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Abstract

This research examined a memory processes account of the calibration o f probability 

judgments. A multiple-trace memory model, MINERVA-DM Dougherty,

Ogden, & Gettys, 1999), was used to integrate the ecological (Brunswikian) and the 

error (Thurstonian) models of overconfidence. The model predicts that overconfidence 

should decrease both as a function of experience and as a function of encoding quality. 

Both increased experience and improved encoding quality result in lower error variance 

in the output of the model, which in turn leads to better calibration. Three experiments 

confirmed these predictions. Implications of MDM’s account of overconfidence are 

discussed.



Considerable research has been devoted to understanding the accuracy (or 

inaccuracy) of probability judgments. Most recently, this research has been dominated 

by the calibration paradigm, in which the accuracy of people’s probability judgments is 

assessed by comparing their judgments to their proportion of correct inferences. In the 

typical experiment, participants answer a series of general knowledge questions such as 

“What is the capital of Brazil? A) Sao Paulo B) Brazilia,” and then state their 

confidence in their answer. Accuracy is assessed by measuring the calibration of 

participants’ judgments. A person is said to be well calibrated if the average o f their 

confidence judgments equals their proportion of correct judgments (confidence = 

proportion correct). Miscalibration, on the other hand, is characterized as either 

overconfidence (confidence > proportion correct), or underconfidence (confidence < 

proportion correct). The typical finding in the calibration paradigm is that people are 

overconfident, giving probability judgments that exceed their proportion o f correct 

inferences (Lichtenstein, FischhofiF, & Phillips, 1982).

Despite the considerable amount o f research on the overconfidence effect, the 

locus o f overconfidence is still disputed. One theoretical account o f overconfidence, the 

Brunswikian account, suggests that it is an artifact of the experimental task. Proponents 

of the Brunswikian account (e.g., Gigerenzer, Hofifrage, & Kleinbolting, 1991; Juslin, 

1994; Juslin, Olssen, & Winman, 1997) argue that studies investigating the calibration 

of probability judgments must meet two related pre-conditions: 1) the to-be-judged 

questions need to be drawn from an ecological reference class familiar to the 

participant, and 2) the sample o f questions used should be drawn randomly firom the



reference class. The ecological reference class is a fiinction o f the environment in which 

people interact. To the extent that people have experience with an ecological reference 

class, their mental representation of that reference class will be more-or-less veridical. 

Therefore, if questions are drawn from a person’s ecological reference class, and the 

assumption of random sampling is met, participants should give judgments that are 

more-or-less well calibrated. Gigerenzer et al. argued that most studies investigating 

overconfidence have not met these two conditions. In fact, several studies now show 

that overconfidence often is reduced considerably when the ecological reference class 

and random sampling assumptions are met (see Juslin, Olsson, & Bjorkman, 1997 for a 

review; but see Brenner, Koehler, Liberman, & Tversky, 1996; and GrifBn & Tversky, 

1992; for counterexamples).

A second major theoretical account o f overconfidence is the Thurstonian, or 

random error account (Erev, Wallsten, & Budescu, 1994), which assumes that 

overconfidence results from internal cognitive processes. Specifically, the Thurstonian 

account suggests that overconfidence is the result of random error associated with the 

response process. Using a model based on signal detection theory, Erev et al. showed 

that overconfidence could be accounted for by assuming that true judgments were 

perturbed by random error. Erev et al.’s model predicted that overconfidence should 

increase as the random error associated with the response process increased. Thus, in 

contrast to the Brunswikian account, the Thurstonian account attributes the 

overconfidence effect to random noise in the cognitive system.



Whereas both the Brunswikian and Thurstonian approaches to overconfidence 

have their merits, neither approach specifies the cognitive processes that give rise to 

both good and poor calibration. The Brunswikian account posits that the locus o f the 

overconfidence effect is the result o f factors external to the decision maker: 

Overconfidence is assumed to arise from the structure o f the environment and the 

biased selection of questions on the part of the experimenter. The Thurstonian account, 

in contrast, suggests that the locus o f overconfidence is the result o f internal cognitive 

processes (i.e., response processes), but it fails to identify the precise nature o f the 

processes that lead to the random error (however see Wallsten, Bender, & Li, 1999; 

Wallsten & Gonzalez-Vallejo, 1994 for a discussion of some of these issues). Recent 

research investigating these models suggests that neither account is sufiBcient to 

account for overconfidence (Budescu, Wallsten, & Erev, 1997; Juslin et al., 1997), and 

that a combination of the Brunswikian and Thurstonian models may be necessary.

The present research examines an alternative to the above theoretical accounts 

of overconfidence that is based on a mathematical memory model, MINERVA-DM 

(MDM; Dougherty, Gettys, & Ogden, 1999). MDM provides a memory processes 

model for studying overconfidence that capitalizes on both the Thurstonian idea of 

random variation, and the Brunswikian idea of ecological structure (See Bjorkman, 

1994; Juslin, Olssen, & Bjorkman, 1997; and Soil, 1996 for models similar in spirit). 

However, unlike the Thurstonian and Brunswikian models, MDM makes explicit the 

memory processes and the representational assumptions that underlie judgments of 

probability and confidence, and it makes new predictions regarding the factors that lead



to both good and poor calibration. MDM is not ofifered as a competing model of 

overconfidence, but rather as an integrative model that captures the spirit o f both the 

Thurstonian and Brunswikian approaches. The next section briefly describes MDM and 

how it incorporates both the Thurstonian and the Brunswikian assumptions. The 

description of MDM is brief; readers interested in a more thorough treatment of the 

model are referred to Dougherty et al. (1999).

Integrating the Brunswikian and Thurstonian Approaches Using MDM 

Overview o f MDM.

MDM is a modified version of Uintzman’s (1988) MTNERVA2 memory model, 

and as such, retains all o f MINERVA2’s original capabilities as a memory model. The 

primary modification to MINERVA2 is the incorporation o f a two-stage conditional 

memory retrieval process that enables the model to account for a wide array of 

judgmental phenomena, including conditional probability and fi-equency judgments, and 

several of the heuristics and biases (see Dougherty et al., 1999).

Two core properties of MDM are its assumptions about how information is 

encoded and represented in memory and its assumptions about retrieval. MDM is an 

instance-based model (Dougherty et al., 1999; see also Hintzman, 1988) and it is 

assumed that a new memory trace is encoded in memory for each experienced event. 

Encoding in MDM proceeds by creating long-term memory traces by copying an event 

vector. The event vector is a representation of the external, environmental event (for 

mathematical purposes both the event vector and the memory traces are represented as 

vectors o f+ l’s, O’s and - I ’s). An important assumption of MDM is that traces are



degraded versions of the event vector that created them. This degradation process is 

modeled by the encoding parameter Z (which varies from 0 to 1.0). With higher values 

of L, better copies of the event vector are stored in memory; with lower values of Z, 

worse copies of the event vector are stored in memory. The memory representation in 

MDM is assumed to consist of a database of instances representing the decision 

maker’s past experiences and these instances are assumed to contain the components 

necessary to model a variety of judgmental phenomena. For generality, it is assumed 

that instances contain up to three concatenated components: a hypothesis component 

(H), a data component (D), and an environmental context component (E). The H 

component represents any event about which we wish to make a judgment, the D 

component represents the information or data that are used as input for that judgment, 

and the E component can be used to represent either, or both, intra and extra- 

experimental context. Importantly, the H and D components form the basis of the 

MDM inference engine, as they enable the model to account for conditional probability 

judgments, such as P(H|D) or P(DjH), and non conditional, or base-rate, judgments 

such as P(H) and P(D).^

Retrieval proceeds by computing the similarity between a probe vector and each 

trace stored in memory using

‘ Although the environmental context component has been useful for simulating the efiect of extra- 
experimental memory traces on judgments of frequency, it has yet to be fully investigated in the 
context of conditional judgments. It will not be used in any of the simulations presented in this article.



where Pj represents feature, in the probe vector, T;, represents feature^ in trace vector 

/, and Ni is the number o f corresponding nonzero features in both the probe and trace. 

The activation for each trace. Ai, is given by cubing its similarity,

Af = S i . (2)

These cubed similarities are then summed over all traces stored in memory to give the 

overall echo intensity. I,

1=1

where M  is the total number o f instances stored in memory. It is assumed that I  is 

proportional to the judged frequency or probability for non-conditional judgments such 

asP(H ):7 «P(H).

The retrieval process for conditional probability judgments is slightly different, 

and is assumed to proceed in two stages. Imagine you are asked to judge P(H|D), for 

example, the probability that someone is a democrat (H) given that she is wealthy (D), 

P(democrat|wealthy). In this judgment, the decision maker is interested in estimating 

the frequency o f H’s in the subset o f D ’s stored in memory. Thus, the first stage o f this 

process entails delineating the subset of instances stored in memory corresponding to 

the condition, D. This is done by computing the similarity between the D portion o f the 

probe and the D portion of each trace stored in memory to determine which traces 

correspond to the particular type wanted. For example, if the condition is “wealthy,” 

then the similarity between the “wealthy” component of each trace in memory and the 

wealthy component of the probe is computed. If the similarity of the trace meets or 

exceeds the threshold criterion. Sc, it is assumed to be passed on to the second part o f



the retrieval process. However, if the similarity value is less than Sc, processing o f  that 

trace stops. Sc is a threshold parameter that determines the minimum amount of 

similarity needed for a particular trace to be placed in the activated subset. Thus, the 

first stage of the process delineates, or activates, a subset o f instances in memory on 

which the conditional probability is based.

The second stage of the process entails the assessment o f the relative fi-equency 

of traces in the delineated subset that correspond to the non-conditional part of the 

judgment. For example, in the democrats given wealthy judgment, how many traces in 

the activated subset o f wealthy people correspond to “democrats?” This is achieved by 

computing the similarity between the H component of the probe and the H  component 

of each trace in the activated subset, cubing the similarity value for each trace, and 

summing the cubed similarities across all traces in the activated subset. This gives rise 

to the conditional echo intensity, U. which is given by

^  (4)

J  __ S f ' ^ c
■‘ c  —

where AT is a count o f the number o f  traces that passed the Sc criterion value. For 

conditional probability judgments, it is assumed that h  is proportional to judged 

probability: h  «  P(H|D). Figure 1 illustrates the conditional likelihood judgment process 

in a flow chart for the judgment P(democrat|wealthy).

MDM Applied to Overconfidence.

Figure 2 presents a conceptual model o f the probability estimation process. For 

example, imagine that participants are presented with the general knowledge question: 

“Which city is larger: Los Angeles or Sacramento?” There are two ways that this



judgment can be made: 1) retrieval o f a surrogate cue that points to an answer (e.g., 

population statistics, number of sports teams), or 2) infer on the basis o f familiarity or 

echo intensity (cf. Yonelinas, 1994). MDM is used to model this second type of 

judgment process and is not applied to situations where participants can infer the 

answer on the basis of specific knowledge, or where surrogate cues are used to infer 

the answer (cf. Gigerenzer et al., 1991).^

If an answer is recalled from memory, it is assumed that the participant 

responds with the recalled answer and gives a confidence judgment o f 100%. Thus, if 

one can recall the populations o f Los Angeles and Sacramento, or can recall a cue that 

points to Los Angeles as larger than Sacramento, then it is assumed that the participant 

will choose Los Angeles with 100% confidence. However, if an answer cannot be 

recalled (with 100% certainty), it is assumed that participants probe memory with all 

alternative answers and assess the relative echo intensity or familiarity. For the above 

question, participants are assumed to probe memory with Los Angeles and 

Sacramento. I f  the relative echo intensity values are equivalent, then the participant is 

assumed to choose at random and respond with 50% certainty. If one alternative 

returns a relatively higher echo intensity, the decision rule in MDM is to choose the 

alternative with the highest echo intensity. Confidence is assumed to be proportional to 

the relative echo intensity or conditional echo intensity o f the x-altemative answers. For

 ̂Although this might seem to somewhat limit MDM’s applicability, previous research indicates that 
choice behavior often can be attributed to recognition processes (Gigerenzer & Goldstein, 1996). For 
example, in one study, Goldstein (1998) found that an average of 93% of participant’s choices were 
made on the basis of recognition memory. This leaves little left to be explained by the use of surrogate 
cues.



the above question, most people will choose Los Angeles because it is the most 

familiar. Confidence is assumed to be given by: confidence = I l o .  A n g e ia / C I u ) .  

Angeiei+Isacnunento). Note that fof probabilistic tasks where the chosen answer is correct 

only with some probability, the decision maker will not be able to recall the “correct” 

answer with 100% certainty. Thus, in these situations, the decision maker will, by 

necessity, choose the answer by assessing the relative femiliarity o f the x-altemative 

answers.

There are three factors that can be modeled by MDM and that affect the 

model’s overconfidence predictions: 1) the ecological cue structure or probability, 2) 

experience, and 3) encoding. All three factors can be seen as arising from the 

interaction between the decision maker and the environment and therefore can be 

modeled by combining the Brunswikian assumptions of ecological structure with 

MDM’s assumptions of memory representation. These three factors will be discussed 

within the context of the ecological models and then related to the error model in the 

sections to follow.

Ecological Models

Ecological cue structure. The first factor that can be modeled by MDM is the 

ecological cue structure. For present purposes, the ecological cue structure is defined 

as the ratio o f traces for each answer. Ecological cue probability can be accommodated 

naturally by any instance-based model if it is assumed that people’s past experiences are 

stored in a manner similar to how they are encountered in the environment. This 

fi’equentistic memory representation enables cue probabilities to be inferred fi'om



memory by comparing relative frequencies. Let f(A) and £(B) represent the frequency 

o f traces in memory corresponding to two mutually exclusive events, A  and B. Assume 

further that the decision maker’s task is to make a comparative judgment o f some sort, 

such as “which city is larger, A or B?” The ecological cue probability that A  is the 

larger city is assumed to be given by the relative frequency (i.e., ratio) of A to B traces 

stored in memory: f(A)/[f(A)+f(B)].

Returning to the earlier example, Los Angeles is a more famous city than 

Sacramento and people probably have more traces in memory corresponding to Los 

Angeles than to Sacramento. The ratio of traces stored in memory for each alternative 

answer for this question (i.e., Los Angeles and Sacramento) directly affects the relative 

echo intensity and how often participants will choose one answer versus the other as 

correct. Assume that the ratio of Los Angeles to Sacramento traces is 5 to I (5 traces 

of Los Angeles for every 1 trace o f Sacramento), then the ecological cue probability is 

given by f(Los Angeles) / [f(Los Angeles)+f(Sacramento)] = 5 / (5+1) = .83.^

For conditional probability judgments, the ecological cue probability is assumed 

to equal the objective conditional probability. For example, imagine that the task is to 

judge the probability of diseasei given a symptom (e.g., P(diseasei|symptom)). The 

ecological cue probability can be defined as the relative frequency of diseasei 

associated with the given symptom or cue: f(diseasel|symptom)/f(symptom). Thus, the 

ecological cue probability is a valid Bayesian posterior probability. Of course, the use 

o f a symptom as a cue is just one example; the concept can be generalized to account

10



for any other type o f conditional probability judgment that is generated on the basis of a 

cue or multiple cues. For example, one can think of estimating the probability that a 

city is a capital given that it has national monuments (e.g., P[capital|monuments]), or 

the probability of a capital given monuments and a large population (e.g., 

P[capital|monumentsolarge population]).

Notice that for conditional probability judgments, the ecological reference class 

is defined by the condition in the conditional judgment (e.g., by monuments in the 

P [capital I monuments] judgment). Note also that this assumption is built into MDM’s 

conditional memory retrieval mechanism as seen in Eq. 4.

Experience. MDM accounts for two aspects o f experience. The first aspect of 

experience that can be accommodated by MDM is that having to do with cognitive 

adjustment (i.e., how information is sampled fi’om, or is encountered in, the 

environment; Brunswik, 1964; Gigerenzer et al., 1991; Juslin et al., 1997). Even though 

the objective ecological cue probabilities for Los Angeles and Sacramento might be 5:1 

(i.e., Los Angeles is discussed 5 times more often than Sacramento), the extent to 

which our memory corresponds to this ratio will depend on how much experience we 

have. To the extent that we have experience in an ecological reference class, the 

memory representation of the cues in the environment will approach the true ecological 

cue probabilities. With little experience, the memory representation o f the 

environmental cues might contain considerable external sampling error (i.e., we may, by 

chance, have 7 traces o f Los Angeles and only 1 trace of Sacramento). However, as

 ̂Note that this ratio (and ecological cue probability) can remain constant, yet the absolute frequencies 
change (e.g., 5:1 = 50:10). As will be elaborated shortly, MDM actually makes quite different

11



one gains experience in the environment, external sampling error will decrease, and the 

memory representation will become a more accurate representation of the ecological 

cue probabilities (a result of the law o f large numbers).

The second aspect o f experience that can be accommodated by MDM is trace 

frequency. Even assuming that the internal memory representation accurately reflects 

the external ecological cue structure, experience can have an indirect, yet profound, 

impact on judgment. MDM accounts for the effect o f experience by assuming that the 

frequency o f task-relevant traces stored in memory increases with experience. Assume 

a two-alternative general knowledge question. As one gains experience in an ecological 

reference class, the frequency of traces that are similar to one another will increase. For 

example, mere experience can lead to an increase in the number of traces in memory 

corresponding to Los Angeles and to Sacramento. The effect o f increasing the number 

of traces that have a high degree of inter-trace similarity is improved calibration; 

Overconfidence will decrease as the frequency o f similar task-relevant memory traces 

increases -  this will be referred to as the trace-frequency prediction.

Previous research in decision making has found that experts in several domains 

are often better calibrated than novices (e.g., bridge, Keren, 1987; weather forecasting, 

Murphy & Winkler, 1977; accounting, Mladenovic & Simnett, 1994; Tomassini, 

Solomon, Ronmey, & Krogstad, 1982). These results are consistent with MDM’s 

trace-frequency prediction if it is assumed that these experts had more task-relevant 

instances stored in memory.

predictions in these two cases.

12



Encoding or information loss. A third characteristic o f the natural environment 

that can be modeled by MDM is how well information is encoded in memory.

Although, encoding is a psychological variable, it can be viewed as being driven by 

environmental factors. Environmental events often receive differing degrees of 

attention: Interesting and important stimuli tend to draw attention while uninteresting 

or unimportant stimuli tend not to receive much attention. Assuming that attention is 

necessary for encoding (Boronat & Logan, 1997; Craik, Govoni, Naveh-Benjamin, & 

Anderson, 1996), some environmental stimuli will receive a better quality o f encoding 

than other, less interesting or less important, stimuli (e.g., Gronlund, Ohrt, Dougherty, 

Perry, & Manning, 1998).

In MDM, the quality of encoding is modeled by the encoding parameter, L, 

which determines how well information is stored in memory. The net effect of 

improved encoding quality in MDM is a reduction in overconfidence. In particular, 

MDM predicts that overconfidence will decrease under conditions that lead to high 

levels (better quality) of encoding — the encoding quality prediction.

At least one study has shown a relationship between the quality of encoding and 

calibration. Juslin, Olssen, and Winman (1996) examined how well participants’ 

judgments were calibrated for stimuli that were either central to the focus o f attention 

or peripheral to the focus o f attention. Overconfidence was lower for stimuli that were 

central to the focus of attention. Presumably this was due to a difference in how well 

the different stimuli were encoded.

13



The above discussion, illustrated how MDM accommodates several aspects o f 

the ecological approach. Importantly, the assumptions built into MDM as a 

consequence o f this integration have implications both for MDM’s overconfidence 

predictions and for the understanding of the error models. In the next section I discuss 

how experience and encoding affect the random error produced in the memory retrieval 

process.

Error models.

Erev et al. (1994) showed that overconfidence could be accounted for by a 

model that assumed that true judgments were perturbed by random error. This random 

error was assumed to be generated in the response-selection phase of judgment: The 

result of momentary fluctuations in the response process (Thurstone, 1927).

Rather than arising fi'om response processes per se, random variation in MDM 

arises from how information is retrieved from memory, in particular, from the 

computations on the vectors stored in memory. One property of the Erev et al. model is 

that overconfidence decreases as error variance decreases. Interestingly, the two 

factors that lead to better calibration in MDM — experience and encoding — also lead to 

the reduction o f error variance in the model. Error variance decreases as encoding 

quality increases, the result o f computations on the vectors, and as experience 

increases, a result of the law o f large numbers. Improving encoding quality decreases 

variance because there are fewer O’s present in the memory trace, the more O’s present 

in the trace, the less similar the trace will be to the probe vector. In contrast, increasing 

experience decreases variability because there is an increase in the frequency of traces

14



in memory that have a high degree o f similarity to one another. Thus, the reduction in 

error variance in this case is a direct result o f the law of large numbers Oncreasing N  

naturally reduces variability).^

The net result o f increased experience and improved encoding quality is the 

reduction o f error variance in memory retrieval, which in turn leads the model to 

choose the alternative with the highest ecological cue probability more frequently. 

Consider two cases as examples: One in which the participant has 5 traces of Los 

Angeles and 1 trace of Sacramento, and the second in which the participant has 500 

traces of Los Angeles and 100 traces of Sacramento. The variability associated with the 

first case will necessarily be higher than that associated with the second case because 

there are only 6 total traces processed at memory retrieval in the former, but 600 traces 

processed in the later. This variability in turn affects the probability that participants 

will choose the alternative with the highest ecological cue probability: The higher this 

error variance is, the greater the chance that the echo intensity will be higher for 

Sacramento. This is true even though the trace ratios (and by extension, the ecological 

cue probabilities) are equivalent. Thus, increasing the number o f traces, while keeping 

the ecological cue probability constant, should lead to an increase in proportion 

correct, but leave unaffected the mean probability judgment.

Encoding also affects the amount of error variance produced at retrieval. As 

encoding quality increases, the error resulting from the vector computations decreases 

(this is a consequence o f decreasing the number of zeros in the memory vectors).

The decrease in variability with the increase in the number of traces is contingent on the trac 
having a high degree of similarity to one another. Adding traces to memcty that arc orthogonal (i.e.,

15



Again, this reduction in error variance leads the model to choose the alternative with 

the highest ecological cue probability more often. Thus, assuming that encoding is 

unbiased, increasing encoding quality should lead to an increase in proportion correct 

without affecting the mean probability judgment.

The above discussion illustrates that MDM is consistent with the Thurstonian 

account o f random variation. However, in contrast to the Thurstonian account, MDM 

specifies the locus o f the random variation and the factors that affect it. More 

importantly, MDM’s account of overconfidence shows that the Brunswikian and 

Thurstonian models can be accommodated by a single memory-processes model. By 

instantiating the factor of experience in the context of MDM, it was shown that the 

same factor that the Brunswikians argued was necessary for good calibration 

(experience within the ecological reference class from which the questions are drawn) 

also leads to less variation at memory retrieval. In addition, the present analysis makes 

the novel prediction that encoding processes are fundamental to good calibration. I  

now turn to illustrating these predictions through simulations.

Simulations and Model Predictions

Four simulations using MDM were done to simulate the effects of experience 

and encoding on the calibration of probability judgments. The purpose of these 

simulations was to demonstrate MDM’s encoding quality and experience predictions. 

The experiments presented later will provide tests of these predictions.

For each simulation, 1000 participants were simulated and Sc was arbitrarily set 

to .60. The first set of simulations examined MDM’s encoding quality predictions. In

dissimilar) to the target actually increases variability (see Gronlund & Elam, 1994).
16



these simulations, the effect o f encoding was modeled by varying the encoding 

parameter: L  was set to .35 in the poor-encoding condition and .55 in the good- 

encoding condition. Eighty instances were stored in memory for each simulated 

participant. The relevant trace frequencies and the objective ecological cue probabilities 

for each H|D combination are presented in Table 1 (the numbers not in parentheses).

The second set of simulations examined MDM’s experience (i.e., trace 

frequency) predictions. This was done by varying the frequency of traces stored in 

memory across two levels. In the high-experience condition, a total o f240 traces were 

stored in memory and in the low-experience condition a total of 80 traces were stored 

in memory. The exact frequency of traces corresponding to each H|D combination are 

presented in Table 1. For example, in the low-experience condition, there are 9 traces 

of Hi and 1 trace o f Hz for Di (the corresponding frequencies for the high-experience 

condition were 27 and 3). L = .35 and Sc = .60 for both simulations.

All four o f the above simulations model a decision task in which the D’s are 

probabilistically related to the H ’s. This type o f task is comparable to a disease- 

diagnosis task in which the symptoms (the D’s) are probabilistically related to the 

diseases (the H’s). A simulation of a probabilistic task was chosen because it represents 

the more general case where the outcome variable is probabilistically related to the 

predictor variables (for comparison, in the general knowledge paradigm, the outcome 

variable can be determined with certainty) and because Experiments I and 2 used this 

type of probabilistic task.

17



Figure 3 presents the results o f the simulations where encoding quality is varied 

(top panel) and where experience is varied (bottom panel). As can be seen, there was a 

clear effect o f experience and encoding on overconfidence: Overconfidence decreased 

as experience increased and as encoding quality (as modeled by Z) increased. The effect 

o f experience on overconfidence is the direct result of increasing the frequency of 

similar traces stored in memory. As the frequency of similar traces increases, the error 

variance associated with retrieval decreases and the model chooses the alternative with 

the highest ecological cue probability more often (i.e., proportion correct increases). 

Increasing encoding quality has a similar effect on overconfidence and it too is the 

result o f  a decrease in the random error. However, in this case, the random error is the 

result of individual vector computations. As encoding quality increases, the error 

produced by the individual vector computations decreases.

A second, and less obvious finding from these simulations is that MDM’s 

reduction in overconfidence is due mostly to the increase in proportion correct, as 

opposed to decreases in the predicted probability (i.e., proportion correct increased, 

but the mean predicted probabilities remained constant). This is most obviously seen by 

comparing the two lines in each of the two graphs. Notice that the mean predicted 

probability is unchanged even when encoding quality improves and when experience 

increases.^ This suggests that, at least for probabilistic tasks where the trace ratios are 

constant, MDM’s predictions are due to an increase in the proportion correct and not 

better attunement o f probability judgments.
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Experiment 1

The purpose of Experiment 1 was to test MDM’s prediction that 

overconfidence decreases as encoding quality improves. Past research on the 

overconfidence phenomenon has used the general knowledge paradigm. The general 

knowledge paradigm is the limiting case of MDM’s account of the overconfidence 

phenomenon as it represents the case where the outcome variable is deterministic: 

Either the decision maker is correct or incorrect. The more general paradigm for 

studying overconfidence is a probabilistic paradigm in which the outcome variable is 

probabilistically related to the predictor variable.

Experiments 1 and 2 used a probabilistic decision task in which participants 

studied a population of fictitious patients who were suffering from one of two diseases. 

The two diseases were probabilistically related to a set of 8 mutually exclusive and 

exhaustive symptoms. The participant’s task in Experiments 1 and 2 was to first study a 

population o f patients in which both the symptom and the disease are known, and 

second, to diagnose a new population o f patients characterized by the same symptoms 

but in which the diseases are unknown. The major advantage this task has over the 

general knowledge paradigm is that the frequency of traces, and therefore, the 

ecological cue probabilities, can be manipulated. In contrast, in the general knowledge 

paradigm, it is impossible to know a priori how much exposure participants have with a 

particular set of general knowledge questions.

* This is due to the fact that the ratio of traces remains constant across all conditions. Thus, even 
though the variance is higher when encoding quality is poor and when experience is low, the mean
predicted probability judgments remains the same.
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Method

Participants

Participants were 79 undergraduate students enrolled in lower-level psychology 

courses at the University of Oklahoma. Participants received partial course credit in 

return for their participation.

Design and Procedure

The experimental design for Experiment 1 was a 2-group between-subjects 

design with encoding quality (good, poor) as the independent variable. The 

experimental task was a disease-diagnosis task consisting of a study phase and a testing 

phase. During the study phase of the experiment, participants studied a population of 

fictitious patients, each described by a single symptom and the associated disease. 

Participants were told that they would be studying a number of such patients that had 

already been diagnosed and that they were to learn which symptoms went with which 

disease. They were also informed that all eight symptoms had the possibility of 

occurring with either disease.

Table 1 presents the disease-symptom combinations used in the study phase of 

Experiment 1, the actual fi-equency with which each disease-symptom occurred (i.e., 

the trace ratios), and the objective ecological cue probabilities. Participants in both the 

good and poor encoding quality condition studied 80 fictitious patients (the numbers in 

parentheses correspond to the frequency o f traces used in the high-experience condition 

of Experiment 2).
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Participants in both the good and the poor encoding conditions were given two 

different color drawings o f faces, each labeled with one o f  the two diseases (metalytis, 

zymosis) (cf. McKenzie, 1998). Participants in the good-encoding condition were told 

that the experiment was testing a new technique for improving memory performance 

that involved mental visualization. They were instructed to visualize mentally each 

symptom as it would appear on the patient. For example, if the symptom “red rash” 

occurred with metalytis, the participant was to mentally picture a “red rash” occurring 

on the face o f the metalytis patient. Participants in the poor-encoding condition were 

told only that they were to study each fictitious patient as it appeared and that they 

would be asked several questions later about what they had learned.

The fictitious patients were presented on the computer screen one at a time and 

in random order. Although participants were self-paced, the software ensured that each 

patient was presented on the computer screen for no less than 2.0 s. A recognition test 

was given following randomly chosen patients during the study phase to ensure that 

participants were motivated to remember the diseases and symptoms. The recognition 

test required participants to identify either the disease or the symptom of the patient 

just presented. The probability that a given patient was followed by a recognition test 

was .20.

Following the study phase was a brief (5 minute) intervening task in which 

participants completed two individual difference scales (need for cognition [Caccioppo 

& Petty, 1982], and tolerance for ambiguity [MacDonald, 1970]). These tasks served 

as distracter tasks and were not part of the experimental design.
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In the testing phase o f the experiment, participants were presented with a 

symptom (e.g., pallor) and had to choose which disease they thought was most likely 

and then estimate the conditional probability P(Disease | Symptom). The probability 

judgments were made on a half-range response scale (i.e., .50 to 1.0) by entering their 

response into the computer. Participants were instructed to be as accurate as possible 

when making their probability judgments and to “feel free to use any number between 

.50 and 1.0 that most accurately reflected the true probability.” Participants were 

instructed to base their choice of disease and their probability judgment on their 

memory for how often the symptom occurred with both diseases. Each participant 

made 6 sets of judgments (diagnosis and probability estimate) for each o f the 8 disease 

- symptom combinations resulting in 48 total sets of judgments.

Dependent measures o f accuracy

The accuracy of probability judgments can be assessed using proper scoring 

rules. One such scoring rule is the probability score (Brier, 1950; Yates, 1991). The 

probability score is a measure of the accuracy o f one’s probability judgments and is 

described by the equation;

1 ^
probability score = — y](/} -  c, )^ (5)

where N  is the total number of probability assessments, n is the i“* probability judgment, 

and Ci is the outcome index for the i*** judgment (1 if correct and 0 if incorrect). 

Therefore, the probability score is the average o f the squared differences between each 

probability judgment (r,) and the outcome index (ci). Notice that lower probability 

scores indicate better accuracy, with a score of 0.0 corresponding to perfect accuracy
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(in which case the judge assigns a probability o f 1.0 and is correct on ail judgments) 

and a score o f 1.0 corresponding to perfect inaccuracy (in which case the judge assigns 

a probability o f 1.0 and is incorrect on all judgments). Several decompositions o f the 

probability score have been proposed, but those proposed by Yates (1982) and Murphy 

(1973) are the most popular. Yates’s (1982; 1991) decomposition was used in the 

present experiments.

Yates ’ Decomposition o f the Probability Score

Yates proposed an additive decomposition consisting of 4 parts: probability 

score = knowledge + calibration in-the-large + knowledge(slope)(slope-2) + scatter. 

Each component of the decomposition reveals different aspects of the quality of 

people’s judgments

Knowledge describes the overall accuracy of the judge and is defined by the 

equation:

Knowledge = C( 1 -C) (6),

where C is the proportion of correct responses across all judgments. Again, assuming 

that the participant performs better than chance, lower knowledge scores are better, 

with 0.0 indicating perfect knowledge (i.e., the proportion o f correct responses is 1.0). 

In a two-alternative choice task (as were used in the present experiments), a knowledge 

score of .25 indicates chance performance (i.e., the proportion correct is .50).

Calibration in-the-large is a measure o f the accuracy of one’s average 

probability estimate compared to his or her mean probability judgment and is defined 

as:
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Calibration in-the-large = (C - R)^ (7),

where R  is the mean o f all probability judgments and C is defined as previously stated. 

Calibration in-the-large is best if close to 0 and poor as it deviates fi"om 0. Notice that 

calibration in-the-large does not indicate whether the judge is over- or underconfident.

The third component o f Yates’ decomposition is slope. Slope is described as 

the difference between the mean probability estimate conditionalized on correct 

responses and the mean probability estimate conditionalized on incorrect responses: 

slope = Ri - Ro (8)

where Ri is the mean probability judgment for correct responses and Ro is the mean 

probability for incorrect judgment. Ideally, the judge should assign higher probability 

judgments when he or she is correct, and lower probability judgment when he or she is 

incorrect. Thus, a higher slope indicates better ability to discriminate between correct 

and incorrect judgments.

The final component of Yates’ decomposition is scatter. Scatter is a measure of 

variability in the judges’ probability judgments conditional on whether his or her 

responses are correct or incorrect, and is defined as:

(9).

where Ni and No are the frequency of correct and incorrect responses 

respectively, and var(ri) and var(ro) are the variances conditional on correct and 

incorrect responses respectively. Thus, scatter is a weighted mean of conditional 

variances (Yates, 1991).
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A  final measure typically used to measure accuracy is the bias or 

over/underconfidence score. This is simply the difference between the overall mean 

probability judgment R and the proportion correct C: Bias = R-C. Overconfidence 

obtains when the bias score is positive and underconfidence obtains when the score is 

negative.

Results and Discussion

Figure 4 presents group calibration curves for the good- and poor-encoding 

conditions in Experiment 1. As can be seen, there was a clear effect of the encoding 

manipulation. Notice that the plot for the good-encoding condition is noticeably closer 

to the identity line than the plot for the poor-encoding condition. This pattern o f data is 

consistent with MDM’s account of overconfidence as shown in the top half o f Figure 3, 

namely that overconfidence should decrease as encoding quality improves.

Eight one-way ANOVA’s were done on the probability scores, Yates’ 

decomposition o f the probability score, the mean proportion correct, and the mean 

probability estimates. An alpha of .05 was used for all significance tests unless 

otherwise noted.

Table 2 presents the various measures of accuracy along with the F-statistics 

and the effect sizes calculated using Cohen’s d. There was a significant main effect of 

encoding on the overall probability score, knowledge, and bias, with participants in the 

good-encoding condition performing significantly better (lower scores) on all three of 

these measures. In addition, good-encoding participants had marginally significantly 

better (higher) slopes. In each of these cases, the effect sizes were moderately high.
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Importantly, the above results were driven primarily by the improvement in 

proportion correct: The mean probability score, knowledge, and bias decreased as a 

result of the increase in proportion correct. An important finding in this experiment was 

that there was no effect o f encoding on participant's probability judgments. Instead, the 

decrease in overconfidence (bias) was due solely to the increase in the proportion 

correct (i.e., participants did not adjust their probability judgments to be in line with 

their proportion correct). This is consistent with MDM’s account: That mean 

probability judgment should remain the same, but proportion correct should increase as 

encoding quality improves.

The findings o f Experiment 1 supported MDM’s encoding-quality predictions. 

Namely, overconfidence decreased as encoding quality increased. Experiment 2 tested 

MDM’s trace-frequency prediction.

Experiment 2

The purpose of Experiment 2 was to test MDM’s prediction that 

overconfidence decreases as trace frequency increases. Participants in the high- 

experience condition studied 3 times the number o f fictitious patients in the study phase 

than were studied by participants in the low-experience condition. All participants in 

Experiment 2 received the poor-encoding instructions and were not provided drawings 

of faces on which the symptoms could be mentally visualized.
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Method

Participants

Participants were 58 undergraduate students enrolled in psychology courses. 

Participants received partial course credit in return for their participation.

Design and Procedure

The experimental design was a two-group between-subjects design with 

experience (80 vs. 240 study trials) as the independent variable.

The basic experimental task was identical to that of Experiment 1 with the 

following exceptions. First, rather than manipulating encoding, all participants received 

the poor-encoding instructions from Experiment 1. Experience was manipulated by 

varying the frequency of patients presented during the study phase o f the experiment. 

Participants in the low-experience condition were presented with 80 fictitious patients 

and participants in the high-experience condition were presented with 240 fictitious 

patients. Table 1 presents the actual frequency that each disease-symptom occurred 

(the trace ratios) for both the 80 and 240 study trials conditions (the frequencies for the 

240 condition are in parentheses).

Following the study phase, participants were given a brief (5 minute) 

intermittent task that required them to solve 50 mathematical problems. This task was 

done to reduce recency effects and was not part of the experimental design.

Results and Discussion 

Due to the high degree of between-subjects variability, two outliers were 

eliminated from the sample using the trimmed mean method on the bias score (e.g.,
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participants whose bias scores were ±  2.5a from the mean were deleted). Both outliers 

were from the low-experience condition.

Figure 5 presents group calibration curves for the high- and low-experience 

conditions. There was a clear effect o f experience, with the high-experience condition 

showing much less overconfidence than the low-experience condition. This is shown 

clearly by the fact that the plot for the high-experience condition is closer to the identity 

line.

Analyses o f variance (ANOVA) were performed on the probability score, 

Yates’s decomposition, bias, mean proportion correct, and the mean probability 

judgment. Table 3 shows the results o f these analyses along with the effect-size 

calculations. There was a significant effect o f experience on the probability score, the 

knowledge score, and bias, with the high-experience condition showing better 

performance (lower scores) on all three measures. In addition, participants in the high- 

experience condition had better (higher) slope scores, though this was significant only 

at the .13 level. Similar to Experiment 1, the effect sizes for the probability score, bias, 

and knowledge were in the high range (d = .70 to .81) and the effect size for slope was 

in the medium range (d= .42). Finally, consistent with MDM’s predictions, mean 

confidence did not differ between the high and low experience conditions. Thus, the 

reduction in overconfidence was again due solely to the increase in proportion correct.

The results of Experiment 2 support MDM’s prediction that experience leads to 

decreased overconfidence and that this decrease is due to an increase in proportion 

correct. However, one question that remains unanswered by Experiments 1 and 2 is
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whether the encoding-quality and trace-frequency predictions extend to the general 

knowledge paradigm. This question was answered in Experiment 3.

Experiment 3

The purpose of Experiment 3 was to extend the trace-frequency and encoding 

manipulations to the general knowledge task typically used in overconfidence research. 

Past research using the general knowledge paradigm has simply presented participants 

with a series of two-alternative force-choice general-knowledge questions. Each 

question is answered and confidence is assessed on a half-range (.5 to 1.0) confidence 

scale.

The methodology used in the present research was somewhat different, and 

consisted of two phases. In the first phase of the experiment, participants studied a 

subset of the general knowledge questions with their associated answers. A third of the 

total set of question/answer pairs appeared three times during the study phase and a 

third appeared only once during the study phase. The remaining one-third of the 

questions did not appear during the study phase. Thus, trace-frequency was 

manipulated across three levels; 3 ,1 , and 0 presentations. Encoding was manipulated 

by having half of the participants engage in mental visualization to improve their 

memory for the questions/answers. The remaining participants were told to read the 

questions and answers as quickly as possible.

The general knowledge questions selected for this experiment were selected to 

be of high difficulty. This was done to minimize the effect o f  participants’ prior 

knowledge. I f  participants could rely on their prior knowledge to answer the questions.
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the effectiveness o f the trace-frequency and encoding-quality manipulations would be 

minimal. The goal o f the experiment was to provide participants with the relevant 

“experience” in the study phase o f the experiment where trace frequency and encoding 

quality could be controlled.

Overconfidence should decrease both as encoding quality increased and as trace 

frequency increased for the questions studied during the study phase. In contrast to the 

previous studies where the ratio of traces was held constant across encoding and 

experience conditions, the ratios necessarily varied (because only the correct answer to 

each question was studied). Thus, while encoding and experience affected only 

proportion correct in the previous studies, they should affect both proportion correct 

and mean confidence in this experiment.

Method

Participants

Participants were 50 undergraduate students enrolled in lower-level psychology 

courses. Participants received partial course credit in return for participation.

Design and Procedure

The design of this experiment was a 2 (encoding) x 3 (trace frequency) mixed 

factorial with encoding quality (good, poor) as the between factor and trace frequency 

(3, 1,0 presentations) as the within factor.

Materials. One-hundred sixty-two general knowledge questions were selected 

as stimuli. The general knowledge questions were specifically selected to be o f very 

high difficulty, to minimize any effect o f participants’ prior knowledge of the questions.
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Procedure. The experiment consisted o f two phases. In the study phase, 

participants studied 108 dififerent general knowledge questions with the answers 

provided (e.g., “Other than the sun, which star is closer to earth? Proxima Centauri”). 

54 occurred 3 times during the study phase and 54 occurred only once, for a total of 

216 items studied during the study phase (54 x 3 + 54 x 1 = 216). Fifty-four additional 

questions were not presented in the study phase (0 presentations) but were presented in 

the testing phase. Questions were randomly assigned to each of the presentation 

conditions and were the same for all participants (i.e., questions were not randomly 

assigned for each participant). The questions were presented by computer one at a time 

in a random order, and participants were run individually on computers.

Encoding quality was manipulated by having participants engage in one of two 

orienting tasks. Participants in the poor-encoding condition were told that the 

experiment was measuring the effects of familiarity on how quickly they could read 

general knowledge questions. They were told to read the questions and answers as 

quickly as possible as they were being timed on how long it took them to read each 

question/answer.

Participants in the good-encoding condition were told that the goal of the 

experiment was to test the effectiveness of mental imagery in remembering general 

knowledge facts. Participants in the good-encoding condition were instructed to form a 

mental image containing the information in the question and the answer for each item 

that was presented during the study phase. If  they were unable to form a mental image, 

they were instructed to associate a word in the question with the given answer. It was
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emphasized that they would be tested on their memory for the answers to the questions 

at a later date and that their performance on the memory test would depend on how 

well they remembered the questions.

The testing phase o f the experiment took place four days later. Participants 

were told that they would be answering a series o f general knowledge questions and 

that many, but not all, o f the questions had appeared in the study session. The general 

knowledge test consisted of a two-alternative forced-choice test. Participants were 

presented with a question along with two alternative answers (e.g., “Other than the 

sun, which star is closer to earth? A) Proxima Centauri B) Barnard’s Star”). After 

answering each question, participants rated their confidence in their answer by 

adjusting a tick mark on a number line anchored with “50% certain” at one end and 

“100% certain” at the other end. Each participant answered a total of 162 general 

knowledge questions; 54 had occurred 3 times (3 presentations) in the study phase, 54 

had occurred 1 time (1 presentation) in the study phase, and 54 of the questions were 

new (0 presentations).

Results and Discussion

Figure 6 illustrates the calibration curves for the good- (top panel) and poor- 

encoding (bottom panel) conditions for each of the three trace-frequency conditions. 

First, note that for both encoding conditions, the plot for the 0 presentations (dashed 

line) condition is well below the identity line. This illustrates that both the good- and 

poor-encoding groups showed a large degree o f overconfidence for the questions that
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did not appear in the study phase. Thus, in the absence o f prior experience, participants 

showed the typical overconfidence result.

The two solid lines in Figure 6 plot the calibration curves for the questions that 

occurred once (open circles) and the questions that occurred 3 times (filled circles) 

during the study session. Notice that the plot for the 3-presentations condition is closer 

to the identity line than the plot for the 1-presentation condition, showing that 

participants were less overconfident for questions with which they had more prior 

experience. Finally, notice that the 3- and 1-presentation calibration plots are generally 

closer to the identity line in the good-encoding condition. This shows that 

overconfidence decreased when encoding quality increased.

Eight two-way repeated measures ANOVA’s were done to test the effects of 

experience and trace frequency on the probability score and Yates’s decomposition of 

the probability score.

Recall that main effects o f encoding and trace frequency were predicted, as was 

an encoding x trace-frequency interaction. Specifically, the good-encoding condition 

was predicted to be less overconfident than the poor-encoding condition for the 3- and 

1- presentation conditions, but not for the 0-presentation condition. In addition, 

participants were predicted to be less overconfident in the 3-presentation condition 

than in the 1-presentation condition, and less overconfident in the 1-presentation 

condition than in the 0-presentation condition.

Table 4 shows the mean probability scores and Yates’s decomposition of the 

probability score for each level o f encoding and trace-fifequency. As expected, there
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were significant main efiects o f encoding on the probability score (F[l,48] = 32.52,

Mse =  .008), bias (F[l,48] = 11.29, Mse = .021), knowledge (F[l,48] = 49.63, Mse = 

.002), slope (f%l,48] = 4.25, Mse -  .006), calibration-in-the-large (F[l,48] = 7.88, Mse 

= .002), and scatter (f{l,48] = 4.33, Mse =  .0001). In all cases, the good-encoding 

condition performed significantly better than the poor-encoding condition.

There were also significant main effects of trace-fi'equency on the probability 

score (7^2,47] = 195.37, Mse = .002), bias (7^2,47] = 67.66, Mse = .005), knowledge 

(7^2,47] = 207.76, Mse = .001), slope (7^2,47] = 37.49, Mse = .004), calibration-in- 

the-large (fT2,47] = 32.95, Mse = .001), and scatter (7^2,48] = 20.97, Mse = .00005). 

Generally, participants performed better in the 3-presentation condition than in the 1- 

presentation condition, but performed better in the 1-presentation condition than in the 

0-presentation condition.

Tests of the encoding x trace-frequency interaction revealed significant 

interactions for the probability score (F[2, 47] = 8.35, Mse =.002), knowledge (7^2,47] 

= 25.07, Mse = 001), slope (F[2, 47] = 3.38, Mse =.004), and scatter (7^2,47] = 6.66, 

Mse = .00005) and a marginally significant interaction for bias (7^2, 47] = 2.59, Mse 

=.005, p  = 08). The interaction for calibration-in-the-large-failed to reach significance 

(F[2,47]= 1.93, = 001,/? = .15).

Univariate tests of each trace-fi'equency condition, and inspection of the means 

in Table 4, revealed that the interactions were generally due to small or negligible 

differences between the good- and poor-encoding conditions for the 0-presentation 

condition relative to the 1- and 3-presentation conditions. This pattern generally held
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true for the probability score (0-presentation ̂ 1,48]=2.69, AAe = .004,/? =10, 1- 

presentationf{l,48]=33.97, Mse = .005, 3-presentation/^ 1,48] = 37.33,Mse = .004), 

bias (0-presentation F[l,48]=3.35, Mse=.0l5, p  = .07, 1-presentation /^1,48]=14.35, 

AAg=.011, 3-presentation i^l,48] = Z.29, Mse=.QQ6), and knowledge (0-presentation 

f%l,48] = 0.64, Mse = .000,p  = .42, 1-presentationf{l,48] = 35.18, Mse = .002, 3- 

presentation /n^l,48] = 48.60, Mse = .002). Although the encoding x trace frequency 

interaction failed to reach significance for calibration-in-the-large, the univariate tests 

for each level of trace frequency revealed the predicted pattern. There was no 

significant effect of encoding on calibration-in-the-large for the 0-presentation 

condition (f][l,48] = 1.91, Mse = .003, /? = . 17) but significant effects for the 1- and 3- 

presentation condition (F%1,48] = 11.46, Mse = .001 and i^ l,48] = 7.27, Mse = .0004 

respectively). The lone exceptions to the predicted pattern were for slope and scatter. 

Although the interaction for slope was significant, it was apparently due solely to a 

difference between the good- and poor-encoding conditions for the 1-presentation 

condition, as there was no effect of encoding quality in the 3-presentations condition 

(0-presentation (i^l,48] = \.2A,Mse = .001,/? = .25, 1-presentation/^ 1,48] = 9.90, 

Mse = .004, and 3-presentation F[l,48] = 0.01, Mse =.008,/? = 91). For scatter, there 

were no differences between the good- and poor-encoding conditions for the 0- and 1- 

presentationcondition (0-presentationsF{1,48] =0.15,Mse = .0001, 1-presentation 

F{1,48] = 2.08, Mse = .00009). However, participants in the good-encoding group had 

significantly less scatter in the 3-presentation condition (F{1,48] = 27.01, Mse = 

.00004).
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The above results generally support MDM’s prediction that calibration should 

improve as encoding quality increases and as trace-frequency increases. For virtually all 

o f the measures o f accuracy, participants performed better as experience increased 

(from 0 to 3 presentations o f the question/answer) and when encoding quality was 

good.

There were negligible differences between the good- and poor-encoding 

conditions for the 0-presentation condition for all the dependent measures. This is 

important for two reasons. First, it indicates that there were no a priori differences 

between participants in the good- and poor-encoding conditions: Both groups were 

equally poorly calibrated for questions that did not appear in the study phase o f the 

experiment. Second, and more important, it suggests that the improvement in accuracy 

resulting from studying the question/answers was not due to metacognitive processes, 

but instead was due to the retrievability of information from memory. Had there been 

systematic differences between the good- and poor-encoding conditions for mean 

confidence in the 0-presentation condition, it would have pointed to metacognitive 

processes as a moderator of overconfidence.

It is easy to imagine how such metacognitive processes might operate in the 

context of this experiment. For example, one way to estimate one’s confidence in an 

answer is to base the judgment on the difference between the familiarity of the 

currently-being-judged answer and the average familiarity o f answers to prior 

questions. (In contrast, the assumption made by MDM is that confidence is based on 

the relative familiarity o f the two-altemative answers posed in the general knowledge
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question.) For the 0-presentation condition, the difierence between the familiarity o f the 

chosen answer and previously answered questions would be smaller in the poor- 

encoding quality condition than in the good-encoding quality condition. This is because 

the average familiarity of the 1- and 3- presentation conditions for the good-encoding 

quality condition should be higher than the average familiarity of the I- and 3- 

presentation conditions for the poor-encoding condition, relative to the 0-presentation 

questions. Thus, if participants were basing their confidence judgments on the relative 

familiarity o fpast answers, mean confidence would be lower in the good-encoding 0- 

presentation condition than in the poor-encoding 0-presentation condition. Although 

mean confidence was slightly lower in the good-encoding condition, it did not approach 

significance (p = .51). The overall improved calibration for the high-encoding condition 

and for the 1- and 3- presentation conditions cannot be attributed to this metacognitive 

process.

Conclusions

The present research has shown that overconfidence is intimately tied to how 

well information can be retrieved from memory and that it decreases as experience and 

encoding quality increase. Experiments 1 and 2 demonstrated the effect of encoding 

and experience on overconfidence using a probabilistic task. Overconfidence was lower 

when encoding quality was good (Experiment 1) and when experience was high 

(Experiment 2). Consistent with MDM, the reduction of overconfidence in both 

experiments was due primarily to an increase in proportion correct and not to changes 

in confidence judgments. Experiment 3 replicated the findings of Experiments 1 and 2
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using the general knowledge paradigm. In sum, all three experiments support MDM’s 

predictions that the factors o f encoding and experience are fundamental to 

overconfidence.

Implications fo r Models o f Overconfidence

Keren (1991) argued that much of the research on the overconfidence 

phenomenon lacked a coherent theoretical firamework. However, since the publication 

o f his article, two prominent and seemingly different theories have emerged. One of 

these models, the ecological or Brunswildan model (Gigerenzer et al., 1991), placed the 

locus o f overconfidence in the environment: The result of a biased selection of general 

knowledge questions on the part of the experimenter (Juslin, 1994; Juslin et al., 1997). 

The other of these models, the random error or Thurstonian model (Erev et al., 1994), 

placed the locus o f overconfidence as internal to the participant: The result of noisy 

psychological processes. Indeed, both of these models have made important 

contributions to the literature, and both have changed the way in which the 

overconfidence phenomenon is conceptualized.

Arguably the most important question generated by these models is whether 

overconfidence is real or simply an artifact (Ayton & McClelland, 1997). If the 

Brunswikians have their way, overconfidence would be considered an artifact of the 

environment: If  the assumptions of representative sampling are met, overconfidence 

disappears (Juslin, 1994). In contrast, one interpretation of the Thurstonian position 

might suggest that overconfidence is an artifact o f response error and the resulting
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regression effects (Keren, 1997).® The present research suggests that both o f  these 

accounts are simultaneously correct, yet misleading.

The Brunswikian account is correct in that overconfidence often is reduced or 

eliminated when representative sampling is used. The Thurstonian account is correct in 

that the reduction o f random error reduces overconfidence. However, both accounts 

are misleading because they ask the wrong question. The Brunswikians should ask 

“why does representative sampling reduce overconfidence?” And the Thurstonians 

should ask “what psychological variables affect random error (cf. Budescu et al., 

1997)?” The present research has provided answers to these questions. Representative 

sampling works because the questions over which participants are tested are more 

likely to be represented in memory. Random error is affected both by how well 

information is stored in memory (encoding quality) and by the amount o f experience 

the participant has in the judgment domain (trace frequencies).

On the face of it, these two models appear to be at opposing sides o f  the 

ecological versus error debate. Which theory is “correct” and what can MDM 

contribute to this debate?

The most important insight provided by MDM is that there is much more 

common ground between the Brunswikian and the Thurstonian approaches than one 

might have previously believed. The same factors in the environment that the 

Brunswikians argued were necessary for good calibration also lead to a reduction of

® In addition, the analyses by Erev et al. (1994) suggest that overconfidence might be due to how data 
are aggregated in overconfidence analyses (cf. Yates, Lee, & Bush, 1997). In reanalyzing data fiem  
several experiments, they found that the same data set can show overconfidence if the data are
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random error. Thus, contrary to previous discussions, these two accounts of 

overconfidence are not at odds, they are complementary. More importantly, MDM 

goes beyond both models by specifying the memory mechanisms responsible for both 

good and poor calibration. MDM goes beyond the ecological model o f Gigerenzer et 

al. (1991) by showing how some aspects o f the environment (i.e., cue structure and 

experience) can be instantiated in the context of a multiple-trace memory model. MDM 

also goes beyond the error model of Erev et al. (1994) by proposing that natural 

memory processes might be the source of the random error underlying judgment. 

Furthermore, the present research, and recent research by Wallsten et al. (1999), 

suggest that overconfidence is more than a data-analytic artifact o f random error in 

judgment, and that random error results fi'om fundamental psychological processes. To 

the extent that this error can be reduced through improved encoding and increased 

experience, overconfidence can be reduced.

Relation to Previous Findings

The present research and theory have several implications, both with respect to 

previous findings in decision making and with respect to debiasing overconfidence.

Hard/easy effect. A robust finding in the decision making literature is the 

hard/easy effect, whereby participants often are overconfident when answering difficult 

questions but underconfident or well calibrated when answering easy questions 

(Lichtenstein & Fischhoff, 1977). Previously, the hard/easy effect has been explained 

away by appealing to the structure o f the environment or the biased selection o f general

aggregated conditional on confidence, and underconfidence if the data are aggregated conditional on 
the proportion correct
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knowledge questions. Gigerenzer et al. (1991) and Juslin (1994) have argued that the 

hard/easy efifect is a by-product of a biased selection of general knowledge questions. If  

the experimenter intentionally selects a difiBcult set of questions, participants will show 

overconfidence and if an easy set of questions is selected, the participant will show 

underconfidence. These same researchers also argue that if representative sampling is 

used to select the set of general knov/ledge questions (i.e., the questions are sampled 

randomly fi'om the participants’ ecological reference class ), participants will be 

relatively well calibrated.

Studies using random sampling have had varying success in eliminating the 

overconfidence efifect. Whereas several studies have demonstrated that overconfidence 

disappears with representative sampling (see Juslin, 1994), other studies have failed to 

find this effect (Brenner et al., 1996; Griffin & Tversky, 1992). Consequently, 

researchers studying overconfidence are left wondering what factors underlie the 

hard/easy efifect.

MDM’s explanation of the hard/easy efifect is somewhat more explicit than 

previous accounts and appeals to the retrievability o f items from memory. One way to 

interpret the hard-question / easy-question distinction is that domains from which hard 

questions are drawn are those in which participants have little exposure. In contrast, the 

domains from which easy questions are drawn are those in which participants have 

extensive exposure. Consequently, the answers to easy questions will be relatively more 

easily retrieved than answers to difficult questions. As the present research has shown, 

overconfidence is lower for items that are more easily retrievable (as operationalized by
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encoding quality and trace frequency). Thus, one interpretation of the hard/easy effect 

attributes the finding to memory retrieval processes. Overconfidence will obtain when 

the to-be-judged items are unlikely to be represented in memory, and good calibration 

(and possibly underconfidence) will obtain when the majority o f the items are 

represented in memory.’

One appeal o f using the retrievability of items from memory as the explanation 

of the hard/easy effect is that it can explain why some studies using representative 

sampling have found overconfidence (e.g., Brenner et al., 1996; Griffin & Tversky, 

1992). If too broad a reference class is chosen, whose items are beyond what is 

commonly experienced by the participants, overconfidence is likely to obtain. This is 

because few of the items will be represented in memory, which will in turn lead to a 

low proportion correct. If  a reference class is selected that contains items commonly 

experienced by the participants, and therefore represented in memory, then little 

overconfidence would be expected.

Validity effect. A finding related to the overconfidence effect is the validity 

effect (Hasher, Goldstein, & Toppino, 1977). The validity effect is the tendency to rate 

familiar items as more valid than unfamiliar items, regardless of whether the items are 

true (Boehm, 1994). Factors such as the number of exposures to the stimulus (Hasher 

et al., 1977) and encoding (Begg, Armour, & Kerr, 1985) have been found to increase

’ This is not to say that item difficulty  ̂is not important Rather, item difficulty is often, if not always, 
confounded with whether the items are represented in memory. Perhaps one reason that representative 
sampling works is that it often results in a set of general knowledge items that has an equal mix of 
items that are represented and not represented in memory.
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judgments of validity. In essence, increasing the familiarity o f the stimulus increases 

participant’s judgments of validity.

The present findings, in particular those of Experiment 3, are consistent with 

this prior research on the validity effect. Participant’s confidence in their judgments 

generally increased as trace fi-equency increased and as encoding quality increased (cf. 

Begg et al. 1985; Hasher et al., 1977; Kelley & Lindsey, 1993). This result is also 

consistent with Dougherty et al.’s (1999) biased encoding and biased experience 

explanations of the validity effect.

Debiasing overconfidence. Another implication of the present research involves 

debiasing judgment. Previous attempts to debias overconfidence have generally been 

directed at the post-retrieval stage o f judgment (during the retrieval stage, or during the 

confidence assessment stage). For example, Arkes, Christensen, Lai, and Blumer 

(1987) found that overconfidence could be reduced by encouraging an anchoring and 

adjustment strategy. Koriat, Lichtenstein, and Fischhoff (1980) were somewhat 

successful at reducing overconfidence by enticing participants to think of reasons why 

their answers might be wrong (for a review, see Arkes, 1991). In contrast to these 

previous attempts, the present research suggests that efforts to debias judgment should 

be directed at improving the initial encoding o f information and/or by providing more 

experience in the judgment domain.

In prior research, the effect of experience on calibration was operationalized in 

terms of the participant’s expertise in a domain, with little regard for the predictability 

of the task (Oskamp, 1965; Yates, McDaniel, & Brown, 1991). The present research.
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and that o f  others using the ecological approach, suggest that the structure o f the task 

is paramount to whether one will show overconfidence. In the context o f MDN^ one 

can expect calibration to improve with experience only in repetitive tasks that comprise 

essentially similar stimuli (Keren, 1991). Dynamic, and relatively unpredictable, tasks 

involving unique multi-dimensional stimuli (e.g., persons in clinical diagnosis; stocks in 

stock forecasting) do not provide the type o f learning opportunity needed for 

calibration to improve with experience (Shanteau, 1992). Thus, in these types o f tasks, 

experience actually leads to an increase in the frequency of dissimilar traces (few o f the 

stimuli are repeated). As pointed out by Gronlund & Elam (1994), increasing the 

number o f traces orthogonal to the target leads to an increase in variance at memory 

retrieval.

Obviously, improved encoding and increased experience have limited 

applicability in the real world. For example, how can one entice a person to engage in 

elaborative rehearsal strategies? Moreover, in many situations, the decision maker is 

confronted with only one chance to experience an event, as is the case when witnessing 

a crime. One way to improve calibration in these situations might be to implement 

strategies that enhance the retrievability o f information from memory. This might be 

accomplished through reinstating the encoding context or by using a cognitive- 

reconstructive technique such as the cognitive interview (Klein, Calderwood, & 

MacGregor, 1989). I know of no such study that has investigated these types of 

techniques as debiasing methods.
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Summary

The present paper has provided an account of overconfidence that is grounded 

in memory theory. In so doing, I  have shown how a multiple-trace memory model can 

be used to integrate the two major theoretical accounts of overconfidence: MDM 

simultaneously accounts for the Brunswikian notions of ecological structure and 

experience and the Thurstonian notion o f response variability. Although it might be 

tempting to conclude that overconfidence is attributable solely to memory processes, 

the theoretical account provided by MDM does not explain all overconfidence findings. 

For example, the model does not explain why there appear to be large and systematic 

cultural differences in overconfidence (Yates et al., 1997; Yates, Zhu, Ronis, Wang, 

Shinotsuka, & Toda, 1989), nor can it be readily applied to predictive judgments that 

do not rely on one’s past memory. However, despite these shortcomings, the model 

and data presented here illustrate that simple memory processes go a long way towards 

accounting for both good and poor calibration.
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AeweXô vasxils. Journal o f Behavioral Decision Making, 10, 157- 172.

Caccioppo, J .T., & Petty, R. E. (1982). The need for cognition. Journal o f 

Personality and Social Psychology, 42, 116- 131.

Christensen-Szalanski, J. J. J., & Bushyhead, J. B. (1981). Physician’s use of 

probabilistic information in a real clinical setting. Journal o f Experimental Psychology: 

Human Perception and Performance, 7, 928 - 935.

Craik, F. I. M., Govoni, R., Naveh-Benjamin, M., & Anderson, N. D. (1996). 

The effects o f divided attention on encoding and retrieval processes in human memory. 

Joum alof Experimental Psychology: General, 125, 159 - 180.

Dougherty, M. R. P., Gettys, C. P., & Ogden, E. E. (1999). MINERVA-DM: A 

memory processes model for judgments of likelihood. Psychological Review, 106, 180 

-209.

Erev, I., Wallsten, T. S., & Budescu, D. V. (1994). Simultaneous over- and 

underconfidence: The role o f error in judgment processes. Psychological Review, 101, 

519-527.

47



Gigerenzer, G., & Goldstein, D. G. (1996). Reasoning the fast and frugal way: 

Models of bounded rationality. Psychological Review, 103, 650 - 669.

Ggerenzer, G., Hofifrage, U., & Kleinbolting, H. (1991). Probabilistic mental 

models: A Brunswikian theory of confidence. Psychological Review, 98, 506 - 528.

Goldstein, D. G. (1998). Inference from ignorance: The recognition heuristic.

In M. A. Gemsbacher (Ed.), Proceedings o f the Twentieth Annual Conference o f the 

Cognitive Science Society (pp. 407-412). Mahwah, NJ: Eribaum.

Griffin, D. W. & Varey, C. A. (1996). Towards a consensus on overconfidence. 

Organizational Behavior and Human Decision Processes, 65, 227 - 231.

Griffin, D., & Tversky, A. (1992). The weighting of evidence and the 

determininants of confidence. Cognitive Psychology, 2 ,̂ 411 - 435.

Gronlund, S. D., & Elam, L. (1994). List-length effect: Recognition accuracy 

and variance of underlying distributions. Journal o f Experimental Psychology: 

Learning, Memory, and Cognition, 20, 1355 - 1369.

Gronlund, S. D., Ohrt, D. D., Dougherty, M. R. P., Perry, J. L., & Manning, C. 

A. (1998). Role of memory in air traffic control. Journal o f Experimental Psychology: 

Applied, 4, 263 - 280.

Hasher, L., Goldstein, D., & Toppino, T. (1977). Frequency and the conference 

oîreîex&eûeXvzXxàLitY. JouTTial o f Verbal Learning and Verbal Behavior, 16, 107 - 112.

Hintzman, D. L. (1988). Judgments of frequency and recognition memory in a 

multiple-trace memory model. Psychological Review, 96, 528 - 551.

48



Jusiin, P. (1993). An explanation of the hard-easy effect in studies of realism of 

confidence in one’s general knowledge. European Journal o f Cognitive Psychology, 5, 

55 - 71.

Jusiin, P. (1994). The overconfidence phenomenon as a consequence of 

informal experimenter-guided selection of almanac items. Organizational Behavior and 

Human Decision Processes, 57, 226 - 246.

Jusiin, P., Olssen, H., & Bjorkman, M. (1997). Brunswikian- and Thurstonian 

origins of bias in probability assessment: On the interpretation of stochastic 

components o f judgment. Journal o f Behavioral Decision Making, 10, 189 - 209.

Jusiin, P., Olssen, N., & Winman, A. (1996). Calibration and diagnosticity of 

confidence in eyewitness identification: Comments on what can be inferred from the 

low confidence-accuracy correlation. Journal o f Experimental Psychology: Learning, 

Memory, and Cognition, 22, 1304 - 1316.

Jusiin, P., Winman, A., & Persson, T. (1995). Can overconfidence be used as an 

indicator of reconstructive rather than retrieval processes? Cognition, 54, 99 - 130.

Kelley, C. M., & Lindsey, D. S. (1993). Remembering mistaken for knowing: 

Ease of retrieval as a basis for confidence in answers to general knowledge questions. 

Journal o f Memory and Language, 32, 1 -24.

Keren, G. (1987). Facing uncertainty in the game of bridge: A calibration study. 

Organizational Behavior and Human Decision Processes, 39, 98 - 114.

Keren, G. (1991). Calibration and probability judgments: Conceptual and 

methodological issues. .(4cto P^c/ro/og7ca, 77, 217 - 273.

49



Keren, G. (1997). On the calibration of probability judgments: Some critical 

comments and alternative perspectives. Journal o f Behavioral Decision Making, 10, 

269 - 278.

Klein, G. A., Calderwood, R., & MacGregor, D. (1989). Critical decision 

method for eliciting knowledge. IEEE Transactions on Systems, Man, and 

Cybernetics, 19, 462 - 472.

Koriat, A., Lichtenstein, S., & FischhofiÇ B. (1980). Reasons for confidence. 

Journal o f Experimental Psychology: Human Learning and Memory, 6, 107 - 118.

Lichtenstein, S., & Fischhoff, B. (1977). Do those who know more also know 

more about how much they know?. Organizational Behavior and Human 

Performance, 20, 159 - 183.

Lichtenstein, S., Fischhoff, B., & Phillips, L. D. (1982). Calibration of 

probabilities: The state o f the art to 1980. In D. Kahneman, P. Slovic & A. Tversky's 

(eds.y) Judgment under uncertainty: Heuristics and biases, (pp. 306 - 334). New York, 

NY: Cambridge.

MacDonald, A. P. (1970). Revised scale for ambiguity tolerance: Reliability and 

vdXidsly. Psychological Reports, 26, 791 - 798.

McKenzie, C. R. M. (1998). Taking into account the strength o f an alternative 

hypothesis. Journal o f Experimental Psychology: Learning, Memory, and Cognition, 

24, 771-792

50



Mladenovic, R., & Simnett, R. (1994). Examination of contextual effects and 

changes in task predictability on auditor calibration. Behavioral Accounting Research, 

6. 178-203.

Murphy, A. H., & Winkler, R. L. (1977). Can weather forecasters formulate 

reliable probability forecasts of precipitation and temperature?. National Weather 

Digest, 2,2-9.

Oskamp, S. (1965). Overconfidence in case study judgments. Journal o f 

Consulting Psychology, 29, 261 - 265.

Ronis, D. L., & Yates, J. F. (1987). Components of probability judgment 

accuracy: Individual consistency and effects of subject matter and assessment method. 

Organizational Behavior and Human Decision Processes, 40, 193 -218.

Shanteau, J. (1992). Competence in experts: The role of task characteristics. 

Organizational Behavior and Human Decision Processes, 53, 252 - 266.

Soli, J. B. (1996). Determinants o f overconfidence and miscalibration: The roles 

o f random error and ecological structure. Organizational Behavior and Human 

Decision Processes, 65, 117 - 137.

Thurstone, L. L. (1927). A law o f comparative judgment. Psychological 

Review, 34, 273 - 286.

Tomassini, L. A., Solomon, I., Romney, M. B., & Krogstad, J. L. (1982). 

Calibration of auditors’ probabilistic judgments: Some empirical evidence. 

Organizational Behavior and Human Decision Processes, 30, 391 - 406.

51



Wagenaar, W. A. (1988). Calibration and the effects of knowledge and 

reconstruction in retrieval from memory. Cognition, 28, 277 - 296.

Wallsten, T. S., & Gonzalez-Vallejo, C. (1994). Statement verification: A 

stochastic model of judgment and response. Psychological Review, 101, 490 - 504.

Wallsten, T. S., Bender, R. H., & Li, Y. (1999). Dissociating judgment from 

response processes in statement verification: The effects of experience on each 

component. Journal o f Experimental Psychology: Learning, Memory, and Cognition, 

25. 96- 115.

Yates, J. F. (1982). External correspondence: Decomposition o f  the mean 

çrohdhïïxty score. Organizational Behavior and Human Performance, 30, 132- 156.

Yates, J. F. (1990). Judgment and Decision Making. Englewood Cliffs, NJ: 

Prentice Hall.

Yates, J. F., Lee, J.-W. & Bush, J. G. (1997). General knowledge 

overconfidence: Cross-national variations, response style, and “reality” . Organizational 

Behavior and Human Decision Processes, 70, 87 - 94.

Yates, J. F., McDaniel, L. S., & Brown, E. S. (1991). Probabilistic forecasts of 

stock prices and earnings: The hazards of nascent expertise. Organizational Behavior 

and Human Decision Processes, 49, 60 - 79.

Yates, J. F., Zhu, Y., Ronis, D. L., Wang, D.-F., Shinotsuka, H., & Toda, M. 

(1989). Probability judgment accuracy: China, Japan, and the United States. 

Organizational Behavior and Human Decision Processes, 43, 145 - 171.

52



Table 1. Frequency o f Traces for Each Hypothesis-Data (Disease-Symptom) 
Combination in the Low and High (in parentheses) Conditions and the Objective

Hi (Disease 1) Hz (Disease 2) P(Diseasei Symptom)
Di (Symptom 1) 9 (27) 1(3) .9
Ü2  (Symptom 2) 8(24) 2 (6 ) . 8

Ü3  (Symptom 3) 7(21) 3(9) .7
D4  (Symptom 4) 6(18) 4(12) . 6

Dj (Symptom 5) 4(12) 6(18) .4
Dg (Symptom 6 ) 3(9) 7(21) .3
D7  (Symptom 7) 2 (6 ) 8(24) . 2

Dg (Symptom 8 ) 1(3) 9(27) . 1

Total 40 (120) 40 (120)
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Table 2. Means and Standard Deviations (in parentheses) fo r the
Probability Score and Yates’ Decomposition for Experiment 1._____

Encoding
High Low Effect F (1,78)
n=40 n=39 Size (d)

Mean Confidence .708 .694 . 2 2 0.85
(.053) (.078)

Mean % Correct .652 .578 .78 11.28**
(.107) (.087)

Probability Score .228 .261 .73 10.47**
(.044) (.046)

Knowledge .215 .236 .81 12.77**
(.032) (.016)

Bias .056 .116 .60 6.87**
( . 1 1 1 ) (.090)

Slope .032 .018 .39 2.96*
(.039) (.033)

Calibration-in-the- .015 . 0 2 1 .25 1.26
large (.019) (.028)

Scatter . 0 1 1 . 0 1 1 . 0 0 . 1 0

(.006) (.006)
* p < 1 0 , **p < . 0 1
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Table 3. The Means and Standard Deviations (in Parentheses) o f 
the Probability Score and Yates ' Decomposition for the High and

Experience 
High Low 

n = 29 n = 27
Effect 

Size (d)
F(l, 54)

Mean Confidence .719 .717 .03 0 . 0 1

(.062) (.070)
Mean % Correct .629 .555 .76 7.95**

(.106) (.087)
Probability Score .240 .275 .70 6.62*

(.061) (.039)
Knowledge . 2 2 2 .239 .81 7.93**

(.029) (.013)
Bias .090 .162 .72 6.31*

(.1 2 1 ) (.088)
Slope .042 . 0 2 2 .42 2.36

(.043) (.050)
Calibration-in-the- . 0 2 2 .033 .33 0.45

large (.037) (.030)
Scatter .013 . 0 1 2 .16 0.50

(.006) (.006)
* p < .05, **p<.01
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Table 4. Means and Standard Deviations (in Parentheses) o f the Probability 
Scores and Yates’s decomposition for the Good Encoding (top half) and the 
Poor Encoding Conditions (bottom half) and the Three Levels o f Trace

Good Encoding (n = 26) 0

Presentation Frequency 
1 3

Mean Confidence .740 .884 .954
(.093) (.054) (.038)

Mean % Correct .527 .820 .943
(.086) (.098) (.044)

Probability Score .314 .133 .049
(.072) (.066) (.033)

Knowledge .242 .137 .051
(.0 1 1 ) (.054) (.036)

Bias .213 .064 . 0 1 1

(.139) (.088) (.034)
Slope .024 .130 . 1 0 2

(.042) (.084) (.109)
Calibration-in-the-large .064 . 0 1 1 . 0 0 1

(.064) (.019) (.0 0 1 )
Scatter .018 .016 .005

(.0 1 1 ) (.008) (.004)

Poor Encoding (n=24)
Mean Confidence .757 .826 . 8 6 8

(.094) (.062) (.065)
Mean % Correct .479 .649 .791

(.075) ( . 1 1 2 ) ( .1 2 0 )
Probability Score .345 .253 .163

(.062) (.078) (.088)
Knowledge .244 .215 .151

(.006) (.034) (.062)
Bias .277 .176 .077

(.106) (.119) (.109)
Slope .009 .068 . 1 0 0

(.043) (.049) (.071)
Calibration-in-the-large .087 .044 .017

(.057) (.046) (.030)
Scatter .017 .019 .016

(.0 1 0 ) (.0 1 0 ) (.008)
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Figure Captions

Figure 1. Schematic o f the conditional retrieval process in MDM.

Figure 2. Conceptual model o f MDM’s applicability to overconfidence.

Figure 3. MDM simulations o f the effect o f encoding (top panel) and experience 

(bottom panel) on the calibration of probability judgments. Notice that calibration is 

better when encoding quality is good (dashed line top panel) and when experience is 

high (dashed line bottom panel).

Figure 4. Effect o f encoding manipulation in Experiment 1. Dashed line illustrates the 

good-encoding condition and solid line illustrates poor-encoding condition.

Figure 5. Effect o f experience manipulation in Experiment 2. Dashed line illustrates the 

high-experience condition and solid line illustrates the low-experience condition.

Figure 6. Effect o f encoding and experience in the general-knowledge task used in 

Experiment 3.
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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