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Abstract

Only recently has one realized the importance of the coupling of fluid flow with
rock matrix deformations for accurately modeling many problems in petroleum, civil,
environmental, geological and mining engineering. In the oil industry, problems such
as reservoir compaction, ground subsidence, borehole stability and sanding need to
be simulated using a coupled approach to make more precise predictions than when
each process is considered to be independent of the other. Due to complications
associated with multiple physical processes and mathematical representation of a
multiphase flow system in deformable fractured reservoirs, very few references, if
any, are available in the literature.

In this dissertation, an approach, which is based on the dual-porosity concept
and takes into account rock deformations, is presented to derive rigorously a set
of coupled differential equations governing the behavior of fractured porous media
and two-phase fluid flow. The finite difference numerical method, as an alternative
method for finite element, is applied to discretize the governing equations both
in time and space domains. Throughout the derived set of equations, the fluid
pressures and saturations as well as the solid displacements are considered as the
primary unknowns.

The model is tested against the case of single-phase flow in a 1-D consolidation

problem for which analytical solutions are available. An example of coupled two-



phase fluid flow and rock deformations for a scenario of a one-dimensional. fractured
porous medium is also discussed.

The only paper that proposed a mathematical model for the case of multi-phase
flow, and also considered the rock deformations, was published in 1997 by Lewis and
Ghafouri. In their model, the derivation of the continuity equations for fluids was
carried out by writing out term-by-term the contribution to the fluid accumulation
rate. This method was based on the intuitive phenomenological concept, rather than
any theoretical reasoning. Hence, some parts in their equations are questionable.

The numerical model and simulator, RFIA (Rock Fluid InterAction), developed
in this dissertation can be a powerful tool to solve difficult problems not only in
petroleum engineering such as ground subsidence, borehole stability and sand con-
trol, but also in civil engineering such as groundwater flow through fractured bedrock
and in environmental engineering such as waste deposit concerns in fractured and
unconsolidated formations. As an example of application in petroleum engineer-
ing, the waterflooding process in a deformable fractured reservoir was numerically
simulated and analyzed.

Finally, sensitivity analyses were carried out to investigate the relative impor-
tance of some required parameters to the overall behavior of a deformable fractured

reservoir.



Chapter 1

Introduction

Natural fractures affect all phases of the petroleum reservoir life-span, from the
accumulation of oil to the techniques used to manage production. The existence of
fractures in oil reservoirs was known as early as the 1860’s. However, only in the
last thirty years has significant interest in the effect of fractures on oil production
developed.

Naturally-fractured reservoirs can be represented by a dual-porosity system, in
which most of the fluid conduction is provided by the fractures, whose permeability
ks is much higher than the permeability of the porous matrix k,; while most of the
fluid storage is provided by the porous blocks, whose porosity ¢, is much larger
than the porosity of the fractures ¢y. For example, the porous blocks may have
a porosity of 8-20% and a permeability of the order of a few millidarcys while the
porosity of the fractures is at least one order of magnitude less and its permeability
is at least ten times greater than the corresponding porous matrix. Thus, while the
storage capacity of the matrix is high and the fractures low, the flow in the fractures
is high and the blocks act as feeders to the system of fractures. The dual-porosity
approach has been used to describe naturally-fractured reservoirs since the 60’s.

Withdrawal of hydrocarbons from the reservoir formations may result in an

increase in effective stresses on the matrix, leading to collapse of pores; hence, a



reduction in porosity and permeability. This phenomenon is called pore collapse. It
may lead to the compaction of the producing formation and subsidence of the ground
surface. Pore collapse in a reservoir affects many aspects of oil and gas production
including rock permeability, production rate, wellbore stability, sand production
control, reservoir management and ground surface subsidence. Subsidence in turn
may affect stability and operability of drilling and production equipment, requiring
costly remedial measures.

Numerous problems attributed to pore collapse and deformation of the rock ma-
trix have been reported in different areas of the world, examples of which are Ekofisk
field and Valhall fields in the North Sea (Boade et al., 1989; Marius, 1990); Wilming-
ton field, Long Beach, California (Allen, 1968); Bolivar Coast and Lagunillas fields
in Venezuela (Merle et al., 1976); Groningen field in Netherlands (Schoonbeek, 1976)
and Central Luconia fields in East Malaysia (van Ditzhuijzen and de Waal, 1984).
However, in conventional reservoir models, the role of the reservoir rock is often
limited to their storage and delivery capabilities and close interaction between fluid
flow and rock deformation has been ignored.

Hence, numerical simulation of fluid flow in deformable fractured media is a great
challenge and of a great interest for petroleum engineers. Because of complications
associated with multiple physical processes in deformable rock masses and mathe-
matical representation of a multiphase flow system, only a few pertinent references
are available in the literature, even fewer if the porous media are considered to be

fractured.



1.1 Objectives of the Study

The main purpose of this dissertation is to investigate the complex process of two-
phase fluid flow in deforming naturally fractured media and the feasibility of apply-
ing a finite difference method to solve such types of problems.

The goals of this dissertation are as follows:

1. Derive a set of two-phase fluid flow equations coupled with rock deformations
considering the continuity equation, the flow equation, the equation of state,
and the solid equilibrium equation to characterize the behavior of fluid flow in

deformable naturally fractured media based on the dual-porosity concept.

2. Develop a simulator based on the derived formulations using a finite difference
numerical scheme to model the coupled phenomena of immiscible two-phase

fluid flow and the deformations of naturally fractured rock.
3. Determine flow, saturation, pore pressure and stress patterns.

4. Use the simulator to study applied problems such as waterflooding process in

the petroleum industry.

1.2 Organization of the Dissertation

A brief introduction describing the importance of the present research is presented
in Chapter 1 which also includes the goals of this study and outlines the contents
of the dissertation.

Chapter 2 gives a thorough critical review of the relevant literature. Reservoir
simulation models can be classified according to the type of reservoir they are in-

tended to simulate, or on the basis of a particular reservoir process. Simulators



based on the former classification fall generally into three groups: gas reservoir
simulators, black-oil reservoir simulators, and compositional reservoir simulators.
Particular reservoir processes and phenomena such as wellbore coning, thermal re-
covery processes, chemical flooding, and miscible displacements categorize other
types of reservoir models. The background of this chapter constitutes the basis for
the development of most numerical models developed over these past decades.

Chapter 3 derives the governing equations for two-phase fluid flow in a de-
formable fractured porous medium. The two equilibrium equations for the solid
(in z- and y-directions) contain both fluid pressures in the matrix and in the frac-
tures. The four continuity equations for the fluid phases, two for the matrix and
another two for the fractures, include the unknown solid displacements. These six
equations are fully coupled and the continuity equations in the matrix and in the
fractures (for one fluid) are linked by a mass interchange term.

Chapter 4 details the numerical implementation of the governing equations de-
rived in Chapter 4. A finite difference numerical technique is applied as a alternative
to the finite element method .

The developed model as well as the simulator are validated by comparing the
results from this study with the analytical expressions derived in Chapter 5.

Chapter 6 presents two applications: a fractured rock consolidation problem
coupled with two-phase fluid flow; and a deformable fractured reservoir with water
injection.

The sensitivity analyses are carried out in Chapter 7 to investigate the relative
importance of some required parameters to the overall behavior of a deformable
fractured reservoir.

Chapter 8 summarizes the research contributions, conclusions and provides rec-

ommendations for future work.



The fundamental and essential ideas needed for this particular research are cov-
ered in Appendix A. Reservoir engineering concepts such as capillary pressure and
formation volume factor as well as rock mechanics subjects such as stress, strain
and poroelasticity are also introduced.

Appendix B lists the special forms of the six discretized governing equations for
each boundary and corner point, based on the boundary conditions specified for

both validation and application cases, respectively.



Chapter 2

Critical Literature Review

Flow of fluids in fractured porous media was recognized first in the petroleum indus-
try in the 40’s. Since then, many researchers have added to the volume of literature
on fractured media. The development of models for fluid flow in naturally fractured

reservoirs has proceeded along two main different approaches:

1. Statistical approach; and,

2. Enumerative, or discrete approach.

| In the first approach, the fractured rock mass is considered as a statistically
homogeneous medium consisting of a combination of fractures and a porous rock
matrix. The fractures are considered ubiquitous, and the system is called statisti-
cally homogeneous because the probability of finding a fracture at any given point
in the system is considered the same as finding one at any other point. It relies on
the use of the concepts of statistical averaging, volume averaging, and the theory of
mixtures.
In the second approach, the fractured reservoir is modeled by attempting to
introduce the actual geometry of the discontinuities and the porous rock matrix.
The location, orientation, and aperture variations for each individual fracture must

be considered in this approach.



Table 2.1 gives a general classification of the existing models used to describe

the flow characteristics in naturally fractured reservoirs.

Table 2.1: Naturally Fractured Reservoirs Models

TYPE CHARACTERISTICS
Equivalent | Fluid flow in fracture network can be

Statistical | porous media | characterized by an equivalent porous media
Approach Double Poorly permeable rock matrix dissected by

porosity a network of highly permeable fractures

Isolated Flow regime in and around a single fracture

Enumerative fracture

Approach Fracture Flow regime in a set of discrete interconnected

network fractures

The simplest approach has been to use a conventional black-oil simulator, as
proposed by Bossie-Codreanu et al. (1985), in which the fractures and rock matrix
are represented as separated cells. Flow between these cells represents the actual
flows between the matrix blocks and their surrounding fractures inside the elements
representing the reservoir. This approach is an extreme simplification and is unable
to represent certain important physical phenomena such as the transfer of oil from
the rock matrix blocks to the fractures. On the other hand, almost all the existing
reservoir response models do not include the complex interaction between fluid flow

and rock deformations.

2.1 Dual-Porosity Model

2.1.1 Uncoupled Dual-Porosity Model

The dual-porosity approach has been used to describe rigid naturally-fractured reser-
voirs since the 60’s. Barenblatt et al. in 1960, Warren and Root in 1963, and several

authors later (e.g. Kazemi et al. in 1969; Yamamoto et al. in 1971) derived an ana-



lytical solution for single-phase, unsteady-state low towards a well in a homogeneous
fractured reservoir. These models consider mass transfer between rock matrix blocks
and fractures, but no flow is allowed to take place between adjacent rock blocks. All
these publications were applying the dual-porosity theory to transient well testing.

Barenblatt et al. (1960) formulated the equations of flow for fractured reservoirs
of double porosity through the continuum approach. In his model, the two media,
fracture network and matrix blocks, were considered to be overlapping continua,
whereby the flow and medium parameters were defined at each mathematical point.
The equations of motion and of conservation of mass were written independently
for each medium, and transfer of liquid between the two media was taken into
account by a sink/source term in the equations of conservation of mass. Single-
phase, unsteady-state flow within the fractures and quasi-steady state flow from the
homogeneous rock blocks to the randomly distributed fractures were considered.

Warren-Root’s (1963) model represented the fractured reservoir as an idealized
system formed by identical rectangular parallelepipeds, separated by an orthogonal
network of fractures. The flow towards the wellbore was considered to take place
in the network, while the matrix continuously fed the system of fractures under
quasi-steady flow conditions.

Kazemi (1968) developed an ideal theoretical model of a naturally fractured
reservoir with a uniform fracture distribution based on the Warren-Root’s model;
it consisted of a finite circular reservoir with a centrally located well and two dis-
tinct porous regions, i.e., matrix and fractures. Later, Dougherty and Babu (1985)
extended this model to consider a well that only partially penetrated the formation.

Abdassah and Ershaghi (1986) extended the double porosity model to triple
porosity for the analysis of single-phase, unsteady-state flow in naturally fractured

reservoirs. A system where fractures have homogeneous properties throughout, and



interact with two groups of separate matrix blocks that have distinctly different
permeabilities and porosities was considered in their model. They claimed that
such a system is a more realistic representation of fractured reservoirs than the
traditionally used dual-porosity models and that, in addition, the dual-porosity
model is a special case of their proposed triple-porosity model.

de Swaan (1976) developed an analytical solution to the transient flow regime,
for a modified dual-porosity model considering the flow from the matrix rocks as
unsteady-state. In his model, the shape of the matrix blocks was approximated by
regular solids or slabs, instead of rectangular shapes.

Several researchers also studied the flow behavior of an individual rock matrix
block and its adjacent fractures. Birks (1955) used a capillary model and a simple
relative permeability model to describe the mechanics of oil transfer from the rock
matrix to the fractures. Graham and Richardson (1960) used a synthetic model
to scale a single element of a fractures-matrix reservoir for predicting imbibition
oil recovery behavior. Blair (1960) used numerical techniques to solve the differen-
tial equations describing imbibition in linear and radial systems. Mattax and Kyte
(1962) proposed a third method for predicting imbibition oil recovery for large reser-
voir matrix blocks based on scaled imbibition tests on small reservoir core samples.
They presented experimental results on water/oil imbibition in laboratory core sam-
ples and defined a dimensionless group that related recovery to time. Yamamoto
et al. (1971) presented a mathematical model for the simulation of pressure, pro-
duction and saturation behavior of a single block within a fissured system. Variable
physical properties, drainage and imbibition capillary pressures, pore compressibil-
ity, and gravity were considered in their formulation. Recovery mechanisms for
various-size blocks surrounded by oil or gas were studied. Parsons and Chaney

(1966) studied the imbibition mechanism in fractured carbonate reservoirs with a



bottom waterdrive via laboratory experiments.

Barenblatt (1964) used a different approach to describe the fiow from the rock
matrix. In his formulation, the low between the fractures and the matrix blocks
was described using source functions derived from dimensional considerations by
assuming that it was proportional to the pressure difference. Bokserman et al.
(1964) took the source function as representing an imbibition process solely and
used the experimental data of Mattax and Kyte (1962). Braester (1972) derived
the source function by using a conceptual model of a block made up of a bundle
of randomly oriented capillary tubes. Rossen (1977) also adopted source functions
to consider the flow from the matrix to the fractures. The fundamental advantage
of his approach is that these source terms are handled semi-implicitly in both the
pressure and saturation calculations involved in the fracture simulation.

All the models mentioned above have been designed to study specific problems
and only for a given segment of a reservoir. Simulation of an entire reservoir system
with multiple phases further complicated the problem and made additional simulator
modifications necessary.

Asfari and Witherspoon (1973) developed a modeling approach for reservoirs
with a regular pattern of noncommunicating vertical fractures by assigning constant
pressures along each fracture. Kazemi et al. (1976) presented a three-dimensional,
multiple-well, numerical simulator to represent single or two-phase flow of water
and oil in fractured reservoirs. Their equations are two-phase flow extensions of
the single-phase equations derived by Warren and Root (1963). The simulator took
relative mobilities, gravity force, imbibition and reservoir heterogeneity into account.

Thomas et al. (1983) developed a three-dimensional, three-phase model for
simulating the flow of water, oil and gas in a naturally fractured reservoir where

the dual-porosity system was used to describe the fluids presented in the fractures

10



and matrix blocks. The matrix/fracture transfer function incorporated the effect
of pressure on interfacial tension and accounted for capillary pressure, gravity, and
viscous forces. Gilman and Kazemi (1982) described a two-phase, three-dimensional
simulator similar to that proposed by Thomas et al. (1983), in which Kazemi’s
extension of the Warren-Root model to multiphase flow was used as the basis. Their
model accounted for unsteady-state multiphase flow between matrix and fractures,
but unsteady-state flow within individual matrix blocks could not be simulated.

Evans (1981) proposed a more general mathematical model than that presented
by Thomas et al. (1983) for multiphase flow through naturally fractured reservoirs
based on Barenblatt’s double porous medium concept: one porosity being associated
with the rock matrix and the second one relates to the fractures. In his model,
flow in the primary pores was described by Darcy’s law, while flow in fractures
was described using a generalized Darcy’s type equation. Time-dependent porosity
equations for the rock matrix and the fracture system were derived with the mass
conservation equations to complete the governing equations. Nakornthap and Evans
(1984) later implemented these formulations into a simulator.

Blaskovitch et al. (1983) presented a three-phase, three-dimensional fractured
reservoir simulator with the addition of matrix-to-matrix flow and multicomponent
fluid representation. Litvak (1985) developed a model to incorporate the special
treatment of capillary and gravity forces for the fracture-matrix media into a general
purpose dual-porosity, three-phase, three-dimensional reservoir simulator which was
designed for field applications.

All of these models, originally developed for the study of hydrocarbon reser-
voirs, are concerned essentially with the fluid flow, describing the mechanisms that
take place during reservoir depletion in different ways and with different degrees of

accuracy. The study of the interactions between fluid flow and rock deformability
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properties in naturally fractured reservoir is not common in the oil industry.

2.1.2 Coupled Single Porosity Models

The study of fluid flow in deformable, saturated, porous media as a coupled flow-
deformation phenomenon started with the work of Terzaghi (1943) who developed
a one-dimensional consolidation model. An extension to three-dimensional soil con-
solidation, based on physically consistent assumptions, was given by Biot (1941,
1955, 1956).

Biot presented the first consistent theory formulating the coupled fluid low and
rock deformation processes in fluid-filled porous media, the theory of poroelastic-
ity. Biot’s theory of the mechanics of porous media is a major twentieth century
extension of theoretical continuum mechanics-a generalization of the elasticity the-
ory which, in its final form, incorporated a complete spectrum of thermodynamical
and dissipative effects. It has led to the solution of numerous problems of soil
consolidation, dynamics and wave propagation in acoustics, geophysics, engineer-
ing and applied physics-problems beyond the scope of traditional methods of the
elasticity theory. His first paper established the fundamental field equations for
three-dimensional consolidation of an isotropic model representing the settlement of
soil under load. These equations gave the stresses and displacements of an elastic
matrix, or skeleton, whose voids are filled with a viscous fluid satisfying Darcy’s
law. Whereas the basic theory is simple and straightforward, its implications were
considerable, since it established the conceptual framework from which stems the
generalization of Biot’s later work. Assuming isotropic, linearity, small strains, re-
versibility and an incompressible fluid, a system of four linear partial differential
equations was obtained for the four unknowns u, v, w, and o (displacements of the

solid matrix in the z-, y-, and z-directions and the fluid pressure). These equations
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were second-order in z, y and z; and first-order in ¢; allowed to solve time-dependent
diffusion-type settlement problems for concentrated loads and linear boundary con-
ditions. The properties of this system were determined by four distinct physical
constants. The paper also demonstrated how a suddenly applied load can be solved
in a few lines using elementary Heaviside operational calculus.

Some researchers have studied analytically coupled flow-deformation phenom-
ena in porous media around boreholes. Paslay and Cheatman (1963) studied rock
stresses and steady-state flow rates induced by the pressure gradient associated
with the flow of formation fluid into a borehole for a permeable, elastic material
saturated with an incompressible fluid. Wang and Dusseault (1991) developed a
poro-elastoplastic model considering steady fluid flow for a Mohr-Coulomb strain-
weakening material. McLellan and Wang (1994) extended this model and studied
borehole instability problems. Rudnicky et al. (1987) presented an analytical solu-
tion for elasto-plasticity around a borehole where permeability was allowed to vary
with the radius but symmetry of stresses existed. Detournay and Cheng (1993) used
the poroelasticity theory for a borehole in a non-hydrostatic stress field to study the
transient flow in the coupled problem around a borehole.

Meanwhile, coupled numerical models have also been developed by other re-
searchers such as Zienkiewicz and Shiomi (1984), Schrefler et al. (1990), Li et al.
(1990), and Li and Zienkiewicz (1992). The formulation of these models was devel-
oped within the framework of the continuum theory of mixture, using a spatially-
averaged approach. A typical such model is the one developed by Li et al. (1990)
for immiscible two-phase (water and oil) flow in a deforming porous medium. In this
work, they formulated the governing equations on the basis of the generalized Biot
theory. The primary unknowns are the displacements of the solid skeleton as well as

the pressure and saturation of the wetting fluid. The model considered the effects of
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fluid and matrix compressibilities, interphase mass exchange and capillary pressure.
The mobilities and compressibilities of both fluids phases were assumed to be func-
tions of the porosity, saturation, pressure and temperature. The full mathematical
model consisted of two non-linear mass balance equations for the two fluid phases
and one non-linear equilibrium equation for the total mixture, subjected to Darcy’s
law for multiphase flow and the constraint defining capillary pressure between both
fluids. They assumed that, in the considered two-phase flow, only one phase (water)
is in contact with the solid and that the second phase is entirely contained within
this; hence, making no contact with the solid. A generalized Galerkin procedure
was followed to discretize the governing equations; and an unconditionally stable
direct integration scheme was used to obtain the solution.

Li and Zienkiewicz (1992) extended Li et al. (1990) model to simulate multiphase
flow in deforming porous media. Unconditionally stable and staggered solution
procedures were used and compared for the time-domain numerical solution.

Schrefler and Zhan (1993) developed a fully coupled model for water and air
flows in deformable porous media. Slow transient phenomena (consolidation) were
considered; the model was of the Biot-type and incorporated the capillary pressure
relationship. The finite element method was used for the discretization of the govern-
ing equations and a direct method was used for the solution of the resulting system
of coupled equations. They assumed that air does not dissolve in water. Hence,
this model could not be applied to hydrocarbon systems in which gas can easily
dissolve into and/or escape from the oil phase. Gawin et al. (1997) also presented
a model for numerical simulation of gas and water flow in deformable porous media
on the basis of the desaturation experiments performed by Liakopoulos (1965). It
consists of three balance equations: mass of dry air, mass of water species and linear

momentum of the multiphase medium. An appropriate set of constitutive and state
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equations, as well as some thermodynamic relationships complete the model. In this
model, gas is actually air and can not dissolve into water like in the Schrefler and
Zhan’s (1993) model, but water can change phase from liquid to vapor and/or from
vapor to liquid.

Lewis and Sukirman (1993a) presented an elastoplastic soil model for three-
phase, three-dimensional problems based on Mohr-Coulomb’s yield surface. The
effects of capillary pressure, relative permeability variations and the compressibility
factors of rock and fluids were considered on each of the flowing phases. Biot’s
self-consistent theory was used to develop the governing equations which couple the
equilibrium and continuity equations for a deforming saturated oil reservoir. The
finite element method was applied to obtain simultaneous solutions to the govern-
ing equations where displacements and fluid pressures are the primary unknowns.
The final discretized equations were solved by a direct solver using fully implicit
procedures.

Sun et al. (1997) pointed out that there is some difficulty to deal with the air
pressure boundary problem and air injection volume problem using Li et al. ( 1990)
model because of taking the pressure and the saturation of the wetting phase as
primary unknowns. Hence, they presented a finite element numerical model of two-
phase (water and air) flow in deforming porous media in which the displacements, the
pressures of air and water were taken as primary unknowns. Again air is considered
not dissolving in water.

In their paper, Chin and Prévost (1997) first derived the equations governing
isothermal two-phase fluid flow in a deformable porous medium similar to the ones
derived by Li et al. (1990), but the displacements, the pressures of water and air
were taken as primary unknowns. Then, a computer method based on a multistag-

ger solution strategy was used for numerically solving the coupled equations. The
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full system of coupled equations, defined in the problem domain, was partitioned
into smaller subsystems of equations. Each subsystem was then solved separately,
assuming the unknowns of the other subsystems were temporarily frozen until (se-
quentially and repeatedly in a predetermined sequence) all subsystems converged to
a self-consistent set of solution variables. Based on the cases investigated and the
numerical results obtained, they concluded that this approach was robust, accurate,
and efficient for analyzing coupled field problems; it was also more economical in
the computational cost compared to the conventional simultaneous procedure.
Dagger (1997) developed a two-dimensional explicit Lagrangian finite difference
code, fully-coupled with a two fluid flow system in deformable porous media based
on the model derived by Li et al. (1990). The solid deformations were considered
using the dynamic relaxation procedure which allowed the model to go into the
rock’s post-peak behavior without creating instabilities. The fluid flow equations
were written using mixing laws and the solid was treated as another phase. The
primary variables: pore pressure and water saturations, were obtained using New-
ton’s iteration, or a staggered algorithm, to solve the system of nonlinear equations.
The code was checked numerically against the analytical solution for single phase
flow with consolidation. Examples of coupled fluid flow and rock deformation for a

one-dimensional scenario and for a layered oil reservoir compaction are also given.

2.1.3 Coupled Dual-Porosity Models
Single-Phase Fluid Flow Models

Duguid (1973), Duguid and Abel (1974), and Duguid and Lee (1977) proposed a
coupled flow-deformation model, explicitly considering the effect of matrix defor-
mations on flow regions. In their model, it was assumed that, for a fully saturated

medium, changes in pore volume were equal to the compression of the fluid occupy-
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ing that space. This assumption is valid only for the situation where fluid is trapped
within pores.

Aifantis (1977, 1980) presented a general coupled double-porosity formulation for
modeling single-phase in a deformable fissured porous media based on the theory of
mixtures. Mixture theory usually adopts a thermodynamic framework and, starting
from general constitutive assumptions, produces non-linear governing equations for
consolidation which, in their linearized form, are generalizations of Biot’s equations.
Formulations based on mixture theories are generally useful in practical problems if
non-linear or thermal effects are important.

Wilson and Aifantis (1982) obtained the analytical solutions to the column prob-
lem in hydro-engineering and the borehole problem in petroleum engineering on the
basis of Aifantis’ theory of consolidation with double porosity, which is the extension
from the Biot’s theory of consolidation with single porosity. Khaled et al. (1984)
published a paper to further elaborate on Aifantis’ theory by first providing an alter-
native derivation of his fissured rock equations through a proper extension of Biot’s
classical model of flow in single porosity media. They developed a finite element
methodology based on the Galerkin’s version of the method of weighted residuals
for the numerical solution of the relevant equations. This method was used for
consolidation problems for the first time and provided some advantages over finite
element techniques based on variational principles, such as easy handling of bound-
ary conditions. The above methodology was implemented to numerically solve three
examples, namely the one-dimensional column, the two-dimensional layer, and the
two-dimensional half-space problems.

Valliappan and Khalili-Naghadeh (1990) derived a set of coupled differential
equations governing the behavior of deformable fissured porous media based on the

double porosity concept. The coefficients of these coupled differential equations were
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variables instead of copnstants which is the case in Aifantis’ model. These various
coefficients involved in the formulation were explicitly defined in terms of measurable
physical parameters. The results obtained from the proposed non-linear formulation
were compared with those of previously presented linear formulations.

Elsworth and Bai (1992) and Bai et al. (1993, 1994, 1995) presented a constitu-
tive model to define the linear poroelastic response of fractured media to determine
the influence of dual porosity effects. Bai and Roegiers (1994, 1995) derived the
analytical solutions of single-phase fluid flow and heat flow in deformable fractured
media. This seems to be the first analytical attempt made to couple the fluid flow
and heat flow with solid deformations in a double-porosity fashion. In the model,
Barenblatt et al. original approach was modified to provide a physically more sen-
sible characterization of reservoir storage changes. Their formulae and resuits were
in dimensionless form and could be directly pertinent to petroleum engineering.

Ghafouri and Lewis (1996) proposed a finite element double porosity model for
heterogeneous deformable porous media on the basis of the similar basic assump-
tions to those of previous works, but using a different formulations. Most of their
expressions were based on the physical understanding of the problem but lacked
the support of a rigorous mathematical foundation. The results they obtained were
quite meaningful when compared to the equivalent single porosity model. However,
the obtained trend was significantly different from what Elsworth and Bai (1992)
obtained.

Multiphase Fluid Flow Models (Two- or Three-phase)

Due to complications associated with multiple physical processes and mathemati-
cal representations of a multiphase flow system in deformable fractured reservoirs,

only one paper has been published by Lewis and Ghafouri (1997). Their model is
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an extension to multiphase fluid from the single-phase, double porosity model for

deformable fractured porous media presented by Ghafouri and Lewis (1996).

2.2 Equivalent Porous Media

Another simple approach to modeling a flow system in fractured porous rock is to
treat the entire flow region as an equivalent porous media and adjust the flow co-
efficients accordingly. Such an approach was developed by Marcus (1962), Parsons
(1966), and Snow (1970). It requires only lumped estimates of hydraulic properties,
and, thereby, avoids to problem of detailed characterization of the fracture geom-
etry. Long et al. (1982) applied the theory of flow through fractured rock and
homogeneous anisotropic porous media to determine when a fractured rock behaved

as a continuum:

1. When there is an insignificant change in the value of the equivalent perme-

ability when a small addition or subtraction to the test volume occurs; and,

2. When an equivalent permeability tensor exists which predicts the correct lux

when the direction of a constant gradient is changed.

Khaleel (1987) applied the porous medium equivalent approach to simulate fluid
flow in saturated fractured basalt and predicted flow characteristics. The equiva-
lence was established in terms of the Darcian fluid flux. In evaluating this equiva-
lent porous medium approximation for fluid flow through fractured basalts, a two-
dimensional generation region was selected and fracture patterns were produced
according to postulated descriptions of the real fracture systems. Within a gener-

ation region, a flow region was selected for discrete fracture flow analyses. He got
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a similar conclusion as Long et al. that, from a mathematical standpoint, a frac-
tured basalt can be approximated as an equivalent porous medium if an equivalent
hydraulic conductivity tensor exists which produces the correct fluid flux under an

arbitrary hydraulic gradient direction.

2.3 Single Fracture Models

Some researchers studied the behavior of a single fracture using numerical models.
Conventional analyses (Dietrich et al., 1972; Gale, 1975) assumed that Darcy’s law
was valid for flow in a fracture, as it is for a homogeneous porous media; that is,
the flux is proportional to the pressure gradient. The equivalent permeability of
the fracture is usually derived from the cubic law, which governs fully-developed
laminar flow through parallel plates. Compared to the previous discrete models
which assume the fractures to be rigid, Bawden et al. (1980) proposed a numerical
approach to study the influence of fracture deformations on secondary permeability.
As a alternative, analogue models have been used to analyze the behavior of a
single fracture. Tsang (1984) proposed a model using the analogy of an electrical
resistance network. Walsh (1981) studied the deformations in a fractured rock due
to changes in the fluid pressure and applied stresses, finding the solution to the
transient flow by analogy between heat transfer in a heterogeneous conductive sheet
and deformations in a fractured rock completely filled with an incompressible fluid.
Muralidhar and Long (1987) presented an approach to characterize flow in single
fractures where the governing flow equations are derived from Newton'’s second law
of motion. Navier-Stoke’s equations determined flow for a prescribed pressure drop
and, hence, the permeability of the rock fracture. In their work, the flow was taken

as one-dimensional steady, laminar and incompressible and the numerical scheme
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was general and applicable to both two- and three-dimensional problems.

2.4 Fracture Network Models

Snow (1965, 1970), Hudson and Priest (1979) have studied naturally fractured reser-
voirs with rigid fractures using two-dimensional fracture network models. In the
models, stochastic distributions for the fracture sets characteristics, such as spac-
ing, fracture trace density, orientation, size and thickness, were used to estimate the
permeability of a fractured rock. Long et al. (1985) developed a model for steady
fluid flow in random three-dimensional networks of fractures. The fractures were
assumed as disc-shaped discontinuities in an impermeable matrix. These fractures
can be arbitrarily located within the rock volume and have any desired distribution
of aperture, density and radius orientation. A mixed analytical-numerical technique
was used to calculate the steady flow through the network. Oda (1985) first defined
a crack tensor which is a systemtrical, second-rank tensor relating only to the crack
geometry, i.e. to the crack shape, crack size, aperture and orientation. If not all the
information concerning cracks is available, which is usually the case in practice, a
method using the geometrical probability (stereology) could be employed to predict
the crack tensor for rock masses in situ. Then, he formulated the permeability tensor
in terms of the crack tensor. Other researchers such as Noorishad et al. (1972) and
Ayatollahi et al. (1983) developed fracture network models where fluid and rock

deformation were coupled.
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2.5 Models Comparisons

Typical models reviewed before along with the model developed in this dissertation

are listed in Table 2.2 according to the following three criteria:

1. Porous media is fractured or not;
2. Number of phase the model can handle; and,

3. Fluid flow is coupled with rock deformations or not.

Table 2.2: Comparisons of Models

Developer Year | Porosity | Fluid Phase | Rock Deformation
Barenblatt 1960 Dual Single No
Warren and Root 1963 Dual Single No
Kazemi 1968 Dual Single No
Kazemi et al. 1976 Dual Two No
Thomas et al. 1983 Dual Three No
Li et al. 1990 Single Two Yes
Li and Zienkiewicz 1992 Single Three Yes
Dagger 1997 | Single Two Yes
Wilson and Aifantis | 1982 Dual Single Yes
Elsworth and Bai 1992 Dual Single Yes
Bai and Roegiers 1994 Dual Single Yes
Ghafouri and Lewis | 1996 Dual Single Yes
Lewis and Ghafouri* | 1997 Dual Three Yes
Shu et al. 1998 Dual Two Yes
Meng** 1998 Dual Two Yes
Shu 1999 Dual Two Yes

* Based on the intuitive phenomenological concept;
** A finite element model, parallel to present one.

It is noted, from Table 2.2, that some available models dealing with fractured
media do not take rock deformations into account; others which can simulate de-
formable fractured reservoir consider only single-phase fluid flow; and others in

which two or three phase fluid flow are coupled with rock deformations are unable
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to model fractured porous media. The only model which can handle multiphase
fluid flow in deformable fractured reservoirs was developed by Lewis and Ghafouri
in 1997. However, the model is based on the intuitive phenomenological concept
rather than any theoretical reasoning. Hence, the model presented in this disserta-
tion is the first mathematical model for two-phase fluid flow in deformable fractured
reservoirs in which the set of coupled differential governing equations are rigorously

derived.
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Chapter 3

Governing Equations for
Two-phase Fluid Flow in a
Deformable Fractured Porous
Medium

In this chapter, the equilibrium equations for a solid mixture is provided first. Then,
continuity equations for fluid phases (water and oil in water-oil system, and oil and
gas in oil-gas system) are derived rigorously based on the dual-porosity concept. In
the derivation, the formalism presented in Li et al. (1990) single-porosity model
for two-phase flow (water-oil system) in deforming porous media was creatively ex-
tended to dual-porosity model for two-phase flow (water-oil and oil-gas) in deforming

fractured porous media.

3.1 Equilibrium Equations for Solid Mixtures (Dis-
placement Equations)

Consider a volume of elastic porous medium filled with a homogeneous fluid. The

equilibrium equations for two-dimensional stresses can be obtained by first setting
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the total forces in the z-direction equal to zero (Fig. 3.1):

80'1- 67-1 T
(0',_. + %d:r) dy — o.dy + (TyI + —é;—dy) dz — Tyzdz =0 (3.1)
: do
o +—=dy
ay
., *———ridy
ar
r, +—=dx
7 ax
dy
o, y o +%dx
i dx
A

Figure 3.1: Two-Dimensional Stress Components Acting on a Differential Square.
Canceling out terms yields:

0oz  OTys

0r Oy =0 (32)

Similarly, setting the equilibrium of forces in the y-direction yields:

0oy | OTzy
By A 0 (3.3)
In compact form:
Oty o - _
E 5;;—0, 2—1,2- (3.4)
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The total stress 7;; can be expressed as:
Tij = Oij — aPby; (3.9)

where o;; is referred to as the effective stress acting on the solid skeleton, P is the
fluid pressure, and « is a physical constant.

The effective stress after an elapsed time t can be expressed as:
i = G'?j + Ao—ij (3.6)

where a?j is the initial effective stress and Auoy; is the effective stress increment.
If it is assumed that the porous medium is isotropic, then the linear elastic

stress-strain relation takes the form:
AO’,'J- = QGAE{J' + /\AEkk(Sij (3.7)

where Aeg;; is the incremental strain of the solid skeleton; G and A are Lamé’s

constants. The parameter G is the shear modulus and is defined as:

G = 2(1E—+u) (3.8)
and A is identified as:
A= (1+ uﬁlll — 2v) (3.9)
where E is Young’s modulus and v is Poisson’s ratio for the solid skeleton.
In general,
Agij; =€ — €y (3.10)

where 5% is the initial strain, which may be caused by such factors as shrinkage,
temperature changes, etc. It is assumed in this dissertation that these initial strains
are negligible; hence,

Ag;j = gi5 (3.11)
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Combining Egs. (3.2)-(3.7) and (3.11) and assuming o; =0,

64—.1] 85]']‘ _ 8P

2052, axJ azi “or;

=0 (3.12)

In the case of small deformations, the strain components are related to the

displacements by the following linearized relation:

1 (Ou; Ou;

where u; is the incremental displacement vector of the solid skeleton. Plugging Eq.

(3.13) into (3.12) yields:

5%u 0%u; oP
(A+G) 15 +Gax,ax, aazi =0 (3.14)

This equation forms the required governing equations for the solid matrix dis-

placements. Expanding it to two dimensions gives:

8%u 0% 8*u  O%u oP

A+ G) (a 5+ axay) +G (_aa;2 + —6y2) —ag—= 0 (3.15)
0u S v 0% aP

(/\-l-G) (a a 6?) +G(@+a—y2) OZEEJ-—O (3.16)

Egs. (3.15) and (3.16) are modified to the following forms to be applied to

fractured reservoir:

0%u 8% 0*u  B%*u 0P, an

A+G) (3 5 + ———axay) ('é; + 3_y2) - am——ax Qf—7— py (3.17)
Py v v v 0P, P

A +G) (5254-6'—!/2)-{-(}(%34-%5)—&"; 5y — By =0 (3.18)

where subscripts, m and f, represent the matrix and fractures, respectively; A and
G are Lamé's constants, « is the fluid pressure ratio factor or Biot constant, v and
v are the solid displacements in the z- and y-directions, respectively; and P is the

fluid pressure.
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3.2 Continuity equations for fluid phases

3.2.1 Oil-water system

The continuity equation for the water phase (w) in the matrix (m) is derived, as
an example, in this section. The original continuity equation for the water phase is

given by:
a(xbmswmpwm + a¢m‘S’wmpw-m.l'jwrn.i
ot 3z,~

where ¢, is the porosity of the matrix, S, is the water saturation in the matrix,

=0 (3.19)

Pwm iS the water density in the matrix and Uy, is the intrinsic (real) velocity for
the water phase in the matrix.
If the solid is considered undeformable, Darcy’s velocity for water in more than

one phase system is defined as:
Wymi = ¢mSmewmi (3.20)

In the case where the solid deformations are considered, the above equation
should be redefined as:

84 is the solid moving velocity.

where u;=

According to the definition in Eq. (3.21), Eq. (3.19) can be written as:

5t T 6z ox

=0 (3.22)

Now, the mass conservation equation for the solid is given by:

0(1 —@)ps  O(1 — ¢)ps s
ot 6.'1,'.,;

=0 (3.23)

where ¢ is the total porosity of the porous media, which is equal to the sum of the

matrix porosity ¢, and the fracture porosity ¢y; i.e.:

¢ = ¢pm + &5 (3.24)
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Expanding and rearranging Eq. (3.23) yields:

96 . 96 _1-9 (9p. . Op, N1 .
—3?_*_ e 31',— - Ps ( ot T a:z:i) + (1 - O) axi (3“‘3)

The following substantial time differential operator:

D o . 8
Et- = 55'1' U; 6_:1:, (3.26)

is adopted to simplify the expression; and Eq. (3.25) can be reduced to:

D¢ _ 1—¢ Dp, 9 u;

U
_ _ 27
Dt~ p Dt TG (3:27)
or,
D¢. 1-¢Dp, , . du D,
Dt~ p, Dt +(1-9) Oz; Dt (3:28)
Expanding Eq. (3.22) gives:
D Puwm D um D ¢m
o u; O PumW;
+PmSwmPum oz + oz, 0 (3.29)

Substituting Eq. (3.28) into Eq. (3.29), the following equation is obtained:

Dpum DSym

1-—- ¢DP3
G Swm Dt + GmPum

Dt +Swmpunn Ds Dt

D(xéf apwm'wi
e Surm. wm
P Dt + Ba:i

0

u;
a.’lti

+Suwmpum(l — ¢5) =0 (3.30)

Another equation relating the change in fracture porosity to the change in fluid
pressures is required. This relationship can be derived using the definitions of ¢ and

V:
_Y
=

V=V,+Vi+V, (3.32)

bs (3.31)
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where V,,, V;, V; and V are the volumes of fluids in the matrix and in the frac-
ture, the volume of solid and the bulk volume of the porous medium, respectively.

Differentiation of Eqgs. (3.31) and (3.32) with respect to substantial time yields:

D¢y 1 [DVy DV]
DtV { Dt~ “ D (3.33)
DV DV, DVy DV;
Dt ~ Dt | Dt ' Dt (3:34)
Combining the above two equations gives:
D¢; 1 DVf (DVm DVS)]
22— lu-en Tl -0 (G + 5 (3.35)
By definition of fluid compressibility, one has:
1 DV, DP,
V. Dt =—Cnhp (3.36)
1 DVy DPs
7, Crop; (3.37)

where C,,, and Cy are the comprehensive compressibilities for fluids in the matrix
and the fractures, respectively; hence, the saturation-related coefficients are given
by:

Cm = CoSom + CwSum (3.38)

C'f = CoSof -+ Cwaf (339)

where C, and C,, are the compressibilities for oil and water, respectively defined as:

10V,

C, = V. 9P (3.40)
1 0V,

Cuw= V. 5P (3.41)

Combining of Eqgs. (3.36), (3.37) and applying the definition of porosity yields:

DV, DP
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DV; DP;
_Bt— = —C;¢; Vﬁ (3.43)

Since (Meng, 1998),

1Dps _ 1DV
ps Dt V. Dt
1 amf—ngPm amf—quDPf .
= — {1 —ams) Ui .
1—¢[ K, Dt T K Dt (o)t (344)
QG
mf = 4
A (3.45)

Hence, one has:

D‘/s_ amf—¢5DPm_amf—~¢DPf_
Dt =V [ K. Dt Kws Dt L7 om) (3-46)
Substituting Eqgs. (3.42), (3.43) and (3.46) into Eq. (3.35) gives:
D¢; B DPm , Gms—¢ DPp
oy = ~9sCr(l ¢f) L+ $mdsCom Dt TRk Dt
O DP .
o om=? th 811 ~ i) (3.47)
Now, Egs. (3.44) and (3.47) can be substituted into Eq. (3.30) to give:
Dpym DSym :
OmSuwm Dt + ¢mpme + amew'mpwm(l - ¢f) Ui i
Omf — ¢ _ DP
+Swmpw1n [ Ks (1 ¢f) ¢m¢fc } Dt
+Swm Pum [ Ks (L8 +e:(1 ¢f)Cf] Dt T an -0 (348)

D

' Dt au then, the continuity

Note that in general u; % < % and, therefore

equation for water phase in matrix becomes:

Opuwm 8Sum :
¢ Swm gt +¢m Pum 8t +amemewm(1—¢f) Ui

0P,
(1_¢f) ¢m¢fc ] Ot

AUmf —

+SwmPum [

apf apwm'wu,vm-i _
5T AT =0 (3.49)

Qmf — @
K.s

+SwomPum [ (1—¢5)+0s1— d’f)Cf}
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In a dual-porosity model, one fluid can move from the matrix to the fractures
or from the fractures to the matrix, depending on the pressure difference between
these two continua for that fluid phase. Therefore, a transfer term (mass exchange
term) is needed in Eq. (3.49) to complete the continuity equation. The transfer

term for water and oil is calculated by:

km. krwm

Qu =& pum——— (Pum — Puy) (3.50)
_ knkeom
Qo =& pom o (Pom — Poy) (3.51)

where @ is the transfer coefficient and p is the viscosity.
The final continuity equation for the water phase in the matrix of the deforming

porous media has the following form:

0pum 0Sum

OmSwm—— ot + PmPum—Ff— ot + amewmpwm(l - ¢f) i‘t,z

Amf — @ oP,

+Swmpwm l: K (]- - ¢f) ¢m¢f0 } ot

™ oP
+Sumpom [‘* L2 (1 07) + 4501~ 87105 5

Hwm Ozx;

Similarly, the continuity equation for oil phase in the matrix:

OPom 0Som .
OmSom 5 + G =50 + Ot SomPom (1 = $7) s

+Sompom |:a ;{ ¢ (1 - ¢f) ¢m¢fc ] 8t
Om OP,
+SomPom [ I\).: (1—¢5) +¢5(1— ¢f)0f} atf
- mkrom apO‘l'n.'wo'm.z _
+ & Pom P (Porn — Pog) + 3—1:, =0 (3.53)

The continuity equation for water phase in the fracture can be written as:

Opw O0Swy
BrSus gt + b1Pur et + CmsSuspuy (L = ) i
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, oP
+SwfPuf [T (1—0m)— ¢m¢fo] —L

ot

Qmf — , 3Pm
+Swfpwf [—é s ¢ (1 - ¢m) + ¢m(1 - ,Om)Cm} 7
- k-m.krwm _ apwfwwfi _
+ & pum = — (Puf — Pum) + o = 0 (3.54)

The continuity equation for oil phase in the fractures is as follows:

fad a [+ a‘S,O .
&fSof gtf + ¢fP0fo + ameofpof(l — @m) Ui i

op,
ot

0P,
ot

+Sofpof [%fT—(p (1 - ¢m) - ¢m¢fcf:|
+Sofpof [’% (1 - (bm) + ¢m(1 - ¢m)0m]
apofwofi _

KrmKeromn
2 (Pup — Pom) + 2 =0 (3.55)

+ & Pom

Consequently, there are a total of ten unknowns, which are: solid displacements

in z- and y- directions © and v, fluid pressures and saturations in matrix and frac-

tures: Pym, Pom, Swm, Som: Pufs Pofs Swf, Sof. However, one has only six equations,

ie.: (3.17), (3.18), (3.52), (3.53), (3.54), (3.55). Therefore, the following four aux-

iliary equations for saturation and capillary pressure relationships in matrix and
fractures are necessary to solve the problem.

For the matrix:

Suwm + Som =1 (3.56)
Pen = Pon — Pum (3.57)
For the fractures:
Swf+Sop=1 (3.58)
Pup = Pog — Puy (3.59)
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3.2.2 Darcy’s law

w;, defined in Eq. (3.21) is calculated using Darcy’s law as:

_ kk. 8P
wi= =T e (3.60)

where k is the absolute permeability of the medium, k. is the relative permeability

of the medium to the fluid phase, and u is the viscosity of the fuid.

3.2.3 Oil-gas system

Oil-gas system in rigid porous media

The generalized flow equation for component 7 in a three-phase environment is given

by:
0 8
_'a?i(cigpgug + Ciopo'uo + Ciwpwuw) = §[¢(Cigp959 + CiopoS'o + Cinwa)] (3.61)

Where C;, is the mass fraction of the ith component in the gas phase, C;, is the
mass fraction of the ith component in the oil phase and Cj,, is the mass fraction of
the ith component in the water phase.

This equation for oil-gas system is simplified to:

_9

3}
£ (Cigpgttq + Ciopolle) = g[q’)(c,-gpgsg + CiopoS.,j] (3.62)

For gas component:

| @

_aixi(C'ggpgug + CgoPolio) = 5 [#(CygPgSg + CgopoSs)) (3.63)
For oil component:
9 8
~ 5z, (CoaPytia + Coopotio) = 7:18(CogpySy + CaopoSo)] (3.64)
By definition:
Cog =1 (3.65)
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m

_ g
Coo = e (3.66)
Cog =0 (3.67)

mo
Coo = m (3.68)

where m, and m, are the masses of oil and gas in oil phase, respectively. Their

respective volumes are represented by V, and V.

Since:
Me+ ™M
Vo=—"—"-2 (3.69)
Po
Vo Vo os(Mo +m
Bo=—=7=p ( 9) (3'70)
Vos 22 MoPo
Where V,, is the volume of oil measured at standard conditions.
Hence,
— mO — pOS
Coo = me+my _ poB. (3.71)
Since:
VS Eg‘ m os
R, = -8 = £ox _ ThoPos (3.72)
Vos 02 Mopgs
where Vj; is the volume of gas measured at standard conditions.
Hence,
Rsmo S
my = —ofas (3.73)
Pos
From Eq. (3.70),
B,m,po
My +Mmy = (3.74)
pOS
So, A
smopgs
— mg — Pos — Rspgs -
Cgo m, + mg Bomno Po Bopo (3.70)

Pos

Substitution of Eqs. (3.65) and (3.75) into (3.63) gives the governing equation

for the gas component:

0 Rspys 0 Rpys
~ o2 (pgug + Bog uo) =% [qﬁ (pgSg + ——Bag S'o)] (3.76)
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Similarly, substitution of Egs. (3.67) and (3.71) into (3.64) gives the equation

XARACS @

for the oil component:

Oil-Gas System in Deformable Porous Media

Governing equation for gas The governing equation for gas in the matrix is

derived first. Eq. (3.76) is rewritten to be applied to dual porosity model:

6 Rsmpgsm _a_ Rsmpgsm ) —_
5 <¢mpnggm +¢m_——an Som) + 5z, (pgmugm-i- B, Uom | =0 (3.78)

Darcy’s velocities for gas and oil in undeformable solid system are:

Uom = ¢mSo-mUami (3‘80)

Plugging Eqgs. (3.79) and (3.80) into Eq. (3.78) gives

9 RomPgsm
ot (¢mpgmsgm + Pm Tm:_Sm)
_a Rs-mp s

If the solid is considered deformable, Darcy’s velocities for gas and oil are defined

Wemi = PmSgm (Ugmi— i) (3.82)
Manipulating the above equations yields:
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Plugging Eqs. (3.84) and (3.85) into (3.81) yields:

0

Rsm
at (¢m gmPgm + OmS, omPgsm Bom)

1o} )
+6_:L‘ (¢mngPgm U; +Pgmwgmi)

Rsm . Rsm
B.. U; +pgmmwmni) =0 (3.86)

Rearranging and adopting the substantial time differential operator defined in
Eq. (3.26), the following equation is obtained:

Dpym DSgm D¢, du; 8
qung Dt +¢m gm. Dt +ngpgm. Dt +¢m gmpgm axi +a_xi(pgmwgmi)
Rem DSom Rom Dém
+@mSom om 7 (pgsm m) + Pmp gmBom Dt + Somp gmB D
Rsm 8 i‘i 0 Rsm
+PmSomPgsm B, Oz; + oz, (pgsm°B:womi) =0 (3.87)
Plugging in Eq. (3.28) and defining:
Rem
R, = pgsmB—‘ (388)
gives:
ngm Dng ¢ Dps a 'l.l,i

GmSgm Dt +¢mPgm7+5nggm oo Dt + SgmpPgm (1 — )

i

D¢y ¥ DR,

~SgmPgm——i- Dt (Pg‘mwgmt) + &mSom 7 + ¢mRm—‘_
, - ¢ Dps
"|‘Soran Ds Dt + Som-Rm (1 -
5. RmD¢f ) =0 (3.89)

By substituting Egs. (3.44) and (3.46) into Eq. (3.89), the equation for gas

becomes:

apgm OSgm i OR,
¢rn at + ¢mpgm gt + oz; (pgmwymi) + ¢mSom—6't_
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O0Som 0 )
+¢mR‘m,_a‘t— + 3 ) + (ngpgm + SomRm) (1 - ¢f) Cmyf Uig

O 0P,
- (ngpgm + SamRm) |: §{s (éf - 1) +d’m¢fc ] ot
Om OFP¢
~ Sy + Son) 2222 67 - 1) =01 1= o) 0| FL =0 @30)
The term aR”‘ in Eq. (3.90)can be determined as:
ORm _ Q( Eﬁ)
at ~ ot \"*"B,,
0 (Rem
= romz (57)
. 1 ORsn  Rsm 0Bom
= Pem\B.. &t B ot
_ Pgsm [ ORsm OFym  Rsm 0Bom 0Fom
B (apgm Ot  Bom OPwy Ot (3:1)
For the term Q%’tﬂ,
Opgm _ O [Pgsm
ot Ot \ Bgm
Pgsm 0B
Bz 0Ot
Pgsm OBgm OP,
0Py Ot (3:92)
Since,
o _Mk,.gm 0F;m
g = =2 IS (3.93)
and,
Pgsm
Pgm = E‘}’ (3.94)
So,
0 0 |pgem [ Emkrgm OPgm
Oz; (Pgmtrgms) = Oz; [Bym( Hom Ox;
- kmkrgm 0Fgm
= TPempe, <ugmBgm Ox; (3.95)
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Since,
kmKrom OPom
Hom a z;

Womi =

(3.96)

and,
Bom
Bom

) _ _Q_ Rsm _kmkromapom
- 8:1;,— pgsmBm Hom 6:1:,»

_ _8_ Ry kmkrom OFom
pg’"‘azi Bom  pPom Oz

-Rm. = Pgsm (3.97)

So,

(3.98)

Plugging Eqs. (3.91), (3.92), (3.95), and (3.98) into Eq. (3.90) yields:

0Sm O ( kmkrgm OPpm 8Som
¢mpgm ot Pgsmaxi (#gmBgm oz; ) ¢m.Rm—_

8 ( Rum knkrom 0Pom
Pgsm 0z; \ Bom  lom Ox;

Som ORem _ Sm dBym\ 9Pym
Bon 0P, B2 OP,.) 0ot
Ram 8Borm, 0Porn,

BZ, 0P, ot

+ (SgmPgm + SomBm) (1 — @f) @y Uis

+@mPgsm (

_(bmpgsmsom

0P,
ot

— (Sgmpgm + SomRm) [am;{ (95 — 1) + ¢mdsChm ]

= St + Sonin) | “H L (00 = 671 = 00| G =0 399)

Similar to a water-oil system in a dual-porosity model, a transfer term is neeced
to complete the continuity equation. Since gas exist in two forms: free and solution

gas, the transfer term for gas consists of two terms; i.e.

 mbegm

Qg =& pgm

Emkrom

omBom

(Pgm — Pgf) + & pgmBsm (Pom — Poy) (3.100)

QmB gm
The first term is the mass exchange between the matrix and the fractures for free

gas and the second term is the gas mass exchange caused by oil mass exchange.
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The final continuity equation for the gas phase in the matrix of a deforming

porous medium is as follows:

. 9Sm 8 [ kmkrgm OPym
OmPom =5 = Pesmpe, (pgmBgm z;
0 [ Rem kmkrom OFom
—pgs’"ax,— (Bam tom Oy )
o (Sm ORem  Sgm aBgm) 8Py
P9\ By 0Pym B2, 0Py ) 0t

g Rom 9Bom 8Poms
~PmPgsmSom B2 5P 5

9Som
) + ¢mR1n7

+ (SgmPgm + SomBm) (L — ¢5) ctms Uiz

@ 0P,
(¢ — 1)+ ¢m¢fcm:| rTe

— (Sympam + SomFir) [“"‘;‘{

OP;

— (SgmPgm + SomBRm) [a"}é (b5 —1) — &5 (L — ¢5) Cf} e

km krgm = KmKrom (Pom

+ & Pgm (Pgm - ng) + a ,ngRsm Po_f) =0 (3101)

KgmBgm Bom Bom

The final continuity equation for the gas phase in the fractures can be derived

in a similar way:

0S,s 8 [ krkror 0Py 0S,s
brPer 5y~ Pool B, (ynggf oz, ) O e

~Past axi Bof Hof a:I:i

o Sof ORss _ Sqp OBgr\ 0Fys
1Posf \ B,y 8P,y B2, 0P, ) ot
R.; 8B,; 0Py
~bsperSer B2 BB, Bt

+ (Sgfpgs + SosRy) (1 — bm) Qg Uiy

— (SgsPgs + Sor Ry) [amf ($m — 1) + ¢m¢fcf]

8Py
ot

~ (Sp1tos + SurBs) 222 (= 1) = 8 (1= 8 | T2
HgmDBgm omom
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Governing equation for oil From Eq. (3.77), the governing equation for oil in

the matrix is given by:

6 uo—zn a s Som
"oz (Bm) ~ ot (q’"‘Bom) (3.103)
Moving the right-hand side item to the left and changing the sign yields:
0 Som 0 (Uom\ _
(i) ()

Darcy’s velocity for oil in an undeformable solid system is again:

Plugging this equation into Eq. (3.104) gives:

at (¢mBom) + Oz; ( Bom ) =0 (3.106)

Darcy’s velocity for oil in a deformable solid system is:

That is,
PmSomUomi = Womi + PmSom U (3.108)

Substituting the above equation into Eq. (3.106) yields:

0 Som o Som . 0 Womi _

Expanding it gives:

D/ 1 Om DSom = Som Dom
¢”‘S""‘Dt (Bom> + B,n. Dt + B,m. Dt

Som_ 0 'l:L,; 3 Womi _
tom B, oz, | bz (Bm> =0 (3.110)

Plugging Eq. (3.28) into Eq. (3.110) gives:

D/ 1 ¢m DSom = Som 1 — ¢ Dp;
¢"‘S°"‘Dt (Bom) B,n Dt +B,,m ps Dt
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+

Som( )auz_somDéf_*_ a (womz)_o
B, Y70 5 B, Dt tan\B..) "

Plugging Eqs. (3.44) and (3.47) into Eq. (3.111) yields:

¢mSom.'a_t (Bm) + Bm It + Bom. (1 - ¢f) Omyf Uiz
1 Amf — 8P

_ Som_ l:amf

an 8 Wormni
Bom | Kgps (¢r—1) = ¢f(1_¢f)cf] 5+ ( )=0

axi Bom
For the term%(ao#m),
Q(_1_> _ __L 9Bem
3 \B..) ~ B ot
1 9Bom Py
BZ. 8P, ot

For the term a_i? (%ﬁi)’

aiL‘i Bom - Ba:i /.LomBom 6:1:,-
Plugging Egs. (3.113) and (3.114) into Eq. (3.112) gives:

1 9Som 8 ( kmkrom OPom
Bom. at aZL'i ;uomBom. 617,;

Pm

+Som—— (1 — @f) Qg Uiy

B 1 8B, 0P,
OmSomBa Bp,. . Ot

1

~Som [“””}c (¢f—1)+¢m¢f0]

0P,
ot

1 amf_¢ an_
—SamBomI: %5 (¢f—1)—¢f(1~¢f)cf}§—

(3.111)

(3.112)

(3.113)

(3.114)

(3.115)

The mass transfer term for oil between matrix and fractures is calculated by:

0, — g Fhrem

(Pom — Fog)

l‘LOYTlO‘ITl
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The final continuity equation fcr oil in the matrix can be written as:

5L 0Som _ 0 (kmkmm apm>

B,n Ot 0z; \ fomBom O0;

1 .
+Som—— (1 — @5) Oty Uiz

Bom
1 0Bom OPom
B2 9P, Ot

—¢mSom
0P,
ot

- P
—Som L [amf ¢ (65 — 1) — &7 (1 — é5) Cf} %’i

1 mf —
S [ 222 67 = 1)+ 8 Co

Bom | knS

kmkrom
a—" (P,.—P,)=0
+allomBom ( f)

The final continuity equation for oil in the fractures is as follows:

oL 0Sor _ 8 [ kskroy OPyf
fBof ot Bx,- ,U,ofBof a:Ei
+Sof Bof (1 - ¢m) Qmf i"‘.f’:
1 BBof 8P,,f
L |om—0 9Fy
—SOfBof [ an (¢m 1) + ¢m¢foJ at
1 Cmf — qb _ _ _ BPm
SOf Bof [ ks (¢m 1) ¢m (1 ¢m) ijl at

+a FomKerom (Pof — Pom) =0

)u'o-morn

(3.117)

(3.118)

Four auxiliary equations are needed to solve the problem, i.e., saturation and

capillary pressure relationships in matrix and fracture.
For the matrix:

Sgm + Som =1

P = Pym — Pom
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For the fractures:

Syf + Sop = 1 (3.121)

P = Py — Py (3.122)
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Chapter 4

Numerical Implementation

Numerical methods must be applied for those problems whose analytical solutions
are impossible to obtain. A differential equation expresses a relationship between a
function and its derivatives over a continuum; and, therefore, really represents an
infinite number of equations with an infinite number of unknowns.

Numerical solutions require only the more modest ability to solve a finite number
of equations for a finite number of unknowns. In order to use this ability, one needs
to construct a finite system of equations, the solution to which has some relationship
with the original infinite system. This proceés is known as discretization.

Discretization methods fall into two main classes: those methods that approx-
imate the original differential equation itself (usually known as finite difference
methods), and those that directly approximate the solution by a function from
a finite-dimensional space, using the original differential equation to define the free
parameters involved (this group includes the finite element method).

There are currently five widely used numerical methods:

1. Finite difference methods;
2. Galerkin or variational finite element methods;

3. Collocation methods;
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4. Method of characteristics; and,

5. Boundary element methods.

These methods are closely related. In several cases the finite difference, finite
element, and collocation methods yield the same approximation. The method of
characteristics is a variant of the finite difference method and is particularly suitable
for solving hyperbolic equations. The boundary element method, a variant of the
conventional finite element method, is especially useful in the solution of elliptic
equation for which Green’s functions exist.

The finite difference and finite element methods are the two most popular numer-
ical approaches for the simulation of reservoir systems. They appear superficially
different but are, in fact, closely related. The finite element starts with a variational
statement of the problem and introduces piecewise definitions of the functions de-
fined by a set of meshpoint values. The finite difference method starts with a
differential statement of the problem and proceeds to replace the derivatives with
their discrete analogs.

Both methods result in a set of algebraic equations relating a discrete set of
variables in place of the relations in the continuous variables. These algebraic equa-
tions are remarkably similar and provide the basis for identifying the methods as
essentially similar.

There are two avenues of approach to the simulation of pressure propagation,
and mass and energy transport in fractured reservoirs. One requires identifica-
tion and mathematical definition of the geometry of each fracture in the porous
medium. The second assumes the fractures and porous blocks represent two over-
lapping continua. Finite element methods have been applied to solve the equations
arising from both models (Li et al, 1990; Lewis and Ghafouri, 1997) as well as

other similar reservoir modeling problems (Zienkiewicz and Parekh, 1970; Neumann

46



and Witherspoon, 1970; Lewis and Schrefler, 1987; Lewis and Sukirman, 1993a and
1993b). The flexibility inherent in the finite element approach is particularly useful
in the discrete fracture model. On the other hand, the finite difference methods have
a justifiable attraction because of their simplicity and computational efficiency for
complex and nonlinear problems (Huyakorn and Pinder, 1983). However, it is noted
from the literature review that finite difference methods have never been applied to
coupled fractured reservoir models. One of the aims of this dissertation is to test

the feasibility of applying such an approach to this kind of models.

4.1 Finite Difference Formulae for Derivatives
The following equations can be derived from the Taylor series:

1. Forward difference in time:

of _ fi5t — fi
at At (4.1)
2. Central difference in space:
Of _ firrj— fi-1j
8z 2Az (42)
Of  fijr1— fij—1
2L g JWIT 4.
Oy 2Ay (4.3)
% f firrj — 2fij + fi-rj
axz - (A:L‘)2 (4'4)
9*f _ figer —2fi5+ fij— (4.5)
dy? (Ay)? '
3. Mixed partial differential derivatives:
O*f  firrjer — ficrger — firrj—1 + fim1-1 (4.6)

O0zly 4AzAy
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£1 1
O%f  fivv; — fha; — i+

= 4.7
Bzt 2ATAL (47
o f _ R R S S (4.8)
Oyot 2AyAt ’

The pressures in the matrix and in the fractures are saturation-averaged pres-

sures of water and oil in that continuum; i.e.:
P, = SomPom + SumPum (4.9)

Pf = SofPof + Swawf (4'10)

Differentiating Egs. (4.9) and (4.10) with respect to space (for example, z—direction)
yields:

0P, OP,m OSom OP,m OSwm

oz = Som oz + Fom oz + Sm oz + Pum oz (4.11)
0P 0Py 0Sof OPy¢ O0Sws
9z oz + For oz + S oz + Fur oz (+12)

4.2 Finite Difference Approximation of Equilib-
rium Equations

Based on the finite difference formulae provided in section 5.1, Eq. (3.17) (first

equilibrium equation for solid) in finite difference discretization is written as:

n+1 n+1 n+1 n+1 n+1 n+1 n+1
A+G) Uiy — 27 %D Ve~ Yirni—1 ~ Vi T Vs
(Az)? dAzAy

o [yt uith - 2uf 4 ]
2 2
(Az) (Ay)
p"'*'!l...pnﬂl_ +.11._ +.11.
@ S, omt+1,J omi—1,7 omi+l,7 omi—1,7
Fam ( ™ oAz + Pom 9Az
1 1
+S pz-:;u'-i—l,j - sz-ni—u +p Snunté-o-l,j - Snwf.*r_&—l,j
wm 2Az wm 2Az
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n41 n+1 Sm-i—l n+1

oy (Sofpofi-i—l,j — Dofi-1,j e ofi+l,j ofi—1,j

2Azx Pof 2Azx
n+1 n41 n+1 +1
Pyrit1j ~ Pwfi-1,5 Swi-i—,'—SZi—,'
St il el e ") =0 (4.13)

It can be simplified to:

—2(a1 + a2)uij + arUir1,j + C1Ui—1 ; + G2Ui i1 + Gl i1 + Q3Vioy i1
—Q3V;_1,j+1 t Q3Vit1,j+1 — A3Vit1j—1 — C4Pmi-1,j T @4Pmi+1,j — A5Dfi-1,j

+aspfir1j — G6ijSmi-1j T 6i,jSmi+1,j — @7ijSfi-1,; + Q73S fir1s

= agij(Poni+lj — Demi=1j) + Qij(Pefi+1,j — Pefi-1,7) (4.14)
where,
__A+3G 26 A+GC
1= (Az)?’ 2= (Ay)?’ 37 4AzAy
Gy = 2m g = 2
T oAz P 2Az
(07 Otf
agij = '2A_$pcmi,j: arij = Epcfi,j
Am af
agij = EA_a;(l = Smij)y a9i; = 51— Srig) (4.15)

Similarly, Eq. (3.18) (second equilibrium equation for solid) becomes:

—2(by + ba)v;j + brvipr; + bivi1j + bavijun + bovi i1 + b3
—b3ui—1 j41 + b3Uisy je1 — b3Uig1j—1 — 04Drmij—1 + 0aPmij+1 — bsDfij-1

+bspsi 1 — beijSmij—1 + beijSmij+1 — brijSfij—1 + b7i5Sfi ja1

= bSi,j(pcrni,j+l - pcmij——l) + bgia’ (Pcfi.j+1 - pCfiJ—l) (4- 16)
where,
b =_2§'_ b =)\+2G by = A+ G
YT (A2 2T (Ay)?2 ! T 4AzAy
by = iﬂi, 5 = &,
2Ay 2Ay

Cm Qy
beij = mpcmi,j, brij; = 2—ijp°ﬁ’j
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Um

(a4
bSi,]' = Q—A'Z(l - Smi'j)y bg."'j = ﬁy—(]_ - Sf1,]) (4.17)

4.3 Finite Difference Approximation of Continu-
ity Equations

4.3.1 Water-Oil System

Applying the chain rule to the derivative of density to time term in the governing

equation for water in matrix (Eq. (3.52)) leads to the following:

apw apw 0P, w OP, w
ot ~ B, ot~ "Cva (4.18)
where C,, is the compressibility of water, i.e.:
1 Opy
w = oo 0P, (4.19)

The term Q%:"‘ in the governing equation consists of two parts in two dimensions:

Opuwi _ Opuw: + O0puwy

5z, oz 5y (420)
Since,
kmKkrwm O Pum
Wy = — v oz (4.21)
S0,
Opuw: _ 8 (_ kmkm O Pum
Oz = -\ P oz

-~ )

9,
oz

_ L[ _ (A 8Pwm)
A - a"’ wipg N 0% Jiap;
_ L
Az

w-mz+lg Pwmi,j Pwmi—{-lj - Pwmi,j
w::m1+1/ 2,5 Az - )‘w:rmi+1/ 2,5 Az
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= - [Twmi-i-l/?.j (Puymi+1,j — Pumij)

— Twami-1/2,j (Purmij — Pwm.i—l,j)] (4.22)
where,
km ™m
N = g o (4.23)
[
A
Tzm = 4.24
Similarly,
Op,w.
_Pay_y = [Twymi,j+1/2 (Pwmi,j+1 - Purrm,]) wymz,;—i/‘) (Pwsz Pwmi,j—l)]
(4.25)

Then, Eq. (3.52) (the continuity equation for the water phase in the matrix) in

finite difference discretization can be written as:

n+ n+1 n+l n+1
—Lwxmi+1/2,f (Pwm1+1 g Pw-m.z ]) + Tw:z:mi—l/Z‘J (P‘UJTMJ Pw‘m"—l J)

—Trwamij+1/2 (PS;}J-H — Poit ,) + Twzmij—1/2 (Pw:z},} Poii- )

P;H-I Pn . ¢ Sn+1 _ Sum
At mPum ™A

Swm n+1 n Pw"n +1 Sam- n+1 n
+Bl,m A (Port— P2 )+ Blum At (Sor —Spm) + Blym At (P P2 )

+PmSumPuwmCum

Pom. Sw i n Pw
+Blum R (Sontt = S3) + Blum = (Pof' = Piy) + Blom a7 (Suf! = Si)

So T P
+B2um ot (Pof = Ply) & Bum (S5 = S3y)

B3 uih; — ufy — U Ul + Vi — Vi — Vi VR
wm 2AzAtL 2AyAt
+Bdym (PRt — P2Y) =0 (4.26)
where,
am
Omf— @
B2,m = SumPum [—K[—s— (b — 1) + ¢r (1 — y) Cf] (4.28)
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B3wm = Qmf (]. - ¢f) Swmpwm (429)
kmkrwm

wm

B4wm = QPwm

It can be further simplified to:

C15:,jPmi,j — Cli jPmi+1,j — C2i,jPmi—1,7 — C3ijPmi j+1 — C4i jPmi j—1
+(c10ij — Crij)Pfij + C8ijUit1,j — C8ijUi—1,j + CoijVij+1 — CoijVij—1
“+C114,jSmi,j + €127 fij

= C14i,jPmi,j + C10:,jPfij + C114,79mi,j + C12i,jSfij + Csi jUit1j

—Cgi jUi—1,j T C9i,jVij+1 — C9ijVij—1 + C13i,jPcmi,j — Cli,jPemi+1j

—C2i,jPermi—1,j — C3i,jPemi,j+1 — C4ijPemi,j~1 — Cri,jPcfij (4.31)
where,
cli,j = (Ax)z( uwm )i—i—%,j’ c2i'j - (A:I:)z( /-Lumz )i—%,j
.
1,5 (Ay)? Liwm ttg? A (Ay)? Hum 772
PmCuwPuws
C5id = A; (L — Smi;)

1- mi wmi,j m
coey = (LSl {a =2 (-1 - ¢m¢fcm}

C71.,_7 — al\m(pw;nkﬁum) i
_amf(1—¢y) _ - _ams(1—9¢y) _
Cij = — IALAE [Pum(1 Sm)]i,j7 Coij = 20y At [puwm (1 Sm)]i,j

Cl0ij = pwm(lAt m‘l,J) I:a,,}é (¢f _ 1) + ¢f (1 _ be) Cf]

Pm

C11ij = CoijPemij — Ay Puwmijy C12ij = C10i5Pefij
C13ij = C1i,j + C2i,j + C3ij + Caij + Crij

Ci4i,j = Csi,j + Ceij» Cisij = Ci3ij + Cldi,j (4.32)
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Equation (3.53) yields:

dlSi,jpmi,j - dli,jpmi-{—l,j - d2i,jpmi—1,j - d3i,iji,j+1 - d4i,jpmi,j—l

+(d10i; — dri,j)Drij + DoijUiv1,; — daijUi-1,5 + doijVije1
—dg; Ui j—1 + d11i,jSmi,j + d12i55fij
d14i jPmij + @10ijPfij + 114 jSmi; + d12ijSrij + dgi jUivi

—dSi,jUi—l,j + d9i,jvi,j+1 - dgi,j”ij—l

where,
hig =7 Ak:)z(pm;:;m)i-kéj’ G0 = 1 z:)z(pm;irnm)i_%J
s = TP ety s = g
deij = Smi'z);m'j [amés— ? (¢r —1)— ¢m¢fcm]

_ omKrom
dTi,j = akm(p——)i,j

am

mf(l — ¢5) _ amp(l —¢5)

dsij =

doi,j = pmnAStm = [an}én; ¢ (¢ — 1)+ 7 (1 — ¢5) Cf]

0]
d11ij = dsi jPemij — Kntlpomij: d12i; = d10i jDcfij
di3ij = diij +daij + dsij + daij + drij

di4ij = dsij + deij, Gisij = dizij + diaij

Equation (3.54) becomes:

€15i,jPfi,j — €1i,jPfi+1j — €2ijPfi—1,j — €3ijPfi,j+1 — €4ijDfi,j—1

IATAL (pomSm)i,j ’ d9i.j - 2AyAt (pomSm)i,j

(4.33)

(4.34)

+(e10i,; — €7i,5)Pmi,j t €8 Ui+l — €8ijUi-1,j T+ €9iVij+1 — €0i Vi, j—1

+e11:,5Sfij + €12ijmij
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= €14ijPfi; + €10i,jPmij + €11i,jOfij + €127 mi,j T €8ijUir1,j — €8i,%i-1,j

+€9; jVijr1 — €9:,jVij—1 T €13ijPcfij — €1ijPefi+1,j — €2i,jDcfi—1,7

—€3i,jDcfij+1 — €4i,jPcfij—1 — €7i,jPcmi,j (4.35)
where,
o = g s oo = S o
€sij = @%(1 - S1.;)
coy = G Spslenss |Om =8 (g 1y - s
erij = akm(%)i.j
esij = QLQ%E_K;@ [Pws(L — Sp)l;;, esiy = % lpur(1 — S¢)l; ;
erny = 22 A_tsf 2 [O‘"}gﬂ; ? (G — 1) + b (1 = ) Cm]

€11i,j = €6i,jPcfi,j — ‘Aitpwfij, €12i,j = €10i,jPcfij
€13ij = €14,j T €2:,5 + €3ij + €4ij T €75
€14i; = €5:i,5 + €6i5, €15i — €13ij T €14i,j (4.36)
Equation (3.55) gives:

f15i5P5i5 — friiPrivri — foigPri-15 — faijPrig1 — faijPrij—1
+(fi0ij — frij)Pmij + feijUivt; — feijUio1,; + foijVij+1

— foi jVij—1 + f11i5SFi; + f12i,jSmij

= f14iiPfij + f10ijPmij + f11:,jSFij + f12i5Smij + feijUiv1j

— fai,jUi-1,5 + foijVij+1 — foijVij—1 (4.37)
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where,

L kf pof]"rof . pof}"rof
fll,] - (Ax)o ( #of )1+%,j7 f‘ZlJ = (Ax) ( o )1—-,- J
f pofk'rof Po kro
f3i,j = (A )2 ( )1,]-*—%7 f4i,j (Ay) ( fo f )z ]__.

& rCoPos
fSi,j = fAt Sfi,j

S t,JFof1 mf
f61_7 f‘JApth [a -;{s ¢(¢m—1)—¢m¢fc_f]

j— pmkrm
frij = @km(—— )15

_ omi(1—¢y) oms(1 = 61)
feij = _M—(po Sf)nv foijg = W‘ (pofo),-,,-

froi5 = pofg 2 lia"}én; ¢ (m — 1)+ Sm (1 — 0m) Cm]

)
f 11i = f 6i,jPcfij — Kfi'pofiﬁ f 12,5 = f 10¢,7Pemi. 5
fizij = frij + foij + faij + faij + frij

fraij = fsij + feijr fisig = frzig + fraij (4.38)

4.3.2 Gas-0il System

Equation (3.101) (the continuity equation for the gas phase in the matrix) in finite

difference discretization is written as:
— : . n+l1 . n+1 n+1
ngm1+1/2d (Pgﬂu+1,3 Pgrm J) + ngmz—l/2,; (Pgmzj - Pg'rm—l _7)

_ . n+1 n+1 . n+1 n+1
Tgm1J+1/2 (Pgmi,j-l—l Pgmz J) + ngm,,_-,_.l/Q (Pgmzj PQ‘”’-“:J 1)

n+1 n: n
Py 4 fm Sptt -8z,

3 1
+C5 gmij — de

At B A

_ -1 n--1 n-1 n+1
T'lo:t:mi+1/2,_7 (Po'm.z+1,_1 Po-rm,J) + To:z:rm—l/2,] (Pom.z,J - Po-rru—l,J)

+1 +1 4
—Tozmi,j+1/2 (P:mt,_;-{-l Pof:‘m,_'l) + To::m.i,j—l/2 (P:rrtl,.g - P;:;};—l)

55



o Foriis ~ Fomig | &mp Son' = Son
At pg At

Som T+ 1 n
+Alng(Pom — P2 )+ Al mAy

P, of / pn n P,
+A19"’-A;!T;(S;Tj;l - S, ) + Azng;(Pof.H" - Pof) +A29‘m AZ{ (SZ;-I - of)

STH-I . om) +A1 (Pn-‘-l _Pn )

n T P
A2, S (PR — BRy) 4 A2gm L (S5~ 57)
A3 U?fﬁ,- — U1 — u:l—+11] +ul g n U:lf-h — U1 — -1 + V75
am 2AzAt 2AyAt
+Adgm (PRt — PIFY) + A4, (Poit — P3Y) =0 (4.39)
where,
Tozm = Agem (4.40)
gzm — (A$)2 -
Agzm = o Fergm (4.41)
KgmBgm
A/
T, = -—om 4.42
’ Rsmkmkrom
Aogm . Bom (4.43)
Sgm . Som Qm
Algy = (Bg +—R,,,) [ - (¢, -1) - ¢m¢,cm} (4.44)
gm  Pgs
S S, «
A2, = | 2F 4 2o mf -1 1— 4.45
i | T Ot B 1o BT
Som  Som
A3gm = (Bg + R.m> (]. o ¢f) Qmf (4.46)
gm  Pgs
Adg, = ﬁk_’"_]m (4.47)
PgstigmBem
! Rsmak‘mkrmn
Ad == ———/—— 4.48
am pgs,u'gmBom. ( )

It can be further simplified to:

r 7 14
C154,jPmi,j — (Cli,j + clij) Pmi+l,j — (C2i,j + Cy; ‘j) Pmi—1, — (CSiJ + Csi,j) Pmi,j+1

1 4
~ (cass + Caig) Pt + (10 = Crij — Cra )i + CaigUint,y — Coiglhioty
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+Coi,jVij+1 — C9ijVij—1 T Clli,jSmi,j + ClQiJS fij
= C14ijPmij T C10,jDfij + C11i5Smij + C12i,5S i + CsijUi+1j — Csijli-1j
+Coi, jVi j+1 — €9i,jVij—1 + C1Penisr1,j + C2Pemi-1,j + €3FPemi j+1

+C4Pemij—1 — C13Pemij + 7 Ferij

where,

T,

ozmi-i-%,j

y

ozmi—3z,j

'
Ciij = ngmi-{-—%a” Ciij =

’
Coij = Tg::mi—%,j1 c‘Zi,j =

C3ij = Tyymi:j+%’ Caij = Toymi,j+%
i = Tgymi j—1i» c;i,j = fm,-,j_%
_ (5mORam _ SmOBgm) ém : _ fm SenPom 9Bum
@5 =\ Bom 0P BZ,0Pem ) At’ ™" At BZ, 0Pom
Al
Cij = —A%m7 Crij = Adgmij
oo = ASgm _ A3gm
85 = 9AazAt P T 2AyAt
A2
G0 = TAE
Pm B Pm

Cilij = Poe AL - At Bgm — C6i,jPcmi,j: C12i,j = —C10i,5Dcfi,j

C13ij = C1ij + Coij + Caij + Cai,j + Crijj + CoijiSom

7
Ci4i,j = Csi,j + C6i,j T Csi js

Ci5ij = Ciij *+ Coij + C3ij + Caij + Csij + Coij + C7ij

+ d,li,j + d,2i,j +dy ; + dyij + dsi; + d,?'i,j

(4.49)

(4.50)

Eq. (3.117) (the continuity equation for the oil phase in the matrix) in finite

difference discretization is written as:

n+1 n+1 n+l n+1
"'Toa:mi+1/2j (Pomi-!-l.j - Pomi ) + Toa:mi—l/?.,j (Pomi,j - omi—l,j)
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_"To::mi,j+1/2 (P:n-:,-i}j-{-]_ - P:r:zlj) + To:rmi,j—l/” (P:n_:ll_] - P:r:.-zl_) 1)
¢mSomaBamP;rTl_ :m_l_ ¢m Sgrjz-l—s:m
B2 0P,, At  Bom At

S,

Sgm
om ¢ prtl _

Pr)+ Alom A

I (St — S) + Alem S Z2 (PR = PR)

)+ A2m§3f—(P;}+l — PZ) + A2m

P
+A1m—§<s"+l -5 PG

( n+1 )+A-om. f(S;;—l_Sn)
LA3 “?44-—11,1’ — ufry — U Ul iy Unel — Ul — U + V71
om 20z At 2AyAt
+Adom (Patt — P7) =0 (4.51)
where,
Alom = Som L |%mi= (¢f ~1) = ¢m9Crn (4.52)
o Bom K,
1 |am
A20m, = Som L2790 (3, — 1)+ ¢ (1- 6/)Cy (4.53)
Bom K,s
A3om = Cmy (1 — ¢y) B;'m (4.54)
k. k
Ad,,, = —tmrom 4.
v B (4.55)
It can be further simplified to:
dlSi,jpmi,j - dli,jpmi+1,j — do; jPmi—15 — d3i jDmij+1 — d4i jPmi j—1
+(d10i; — drij)Prij + dsijUirr; — dgijUi—1; + doi i j+1
—dg; jVij—1 + d11i,jSmij + d12:,55fi 5
= d14i,jPmij + d10ijPsij + d11i,jSmi j + d12ijSfij + dgi jUiy1,
—dg; jUi—1,j + doi jVij41 — doi jVij—1 (4.56)
where,
km pomkrom _ km pomkrom
dli,_‘f - (A$)2( Lom )i+%,j7 dzi,] - (A.’B)z( Lom )i—%,j
km ,Pomkrom _ km  Pomkrom
B3 = TBgP o tt B T Ry
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Om 0Bom

dsij = Bgmsmi_,- 5P

Lsomi,j amf - @
At Bom K,

deij = (¢ — 1) — ¢m¢fcm]

krom

om Bom

_ omf(l— ¢f)( S _ amf(l = ¢p)

R c: do; s
dsis 2AzAt Bom Jis» dois 2AyAL (B,,m) J

]- Som mf
doij = AiB. [a Iénsd) (65 — 1)+ o5 (1 — ¢5) Cf}

d7ij = Gk ( )ij

di1ij = ﬁ— — dg; jPemi i G12i5 = —d10i,jPefi
om
diij = dyij + doij + daij +daij + drij
dyaij = dsij + deij, disij = dizij + diaij (4.57)

Similarly, Equation (3.102) (the continuity equation for the gas phase in the

fracture) becomes:

€1sijPfij — (eh-,,- + elli,j) Pfi+1j — (621',1' + e;i,j) Pfi-1,j — (331:,]‘ + e:!i,j) Pfij+1
- (€4i,j + e:h- ,j) Prij—1 + (€10ij — ezij — e:{i,j)pmij + €gi jUit1,; — €s8i,jUi—1,j
+€9i jUi j+1 — €9ijVij—1 + €11ijSfij + €12i,j0mi;

= €14ijPfij + €10i,jPmij + €114,j5fij + €12i75mi; + €8ijUiv1; — €8ijUi-1,;

+€9:,jVi 41 — €9iVij—1 + €1 epiv1j + e2Fepio1; + €3Fefij1 + €4 Fefij1

—613PCfi'j + 67Pmi,j (458)
where,
1 4
€1i,j = Tgxfi+§,j1 €1ij = To:tfi—i—%,_;
T nii =T,
€2ij = Lgzfi-ljs €25 = Lozfi-1.

4

€4i5 = Tyyfi,j——%r €45



er: i — Sof aRSI Sef OByy [ o = gf-SOfRsf 0B,y
%9 T \Boy 0Py B 0Py ) At i3 T At B 0Py

Al
i = Ap

e A3gf o A3gf
857 9AzAL “N T 2AyAt

A2
cus = 22

J2id; ¢5
€11 = - = €6i,jDcfij: €12ij = —€10i,jPcmi,j
11 WJ pgsAt Athf 61]pf1.7 12;.7 101'.7pc”’- +J

erij = Adgfi

€13ij = €1ij T €2ij + €3ij + €aij + €rij + €6:,j50f
’
€14i,j = €5ij T €61, T €54 5
€15ij = €145 T €215 + €3i,5 + €4ij + €515 + €6i,j + €75
+d;.i,j + d’21] + d.:! d,Sz] + d:f (4'59)

41]

Similarly, Equation (3.118) (the continuity equation for the oil phase in the

fracture) becomes:

f 154,5Pfij — f 1i,jPfi+1,5 — f 2iiPfi—-1,5 — f: 3i,jPfij+1 — f4i,jpfi,j—1
+(fr0ij — frij)Prij + feijUivr; — faijUi-1j + foijVije1
— foi Vij—1 + f11ijSFij + f1205S5i 5

fr4ijPfi; + fr0ijPrij + f11a5S5i5 + f12i5Sri; + feijtiv,j

— f8ij%i-1,5 + foijVij+1 — foigvij—1 (4.60)
where,
fris = (A;)2(pof]"rof e Fois = : Aké)z(pofkrof)z__
Fais = (Aé)z(pofkrof)l’j_*_%’ fuis = (Ay)z(pof]vrof) b
fus = 549055
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1 So ij | Xmf
o= 5

Ao |22 () — 470,
_ krom
frig = & B
_omi(l—95) Sp . amf(l—9¢f) Sf
fois = —opac (Bof)‘*“ fous = 2AyAt (B,,,)”

f ”__LSof amf—
Y99 T At B,y | Kns

)ij

¢ (65 — 1) + 5 (1 — ¢5) Cf]

)
friij = ATIQ’? — feijPcfijs fioij = —fr0iiPefij
[e]
fizij = frij + foij + faij + faij + frij

fraij = fsij + feigr Sisig = fi3ig + fiaij (4.61)

4.4 Solution procedure

Thus, the finite difference scheme results in a system of algebraic equations in the

form of:

a1 Q@2 - - o - Qa1 ain [ win ] by ]
a1 as 2 RS ¢ & X T | a2 n - by
. . UN,,N,
V1,1

UN:, Ny
Pmi1,1

DPmNz, N, -
= = 4.62
Sml,l ° ( )

Srn.Nz,Ny
pml,l

PmNz,N,

Sml,l -
Ap—-11 QGn-12 ° - ° ° * Gup-in—-1 Qn-1n . bn—-1
L On,21 Qn 2 e Gnn—-1 Qnn SmNz,Nv
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where [a] is a matrix of order n X n with n = 6N,N,; and, where N; and N,
are the nodal numbers along the z- and y-directions, respectively. The coefficient
a;; are those associated with the variables in the finite difference equations, which
are constants in case of single-phase flow and dependent variables in the case of
two-phase flow. Therefore, the system of equations (Eq. (4.62)) is nonlinear for
multi-phase flow.

Zenkiewicz (1977) discussed the advantages and disadvantages between the iter-
ation methods and the direct solution methods. The main advantages of using the
iteration method are the reduced central memory storage demands and the elim-
ination of the triangular decomposition which is the most costly part of a direct

solution. The disadvantages are:

1. The lack of knowledge on how many iterations are necessary to achieve an

acceptable solution, often hundreds or thousands of iterations are required;

2. The value of relaxation factor (w) which can significantly change the conver-
gence, many people continuously change w during the solution to achieve an

optimal value;
3. The method fails on indefinite or unsymmetrical problems;

4. In non-linear problem, or multiple right-hand sides, no advantage (except per-
haps the optimum w value) can be taken of a previous solution process as the

whole iteration process must be repeated.

He concluded that the disadvantages usually far outweigh the advantages for
iterative method. Therefore, the Gauss-elimination with pivoting, one of the direct

solution, is used in this dissertation to obtain the solution to this system of equations,

Eq. (4.62).
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Chapter 5
Model Validation

One of the vital tasks which must be carried out before applying a newly-developed
model to realistic new problems is to verify the correctness of the model. The
mathematical formulation developed in Chapter 3, and numerical techniques used
to solve the model described in Chapter 4 were verified using known analytical

solutions and the finite element model developed by Meng (1998).

5.1 Comparison with Analytical Solution

A one-dimensional consolidation problem was selected to verify the model. The
analytical solution, numerical solution and comparison between these two solutions

are presented below.

5.1.1 Analytical Solution

One-dimensional consolidation problems are characterized by only one non-zero nor-
mal strain and by field quantities varying only in that direction. Assuming &, to

be the non-zero strain, the poroelastic constitutive equations are then:

_2G(1—-v)

T — 1—2u Ezz — QP (5'1)
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Tzx — 27P (5.2)
where 7 is the poroelastic constant. By expressing ¢, in terms of p and o, using
Eq. (5.1), the diffusion equation for the pore pressure can be written as:

op 3219__B(l+1/u)damc
5t ‘oxz”  3(1-v) dt

(5.3)

For a constant axial load, o,., the right-hand side of Eq. (5.3) drops out to give a

homogeneous diffusion equation:

op 0%
= s = 5.4
5~ Cha2 0 (54)

The above differential equation is subjected to the following boundary and initial
conditions:

Boundary conditions:

p=0atz =0 (5.5)
Op
%-—Oatx—L (5.6)
Initial condition:
B(1+w,)
T 5-7
Do 3 (l _ V) ( )

Then the solution for the pore pressure is:

*® 4 . /mnrz m2m2ct
p(x,t)=pozm7rsm( 5T )exp(— iI° ) (5.8)

m=1,3,---

The differential equation for the displacements, u., is deduced from Eq. (5.1),

by expressing &, as Ou./0z:

2G (1 - v) 0%u, op
1—20 8z2 "oz 0 (59)

subject to the following boundary condition:

u=0atz=17L (5.10)
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The solution to this equation is:
uz = ud + Aug (5.11)

where 4? is calculated by:

0 _ _auL(l —2u,) < _ f)
U= T o0l WL (5.12)
while Au, is calculated by:
_ Oz L(vy — V) _
Aty = 2G(1 - v)(1 — Vu)F (%) (5-13)
where,
8 X1 mrz m2n3ct _
F (.’II, t) =;r3 _213;13 CcoSs (—2—15—) [1 — €XPp (— aL? )] (314)
The following equations are needed to calculate B, v,, k, (Detournay and Cheng,
1993):
- aky (5.15)
o — ¢ (1~ o)l ks + ¢k ‘
b 3k, - 2G 5 16
2Bk +0) (5:16)
Otzkf
ESICEET (6-17)
where ky is the fluid compressibility.
The diffusivity coefficient ¢ is given by (Chen, 1996):
2G(1 - v —
_2G(1=v) (. —V)K (5.18)

a?(1 = 2v)%(1 — )
—k
where & P

The parameters used for this comparison are listed in Table 5.1.

5.1.2 Numerical Solution

The 2-D, two-phase model developed in this dissertation may, of course, be used to

simulate one-dimensional, single-phase consolidation problems.
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Table 5.1: Parameters Used in the Comparison

| Parameters | Definition | Magnitude | Units |

E modulus of elasticity 3000 MPa

v Poisson’s ratio 0.2

k rock permeability 1974 x 107 | m?

k¢ fluid compressibility 1.0x10~* | 1/MPa
K solid grain bulk modulus 11244 MPa

é rock porosity 0.2

L fluid viscosity 1.0 x 1073 Pa-s

o loading stress 2.0 MPa

Initial and Boundary Conditions

Consider a water-saturated column which is suddenly loaded. The fluid in the
column is allowed to drain only from the top surface, while all other three surfaces are
no-flow boundaries. The axial stress, o, is a step function applied instantaneously.
The initial and boundary conditions needed for modeling this one-dimensional ,
single-phase consolidation problem are given in Figures 5.1 and 5.2. The discretized
domain for the finite difference scheme is shown in Figure 5.3. Only half of original

domain is selected for calculations due to the symmetry.

Interior Points

For points within the grid, the six governing equations for solid deformations and
two-phase fluid flow in the matrix and in the fractures have already been obtained
in finite difference form, i.e., Eqs. (4.14), (4.16), (4.31), (4.33), (4.35), (4.37).

Boundary and Corner Points

However, at the boundaries and at the corners, these six equations have to be
rearranged and the following approximation are applied based on the boundary

conditions specified:
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e Boundary i = 1 (Symmetry line)
Ui—1,j = Uig1,j

Vi—1,7 = Vi1,
Pmi—1,j = Pmi+l,j
Pri—1,j = Pfi+l,j

e Boundary ¢ = N, (¢ =0 and no flow)
Uitl,j = ~Ui-1,5

Vigl,j = 2Uij — Vi-1,j

DPmi+1,j = Pmi—1,j
Dfi+l,j = Pfi-1,5

e Boundary j = 1 (loading stress boundary and open flow)

Ui j—1 = zui,j — Ui j+1
Vi j—1 = Vij+1 — 2Ay()‘—:ﬁ
Pmi j—1 = Pmi,j+1
Prij—1 = Pfij+1
e Boundary j = N, (u = v = 0 and no flow)
Uij+1 = —Uij-1
Vij+1 = —Vij-1
DPmij+1 = Pmi,j—1
Pfij+1 = Pfij—1
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(5.23)

(5.24)
(5.25)

(5.26)

(5.27)

(5.28)
(5.29)

(5.30)

(5.31)

(5.32)
(5.33)

(5.34)



e Cormeri=1,j=1

e Corneri=N,,j=1

Ui—1 j+1 = Ui1,j+1
Ui—1,5 = Uig1,5
Ui1j—1 = 2Uip1j — Uisl j+1
Uiplj—1 = 2Uis1j — Wirl j+l
Uij—1 = 2ui,j — Ui j+1
Vi—1,j+1 = Vit1,j5+1
Vi-1,7 = Vit1,5

Viel,j—1 = 2Vig1,j — Vitlj+l

Vitl,j—1 = Vitl j+l — 2Ay(/\+—2G

Vij—1 = Vij+1 — 20y
Pmi~1,j = Pmi+1,j

Dmij—1 = —Pmij+1
Dfi-1,5 = Pfi+l,j

Drij—1 = —Pfi,j+1

Uig1,j4+1 = —Ui-1j+1
Uitl,j = —Ui-1,5
Uipl-1 = —2Uim1j + Uimy j41

Uij-1 = 2Uij = Uil

Uicj-1 = 2Uim1j — Uim1j41
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(5.35)
(5.36)
(5.37)
(5.38)
(5.39)
(5.40)
(5.41)
(5.42)
(5.43)
(5.44)
(5.45)
(5.46)
(5.47)

(5.48)

(5.49)
(5.50)
(5.51)
(5.52)

(5.53)



Vitlj-1 = Wij — 2015 — 2V 541 + Vim1 41

e Corneri=1,j=N,

Viglj+1 = 2Vijp1 — Vie1j+1

'vi-i-l,j = 2’111"_]' — Ui-—l.j

o
Vij—1 = Vij+1 — 20y (/\ n 9G)
o
Vio1j—1 = Vi—1j+1 — 2y (x+2G)

Pmi+1,j7 = Pmi-1,5

Pmij—1 = —Pmi,j+1

Pri+1,7 = Pri—1,5

Prij—1 = —Pfij+1

Ui—1,j-1 = Uig1,5-1

Ui—1,7 = Uit1,5
Ui-1,j+1 = ~Uit1,5-1
Uij+1 = ~Ui5-1
Ui1,541 = ~Uit1,5-1

Vi-1,j—-1 = Vit1,5-1
Vi1, = Vit1,5
Vim1,j+1 = 2Vig1j — Vitlj—1
Vij+1 = V351
Vit1,5+1 = —Vig1,5-1

Pmi-1,j = Pmi+1,j
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Pmij+1 = —Pmi,j—1 (5.74)

Pfi-1j = Pfi+l; (5.75)
Pfij+l = —Dfij-1 (5.76)
e Corner i = N,, j = N,
Uip1,j—1 = —Ui-1,5-1 (5.77)
Uit1,j = —Ui-1,j (5.78)
Ui+l = —2Ui—1,j + Uiny,j-1 (5.79)
Uil = —Uij-1 (5-80)
U141 = —Uim1,j—1 (5.81)
Viplj—1 = 2Vij5-1 — Vi-1,j—1 (5.82)
Vitlj = —Vi-lj (5.83)
Vil g+l = —2Vi-1j — 2Vij—1 + Vim1j-1 (5.84)
Vij+1 = —Vij-1 (5.85)
Vi1,j+1 = —Vi-1j-1 (5.86)
Pmi+1,j = Pmi-1,j (5.87)
Pmi,j+1 = Pmi,j—1 (5.88)
Dfitl,j = Pfi—1,j (5.89)
Pfij+1 = Pfij—1 (5.90)

Substituting all of these boundary approximations into the six governing Egs.
(4.14), (4-16), (4.31), (4.33), (4.35), and (4.37) yields 6 (number of equations) x8(four

boundaries plus four corners) = 48 equations for boundaries and corner points and

are listed in the enclosed Appendix B Case 1.
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Comparison of Results

Comparison of excess pore pressure along the column depth at different times be-
tween the analytical and numerical solutions are shown in Figures 5.4 and 5.5. The
evolution of displacements with time, considering two different positions in the col-
umn (top and center) , can be determined and excellent agreement is obtained, as

shown in Figure 5.6.

5.2 Comparison with a Finite Element Model

Parallel to present study, Meng et al. (1998) and Meng (1998) developed a similar
two-phase model for deforming fractured reservoirs and solved it using the finite
element method. Meng (1998) compared the results from his model with the results
calculated using the present finite difference model and concluded that results from

these two models are very similar except for a small difference at early times.
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Chapter 6

Model Applications

The capabilities of the model and the simulator, RFIA (Rock Fluid InterAction),
developed in the foregoing chapters have been demonstrated in the following two
example problems. First, two-phase flow coupled with solid deformations was con-
sidered in a fractured rock for the column problem. Second, a deformable fractured
reservoir with a water injection well and an oil production well was investigated.

The effect of stress on oil saturation and pressure distributions was studied.

6.1 Two-Phase Flow Coupled with Fractured Rock
Consolidation

The column consolidation problem presented in Chapter 6 will be reexamined for
modeling the process of simultaneous two-pliase low and solid deformations. The
initial and boundary conditions for fluid flow and solid deformations are identical
to those shown in Figure 5.1 and 5.2, except that the initial saturations for water
and oil are 0.35 and 0.65, respectively. The relative permeability data used in this
case are shown in Table 6.1

The following expression is adopted for the capillary pressure-saturation curve
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(Dagger, 1997):

P 13.159 — 10.8459S5,,
€7 1+ 3.6262S,

x 6.98 x 1072 (MPa) (6.1)

Table 6.1: Relative Permeabilities Data

| Water satua. S,, | Oil rel. perm. k,, | Water rel. perm. k., |

0 1 0

0.1 1 0

0.2 1 0

0.3 0.761 0.002
0.4 0.479 0.016
0.5 0.290 0.052
0.6 0.148 0.125
0.7 0.053 0.244
0.8 0.006 0.422
0.9 0 0.670

The parameters used in this case are listed in Table 6.2.

Table 6.2: Parameters Used in the Consolidation Case

| Parameters | Definition | Magnitude | Units |
E modulus of elasticity 3000 MPa
v Poisson’s ratio 0.2
o3 transfer coefficient 1000 1/m?
krm matrix permeability 3.0x 1071 m?
kg fracture permeability | 3.0 x 107 | m?
K, solid grain bulk modulus 11244 MPa
Dm matrix porosity 0.2
o5 fracture porosity 0.05
Lo oil viscosity 20x 1073 | Pas
Lw water viscosity 1.0 x 1073 Pa-s
Co oil compressibility 1.88 x 1073 | 1/MPa
Cuw water compressibility 4.55 x 107* | 1/MPa
o loading stress 2.0 MPa

Figures 6.1 shows the vertical displacement along the height of the column at
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different times after initial loading. It can be seen that the displacements are pos-
itively proportional to the time with the largest displacement occurring along the
column surface. Figure 6.2 depicts the temporal vertical displacements on the sur-
face and in the middle of the column. The increase of the displacements is also the
result of the time increase.

Figures 6.3 and 6.4 illustrate the spatial distributions of the oil-phase pressures
along the column at different times for the matrix and for the fractures. In compar-
ison, the pressure in the matrix is larger than that in the fractures. At early times
(t=10 sec.), the rate change of the matrix pressure appears to be greater than in
the fractures. For the latter, the pressure change is almost linear.

The changes in oil saturations along the column at different times in the matrix
and in the fractures are shown in Figures 6.5 and 6.6, respectively. It is of interest
to note that the oil saturation for a given depth decreases with time in the matrix
while it increases in the fractures because of the mechanism that oil transfers from

matrix to fractures.
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6.2 Oil Production from a Deformable Fractured
Reservoir with Water Injection

Many different techniques have been applied in reservoir operations to increase the
oil production rate. Most common among such production enhancement techniques
is waterflooding in which water is injected into the reservoir from different locations
than those of hydrocarbon withdrawing boreholes. In the U.S. as much as half of
the current oil production is thought to be the result of water injection.

In addition to increasing the output of hydrocarbon, water injection leads to an
increase in pore pressure inside the reservoir and the consequent decrease in effective
stress on the rock matrix. As a result, compaction of the reservoir and the associated
harmful effects are also restrained to some extent.

Both experimental work and numerical simulations indicate that high porosity,
weakly- to un-consolidated reservoirs can undergo irreversible deformations or pore
collapse beyond a critical effective stress, due to production of hydrocarbons. These
pore collapse-related compaction and subsidence problems have been studied con-
ventionally without coupling, where fluid low and rock deformations are calculated
in a staggered manner (Finol and Ali, 1975; Merle et al.,, 1976; Boade, 1989; Chin
and Boade, 1990; Chin et al., 1993; Jones and Mathiesen, 1993). The pore pressures
are first calculated using a reservoir simulator which considers just fluid flow or ac-
counts for rock mechanics with rock compressibility as the only parameter. Once
the changes in pore pressure distribution are known, the corresponding load vectors
and displacements are evaluated using a stress-strain code.

Withdrawing fluids from a reservoir results in an increase in effective stress

whereas enhancing oil recovery techniques such as water injection lead to a de-
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crease in effective stress on the reservoir rock matrix. These processes, when im-
plemented in a sequence, introduce a number of loading cycles. The distribution of
pore pressure changes due to these processes can be evaluated using the Rock Fluid

InterAction simulator, RFIA, developed in this dissertation.

6.2.1 Description of the case studied

A hypothetical example was set up to show that the model can give insights into
the effects of stress on the distributions of oil saturation and pressure in a water
injection, fractured, deformable reservoir (Figure 6.7). The reservoir size is 200m
by 200m in two dimensions. The upper and right sides are subject to a loading
stress . The left and bottom sides can only move in the y- and z-directions,
respectively. Figure 6.8 shows the mechanical boundary conditions. There is no
drainage on all boundaries, except two wells at two corners, an oil production well
and a water injection well, respectively. The rates for these two wells are given and

the parameters used in this case are listed in Table 6.3.

Table 6.3: Parameters Used in the Qil Production Case

| Parameters | Definition | Magnitude | Units |
E modulus of elasticity 3000 MPa
v Poisson’s ratio 0.2
o3 transfer coefficient 1000 1/m?
krm matrix permeability 28 x 10715 m?
ks fracture permeability | 2.8 x 107" m*
K solid grain bulk modulus 11244 MPa
Om matrix porosity 0.2
of fracture porosity 0.05
Lo oil viscosity 20x 10~ | Pas
Lo water viscosity 1.0x 1073 Pa-s
Co oil compressibility 1.88 x 10~ | 1/MPa
Cuw water compressibility | 4.55 x 10~* | 1/MPa
o loading stress 4.0 MPa
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6.2.2 Approximation of Boundary Conditions for Bound-

aries and Corner Points

The six governing equations have to be rearranged and the following approximations

were applied based on the boundary conditions specified as in the previous validation

case:

e Boundary i = 1 (no flow with loading stress o)

g

L= Ul — 2AT—
Uy 1,7 u.l,] I(/\+2G)

Vie1j = 2Vij — Viglj
Pmi-1,7 = Pmi+1,j
Dfi-1j = Pfi+1,j

e Boundary 7 = N; (v =0 and no flow)
Uit = —Ui—1,5
Vit1j = 2Vij — Vi-14
Pmi+l,j = Pmi—1,5
Pfi+1,j = Pfi—1,5
e Boundary j = 1 (no flow with loading stress o)
Usj—1 = 2Uij — Ui ji)
Vij—1 = Vij+1 — 2Ay 7
Pmi,j-1 = Pmi j+1

Drij-1 = Pfij+1

83

(A +2G)

(6.3)
(6.4)

(6.5)

(6.6)

(6.7)
(6.8)

(6.9)

(6.10)

(6.11)
(6.12)

(6.13)



e Boundary j = N, (v =0 and no flow)
Uij+1 = Ui j-1
Uij+1 = —Vij-1
Pmi j+1 = Pmi,j—1
Drij+1 = Pfij—1

e Corneri=1,j=1

o
. 1 = Uu; ; — 20—+
Uim1j+1 = Uitl,j+1 z (A +2G)
o
v s = Us; I 2A TN
Ui-1,j = Uitl,j z (A +2G)
o
Uimlj—1 = 2Uit1j — Uirl i+l — 202 (A +2G)

Uiglj—1 = 2’ui+1,j = Uip1,5+1
Ui j—1 = 2?.1-{‘_7' - ui,j-{-l
Vio1j+1 = 2Vij4+1 — Vigl,j+1
Vim15 = 2Ui,j—vi+1.j
o
Vic1j—1 = 2Vij41 — Vitl,j+1 — 2Aym—2—G)
Vitlj—1 = Vitlj+l — 2Aym
V-1 = Vige1 — 28y
Pmi—1,j = Pmi+1,j
Pmi,j—1 = Pmi,j+1
Pfi-1,j = Pfi+1,j
Dfij—1 = Pfij+1
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(6.14)

(6.15)
(6.16)

(6.17)

(6.18)

(6.19)
(6.20)
(6.21)
(6.22)
(6.23)
(6.24)
(6.25)
(6.26)
(6.27)
(6.28)
(6.29)
(6.30)

(6.31)



e Cormeri=N,,j=1

e Corneri=1, j =N,

Uirl,j+1 = —Ui—1 j+1
Uir1,; = —Ui-15
Uigyjo1 = —2Uimy,j + Uim1 541

Uijo1 = 2Uij — Uij+l
Ui-1,j—1 = 2Ui—1,j — Ui—1,j+1
Vit1,54+1 = Vi-1,j+1
Vit1,7 = Vi—1,5

Vit1,j—1 = Vi-1,j-1

g
Vij—1 = Vij+1 — 2Aym
ag
Vimlj—1 = Vim1j+1 — 2Aym
DPmi+1,5 = Pmi—1,5
Pmi,j—1 = Pmi,j+1
Pfi+1,j = Pfi—1,5
Prij—1 = Pfij+1
o
Uil j—1 = Uiglj—1 — 2A$m

bod
Uin1j = Uiglj — 2A$(—)_\_—4TG)

g
el = Upeyig — 20—
Uz 1,541 u1+1,J 1 m(A+2G)

ui1j+1 = uivj-l

Uitl,j+1 = Uit1,5-1
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(6.32)
(6.33)
(6.34)
(6.35)
(6.36)
(6.37)
(6.38)
(6.39)
(6.40)
(6.41)
(6.42)
(6.43)
(6.44)

(6.45)

(6.46)

(6.47)
(6.48)
(6.49)

(6.50)



Uiy -1 = 2Uj -1 — Vit1,j-1

Vi—1j = 2'Ui.j — Vitl,j

Viml,j+1 = —2Vij—1 + Vir1j-1
Vij+1 = ~Vgqj5-1
Vit1,j+1 = ~Vigl,5-1

Pmi-1,j = Pmi+l,j

Pmi,j+1 = Pmi,j—1

Dfi-1; = Pri+1,j

Dsij+1 = Dfij—-1
e Corner i = N, j = N,

Uit j—1 = —Ui—1,j-1
Uip1,j = —Ui-1j
Uit1,j+1 = Ui-1,5j—1
Ui j4+1 = Uij—1
Ui—1,5+1 = Ui-1,j-1
Vit1,j-1 = Vi-1,j-1
Vitl,j = Vi-1,j
Vit1,5+1 = Vi-1,5+1
Vij+1 = —Vij-1
Vi—1,j4+1 = —Vi—1j-1

Pmi+1,7 = Pmi-1,5
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(6.60)
(6.61)
(6.62)
(6.63)
(6.64)
(6.65)
(6.66)
(6.67)
(6.68)
(6.69)

(6.70)



DPmij+1 = Pmij—1 (6.71)
Dfi+1,j = Dfi—1,5 (6.72)

Pfij+1 = Pfij-1 (6.73)

Substituting all of these boundary approximations into the six discretized gov-
erning Egs. (4.14), (4.16), (4.31), (4.33), (4.35), and (4.37) yields 6 (number of
equations) x8(four boundaries plus four corners) = 48 equations for boundaries and

corners and are listed in the enclosed Appendix A, Case 2.

6.2.3 Analysis of Simulation Results

The displacements in the z- and y-directions for two different times are presented
in Figures 6.9 and 6.10. The displacements are the same in the z- and y-directions
for same = and y coordinates because of symmetry.

Figure 6.11 depicts the temporal horizontal displacements (u) for three different
locations: £ = 0 m, z = 50 m, and z = 150 m (shown in Figure 6.12). Obvi-
ously, the largest horizontal displacement occurs on z = 0 line. The increase of the
displacements is also the result of time increasing.

Figures 6.13 and 6.14 show the oil saturations in the matrix and in the fractures,
respectively, when there is no stress applied at two boundaries. The water front
moves much faster in the fractures than in the matrix because of their much higher
permeability.

The oil saturation distribution in the matrix and in the fractures with stress are
presented in Figures 6.15 and 6.16. By comparing Figures 6.13 and 6.15, it is noted
that stress has a very small effects on the oil saturation distribution. Again, the
waterfront moves much faster in the fractures than in the matrix with stress as seen

in Figures 6.13 and 6.14.
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In Figures 6.16 and 6.17, the waterfront movements can be seen as a function of
time in the fractures. The oil pressures for the same time period in the matrix, for
cases without and with stress, are shown in Figures 6.18 and 6.19, respectively. It
is noted that the pressures with stress are much higher than that without stress.

The oil pressures in the fractures without and with stress after 300 days are
presented in Figures 6.20 and 6.21. From Figure 6.21, it seems that the effects of
stress on pressures in the fractures is not as large as in the matrix. It should be
noted that at early times, for example, ¢ = 30 days, pressures in the fractures still
increase to very high values because of the applied stress (Figure 6.22).

The effects of stress on pore pressure are further investigated by applying dif-
ferent stresses. Figures 6.23 and 6.24 are the cases for Qin < Qpro and Qin > Qpro,
respectively. The higher the stress applied, the higher the pore pressure. However,
as time goes on, the pore pressure goes to a common point. This indicates that
the stress has more impact on pressure at earlier times than later on. These two
figures also indicate that withdrawing underground fluids from a reservoir results
in an increase in effective stress whereas enhancing oil recovery techniques such as
water injection lead to a decrease in effective stress on the reservoir rock matrix.
The pore may collapse if the effective stress on the rock matrix exceeds the critical
stress (limit of elastic region). When this critical stress is known, the occurrence of

the pore collapse can be predicted and may be avoided altogether.
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Chapter 7

Sensitivity Analyses

This last chapter is devoted to sensitivity analyses. Sensitivity analyses (also called
what-if analyses) are applied in simulation studies of very different real-life systems,
in all kinds of disciplines (that use mathematical models): engineering, chemistry,
physics, economics, management science, and so on. Moreover, the theoretical as-
pects of sensitivity are studied in mathematics and statistics. Unfortunately, the
definition of sensitivity analysis varies over and within these many disciplines. In
this dissertation, sensitivity analysis is defined as the systematic investigation of
the reaction of the simulation response to either extreme values of the model’s in-
put variables or to drastic changes in the model’s parameters. It is the practice of
changing one factor, performing an analysis, and then checking the results to see
if they are sensitive to the factor that was changed. Note that the analysis in this
chapter concentrates on a single response per run. The effects of the most three
important parameters, injection rate, K, (solid grain bulk modulus), and E (rock’s

modulus of elasticity) on rock displacements and pore pressure are investigated.
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7.1 Description of the Model Used

Figure 7.1 illustrates a five-spot pattern used commonly in waterflooding processes.

The reservoir formation is assumed to be naturally fractured and deformable. Only

a quarter of one pattern (shaded area in Figure 7.1) is needed due to symmetry.

Numbers 1 to 9 are used to indicate the positions of the space domain which will

be used in the later analyses (Figure 7.2). For example, point 5 is the center of the

quarter. The input parameters used are listed in Table 7.1.

Table 7.1: Parameters Used in the Sensitivity Analyses

Parameters Definition Magnitude | Units |
E modulus of elasticity 3000 MPa
v Poisson’s ratio 0.2
@ transfer coefficient 1000 1/m?
km matrix permeability 395 x 1071 | m?
ks fracture permeability | 3.95 x 107 | m?
K, solid grain bulk modulus 11244 MPa
bm matrix porosity 0.2
O fracture porosity 0.05
Lo oil viscosity 2 x 1074 Pa-s
Ly water viscosity 1x10™* Pa-s
Co oil compressibility 2x 103 | 1/MPa
Cw water compressibility 8 x 10°* | 1/MPa

There is no drainage at all along the boundaries (Figure 7.3), except two wells at

two opposite corners, an oil production well and a water injection well, respectively.

The following three points hold because of symmetry (Figure 7.4):

1. The four corners are fixed, i.e. u = v = 0;

2. The left and right sides can move only in the y-direction, i.e. © =0 and v # 0;

and,

3. The upper and bottom sides can move only in the x-direction, i.e. u # 0 and
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7.2 Approximations of Boundary Conditions for
Boundaries and Corner Points

The six governing equations have to be re-arranged and the following approximations
are applied based on the boundary conditions specified as in the validation and

application cases:

e Boundary i =1 (u = 0 and no flow)

Uin1j = —Uislj (7.1)

Vi1 = Vit+l,j (7.2)
Pmi—1j = Pmi+1,j (7.3)
Pfi-1j = Pfi+lj (7.4)

e Boundary i = N, (u =0 and no flow)

Uity = —Ui-15 (7~5)

Vit1,7 = Vi-1,5 (7-6)
Pmi+1,5 = Pmi—-15 (7.7)
Pfi+1j = Pfi-1j (7.8)

e Boundary j =1 (v =0 and no flow)

Uij1 = Ui g+l (7.9)
Vij-1 = —Vij+l (7.10)
Pmi,j—1 = Pmi,j+1 (7.11)
Pfij—1 = Dfij+l (7.12)
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e Boundary j = N, (v =0 and no flow)
Uij+1 = Uij—1
Vij+1 = Vi j-1
Pmij+1 = Pmi,j—1
Prij+1 = Pfij—1

e Corneri=1,j=1(u=0and v=0)

Ui—1,j+1 = ~Uit1,j+1
Ui-1,j = “Uit+1,5
Ui—1,j—1 = —Uit1,j+1

Uip1,j—1 = Uitl,j+1

Uij—1 = Ui j+1

Vi—1,541 = Vit1,j+1

Vi-1j = Vit1,5

Vi—1,j~1 = —Vit1j+1
Vit1,j—1 = ~Vitlj+1
Vij—1 = —Vij+1

Pmi-1,5 = Dmi+1,5

Pmi j—1 = Pmi,j+1

Dfi—1,7 = Dfi+1.5

DPrij—1 = Dfij+1
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(7.14)
(7.15)

(7.16)

(7.17)

(7.18)
(7.19)
(7.20)
(7.21)
(7.22)
(7.23)
(7.24)
(7.25)
(7.26)
(7.27)
(7.28)
(7.29)

(7.30)



e Corneri=N., j=1 (u=0and v=0)

Uitl,j+1 = —Ui—1 j+1
Uipl,7 = —Ui-1,5
Uitl,j—1 = —Ui-Lj+1

Uij—1 = Uij+l

Ui—1,j—1 = Ui—1,j+1

Vit1,j+1 = Vi—1,j+1

Vit1,j = Vi-1j

Vitl,j—1 = —Vi—1j+1
Vij—1 = —Uij+1
Vi-1j-1 = —Vi-1,j5+1

Pmi+1,j = Pmi—1,j
Pmi,j—1 = Pmi j+1
Pfi+1,5 = Pfi-1,5
Prij—1 = Pfij+1

e Corneri=1,j=N, (u=0and v=0)
Ui~1,j~1 = ~Ui4l,j-1

Ui-1,7 = —Uit+l,j
Ui—1,j4+1 = —Ui+l,5-1

Ui j+1 = Uij—1
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(7.32)
(7.33)
(7.34)
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(7.36)
(7.37)
(7.38)
(7.39)
(7.40)
(7.41)
(7.42)
(7.43)

(7.44)

(7.45)

(7.46)
(7.47)

(7.48)



Uig1,j+1 = Uiglj—1

Vi—1,j—1 = Uitl,j—-1

Vi-1,7 = Vitl,j

Vi—1,j+1 = ~Vit15-1
Vij+1 = ~Vij-1
Vitl,j+1 = —Vit1,5-1

Pmi—1,j = Pmi+1,5
Pmij+1 = Pmij—1
DPfi-1,j = Pfi+l,j
Pfij+1 = Prij—1

e Corner i = N, j =N, (v =0and v =0)

Uib1,j-1 = —Ui—15-1
Uit1,j = —Ui-1,5
Ui+l j+1 = ~Ui-1,5-1

Uij+1 = Ui j—-1

Ui-1,5+1 = Ui-1,5-1

Vit1,j-1 = Vi—1,5-1

Vitl,j = Vi-1,5

Vitl,+1 = ~Vi—1,5-1
Vij+1 = ~Vij-1
Vi—15+1 = —Vi—15-1
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(7.62)
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(7.66)
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Pmi+1,j = Pmi-1,j (7.69)

Pmij+1 = Pmi,j—1 (7-70)
Pri+1,j = Pfi-1j (7.71)
Dfij+1 = Pfij-1 (7.72)

Substituting all of these boundary approximations into the six discretized gov-
erning Egs. (4.14), (4.16), (4.31), (4.33), (4.35), and (4.37) yields 6 (number of
equations) x8 (four boundaries plus four corners) = 48 equations for boundaries
and corners to be solved with the other equations for the points within the space

domain.

7.3 Analysis of Rock Deformations

The displacements in the z- and y-directions for different positions at different times
are presented in Figures 7.5 to 7.10. Some very interesting facts are observed from
these graphs. At earlier times, the points in row e have the largest displacements.
As time passes, the displacements in row a increase faster than in row e. After
10 days, the curve of displacements for row a is almost symmetrical with the one
representing row e. When equilibrium has been reached, the displacements in rows
a and e, and the displacements in rows d and b are symmetrical with respect to
the central column c. Similar phenomena are also noted for the displacements in
y-direction, v.

Because of the symmetric characteristics of the pattern, the reservoir perfor-
mance should be symmetric to the diagonal line connecting the injection and pro-
duction wells. However, it should be understood that this means that the displace-

ments of the upper-left part in the z-direction (u) equal the displacements of the

106



Displacement (u, m)

-0.001

-0.002

-0.003

-0.004
-0.005 -

-0.006 |-

-0.007

o

100

Figure 7.5: Displacements in x-direction (t = 2000 s).

Displacement (u, m)

100

0
0.001 E\\\ : } Rowa; f |
0,002 | \k | - —-Rowb] i /f’ |
T \’t —--—Rowc / T
-0.003 - \\ | i ‘.',/ |
. \3\\ T jeesee= Rowd . /'
-0.004 ! \ \\t\! ir Vi
- ! W ——— Rowe / 7
-0.005 - AN YA
| Sx™a s
-0.006 \, N el ,./’,’/ A
-0.007 AN \“:’”1// vl
-0.008 |~ T
) i l i
_O.mg i |
0 20 40 60 80
Distance (x, m)

Figure 7.6: Displacements in x-direction (t = 10 d).

107




Displacement (u, m)

-0.001 N : : —-—-Rowa 4
0002 |\ s Row b ———///,—
-0.003 ‘\\\ ‘ j Row c v
-0.004 I\ . ———Rowd - /,,/,
0005 | AN o Rowe £
-0.006 . A
-0.007 LSS et
-0.008 S S AL
-0.009 ' ‘ ‘

0 20 40 60 80 100

Distance (x, m)
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lower-right part in the y-direction (v). For example, the displacements of point 3
in the z-direction equals the displacements of point 7 in the y-direction. For the
central point 5, the displacements in both directions are the same.

The total displacement can be calculated from the components of displacements
in the z- and y-directions as shown, for example, in Figures 7.11 and 7.12 for points

4 and 2, respectively.

Figure 7.11: Total Displacement in Position 4.

7.4 Effects of Injection Rate on Pore Pressure

The effects of injection rate on pore pressure can be analyzed from the data listed
in Table 7.2. The first row is injection rate in bbl/d and the first column is time
in days. The negative sign indicates a decrease in pressure. It seems that the pore
pressures are extremely sensitive to the injection rate. Under the conditions of these
tested cases, a small increase in injection rate would cause a dramatic increase in
pore pressure. It should be noted that the pore pressures at positions 1 and 6, and

positions 3 and 7 are the same for any times, as expected.
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Figure 7.12: Total Displacement in Position 2.

7.5 Effects of K, (Solid Grain Bulk Modulus) on
Displacements and Pore Pressure

The displacements in the z- and y-directions for different positions at different times
for various K are listed in Tables 7.3 and 7.4. In the table, the first row is time in
days and the first column is K in MPa. The negative signs indicate that the dis-
placements directions are opposite to the positive directions of the coordinate axes.
It is interesting to note that a decrease in K results in a decrease in displacements
both in the z- and y-directions. When K takes the value of 1666.67, the displace-
ments in both directions are zero. The reason is that a decrease in K, causes the
term to decrease (coefficient of pressure in the governing equations for the matrix
displacements). When K equals K}, this o term is zero, meaning that pressure has
no effect on rock matrix deformations and, therefore, the displacements in both z-
and y-directions are zero.

The effects of K; on pore pressure can be analyzed from data listed in Table
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Table 7.2: Effects of Injection Rate on Pore Pressure

[ Rate (bbl/d) ] 1.08 | 1.09 | 1.1 | Position |

_7.1754 | 0.6503 | 1.5286
78.2670 | -0.4498 | 0.4281
8.2670 | -0.4498 | 0.4281
1 (day) | -8.6493 | -0.8366 | 0.0409
29.0483 | -1.2338 | -0.3566
29.0483 | -1.2338 | -0.3566
-10.254 | -2.4013 | -1.5208
~319.76 | -30.844 | 1.6153
~321.07 | -32.032 | 0.4381
-321.07 | -32.032 | 0.4380
30 (days) | -321.52 | -32.439 | 0.0347
“321.97 | -32.847 | -0.3692
~321.97 | —32.847 | -0.3692
~323.29 | -34.038 | -1.5462
1131.8 | -115.35 | 1.7542
1133.0 | -116.67 | 0.4751
1133.0 | -116.67 | 0.4751
100 (days) |[-1133.5 | -117.12 | 0.0365
1133.8 | -117.58 | -0.4022
1133.8 | -117.58 | -0.4022
1135.1 | -118.90 | -1.6821

O ~J] W] Gt O =] 00| O 3| | | O] = OO O ~J| L3 UR| O +={ OO

7.5 and Figures 7.13-7.15. It is observed from these graphs that there is a number
for K, above or below which pore pressure would be higher. This number in this
analysis is around 17500 MPa.

7.6 Effects of Young’s Modulus on Displacements
and Pore Pressure

The displacements in the z- and y-directions for different positions at different times
for various E are listed in Tables 7.6 and 7.7. The first row is time in days and the
first column is F in MPa. It is obvious that a decrease in F results in an increase

in displacements in both directions. However, when E increases to a value so that
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Table 7.3: Effects of K, on Displacements in the x-direction (u, m)

[ Time(days) [ 0.023 | 10 | 30 | 100 | Position ]

0 0 0 0 3

1666.7 (MPa) |0 0 0 0 5
0 0 0 0 6

-0.00376 { -0.00755 | -0.00777 | -0.778 3

11000 (MPa) | -0.00362 | -0.00638 | -0.00654 | -0.00654 5
-0.00621 | -0.00770 | -0.00778 | -0.00778 6

-0.00436 | -0.00876 | -0.00902 | -0.00903 3

110000 (MPa) || -0.00420 | -0.00741 | -0.00759 | -0.00759 5
-0.00720 | -0.00893 | -0.00903 | -0.00903 6

Table 7.4: Effects of K; on Displacements in the y-direction (v, m)

| Time (days) || 0,023 | 10 | 30 | 100 | Position |

0 0 0 0 1

1666.7 (MPa) 0 0 0 0 5
0 0 0 0 7

-0.00621 | -0.00770 | -0.00778 | -0.00778 1

11000 (MPa) | -0.00362 | -0.00638 | -0.00654 | -0.00654 5
-0.00376 | -0.00755 | -0.00777 | -0.00778 7

-0.00720 | -0.00893 | -0.00903 | -0.00903 1

110000 (MPa) || -0.00420 | -0.00741 | -0.00759 | -0.00759 5
-0.00436 | -0.00876 | -0.00902 | -0.00903 7

K, equals to K, the displacements in both directions becomes zero because of the
same reasons as mentioned above; i.e. « is zero under those conditions.

The pore pressures at different times and positions for various E are listed in
Table 7.8 and are plotted in Figures 7.16-7.18. The following two points can be

drawn from these graphs:

1. An increase in E results in an increase in pore pressure; and,

2. The effect of E on pore pressure is small. In other words, the pore pressure is

not very sensitive to E. However, it becomes more important as time goes on.
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Table 7.5: Pore Pressures at Different times and positions for Various K

[K, (MPa) | 2000 | 11000 | 110000 | Position |

26513 | 2.4084 | 2.5167 8
1 (day) | 1.1631 | 09202 | 1.0284 5
~0.3955 | -0.6390 | -0.5309 9
13.7940 | 11.0170 | 12.2190 8
10 (days) || 12.2130 | 9.4358 | 10.6370 5
106730 | 7.0006 | 9.1021 9
457950 | 34.0860 | 38.997 8
30 (days) || 44.2140 | 32.5040 | 37.415 5
42.6350 | 30.9260 | 35.837 9

Table 7.6: Effects of E on Displacements in the x-direction (u, m)

| Time (days) || 0.023 | 10 30 100 | Position |
-0.0428 | -0.0876 | -0.0902 | -0.0903 3
300 (MPa) -0.0400 | -0.0742 | -0.0759 | -0.0759 5}
-0.0668 | -0.0894 | -0.0903 | -0.0903 6
-0.00376 | -0.00755 | -0.00777 | -0.00778 3
3000 (MPa) || -0.00362 | -0.00638 | -0.00654 | -0.00654 5
-0.00621 | -0.00770 | -0.00778 | -0.00778 6
0 0 0 0 3
19800 (MPa) || 0 0 0 0 5
0 0 0 0 6

Table 7.7: Effects of E on Displacements in the y-direction (v, m)

| Time (days) || 0.023 | 10 30 100 | Position |
-0.0668 | -0.0894 | -0.0903 | -0.0903 1
300 (MPa) | -0.0400 | -0.0742 | -0.0759 | -0.0759 5
-0.0428 | -0.0876 | -0.0902 | -0.0903 7
-0.00621 | -0.00770 | -0.00778 | -0.00778 1
3000 (MPa) | -0.00362 | -0.00638 | -0.00654 | -0.00654 5
-0.00376 | -0.00755 | -0.00777 | -0.00778 7
0 0 0 0 1
19800 (MPa) 0 0 0 0 5
0 0 0 0 7
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Table 7.8: Pore Pressures at Different times and positions for Various E

[E (MPa) | 300 | 3000 | 16500 | Position |
2.4006 | 2.4084 | 2.5505
1 (day) [ 0.9115 | 0.9202 | 1.0624
-0.6518 | -0.6390 | -0.4963
10.7460 | 11.0170 | 12.6390
10 (days) || 9.1631 | 9.4358 | 11.0570
7.6261 | 7.9006 | 9.5223
33.014 | 34.0860 | 40.7700
30 (days) || 31.433 | 32.5040 | 39.1880
29.854 | 30.9260 | 37.6100

O] Ut 0O <O UY| OO O L GO
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Chapter 8

Conclusions and
Recommendations

Numerical simulation of fluid flow in deformable fractured media is of a great interest
for engineers in petroleum, civil, environmental, geological and mining engineering
and a challenging area. Because of complications associated with multiple physical
processes in deformable fractured rocks and mathematical representation of a multi-
phase flow system, there is no published literature that derives rigorously the coupled
differential equations governing the behavior of deformable fractured porous media
and two-phase fluid flow. To the best of the author’s knoeledge, this dissertation
presents for the first time the theory and formulations in this most advanced area.
The following conclusions and recommendations are drawn based on the present

research.

8.1 Contributions and Conclusions

1. A two-phase, two-dimensional numerical simulator, RFIA, has been devel-
oped to investigate the process of fluids flow in deformable naturally fractured
reservoirs and impacts of rock deformations on oil production, effects of with-

drawing fluids from underground and/or injecting fluids on pore fluid pressure
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and effective stress distributions on rock matrix as well.

. Mathematical equations incorporated into the simulator included two equilib-
rium equations for rock deformations and four continuity equations for fluid

flow in both matrix and fractures.

. For each point in the simulated domain, there are ten unknowns: rock defor-
mations in z- and y-directions, two saturations and two pressures in matrix
and fractures, respectively. By making use of the capillary pressure and the
saturation relationships, four out of these ten unknowns are eliminated to give

the final six governing equations needed to be solved.

. A finite difference numerical scheme, as an alternative method to finite ele-

ments, has been applied to discretize the final six governing equations.

. Comparing to the finite element method, the finite difference method has the
advantage of being easy to apply. However, if the resultant nonlinear equations
are solved by the direct method, it is tedious to write out the special form of
the six governing equations for boundaries and corner points based on the

boundary conditions specified.

. Verification of the finite difference model as well as the simulator is carried
out by simulating the consolidation problem in which the analytical solution
is available, as well as by comparing the results from a finite element model.

Successful agreement was obtained in both cases.

. The effects of stresses on saturation distribution is small whereas on pore
pressure distribution it is quite large. This implies that during oil production,
withdraw of underground hydrocarbons for a reservoir formation may cause

the effective stress on rock matrix to a content to cause pore collapse.
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10.

11.

12.

The effective stress that is directly proportional to pore pressure must be
controlled within the rock limit in order to prevent the rock from pore collapse.
Because pore is most sensitive to injection/production rates, therefore, these

rates plays the most important role in controlling pore collapse.

An increase in K results in an increase in rock displacements in both z- and
y-directions. For the pore pressure, there is a value at which the pore pressure

is lowest.

An increase in E results in a decrease in rock displacements in both z- and

y-directions. The pore pressure increases as E increases.

The rock fluid interaction simulator, RFIA, can easily simulate different prob-
lems by properly setting corresponding coefficients and parameters. These sit-
uations include (1) single-phase flow in single-porosity media; (2) single-phase
flow in dual-porosity media; (3) two-phase flow in single-porosity media; and
(4) two-phase flow in dual-porosity media. In all of the above cases, the porous

media can be treated as either deformable or rigid.

Dealing with two-phase flow of gas and oil systems in a deforming fractured
reservoir is much more complicated and difficult than dealing with oil and
water system because of gas solubility in oil. Thus, oil formation volume
factor and solution gas-oil ratio must be introduced. Nevertheless, the coupled
differential equations governing the behavior of gas and oil flow in a deforming
fractured reservoir have been derived, discretized in finite difference format,
and are ready to be coded. These formulations are also ready to be discretized
using finite element method. Actually, the researchers at Rock Mechanics
Institute at the University of Oklahoma are developing a simulator for oil-gas

systems based on these formulations presented in this dissertation.
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8.2 Recommendations for future work

1. Complete the simulator development of gas-oil low in deformable naturally

fractured reservoir.

2. Try applying iteration methods to solved the resultant system of equations
to avoid the painful work to get the special forms of discretized governing

equations for boundaries and corner points.
3. Enhance the simulator’s interface.

4. The study of reservoir formation permeability is another concern to petroleum
engineers because of its direct relationship to oil production rate. In the case of
deforming fractured media, the permeability of the porous media is considered
stress-dependent as a result of crack aperture changes caused by stress varia-
tions. In addition to experimental tests, numerical simulations may be used to
predict the stress-dependent permeability under different loading situations.
The following relationship relating permeabi]ity with porosity, conventionally
used in formation damage model, may be adopted in stress-strain model to
calculate the instantaneous permeability once the stress-dependent porosity is

calculated by a rock fluid interaction simulator, like RFIA developed in this

_a (2
k = akg ( ¢0> (8.1)

research:

where k and kg are instantaneous and original permeabilities, respectively; and
¢ and ¢y are instantaneous and original porosities, respectively, a and b are

proper coefficients.
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Nomenclature

Q9 9 n o
g o©°© 9

apeae

o

area, L2

oil formation volume fractor

mass fraction of ith component in gas phase

mass fraction of ith component in oil phase

mass fraction of ith component in water phase

oil compressibility, Lt?/m

water compressibility, Lt?/m

comprehensive compressibility for fluids in matrix, Lt?/m
comprehensive compressibility for fluids in fracture, Lt?/m
Young’s modulus, m/Lt2

force, mL/t?

Lamé’s constant

stiffness, m/Lt?

bulk moduli of fractured media, m/Lt?

bulk moduli of the solid grain, m/Lt?

oil relative permeability in rock matrix

oil relative permeability in fracture

water relative permeability in rock matrix

water relative permeability in fracture

length, L
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mass, m
average fluid pressure in rock matrix, m/Lt?
average fluid pressure in fracture, m/Lt?
oil pressure in rock matrix, m/Lt?

oil pressure in fracture, m/Lt?

water pressure in rock matrix, m/Lt>
water pressure in fracture, m/Lt?
capillary pressure, m/Lt?

capillary pressure of rock matrix, m/Lt?
capillary pressure of fracture, m/Lt?

mass transfer for gas phase, m/t

mass transfer for oil phase, m/t

mass transfer for water phase, m/t
solution gas-oil ratio

oil saturation of rock matrix

oil saturation of fracture

water saturation of rock matrix

water saturation of fracture

time, t

displacement in x-direction, L
displacement in y-direction, L

Darcy’s water velocity in rock matrix, L/t
Darcy’s water velocity in fracture, L/t
Darcy’s oil velocity in rock matrix, L/t
Darcy’s oil velocity in fracture, L/t

intrinsic water velocity in rock matrix, L/t
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Greeks

Eij =

Ekk =

¢m =
ol =

Ps =
Pum =
Pom =
Puf =
Pof =

Hwm =

intrinsic water velocity in fracture, L/t
intrinsic oil velocity in rock matrix, L/t
intrinsic oil velocity in fracture, L/t

bulkl volume of fractured porous medium, L*
solid volume of fractured porous medium, L3
pore volume of fractured porous medium, L3
fracture volume of fractured porous medium, L3
total pore volume, L?

volume of oil, L3

volume of water, L3

z—, y—direction in a cartesian coordinate system

strain

strain tensor (i, j=1, ..., 3)
volume strain

Poisson’s ration

rock matrix porosity

fracture matrix porosity

total porosity

density of solid, m/L3

density of water in rock matrix, m/L3
density of oil in rock matrix, m/L3
density of water in fracture, m/L?
density of oil in fracture, m/L3

water viscosity in rock matrix, m/Lt
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Rl

At

water viscosity in fracture, m/Lt
oil viscosity in rock matrix, m/Lt
oil viscosity in fracture, m/Lt
stress, m/Lt?

stress tensor (i, j=1, ..., 3), m/Lt?
Biot’s constant

transfer coefficient, 1/m?

time step, t
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Appendix A

Fundamental Concepts

In this appendix, a brief explanation of the fundamental concepts which have been
used in the foregoing chapters such as porosity and saturation is provided. This
would be helpful to someone who is familiar with only part of these concepts. For
example, rock mechanics scientists may not know much about reservoir engineering,

whereas reservoir engineers may not familiar with rock mechanics terms.

A.1 Porosity

For a rock to form a reservoir, it must have a certain storage capacity, this property

is characterized by the porosity. This porosity, @, is defined as:

¢ = %’: x 100% (A.1)

where V, is the pore volume, and V; the total volume of the rock.

The porosity of interest to the reservoir engineers, which allows the fluids in the
pores to circulate, is the effective porosity, ¢., which represents only inter-connected
pore spaces.

Also defined is the total porosity, ¢., corresponding to all the pores, whether inter-

connected or not, and the residual porosity, ¢, which only takes account of isolated
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pores; hence,

b = be + &r (A.2)

The effective porosity of rocks varies between less than 1% to over 40%. It is often
stated that the porosity is:

(1) Low if ¢ < 5%;

(2) Mediocre if 5% < ¢ < 10%;

(3) Average if 10% < ¢ < 20%;

(4) Great if 20% < ¢ < 30%; and,

(5) Excellent if ¢ > 30%.

A distinction is made between intergranular porosity, dissolution porosity (as in
limestones, for example), and fractured porosity. For fractured rocks, the fracture

porosity related to the rock volume is often much less than 1%.

A.2 Saturation

For a rock to form a reservoir, it must contain a sufficient quantity of hydrocarbons,
with a sufficient concentration. In most oil-bearing formations it is believed that
the rock was completely saturated with water prior to the invasion and trapping of
petroleum. The less dense hydrocarbons are considered to displace water from the
interstices of the structurally high part of the formation. However, the oil will not
displace all the water which originally occupied these pores. Thus, reservoir rocks
normally contain both hydrocarbons and water (frequently referred to as connate
water) in same or adjacent pores. To determine the quantity of hydrocarbon accu-
mulated in a porous rock formation, it is necessary to determine the fluid saturation
(oil, water, and gas) of the rock material.

In the pore volume, V,, are found a volume V, of oil, a volume V,, of water, and
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a volume V, of gas (V, = V, + V,, + V). The oil, water, and gas saturations are

defined as:
178
So - 1_/; (A‘3)
Vi
Sw - V; (A'4)
Y
Sy = —‘Z (A.5)
expressed in dismal, with:
So+ Sw + S, = 1.0. (A.6)

Knowing the volumes of oil and gas in place in a reservoir requires knowing the

saturation at every point, or at least a satisfactory approximation.

A.3 Permeability

For a rock to form a reservoir, the fluids must be able to flow in the rock: this
property is characterized by its permeability.

The absolute permeability or permeability of a rock represents the ability to allow a
fluid to flow through its pores. Permeability can be determined by the experimental
Darcy’s law.

Consider a sample of length dx and cross-section A, saturated with a fluid of dynamic
viscosity u, and crossed horizontally by a flowrate Q. Under steady-state conditions,
the upstream pressure is P, and the downstream pressure is P-dp. The lateral sides

are impervious. If the fluid does not react with the rock, which is the general case:
Q=—-A—— (A7)

Equation (A.7) is Darcy’s law. k& is called the permeability coefficient, and is inde-

pendent of the type of fluid. It is the absolute or specific permeability of the sample
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in the direction considered. The range of permeabilities is very wide, it varies from
0.1 mD to more than 10 D. The following terms can be employed to specify the
value of the permeability:

(1) £ 1 mD: Very low;

(2) 1 to 10 mD: Low;

(3) 10 to 50 mD: Mediocre;

(4) 50 to 200 mD: Average;

(5) 200 to 500 mD: Good; and,

(6) > 500 mD: Ezcellent.

In hydrocarbon reservoirs, however, the rocks are usually saturated with two or
more fluids, such as interstitial water, oil, and gas. It is, therefore, necessary to
generalize Darcy’s law by introducing the concept of effective permeability to de-
scribe the simultaneous flow of more than one fluid. The effective permeability is a
relative measure of the conductance of the porous medium to one fluid phase when
the medium is saturated with more than one fluid. This definition of effective per-
meability implies that the medium can have a distinct and measurable conductance

to each phase present in the medium. Thus, Darcy’s law can be restated as follows:

k, dP,
Qo=—A—" E
o dT

Qu = —aFu (A.9)

Yy dT
k, dP,
Qg = —A;‘-’-——dxg (A.10)
()

(A.8)

In the above equation, ko, ky, kg are the effective permeability for oil, water, and
gas, respectively.

Effective permeability is a function of the prevailing fluid saturation, the rock-
wetting characteristics, and the geometry of the pores in the rock. Owing to the

many possible combinations of saturation for a single medium, laboratory data are
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usually summarized and reported as relative permeability. Relative permeability is
defined as the ratio of the effective permeability of a fluid at a given value of satu-
ration to the effective permeability of that fluid at 100 percent saturation (absolute

permeability). Relative permeability can be expressed symbolically as:

ko

kro = z (A.11)
Ky

krw = % (A.12)
kg
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(=)
N
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Figure A.1: Typical Relative Permeability Curves.

A.4 Capillary Pressure

Capillary pressure can be qualitatively expressed as the difference in pressure which

exists across the interface which separates two immiscible fluids. Conceptually, it
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is perhaps easier to think of it as the suction capacity of a rock for a fluid that
wets the rock, or the capacity of a rock to repel a non-wetting fluid. Quantitatively.,
capillary pressure will be defined as the difference between pressure in the oil phase

and pressure in the water phase, i.e.,
P.=PF,— P, (A.14)
The importance of capillary pressure to reservoir engineering is as follows:

1. Capillary pressure data are needed to describe waterflood behavior in more

complex prediction models;

2. Capillary forces, along with gravity forces, control the vertical distribution of
fluids in a reservoir. Capillary pressure data can be used to predict the vertical

water distribution in a water-wet system;

3. Capillary pressure data provided an indication of the pore size distribution in

a reservoir;

4. Capillary forces influence the movement of a waterflood front and, conse-

quently, the ultimate displacement efficiency; and,

5. Capillary forces determine connate water saturation.

Figure A.2 shows a typical capillary pressure curve for a water-air system.

A.5 Formation Volume Factor

The volume of oil which enters the stock tank at the surface is less that the volume
of oil which flows into the wellbore from the reservoir. This change in oil volume
which accompanies the change from reservoir to surface conditions is due to the

following three factors:
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Figure A.2: Capillary Pressure Curve.

1. evolution of gas from the oil as pressure is decreased from reservoir to surface
pressure. This causes a rather large decrease in volume of the oil when there

is a significant amount of dissolved gas;

2. reduction in pressure also causes the remaining oil to expand slightly, but this

is somewhat offset by the following factor.
3. contraction of the oil due to the reduction of temperature; and,

The change in oil volume due to these three factors is expressed in terms of the
formation volume factor of oil. It is defined as the volume of reservoir oil required
to produce one barrel of oil in the stock tank. Because the reservoir oil includes
dissolved gas,

B — Volume of oil + dissolved gas leaving at reservoir conditions
®" Volume of oil entering stock tank at standard conditions

(A.15)

Another way to express the formation volume factor of oil is that it is the volume

of reservoir occupied by one stock tank barrel plus the gas in solution at reservoir
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temperature and pressure.
The relationship of formation volume factor of oil to reservoir pressure for a typical

black oil is given in Figure A.3.

Formation Volume Factor of Oi

oy
oO

Figure A.3: Typical Shape of Formation Volume Factor of a Black Oil.

This figure shows the initial reservoir pressure to be above the bubble-point pressure
of the oil. As reservoir pressure is decreased from initial pressure to bubble-point
pressure, the formation volume factor increases slightly because of the expansion of
the liquid in the reservoir.

A reduction in reservoir pressure below bubble-point pressure results in the evolution
of gas in the pore spaces of the reservoir. The liquid remaining in the reservoir has
less gas in solution and, consequently, a smaller formation volume factor. Formation

volume factor is also sometimes called reservoir volume factor.
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A.6 Solution Gas-0Oil Ratio

The quantity of gas dissolved in oil at reservoir conditions is called solution gas-oil
ratio. The solution gas-oil ratio is the amount of gas that evolves from the oil as oil
is transported from reservoir to surface conditions. This ratio is defined in terms of

the quantities of gas and oil which appears at the surface during production.

R — Volume of gas produced at surface at standard conditions
* " Volume of oil entering stock tank at stand conditions

(A.16)

Solution gas-oil ratio is also called dissolved gas-oil ratio and occasionally gas solu-
bality.

Figure A.4 shows the way the solution gas-oil ratio of a typical black oil changes
as reservoir pressure is reduced at constant temperature. The line is horizontal at
pressures above the bubble-point pressure, F,, because at these pressures no gas
is released in the pore space and the entire liquid mixture is produced into the
wellbore. When reservoir pressure is reduced below this bubble-point pressure, gas

evolves in the reservoir, leaving less gas dissolved in the liquid.

A.7 Fractured Reservoirs

A.7.1 Definition

A reservoir fracture is a naturally occurring macroscopic planar discontinuity in the
rock mass due to deformations or physical diageneses. For practical reasons, it is
assumed to have been initially open, but may have been subsequently altered or
mineralized. It may, therefore, have either a positive or negative effect on fluid
flow within the formation. A fractured reservoir is a reservoir in which naturally
occurring fractures have a significant effect on reservoir fluid flow either in the

form of increased reservoir permeability and/or porosity or increased permeability
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Figure A.4: Typical Shape of Solution Gas-Oil Ratio of a Black Oil.

anisotropy.

A.7.2 Origin

The origin of the fracture system is postulated from data on fracture dip, morphol-
ogy, strike (if available), relative abundance, and the angular relationships between
fractures sets. These data can be obtained from full-diameter core (oriented or
conventional), borehole televiewer output, or other less oriented logging tools, and
applied to empirical models of fracture generation. Available fracture models range
from tectonic to others that are primarily diagenetic in origin. It is only by a proper
fit of fracture data to one of these genetic models that any effective extrapolation or
intrapolation of fracture distributions can be made. The interpretation of the frac-
tures origin involves a combined geological/rock mechanics approach to the problem.

It is assumed that natural fracture patterns depict the local state of stress at the time
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of fracturing, and that subsurface rocks fracture in a manner qualitatively similar to
equivalent rocks in laboratory tests performed at analogous simulated environmental
conditions. Natural fracture patterns are interpreted in light of laboratory-derived
fracture patterns (Handin and Hager, 1957), and in terms of postulated paleostress
fields and strain distributions at the time of fracturing. In general, any physical
or mathematical model of deformations that depicts stress or strain fields can, by
various levels of extrapolation, be used as a fracture distribution model (Hafner,
1951).

A genetic classification scheme for natural fracture systems, which is an expansion
of that found in Stearns and Friedman (1972), permits separation of complicated
natural fracture systems into superimposed components of different origin. Such par-
titioning can make delineation of structures (Friedman, 1969; Friedman and Stearns,
1971) and prediction of increased fractured-related reservoir quality (McCaleb and
Willingham, 1967; Stearns and Friedman, 1972) from fracture data more tractable.
Stearns and Friedman (1972) classify fractures into those observed in laboratory ex-
periments and those observed in outcrop and subsurface settings. Their classification
scheme, together with modifications suggested by Nelson (1985), forms a useful ba-
sis for fracture models (Table A.1). Nelson’s major modification to Stearns’s and
Friedman’s scheme is the addition of two categories of naturally occurring fractures:
contractional fractures and surface-related fractures. A minor modification to the
experimental fracture classification is the addition of a category similar to exten-
sion fractures in morphology and orientation but having a different stress state at

generation time.
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Table A.l: Experimental and Natural Fracture Classification

Shear fractures

Extension fractures

Tension fractures

Tectonic fractures (due to surface forces)
Regional fractures (due to surface forces)
Contractional fractures (due to body forces)
Surface related fractures (due to body firces)

Experimental Fracture

Classification

Naturally Occurring
Fracture Classification

| L0 O = 0o o)

A.8 Stress and Strain

The concepts of stress and strain, in their simplest form, involve a mathematical
abstraction for specifying the interaction between one part of a continuous material
body and another. These abstractions involve the ideas of vector and tensor fields.
Recall that a scalar is a mathematical entity that has only a magnitude assigned
to it; temperature for example. Scalar quantities are treated mathematically as a
tensor of rank zero. Vector quantities, on the other hand, possess a magnitude and
a direction of action. Velocity, for example, is a vector quantity and can be treated
mathematically as a tensor of rank 1.

Stress, o, is defined as the amount of forces AF applied on an area AA as AA

approaches zero:

o =A1;14130 %}2— (A.17)
Stress is frequently measured in Pa (= Pascal = N/m?), bar, atmosphere, psi(=
1b/inch?), or dynes/cm?. The SI unit Pa is most comfortable, while the others are
mostly used in engineering calculations.
The sign of the stress ¢ is not uniquely defined by the physics of the situation, and
has, therefore, to be defined by convention: in rock mechanics, compressive stresses

are taken as positive. The historical reason for this is probably that the stresses in

the earth’s crust are almost exclusively compressive.
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An ordered arrangement of vectors about a point can be treated mathematically as a

tensor of rank two. The state of stress, for example, is a shorthand way of describing

the infinite array of force vectors about an infinitesimal point within a body. This

mathematical description of a vector array requires the definition of only nine vector

components of the infinite array in order to define all others. At equilibrium, the

nine vector components needed to describe the state of stress reduce to six. Of

these six, three are defined as normal stress components (o) and three are defined

as shear stress components () as shown in Equations A.18-A.20. In one particular

frame of reference, the normal stresses becorme principal normal stresses (o1, 09, 03 or

maximum, intermediate, and minimum normal components), and effectively reduce

the tensor to three components.

In general,

g1 Ti2 T3
gij; = | T3 022 723
731 732 033

When at equilibrium 7 = 791, T13 = 731, Te3 = T32,

o111 Ti2 Ti3
Oij = — 022 T3
- — 033

(A.18)

(A.19)

When the coordinate axes are the principal axes and the remaining components

are the principal stresses,

g11 0 0
Oij = 0 092 0
0 0 033

(A.20)

The state of strain involves a similar treatment using a tensor of rank two to describe

the infinite array of displacement vectors about a similar infinitesimal point within
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a deformed body.
Strain, €, is defined as the amount of elongation of a fiber, Aé, divided by its original

length, AL as AL approach zero,

Ab

2 =A].t1'_l}0 E (A.Ql)

The entities that describe the changes in the state of stress and strain and their
vector components from point to point within the body are the stress and strain
fields (tensor fields). A feeling for fields and the vector components that make up
the state of stress or strain in a body can be gained through the manipulation of
small magnets. If one slowly brings the two like poles of a pair of magnets together
from various directions, holding one stationary and moving the other, a tactile sense
of the infinite array of magnetic force vectors can be obtained. The perception of
force intensity changes with varying distance and orientation of the magnets gives

one a physical analogy to the stress-field concept.

A.8.1 Stress-Strain Relationships

The state of stress at a point and the stress field throughout a body are mathematical
descriptions of the forces within a body and how they interact and change from point
to point. The state of strain at a point and the strain field mathematical descriptions
of the displacements due to temporary or permanent deformations within a body
and how they interact and change from point to point. The states of stress and
strain and their fields within a body are not independent but are directly related to
one another. The functional relationships relating stress and strain in various types
of materials are defined by constitutive equations. These constitutive relationships
include those defined by the theories of elasticity, plasticity, viscosity and various

syntheses of the three.
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The constitutive equations are, for the most part, based ultimately on empiricism or
experimentation. Material samples are subjected to loads of various magnitudes and
configurations and particular subsequent displacements measured. The loads and
displacements are equated to stress and strain components and generally plotted
graphically in a manner similar to that shown in Figure A.5. It is the form of curves

like these that are the basis of most constitutive equations.

A
Inelastic Strain Hardening
J
’ Elastic " -=emev _
P o Strain softening
Siope is Young's
modulus (E)
Displacement or Strai _

Figure A.5: General Form of Stress-Strain Curve for Rock with Both Elastic and
Inelastic Portions Shown.

Elasticity

Elasticity is a theory that entails a constitutive relationship for a solid body that
obeys Hooke’s law or behaves elastically. This law states that the stress tensor (state
of stress at an infinitesimal point) is linearly proportional to the strain tensor (state

of strain at an infinitesimal point) and that the body return to its original shape
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and dimensions when all external loads are removed. Mathematically,
Oi,j = LijklEkl (A-QQ)

Where o;; is the stress tensor, E;jy is the elastic moduli and gy is the strain
tensor. The stress and strain tensors contain nine vector components each, while the
elastic moduli tensor (a tensor of rank three) contains eighty-one such components.
However, assumptions involving equilibrium, symmetry, and isotropy can reduce
the stress and strain tensors to six independent components each and the elastic
constant tensor to two (the Lamé’s constants).

Perfectly elastic behavior would be characterized by a stress-strain curve that is
linear, with a positive slope (constant and positive Young’s modulus) and an imme-
diate return to its initial stress-strain point upon complete unloading, Figure A.6.
Modification of ideal elasticity include hysteresis in the unloading curve, Figure
A.7, and time-dependent recovery of all strains or displacements with a nonlinear

but complete recoverable portion to the stress-strain curve, Figure A.8.

Plasticity

Plasticity is a theory that entails a constitutive relationship for a solid body that
behaves in a fully ductile manner (flow), or plastically. Ideally, upon loading the
material deforms elastically up to a yield stress past which the material displaces
or strains indefinitely without sustaining additional load {0y = yield stress). The
characteristic stress-strain behavior is indicated by a horizontal portion of the stress-
strain curve, Figure A.9. Modification to this behavior include positive slope, strain
hardening, Figure A.10. All plastic strains or displacements are nonrecoverable.
True plastic behavior in rocks is generally restricted to relatively weak, ductile rocks,

.such as clay-rich shales and some unconsolidated sands and tuffs.
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Figure A.6: Perfectly Linear Elastic Behavior.
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Figure A.7: Linear Elastic Behavior with Hysteresis in the Unloading Curve.
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Figure A.8: Non-Linear Elastic Behavior with a Time-Dependent Recovery.
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Figure A.9: Purely Plastic Behavior.
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Figure A.10: Strain Hardening Plactic Behavior.

Viscosity

Viscosity is a theory that entails a constitutive relationship for a solid body that
behaves like a Newtonian viscous fluid or in a viscous manner. Ideally, it relates

stress to strain rate in a linear manner (refer to Figure A.11), i.e.:
Oij = Nijkt Ext (A.23)

Where n;ji; is the viscositjr tensor and g, is the strain rate tensor

The viscosity of rocks is hard to determine. It is usually derived from long-term creep
tests at either constant load or constant strain rate. Fur simplicity, assumptions of
isotropy and incompressibility allow the viscosity tensor to be reduced to a single
value for any particular rock.

The viscous constitutive relationship is generally applied to the response of rocks to
long-term loading, such as over geological time. Modifications of this constitutive

relationship include nonlinear viscosity and temperature-dependent viscosity (refer
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to Figure A.12).

Linear viscous

Stres

Viscosity (n)

Y

Displacement or Strain

Figure A.11: Linear Viscous Behavior.
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Figure A.12: Non-Linear Viscous Behavior with the Effect of Tepperature (77 < T3).
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Mixtures

Most rocks do not strain in response to stress (or vice versa) according to any of
the three ideal constitutive relationships. Indeed, most rocks exhibit much more
complex behavior than any of the simple ones discussed above. As a result, experi-
mentalists and theoreticians often model rock stress-strain behavior with a mixture
of the ideal relationships, such as viscoelastic, elastico-plastic, and visco-plastic be-
havior, to name a few. In these approaches, portions of the stress-strain curves for a
rock are assigned a constitutive behavior analogous to its form, and these behavior
elements are added or amalgamated into a combined relationship meant to mimic
the real rock response.

In this dissertation, a rock is assumed, for simplicity, to behave elastically.

A.9 Poroelasticity

In most petroleum engineering applications, rocks are expected to have their pore
spaces saturated with liquids and/or gases. When fluid permeates, rocks undergo
a disturbance from their initial state of stress or pore pressure, and intricate cou-
pled mechanical and hydraulic processes will occur. For example, a perturbation in
the fluid pore pressure, in a saturated rock, will cause fluid flow towards the least
pressurized regions, while simultaneously the rock under the effective stress distur-
bance will undergo deformations. The simplest theory that would take into account
of the coupled deformation-diffusion phenomena in rock masses, is the theory of
poroelasticity derived by Biot in 1941.

According to this theory, when a porous material of connective solid structure, such
as rock, is subjected to an increment in compressive stress, a volumetric deformation

will take place. The deformation actually consists of two components:
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1. deformations of the solid skeleton; and,
2. change in the pore spaces.

If the rock pore spaces are permeated by a compressible fluid, the fluid will initially
resist deformation, and give rise to an uneven fluid pore pressure whose magnitude
is inversely proportional to the fluid compressibility. Whenever there is a change in
fluid pore pressure, a variation in the effective stress applied on the solid skeleton
will take place. The solid must further deform to accommodate the equilibrium and
the compatibility requirements.
From the solid deformation point of view, two material coefficients, Young’s mod-
ulus £ and Poisson’s ratio v, are necessary and sufficient to describe the linear,
isotropic mechanical deformation. For the fluid flow in porous media, the mobility
coefficient, «, alone characterizes the dissipative fluid flow effect. However, these
three parameters are not sufficient to characterize a poroelastic material. Two more
independent coefficients, Skempton’s pore pressure coefficient, B, and Biot’s effec-
tive stress coefficient, o, are needed for describing the coupling phenomena between
the mechanical and hydraulic processes.
Skempton’s pore pressure coefficient, B, is defined as the ratio of the induced pore
pressure P, over the increment of the average confining pressure P under undrained
condition, i.e.,

P

B=22 (A.24)

Its value is related to the compressibility of the solid, fluid, and skeleton, and nor-
mally varies between the range 0 < B < 1. The upper rage B=1 is reached for
an incompressible fluid. On the other hand, B =~ 0 if the fluid is considered very
compressible (such as gas).

As an extension of the linear theory of elasticity, Biot derived the theory of poroe-

lasticity, assuming an elastic continuous porous medium, fully saturated with fluid.
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The Biot’s effective stress o j is defined as :

O',- ;i = 045 — Ctéi'jp (A.25)

2v)
where o; ; is the total stress, P is the pore pressure acting on the solid grains, and
a is known as the Biot’s constant, which can be evaluated approximately by:

K;

where K and K are the bulk moduli of solid grains and the skeleton respectively.
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Appendix B

Forty-eight equations for the
boundaries and the corners

B.1 Case 1 Two-Phase Flow Coupled with Solid
Deformations in a Fractured Rock

e Boundaryi=1
Equation 1
—2(a1 + a2)uij + 261Uiq1 5 + QUi jp1 + QoUij—1 =0 (B.1)
Equation 2
—2(by + bo)vij + 2b1Viq1,5 + bovijqy + bavij_1 — baPmij—1 + DaPmije1
—bspyij—1 + bspsij+1 — U6i,jSmij—1 + b6ijSmij+1 — b7:5Srij~1 + b7iiSrija1
= bg;ij(Pemij+1 — Pemij—1) + boij(Pefijr1r — Defij—1) (B.2)
Equation 3
C15¢,iPmi,j — (Cu,j + C2ij)pmi+1,j — C3i,jPmi,j+1 — C4i,jPmi,j—1
+(C10ij — C7ij)Dfij + CoijVij+1 — CoijVij—1 + C11i7Smij + C12i75Fij
= C14i,jPmij + C10i,jPfij + C11ijSmij + C12ijSFij
+Coi jVi j+1 — C9i,jVij—1 + C13i,jPemij — (C1ij + C2i j)Pemiv1,j
—C3i jPcemi,j+1 — C4i,jPemij—1 — Ci,jPcfij (B-3)
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Equation 4

di5i jPmij — (d1ij + d2ij)Pmit1,j — @3i,jPmij+1 — @4ijPmij-1
+(d10i,j — drij)Psig + doigVige1 — doijVig—1 + G11i,jSmij + d12i5Sri;
= d4i jPmij + d10ijDfi + A11i5Smi
+d12ijSrij + doi jVij+1 — dei Vi -1 (B.4)
Equation 5
€15i,50fi,5 — (eli,j + 32i,j)pfi+l,j — €3i,iDfij+1 — €44,Dfii—1
+(€10i,j - e'h'g')pm.ij + €gi Vi j+1 — €9i,5Vij—1 T 811;‘JS fij T+ el2i,jSmi,j
= e14ijDfij + €10iPmij + €11ijSfii + €12:,jOmij T €0i Vi j+1
—eg; jVi j—1 + €13iDcfi,j — (€115 + €2ij)Defi+lj
—€3; Dcfij+1 — €4i,jDcfi,j—1 — €7ijPemi,j (B.5)
Equation 6
fisigprig — (fuig + foi)privng — faiiPriger — faiPrij
+(fr0i5 — frij)Pmig + foijViger — feijvij—1 + f1145Sris + f12iSmi;
= fi4ijPfij + f10ijPmij + f11iiSrii
+ f12i,iSmij + foi jVij+1 — foijVij—1 (B.6)
e Boundary i = N,
Equation 1

—2(a; + a2)uij + Gty j41 + Goij—1 + 2a3vi1,5-1 — 2a3Vi-1 541

+2a3v,-,_,-+1 - 20.3’0,‘,1-_1 =0 (B?)
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Equation 2

Equation 3

Equation 4

Equation &

—2bov; j + bov; jy1 + bavi 1 + 263w jo1 — 2b3ui1 41
—04Pmij—1 + 0aDPmij+1 — bsprij—1 + bsPgijer — O6i jSmij—1
+b61,5Smij+1 — 073, S fij—1 + b7iiSrije

bgi j(Pemij+1 — Pemij—1) + b9i,j(pcfi,j+1 — Defij—1)

C15i,jPmij — (Clij + C2i,j)pmi—1,j — C3i,iPmij+1 — C4i,jPmi j—1
+(C10i,j — C7ij)Dfij — 2C8i jUi—1 + CoijVij+1 — CoijVij—1
+C11i,79mij + C12:,55 i 5

C14i,jPmij + C10i,jPfij + C11ijSmi,j + C12iSfij — 2Cgi jUi—1,j
+Coi jVi j+1 — C9i,jVij—1 + C13ijPemij — (Ciij + C2i,j)Pemi—1j

—C34,jPemi,j+1 — Cdi,jPemi,j—1 — Cti,jPcfi,j

dlSi,jpmij - (dli,j + dzi,j)Pmi-1,j - d3i,jpmij+1 - d4i,jpmi,j—1
+(droij — drij)Prij — 2dsijUi-15 + doijVije1 — doi Vi1
+d11:,jSmij + d12ijSri

d14i,jDmi,j + A10ijPfi; + di1i,Smij + d12i,jSfij — 2dgi jUi-1,j

+doi Vi j+1 — doi, Vi j—1

€15i,jPfij — (el-i,j + e2i,j)Pfi—l,j — €3ijPfij+1 — €4ijPfij—1
+(e10i,j — €7i,5)Pmi,; — 2€8i,%i—1,j + €9iVij+1 — €9i5Vi -1
+e11:,;Sfij + €12i7Smi j
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= ey ;Dfij + €10iPmij T €11:,9fi; + €12i,jSmi,; — 2€8ijUi—1,5
+e€9; jVij+1 — €9:i,jVij—1 + €13i,jDcfij — (61i,j + e9; ; )pcfi—l, j
—€3i jPcfi,j+1 — €4i,jPcfij—1 — €7i,jPemi,j (B.11)
Equation 6
fisijprij — (frig + foig)Pri-1; — faiiPfijer — faiiPrij—1
+(fr0i5 — frij)Pmig — 2feijti-15 + for Vi1 — foijvij—1
+ f11:59Fij + f12i,7Smi
= fu4i;Pfij + f100,jPmij + f11i5Sfi5 + [1205Smij — 2fsijUi-15
+ foi Vi j+1 — foi jVij—1 (B.12)
o Boundary 7 =1
Equation 1
—2a1%;j + Q1 U%ip1,5 + G1Ui-1j — G4Pmi-1,j + C4Pmit+1,j — A5Pfi—1,j

+asPfit1,j — 6i,jSmi-15 T 06ijSmit15 — 71,55 fi—1,5 + 75,55 fiv15

aBi,j(pcmi+1,j - pcmi—-l,j) + ag; ; (pcfi+1,j - p,cfi—l,j) (B.13)
Equation 2

—2(by + b2)v; j + b1Vig1j + b1vi1j + 2bavi j — bac
+2b3u; 1 ; — 2b3Ui—1 j41 + 2b3Uig jo1 — 2b3Uipy;
+2b4Dmi j+1 + 2b5Dfi j41 + 20605 Smi j+1 + 2b7: S Fij4+1

= 2bg; jPemij+1 + 2bgi jPcfij+1 (B.14)
Equation 3

C15i,jPmij — Cli,jPmit+1,j — C2ijPmi-1j — (€3i,j — C4i,j)Prmij+1
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+(C10i,j — Cri,j)Pfij + CsijUit1j — Csi,jUi=1,j + C11i,j9mij + C12:,5Sfi;
= C14ijPmij + C10i,jDfij + C11i,jSmi,j + C12ijSfij + CsijUit1j
—Cgi,jUi—1,j T C13ijPemi,j — ClijPemi+1,j — C2i,jPemi—1j

—(Cai,j - C4i,j)pcmi,j+1 — C7i,jPcfii (B-15)

Equation 4

dlSi,jpmi,j - dli,_y'pmi+1,j - d2i,jpmi—1,j - (dSi.j - d4i,j)pmi,j+1
+(d10i; — drij)Pfij + dsijUiv1,j — dgijui—1; + d114,jSmi,; + d12i;Sri;
d14i,jPmij + d10i,jDfij + d11i,7Smi j

+d12:,5SFi; + dgijUist1,; — dgijUi—1,5 (B.16)

Equation 5

€15i,jPfi5 — €1i,jPfi+1,5 — €2i,jPfi~1,5 — (63,-,]- — €445 )Pfi,j-t—l

+(e10i,j — €7ij)Pmij + €8ijUi+15 — €8ijUi—1,j + 61:1:',1'5 fij + €12ijSmi j
= e14ijDfij + €10ijPmi,; + €11i,;Sfij + €12ijmij + €8ijUit+1,j

—€gi,jUi~1,; + €13i,jPcfij — €1i,5Pcfi+1,j — €2i,jPcfi—1,j

—(esij — €4ij)Pcfij+1 — €7i,jPemij (B.17)
Equation 6
f 15:,5Pfig — f 14,5Pfi+1,5 — f: 2i,jPfi-15 — (f 3ij — f 4i,j)pfi,j+1
+(f 104,57 — f 7i,j)pmi,j + f 8i,j Uit1,7 — f8i,jui—1,j + f 11i.j5fi.j + f 12ij5mi.j
=  fu4ijPrij + f10iPmij + f11:,5SFij

+ f12i5Smi,j + faijUis1; — fsij%i-1,j (B.18)

e Boundary j = N,
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Equation 1

—2(a; + az)u;j + a1ty j + a1ui—1j + 2a3vi-1j—1 — 2a3Vis1 j-1
—Q4Pmi-1,j + CaPmi+1,j — CsPfi—1j + QsDfirl,j — 06i,jOmi—1;j

+a6i i Smi+1,j — 7ijS fi-1j + Q7ijSfit1,j

= agi,j(Pemit+1.j — Pemi—1,5) + 0i,j(Pefis1j — Pefi-1,5)
Equation 2
—2(b1 + bo)v; ; + b1Vigr; + b1vio1 ; + 2b3uiy jo1 — 2b3uiy ;-1 =0
Equation 3
C15i,jPmi,j — Cli,jPmi+1,j — C2ijPmi—1,7 — (c3i,j + C4i,j)pmi,j—1
+(¢'10i.j - C7i,j)Pfi,j + C8ijUi+1,7 — C8ijUi-1j — 2Cgi jVij—1
+¢11i,jSmij + C12:,jSfi j
= C14ijDPmij + C10i,jPfij + Cr1i,jSmij + C12i,jSfi,j + C8ijUi+1,5
—Cgi jUi—1,7 — 2C91',j'”i,j—l + C13:,jPcmi,j — Cli,jDemi+1,j
—C0i jPemi—1 — (C3ij + C4ij)Pemij—1 — Cri,jDefij
Equation 4
disi jPmij — G1ijPmit+1,; — d2i jPmi-15 — (daij + d4ij)Pmij-1
+(d1oi,j — drij)Prij + daijUivr; — dgijlio1,j — 2ds: Vi -1
+d11ijSmij + d12:,Sfi
= d14i,jPmij + Q10 jPfij + Q11:,jSmij + d12ijSfij
+dgi jUiv1,; — dijUi-1,7 — 2dgi Vi -1
Equation 5

€15:,jPfij — €1i,jPfi+1,5 — €2¢jPfi—1,5 — (€3i,j + e4i,j)pfi,j—1
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+(e10i; — €7ij)Pmi,j T €8ijUi+1j — €8i,jUi—1; — 2€9i,;Vij—1
+e11ijSfi; + €12ijSmi
= e14i;Dfij + €10ijPmij + €11ijSfij + €12i,jmij + €si jUir1j
—e€gi jUi—1,j — 2€9i jVij—1 t+ €13ijDecfij — €1ijDPcfi+l,j
—e€9i jDefi—15 — (€3i + €4ij)Pefij—1 — €7i,jPemi,j (B.23)
Equation 6
f 15iPfij — J1ijPfiv1j — foijPfi-15 — (f: 35 + f4i,j)pfi,j—1
+(f 105 — [ 7i,j)pmi,j + fi 8i,jUit1,7 — feij%i-1; — 2fei jVij—1
+ f114,5Sfij + fi2i,jSmij
= fiaijPrij + f10ijPmij + f110Sri; + f120Smij + fsijUiv1j

— fai,j%i—1,; — 2foi,jVij-1 (B.24)
e Cornerz=1,j=1
Equation 1
—201u; j + 2a1Ui1,5 + 203Vip1j — 203Viq1 541 +a3c =0 (B.25)
Equation 2

—2(()1 + bg)'vi‘j + 2[)11),'.4.1,]' + 2b2’l),"j+1 — bye
+2b4Dmi j+1 + 2b5Dfi ji1 + 2b6i jSmi,j+1 + 207: 5 S fija1

= 2bg; jPemij+1 + 2bgi jDesij+1 (B.26)
" Equation 3
C15i,jPmi,j — (Cli,j + Coij )pmi+1.j - (c3i,j - C4i,j)pmi,j+1

+(C10i,j — €7i,j)Prij + C114,iSmi i + C12i,Sfi
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Equation 4

Equation 5

Equation 6

= C14i,jPmij + C10i,jPfij + clli.jsmz’,j + cl?.i,iji,j
—(c1ij + C2ij)Pemi+lj + C13ijPemij

—(C3ij — Caij)Pemij+1 — CrijDefij

dl:’n’,jpmi,j - (dli,j + d2i,j)pmi+1,j - (dai,j - d4i,j)Pmi,j+1
+(d10ij — d7i,j)Psij + @11ijSmij + d12iSfij

= d14i,jPmi;j + €10i,jDfi;; + @114,5Smij + d12i,7S i 5

e1siiPrij — (€1 + €2i)Pri+1.5 — (€3i; — €4ij)Prij+1

+(€10i,5 — €7i,§)Pmij + €11:,55fij + €120,5Smi;

= ei14ijPfij T €10ijPmij + 611i,j5 fij + el2i,jSmi,j — €7i,jPcmi,j

—(erij + €2i)Pcfit1,j + €13ijDcfij — (€3ij — €4ij)Pefij+l

fisipsi; — (frg + faig)Privrg — (faig — faig)Prij+1
+(fr0ij — frij)Pmij + fi1ijSrij + fi2ijSmi;j

= fi4ijDfij + f10ijPmij + f11:5Sfi; + f12i,jSmij

e Corneri=1,7 =N,

Equation 1

Equation 2

—2(a1 + ag)u; j + 2a1Uit15 — 2030541, =0

—2(b1 + b2)vij + 201041 ; =0
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Equation 3

Ci5i.jPmij — (C1ij + C2ij)Pmiv1,; — (Caij + €3i,j)Pmij—1
+(e1065 — €7:,j)Prij — 2C0ijVij—1 + C11iOmig + C12i55fig
= Cl4ijPmij + C10iPfij + Cl1i,jSmij + C12:,75 fig — 2C0i Vi, j—1

+C13i,jPemi; — (Crij + C2ij)Pemi+lj — (Cai,j + €3ij)Pemij—1

—C7ijPcfij (B-33)
Equation 4
dis: jDmij — (d1ij + doij)Pmi+1,; — (daij + d3ij)Pmij—1
+(d10i,j - d?i,j)pfi,j - 2d9-i,j'Ui,j—1 + dllijsmi.j + dl?i,jsfi'j
= di4i jDmij + d10ijPsi; + d11ijSmij + d12i5Sfi; — 2deijvij—1  (B.34)
Equation 5
e1sijPfij — (€1ij + €2i5)Pfi+15 — (eaij + €3ij)Psij—1
+(e10i,j — €7i,5)Pmi; — 2€9:,3Vi -1 + €114,;5fij + €12i,;5mi
= €14ijPfij + €10ijPmij + €nijSrij + €12i,jSmi,j + €13i,jPcfi
—(e1i,j + €0ij)Defirrj — (€4ij + €3:,5)Pefij—1 — €7ijPemij
—2e9; jVi,j—1 (B.35)
Equation 6

fisijpsi; — (frig + foig)Privrg — (faig + f3i5)Prig—1
+(fr0ij — f1i,5)Pmij — 2feijVij—1 + f11:,58fi5 + f12:,5Smi;

= f14ijPfij + f10ijPmi; + f11:,Sri; + [12:,55mis — 2fei Vi -1 (B.36)
e Corneri=N;,j=1
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Equation 1

—2(a1 + a2)u;j + Golijy1 — Q3¢ — 2a3Vi—1 j+1
+4a3v,-,j+1 - 40,3'1}-;,]' -+ 2a3’ui_1,j =0 (837)
Equation 2

—2bov; j + 2bovi j41 — boc + 4bguiy; — 4bsuio i1

+2b4Pmi j1 + 2b5Dfi j41 + 20615 Smij+1 + 2675 Sfij41

= 2bg; jPemij+1 + 2beijDcfij+1 (B-38)
Equation 3
Ci15:,5Pmi,j — (Cu,j + C2i,j)pmi—1,j - (Csi,j - C4i,j)pmi,j+1
+(c10i,5 — C7ij)Pfi; — 2CaijUiz1,7 + C11i,jSmij + C12:,§Sfi,5
= —2cg;jU%i-15 + C11ijOmij + C12i,;9fij + C13i,jPemi j
+C14; jPmi,j + C10i,jPfi; — (Coij + C1i,j)Pemi-1,5
—(e3i,j — Caij)Pemi j+1 — CrijDcfisj (B-39)
Equation 4
di5:,jPmij — (diij + doij)Pmi-1,j — (d3ij — d4ij)Pmij+1
+(d10ij — d7ij)Dfij — 2dsi jui-1; + d11i,jSmij + d12:5Sfi 5
= d14ijPmij + d10iPfij + A11iSmi,j
+d12:,; 5515 — 2dgi Ui-15 (B.40)
Equation 5

e1si,jDfij — (€1ij + €2ij)Pri1,; — (€3ij — €aij)Pfij+1
+(e10i,j — €7:)Dmij — 2€8i,jUi—1,j + €114,7Sfi,j + €12ii5mi;
= —2eg;jUi-1,; + €11:,j97ij + €12, mij T €13i,Pcfij
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+€14:,;Dfi; + €10ijPmi,j — (ea:; + €1i;)Pefi-1.j
—(esi.j — €4i,j)Pcfij+1 — €Ti,jPemij
Equation 6
f1si3Pfi5 — (fli,j + f2i,j)pfi—1,j - (fSi,j - f4i,j)pfi.j+1
+(f10i5 — fri,)Pmig — 2f8i5%i-15 — f10i,557i
= f14ijPrij + f10ijPmij + f11iSrij + f1205Smij — 2 faijui—1j

e Corneri= N, 7 =N,

Equation 1
—2(ay + az)u; ; + 4asvi_1 j—1 — 4a3vij_1 — 2a3vi_1; =0
Equation 2
—-2(61 + bg)'vi,j + 463’&{_1J'_1 =0
Equation 3

C151,jPmi,j — (C2i,j + Cli,j)pmi—l,j - (C4i,j + 31,5 )Pmi,j—l

(B.41)

(B.42)

(B.43)

(B.44)

+(c10i5 — Cri5)Pri; — 2C8ijUi—1,j — 2C9i,jVij—1 + C11i,jSmij + C12i5Sri i

= Ci4i,jPmij + C10iPfij + C114,50mij + €12i55fij — 2Csi,jUi1,5
—2Cg; jUs j—1 + C13i,jPemij — (C2ij + Clij)Pemi—1,j
—(Cai,j + €3ij)Pemi j—1 — C7ijDefij

Equation 4

d15i iPmij — ( diij + doij)Pmi—15 — (dsij + dai j)Pmij—-1

(B.45)

+(d10ij; — drij)Pfij — 2dsgi juio1j — 2dei Vi j—1 + d11ijSmi; + d12i5Sfi

= d14i,jpmi,j + lei,jpfi,j + dlli,jsmi,j
+d12ijSfi; — 2dgi jui—1,; — 2dgi Vi j—1
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Equation 5

e1sijPfi,j — (€2 + €e1ij)Pfi-1j — (eqi; + 63i.j)Pfi,j—1
+(€10ij — €7ij)Pmij — 2€8:iUi—1,; — 2€9ijVij—1 + €11i,0fij + €12:Omi j
= €14iPfij + €10ijPmij + €11i59 fij + €12i,jSmi,j — 2€gijUi—1,j — 2€9; jVij—1
+e13i jDcrij — (€2ij + €1ij)Pefi-1,j
—(€4i,j + €3i,j)Defij—1 — €7i jDemi,j (B.47)
Equation 6
f1s65P5i5 — ( faij + frig)Primrj — (faig + fi5)Prij—1
+(fr0ij — fri)Pmij — 2fsi jUi—1j — 2f0i,jVij—1 + f11:5Sfij + f12i5Smi
= f14ijPrij + f10ijPmij + f114,5S 5

+ f12i,jSmi,; — 2 fsijUi-1; — 2fei,jVij—1 (B.48)
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B.2 Case 2 0il Production from a Deformable
Fractured Reservoir with Water Injection

e Boundaryi=1
Equation 1
—2(ay + a2)u;j + 2a1Uiy1j — Q1€ + GU; j4q + GoUij1

2a3v; j—1 — 2a3Vip1,j—1 — 203V; 11 + 203Uiqy 541 =0 (B.49)

Equation 2

—2bov; j + b1vip15 — b1Vig1; + bovVi i1 — baVij—1 — baDmij—1 + DaPmi ji1
—bspfij—1 + bspfij+1 — 6ijSmij—1 + b6ijSmij+1 — 07i5Sfij—1 + b7i5Sri
= bgi j(Pemij+1 — Pemij—1) + boij(Pefij+1 — Defij—1) (B.50)

Equation 3

C15i,;Pmi,j — (Clij + C2i.j)pmi+1,j — C3i,7Pmi,j+1 — C4i,jPmi,j—1
+(c10i5 — C7i.5)Pfij + CoijVij+1 — CoijVij~1 + C11i9mij + C12iSfi i
= C14ijPmij + C10ijDfij + C11:,iSmi,j + C12i55fi
+Coi,jVij+1 — C9i,jVi,j—1 + C13i,jPcmij — (Cli,j + cZi,j)pcrni+1,j
—C3i,jPemi,j+1 — C4i,jPemi,j—1 — C7i,5Pcfi,j (B.51)

Equation 4

d15i,jPmij — (d1ij + doij)Pmit1j — d3i,jPmij+1 — QaijPmij—1
+(d10ij — d7i,7)Psij + doijVijr1 — doijVij—-1 + d11i,jSmij + d12i,SFij
= dy4ijPmij + G10iPfij + G114, mi j
+dy9:,Sri5 + doijVs j+1 — dei Vi 1 (B.52)
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Equation 5

e15:,jPfij — (€115 + €2i5)Pfiv1j — €3ijPfij+1 — €aijPfij—1

+(€10ij — €7ij)Pmij + €9i,jVij+1 — €0ijVij—1 + €114 fi,; + €12i,imij
= e14ijPfi,j + €10ijPmij + €11i,jSfi,j + €12i,jSmij + €9i,jVi,j+1

—€g;,5Vi,j—1 + elSi,jpcfi,j —_ (61,’,]' -+ e2i,j)pcfi+1,j

—€3i,jDcfi,j+1 — €4ijDcfij—1 — €7i,jPcmi,j (B.533)
Equation 6

f 15:,5Pfij — (f 15 + f: 2i,j)pfi+1,j - f 3iiPfii+1 — [ 4i,jPfi,5—1

+(froi,j — f7i,5)Pmij + foijVij+1 — foijvij—1 + f11iiSri; + f12i5Smij

= fiaijPrij + f10ijPmij + f110557i5

+ f12:,iSmij + foi,jVij+1 — foi jVij—1 (B.54)

e Boundary: = N,

Equation 1
—2(ay + ag)uij + QUi j+1 + aouij—; =0 (B.55)
Equation 2
—2(by + be) vij + 2b1vi—1j + boviju1 + bovi i
+2b3u;_1 j—1 — 2b3Ui_1 j+1 — baPmij—1 + bsDPmij+1 — bsPrij—1
+b5Dfij+1 — bi jSmi j—1 + 06ijOmij+1 — b7:Sfij—1 + b7iiSfij+1
= bgi; (Pcmi,j+1 - Pcmi,j—1) + bQi,j(pcfi,j+l - pcfi,j—l) (B-56)
Equation 3

C15i,5Pmi,j — (Cli,j + C2i,j)pmi—1,j — C3i,jPmi, j+1 — C4i,5Pmij—1
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Equation 4

Equation 5

Equation 6

+(Croi,j — Crij)Pfij — 2C8ijUi-1,5 + Coi,jVij+1 — CoijVij—1
+C114,jSmij + C12i;Sfij

C14i,jPmi,j + C10ijPfi.j + C11i,jSmi,j + C12i,Sfij — 2Cgi jUi-1,5
+Coi, jVi j+1 — Coi jVij—1 + C13ijPemij — (Clij + C2:,j)Pemi—1,j

—C3i,Pcmi,j+1 — Cai,jPemij—1 — C7i,5Dcfi,j (B.57)

d1si iPmi; — (d1ij + d2ij)Pmi-1,j — d3i jPmij+1 — Q4i jPmi j—1
+(d10ij — d7ij)Prij — 2dgijuioyj + dei Vi1 — doijVij1
+d11i,jSmij + d12:,;Sfij

d14i jPmij + d10: P i + B11i,jSmij + d12:5Sfij — 2dgi jui—y j

+doi jVi j+1 — doi jVij—1 (B.58)

€15:,jPfi,5 — (€1i,j + e9;; )pfi—l,j — €3i,iPfij+1 — €4i,jPfij—1
+(€10,j — €71,5)Pmij; — 2€8:,jUi—1,; + €9iVi,j+1 — €9ijVij—1
+e11i,;Sfij + €12:,jSmij

e14i,jPfi,j + €10i.jPmij + €11i,j5 fij + €12i,jSmij — 2€8i,j%i—1,5
+€gi Vi j+1 — €9i Vi j—1 + €13i,jPcfij — (€1 + €2:5)Pefio1,j

—€3i,jPcfi,j+1 — €4i,jPcfij—1 — €7i,jPeomi,j (B-59)

fi5iiPrig — (frig + foig)Primrg — f3iiPriger — faigPrij-1
+{f10i5 — frij)Pmij — 2fsij%i-1,; + foijVij+1 — foijVij-1
+ f114,5S5i,5 + f12ijSmij
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= fuaijbfij + fi0ijPmi; + f11i5Sfij + fi2iiSmij

—2 faijUi—1; + foijVij+1 — foijVij—1 (B.60)
e Boundary j =1

Equation 1

—201U; j + Q1Uiy1; + C1Ui—1j — Q4Pmi—1,j T @4Pmi+1,j — A5Dfi—1,5
+a5Pfiv1j — Q6ijOmi—1,j + G6ijOmi+1j — O7ijSfi-1,; + @7i,jSfi+1j

= alSi,j(pcmi+1j - Pcmi—l,j) + agi,j(Pcfi-i—l,j - pcfi—l.j) (B-61)
Equation 2
—2(b1 + b2)v; j + b1vig1j + brviey j + 26205 j41 — bac
+2b3u1-_1,j - 2b3u{_1‘]—+1 + 2b3u,-+1,j+1 e 2b3U{+1J =0 (B.62)

Equation 3

Ci5¢,Pmi,; — Cli,jPmi+1,j — C2i,jPmi—1,j — (C3i,j + C4i,j)pmi,j+1

+(C10i,j — Cri,j)Prij + CsijUi+1,j — C8ijUi—1,j + C11i,j9mij + C12i,55fij
= C14ijPmi,j + C10ijPfij + C11i,jOmij + C12iSfij + C8ijUit1,j

—Csgi,jUi—1,j T C13i,jPemij — ClijPemi+1,j — C2i,jPemi—1,j

—(Csi,j - C4i,j)pcm.i,j+1 — C7i,jPcfi,j (B~63)
Equation 4
d15i,jPmij — Q1ijPmit1j — @2ijPmi—1; — (d3ij + daij)Pmij+1
+(d10ij — d7ij)Drij + dsi jUiv1j — dgijUi1,j + d116,jSmi,; + d12i,jSri 5
= d14:,jPmij + d10i,jPfij + A11i,jSmij

+d12:5S 5,5 + dsijUiv1,; — dsijUi-1 (B.64)
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Equation 5

€15i,jDfij — €1ijPfi+1,j — €2ijPfi-1.j — (€3ij + €4i.j)Dfij+1

+(€10ij — €7i,j)Pmi,j + €8i,j%it1j — €8ijUi—1,j + €115 fij + €12ijSmij
= 14i;Pfij + €10ijPmij + €11i,jSfij + €12i,j5mi,j + €8i,jUi+1,j

—€8i,jUi—1j + €13i,jPcfij — €1ijPefi+l,j — €2i,jPcfi—1,5

—(Cai.j - €4i,j)Pcfi,j+1 — €7i,5Pcmi,j (B'65)
Equation 6
f 154,5Pfi,j — f 1i,jPfi+1,5 — f: 2i,jPfi-15 — (f 3, + f. 41,5 )Pfi,j+1
+(fr0i5 — [rij)Pmij + feijUivrj — faijui—1,j + f11i5Sri; + fi2ijSmij
f14i5P5i5 + f10iPmij + fi11ijSrij

+f12i,jSmij + feijWiv1j — feijUi-1,; (B.66)

e Boundary j = N,

Equation 1
—2(a1 + ag)uij + a1Uigrj + 61Uy j + 200U -1 + 20301 51
—2030i+1,j—1 ~ Q4Pmi—1,j * @4Pmi+1,j — As5Pfi—1,j + A5Pfi+1,j
—6i,jSmi—1,j + @6i,jSmi+1j — a7i,jSfi-15 + 7,5 Sfi+15
= 0gi j(Pemit1,j — Pemi—14) + oij(Pefit1j — Pefi-14) (B.67)
Equation 2
—2(b1 + bg)'Ui,j + b]_’Ui.*_l,j + bl'lli_.l,j =0 (B.68)
Equation 3

C15¢,5Pmi,; — ClijPmi+1,j — C2ijPmi—1,5 — (Caij + C4i,j)Pmi,j—1
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Equation 4

Equation 5

Equation 6

+(Cr0i; — Crij)Pfij + C8ijUit1,j — C8ijUim1,j — 2C9i Vi j—1
+C11i.jSmij + €12ijSFij

C14i,jPmi.j + Cl0i,jPfij + C11i,jSmi,j + C12iS fij + Cgi jUis1 j
—CgijUi—1,j — 2C9i jVij—1 + C13i jPemi,j — Cli,jPemi+l,j

—C2i,jPemi—1 — (C3ij + C4ij)Pemi,j—1 — Cri,jDcfi

disi jPmi; — @i jPmi+1j — G2i jPmi—-1,; — (d3i + daij)Pmi,j—1
+(dyoij — d7ij)Psij + dsijUiv1,j — dijUi—1,j — 2do;jVij—1
+d11i,7Smi; + d12i,jSfi

di4i jPmij + 410i,jPfij + d11i,;Smij + 41245715

+dgi jUiv1,; — daiji-1,; — 2dg; jVij-1

€15:,;Dfi,j — €1i,jPfi+1,5 — €2:,iPfi~1,5 — (eSi,j + 64ij)?fi,j—1
+(e10i — €7ij)Pmij + €8ijUit1j — €8ijUi-1j — 2€9iVij—1
+e114,;SFij + €12ijSmij

€14i ;P fij + €10i,jPmij + €11i,jSfi,j + €12i,jSmij + €8ijUis1,;
—€gijUi-1,7 — 2€9i,jvi,j—1 + €13:,;Pcfij — €1i,jDcfi+1,j

—€2i jDcfi—-1,j — (esi,j + e4i._7')pcfi,j—1 — €7i,;Pemi, 5

fisijpi; — f 1i5Dfi+1,5 — foijPri-15 — (f 3i,j T f4i,j)pfi,j—1
+(f 10:,5 — bi 7i,j)Pmi,j + f 8i jUi+1,7 — f8i,jui—1,j —2f 9i,jVi,j—1
+ f11:,75fi,7 + f12i,jSmi j
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= fi14ijPsij + f10ijPmij + f110iSfi; + fi2ijSmij + feijtiv1

— fsijUim1j — 2foi,jVij—1 (B.72)

e Corneri=1,j=1

Equation 1
—2a1u;; + 201¢ip1; —a1c=0 (B.73)
Equation 2
—'21)21),',1' + 2b2”Ui'j+1 - sz =0 (B.74)
Equation 3
C15i,jPmi,j — (Ch',j + C2ij)Pmi+1j — (C3i,j + C4i,j)pmi,j+1
+(c10i,j — C7i,j)Pfi,j + C11i,j9mij + C12iSfi
= Cy4ijPmij + C10ijPfi,j + C11i,jSmij + C12:iSFi;
—(c1i5 + C€2i,j)Pemit1,j + C13ijPcmi j
—(c3i,j — C4i j)Pemi,j+1 — CrijPefij (B.75)
Equation 4
dlSi,jpmi,j - (dli,j + d2i,j)pmi+1,j - (d3i,j + d4i,j)pmi,j+1
+(d1oij — d7i,j)Pfi; + A11i5Smij + d12:jSrij
= dy4i,jPmi;j + @10i,5P5i,; + d11:,5Smij + d12:SFi 5 (B.76)
Equation 5

eisijPrij — (€1ij + €2.5)Priv1,j — (€35 + €aij)Dfij+1
+(e10ij — €7ij)Pmij + €11i,jSfij + €12iSmi ;i
= e1ijPfij + €10i,jPmi,j + €11i,jSfij + €12i,jSmij — €7i,jPcmi,j
—(e1ij + €2ij)Pefi+1,i + €13ijPcfij — (€3i5 — €4ij)Pefij+1 (B.77)
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Equation 6

f15i,jpfi,j - (fli,j + f2i,j)pfi+1,j - (f3i,j + f4i,j)pfi,j+1
+(froi5 — f7ij)Pmij + f11i,5Sfij + f12i,5Smij

= fuaijPfij + f10ijPmij + fr1i5SFij + f12i5mi;

e Corneri=1,j=N,

Equation 1
—2(a; + a2)uij +2a1ui4),; — alc
+2a9u; j-1 + 4agv; j_1 — 4a3vip1 51 =0
Equation 2
v;;=0
Equation 3
C185i,jPmi; — (C1ij + C2ij)Pmit1j — (Caij + C3ij)Pmi j—1
+(C10i,7 — C7:,j)Pfi,j — 2CijVij—1 + C114,jSmij + C12i5fi 5
= C14i,jPmij + C10ijPfi,j + C11i,jSmij + C12ijSfij — 2Cgi jVij—1
+C13i jPemij — (C1ij + C2i,j)Pemi+1,j — (Caij + C3ij)Pemij—1
—C71,jPcfi,j
Equation 4

dlSi,jpmi,j - (dli,j + d2i,j)pmi+1,j - (d4i.j + dSi,j)pmz‘,j-l
+ (dIOi,j - d7i,j)p fig — 2d91',j'vi,j—1 + dlli,jsmi,j + d12i,jS fig

= di4ijPmij + d10i,jPfi + Q11 jSmij + d12:,Sfi; — 2dei Vi1
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Equation 5

e15ijPfij — (€rij + €2ij)Priv1,j — (€4ij + €3:15)Pfij—1
+(e10i,5 — €7i;j)Pmij — 2€0i5Vij—1 + €11:3Sfij T €12:,79mi
D o S .S .
= €14 jPfij T €10ijPmi,j T €11i,jOfij T+ €12i,jOmi,j + €13ijDcfi,j
—(e1ij + €2:,5)Pefir1; — (€aij + €3i5)Pefij—1 — €7ijPemij

—Zeg,-'jvij_l (B-83)

Equation 6

fisijprig — (frig + foig)Privry — (faij + f3i5)Prii
+(f10i5 — fri)Pmij — 2fei jVij—1 + f110,5Sfij + f12i5Smi,;

= fi4iiPfij + f10ijPmij + f11ijSfi + f12:,iSmi — 2fei Vi1 (B.84)

e Corneri=N,,j=1

Equation 1
u;; =0 (B.85)
Equation 2
—2(by + b)) vij + 2b1vi1,; + 2bov; 1
—boc + 4bgu;—y j — 4bsui—y i1 =0 (B.86)
Equation 3

C15¢,5Pmi,j — (c1ij + €2ij)Pmi-1,5 — (C3ij + Cai j)Pmij+1
+(Cloi,j - C7i,j)p fig — 268i,jui—1,j + cllijsmi,j + Cl2i,jS fig
= —2¢gijUi—1j + C11i,jSmij + C12i,jSfij T C13i,jDemi j
+C14i,jPmi; + C10i,jPfij — (C2ij + C1i,j)Pemi—1,j
—(c3i,j — Caij)Pemig+1 — CrijDefij (B.87)
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Equation 4

dlSi,jpmi. i (du,j -+ d’li,j)pmi—l,j - (d3i,j + d4i.j)pmz'.j+1
+(doij — d7ij)Prij — 2dsi jUi1j + d11ijSme; + d12i;Sfij
= d14ijPmij + d10ijPfij + d11ijOmij

+di12:jSfij — 2dgijui—1;

Equation 5
e15iPfi; — (€15 + €2:5)Pri-1,7 — (€3i5 + €ai,)Prij+1
+(e10i; — €7ij)Pmij — 2€8ijUi—1; + €11iSfij + €12ijSmi j
= —2eg;;jUi—1; + €11:,;9fij + €12ij5mij + €13i jPefi
+e€14i,jPfij + €10i,jPmij — (€2i + €1i5)Pefi-1
—(esi,j - €4i,j)pcfi,j+1 — €7i,jDcmi,j
Equation 6

fi5igPrij — (f1ig + faig)Pric1g — (faeg + faig)Priger
+(froij — frij)Pmij — 2fsij%i—1,; — fi0iSfi;

= f14ijPsij + f10i,jPmij + f1105Sfi; + fi2ijSmij — 2fsi j%i-1,j

e Corner i = N;, j = N,

Equation 1
—2(ay + ag)u;j + 2a2u; ;-1 =0
Equation 2
—2(by + bo)vij + 2bjuiyj + 2bsui—1 51 =0
Equation 3

C15i,jPmi,j — (c2i,j + Clij)pmi—l,j - (C4ij + C34,5 )pmi,j——l
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+(c1065 — C745)Pri; — 2C8ij%i-1,7 — 2C0i,Vij—1 + C114,7Smij + C12:3Sfij
= ClijPmij t C10i5Pfij + Cr1ijSmij + C12i,5Sfij — 2C8i Ui
—2C9i jVi j—1 + C13i,jPcmi,j — (c2ij + Ciij )pcmi—l,j

—(caij + C3i,j)Pemij—1 — CrijDefisj (B.93)
Equation 4

d1si,jPmij — ( diij + A2 j)Pmi—1; — (d3ij + d4i j)Pmij—1
+(d10i,j — drij)Pfij — 2dgi jUi—1,j — 2dg; jVij—1 + d11:,jSmij + d12i jSfij
= d14ijPmij + d10ijPfij + d11i,jOmi

+d12i;Sfij — 2dgi jUi-1,5 — 2dgi jVij—1 (B.94)
Equation 5

€15:,5Pfi,j — (321‘,3“ + eh‘,j)pfi—l,j - (e4i,j + eBi,j)pfi,j—l + (€1oi,j - e7i,j)prm',j
—2eg; jUi—1; — 2€9: jVij—1 + €11i,jSFij + €12i,jSmi,j

= e14i;Pfij + €10ijPmij + €11i,jSfij + €12i,Smi,; — 2€8i,jUi—1j
—2e€9; jVi j—1 + €13:jPcfij — (€2ij + €1ij)Defi-1j

—(€4i,5 + €3i)Dcfij—1 — €7i,jPemi,j (B.95)
Equation 6
fi5i5Pfi5 — ( foug + f1i5)Pri-15 — (fasj + f2i5)Prij—1 + (Froij — fri)Pmi;j
—2 fgijui—1; — 2foi jVij—1 + f11,jSrij + f12iiSmij
= f14i,jPrij + f10i,jPmij + f114557i5

+ f12i,jSmi,; — 2fsi jUi-1,j — 2f0i jVij—1 (B.96)
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IMAGE EVALUATION
TEST TARGET (QA—3)
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