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Part 1

Regulation of Transcription in 

Saccharomyces cerevisiae



Chapter 1 

Literature Review



Introduction

I. Ribosomal RNA transcription

Ribosome biogenesis is a complicated process which has intrigued researchers for 

decades. Since protein synthesis consumes considerable cellular resources, it is not 

surprising that this process is tightly regulated. In order to survive, organisms are required 

to detect changes in the environment and respond to these signals by changing the rate of 

ribosome production to meet the translational needs of the cell. By mass, ribosomes are 

composed of two-thirds ribosomal RNA (rRNA) and one-third ribosomal proteins (r- 

proteins). In prokaryotes, only one RNA polymerase (RNAP), is responsible for 

synthesizing the rRNA and the r-protein mRNA, thus allowing for a single target of the 

regulatory signals. In eukaryotes, the process is more complex and requires the 

orchestration of three nuclear RNA polymerases to produce the ribosomal constituents.

In eukaryotes, ribosome biogenesis requires the coordinated synthesis of four 

ribosomal RNA species transcribed by RNAP I (17-18S, 5.8S, and 25-28S rRNA) and 

RNAP III (5S rRNA), and approximately 80 ribosomal proteins translated fix>m mRNAs 

synthesized by RNAP II (Jacob, 1995) (Figure 1). These four rRNA transcripts are then 

assembled into the 40S and 60S ribosomal subunits which are in the nucleus. Once 

assembled, the immature subunits are then transported out of the nucleus and into the 

cytoplasm to form complete ribosomes. In all cells, from prokaryotes to vertebrates, rRNA 

gene expression is regulated in order to maintain a constant number o f ribosomes in the 

cell.

Various approaches have been developed in order to elucidate the role of gene 

promoters and other cis-acting elements as well as trans-acting protein factors which 

cooperate to direct the specific RNA polymerases in controlling gene expression. The 

study of the ribosome biogenesis offers a unique system by which the coordination of gene 

expression as well as growth rate dependent transcriptional regulation can be studied.



This chapter will focus on what is currently known about transcription by RNA 

polymerase I (RNAP I) in eucaiyotic organisms with an emphasis on the yeast 

Saccharomyces cerevisiae. The DNA elements and basal transcription factors essential for 

RNAP I transcription are described.
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Figure 1: Ribosome biogenesis in yeast. RNAP I synthesizes a 35 S transcript which 
is processed into the three largest rRNAs (18 S, 5.8 S and 25 S) while RNAP IE produces 
the 5 S transcript The ribosomal proteins are synthesized in the cytoplasm and transport
ed into the nucleus and assembled with the rRNAs to form the immature ribosomal 
subunits. The immature subunits are then tranported to the cytoplasm for assembly of the 
mature ribosome.



n . Cis-acting elements

Ribosomal RNA gene organization in eukaryotes—Ribosomal RNA is a major 

structural component o f ribosomes and multiple copies of the rRNA genes are required to 

meet the demand. The rRNA gene (rDNA) is highly reiterated and is arranged in a tandem 

array in clusters o f head-to-tail repeats separated from the next unit by an intergenic spacer 

that ranges in size from 2 kb to over 30 kb, depending on the organism (Jacob, 1995). In 

most species the number of copies of rDNA ranges from 100 to 5000, which are located at 

one or more chromosomal loci. In yeast, there are approximately 150 copies o f  the 9.1 kb 

rDNA unit located on chromosome Xn (Petes, 1979). A yeast strain has been engineered 

in which all o f  the rDNA was deleted from chromosome XII and replaced by multiple 

extrachromosomal plasmids, each bearing a single rDNA repeat (Nierras et al., 1997). This 

strain grew reasonably well and responded to physiological stimuli, which indicated that 

neither chromosomal location nor repetition is important for RNAP I regulation and 

ribosome assembly. Although organisms contain multiple copies of the rDNA gene, only a 

fraction o f these genes are actively transcribed. In order to measure the number o f active 

ribosomal genes, the adenosine analog, 5,6-dichloro-l-P-D-ribofuranosylbenximidazole 

(DRB) was added to a culture of growing cells (Scheer et al., 1984). DRB does not inhibit 

RNAP I transcription, but causes nucleoli to disperse into beaded structures. Each bead 

was then stained with anti-RNAP I antibodies and represented an active rDNA transcription 

unit which could be counted. This technique, which was used to study mammals, 

marsupials, birds, and amphibians, showed that the number of genes being actively 

transcribed was considerably less than the number of rDNA repeats (Haaf et al., 1991). In 

a separate study, in which a crosslinking agent psoralen was used to measure the fraction of 

active ribosome genes accessible to the reagent, it was estimated that for yeast growing in a 

rich media, only 46% of the genes were active. These studies suggest that RNAP I is not 

the limiting fector, as the active genes appear fully loaded with elongating polymerase, but



rather that the rate-limiting step is most likely to be the formation of a stable preinitiation 

complex at the rDNA gene promoter. This also suggest that some component of the 

preinitiation complex is probably limiting so that only a fraction of the rDNA gene 

promoters are able to initiate transcription.

The gene promoter—Despite the fact that RNAP I promoters have evolved rapidly 

and lack sequence conservation, RNAP I promoters in eukaryotes all appear to be organized 

with similar domain structure. Figure 2 shows a comparison of the yeast rDNA 

organization with that of a typical vertebrate. The gene promoter of most eukaryotes spans 

approximately 150 bp and consists of two regions, a core region and an upstream control 

element (UCE) or upstream promoter element (UPE), which are separated by a central 

region whose spacing is critical but precise sequence is variable. The core promoter 

generally extends from about 40 bp upstream to a few nucleotide pairs downstream from 

the initiation site o f transcription (Paule, 1993). For in vitro transcription with high 

concentrations o f template, the core element is sufEcient to direct accurate initiation which 

suggests that this is the primary element involved in recruiting the RNAP I to the promoter. 

In vivo, faithful initiation of transcription can occur in the absence of other cis-elements 

although the upstream binding domain heavily stimulates transcription (Choe et a l, 1992). 

The spacing between these two domains is critical in some vertebrate promoters suggesting 

that proteins bound to both elements must interact in a precise fashion (Haltiner et a i, 1986; 

Pape et al., 1990; Xie & Rothblum, 1992).

In yeast, the promoter domain structure is similar to other eucaryotic RNAP I 

promoters. The yeast promoter contains a core element, which encompasses approximately 

50 nucleotides including the transcriptional start site and extends to —40, and an upstream 

element, which extends from — 50 to -150. The functional necessity of these two domains



is similar to higher eukaryotes as the core element is essential for transcription both in vivo 

and in vitro while the upstream element is stimulatory (Vogelauer et al., 1998,).
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Figure 2: Comparison o f the intergenic spacers o f yeast rDNA and a typical
vertebrate. The diagram shows a segment of tandemly repeated rDNA. The gene 
regions are separated by the intergenic spacer which contains all of the transcriptional 
regulatory elements. The diagram is not drawn to scale.



The enhancer elements—The intergenic spacers o f rDNA contain sequences that 

have a strong positive influence on transcription. These segments of DNA, called 

enhancers, can stimulate transcription from the promoter and generally function independent 

o f orientation or distance. They were first located within the intergenic spacers from frog 

DNA and characterized as 60 bp to 80 bp repetitive elements which occurred in blocks o f 6- 

12 units (Moss, 1983). In general, each repeat block is preceded by a “spacer promoter” 

which itself is recognized by RNAP I and, under ill-defined conditions, is subject to 

transcription by RNAP I. The function of the spacer promoter remains unclear. It has been 

shown that enhancers act in cis to stimulate adjacent promoters but compete against 

promoters located in trans. Furthermore, promoters in cis to multiple enhancers are 

preferentially transcribed when in competition with promoters that contain fewer repeats. It 

is thought that enhancers increase transcription by increasing the formation o f stable 

preinitiation complexes at the gene promoter. Although the mechanism for this is not wdl 

understood, it has been observed that enhancers appear to compete for binding some 

limiting factors essential for preinitiation complex formation (Pikaard et a i, 1990).

In Saccharomyces cerevisiae, a single copy 190 bp enhancer element is required 

for maximal transcription of the rDNA. The enhancer is located 2 kb upstream of the 

initiation site and just downstream o f the rRNA precursor and does not contain a spacer 

promoter. Binding sites for ABF 1 and Reb 1, two nuclear proteins, have been identified 

near the yeast rDNA enhancer (Ju et a l, 1990; Kang et a l, 1995; Morrow et a l, 1989; 

Morrow et a l, 1990). Reb 1, boimd at this site, has been implicated in termination o f 

transcription by RNAP I (Lang et al., 1994) while the function of ABF 1 remains unclear. 

Neither of these proteins have been shown to affect enhancer function or interaction with the 

enhancer element
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ni. Trans acting Factors

Work done in higher eukaryotes to identify trans-acting factors involved in rDNA 

transcription—Specific transcription by all three nuclear RNA polymerases requires a 

concerted effort between multiple protein factors and the RNA polymerase. This complex 

process requires that the transcription factors assemble with the distinct promoter to form a 

preinitiation complex. The recruitment of the polymerase to the promoter creates the 

formation of an initiation competent complex. After the formation o f the first several 

phosphodiester bonds of the RNA, the polymerase enters the elongation phase where it 

moves along the DNA extending the growing RNA chain. Once the gene is transcribed, 

both the polymerase complex and the RNA are released at the terminator.

Major efforts have been made in many laboratories to elucidate the components of 

the RNAP I transcription machinery in an attempt to better understand this entire process. 

Three rra/ty-acting factors, which are essential in rDNA specific transcription initiation, have 

been identified and characterized in the human system. The activities of these three factors 

are conserved throughout various eucaryotic systems. Other systems have identified 

additional factors which associate closely with the polymerase and may be involved in the 

transcription of rDNA. These factors however are not considered to be subunits o f the 

polymerase. Below is a brief summary of the various rra/u-acting factors involved in 

rDNA transcription in eukaryotes with special emphasis on the components of the yeast 

RNA polymerase I transcription system.

RNA Polymerase I—Three nuclear RNA polymerases have been extensively 

purified from a variety of eucaryotic organisms. Transcription analysis has confirmed tiiat 

RNAP I only catalyses the synthesis of ribosomal RNA in the nucleus (Nogi et ai, 1991). 

The exact composition o f this multi-subunit enzyme is rather conjectural in higher 

eukaryotes although for most eucaryotic the composition of the RNAP I enzyme are similar

11



in structure composed o f two large subunits (homologous to the p and P ’ o f E. coli 

RNAP) as well as several other smaller subunits some o f which are shared with RNAP II 

and III. The core mammalian RNAP I is a large complex enzyme with an approximate 

molecular weight of 500-600,000 Da. Recent studies report that mammalian RNA 

polymerase I is composed o f at least 12 subunits with 3 associated factors (PAFs) (Hanada 

et al., 1996; Hannan et a i, 1998). Four of the mammalian RNAP I subunits have been 

cloned including the largest subunits A190 and A127 which are analogous to the P and p ’ 

subunits of E. coli (Hannan et al., 1998; Sentenac et a i, 1992). The other cloned subunits, 

AC40 and AC 19 (Gadal et a i, 1997; Song et a i, 1994) are common to both RNA 

polymerase I and III. Comparison of the polypeptide pattern of homologous RNA 

polymerases from different organisms has found certain subunits to be functional analogs 

(Sentenac, 1985).

Upstream Binding Factor (UBF)—  UBF, the first well-characterized RNAP I 

trans-diCtmg factor, has been purified to homogeneity from human, mouse, frog and rat 

cells. It exists as a dimer with each subunit having a molecular weight ranging from 85 to 

97 kDa. UBF has been found to bind promiscuously to regions o f the core promoter, the 

upstream control element and the enhancer elements. A consensus sequence has not been 

identified within these various binding regions, rather it is thought that UBF recognizes a 

general DNA conformation. UBF is a member of a family of transcription factors that 

contain a common DNA binding motif, the high mobihty group (HMG) domain. HMG 

boxes are highly basic domains o f about 80 amino acids in length that were first recognized 

as having significant similarity to elements present in the small chromosomal proteins 

HMGl and HMG2. The number of HMG boxes differ among species, for example in 

human UBF there are six HMG boxes while va.Xenoptts there exist only five, and is one of 

the determinants o f species specificity (even though the xUBF and hUBF give identical

12



footprints on both the Xenopiis and human promoters). It has been suggested that each 

HMG-box within the UBF has a specific fiinction. These functions may include DNA 

sequence selection and provision o f specific interfaces involved in protein-protein 

interactions with other transcription factors (Grummt, 1999). The N-terminal region of 

mammalian UBF makes up the dimerization domain of the protein while the highly acidic 

C-terminal region is involved in transcription interaction (Hu et a i, 1994). This C-terminal 

domain has also been shown to be subject to regulatory modifications. It appears, that in 

order for UBF to activate transcription, serine residues within the acidic C-terminus must be 

phosphorylated (O'Mahony et al., 1992a).

HMG-box proteins are able to bend DNA (Ferrari et a i, 1992; Giese et al., 1992). 

In one study, Xenopas UBF was shown to loop DNA firagments as small as 150 bp 

(Pumamer al., 1994). In another study, electron micrograph image analysis demonstrated 

that a single dimer of UBF could organize 180 bp of DNA into a loop o f -360° (Bazett- 

Jones et al., 1994). A possible hypothesis is that a UBF dimer, that has the promoter region 

o f the DNA wrapped around it, could bring the core region and the UCE into close 

proximity which would allow for physical interaction o f transcription factors with both 

promoter elements. This is consistent with the extended footprint seen when hUBF and 

SL-1 (selectivity factor) were footprinted on human rDNA promoters (Jantzen et al., 1992). 

Thus, UBF-DNA complexes may provide productive interactions between transcription 

factors bound at these two recognition sites that are separated by 120 bp. This model is 

further supported by experiments demonstrating spacing changes between core and the 

UCE affect transcription. Specifically, a one-half helix turn change abolishes activation 

while a full helix tum does not affect activation (Clos er n/., 1986; Windle & SoUner-Webb, 

1986; Xie & Rothblum, 1992).

13



Promoter Selectivity Factor I (SL-1)—An intrinsic property o f gene transcription 

by RNAP I is the species specificity of the initiation reaction. Studies have shown that die 

factor SL-1 in humans (Rib 1 in Xenopus (McStay et a l, 1991), TIF-IB or Factor D in 

mouse (Grummt et al. 1990), and rSLI in rat (Smith et a i, 1990) interacts with the 

ribosomal gene promoter and is responsible for conferring the species-specific transcription 

of rDNA (Bell et a i, 1990). Human SL-1 cannot replace mouse TIF-IB in transcription 

assays as weU as TIF-IB cannot reprogram human polymerase machinery to initiate 

transcription on the mouse promoter. SL-1 is a multiprotein complex which functions to 

interact with the basal element of the rDNA promoters forming a preinitiation complex 

which recruits RNAP I to the template. SL-1 is composed of the TATA binding protein 

(TBP) and TBP associated factors (TAFs) (Comai et a i, 1992). TBP is a universal 

transcription factor which is also involved in class II and III gene transcription (Rigby, 

1993; Sharp, 1992). Evidence has been presented in which a chimeric complex of hTBP 

and mouse TAF’s exhibited specificity for the mouse promoter. This suggests that TBP 

can be exchanged between human and mouse factors and that the TAFs associated with SL- 

1 provide polymerase specificity of transcription. Furthermore, UV crosslinking 

experiments have also shown that the largest TAFs bind to the rDNA promoter supporting 

the direct role of these proteins in species specificity (Rudloff et a l, 1994). In the human 

reconstituted system, SL-1 requires the initial binding of UBF to the promoter in order to 

form a stable preinitiation complex (Bell et a l, 1990; Bell et a l, 1989). In contrast, the 

mouse factor (TIF-IB) does not require the presence o f UBF to interact with the promoter 

although UBF stabilizes this interaction. The formation of a preinitiation complex by SL-1 

is capable of directing multiple rotmds of RNA polymerase recruitment to the promoter.

Polymerase I  Associated Factors—Additional factors have been identified as 

copurifying with RNAP I, but are not tightly bound subunits. TIF-IC has been identified as

14



a constitutive factor with a native mass of 65 kDa (Schnapp et a i, 1994a). It has been 

suggested that TIF-IC is required for assembly of detergent resistant initiation complexes 

and formation of the first phosphodiester bond. These studies also indicate that TIF-IC acts 

to stimulate overall transcription elongation rate by possibly reducing the time polymerase 

spends in pause sites (Schnapp et aL, 1994b). The activity o f this factor closely resembles 

that of TFIIF (RAP30/74) in class II gene transcription. TFIIF has two subunits which 

have separable functions, one of which plays a role in iiutiation and the other plays a role in 

elongation (Conaway, 1991; Conaway, 1990). There are several functional properties which 

TIF-IC and TFIIF have in common. Both TIF-IC and TFIIF interact with the polymerase 

and this interaction suppresses nonspecific initiations. They are both required for stable 

association o f RNA polymerase with the respective promoters for the formation of 

productive initiation complexes. Finally, both play a role in initiation and elongation 

(Conaway & Conaway, 1991; Schnapp et a i, 1994a). The fact that other laboratories have 

not identified or characterized factors which participate in elongation can be attributed to the 

association of this factor with the polymerase. Therefore, this factor could be a component 

of their crude polymerase fiaction. Alternatively, differences in assay conditions could also 

be a contributing factor in the dispensability of this factor in their reconstituted systems.

Besides TIF-IC, several laboratories have identified factors in the mouse 

reconstituted system which are required to convert a stable preinitiation complex into a 

productive initiation complex. This activity, which has been called TIF-IA, TFIC (Mahajan 

et a i, 1990; Mahajan & Thompson, 1990), and factor C* (Brun et a i, 1994), may represent 

the same biochemical compwnent isolated under various conditions. This conclusion 

remains to be verified since there are no antibodies to these factors and none have been 

cloned. TIF-IA factor associates very tightly with the polymerase and conveys a specific 

initiation competence to RNAP I. It is thought that after initiation, TIF-IA is liberated firom 

the initiation complex and fecilitates transcription fi"om templates bearing preinitiation

15



complexes lacking TIF-IA. Moreover, the rate o f reinitiation is increased by TIF-IA activity 

(Schnapp et a i, 1990). In this regard, TIF-IA may be considered a functional homologue to 

the bacterial factor. TIF-IA has also been implicated in growth-dependent regulation of 

rDNA transcription which will be discussed later in further detail. Figure 3 illustrates a 

model for the formation o f the RNAP I initiation complex in mouse.

16



RNAP I

TIF-m /SLl

RNAP I

Figure 3: Model for the formation o f die RNAP I initiation complex in moose. The
TBP-TAF complex, TIF-IB, and UBF, first bind to the core element of the rDNA 
promoter. Next, RNAP I and the two associated factors, TIF-IA and TIF-IC, are recruit
ed via protein-protein interactions.
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Yeast RNAP I  transcription complex—The RNA polymerase I enzyme from yeast 

has been purified and all of the subunits have been cloned. Yeast RNAP I is composed of 

14 distinct subunits each o f which has been genetically tested for its function in rRNA 

transcription (Thuriaux et a i, 1995). The subunits of this enzyme can be classified into 

three groups: i) four core subunits: P’ like (A 190), P-like (A135) and two similar to the 

bacterial a  subunits (AC40 and AC 19); ii) five subunits common to all three RNA 

polymerases: ABC27, 23, 14.5, lOa, 10b; and iii) five RNAP I specific subunits: A40, 43, 

34.5, 14, 12.2 (Sentenac eta/., 1992).

The majority of the RNA polymerase I subunits are essential for growth except for 

the A34.5 and A49 subunits which are not strictly required. Experimental evidence has 

demonstrated that the two largest subunits, which contain zinc fimgers, cross-link to nascent 

chain RNA (Sentenac et a i, 1992). The A l35 subunit contains a putative nucleotide 

binding domain suggestive o f a role in elongation (Riva et ai, 1987; Sentenac et a i, 1992). 

The overall structure of yeast RNAP I has been determined by examination of the two- 

dimensional crystals by electron microscopy (Schultz et ai, 1993). The location o f the 

major subunits within this structure have been determined by immunoelectron microscopy 

(Klinger et a i, 1996).

The laboratory o f Masayasu Nomura has taken advantage of the ease with which 

yeast can be genetically altered and used genetic techniques to identify transcription factors 

specifically required for RNAP 1 transcription. Their screen involves the use of strains 

carrying the 35S rRNA gene fused to the GAL7 promoter on a plasmid. Mutants were 

isolated which were specifically defective in transcription of the chromosomal rDNA by 

RNAP I, but whose growth could be rescued by the synthesis o f the rRNA by RNAP II. 

This screen has identified a variety of protein complexes which have similarities to the 

transcription factors in the higher eukaryotes.
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One complex known as the core factor (CF) was found to be composed o f three 

proteins encoded by RRN6 , RRN7, and RRNII genes (Keys et aL, 1994). This complex is 

essential for forming a transcription-competent preinitiation complex although stable 

binding of this factor with the promoter is dependent on the initial binding of other factors. 

Additionally, CF has been shown to interact weakly with TBP in vitro. Nomura and co

workers have hypothesized that CF is the functional homologue to the metazoan SL-1 factor 

(Figure 4).

Another factor identified by this screen, UAF (upstream activating factor), has also 

been characterized (Keys et ai, 1996). UAF is a multiprotein complex containing  five 

proteins, the Rm5, Rm9, RmlO proteins and histone 3 and 4. This factor interacts with the 

upstream element o f the promoter and greatly stimulates in vitro rDNA transcription but 

unlike the CF it is not essential. Template commitment experiments demonstrated that UAF 

is apparently bound stably to the template and is necessary and sufficient for template 

commitment Nomura’s group also studied the interaction of TBP with these two 

complexes and reported that TBP interacts most strongly with UAF. Moreover, their results 

indicate that TBP together with UAF participates in the recruitment of CF to the rDNA 

promoter to form a stable preinitiation complex.

The third transcription factor identified and characterized by this genetic screen is 

encoded by the RRN3 gene (Yamamoto et a i, 1996). This 72 kDa protein is specifically 

required for rDNA transcription by RNAP I. It does not appear to be involved in the 

formation o f stable preinitiation complexes. Rather, it interacts directly with RNA 

polymerase I stimulating its recruitment to the promoter. More specifically, the rm3p 

interacts in vitro with the A49 and A34.5 subunits which are unique to RNAP I.
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UAF

RNAP I

Committed Complex

Initiation Complex

F%nre 4: Model for the formatioii o f  the RNAP I initiation complex in yeast. The
two elements of the yeast rDNA promoter, the upstream element (UE) and the core ele
ment (CE) are shown as open boxes. The upstream activating factor (UAF), which is 
composed of the Rm5p, Rm9p, and RmlOp proteins and histones 3 and 4, binds to the 
UE. The TATA-binding protein (TBP) and the core factor (CF) join the UAF and bind to 
the CE to form a committed complex. The RNAP I and the Rro3p protein are recruited 
to the promoter to form the initiation complex. Double-headed arrows indicate observed 
interactions between UE, UAF, CF, and TBP (reviewed in Milkereit et al.).
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Our laboratory has designed a protocol to begin the biochemical dissection of the 

components of the rDNA transcription complex allowing for in vitro experiments to 

determine the molecular mechanisms regulating rRNA synthesis (Riggs et a i, 1995). We 

have identified three biochemical firactions required for the specific transcription of the 

rDNA. A high Q column developed with a KCl gradient is used to firactionate the 

transcriptional machinery fi-om a crude cell extract into three biochemical fractions Q-A Q- 

B, and Q-C. Characterization of these components by non-specific transcription assays has 

revealed that all of the RNA polymerase activity is present in the Q-B fraction. This activity 

was due to the presence o f RNAP I as it was not affected by a-amanitin or tagetin which are 

inhibitors of RNAP II and RNAP III activity respectively. Gel retardation and template 

commitment assays identified fraction Q-A to contain the factor(s) necessary for the 

formation o f the preinitiation complex which commits the template to transcription. In 

addition, DNase footprinting indicates that this firaction interacts with two domains of the 

promoter which have been shown to be critical for stable transcription complex formation.

The objective o f part one of this dissertation is two fold: i) Chapter Two examines 

the environmental conditions under which rRNA synthesis is regulated in yeast and ii) 

Chapter Three examines which component o f the transcription machinery is the target o f 

the regulatory signals.
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Chapter 2
Regulation of the RNA polymerase I and III 

transcription systems in response to growth conditions

Eileen M. Clarice, Cheryl L. Peterson, Aaron V. Brainard and Daniel L. Riggs"
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Abstract

To better understand the mechanisms that regulate stable RNA synthesis, we have 

analyzed the RNA polymerase I and III transcriptional activities of extracts isolated from 

cells propagated under a variety of conditions. Under balanced growth conditions the levels 

of both RNA polymerase I and III specific transcription increased proportionally with 

growth rate. Upon nutritional starvation, RNA polymerase I transcription rapidly declined, 

followed by 5S rDNA, and eventually tDNA transcription. Transcriptional activities in 

extracts were restored when the non-growing cultures were resuspended in firesh medium, 

even though growth did not resume. The differential expression of 5S rDNA and tDNA 

genes in extracts prepared fi’om cells subjected to partial starvation was traced to a 5S 

rDNA-specific inhibitor, and not to a defect in any RNA polymerase III transcription factor. 

Characterization o f  this inhibitor indicated that it was not 5S rRNA. It was sensitive to 

phenol extraction, resistant to RNase, and its target did not appear to be TFIIIA. Not all 

treatments that slowed or stopped growth down-regulated the stable RNA transcription 

apparatus. Cells which have been subjected to either energy starvation or cycloheximide 

treatment still retain the ability to synthesize stable RNA in vitro, suggesting the presence of 

alternative regulatory mechanisms.
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Introduction

It has been appreciated for a number o f years that organisms adjust their 

translational capacity to meet, but not exceed, the need for protein synthesis. A central 

aspect of this regulation is the control of stable RNA (tRNA and rRNA) production. In 

prokaryotes the three rRNA genes are cotranscribed with a number of tRNA genes by the 

same RNA polymerase, providing a simple target o f regulation, initiation of transcription. 

In eukaryotes three RNA polymerase complexes are responsible for stable RNA synthesis. 

RNA polymerase 1 (RNAP 1)1 produces the 35S rRNA molecule which is processed into 

the three largest rRNAs, while the smallest rRNA and tRNAs are produced by RNAP 111. 

In vivo analyses o f Saccharomyces cerevisiae under a variety of treatments clearly establish 

a direct link between translational load, stable RNA synthesis and ultimately ribosome 

biogenesis. Under some conditions the coordinate synthesis o f both rRNA and tRNA is 

observed. For example, cells with slower balanced (constant) growth rates, have decreased 

levels of both rRNA and tRNA synthesis, although tRNA synthesis is decreased to a lesser 

extent (Waldron, 1977). Similar coordinated regulation is observed during some 

unbalanced, transitory, growth conditions. Upon nitrogen starvation, both rRNA and tRNA 

synthesis are quickly shut off (Ohver & McLaughlin, 1977). Likewise, in response to a 

nutritional upshift, the synthesis of both rRNA and tRNA rapidly increases, although rRNA 

at a faster rate (Kief & Warner, 1981; Ludwig, 1977; Waldron, 1977). In some cases the 

rates of rRNA and tRNA synthesis are uncoupled. Upon amino acid starvation, rRNA 

synthesis is diminished by about 80%, while tRNA synthesis is only modestly affected 

(Oliver & McLaughlin, 1977; Shulman et al, 1977). Regulation of rRNA or tRNA 

synthesis has also been observed in higher eukaryotes in response to a variety of additional 

treatments. These include hormones (Cavanaugh & Thompson, 1983), the tumor-

24



promoting phorbol ester TPA (Garber et aL, 1991; Vallett et a i, 1993), and entiy into the 

encystment phase in Acanthameoba (Paule et a i, 1984).

The molecular basis of the regulation of rRNA synthesis by RNAP I has been 

examined in several organisms under a rather limited spectrum of conditions (reviewed in 

references (Paule, 1993; Reeder, 1992; Sollner-Webb & Tower, 1986). Because of 

technical considerations, studies in higher eukaryotes have been largely confined to the 

examination of cells in unbalanced growth (Bateman & Paule, 1986; Grummt, 1981; Tower 

& Sollner-Webb, 1987). In these cases, this response is due to the inactivation of a factor 

found associated with RNAP I. This factor, known as C*, TIFI-A, or TFIC (Brun et ai, 

1994; Buttgereit et a l, 1985; Mahajan et a i, 1990; Tower & Sollner-Webb, 1987) is 

necessary for formation of the initiation complex, and is inactivated early in the transcription 

cycle (Brun et a i, 1994; Mahajan et ai, 1990; Schnapp et ai, 1990). Although the 

modification of a factor associated with RNAP I has been the best studied regulatory 

response, several lines o f evidence suggest the presence of other regulatory mechanisms, 

including the modification of an RNAP I transcription factor (Larson et aL, 1993; 

O'Mahony et aL, 1992b; Voit et ai, 1992), or the accumulation of specific inhibitors 

(Kermekchiev & Muramatsu, 1993; Kuhn, 1995). Less is known about the molecular basis 

of RNAP III regulation. The transcription factor TFIIIB is inactivated during cessation of 

growth (Died et aL, 1995; Gokal et aL, 1986; Sethy et aL, 1995; Tower & Sollner-Webb, 

1988) and mitosis (Gottesfeld et aL, 1994; White et aL, 1995). A transcriptional inhibitor 

which interacts with the TATA-binding protein in TFIIIB has been identified, although it 

function in regulation is not clear (White et aL, 1994). In contrast, viral infection and serum 

factors have been shown to alter the activity of the TFIIIC fiaction (Fradkin et aL, 1987; 

Hoeffler et aL, 1988). Recently the differential expression o f the 5S rRNA and tRNA 

genes during encystment in Acanthamoeba castellanii has been attributed to the 

disappearance of the 5S rRNA spedfic transcription factor TFIIIA.

25



Despite this progress, very little is known about the overall picture o f stable RNA 

synthesis in any one organism, as few studies have examined both the RNAP I and III 

transcription complexes under a variety of conditions. There are compelling reasons to 

address these questions using Saccharomyces cerevisiae. The ease with which yeast are 

cultivated in defined media and the availability of a number of genetic backgrounds facilitate 

the manipulation of balanced and unbalanced growth rate by altering the growth media. 

Despite these advantages, virtually all o f the work in yeast has been restricted to in vivo 

analysis, largely due to the technical difficulties o f isolating RNAP I and III transcription 

extracts fi-om small quantities of cells. To facilitate the in vitro analysis o f stable RNA 

transcription, we recently developed a method for the preparation o f both RNAP I and 

RNAP III (5S rDNA and tDNA) transcription extracts firom less than one gram of cells 

(Riggs et ai, 1995). This protocol minimizes the chance of inactivation due to trivial 

reasons, as no column chromatography is involved, and only at the last step is the RNAP I 

extract separated firom the RNAP III extract. Here we describe the analysis of stable RNA 

synthesis in extracts prepared firom cells which have been subjected to a variety o f different 

growth conditions.
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Materials and Methods

Plasmids— The plasmid pDRlO linearized with £coRV was used to assay for 35S 

rRNA synthesis by RNAP I (Riggs e ta i,  1995). The 5S rDNA gene used in transcription 

and footprinting experiments was contained on plasmid pBBIIIR (Braun et aL, 1989). 

The plasmid pTZl (Kassavetis era/., 1989), which contains the SUP4 t R N A ^ y r  gene with 

a G62 to C promoter up mutation, was used for tDNA transcription assays.

DNase footprinting—Voq probe used for footprinting was the 5 S rDNA-containing 

£coRI - Hindlll fragment from pBBl 1IR. The EcoPl site was labeled by filling in the 3 ’ 

recessive end with [a-^^P]dATP using the Klenow fi-agment of DNA polymerase I. 

Chromatographic fractions were incubated for 20 m at 30°C with 2 finol of probe in 

reaction containing 20 mM Tris acetate pH 7.5, 200 mM potassium glutamate, 10 mM 

magnesium acetate, 10 mM B-mercaptoethanol, 10% (v/v) glycerol, 0.5% (w/v) polyvinyl 

alcohol, and 100 ng o f vector DNA (pBSKSII-) in a total volume of 20 pi. Samples were 

digested with 0.05 to 0.1 units of DNase I (RNase-free; Boehringer-Mannheim) for 0.5 to 

2 m at 30°C. Digestion was terminated with the addition of 10 pi of stop mix which 

contained 75 mM EDTA, 0.5 mg/ml sheared salmon sperm DNA and 1.7 M potassium 

acetate. Samples were extracted with phenol-chloroform and precipitated with ethanol. The 

pellets were resuspended in formamide load buffer and run on 10% polyacrylamide (37.5:1, 

acrylamideibisacrylamide) containing 8 M urea.

Growth o f  cultures—The yeast strain 022 {MATa his2-I) was used for the steady 

state growth, as well as the histidine starvation experiments (Figs. 1 and 4, respectively). 

This strain was selected because of its genetic background and high growth rate in minimal 

medium. In these experiments strain 022 was cultivated in yeast carbon base (Difco) 

containing 2% w/v glucose and 20 pg/ml histidine (YCB+his). This medium was 

supplemented with various nitrogen sources (8  mM): ammonium sulfate, glutamine, valine,
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or tyrosine. For the balanced growth experiments, an overnight culture grown in 

YCB+his+ammonium sulfate medium was used to inoculate YCB+his medium containing 

the appropriate nitrogen source. These cultures were incubated for 2-3 generations after the 

new balanced growth rate was achieved before they were harvested. To elicit histidine or 

nitrogen starvation, a low density (<1.0 A595  unit) exponential phase culture growing in

YCB+his+ammonium sulfate was diluted with approximately ten volumes of fresh warm 

media lacking either histidine or ammonium sulfate. Further dilutions into fresh, warm 

medium were made to keep cell density less than 1.0 A5 9 5  unit at all times. In all cases

supplementation of the starved cultures with the missing nutrient restored growth. Strain 

JHRY20-2CA1 grown in YEP (1% w& yeast extract, 2% wAf peptone, adjusted to pH 5.5 

with HCl) supplemented with glucose (2% w/v, unless otherwise noted) was used in the 

remaining experiments. Growth into stationary phase (Fig. 2) has been described in ref. 

(Riggs era/., 1995).

Chromatography o f  the transcription extracts and characterization o f  the 

fractions—The protocols for cell breakage, extract preparation, Q chromatography, and 

transcription assays have been previously described (Riggs et ai, 1995). For the 

chromatography of the RNAP III factors the "low salt supernatant" was chromatographed 

on a Q column developed with a 50 to 700 mM KCl gradient The inhibitor was removed 

from 5S rRNA'/tRNA"*" extracts by adjusting the extract to 500 mM KCl and loading on a 

Q column (Macro-prep® high load, Bio-Rad; 10 mg protein load per ml resin), and the flow 

through was collected and assayed. Fractions were treated with RNase by incubation in the 

presence of RNase A immobilized on acrylic beads (Sigma, catalog number R-7005) which 

had been prepared in the following manner. First, approximately 3 mg of RNase beads was 

extensively washed with 1 ml volumes of water three times. Protein binding sites on the 

beads were blocked by incubation in the presence of 50 pg BS A in a volume of about 100 

pi at room temperature for 30 min followed by another extensive water wash. One hundred
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|ii of the Q-550 fraction was added to the moist beads and incubated at room temperature 

for 30 min with occasional gentle mixing. The supernatant was withdrawn and passed 

through a small empty chromatography column to remove the residual beads. Digestion o f 

the RNA was verified by denaturing polyacrylamide gel electrophoresis of the treated 

sample.
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Results

In the experiments described below, we examined the RNAP I and III transcriptional 

capacity of extracts prepared from cells in balanced and unbalanced growth. In exponential 

phase, cells are in balanced growth, that is all cellular constituents are synthesized at a 

constant rate. In contrast, changes in environmental conditions provoke unbalanced growth 

conditions where the cellular components are differentially expressed, which enables the cell 

to adapt to the altered environment If  the new conditions permit growth, this transient 

phase of unbalanced growth yields to a new balanced growth phase, at a growth rate 

determined by the new growth conditions.

Balanced growth rate regulation o f stable RNA synthesis—We examined cultures 

growing at decreasing growth rates under steady state, balanced growth conditions. In these 

experiments the cell density was kept low (less than 1.0 A5 9 5  unit) by diluting the culture

into fresh, warm medium. The strain 022  was cultured in a minimal medium with glucose 

as the carbon/energy source and either ammonium sulfate, glutamine, valine or tyrosine as 

the sole nitrogen source. These cultures had generation times of 1.5, 3, 5 and 8 hours, 

respectively. The cells were harvested, and RNAP I and III transcription extracts (low salt 

pellets and supernatants) were prepared as previously described (Riggs et ai, 1995). The 

levels of specific RNAP I and HI transcription were analyzed in vitro using either a 35S 

rDNA (to assay RNAP I), 5S rDNA, or tDNA template. Extracts prepared from the cells 

having a reduced balanced growth rate supported reduced levels of both RNAP I and III 

transcription (Fig. 1), although RNAP 1 transcription was the most sensitive to the 

decreased growth rate. We have also observed similar results in response to changes in 

growth rate brought about by the substitution of different carbon/energy sources in a rich 

medium (for example see Fig. 6 C). This adjustment o f the RNAP 1 and IE transcriptional
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activities in response to a range o f balanced growth rates appears to be sufficient to account 

for the regulation o f stable RNA synthesis observed under balanced growth condition in 

vivo.
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Figure 1: Stable RNA synthesis in extracts prepared firom cultures having decreas
ing steady state growth rates. Extracts were prepared from cultures grown in defined 
media containing either ammonium sulfate (AS), glutamate (Gin), valine (Val) or 
tyrosine (Tyr) as the sole nitrogen source with the indicated generation (doubling) times. 
The synthesis of the 35S rRNA transcript by RNAP I was assayed in the low salt pellets, 
while 58 rRNA or tRNA synthesis by RNAP III was determined in the corresponding 
supernatants, as described in materials and methods.
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Differential regulation o f  stable RNA synthesis during entry into stationary 

phase—We have also examined the cellular response to the imposition of unfevorable 

growth conditions. Previously, we characterized inactivation of RNAP I transcription 

during the transition between exponential phase, where glucose is fermented and the cells 

grow with a generation time of 1.5 h, and stationary phase (Riggs et a l, 1995). In this 

study we have extended this analysis by characterizing the 5S rDNA and tDNA 

transcriptional activities o f extracts isolated from cells during the transition phase. Three 

sequential samples were taken from a transition phase culture (samples A, B, and C in Fig. 

2, top). RNAP III transcription extracts prepared from these samples were assayed for 

tDNA and 5S rDNA transcription. While in early transition phase the RNAP III 

complexes were equally active on both templates, as the culture progressed further into the 

transition phase, a striking decease in 5S rDNA transcription was observed {bottom). 

Extracts prepared from the culture in mid-transition phase (such as sample B) were slightly 

decreased in tDNA transcriptional activity, while 5S rDNA activity was almost totally 

abolished. We have observed this differential expression in all extracts prepared from high 

density cultures. The persistent tRNA synthetic capacity in these slowly growing cells 

(generation times of greater than 24 h) in unbalanced growth is in sharp contrast to the lack 

of significant tRNA synthesis in extracts made from slowly growing cells in balanced 

growth (8  h generation time. Fig. 1).

It has been reported recently that several characteristics of stationary cells can be 

reversed by incubation in the presence o f glucose (Granot & Snyder, 1993). To determine 

if  stable RNA synthesis can be restored, we replaced the spent growth medium (in which all 

o f the glucose has been consumed) in transition phase cultures (like culture B in Fig. 2) 

with fresh growth medium. RNAP I transcription and 58 rRNA synthesis in extracts, 

which had been turned off completely, were activated by this treatment, and tRNA synthesis
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was further stimulated (Fig. 3̂ 4). When cycloheximide was in the recovery medium no 

activation occurred (lane 3). This activation was transient, as extracts prepared from cultures 

which had been incubated for longer than 1.5 h had significantly reduced levels o f  stable 

RNA synthesis (Fig. 3B). No significant growth (cell division) was observed, presumably 

because o f the high cell density, during the incubation period in fresh growth medium, and 

the only visible change in cell morphology was the appearance o f  buds which correlated 

with the peak of activation. Unlike other characteristics o f stationary phase ceUs, 

resuspension in a glucose solution was not sufficient to activate stable RNA synthesis. 

Only in the presence of glucose in a complete medium (either fresh or spent) were RNAP I 

and m  transcription activated.
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Flgore 2: Stable RNA syntibesis in extracts prepared from transition phase cultures.
Three samples of a culture growing in YEP glucose (2% w/v) were collected at the indi
cated times during the transition phase (the culture density was measured in A595 units). 
RNAP III extracts were prepared from each sample (A, B and C) and assayed with either 
a 5S rDNA or tDNA template (bottom). None of the three extracts contained RNAP I 
activity (not shown).

35



A.
Glucose

Cycloheximide

35S rRNA- 

SSrRNA-

tRNA-

B.

Time (h) 

35S rRNA-

SSrRNA

tRNA

Figure 3: Resnspension o f transition phase cattnres in firesh growth medium acti
vated RNAP I and HI transcription. A) A portion of a high density cell culture was 
resuspended in fresh YEP containing 2% (w/v) glucose, which was in one case supple
mented with cycloheximide. After 1.5 h incubation the cells were harvested and RNAP I 
and n i transcription extracts were prepared. The extracts were analyzed for RNAP I 
activity with a 35S rDNA template, or RNAP III activity on either a 5S rDNA or a tDNA 
template. B) Time course of activation and subsequent inactivation. Extracts were pre
pared from cultures which has been resuspended in fresh medium and incubated for the 
times indicated.
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Starvation fo r  essential nutrients regulates stable RNA transcription —One of the 

classical downshift conditions which has been extensively studied in prokaryotes is 

starvation for an essential amino acid. The collective change in gene expression, turning off 

rRNA and tRNA synthesis and turning on amino acid biosynthetic genes, is termed the 

stringent response. To examine this response in yeast, we shifted a culture o f a histidine 

auxotroph from minimal medium containing histidine into one lacking histidine. Under 

these conditions, the culture continues to grow at a 1.5 h doubling time as internal histidine 

pools are utilized, then it gradually stops growing (Fig. 4, top). An extract prepared from a 

culture having a reduced growth rate (extract A) did not support RNAP I or 5S rDNA 

transcription while tRNA synthesis continued (Fig. 4, bottom). An extract prepared from 

the culture after growth had ceased (extract B) was totally defective in stable RNA 

transcription. This response is specifically due to starvation for histidine, as 

supplementation of the nongrowing culture with histidine restores growth. The inactivation 

of the transcription we observed is sufBcient to account for the noncoordinated synthesis of 

rRNA and tRNA in response to amino acid starvation in vivo (Oliver & McLaughlin, 1977; 

Shulman et al., 1977). Using a similar approach we also examined the effect of starvation 

for nitrogen on RNAP I and III transcription in extracts (not shown). Within two hours 

after the growth rate changed, RNAP I transcription was turned off. Once again, when 

growth had ceased, all stable RNA synthesis was eliminated, paralleling what has been 

observed in vivo (Oliver & McLaughlin, 1977).
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Figure 4: Stable RNA synthesis in cnltnres subjected to histidine starvation. Cul
tures of a histidine auxotroph grown in minimal media were deprived of histidine by dilu
tion with fresh warm media lacking histidine. At all times the cultures were kept at a low 
cell density (less than 1.0 A595 unit); the growth curve {top) is the relative cell density 
(corrected for dilutions) plotted against time. RNAP I and m  extracts prepared from two 
independent cultures (A and B) were analyzed for the synthesis of 35S rRNA, 5S rRNA 
and tRNA (bottom). The control extracts were prepared from exponential phase cells 
collected from a culture grown in minimal medium containing histidine.
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Growth rate can be can be altered without affecting the activity o f  components o f  

the stable RNA transcription systems—Numerous studies suggest the activities of the 

RNAP I and III transcription systems are directly regulated by growth rate. We have 

identified several conditions under which the growth rate significantly decreases without 

altering the integrity o f any RNAP I or III transcription factors required for specific 

transcription in vitro.

Addition of the protein synthesis inhibitor cycioheximide to a culture in exponential 

phase results in the eventual cessation o f cell growth. Within several hours after addition, 

growth ceased at a cell density considerably lower than that of untreated cultures (Fig. 5, 

top). To our surprise RNAP 1 and III extracts prepared fi"om these cycioheximide treated 

cells were very active, even when protein synthesis had been inhibited for as long as 15 

hours (Fig. 5, bottom). Numerous extracts have been prepared from cycioheximide treated 

cultures, and as long as the addition was made to the cells while they were in mid

exponential phase (several generations before leaving exponential phase), the extracts were 

all very active. We have observed that the cycioheximide treatment for long periods of time 

made the cells much easier to break open. To preserve the transcriptional activities, the 

breakage with glass beads had to be carefully monitored to avoid excessive cell lysis, which 

inactivates extracts. These results with cycioheximide appear to be at odds with those of 

Died et al. (Died et a/., 1995), who observed specific inactivation of two components of the 

RNAP III factor TFIIIB in response to cycioheximide treatment. This discrepancy may be 

due to the cell density at which the cycioheximide was added, or differences between strains.

A second approach to examining the relationship between growth rate and stable 

RNA transcription was the manipulation o f the energy source. When energy is derived 

from glucose fermentation in a rich medium, cultures grow at the same rate regardless of the 

extent o f aeration. But in nonaerated cultures which contained limiting amounts of glucose 

(1% w/v), growth immediately ceased when the glucose was exhausted (Fig. 5, top), as the
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remaining carbon sources were not fermentable and there was insufficient oxygen present 

for respiration. These nongrowing cells were essentially energy starved. Growth 

immediately resumed if  glucose was added to these cultures or if the cultures were aerated. 

Extracts prepared from cultures which had been energy starved for as long as fifteen h 

retained significant specific RNAP I and III transcriptional activities (Fig. 5, bottom). A 

second approach we used to elicit energy starvation was to supplement a culture growing in 

a rich medium containing glucose with the non-metabolizable glucose analog glucosamine. 

Glucosamine inhibits the intracellular accumulation of glucose in vivo, possibly by acting as 

a competitive inhibitor of hexokinase, which is associated with the high affinity glucose 

uptake system (McGoldrick & Wheals, 1989). Glucosamine at low concentrations in the 

presence of glucose does not significantly alter glucose mediated catabohte repression, thus 

minimizing the changes in cellular metabolism which might be encountered when changing 

from glucose to a nonfermentable carbon source. When glucosamine was added to an 

exponential phase culture growing in YEP glucose (2% w&), the growth rate was decreased 

to a doubling time of about 10 hours (Fig. 5, top insert). Despite this slow growth rate, 

significant RNAP 1 and 111 activities were observed {bottom). When glucosamine was 

added to a higher concentration and incubation was continued until cell growth ceased, 

RNAP 1 activity was turned off, while RNAP HI transcription persisted (not shown).
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Figure S: The RNAP I and m  transcription syst^ns were not regulated in response 
to all treatments that inhibit growth. Energy starvation was elicited by growing a cul
ture without aeration in YEP medium containing limiting (1%) glucose {top, closed 
circles) or by the addition of glucosamine to an exponential phase culture growing in 
YEP containing 2% glucose {top graph inset). Glucosamine (1.5% w/v final 
concentration) was added at the time indicated by the arrow, and the dashed line repre
sents the 1.5 h generation time of an exponential phase culture. Inhibition of protein syn
thesis was achieved by the addition of cycioheximide to an exponential phase culture 
(open circles). Cycioheximide was added to a final concentration of 10 pgJvûL at a cell 
density corresponding to 0.8 A595 units (arrow). Extracts prepared from the samples 
taken at the last data point were assayed for RNAP I and III (5S rRNA) activities 
(bottom: lanes 1 and 4, control extracts from exponential phase cells; 2, cyclohexamide 
treated cells; 3, glucose starved cells; and 5, glucosamine treated cells).
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Restoration o f  RNAP I  and III transcription in inactive extracts—Based upon our 

previous results (Riggs et aL, 1995), and by analogy to other systems examined, one might 

predict that specific RNAP I and III transcription are regulated by inactivating one o f the 

essential transcription factors. We sought to identify the target o f these responses to 

different environmental conditions by restoring transcription in inactive extracts with 

chromatographic fiucfions prepared fix>m active extracts. One goal o f these experiments 

was to determine if  the responses to the different environmental insults shared a common 

target in the transcription apparatus. For example, do balanced growth rate control (such as 

slow growth on a poor nitrogen source) and the yeast "stringent response" both regulate the 

same component o f the RNAP I or III transcription complexes?

Extracts prepared firom transition phase cells, which do not contain RNAP I 

transcriptional activity, can be restored by the addition of the RNAP I B fraction, which is 

one o f the three chromatographic firactions required to reconstitute specific RNAP I 

transcription (Riggs et a i, 1995). The B firaction, which is inactive alone, fully restored 

activity to aU o f the inactive RNAP I extracts that we have examined (Fig. 6A-C). The B 

activity has been purified over several different columns, and in each case, the B activity 

(defined as the activity which restores specific RNAP I transcription in the presence of the 

RNAP IA  and C activities), the RNAP I non-specific transcriptional activity, and the ability 

to restore inactive extracts, have co-purified. Yeast appears to regulate the response to all 

these diverse environmental changes through a common mechanism, the modification of a 

factor which co-firactionates with the RNAP I enzyme.

In a similar manner, we identified the chromatographic firaction that restored specific 

RNAP III activity in extracts prepared fi'om treated cells. Active RNAP III (5S 

rRNA'^/tRNA'^ ) transcription extracts were loaded onto a Q column which was developed 

with a KCl gradient The fraction eluting in 250 mM KCl ("Q-250" fraction) was sufficient 

to restore 5S rDNA transcription in extracts fi'om nitrogen starved cells and slowly growing
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cells (Fig. 6D and E). The synthesis of 5S rRNA in a transition phase cell extract was also 

restored with this fraction to levels comparable the tDNA transcriptional activity (Fig. 6F). 

All of the inactive 5S rDNA transcription extracts examined were restored with the Q-250 

fraction. This same fraction also restored tRNA synthesis to extracts prepared from slowly 

growing cultures (Fig. 6G). Thus it appears that a factor(s) in the Q-250 fraction is the 

target of regulatory mechanisms which are responsible for the coordinate, as well as 

discoordinate, regulation of 5S rRNA and tRNA synthesis which have been observed both 

in our extracts and in -vivo.
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RNAP I extract 
RNAP IB  fraction

35S rRNA-

RNAP in  extract 
Q-250 fraction

5SrRNA-
tRNA-

RNAP n i extract 
Q-250 fraction

tRNA-

D.
+ + + + + +

+ + + +

Figare 6: RNAP I and DI transcription in extracts were restored by chromato
graphic fractions prepared frt>m exponential phase cell extracts. RNAP I activity in 
extracts prepared from cultures which were either starved for nitrogen (A), starved for 
histidine (B), or grown in YEP with glycerol as the carbon and energy source (C), were 
all restored by the addition of the RNAP IB  fraction (described in (36)). 5S rRNA syn
thesis in extracts from cultures which had been either starved for nitrogen (D), grown 
with valine as the sole nitrogen source, E), or were in transition phase (Fig. 2, F) was 
restored with the same Q-250 fraction. For comparison, tRNA synthesis in this extract 
was also assayed (lane 3). tRNA synthesis in an extract prepared from slowly growing 
cells (valine as the nitrogen source) was also restored by the same Q-250 fraction (G .̂
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Identification o f  a 5S rRNA specific inhibitor—Either of two simple models could 

explain the selective inactivation of 5S rDNA transcription (such as in transition phase 

extracts). Either a 5S rDNA-specific factor in the Q-250 fraction becomes inactivated, or 

alternatively, an inhibitor interferes with the activity of a factor in the Q-250 fraction on 5S 

rDNA templates. To distinguish between these possibilities, we performed extract mixing 

experiments. The addition of a 5S rRNA'/tRNA"*" extract to a 5S rRNA'^/tRNA'*' extract 

resulted in decreased 5S rRNA synthesis (Fig. lA, lanes 2 and 3), suggesting the existence 

of a 5S rRNA specific inhibitor. This effect did not appear to be due to saturation of the 

transcription assay, as doubling the amount of the 5S rRNA'^/tRNA'^ extract increased the 

level of 5S rDNA transcription (lane 4).

If this specific inhibitor is solely responsible for the lack of 5S rRNA synthesis in 

these cell extracts, when the 5S rRNAVtRNA"*" extract is chromatographed, we should be 

able to I) isolate the inhibitor in a chromatographic fiaction, 2) show that the inhibitor 

abolishes the ability of a Q-250 fi-action prepared from exponential cells to restore 5S 

rRNA synthesis, while not affecting the ability of this Q-250 finction to rescue tRNA 

synthesis, 3) restore 5S rRNA deficient extracts with the Q-250 fraction derived from the 

5S rRNAVtRNA"^ extract, and 4) restore 5S rRNA synthesis from the 5S rRNAVtRNA"^ 

extract by removing the inhibitor. To address these points we chromatographed a 5S 

rRNA7tRNA"^ extract on a Q column developed with a KCl gradient Individual finctions 

were then assayed for the inhibitory properties of the extract from which they were derived. 

A fiaction eluting in 550 mM KCl was found to have such an activity (Fig. 7B). When this 

Q-550 firaction was preincubated witii a Q-250 firaction from a 5S rRNA""" extract, the Q- 

250 fraction was no longer able to restore 5S rRNA transcription, although it could restore 

tRNA synthesis (7C). The most potent inhibition of 5S rRNA transcription required 

preincubation o f the 5S rRNA'/tRNA"^ and 5S rRNA‘*‘/tRNA"'‘extract before addition to 

the transcription assay, suggesting that this inhibitory property is the result o f direct
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interactions between factors in these two extracts, interfering with 5S rRNA synthesis and 

not the stability o f the transcript (not shown).
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A.
5S"/îRNA+ extract 

5S+/tRNA+ extract

5S rRNA-

tRNA-

B.
5S+/tRNA+ extract 
5S"/tRNA+ extract 

Q-550

5S rRNA-

+ +
+ + + +

A  : •

tRNA-

c.
Q-250
Q-550

SSrRNA-

tRNA-

5S"/tRNA~ extract

+ ++

Figure 7: Identification of an activity fix>m 5S rRNA-/tRNA+ extracts udikh specif
ically inhibited 5S rRNA synthesis. A, RNAP HI transcription with a mixture of a 5S 
rRNA-/tRNA+ and 5S rRNA+/tRNA+ extracts. B, Identification of a chromatographic 
fraction containing a 5S rRNA specific inhibitor. A  5S rRNA-/tRNA+ extract was chro
matographed on a Q column and the fractions were assayed for the inhibition of 5S 
rRNA and tRNA synthesis. A fraction eluting in 550 mM KCl (Q-550) had the same 
inhibitory effect on 5S rRNA synthesis as the extract from which it was derived 
(compare lanes 2 and 3). The Q-550 fraction from active extracts lack this inhibitory 
activity (lane 6 ). C, The Q-550 fraction interfered with the ability of the Q-250 fraction 
to rescue 5S rRNA- extracts. The fractions were pre-incubated before addition to a 5S 
rRNA-/tRNA- extract which was programmed with either a tDNA or 5S rDNA template.
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To determine if the presence of the inhibitor in the Q-550 fraction alone might 

account for the lack of 5S rRNA synthesis in these extracts, we examined the integrity o f 

the 5S rDNA transcription apparatus separated from the inhibitor. The Q-250 fraction from 

a 5S rRNA deficient extract was tested for activity on a 5S rDNA template. The Q-250 

fi-action from these extracts was able to rescue 5S rRNA synthesis in deficient extracts (Fig. 

8 A), suggesting that the 5S rRNA transcription system may still be intact To directly test 

this, we chromatographically separated the inhibitor from the RNAP III transcription 

apparatus. Using reconstitution studies with extracts from exponential cultures, it was 

determined that none of the components of the RNAP III transcription apparatus bind to a 

Q matrix in 500 mM K.C1. To recover the RNAP in  components fi'om a 5S rRNA'/tRNA"^ 

extract, it was adjusted to 500 mM KCl and then chromatographed through a Q column. A 

significant amount of 5S rDNA transcriptional activity was recovered in the flow through 

from these 5S rRNA deficient extracts (Fig. 8B). These experiments are all consistent with 

the proposal that the selective inactivation of 5S rRNA synthesis, which has been observed 

in vivo and in our extracts, is due to the accumulation of an inhibitor, rather than the 

inactivation of a RNAP III transcription factor.

We have characterized the Q-250 finction, as well as other firactions from the Q 

column, to identify the target o f this inhibitor. Using DNase footprinting on a tRNA gene, 

we detected TFIIIC in the Q-250 finction. This firaction did not contain a significant RNAP 

III activity, as measured by non-specific transcription assays. When the Q-250 firaction 

was supplemented with proteins eluted from a Q column between 300 and 500 mM KCl 

(the Q300-500 step firaction) tRNA synthesis, but not 5S rRNA synthesis, was reconstituted 

(Fig. 9 A. lanes 1 and 2). 5S rRNA synthesis required the addition of a step firaction eluting 

from the Q column between 100 and 300 mM KCl. This factor(s) required only for 5S 

rRNA synthesis eluted in 140 mM KCl from a Q column developed with a salt gradient 

We have identified TFIIIA in this firaction based on its distinctive footprint on 5S rDNA
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(Fig. 9B). which is identical to previously published footprints (Braun et a i, 1989). 

Additionally we used highly purified RNAP III transcription factors obtained fix>m Drs. 

George Kassavetis and E. Peter Geiduschek to help characterize our firactions. Using these 

firactions, we have determined that our Q-250 fiaction contains three of the known TFIIIB 

polypeptides, the TATA-binding factor, BRF and B” . Recently, Died et al. have identified 

two components o f the RNAP III transcription factor IIIB, BRF and B” , as the target o f the 

regulatory response to the cessation of cell growth in response to cycioheximide treatment 

(Died et at., 1995). Consistent with these observations, the addition of both BRF and B ”  

restores tRNA synthesis in inactive extracts, although they (as well as TFIIIC) did not 

restore 5S rDNA transcription in the same extracts (not shown). These restoration 

experiments and the isolation of 5S rRNA'/tRNA"*" extracts are consistent with a 5S rRNA 

spedfic regulatory mechanism that is apparently independent of the previously observed 

inactivation of BRF and B” , which mediates tRNA regulation.
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Template 
Q-250 (5S7tRNA+)

SSrRNA-

tRNA-

5S7tRNA+ extract
tDNA 5SrDNA

1 + 1 +

B.

5S7tRNA+ extract 
Q-FT (5S7tRNA+) 
5S+/tRNA+ extract

5SrRNA-

F ig o re  8 : 5S rRNA>/tRNA+ e x trac ts  h ad  a n  ac tiv e  5S rDNA tra n sc r ip tio n  
apparatus. A, The Q-250 fraction derived from these extracts restores both 5S rRNA 
and tRNA synthesis in inactive extracts prepared from nitrogen starved cultures (Fig. 
6 0 ) . B, 5S rRNA transcription can be restored in 5S rRNA- tRNA+ extracts by 
chromatography. A 5S rRNA-/tRNA+ extract {lane 1) was chromatogr^hed through a 
Q column at 500 mM KCl. The flow through (Q-FT) was collected and assayed on a 5S 
rDNA template {lanes 2 and 5). The transcriptional activity of an extract from exponen
tial cells is shown in lane 4.
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Q-300/500 
Q-100/300 

Q-250 
Q-140

5S rRNA-

tRNA-
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BoxC

Box A
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Figure 9: TFIIIA activity elated from  a  Q cohmm in 140 mM KCL A, Reconstitution 
of 5S rDNA and tDNA transcription from Q column step fractions eluting between 100 
mM to 300 mM KCl (Q100-300) and 300 to 500 mM KCl (Q300-500), and Q column 
gradient fractions eluting at 140 and 250 mM KCl. B, DNase footprinting the 5S rDNA 
gene with {Jbne 2 ) and without (Jane 1) the Q-140 fraction. The gene (open box) is dia
grammed on the left with the important internal control regions (shaded). The positions 
of the previously observed protections (open box) and enhancements (closed box) of 
DNase digestion (37) are on the right.
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Discussion

Our results indicate that the regulation of yeast stable RNA synthesis observed in 

vivo under a variety of balanced as well as unbalanced growth conditions is mediated by the 

accumulation o f a specific repressor which coordinates synthesis of 5S rRNA by RNAP III 

with RNAP I, as well as the previously observed inactivation of essential transcription 

factors associated with RNAP I (Riggs et a l, 1995) and RNAP III (Died et ai, 1995). It 

seems reasonable that the differential regulation of 5 S rDNA and tDNA transcription, 

which has been observed in vivo (Oliver & McLaughlin, 1977; Shulman et al., 1977) and 

here in vitro, might involve the 5 S rDNA-spedfic factor, TFIIIA. In addition to binding the 

5 S rDNA gene, TFIIIA binds to the gene product, the 5 S rRNA (Honda & Roeder, 1980; 

Pelham & Brown, 1980), resulting in inhibition of transcription. In vitro experiments 

suggest that fi-ee ribosomal protein YL3 might prevent this sequestration of TFIIIA by 

forming a YL3-5 S rRNA complex (Brow & Geiduschek, 1987), providing a link between a 

fi-ee ribosome component assembly (fi-ee YL3) and 5 S rRNA synthesis. Our experiments 

do not support a role for TFIIIA in this regulation. The TFIIlA-containing Q-column 

firactions do not rescue 5S rRNA synthesis in 5S rRNAVtRNA"^ extracts. Instead this 

regulation appears to be due to the accumulation of a spedfic inhibitor which interferes with 

the function of a factor in the Q-250 firaction on 5S rDNA. This inhibitor does not appear 

to be the yeast homolog of the transcriptional inhibitor DRl as DRl is a potent inhibitor of 

tRNA synthesis (White et at., 1995). We speculate that the target of the inhibitor may be a 

5S rDNA specific factor or activity assodated with TFIIIB.

The temporal relationship of the responses to downshift experiments may provide 

important insight into the mechanisms of the regulation of stable RNA synthesis. RNAP I 

activity is most responsive to changes in growth conditions, followed by 5S rRNA 

synthesis, and eventually tRNA synthesis. Although both 35S rRNA and tRNA synthesis
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appear to be regulated in a similar manner, that is the inactivation of an essential 

transcription factor, the differences in responses suggests that they may be mediated by 

fundamentally different mechanisms. The persistence o f tRNA activity in downshifted cells, 

such as in transition phase or in response to amino acid starvation, is consistent with the 

loss o f BRF and B”  activity under these conditions occurring at the level of factor 

synthesis or stability and its subsequent dilution during further cell growth. Died et al. 

have noted a lack of BRF in down regulated extracts (Died et a i, 1995) and BRF is limiting 

in vivo (Lopez-De-Leon etal., 1992). Our results suggest that there may be an alternative 

mechanism, not involving simple regulation at the level of synthesis, to turn off tRNA 

synthesis. In the absence of cell proliferation, tRNA synthesis was shut off within 5 h in 

high density cultures (Fig. 35). In contrast, the down regulation o f RNAP I was very rapid 

under all conditions analyzed, consistent with the regulation o f the RNAP I assodated factor 

not at the level of synthesis, but rather modification of preexisting protein.

These experiments indicate that stable RNA synthesis is not directly regulated by 

the growth rate of a cell at the level of cell division. Extracts prepared fi'om cultures 

subjected to energy starvation or cycioheximide treatment retain the ability to synthesize 

stable RNA. Since these cells remain viable and rapidly resume growth when conditions 

allow, it is reasonable to assume that altemative mechanism(s), not involving modification of 

the transcription apparatus, shut off stable RNA synthesis. Possible targets may be the 

conformation of the DNA template or nucleoside triphosphate pools. RNAP I transcription 

has been demonstrated to be very sensitive to the size o f the intracellular nucleoside 

triphosphate pools (Grummt, 1976). The nutritional upshift experiments lead to similar 

conclusions. The addition of glucose to dense cultures in transition phase restores RNAP I 

and m  activity to cell extracts, although no cell division occurs. These observations enforce 

the notion that the "trigger" which predpitates the regulation o f the transcription complex is 

not simply cell proliferation, but is rather perhaps more narrowly defined.
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This work provides a basis for the further biochemical analysis of the regulation of 

both RNAP I and III complexes. We have demonstrated that all three of the transcription 

systems responsible for stable RNA synthesis are directly modified in a manner that 

tolerates biochemical manipulation. Identification o f the conditions which provoke these 

regulatory responses and the initial biochemical analysis of factors involved in the 

regulation will fecilitate a detailed analysis of the molecular mechanism of stable RNA 

synthesis in eukaryotes.
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Chapter 3 

Transcriptional Regulation of RNAP I 

in Saccharomyces cerevisiae

55



Abstract

It has been appreciated for a number of years that the rate of ribosomal RNA 

(rRNA) gene transcription is altered in response to the need for ribosome production. A 

key step in this process is the regulation of synthesis o f ribosomal RNA. However, the 

regulatory mechanisms involved in transcription o f rRNA remain largely uncharacterized. 

RNAP 1 specific transcription has been down-regulated in yeast which had been subjected 

to various environmental conditions such as starvation for an essential amino acid or 

nutrient, or upon entry into stationary phase. Upon reversal of these conditions, the level of 

rRNA synthesis returned to high levels. The RNAP 1 activity was restored to these inactive 

extracts by the addition of a chromatographic fiaction, fi'om an active extract, which was 

enriched in the polymerase. This fiaction was able to restore this RNAP 1 specific activity 

under all conditions tested. These results indicate that the polymerase or something loosely 

associated with the polymerase is the target of the regulatory mechanism.

The focus of this work is to determine the molecular mechanisms involved in rRNA 

synthesis. More specifically, this research determined which component of the RNAP I 

transcription complex is involved in the down-regulation of rDNA transcription as yeast 

cells enter stationary phase. A tagged chromosomal copy of one o f the subunits o f the 

RNAP 1 enzyme complex will enable the RNAP 1 complex to be affinity purified and 

identified fi'om both regulated and unregulated cultures with the hopes of elucidating the 

specific target of the regulatory mechanism.
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Introduction

As described in Chapter 1, a great deal o f effort has been put into identifying the 

components o f the RNAP I transcription machinery of higher eukaryotes. However, there 

is still debate concerning which o f these factors participates in regulating rRNA synthesis 

according to the physiological state of the cell. It is questioned whether the down regulation 

of transcription of the rDNA involves modification of the polymerase itself, associated 

growth factors, or if there is presence of a RNAP I specific inhibitor. Below is a brief 

summary o f the most recent models for RNAP I transcription regulation in higher 

eukaryotes.

Polymerase Modification—In Acanthamoeba the in vitro transcription o f the rDNA 

requires two factors; TIF-IB and RNA polymerase I. An additional factor, EBF (enhancer 

binding protein), stimulates transcription but is not required (similar to the function o f UBF 

in mouse) (Yang era/., 1995). When Acanthamoeba are starved for essential nutrients they 

undergo cellular differentiation and become dormant cysts, during which time transcription 

of the rDNA ceases. Specific rRNA synthesis has been restored to extracts from these 

cysts by supplementation with highly purified polymerase. This result indicates that during 

encystment the RNAP I undergoes a modification which prevents specific 35S rDNA 

transcription without affecting nonspecific transcription activity. As shown by DNase 

footprinting experiments, this modification prevents the binding o f the polymerase to the 

stable preinitiation complex. 2-D electrophoresis comparison o f Acanthamoeba RNAP I 

from growing cells and dormant cysts shows a change in the electrophoretic mobility of the 

39 kDa subunit from the down regulated polymerase (Bateman & Paule, 1986). This 

subunit is the eucaryotic homolog of the E. coli a  subunit and is common to both RNAP I
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and III. It has not been possible to determine if this alteration is the cause of RNAP I 

inactivation nor is it established what modification causes the mobility change.

The modification o f a subunit of the RNA polymerase has also been documented in 

other eukaryotes. In yeast, the RNAP I subunits AI90, A43.5, ABC 23, and A.C19 are 

modified by phosphorylation, but the role o f this modification in regulation of rRNA 

synthesis has not been established (Sentenac et a i, 1992). In addition, a decrease in rDNA 

transcription in extracts fi'om mouse cells which have either entered into stationary phase or 

have been treated with the protein synthesis inhibitor cycioheximide has been attributed to 

an exhaustion of factor C* which is the component of the RNA polymerase I holoenzyme 

necessary for specific transcriptional initiation at rRNA gene promoters (Brun et ai, 1994). 

Although a specific modification of the polymerase is not discussed, these authors suggest 

that the inactivation of C* involves a posttranslational modification.

RNAP I  associated transcription factors involved in growth regulation o f rRNA 

synthesis—  In contrast to these findings, others suggest that factors responsible for down 

regulation o f rDNA transcription are separable firom the polymerase I enzyme. The 

reversible inhibition of rRNA synthesis in mouse lymphosarcoma cells after glucocorticoid 

treatment has been attributed to a decrease in amount or activity of the RNAP I transcription 

factor TFIC (Mahajan et a i, 1990). In these experiments, extracts firom hormone treated 

cells failed to form initiated complexes on the rDNA preventing transcription. However, 

rRNA synthesis was restored by the addition of highly purified TFIC. TFIC is a 

multimeric protein which associates very tightly with the polymerase but is clearly not a 

modified form o f the polymerase. It is hypothesized that RNAlP I and TFIC associate to 

form the transcriptionally active enzyme capable of initiating transcription firom the rRNA 

promoter. This factor is suggested to be analogous to the a  subunit o f bacterial RNA 

polymerase (Mahajan & Thompson, 1990). However in a separate study, serum starvation
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of the same cell line did not alter the level of TFIC activity even though there was a decrease 

in rDNA transcription which suggest that regulation of rRNA synthesis could be stimulus 

dependent (Schnapp eta/., 1990).

A different group woridng on the regulation of rDNA transcription in mouse also 

attributes the down regulation to a RNAP I specific transcription factor. In mouse ascites 

cells the growth dependent regulation of rDNA transcription is due to the reduction of 

activity of the essential transcription factor TIF-LA (Schnapp et al., 1993). This factor’s 

activity has been shown to decrease in cells which have entered stationary phase 

corresponding to a decrease in RNAP I specific activity. In these down regulated cells, the 

RNA polymerase is still able to bind to the preinitiation complex at the rDNA promoter 

however, the formation of the first phosphodiester bond is precluded in the absence of the 

TDF-IA activity (Schnapp et al, 1990). TIF-LA activity is similar if not identical to the 

activity of TFIC which is responsible for the regulation of rDNA transcription in hormone 

treated mouse lymphoma cells. Extracts fix>m both sources can form stable initiation 

complexes which can not initiate without supplementation of the TFIC/TIF-IA factor. 

Additionally, both factors associate with the polymerase to convert it into an initiation 

competent enzyme. However, the major difference between these factors is the identity of 

the factors’ polypeptides. TIF-LA activity corresponds to a single polypeptide with a 

molecular mass estimated at 75 kDa. In contrast, TFIC activity copurifies with three 

polypeptides of molecular masses of approximately 55, 50, and 42 kDa.

Psoralen cross-linking experiments on mammalian cells in culture provide additional 

insights to the regulation of rRNA synthesis in growing and stationary cells. In 

exponentially growing cultures, approximately half of the rDNA genes are active and are 

accessible to the psoralen. Nuclear run-on experiments on these same cells show a high 

level of RNAP I loaded on the DNA. However, in stationary phase cells the level of loading 

of the RNAP I on the rDNA drops even though the number of genes accessible to psoralen
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remains unchanged. These results indicate that there are the same number o f  preinitiation 

complexes available but the ability of the RNAP I to initiate decreases due to the inactivation 

ofTIF-IA.

Polymerase I  inhibitor—  Despite the contradiction of these reports they do share 

the common theme of a positive growth dependent manner of regulating rRNA synthesis. 

However, evidence has also been presented by the laboratory of Masami Muramatsu that 

there is the presence of an inhibitor o f RNAP I mediated transcription in extracts from 

growth arrested mouse cells (Kermekchiev & Muramatsu, 1993). Whole cell extract 

mixing experiments identified the presence of a negative regulator of rRNA transcription. 

In these experiments extracts made from cells which were serum starved for 3 hours were 

deficient in rRNA synthesis. Mixing these inactive extracts with transcriptionally active 

extracts resulted in an inhibition of rDNA transcription. This was a RNAP I specific 

inhibition as RNAP II specific transcription was not affected. The inhibitory activity was 

tested in extracts obtained from different stages of starvation and the results demonstrated 

that the RNAP I inhibition activity in vitro fluctuates according to the physiological state of 

the cell, showing a maximal level during growth arrest and rapidly disappearing when cells 

are recovered by dilution into fresh media. Gel retardation assay results indicated that the 

inactivation of the extracts was not due to the formation of the preinitiation complex but 

rather inhibits the subsequent steps in transcription. This result is in agreement with the 

results found in other laboratories. An intriguing question is whether this inhibitor is 

responsible for the inactivation of the transcription factors implicated in growth rate 

regulation by other laboratories.

Regulation o f  transcription in Yeast—  Several lines of evidence indicate that yeast 

also down-regulate rDNA transcription independent of preinitiation complex formation. 

Psoralen cross-linking studies on exponentially growing yeast have shown that ~46% of the
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rDNA genes are accessible to psoralen. These extracts have a high level of RNAP I specific 

activity. Extracts made from yeast in stationary phase have shut-down rDNA transcription 

and are inactive in in vitro transcription assays. However, these down-regulated cultures 

only show a modest decrease in the number of open genes which indicates the presence of 

preinitiation complexes. In addition, studies from our laboratory showed that the RNAP I 

specific activity in these down regulated extracts could be rescued by the addition o f a 

chromatographic fraction, from active extracts, which was enriched with RNAP 1. Taken 

together these results suggest a model in which the polymerase or a transcription factor 

closely associated with the polymerase, functionally similar to TIF-IA, is affected during 

down regulation o f rRNA synthesis.

A RNAP I associated factor, encoded for by the RRN3 gene, was recently identified 

by Nomura and co-workers. The Rm3p was shown to be required for in vitro transcription 

and was suggested to interact directly with the polymerase since preincubation o f the Rm3p 

with RNAP I led to stimulation of transcription (Yamamoto et a l, 1996). They suggested 

Rm3p had a functionally similar role to TIF-IC and was important for elongation without a 

role in growth regulation. However, Milkereit and co-workers described the resolution and 

characterization o f a distinct RNAP I population from yeast cell extracts using a 

reconstituted system (Milkereit & Tschochner, 1998). They found only a minor amount of 

the RNAP I to be active in a promoter driven transcription assay while the bulk of 

polymerase existed in an inactive form. They provided evidence that <2% of the total 

RNAP population is in the initiation competent form and that this form exists as a complex 

o f RNAP I and Rm3p. It is predicted that dissociation o f  this complex serves as a switch 

for transcription initiation-growth rate dependent regulation o f rRNA synthesis.

Here we provide evidence to support this model of regulating rRNA synthesis in

yeast.
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Materials and Methods

Buffers and solutions—  TE buffer (10 mM Tris-chloride, pH 7.5; 1 mM EDTA, 

pH 8.0). Incubating solution (1.2 M sorbitol; ICO mM sodium phosphate, pH 7.4; 2.5 

mg/ml zymolyase). IX  TAE electrophoresis buffer (20 mM Tris acetate, pH 7.5; 0.5 mM 

EDTA, pH 8.0). IXLaemmli resolving buffer (375 mM Tris chloride, pH 8 .8 ; 0.2% (w/v) 

SDS). IXLaemmli stacking buffer (125 mM Tris chloride, pH 6 .8 ; 0.1% (w/v) SOS). IX  

Laemmli upper reservoir buffer mM Tris chloride, 192 mM glycine; 0.1% (w/v) SDS, 

pH 8.3). IXLaemmli lower reservoir buffer {25 mM Tris; 192 mM glycine; pH 8.3). 6X 

agarose loading buffer (0.25% (w/v) bromophenol blue; 0.25% (w/v) xylene cyanol FF; 

30% (v/v) glycerol). IX  SDS gel loading buffer (50 mM Tris chloride, pH 6 .8 ; 100 mM 

dithiothreitol; 2% (w/v) SDS; 0.1% (w/v) bromophenol blue; 10% (v/v) glycerol). 

Formamide loading buffer (f,Q% (v/v) formamide; 10 mM EDTA, pH 6 .8 ; 1% (w/v) xylene 

cyanol FF; 1% (w/v) bromophenol blue). Solubilization buffer (200 mM Tris acetate; 10% 

(v/v) glycerol; 10 mM magnesium acetate). TA-0 buffer (10 mM Tris acetate, 10% (v/v) 

glycerol; 10 mM magnesium acetate, pH 7.5). TA-80 mM  KCl (TA-0 buffer containing 80 

mM KCl). TA-250 mM KCl buffer (TA-0 buffer containing 250 mM KCl). TA-700 mM  

KCl (TA-0 buffer containing 700 mM KCl). TA-200 KGlu (TA-0 buffer containing 200 

mM potassium glutamate). Transfer buffer {\yiTx\s glycine; 125 mM Tris base, 0.96 mM 

glycine, 20% (v/v) methanol). TEST(10 mM Tris-HCl, pH 7.5; 150 mM NaCl; 0.1% (v/v) 

Tween 20).

Culture media—  LB broth (1% (w/v) tryptone; 0.5% (w/v) yeast extract; 15% 

(w/v) NaCl). LB plates (1% (w/v) tryptone; 0.5% (w/v) yeast extract; 15% (w/v) NaCl; 15 

g/1 agar) 73 (Part A: 1.2% (w/v) tryptone; 2.4% (w/v) yeast extract; 0.16% (v/v) glycerol. 

Part B: 2.3% (w/v) KH^PO^; 12.5% (w/v) K^HPO^. One part of B in 9 parts of A). YEPD
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(1% (w/v) yeast extract, 2% (w/v) peptone, 2% (w/v) glucose). Minimal media lacking 

tryptophan plates (IX yeast nitrogen base without amino acids and ammonium sulfate; 2 

mg/ml uracil; 10 mg/ml lysine; 2% (w/v) glucose; 8 mM ammonium sulfate; 30 g/1 agar).

Plasmids— pRS304: Saccharomyces/E.coli phagemid vector. TRPl- fl ori (NaeT) 

- T7 promoter- lacZ’/MCS- T3 promoter- pMBlori-bla (Sikorski, 1989). pDRSOO: 

pRS304 derivative. Hexa histidine tag inserted into the XhoUKpnl sites. pDRSlO: 

5’ARPA135 inserted into Pstl/Clal site of pDR300. pDR320: HA I epitope (derived from 

the human influenza virus hemmaglutinin protein [Wilson e t al]) inserted into the 

ClaUXhol site o f pDR310.

Basic DNA Manipulation Techniques

Restriction digestion—The restriction enzymes and T4 DNA ligase were purchased 

from New England Biolabs (NEB. Beverly, MA. USA). Taq DNA polymerase was 

purchased from Promega (Madison, WI. USA). All manipulations were performed with the 

accompanying buffer at IX concentration and incubated in accordance to manufacturer’s 

instructions. When necessary the DNA was extracted with 0.5 volumes of 

phenol/chloroform/isoamyl alcohol (25:24:1), precipitated with 2.5 volumes of 100% 

ethanol containing I M ammonium acetate, and then rinsed with 1 volume of 80% (v/v) 

ethanol to remove residual salts. The air dried DNA was resuspended in the appropriate 

volume of TE buffer.

Plasmid DNA isolation—  For both large scale and “miniprep” isolation of the 

plasmid DNA the alkaline/SDS plasmid preparation method described in Sambrook et al, 

(Sambrook et a/., 1989) was used.

Yeast genomic DNA isolation—  A 250 ml flask containing 30 ml o f YEPD was 

inoculated with a single yeast colony and grown 18-22 hours at 30°C with aeration. Cells
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were harvested by centrifugation (5,000 x g for 5 minutes) and resuspended in 4 ml o f I M 

sorbitol. 75jjJ of zymolyase (2 mg/ml in 1 M sorbitol) was added to the solution and 

incubated at 37°C for I hour. The cells were centrifuged as above and the pellet 

resuspended in 3.5 ml of HjO. After resuspension, 250 pi of IM Tris acetate and 250 pi of 

0.5M EDTA were added and mixed gently followed by the addition of 0.5 pi o f 20% SDS. 

The solution was incubated at 65°C for 20 minutes to inactivate the zymolyase. After 

incubation, 2.5 ml of 3 M potassium acetate was added and the mixture was incubated on 

ice for 30 minutes. The cellular debris was pelleted at 12,000 x g for 10 minutes and the 

supernatant fraction was transferred to a clean tube which contained two volumes of 1 0 0% 

ethanol. The DNA was pelleted at 5,000 x g  for 5 minutes and the supernatant discarded. 

The pellet was air dried and resuspended in 500 pi of TE buffer. Twenty five pi of a 10 

mg/ml RNAse solution was added and incubated at 37°C for 1 hour. The DNA was 

precipitated with one volume of 100% isopropanol and the precipitate was removed with a 

sterile pipette tip and then resuspended in 0.5 ml o f TE buffer. The DNA was reprecipitated 

by the addition of two volumes of 100% ethanol containing 1 M ammonium acetate. The 

solution was centrifuged at 13,000 x g for 1 0  minutes, the supematant decanted, and the 

DNA washed with 1 volume o f 80% (v/v) ethanol. The DNA was resuspended in 0.4 ml of 

TE buffer. The concentration of DNA was typically 300 ng/pl.

PCR amplification—  General conditions: The reactions were performed using 2.5 

units of Taq DNA polymerase in a total volume o f 100 pi. The reaction contained IX o f the 

manufacturer’s Taq buffer, 2 mM magnesium chloride, 0.2 mM dNTPs, 50 pmols o f each 

primer, and 1 to 10 ng of plasmid DNA or 50 to 200 ng of purified yeast genomic DNA. 

The PCR reactions were performed using an Ericomp thermocycler (Power Block System. 

Ericomp. San Diego, CA. USA). Generally, the following cycling information was used:

(IX) 94°C/3 minutes
(29X) 94°C/1 minute; 55°C/1 minute; 72°C/1 minute
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(IX) 72°C/3 minutes
The parameters subjected to variation were the annealing temperature and duration of 

elongation. The annealing temperature was calculated as 5 degrees less than the lowest 

melting temperature o f the two primers. The elongation time depends on the length o f the 

DNA being amplified. Typically 1 minute/ kb amplified was used.

Electrophoresis o f  DNA—  The quality of the DNA was analyzed by gel 

electrophoresis. Briefly, a 0.8% or 1.6% (w/v) agarose gel in IX TAB was cast in a 7 cm x 

8 cm casting unit and run in a horizontal minigel system (OWL Scientific. Woburn, MA. 

USA). The agarose gel and buffer both contained ethidium bromide (8  |ig/100 ml) to allow 

visualization of the gel when exposed to LTV irradiation. Agarose loading buffer (6X) was 

added to the DNA samples to a final concentration of IX prior to loading. The gel was run 

at 80 volts for approximately 30 to 40 minutes.

Bacterial transformation—  E. coli strain DH5a (subcloning efficiency, >1x10* 

transformants/ |ig Gibco ERL Life Technologies. Grand Island, NY. USA) was used for all 

transformations. The manufacturer’s instructions were followed. Briefly, approximately 

0.5 |ig  of plasmid DNA was incubated with 25 (il of competent cells at 4°C for 30 min. 

The mixture was subjected to a 42°C heat shock for 20 seconds and then returned to the ice 

for an additional 2 minutes. One ml o f LB was added to the transformation mix and the 

mixture was incubated at 37°C for one hour with shaking to allow for phenotypic 

expression. The cells were plated on LB Amp (100 |xg/ml) plates and incubated overnight 

at 37°C. A positive control (pUC19) and a negative control (no DNA) were always 

included.

Yeast transformation—  The lithium acetate/SS-DNA/PEG transformation protocol 

(Gietz et al. 1995) was followed. A 250 ml erlenmeyer flask containing 50 ml o f YEPD 

was inoculated with the yeast strain BJ3505 {pap4::HIS3 prb-A1.6R lys2-208 trpl-AlOl 

ura3-52 gal2 canl) and incubated at 30°C with shaking overnight The overnight culture
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was used to inoculate a 100 ml YEPD culture to a starting cell density of 5x10* cells/ml (an 

OOgQo o f 0.5). Once the culture had reached a density o f 2x10’ cells/ml the culture was 

harvested by centrifugation at 5,000 x g for 5 minutes. The cell pellet was resuspended in 

25 ml of sterile H^O and centrifuged again at 5,000 x g for 5 min. The pelleted cells were 

resuspended in 1 ml of 100 mM lithium acetate and centrifuged as before. The supematant 

fraction was decanted and the cell pellet was resuspended in 400 p.1 of 100 mM lithium 

acetate. The cell suspension was divided into 50 pil aliquots in 1.5 ml microfuge tubes and 

pelleted again. After removal o f the supernatant, a transformation mix containing the 

following was added to the microfuge tubes: 240 |il PEG 50% (w/v), 36 pJ 1.0 M lithium 

acetate, 25 pi single stranded DNA (2.0 mg/ml), 50 pi sterile H^O and 0.1 -10.0 pg of 

linearized plasmid DNA. The suspension was vigorously vortexed and incubated at 30°C 

for 30 minutes and subjected to a 5 minute heat shock at 42°C. The cells were pelleted 

(5,000 X g for 5 minutes) and then resuspended in 1.0 ml of sterile H^O. Finally, 200 p.1 of 

the transformation was plated onto minimal media plates lacking tryptophan and incubated 

for three days at 30°C.

Plasmid and Yeast Strain Construction

pDR300 construction—Two oligonucleotides 5’-TCG AGC ACC ACC ACC ACC 

ACC ACT GAT AGG GTA C -3’ and 5’-CCT ATC AGT GGT GGT GGT GGT GGT 

GC-3’ were annealed to create a hexa histidine cassette. The oligonucleotides were 

rehydrated with TE buffer at a concentration o f 50 pmol/pl. Fifty pmols of each primer was 

added to 165 pi o f TE for a final concentration o f 300 frnols/pi. The solution was heated to 

100°C for 5 minutes and allowed to cool to 70°C for 1 hour. The ends of the annealed 

cassette were designed to create a to Xhol and Kpnl overhang at the 5’ and 3’ ends of the 

cassette respectively. In order to prepare the vector for ligation with the hexa histidine 

cassette the yeast integrating plasmid pR5304 (ATCC #77139) was digested with Xhol and
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Kpnl. A 5:1 molar ratio o f cassette to vector was ligated with T4 DNA ligase at room 

temperature ovemighL Prior to transformation into DHSot, the ligation mix was digested 

with Apal in order to linearize any of the original vector. The recombinants were analyzed 

by restriction digestion and sequenced.

pDR310 construction—The last 699 bp o f the RPA135 gene was PCR amplified 

using the primers 5’ TAT CTG GAG GTA AAG GGG GGG CAT TG3’ and 5 ’ ATA 

ATC GAT TTT GGG CTC TAG ATT ATA AGG C 3’. The vector pDR300 and the PCR 

fragment were both prepared for ligation by digestion with Pstl and Clal. A 5:1 molar ratio 

of vector to insert was ligated with T4 DNA ligase at room temperature overnight. The 

ligation mix was transformed into DH5a competent cells. The transformants were analyzed 

for recombinants by restriction analysis.

pDR320 construction—  A pair of synthetic double stranded complementary 

oligonucleotides o f 27 bp that encoded for the “HAl epitope” YPYDVPDYA, was cloned 

into the Clal and Xhol sites of pDR310 just downstream and in frame with the hexa 

histidine tag.

Construction o f  the mutant yeast strain DLRY-320—  In order to construct the 

strain DLRY-320, 10 (ig of pDR320 was linearized with Ncol. This enzyme cuts within the 

truncated RPA135 gene which would direct the integration to the chromosomal copy o f the 

RPA135 gene. The yeast strain BJ3505 was transformed as previously described.

Yeast Cell Growth and Protein Extract Preparation

Large scale yeast growth—  Twenty liters o f  yeast culture was prepared using the 

following protocol. Sterile techniques were employed to decrease the level of bacterial 

contamination. A 100 ml overnight culture of DLRY-320 grown at 30°C was used to 

inoculate a 4 L flask containing 1 L of YEPD to a starting ODg^g of 0.1. When the culture 

reached an OD^g of 1.0 to 1.5 it was added to 20 L o f YEPD (containing 50 (ig/ ml of
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ampicillin to prevent bacterial contamination). The culture was aerated and the growth was 

monitored. The strain grows with a doubling time o f 1.5 hours. At an o f about 1.0,

ice was added to the culture to stop growth and it was harvested through glass microfiber 

filter paper (Glass Fiber; 1.0 jim thick and 15 cm in diameter. Whatman. Clifton, NJ. 

USA). The cells were then scraped firom the filter paper with a rubber spatula and 

transferred to a beaker which was chilled on ice. The yeast slurry was then pelleted at 

14,000 X g for 5 minutes. Finally, the pellet was weighed and the cell pellet fi-ozen at 

-80°C. A typical yield was 80 to 100 g of cells (wet weight).

Large scale lysate—  The protocols for cell breakage, extract preparation, Q 

chromatography, and transcription assays have been previously described (Riggs & 

Nomura, 1990).

Ni-NTA agarose purification o f  Rpal35p—  Affinity purification of the his-tagged 

Rpal35p on Ni-NTA agarose resin (Qiagen. Santa Clarita, CA. USA) was performed 

following the protocol for batchwise native conditions. Briefly, 200 jil o f Ni-NTA agarose 

was added to a siliconized 1.5 ml microfuge tube and washed with 3 volumes o f TA-325 

mM KCl. The Q column fiaction containing the tagged protein was added directly to the 

resin (typically the volume of the firaction was twice the volume of the resin bed). The 

slurry was incubated at 4°C with rocking for 3 hours to allow the protein to bind to the 

resin. The resin was pelleted by centrifugation at 1,000 x g for 30 seconds and the 

supematant was saved for analysis. Unbound protein were removed by washing the resin 

three times with 2 volumes of TA-325 mM KCl. An additional wash with TA-325 mM KCl 

buffer containing 5 mM imidazole was used to remove any nonspecifically bound proteins. 

Finally, the bound proteins were eluted firom the resin with TA-325 mM KCl buffer 

containing 500 mM Imidazole. The fi-actions were dialyzed against TA-200 KGlu and 

analyzed for activity.
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Western B lot—  The proteins o f interest were added to 1 X SDS gel loading buffer, 

heated to IOO°C for 3 minutes and resolved in a discontinuous 10% SDS PAGE (38:2 

acrylamiderbisacrylamide). The gel was run in a vertical electrophoresis system (OWL 

Scientific. Woburn, MA. USA) at 300 volts until the bromophenol blue reached the bottom 

of the resolving gel. The SDS gel and a piece of Immobilon P filter paper (Millipore. 

Bedford, MA. USA) were soaked in distilled water and equilibrated for 10 minutes in 

transfer buffer. The transfer was performed using a semidry blotting apparatus (Fisher 

Scientific. Pittsburgh, PL. USA), at 9 volts for 8 hours. After transfer, the membrane was 

then rinsed with TEST buffer pH 7.5 for 30 minutes and then blocked in blocking solution 

(4% (w/v) dried milk in TBST) for one hour. The membrane was washed three times in 

TEST, each rinse for 10 minutes. The membrane was soaked in 10 ml o f primary antibody 

solution (mouse monoclonal antibody anfi-HAl (clone 12CA5, Boehringer Manhheim. 

Indianapolis, IN. USA) diluted to a concentration of 5 p,g antibody/ml in TBST containing 

0.02% (w/v) sodium azide for 2 hours at room temperature with gentle rocking. The 

membrane was again rinsed as above and then incubated with the secondary antibody 

(sheep anti-mouse IgG horseraddish peroxidase conjugate, (Amersham Life Science. 

Arlington Heights, IL. USA) at 1/10,0000 dilution in TBST) for 1 hour. The membrane 

was rinsed as above and then incubated for 2 minutes with 1 ml of ECU western blotting 

detection reagents as instructed by the manufacturers (Amersham Life Science. Arlington 

Heights, IL. USA). Finally, the membrane was wrapped in Saran Wrap and exposed to X- 

ray film for 15 to 45 seconds.
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Results

With the goal o f better understanding the molecular mechanisms involved in the 

regulation of rRNA synthesis, we combined both the well developed genetic and 

biochemical techniques to further purify the rescuing activity and characterize the 

components of this fraction. A strain was made which bears two epitope tags on the 3’ end 

of the RPA135 gene which encodes for the second largest subunit o f the RNAP I enzyme. 

There are two major advantages to tagging the chromosomal copy o f the gene using this 

method rather than using a centrameric plasmid. First, it ensures that the expression of the 

RPA135 gene will be under the control o f its native promoter preventing overexpression of 

the subunit which could have an adverse afreet on cell growth. Second, the product of the 

chimeric gene is the only active copy o f the gene present in the cell, ensuring that the entire 

population of polymerase will be tagged. Below is the description of the construction of the 

yeast strain and a report on the further characterization of the rescuing activity found in the 

Q-B fraction.

Creation of a yeast strain bearing an epitope tagged RNA polymerase I

Construction o f  the strain—The hemi-zapper method (illustrated in Figure 6 ) tags 

genes on the chromosome via an integrating plasmid. This technique uses a yeast 

integrating plasmid which contains two epitope tags. Located upstream and in firame of 

these tags is a gene firagment encompassing only the 3 ’ end of the gene to be targeted. 

Once constructed the plasmid will be linearized by a restriction enzyme, which cuts uniquely 

within the tnmcated gene, in order to direct the integration into the chromosome. The 

linearized plasmid will be transformed into a yeast strain which is trp- as the plasmid has the 

TRP 1 gene as the selectable marker. The integration of the plasmid creates a yeast strain
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which has a C-tenninally tagged chimeric gene as well as a tnmcated inactive gene. Figure 

6  illustrates this integration scheme.

We modified the yeast integrating plasmid pRS304 by adding two affinity tags; the 

6X His tag and the HA epitope tag. The 6X His tag, which adds six histidines to the C- 

terminus of the subunit, allows for affinity purification of the polymerase complex based on 

its affinity for a commercially available Ni-NTA resin. There are commercially available 

monoclonal antibodies against the HA epitope, a nine amino acid epitope from the human 

influenza virus hemagglutinin, which will allow for identification o f the polymerase 

throughout the purification process. An advantage to using these small peptides is that they 

are unlikely to perturb the overall structure o f the subunit allowing it to integrate into the 

multi-subunit polymerase complex.

The yeast integrating plasmid pRS304 (Figure lA) was first modified by the 

addition of the hexa histidine tag. Two complementary oligonucleotides which comprise 

the 6X His cassette (Figure IB) were annealed and ligated into the Xhol and Kpnl sites o f 

pRS304 to create the plasmid pDR300. The construction was designed so that the 

recombinants could be screened based on the retention o f the Xhol and Kpnl sites and the 

elimination o f the Apal site. Agarose gel analysis of the restriction digestion of several 

recombinants (Figure 2) shows the correct recombinant does not digest with Apal (2A; Row 

1, lane 3), but linearizes with A%oI (2A; Row 1, lane 4) and Kpnl (2B; lane 2).
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A.

pRS304

lacZ

BstXI EagI Xbal BamHI PstI EcoRV CM Xhol Kpnl
SacI SacII Notl Spel Smal EcoRI Hindlll Sail Apal

B.
Primer #1 

Primer #2 

6XHis tag

5’ - T/CGA/GCA/CCA/CCA/CCA/CCA/CCA/CTG/ATA/GGG/TAC-3'

5’ - CC/TAT/CAG/TGG/TGG/TGGyTGG/TGG/TGC-3'

5' - T/CGA/GCA CCA CCA CCA CCA CCA CTG/ATA/GGGyTAC-3' 
3’- CGT GOT GOT GGT GGT GGT GAC/TAT/CC-5’

Figure 1: Construction of a  yeast integrating plasmid (pDR300) which contains a 
6X  His tag in the multiple cloning site. (A) The yIP pRS304 (ATCC# 77139) was 
digested with Xhol and KprH which are contained in the MCS. The sites within the poly
linker which are not unique are underlined. (B) A pair of complementary oligonucle
otides were annealled to form the 6X His cassette which was ligated into pRS304. The 
6X HSs tag is indicated in red while the bold type shows the overhangs complimentary to 
the vector. The ligation was designed so that the insertion did not interupt the reading 
frame of the lacZ gene. The site was destroyed upon ligation of the 6 X His 
cassette.

72



A.
Row 1 
Row 2

SDBSmm

B.

Digestion of recombinants 
witii Apal and Xhol

I 1 [2  l3 l 4 | 5 | 6 l 7

Digestion of recombinants 
witii Kpnl

Figure 2: Restriction analysis o f putative pDR300 recom binants. The ligation reac
tion of the 6 X His cassette with pRS304 would result in recombinants which retained 
both the Xhol and the Kpnl sites and eliminated the Apal site. The agarose gel in panel A 
shows the results of a miniscreen of five transformants digested with Xhol and Apal 
(lanes 2, 5, and 8  uncut; lanes 3, 6 , & 9 Apal; lanes 4, 7, & 10 Xhol). Row 1 shows 
pRS304 uncut (lane 2), digested with Apal (lane 3), and Xhol (lane 4). Row 1, lane 5 
and Row 2, lanes 5 and 8  are possible recombinants and were further digested with Kpnl 
(shown in panel B). (B) Lane 1 contains pUC19 Hinfi markers, lanes 2, 4, and 6  are
uncut, lanes 3 ,5 , and 7 are plasmid digested with Kpnl.
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As described earlier, the yeast RNAP I enzyme is composed o f 2 large subunits and 

12 smaller polypeptides each of which have been cloned and sequenced. The second largest 

subunit of the polymerase was chosen to tag for several reasons. First, due to the large size 

of this subunit, 135 kDa, it was reasoned that the tags would have a greater chance of being 

exposed allowing for more efficient purification of the polymerase complex. Subunits 

which had been implicated in the assembly process of the enzyme, such as the A 12.2 and 

AC40, were not chosen for fear they would be buried within the enzyme complex (Mann et 

a i, 1987; Nogi et a i, 1993) In addition, the A49 subunit was eliminated as a possibility 

because it had been shown to be loosely associated from the polymerase (Liljelund et a i, 

1992). Finally, those subunits which were common with the other two polymerases were 

avoided to ensure the exclusive isolation of RNAP I.

Primers with specific restriction sites were created to PCR amplify the last 699 bp of 

the RPA135 gene from yeast genomic DNA (Figure 4, lane 2). The primers included the 

Pstl and Clal restriction sites (Figure 3, shown in bold type) on the 5’ and 3’ ends of the 

RPA135 gene respectively. The fragment was inserted between the Pstl and Clal sites of 

pDR300, which is upstream of the two tags, creating the plasmid pDR310. The 

recombinant retained both the Pstl and Clal sites (Figure 5, lane 6  ) and acquired a Ncol site 

(Figure 5, lane 7), unique to the RPA135 gene.

In order to create pDR320, which contained an HA tag inserted between the 

RPA135 gene and the 6X His cassette, two ohgonucleotides which encoded for the 9 amino 

acid epitope “YPYDVPDYA” were annealed and ligated into the Clal and Xhol sites of 

pDR310 (Figure 6 ). Recombinants were screened based upon the loss of the Clal site 

which was eliminated upon ligation.

Restriction digestion with Ncol, which cuts uniquely within the truncated gene, 

linearized the plasmid prior to transformation in order to direct integration into the
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chromosome. The plasmid was transformed into the trp- yeast strain BJ3505 and the 

integrants were selected on minimal media plates minus tryptophan.

Verification o f strain—  PCR was used to verify the correct integration o f the 

plasmid. Primers, designed to anneal to the 5’ end of the RPA135 gene and the 3’ end of 

the 6X his tag, were used to amplify the chimeric gene (Figure 6 ). Amplification would 

only occur in the case of the correct recombination event The growth o f the mutant strain 

(DLRY320-1) was also monitored to ensure that the tagged subunit could assemble into the 

polymerase without interfering with the cell growth (data not shown). DLRY320 had the 

same growth rate as the wild type strain BJ5305 in both complex and minimal media 

indicating that the tags have no effect on the RNAP I en2yme. Extracts were made with 

DLRY320 (as previously described) and assayed for RNAP I specific transcription activity. 

These extracts had identical activity as the wild type (data not shown) which also indicated 

that the tags did not effect the specific transcription activity of the RNAP I transcription 

complex.
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A.

Primer #1 (5  RFA 135 Pstl)
5* - TAT/CTG/CAG/GTA/AAG/GGG/GGG/CAT/TG 

Primer #2 (3* RPA135 CM )
5’ - ATA/ATCVGATmT/GGG/CTCyTAC/ATT/ATA/ACG/C

B. Primer 1

—  Yeast genomic RFA 135 —

Primer 2 pDRSOO
PCR amplification

lacZ g  His tag
CM

Pstl / Clal digestion

Ligation

pDRSlO

His tag

Figure 3: Construction of Yeast integrating plasmid pDRSlO. The primers in panel 
A were used to PCR amplify the last 699 bp of the RPA135 from yeast genomic DNA. 
Pstl and C M  sites were encoded for by the primers (in bold) and subsequently contained 
in the PCR product. The underline indicates the nucleotides which annealed during the 
first several rounds of amplification. The truncated gene and vector were both digested 
with and C M , ligated together, and transformed into E. coli DHScc.
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1 419 -

3 9 6 -

1.6% Agarose Gel

Figure 4: Anafysls of PCR an^lificatioii o f 5 ARPA135 gene from  Yeast genomic 
DNA. The last 699 bp of the RPA135 gene was PCR amplified from Yeast genomic 
DNA. The PCR product was digested with Clal and Pstl to prepare it for ligation with 
pDR300, which was also cut with these enzymes. Lane 1 is pUC19 Hinfl. maricers. Lane 
2 is 10 pi of a 100 pi PCR amplification of the RPA135 gene.
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0.8% Agarose gel of mioipreps 
digested with Clal or Ncol

Figure 5: Restriction analysis of putative pDRSlO recombinants. The correct liga
tion would result in recombinants which retained the Clal site and gained a Ncol site as a 
result of the insertion of the RPA135 gene. Lanes 2 (uncut), 3 (C&zl), and 4 {Ncol) show 
the digestion patterns of pDRSOO. Lanes 5 (uncut), 6  (CM), and 7 {Ncol) are the restric
tion pattern of a pDR310 recombinant.
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CM  Q  Xhol 

HA tag

pDR310

5*ARPA13SlHîstagCM  / Xhol digestion

Ligation

pDR320

HA.

Ncol digestion and 
transfoimaticHi Ncol

tYeast cell

pDR320

HA

Yeast genomic RPA135

Tagged yeast genomic RPAB5

HA

TRPl

5ARPA135

Figure 6 : Construction of the yeast m utant strain DLRY-320. The plasmid pDR320 
was created by inserting a cassette encoding for the HA epitope into the ClaUXhol site 
of pDR310. The plasmid was linearized with Nco\ and transformed into a trp- yeast 
strain. Integrants were selected on minimal media lacking tryptophan. Through homol
ogous recombination the yeast integrated the plasmid and the chromosomal RPA135 
gene was tagged with both the 6 X  His and the HA tags.

79



Characterization o f rescuing activity

The Q-B activity co-elutes with the rescuing activity on a high Q column—  We had 

previously characterized the components o f the RNAP I transcription machinery by 

fractionating an active extract over an anion exchange column (Riggs & Nomura, 1990). 

We reconstituted specific RNA polymerase I transcription from three partially purified 

chromatographic firactions (termed Q-A, Q-B, and Q-C). (Figure 11 represents this 

purification scheme). As shown by gel retardation assays, the Q-A fraction contained 

proteins which bound specifically to the rDNA promoter. Nonspecific transcription assays 

identified the presence o f RNAP 1 in the Q-B fi:action. Although the contents o f the Q-C 

fraction remain to be characterized, it is necessary to reconstitute RNAP I specific activity. 

In order to further characterize the components of the Q-B fraction, we cultured the strain 

DLRY320, the strain containing the tagged polymerase, in rich medium with aeration to 

allow optimal growth. The exponentially growing culture was harvested at an ODgog -1 .0  

and a whole cell extract was prepared as previously described. The extract was tested for 

RNAP I specific transcription and then fractionated over an anion exchange column to 

isolate the Q-B fraction.

The Q column fractions were first assayed for the ability to reconstitute specific 

RNAP I transcription in vitro. Fractions which eluted from the Q-column were added to an 

RNAP 1 specific transcription assay containing  Q-A and Q-C fractions from a previous 

column and a 35 S rDNA template. The Q-B activity was found in fractions 65-70, which 

eluted from the Q-column at 250-350 mM KCl, with the peak of activity in fraction 67-69 

(Figure 7A).

We had previously identified that the rescuing activity coeluted with the Q-B 

fraction from an anion exchange column. We next wanted to examine if the Q-B fractions 

from the tagged strain had the ability to rescue RNAP I specific activity in an inactive 

extract Fractions 64-70 were added to an inactive extract, which was prepared from a
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stationary phase culture, and assayed for recovery of RNAP I specific transcription activity. 

The rescuing activity was found in firactions 66-70 with the peak of activity in firaction 68  

(Figure 7B) which corresponded to the Q-B activity.

Next, we wanted to determine if the presence o f  the RNA? I corresponded with the 

rescuing activity. Western blot analysis was performed using antibodies against the HA 

tagged RFA 135 subunit to confirm the presence of RNAP I in the Q-B fi-action. A cell 

extract firom an exponentially growing culture of DLRY320 was fractionated over a high Q 

anion exchange column (Figure 8). The firactions which contained the rescuing activity 

were identified by assaying the fi-actions for the ability to restore RNAP I transcription to an 

extract firom stationary phase cells (Figure lOA). The rescuing activity was identified in 

fi-action 70 to 73 with the peak of activity in finction 72. These fi-actions were subjected to 

SDS-PAGE and the proteins were transferred to a nitrocellulose membrane. Monoclonal 

antibodies against the FLA epitope were used for western analysis. RNAP I was identified 

in fi-actions 6 8  to 76 with only a relatively small fiaction o f the polymerase in faction 72 

(Figure lOB). These results indicate that of the total population of RNAP I present in the 

cell, only a small portion is present in an initiation competent form, and that the polymerase 

or a factor which associates with the polymerase is down-regulated as yeast enter stationary 

phase.

In order to determine the relationship between the regulated factor and the RNAP I 

enzyme we further purified the his-tagged RNAP I enzyme from this fi-action using a Ni- 

NTA resin. The Q-firactions which contained the rescuing activity, firactions 70 through 73, 

were combined and applied to Ni-NTA resin in a batchwise manner. The proteins were 

incubated with the resin for several hours at 4°C to allow binding o f the polymerase 

complex. In order to remove unbound proteins the resin was washed three times with 

buffer. Nonspecifically bound proteins were eluted in a second wash with buffer containing 

5 mM imidazole. Finally, the bound proteins were eluted with buffer containing 500 mM
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imidazole. The flow through, washes, and eluting fl-actions were dialyzed against TA200 

KGlu and assayed for the ability to rescue RNAP I specific transcription to inactive 

extracts. The first flection which eluted from the resin with 500 mM Imidazole was able to 

only slightly restore activity to the inactive extract (Figure 9A). This result indicated that 

perhaps the rescuing activity had “split” on the resin and a second component was present 

in one of the other fractions. To test this, we used a combinations of the Ni-NTA fractions 

to assay for the rescuing activity. We found that specific transcription could be more fully 

restored to an inactive extract with the combination of the flowthrough and the first eluting 

fraction (Figure 9B). In order to determine which fraction contained the polymerase, 

western blot analysis was performed on all of the Ni-NTA fractions (Figure 9C). The 

polymerase was only identified in the eluting fraction and was not present in the flow 

through fraction. These results suggest the presence of an additional regulatory factor(s).
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A.

Exponential phase extract 
Q-A / Q-C 

Q-4/22 fractions 65 6 6  67 6 8  69 70

t
B.
Exponential phase extract 

Stationary phase extract 
Q-4/22 fractions

+
+ + 4- 4- 4- 4- 4- 4-

64 65 6 6 67 6 8 69 70

I

Figure 7: Q-B ac tm ty  co-ehites with rescuing activity on high Q cofaunn. (A) In
order to assay for Q-B activity, 10 pi of fractions from the Q4/22 column were added to 
specific transcription assay containing 10 pi of Q-A and Q-C activity from a previous 
columns. The first lane in both panels is a positive control assay of a TA-0 pellet from an 
exponential phase extract The specific fractions added to the assay are noted. (B) To 
determine which fractions contain the rescuing activity 10 pi of the Q4/22 column were 
added to 0.5 pi of a crude inactive extract from a stationary phase culture. The Q-B 
activity and the ability to restore specific transcription were found in fractions 66-70 with 
the peak of activity in fraction #67.
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Figure 8 : Protein proGle of DLRY320 esponential phase extract chrom atographed 
over a high Q colnnm. The blue band indicates the fractions which contain the RNA 
polymerase I specific A 135 subunit as detected by western blot analysis. The red line 
indicates fractions which were able to restore RNAP I specific transcription to inactive 
stationary phase extracts.
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Figure 9: R estoration  o f inactive ex tra c t requ ires a  com bination o f Ni-NTA 
û-actions. To further purify the rescuing activity, a Q-B fraction containing the his- 
tagged RPA135 subunit was bound to Ni-NTA resin. The unbound proteins were 
removed by washing the resin three times with buffer containing no imidazole and twice 
with buffer containing 5 mM Imidazole. Bound proteins were eluted with buffer con
taining 500 mM Imidazole. (A) The Ni-NTA fractions were assayed for the ability to 
restore specific transcription to a stationary phase cell extract The first eluting fraction 
(lane 7) was able to slightly restore activity to the inactive extract (B) The combina
tions of Ni-NTA flowthrough and 500 mM elution fraction (lane 4) were able to restore 
activity to an inactive extract (C) Western blot analysis of the Ni-NTA fractions indi
cate that only the 500 mM elution contained the polymerase.
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Figure 10: A small portion of the RNA pofymerase I  is associated with the  rescuing 
activity. (A) Q column fractions from an exponentially growing culture were assayed 
for the ability to restore specific RNAP I transcription to an inactive extract. Lane 2 is a 
positive control from a previous column. In lanes 3-8, 10 pi of the specified fractions 
were added to the inactive extract. (B) Western blotting analysis, with antibodies against 
the pol I specific subunit A 135, of the Q7/2 fractions showed the polymerase in fractions 
#76 with the peak in fraction #75.
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Figure 11: The fractionation scheme of the RNAP I transcription complex. (AS, ammo
nium sulfate).
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Discussion

Here we present further characterization of the components o f the yeast RNAP I 

transcription apparatus which are involved in the regulation of rDNA transcription. We 

have shown, by western blot analysis and in vitro transcription assays, that only a small 

percentage o f the total population o f RNAP I found in an exponentially growing culture is 

competent for specific RNAP I transcription. Although the reason for this is unclear, it is 

possible that either the remainder o f the polymerase was inactivated during the purification 

process or that a specific transcription factor(s) must associate with the polymerase to 

enable it to specifically recognize the rDNA promoter and initiate transcription. This 

second possibility seems more likely if  it is considered that most of the RNA polymerase in 

the cell would be in a form which would allow for elongation of transcription while only a 

small portion would be invoh'ed in recognition o f the promoter. A plausible hypothesis is 

that perhaps after initiation, the factor, which conveys the initiation competence, would then 

dissociate fi-om the polymerase allowing it to transform into the elongation form. This is 

seen in E. coli RNA polymerase, where the holoenzyme, upon release o f the ct factor fi-om 

the core enzyme, is transformed into a stable elongating complex. Our observation is 

further supported with the recent results of Milkeriet and Tschochner, who found that less 

then 2% of RNAP I from whole-ceU extracts appeared to be competent for specific initiation 

at the ribosomal gene promoter in a yeast reconstituted transcription system (Milkereit & 

Tschochner, 1998). In this study, initiation-competent RNAP I fi-om a sizing column was 

applied to a MonoQ column and eluted with a salt gradient. As determined by western blot 

analysis, the peak firactions o f RNAP I did not coincide with the peak o f  promoter- 

dependent transcription activity.

Upon further purification o f the initiation competent RNAP I complex using a Ni- 

NTA affinity resin, we found that the polymerase could be partially separated firam the
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factor(s) which conveys this initiation competent form. Restoration o f specific RNAP I 

transcription to extracts firom stationary phase cells required the combination of two Ni- 

NTA fractions, one of which contained RNAP L Rm3p, as previously described, is a 

protein essential for the efficient transcription initiation by yeast RNAP I (Yamamoto et al., 

1996). It seemed likely that the Rm3p protein could be this associated factor which 

transformed the RNAP I enzyme into an initiation competent form. In order to determine if 

this factor was present in either o f our two Ni-NTA fi-actions which restored RNAP I 

transcription to stationary phase extracts, we created a yeast strain which had the HA and 

His tags fused to the RRN3 gene.

However, shortly after the yeast strain was made, Milkeriet published results which 

indicated that this indeed was the case. -Western analysis showed that the finctions which 

contained the initiation-competent form of RNAP I coincided with the presence of Rm3p. 

Although the majority of the Rm3p present in the cell was not associated with the RNAP I, 

immunoprécipitations of Rm3p from initiation competent fractions also coprecipitated 

RNAP I (Milkereit & Tschochner, 1998). In addition, Milkeriet and co-workers could not 

use initiation inactive RNAP I (from exponentially growing cell) or recombinant Rm3p to 

restore specific transcription. However, they could exchange other components of the 

RNAP I transcription complex from stationary and exponential extracts. We have 

previously shown this to be true as the Q-A and Q-C fractions from exponentially growing 

cells did not rescue specific activity. Taken together, these results suggest that either the 

RNAP I of Rm3p has to be modified to enable an interaction between these two partners 

and that this modifying factor is yet to be identified. It is possible to imagine a scenario in 

which the RNAP I-Rm3p initiation complex is present in our Ni-NTA eluting fraction and 

that the factor(s) which modifies either the polymerase or the Rm3p in a way which allows 

for their interaction is found in our Ni-NTA fraction. Further experiments should be done
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to test whether and how the RNAP I-Rm3p complex is modified to restore the capability to 

assemble and identify the factor(s) involved in this modification.
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Introduction

Transcription in Escherichia coli— Unlike eucaryotes which have three DNA 

dependent RNA polymerases, prokaryotes rely on only one RNA polymerase to transcribe 

aU of their genes. In Escherichia coli {E. coli), the core RNA polymerase is composed of 

three types of protein subunits: beta ((3), beta prime (P’), and two alpha subunits (a). The 

core enzyme is capable o f elongating preinitiated transcripts but is unable to recognize the 

specific start site o f transcription on the DNA (Burgess, 1969). This specificity is 

conferred by the sigma (ct) subunit which joins the core enzyme to form the holoenzyme 

(Burgess & Travers, 1969). The two largest subunits o f the polymerase, P and P’, contain 

the catalytic site of the enzyme. The alpha subunit can be divided into two functionally 

separable domains: the N-terminal domain (NTD) and the C-terminal domain (CTD). It 

has been shown, by reconstituting polymerase lacking the aCTD, that the NTD is necessary 

and sufficient for the formation of the functional enzyme (Igarashi et al., 1991). The CTD 

responds to regulatory signals encoimtered throughout each step in the transcription cycle 

(Igarashi et ai, 1991; Ishihama, 1992; Ishihama, 1993; Russo & Silhavy, 1992). The 

transcription cycle (illustrated in Figure 1) can be divided into several sequential steps: i) 

initiation, ii) promoter e s c ^ ,  iii) elongation, iv) termination, and in certain situations v) 

antitermination (reviewed in (Yager & von Hippel, 1987)).

Transcription initiation—  Initiation of transcription requires the location and 

binding of the holoenzyme to the start site of transcription. The RNAP recognizes the 

promoter by interacting with several cis elements found near the start site o f transcription: a 

hexamer located -1 0  basepairs upstream of the start site of transcription (termed the -1 0  

region or pribnow box), a second hexamer located at -35 (-35 region), the spacer region 

located between these two hexamers, and, at certain promoters an UP element (typically 

located between -40 and -60) (Brunner & Bujard, 1987). Once the promoter is located, the 

RNAP reversibly binds to one face of the double helix and forms a closed complex which
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contacts a region covering approximately 80 bp from -55 to +20 (Record et ai, 1996). The 

polymerase then melts approximately 12 base pairs (bp) o f the DNA (deHaseth & 

Helmann, 1995), including the initiation site, to form an open complex. This transformation 

involves a major conformational change in the polymerase (deHaseth et al., 1998; Record et 

ai, 1996; Roe et ai, 1985). After the formation of the stable open complex, the initiated 

complex can follow one of three pathways: i) formation of abortive transcripts, (short 

transcripts o f 2  to 8 nucleotides may be released) ii) reiterative synthesis or stuttering, 

resulting in homopolymer extensions of initial RNA transcripts (Chamberlin & Hsu, 1996; 

Liu et at., 1994), or iii) release of the a  factor (Burgess & Travers, 1969). Upon release of 

CT, RNAP translocates away from the promoter and transforms into the stably bound 

transcription elongation complex.
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Fignre 1: The transcriptioii cycle. Intermediates o f the phases are discussed in the 
text (The figure is a modification of Landick et al., 1998, as NusA is indicated in the 
transcription cycle).
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Elongation—  The elongation phase o f the transcription cycle involves an 

enzymatically catalyzed polymerization reaction during which the RNA is formed by the 

assembly of nucleotide triphosphate (NTP) monomers into a growing polymer. The NTPs 

are selected by the polymerase in an order dictated by the base sequence of the template 

DNA. During this process the RNAP elongation complex is stably bound (i.e. able to 

resist dissociation in 1 M KCl or at 65°C (Naito & Ishihama, 1975; Rhodes & Chamberlin, 

1974)) and traverses thousands o f basepairs of DNA. However, the details o f how this 

reaction occurs and the regulatory mechanisms involved are not fully understood.

The features of the transcription complex can be presented in a form of a model 

(illustrated in Figure 2). The structure of the transcription complex, which is derived from 

studies of halted transcription complexes, indicates that the RNA polymerase protects a 

region of -25 to -40 bp o f DNA from digestion by various endo- and exonucleases 

(Krummel & Chamberlin, 1992). Within the elongation complex, the DNA is unwound in 

the transcription bubble (-17 bp). Two independent and precise measurements, one by 

Kumar and Krakow (Kumar & Krakow, 1975), the other by Hanna and Meares (Hanna & 

Meares, 1983a; Hanna & Meares, 1983b), have determined the average length of the RNA- 

DNA hybrid to be 12 ± 2 base pairs. Kumar and Krakow showed that short fragments of 

RNA, of length 12 ± 2 base pairs, are protected when RNAases were added to an in vitro 

transcription system. Photocrosslinking experiments by Hanna and Meares showed strong 

cross-linking to the DNA template strand at positions 1 through 12 (counting back from the 

growing point of the RNA), but no crosslinking to the DNA template strand at positions 13 

or beyond. Other groups argued for an - 8  bp hybrid based on the protection of template 

DNA bases from single-stranded specific reagents (Kainz & Roberts, 1992; Lee & 

Landick, 1992) and RNA-DNA crosslinking (Nudler et al., 1997).

The boundaries of the transcription bubble are maintained by a tight interaction of 

the RNA polymerase with the DNA, downstream and upstream from the melted region.
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Komberg, Ddarst and others used electron crystallographic methods to deduce low- 

resolution (16 to 25 Â) structures o f E. coli holo- and core RNAPs (Darst et al., 1989; 

Polyakov et a i, 1995). The structures have revealed a large channel (~25 Â) surrounded by 

“jaws’'. It has been suggested that these “jaws” close around the downstream duplex 

DNA in the transition from holoenzyme to the elongation complex (Asturias et a i, 1997; 

Polyakov et a l, 1995). Two tunnels have been identified that run through the enzyme from 

near the channel to the opposite side, one of which may fimction as the RNA exit tunnel 

(Darst et a l, 1991; Kim et a l, 1997). The overall structure resembles the hand-like motif of 

DNA polymerases whose X-ray crystal structures have been determined.
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1998).
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In the traditional view of transcriptional elongation, the RNAP was believed to 

translocate along the DNA template in a monotonie manner, advancing I bp with each 

nucleotide addition (Yager & von Hippel, 1987). The stability of the binding of the RNA to 

the complex is determined only by the stability of the DNA-RNA hybrid, and the hybrid 

was solely responsible for maintaining the integrity o f the transcription elongation complex. 

In this model, it is implied that the structure o f a normal elongating RNA polymerase 

complex would remain invariant as the enzyme moved through a particular transcription 

unit.

An alternative model incorporated the modification that the addition of 2 or more 

nucleotides could occur without the complete translocation o f DNA and RNA through 

RNAP followed by chain translocation o f  2 or more base pairs (discontinuous movement, 

sometimes called inchworming) (Chamberlin, 1995). This model was created fi"om evidence 

of variable sized footprints o f halted complexes (Krummel & Chamberlin, 1992; Nudler et 

al., 1994). In this inchworming model, the RNAP is considered a flexible structure which 

contains two different RNA/DNA binding sites. One site is located at the fi’ont edge o f the 

enzyme (site 1) and the other at the back edge (site 2). These sites can exist in two states, 

either locked or sliding, and the DNA/RNA hybrid is proposed to be only 2 base pairs in 

length. In such a model, elongation involves two separable phases of synthesis: nucleotide 

addition and translocation. In the nucleotide addition phase, the DNA/RNA site at the fi-ont 

of the enzyme is locked, while the DNA/RNA site located at the rear o f the polymerase is 

unlocked and can slide. The catalytic site o f the polymerase moves along the DNA, adding 

ribonucleotides. The addition of nucleotides leads the back edge of the polymerase to move 

progressively closer to the firont This phase is completed when the RNA binding site 1 is 

filled. During translocation, DNA/RNA site 2 is locked and site 1 is unlocked. This allows 

the front edge o f  the polymerase to move forward, leading to a translocation of
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approximately 10 base pairs. As the site I moves forward, RNA site I is emptied, and the 

cycle begins again (Chamberlin, 1995).

New evidence, which contradicts the two basepair DNA-RNA hybrid theory, 

promotes a reinterpretation o f Chamberlin results. Footprinting evidence demonstrates that 

a potentially rigid RNAP can sometimes slide freely along the RNA and DNA chains and 

displace the 3’ end from the active site, resulting in larger or smaller footprints 

(Komissarova & Kashlev, 1997a; Nudler era/., 1997; Reeder & Hawley, 1996). The most 

recent model for translocation suggests that the RNAP is distributed among all accessible 

positions by rapid sliding, with the occupancy o f each template position dependent on its 

relative free energy (Guajardo & Sousa, 1997; Komissarova & Kashlev, 1997b; Landick,

1997). This thermal ratchet mechanism suggests that the energy for directional 

translocation along DNA is derived when nucleotide addition shifts the positional 

equilibrium o f the RNAP sliding back and forth along the RNA and DNA chains towards 

the forwardly translocated conformation (Celles & Landick, 1998).

Regulation sites throughout elongation—  RNA chain elongation is punctuated by 

certain control sites which are recognized by the RNAP. When the elongation complex 

interacts with a pause site, the polymerase hesitates but is able to resume elongation. These 

interactions are distinct from transcriptional arrests which have been shown to occur in 

vitro. At arrest sites, the polymerase halts and the ternary complex remains intact with no 

release of the RNA. At a third type of site, transcriptional terminators, the elongation 

complex dissociates and releases the RNA transcript There are many cis and trans acting 

factors which can regulate the RNAP complex at each of these sites.

Transcriptional pausing can be a result of natural variations, such as local NTP 

concentrations, or can have a specific regulatory function. Temporary halting o f the 

polymerase within a transcriptional unit allows for trans-acXmg factors, such as ribosomes, 

termination factors or antiteimination factors, to interact with the elongation complex and
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alter RNA synthesis. It is also thought that pausing allows the surveillance of defective 

mRNA by allowing for rho-dependent release of untranslatable messages (Mooney et al^

1998).

Pause sites are found in the leader regions o f some amino acid biosynthetic opérons 

and are thought to synchronize attenuation by delaying transcription o f the attenuator until a 

ribosome begins synthesis o f the leader peptide. Upon release of the polymerase from the 

paused site by the translating ribosome, the polymerase synthesizes the RNA transcripts 

that compete to form the terminator or antiterminator structures just as the ribosome arrives 

at the leader peptide control codons. E. coli RNA polymerase has also been shown to pause 

at the sites +16 and +17 when transcribing bacteriophage 1  late gene operon (Grayhack et 

ah, 1985; Kainz & Roberts, 1992). It is thought that the stalled complex is a substrate for 

the late gene regulatory antiterminator Q protein (Grayhack et al., 1985)

Although there is no single origin of transcriptional pauses, there are certain 

sequences and structures which contribute to pausing by E. coli RNA polymerase. RNA 

hairpins have been shown to induce pausing by either disrupting the DNArRNA hybrid or 

by directly interacting with the RNA polymerase (Chan & Landick, 1993; Famham & Platt, 

1981; Reynolds & Chamberlin, 1992). GC-rich regions in the DNA can induce pausing 

about 10 base pairs downstream, perhaps by impairing elongation through a region 

requiring higher energy to unwind the DNAzRNA hybrid in the transcription complex 

(Gilbert et al., 1974). Other pause sites have neither o f these characteristics and are thought 

to involve interactions of regions o f the DNA or nascent RNA with RNA polymerase that 

impede elongation in some unspecified way (Levin & Chamberlin, 1987). The transcription 

elongation factor NusA has been shown to enhance pausing (Famham et al., 1982; 

Greenblatt er a/., 1981b; Kassavetis & Chamberlin, 1981; Kingston & Chamberlin, 1981; 

Yager & von Hippel, 1987) either through direct competition for NTPs (Schmidt & 

Chamberlin, 1984) or through a NusA-directed change in the interactions between the
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RNAP and the RNA (Zhang & Hanna, 1994). A more detailed description of NusA 

fimction will be given in Chapter 4.

Transcript release—Transcription termination in E. coli occurs via two 

mechanisms: factor dependent or factor independent termination (also referred to as 

intrinsic termination). Both mechanisms involve the dissociation of the ternary complex 

concomitant with collapse o f the transcription bubble and release of the RNA transcript. 

Factor dependent termination requires the termination protein iho, a hexameric protein 

identified based on its ability to terminate transcription which had initiated from the early 

phage promoters and P,̂  (Roberts, 1969). The rho protein binds to the nascent RNA of 

the transcription complex and releases it at defined rho-dependent terminators along the 

template.

Intrinsic terminators are characterized by a stable RNA hairpin followed by a 7 to 9 

nucleotide 3’ proximal region that usually contains 6 to 8 U’s. Although the actual 

function of the RNA hairpin in transcription termination remains unclear, several models 

have been proposed to explain its importance. It is thought that the hairpin may partially 

disrupt the RNA-DNA hybrid within the ternary transcription complex and facilitate the 

release of the RNA by partially destabilizing the complex (Y ager & von Hippel, 1991). The 

hairpin may also cause elongation complexes to pause at positions o f termination and 

increase the probability of termination (Famham & Platt, 1981). Finally, others propose 

that the hairpin acts to destabilize specific binding interactions between the polymerase and 

the nascent RNA (Chamberlin, 1995).

Several trarw-acting factors can influence the efiBciency o f termination at intrinsic 

terminators. The NusA protein has been shown to increase the termination efficiency of 

several intrinsic terminators. The t^  ̂ terminator of phage X, which is 40% efficient in a 

minimal system, terminates with 90% efficiency in the presence of the NusA protein 

(Schmidt & Chamberlin, 1987a). It is not known how the NusA protein enhances the
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efficiencies of intrinsic terminators. Other extrinsic factors decrease the termination (called 

antitermination) by modifying the elongating complex in such a way that it is unable to 

recognize the terminator signals. The best characterized examples of antitermination are 

found in the lambdoid bacteriophages. The phage X N protein, in concert with several E. 

coli host proteins, prevents termination at multiple sites in both early opérons which allows 

the polymerase to transcribe genes necessary for replication o f the phage DNA (Friedman, 

1988; Greenblatt et al., 1993). Similarly, the Q protein prevents termination during 

transcription of the late p^ operon which allows for transcription of the late genes involved 

in lysis of the infected cell (Grayhack et a i, 1985).

The focus o f Part 2 of this dissertation is to examine the role of the RNA 

polymerase a  subunit in pausing and in intrinsic termination. Emphasis will be placed on 

the a  subunits specific interaction with the transcription elongation factor NusA. A model 

o f how this interaction affects RNA polymerase function in pausing and intrinsic 

termination is proposed.
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Chapter 5

Interaction of the Transcriptional Elongation Factor NusA with 

E. coli RNA Polymerase: Identification of the Critical Residues

on the C-terminal Domain of the Alpha Subunit



Abstract

The E. coli RNA Polymerase (RNAP) core enzyme is composed of four subunits, 

PP’a ,. The a  subunit is critical for assembly of the polymerase and also mediates the 

activation o f transcription initiation by a number of factors. We have recently shown that a  

plays an important role in transcription elongation, which is mediated by a direct interaction 

of a  with the elongation factor NusA. When the C-terminal domain of a  (aCTD) is 

deleted, NusA no longer enhances pausing or termination at intrinsic terminators, or 

enhances antitermination by the bacteriophage A, Q protein.

Here we present evidence for a specific NusA binding domain on aCTD. To 

determine the specific amino acids on aCTD that contact NusA, we have utilized alanine 

scanning mutants of aCTD covering residues 258-329. In vitro binding experiments of a  

to immobilized NusA (glutathione-S-transferase (GST)-NusA on Glutathione Sepharose) 

were performed using E. coli extracts which overexpress these mutant proteins, and the 

amino acid residues on aCTD which are critical for NusA binding have been identified.

Loss of any of the five leucines in helix 4 and one leucine in helix 3 virtually 

abolished binding, suggesting a predominantly hydrophobic interaction between NusA and 

aCTD. Changes in a second group of amino acids, involving primarily acidic and basic 

amino acids in helix 3 and helix 4, also caused significant decreases in NusA binding. 

Interestingly, R265, known to be required for most other interactions with aCTD, was not 

required for NusA binding. The two groups o f defective amino acids form a contiguous 

patch on one side o f aCTD. The stoichiometry of binding was one NusA for each aCTD, 

suggesting that two NusA molecules can bind to RNAP, either directly, or through NusA- 

NusA interactions.
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Introduction

Gene expression involves numerous o f protein-protein, protein-DNA, and protein- 

RNA interactions. To fiiUy understand the regulation of gene expression, the molecular 

interactions that occur at each step in the transcription cycle must be characterized. The 

RNA polymerase in E. coli consists o f  a core enzyme composed of two large subunits, beta 

(P) and beta prime (P’), and two copies o f a smaller subunit alpha (a). The core enzyme is 

assembled in vitro and in vivo in the following order: 2 a^(%2-̂ (%2P-*'a2PP' (Ishihama, 

1981). The holo enzyme, responsible for specific transcription, contains an additional 

subunit, sigma (c), which confers promoter specificity upon the core enzyme (Gross et al., 

1992), The sigma factor is released fi"om the core shortly after promoter recognition and 

initiation o f transcription.

Once CT is released, the elongation factor NusA can bind to the transcription complex 

(Burgess & Travers, 1969; Gill et al., 1991; Greenblatt & Li, 1981). NusA, as part of the 

transcription complex, slows the elongation rate of RNA polymerase, enhances pausing at 

some sites (Chan & Landick, 1993) and increases termination efficiency at intrinsic 

terminators and at some Rho-dependent terminators (Kainz and Gourse 1998). RNA 

polymerase terminates transcription via two different mechanisms, factor dependent or 

factor independent termination. RNA polymerase receives regulatory signals at each of the 

steps in the transcription cycle. Examining how the polymerase is modulated by these 

signals is central to understanding the regulation o f gene expression.

The alpha subunit is composed of 329 amino acids that form two structurally 

independent domains separated by a flexible linker of 13-36 amino acids (Blatter et al.,

1994). The N-terminal domain (otNTD), amino acids 20-235, is necessary and sufficient 

for the proper assembly of RNA polymerase, both in vitro and in vivo (Murakami et al., 

1997). The aNTD also participates in the activation of transcription at Class II CRP-
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dependent promoters by directly contacting CRP (cAMP receptor protein) to facilitate open- 

complex formation (Savery et al., 1998). The C-terminal domain (aCTD), amino acids 

249-329, contains the binding site(s) for several regulatory proteins, including OxyR 

(Igarashi er a/, 1991), OmpR (Igarashi gr a/., 1991; Jaireta/., 1996; Savery er a i, 1998; Tao 

etal., 1995; Yang et at., 1997), CRP (Savery era/., 1998), SoxS (Tao et a i, 1995), 8c TyrR 

(Yang et a i, 1997). In addition, aCTD interacts directly with DNA promoter regions 

upstream of the —35 consensus hexamer (UP elements) of some promoters, including the 

ribosomal RNA PI promoters (Gaal et al., 1996).

Recently, we have shown that aCTD also contacts the nascent RNA in actively 

transcribing elongation complexes (Liu & Hanna, 1995b). We have shown by RNA- 

protein crosslinking that NusA can interact with RNA in transcription elongation complexes 

even when aCTD is absent. However, this requires high concentrations of NusA, and the 

interaction made by NusA with polymerase lacking aCTD is nonhmctional for enhanced 

pausing, intrinsic termination, or Q-mediated antitermination. Although NusA can bind to 

core enzyme lacking aCTD through interactions with P and P’, this binding is lost when 

the ionic strength of the solution is decreased and, although NusA can bind to intact a  even 

in the absence of p and P’, NusA cannot bind to a  that lacks the CTD (Liu et al., 1996). 

Interaction o f NusA with the elongation complex eliminates the a-RNA contact, with 

concomitant interaction of the RNA with NusA (Liu & Hanna, 1995b). The removal o f the 

RNA from a  could be due to an allosteric interaction o f NusA elsewhere on the RNA 

polymerase, causing a conformational change affecting a. Alternatively, the loss of a-RNA 

interaction could be caused by direct contact of NusA with aCTD, either masking the RNA 

binding site on aCTD, or lifting the RNA off of a .  Here we describe experiments which 

distinguish between these two possibilities and define a NusA-binding domain on aCTD.
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Materials and Methods 

Bacterial Strains and Plasmids

The E. coli strain BL21 (DE3) (Novagen), which bears the inducible T7 RNA 

polymerase gene on the chromosome, was used to express all of the E. coli a  subunit genes 

on plasmids. The strain BL21 (Novagen), which lacks the T7 polymerase, was used to 

express the GST-NusA fusion protein (Zhang & Hanna, 1995). The E. coli strain MIS 

from Qiagen was used to produce a hexahistidine tagged portion o f a  containing only the 

linker and the CTD (amino acids 235-329).

The plasmid pH TT7fla (Tang et al., 1995), which encodes a  that contains a N- 

terminal hexahistidine tag expressed from the bacteriophage T7 gene 10 promoter, was used 

to construct the complete set o f His-tagged alanine scanning mutants in a  from amino acid 

258 to 329. The HindlW-BamHi fragment from pHTflo, containing single alanine 

substitutions at amino acids 258-273 (a gift from Dr. Richard Ebright), and pREIIa 

derivatives, encoding single alanine substitutions at amino acids 278, 284-301, 303-304, and 

307 (given by Dr. Gail Christie and Dr. Rick Gourse) were used to replace the analogous 

segment in pHTTZfla (Tang et a i, 1995). The remaining alanine scanning mutations were 

created using the mega primer method of site-directed mutagenesis (Picard et a i, 1994). 

The DNA sequence o f each mutated a  gene was verified.

The plasmid encoding only the His-tagged aCTD was created by PCR 

amplification of amino acids 235 through 329 from plasmid pHTT7fl-NHa. The PCR 

primers contained BamHI and H indlll sites, so these sites were on the 5’ and 3 ’ ends o f the 

PCR product, respectively. The DNA fragment was digested with BamHI and H indlll and 

subcloned into those sites o f the vector pQE30 (Qiagen). The recombinant plasmid was 

transformed into the E. coli strain M l5.
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Binding of aCTD to immobilized GST-NusA

aCTD was expressed in E. coli M l5 cells and purified with Ni^~ agarose (Tang et 

ai, 1995). Purified aCTD (20 |ig) was mixed with 100 p.g purified GST-NusA fusion 

protein immobilized to Glutathione Sepharose 4B (Zhang & Hanna, 1995), and incubated at 

4°C for 10 minutes with gentle shaking. The beads were pelleted and washed 3 times with 

PBST (20 mM K3PO4; 150 mM KCl; 1% v/V Triton X-100; 1 mM P-mercaptoethanol). 

The washed beads were resuspended in LLB (100 mM Tris-HCl, pH 8.0; 200 mM DTT; 

4% w/v SDS; 0.02% wÂ  bromophenol blue; 20% wV glycerol), heated at 94°C for 3 

minutes and analyzed by electrophoresis on a 12.5% SDS Tris-glycine gel.

Binding of the mutant alpha proteins to immobilized GST-NusA

GST pull-down assays using a GST-NusA fusion protein were performed to 

determine which of the amino acids in a  are critical for binding to NusA. Crude cell lysates 

containing the overexpressed wild type a  or a  mutant protein were prepared by growing the 

appropriate strains at 37°C with shaking in 5 ml of LB broth plus 100 pg o f  ampicillin. At 

an OD^oo = 0.5 - 0.7, expression of a  was induced by the addition o f isopropyl P-D- 

thiogalactoside to a final concentration of 1 mM. After induction, the cultures were shaken 

3 hr at 37°C and then harvested by centrifugation (13,000 x g; 30 sec at 4°C). The cell 

pellets were resuspended in 0.3 ml of PBST, the cells were lysed by sonication ( 3 x 1 5  sec 

bursts at 5 watts, Fisher Model 60 Sonic Dismembrator, Pittsburg, PA.), and the lysate was 

cleared by centrifugation (13,000 x g for 5 min at 4°C). The GST-NusA fusion protein was 

prepared as previously described (Zhang & Hanna, 1995) and immobilized to Glutathione 

Sepharose 4B (Pharmacia) equilibrated with PBST, at a concentration o f 2.5 fig of protein 

per (il o f resin. For the pull-down assays, 40 |il of a 50% slurry o f GST-NusA (50 (ig) 

bound to resin was incubated at 4°C for 30 min with 300 jil o f the crude cell extract 

containing the overexpressed aWT, o235 and each of the alanine scanning a  proteins. The
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resin was pelleted by centrifugation (1,000 x g; 15 sec at RT) and the supernatant fraction 

was saved for SDS PAGE analysis. The resin was washed 3 times with 600 pi o f PBST. 

The washes were carried out by adding the buffer, mixing the beads briefly and then 

centrifuging (1,000 x g; 15 sec at RT). The resin was then resuspended in 20 pi of LLB, 

heated for 3 min at 100°C and analyzed by 12% SDS Tris-glycine electrophoresis.
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Results

The C-terminal domain of a  binds to NusA

We have previously shown that NusA makes direct contact with the E. coli RNAP 

alpha subunit but does not bind to a  containing only the NTD (lacking amino acids 235 to 

329 ; Liu et a i, 1996). To determine if  the aCTD alone binds to NusA, binding studies 

using a GST-NusA fusion protein immobilized to glutathione sepharose were performed. 

Fusion of GST to the N-terminus of NusA does not interfere with its function in 

enhancement o f pausing, termination, or Q-mediated antitermination (Zhang & Hanna,

1995) and allows normal binding o f NusA to RNA polymerase. The His-tagged WTa, 

OtNTD (amino acids 1-235) and aCTD (amino acids 235-329) were overexpressed and 

purified using Ni^"-NTA agarose (Qiagen) and passed over the GST-NusA columns after 

washing the resin to remove unbound proteins. W Ta (Figure 1, lane 1) and aCTD (lane 3) 

remained bound to the GST-NusA column, while aNTD (lane 2) did not. None o f the 

proteins were retained by a column containing resin alone or immobilized GST (data not 

shown). The interaction of NusA with the alpha subunit therefore requires only the CTD, 

from amino acids 235 to 329.
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Figure 1. Interactions between immobilized GST-NusA and the E. coti a  subunit.
GST-NusA was immobilized on glutathione sepharose beads and mixed with either aW T 
(lane 1), aNTD (amino acids 1-235, lane 2), or aCTD (amino acids 235-329, lane 3). 
After washing, bound proteins were eluted from the resin and the released proteins were 
analyzed by SDS-PAGE and staining of the gel with Coomassie Blue. Protein molecular 
weight standards are shown in the lane "M". The molecular weights for a , aCTD and 
aNTD are 36.5 kDa, 10.4 kDa, and 25.9 kDa, respectively and their positions are indicat
ed on the right Only the wild type alpha subunit (aWT, lane 1) and the C-terminal 
domain (aCTD, lane 3) were bound to NusA.
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Overexpression of alpha subunits containing single alanine substitutions in the 

CTD.

To determine which amino acids on aCTD are required for binding to NusA, 

plasmids encoding the alpha subunit, under the control of the T7 RNAP promoter and 

containing a hexahistidine tag at the N-terminus o f the protein were prepared. Constructs 

containing alanine substitutions at each of the amino acids from 258 to 329 on aCTD were 

prepared, and the mutant proteins were expressed. Figure 2 shows the SDS-PAGE analysis 

of the protein profiles of cell lysates after induction with IPTG (one o f  three independent 

experiments is shown). Although the three independent experiments varied somewhat in the 

level of overexpression of the different a  subunits, the level of overexpression did not affect 

the ability of a  to bind the GST-NusA afSnity column, as there was an excess of alpha 

protein added to the column. For example, although the K289A subunit was greatly 

overexpressed, it failed to bind to the GST-NusA column (Figure 3). In contrast, the 

G279A subunit was only slightly overexpressed yet bound to the GST-NusA column with 

the same affinity as the WT subunit.

The cell lysates were then loaded onto the GST-NusA affinity column and then 

incubated at 4° for 30 minutes. The column was washed to remove proteins not interacting 

with NusA, and the associated proteins were eluted and subjected to SDS PAGE analysis. 

Figure 3 represents one o f three independent binding experiments performed using the 

cleared lysates shown in figure 2. The alpha mutants which were unable to bind to NusA as 

well as WTa can be classified into two groups: those which had severely decreased binding 

and those which bound to GST-NusA with decreased strength relative to wild type. The 

0CA235, L262A, L281, L290A, K297A, L300A, D03A, L307A, L312A, and L314A alpha 

subunit mutants displayed the most severe defects in binding to NusA, (dark blue in figure 

4). Mutants L260A, L270A, E273A, I278A, E286A, V287A, L289A, K291A, K298A, 

E302A, K304A, D305A, G315A, and L318A which were able to bind GST-NusA, but less
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efficiendy then wild type, comprise the second group, (light blue in figure 4). Two of the 

alanine substitutions, N294A and S309A, increased the binding o f aCTD to NusA by 1.5 

fold.
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Figure 2: SDS PAGE analysis of clear lysates o f cultures overexpressing m utant a  
subunits. Cultures were prepared as described in Methods. Samples of the clear lysates 
were analyzed by 12% SDS PAGE. The positions of the RNAP subunits and a  contain
ing only the NTD (oNTD) are shown at the left of the top panel.
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Discussion

Several studies have identified the specific amino acid residues on the C-terminal 

domain of the a  subunit involved in the direct molecular communication with several 

transcription activator proteins (both class I and class II activator proteins. Figure 6 ). In 

addition, the amino acids involved in protein activator-independent transcription activation at 

several strong promoters containing an UP element are also identified. Recently, Kainz et 

al. identified residues in aC T D  which are important for efficient dio-dependent 

transcription termination. In this study we supplement the map o f the aC T D  by indicating 

which amino acids are involved in the binding of a  to the elongation factor NusA.

We have classified two groups o f residues on aC TD  which exhibit a decreased 

binding to NusA in vitro (Figure 4). Using alanine scanning mutagenesis we have 

identified eleven amino acid residues, L262, L281, L289, L290, K297, L300, 1303, K304, 

L307, L312, and L314, which are critical for binding of aC T D  to NusA. Six o f these 

amino acids substitutions, L290A, L300A, 1303A, L307A, L312A, and L314A, completely 

abolish the binding of aC T D  to NusA. Examination of the three-dimensional structure of 

the aC TD  shows that these residues, along with residues K297 and L304, form a surface- 

exposed patch critical for binding a  to NusA. Residues L289 and L270 lie just behind this 

surface. The location of these residues on the three dimensional NMR structure o f aC T D  

form a contiguous patch which suggests that there is one NusA binding domain (Figure 5). 

We propose that this surface of aC T D  makes direct protein-protein interactions with the 

transcription elongation factor NusA (Figure 5).

Our studies show that residues R265, N268, E273, L281, G296, 1303, K304, and 

L307 are required for NusA to bind a . Kainz and Gourse (1998) recently reported that 

NusA stimulated rho-dependent termination two-fold with wild-type RNAP and 1.8  to 2.4- 

fold with RNAP which have alanine substitutions in aCTD at positions. These results
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suggest that while NusA stimulates rho-dependent termination, this stimulation is unlikely 

to be due to a direct contact of NusA with the aCTD.

Additionally, the L300A substitution completely eliminated the stimulatory effect of 

NusA on rho-dependent termination in vitro even at high concentrations of NusA. We have 

data which suggests that RNAP reconstituted with this mutant a  subunit is unable to 

respond to NusA in enhancing termination at intrinsic terminators or pausing (unpublished 

data). This residue is also important in the function o f several transcription activators 

(Figure 6 ). It will be interesting to determine if  this severe mutation causes a structural 

defect in the aCTD.

We have shown previously that aCTD interacts with the nascent RNA in elongation 

complexes and that the addition of NusA interferes with this interaction (Liu et al. 1996). 

We have implicated R265 and C269 as the contacts for the RNA (unpublished data). Not 

surprisingly these residues lie adjacent to the NusA binding site. One can hypothesize a 

possible model in which, upon binding of NusA to a , the RNA is transferred from the 

aCTD to the NusA allowing for the increase in pausing. It wiU be interesting to determine 

if  alanine substitutions at these sites affect NusA function in pausing or termination.

Another intriguing result from this study is the calculated molar ratio of 1:1 a  to 

NusA. We can hypothesis two models either of which is consistent with our data: 1) one 

aCTD is required for one NusA to bind, or 2) aCTD forms a dimer to which two NusA 

molecules bind. Figure 7 shows the ribbon model and space filling model of the 

hypothetical dimer. When located on the dimer o f aCTD, in which the two alpha subunits 

dimerize in two fold symmetry, these residues form a contiguous patch to which NusA can 

bind.

In conclusion, the alpha subunit, and specifically the aCTD, is a key regulatory 

target in RNAP which functions through direct contacts witii other molecules that regulate 

all stages of transcription. The transcription elongation factor NusA requires a direct
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interactioa with aCTD in order to function in elongation, termination, and anti-termination. 

We have identified specific residues in the aCTD which are required for binding to the 

elongation factor NusA. Current studies are underway to determine which of these critical 

residues are required for NusA function throughout the transcription cycle.
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Chapter 6

Gene Cloning and Characterization of a NusA-Iike 

protein from Chlamydia trachomatis which Interacts in 

vitro with Escherichia coli RNA Polymerase



Abstract

We cloned and expressed in Escherichia coli an open reading firame from 

Chlamydia trachomatis encoding a polypeptide which is homologous to several bacterial 

NusA factors, a family o f proteins regulating transcription elongation and termination. The 

putative C. trachomatis NusA, which differs from E. coli NusA in size (434 amino acids, 

as compared to 495 amino acids for£. coli ) and sequence (45% homology; 32% identity), 

was expressed as a Histidine-tagged recombinant protein. Immunoblot analysis o f a 2D 

electrophoretic map of proteins from C  trachomatis elementary bodies with antibodies 

raised against the recombinant protein identified a protein of 48.6 kDa and pl=5.24, in good 

agreement with the values predictable from the ORF (48.8 kDa, pl=5.19). We show that 

this protein can bind to E. coli RNA polymerase core enzyme (RNAP) in vitro. However, 

the chlamydial NusA is unable to bind to the E. coli a  subunit, which is a vital interaction 

for the control o f transcript elongation and termination. In agreement with this finding, C. 

trachomatis NusA is unable to increase intrinsic termination in E. co li.
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Introduction

C  trachomatis can grow only as intracellular parasites of eukaryotic cells 

(Moulders, 1991) and are pathogenic for humans and several animal species. During their 

life cycle, the cells alternate between an infectious but metaboUcally inert, extracellular, 

spore-like form (the elementary body, EB) and non-infectious, intracellular, replicative 

forms. The latter form remains contained within a specialized vacuole and undergoes normal 

bacterial replication by binary fission, but must eventually differentiate back to EEs in order 

to reinfect the host cells. Due to the features o f this unique life cycle, a genetic 

transformation procedure for Chlamydiae is still essentially unavailable, and therefore there 

is a general interest in the possibility of studying the molecular genetics of these bacteria by 

transferring selected molecules into more suitable hosts, or by using reconstituted in vitro 

systems. In particular, the in vitro reconstitution of chlamydia-specific RNA transcription 

processes has been the object of research efforts in recent years (Mathews et aL, 1993). A 

chlamydial initiation factor homologous to E. coli <770 has been described and characterized 

in an in vitro system (Engel & Ganem, 1990; Koehler et ah, 1990), and the genes encoding 

the putative a , P and P’ subunits of the chlamydial RNA polymerase core enzyme have 

been also described (Engel et aL, 1990; Gu et at., 1995). It therefore seems reasonable that 

the chlamydial transcription complex can be reconstituted in vitro. We now describe the 

cloning and expression in E. coli o f a gene of C. trachomatis which encodes a putative 

component o f such a complex, i.e. a protein homologous to E. coli NusA, a factor which 

regulates transcriptional elongation and termination (Famham era/., 1982; Gill era/., 1991; 

Greenblatt & Li, 1981; Greenblatt et al., 1981a; Kassavetis & Chamberlin, 1981; Kingston 

& Chamberlin, 1981). In E. coli, NusA interacts both with the core RNA polymerase 

complex (RNAP) (Greenblatt & Li, 1981) and the nascent RNA (Liu & Hanna, 1995a; Liu 

& Hanna, 1995b; Yager & von Hippel, 1987). We show here that a recombinant form of 

this protein firom C. trachomatis can bind to E. coli RNAP, but unlike the E. coli factor the
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c. trachomatis factor is unable to enhance specific transcription termination at an intrinsic 

terminator.
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Materials and Methods

Construction and Screening of the Expression Plasmids

The oligonucleotides 5’- AAA CTG GAG ATG AAC AAG GAT CTT GTG GCT- 

3’ and 5’- TTT GAA TTC TTA ATC TTC AAC TTG AGG TTT -3’, containing Pstl and 

EcoRl restriction sites respectively, were used in PCR to amplify the putative Chlamydia 

trachomatis NusA gene from whole genomic DNA. The PCR product was cloned into the 

corresponding sites o f the E. coli expression vector pTrcHis/C (Invitrogen Xpress System) 

to create pTrcHis/C/CTNusA. One positive clone was selected and sequenced (sequence 

data was deposited with GenBank, accession number U74759).

In order to create a fusion protein of glutathione-S-transferase and the NusA-like 

protein of C. trachomatis, the ohgonucleotides 5’-TCC CCC GGG ATG AAC AAG GAT 

CTT GTG GCT- 3’ and 5’-CCT CGA GTT AAT CTT CAA CTT GAG GTT TTT-3% 

containing Smal and Xhol sites respectively, were used to amplify the NusA gene from 

pTrcHis/C/CTNusA by PCR. The PCR product was ligated into the corresponding sites of 

pGEX-4T-2 (Amersham Pharmacia Biotech) to generate pMH104. After ligation, plasmids 

were transformed into DH5a and checked for overexpression of the fusion protein.

Computer analyses

Nucleotide sequences were assembled and analyzed with GCG software 

(Wisconsin Package Version 9.0, Genetics Computer Group, Madison, Wise., USA) 

(Devereux et a/., 1984). Data base searches for protein sequence similarity wCTe performed 

with the BLAST programs (Altschul et al., 1990) available at the NCBl (National Center for 

Biotechnology Information) Web page (http://www.ncbi.nlm.nih.gov). Multiple alignments 

o f protein sequences were generated with the Pileup algorithm of the GCG software. 

Theoretical pi and Mw were calculated by the pl/Mw computer program available from the
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ExPASy server (http://www.expasy.ch). Analyses o f two dimensional protein map and 

corresponding immunoblots were performed with the Melanie II program (BioRad).

Expression and purification of EUs-tagged C. trachomatis NusA

The pTrcHis/C/CTNusA plasmid was transformed into the E. coli strain TOP 10 

provided by the Xpress System kit (Invitrogen). Overexpression of the His-tagged C. 

trachomatis NusA protein (CT-His^-NusA) was induced by the addition o f isopropyl (3-D- 

thiogalactoside (IPTG) to a final concentration of 1 mM. Three hours after induction, cells 

were harvested and lysed according to manufacturer instructions. The His-tagged CT- 

NusA protein was purified by loading the cell lysate on a 2 ml Ni-NTA-agarose (Qiagen) 

column which had been equilibrated with 20 ml of 20 mM phosphate buffer (500 mM 

NaCl, pH 7.8). The column was then washed with 20 ml o f 20 mM phosphate buffer (500 

mM NaCl, pH 6.0). The recombinant protein was eluted with 5 ml aliquots of 20 mM 

phosphate buffer (500 mM NaCl, pH 6.0) containing imidazole at increasing concentrations 

of 50,200, 350 and 500 mM. Aliquots o f 20 pi from each step were collected and analyzed 

by SDS-PAGE on 13% polyacrylamide gels (Laemmli, 1970) and stained with Coomassie 

Blue. The firactions containing a single band of appropriate molecular weight were pooled 

and the protein was concentrated by precipitation with a 10% TCA, 0.04% deoxycolate 

solution. The precipitate was collected by centrifugation, the pellet washed with acetone and 

resuspended in sterile PBS
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Preparation of antibodies to recombinant CT-NusA

Polyclonal antibodies were prepared by immunizing a rabbit with the purified CT- 

HiSg-NusA protein. Antigen (50 p.g) was injected four times at 15 day intervals, using 

Freund complete adjuvant in the first injection and incomplete Freund adjuvant in the 

following ones. Increasing titers o f IgGs were monitored by Western blotting analysis with 

the recombinant antigen.

2D-PAGE protein mapping

Two-dimensional gel electrophoresis of chlamydial proteins was performed using 

the immobiline/polyacrylamide system, as previously described (Bini et a i, 1996). Purified 

chlamydial cells (mostly EBs) were obtained by growing the C. trachomatis strain 

L2/343/Bu in Vero cell cultures, and purified by density gradient centrifugation, as 

previously described. Chlamydiae were pelleted by low-speed centrifugation and 

resuspended in 8 M urea, 4% CHAPS (3-[(3 cholamidopropyl)dimethylammonium]-l- 

propanesulfonate), 40 mM Tris base, 65 mM dithioerythritol (DTE). Approximately 50 jig 

of total EB protein was loaded on non-linear immobilized pH gradients (pH 3.5-10) 

(Pharmacia). The IPG strips were then loaded on 9-16% polyacrylamide linear gradient 

gels ( 18 cm X 20 cm x 1.5 mm), and electrophoresis was carried out at 40 mA/gel constant 

current, 10°C, until the dye fi-ont reached the bottom of the gel. Of two gels run in parallel, 

one was stained with ammoniacal silver nitrate (Hochstrasser et a i, 1988; Oakley et al., 

1980) and the other was electroblotted onto nitrocellulose membrane (Towbin et al., 1979). 

Membranes were stained in 0.2% w/v Ponceau S in 3% w/v trichloroacetic acid for 3 min 

and the position of reference spots was mariced to facilitate the matching of the silver stained 

image with the immunoblot The immunoreactive spot was detected with the rabbit anti 

serum raised against the recombinant protein (dil 2500x), followed by incubation with goat
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anti-rabbit IgGs conjugated with peroxidase (Cappel, dil. 7000x) and detection by 

chemiluminescence (Amersham kit).

Expression and purification of GST-tagged CT-NusA

In order to detect the presence of the GST-tagged C  trachomatis NusA fusion 

protein (GST-CT-NusA), DH5a cultures transformed with pMHI04 were grown for 

approximately 2.5 hours at 37°C with shaking and then induced with I mM IPTG. After 3 

hours of additional growth, the cultures were harvested by centrifugation at I0,000g for I 

min. The pellets were resuspended in 20 pi o f  LLB (100 mM Tris-HCI, pH 8.0; 200 mM 

DTT; 4% w/v SDS; 0.02% w/v bromophenol blue; 20% v/v glycerol), and heated at 90°C 

for 3 min. The expression of the fusion protein was verified by SDS-PAGE.

For large scale purification of the fusion protein, an overnight culture o f DHSa 

harboring the pMH104 overexpression construct was used to inoculate a 3 L culture of LB 

broth (containing 50 pg/ml ampicillin) to an initial OD^oo o f 0.1. The culture was 

incubated with aeration until an OD^qo of 1.0 was reached. IPTG was added to a final 

concentration of 0.2 mM and 3 hours later the cells were harvested by centrifugation 

(16,(X)0 X g for 2 min at 4°C) and then resuspended in BC 100 (20 mM Tris-Cl, pH 8.0; 

0.2 mM EDTA; 100 mM KCl; 20% v/v glycerol; 0.5 mM PMSF; 0.5 mM DTT; 0.05% 

Triton X-100) at a concentration of 0.3 grams o f  cells/ml. Cells were lysed with a French 

press at 900 Ib/in  ̂ and the lysate was centrifuged at 15,000 x g for 15 min at 4°C. The 

supernatant was mixed with the appropriate amount of 50% (v/v) slurry Glutathione- 

Sepharose 4B beads (Pharmacia) equilibrated in buffer BC 300 (20 mM Tris-Cl, pH 8.0; 

0.2 mM EDTA; 300 mM KCl; 20% v/v glycerol; 0.5 mM PMSF; 0.5 mM DTT; 1% v/v 

Triton X-100). The mixture was incubated with rocking for 30 min at room temperature. 

The resin was sedimented by centrifugation at 500 x g for 5 min and washed three times 

with 10 volumes of BC 300 and three times with 10 volumes of BC 100 without Triton. In
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order to release the GST-NusA, the resin was resuspended in I ml o f elution buffer (10 

mM reduced Glutathione in 50 mM Tris-HCI, pH 8.0) and incubated at room temperature 

for 10 min. The resin was sedimented as described above and then the supernatant was 

dialyzed against storage buffer (10 mM Tris-HCI, pH 8.0; 0.1 mM EDTA; 0.1 mM DTT; 

100 mM NaCl; 50% vtv glycerol). Protein concentration was determined by the Bradford 

protein assay (BioRad).

Binding of immobilized C trachomatisNvisA  to core E. coli RNAP

To determine if  the C. trachomatis NusA is able to directly interact with E.coli 

RNA polymerase, 50 pg of GST-NusA (from either E. coli or C. trachomatis) was as 

immobilized to Glutathione Sepharose 4B (Pharmacia) at a concentration of 2.5 |ig of 

protein per pi of resin as previously described (Zhang & Hanna, 1995). For the pull-down 

assays, 40 pi o f a 50% slurry of GST-NusA bound to resin was incubated at 4°C for 30 

min with purified E. coli core RNAP (10 pg) in a final volume o f 100 pi of PBST. The 

resin was pelleted by centrifugation (1,000 x g; 15 sec at room temperature) and the 

supernatant finction was saved for SDS PAGE analysis. The resin was washed 3 times 

with 600 pi o f PBST. The washes were carried out by adding the buffer, mixing the beads 

briefly and centrifuging (1,000 x g; 15 sec at room temperature). After the supernatant was 

removed the resin was then resuspended in 20 pi o f LLB (100 mM Tris-HCI, pH 8.0; 200 

mM DTT; 4% w/v SDS; 0.02% w/v bromophenol blue; 20% v/v glycerol), heated for 3 min 

at 100°C and analyzed by 12% SDS-PAGE followed by Coomassie staining.

Binding of the alpha subunit of E. coli RNAP to immobilized GST-CT-NusA

GST pull-down assays using a GST-NusA fusion protein were performed to 

determine if  the a  subunit of E. coli RNAP directly interacts with C. trachomatis GST- 

NusA. Crude cell lysates containing the overexpressed wild type a  subunit were prepared
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by growing the E. coli strain BL21(DE3), transformed with the plasmid pHTT7fl-NHa 

(Tang et a i, 1995), at 37°C with shaking in 5 ml o f LB broth containing 100 |ig o f 

ampicillin. At an o f 0.5 - 0.7, expression of the a  gene was induced by the addition 

of IPTG (1 mM). After induction, the cultures were shaken an additional 3 hours at 37°C 

and harvested by centrifugation (13,000 x g; 30 sec at 4°C). The cell pellet was resuspended 

in 0.3 ml of PBST (20 mM K3PO4, pH 7.4; 150 mM KCl; 1% v/v Triton X-100; and 1 mM 

P-mercaptoethanol), the cells were lysed by sonication ( 3 times with 15 sec bursts at 5 

watts, Fisher Model 60 Sonic Dismembrator, Pittsburg, PA.), and the lysate was cleared by 

centrifugation (13,000 x g; 5 min at 4°C). The GST-NusA fusion protein was prepared and 

immobilized to Glutathione Sepharose 4B as described above. For the pull-down assays, 

40 (il o f a 50% slurry o f GST-NusA (50 pg) bound to resin was incubated at 4°C for 30 

min with 300 pi of the crude cell extract containing the overexpressed a  protein. The resin 

was washed as above and the eluted proteins were analyzed by 12% SDS PAGE followed 

by Coomassie Blue staining.

In Vitro Transcription Assays

For the analysis o f NusA-enhanced Rho-independent termination, transcription 

complexes were formed by pre-incubation of 20 nM RNAP, 10 nM DNA (the template is a 

PCR ft-agment which contains the A, P^’ promoter and the X t̂  terminator from plasmid 

pHAlOO-R63 (Hanna & Meares, 1983a) and an initiating trinucleotide (ApApC) (100 nM) 

for 5 min at 37°C in buffer A (20 mM Tris-HCI, pH 8.0; 0.1 mM EDTA; 50 mM KCl; 2% 

v/v glycerol; 20 pg/ml acetylated BSA) with or without NusA at the indicated 

concentrations. Transcription was then initiated by the addition of MgClj (7 mM), heparin 

(20 pg/ml), ATP, UTP (200 pM  each) and 50 pM [a-^^P] GTP (2x10^ cpm/pmol). After 

incubation at 37°C for 3 min, the transcription was chased by the addition o f CTP (200 

pM). After another 10 min incubation at 37°C, the reaction was stopped by the addition of
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2 volumes of stop solution (1.5 M Ammonium acetate; 37.5 mM EDTA; 50 pg/ml tRNA) 

and the RNA was precipitated by the addition of ethanol. The RNA was resuspended in 15 

|il o f load buffer (7 M urea; 1 mM EDTA; 0.02% w/v bromophenol blue; 0.02% w/v xylene 

cyanol), heated at IOO°C for 3 min and separated on a 5% polyacrylamide urea gel.
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Results

Cloning of the putative C. trachomatis nusA gene

In a program of random genomic walking, which had the scope of connecting the C. 

trachomatis L2 genome to a previously determined protein map (Bini et al., 1996) PCRs 

were performed on "vectorette" genomic libraries. The DNA segments obtained were 

cloned and screened by sequencing. Nucleotide sequences, which contained significant 

open reading frames (ORFs), according to data base homology searches, were extended on 

either side by further specific PCRs in the appropriate restriction libraries. Several 

expressed genes were identified by matching the theoretical and experimental data on N- 

tenninal amino acid sequence, Mw and pi values, and/or by immunoblot analysis with 

immune sera raised against the recombinant product of the cloned ORF. One of the ORFs 

selected encodes a 434 amino acid long polypeptide which could be significantly aligned 

with several other bacterial proteins belonging to the NusA family o f transcription 

elongation/termination factors (Bini et aL, 1996; Friedman, 1988; Richardson, 1993) An 

alignment of the C. trachomatis peptide with other nine bacterial proteins of the NusA 

family is shown in Figure 1. This alignment was obtained with the Pileup computer 

program, which orders the sequences according to calculated evolutionary distances. 

Interestingly, nucleotide sequence data shows that the next gene downstream o f the putative 

C. trachomatis nusA gene encodes for the putative protein-synthesis initiation factor 1F2 

(see DNA sequence data deposited in GenBank with accession number U74759): an 

arrangement which is also found in the genomes of other bacteria, including E. coli and B. 

subtilis (Shazand et al., 1993) and is consistent with the identification of the ORF as a 

chlamydial m^ /1  gene.
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Expression of the putative nusA gene in E. coli and identification of the 

corresponding native gene product

The ORF which encodes for the putative C  trachomatis nusA protein was cloned 

in the expression vector pTrcHis/C and overexpressed as a His-tagged fusion protein by 

IPTG induction in the E. coli strain TOP 10. The expressed protein (CT-HiSg-NusA) was 

purified from bacterial extracts by adsorption onto Ni-NTA-agarose resin followed by 

elution with increasing concentrations of imidazole. Typical results are shown in Figure 2. 

The purified CT-HiSg-NusA protein was used to raise specific rabbit antibodies. In order to 

confirm that the protein encoded by the nnsA ORF is actually expressed in vivo, proteins 

from purified EBs of the C. trachomatis strain L2 were firactionated by isoelectrofocusing 

on immobiline strips followed by SDS PAGE to obtain a two dimensional map. A Western 

blot of the gel was then probed with the antiserum raised against the recombinant protein. 

The results (Figure 3) show that the rabbit serum identified a single spot corresponding to a 

protein species o f 48.6 kDa and p 1=5.24, in good agreement with values predictable from 

the cloned ORF (48.8 kDa, pl=5.19).
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•CT-Hisg-NusA

Figure 2: Anafysis by SDS-PAGE and Coomassie blue staining of the expression 
and purification of Ifis-tagged CT-NusA protein in  E. coti. Aliquots of culture were 
collected and lysed both before IPTG induction and three hours later (lane 2 and 3). Puri
fication of CT-Hisg-NusA was achieved by elution from a Ni-NTA agarose column with

50 mM (lane 4), 200 mM (lane 5), and 350 mM (lane 6 ) imidazole solution. Molecular 
weight markers are shown in lane I with MW values shown on the left
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Figure 3: Section of a two dimensional map of C. trachomatis protdns (A), and an 
immunoblot o f the corresponding area (B) probed with rabbit andsem m  to recom
binant C. trachomatis NnsA. Molecular weight and pi ranges are marked, as well as 
internal map markers (MOMP, and GroEL-like and SI proteins according to the reference 
map previously described). The arrow in panel A shows the spot identified (by computer 
assisted image matching) as due to the native C. trachomatis NusA protein.
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c  trachomatis NusA binds to E. coli core RNA polymerase

To determine whether the recombinant C. trachomatis GST-NusA (CT-GST- 

NusA) could bind to E. coli RNAP core enzyme in vitro, as had been previously observed 

for E. coli GST-NusA (E-GST-NusA) (Gill et al., 1991; Greenblatt & Li, 1981), binding 

studies using a GST-NusA fusion protein immobilized to Glutathione Sepharose were 

performed. E-GST-NusA (prepared as described by (Zhang & Hanna, 1995)) or CT-GST- 

NusA protein were immobilized to the Glutathione Sepharose and mixed with E. coli core 

RNAP. The resins were washed several times to remove any unbound proteins (Figure 4, 

lanes 3 and 5). The E. coli RNA polymerase subunits ot, P and P ’ co-eluted with both the 

immobilized E-GST-NusA (lane 4) and CT-GST-NusA (lane 6). These results indicate 

that the CT-GST-NusA protein could directly interact with the E. coli core RNAP in vitro.
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PP '
E. coli GST-NusA (lane 4)
C. trachomatisGS'ï-^xx&A. (lane 6)

Figure 4: Interaction between immobilized GST-NnsA from either E. coli or C. tra
chomatis and E. coU core RNA polymerase. GST-NusA from E. coli (lane 4) or C. 
trachomatis (lane 6) was immobilized to Glutathione agarose. Purified E. coli core RNA 

polymerase was added to the mixture and incubated 37°C for 30 minutes. The resin was 
spun down and the unbound proteins were removed (lanes 3 and 5). The resin was 
washed three times with buffer and the specifically bound proteins were eluted by the 
addition of LI.B and heating 3 min. at 100°C. The eluted proteins were analyzed by 12% 
SDS PAGE (lanes 4 and 6). Molecular weight markers are in lane 1 and core markers are 
in lane 2.
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CT-NusA is unable to enhance intrinsic termination of transcription of E. coli 

RNAP

After demonstrating that C. trachomatis NusA binds to the E. coli RNAP, we next 

tested the ability of the C. trachomatis NusA to function in vitro by enhancing pausing and 

intrinsic termination. The ability of CT-HiSg-NusA and CT-GST-NusA to enhance 

transcription termination by interacting with the E. coli RNA polymerase core enzyme was 

compared to that of E-GST-NusA and E-His@-NusA. A 1153 bp long DNA template 

containing the promoter and t  ̂terminator sequences from X bacteriophage was obtained 

by PCR from the plasmid pHA100-R63. When RNAP transcribes this template in vitro in 

the absence of the NusA transcription factor, it initiates transcription from the X P^’ 

promoter and terminates approximately 55% of transcription 465 nt downstream at the X t„ 

terminator (Figure 5B), with the remaining RNAP running off (RO) the end o f  the template 

to produce a 619 nt transcript at the top of the gel (Figure 5A). When E-GST-NusA was 

added to the reaction, an increase in the termination efficiency was observed which was 

proportional to its concentration, starting from 20 nM and reaching a maximum of 95% 

termination at 500 nM (Figure 5B). However, CT-GST-NusA was unable to increase 

termination efficiency even at the higher protein concentrations (Figure 5, lanes 9-12). In 

order to exclude the possibility that the 23 kD GST tag was interfering with the ability o f 

the CT-NusA from functioning, the CT-HiSg-NusA was also assayed (Figure 5, lanes 5-8). 

The increase in intrinsic termination efficiency was not observed upon the addition of either 

CT-NusA fusion protein. These results indicate that although CT-NusA can bind to RNAP, 

it appears to lack a critical interaction necessary for it to function in enhancing termination.

161



A.

NusA (nM)
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GST EC NusA His CT NusA GST CT NusA
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Figure 5: Effect o f C. trachomatis NusA on termination efficiency. (A) Transcription 
was initiated from the Pĵ ' promoter of template 1 using E. coli RNAP. GST-EC-NusA 

(lanes 1-4), CT-HiSg-NusA (lanes 5-8), or GST-CT-NusA (lanes 9-12) was present at the 

indicated concentrations. Positions of the transcripts generated by termination at the 
Rho-independent terminator t̂  (465 nt) or from readthrough of t  ̂to produce the run-off

RNA (RO) (619 nt) are indicated. (B) The histagram represents the percent of terminat
ed transcripts.
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NusA fusion tags decrease the efficiency of termination compared to Wild Type 

NusA

In order to determine the effect of the affinity tags, E. coli NusA with either the His  ̂

tag or the GST tag was assayed for the abihty to enhance termination efficiency and 

compared to WT E. coli NusA (Figure 6 ). Transcription was initiated as described above 

and either untagged wild type E. coli NusA (lanes 1-4), E-HiSg-NusA (lanes 5-8) or E- 

GST-NusA (lanes 9-12) was added at the indicated concentrations. As seen in the 

histogram in Figure 6B, the affinity tags decrease the efficiency o f termination by 

approximately 10% at all concentrations tested. Interestingly, the His tagged proteins were 

consistently less efficient at enhancing termination then those tagged with the larger 23 kDa 

GST tag. However, this decrease in termination efficiency does not account for the inability 

of the CT-NusA proteins to enhance termination at intrinsic terminators.

C. trachomatis NusA is unable to bind to the E. coli a  subunit of RNAP.

We have previously shown that the specific interaction between the E. coli RNAP 

a  subunit and NusA is vital for the control of transcription termination (Liu et a i, 1996). 

Since C. trachomatis is able to bind E. coli RNAP but is unable to enhance intrinsic 

termination, we hypothesized that CT-NusA does not make this critical contact with the a  

subunit. In order to determine if  CT-NusA could bind the a  subunit, we immobilized GST 

or GST-NusA firom either C. trachomatis or E. coli to Glutathione Sepharose and passed 

over the affinity column a crude cell lysate overexpressing the a  subunit After the column 

was washed to remove proteins not interacting with NusA, the associated proteins were 

eluted and analyzed by SDS PAGE (Figure 7). The a  subunit bound to the E. coli GST- 

NusA (lane 4) but did not bind to either the GST control (lane 2) or C. trachomatis NusA 

(lane 3). We conclude that C. trachomatis NusA cannot bind to the a  subunit o f RNAP.
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WT EC NusA His EC NusA GST EC NusA
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Figure 6: Effect of afEmity tag on NnsA enhanced term ination efficiency. (A) Tran
scription was initiated from the Pr’ promoter from a template derived from pHAlOO- 
R63. Either WT untagged E. coli NusA, his tagged NusA, or GST tagged NusA was 
added at the indicated concentrations. The positions of the transcripts resulting from ter
mination at to or from readthrough of t  ̂to generate the run-off RNA are indicated. (B)

The amount of terminated transcripts was detemined as described.
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E. coli GST-NusA (lane 4)
C. trachomatis GST-NusA (lane 3)

GST

Figure 7: Interactions o f the E. coli RNA Polymerase alpha subunit with Immobi' 
lized NusA Proteins firom C. trachomatis and E. colL GST (lane 2) or GST-NusA from 
either C. trachomatis (lane 3) or E. coli (lane 4) were immobilized on glutatione agarose 
beads. A crude crude cell lysate which contained the overexpressed a  subunit from E. 
coli RNA polymerase was incubated with the immobilized proteins for 30 minutes at 
37 C. The resin was washed three times with buffer and then the bound protein were 
eluted from the resin with SDS loading buffer and heating at 1(X)°C for 3 minutes. The 
released proteins were analyzed by SDS-PAGE followed by Coomassie staining o f the 
gel.
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Discussion

We identified an ORP of C  trachomatis which encodes for a protein which aminn 

acid sequence is significantly homologous to other bacterial NusA factors. We showed that 

this gene is expressed in vivo since antibodies raised against the recombinant ORP product 

specifically recognized, in a two-dimensional electrophoretic map of Chlamydial proteins, a 

single protein species which had a molecular weight and isoelectric point values expected 

for the predicted gene product

There are currently available several putative NusA amino acid sequences from 

different bacterial species. The multiple alignment of nine o f these sequences with the 

putative C. trachomatis NusA protein we describe (Figure 1) shows a moderate variability 

o f the structures in their N-terminal third and very high variability in the C-terminal 

portions, apparently comprising independent domains which can be completely missing in 

some members o f the family. However, the central third o f the alignment shows the 

occurrence of a set o f completely invariant amino acid residues, so that the following profile 

can be proposed to identify this protein family : R-X9-L-X5-PE-X12-R-variable segment- 

G-X3-K-X10-D-X6-G-Xll-E-X3-E-X2-D-X17-P-variabIe segment-G-X2-G-X-N-X2-L- 

X5-G The first o f these invariant residues, the R-200 in the C. trachomatis sequence, is 

part o f a domain (amino acids 143 and 206 in the E. coli sequence), which, in the prototype 

E. coli NusA, has been denoted as "arginine-rich" (Ito et al., 1991) and has been described 

as an RNA binding domain, homologous to the SI RNA-binding domain o f E. coli 

polynucleotide phosphorylase (Bycroft et a i, 1997; Gibson et a i, 1993). We note that 

according to the alignment in Figure 1 only the last arginine residue of the domain appears 

to be essential. At the C-terminal end, after amino acid corresponding to 343 o f E. coli, 

there is a significant loss of homology between the E. coli and C. trachomatis proteins. 

Interestingly, a truncated E. coli NusA protein lacking all amino acids beyond amino acid 

343 is fully functional at 32°C for transcription termination, but it is defective primarily in
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transcription anti-termination involving the N protein o f  bacteriophage X (Tsugawa et al^ 

1988), a function which would not be required in C  trachomatis.

The in vitro binding o f CT-NusA to E. coli core RNAP suggests some structural 

homology between the two proteins. GST-CT-NusA is clearly able to bind to E. coli core 

RNAP although slightly less efficiently than E. coli NusA. However, neither CT-GST- 

NusA nor CT-His^-NusA were able to increase transcription termination efficiency at an E. 

coli intrinsic terminator as previously shown for E-GST-NusA (Liu et a i, 1996; Rosenthal 

& Calvo, 1987; Schmidt & Chamberlin, 1987b). In a comparative in vitro assay (Figure 5) 

this defect was not due to the tagging of the NusA protein, as the effect o f the fusion tags 

could only account for a decrease in termination efficiency of approximately 10-15%. It is 

interesting to note that the addition o f only six histidines to the N-terminus o f NusA causes 

a greater defect in NusA function when compared to the larger, 23 kDa, GST tag. It is 

Likely that the N-terminus is involved in an important interaction which is perturbed by the 

charged histidine residues.

As previously reported, the interaction between the otCTD and NusA is required for 

optimal termination at intrinsic terminators. Here we report that this interaction is lacking 

between the E. coli a  subunit and the C. trachomatis NusA, therefore, preventing the CT- 

NusA from functioning in vitro. Analysis of the alignment of the NusA proteins from E. 

coli and C. trachomatis shows that the E. coli NusA protein is larger than that o f C. 

trachomatis . Although an aCTD binding site on E. coli NusA has not been identified, it is 

tempting to postulate that the aCTD binding site is likely to be at the C-terminal end of the 

E. coli NusA which is one o f the highly variable domains and is lacking in the C. 

trachomatis NusA.

The presence o f a relatively large amount o f NusA in the EB's, the infectious but 

metabolically dormant form of C. trachomatis seems noteworthy. A well stained spot could 

be observed in the silver stained 2D map (Figure 3A). Since on the same map we could
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also identify, by N-terminal sequencing (data not shown), the a  subunit of the chlamydial 

RNAP, we compared the amount o f protein in the two spots by laser photodensitometry of 

the gel followed by quantitative analysis with the Melanie II software. Interestingly, the 

results indicate that the molar ratio o f a  to NusA was 1.93, i.e. very close to an expected 

value of 2 for an elongation RNAP/NusA complex. Obviously this calculation is based on 

the assumption that both NusA and the a  RNAP subunit spots stain with silver in a 

proportional manner; it is nevertheless tempting to speculate that in the spore-like EB cells 

there may be present already assembled transcription elongation complexes in which 

initiation has already occurred (possibly at genes selected at the end of the replicative cycle) 

for a prompt resumption of mRNA synthesis, after entry into the host cell, allowing a rapid 

differentiation to metabolically active replicative forms. This result is in contrast with our 

data from the previous chapter which indicated a molar ratio of a  to NusA of 1. It must be 

considered that the a  binding experiments were performed with a  which was not in 

complex with the polymerase. However, it is tempting to speculate that the number of NusA 

proteins interacting with the polymerase plays a role in its function in enhancing pausing 

and termination. Obviously, more experiments need to be performed to answer these 

questions.
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Chapter 7

Interaction of the Transcription Elongation Factor NusA with 

E, coli RNA Polymerase: Identification of the a  Binding 

Domain on the C-Terminus of NusA



Abstract

The Escherichia coli transcription factor NusA binds to the transcription complex 

shortly after the release o f a factor firom core RNAP. It interacts with both the core enzyme 

and the nascent RNA resulting in a slower elongation rate, enhanced pausing and 

termination. It has been established that direct interaction between the a  subunit o f RNAP 

and NusA is required for NusA fimction. In Chapter 5, the specific amino acids of the a  

subunit which are critical for this functional interaction are identified. This Chapter presents 

evidence for the a  binding domain on NusA.

In order to determine which region of NusA was important to allow binding to oc, 

two GST-NusA fusion proteins having deletions of the C-terminus o f  NusA (fi"om amino 

acids 354 and 432) were compared to the wild type NusA. In vitro binding experiments of 

a  to the truncated NusA proteins, immobilized to Glutathione Sepharose, were performed. 

The C-terminus on NusA was determined to be critical for this interaction. In vitro 

termination and pausing experiments using the truncated NusA proteins emphasized the 

importance o f this interaction for NusA function.
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Introduction

NusA, a 54.5 kDa acidic protein of Escherichia coli, serves as a transcription 

elongation and termination factor and as a protein which couples antitermination factors to 

the elongation complex (Friedman & Gottesman, 1983; Friedman ef a/., 1984; Kung et al., 

1975). It has been shown that the addition of NusA to a coupled transcription-translation 

system prevents premature transcription termination (Kung et a i, 1975; Zarucki-Schulz et 

al., 1979). In a purified system NusA causes pausing o f RNA polymerase at specific sites 

and enhances termination by RNA polymerase (Famham et a i, 1982; Greenblatt et a i, 

1981a; Kassavetis & Chamberlin, 1981; Kingston & Chamberlin, 1981). NusA is one of 

four E. coli host factors (The others are NusB, NusE, and NusG) involved in transcriptional 

anti-termination by the bacteriophage A.'N protein (De Vito & Das, 1994). In addition, 

NusA is the only host factor involved in Q-mediated transcriptional antitermination in 

phage A, (Barik & Das, 1990; Yamell & Roberts, 1992). The role o f NusA in these 

processes include interactions with the core polymerase, the nascent RNA, and other 

transcription factors (Greenblatt et a i, 1993; Liu & Hanna, 1995a). However, the direct 

mechanism of action o f NusA remains obscure.

The E. coli nusA gene has been the subject of numerous genetic studies which have 

produced a number o f mutants which have provided information on the functional domains 

of NusA. The nusA gene was first identified by isolation o f the nusAI mutation, which 

restricts bacteriophage A. growth by preventing the antitermination activity of the A. N protein 

(Friedman, 1971; Friedman & Baron, 1974). Mapping o f the nusAI mutation showed a 

substitution of arginine for leucine at amino acid 183 (Craven & Friedman, 1991; Saito et 

al., 1986). A second mutant, the temperature sensitive NusA mutant nusAU(\s), is defective 

in the ability to terminate transcription normally at both p-dependent and p-independent 

terminators, although at various levels depending on the terminator (Nakamura et al., 1986a; 

Nakamura et al., 1986b). This mutation, which is a substitution of glycine at amino acid
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181 with aspartate, does not restrict k  growth under permissive or nonpermissive conditions 

(Nakamura et al., 1986a). Both of these mutations map in the same hydrophobic amino 

acid cluster which apparently constitutes an important domain of the NusA protein.

Sequence and structural alignments have implicated other domains in NusA as 

important for RNA binding. A region of the NusA protein extending from amino acid 133 

to 207 was aligned with the 31 structure derived from polynucleotide phosphorylase 

(Bycroft et a i, 1997). The SI RNA-binding domains were first identified in the E. coli 

ribosomal protein SI, which has six of these RNA-binding domains, and were located in 

other proteins thought to interact with RNA (Boni et al., 1991). A second set of alignment 

data showed two regions of NusA which contain KH domains, one between amino acids 

233 and 295 and the other from amino acid 302 to 348. It has been suggested that the KH 

domain might bind RNA on the basis of its presence exclusively in proteins involved in 

RNA metabolism (Siomi et al., 1993). Although it has been shown that NusA binds RNA, 

conclusive proof that either of tliese regions of NusA are involved in RNA binding has not 

been presented.

In the previous chapters it has been shown that NusA interacts specifically with the 

a  subunit o f RNA polymerase, and the region o f NusA involved in this functional 

interaction, is lacking in the NusA protein from Chlamydia trachomatis. Here I provide 

evidence that the C-terminal 60 amino acids of NusA are essential for this interaction. A 

model proposing how this interaction affects NusA function in transcription elongation is 

also presented.
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Materials and Methods

Construction o f NusA deletion plasmids

The oligonucleotides 5’ GGC AAG CTT CAT CGT GAG TGA CTG ACG 3’, and 

either 5’ TGC AAG CTT TTA CGC TGC GTG CGC TTC CG 3’ or 5’ TGC AAG CTT 

TTA ATC GTC AGC CGG i l l GTT ATC 3’ (Figure I) were used to PCR amplify 

pHAlOOA (Zhang & Hanna, 1995), the E. coli expression plasmid which encodes for the 

NusA protein fused to GST. The amplification produces a plasmid which encodes for a 

NusA protein lacking either the C-terminal 63 or 141 amino acids. The first oligonucleotide 

anneals to the vector immediately downstream o f the NusA gene and was used in both 

reactions. The second and third oligonucleotides anneal to the NusA gene and encode for a 

stop codon at amino acid 433 or 355 respectively. All of the primers encode a HindHl site 

at the 5’ end to allow for ligation of the PCR product. PCR reactions were performed as 

previously described in Chapter 3 except 5 Units o f Taq Plus Long DNA polymerase and 

IX High Salt Buffer (Stratagene) were used. After amplification, the PCR products were 

digested with HindlAl and ligated as described in Chapter 3. After ligation, the plasmids 

were transformed into DH5a and transformants were analyzed for the overexpression o f 

the fusion protein as described in of Chapter 6 .

Expression and purification o f truncated GST-NusA fusion proteins

The GST A432 NusA and GST A354 NusA proteins were purified using 

Glutathione Sepharose as described in Chapter 6 .

Binding o f immobilized truncated proteins to E. coli core RNAP and the alpha subunit

The truncated NusA proteins were assayed for the ability to bind core RNAP and 

the a  subunit of RNAP as described in Chapter 6 .
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Transcription assays

For analysis o f NusA enhanced pausing, transcription complexes containing 

radioactively labeled 20-mer RNA (A20) were prepared from the T7 A l promoter o f 

pAR1707 with RNA polymerase in the presence and absence of NusA, as previously 

described (Liu & Hanna, 1995b). The 20-mer RNA was then chased by the addition of 

ATP, GTP, CTP and UTP to 20 jiM. Samples were removed at various times, and 

transcription was stopped by addition o f an equal volume o f urea loading buffer (7 M urea; 

1 mM EDTA; 0.02% w/v bromophenol blue; 0.02% w/v xylene cyanol). The RNA was 

analyzed by electrophoresis on a 10% polyacrylamide-urea gel. Analysis o f NusA- 

enhanced p-independent termination was performed as described in Chapter 6 .
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Results

As reported in Chapter 6 , the NusA protein from Chlamydia trachomatis is capable 

o f binding to the E. coli RNA polymerase in vitro but is unable to function in enhancing 

termination at intrinsic terminators. It was demonstrated by binding assays that the NusA 

protein from C. trachomatis is unable to interact with the a  subunit of RNAP which is a 

necessary interaction for NusA function in vitro (Liu & Hanna, 1995b). Upon alignment of 

the amino acid sequences of the E. coli and C. trachomatis NusA proteins, we recognized 

that the N-terminus of the two proteins contains the highest regions of homology and that 

the C-terminus from C. trachomatis is lacking approximately 60 amino acids which are 

present in E. coli. In order to determine if  the C-terminal region of E. coli NusA was the 

region of NusA necessary for binding oc, two plasmids were constructed to express GST- 

NusA fusion proteins that are truncated at amino acid 432 and 354.

Expression o f  truncated GST-NusA proteins

In order to construct plasmids which would express a truncated GST-NusA fusion 

protein, we performed deletion PCR on the plasmid pHA200A (Zhang & Hanna, 1995), 

which encodes for the full-length fusion protein (illustrated in Figure 1, panel A). Two 

PCR reactions were performed using either primers #1 and #2, or primers # I and #3, to 

create pMHl 13 or pMH114 respectively. Primer #1 (Figure 1, panel B) anneals to the 

vector sequence immediately downstream of the NusA stop codon and contains a HindlYL 

site at the 5’ end. Primers #2 and #3 (Figure 1, panel B), which also contain H indlll sites, 

anneal to the NusA protein and encode for stop codons at amino acid 433 or 355 

respectively. After amplification (Figure 2, lanes 2 and 3), the PCR product was ligated and 

transformed into DH5a. Transformants were screened for expression of the truncated 

proteins by inducing the cultures with IPTG. SDS PAGE analysis of cell lysates from six
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of the transformants showed overexpression of the both A432 (Figure 3, lanes 3 and 5), and 

A354 (Figure 3, lanes 6  and 7).
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A . #3 #2

GST-NusA

pHA200A

B.

Primer#!
NusAA C-terminus 5’ - GGCAAG CTT/CAT/CGT/GAC/TGA/CTG/ACG- 3' 

Primer #2
NusA M32 5’ - TGC/AAG CTT/TTA/A TC/G TC /A G C/C G G /nT/aTT/A Tr, - 3'

Primer #3 5’ - TGC/AAG CTT/TTA/CGC/TGC/GTG/CGC/rTC/Ca - 3'
NusA A354

Figure 1: Construction o f GST-NusA deletion plasmids. (A) The GST-NusA 
expression plasmid pHA200A and the binding sites of the PCR primers are indicated. 
(B) Primers were designed for deletion PCR of the NusA gene. Each primer contains a 
Hindis, site at the 5' end (shown in red) so that the PCR product could be ligated after 
amplification. Stop codons are underlined in black and the nucleotides which anneal to 
the plasmid during the first rounds of amplification are in bold. The plasmids created 
were used to express GST-NusA proteins which had been truncated at either amino acid 
432 or 354.
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21,226-

2027 —

Figure 2: PCR amplification o f the NusA deletion plasmids. Lane 1 is X
i/z/uiIII/£coRI molecular weight standards. Lanes 2 and 3 contain 10 pil of the 100 |il 
PCR reactions of A432 and A354, respectively.
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GST-NusA
158-

66.4"
55.6^

26.6-

4  5 8

^_A 432 (lanes 3-5) 
5—A354(lanes &-8)

Figure 3: PAGE analysis of transfonnatiis containing the GST-NusA deletion
pIasmids.Transfcrmants were inoculated into 1 ml of LB broth and allowed to incubate 

at 37°C for 2.5 hours. Overexpression was induced with the addition of 0.2 mM IPTG 
and growth continued for 3 hours. Whole cell lysates were analyzed by SDS PAGE fol
lowed by Coomassie blue staining. Molecular weight markers are in lane 1 with sizes 
indicated on the left. Full-length GST-NusA (lane2), A432 (lane 3 and 5), and A354 
(lane 6  and 7) are indicated. Lane 4  and 8  are transformants not containing the plamids.
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A432 and A354 NusA proteins bind to E. coli core RNA polymerase

To determine whether the truncated GST-NusA (A432 or A354) could bind to E. 

coli RNAP core enzyme in vitro, binding studies using a GST-NusA fusion protein 

immobilized to Glutathione Sepharose were performed. Truncated GST-NusA proteins 

were immobilized to the Glutathione Sepharose and mixed with E. coli core RNAP as 

described in Chapter 6 . The resins were washed several times to remove any unbound 

proteins. The E. coli RNA polymerase subunits a , (3 and P’ co-eluted with the immobilized 

full-length GST-NusA (Figure 4, lane 2), the A432 GST-NusA (lane 3) and the A354 GST- 

NusA (lane 4). These results indicate that the C-terminal region of NusA is not required for 

binding to core RNAP in vitro.

A432 and A354 are unable to function to enhance intrinsic termination o f transcription 

or pausing in vitro.

The truncated NusA proteins were next tested for the ability to enhance termination 

at p-independent terminators. Termination assays were performed using a 1153 bp long 

PCR fragment containing the P^' promoter and t  ̂ terminator sequences from X 

bacteriophage. The correctly terminated RNA transcript is a 465 nt long ( t j  and die 

readthrough RNA (run-off; RO) is 619 nt transcript in length (Figure 5A). In the absence 

of any additional factors, ~40% of the polymerase terminates at t„. When full-length GST- 

NusA was added to the reaction, an increase in the termination efSciency of 45% was 

observed, with the addition of 20 nM NusA, the termination efficiency was increased to 

65% with 100 nM NusA (Figure 5B). However, neither of the truncated NusAs were able 

to increase termination efficiency to levels as comparable to the full-length NusA, even at the 

higher protein concentrations (Figure 5, lanes 4-7).

Since pausing and termination are thought to be intimately related and are both 

affected by the presence of NusA, we next tested the ability of the truncated NusA proteins
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to enhance pausing. It has previously been shown that NusA enhances pausing just 

downstream from an RNA hairpin (PI), 80 nt downstream from the T7 Al promoter 

contained on pAR1707 (Dissenger & Hanna, 1991). Synchronously started transcription 

complexes were formed by initiation o f transcription in the absence of one nucleoside 

triphosphate so that all complexes contained an RNA o f  20 nucleotides long. All four 

nucleoside triphosphates were then added and aliquots were removed at various time points 

and the resulting transcripts were analyzed by denaturing polyacrylamide gel 

electrophoresis. Experiments were performed in the absence or presence of 20 nM (Figure 

6A) and 150 nM (Figure 6 B) o f full-length or truncated NusA. In the absence o f NusA, 

over 50% o f  the transcripts had passed through the P 1 pause at the 2 minute timepoint 

(Figure 7). The addition o f full-length NusA enhanced the length of the pause at PI, as 

50% o f the transcripts had not passed through this site until 3 minutes. The addition of 

either NusAA432 or NusAA354 had no affect on pausing at either concentration. These 

results indicate that the C-terminal 63 amino acids of NusA are critical for function in 

termination and pausing.
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PP'
GST-NusA

Figure 4: Interaction between immobilized GST-NusA (full-length o r truncated)
and E. coU core RNA polymerase. Full-length GST-NusA (lane 2), A432 (lane 3), or 
A354 (lane 4), were immobilized to Glutathione Sepharose. Purified E. coli core RNA 

polymerase was added to the mixture and incubated at 37°C for 30 minutes. The resin 
was spun down and the unbound proteins were removed. The resin was washed three 
times with buffer and the specifically bound proteins were eluted by the addition of T J -R 

and heating 3 min. at 100°C. The eluted proteins were analyzed by 12% SDS PAGE. 
Molecular weight markers are in lane 1 and the sizes of the proteins are indicated on the 
left.
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WT GST NusA A354NusAA432NusA

NusA (nM) 20 100 20 100 20 100

B. WT GST NusA 0  GST A432 NusA DOST A354 NusA

20
NusA(nM)

100

Figure 5: Effect of NusA deletions on termination efficiency. (A) Transcription was 
initiated from the Pj '̂ promoter of template I using E. coli RNAP. Full length GST- 
NusA (lanes 1-3), A432 NusA (lanes 4  and 5), or A354 NusA (lanes 6  and 7), was present 
at the indicated concentrations. Positions of the transcripts generated by termination at 
the p-independent terminator t  ̂(465 nt) or from readthrough of t  ̂to produce the run-off 
RNA (RO) (619 nt) are indicated. (B) The histagram represents the percent of terminat
ed transcripts.
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20 nM No NusA WT NusA A432 NusA A354 NusA

Time ,,n ] i )B |
1 2 3 | 4 | 5 | 6 11 2 1 3 14 15 16 1 I 2 l 3 l 4 | 5 l 6 1 213 1 41516

RO
•

P2
PI ##w# •»WtA é s ttî

B.

150 nM 
Time

RO

P2
PI

No NusA WT NusA A432 NusA A354 NusA

1 1 O Q /I 1 C 1 ^ 1 1 O 3 1 AI 2.1 31 4J 5 ^ 112 3 4 p  |o

#*##W

A12_ 3 4 j 5 M

Figure 6 : Effect of NusA dektions on pausing efficiency. Panel A and B are autorad
iograms of an RNA gel showing the transcripts made during a transcription time course 
from the T7 A l promoter using either 20 nM (A) or 150 nM (B) of NusA. Ternary tran
scription complexes containing 20 nucleotide RNA were formed with E. coli RNAP. The 
20-mer was chased with or without either full length NusA or the truncated NusAs and 
aliquots were taken at 20 sec (lane 1), 40 sec (lane 2), I min (lane 3), 2 min (lane 4), 3 
min (lane 5), or 5 min (lane 6 ). Pause RNAs are identified as RNA species which persist 
with time, but eventually chase to full length RNA. PI and P2  indicate the positions of 
the major pause site RNAs from this template, and RO indicates the position of the run 
off transcript
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Figure 7: Effect of NusA deletions on percent of total transcripts paused at P I  over 
time. The gels of the pausing experiments (containing 150 nM NusA) were analyzed 
and the total amount of transcripts for each timepoint was determined using a 
phosphoimager. The truncated NusA proteins had the no affect on the length of the PI 
pause in contrast to the full-length NusA.
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Truncated NusA proteins are unable to bind to the E. coli a  subunit o f  RNAP.

Liu et al had previously reported that the interaction between a  and NusA is vital for 

the control o f transcript termination and pausing (Liu et a i, 1996). Since the truncated 

NusA proteins bind to E. coli RNAP but are unable to enhance intrinsic termination or 

pausing, we wanted to test the ability o f the truncated NusAs to bind the a  subunit. To 

determine this we immobilized the full-length and truncated GST-NusA proteins to 

Glutathione Sepharose and passed a crude cell lysate overexpressing the a  subunit over the 

affinity column as described in Chapter 6. The column was washed so only proteins 

interacting with NusA were retained and then these associated proteins were eluted and 

analyzed by SDS PAGE analysis (Figure 8). The a  subunit binds to the full-length GST- 

NusA (lane 2) as expected. Both A432 (lane 3) and A354 (lane 4) showed reduced binding 

to a . These results further support the hypothesis that the C-terminal 63 amino acids o f E. 

coli NusA are critical for binding the a  subunit o f RNAP which is necessary for function in 

enhancing pausing and termination.
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Figure 8: Interactions of the E. coli RNA polymerase alpha snbnnit with inunobr 
lized NusA deletion proteins. Full-length GST-NusA (lane 2), A432 GST-NusA (lane 
3), or A354 GST-NusA (lane 4) was immobilized on Glutatione Sepharose. A crude cell 
lysate which contained the overexpressed a  subunit from E. coli RNA polymerase was 
incubated with the immobilized proteins for 30 minutes at 37°C. The resin was washed 
three times with buffer and then the bound proteins were eluted from the resin with SDS 
loading buffer and heating at 100 C for 3 minutes. The released proteins were analyzed 
by SDS-PAGE followed by Coomassie blue staining of the gel.
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Figure 9: Model for NusA function in pausing and termination.

188



Discussion

The NusA protein is an elongation factor which plays an important role in the 

regulation of pausing, termination, and antitermination in E. coli. In order to function in 

termination and pausing, NusA must physically interact with the nascent RNA and the core 

enzyme (including a critical contact with the aCTD) (Liu & Hanna, 1995a; Liu & Hanna, 

1995b; Liu et a i, 1996). The specific amino acids on the aCTD necessary for this 

interaction are reported in Chapter 5. Truncated NusA protein (truncated at amino acids 

432 or 354) indicate that the C-terminal 63 amino acids on NusA are involved in the 

functional interaction with a.

Although the truncated NusA proteins were able to bind to the core enzyme, our 

results indicate that the C-terminus of NusA is necessary for function in enhancing pausing 

or enhancing termination at p-independent terminators. Using in vitro transcription assays, 

we showed that the C-terminally truncated proteins could only terminate 45% of the 

transcripts whereas full-length NusA terminated 65% of the transcripts. Likewise, the 

truncated NusA proteins were unable to enhance pausing at the PI pause site. When 

assayed in an in vitro pausing experiment, the addition of either o f the truncated NusA 

proteins had little or no effect on the rate o f elongation through the PI pause, compared to 

fiill-length NusA. Using in vitro binding experiments, we show that the inability of the 

truncated NusA proteins to function correlates with to the loss of the a  binding site. These 

finding further support our hypothesis firom the previous chuter that the NusA protein 

firom C. trachomatis is lacking the E. coli binding domain critical for interacting with the a  

subunit In addition, these results further suggest a critical functional interaction between 

the C-terminal domain of the a  subunit of RNAP and the elongation factor NusA.

However, the question o f how NusA enhances pausing and termination still remains 

unanswered. We propose a simple model to explain how the loss o f the interaction between 

NusA and aCTD affects function (shown in Figure 9). Our model suggests that in order
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for NusA to function it must interact with aCTD and lifts the RNA off o f one or both of the 

aCTDs. It has been shown that in the initiation complex, the aCTD can interact with the 

DNA template at some promoters (Ross et al., 1993). DNA footprints using RNAP 

lacking aCTD suggest that when the polymerase enters the elongation phase, aCTD does 

not contact the DNA (Hanna personal communication). Using photocrosslinking 

experiments Liu et al reported the RNA contacted the aCTD in the absence of NusA. 

Upon addition o f NusA the RNA no longer contacted the aCTD but crosslinked to NusA 

(Liu & Hanna, 1995a). In our model we suggest that at pause sites, the interaction of NusA 

with aCTD abolishes the interactions with the RNA and allows the aCTD to contact the 

DNA. Interaction o f a  with the DNA could prevent the polymerase from escaping the 

pause. This is consistent with the result that NusA cannot enhance pausing or termination 

with RNAP which lacks the aCTD. This model is also supported with evidence that RNAP 

lacking one o f the aCTD, in the absence o f NusA, shows an increase in termination and 

pausing at intrinsic terminators (unpublished data). Therefore, without this interaction the 

aCTD remains in contact with the RNA preventing a DNA interaction. Perhaps at 

terminator sites a second NusA interacts with the second aCTD, this interaction further 

weakens the already weak DNArRNA hybrid and causes the release of the transcript. This 

model is supported by our binding data in Chapter 5 which suggests a molar ration of 1:1 

of a  to NusA.

Although this model proposes how the functional interaction between NusA and 

aCTD affects function in pausing and termination many questions remain unanswered. 

Does NusA recognizes the a  monomer or dimer in the elongation complex? Do both of the 

aCTDs contact the RNA hairpin at pause sites? Does the a  contact with NusA induce a 

conformational change in NusA allowing it to bind the RNA? Further experiments (to be 

performed by some other graduate student!!) must be performed to answer these questions.
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