KANSAS
Equations Boussinesq Boussinesq Boussinesq Boussinesq Super-Compressible
Size 6.4x6.4x8km 64x64x24km 6.4x6.4x24km 64x64x24km 6.4x6.4x8km
Gridpts 40 x 40 x 68 40x 40 x 48 40x 40 x40 40x40x 40 46 x 46 x 40
Domain Ax Ay Az 160, 160, 20-80 m 160, 160,50 m 160, 160, 60 m 160, 160, 60 m 160, 160, 60 m
at 0.65s 30s 448s 1096 s 20s
0=300Kupto1350 | 6=300Kuptol350 | 0=300Kupto1350 | 6=300Kupto1350 | 0=300K upto1350
Base State m and then m and then mand then m and then m and then
8 didz=.003Km" dtdz=.003Km"' dtdz=.003Km" dtdz=.003Km"' dtdz=.003Km'*
Grid Vel Staggered Staggered in z only ; Staggered Staggered Staggered
T@P TP Tew Tar Ter
Time Leapfrog/ Forward Leapfrog/ Forward Leapfrog/ Forward
Scheme on Diffus Adams-Bashforth on Diffus Adams-Bashforth on Diffus
Spatial 2".order Variance 2™-order Variance 2*-orderVariance 2"-order Variance
Scheme Conserving Pseudo-Spectral Conserving Conserving/0 upwd Conserving
. P solver FFT FFT FFT FFT Prognostic
Numerics Later Periodic Periodic Periodic Periodic Periodic
Top Rigid & Damping Open with Radiation Rigid & Damping Open with Radiation Rigid & Damping
BC. Layer BC Layer BC Layer
Sfe wW=0 W=0 W=0 &Const I'=0.16 w=0 w=0
Const Heat flux Const Heat flux K/hr Const Heat flux Const Heat flux
Type Smagorinsky 1.5 Order 1.5 Order 2 Order Smagorinsky
Cs 0.32 0.18 0.18 0.165 0.21
Turbulence Pr 0.46 0.33 0.33 0.42 0.4
Closure A Non-uniform (Ax By Az)? (ax oy Az)'7 1/3(8x Ay Az) (Ax Ay az)'"
|, near sfc laz laz constant
| and static || reduced instatically | reduced instatically | reduced in statically
stabili stable regions stable regions stable regions constant

Table B.4. Comparison of LES models of Nieuwstadt et al. (1991) and KANSAS
for simulation of a convective boundary layer.



T =1096 s in N91 over 10 T-11 1. These figures from N91 are reproduced here as
Fig. B.1la-c. The corresponding values from KANSAS are shown in Fig. B.1d-f.

The heat flux profile Fig. B.1a and B.1d compare well. Differences near to
surface might be explained by the fact that KANSAS does not modify the mixing
length as proportional to height above the surface as the other models do.
Otherwise KANSAS’ heat flux profile most closely resembles Mason’s. This
would be consistent with the fact that both KANSAS and Mason models utilize
the Smagorinsky closure.

Fig. B.1.b and B.1.e show the vertical velocity variance profiles. Here the
maximum for KANSAS lies at about 0.3 z; as in Nieuwstadt’s and Schumann'’s
models. The variance of the u-velocity fluctuations is shown in Fig B.1c and B.1f.
Here the KANSAS profile most closely resembles Mason'’s, except near the
surface where it is more like Schumann’s. KANSAS’ value at the surface is less
than the other models. All of the statistical profiles compare reasonably well for

KANSAS and the other LES models.
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Fig. B.1. Statistical profiles from Nieuwstadt et al. (1991) and KANSAS. Horizontally averaged
and temporally averaged (over the period of t = 107 -117) profiles of: a) total (resolved-scale

plus SGS) potential temperature flux, (W'B')/ Q.: b) total vertical velocity fluctuation variance,

(ww’) I w? ;c) total u-velocity fluctuation variance, (1'u’)/ w?
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