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Abstract

Only recently has one realized the importance of the  coupling of fluid flow with 

rock m atrix deformations for accmately modeling many problems in petroleiun, civil, 

environmental, geological and m ining engineering. In the  oil industry, problems such 

as reservoir compaction, ground subsidence, borehole stabihty and sanding need to 

be simulated using a coupled approach to make more precise predictions than when 

each process is considered to be independent of the other. Due to comphcations 

associated with multiple physical processes and m athematical representation of a 

multiphase flow system in deformable fractiued reservoirs, very few references, if 

any, are available in the hterature.

In this dissertation, an approach, which is based on the dual-porosity concept 

and takes into account rock deformations, is presented to derive rigorously a set 

of coupled diflerential equations governing the behavior of fractiued porous media 

and two-phase fluid flow. The finite difiFerence numerical method, as an alternative 

method for finite element, is apphed to discretize the  governing equations both 

in time and space domains. Throughout the derived set of equations, the fluid 

pressures and saturations as well as the sohd displacements are considered as the 

primary unknowns.

The model is tested against the case of single-phase flow in a 1-D consohdation 

problem for which analytical solutions are available. An example of coupled two-

XIV



phase fluid flow and rock deformations for a scenario of a one-dimensional, fractured 

porous medium is also discussed.

The only paper that proposed a mathematical model for the case of multi-phase 

flow, and also considered the rock deformations, was pubUshed in 1997 by Lewis and 

Ghafouri. In their model, the derivation of the continuity equations for fluids was 

carried out by writing out term-by-term the contribution to the fluid accumulation 

rate. This method was based on the intuitive phenomenological concept, rather than 

any theoretical reasoning. Hence, some parts in their equations are questionable.

The numerical model and simulator, RFIA (Rock Fluid Inter Action), developed 

in this dissertation can be a powerful tool to solve difficult problems not only in 

petroleum engineering such as ground subsidence, borehole stabihty and sand con­

trol, but also in civil engineering such as groundwater flow through fractured bedrock 

£ind in environmental engineering such as waste deposit concerns in fractured and 

unconsohdated formations. As an example of apphcation in petroleum engineer­

ing, the waterflooding process in a deformable fraotured reservoir was numerically 

simulated and analyzed.

Finally, sensitivity analyses were carried out to investigate the relative impor­

tance of some required parameters to the overall behavior of a deformable fractured 

reservoir.
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Chapter 1 

Introduction

Natural fractures affect all phases of the petroleum reservoir life-span, from the 

accumulation of oil to the techniques used to manage production. The existence of 

fractiures in oil reservoirs was known as early as the 1860’s. However, only in the 

last thirty years has significant interest in the effect of fractures on oil production 

developed.

Naturally-fractured reservoirs can be represented by a dual-porosity system, in 

which most of the fluid conduction is provided by the fractures, whose permeability 

k f is much higher than the permeability of the porous matrix km', while most of the 

fluid storage is provided by the porous blocks, whose porosity 4>m is much larger 

than the porosity of the fractures 4>f. For example, the porous blocks may have 

a porosity of 8-20% and a permeability of the order of a few miUidarcys while the 

porosity of the fractures is at least one order of magnitude less and its permeability 

is a t least ten times greater than the corresponding porous matrix. Thus, while the 

storage capacity of the matrix is high and the fractures low, the flow in the fractures 

is high and the blocks act as feeders to the system of fractures. The dual-porosity 

approach has been used to describe naturally-fractured reservoirs since the 60’s.

Withdrawal of hydrocarbons from the reservoir formations may result in an 

increase in effective stresses on the matrix, leading to collapse of pores; hence, a



reduction in porosity and permeability. This phenomenon is called pore collapse. It 

may lead to the compaction of the producing formation and subsidence of the groimd 

surface. Pore collapse in a reservoir affects many aspects of oil and gas production 

including rock permeability, production rate, wellbore stability, sand production 

control, reservoir management and ground surface subsidence. Subsidence in turn 

may affect stabihty and operabüity of drilling and production equipment, requiring 

costly remedial measiures.

Numerous problems attributed to pore collapse and deformation of the rock ma­

trix have been reported in different areas of the world, examples of which are Ekofisk 

field and Valhall fields in the North Sea (Boade et ai, 1989; Marius, 1990); Wilming­

ton field. Long Beach, California (Allen, 1968); BoHvar Coast and LaguniUas fields 

in Venezuela (Merle et oL, 1976); Groningen field in Netherlands (Schoonbeek, 1976) 

and Central Luconia fields in East Malaysia (van Ditzhuijzen and de Waal, 1984). 

However, iu conventional reservoir models, the role of the reservoir rock is often 

limited to their storage and defivery capabifities and close interaction between fluid 

flow and rock deformation has been ignored.

Hence, numerical simulation of fluid flow in deformable firactured media is a  great 

challenge and of a  great interest for petroleum engineers. Because of comphcations 

associated with multiple physical processes in deformable rock masses and mathe­

matical representation of a multiphase flow system, only a few pertinent references 

are available in the hterature, even fewer if the porous media are considered to be 

firactured.



1.1 O bjectives o f th e  S tudy

The main purpose of this dissertation is to investigate the complex process of two- 

phase fluid flow in deforming naturally fractured media and the feasibihty of apply­

ing a finite difference method to solve such types of problems.

The goals of this dissertation are as follows:

1. Derive a set of two-phase fluid flow equations coupled with rock deformations 

considering the continuity equation, the flow equation, the equation of state, 

and the sohd equihbrium equation to characterize the behavior of fluid flow in 

deformable naturally fractiued media based on the dual-porosity concept.

2. Develop a simulator based on the derived formulations using a finite difference 

numerical scheme to model the coupled phenomena of immiscible two-phase 

fluid flow and the deformations of naturally fractured rock.

3. D eterm ine flow, saturation, pore pressure and stress patterns.

4. Use the simulator to study apphed problems such as waterflooding process in 

the petroleum industry.

1.2 O rganization o f th e  D issertation

A brief introduction describing the importance of the present research is presented 

in Chapter 1 which also includes the goals of this study and outlines the contents 

of the dissertation.

Chapter 2 gives a thorough critical review of the relevant Hterature. Reservoir 

simulation models can be classified according to the type of reservoir they are in­

tended to simulate, or on the basis of a particular reservoir process. Simulators



based on the former classification fail generally into three groups: gas reserv^oir 

simulators, black-oil reservoir simulators, and compositional reservoir simulators. 

Particular reservoir processes and phenomena such as wellbore coning, thermal re­

covery processes, chemical flooding, and miscible displacements categorize other 

types of reservoir models. The backgroimd of this chapter constitutes the basis for 

the development of most numerical models developed over these past decades.

Chapter 3 derives the governing equations for two-phase fluid flow m a de­

formable fractured porous medium. The two equihbrium equations for the sohd 

(in X -  and y-directions) contain both fluid pressures in the matrix and in the frac­

tures. The four continuity equations for the fluid phases, two for the matrix and 

another two for the fractures, include the unknown sohd displacements. These six 

equations are fully coupled and the continuity equations in the matrix and in the 

fractures (for one fluid) are linked by a mass interchange term.

Chapter 4 details the numerical implementation of the governing equations de­

rived in Chapter 4. A finite difference numerical technique is apphed as a  alternative 

to the finite element method .

The developed model as weh as the simulator are vahdated by comparing the 

results from this study w ith the analytical expressions derived in Chapter 5.

Chapter 6 presents two apphcations: a fractured rock consohdation problem 

coupled with two-phase fluid flow; and a deformable fractured reservoir with water 

injection.

The sensitivity analyses are carried out in Chapter 7 to investigate the relative 

importance of some required parameters to the overall behavior of a deformable 

fractured reservoir.

Chapter 8 sum m arizes the research contributions, conclusions and provides rec­

ommendations for future work.



The fimdamental and essential ideas needed for this particular research are cov­

ered in Appendix A. Reservoir engineering concepts such as capillary pressure and 

formation volume factor as well as rock mechanics subjects such as stress, strain 

and poroelasticity are also introduced.

Appendix B Hsts the special forms of the six discretized governing equations for 

each boundary and corner point, based on the boundary conditions specified for 

both validation and application cases, respectively.



Chapter 2 

Critical L iterature R eview

Flow of fluids iu fractured porous media was recognized first in the petroleum indus­

try in the 40’s. Since then, many researchers have added to the volume of hterature 

on fractured media. The development of models for fluid flow in naturally fractmed 

reservoirs has proceeded along two main different approaches:

1. Statistical approach; and,

2. Enumerative, or discrete approach.

In the first approach, the fractured rock mass is considered as a statistically 

homogeneous medium consisting of a combination of fractures and a porous rock 

matrix. The fractures are considered ubiquitous, and the system is called statisti­

cally homogeneous because the probabflity of finding a fracture at any given point 

in the system is considered the same as finding one at any other point. It reUes on 

the use of the concepts of statistical averaging, volume averaging, and the theory of 

mixtures.

In the second approach, the fractured reservoir is modeled by attempting to 

introduce the actual geometry of the discontinuities and the porous rock matrix. 

The location, orientation, and aperture variations for each individual fracture must 

be considered in this approach.



Table 2.1 gives a general classification of the existing models used to describe 

the flow characteristics in naturally fractirred reservoirs.

Table 2.1: Naturally Fractured Reservoirs Models

TYPE CHARACTERISTICS

Statistical
Approach

Equivalent 
porous media

Fluid flow in fracture network can be 
characterized by an equivalent porous media

Double
porosity

Poorly permeable rock matrix dissected by 
a network of highly permeable fractures

Enumerative
Approach

Isolated
fracture

Flow regime in and around a single fracture

Fracture
network

Flow regime in a set of discrete interconnected 
fractiues

The simplest approach has been to use a conventional black-oll simulator, as 

proposed by Bossie-Codreanu et al. (1985), in which the firactures and rock matrix 

are represented as separated cells. Flow between these ceUs represents the actual 

flows between the m atrix blocks and their surrounding fractures inside the elements 

representing the reservoir. This approach is an extreme simplification and is unable 

to represent certain important physical phenomena such as the transfer of oil from 

the rock m atrix blocks to the fractures. On the other hand, almost all the existing 

reservoir response models do not include the complex interaction between fluid flow 

and rock deformations.

2.1 D u al-P orosity  M odel

2 .1 .1  U n cou p led  D ual-P orosity  M od el

The dual-porosity approach has been used to describe rigid naturally-fractured reser­

voirs since the 60’s. Barenblatt et al. in 1960, Warren and Root in 1963, and several 

authors later (e.g. Kazemi et al. in 1969; Yamamoto et al. in 1971) derived an ana­



lytical solution for single-phase, imsteady-state flow towards a well in a homogeneous 

fractiured reservoir. These models consider mass transfer between rock matrix blocks 

and fractures, but no flow is allowed to take place between adjacent rock blocks. All 

these publications were applying the dual-porosity theory to transient well testing.

Barenblatt et al. (1960) formulated the equations of flow for fractured reser\'oirs 

of double porosity through the continuum approach. In his model, the two media, 

fracture network and m atrix blocks, were considered to be overlapping continua, 

whereby the flow and medium parameters were defined at each mathematical point. 

The equations of motion and of conservation of mass were written independently 

for each medium, and transfer of liquid between the two media was taken into 

account by a sink/source term  in the equations of conservation of mass. Single- 

phase, unsteady-state flow within the fractures and quasi-steady state flow from the 

homogeneous rock blocks to the randomly distributed fractures were considered.

Warren-Root’s (1963) model represented the fractured reservoir as an idealized 

system formed by identical rectangular parallelepipeds, separated by an orthogonal 

network of fractiues. The flow towards the wellbore was considered to take place 

in the network, while the matrix continuously fed the system of fractures under 

quasi-steady flow conditions.

Kazemi (1968) developed an ideal theoretical model of a naturally fractured 

reservoir with a uniform fracture distribution based on the Warren-Root’s model; 

it consisted of a finite circular reservoir with a  centrally located well and two dis­

tinct porous regions, i.e., m atrix and fractures. Later, Dougherty and Babu (1985) 

extended this model to consider a well that only partially penetrated the formation.

Abdassah and Ershaghi (1986) extended the double porosity model to triple 

porosity for the analysis of single-phase, unsteady-state flow in naturally fractured 

reservoirs. A system where fractures have homogeneous properties throughout, and



interact with two groups of separate m atrix blocks tha t have distinctly different 

permeabilities and porosities was considered in their model. They claimed that 

such a system is a more realistic representation of fractured reservoirs than the 

traditionally used dual-porosity models and that, in addition, the dual-porosity 

model is a  special case of their proposed triple-porosity model.

de Swaan (1976) developed an analytical solution to the transient flow regime, 

for a modified dual-porosity model considering the flow from the matrix rocks as 

unsteady-state. In his model, the shape of the matrix blocks was approximated by 

regular sohds or slabs, instead of rectangular shapes.

Several researchers also studied the flow behavior of an individual rock matrix 

block and its adjacent fractures. Birks (1955) used a capillary model and a simple 

relative permeabüity model to describe the mechanics of oil transfer from the rock 

m atrix to the fractures. Graham and Richardson (1960) used a synthetic model 

to scale a single element of a fractures-matrix reservoir for predicting imbibition 

oil recovery behavior. Blair (1960) used numerical techniques to solve the differen­

tial equations describing imbibition in linear and radial systems. M attax and Kyte 

(1962) proposed a third method for predicting imbibition oü recovery for large reser­

voir matrix blocks based on scaled imbibition tests on small reservoir core samples. 

They presented experimental results on w ater/oü imbibition in laboratory core sam­

ples and defined a dimensionless group that related recovery to time. Yamamoto 

et al. (1971) presented a mathematical model for the simulation of pressure, pro­

duction and saturation behavior of a single block within a  fissured system. Variable 

physical properties, drainage and imbibition capillary pressures, pore compressibfl- 

ity, and gravity were considered in their formulation. Recovery mechanisms for 

various-size blocks surrounded by oü or gas were studied. Parsons and Chaney 

(1966) studied the imbibition mechanism in fractured carbonate reservoirs with a



bottom waterdrive via laboratory experiments.

Barenblatt (1964) used a different approach to describe the flow from the rock 

matrix. In his formulation, the flow between the fractures and the matrix blocks 

was described using source functions derived from dimensional considerations by 

assuming that it was proportional to the pressiue difference. Bokserman et al. 

(1964) took the source function as representing an imbibition process solely and 

used the experimental data of M attax and Kyte (1962). Braester (1972) derived 

the source function by using a conceptual model of a block made up of a bundle 

of randomly oriented capillary tubes. Rossen (1977) also adopted source functions 

to consider the flow from the m atrix to the fractures. The fundamental advantage 

of his approach is th a t these source terms are handled semi-imphcitly in both the 

pressure and saturation calculations involved in the fracture simulation.

All the models mentioned above have been designed to study specific problems 

and only for a given segment of a reservoir. Simulation of an entire reservoir system 

with multiple phases further complicated the problem and made additional simulator 

modifications necessary.

Asfari and W itherspoon (1973) developed a modeling approach for reservoirs 

with a regular pattern  of noncommunicating vertical fractures by assigning constant 

pressures along each fracture. Keizemi et al. (1976) presented a three-dimensional, 

multiple-well, numerical simulator to represent single or two-phase flow of water 

and oil in fractured reservoirs. Their equations are two-phase flow extensions of 

the single-phase equations derived by Warren and Root (1963). The simulator took 

relative mobilities, gravity force, imbibition and reservoir heterogeneity into account.

Thomas et al. (1983) developed a three-dimensional, three-phase model for 

simulating the flow of water, oil and gas in a naturally fractured reservoir where 

the dual-porosity system was used to describe the fluids presented in the fractures
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and m atrix blocks. The m atrix/fracture transfer fimction incorporated the effect 

of pressure on interfacial tension and accounted for capillary pressure, gravity, and 

viscous forces. Gilman and Kazemi (1982) described a two-phase, three-dimensional 

simulator similar to that proposed by Thomas et al. (1983), in which Kazemi’s 

extension of the Warren-Root model to multiphase flow was used as the basis. Their 

model accounted for unsteady-state multiphase flow between matrix and fractures, 

but unsteady-state flow within individual m atrix blocks could not be simulated.

Evans (1981) proposed a more general mathematical model than that presented 

by Thomas et al. (1983) for multiphase flow through naturally fractured reservoirs 

based on Barenblatt's double porous medium concept: one porosity being associated 

with the rock matrix and the second one relates to  the fractures. In his model, 

flow in the primary pores was described by Darcy's law, while flow in fractures 

was described using a generalized Darcy’s type equation. Time-dependent porosity 

equations for the rock matrix and the fracture system were derived with the mass 

conservation equations to complete the governing equations. Nakomthap and Evans 

(1984) later implemented these formulations into a simulator.

Blaskovitch et al. (1983) presented a three-phase, three-dimensional fractured 

reservoir simulator with the addition of matrix-to-matrix flow and multicomponent 

fluid representation. Litvak (1985) developed a model to incorporate the special 

treatment of capUlary and gravity forces for the fracture-matrix media into a general 

purpose dual-porosity, three-phase, three-dimensional reservoir simulator which was 

designed for field appHcations.

All of these models, originally developed for the study of hydrocarbon reser­

voirs, are concerned essentially with the fluid flow, describing the mechanisms that 

take place during reservoir depletion in different ways and with different degrees of 

accuracy. The study of the interactions between fluid flow and rock deformabflity
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properties in naturally fractnred reservoir is not common in the oil industry.

2 .1 .2  C oupled  Single P o ro sity  M odels

The study of fluid flow in deformable, saturated, porous media as a coupled flow- 

deformation phenomenon started w ith the work of Terzaghi (1943) who developed 

a one-dimensional consofldation model. An extension to three-dimensional soil con­

solidation, based on physically consistent assumptions, was given by Biot (1941, 

1955, 1956).

Biot presented the flrst consistent theory formulating the coupled fluid flow and 

rock deformation processes in fluid-filled porous media, the theory of poroelastic- 

ity. Biot’s theory of the mechanics of porous media is a major twentieth century 

extension of theoretical continuum mechanics-a generalization of the elasticity the­

ory which, in its final form, incorporated a complete spectrum of thermodynamical 

and dissipative effects. It has led to the solution of numerous problems of soil 

consolidation, dynamics and wave propagation in acoustics, geophysics, engineer­

ing and apphed physics-problems beyond the scope of traditional methods of the 

elasticity theory. His first paper established the fundamental field equations for 

three-dimensional consolidation of an isotropic model representing the settlement of 

soil under load. These equations gave the stresses and displacements of an elastic 

matrix, or skeleton, whose voids axe filled with a  viscous fluid satisfying Darcy’s 

law. Whereas the basic theory is simple and straightforward, its implications were 

considerable, since it estabhshed the conceptual framework from which stems the 

generalization of Biot’s later work. Assuming isotropic, linearity, small strains, re­

versibility and an incompressible fluid, a system of four linear partial differential 

equations was obtained for the four unknowns u, v, w, and a  (displacements of the 

solid matrix in the r-, y-, and z-directions and the fluid pressure). These equations
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were second-order in x, y  and z; and first-order in i; allowed to solve time-dependent 

difilision-type settlement problems for concentrated loads and linear boimdan.' con­

ditions. The properties of this system were determined by four distinct physical 

constants. The paper also demonstrated how a suddenly applied load can be solved 

in a few lines using elementary Heaviside operational calculus.

Some researchers have studied analytically coupled flow-deformation phenom­

ena in porous media around boreholes. Paslay and Cheatman (1963) studied rock 

stresses and steady-state flow rates induced by the pressure gradient associated 

with the flow of formation fluid iuto a borehole for a permeable, elastic material 

saturated with an incompressible fluid. Wang and Dusseault (1991) developed a 

poro-elastoplastic model considering steady fluid flow for a Mohr-Coulomb strain- 

weakening material. McLeUan and Wang (1994) extended this model and studied 

borehole instability problems. Rudnicky et al. (1987) presented an analytical solu­

tion for elasto-plasticity around a borehole where permeability was allowed to vary 

with the radius but sym m etry  of stresses existed. Detoumay and Cheng (1993) used 

the poroelasticity theory for a borehole in a non-hydrostatic stress field to study the 

transient flow in the coupled problem around a borehole.

Meanwhile, coupled numerical models have also been developed by other re­

searchers such as Zienkiewicz and Shiomi (1984), Schrefler et al. (1990), Li et al. 

(1990), and Li and Zienkiewicz (1992). The formulation of these models was devel­

oped within the framework of the continuum theory of mixture, using a spatially- 

averaged approach. A typical such model is the one developed by Li et al. (1990) 

for immiscible two-phase (water and oil) flow in a deforming porous medium. In this 

work, they formulated the governing equations on the basis of the generalized Biot 

theory. The primary unknowns are the displacements of the sofld skeleton as well as 

the pressure and saturation of the wetting fluid. The model considered the eflects of
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fliüd and matrix compressibilities, interphase mass exchange and capillary pressure. 

The mobUities and compressibilities of both fluids phases were assumed to be fimc- 

tions of the porosity, saturation, pressure and temperature. The full mathematical 

model consisted of two non-linear mass balance equations for the two fluid phases 

and one non-hnear equihbrium equation for the total mixture, subjected to Darcy’s 

law for multiphase flow and the constraint defining capUlaxy pressure between both 

fluids. They assumed that, in the considered two-phase flow, only one phase (water) 

is in contact with the sohd and tha t the second phase is entirely contained within 

this; hence, making no contact with the sofld. A generalized Galerkm procedure 

was followed to discretize the governing equations; and an unconditionally stable 

direct integration scheme was used to obtain the solution.

Li and Zienkiewicz (1992) extended Li et al. (1990) model to simulate multiphase 

flow in deform ing porous media. Unconditionally stable and staggered solution 

procedures were used and compared for the time-domain numerical solution.

Schrefler and Zhan (1993) developed a fully coupled model for water and air 

flows in deformable porous media. Slow transient phenomena (consofldation) were 

considered; the model was of the Biot-type and incorporated the capillary pressure 

relationship. The flnite element method was used for the discretization of the govern­

ing equations and a direct method was used for the solution of the resulting system 

of coupled equations. They assumed that air does not dissolve in water. Hence, 

this model could not be applied to hydrocarbon systems in which gas can easily 

dissolve into and/or escape from the oü phase. Gawin et al. (1997) also presented 

a model for numerical simulation of gas and water flow in deformable porous media 

on the basis of the desaturation experiments performed by Liakopoulos (1965). It 

consists of three balance equations: mass of dry air, mass of water species and linear 

momentum of the multiphase medium. An appropriate set of constitutive and state
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equations, as well as some thermodynamic relationships complete the model. In this 

model, gas is actually air and can not dissolve into water like in the Schrefler and 

Zhan’s (1993) model, but water can change phase from liquid to vapor and/or from 

vapor to liquid.

Lewis and Sukirman (1993a) presented an elastoplastic soil model for three- 

phase, three-dimensional problems based on Mohr-Coulomb’s yield surface. The 

effects of capillary pressure, relative permeabüity variations and the compressibility 

factors of rock and fluids were considered on each of the flowing phases. Biot’s 

self-consistent theory was used to develop the  governing equations which couple the 

equilibrium and continuity equations for a deform ing saturated off reservoir. The 

finite  element method was applied to obtain simultaneous solutions to the govern­

ing equations where displacements and fluid pressures are the primary unknowns. 

The final discretized equations were solved by a direct solver using fully impHcit 

procedures.

Sun et al. (1997) pointed out that there is some difficulty to deal with the air 

pressure boundary problem and air injection volume problem using Li et al. ( 1990) 

model because of taking the pressure and the saturation of the wetting phase as 

primary unknowns. Hence, they presented a  finite element numerical model of two- 

phase (water and air) flow in deforming porous media in  which the displacements, the 

pressures of air and water were taken as primary unknowns. Again air is considered 

not dissolving in water.

In their paper. Chin and Prévost (1997) first derived the equations governing 

isothermal two-phase fluid flow in a deformable porous medium similar to the ones 

derived by Li et al. (1990), but the displacements, the pressures of water and air 

were taken as primary unknowns. Then, a computer method based on a multistag­

ger solution strategy was used for numerically solving the coupled equations. The

15



fiill system of coupled equations, defined in the problem domain, was partitioned 

into smaller subsystems of equations. Each subsystem was then solved separately, 

assuming the unknowns of the other subsystems were temporarily frozen until (se­

quentially and repeatedly in a predetermined sequence) all subsystems converged to 

a self-consistent set of solution variables. Based on the cases investigated and the 

numerical results obtained, they concluded that this approach was robust, accurate, 

and efficient for analyzing coupled field problems; it was also more economical in 

the computational cost compared to the conventional simultaneous procedure.

Dagger (1997) developed a two-dimensional explicit Lagrangian finite difference 

code, fully-coupled with a two fluid fiow system in deformable porous media based 

on the model derived by Li et al. (1990). The solid deformations were considered 

using the dynamic relaxation procedure which allowed the model to go into the 

rock’s post-peak behavior without creating instabilities. The fluid flow equations 

were written using mixing laws and the sohd was treated as another phase. The 

primary variables: pore pressure and water saturations, were obtained using New­

ton’s iteration, or a staggered algorithm, to solve the system of nonlinear equations. 

The code was checked numerically against the analytical solution for single phase 

flow with consofldation. Examples of coupled fluid flow and rock deformation for a 

one-dimensional scenario and for a layered oil reservoir compaction are also given.

2.1 .3  C oupled D u a l-P orosity  M odels  
S in g le-P h ase F lu id  F lo w  M od els

Duguid (1973), Duguid and Abel (1974), and Duguid and Lee (1977) proposed a 

coupled flow-deformation model, explicitly considering the effect of matrix defor­

mations on flow regions. In their model, it was assumed that, for a fully saturated 

medium, changes in pore volume were equal to the compression of the fluid occupy­
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ing that space. This assumption is valid only for the situation where fluid is trapped 

within pores.

Aifantis (1977, 1980) presented a general coupled double-porosity formulation for 

modehng single-phase in a deformable Assured porous media based on the theory of 

mixtures. Mixture theory usually adopts a thermodynamic framework and, starting 

from general constitutive assumptions, produces non-linear governing equations for 

consolidation which, in their linearized form, are generalizations of Biot’s equations. 

Formulations based on m ixture theories are generally useful in practical problems if 

non-hnear or thermal effects are important.

Wilson and Aifantis (1982) obtained the analytical solutions to the column prob­

lem in hydro-engineering and the borehole problem in petroleum engineering on the 

basis of Aifantis’ theory of consofldation with double porosity, which is the extension 

from the Biot’s theory of consofldation with single porosity. Khaled et al. (1984) 

published a paper to further elaborate on Aifantis’ theory by first providing an alter­

native derivation of his fissured rock equations through a proper extension of Biot’s 

classical model of fiow in single porosity media. They developed a finite element 

methodology based on the Galerkin’s version of the method of weighted residuals 

for the numerical solution of the relevant equations. This method was used for 

consofldation problems for the first time and provided some advantages over finite 

element techniques based on variational principles, such as easy handling of bound­

ary conditions. The above methodology was implemented to numerically solve three 

examples, namely the one-dimensional column, the two-dimensional layer, and the 

two-dimensional half-space problems.

Valliappan and Khalili-Naghadeh (1990) derived a set of coupled differential 

equations governing the behavior of deformable fissured porous media based on the 

double porosity concept. The coeflicients of these coupled differential equations were
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variables instead of constants which is the case in Aifantis’ model. These various 

coeflhcients involved in the formulation were explicitly defined in terms of measurable 

physical parameters. The results obtained firom the proposed non-linear formulation 

were compared with those of previously presented linear formulations.

Elsworth and Bai (1992) and Bai et al. (1993, 1994, 1995) presented a constitu­

tive model to define the linear poroelastic response of firactured media to determine 

the influence of dual porosity eflects. Bai and Roegiers (1994, 1995) derived the 

analytical solutions of single-phase fluid fiow and heat fiow in deformable firactured 

media. This seems to be the first analytical attem pt made to couple the fluid flow 

and heat flow with sohd deformations in a double-porosity fashion. In the model, 

Barenblatt et al. original approach was modified to provide a physically more sen­

sible characterization of reservoir storage changes. Their formulae and results were 

in dimensionless form and could be directly pertinent to petroleum engineering.

Ghafouri and Lewis (1996) proposed a finite element double porosity model for 

heterogeneous deformable porous media on the basis of the similar basic assump­

tions to those of previous works, but using a diflerent formulations. Most of their 

expressions were based on the physical understanding of the problem but lacked 

the support of a rigorous mathematical foundation. The results they obtained were 

quite meaningful when compared to the equivalent single porosity model. However, 

the obtained trend was significantly diflerent firom what Elsworth and Bai (1992) 

obtained.

M u ltip h a se  F lu id  F low  M odels (T w o- or T hree-phase)

Due to complications associated with multiple physical processes and mathemati­

cal representations of a  multiphase flow system in deformable fractured reservoirs, 

only one paper has been published by Lewis and Ghafouri (1997). Their model is
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an extension to multiphase fluid from the single-phase, double porosity model for 

deformable fractured porous media presented by Ghafoiui and Lewis (1996).

2.2 Equivalent Porous M ed ia

Another simple approach to modeling a flow system in flractured porous rock is to 

treat the entire flow region as an equivalent porous media and adjust the flow co­

efficients accordingly. Such an approach was developed by Marcus (1962), Parsons 

(1966), and Snow (1970). It requires only lumped estimates of hydrauHc properties, 

and, thereby, avoids to problem of detailed characterization of the fracture geom­

etry. Long et al. (1982) apphed the theory of flow through fractured rock and 

homogeneous anisotropic porous media to determine when a fractured rock behaved 

as a continuum:

1. W hen there is an insignificant change in the value of the equivalent perme- 

abffity when a smaU addition or subtraction to the test volume occurs; and,

2. W hen an equivalent permeabiUty tensor exists which predicts the correct flux 

when the direction of a constant gradient is changed.

Khaleel (1987) apphed the porous medium equivalent approach to simulate fluid 

flow in saturated fractured basalt and predicted flow characteristics. The equiva­

lence was estabhshed in terms of the Darcian fluid flux. In evaluating this equiva­

lent porous medium approximation for fluid flow through fractured basalts, a two- 

dimensional generation region was selected and fracture patterns were produced 

according to postulated descriptions of the real fracture systems. W ithin a gener­

ation region, a flow region was selected for discrete fracture flow analyses. He got
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a similar conclusion as Long et al. that, from a mathematical standpoint, a frac­

tured basalt can be approximated as an equivalent porous medium if an equivalent 

hydraulic conductivity tensor exists which produces the correct fluid flux under an 

arbitrary hydraulic gradient direction.

2.3 Single Fracture M odels

Some researchers studied the behavior of a single fracture using numerical models. 

Conventional analyses (Dietrich et al, 1972; Gale, 1975) assumed that Darcy’s law 

was valid for flow in a fractvure, as it is for a homogeneous porous media; that is, 

the flux is proportional to the pressure gradient. The equivalent permeability of 

the fracture is usually derived from the cubic law  ̂ which governs fully-developed 

laminar flow through parallel plates. Compared to the previous discrete models 

which assume the fractures to be rigid, Bawden et al. (1980) proposed a numerical 

approach to study the influence of fracture deformations on secondary permeability. 

As a alternative, analogue models have been used to analyze the behavior of a 

single fracture. Tsang (1984) proposed a model using the analogy of an electrical 

resistance network. Walsh (1981) studied the deformations in a fractured rock due 

to changes in the fluid pressure and applied stresses, finding the solution to the 

transient flow by analogy between heat transfer in a heterogeneous conductive sheet 

and deformations in a fractured rock completely filled with an incompressible fluid. 

Muralidhar and Long (1987) presented an approach to characterize flow in single 

fractures where the governing flow equations are derived from Newton’s second law 

of motion. Navier-Stoke’s equations determined flow for a prescribed pressure drop 

and, hence, the permeability of the rock fracture. In their work, the flow was taken 

as one-dimensional steady, laminar and incompressible and the numerical scheme
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was general and applicable to both two- and three-dimensional problems.

2.4 Fracture N etw ork M odels

Snow (1965, 1970), Hudson and Priest (1979) have studied naturally fractured reser­

voirs with rigid fractrues using two-dimensional fracture network models. In the 

models, stochastic distributions for the fracture sets characteristics, such as spac­

ing, fracture trace density, orientation, size and thickness, were used to estimate the 

permeabüity of a fractured rock. Long et al. (1985) developed a model for steady 

fluid flow in random three-dimensional networks of fractures. The fractures were 

assumed as disc-shaped discontinuities in an impermeable matrix. These fractures 

can be arbitrarfly located within the rock volume and have any desired distribution 

of aperture, density and radius orientation. A mixed analytical-numerical technique 

was used to calculate the steady flow through the network. Oda (1985) first defined 

a crack tensor which is a systemtrical, second-rank tensor relating only to the crack 

geometry, i.e. to the crack shape, crack size, aperture and orientation. If not aU the 

information concerning cracks is available, which is usually the case in practice, a 

method using the geometrical probabflity (stereology) could be employed to predict 

the crack tensor for rock masses in situ. Then, he formulated the permeabihty tensor 

in terms of the crack tensor. Other researchers such as Noorishad et al. (1972) and 

AyatoUahi et al. (1983) developed fracture network models where fluid and rock 

deformation were coupled.
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2.5 M odels Com parisons

Typical models reviewed before along with the model developed in this dissertation 

are hsted in Table 2.2 according to the following three criteria:

1. Porous media is fractiured or not;

2. Number of phase the model can handle; and,

3. Fluid flow is coupled with rock deformations or not.

Table 2.2: Comparisons of Models

Developer Year Porosity Fluid Phase Rock Deformation
Barenblatt 1960 Dual Single No

Warren and Root 1963 Dual Single No
Kazemi 1968 Dual Single No

Kazemi et al. 1976 Dual Two No
Thomas et al. 1983 Dual Three No

Li et al. 1990 Single Two Yes
Li and Zienkiewicz 1992 Single Three Yes

Dagger 1997 Single Two Yes
Wilson and Aifantis 1982 Dual Single Yes

Elsworth and Bai 1992 Dual Single Yes
Bai and Roegiers 1994 Dual Single Yes

Ghafouri and Lewis 1996 Dual Single Yes
Lewis and Ghafouri* 1997 Dual Three Yes

Shu et al. 1998 Dual Two Yes
Meng** 1998 Dual Two Yes

Shu 1999 Dual Two Yes
* Based on the intuitive phenomenological concept; 
** A finite element model, parallel to present one.

It is noted, from Table 2.2, that some available models dealing with fractured 

media do not take rock deformations into account; others which can simulate de­

formable fractured reservoir consider only single-phase fluid flow; and others in 

which two or three phase fluid flow axe coupled with rock deformations axe unable
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to model fractured porous media. The only model which can handle multiphase 

fluid flow in deformable fractured reservoirs was developed by Lewis and Ghafouri 

in 1997. However, the model is based on the intuitive phenomenological concept 

rather than  any theoretical reasoning. Hence, the model presented in this disserta­

tion is the flrst mathematical model for two-phase fluid flow in deformable fractured 

reservoirs in which the set of coupled difl^erential governing equations are rigorously 

derived.
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Chapter 3

Governing Equations for 
Two-phase Fluid Flow  in a 
Deform able Fractured Porous 
M edium

In this chapter, the equilibrium equations for a solid mixture is provided first. Then, 

continuity equations for fiuid phases (water and oil in water-oil system, and oil and 

gas in oü-gas system) are derived rigorously based on the dual-porosity concept. In 

the derivation, the formalism presented in Li et al. (1990) single-porosity model 

for two-phase flow (water-oil system) in deforming porous media was creatively ex­

tended to dual-porosity model for two-phase fiow (water-oil and oil-gas) in deforming 

fractured porous media.

3.1 Equilibrium  Equations for Solid  M ixtures (D is­
placem ent Equations)

Consider a volume of elastic porous medium filled with a homogeneous fiuid. The 

equilibrium equations for two-dimensional stresses can be obtained by first setting
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the total forces in the x-direction equal to zero (Fig. 3.1):

d(T- dr.
CTx +  dy — a^dy +  7^2 +  ~  TV̂ dx =  0 (3.1)dx dy

Figure 3.1: Two-Dimensional Stress Components Acting on a Differential Square. 

Canceling out terms yields:

f i r r  Pin-

(3.2)d(T̂  d r ^  ^  Q
dx dy

Similarly, setting the equihbrium of forces in the y-direction yields:

In compact form:

dy dx

E ^ = 0 . .  =  1 ,2 .

(3.3)

(3.4)
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The total stress can be expressed as;

Tij =  cTij — aPôij  (3.5)

where cTÿ is referred to as the effective stress acting on the solid skeleton, P  is the 

fluid pressure, and a  is a physical constant.

The eSective stress after an elapsed time t can be expressed as:

cr,

where cr̂ - is the initial eSective stress and Acr,y is the eSective stress increment.

If it is assiuned that the porous medium is isotropic, then the linear elastic 

stress-strain relation takes the form:

Auiy =  2GA£ij +  XAskk^ij (3.7)

where Ae^- is the incremental strain  of the sofld skeleton; G and A are Lame's 

constants. The parameter G is the shear modulus and is defined as:

°  “  2(1 +  1/)

and A is identified as:

where E is Young’s modulus and v  is Poisson’s ratio for the sofld skeleton.

In general,

Afftj =  £ij — 6^ (3.10)

where is the initial strain, which may be caused by such factors as shrinkage, 

tem perature changes, etc. It is assumed in this dissertation that these initial strains 

are negligible; hence,

A sij =  Eij (3.11)
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Combining Eqs. (3.2)-(3.7) and (3.11) and assuming cr?- =  0,

+  (3.12)
dxj axi oxi 

In the case of small deformations, the strain components are related to the 

displacements by the following linearized relation:

where is the iacremental displacement vector of the solid skeleton. Plugging Eq. 

(3.13) into (3.12) yields:

This equation forms the required governing equations for the solid m atrix dis­

placements. Expanding it to two dimensions gives:

Eqs. (3.15) and (3.16) are modified to the following forms to be apphed to 

fractured reservoir:

(S *S ) • “(Ë *0) — S ' " ""I 
1“  «  ( S  » S )  * 0  ( S  » 0 )  -  - S '  -  “< f  -  " ("')

where subscripts, m  and / ,  represent the matrix and fractures, respectively; A and 

G  are Lam é's constants, a  is the fiuid pressure ratio factor or Biot constant, u  and 

V are the sohd displacements in the x- and y-directions, respectively; and P  is the 

fiuid pressure.
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3.2 C ontinuity  equations for fluid phases

3.2.1  O il-w ater system

The continuity equation for the water phase (w) in the matrix (m) is derived, as

an example, in this section. The original continuity equation for the water phase is

given by:
d(f)rnSwm.P'WTn , 94^mS-wmPwmUwmi « /"o in\
— %—  +  °

where is the porosity of the matrix, is the water saturation in the matrix, 

Pw-m. is the water density in the matrix and U-u„ni is the intrinsic (real) velocity for 

the water phase in the matrix.

If the sohd is considered undeformable, Darcy’s velocity for water in more than 

one phase system is defined as:

^WTTii — ^mSwrnUxumi (3.20)

In the case where the sohd deformations are considered, the above equation 

should be redefined as:

— îTL̂ vumiJ-̂ wmi h,) (3.21)

where ûi=  is the sohd moving velocity.

According to the definition in Elq. (3.21), Eq. (3.19) can be written as:

9(pmS-wjnPwm dcpxn^wmPwm. h, 9P-unrL̂ -wmi « /g
 dt + ------- 3 5 --------+  ax, = °

Now, the mass conservation equation for the sohd is given by:

d{l-(i))ps d{l-(j> )psiii
m  + §5 “  ̂ ’

where 0 is the total porosity of the porous media, which is equal to the sum of the 

m atrix porosity (f)m and the fracture porosity 0 /; i.e.:

=  (f>TTi +4>f (3.24)
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Expanding and rearranging Eq. (3.23) yields:

The following substantial time differential operator:

ê - î - é  «

is adopted to simplify the expression; and Eq. (3.25) can be reduced to: 

or,

Expanding Eq. (3.22) gives:

j. a ^Pwm. , ^  „  DSvrm , cy _
^m^wnx. ‘ ^mPwm t-n ,  \ ^wmP̂

m
w mD t ^ D t D t

=  0 (3.29)

Substituting Eq. (3.28) into Eq. (3.29), the following equation is obtained:

j. a DPwm , j .  DS-umi ^  1  —  0  T > P s
r \ .  "T (Pm Pvrm  t-v, i O w m P vrn i'D t D t D t

+S™P»™C1 -  0 / ) | j  -  =  0 (3.30)

Another equation relating the change in fracture porosity to the change in fluid

pressures is required. This relationship can be derived using the definitions of 0 and 

V  :

<P/ = y  (3.31)

V  =  K ,  +  V f+  V, (3.32)
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where V m ,V f,V s  and V  are the volumes of fluids in the matrix and in the frac­

ture, the volume of sohd and the bulk vohune of the porous medium, respectively. 

Diflerentiation of Eqs. (3.31) and (3.32) with respect to substantial time yields:

D<f>f

D t

D V  
D t  ''

V
DVf ^ D V

DV„ DVf DV, 
D t  D t  D t

(3.33)

(3.34)

Combining the above two equations gives:

D (f> f

D t
1

V (1 -  (Pf)
DVf

D t
f D V r n  , D V s \  

D t  J .D t + (3.35)

By definition of fluid compressibility, one has:

1
D t  

I DVf

DPrr

=  —C,
DPf

(3.36)

(3.37)
V f  D t  '  D t

where Cm and C f  are the comprehensive compressibflities for fluids in the matrix 

and the fractures, respectively; hence, the saturation-related coefficients are given 

by:

C m  =  C oS om  +

Of = CoSof +  CujSwf

(3.38)

(3.39)

where and C-^ are the compressibilities for oil and water, respectively defined as:

1 dVo
Co =

Cw =

V o d P

1 514, 
14, d P

(3.40)

(3.41)

Combining of Eqs. (3.36), (3.37) and applying the definition of porosity yields:

(3.42)D t D t
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DVf ^  ^ ^ D P f
D t = -C f(p fV -

Dt
(3.43)

Since (Meng, 1998),

1 Dps 
P s D t

1
% D t 
1

Oimf =
a. lOLf

am + OCf

(3.44)

(3.45)

Hence, one has:

DVs
D t

-  - V Omf — 4> DPm amf ~  <f> D Pf
— (1 ~  OCmf)Ks D t KnS D t 

Substituting Eqs. (3.42), (3.43) and (3.46) into Eq. (3.35) gives:

(3.46)

(1 -  4>f) ^
DPm amf — 4> DPr, 

+ <PfDt

+4>f <̂ mf — <f> D Pf 
KnS D t 0/(1 — amf) ÿ‘i,i (3.47)

Now, Eqs. (3.44) and (3.47) can be substituted into Eq. (3.30) to give:

(f>TnS, Dpv
wm

'pS’urm.Pwrn

+  <t>mPv
D S.

Dt

(1 -  4>f) -

“b ^m /‘StumPtum ( 1 0/)

"pSfjxmPwm, g ^ (1 — 0/) +  0/(1 -  0 /)C /

D t

DP} d p ^ w ,
Dt + 'wmt

dxi
=  0 (3.48)

Note tha t in general ^  ^  and, therefore, ^  ~  then, the continuity

equation for water phase in matrix becomes:

(pmS-umi +  (pznPwm ^  +  Ctmf SwmPwm.{  ̂— 0/)

'P^wmPwm.

dt

'pSwmP'wm
dPrr

KnS
(1 — 0 /)  +  0 /(1  — (j>f)Cf

dt

dPf d P’xjjxn'̂ ^
dt + 'txmw

dxi
=  0 (3.49)
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In a diial-porosity model, one fluid can move from the matrix to the fractures 

or from the fractures to the matrix, depending on the pressiue difference between 

these two continua for that fluid phase. Therefore, a transfer term (mass exchange 

term) is needed in Eq. (3.49) to complete the continuity equation. The transfer 

term for water and oil is calculated by:

Q w   ^  PwTTl

Q o  P o m .

f^wm

kjrikj-oTn
f̂ om

(P w m  — P w f )  

{P o m  — P o f )

(3.50)

(3.51)

where a  is the transfer coefficient and // is the viscosity.

The final continuity equation for the water phase in the matrix of the deforming 

porous media has the following form:

4>mSwm  +  4>mPwm — +  O LmfSyrm .Pwm {^ ~  0 / )  ‘̂ i , i
d t

~^SwmPwm

d t

Qm/ ~  4>
{ 1  — <pf) — (pTn<f)fCr,

dPrr

"pSxumP^
Ô mf — (f>

( 1  — ( j) f)  +  0 / ( 1  — < j) f )C f

"F Oi Pxum " \-^wm ^ u;/j *“

d t

?£l
d t  

=  0
Pwm dX{

Similarly, the continuity equation for oil phase in the matrix:

± c  9  P o m  , , _ d S o m  r ,  / ,  i \  ■
VmSom  ̂VmPom "b ^mftiomPom{^ 0 /) ^i,i

(3.52)

°m Qt ' -rm-ram ^  

Qm/ — 0
~^SomPom (1 — 0/) — 0m 0 /^0

~PPomPorrL

"b CK Pom'

0^mf-4>
KnS

^m^^om

( 1  — 0 / )  +  0 / ( 1  — < p f ) C f

d t

d t

( P c  -  P ./) + =  0Pom dXi

The continuity equation for water phase in the fracture can be written as:

( f ^ fS w f  ^  b  4 > fP w f  ^  b  O C m fP w fP w f{ ^  0 m )

(3.53)

d t
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dmf — <f>
Ks 

Ô mf -  4>

kmkrwm

( 1  —  ( p m )  —  ( p - m . ( p f C f
d t

(1 — (pm) +  <^m(l — Om)Cr,
dPrr.

d t

( P . f  -  p ^ )  +  =  0P*wm dX-i

The continuity equation for oh phase in the fractures is as foUows:

( p f ( ^ o f ~ ^  ^  ( ^ m f S o f P o f O -  ( p m )  ' ^ i , i

(3.54)

+ S o f P o f  

PSofPof

d t  d t

( y -m f  —  (p

( y  P o m

Ks 

^m f — (P

km̂ Wor

( 1  —  ( p m )  —  ( p m ( p f C f
d t

( 1  —  ( p m )  +  ( p m i X  ~  ( P m ) 0 „
dPrr

d t

( P .y - P ,^ )  +  % ^ = 0 (3.55)
p o m  d X i

Consequently, there are a total of ten unknowns, which are: sohd displacements 

in X- and y- directions u and v, fiuid pressures and saturations in matrix and frac­

tures: P rjjm , P o m , S w m ,  S o m ,  P w f ,  P o f ,  S u , f ,  S o f -  However, oue has only six equations, 

i.e.: (3.17), (3.18), (3.52), (3.53), (3.54), (3.55). Therefore, the foUowing four aux­

iliary equations for saturation and capiUary pressure relationships in matrix and 

fractures are necessary to solve the problem.

For the matrix:

S w m  4- S o m  =  1 (3.56)

For the fractures:

P  —  P  —  P^ cm, —  ^ om  ^ w m

S w f  +  S o f  =  I  

P c f  =  P o f  ~  P w f

(3.57)

(3.58)

(3.59)
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3.2.2 D a r c y ’s law

Wi, defined in  Eq. (3.21) is calculated using Darcy’s law as:

(3.60)fj. oxi

where k is the  absolute penneabihty of the medium, Av is the relative permeabfiity 

of the medium to the fiuid phase, and [j. is the viscosity of the fluid-

3.2.3 O il-gas sy stem
Oil-gas sy s te m  in  r ig id  p o ro u s m ed ia

The generalized flow equation for component z in a  three-phase environment is given 

by:

Ô d
’{.^igPg'^g “b CioPo'^o “b ̂ iwPiu'^^') ~  ~n7\.^{. îgPg^g “b CïoPoS q -f* Ci-wPw^w)\ (3.61)

Where Cig is the mass fraction of the zth component in the gas phase, Cio is the 

mass fraction of the zth component in the oil phase and Ci-  ̂ is the mass fraction of 

the zth component in the water phase.

This equation for oil-gas system is simplified to:

Ô d
{CigPgUg 4- CioPoUo) = -^[(i>{CigPgSg -f- CioPoSrj)] (3.62)

For gas component:

{GggPgUg 4- CgoPo'^o) ~  P ÿ "b C’goPo'Fo)] (3.63)

For oil component:

'{C’ogPgUg 4" CooPo^o) — o. 4- C’ooPo'^o)] (3.64)d g . . ^ - ° 9r g  g - r o  o,

By definition:

C g g  =  1 (3.65)
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Q .  = ----- ^  (3.66)
^  m o  + T r i g

Cog - 0 (3.67)

^  (3.68)

where rrio and m g  are the masses of oil and gas in oü phase, respectively. Their

respective volumes are represented by Vo and Vg.

Since:

K, =  (3.69)
Po

g .  =  A  =  ^
V os ^  r r io p oPos

Where V o s  is the volume of oil measured a t standard conditions.

Hence,

Coo =  — ^ (3. 71)mo + mg poBo

Since:
xr

where Vgs is the volume of gas measured at standard conditions. 

Hence,

=  (3,73)
Pos

From Eq. (3.70),

So,

m o -^m g =  (3.74)
Pos

Ra^oPgs -Q

n  —  ,  .

Substitution of Eqs. (3.65) and (3.75) into (3.63) gives the governing equation 

for the gas component:

_d
dx, (3.76)
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Similarly, substitution of Eqs. (3.67) and (3.71) into (3.64) gives the equation 

for the oil component:

(%) = à

O il-G as S y s tem  in  D efo rm ab le  P o ro u s M e d ia

G ov ern in g  e q u a tio n  fo r gas The governing equation for gas in the matrix is 

derived first. Eq. (3.76) is rewritten to be apphed to dual porosity model:

^  +  £ -  ( ^ p ^ n ^  +  =  0  ( 3 . 7 8 )

Darcy’s velocities for gas and oü in undeformable sohd system are:

— 4̂ Tn.SgmUgmi (3.79)

'f̂ om — (pmSomUomi (3.80)

Plugging Eqs. (3.79) and (3.80) into Eq. (3.78) gives

0^ {^mPgmSgm +  0m

=  0  ( 3 . 8 1 )

If the sohd is considered deformable, Darcy’s velocities for gas and oh are defined

as:

'Wgmi = <j>mSgm {Ugmi~ Ui) (3.82)

tUoTTU =  <f>mSam {Uomi— Ûi) (3.83)

Manipulating the above equations yields:

gmJJgmi ~  ‘̂ gmi "t” ^  (3.84)

^mSomUomi ^omi "b ^  (3.85)
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Plugging Eqs. (3.84) and (3.85) into (3.81) yields:

d  f  . „  . , „  R s m
{^TnSgmPgm 4” ^mSomPg;-sm Q

-Do

{pĵ mRgmPgm ^  Pgrn^gmi)dXi

. ^  {(t>raSomPgsm^^ Ûi +Pgsm^^Wom?\ =  0 (3.86)OXi \  -^om ^om /

Rearranging and adopting the substantial time differential operator defined in 

Elq. (3.26), the following equation is obtained:

A. C ^Pgm , _ DSgm , g,  ̂ D4>m ,  ̂ o  « ^ ^ _ ... \Çm^gm \ ÇmPgm OgmPgm 'V <Pm̂ gmPgm ' g ^  {Pg-rn̂ gmiJ

D  /  Rsm \  , Rsm DSom ^ Rsma  f  R s m  \  , R s m  D b o m  ,

, A a  „  R s m  d  i l i   ̂ ^  f  R s m  \  ^  fn  o t̂ \

Plugging in Eq. (3.28) and defining:

R m  =  P g s m ^  (3.88)
ijetm

gives:

A a D pg-m  , J, D S g m .  ~  1 0 D p s  ^  ^   ̂d Ùi
(p m ^ g m  i (pm P gm  jg ^  +  ^g m P g m  ^  jg ^  +  b g m P g m  ( 1  <Pf) g ^

—RgmPgm—̂  +  ^ — (Pgm'i^gmi) + (f>mSom~ ^  +  (pmRm'
D t  dxi D t  D t

+5omBm — ^  +  SomRm (1 ~  0 /) ^
P s  D t  d x i

—SomRm +  -Q^ (RmWomi) =  0 (3.89)

By substituting Eqs. (3.44) and (3.46) into Eq. (3.89), the equation for gas 

becomes:

j, cy  ^ P g y n  , j, dSgm d . \ , j, <-> ^ R m
(pmt>gm g ^  i (pm Pgm  g ^  4 " g ^  \Pgm P^gm i) 4“ (P m Som  g ^
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4" Qx- {SgmPgm ”1~ SomRrn) (1 ^ /)  ^mf ^i,t

(^SgmPgm 4" Som-^^m)
Oimf — O

K . {(bf — 1) +  4>m(f>fCn
dPrr

{.Pgm Pgm  4 " P o m -R m )
Ol-Tnf — 0

( 0 /  — 1) — 0 /  (1 — (pf)  C f

d t  

dP f
d t

=  0

The term in Eq. (3.90)can be determined as:

(3.90)

dRr^
d t

_  d  f  R s m \

~  a t y ’” " B U

Pgs

Pgsm  

  Pgsm

d t  \ B o m )

f  1 d R . ,

d t

' d R s m  d P g ^

d P g ^  d t

R s m  d B ^ \

BL % y
_  R s m  d B a m  d P g r, 

Bam  dPom d t
(3.91)

For the term

d p ,gm

d t

d  f  P g sm \

d t  \ B g m J

Pgsm  d B g m  

Pgsm  d B g m  d P ,gm. (3.92)

Since,

and,

So,

"^gmi —
^^m^gm dPgm

Pgm  —

p g m

Pgsm

dXi

B gm

(3.93)

(3.94)

dxi {pgm'^gmi) — dXi
Pgs ^^m^gm dPgm
B „gm  \  P gm  d X i

^  _  d  [  KnKgm d P g m ^  

^ ^ ‘̂ d X i  \P g m B g m  d X i  j
(3.95)
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Since,

W r j m i  =
^Tn^rom ^Pom 

l̂ om dX{

and,

P m  — Pgs
Rs

So,

dxi dxi
Rs

Pgsm

—  Pgs

^m^om 9P<mx 
Rom \  Pom dXi 

d [ Rsm ^m^rom ^Rom \
d ^ i  V R o m  p o dXi

Plugging Eqs. (3.91), (3.92), (3.95), and (3.98) into Eq. (3.90) yields:

dSam
d t

'P gsm

~̂ 4̂ mPg.

d  f  R s m  k m K o m  d P ,  

d X i  \ R o m

Som dRsm

P om  d X {

SgmdRgm\ dPgm
^Rom dPc

^mPgsmSom

g m  R g  d P g m

R s m  d R o m  dP orr

d t

d" ÇSgjnPgm 4" S o m R m ) (l */*/) ^ m f  '^i,i 

<̂ mf — 4>(̂ SgmPgm 4“ SomRm) {(f)f  — 1) 4- </>m0/C'n d P r r

{S gm P gm  4“ S o m R m )
(^mf — 4> 

Ko.s
{(j)f — l ) — ( f ) f { l  — (f>f) C f

d t  

d P f

d t
=  0

(3.96)

(3.97)

(3.98)

(3.99)

Similar to a water-oil system in a dual-porosity model, a transfer term  is needed 

to complete the continuity equation. Since gas exist in two forms: free and solution 

gas, the transfer term  for gas consists of two terms; i.e.

Q , = 5  ( P ^  -  p ,f)  +  a  ( P ^  -  P„f) (3.100)

The first term  is the mass exchange between the matrix and the fractures for free 

gas and the second term is the gas mass exchange caused by oil mass exchange.
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The final continuity equation for the gas phase in the matrix of a deforming 

porous medium is as follows:

dSn^ d f  km.krnrr, ÔPnm\ . „  OS.d f  kmkrgm dPg. 
dX{ \ f̂J-gmPgm 9x-,

d  I  R s m  k j n k r o m  9 P o m

*om

dt

^ ^ ^ d X i  \ B o m  fj-om d X i  J

, f  S o m  d R s m  S g m  9 B g m \  9 P g m

+ (p m P g sm  I R  ~  5 L . 9P„‘'om  ^ çrn gm  ,

^  R s m  9  B o m  9Porr.

9t

d" {.SgmPgm d“ SomRm) (1 0 /) ^m f ^i,i
Ĉ mf -  0

{ S g m P g m  d" S o m R m ) Ks (0 / — 1) d- (f>m(f>fCr,
9P„

{S g m P g m  d~ S o m R m )
0^mf-(f>

K o S (0 / ~  1) — 0 /  (1 — 0 /) C'/

d" Pgm
kmkvi•gm

{P g m  R g f  ) d“ CÏ P g m R s
kmkro

9t

?El
9t

{P o m  — P o f )  =  0 (3.101)t D  yj  ̂ ' — r y i -—f^gm^gm f^om^o
The final continuity equation for the gas phase in the fractures can be derived 

in a similar way:

d f  Rs f k f kro f 9Pof \
- P g s f  

+ < l> fPgsf

9x-i ^ B q̂  p o f  9 x i  J  

S o f  9 R s f  S g f  9 B g f  \  9 P g f

— { S g f P g f  d- S o f R f )

/ c 9Bpf 9Ppf
^fp9^f^°f Bl^dPpf 9t 

d "  { S g f P g f  d “  S p f R f )  ( 1  0 m )  ^ ^ m f

OCmf — 0
Kr.S

( 0 m  —  1 )  d -  0 m 0 / C / 9t

— { R g f P g f  d- S p f R f )

d“ ^  Pgm

Qm/ — 0
( 0 m  — 1 )  —  0 m  ( 1  —  0 m )  C7,

kmkri

dPrr

PgmB,gm p o m  B p

9 t

{ P o f  — P o m ) =  0 (3-102)
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G o v e r n in g  e q u a t io n  for o il From Eq. (3.77), the governing equation for oil in

the m atrix is given by:

(£) = I
Moving the right-hand side item to the left and changing the sign yields:

Darcy’s velocity for oil in an undeformable sohd system is again:

H'om ~  4̂ Tn.SomU(jTrii (3.105)

Plugging this equation into Eq. (3.104) gives:

Darcy’s velocity for oil in a deformable sohd system is:

Womi = (pmSom {Uomi— Û) (3.107)

T hat is,

(pmUomUomi — '^omi “f” ^m^om ^  (3.108)

Substituting the above equation into Eq. (3.106) yields:

Expanding it gives:

(m )
0171 USpm Som D0„
Bom D t Bom Dt 

SomdUi . d

Plugging Eq. (3.28) into Eq. (3.110) gives:

J. a D f  1 \  (pm DSom , Som 1 “  0 Dps
I s Z j  +  b Z ~ d T  + Bom Ps Dt 
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^om. f-, , \ ^  ^om D<t>f 9 ^ Wn
(I -  (p f)   ------------—--------—  +

B , d x i  B o m  D t  d x ^  \ B .
=  0

Plugging Eqs. (3.44) and (3-47) into Eq. (3.111) yields:

0m 9 Som Som / .  , \
+  R ^  +  - ^ ( 1 -  0/) ^mf Uî i077% / ^om ^om

—So Bo
Ô mf -  0 

Ks ( 0 /  ~  1 )  +  0 m 0 / Q

Bo
<̂ mf — 0 

KnS (0 / ~  1) ~  0 /  (1 “  0 /) Cy

d t  

d  f w ,

For the term & (g j;;),

- f — i  =dt \BomJ
1

1 dBom dPom

For the term ^  ( g ) ,

d f  *^omi\ d f  ^m^rom dPoid f Womi\  ^ __ ^  I
d X i  \ B o m )  d X i f^omBom dXi

Plugging Eqs. (3.113) and (3.114) into Eq. (3.112) gives:

(j>n
d f  ^m^^om dPoi1 dSo

Bom dt ÔXi KfJ'omBom dX{

-hSo 'Bo

(f^mSo

(1 0/)

1 dBomdP.om om

—S ,
Ô mf -  0

—So
Bo

niL n
■̂OTT.

O-m! — 0

dPrr
d t

(0 / ~  1) ~  0 / (1 ~  0 /) Df dt =  0

(3.111)

(3.113)

(3.114)

(3.115)

The mass transfer term for oil between matrix and fractures is calculated by:

{ P o m  -  P o f )  (3.116) f^hn^rom
Q o  =  oc-t^omBo
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The final continuity equation for oil in the matrix can be wnritten as:

(f>r
1 dSom  ^  f  kmKom dPor.

^om. dXi ^fJ-om^om 9xi

~kSom Q (1 

—<t>TnS>

o m

I  d B o m  d P o m .

""B L . a ; '  a t

— s ,'omB.
dPo
dt

~Som Br {àf — 1) — 0 / (1 — 0/) Cf 

+ â ^ ^ = ^ ( P _ - P „ / ) = 0

dt

f^omBmn

The final continuity equation for oil in the fractures is as follows:

1 d S o f  ^  /  kfKof dPpf\
^ B o f  d t  d x i  \ f i o f B o f  d x i  J

~ kP o J  r ,  ( 1  0 m )  O ^m f
^o f

o 1 dBpf dPof 
0 /% /g2^gp^^  a t

( 0 m  —  1 )  +  0 m 0 / C 7

-S .

—Sof

1

Bof
dPf
dt

of B.'of
— ^  —  ( 0 m  — I )  — 0 m  ( 1  — 0 m )  C p

f̂ s

+ S -^ = % = - ( P o f  - P o „ , ) = 0

dPr.
at

(3.117)

(3.118)

Four auxiliary equations are needed to solve the problem, i.e., saturation and 

capillary pressure relationships in matrix and fracture.

For the matrix:

Sgm  4" Sow. — 1 (3.119)

P 7m  — P g m  P o m (3.120)
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For the fractures:

S g f  +  S o f  =  I  (3-121)

P c f  — P g f  — P o f  (3.122)
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Chapter 4 

N um erical Im plem entation

Numerical methods must be applied for those problems whose analytical solutions 

are impossible to obtain. A differential equation expresses a  relationship between a 

function and its derivatives over a continuum; and, therefore, really represents an 

infinite number of equations with an infinite number of unknowns.

Numerical solutions require only the more modest abfiity to solve a finite number 

of equations for a finite number of unknowns. In order to use this abihty, one needs 

to construct a finite system of equations, the solution to which has some relationship 

with the original infinite  system. This process is known as discretization.

Discretization methods fall into two main classes: those methods that approx­

imate the original differential equation itself (usually known as finite difference 

methods), and those that directly approximate the solution by a function from 

a finite-dimensional space, using the original differential equation to define the firee 

parameters involved (this group includes the finite element method).

There are currently five widely used numerical methods:

1. Finite difference methods;

2. Galerkin or variational finite element methods;

3. Collocation methods;

45



4. Method of characteristics: and,

5. Boundary element methods.

These methods are closely related. In several cases the finite difference, finite 

element, and collocation methods yield the same approximation. The method of 

characteristics is a variant of the finite difference method and is particularly suitable 

for solving hyperbolic equations. The boundary element method, a variant of the 

conventional finite element method, is especially useful in the solution of elliptic 

equation for which Green’s functions exist.

The finite difference and finite element methods are the two most popular numer­

ical approaches for the simulation of reservoir systems. They appear superficially 

different but are, in fact, closely related. The finite element starts with a variational 

statement of the problem and introduces piecewise definitions of the fimctions de­

fined by a set of meshpoint values. The finite  difference method starts with a 

differential statement of the problem and proceeds to replace the derivatives with 

their discrete analogs.

Both methods result in a set of algebraic equations relating a discrete set of 

variables in place of the relations in the continuous variables. These algebraic equa­

tions are remarkably sim ilar and provide the basis for identifying the methods as 

essentially similar.

There are two avenues of approach to the simulation of pressure propagation, 

and mass and energy transport in fractured reservoirs. One requires identifica­

tion and mathematical definition of the geometry of each fracture in the porous 

medium. The second assumes the fractures and porous blocks represent two over­

lapping continua. Fmite element methods have been applied to solve the equations 

arising from both models (Li et al., 1990; Lewis and Ghafouri, 1997) as well as 

other sim ilar reservoir modeling problems (Zienkiewicz and Parekh, 1970; Neumann
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and Witherspoon. 1970; Lewis and Schrefler, 1987; Lewis and Siikirman, 1993a and 

1993b). The flexibihty inherent in the finite element approach is particularly useful 

in  the discrete firacture model. On the other hand, the finite difference methods have 

a justifiable attraction because of their simplicity and computational efficiency for 

complex and nonlinear problems (Huyakom and Finder, 1983). However, it is noted 

from the hterature review that finite  difference methods have never been appfied to 

coupled fractured reservoir models. One of the aims of this dissertation is to test 

the  feasibihty of applying such an approach to this kind of models.

4 .1  F in ite  D ifference Form ulae for D erivatives

The following equations can be derived from the Taylor series:

1. Forward difference in time:

c n + I
3 /  f ? r  -  Æ-
dt A t (4.1)

2. Central difference in space:

9 f  _  f i + i , j  — 

dx  2A x

9 f  _  /i,y+i ~  

dy 2Ay

^  ~  ^ f i j  +  f i - l j

dx^ { A x f

_  /i.j+1 ~  +  Ay-1

(Ay)^

3. Mixed partial differential derivatives:

_  f i + i j + i  ~  /i-i,y+ i — /t-n j - 1  4- f i - i j - i  

dxdy A AxAy
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(4.5)
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dxd t 2 A xA t

a - f  ^  +  Mg,
dydt 2 A yA t

The pressures in the m atrix and in the fractures are saturation-averaged pres­

sures of water and oil in tha t continuum; i.e.:

Pm = SomPom +  S ^ P ^  (4.9)

Pf =  Sof Pof + S ^ fP ^ f  (4.10)

Differentiating Eqs. (4.9) and (4.10) with respect to space (for example, x —direction)

yields:
d P m  _  c! S P o m  , o  S S o m  , g ,  d P ^ m i  , d S u m t  fA

dx ~  dx  ^  dx ^  d x  dx   ̂ ^

+  +  (4,12)

4.2 F in ite  D ifference A pproxim ation o f Equilib­
rium  Equations

Based on the finite difference formulae provided in section 5.1, Eq. (3.17) (first 

equUibrimn equation for sohd) in finite difference discretization is written as:

(A 4- G)
{A x Ÿ  4AxAy

+G
(A x)' (A y)'

2Ax 2Ax

2 A x  2 A x  )
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( _n+l _«n+ 1  Ĉ + 1  _  çn+ 1
rr Pof i+lJ  P o f i - l , j

2Â Ï 2Ax
n+l _  çn+ 1  _  qn-r-l \

, n  Pwfi+l , j  P w f i - l J  , „ • ^ w f t - l j  \ _ n  fA ■to\
2Ax 2Ax j

It can. be simplified to:

—2(ai +  a-2)Uij 4- Oi'Ui+ij +  4- 4- a^Vi-ij-i

—a s f i- i j + i  4- as^f+ij+i “  Os^i+ij-i ~  4- a^Pmi+i,j — a sp /f-ij

4-a5P/i+ij — ae i jSm i- i j  +  asijSmi+ij  — a ^ j S / i - i j  +  a j i jS f i+ i j  

— 0,8ij{Pcmi+lJ Pcmt—Ij) "i" <29ij(Pc/i+lj Pcfi—l,j)
where,

A 4~ 2G 2G X G
”  ( Â # '  ”  Ï K ^

_ Om _ CCf
“ -  2A l ' " “  2Ax

_

“8ij =  -  ‘S'mij), <%ij =  -  S f i j )  (4-15)

Similarly, Eq. (3.18) (second equilibrium equation for solid) becomes:

—2(6i 4- b2)vij 4- biVi+ij +  biVi^ij 4- 6 2 'Utj+i 4- b2Vij-\  4- bziLi-\j-\

—fesUt-ij+i 4- èsUi+ij+i — bzUi+ij^i — biPmiJ-l +  &4Pmi,j+l — bsPfij-i  

+^5Pfi,j+i — beijSmij-i  +  beijSmij+i — b n j S j i j - i  4- bj i jS f ij+ i  

~  bgij(Pcmij+l PcmiJ—l) boij(pcfij+l Pc/ij—l) (4.16)

where,
2,G , A 4~ 2 G , A 4~ G

Ol =  ,  A N 0  1 °2 =  / A  NO 1 03 =(Ax)2’ (Ay)2 ’ 4AarAy

6, =  ^ ,  6 ,=
2Ay' 2A y’

L   _  J,    _

o6ij — ~  2Ay^‘̂'̂ *’̂

49



4.3 F in ite D ifference A pproxim ation o f Continu­
ity  E quations

4 .3 .1  W ater-O il S y stem

Applying the chain rule to the derivative of density to time term in the governing 

equation for water in m atrix (Eq. (3.52)) leads to the following:

where Cu, is the compressibility of water, i.e.:

The term  in the governing equation consists of two parts in two dimensions:

dp^Wi dp^vj:^ , dp^Wy
dxi dx dy

Since,

+  (4.20)

Pw dx

so,

dP'uj'^x d f  dJPx̂ jrn̂

^mkrwm dPyjrn . . >
=    X—  (4.21)

dx  d x \  puj dx

2  U
dx Qy,

1 d P ^ \  d P ^ \
Atüxm Q I I ^wxm ^ I

A + i/z j V dx

4 f  \  P v r m i + \ , j  P - w m i j  \  P w m i + l J  P w m i , j  ^
~  ~  A x  ' ^ x m t + l / 2 J  ^  )
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[̂ T'u;i77it-)-l/2,j { . P w m i + l , j  P u i m i j )  

T w x m i — l / 2 , j  ( . P v r m i J  •fumri—lj ) j

where,

^wxm — Pi

T  —■‘■luxm —

I
Pw

(Az)^

(4.22)

(4.23)

(4.24)

Sim ilarly,

9  P u j '^ y  

dy — ^ ^ i v y m i , j + l / 2  (-Pt m n i j + l  P w m i j ' )  P u r y m i J — 1 / 2  ( ^ P w m i J  l)j

(4.25)

Then, Eq. (3.52) (the continuity equation for the water phase in the matrix) in 

finite difference discretization can be written as:

— T ^ n x m i+ l/2 ,j ( - P w + lJ  -  +  P w x m i - l / 2 , j  { P ^ i , j  ~

-Tti«rmxj+l/2 { P ^ i , j + l  -  P ^ i j )  +  T w x m i j - l / 2  ( P ^ ] j  ~

DTI 4-1   pn  0714-1   on
, / rr  _ /T  ‘‘■ w m  ^ w m  , j  ^ w m  ^ w m\Çm^wmPwm^wm ax VmPwm'

-  PZm) +  P l-mA t
Prr

A t
Pwm
~At

A t

+ B 2 .

A t

A t

( % '  -  % » )  +  -  C x )

A t

A t

K / '  -  % )

+ P 3 i 2 A x A t
-1

2A yA t

where.

Plu/m — SwmP  ̂

P ^ w m  ~  S w m P w m

+ B 4™  -  I Z f )  =  0

Qm/ — <P
Ks 

K n S

(0/ — 1) — 01T10/C',

~  1) +  0 /  (1 — <pf) P ' f

(4.26)

(4.27)

(4.28)
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BS-urm = OCmf {I -  (pf) S^Pumi  ( 4 . 2 9 )

( 4 . 3 0 )

f^wm

It can be further simplified to:

OlSijPmiJ OiijPmi+lJ 02ijPmi—lJ O^ijPmij+l O^ijPmiJ—l 

+  (CiOi,j — 07ij)pfi j  +  CsijUi+ij — CsijUi^ij 4- CgijVij+i — CgijVij^i 

+ C l U , j S m i , j  +  C m j S f i j

=  CiiijPmiJ + OlOijPfiJ +  CiiijSmiJ +  Ci2ijSfij +  CsijUi+ij

—C8ijUi-ij +  CgijVij+i — CgijVij^i +  CizijPcmiJ ~  CujPcmi+lJ

02ijPcmi—lJ OzijPcmij+1 O^ijPcmij—l OjijPcfiJ ( 4 . 3 1 )

where,
f PwrrĴ rwm \ f Pwm. r̂tam.\

f Pwm^rwm \ f PwmMrwm, \

=  ^ = ^ ( 1  -  S . , , )

(1 Bmij)Pwm.iJ
A£ —— {<Pf —  1 )  —  4>m(f>fCr,

— » /• Pium̂ Vtimi N0?ij — Ockm\_ JiJ
p w m

C8.V =  b » . ( i  -  s™ )],,, I p ^ a  -

^  ^  i ^ f  -  1) +  0 / (1 -  0/) Of
x V n ^

0m
OlliJ — CQijPaniJ ^^Pwmijj 0\2ij — CiQijPc/ij

0\Zij =  Ciij +  C 2 t j  +  C 3 t  J  +  C 4 i j  +  C 7 t j

C l 4 i J  =  C 5 , - j  +  C 6 i j ,  C i s i j  =  C i 3 i j  +  C i 4 i j  ( 4 . 3 2 )
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Equation (3.53) fields:

where,

dl5ijPmi,j ^2i,jPTni—l,j d^ijPrniJ+l d,4ijPmiJ—l

+{dlOij — <̂ Ti,j)Pfi,j + dsijUi+ij — dsijUi-lJ  +  dgijVij+i 

—dgijVij-1  +  diiijSmiJ  4- di2 i jS f i j  

=  d u i j P m i J  +  d i O i j P f i j  +  d i i i j S j n i J  +  d i 2i j S f i j  +  d s i j l L i + i j

—d s i jU i - i j  +  dgijVij+i — dgijVij^i  (4.33)

T fPom^rom\ j  rPom^^om\
=  77^ ( — 7  ) i - i j

d3i,- —

(^ ^ )^  p o m  

I Pom^i
r(-

0)71 \ J  / P o m p o m  \)ij+ i, d^ij =  7 X 7 ^ ( - 7 ------)ij_ i(A y)2 ' (A ÿ))'
^mf^oPos

= A t

J —
3 m i , jP o m i , j

A t
Qm/ -  0

{(pf — 1) — (pm(pfC„

J   7 fPomh-om\
d j i j  =  akrr,{— --------------------) i j

Pom
O m f  { I  — < P f ) ^ _  r ,  \  J  < ^ T n / ( l  ~  <t>f) , ,  n  \

“  2 A x A t  -  2A yA t

J  PomSmij
=  — Â T "

Q̂ rn/ — <P

<Pn

{ ( p f  ~  I )  +  ( p f  { I  —  ( p f )  C f

d l l i j  —  dQi jP c m iJ  ^ ^ P o m i j j  ^ I 2 i j  ~  d i Q i j P c f i J  

di3ij =  diij +  d2ij +  dsij +  d^ij + dfij  

di4ij =  doij +  deiji disij =  diatj +  di4t,j

Equation (3.54) becomes:

(4.34)

ei5i,jPfij — e i i , i P / i + i j  —  ^2i,jPfi-ij — ^3i,jPfi,j+i — e^ijpfij_i 

+(eiot,i — ^7ij)Pmij +  esijUj+ij- — esijUi^if +  — egijVij-i

+ ^ l l i j S f i j  4- e i 2 i j S m i J
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=  ^i4i,jPfi,j +  eioijPmtj +  e m j S f i j  + ei2ijSmij + esijUi^ij —

— egijVij^i +  e\zi,jPcfuj — eiijPc/i+i,j — eoijPcfi-ij

—^3ijPcfij+i — ^4i,jPcfi,j-i — en,jPcm.ij (4.35)

where,
k f  fPwf^-rwf\ fPwf^rwf\

ezij =

(Az)2^

rPwfkrwf

(Ax) 2

(Ap)2^
\  o  —  f P w f k r w f y,

esij =
<j)fCwPv.

(1 — Sfij)Pv>fiJ
A t

A t

Q̂ m/ — 4> 
K .

 t fPiirm}^ejij  =  akm{

(0m — 1) — <pTn<f>fCf

-)id
Pirnn

K , ( l  -  S , ) l „  . e u j  =  K / ( l  '  5 / ) ] , -

e io i ,i  —
P w f j l  —  S f i j )  

A t

Ô mf — 0 

0/

2A yA t

( 0 m  —  1 )  +  0 m  ( 1  — 0 m )  C 'n

e ilij =  eeijPcfij — -^Pwfij, e istj =  eioijPcfij 

ei3i,j =  e itj +  e2i j  +  esij +  641 j  +  eyij 

ei4tj =  estj- +  estj, £15,-j  =  613,j  +  614,-j ( 4 . 3 6 )

Equation (3.55) gives:

f i s i j P f i j  — f i i j P f i + i , j  — h i j P f i - x j  — f z i , jP f i j+ x  — h i j P f i , j - i

+  (/lOi,i -  f7ij)PmiJ +  fsijUi+ij — fs ijU i-ij  + fgijVij+i

— h i j V i J - l  +  f l l i j S f i j  +  f l 2 i j S m i J

=  f l 4 i j P f i J  +  f lOi jPmiJ  +  f l l i j S f i j  +  +  f s i j ^ i + i j

(4-37)

54



where,
r  ____  f P o f ^ o f \  r    f P o f f ^ o f ^

f l i j  -  /2ij

h i j  =
k f  , P o f k r o f  

> V(Ay)2 f^of

(Ax)2

\ f _  fPofkrof^
(Aî/)2

c _  ^f^apos CT 

/si,i — A ^

h i d  =
^fijPofiJ

A t

A t

OCmf — <P

h i , j  —  O c k m i

Ks
 t f Pomkrom

Pc ) i j

OCmf ( I  -  (f>f) r ^  a   ̂ f  - < t > f )  { „  c  \

~  2 A x A t  ~  9.Ai,Af.

f l O i J  —
P o f ^ f i j

A t
OCmf — 0

K „ S

2 A y A t

( 0 m  — 1 )  +  0 m  ( 1  — 0 m )  O m

0/
/ l l t j  =  hijPcfiJ  —  -^Pofij, fl2i,j =  flOijPcmiJ 

fl3 ij = f l i j  +  / 2 i , i  +  / S i j  +  A i j  +  f l i j  

/ l 4 t j  =  / s t j  +  hi,ji flSij  =  / l 3 i j  +  f u i j (4.38)

4 .3 .2  G as-O il S ystem

Equation (3.101) (the continuity equation for the gas phase in the matrix) in finite 

difference discretization is written as:

- T g a m i i + 1 / 2 J  { P ^ U - I J  —  P g m l j )  +  T g x m i - l / 2 , j  [ P ^ i J  ~  P g m L l , j )  

- T g a m i i J + l / 2  { P g m i J + 1  ~  P g S j )  +  P g x T a i , j - l / 2  { P g r n i J  ~  P ^ i J - l )

+C5 grmj^^fgrn^
A t +

Bgm At

T/ f  p n + l    pn+1 \  i r p '  (  p n + -l  ____________  pn+1 \
o x m i+ l /2 J  \ ^ o m i+ - l J  ■ ^o m id j ' ■‘■oxmi—1/2,j  y ^ o m i j

rr/  (  pn+1 __ pn+1 \  I m '  (  pn+1 pn+1 \
-^oimi,y+l/2 omtj+1 - ^ o m i j J  ■‘■ oxm iJ—1/2  ■‘ o m i j —l j
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p n + l  _  p n  1 ç n + l  _  O n
' ^ o m i , j  ^ o r m j  , y m  p  ‘^ o m  '-’ orr

A t ■i Rm-
Pgs A t

-- f ; ; . )  4- -  5%;*) 4- -- f::*)^  A t
p .

- s " ^ ) + -  ■?./)+ ^ v ^ ( 5 : ; ‘ -  s^j)A t

2/kcAJ ^  2ZkyAt

+-;i4,n. (jc%;r' -- f:;?-') 4- /la ;,. -- =  () (4.39)

where,
A„r p  ______ '  g x m

-  (Zl=):

\  ^ m ^ r g m

~  Ü PH - g m ^ g m

' f  = ' ’
(Ao;)'

• '   R-sm̂ ^mkro
PomBom

■'gm

A n  _  I ^ g m  . Rom■̂ ^gm —

^  + — R„
i^nrrt Pgs )

XI _  f ‘̂ 9rn . ‘-'om'^^gm —
Oimf — <t>{(j)f — 1) — 0r7x0/C'n

^ B g m  Pgs
R m

Ô mf — 4>
(0/ — 1) 4- 0/ (1 — 0/) C f

A2>g  ̂=  ( 4- ^ ^ P r a l  (1 -  <i>f) CCmf
\  ̂ g m  P gs J  

X A CKpn̂ rgm.
•̂ ĝm — p

PgsPgm^Jgrn

t , '    Rsm̂ ^̂ mJ r̂om.
p,sPgmBom

It can be further simplified to:

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

ClStjPmtj — (clij 4- Ciij) Pmi+1 J  “  (c2ij 4” cL̂ iJ) Vmi-l,j ~  (c3tj +  4 i j )  Pmtj+1 

-  (c4ij 4- C^iJ) Pmtj-1 4- (Cioij — C7iJ -  Cjij)pfij 4" CsijUi+ij — CsijUi-iJ
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+C9ijUij-f 1 — CgijVij^i +  CiiijSmiJ + Ci2ijSfij

=  C U i j P m i J  +  ^ l O i j P f i J  +  C u i j S m i J  +  Ci2i j S f i j  +  C g . jU i+ i j  — C g ijW i- i.j  

+CgijVij+i — CgijVij^i 4- CiPcmi+l,j +  CaPcmi-l J  +  C^PcmiJ+l 

~\~Ĉ Pcmi,j—l ('IzP:mi,j OjPzfij (4.49)

where,

— '^gxmi+^J  ̂ ^ lij — 'Kxmi+^J 

C^ij = T^oxmi-y 

^3ij =  C^ij =  T^ogmiJ+\

'^9ymx,j—\ ’ ^4iJ -^oymtJ—i

( Sorn 9Rsm ^gm 9Bgm\ (f̂ m *   0m BcjxiRsm,
B ^ a p ^  “  Â ê ’ “  Â ï  9 P ^

■̂ Igm X X
%i,J ~  ~ÂÏ~ ’

•A3gm A3gm
=  2Â ÏÂ Î’ ^  2Â ÏÂ Ï

ClOij =
A2gm

A t
^■mPm

ClliJ — ——TT — -TTB  CeijPcmiJ, Ci2iJ — -C iO ijPcfiJPgs^t iXtBgm

Cl3fj =  Citj +  C2ÎJ +  Csij +  C4ÎJ 4- C7jJ 4” CsijSom 

Cl4i,i =  Csij 4- C6 i j  4- Cgij,

C l 5 i j  =  C i t j  4- C2tJ  4- Csf J  4- C4t J  4~ C s i j  4- C 6t,j 4- C 7 i j

4- 4- 4 i j  +  4x,j +  ^4 ij  +  4 i j  +  4 t ,i  (4.50)

Eq. (3.117) (the continuity equation for the oh phase in the matrix) in finite 

difference discretization is written as:

— T o i m t + l / 2 J  ( - P ^ + 1  J  -  P ^ l j )  +  T o x m i - l / 2 , j  { P ^ i J  ~  P ^ L l j )
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-Toj:mi,j+lf2 — P ^ l j )  +  Toa:miJ-ll2 (-PomtJ ~

A t Br A t

A t
P r r

a
^ ç tn + 1  a n  \  , / i n  ° f  f  z y n + l

+ ^ 2 ^ ^ ( P ; / ‘ -  f7 ,)  + A 2 ^ ^ ( S ^ P  -  % )

-  sj/.) + -  p ;, )+ -  s ^ , )

Pgf ( on+l on 1 , An ^ 9 f ,

+A2c 2 A xA t 2AyAt

+ A 4 ^  { P ^ '  ~  P% r') =  0

where,

A l- o m  —  B o m    (4>f —  1 )  —  (pm4>fCr,

A .2 ( „ r j i  —  S o m B.
Ô mf -  (f>

(0 / — 1) +  0 /  (1 “  (f>f) Cf

A 3 o m  —  ^ m /  ( 1  0 / )
B r

Oikfjik-rom
AAam =

f ^ o m B c

01.51)

(4.52)

(4.53)

(4.54)

(4.55)

It can be further simplified to:

^l5i,jPmiJ ^2i,jPmi—lJ ^ZijPmiJ+l d^ijPmiJ—l

+(c îOi,j — d7ij)Pfi,j + dsijiti+ij — dsijUi-i,j +  dgijVij+i

—dgijV i j - i  4- d i i i jSm ij  +  d i2 i jS f i j  

d u i j p m i j  +  d i O i j P f i j  +  d i i i j S m i J  +  d i 2i j S f i j  +  d s i j X l i + l j

—d s i jU i - i j  +  dgijVij+i — d ÿ i jV i j - i  (4.56)

where,

d i i , j

dzi,j

fPomkrom\ ,
r(— ------ )%+ij, d.2i,j(Z\uc)2 '  ,4m, "+S'

km [ Pomkrom \ ,

km f Pomkrom \
!\ .. /I—(Ax)2 IJL^

k n  [ P o m k -o m  \
 ) i i - l{A yY
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,  1 S o m i J
“6ij = A t B,

<̂ mf — 4>
K

d.7i,j = ak,n(

{ ( p f  —  1 )  —  ( p m O f C r r

JCj-Q
tl'OW.Bom.

J  ^TTtfO- ‘̂ / )  /  \  J    <^Tn/(l (p f)  I Srri ^

J    1 Som
- -  ZÜ

0(mf — 0
K„S

{(pf — l) +  (pf{l — (pf) Cf

— deijPcTTiij, di2i,j — —dmjPcfij
A t B o m

di2i,j =  diij  +  d2ij +  dzij 4- d4ij +  dn j

d u i j  = dsij +  deij, disij = di2ij +  d ^ i j  (4-57)

Similarly, Equation (3.102) (the continuity equation for the gas phase in the 

fracture) becomes:

e i 5 t j P / t j  -  ( e i t j  +  P f i + i j  -  { ^ 2 i j  +  P f i - i j  ~  ( e s t j  +  P f i , j + i

— ( e 4 i j  +  e 4 i j )  P f i , j - i  +  (e io x j  — e n , j  -  e.ji j ) p m i j  +  e ^ i j U i + i j  —

H-egijUty+i — SQijVij-i +  e m jS f i j  4- ei2ijSmij

= ^lAijPfij 4- eioijPmij 4- e i i i jS f i j  4- ei2ijSmij +  esijUt+ij —

-i-sgijVij+i — egijVij-i 4- eiPcfi+ij 4- e2Pcfi-ij 4- esPcfij+i + ^<Pcfij-i 

—^IzPcfiJ + ^TPcmiJ (4.58)

where,

“  ^oxfi+y

®2iJ =  '^gxfi-y^ ^2ij =  T ^ f i - y  

'^9yfiJ+^ ’ 3̂t J ~  'd^oyfij+̂  

^4*J =  T ^ f i j - ^
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— f  ‘S'o/ d R s f  _  S g f  d B g f  \  é f  ,  _  é f  S p / R s /  d B p f

A l,/
eefj =  - ^ ,  e-ij =  A 4 ,/ij

A3gf A 3,/
^8i.i — oA^A + ’ —2AxA£’ 2AyA£

A2,/

(pfRf (f)f

-  ^ ;iÂ t '  Â ts ^ j  -

ei3i,j — +  e2ij +  ezij +  e4,j 4- 6%̂ ,/ 4- e&ijSof

ei4i,i =  esij +  egxj 4- eg^j, 

ei5iJ =  eit,i +  e2i j  +  6 3 *,/ 4- 641 j  4- 65 1  j  4- eei,/ 4- e n j

+^u,j +  +  4 i j  +  4 i j  +  ^ x j  +  7̂x,y (4.59)

Similarly, Equation (3.118) (the continuity equation for the oil phase in the 

fracture) becomes:

f l S i j P f i J  — f l i j P f i + l J  — f 2i j P f i - l , j  — f z i j P / i J + l  — f i i j P f i J - l  

+  i f l O i , j  — f 7 i j ) P f i , j  +  f s i j U i + l J  — f a i , j U i - l j  +  /gij'UtJ+l 

+  f i u j S f i j  +  f i2 i jS fi j  

=  fu i jP f iJ  +  flQijPfiJ +  f l l i j S f i j  +  f l 2i , jS f i j  4- fsijUi+l,j

—/sijW t-ij 4- foijVij+i  — fa i jV i j - i  (4.60)

where,
£ _  /Po/^o/ \ fPof^rof^

-  -  (Ai)2 ( y ,„ y  '-W '

£ fPof^of^ £   fPofkrof-^
p.y W è ’ -  (A ÿ )4  y..y )« -è  

f  =  Æ c ,/5XJ
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/e ij  —
1 Sofi,j

A t  Bof

f~i,j ^omBo ■ ) i j

f _  orm/(l — f __ 0 ^ /(1  — <f>f) , S f  ^
h i d  —  0 A _ A j l  V d  / W :  J 9 i j — O A ^ . A *  I  D  J w2AxAt ^B of‘

f l O i d  —
1 5,of

A t  Bof 

4>f

2 A y  A t  ^Bof‘

((/)/ — 1) + (pf (1 — (pf) Cf

f l l i d  — y  —  f e i j P c f i j i  f l 2 i j  — —flOidPcfiJ  

f lZ iJ  =  f l i d  +  / 2 i , i  +  f z id  +  A : , J  +  f? id

—  f s i d  +  / S i j j  / l 5 i j  —  f lZ id  +  / l 4 t j (4.61)

4 .4  S o lu tion  procedure

Thus, the finite difference scheme results in a system of algebraic equations in the 

form of:

Û1.1 <̂1,2
0-2,1 ^2,2

0\,n—\ Oî n
0 2 , n - l  0 2 , n

On—1,71—1 On—l,n
On,n—l  On,n

T/1,1 ■ 6 i  ■
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^ 1.1

P m l , l

PmN:,„N^

S m l , l
—

B m N x ,N y

P m l , l

PmN,^,Ny

B m l , l

.  B m N x ,N y  .

^ n —1

L bn  .

(4.62)
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where [a] is a m atrix of order n x  n  with n =  6A^A^; and, where and Ny 

are the nodal numbers along the x- and ^-directions, respectively. The coefficient 

üij  are those associated with the variables in the finite difference equations, which 

are constants in case of single-phase flow and dependent variables in the case of 

two-phase flow. Therefore, the system of equations (Eq. (4.62)) is nonlinear for 

multi-phase flow.

Zenkiewicz (1977) discussed the advantages and disadvantages between the iter­

ation methods and the direct solution methods. The main advantages of using the 

iteration method are the reduced central memory storage demands and the elim­

ination of the triangular decomposition which is the most costly part of a direct 

solution. The disadvantages are;

1. The lack of knowledge on how many iterations are necessary to achieve an 

acceptable solution, often hundreds or thousands of iterations are required;

2. The value of relaxation factor (ui) which can significantly change the conver­

gence, many people continuously change w during the solution to achieve an 

optimal value;

3. The method fails on indefinite or unsym m etrical problems;

4. In non-linear problem, or multiple right-hand sides, no advantage (except per­

haps the optimum uj value) can be taken of a previous solution process as the 

whole iteration process must be repeated.

He concluded tha t the disadvantages usually far outweigh the advantages for 

iterative method. Therefore, the Gauss-elimination with pivoting, one of the direct 

solution, is used in this dissertation to obtain the solution to this system of equations, 

Eq. (4.62).
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Chapter 5 

M odel Validation

One of the vital tasks which must be carried out before applying a newly-developed 

model to realistic new problems is to verify the correctness of the model. The 

mathematical formulation developed in Chapter 3, and numerical techniques used 

to solve the model described in Chapter 4 were verified using known analytical 

solutions and the finite element model developed by Meng (1998).

5.1 Com parison w ith  A nalytical Solution

A one-dimensional consohdation problem was selected to verify the model. The 

analytical solution, numerical solution and comparison between these two solutions 

are presented below.

5.1 .1  A nalytical Solution

One-dimensional consohdation problems are characterized by only one non-zero nor­

mal strain and by field quantities varying only in th a t direction. Assuming Sxx to 

be the non-zero strain, the poroelastic constitutive equations are then:

2G (1 — z/) _ __ /c
<Txi —  ^  0 : p  ( O - l )
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^yy =  '̂ =2 =   ̂ — 2t7P (5.2)

where 77 is the poroelastic constant. By expressing e^x in terms of p and a^x using 

Eq. (5.1), the diffusion equation for the pore pressure can be written as:

dp d^p _  B {1  + i/J  d(Tn;
dt ^dx^ Z { l ~ u )  dt

For a constant axial load, cth, the right-hand side of Eq. (5.3) drops out to give a 

homogeneous diffusion equation:

Ï - S - "  IM

The above differential equation is subjected to the following boundary and initial 

conditions:

Boundary conditions:

Initial condition:

p =  0 at a: =  0 (5.5)

^  =  0 at a: =  L (5.6)
dx

Then the solution for the pore pressure is:

^  4 . f rm rx \  (  rr?-K^ct\
— (5.8)

The differential equation for the displacements, Ux, is deduced from Eq. (5.1), 

by expressing e^x as dux[dx:

subject to the following boundary condition:

=  0 at a; =  L (5.10)
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The solution to this equation is:

Uj: —Û  + AUj (5.11)

where is calculated by:

- Î )
(5.12)

while A uj: is calculated by;

where,
, , 8 1 /Tmrx\

1 — exp
m^Tv^ct

4L2

(5.13)

(5.14)

The following equations are needed to calculate B, !/„, (Detoumay and Cheng, 

1993):

B =
a/:#

[o! — (1 — n)] k f  +  (f)k
3k^ -  2G 

“  2 (3fc„ +  G)

ku = k 1 4*
(x^kf

(1 — a) (a — 4>) k f  +  (j}k 

where k f  is the fluid compressibility.

The diffusivity coefficient c is given by (Chen, 1996):

2G (1 — y') {uu — î ) K

(5.15)

(5.16)

(5.17)

c = 0;2(1 -  2l/)2(l — Uu) (5.18)

where K =  %.

The param eters used for this comparison are listed in Table 5.1.

5.1 .2  N u m erica l Solution

The 2-D, two-phase model developed in this dissertation may, of course, be used to 

simulate one-dimensional, single-phase consohdation problems.
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Table 5.1: Parameters Used in the Comparison

P a ra m e te rs D efin ition M agn itude U nits
E modulus of elasticity 3000 MPa
V Poisson’s ratio 0.2
k rock permeabihty 1.974 X 10“ ^̂ m^
k f fluid compressibflity 1.0 X lO-'^ 1/MPa
Ks sohd grain bulk modulus 11244 MPa
0 rock porosity 0.2
P- fluid viscosity 1.0 X 10-3 Pa s
a loading stress 2.0 MPa

In itia l an d  B ou n d ary  C onditions

Consider a water-saturated column which is suddenly loaded. The fluid in the 

column is allowed to drain only from the top surface, while all other three surfaces are 

no-flow boundaries. The axial stress, cr, is a  step function apphed instantaneously. 

The initial and boundary conditions needed for modeling this one-dimensional , 

single-phase consolidation problem are given in Figures 5.1 and 5.2. The discretized 

domain for the  finite difference scheme is shown in Figiue 5.3. Only half of original 

domain is selected for calculations due to the symmetry.

Interior P o in ts

For points within the grid, the six governing equations for solid deformations and 

two-phase fluid flow in the m atrix eind in the fractures have already been obtained 

in finite difference form, i.e., Eqs. (4.14), (4.16), (4.31), (4.33), (4.35), (4.37).

B o u n d ary  an d  C orner P oin ts

However, a t the boundaries and a t the comers, these six equations have to be 

rearranged and the following approximation are apphed based on the boundary 

conditions specified:
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<T

W =  0

Figure 5.1: Mechanical Boundary and Initial Conditions.

Free Flow

No FlowNo Flow

No Flow
m m #

Figure 5.2: Fluid Flow Boundary and Initial Conditions.
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Boundary i =  1 (Symmetry' line)

=  tii+ ij (5.19)

V i - i , j  =  -'Wt+ij (5.20)

Pmi—l,j Pmi-hl,j (5.21)

P f i - i , j  =  P fi + i , j  (5.22)

Boundary i  =  N x  (n =  0 and no flow)

U i + i j  — U i ^ i j  (5.23)

V i + i j  =  2 v i j  -  (5.24)

Pmi+l , j  — Pmi—l,j (5.25)

P f i + i j  =  P f i - i , j  (5.26)

Boundary j  =  l  (loading stress boundary and open  flow)

U i j —i  =  2 u i j  U i j + i  (5.27)

=  V i j + i  -  (5.28)

Pmi,j—l ~  Pmi,j+\  (5.29)

P /tj-1  =  P/M+1 (5.30)

Boundary j  =  N y  [u  =  v  =  Q and no flow)

rtij+i =  Uij^i  (5.31)

=  V i j —i  (5.32)

Pm iJ+l  — PmiJ—l  (5.33)

~ V fij- ' i  (5.34)
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Corner i = 1, j  = 1

(5.35)

Ui_ij  =  Ui+ij  (5.36)

U i - i j - i  =  2ui+ i j  — Wi+ij+i (5.37)

=  2 îii+ ij — (5.38)

Uij^i =  2ui j  — Uij+i  (5.39)

Vi- ij+ i  =  Vi+ij+i  (5-40)

Vi-i,j =  Vi+ij  (5.41)

i^t-i,y-i =  — Uf+ij+i (5.42)

=  ■Wt+ij-fi — 2Ay^^ ^  (5.43)

(5.44)

P m i—l , j  — P m i+ l , j  (5.45)

P m i , j—l ~  P m i j + l  (5.46)

P f i - l J  ~  P/*+lj (5.47)

P/xj- 1  =  - P f i j + 1  (5-48)

•  Corner i = N^, j  = I

^■+ij+i =  — (5. 49)  

Wx+ij =  (5.50)

'^i+ij-i  =  —2 u i_ ij +  •Ui_xj+i (5.51)

Ui,y_i =  2ui j  -  xiij+i (5.52)

■Ui—Xj—1 =  2ui—i j  ij'4-1 (5.53)
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^i+ij+1 — (5 54)

- 2vij  -  Vi_ij (5.55)

■yi-rij-i =  4Vtj — 2u,_ij — 2uij+i +  (5.56)

Vij - i  =  Vij+i -  2Ay (5.57)

=  Uf_ij+i -  2A y (5.58)

V m i+ \ , j  — P m i—l J  (5.59)

P m i J —l ~  P m i J + l  (5.60)

P f i + i j  =  P f i - i j  (5-61)

P f i J - l  =  ~ P f i J + l  (5.62)

Corner i = I, j  = Ny

1 (5.63)

U i-ij  =  Ui+ij (5.64)

Ui-ij-hi =  -U i+ i,j-i (5.65)

Uij+i =  - U i j - i  (5.66)

■î^+ij+i =  —U i+ ij-i (5.67)

V i-ij - i =  Vz+i,j-i (5.68)

Ui_ij =  Vi+ij (5.69)

=  2n,-+ij — (5.70)

Vij+i =  (5.71)

=  —'Wt+ij-i (5.72)

Pmi—lJ — Pmi+lj (5.73)
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Comer i = N^, j  =  iVj

Pmi.j-i-l  — P m i J —l (5.74)

P f i - U j  — P f i+ U j (5.75)

P f i , j + l  — — P f i J - l (5.76)

Ny

= —'“i - i j - i (5.77)

(5.78)

4- (5.79)

Ui,j+1 =  - U i j - I (5.80)

=  —'ui-lJ - 1 (5.81)

1̂+ i j - i  =  — •y i-ij-i (5.82)

Vi+lJ =  - V i - l j (5.83)

■Wi+ij+i =  —2ut_ij — 2vij^i  4- (5.84)

=  - V i j - i (5.85)

(5.86)

P m i+ l , j  — P m i—l J (5.87)

P m iJ + l  — P m i J —l (5.88)

P f i + l J  =  P f i - l J (5.89)

P f i J + l  =  P f i J - l (5.90)

Substituting all of these boundary approximations into the six governing Eqs. 

(4.14), (4.16), (4.31), (4.33), (4.35), and (4.37) yields 6  (number of equations) x 8  (four 

boundaries plus four comers) =  48 equations for boundaries and comer points and 

are listed in the enclosed Appendix B Case 1 .
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C om parison  o f  R esu lts

Comparison of excess pore pressure along the column depth at different times be­

tween the analytical and nmnerical solutions are shown in Figures 5.4 and 5.5. The 

evolution of displacements with time, considering two different positions in the col- 

lunn (top and center) , can be determined and excellent agreement is obtained, as 

showm in Figure 5.6.

5.2 C om parison w ith  a F in ite E lem ent M odel

Parallel to present study, Meng et al. (1998) and Meng (1998) developed a similar 

two-phase model for deforming fractured reservoirs and solved it using the ffnite 

element method. Meng (1998) compared the results from his model with the results 

calculated using the present finite difference model and concluded that results from 

these two models are very similar except for a small difference at early times.
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i=2 i=l

Figure 5.3: Finite Difference Discretized Domain.

0.25
 A.S.(200s)

I  N.S. (200s)
 A.S. (1000s)

♦ N.S. (1000s)
 A.S. (3000s)
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0.2

0.15 -

PL, 0.05

1.5 2.5 3.50.5

Depth (m)

Figure 5.4: Analytical Vs. Numerical Solutions for Pore Pressure.
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Figure 5.5: Analytical Vs. Numerical Solutions for Pore Pressure.
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0.0015
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 Analytical (Top)
^ Numerical (Top)
 Analytical (Center)
4  Numerical (Center)

M
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Figure 5.6: Analytical Vs. Numerical Solutions for Displacements.
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Chapter 6 

M odel Applications

The capabilities of the model and the simulator, RFIA (Rock Fluid Inter Action), 

developed iu the foregoing chapters have been demonstrated in the following two 

example problems. First, two-phase flow coupled with solid deformations was con­

sidered in a frcLctmed rock for the  column problem. Second, a deformable fractured 

reservoir with a water injection well and an oil production well was investigated. 

The effect of stress on oil saturation and pressure distributions was studied.

6.1 T w o-Phase F low  C oupled w ith  Fractured R ock  
C onsolidation

The column consohdation problem presented in Chapter 6  wül be reexamined for 

modeling the process of simultaneous two-phase flow and sohd deformations. The 

initial and boundary conditions for fluid flow and sohd deformations are identical 

to those shown in Figure 5.1 and 5.2, except that the initial saturations for water 

and oü are 0.35 and 0.65, respectively. The relative permeabihty data used in this 

case are shown in Table 6.1

The following expression is adopted for the capillary pressure-saturation curve
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(Dagger, 1997):

P .=
13.159 -  10.84595,XU

X  6 . 9 8  X  1 0 “ ^  (jVIPa)
1  +  3 . 6 2 6 2 5 „

(6 .1 )

Table 6.1: Relative Permeabilities Data

W ate r sa tu a . S ,̂ O il rel. perm , kro W ate r rel. perm ,
0 1 0

0 .1 1 0

0 .2 1 0

0.3 0.761 0 .0 0 2

0.4 0.479 0.016
0.5 0.290 0.052
0 .6 0.148 0.125
0.7 0.053 0.244
0 .8 0.006 0.422
0.9 0 0.670

The parameters used in this case are listed in Table 6 .2 .

Table 6 .2 : Parameters Used in the Consohdation Case

P siram eters D efinition M ag n itu d e U nits
E modulus of elasticity 3000 MPa
u Poisson’s ratio 0 .2

â transfer coefficient 1 0 0 0 l /m 2

kjn. matrix permeabihty 3.0 X 10“ '̂̂ m^
kf fracture permeabihty 3.0 X 10-^^ m^
Ks sohd grain bulk modulus 11244 MPa
0 m matrix porosity 0 .2

0 / fracture porosity 0.05
k-o oil viscosity 2.0 X 10-^ Pa s
fj-w water viscosity 1.0 X 10"^ Pa s
Co oh compressibUity 1.88 X 10“^ 1/MPa
Ciu water compressibihty 4.55 X 10-“ 1/MPa
a loading stress 2 .0 MPa

Figures 6.1 shows the vertical displacement along the height of the column a t
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different, times after initial loading. It can be seen tha t the displacements are pos­

itively proportional to the time with the largest displacement occurring along the 

column surface. Figure 6.2 depicts the temporal vertical displacements on the sur­

face and in the middle of the column. The increase of the displacements is also the 

result of the time increase.

Figures 6.3 and 6.4 illustrate the spatial distributions of the oU-phase pressures 

along the column at different times for the m atrix and for the fractures. In compar­

ison, the pressure in the matrix is larger than that in the fractures. At early times 

(t=IO sec.), the rate change of the m atrix pressure appears to be greater than in 

the fractures. For the latter, the pressure change is almost linear.

The changes in oü saturations along the column a t different times in the matrix 

and in the fractures are shown in Figures 6.5 and 6 .6 , respectively. It is of interest 

to note that the off saturation for a given depth decreases with time in the matrix 

while it increases in the fractures because of the mechanism that off transfers from 

matrix to fractures.

77



0.0025

— ■— t=10s 
— ♦—  t=150s 
— ▲—  t=500s 
— X—  t^2 0 0 0s

•X
0.0015

0.001

0.0005

0.5 1.5 3.52.5
Depth (m)

Figure 6.1: Vertical Displacements Vs. Depth.
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Figure 6.2: Vertical Displacements Vs. Tim e.
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Figure 6.3: Oil Pressure Changes along Depth for Matrix.
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Figure 6.4: Oil Pressure Changes along Depth for Fractures.
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Figure 6.5: Oil Saturation Changes along Depth for Matrix.
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Figure 6.6: Oil Saturation Changes along Depth for Fractures.
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6.2 O il P rod u ction  from  a D eform able Fractured  
R eservoir w ith  W ater Injection

Many diflferent techniques have been applied in reservoir operations to increase the 

oil production rate. Most common among such production enhancement techniques 

is waterflooding in which water is injected into the reservoir from different locations 

than those of hydrocarbon withdrawing boreholes. In the U.S. as much as half of 

the current oil production is thought to be the result of water injection.

In addition to increasing the output of hydrocarbon, water injection leads to an 

increase in pore pressure inside the reservoir and the consequent decrease in effective 

stress on the rock matrix. As a result, compaction of the reservoir and the associated 

harmful effects are also restrained to some extent.

Both experimental work and numerical simulations indicate that high porosity, 

weakly- to un-consohdated reservoirs can undergo irreversible deformations or pore 

collapse beyond a critical effective stress, due to production of hydrocarbons. These 

pore collapse-related compaction and subsidence problems have been studied con­

ventionally without coupling, where fluid flow and rock deformations are calculated 

in a staggered manner (Finol and Ali, 1975; Merle et ai, 1976; Boade, 1989; Chin 

and Boade, 1990; Chin et ai, 1993; Jones and Mathiesen, 1993). The pore pressures 

axe flrst calculated using a reservoir simulator which considers just fluid flow or ac­

counts for rock mechanics with rock compressibility as the only parameter. Once 

the changes in pore pressure distribution are known, the corresponding load vectors 

and displacements are evaluated using a stress-strain code.

W ithdrawing fluids from a reservoir results in an increase in effective stress 

whereas enhancing oil recovery techniques such as water injection lead to a de­
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crease in effective stress on the reservoir rock matrix. These processes, when im­

plemented in a sequence, introduce a number of loading cycles. The distribution of 

pore pressure changes due to these processes can be evaluated using the Rock Fluid 

InterAction simulator, RFIA, developed in this dissertation.

6 .2 .1  D escrip tion  o f  th e  case stud ied

A hypothetical example was set up to show that the model can give insights into 

the effects of stress on the distributions of oil saturation and pressure in a water 

injection, fractured, deformable reservoir (Figure 6.7). The reservoir size is 200m 

by 200m in two dimensions. The upper and right sides are subject to a  loading 

stress (7 . The left and bottom sides can only move in the y- and x-directions, 

respectively. Figure 6 .8  shows the mechanical boundary conditions. There is no 

drainage on all boundaries, except two wells a t two comers, an oil production well 

and a water injection well, respectively. The rates for these two wells are given and 

the parameters used in this case are hsted in Table 6.3.

Table 6.3: Parameters Used in the Oil Production Case

P a ra m e te rs D efin ition M ag n itu d e U n its
E modulus of elasticity 3 0 0 0 MPa
u Poisson’s ratio 0.2
a transfer coefficient 1000 l /m ‘3

matrix permeabüity 2.8 X 1 0 "^ = m‘3
kf fracture permeabüity 2.8 X 1 0 -1 3 m2

Ks sohd grain bulk modulus 1 1 2 4 4 MPa
0 m m atrix porosity 0.2
4>f fracture porosity 0 .0 5

Mo off viscosity 2.0 X 1 0 - 4 Pa-s
Mtu water viscosity 1.0 X  1 0 - 3 P a s
Co off compressibffity 1 .8 8  X  1 0 - 3 1/M Pa
Cto water compressibffity 4 .5 5  X  1 0 - ^ 1/M Pa
a loading stress 4 . 0 MPa
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6.2.2 A pproxim ation  o f  B oundary C onditions for B ound­
aries and Corner Points

The six governing equations have to be rearranged and the following approximations 

were appHed based on the boiuidary conditions specified as in the previous validation 

case;

• Boundary i =  1 (no flow with loading stress cr)

(6 ,2 )

V i - i j  =  -  U i + i j  ( 6 . 3 )

P m i —l J  — P m i + l , j  (6.4)

P f i - h j  —  P f i + l , j  ( 6 - 5 )

• Boundary i = (u =  0 and no flow)

Ui^ij =  -U i- i j  (6 .6 )

f J i + i j  —  2 r ’t j  — V i - i j  ( 6 - 7 )

P m i + l , j  —  P m i —l , j  ( 6 - 8 )

P f i + h j  ~  P f i — l J  ( 6  9 )

• Boundary j  = 1 (no flow with loading stress cr)

Uij-i = 2uij -  Uij+i (6 .1 0 )

P m t J —l  ~  P m i J - i - l  ( 6 . 1 2 )

Pfi,j-l — Pfij+l  (6.13)
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• Boundary j  =  Ny (u =  0 and no flow)

Uij^i =  Uij_i (6.14)

Vij+i — —Vij- i  (6.15)

Pmi,j+1 PmiJ—l (6.16)

Pfij+i = Pfij-1  ( 6 - 1 7 )

• Comer z =  1, j  =  1

y^-i,j+i  =  (6.18)

~  ^ + i j  ~  ^^^(X+~2Gy (6.19)

U i - i j - i  =  2 u ,+ ij -  -  2A x  (6 .2 0 )

=  2 zxi+ij — ï ii+ij+i  (6 .2 1 )

Uij—i =  2 i&ij Uij^i (6 .2 2 )

^i-i.i-t-1  =  2î î,j-+i — •u,>ij+i (6.23)

Vi-i,j = 2vfj_Ui+ij (6.24)

=  2utj+i — Uj+ij+i. — 2 A y  ̂ ^~~2 C!) (6.25)

(X1 ? 2 G) (G 26)

« « -I  =

Pmi—l,j ~  Pmi+\,j (6.28)

Pmij—X ~  PmiJ+l (6.29)

Pfi-lJ = Pfi+l,j ( 6 . 3 0 )

PfiJ-l  =  PfiJ+1 (6.31)
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Comer i  =  N x ,  j  =  1

î^t+ij+i =  — (6. 32)

(6-33)

=  “ Sui—i j  +  U i- i j+ i  (6.34)

U i j - i  =  2ui j  -  Uij+i  (6.35)

=  2 u i - i j  ~  (6.36)

'^i+ij+i =  (6.37)

Vi+ij =  V i - i j  (6.38)

U t+ij-i =  V i - i j - i  (6.39)

=  Vij+i  -  2 A y j ^ - ^ ^  (6.40)

=  '"i-ij+i -  (6.41)

P m i + l J  — P m i—l , j  (6-42)

P m i , j—l  —  P m i , j+ l  (6.43)

P f i + i J  =  P f i - i J  (6.44)

P f i J - i  =  P f i J + i  ( 6 .4 5 )

•  Comer i  =  1, j  =  Ny

U i - i j - i  =  U i+ i j - i  -  2 A x  (6.46)

U i- i j  =  Ui+ij  -  2 A x ^  ̂ ~ ~  (6.47)

= Ui+ij-i -  (6.48)

^ , j+ i  =  (6.49)

'^+i,j+i =  1 (6.50)

85



• Corner i  =  N^, j  = Ny

'tJi-i.j-i — — Vi+ i j - i  (6.51)

V i- i j  =  2 v i j  -  Vi+ij  (6.52)

Vi- ij+ i =  —2 v i j - i  +  V i+ i j - i  (6.53)

(6.54)

Vi+i,j+i =  - V i + i j - i  (6.55)

=  P m i + I , j  (6.56)

P m i , j + l  ~  P m i , j —l  (6.57)

P f i - i , j  =  P f i + i j  (6-58)

P f i j + i  =  P f i j - i  (6.59)

Ui+i,j-i =  —U i - i j - i  (6.60)

Ui+ij  =  - U i - i j  (6.61)

U i + i , j + i  =  U i - i j - i  (6.62)

Ui,j+i =  (6.63)

(6-64)

V i+ i j - i  =  V i - i j - i  (6.65)

Vi+ij =  V i-ij  (6 .6 6 )

=  V i- i j+ i  (6.67)

Vij+i =  - V i j - i  (6 .6 8 )

=  - V i - i j - i  (6.69)

Pmi+lJ ~  Pmi—l,j (6.70)
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P m i . j + l  Vmi . j—l

P/i-MJ =  P f i - h i  (6-72)

P f i , j + l  ~  P f i J —l (6- 3̂)

Substituting all of these boundary approximations into the six discretized gov­

erning Eqs. (4.14), (4.16), (4.31), (4.33), (4.35), and (4.37) yields 6  (number of 

equations) x 8 (four boundaries plus four comers) =  48 equations for boundaries and 

comers and are hsted in the enclosed Appendix A, Case 2.

6 .2 .3  A nalysis o f S im ulation  R esu lts

The displacements ia the x- and ^/-directions for two different times are presented 

in Figures 6.9 and 6.10. The displacements are the same in the x- and y-directions 

for same x  and y coordinates because of symmetry.

Figure 6.11 depicts the temporal horizontal displacements (u) for three different 

locations: a; =  0 m, x =  50 m, and x  =  150 m (shown in Figure 6.12). Obvi­

ously, the largest horizontal displacement occurs on x =  0 line. The increase of the

displacements is also the result of time increasing.

Figures 6.13 and 6.14 show the oil saturations in the matrix and in the fractures, 

respectively, when there is no stress apphed at two boundaries. The water front 

moves much faster in the fractures than in the matrix because of their much higher 

permeabüity.

The 0 Ü saturation distribution in the matrix and in the fractures with stress are 

presented in Figures 6.15 and 6.16. By comparing Figures 6.13 and 6.15, it is noted 

tha t stress has a very small effects on the oü saturation distribution. Again, the 

waterfront moves much faster in the fractures than in the matrix with stress as seen 

in Figures 6.13 and 6.14.
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In Figures 6.16 and 6.17, the waterfront movements can be seen as a function of 

time in the fractures. The oü pressures for the same time period in the matrix, for 

cases without and with stress, are shown in Figures 6.18 and 6.19, respectively. It 

is noted that the pressures with stress are much higher than tha t without stress.

The OÜ pressures in the fractures without and with stress after 300 days are 

presented in Figures 6.20 and 6.21. From Figure 6.21, it seems that the efiects of 

stress on pressures in the fractures is not as large as in the matrix. It should be 

noted that a t early times, for example, £ =  30 days, pressures in the fractures still 

increase to very high values because of the apphed stress (Figure 6.22).

The effects of stress on pore pressure are further investigated by applying dif­

ferent stresses. Figures 6.23 and 6.24 are the cases for <  Qpro and Qtn >  Qpro, 

respectively. The higher the stress apphed, the higher the pore pressure. However, 

as time goes on, the pore pressure goes to a common point. This indicates that 

the stress has more impact on pressure at earher times than later on. These two 

figures also indicate tha t withdrawing underground fluids from a reservoir results 

in an increase in effective stress whereas enhancing oh recovery techniques such as 

water injection lead to a decrease in effective stress on the reservoir rock matrix. 

The pore may cohapse if the effective stress on the rock m atrix exceeds the critical 

stress (limit of elastic region). W hen this critical stress is known, the occurrence of 

the pore collapse can be predicted and may be avoided altogether.
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Figure 6.8: Mechanical Boundary Conditions.
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Figure 6.13: Oil Saturation in Matrix (No Stress, Time =  300 days).
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Figure 6.14: Oil Saturation in Fracture (No Stress, T im e =  300 days).
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Figure 6.15: Oil Saturation in M atrix (With Stress, Time =  300 days).
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Figure 6.16: OH Saturation in Fracture (With Stress, Tim e =  300 days).
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Figure 6.17: Oil Saturation in Fracture (With Stress, Time =  30 days).
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Figure 6.18: Oil Pressure (MPa) in Matrix (No Stress, Time =  300 days).
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Figure 6.19: Oil Pressure (MPa) in Matrix (With. Stress, Time =  300 days).
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Chapter 7 

Sensitivity Analyses

This last chapter is devoted to sensitivity analyses. Sensitivity analyses (also called 

what-if analyses) are apphed in simulation studies of very different real-life systems, 

in all kinds of discipHnes (that use mathematical models): engineering, chemistry, 

physics, economics, management science, and so on. Moreover, the theoretical as­

pects of sensitivity are studied in mathematics and statistics. Unfortunately, the 

definition of sensitivity analysis varies over and within these many disciplines. In 

this dissertation, sensitivity analysis is defined as the systematic investigation of 

the reaction of the simulation response to either extreme values of the model’s in­

put variables or to drastic changes in the model’s parameters. It is the practice of 

changing one factor, performing an analysis, and then checking the results to see 

if they are sensitive to the factor that was changed. Note that the analysis in this 

chapter concentrates on a single response per run. The effects of the most three 

important parameters, injection rate, Ks (sohd grain bulk modulus), and E  (rock’s 

modulus of elasticity) on rock displacements and pore pressure are investigated.
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7.1 D escrip tion  o f th e  M od el U sed

Figure 7.1 illustrates a five-spot pattern  used commonly in waterflooding processes. 

The reservoir formation is assumed to be naturally fractured and deformable. Only 

a quarter of one pattern (shaded area in Figure 7.1) is needed due to symmetry. 

Numbers 1 to 9 are used to indicate the positions of the space domain which will 

be used in the later analyses (Figure 7.2). For example, point 5 is the center of the 

quarter. The input parameters used are listed in Table 7.1.

Table 7.1: Parameters Used in the Sensitivity Analyses

P a ra m e te rs D efin itio n M a g n itu d e U n its
E modulus of elasticity 3 0 0 0 MPa
V Poisson’s ratio 0 . 2

â transfer coefficient 1 0 0 0 1/m"
m atrix permeability 3 . 9 5  X  1 0 - ^ 3 m"

k f fracture permeability 3 . 9 5  X  1 0 - 1 1 m"
Ks solid grain bulk modulus 11244 MPa

matrix porosity 0 . 2

fracture porosity 0 . 0 5

fJ-o oil viscosity 2  X  1 0 - 4 Pa-s
fj-vj water viscosity 1  X  1 0 - 4 Pa-s
Co OÜ compressibihty 2  X  1 0 - 3 1/M Pa
Cw water compressibility 8  X  1 0 - 4 1/M Pa

There is no drainage at ail along the boundaries (Figure 7.3), except two weUs at 

two opposite comers, an oü. production well and a water injection wefi, respectively. 

The following three points hold because of symmetry (Figure 7.4):

1. The four comers are fixed, i.e. u  =  u =  0;

2. The left and right sides can move only in  the y-direction, i.e. u  =  0 and v ^ 0 ;  

and,

3. The upper and bottom  sides can move only in the x-direction, i.e. u  and
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Figure 7.2: A quarter of One Pattern.
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Figure 7.3: Flow Boundaries.
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Figure 7.4: Mechanical Boundaries.
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7.2 A pproxim ations o f B oundary C onditions for 
Boundciries and Corner P oints

The six governing equations have to  be re-arranged and the following approximations 

are apphed based on the boundary conditions specified as in the vahdation and 

apphcation cases:

•  Boundary i =  1 (u =  0 and no flow)

=  (7.2)

Pmi—l,j — Pmi+lJ

P fi-lJ  — Pfi+hi (^-^)

•  Boundary i =  (u = 0 and no flow)

(7-^)

Vi+i,j =  Vi-i,j (7.6)

Pmi+lJ — Pmi—lJ (7-7)

P fi+ lJ= P fi-lJ  (7.8)

•  Boundary j  =  1 (t; =  0 and no flow)

(7.9)

=  —Vij+l (7.10)

pTni,j—l — PmiJ+l (711)

PfiJ-l =  PfiJ+l (7.12)
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Bomidary j  — Ny {v =  0 and. no flow)

Uij+i =  Uij_i  (7.13)

U i j - i  =  Ui j+ i

—  — V i + i j + i

(7.14)

P m i j + l  PmiJ—l (7-13)

P f i j + 1  =  P f i j - i  C -̂IG)

Comer i  =  1 , j  =  1 (u =  0 and n =  0)

(7-17)

(7.18)

Wx-ij-i — —■Ut+ij+ 1  (7-19)

fJ-i+ij-i = f^+ij+i (7.20)

(7.21)

fJi-ij+i — 'Ui+ij+i (7.22)

^ t- i j  =  Vi+ij (7-23)

(7.24)

f f+ ij- i  =  —Vi+ij+i (7-25)

(7-26)

P m i - I , j  =  P m i + i j  (727)

P m i J - l  =  P m i , j+ l  (7-28)

P f i - i , i  =  P f i + i j  ( 7- 29)

P /ij - i  =  P/iJ+i (7-30)
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Comer i =  iVj., j  = 1 {u = 0 and u =  0)

=  —tii- ij+ i (7̂ -31)

Ui+ij = —U i^ij (7.32)

Ui+ij-i =  —'Ui-ij+i (7-33)

U ij_ i= U ij+ i (7.34)

U i - i j - i  =  U i - i , j + i  (7.35)

t't+ij+i =  t 'i- ij+ i (7.36)

Vi+i,j =  y i - i j  (7.37)

Vi+ij-i =  —Vi^ij+i (7.38)

=  —Vij+i (7.39)

(7-40)

Pmi+lJ — Pmi—l,j ('^•41)

Pmij—X — PmiJ+l ('^•42)

~  Pfi—hi (7.43)

P fij-x  =  Pfij+x (7-44)

Comer i — 1, j  = Ny (u =  0 and u =  0)

Ui-x,j-x =  —Ui+xj-x (7-45)

Ui-xj =  —Ui+x,j (7-46)

Ui-xj+x =  —Ui+xj-x (7-47)

=  xtij-x (7-48)
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«z+ij+i =  «z-+i,i-i (7.49)

=  î^t+i,j-i (7-50)

Vi-i,j = Vi+ij (7.51)

"^i-ia+i =  — (7-52) 

Vij+i = - V i j - i  (7.53)

=  —Vi+ij-i (7.54)

Pmi—lj  — Pmi+lJ (7.55)

PmiJ+l — PmiJ—l (7.56)

Pfi—i j  ~  Pfi+ij (7.57)

PfiJ+l ~  PfiJ—l (7.58)

Comer i =  iVj., j  =  Ny (u =  0 and z; =  0)

=  —y-i-ij- i  (7.59)

Ui+ij =  —Ui_ij (7.60)

'^+ij+i = “ '“t - i j - i  (7.61)

'^ij+i — ‘̂ j —i (7.62)

i.j+ 1  ~  i,y—1 (7.63)

V i + i j - i  =  V i - i j - i  (7.64)

Vi+ij = V i^ij (7.65)

t/i+ij+i =  —f i - i j - i  (7.66)

tJij+i =  - ^ w - i  (7.67)

"Uf-ij+i =  —■yi-ij-i (7.68)
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P m i-r l j j  — ( / . 69)  

P m i J + l  —  P m i , j—l (7 -7 0 )

P f i + l J  =  P f i - l J

P f i , j + l  =  P f i J - l  ( 7 .7 2 )

Substituting all of these boiuidary approximations into the six discretized gov­

erning Eqs. (4.14), (4.16), (4.31), (4.33), (4.35), and (4.37) yields 6  (number of 

equations) X 8  (four boundaries plus four comers) =  48 equations for boundaries 

and comers to be solved with the other equations for the points within the space 

domain.

7.3 A nalysis o f  R ock  D eform ations

The displacements in the x- and ^-directions for different positions at different times 

are presented in Figures 7.5 to 7.10. Some very interesting facts are observed from 

these graphs. At earher times, the points in row e have the largest displacements. 

As time passes, the displacements in row a increase faster than in row e. After 

1 0  days, the curve of displacements for row a is almost symmetrical with the one 

representing row e. W hen equilibrium has been reached, the displacements in rows 

a and e, and the displacements in rows d and b are symmetrical with respect to 

the central column c. Similar phenomena are also noted for the displacements in 

y-direction, v.

Because of the symmetric characteristics of the pattem , the reservoir perfor­

mance should be symmetric to the diagonal line connecting the injection and pro­

duction wells. However, it should be understood that this means that the displace­

ments of the upper-left part in the x-direction (u) equal the displacements of the
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Figure 7.5: Displacements in x-direction (t =  2000 s).
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Figure 7.6: Displacements in x-direction (t =  10 d).
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lower-right part in the ^-direction {v). For example, the displacements of point 3 

in the rc-direction equals the displacements of point 7 in the y-direction. For the 

central point 5, the displacements in both directions are the same.

The total displacement can be calculated from the components of displacements 

in the x- and y-directions as shown, for example, in Figures 7.11 and 7.12 for points 

4 and 2, respectively.

Figure 7.11: Total Displacement in Position 4.

7.4  Effects o f Injection  R a te  on Pore P ressure

The effects of injection rate on pore pressure can be analyzed from the data  listed 

in Table 7.2. The first row is injection rate in bbl/d and the first column is time 

in days. The negative sign indicates a decrease in pressure. It seems that the pore 

pressures are extremely sensitive to the injection rate. Under the conditions of these 

tested cases, a smeiU increase in injection rate would cause a dramatic increase in 

pore pressure. It should be noted that the pore pressures at positions 1 and 6 , and 

positions 3 and 7 are the same for any times, as expected.
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Figure 7.12; Total Displacement in Position 2.

7.5 E ffects o f  K g  (Solid Grain B u lk  M odulus) on 
D isp lacem ents and Pore Pressure

The displacements in the x- and y-directions for different positions at different times 

for various Kg are Hsted in Tables 7.3 and 7.4. In the table, the first row is time in 

days and the first column is Kg in R/IPa. The negative signs indicate that the dis­

placements directions are opposite to the positive directions of the coordinate axes. 

It is interesting to note that a decrease in Kg results in a decrease in displacements 

both in the x- and y-directions. When Kg takes the value of 1666.67, the displace­

ments in both directions are zero. The reason is that a decrease in Kg causes the oc 

term  to decrease (coefficient of pressure in the governing equations for the matrix 

displacements). W hen Kg equals Kt, this a  term is zero, meaning that pressure has 

no effect on rock m atrix deformations and, therefore, the displacements in both x- 

and y-directions are zero.

The effects o f Kg on pore pressure can be analyzed from data listed in Table
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Table 7.2: Effects of Injection Rate on Pore Pressure

Rate (bbl/d) 1.08 1.09 1 . 1 Position

1  (day)

-7.1754 0.6503 1.5286 8

-8.2670 -0.4498 0-4281 1

-8.2670 -0.4498 0.4281 6

-8.6493 -0.8366 0.0409 5
-9.0483 -1.2338 -0.3566 3
-9.0483 -1.2338 -0.3566 7
-10.254 -2.4013 -1.5208 9

30 (days)

-319.76 -30.844 1.6153 8

-321.07 -32.032 0.4381 1

-321.07 -32.032 0.4380 6

-321.52 -32.439 0-0347 5
-321.97 -32.847 -0.3692 3
-321.97 -32.847 -0.3692 7
-323.29 -34.038 -1.5462 9

1 0 0  (days)

-1131.8 -115.35 1.7542 8

-1133.0 -116.67 0.4751 1

-1133.0 -116.67 0.4751 6

-1133.5 -117.12 0.0365 5
-1133.8 -117.58 -0.4022 3
-1133.8 -117.58 -0.4022 7
-1135.1 -118.90 -1.6821 9

7.5 and Figures 7.13-7.15. It is observed from these graphs that there is a number 

for Ks above or below which pore pressure would be higher. This number in this 

analysis is around 17500 MPa.

7.6 Effects o f Y oung’s M odulus on D isplacem ents  
and P ore P ressure

The displacements in the x- and y-directions for different positions a t different times 

for various E  are hsted in Tables 7.6 and 7.7. The first row is time in days and the 

first column is E7 in MPa. It is obvious that a  decrease in E  results in an increase 

in displacements in both directions. However, when E increases to a value so that
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Figure 7.13: Pore Pressure Vs. Ks (t =  1 d).
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Figure 7.14: Pore Pressure Vs. Kg (t =  10 d).

113



Table 7.3: Effects of Kg on Displacements in the x-direction (u, m)

Time (days) 0.023 1 0 30 1 0 0 Position

1666.7 (MPa)
0 0 0 0 3
0 0 0 0 5
0 0 0 0 6

11000 (MPa)
-0.00376 -0.00755 -0.00777 -0.778 3
-0.00362 -0.00638 -0.00654 -0.00654 5
-0.00621 -0.00770 -0.00778 -0.00778 6

110000 (MPa)
-0.00436 -0.00876 -0.00902 -0.00903 3
-0.00420 -0.00741 -0.00759 -0.00759 5
-0.00720 -0.00893 -0.00903 -0.00903 6

Table 7.4: Effects of Ks on Displacements in the y-direction (v, m)

Time (days) 0.023 1 0 30 1 0 0 Position

1666.7 (MPa)
0 0 0 0 1

0 0 0 0 5
0 0 0 0 7

11000 (MPa)
-0.00621 -0.00770 -0.00778 -0.00778 1

-0.00362 -0.00638 -0.00654 -0.00654 5
-0.00376 -0.00755 -0.00777 -0.00778 7

110000 (MPa)
-0.00720 -0.00893 -0.00903 -0.00903 1

-0.00420 -0.00741 -0.00759 -0.00759 5
-0.00436 -0.00876 -0.00902 -0.00903 7

Kt equals to Kg, the displacements in both directions becomes zero because of the 

same reasons as mentioned above; i.e. a  is zero under those conditions.

The pore pressures at different times and positions for various E are hsted in 

Table 7.8 and are plotted in Figures 7.16-7.18. The following two points can be 

drawn from these graphs:

1. An increase in E results in an increase in pore pressure; and,

2. The effect of E on pore pressure is small. In other words, the pore pressure is 

not very sensitive to E. However, it becomes more important as time goes on.
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Figure 7.16: Pore Pressure Vs. E (t =  1 d).
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Figure 7.18: Pore Pressure Vs. E (t =  100 d).
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Table 7.5: Pore Fressures at Different tim es and positions for Various Kg

(MPa) 2 0 0 0 1 1 0 0 0 1 1 0 0 0 0 Position

1  (day)
2.6513 2.4084 2.5167 8

1.1631 0.9202 1.0284 5
-0.3955 -0.6390 -0.5309 9

1 0  (days)
13.7940 11.0170 12.2190 8

12.2130 9.4358 10.6370 5
10.6780 7.9006 9.1021 9

30 (days)
45.7950 34.0860 38.997 8

44.2140 32.5040 37.415 5
42.6350 30.9260 35.837 9

Table 7.6: Effects of E on Displacements in the x-direction (u, m)

Time (days) 0.023 1 0 30 1 0 0 Position

300 (MPa)
-0.0428 -0.0876 -0.0902 -0.0903 3
-0.0400 -0.0742 -0.0759 -0.0759 5
-0.0668 -0.0894 -0.0903 -0.0903 6

3000 (MPa)
-0.00376 -0.00755 -0.00777 -0.00778 3
-0.00362 -0.00638 -0.00654 -0.00654 5
-0.00621 -0.00770 -0.00778 -0.00778 6

19800 (MPa)
0 0 0 0 3
0 0 0 0 5
0 0 0 0 6

Table 7.7: Effects of E on Displacements in the y-direction (v, m)

Time (days) 0.023 1 0 30 1 0 0 Position

300 (MPa)
-0.0668 -0.0894 -0.0903 -0.0903 1

-0.0400 -0.0742 -0.0759 -0.0759 5
-0.0428 -0.0876 -0.0902 -0.0903 7

3000 (MPa)
-0.00621 -0.00770 -0.00778 -0.00778 1

-0.00362 -0.00638 -0.00654 -0.00654 5
-0.00376 -0.00755 -0.00777 -0.00778 7

19800 (MPa)
0 0 0 0 1

0 0 0 0 5
0 0 0 0 7
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Table 7.8; Pore Pressures at Different times and positions for Various E

E (MPa) 300 3000 16500 Position

1  (day)
2.4006 2.4084 2.5505 8

0.9115 0.9202 1.0624 5
-0.6518 -0.6390 -0.4963 9

1 0  (days)
10.7460 11.0170 12.6390 8

9.1631 9.4358 11.0570 5
7.6261 7.9006 9.5223 9

30 (days)
33.014 34.0860 40.7700 8

31.433 32.5040 39.1880 5
29.854 30.9260 37.6100 9
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Chapter 8 

C onclusions and  
R ecom m endat ions

Numerical simulation of fluid flow in deformable fractured media is of a great interest 

for engineers in petroleum, civil, environmental, geological and mining engineering 

and a challenging area. Because of complications associated with multiple physical 

processes in deformable fractured rocks and mathem atical representation of a multi­

phase flow system, there is no published hterature th a t derives rigorously the coupled 

differential equations governing the behavior of deformable fractured porous media 

and two-phase fluid flow. To the best of the author’s knoeledge, this dissertation 

presents for the flrst time the theory and formulations in this most advanced area. 

The following conclusions and recommendations are drawn based on the present 

research.

8.1 C ontributions and C onclusions

1 . A two-phase, two-dimensional numerical simulator, RFIA, has been devel­

oped to investigate the process of fluids flow in deformable naturally fractured 

reservoirs and impacts of rock deformations on oil production, effects of with­

drawing fluids from underground and/or injecting fluids on pore fluid pressure
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and effective stress distributions on rock matrix as well.

2. Mathematical equations incorporated into the simulator included two equilib­

rium equations for rock deformations and four continuity equations for fluid 

flow in both matrix and fractiues.

3. For each point in the simulated domain, there are ten unknowns: rock defor­

mations in X -  and ^/-directions, two saturations and two pressures in matrix 

and fractures, respectively. By making use of the capillary pressure and the 

saturation relationships, four out of these ten unknowns are eliminated to give 

the final six governing  equations needed to be solved.

4. A finite difference numerical scheme, as an alternative method to finite ele­

ments, has been applied to discretize the final six governing equations.

5. Comparing to the finite element method, the finite difference method has the 

advantage of being easy to apply. However, if the resultant nonlinear equations 

are solved by the direct method, it is tedious to write out the special form of 

the six governing equations for boundaries and comer points based on the 

boundary conditions specified.

6 . Verification of the finite difference model as well as the simulator is carried 

out by simulating the consoHdation problem in which the analytical solution 

is available, as well as by comparing the results from a finite element model. 

Successful agreement was obtained in both cases.

7. The effects of stresses on saturation distribution is small whereas on pore 

pressure distribution it is quite large. This implies that during oil production, 

withdraw of underground hydrocarbons for a  reservoir formation may cause 

the effective stress on rock m atrix to a content to cause pore collapse.
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8 . The effective stress that is directly proportional to pore pressure must be 

controlled within the rock limit in order to prevent the rock from pore collapse. 

Because pore is most sensitive to injection/production rates, therefore, these 

rates plays the most important role in controlling pore collapse.

9. An increase in Ks results in an increase in rock displacements in both x- and 

y-directions. For the pore pressure, there is a value at which the pore pressure 

is lowest.

10. An increase in E results in a decrease in rock displacements in both x- and 

y-directions. The pore pressure increases as E increases.

11. The rock fluid interaction simulator, RFIA, can easily simulate different prob­

lems by properly setting corresponding coefficients and parameters. These sit­

uations include (1 ) single-phase flow in single-porosity media; (2 ) single-phase 

flow in dual-porosity media; (3) two-phase flow in single-porosity media; and 

(4) two-phase flow in dual-porosity media. In all of the above cases, the porous 

media can be treated as either deformable or rigid.

12. Dealing with two-phase flow of gas and oil systems in a deforming fractured 

reservoir is much more comphcated and difficult than dealing with oil and 

water system because of gas solubility in oil. Thus, oil formation volume 

factor and solution gas-oil ratio must be introduced. Nevertheless, the coupled 

differential equations governing the behavior of gas and oil flow in a deforming 

fractured reservoir have been derived, discretized in flnite difference format, 

and are ready to be coded. These formulations are also ready to be discretized 

using finite element method. Actually, the researchers a t Rock Mechanics 

Institute at the University of Oklahoma are developing a simulator for oil-gas 

systems based on these formulations presented in this dissertation.
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8.2 R ecom m endations for future work

1. Complete the simulator development of gas-oil flow in deformable naturally 

fractured reservoir.

2. Try applying iteration methods to solved the resultant system of equations 

to avoid the painful work to get the special forms of discretized governing 

equations for boundaries and comer points.

3. Enhance the simulator’s interface.

4. The study of reservoir formation permeabflity is another concern to petroleum 

engineers because of its direct relationship to oil production rate. In the case of 

deforming fractured media, the permeabflity of the porous media is considered 

stress-dependent as a result of crack aperture changes caused by stress varia­

tions. In addition to experimental tests, numerical simulations may be used to 

predict the stress-dependent permeability under different loading situations. 

The following relationship relating permeabflity with porosity, conventionally 

used in formation damage model, may be adopted in stress-strain model to 

calculate the instantaneous permeability once the stress-dependent porosity is 

calculated by a rock fluid interaction simulator, like RFIA developed in this 

research:

(è)
where k and ko are instantaneous and original permeabflities, respectively; and 

(j) and 0 0  are instantaneous and original porosities, respectively, a and b are 

proper coefficients.
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N  om enclat ure

A  =  area,

Bo =  oil formation, volume fractor

Cig =  mass fraction of ith  component in gas phase

Cio =  mass fraction of ith component in oil phase

Citu =  mass fraction of ith  component in water phase

Co =  oil compressibility, Lt^/m

Cu, =  water compressibility, Lt^/m

Cjn =  comprehensive compressibüity for fluids in m atrix, Lt^/m

C f =  comprehensive compressibüity for fluids in fracture, Lt^/m

E  =  Young's modulus, m/Lt^

F  =  force, mL/t^

G =  Lame's constant

jRT =  stiffness, m/Lt^

=  bulk moduli of fractured media, m/Lt^

Ks — bulk moduli of the solid grain, m/Lt^

Korn — oil relative permeabflity in rock m atrix

krof =  oil relative permeability in fracture

krwm =  water relative permeabflity in rock matrix

krwf =  water relative permeabflity in fracture

L  =  length, L
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M --- mass, m

Pm = average fluid pressure in rock matrix, m /Lt'

P f — average fluid pressure in firactnre, m /L t"

Pom = oü pressure in rock matrix, m /Lt^

Pof = oü pressure in fracture, m/Lt^

pwm = water pressure in rock matrix, m /Lt^

Pwf — water pressure in fracture, m /Lt^

Pc = capillary pressure, m/Lt^

p OTl = capillary pressure of rock matrix, m /Lt^

Pof = capülary pressure of fracture, m/Lt^

Qç = mass transfer for gas phase, m / 1

Qo = mass transfer for oü phase, m / 1

Qtv = mass transfer for water phase, m /t

Rs = solution gas-ofl ratio

Rom = OÜ saturation of rock matrix

Sof = oil saturation of fracture

Rrvm = water saturation of rock matrix

S-mf = water saturation of fracture

t = time, t

U = displacement in x-direction, L

V displacement in y-direction, L

^vrni = Darcy’s water velocity in rock matrix, L /t

Wwf = Darcy’s water velocity in fracture, L /t

^om = Darcy’s oü velocity in rock matrix, L /t

■Vof = Darcy’s oü velocity in fracture, L /t

Uwrti = intrinsic water velocity in rock matrix, L /t
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Uwf = intrinsic water velocity in fractnre, L /t

Uom = intrinsic oü velocity in rock matrix, L /t

Uof = intrinsic oü velocity in fractxrre, L /t

V = bulkl volume of fractured porous medium, L̂

K = solid volume of fractured porous medium, L̂

Vm = pore volume of fractured porous medium, L̂

= fracture volume of feactured porous medium, L̂

= total pore volume, L̂

= volume of oü, L^

= volume of water, L^

= X — , 2/—direction in a cartesian coordinate system

G reeks

e = strain

£ij = strain tensor (i, j= I , . . . ,  3)

£kk = volume strain

u == Poisson’s ration

(f̂ m = rock matrix porosity

(f>f = fracture matrix porosity

<P = total porosity

Ps = density of solid, m /l?

Pvrm = density of water in rock matrix, m/L^

Pom = density of oü in rock matrix, m/L^

Pwf = density of water in fracture, nx/1?

Pof = density of oü in fracture, m/L^

P-wm = water viscosity in rock matrix, m /L t
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=  water viscosity in fracture, m /L t 

=  oil viscosity in rock matrix, m /L t 

fj.of =  oil viscosity in fracture, m /L t 

cr = stress, m /Lt^

cTij = stress tensor (i, j= l ,  . . . ,  3), m/Lt^

a  = Biot’s constant

a  =  transfer coefficient, 1 /m^

A t  =  time step, t
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A ppendix A  

Fundam ental C oncepts

In this appendix, a brief explanation of the fundamental concepts which have been 

used in the foregoing chapters such as porosity and saturation is provided. This 

would be helpful to someone who is familiar with only part of these concepts. For 

example, rock mechanics scientists may not know much about reservoir engineering, 

whereas reservoir engineers may not familiar with rock mechanics terms.

A . l  P orosity

For a rock to form a reservoir, it must have a certain storage capacity, this property 

is characterized by the porosity. This porosity, <ÿ, is defined as:

0  =  ^  X 100% (A.1)
Vt

where Vp is the pore volume, and Vt the total volume of the rock.

The porosity of interest to the reservoir engineers, which allows the fluids in the 

pores to circulate, is the effective porosity., 0g, which represents only inter-connected 

pore spaces.

Also defined is the total porosity, <f)t, corresponding to all the pores, whether inter­

connected or not, and the residual porosity, 0 ,̂ which only takes account of isolated
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pores: hence,

( p t = d > e +  4>r (A.2)

The effective porosity of rocks varies between less than 1% to over 40%. It is often 

stated that the porosity is:

(1) Low if 0  <  5%;

(2) Mediocre if 5% < (f> < 10%;

(3) Average if 10% < <p < 20%;

(4) Great if 20% < 4> < 30%; and,

(5) Excellent if ^  >  30%.

A distinction is made between intergranular porosity, dissolution porosity (as in 

limestones, for example), and fractured porosity. For fractured rocks, the fracture 

porosity related to the rock volume is often much less than 1%.

A .2  Saturation

For a rock to form a reservoir, it must contain a sufficient quantity of hydrocarbons, 

with a sufficient concentration. In most oil-bearing formations it is believed that 

the rock was completely saturated with water prior to the invasion and trapping of 

petroleum. The less dense hydrocarbons are considered to displace water from the 

interstices of the structurally high part of the formation. However, the oU. wffi. not 

displace ail the water which originally occupied these pores. Thus, reservoir rocks 

normally contain both hydrocarbons and water (frequently referred to as connate 

water) in same or adjacent pores. To determine the quantity of hydrocarbon accu­

mulated in a porous rock formation, it is necessary to determine the fluid saturation 

(oil, water, and gas) of the rock material.

In the pore volume, Vp, are found a volume Vo of oil, a volume V„, of water, and
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a volume Vg of gas {Vp =  +  ^ ) -  The oil, water, and gas saturations are

defined as:

(A.3)

(A.4)

(A.5)

S o  +  S w  +  S g  =  1.0. (A.6)

expressed in dismal, with:

Knowing the volumes of oil and gas in place in a reservoir requires knowing the 

saturation a t every point, or a t least a satisfactory approximation.

A. 3 P erm eability

For a rock to form a reservoir, the fluids must be able to flow in the rock: this 

property is characterized by its permeability.

The absolute permeabflity or permeabflity of a rock represents the abifity to allow a 

fluid to flow through its pores. Permeability can be determined by the experimental 

Darcy’s law.

Consider a sample of length dx and cross-section A, saturated with a fluid of dynamic 

viscosity /u, and crossed horizontally by a flowrate Q. Under steady-state conditions, 

the upstream  pressure is P, and the downstream pressure is P-dp. The lateral sides 

are impervious. If the fluid does not react with the rock, which is the general case:

Q =  (A.7)p a x

Equation (A.7) is Darcy’s law. k  is called the permeability coeflicient, and is inde­

pendent of the type of fluid. It is the absolute or specific permeability of the sample
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in the direction considered. The range of permeabihties is very wide, it varies from

0.1 mD to more than 10 D. The following terms can be employed to specify the 

value of the permeabihty:

(1) <  1 mD: Very low;

(2) 1 to 10 mD: Low:

(3) 10 to 50 mD: Mediocre;

(4) 50 to 200 mD: Average;

(5) 200 to 500 mD: Good; and,

(6) >  500 mD: Excellent.

In hydrocarbon reservoirs, however, the rocks are usually saturated with two or 

more fluids, such as interstitial water, oü, and gas. It is, therefore, necessary to 

generalize Darcy’s law by introducing the concept of eflective permeability to de­

scribe the simultaneous flow of more than one fluid. The eflective permeability is a 

relative measure of the conductance of the porous medium to one fluid phase when 

the medium is saturated with more than one fluid. This definition of effective per- 

meabflity implies that the medium can have a distinct and measurable conductance 

to each phase present in the medium. Thus, Darcy’s law can be restated as follows:

' (A.8)dx

fcu; dP,o
dx

kg dPg

Qm = —A   — (A.9)dx

In the above equation, ko, kg are the effective permeability for oil, water, and 

gas, respectively.

Effective permeability is a function of the prevailing fluid saturation, the rock- 

wetting characteristics, and the geometry of the pores in the rock. Owing to the 

many possible combinations of saturation for a single medium, laboratory data  are
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usually summarized and reported as relative permeability. Relative permeability is 

defined as the ratio of the effective permeabihty of a fluid at a given value of satu­

ration to the effective permeabihty of tha t fluid at 100 percent saturation (absolute 

permeabihty). Relative permeabihty can be expressed symbohcahy as:

(A.I1)

(A.12)
(A. 13)

A typical relative permeability curves for oü and water is shown in Figure A.I.

k

0.9 
0.8 
0.7 
0.6 

6  0.5 
^ 0.4I 0.3 
^  0.2 

0.1

ro

0.4 0.6
Water Saturation

0.80.2

Figure A.l: Typical Relative Permeabihty Curves.

A .4  C apillary P ressure

Capillary pressure can be quahtatively expressed as the difference in pressure which 

exists across the interface which separates two immiscible fluids. Conceptually, it
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is perhaps easier to think of it as the suction capacity of a rock for a fluid that 

wets the rock, or the capacity of a rock to repel a non-wetting fluid. Quantitatively, 

capfliary pressure will be defined as the difference between pressure in the oil phase 

and pressiue in the water phase, i.e.,

Pc = Po — Pw (A. 14)

The importance of capillary pressure to reservoir engineering is as follows:

1. Capillary pressure data are needed to describe waterflood behavior in more 

complex prediction models;

2. Capillary forces, along with gravity forces, control the vertical distribution of 

fluids in a reservoir. Capillary pressure data  can be used to predict the vertical 

water distribution in a water-wet system;

3. Capfliary pressure data provided an indication of the pore size distribution in 

a reservoir;

4. Capillary forces influence the movement of a waterflood front and, conse­

quently, the ultimate displacement efficiency; and,

5. Capfliary forces determine connate water saturation.

Figiue A.2 shows a typical capillary pressure curve for a water-air system.

A .5 Form ation V olum e Factor

The volume of oil which enters the stock tank a t the surface is less that the volume 

of oil which flows into the weUbore from the reservoir. This change in ofl volume 

which accompanies the change from reservoir to surface conditions is due to the 

following three factors:
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Figure A.2: Capillary Pressure Curve.

1. evolution of gas from, the oil as pressure is decreased from reservoir to surface 

pressure. This causes a rather large decrease in volume of the oU. when there 

is a significant amount of dissolved gas;

2. reduction in pressure also causes the remaining oü to expand slightly, but this 

is somewhat ofiset by the following factor.

3. contraction of the oü due to the reduction of temperature; and,

The change in oü volume due to these three factors is expressed in terms of the 

formation volume factor of oü. It is defined as the volume of reservoir oü required 

to produce one barrel of oü in the stock tank. Because the reservoir oü includes 

dissolved gas.

Volume of oü +  dissolved gas leaving at reservoir conditions
Bo = (A. 15)

° Volume of oü entering stock tank at standard conditions 

Another way to express the formation volume factor of oü is th a t it is the volume 

of reservoir occupied by one stock tank barrel plus the gas in solution at reservoir
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temperature and pressure.

The relationship of formation voknne factor of oil to reservoir pressure for a typical 

black oil is given in Figure A.3.

1.0
Resavoir Pressure, P

Figiu-e A.3: Typical Shape of Formation Volume Factor of a Black Oil.

This figure shows the initial reservoir pressure to be above the bubble-point pressure 

of the oil. As reservoir pressure is decreased from initial pressure to bubble-point 

pressure, the formation volume factor increases sHghtly because of the expansion of 

the  Hquid in the reservoir.

A reduction in reservoir pressure below bubble-point pressure results in the evolution 

of gas in the pore spaces of the reservoir. The hquid remaining in the reservoir has 

less gas in solution and, consequently, a  smaller formation volume factor. Formation 

volume factor is also sometimes called reservoir volume factor.

147



A .6 Solution  G as-O il R atio

The quantity of gas dissolved in oil a t reservoir conditions is called solution gas-oil 

ratio. The solution gas-oh ratio is the amount of gas that evolves from the oil as oil 

is transported from reservoir to surface conditions. This ratio is defined in terms of 

the quantities of gas and oil which appears at the surface during production.

^  Volume of gas produced at surface at standard conditions 
* Volume of oil entering stock tank a t stand conditions

Solution gas-oil ratio is also called dissolved gas-oil ratio and occasionally gas solu­

bility.

Figure A.4 shows the way the solution gas-oil ratio of a typical black oil changes 

as reservoir pressure is reduced at constant temperature. The line is horizontal at 

pressures above the bubble-point pressure, because at these pressures no gas 

is released in the pore space and the entire hquid mixture is produced into the 

wellbore. When reservoir pressure is reduced below this bubble-point pressure, gas 

evolves in the reservoir, leaving less gas dissolved in the hquid.

A .7  Fractured R eservoirs 

A . 7.1 D efin ition

A reservoir fracture is a  naturally occurring macroscopic planar discontinuity in the 

rock mass due to deformations or physical diageneses. For practical reasons, it is 

assumed to have been initially open, but may have been subsequently altered or 

mineralized. It may, therefore, have either a positive or negative effect on fiuid 

flow within the formation. A fractured reservoir is a reservoir in which naturally 

occurring fractures have a significant effect on reservoir fluid flow either in the 

form of increased reservoir permeabihty and/or porosity or increased permeabihty
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Figure A.4: Typical Shape of Solution Gas-Oil Ratio of a Black OU. 

anisotropy.

A .7.2  O rigin

The origin of the fracture system is postulated from data on fracture dip, morphol­

ogy, strike (if available), relative abundance, and the angular relationships between 

fractures sets. These data can be obtained from fuU-diameter core (oriented or 

conventional), borehole televiewer output, or other less oriented logging tools, and 

applied to empirical models of fracture generation. Available fracture models range 

from tectonic to others that are primarily diagenetic in origin. It is only by a proper 

fit of fracture data to one of these genetic models that any effective extrapolation or 

intrapolation of fracture distributions can be made. The interpretation of the frac­

tures origin involves a  combined geological/rock mechanics approach to the problem. 

It is assumed that natural fracture patterns depict the local state of stress at the time
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of fracturing, and that subsiurface rocks fracture in a manner qualitatively similar to 

equivalent rocks in laboratory tests performed at analogous simulated environmental 

conditions. Natural fracture patterns are interpreted in light of laboratory-derived 

fracture patterns (Handin and Hager, 1957), and in terms of postulated paleostress 

fields and strain distributions at the time of fractming. In general, any physical 

or mathematical model of deformations that depicts stress or strain fields can, by 

\'8xious levels of extrapolation, be used as a fracture distribution model (Hafner, 

1951).

A genetic classification scheme for natural fracture systems, which is an expansion 

of that found in Steams and Friedman (1972), permits separation of comphcated 

natural fracture systems into superimposed components of different origin. Such par­

titioning can make delineation of structures (Friedman, 1969; Friedman and Steams, 

1971) and prediction of increased fractured-related resennir quality (McCaleb and 

Willingham, 1967; Steams and Friedman, 1972) from fracture data  more tractable. 

Steams and Friedman (1972) classify fractures into those observed in laboratory ex­

periments and those observed in outcrop and subsurface settings. Their classification 

scheme, together with modifications suggested by Nelson (1985), forms a useful ba­

sis for fracture models (Table A .l). Nelson’s major modification to Steams’s and 

Friedman’s scheme is the addition of two categories of naturally occurring fractures: 

contractional fractures and surface-related fractures. A minor modification to the 

experimental fraicture classification is the addition of a category similar to exten­

sion fractures in  morphology and orientation but having a different stress state at 

generation time.
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Table A .l: Experimental and Natural Fracture Classification

E x p e rim e n ta l F ra c tu re 1. Shear fractures
2. Extension fractures

C lassification 3. Tension firactures
1. Tectonic firactures (due to surface forces)

N a tu ra lly  O ccu rrin g 2. Regional firactures (due to surface forces)
F ra c tu re  C lassification 3. Contractional fractures (due to body forces)

4. Surface related fractures (due to body firces)

A .8 Stress and Strain

The concepts of stress and strain, in their simplest form, involve a mathematical 

abstraction for specifying the interaction between one part of a continuous material 

body and another. These abstractions involve the ideas of vector and tensor fields. 

Recall th a t a scalar is a mathematical entity that has only a magnitude assigned 

to it; temperature for example. Scalar quantities are treated mathematically as a 

tensor of rank zero. Vector quantities, on the other hand, possess a magnitude and 

a direction of action. Velocity, for example, is a vector quantity and can be treated 

mathematically as a tensor of rank 1.

Stress, a, is defined as the amount of forces A F  apphed on an area A A  as A A  

approaches zero:
A F

=A feo A l

Stress is firequently measured in Pa (=  Pascal =  N/m^), bar, atmosphere, psi(= 

lb/inch^), or dynes/cm^. The SI unit P a  is most comfortable, while the others are 

mostly used in engineering calculations.

The sign of the stress cr is not uniquely defined by the physics of the situation, and 

has, therefore, to be defined by convention: in rock mechanics, compressive stresses 

are taken as positive. The historical reason for this is probably that the stresses in 

the earth’s crust are alm ost exclusively compressive.
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An ordered arrangement of vectors about a point can be treated mathematically as a 

tensor of rank two. The state of stress, for example, is a shorthand way of describing 

the infinite array of force vectors about an infinitesimal point within a body. This 

mathematical description of a vector array requires the definition of only nine vector 

components of the infinite array in order to define all others. At equihbrium, the 

nine vector components needed to describe the state of stress reduce to six. Of 

these six, three are defined as normal stress components (a) and three are defined 

as shear stress components (r) as shown in Equations A.18-A.20. In one particular 

fiame of reference, the normal stresses become principal normal stresses (<ti, erg, 0-3 or 

maxim um , intermediate, and minimum normal components), and effectively reduce 

the tensor to three components.

In general.

o-ij =
C l l  T12 ■7*13
T i3  CT22 723

731 732 (T33

(A.18)

When at equihbrium t i 2 =  721 , T%3 =  7 3 1 ,7 2 3  =  7 3 2 ,

=

C l l  T12 7i3
—  CT22 7 2 3

— — CT33
(A. 19)

When the coordinate axes are the principal axes and the remaining components 

are the principal stresses.

o-ij =
(Til 0  0

0  CT22 0
0  0  (T33

(A.20)

The state  of strain  involves a similar treatm ent using a tensor of rank two to describe 

the infinite array of displacement vectors about a sim ilar infinitesim al point within
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a deformed body.

Strain, e, is defined as the amount of elongation of a fiber, A5, divided by its original 

length, AL as AL approach zero,

" =A feo IZ

The entities that describe the changes in the state of stress and strain and their 

vector components firom point to point within the body are the stress and strain 

fields (tensor fields). A feeling for fields and the vector components that make up 

the state of stress or strain in a body can be gained through the manipulation of 

small magnets. If one slowly brings the two hke poles of a pair of magnets together 

from various directions, holding one stationary and moving the other, a tactile sense 

of the infinite array of magnetic force vectors can be obtained. The perception of 

force intensity changes with varying distance and orientation of the magnets gives 

one a physical analogy to the stress-field concept.

A .8 .1  S tress-Strain  R elation sh ips

The state of stress a t a point and the stress field throughout a body are mathematical 

descriptions of the forces within a  body and how they interact and change from point 

to point. The state of strain at a point and the strain field mathematical descriptions 

of the displacements due to temporary or permanent deformations within a body 

and how they interact and change from point to pomt. The states of stress and 

strain and their fields within a body are not independent but are directly related to 

one another. The functional relationships relating stress and strain in various types 

of materials are defined by constitutive equations. These constitutive relationships 

include those defined by the theories of elasticity, plasticity, viscosity and various 

syntheses of the three.
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The constitutive equations are, for the most part, based ultimately on empiricism or 

experimentation. Material samples are subjected to loads of \-arious magnitudes and 

configurations and particular subsequent displacements measured. The loads and 

displacements are equated to stress and strain components and generally plotted 

graphically in a manner similar to tha t shown in Figure A.5. It is the form of curves 

like these that are the basis of most constitutive equations.

Inelastic Strain Hardening

FractureElastic
limit

CO

Elasti Strain softening

Slope is Young's 
modulus (E)

Displacement or Strain

Figure A.5: General Form of Stress-Strain Curve for Rock with Both Elastic and 
Inelastic Portions Shown.

E la stic ity

Elasticity is a theory tha t entails a constitutive relationship for a  sohd body that 

obeys Hooke’s law or behaves elastically. This law states that the stress tensor (state 

of stress at an infinitesimal point) is linearly proportional to the strain tensor (state 

of strain  at an infinitesim al point) and that the body return to its original shape
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and dimensions when all external loads are removed. Mathematically,

o'ij =  EijkiSki (A.22)

Where a i j  is the stress tensor, Eijki is the elastic moduli and £ki is the strain 

tensor. T he stress and strain tensors contain nine vector components each, while the 

elastic m oduh tensor (a tensor of rank three) contains eighty-one such components. 

However, assumptions involving equilibrium, symmetry, and isotropy can reduce 

the stress and strain tensors to six independent components each and the elastic 

constant tensor to two (the Lame’s constants).

Perfectly elastic behavior would be characterized by a stress-strain curve that is 

linear, w ith a positive slope (constant and positive Young’s modulus) and an imme­

diate return  to its initial stress-strain point upon complete unloading. Figure A.6. 

Modification of ideal elasticity include hysteresis in the unloading curve. Figure 

A.7, and time-dependent recovery of all strains or displacements with a nonlinear 

but complete recoverable portion to the stress-strain curve. Figure A.8.

P la s tic ity

Plasticity is a theory that entails a constitutive relationship for a sohd body that 

behaves in a  fully ductile manner (flow), or plastically. Ideally, upon loading the 

material deforms elastically up to a yield stress past which the material displaces 

or strains indefinitely without sustaining additional load (cti =  yield stress). The 

characteristic stress-strain behavior is indicated by a horizontal portion of the stress- 

strain curve. Figure A.9. Modification to this behavior include positive slope, strain 

hardening. Figure A. 10. All plastic strains or displacements are nonrecoverable. 

True plastic behavior in rocks is generally restricted to relatively weak, ductile rocks, 

such as clay-rich shales and some unconsoHdated sands and tufls.
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Loading and 
unloading curveon

Displacement or Strain

Figure A.6: Perfectly Linear Elastic Behavior.

Loading

on
Unloading

Displacement or Strain

Figure A.7: Linear Elastic Behavior with Hysteresis in the Unloading Curve.
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Nonlinear
elasticity

Linear
elasticity

Displacement or Strain

Figure A.8: Non-Lineax Elastic Behavior with a Tkne-Dependent Recovery.

Yield stress Purely plastic

00

Elastic

Displacement or Strain

Figure A.9: Purely Plastic Behavior.
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Strain hardening 
plastic

Elastic

Displacement or Strain

Figure A.IO: Strain Hardening Plactic Behavior.

V iscosity

Viscosity is a theory that entails a constitutive relationship for a solid body that 

behaves Uke a Newtonian viscous fluid or in a viscous manner. Ideally, it relates 

stress to strain rate in a linear manner (refer to Figure A .ll), i.e.:

(A.23)

Where Uijki is the viscosity tensor and is the strain rate tensor 

The viscosity of rocks is hard to determine. It is usually derived from long-term creep 

tests at either constant load or constant strain rate. For simplicity, assumptions of 

isotropy and incompressibUity allow the viscosity tensor to be reduced to a single 

value for any particular rock.

The viscous constitutive relationship is generally appfled to the response of rocks to 

long-term loading, such as over geological time. Modifications of this constitutive 

relationship include nonlinear viscosity and temperature-dependent viscosity (refer
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to Figure A .12).

Linear viscous

00 Viscosity (n)

Displacement or Strain

Figure A .ll: Liaeax Viscous Behavior.

u
00

Non-linear viscous

Displacement or Strain

Figure A. 12: Non-Linear Viscous Behavior w ith the Effect of Tepperature (Ti <  Tg)-
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M ixtures

Most rocks do not strain in response to stress (or \ice versa) according to any of 

the three ideal constitutive relationships. Indeed, most rocks exhibit much more 

complex behavior than any of the simple ones discussed above. As a result, experi­

mentalists and theoreticians often model rock stress-strain behavior with a mixture 

of the ideal relationships, such as viscoelastic, elastico-plastic, and visco-plastic be­

havior, to name a few. In these approaches, portions of the stress-strain curves for a 

rock are assigned a constitutive behavior analogous to its form, and these behavior 

elements are added or amalgamated into a combined relationship meant to mimic 

the real rock response.

In this dissertation, a rock is assumed, for simplicity, to behave elastically.

A .9 P oroelasticity

In most petroleum engineering apphcations, rocks are expected to have their pore 

spaces saturated with Uquids and/or gases. When flvdd permeates, rocks undergo 

a disturbance from their initial state of stress or pore pressure, and intricate cou­

pled mechanical and hydrauHc processes wül occur. For example, a perturbation in 

the fluid pore pressure, in a saturated rock, will cause fluid flow towards the least 

pressurized regions, while simultaneously the rock under the effective stress distur­

bance will undergo deformations. The simplest theory that would take into account 

of the coupled deformation-diffusion phenomena in rock masses, is the theory of 

poroelasticity derived by Biot in 1941.

According to this theory, when a porous material of connective solid structure, such 

as rock, is subjected to an increment in compressive stress, a  volumetric deformation 

win take place. The deformation actually consists of two components:
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1. deformations of the solid skeleton; and,

2. change in the pore spaces.

If the rock pore spaces are perm eated by a compressible fluid, the fluid wiU initially 

resist deformation, and give rise to an uneven fluid pore pressiure whose magnitude 

is inversely proportional to the fluid compressibility. Whenever there is a change in 

fluid pore pressure, a variation in the effective stress appfled on the solid skeleton 

will take place. The solid must further deform to accommodate the equilibrium and 

the compatibility requirements.

From the solid deformation point of view, two material coefficients. Young’s mod­

ulus E  and Poisson’s ratio i/, are necessary and sufficient to describe the linear, 

isotropic mechanical deformation. For the fluid flow in porous media, the mobility 

coefficient, /c, alone characterizes the dissipative fluid flow effect. However, these 

three parameters are not sufficient to characterize a poroelastic material. Two more 

independent coefficients, Skempton’s pore pressure coefficient, B, and Biot’s effec­

tive stress coefficient, a , are needed for describing the coupling phenomena between 

the mechanical and hydraulic processes.

Skempton’s pore pressure coefficient^ B , is defined as the ratio of the induced pore 

pressure Pp over the increment of the average confining pressure P  under undrained 

condition, i.e.,

B =  ^  (A.24)

Its value is related to the compressibility of the solid, fluid, and skeleton, and nor­

mally varies between the range 0 <  P  <  1. The upper rage B=1 is reached for 

an incompressible fluid. On the other hand, P  ~  0 if the fluid is considered very 

compressible (such as gas).

As an extension of the linear theory of elasticity, Biot derived the theory of poroe­

lasticity, assuming an elastic continuous porous medium, fully saturated with fluid.
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The B iot’s effective stress a'- - is defined as :

a'i j  = (Tij -  aSijP  (A.25)

where cr,-j is the total stress, P  is the pore pressure acting on the sohd grains, and 

a  is known as the Biot’s constant, which can be evaluated approximately by:

Q =  1 — (A.26)
■txs

where Ks and Kt are the bulk moduli of sohd grains and the skeleton respectively.

162



A ppendix B 

Forty-eight equations for th e  
boundaries and the corners

B . l  Case 1 T w o-Phase Flow C oupled  w ith  Solid  
D eform ations in  a Fractured R ock

•  Boundaxy z =  1 

Equation 1

—2(ai 4- a 2 ) u i j  4- 2axZZt+ij +  4- a^XLij-i — 0 (B.l)

Equation 2

—2(6i 4- b 2 )v i j  4- 2biV i+ ij 4- — b ^ P m i j - i  4- biPmij+ i

— b s P f i j - i  4- b s P f i j + i  — b s i j S j n i j - i  4- b s i j S m i j + i  —  b j i j S f i j ^ ^  4- b j i j S / i j + i  

~  b g i j { j ) c m i j + l  P c m i J —l )  ^ 9 T j ( P c / t j + l  P c f i J —l )  (B-2)

Equation 3

(^lôijPmij (Cl:j 4“ (^2ij)Pmi+'\.,j C^ijPnniJ+l (^4i,jPmiJ—l 

+(ClOij — <^7ij)Pfij +  — Cgtj-Vtj-l 4- C i i i j S m i j  4" C i2 i jS f i j

=  ClAijPmiJ +  CiQijPfij 4- C ii i jS m i j  +  C m j S f i j

+ C 9 i j V i J + l  —  C gijî^ tJ - 1  4- C m j P c r n i j  ~  ( C l f j  4" C 2 i , j )P c m i+ l , j  

— C 3 ijP c m i , j+ l  — C 4 i j P c m i J - l  ~  (^lijPcfij (B-3)
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Equation 4

d l5 i , jP m i , j  —  { d l i j  +  d 2 i j ) P m i + l J  ~  d z i , jP m i , j + \  ~  d ^ i j P m i J - l  

+  { d i O i j  — d 7 i j ) p f i j  +  d g i j V i j + i  — d g i j V i j - i  4 - d i i i j S m i J  4 - d i 2i j S f i j  

~  dltUjPmiJ 4" diQijPfij  4~ diiijSjriiJ

+ d i 2 i , j S f i j  4- d g i j V i j + i  — d o i j V i j - i  (B-4)

Elquation 5

^isijPfij — ( e i t j  4 -  e2ij)pfi+ij — ezijpfij+i -  ea jP f i j - i  

+ ( e i o i j  —  &7ij)Pmij +  —  eoijVij-i  4 -  e m j S f i j  4 -  ei2ijSmij

= ^lAijPfiJ +  eiOijPTutj +  +  GgijVij+i

+  ^IZ ijPcfiJ  — {^ l i j  +  ^2 ij)Pcfi+ lJ  

—^3i,jPcfiJ+l — ^ i i j P c f i J - l  — ^TijPcmiJ (B.5)

Equation 6

fl5ijPfi,j — ( / l i j  +  f2ij)Pfi+lJ -  fzijPfiJ+l — f4i,jPfij-l 

+ ( / l O i , y  —  f7i,j)PmiJ +  —  foijViJ-l  4 -  f l i t j S f i j  4 -  fui jSmtJ

=  / l 4 i , i P / i J  +  flQijPmiJ +  f l l i jS f i j

+ f l 2 i , j S m i J  +  f o i j f J i j + l  — (B-6)

• Boiindaxy i  =  N x  

Equation 1

— 2 ( a i  4 -  CL2)uij 4 -  a2iLij+i +  4 -  2a3Vi-ij-i  —  2azVi^ij+i

+2a3Vij+i — 2a3U,-j_i =  0 (B.7)
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Equation 2

— 2 b 2 V i j  +  b 2 V i j + i  4 -  ô a 'î ^ i j - i  +  2 6 3 î i t _ i j _ i  — 2 b z U i ^ i j + i  

— b 4 P m i , j - l  +  ^ 4 P m i J + l  ~  +  b s P f i j + i  — b e i j S m i J - l

+b6ijSmi,j+i — bji,jSfij-i  -f- bjijSfij+i 

=  b s i j iP c m iJ + l  — Pcm i, j - l )  +  b g i j ( p c f i j + l  — P c f i J - l )  (B-8)

Equation 3

(^loijPmiJ (CliJ 4" C2ij)Pmi—Ij (^SijPmiJ+l (^iijPmij—l

4 - (C io i j  — C 7 i j ) p f i j  — 2 C 8 i , j U i - i j  4 -  C g i j V i j + i  — C g i j V i j ^ i

=  C u i j P m i J  +  C i O i j P f i j  4 - C i i i j S m i J  +  C n i j S f i j  — 2 C 8 i j U i - l , j  

+ C 9 i jV i , j - i - l  — C g i j V i j ^ i  4 - C i 3 i jP c m iJ  ~  ( C u j  4” C 2 i , j ) P a n i - i J  

C Z i jP c m i J + l  ( 'A i jP a rn i j—l  ^ T i , j P c f i j  (B.9)

Equation 4

d l S i j P m i J  — { d i i j  4- d 2 i j ) P m i - l , j  ~  ^^3t,iPmij+l ~  d ^ i j P m i J - l  

+ { d i o i j  — d j i j ) p f i j  — 2 d s i j U i ^ i j  4 - d g i j V i j + i  — d g i j V i j - i  

+ d u i j S T T i i j  4 - d i 2 i j S f i j  

~  d i ^ i j P m i j  4* d i Q i j P f i j  4” d i i i j S f n i j  4 “ d i 2 i j S f i j  2 d 8 i j 1 l i —i j

+d9ijVij+l — dgijVij^i (B.IO)

Equation 5

^isijPfij — +  ^2ij)Pfi-ij — esijP/tj+i — e a jP fi j - i

+ ( e i w , i  — e 7 t , i ) P m i j  — S e g i j U t - x j  4 -  e g i j V i j + i  — e g i j V i j - i  

+ex itj5 '/tj 4- ei2ijSmi,j
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=  +  eioijPmij +  +  ei2ijSmij — 2esijUi_ij

— egijVij-i + ei2ijPcfij — (e i.j +  e2ij)pcfi-ij 

—ezi.jPcfij-hi — ^iijPcfij-i — enjPcmij (B-11)

Equation 6

f l o i j P f i J  —  ( / i t j  +  h i , j ) P f i - l J  — f z i j P f i J + l  — f A i , j P f i J - l  

+  { f l 0 i j  — f 7 i , j ) P m i J  —  4 -  — f g i j V i J - l

+ flU jS f i j  +  fl2i,jSmiJ 

= fu ijP fiJ  +  flOijPmiJ 4 -  f l l i jS f i j  4 - fu i jS m ij  —

• Boundary j  = 1 

Equation 1

—2aiUij 4 - aiUi+i j  4- a\Ui^ij  — 4- a ^ P m i + i j  — OoP/i-ij

4-a5P/i+lj —  O - S i j S m i - l J  4- a , 6 i j S m i + l J  ~  4* a j i jS f i+ i j

=  0 . 8 i j ( . P c m i + l J  —Pcmi-lj) + ( ^ 9 i j ( P c f i + l , j  — P c f t - l j )  (B.13)

Equation 2

—2 ( 6 1  4 -  b 2 ) v i j  4 -  b i V i + i j  +  b i V i - i j  +  2 6 2 ^ 1  — 6 2 c

+ 2 6 3 t t t _ i  j  — 2 6 3 U { _ i j+ i  4 - 2 b z U i + i j + i  —  2 6 3 1 ^ + 1^

+ 2 b 4 P m i j + i  +  2 Ô 5 P /tj + i  4 - 2 b s i^ jS m i , j+ i  4 -  2 b 7 i j S f i j + i

— ^ b s i j P c m i j + l  ^b g i jP c f iJ+ X  ( G . 1 4 )

Equation 3

C l S i j P m i J  — C i i j P m i + l J  — C 2 i j P m i - l J  ~  (C 3 iJ  ~  C 4 i j ) P m i J + l
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+  (C lO ij — C T i , j ) p f i , j  +  C s i j U i + i j  — C s i j U i - i j  +  C i i i j S m i J  +  C v z i j S f i j  

~  “t“ ^ I Q i . j P f i j  C i u j S m i j  "4" C i 2 i J S f i j  4" C^i j U i ^ i  j

— C 8 i j 1 k - l , j  +  C i2i,jPcm i,j  —  C \ i j P c m i + l , j  ~  C 2 i , j P c m i - \ j  

— {CSiJ —  C ^ i , j )P cm i , j+ \  — <^7i,jPcfi,j (B.15)

Equation 4

d lS i jP m ij  — d l i jP m i+ lJ  — d2ijPTTii-l,j — {d z i j  — d ^ i j )p m i j+ l  

+(rfio£j — d7ij)pfij +  dsijUi+ij — dsijUi-ij  +  diiijSm ij + di2ijSfij

=  d l i i j P m i J  +  d i O i j P f i j  +  d i i i j S m i J

+ d \ 2 i j S f i j  +  d ^ i jU i+ i j  — (B.16)

Equation 5

^isijPfij — ^lijPfi+ij — ^2ijPfi~ij — {ezij — e4i,i)P/tj+i

+(eioij — e7tj)Pmx,i +  e s i jU i+ i j  — e s i j U i - i j  4- 4- e u i j S m i j

=  G u i j P f i j  4- e io i jP m ij  4- e i i i j S f i j  4- eizi.yS'mij 4- e s t jU i+ i j  

—esijW i-ij 4- e iz i jP c f i j  — eit,jPc/i+ij — eaijPc/t-ij

— ^Ai,j)Pcfij+i — e n jP c m i j  (B.17)

Equation 6

f l S i j P f i J  —  f l i j P f i + l , j  — f 2 i j P f i - l J  —  { h i , j  —

+  (/lOt,i — f 7 i j ) P m i J  4- f s i j U i + i j  — f s i j U i - l J  4- f l l i j S f i j  4- f m j S r ,

=  f l i i j P f i J  +  f l Q i j P m i J  4- f l l i j S f i j

+ f i 2 i j S m i j  4- /s tjiti+ ij — h i , j U i - i j  (B.18)

Boundary j  =  Ny
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Equation 1

—2(ai +  a2)uij -f a\Ui+i j +  aiUi-ij  +  2a3t7i_ij_i —

—0-4PTni-l,j +  Û4Pmj+lj ~  O-oPfi-lj +  ^^SPfi+lJ ~  0.6ijSmi-lJ 

+aei jSm i+i j  — o.7i,jSfi-ij +  a7ijSfi+ij

~  O-SijiPcTTii+lJ Pcmi—l j )  (^9i,jiPcfi+lJ Pcfi—l j )  (B.19)

Equation 2

—2(6% +  i>2)vij 4- 4- biVi^i j  4- 263'Ui_ij_i — 2b3Xii+ij-i =  0 (B.20)

Equation 3

^ISijPmiJ ^lijPmi+lJ ( 2̂i,jPmi—l j  (^3ij “l" ^4ij')PTniJ—l

+(ClOtJ — <̂ 7i,j)PfiJ +  CsijUi+ij — CsijUi-lJ ~  2CgijVij-i

=  CuijPmiJ 4- CiQijPfij 4- CiiijSmiJ +  Ci2ijSfij +  CsijUi+lJ 

—C8ij1J^-l,j — ^CoijVij^i 4- Ci3ijPcmiJ ~  CujPcmi+lJ 

^2ijPcmi—\ j  (^3t,j 4" (^4ij)PcmiJ—\ ^7i,jPcfij (B.21)

Ek^uation 4

dl5ijPmiJ — (^lijPmi+lJ ~  d2i jpmi- lj  ~

+(^iOtj — d.7ij)pfij 4- dsijUi+ij  — ds i jUi- i j  — 2dgijVij-.i 

+ d i i i jS jn i j  4- d i2 i jS f i j  

~  d\^ijPmij  4" diQijPfij 4~ diii jSjTiij 4“ d\2i,jSjij

-\rd8ijUi+ij — ds i jU i - i j  — 2dgijVij-i  (B.22)

Equation 5

^isijPfij  — ^lijPfi+ij  — ^2ijPfi-i j — (esij 4- e4 i j )p f i j - i
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+  ( e i 0 t j  —  e - i j ) P m i , j  +  e s x j - 'U t - f - l j  —  e g i j U j - i j  —  2 e ^ i j V i j _ i  

+ eu ,-j5 /,j +  ei2i,jSmi,j 

=  ^ \ A i , j P f i . j  +  e i Q i j P m i j  +  e i l i j S f i j  +  e i 2 i j S m i J  +  e g i j U i + l j  

— — Segjj-Uij-i +  evujVcfij — eiijPc/t+ij 

—^2i,jPcfi-ij — (esij +  &Aij)Pcfij-i — e-njPcTnij

Equation 6

f l 5 i j P f i , j  — f l i j P f i + l , j  — f 2 i j P f i - l , j  — { f z i j  +  f 4 i , j ) P f i , j - l  

+(/lO tJ — f 7 i j ) P m i J  +  — /Sf — 2 f g i j V i j - i

+ f l l i j S f i j  +  f l 2 i j S m i J  

=  f l A i j P f i J  +  f l Q i j P m i J  +  f l l i j S f i J  +  f l 2 i j S m i J  +  f s i j l t i + l j

•  Comer i  = 1, j  = I

Equation 1

—2aiUij  +  2aiii i+ij  +  2a3Vi^ij — 2 a 3 U x 4 - i 4- a^c — 0

Equation 2

—2(6i 4- b2)vij 4- 2biVi+ij 4- 2b2Vij+i — 6 2 c 

4-264Pnii.i+i 4- 2bsPfij+i 4- 2boijSmi,j+i 4- 2b7ijSfij+i

‘̂ bsijPamiJ+l +  2 0 9 x  j P c / i j + 1

Elquation 3

C\5i,jPmij (CltJ 4" C2tj)Pmt+lj C4ij)PmiJ+l

4-(Ci0xj- — C7ij)pfij 4- CiiijSmiJ 4- Ci2ijSfij
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— Ci/i i jPmij + ^ IQ i j P f i j  ^ l U . jS m iJ  + C \2i , j S f i j

"l~ ^2ij)Pcmi+lJ "t“ ^IZijPcmiJ

(CSfj C4ij)PcmiJ+l ^~i.jPcfi,j (B.27)

Equation 4

d l S i j P m i J  i ^ l i j  4" d 2 i j ) P m i + \ , j  { d z i , j  ^ 4 z , j j 4-1 

+(t^lOij — d7ij)pfij +  diiijSmiJ +  di2i,jSfij

=  diii jPmij  +  dioijpf i j  +  dii i jS jnij  +  di2 i jS f i j  (B.28)

Equation 5

^isijPfij — (eitj +  e2i,j)Pfi+i,j — (esij — e^ij)pfij+i 

+(eiOi,i — ^7ij)PmiJ +  ^ ll i jS f iJ  +  ei2ijSmi,j 

= ^liijPfiJ +  ÎQijPmi,]- +  +  ei2ijSmiJ ~  GnjPcmiJ

—(eiij +  e2ij)Pcfi+i,j +  eisi jPcfij — {e^ij — e4:j)Pc/:j4-i (B.29)

Elquation 6

fl5ijPfi,j -  {fu,j  +  f2ij)Pfi+lJ -  { h i j  -  hi,j)Pfi,j+l  

+  (/lOiJ — f7i,j)PTni,j +  f l U j S f i j  +  fl2ijSmiJ 

— f^'iijPfiJ 4" flOijPmij "t" +  fl2ijSmiJ (B.30)

•  Corner i  =  l ,  j  =  Ny

Equation 1

—2(tti +  a2)uij 2aiiLi^ij — 2a3U,-+ij =  0 (B.31)

Equation 2

—2(6i +  b2)vij +  2biVi+ij =  0 (B.32)
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Equation 3

^X ô i . jP m i j  ( C l i j  4 -  C 2 i j ) P m i + l , j  (^ 4 i,j ( '3 i , j )P m i, j—l 

+  (CiOt,j — C7ij)pfij — 2cgijVij-i +  CiiijSmiJ +  Ci2ijSfij 

= CiiijPmiJ +  CiOijPfij 4- CiiijSmiJ + Ci2ijSfij — 2cgijVij_i

4 “ C i 3 i j P c m i j  4 “  C 2 i j ) P c m i + l j  4 “  C 3 t j ) p c m t j — 1

~CTijPcfi,j (B.33)

Ekiuation 4

d l ô i j P m i J  — { d l i j  4- d2ij)Pmx+lJ — { d ^ i j  4- d z i j ) P m i , j - l  

+ { d i Q i j  — d j i j ) p f i j  — 2 d g i j V i j - i  4- d i i i j S j n i , j  4- d ^ i j S / i j  

=  duijPmij  4- diQijPfij  4- d i i i jS m i j  4- d u i j S f i j  — 2dgijVij_i  (B.34)

Equation 5

^loijPfij -  (e itj 4- 6 2 i j ) p f i + i j  — { e n j  4- e z i j )p f i j - i  

4-(eio£j -  e7ij)pmij — 2eoijVij - i  4- e i u j S f i j  4- ei2ijSmi,j 

=  ^l i i jPf ij  +  ^lOijPmij 4- e i i i j S f i j  4- ei2ijSmi,j 4- eizi jPcfij  

—(eiij  4- e2ij)Pc/i+i,y — {^Aij 4- &zij)Pcfi,j-i ~  &7ijPcmij 

—2egijVij^i  (B.35)

Equation 6

f i 5 i , j P f i , j  -  (/it ,i 4- f 2 i , j ) P f i + i , j  —  { U i j  4- h i j ) P f i j - \

4 -( / i« j  -  f7i,j)Pmij — 2 /gtjl't,j-l +  f l l i j S f i j  4- fl2ijSmij  

=  / l 4 i j P / t j  4- flOijPmiJ 4- f l l i j S f i j  4- fl2ijSmiJ ~  2fgijVij-i  (B.36)

•  C om er i =  iVi, j  =  l
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Equation 1

—2(ai +  ao^Uij +  OoUij+i — a^c — 2a3Vi-ij+i 

+4a3Vij^i — Aa^Vij +  2a3Vi-ij = 0

Equation 2

—2 6 2 'Utj +  2b2Vij+i — 62C -t- 4b3Ui-ij — 4&3tit_i,j+i 

+ 2 b i P m i j + i  +  2 b 5 P f i j + i  4- 2 b G i jS m i , j+ i  +  267t,i‘S'/t,j+i 

^bsijPanij+l "t" 26gtjPc/ij+l

Elquation 3

Cl5ijPmi,j (CltJ 4" C2tJ )p77it—1J C^i,j)Pmij+\

+ (c io ij — C7tj)p/tj -  2csi jx ii - i j  4- Ciii jSmij  +  C m j S f i j  

2Cgxjîiâ—1J 4“ CiiijiSvnij 4" (^Vli,jSfij 4" Cx3ijPcmi,j 

+Cl4t,yPmij +  ClOijPfiJ ~  {p2i,j +  Clij)Pcmi-lJ

— (C3tJ — C4ij)pami,j+l ~  CTijPcfiJ

Equation 4

d-l5ijPmi,j ~f“ <^2ij)pmi—l,y (^4ij)PmiJ+l

+  { d lQ iJ  — d .7 i , j ) P f iJ  — “̂ d s i j U i - i j  4- d i i i j S m i J  +  d i 2 i j S f i j  

d u i j P m i J  +  d i Q i j P f i j  4- d i i i j S m i J

+di2ijS fij — 2dsijxii^ij

Equation 5

^iBijPfij — +  ^2ij)Pfi-i j  — (estj — ^4i,j)Pfi,j+i

+(eiot,i — ^7ij)Prrti,j — 2e8t,yUi_x,y 4- e i i i j S f i j  4- ei2ijSmi,j 

—2 es i j i t i - i j  4- e m j S f i j  +  ei2ijSmt,j  +  ^isijPcfij
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+ e u i j p f i j  4- eioijPmij — (e2 i j  +  eu j)p c/t_ ij

—  (esfj —  ^ A i , j ) P c f i , j + l  —  ^ 7 i j P c m i , j  (B.41)

Equation 6

f l 5 i , j P f i J  —  ( / l i J  +  f 2 i , j ) P f i - l J  —  [ h i , j  —  f i i , j ) P f i . j + l  

+ ( / l O t J  —  f 7 i , j ) P m i J  — 2 / 8 i j t i t - l , j  —  f l Q i j S f i j  

=  / l 4 i j P / i , i  +  f l O i j P m i J  +  f l l i j S f i j  +  f v Z i j S m i J  ~  2 f s i j U i - i j  (B.42)

•  Comer i =  j  =  N y

Equation 1

—2{ai +  a2)uij  +  4a3U i_ij_i — Aa^Vij-i — 2a3V{^ij =  0 (B.43)

Equation 2

-2 ( 6 i  4- b2)vij +  AbsUi-ij- i  =  0 (B.44)

Equation 3

ClSijPmiJ — (C2ij  4- Ciij)pmi-lJ ~  (C4ij +  C3tj)Pmtj-l 

+(ClOf,j — C7ij)PfiJ — 2C8ijUi_ij- — 2C0ijVij_i 4- CiiijSmiJ +  Ci2ijSfij  

=  CuijPmiJ +  CiQijPfij 4- CiujSmiJ +  Ci2ijSfij — 2cstj î i t - iJ 

—2cgijVij^l 4- CizijPcmiJ ~  (C2ij +  Cuj)Pcmi-lJ

— (C4iJ +  C3ij)PcmiJ-l — <^7ijPcfiJ (B.45)

Equation 4

dlSijPmiJ — ( d i i j  4- d2ij)Pmi-lJ  — {dsij  4- d4ij)pmij-l

+ { d i o i j  —  d j i j ) p f i j  — 2 d , s i j U i - i j  —  2 d g i j V i j ^ i  +  d i u j S m i j  +  d i 2 i j S f i j

— d\4ijPmiJ diQijPfij  4~ dil i jSmiJ

+ d i2 i jS f i j  — 2ds i jU i- i j  — 2doi jVij -i  (B.46)
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Equation 5

eiôijPfij — (e2ij +  e u j)P fi - i j  — (e4i,i +  ^3ij)Pfi,j-i

+(eioij — &-i,j)Pnii,j — 2e8tjîi£-i,i — 2e9,-j^ij_i +  &iu,jSfij +  eviijSmi,j 

=  ^lii jPfij  +  ^lOijPmiJ +  ^ll i jSfiJ  +  ei2ijSmiJ ~  2esijVn-lJ ~  2egijVij_i  

+^i3i,jPcfij -  (e2ij  +  eu j )P c f i - i j  

— +  ^3ij)Pcfi,j-l — ejijPcmiJ (B-47)

Equation 6

f l 3 i , j P f i , j  —  (  h i , j  +  f u j ) P f i - l , j  —  ( A i j  +  f 3 i j ) P f i , j - l

+(/lOt,j — f7ij)PTni,j — 2 f s i jU i - i j  — 2fgijVij^i  +  f l l i j S f i j  +  fl2ijSjniJ

=  /l4tjP/f,j +  flOijPmiJ 4- f l l i j S f i j

+f l2 ijSmiJ  — 2 f s i jU i - i j  — 2fgijVij^i  (B.48)
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B .2  Case 2 Oil P rod u ction  from a D eform able
Fractured R eservoir w ith  W ater Injection

•  Boundary i = 1 

Equation 1

—2{ai +  a2)uij +  2aizii+ij — aiCi +  a2Uij+i +  a2Uij-i

~  2(13̂ 1,j+ i +  2azUi+ij+i  =  0 (B.49)

Ekjuation 2

—2b2Vij +  biVi+ij — biVi+ij +  b2Vij^i — 62^1 J - l  — b4Pmij-l +

—b s P f i j - i  +  b s P f i j + i  — b Q i j S m i j - i  +  b e i j S m i j + i  — b ^ i j S / i j - i  +  b n j S f i j + i

— 8̂ tj(Pcmij+l PcmiJ—l') ^9ij(PcfiJ+X Pcfi,j—x) (B.50)

E2quation 3

^ X S i j P m i J  ( C l i j  4 "  C 2 i j ) P n i i + X , j  ( ^3 i , jP m i , j+ X  C ^ i , j P - m i j —X 

+  ( C i O i J  —  C 7 i j ) P f i , j  +  C g i j V i j + i  —  C g i j V i j ^ i  +  C m j S m i J  +  C i 2 i j S f i j  

= CuijPmiJ +  CiOijPfij +  CiiijSmiJ +  Ci2i,jSfij

+CgijVij+i — CgijVij^i +  C\zijPcmij ~  (Ciij +  C2ij)Pcmi+l,j

^3i,jPcmi,j+X (^iijPcmiJ—X ^TijPcfiJ (B.51)

Equation 4

dxSijPmiJ — {dli j  +  d2ij)Pmi+X,j ~  dzijPmij-X-X ~  d^njPmiJ-X

+{dioij — d7ij)pfij  +  dgijVij+i — doijVij^i +  dm jSm ij  +  di2ijSfij

~  di^ijPmiJ 4“ diQijPfij  4" diiijSfniJ

4-dl2i,i‘5 /ij  +  dgijVij+i — dgijVij^i  (B.52)
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Equation 5

^ l ô i j P f i J  —  +  ^ 2 i , j ) P f i + l J  — ^3 i , jP f iJ - i - l  — e4t j P / i j - 1

+ (e i0 ij  — ^7i,j)PmiJ +  egijUj-j+i — egijVij^i  +  e i u j S f i j  4- e i 2i,jSjnij 

=  ^UijPfij +  ^lOijPmij +  + e.\2i,jSmiJ +  egij'Uij+l

— e g i j î ^ z j - i  +  e i 3 i j P c f i , j  —  +  e 2 i j ) p c f i + i j

^3i,jPcfiJ+l ^iijPcfiJ—l 7̂i,jPcmi,j (B.53)

Equation 6

f l S i j P f i J  — { f l i j  +  f 2 i , j ) P f i + l J  -  f 3 i j P f i J + l  — h i , j P f i J - l  

+  (/xO t,j — f 7 i , j ) P m i J  +  f o i j V i j + i  — / g t j - U f j - i  +  f m j S f i j  +  f l 2 i j S j n i J

=  f l i i j P f i J  +  f l O i j P m i J  +  f l U j S f i j

+  /gij-'ytj+i — foij'tJij-i (B.54)

•  Boundary i = Nx

E]quation 1

—2{ai 4- a2)uij  +  o,2Uij^i 4- a2 Uzj_x =  0 (B.55)

Equation 2

—2 (6 x 4- 6 2 ) 4- 2biVi-i j  4- 6 2 X̂ ij+i 4- 6 2 'X'ij-i

4-263Uz_xj_x — 263Ziz_xj+r — biPmij-i 4- b^pj^ij+i —

+^5P/i,i+i — àeijSmij-i  +  beijSmij+i — b^ijS/i j- i  4- bji jS / i j+ i  

~  b ÿ i j ( P c m i J + l  P c m i j—1) d" ^ 9 i j ( P c / i j + l  P c f i J —l )  (B.56)

E]quation 3

C l S i j P m i J  i p l i j  d" C 2 i j ' ) P m i — l , j  C 3 i j P m i J + l  C ^ i , i P m i J — l
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+ ( c i o j j  -  C r i j ) p f i j  — 2 c s t j U i _ i j  +  c ç n j V i j ^ i  — C ç h j? ;£ j_ i 

f i , j

~  ^ l A i j P m i J  4 -  CiQi j P f i j  4 “  C i i i j S - m i J  4 “  C y i i j S f i j  2,Cgi j U i ^ i  j

+C9ijVij^l — CgijVij-i 4- Ci3ijPcmi,j ~  (Cuj +  C2ij)Pcmi-l,j 

C3i,jParni,j+l C/HjPcmiJ—l ^TijPcfij (B.57)

Equation 4

d‘\SijPmi,j [d-lij d2ij')Pmi--l,j d\i,jPmi,j—l

4-(ciiotj — d j i j )p f i j  — 2dsijUi^ij  4- dgijVij+i — dgijVij^i 

+ d l l i j S m i , j  4- d i 2 i j S f i j

duijPmij +  diQijPfij 4- d i i i jS m i j  4- di2 i jS f i j  — 2dsijUi- i j  

+dgijVij+i  — dÿijVij^i  (B.58)

Equation 5

^ I B i j P f i J  —  ( C l i J  +  e 2 i , j ) P f i - l , j  —  ^ 3 i j P f i J + l  —  ^ 4 i j P f i J - l

4-(eioij — e7ij)pmi,j — 2esijUi^ij + egijVij^i — egijVij^i

+ c m , jS f i j  4- ei2ijSmi,j 

=  ^uijPf ij  +  CioijPmij 4- c i i i j S f i j  4- ei2ijSjnij — 2esijUi-i j  

+C9ijtJi,j+i — Cgij-Vij^i 4- eisi jPcfij — (eiij 4- e2ij)pcfi-i,j  

— C 3 i j P c f i j - \ - \  —  C i i j P c f i J - l  —  C j i j P c m i j  (B.59)

Equation 6

f l 5 i , j P f i , j  —  (/liJ  4- f 2 i , j ) P f i - l J  —  f s i j P f i J + l  —  f i i j P f i J - l  

4-(/l0tj -  f 7 i , j ) P m i J  —  2/8fjU i_ij 4- f9ijVij+i — f g i j V i j - i  

4 - / 11^*?/,^- 4- f l 2 i , j S m i J
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— flAi.jPfiJ 4" flOijPmij 4" f l l i j S f i j  4~ fvUjS-miJ

—2 /s ij î i i - i j  4- faijVij+i  — /g tjV ij-i (B.60)

•  Boundary j  =  1

Equation 1

— 2 a i U i j  4- aiUi^ij  4- a iU i - i j  — c i4 P m i- i j 4- a^pmi+ij ~  (^sPfi-ij 

+ 0 . 5 P f i + l J  — 0 . 6 i j S m i - l J  4- a . 6 i j S m i + l J  ~  0 - 7 i j S f i - l J  4" a j i j S f i + i j

—  O .S i j{P c m i+ lJ  P cm i—l j )  4~ (î9xj(Pc/i+lj P c f i —l j )  (B.61)

Equation 2

—2(bi  +  b 2 )v i j  +  b iV i+ i j  4- b i V i - i j  4- 262t'tj+i — 6 2 c 

+2bziLi-ij  — 2bzUi^ij+i 4- 2bziti+ij+i — 2bzUi+\j =  0 (B.62)

Elquation 3

^ I S i j P n t i J  ^ l i j P m i + l J  C 2 i,jP m t—I J  i p 2 i j  4“ C ^ i j ' jP m iJ + l

4 - (c io i , j  — c - 7 i j ) P f i j  4- c s i j U i ^ i j  — c s i j U i - i j  4 -  c m j S m i j  4 -  C i 2 i j S f i j  

~  ^ l A i j P m i J  4“ ^ I Q i j P f i j  4~ C \ \ i j S m i J  4* C \ 2 i j S f i j  4 ” C s i j7 t i - i - l j  

— C g i j I M - l J  4 -  C iZ i jP c m iJ  —  C i i j P c m i + l J  ~  C 2 i j P c m i - l J

— (C3:j — C4tj)Pcmij+l ~  C 7 i j P c f i J  (B.63)

Equation 4

^ 1 5 ijP m iJ  d \ i jP fn i+ lJ  d 2 ijP m i—l J  (̂ 3i,y 4“ d ^ ij^ P m iJ + 1  

4-(diotj — d-Tij)Pfij 4- dzijUij^ij — d^ijUi-ij  4- d u i j S m i j  +  d i2 i jS f i j  

— di4,ijPmij 4* diQijPfij 4“ diii jSj j i i j

4-di2i,y<?/ij 4- dsijUi+ij — ds ijUi^ij  (B.64)
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Equation 5

^lôijPfij  — e i i jp f i+ i j  — e2ijPf i- i j  — (esij 4- e4:j)P/w+i 

+(eiOtj — ^7ij)PTnij +  +  Siuj'S '/tj +  ei2ijSmi,j

= ^u i jP f i j  +  GioijPmij +  e m jS f i j  +  ei2i,jSmi,j +  esijU i+ij 

— e s i j l i t - l j  +  ^ 1 3 i , j P c f i , j  —  ^ U j P c f i + l J  —  ^ 2 i , j P c f i - l , j

—(esi.j — e4i,i)Pc/ij+i — ejijPcmij (B.65)

Equation 6

f l S i j P / i J  — f l i j P f i + l , j  —  f 2 i j P f i - l J  — i f s i j  +  f ‘l i j ) P f i J + l  

+  { f l 0 i j  — f 7 i j ) P T n i J  4 -  f s i j ' ^ i + l j  —  +  f l l i j S f i j  +  f l 2 i j S m i J

=  f l 4 i j P f i J  +  f l Q i j P m i J  +  f l l i j S f i j

+ f l2 i jSm iJ  4- /stjW i+ij — f s i jU i - i j  (B.6 6 )

• Boundary j  = Ny

Equation 1

—2(tti +  a2)uij  4- axXLi+ij 4- CiUi-i j  4- 2a2i t i j - i  4- 

—2a3^i+ij_i — U4PTTi:-i,j 4- a^pmi+ij — a s p f i - i j  4- asP/t+ij 

—aoi jS m i- i j  4- o.6ijSmi+ij ~  a j i j S f i - i j  4- a n j S f i ^ i j  

— °'SijiPcmi+lJ — Pcmi-lj) + Cl9ij(Pcfi+lJ — Pcfi-lj)  (B.67)

Equation 2

—2{bi 4- b2)vij  4- biVi^ij 4- biVi^ij — 0 (B.6 8 )

Equation 3

^ I S i j P m i J  ( ^ l i j P m i + l J  C .2ijPTni—l J  i p ^ i j  4" (^A i j ' )P T n iJ —l
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+  (ClOi.j — C - i j ) p f i j  4- C s i j U i + i j  — C s i j t i t - l j  — 2 c 9 i j-U jj_ i  

4“ Ci2ijSfij

=  C u i j P m u j  4 -  C i O i j P f i j  4 - C i i i j S m i J  4~ C i 2 i j S f i j  4* C s i j U i ^ i j  

— C si. j lJ ^ -U j — '2 C Q i jV i j - i  4 - C i3 i jP c m i , j  ~  C u ,jP cm i+ l, j  

^2 i , jP cm i—l j  ( ^ 3 t j  C A i j ^ P c m iJ —l  ( ^ T i jP c f i j  (B.69)

Equation. 4

d \5 i , jP m i , j  — d u , j P m i + l , j  — d 2 i j P m i - l , j  ~  { d z i j  4* r f 4 t j ) P m i , j - l  

4-((^ioi,i — d7ij)pfij + dsijUi^ij — dsijiti-ij  — 2dQijVij-i

+ d l l i j S m i J  4- d i 2 i j S f i j  

=  d u i j P m i j  4 - d i Q i j P f i j  4- d i i i j S m i j  4 -  d i 2 i j S j i j

+dsijUi+ij — daijiii_ij — 2dgijVij-i (B.70)

Ekjuation 5

e i 5 i , j P / x j  -  ^ i i , j P f i + i j  -  ^ 2 i , j P f i - i j  —  ( e s i j  +  ^ A i j ) P f i j - i  

+ ( e i o i , j  — ^ 7 i j ) P m i j  4 - e s i j i L i + i j  — e s i j U i ^ i j  — 2 e g i j V i j ^ i  

4 - e U i j S m i J

=  ^ l A i j P f i j  4 -  ^ l O i j P m i j  4 - e i i i j S f i j  4 - e i 2 i j S m i j  +  e s i j U i + i j  

— e s i j U i - i j  —  4 - e i z i j P c f i j  — & ii , jP c fi+ i, j

—e 2 i j P c / t - i j  — ( e s t j  4 - e 4 i j ) p c f i j - i  — e n j P c m i j  ( B - 7 1 )

Ekiuatioa 6

f l 5 i , j P f i , j  —  f l i j P f i + l J  — f 2 i j P f i ~ l , j  — ( f z i , j  +  f A i , j ) P f i , j - l  

4 - ( / lO i , j  — f 7 i j ) P m i J  4 - f s i j U i + l , j  —

4-/lH j5 '/ij 4- fi2i,jSmi,j
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— flAijPfiJ /lO:,jPmiJ 4" f l l i jS f i j  +  fI2i,jS-miJ +

(B.72)

• Corner i = 1, j  =  1

Equation 1

Equation 2

Equation 3

Equation 4

Equation 5

—2,CLxUij -f- 2ûx'^+ij — ciiC — 0

—‘Ib^Vij +  2 6 2 ^ij+i — 62C — 0

C l S z j P m t j  —  ( C l t J  +  C 2 i j ) P m t + l , i  ~  ( C s i j  +  Ciij)prni,j+l

+(ClOz,i — C7i +  Ciii^jSmij +  Ci2ijSfij

C l A i j P m i J  +  C l K j P / t J  +  C i i i j S j n i j  +  C i 2 i j S f i j  

(^Itj 4~ C2ij)Pcmi+l,j 4" ( l̂3ijPami,j 

(C S tJ  (^4 i ,j)Pcm i,j+ l ^ 7 i j P c f i J

dloijPmiJ — (d i i j  4- d2ij)Pmi+lJ — (C?3ij +  d<nj)prnij+l 

4-(c?ioij — d n j ) p f i j  4- di i i jSmij  4- d i2 i jS f i j  

du i jP m i j  4- dioijPfij  4- diiijSynij  4- d ^ i j S / i j

^is i jPfij  — (e iij  4- e2i j)pfi+i j  -  {ezij 4- e4 ij)p /ij+ i 

4-(eioij — ^7ij)Pm.i,j 4- e\i i , jSf i j  4- evii jSmij  

^lAijPfiJ + ^IQijPmiJ 4* e m jS f i j  4- ei2ijSmiJ — ejijPcmiJ 

—(eiij 4- e2i,j)pcfi+ij 4- eizijPcfij — {^zij — Giij)Pcfij+x
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(B.73)

(B.74)

(B.75)

(B.76)

(B.77)



Equation 6

flBtjPfiJ — { f l i j  +  / 2ij)p /i+ l,i — ( f s i j  4- hij )Pf iJ+ l

+(/lO tj — f 7 i j ) P m i , j  +  f l l i j S f i j  H- 

=  f u i j P f i J  +  f l Q i j P m i j  +  f l U j S f i j  +

•  Comer i = 1, j  =  Ny

Equation 1

—2(ai +  o-2)y-i,j +  — a le

+2a2tq-,j-i +  4a^Vij-i — 4a3i;,-+ij_i =  0

Equation 2

Equation 3

Vij =  0

ClSijPmiJ  ( C l t j  "t“ C 2 t j ) P m t + l j  ( ^ 4 t j  (^Zi,j)PTni,j—l 

+  ( C l O t J  —  C7ij)PfiJ —  2CgijVij^i  +  CiiijSmiJ + Ci2i,jSfij

ClAijPmiJ +  CiQijPfij +  CiiijSmiJ +  Ci2ijSf ij  — 2cgijVij_i

"t"Ci3ijPcmt,i (Clij +  C2ij)Pcmi+lJ "f" ^Zi,j)PcmiJ—l

-(^7ijPcfiJ

Equation 4

(B.78)

(B.79)

(B.80)

(B.81)

d’lSijPmij ^2i,j)PTni+l,j ^ZiJ^PmiJ—l

+ {dl0ij — d7ij)PfiJ — 2dgijVij-i +  diiijSmiJ  +  di2ijSfij

= di4ijPmij +  dioijpfij 4- diiijSmij  +  di2i,jSfij — 2d9ijVij^i (B.82)
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Equation 5

ei5ijp/tj — (eitj +  e2ij)pfi+ij — [eaj + ezijjpfij-i

+(eiOij — ^7i,j)Pmij — +  e m j S / i j  4- ei2ijSmij

^UijPfiJ +  ^IQijPmiJ +  ^lUjSf i j  +  ei2ijSmi,j +  ^izijPcfij 

—(e iij  4- e2ij)pcfi+i,j — (e4ij 4- ezij )pcfi j- i  — e.jijPcm.ij

—SegijUfj-i

Equation 6

• Comer i =  7  =  1

Equation 1

Equation 2

Equation 3

(B.83)

fl5i,jPfi,j — { f l i j  +  f2ij)Pfi+lJ — { f i i j  +  hid)Pfi , j- l  

+  {flOi,j -  hij)Pm.id — +  f l l i j S f i j  4- fu i jSmiJ

=  f u i j P f i j  +  /lO ijP m iJ 4- f l l i j S f i j  4- fuijSmiJ — 2fgi jVi j - i  (B.84)

tiij = 0 (B.85)

—2 (6 i 4- 6 2 ) 4 - 2biVi-ij +  2b2Vij+\

—62C 4- 463Ui_ij — AbzUi-ij+i =  0 (B.8 6 )

Cl5ijPmi,j (Clij 4“ C2id)Pmi—lJ i^3ij "i* (^4i,j)PmiJ+l 

+(CiOiJ — C7ij)Pfij — 2C8ijUi-ij 4- CiiijSmiJ 4" C m jS f i j  

^CsijUi—lJ 4" CiiijSmiJ 4" Ci2ijSfij  4“ Ci îjPcmiJ 

+Ci4ijPmiJ 4- CiOijPfiJ — (C2t,j 4- Ciij)pcmi-lJ 

— {C3ij — C4ij)pcmiJ+l — CjijPcfiJ (B.87)
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Equation. 4

dlôijPmi.j — {duj  +  d2ij)Pmi-l,j — {dzij  4 -  C ^ 4 i , i ) P m t j + l

+W 101J — d~ij)pfij — 2dsijUi-ij +  diiijSjnij +  di2ijSfij

~  d\Ai,jPm.i,j 4" diQijPfij 4- diii jSmiJ

+di2 i , jSfi j  — 2dsijiLi-ij  (B.88)

Equation 5

eisijPfi.j — (e iij 4- e2ij)pfi-i , j  — {ezij  4- e4,-j)p/ij+i 

4-(eiofj — eYij)pmij — 2 es i jU i - i j  4- e m j S f i j  4- ei2ijSmij

+^i4 ijPf ij  4- eioijPmij — (e2tj 4- e i i j )p c f i - i j

— ^ 4 i , j ) P c f i , j+ \  — ^ n j P c m i J  (B.89)

Equation 6

flSijP/iJ  —  ( / l i j  +  f2ij)Pfi-lJ — ifsij  4- / 4 i j ) p / i j + l  

4 - ( / l O f , j  -  f7i,j)PmiJ -  2f8ijUi_ij -  f lOijSfij  

=  f l i i jPfiJ  4- flOijPmiJ 4- f l l i j S f i j  4- fl2ijSmiJ — 2/8xj1iz_ij (B.90)

• Corner i = Nx, j  = Ny

Eîquation 1

—2{a.i 4 - a2)uij +  2a2Uij^i =  0 (B.91)

Equation 2

—2(6x 4- b2 )v i j  4 - 2biiLi^ij 4- 2bzUi- i j - i  =  0 (B.92)

Equation 3

C lS i jP r n iJ  — {C2i,j 4- C i i j ) p m i - l J  ~  ( c ^ i j  4" C z i , j ) P m i j - l
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+  (c i0i j  — C j i j ) p f i j  — 2 c 8 i j U i - i j  — 2Cgi jVij_ i  +  C iu jS m iJ  +  C io i jS f i j

~  (^lAijPmiJ 4" ~i“ Ci2ijSfij 2c8ijUi^i j

—2cgijVi j_ i  +  Ci3ijPcmi,j ~  {C2iJ + Ciij)Pcmi-l,j

— (C4iJ +  C3ij)PcmiJ-l — CjidPcfiJ (B.93)

Equation 4

d\5i,jPmi,j — ( dii ĵ +  d2ij)pmi-l, j — {dz ij  +  d^ij )pmij - \

+(«^10i,i — d7 i j )p f i j  — 2c?8ijUi_l J — 2dgijVij_i  +  diu jSmiJ  +  di2 i jS f i j  

=  di^ijPmiJ +  diQijPfij +  diiijSjniJ

+ d i 2 i j S f i j  — 2d8ijVi-i,j  — 2doijVij^i  (B.94)

Equation 5

^ISijPfiJ — +  ^li j )Pf i - lJ  — {^AiJ +  ^3ij)Pfi,j-l +  i l̂OiJ ~  ^7ij)Pmi,j

—2e8jjUt-i,j — Segij-üij-i +  e i u j S f i j  4- 

=  e u i jP f i j  +  eioijPmij  4- e m j S f i j  4- e u i jS m i j  — 2es i jUi_u  

—2e9ijUij_i 4- eizi jPcfij  — {ezij  4- eu, j)Pcf i-i j

—(e4ij 4- ezi,j)Pcf%d-i — ^lijPcmij (B.95)

Equation 6

flSijPfiJ —  (  f z i j  4- f l i , j ) P f i - l , j  — i h i j  4- f 2 i , j ) P f i J - l  4- ( / l O t j  — f 7 i j ) P m i J  

~2/8tj'U i_ij — 2/9ijU tj_i 4- f l l i j S f i j  4- f l 2 i j S m i J  

=  fu i jP f iJ  +  flOijPmiJ +  f l l i j S f i j

+f l2 i jSmiJ  — “̂ f s i jU i - i j  — 2fgijVij^i  (B.96)
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IMAGE EVALUATION 
TEST TARGET (Q A -3 )
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