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Table Captions

Table 1. The interaction of synchronization and the learning mechanism. The 
synapse values o f the neural network architecture depicted in Figure 11 (novel 
stimulus'). The synapses whose both pre- and post-synaptic neurons belonged to the 
same oscillating group underwent significant changes after learning (bold-italic). 
Columns: pre-synaptic neurons. Rows: post-synaptic neurons. Inhibitory synapses 
were assumed not to learn.



Figure Captions

Figure 1. A simple neural network that ülustrates how synchrony in neural firing 
could contribute to computations in the brain.

Figure 2. The effects of excitatory connections on synchronization of neurons. A) 
Two independent (not connected) neurons do not show any sign of synchronization. 
B) Excitatory connections result in synchronization among neurons. C) A third 
neuron can indirectly synchronize two neurons that are not connected. D) Auto- 
synchronogram o f an oscillatory neuron shows regularity and firequency of 
oscillation.

Figure 3. Mutual inhibition between neurons results in desynchronization.

Figure 4. Auto-synchronogram of an inhibition-coupled neuron shows that 
oscillatory patterns are much less regular than in 2-D.

Figure 5. Mutual inhibition of neurons that are members of oscillatory assemblies 
has different effect. The regular oscillations are preserved but phases are shifted.

Figure 6. An BEG simulation - average depolarization of 15 randomly 
interconnected neurons.

Figure 7. An evoked potential produced by oscillatory network. A superposition of 
10 and the average of 50 artificial EEG signals.

Figure 8. Simulation of experimental data by Engel et al. (1992).

Figure 9. A) Competition between three oscillation groups results in shifted phases 
of oscillation. B) An increase in number of features (the neurons that are members 
of the oscillating group) does not have an effect on the processing capacity.

Figure 10. If four oscillation groups compete, the phase shift among groups is much 
less pronounced.

Figure 11. The neural network architectures used to explain the findings in tasks 
with brief presentation of colored objects.

Figure 12. The synchronous patterns when the system is allowed to process novel 
combination of features for long time.

Figure 13. The synchronous patterns when the system is allowed to process novel 
combination of features for short periods of time (350 computational steps).
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Figvire 14. The synchronous patterns when the system is allowed to process familiar 
combination of features for a long time.

Figure 15. The synchronous patterns when the system is allowed to process familiar 
combination of features for a short period o f time.

Figure 16. An example of a stimulus used in the visual search task. The target Q is 
surrounded by distractors R's and O's.

Figure 17. A possible neural network architecture underlying a visual search task.

Figure 18. The synchronous patterns in the visual search task. The neurons coding 
for the features o f the target (1 and 4) fire asynchronously.

Figure 19. When a top-down stimulation of'location' neurons is provided, the zero 
time-lag synchrony between neurons 1 and 4 increases.

Figure 20. Graphical representation of the two-threshold synaptic model. If  lower 
threshold is reached, synapse undergoes depression (-). If larger threshold is 
reached, the synapse undergoes potentiation (+).
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Abstract

Automatic processes are fast, effortless, mostly unconscious, take very little 

capacity and are slowly changing. Controlled processes are much slower, require 

effort and attention, require capacity, are closely tied to consciousness but provide 

high behavioral adaptivity in unfamiliar situations. Because this distinction is 

fundamental for virtually all aspects o f human cognition it is important to 

understand the difference in the neurophysiological mechanisms that underlie these 

two aspects of cognition. Through computer simulations we show that the neural 

computations that rely on oscillatory and synchronous neural activity share several 

fundamental properties with controlled processes. By accounting for several 

experiments that first established the distinction between automatic and controlled 

processes in visual perception, we show that synchrony-based computations 

observe limitations in capacity and that processing time depends on the task 

complexity. We also show that synchrony-based computations have an ability to 

handle new, not previously encountered computations. Finally, we show that a 

learning mechanism that employs synchrony-sensitive changes of synaptic efficacy 

provides a good tool for developing automaticity. In other words, the system leams 

to develop synchronous patterns faster and more reliably and thus increases the 

speed and accuracy and decrease the demands on limited attentional resources. In 

sum, controlled cognitive processes seem to rely heavily on synchronous neural 

activity while automatic processes seem to employ synchrony-based computations 

to a far lesser degree.
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Neurophysiological mechanisms underlying the distinction 
between automatic and controlled processes

The different properties of automatic and controlled processes have been 

experimentally established in many domains in human cognition (e.g., perception, 

Treisman, 1982; memory, Sternberg, 1966; Schneider and ShiffHn, 1977; and 

social cognition, Devine, 1995). Automatic processes occur faster, do not appear to 

have limitations in processing capacity, and usually are not in the focus of 

awareness. They are closely related to skills, but not only behavioral skills such as 

driving a  car, but also perceptive skills, memory skills and thinking skills. 

Controlled processes, on the other hand, occur slower, are very limited in their 

capacity and we seem to be aware of them to a much higher degree. We seem to 

have much better conscious control over controlled processes but subjectively they 

appear as requiring effort (hence the terms voluntmy and ejfortful processes).

Automatic processes change relatively slowly and this makes them quite rigid in 

information processing. It usually takes a long time to develop a new automatic 

process and it also takes a long time to change or unlearn an automatic process.

The main advantage of controlled processes over automatic ones is their 

adaptability. Controlled processes are those that allow the brain to process 

information in a novel previously never encountered situation. For example, if one 

responds to a hght by pressing a button after being instmcted to do so (i.e., no



conditioning has taken place) a controlled process mediates the behavior. The cost 

o f the flexibility of controlled processes is the considerable limitation in processing 

capacity (see Schneider and Shiffidn, 1977 for a more thorough review of 

properties o f automatic and controlled processes). These two processes, therefore, 

seem to complement each other and allow us to use an optimal combination of past 

experience and new information in each given task. Treisman (e.g., Treisman and 

Gelade, 1980) proposed a feature binding theory for the explanation of the 

controlled and automatic processes in visual perception. There is also evidence that 

the feature binding theory applies to visual working memory (Luck & Vogel,

1997). Here, we develop a model of spiking oscillatory neurons and study its 

behavior in order to understand the possible neurophysiological processes 

underlying the two different cognitive processes.

With extensive practice, some controlled processes become automatized. Learning 

has the effect that the brain changes its processing strategy in such a way that it 

automates controlled processes that are frequently used. The processing becomes 

faster and the capacity required by controlled processes is freed so other controlled 

processes can take place. As more and more information is processed by means of 

automatic processes due to practice, the overall processing capacity in the practiced 

task increases. There have been many experimental demonstrations that extensive 

practice produces superior processing o f information. Some examples include: 

memory for numbers (Chase & Ericsson, 1981), restaurant orders (Ericsson & 

Poison, 1988), chess pieces (Chase & Simon, 1973), and serial search (Schneider



& Shiffrin, 1977). Spelke, Hirst and Neisser (1976) have shown that after 80 hours 

of training to simultaneously read a stor>" and write down dictated words, people 

can achieve very good performance. However, not all controlled processes can 

automatic equally easily. Schneider and Shiffiin (1977) presented participants with 

consistent (targets and distractors consistently from different sets) and inconsistent, 

or varied mapping (targets and distractors selected from same sets) conditions for 

memory and visual search. In the consistent condition, the participants automated 

responses very quickly so the response time increased very little with the increase 

in set size. In the inconsistent condition, however, after about 2000 trials, the 

response time stül increased considerably with the set size.

Controlled processes are also important and sometimes necessary for successful 

development of automatic processes. It has been shown that, for example, learning 

even a very simple form of automatic processes such as trace conditioning (where 

the unconditioned stimulus occurs after the conditioned stimulus) requires 

awareness of the contingency between the two stimuli, which is a controlled 

process (Clark & Squire, 1998). The simulations and theoretical discussion 

presented here also attempt to provide arguments for understanding the possible 

neurophysiological mechanisms that might underlie the changes that take place 

while automatic processes replace controlled ones.

The most fundamental presumption in the theoretical framework underlying the 

models discussed here is that synchronized neural firing of oscillatory spiking



neurons serves as a computational mechanism that underlies primarily controlled 

processes (Nikolic, in press). On the other hand, automatic processes are assumed 

to rely more on the traditional view of the computations in the brain where only the 

firing rate and the svnavtic efficacv are important, not the precise timing of action 

potentials. In addition, the transfer from controlled to automatic processing with 

practice is assumed to take place through a learning mechanism that takes into 

account the synchronous patterns among neurons.

That neurons synchronize their oscillatory activity has been known for a long time. 

For example, the possibility of recording EEG signals from the scalp is due to the 

synchronous changes o f the dendrite membrane potentials of a large number of 

nerve cells (Martin, 1991). However, many o f today's researchers find the intensity 

of neural firing (i.e., inhibition and excitation) to be the only relevant mechanisms 

for the brain's computations, while synchronization in neural firing is largely 

considered to be a side effect that has no computational significance. Recently, 

however, synchronous neural firing has been studied in more details (e.g., Gray, 

1993; Singer, 1993; Singer, 1998; MacLeod, Backer & Laurent, 1998; Rodriguez 

et al., 1999) and our knowledge about the conditions in which the neurons 

synchronize their firings has considerably improved. These conditions do not 

appear to be independent of the other computations in the brain. On the contrary, 

experimental results closely follow the theoretical firamework used here.



Probably the most extensively studied phenomenon with respect to synchrony in 

neural firing is the so-called binding problem. The binding problem refers to the 

question of how the neurons that fire for different features o f an object 'know' that 

they belong to the same object (Damasio, 1989; Stryker, 1989; Treisman, 1986). 

The question is what binds them together (e.g., yellowness and furriness of a tennis 

ball)? In the last decade, it has been well demonstrated that cortical neurons 

synchronize their firing according to the hypothesis that the features o f objects are 

bound together by synchronizing the bursts of action potentials o f neurons that 

code for those features (e.g.. Singer, 1993). In other words, it has been shown that 

neurons in VI with non-overlapping receptive fields synchronize only if the 

stimuli they receive belong to the same object (e.g.. Gray, Konig, Engel, & Singer, 

1989). It is also important to note that in many cases the intensity o f neural firing 

does not change across the experimental conditions, only the synchronous patterns.

It has also been shown that synchronous neural patterns observe several laws of 

Gestalt (Singer, 1998). Furthermore, in strabismic cats, for example, the 

information from the winning eye in the competition is synchronized much more 

strongly (Fries et al., 1997). It appears, therefore, that the intensity o f neural firing 

reflects more the objective properties of the stimulus (e.g., the intensity of the 

stimulus) while the patterns of synchrony reflect some aspects of our subjective 

experience o f the stimulus (i.e., the subjective grouping of features).



How synchrony might contribute to computations in the brain?

Probably the major criticism of the idea that assigns a computational role to 

synchrony in neural firing is expressed in the question "Who reads the synchronous 

neural patterns in the brain?" To address this question, consider the simple neural 

network in Figure 1. Neurons A, B and C receive input and map it to neurons D 

and E. Neurons D and E compete through mutual inhibition. If  all of the input 

neurons are stimulated, neuron E wins the competition because it receives more 

stimulation due to stronger connections from input neurons. This is a well- 

understood process within networks of neurons. However, let us assume that 

another neuron, X, that has mutual excitatory connections with A and B, 

synchronizes the action potentials o f those two neurons without necessarily 

changing their firing rate. In this case neuron D will receive more synchronized 

input, i.e., a much larger proportion o f action potentials from neurons A and B will 

arrive simultaneously.

Some neurons are highly sensitive to the simultaneous arrival of action potentials. 

For those neurons, the likelihood o f firing an action potential increases 

significantly if  the action potentials arrive at the same time. Those neurons, 

therefore, are not very sensitive to the firing rate, but to the timing of the action 

potentials that arrive from different sources, hence their name: coincidence 

detectors. I f  neurons D and E are coincidence detectors, only neuron D will receive 

synchronized input and will consequently undergo stronger depolarization and win



the competition with E in spite of having weaker connections. This is a simple 

example o f how  ̂a synchronous pattern could affect the processing o f a neural 

network.

[Insert Figure 1 about here]

Most automatic processes are not entirely automatic but have to be engaged and 

disengaged by controlled processes. Otherwise, well-trained activities would 

initiate regardless of their adaptive significance in a given situation (e.g., a  skilled 

secretary does not automatically move fingers positioned on the keyboard when he 

or she reads a text - the typing activity is under conscious control).

It is assumed here that coincidence detection is the primary neural mechanism 

through which synchronous patterns affect the firing intensity of other neurons.

The coincidence detectors do not necessarily need to be involved in oscillatory and 

synchronous activity. High sensitivity to coincidence in the arrival of two action 

potentials has been experimentally demonstrated for difîèrent types of neurons. For 

example, Usrey, Reppas and Reid (1998) found that neurons in the lateral 

geniculate nucleus that receive stimulation from ganglion cells in the retina are 

much more likely to fire an action potential if two action potentials arrive within 

10 milliseconds. They also demonstrated that this property causes synchronous 

firing o f neurons in the lateral geniculate nucleus in thalamus. The neurons that 

implement coincidence detection to the greatest extent are probably the neurons



that detect the interaural time delay for sound localization. These neurons are able 

to distinguish a time delay as small as 10 microseconds (e.g., Skottun, 1998). One 

of the few experiments that demonstrate that synchronous patterns have 

computational significance is one where it was found that when the synchrony 

among projection neurons is abolished, the discrimination o f molecularly similar 

odorants in bees is impaired (Stopfer et al., 1997).

In the model proposed and studied here, coincidence-sensitive neurons were not 

modeled. The focus of consideration is on the patterns of synchronization that 

result fiom various neural network architectures and conditions o f stimulation. AH 

the conclusions about the meaning o f the obtained patterns o f synchronization will 

be made under the following assumption: Once neurons are synchronized to form a 

group, the effect on the next level o f processing for this group depends solely on 

the intensity of firing and the strength of connections (the traditional approach, to 

neural network conceptualization). Because the dynamics o f these mapping 

processes is well explored in many neural networks, we concentrate our simulation 

and discussion efforts on understanding the processes and conditions that lead to 

various synchronous patterns. We are primarily interested in how the dynamics of 

forming synchronous patterns could account for some of the fundamental 

properties o f controlled processes.



Theoretical framework and simulation goals

Several theoreticians have tried to understand the possible computational role of 

synchronous neural activity for the higher cognitive processes in the brain. For 

example, it has been proposed that the mechanism that allows us to deal with 

analogies and metaphors relies on synchrony in neural firing as a computational 

mechanism (Hummel & Holyoak, 1997; Shastri & Ajjanagadde, 1993). Synchrony 

in neural firing could also be a mechanism that accounts for our performance on 

text comprehension with different levels of relational complexity (Halford, Wilson, 

& Phillips, 1999).

Each of these theoretical efforts discusses the possible role of synchrony in neural 

firing for a relatively narrow set of phenomena. For example, the model by Shastri 

and Ajjanagadde (1993) assumes specific units that are applicable only for a very 

narrow purpose, and as Diederich (1993) points out, are not physiologically 

plausible. Consequently, the model that Shastri and Ajjanagadde propose 

demonstrates that synchrony in neural firing could in principle account for 

reflexive reasoning but the model is neither completely physiologically plausible 

nor general enough to apply to various aspects of human cognition. All the 

previously mentioned cognitive phenomena that are proposed to rely on synchrony 

as the underlying mechanism seem to fall in the more general category of 

controlled processes. Therefore, in order to provide a more general understanding 

of the computational role of synchronous neural activity we address the properties



of the synchrony-based computations from a more general perspective o f 

controlled and automatic processes.

That synchronous firing might underlie controlled processes has been previously 

proposed (Nikolic, in press; Nikolic, 1998). Singer (1998) also has a proposal for 

distinguishing neural mechanisms underlying conscious and unconscious 

processing. According to this hypothesis, the automatic processes rely more on 

inhibition and excitation when the synchrony is not engaged to a  large extent (i.e., 

the traditional neural network approach). Controlled processes, however, rely 

heavily on synchrony in neural firing. A new, never previously used, synchronous 

pattern could be formed very quickly, and this feature is assumed to underlie the 

high adaptivity o f controlled processes (Nikolic, in press). This same synchrony- 

based mechanism is, however, limited in its processing capacity. If  one needs to 

parse the visual scene into several different objects, the binding theory suggests 

that the neurons that code for features of the same object will fire in synchrony, but 

will not be synchronized with neurons firing for features of another object. In other 

words, several mutually-segregated groups o f synchronized neurons will exist. If 

the neurons oscillate with a similar frequency, the only way to separate the neural 

assemblies seems to be the phase shift of oscillations (i.e., while one group is firing 

the others are more or less silent). As the number of independent assemblies 

increases, the distance between the oscillating phases decreases. Eventually the 

assemblies become so close to each other in the phase space that they cannot be 

distinguished one from another. Consequently, only a small number o f separate

10



assemblies can exist simultaneously. Several independent estimates of the maximal 

number o f synchronous neural groups that can exist simultaneously in the brain 

(e.g., Basar, Basar-Eroglu & Roschke, 1988; Lebedev, 1980) are very similar to 

the estimates of our perceptual span and working memory capacity (Luck & Vogel, 

1997; Miller, 1953), namely, between four and nine. These findings, therefore, 

support our theoretical fimnework.

The hypothesis that a transfer in processing strategy occurs as automatic processes 

replace controlled has also experimental support. Processing that is relying on 

synchrony, according to the hypothesis, should be replaced by a processing style 

that relies more on intensity o f  firing (i.e., inhibition and excitation) and less on 

synchrony. Experimental data on the chaotic dimensionality of hand movements 

(Mitra, Riley, & Turvey, 1997; Mitra, Amazeen, & Turvey, in press) indirectly 

support this hypothesis by showing a decrease in the number of active variables, 

and therefore the number of synchronous groups, controlling the movement as the 

skill improves (see Nikolic, 1999, for discussion).

The example in Figure 1 could also be used to discuss a simple mechanism that 

might be involved in engaging automatic processes. Because computation through 

mapping only (i.e., intensity in firing and synaptic efficacy) is assumed to underlie 

automatic processes, and because different mapping (thus different automatic 

processes) results from different synchronous patterns, the synchronous patterns
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set up by controlled processes might be the instrument of engagement and 

disengagement of automatic processes.

The goal of the models here is to test to what degree a neural network system that 

employs synchronous neural firing can account for the different properties of 

automatic and controlled processes. The models' behavior should be consistent 

with. 1) neurophysiological findings on synchronous patterns and 2) findings o f the 

cognitive phenomena essential for distinguishing between automatic and controlled 

processes:

1) Probably the most fundamental distinction between controlled or 'serial' 

and automatic or 'parallel' processing is processing time (e.g., Schneider, &

Shiffiin, 1977; Treisman, 1986). In serial search, the processing is slower and one 

typically finds a linear increase in response time with an increase in the complexity 

(i.e, number of distractors) in the stimulus. In automatic processing (or "pre- 

attentive" or "non-attentional"), however, the response time does not increase with 

the complexity of the stimulus. Such phenomena have been studied extensively in 

the visual search domain (Kinchla, 1992; Schneider, & Shiffiin, 1977; Treisman, 

1995) as well as memory search (Sternberg, 1966). A neural system based on 

synchronous neural firing should, according to the theory, provide a 

neurophysiological explanation for those findings.

12



2) Limited processing capacity for controlled processes. The estimates for the 

capacity for the number of simultaneously stored or processed items are between 

four or five (e.g., perceptual span) and nine (working memory capacity) (Miller, 

1953; Luck & Vogel, 1997). The model should produce limitations in this range, 

but only for processes that rely on synchronous neural firing. In other words, the 

number of synchronous groups that can simultaneously exist should be limited.

3) Number of features that each memorized object possesses does not affect 

the maximal number of objects that could be remembered (Luck & Vogel, 1997).

In other words, the capacity does not seem to be affected by the number of features 

tliat each object consists of. The only factor affecting the capacity is the number o f 

objects. The model should show similar behavior so that different features of the 

object should be synchronized within one neural group. Therefore, the number of 

neurons belonging to one group should not affect the processing limitation due to 

the limited number of synchronous neural groups.

4) With practice, controlled processes become replaced by automatic ones 

accompanied by an increase in speed and overall capacity (e.g.. Chase & Simon, 

1973: Spelke, Hirst, & Neisser, 1976). The model should apply a learning 

mechanism that relies on synchrony in neural firing that allows restructuring o f the 

network in such a way that repeated exposure to a stimulus results in faster 

processing time, and less demands on the limited synchrony-based resources.



Neuron model speclfîcation

It was necessary to develop a neural network model where neurons produce actioa 

potentials in bursts, e.g., an oscillatory fashion. There are at least three sources o f 

oscillation in neural activity: I) under certain conditions mutual delayed excitation 

o f distant neurons can result in oscillatory activity, 2) coupling of an excitatory and 

inhibitory neuron also can result in oscillation (e.g., Grossberg & Somers, 1991; 

Grünewald & Grossberg, in press) and 3) some neurons have been shown to 

produce spontaneous endogenous oscillations (e.g., Volgushev, Chistiakova & 

Singer, 1998). The oscillatory activity in the brain is probably a result o f  all three 

sources of oscillations. In order to keep the model as simple as possible it is 

probably advantageous to model only one source o f oscillation. Case 1) would 

probably result in a computationally demanding model. Simulations that compared 

sources 2) and 3) have shown that neurons driven by endogenous oscillations have 

very robust oscillation phases and are very slow in adapting them to exogenous 

input (simulations not shown here). In other words, because the endogenous 

oscillation is driven in large part by factors other than the dynamics of input and 

output, the neuron is very slow in changing its oscillatory phase - much slower 

than what is necessary for synchrony to attain its assumed computational role in 

information processing'. For that reason, a model that assumes that each neuron is 

coupled with one inhibitory neuron is adopted and described here.

' For example, a  network with endogenous oscillating neurons w ould need 10 cycles to  settle dow n to a 
stable synchronous pattern, w hereas a sim ilar exogenous oscillating netw ork would require one  o r two.
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Input (I) to any neuron (7) is defined as the sum of all inhibitory and excitatory 

inputs to the neuron:

=^(4 , Z  ))
J  j

Where Fj is the excitatory input and Gj is the inhibitory input from other neurons 

and have value 1 if the presynaptic neuron sends an action potential and 0 

otherwise, wpij and wQij are the weights of excitatory and inhibitory synaptic 

comiection between neurons i and j  and also have value between 0 and 1 and 

negative values for inhibitory synapses. ^  is a constant that has value .2 in all 

simulations. Tpi and Tq î normalize input to each neuron separately for inhibition 

and excitation for the maximal possible value of input:

j

The oscillatory activity of the neuron is modeled by assuming that each neuron 

couples with an inhibitory neuron. In order to make simulations computationally 

more effective, the inhibitory feedback is modeled as self-inhibition with delay. 

The self-inhibition P is defined as:

P i i t )  =  F l i t - c )

where F  is the neural activity for the same neuron at time t-c. c is a time constant 

set to 10 in all simulations.

15



The change in the depolarization, x, of neuron i is given by following equation:

where A and B are constants set to .5 in all simulations.

In order to simulate action potential generation it was necessary to model the 

membrane potential at the hillock, «:

A«, = Cx, -  D(I -X;)

The term (1-xj) additionally decreases delta u for lowx/. C and D were set to .5 and 

.1 respectively for aU simulations.

If u exceeds the threshold value the neuron fires an action potential (Pi = 1) and 

resets u to 0 (ty = .P in all simulations). The refiractory period o f the neuron is 

assured so if  the neuron fired at time t, the next action potential can occur only at 

time t+2.

External input to neurons always had F w = .5 with probability of action potential 

equal to .2.
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Some properties o f the spiking modef

Lateral and feedback excitatory connections synchronize firing activity

The basic and simplest premise under the hypothesis of the computational role of 

synchronized neural firing assumes that the system uses its 'natural' tendency to 

synchronize firing o f neurons that have mutual excitatory connections. First, it is 

shown that neurons do not synchronize firing if they do not have mutual 

connections (Figure 2 A) and synchronize their firing if they are mutually 

connected by excitatory connections in small groups of two (Figure 2 B) or three 

(Figure 2 C). Note that Figure 2 C has three synchronograms, one for each pair of 

neurons. One can also see that the two neurons that are not directly connected (1 

and 2) have a smaller degree o f synchrony than the neurons that are directly 

connected. In addition to synchronograms in Figures 2 A and B, one can see a 

series of action potentials. From the series o f action potentials, one can see that 1) 

the neurons fire in oscillatory fashion and 2) the neurons that are mutually 

connected have a tendency to fire simultaneously.

[Insert Figure 2 about here]

The most commonly used measure of synchrony among a pair of neurons is the 

synchronogram (there are also other, more advanced analyses of neural spike

17



activity such as Tam (in. press)). The synchronogram shows the cross-correlation 

between the firing patterns of two neurons. Synchronograms can provide several 

pieces o f  information about the firing activity o f two neurons: 1) the degree of 

synchrony, 2) if neurons oscillate 3) firequency o f the underlying oscillation and 4) 

phase shift o f oscillations. If the synchronogram is not flat, it means that the firing 

of one neuron is not independent from the firing o f the other neuron. If  the peak of 

the synchronogram falls to zero (the vertical line in the middle), it means that the 

two neurons have a strong tendency to fire at the same time. In other words, the 

neurons are synchronized with zero time-lag. The size o f the peak provides 

information about the degree of synchrony. The larger the peak, the higher the 

degree o f  synchrony (for example, pairs 1 and 3 have larger synchrony than pairs 1 

and 2). I f  the peak is shifted away from zero (one or the other direction), it means 

that the burst of activity of one neuron is shifted in time compared to another 

neuron. In other words, the neurons are shifted in phase. The shift in phase is more 

likely to be observed if the neurons oscillate with the same or nearly the same 

frequency. In oscillating neurons, synchronograms often have the shape o f a 

spindle (interchange of high and low levels o f cross-correlation with amplitudes 

decreasing with distance from zero, e.g.. Figure 1 A). This type of synchronogram 

suggests that the two neurons oscillate regularly with similar frequency. The 

distance between two peaks equals the length of oscillation.

Figure 2 D shows how an oscillatory neuron is synchronized with itself. Because 

the maximum value for the auto-synchronogram is much larger compared to other
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cases, the synchronogram in Figure 2 D is on a different vertical scale than other 

synchronograms in Figure 2.

Inhibition produces desynchronization

Simulations suggest that in addition to decreasing the firing rate of another neuron, 

inhibition can produce two different types of desynchronization: producing zero 

synchrony and pulling phases apart. Figure 3 shows activity and the 

synchronogram of two oscillatory neurons that are inhibiting each other. The firing 

pattern demonstrates that the neurons are quite independent in their firing. The 

synchronogram shows that there is not much synchrony between the neurons. The 

auto-synchronogram for one of the neurons (Figure 4) shows that the neurons do 

not produce regular oscillatory activity. The inhibition, therefore, did disturb the 

oscillatory activity of neurons.

[Insert Figure 3, 4 and 5 about here]

Figure 5 shows the effects of inhibition on neurons that are synchronized by other 

neurons. In this case the oscillation persists but the phases o f the mutually inhibited 

neurons are shifted. When oscillatory neurons are shifted in phase, the inhibition 

between them has much less effect because it acts during the period when each

19



neuron is not very active and there is not much activity to be suppressed. These 

results have several theoretical implications:

1) Synchrony might serve as a factor for stabilizing and supporting the 

oscillatory activity of a neuron. The mutually synchronized neurons support each 

other to endure the desynchronizing and activity-attenuating effects o f inhibition.

2) An activated neuron that cannot bind with other neurons in the system is 

not necessarily turned off by inhibition, but it can remain active with irregular 

oscillations. This neuron's activity in an irregular-oscillatory fashion still allows 

the neuron to contribute to computations in the brain, but probably only on the 

automatic non-synchronous level.

3) Another advantage of a non-oscillating neuron is that such a neuron has no 

ability to influence the phases of oscillation o f other oscillating neurons. This is 

because it does not produce a consistent timing of inhibition. As a consequence, 

such a neuron should have a greatly diminished effect on the phase-shifting 

competition between different oscillatory groups. In other words, such a neuron 

should not take up the limited processing capacity posed by a limited number of 

simultaneously existing oscillatory groups (see simulations and discussion on 

limited processing capacity).

In conclusion, there are several effects that inhibition can have on the oscillatory 

and synchronous activity of neurons. First, a pah of an inhibitory and excitatory 

neuron can serve as an oscillation generator (this property is embedded here in the
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neuron model). The mutual inhibition o f oscillatory neurons can either suppress the 

regular oscillatory activity or shift phases o f  oscillation.

Collective neural activity

Synchronized neural activity has been studied at the level o f group activity o f a 

large number o f  neurons in a form of electroencephalogram (EEG), event related 

potentials (ERP), and magnetoencephalogram (MEG). Figure 6 demonstrates 

average depolarization of a group of 15 neurons. The obtained signal should be 

considered as roughly corresponding to the signal recorded by EEG. As a 

demonstration, an ERP was computed for 50 EEG signals as a response to the 

same stimulus. In Figure 7 one can see the superposition o f 10 EEG signals and the 

average for 50 signals (ERP). The obtained ERP signal suggests that the network 

proposed here could be used to simulate EEG-based experimental data and the 

neural processes underlying various findings in EEG.

[Insert Figure 6 and 7 about here]

The two components of the simulated ERP are due to the initial synchronization o f 

the neuronal oscillations whose onset starts with the stimulus presentation. Within 

nearly one cycle, however, the phases of oscillations shift due to the inhibitory and 

excitatory connections between neurons. This has the consequence that the
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oscillations are not aligned with the stimulus onset any more and the ERP graph 

remains flat. The system does not produce later automatic components o f ERP 

(such as N200 and P300) that are of significance for understanding working 

memory and learning process (Le., Banquet et al., 1998). N200 and P300 are 

automatic responses that show increased ERP components for rare (i.e., 

imexpected and presumably novel) stimuli. N200 and P300 components are not 

simulated here because oiu simulations address only one step of processing (i.e., 

one layer), which would correspond to the earliest components of the ERP signal. 

Because an increase in the ERP component indicates an increase in the stimulus- 

onset-locked synchronization of neural activity, one could expect that the later 

steps of processing would show different intensities of ERP components depending 

on the familiarity of the incoming stimulus. A more familiar stimulus that has 

stronger connections between units and results in faster formation o f synchronous 

patterns (see later discussion on automatic and controlled processes) forms 

synchronous patterns faster with a higher degree of synchrony that might have 

different effects on the ERP compared to a less familiar stimulus.

Feature binding

One of the most cited experimental findings that support the hypothesis that 

features of a perceived object bind through synchronization of neuronal discharges 

includes moving bars (Engel et al., 1992). They have shown that the degree of 

synchrony between two neurons with non-overlapping receptive fields depends on
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the degree to which tlie features that the neurons detect belong to the same object. 

The highest degree o f synchrony was found for the condition where one single 

object moves across the visual field and spreads over both receptive fields (Figure 

8 C). If  the object is split in two parts, the degree o f synchrony decreases (Figure 8 

B). It is important to note here that the gap between the objects cannot influence 

directly the activity o f the two neurons because the gap between the objects does 

not fall on receptive fields of either of the neurons. Finally, if the two objects move 

in different directions, the synchrony between the two objects drops to zero (Figure 

8 A).

[Insert Figure 8 about here]

In order to simulate these results, a set of small neural networks was developed for 

each condition (see Figure 8). The current understanding of the architecture of the 

primary visual cortex suggests the following architectures. The detection o f only 

two features is modeled (e.g., line orientation and movement). In the case when 

two stimuli move in opposite directions, the neurons that fire for features o f one 

object are either not connected or very weakly connected to the neurons firing for 

the other object. If the two objects move in the same direction, than the direction- 

detection neurons in the neighboring cortical columns are connected. The strength 

o f comiection is a function of the distance of two neurons. Finally, if  one single 

object is presented, another line detector neuron that has a receptive field between 

the two neurons is stimulated and is more strongly connected to each o f the



neurons. The resulting synchronograms are shown in Figure 8 together with the 

experimentally received synchronograms. The simulations support the hypothesis 

that the synchronization occurs as a result of the lateral excitatory connections 

between the neurons.

Separation of oscillating groups and limited processing capacity

As has been discussed previously, the limited processing capacity of synchrony- 

based processing is believed to stem from the limited number o f oscillatory groups 

that can exist simultaneously. In order not to confuse the membership in a 

synchronous group, the oscillations of neurons that belong to different groups 

should not be perfectly synchronized, but shifted in phases. A shift in phase among 

oscillating groups allows neurons to send and receive stimulation only from the 

members o f the group. We have already seen that inhibition could be a factor that 

shifts the phases of separate oscillating groups apart. The more different oscillating 

phases the system can maintain, the more separate oscillating groups can exist and, 

therefore, the larger will be the capacity o f synchrony-based processing. According 

to our theoretical background an increase in the number of groups leads to larger 

capacity of controlled processes such as working memory capacity. That 

oscillating neural networks can produce a very limited number of separate 

oscillating groups has been reliably demonstrated (e.g., Horn & Opher, in press). 

Here we are interested in studying some additional properties of this phenomenon.
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[Insert Figures 9 and 10 about here]

To demonstrate the limited processing capacity of the model proposed here the 

oscillatory patterns of three (Figure 9 A  and B) and four (Figure 10) oscillatory 

groups are observed. When three groups compete for oscillating space the phases 

are shifted among all three groups so each group can oscillate on its own with 

minimal disturbance from the other groups. When four groups are competing, 

however, the synchronograms show that the groups are not well separated. Some 

neurons are separated in phases (i.e., 3-6, 3-9, and 6-9), while other seem to fire at 

the same time more often (i.e., 9-12 and 6 - 12). When the coincidence detectors 

react to activity from those groups (not simulated here), they do not have sufficient 

temporal information to distinguish the group from which the input comes. In 

cognitive terms, this should result in an increased likelihood to bind features of 

different objects in working memory and consequently making an error during 

retrieval. Luck and Vogel (1997) demonstrated that the participants do make error 

in memorizing features of objects when the number of objects is larger than four.

Another important frndmg by Luck and Vogel (1997) was that an increase in the 

number o f features that belong to the same object does not impair the working 

memory capacity. The binding theory explains this finding by assuming that all the 

features that belong to one object are synchronized together and therefore the 

number o f  features does not have an effect on the limited capacity posed by the
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limited number o f separate oscillating groups. The simulation results in Figure 9 

show the model has the same property. Figure 9 A has two features per object, 

while Figure 9 B has four features per object. The synchronograms show clear 

distinction o f the phases of the three oscillating groups in both cases confirming 

therefore, that i f  the system is able to bind or chunk together many features, the 

working memory capacity can appear to increase. This could be, therefore, a 

mechanism underlying the chunking process proposed by M ille r  (1953).

This property o f  separation o f oscillating groups combined with coincidence 

detectors in the next level of process could serve as a mechanism of early 

attentional filtering. First, the segregation o f neural assemblies in separate groups 

might allow the system to use only one part for further processing (i.e., one 

assembly) of the stimulus and disregard the others. When subsequent input arrives 

into the system, only the input that easily synchronizes with the current activity in 

the system (the attended assembly) could easily enter the processing while the 

input that easily synchronizes with the disregarded groups (non-attended) will not 

receive further processing. An important stimulus that is connected with unusually 

strong connections (such as the listener's name) might even without synchrony 

produce stimulation in subsequent levels that is stronger than the stimulation from 

a synchronized (attended) group (i.e., the cocktail party phenomenon).

There are several reasons why a system's ability to maintain a larger number of 

separate synchronous groups would be advantageous. First, it would allow for a
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larger working memory capacity. Second, it allows for a  larger number of parallel 

processes to occur regardless of whether the parallel processes are used for 

different simultaneous tasks or are used for different subtasks of one major task 

(such as sentence comprehension). For example, in the task o f occluded face 

recognition (e.g., Rodriguez et al., 1999) the input needs to be organized in such 

way that the object and the background neurons are appropriately grouped.

Because the task is difficult, it is likely that the system has to try several binding 

'hypothesis' before it finds the correct one. It is likely that the larger number of 

groups could allow for larger number of hypotheses simultaneously tested. 

However, fi:om the proposed theoretical firamework, it also follows that the large 

number of groups could be disadvantageous in a situation where a fast and simple 

(i.e., automatic) reaction is required, such as the flight or fight situation. In this 

case, a large number of groups that leads to more thorough information processing 

might slow down the responses and bring the organism into a life-endangering 

position. Because the optimal arousal for complex tasks is much lower for simple 

tasks (i.e., the Yerkes - Dodson's law) there is a reason to believe that the arousal 

associated with the flight or fight situation also decreases the processing capacity 

and that this is an adaptive feature o f the brain important for survival.

It is important to note that one reason why clear separation in firing oscillations is 

rarely found experimentally is because the regular oscillations in the cortex seem 

to be very rare. Instead, the oscillations in the cortex have a very strong chaotic 

component that has been explored recently (e.g., Basar, Basar-Eroglu, & Roschke,
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1988: DeMaris, in press; Freeman, 1983; 1994). Large proportion o f this dynamic 

activity runs in the background of the computations o f incoming stimuli (Arieli et 

al., 1996) and this is the reason why averaging is necessary to obtain evoked 

potentials.

Also, particular patterns o f oscillation in the cortex, whether chaotic or not, are 

probably very short lived. There are at least three factors that prevent the system 

stay in an attractor: 1) constantly changing input from the environment, 2) parts of 

the brain are not isolated and they influence each other and 3) continuous, 

relatively fast biochemical changes that take place within cells and result in 

habituation (e.g. depleting resources) or sensitization (e.g., post-tetanic 

stimulation). In our simulations, however, the system is isolated from the rest of 

the brain and runs for a longer time. Enough time is therefore allowed for the 

system to reach the attractor to repeat itself in the attractor, so it could be observed. 

In a real experiment, the synchronograms, however, need to be obtained by 

averaging many trials. This difference has the consequence that only the zero-lag 

synchrony and a consistent shift in oscillating phase can be detected. In the system 

that is simulated here, however, the direction o f shift is random and therefore 

averaging over many trials would result in a flat synchronogram.
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Automatic and controlled processes In human cognition

Letter and color perception task

An experiment in which three letters of different colors presented for 200 

milliseconds were followed by a mask demonstrated the difference between 

processing of individual features and conjunction o f features (Treisman & Gelade, 

1980). For example a blue R, red P and a green T are briefly presented and the 

participants are asked to report what they saw. The participants were successful in 

reporting the individual features, but made many mistakes in combining the 

features. They would be very likely to see a red R  and blue P, for example. The 

conclusion from these studies is that the features are processed automatically or 

preattentively while attention and time is needed for the conjunction of features. 

This was one of the fundamental findings that led Treisman (1982) to develop the 

Feature Binding Theory.

Figure 11-novel combination shows a simplification o f the neural network 

architecture that might underlie this experiment. Neurons 1 and 2 are assumed to 

code for one feature (e.g., letter) and neurons 4 and 5 for another feature (e.g., 

color). The neurons that fire for the same feature are assumed to be strongly 

cormected (wy = .8 in all simulations). If the features occur in the same spatial 

location they are assumed to be weakly connected through a mediating neuron (w^ =
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.2). The features of the same type are also assumed to mutually compete through 

inhibition. The dashed areas in Figure 11 show the neurons that are mutually 

competing through inhibition (Wg = -.5).

[Insert Figure 11 about here]

The experimental manipulation was the time allowed for processing. According to 

feature binding theory, participants failed to report the color and the letter correctly 

because there was not enough time to bind the features of the object. One can see 

that if  enough time is provided for the neural network system to evolve, it produces 

appropriate patterns of synchrony (Figure 12). The neurons that belong to different 

objects are shifted in phases (i.e., 1-6, and 1- 11) and neurons that belong to the 

same object seem to be in a much higher degree in phase (1-4, 6-9 and 11-14). In 

order to see how the system behaves when not enough time is provided for 

information processing, average synchronograms are computed for the system's 

reaction to the first 350 computational steps (Figure 13). For early stages of 

processing, the synchronograms were somehow different. The neurons that do not 

belong to the same object (1-6 and 1-11) observe a small peak at zero delay (the 

dashed line) indicating that those neurons observe a certain degree of synchrony. 

According to the hypothesis o f the computational role of synchronous neural firing, 

this zero-delay synchrony of neurons belonging to the same object prevents the 

distinction between the objects and the correct conjunction o f the features.
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[Insert Figures 12 and 13 about here]

In another experiment participants were presented with randomly scattered S's and 

vertical lines. The participants were instructed to look for dollar signs ($). If 

presented for a brief period of time, participants often reported seeing dollar signs 

when, the stimulus contained none (Treisman, 1986). The authors concluded that the 

detection o f features in early processing is independent of their location. The 

behavior of the network reported here suggests that the same system would produce 

similar behavior. If  not enough processing time is allocated to the system, two 

neurons that do not share the same location often synchronize together, which can 

lead to an incorrect representation of the input.

It is important to note that when the stimulus is presented (i.e., the simulation 

starts), all o f the neurons start being stimulated at the same time and consequently 

they start firing at about the same time - they have the same phase. It takes time for 

the system to organize and pull apart the phases of the neurons that do not belong to 

the same group. The weaker the connections between the neurons, the longer it 

takes to synchronize them and the weaker will be the synchrony between them. On 

the other hand, if in one's past experience aU the R's were always blue, and all the 

P's red and T's green, one would probably have different performance on this task. 

The connections betw^een all the features would be strong and the mistakes in 

perception o f conjunctions of features should result in many fewer mistakes. If only 

part of the features were presented (e.g., shape of a letter without the color), because
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of the strong connections among the features, an expectation of the system would 

either activate (or bring very close to activation) the neurons coding for the not 

presented features. In this way, the system would observe a form of a top-down 

expectation.

The following experiment employed well-Ieamed associations between the shape 

and color. Participants were presented with objects o f different colors (e.g., orange 

triangle, blue oval and a black doughnut) followed by a mask (Treisman, 1986). 

Participants would make mistakes in associating the shape with a color even when 

they were told what combinations they would be presented with and that they would 

be asked to report the location only. However, if  the same stimuli were described as 

familiar objects (i.e., a carrot, a  lake, and a tire) the errors in perception would drop 

from 42% to 5%. It is important to note that the participants were presented with the 

same stimuli, but in the latter case they have used their knowledge that carrots are 

orange, lakes are blue, and tires are black.

Figure 11 - well-leamed depicts a possible neural network architecture that might be 

engaged in such an experiment. The difference is that the features that were 

previously weakly connected just by appearing at the same location are now 

strongly connected by direct excitatory connections (w^ = .5). When the system is 

allowed to process information for a long time, the distinction between and within 

group synchronous patterns is now much more emphasized (Figure 14). When the 

network is allowed to process information for only a short period of time, the



average synchronograms also show a peak at zero time-lag for the neurons that do 

not belong to the same group (Figure 15 compared to Figure 13). The degree of 

synchrony, however, is much smaller than the degree of synchrony o f  the neurons 

that belong to the same group. If coincidence detectors are receiving the information 

from this group of neurons, this large difference in the degree of synchrony could 

account for the significant drop in the error rates between the two conditions.

[Insert Figures 14 and 15 about here]

The results of these simulations show that synchrony in neural firing has the 

potential to provide an explanation of the neural processes that underlie the feature 

binding process. The less familiar a certain combination of features is, the more 

time it takes to acquire an adequate representation of the stimulus. In addition to 

time, the number o f independent oscillatory groups seems to be a limiting factor for 

processing based on synchrony in firing. If one compares the synchronous patterns 

o f the neurons that belong to the same groups (i.e., 1-4, 6-9 and 11-14) in Figures 

12 and 13 to Figures 14 and 15, one can see that the peak of synchrony matches the 

zero lag hidden line much better for the well-leamed network. The slight shift in 

phase for the novel combination network indicates that the oscillations o f neurons in 

the network wander more within the phase space and neurons are therefore more 

likely to be mistakenly bound to an incorrect neuron. Consequently, in order to 

ensure a good level o f performance, the novel combination network can maintain a 

relatively smaller number of separate oscillating groups as compared to the well-



learned network. Therefore, in addition to requiring more time to process 

information, the novel combination network also spends/requires more of the 

limited processing resources expressed in terms of number o f oscillating groups. 

Slower processing and the need for more capacity are two salient properties of 

controlled processes.

Visual search

The experiments on visual search were probably the prime experimental tool for 

learning about the distinction between automatic and controlled processes in human 

perception. In these experiments the participant is asked to find a target in the set of 

distractors. Figure 16 demonstrates a typical stimulus. The participant needs to find 

the letter Q among O's and R's. The dependent variable o f interest is the response 

time. In many experiments (Treisman, 1982; 1986), it has been demonstrated that 

the response time increases linearly with the number of distractors, if it is necessary 

to detect a conjunction of features in order to distinguish the target. On the other 

hand, if  the detection of the target requires only one feature (e.g., different color or 

tilt), the detection time is slower and does not increase with the number of 

distractors. Because there is no one single feature that distinguishes the target in 

Figure 16 (i.e., the circle is an O distractor and the tilted line is a part of the R 

distractor), the detection time increases linearly with the number of distractors. If  

the target was of a different color, or if the target was the letter X, only one feature
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would distinguish the target and the response time would not increase with number 

of distractors. On the basis o f these experiments it was concluded that perception of 

conjunction of features requires attention while a single feature pops out. Because 

attention relies on resources limited in capacity, it is necessary to successively shift 

attention between different parts of the stimulus, which results in a serial search.

[Insert Figure 16 about here]

The neural network that might be activated in an early step of stimulus processing is 

built under following assumptions (Figure 17). Neurons that detect the same feature 

(e.g., line under the same angle) share excitatory connections. However, other 

neurons that feature detectors are connected to (w,j = .2) share mutual inhibitory 

connections if their receptive fields do not overlap (ŵ - = -.5) and excitatory 

connections if their receptive fields overlap (Wg = .5, only for neurons 1 and 4 that 

detect features of the letter 'Q'). Finally, only the feature detector neurons are 

assumed to receive stimulation from input (i.e., 1, 4, 5, 8, 9, and 12).

[Insert Figures 17 and 18 about here]

The synchronous patterns obtained for such a network are shown in Figure 18. The 

network synchronizes its activity in such a way that all the features of one type 

cluster into one oscillatory group and the features of the other type form another 

group. The excitatory connections for the location neurons for letter Q do not lead



to synchronization of the features o f the letter Q (1-4). Obviously, the network is 

not able to provide synchronous information necessary to detect the object that 

these features belong to. Even though neurons 1 and 4 have mutual excitation, they 

do not synchronize. In other words, the connection is not strong enough to bind the 

two features. Note that if  there were no distractors, the indirect excitation would be 

sufficient to synchronize the neurons. So, the distractors prevent the neurons firom 

synchronization. If the number o f distractors increases, the behavior of the system 

does not change. Those simulation results are not shown here but they are similar to 

the effect o f an increase in the number o f features in Figure 9 A and B.

According to binding theory, attention is necessary to bind these two neurons. The 

actual attentional mechanism that might bind these two neurons is not proposed 

here. Such a mechanism would probably be quite complex compared to the network 

system here. This attentional mechanism might involve several different parts of 

cortex such as spatial processing in the parietal lobe and search control that might 

involve the firontal lobe (e.g., Passingham, 1993). However, we do not propose the 

neural network mechanisms tliat underlie the controlled processes emerging firom 

the firontal lobe, but merely suggest what neurophysiological factors result in a need 

for higher-level controlled processes and what could be the mechanism of control - 

the change in synchronous patterns. Applying an algorithm-based procedural 

system in the fashion of the ACT* model, for example (Anderson, 1983), would be 

a trivial modeling solution. However, it would not provide any additional 

explanation of the neurophysiological mechanisms underlying controlled processes.



According to Horowitz and Wolfe's (1998) recent finding that the visual search does 

not have any memory, an algorithm that randomly picks certain locations for 

attentional binding might be even more appropriate. Either of those would result in 

an increased search time as the number o f distractors increases.

[Insert Figure 19 about here]

The model proposed here, however, provides an explanation why this unspecified 

attentional mechanism that binds these two features cannot search for the 

conjunction o f the features in parallel: the system needs to bind the features that are 

at the same location and unbind the features that are on different locations. Figure 

19 show synchronograms for the same neural network architecture (Figure 17) with 

one change. The location neurons 2 and 3 receive strong stimulation from an 

unspecified top-down process. As a result, the neurons 1 and 4 observe a much 

stronger degree of synchrony. In addition, the synchronograms for pairs 1-2 and 1-5 

show a slight shift o f oscillating phases indicating a tendency of the neuron 1 to 

separate from the rest o f the oscillating group. Fries et al. (1997) reported 

experimental results that supporting these findings. In strabismic cats, they found 

that if attention is taken by another stimulus, the degree of synchrony between 

stimulated neurons decreases.

By no means is it suggested here that this non-osciUatory top-down process is the 

mechanism by which attention binds features. It seems that attention needs to



accomplish more. First, such excitatory input does not seem to provide changes in 

the synchronous patterns that are sufficient for appropriate binding of features. For 

example, the degree of synchrony also increases for neurons that are on other 

locations and are not features o f letter Q (neurons 5 and 8, Figure 19). Even more 

problematic is the fact that such excitation could increase synchrony only for 

neurons that are already connected by excitatory connections. If the neurons share 

inhibitory connections, such stimulation would strengthen the shift in oscillating 

phases, which produces opposite effect. Finally, this mechanism violates the most 

fundamental principle underlying the theory of the computational role o f synchrony 

in neural firing: the attentional mechanisms should be an emergent property of 

synchronous neural activity.

It is much more likely that the actual detection of the letter Q and binding of the 

features actually occurs in a subsequent level of processing. First, experimental 

evidence by Lamme and Spekreijse (1998) demonstrates that the contours of an 

object that result solely from texture segregation are not reflected in the binding of 

feature detectors in the primary visual area (VI). In the first level of feature 

detection only the features that are common for all or a vast majority of possible 

perceived objects should be detected. Otherwise, the processing of visual 

information would not be very efficient. For example, if the feature detector for 

letter Q was detected without any attentional control, the response time in the visual 

search task would not increase with the number of distractors but would attract 

attention even when the shape o f the letter was embedded in a more complex object
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such as a circle stroked by a tilted line. In addition, only one form, o f letter Q would 

be detectable and it would not reflect our ability to readily recognize the letter 

printed in different fonts. Finally, all the Q letters on one page would synchronize 

together which would have a catastrophic effect on the reading process.

It seems, therefore, that the detector o f letter Q, in a subsequent level o f processing, 

should be controlled by attention, and the simulation results support this notion. The 

information about features of the target stimulus that the first level o f processing 

supplies arrives with shifted phases. In addition, the information about features of 

the target stimulus arrives simultaneously with the information firom distractors. 

Consequently, a coincidence detector will not be able to detect the presence of these 

features unless some attentional process narrows down the input region for further 

processing. The most important point that we want to make here is that the 

necessity for attentional process has as a consequence that the attentional spotlight 

must move in a serial fashion. Hence, the average search time must increase linearly 

with the size o f the search set.

On the other hand, if the target has at least one feature that is different firom features 

that distractors consist of, the neuron(s) will separate its oscillation phase and will 

unbind firom the rest of the stimulus. In this case information sufficient to detect the 

target will enter the later stages o f processing without a need for the attentional 

spotlight. Consequently, the time for detecting the target will be shorter and will not 

depend on the number of other features (i.e., distractors).



Horowitz and Wolfe's (1998) finding that the visual search does not involve 

memory for previously searched parts of the stimulus might help understanding 

some properties of the searching mechanism. Because the neurons in this model are 

neither perfectly synchronized nor perfectly desynchronized, and because the 

oscillatory patterns of neurons show either chaotic or random fluctuations, it is 

conceivable that the neurons that are mutually desynchronized fire simultaneously 

by chance for a very brief period of time. A mechanism that would use this random 

coherent firing o f non-synchronized neurons to attract attention would probably be 

the simplest solution to visual search. The advantage for the brain by using such an 

approach for visual search is that most of the process relies on the computations in 

the visual cortex and the demand on other systems such as firontal lobe or memory 

system is minimal. The only control that would be required from the firontal lobe 

would be to prevent other activities firom taking place (i.e., redirect attention) during 

the search. The only requirement on memory would be the current content of the 

attended part o f the stimulus in visual working memory. This strategy would, 

therefore, post minimal requirements on the limited resources of controlled 

processes.
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The learning mechanism

Long term potentiation (LTP) and long term depression (LTD) have been 

recognized as the most Likely mechanisms involved in neural learning (e.g.. Bear 

1996; Singer & Artola, 1994). The biochemical mechanisms underlying the 

synaptic changes on both the presynaptic and postsynaptic sides have also been well 

studied (e.g., Morris, Andersong, Lynch, & Baudry, 1986; Castro, Silbert, 

McNaughton, & Barnes, 1989). The learning rules behind the LTP and LTD do not 

follow completely the basic principle tmderlying Hebb's (1949) learning rule: if the 

presynaptic and postsynaptic neurons are both active at the same time, the strength 

o f the connection between them will increase. We know today that the rules of 

synaptic change observe some significant deviations from Hebb's rule. For example, 

Hebb did not postulate that synaptic efficiency could decrease.

Decades of development in neural network modeling have lead to the development 

of many mathematical models of synaptic learning mechanisms, some of which 

follow more or less Hebb's principle. Most models (e.g., Grossberg, 1987) allow 

synapses to increase and decrease their weights. The increase typically occurs 

according to Hebb's rule while the decay in synaptic efficacy is assumed to take 

place gradually if there is no correlation in activity between the two neurons.

Neurophysio logical research has, however, recently shown that the behavior of 

synapses is more adaptive than was initially assumed (e.g.. Singer & Artola, 1994).

41



It has been shown that synapses increase their efBcacy (LTP) only if a  certain 

degree o f correlation between the activity of the two neurons is reached (i.e., there 

is a threshold value for LTP). More surprising was the finding that for the 

subthreshold correlation in activity, the synaptic efficacy decreases (LTD). In other 

words, even though the two neurons are correlated in their activity, the strength of 

the connection between them decreases if the degree of correlation is low. Equally 

surprising was the finding that the synapse does not change if the correlation 

between the two activities is zero.

It seems therefore that the biological neurons have a slightly different philosophy of 

weakening their synapses than what was previously assumed. The forgetting takes 

place if two neurons are weakly correlated, not if  they are not correlated. Such a 

rule provides different forgetting patterns. If either of the two neurons is not used,
r

there will be no forgetting (in this way, the information is ensured to remain even if 

it is not used). But forgetting will take place if the two neurons have a connection, 

but the connection does not seem to be useful. The criterion of non-usefulness of the 

synapse occurs if the two cells are active but poorly correlated.

Finally, it is important to mention that the LTP process has been shown to depend 

highly on the precise timing of the incoming action potentials (Markam et al.,

1997). It is the degree of synchrony in firing of neurons that determines the speed 

and direction of changes in synaptic efficacy.
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Therefore, in order to successfully implement a  learning mechanism in an 

oscillatory neural network that employs action potentials and their synchronization, 

it was necessary to develop a learning mechanism that mimics the experimentally 

obtained knowledge on LTP and LTD mechanisms.

Specification of the synaptic model

The correlation in activity, C, between two neurons is defined in the following way:

C j j  — P jX j

where P / denotes activity o f the presynaptic neuron and is I if  the neurons fired an 

action potential and 0 otherwise, xj  is the level of depolarization of the membrane 

potential of the postsynaptic neuron. Synaptic efficacy changes according to the 

following formula:

vv,̂ i = w, + K -C - r - { l - w )

where w denotes the synaptic weight, r denotes the learning constant (r «  1), and 

K  is determined in the following way:

K  =
' I, i f  C>P t  

0, i f  C<D t  
—1, otherwise
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where Pt  represents the potentiation threshold and Dt  represents the depression 

threshold.

Depression threshold, Dt, is computed as:

Dt = Pt / lO

Figure 20 summarizes the mathematical model o f the synapse. If an action potential 

arrives when the post-synaptic cell is well depolarized, the synapse will increase its 

effîcacy. If  an action potential arrives when a cell is weakly depolarized, the 

synapse will change in the opposite direction. Finally, if there is no action potential 

or if there is a very weak depolarization, the synaptic strength will not change. The 

range o f the possible values o f the potentiation threshold is also shown.

[Insert Figure 20 about here]

Because there are no nonlinear terms in the model, the model is computationally 

efficient but still encompasses the basic properties o f the learning processes on 

synapses.
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Learning and development of automaticity

The most interesting question about the learning process in oscillatory neural 

network is its effect on controlled processes. As previously discussed, extensive 

practice leads to automaticity, that is, a change in processing strategy from 

controlled to automatic. Here we are interested in whether the learning process 

discussed above could underlie the development of automaticity.

We apply the learning mechanism to the neural network in Figure 11. It was shown 

that the novel-stimulus network has more properties of controlled processes than a 

well-learned network does. In Table 1 it is shown that after 13000 computational 

steps, the novel-stimulus network architecture restructured in such a way that it 

more resembles the well-learned network. The synapses that significantly changed 

were only those that connected neurons that belonged to the same oscillating group. 

In other words, only if the neurons were synchronized with near to zero time-lag 

does the synapse learn. The synapses among neurons that belonged to different 

oscillatory groups changed very little, indicating that learning between non

synchronized neurons could still take place, but it was much slower.

The network after learning is more similar to the well-learned network in Figure 11 

and it should share more similar processing characteristics: faster, more accurate 

and less capacity-demanding processing. In other words, automaticity has
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developed. In psychological terms it could be that the system learned to associate 

each letter with its corresponding color (i.e., R is always blue). This learning is on 

the automatic level because the association relies on strength of connections without 

intermediating synchronous patterns.

It is important to note that even though aU the neurons in the network have 

approximately equal firing rates, the learning took place only among the neurons 

that synchronized their action potentials. The classical approach to neural network 

conceptualization and simulation, where only the firing rate of neurons is 

considered, would necessarily result in all the synapses among activated neurons 

being strengthened. The result would be catastrophic for a network's performance 

because the network could not distinguish between the letters and colors any more. 

We conclude therefore, that the system has an ability to change its architecture so 

the synchronous patterns that are slow to form and weak at the beginning form 

faster and become more robust after learning. And the demand for the limited 

processing capacity decreases at the same time.

It is also important to note that the network was continuously stimulated by 

consistent pairing of letters and colors. An inconsistent pairing would not produce 

the same result. In a case o f inconsistent pairing, two neurons that would strengthen 

mutual synapses in one trial, would weaken them in the next trial. This property o f 

the network is in agreement with the finding by Shiffiin and Schneider (1977) that 

consistent mapping results in a relatively fast development of automaticity, while
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automaticity develops much, slower, if  at all, for inconsistent mapping. However, 

there is no evidence that development of automaticity cannot take place for 

inconsistent mapping. On the contrary, it has been shown that in some conditions 

inconsistent mapping can result in automaticity (Durso et al., 1987). We do not 

know if  an extended practice in the Shiffiin and Schneider's task would lead to a 

higher degree o f automaticity. On the other hand, we also know that a neural 

network architecture that employs (automatic) detection of inconsistently combined 

features could be easily implemented with several layers of neurons. Finally, the 

same type of learning might take place in the cortex and in the hippocampus. The 

need for more rapid learning in hippocampus (e.g.. Banquet, et al., 1998) might be 

fulfilled through a faster learning rate with the same underlying mechanism. The 

only conclusion, therefore, that could be made firom the simulations reported here is 

that synchrony-based neural networks learn to automate consistently mapped input 

much easier than inconsistently mapped.

Because of the ability to provide selective update o f  synapses it is possible that this 

learning mechanism could provide a protection firom the stability-plasticity dilemma 

(Grossberg, 1987) also known as catastrophic interference (Lewandowsky & Li, 

1995); that is, when network learns new material, it forgets what it previously 

learned. The Adaptive Resonance Theory by Grossberg (1987) is widely considered 

to be today the best solution to this problem. The mechanism is, however, quite 

complex. A learning process that is sensitive to synchrony in neural activity might 

be a more elegant solution to the problem. Because the synapse will leam only if  the
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neurons are synchronized, the system allows for many neurons to be simultaneously 

active without changing their connection strength. Therefore, if  the stimulus 

activates a neuron but the neuron does not synchronize with other neurons, there 

might be no significant changes to this neuron's connectivity. In addition, this 

system seems to perform a matching test 'naturally' by desynchronizing the neurons 

that do not belong to the same category. This same matching test might play a 

similar role to that of the 2/3 rule proposed by Grossberg (1987). A solution to the 

stability-plasticity dilemma could therefore be an emergent property of the system 

(i.e., no additional mechanisms need to be assumed), but more research needs to be 

done to answer this question.
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Discussion

That the brain processes information by performing mathematical mapping is well 

known. This mechanism has been widely explored both experimentally (e.g., 

receptive fields) and theoretically (most neural network models). What is new is 

that there seems to be another, slower process for information processing that gives 

rise to attention and consciousness. With learning and practice the brain seems to 

leam new mappings so that in a familiar situation, it reduces the need for this 

slower, attention-based process.

Our primary conclusion is that synchronized neural firing could have two relatively 

independent efiects on the processing in the brain. 1) On the shorter time scale it 

seems to be able to provide mechanisms related to controlled processes such as 

binding, attentional filtering, engagement of automatic processes and limited 

capacity. 2) On the longer time scale, the learning process might benefit firom 

selectively strengthening the synapses connecting only well synchronized neurons.

Two or three decades of connectionist modeling research that employed only 

inhibition and excitation have produced numerous models that provide explanations 

for many phenomena in human cognition. Assuming a computational role of 

synchronous firing does not necessarily exclude those models. On the contrary, it 

might improve them and provide an understanding of how the brain puts many of
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these, previously studied, subsystems together and how it decides which 

subnetworks will be engaged in a particular situation. Because the distinction 

between automatic and controlled processes applies to a wide range of cognitive 

phenomena (i.e., from the perception of simple patterns to social cognition), a 

consideration of synchronous neural activity has a significant potential to bridge 

many aspects o f the mind/brain barrier.

We believe that the behavior and possible computational mechanisms o f the 

synchronous neural activity modeled here are quite likely to produce similar effects 

in the brain. We also believe that the computer simulations and the discussion 

presented here makes a strong case that the controlled processes in human cognition 

emerge from the interaction o f oscillatory and synchronous activity of nerve cells in 

the cortex. Therefore, we argue that it is necessary to consider the role of 

synchronous neural activity whenever neurophysiological mechanisms of cognitive 

phenomena (including controlled processes) are studied. Because most cognitive 

phenomena involve controlled processes to some degree, synchronous neural 

activity might be a significant factor in bridging the brain-mind barrier and help 

provide additional physiological understanding of many psychologically observed 

phenomena for which the traditional neural network conceptualization as 

inadequate.

Another attractive property of a synchrony-based model for a possible explanation 

of cognitive phenomena is that many computational phenomena 'emerge'. In other
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words, if  a certain behavior o f the model, such as early filtering or limited capacity, 

emerges firom the most fundamental assumptions (i.e., the model of the neuron) 

without a need for introducing new assumptions, the model should be seriously 

considered for further exploration and experimental testing. Please note that the 

model used here has very few assumptions, most of which are included in the 

equations for the neuron and the synapse. The neural network architectures used to 

demonstrate the behavior of synchronous neural networks is only one example and 

many other architectures would provide similar synchronous behavior (as it is the 

case with synchronization and limited processing capacity that have been shown in 

other oscillatory models). For this reason, the theoretical work shown here might 

not be considered to be a proposal for a model in the strict sense but rather a study 

of the behavior o f oscillatory/spiking sorts of systems that demonstrates that their 

general properties might underlie some general cognitive phenomena. Another set 

of differential equations that produces synchronous and spiking activity organized 

into different neural network architectures is quite likely to demonstrate similar 

behavior (synchronization, phase shift, limited capacity, etc.). The purpose of this 

study was not to propose a model that explains particular experimental data, but to 

provide arguments for more serious consideration of the synchrony in neural firing 

(presumably with more advanced models than the one studied here).

The theoretical framework proposed here is not necessarily a competition to other 

theoretical approaches addressing similar issues. First, the model discussed here is 

an attempt to provide a better understanding of the neurophysiological foundation
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for the feature binding theory (Treisman 1982; 1986; 1995). We also believe that it 

is consistent with Logan's exemplar theory o f automaticity (Logan, 1988) that 

proposes that automaticity is developed gradually by acquiring a new memory trace 

with each episode. The approach discussed here suggests, however, what kind of 

effect each exemplar might have on the neurophysiological level. It is clear that the 

process of acquiring automaticity in many circumstances might be more complex 

than in the models discussed here.

Meyer and Kieras (1997), for example, emphasize the possibility that changes in 

information processing strategy rather than automaticity might decrease some 

limitations in processing capacity. In a follow up study, Schumacher et al. (1998) 

clearly demonstrated how an instruction to give the same priority to two 

simultaneous tasks allow people to perform time sharing that results in no 

interference among tasks. In other words, a change in strategy in the psychological 

refractory period paradigm can overcome the apparent limitation in processing 

capacity. Therefore, the processing strategy that one uses for information processing 

undoubtedly plays an important role in the speed and accuracy of information 

processing. However, our belief is that Meyer and Kieras' model addresses different 

aspects of cognitive limitation than the work presented here. In order to accept a 

view of the mind that does not assume any limitation in working memory capacity, 

as Meyer and Kieras propose, it would be necessary to demonstrate that a change in 

strategy could overcome a wide range of cognitive limitations that have been 

observed through years of research of cognitive phenomena. As it stands now,
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however, it seems that the strategy can account for only a minor part o f effects 

caused by automaticity. It is our belief that an appropriate strategy for information 

processing could somewhat improve processing capacity initially and hence help 

faster development of automaticity. Practice and learning that causes restructuring 

of neural networks, however, is probably necessary for the development o f skilled 

performance. In terms of everyday practice, instructions for appropriate strategy 

might be provided by a coach or instructor, but practice is still essential for a skill to 

be developed.

Collapse of computational complexity

One cannot emphasize enough the superior adaptability of the brain as compared to 

any information-processing device created by humans. Consequently, an interesting 

and important question pertains to understanding the differences in information 

processing between the brain and the von Neumann computer architecture (e.g., 

Dre>dus, 1992). We close with a discussion o f the implications that the brain 

mechanisms proposed here have on the issue o f  computational complexity.

There are two major approaches to defining and measuring computational 

complexity. The Solomonoff-Kolmogorov-Chaitin measure of algorithmic 

complexity, simply put, uses the length of the shortest computational algorithm (or 

program) necessary to accomplish certain computations as a measure of the
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computational complexity (Chaitin, 1977). Therefore, the larger number o f more 

fundamental operations the system has, the shorter the algorithm could be and the 

smaller the degree of complexity. Bennett's approach, called computational depth, 

defines computational complexity as the number o f computational steps necessary 

to complete the computation (Bennett, 1985). Similarly to Halford's et al. (1999) 

proposal, we suggest that the one-directional mapping through several layers of 

neurons should be considered the simplest possible way to process information for 

the brain - that is, one computational step. The longer it takes to form appropriate 

synchronous patterns, and the more capacity from the limited resources is taken in 

order to accomplish the task, the larger the processing complexity is.

Mapping in a neural network, therefore, could be compared to a single machine 

instruction or to a look-up table. On the other hand, attentional and working 

memory processes that employ synchrony are analogous to several steps o f CPU 

processing. The results and the theory provided here show how a decrease in 

complexity on both measures of computational complexity occurs with learning. By 

growing new connections (i.e., new mappings) the brain develops new 'functions or 

operations' and processing becomes much faster. Eventually, any computational 

process (or at least many) could be ultimately implemented in one single 

computational step. Even though this analogy with the computational science is 

rather rudimentary, we believe is sufficient to make the point that the computational 

changes resulting from automaticity in the brain could be referred to as a 

minimization or a collapse o f  computational complexity.
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We believe that this ability to minimize its computational complexity is an 

important adaptive feature that distinguishes the brain firom today's computers. If  a 

computer would build look-up tables (or new machine instructions) for all fimctions 

that it repeatedly uses, the execution of programs would become fester and faster 

with time. There would also be less and less computational demands posted on the 

CPU and more and more of its capacity could be devoted to additional tasks. A slow 

processor paired with a huge and fast memory for look-up tables would probably be 

the most optimal architecture for such a device. According to the synchrony-based 

theory and simulations provided here, this is exactly what kind of computer the 

brain is.
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Before learning:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0.8 0.2 0 0 -0.5 -0.5 0 0 0 -0.5 -0.5 0 0 0
2 0.8 0.2 0 0 -0.5 -0.5 0 0 0 -0.5 -0.5 0 0 0
3 0.2 0.2 0.2 0.2 0 0 -0.5 0 0 0 0 -0.5 0 0
4 0 0 0.2 0.8 0 0 0 -0.5 -0.5 0 0 0 -0.5 -0.5
5 0 0 0.2 0.8 0 0 0 -0.5 -0.5 0 0 0 -0.5 -0.5
6 -0.5 -0.5 0 0 0 0.3 0.2 0 0 -0.5 -0.5 0 0 0
7 -0.5 -0.5 0 0 0 0.3 0.2 0 0 -0.5 -0.5 0 0 0
8 0 0 -0.5 0 0 0.2 0.2 0.2 0.2 0 0 -0.5 0 0
9 0 0 0 -0.5 -0.5 0 0 0.2 0.8 0 0 0 -0.5 -0.5
10 0 0 0 -0.5 -0.5 0 0 0.2 0.8 0 0 0 -0.5 -0.5
11 -0.5 -0.5 0 0 0 -0.5 -0.5 0 0 0 0.8 0.2 0 0
12 -0.5 -0.5 0 0 0 -0.5 -0.5 0 0 0 0.8 0.2 0 0
13 0 0 -0.5 0 0 0 0 -0.5 0 0 0.2 0.2 0.2 0.2
14 0 0 0 -0.5 -0.5 0 0 0 -0.5 -0.5 0 0 0.2 0.8
15 0 0 0 -0.5 -0.5 0 0 0 -0.5 -0.5 0 0 0.2 0.8

After learning:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 IS
1 0.91 0.54 0.57 0.59 -0.5 -0.5 0.02 0.03 0.04 -0.5 -0.5 0 0.01 0
2 0.91 0.67 0.57 0.59 -0.5 -0.5 0.03 0.05 0.05 -0.5 -0.5 0 0 0
3 0.67 0.66 ■ 0.54 0.64 0.03 0.05 -0.5 0.05 0.04 0 0 -0.5 0.01 0
4 0.57 0.58 0.65 0.9 0.03 0.05 0.04 -0.5 -0.5 0 0 0 -0.5 -0.5
5 o.sa 0.59 0.66 0.91 0.02 0.05 0.03 -0.5 -0.5 0 0 0 -0.5 -0.5
6 -0.5 -0.5 0.03 0.03 0.04 0.91 0.65 0.54 0.55 -0.5 -0.5 0 0 0
7 -0.5 -0.5 0.05 0.05 0.05 0.91 0.64 0.57 0.56 -0.5 -0.5 0 0 0
8 0.05 0.03 -0.5 0.04 0.05 0.67 0.64 0.65 0.66 0 0 -0.5 0.01 0
9 0.01 0.02 0.04 -0.5 -0.5 0.52 0.55 0.65 0.92 0.01 0 0.01 -0.5 -0.5
10 0.03 0.03 0.01 -0.5 -0.5 0.53 0.53 0.63 0.91 0.02 0 0.02 -0.5 -0.5
11 -0.5 -0.5 0.03 0 0 -0.5 -0.5 0.01 0.02 0.02 0.92 0.66 0.58 0.6
12 -0.5 -0.5 0.01 0.01 0 -0.5 -0.5 0.01 0.01 0 0.91 0.65 0.59 0.61
13 0.03 0.03 -0.5 0.01 0 0.03 0.04 -0.5 0 0.01 0.64 0.65 0.65 0.64
14 0.04 0.01 0 -0.5 -0.5 0.01 0.01 0.01 -0.5 -0.5 0.59 0.56 0. .6 0.91
15 0.02 0.01 0.02 -0.5 -0.5 0.03 0.03 0.03 -0.5 -0.5 0.57 0.58 0 . '4 0.91

62



LU

CD

63



3

I III I I H ■ llll III II II I II ■ ■  I ■

■  L

(3 )

V



B

1 ■  Il ! ■  iiiiii II ■  m
2  iini ■ ■ m\ ■!

■ I

■ I  ■

a



99

K )

O

I
CO

■ ro
/\

K )
I

CO



û
67



CM

68



69



Oi

I

r o

CO
I

o

I
GO



71



72



I. e n  :

CO -,

$  $

ro Number of spikes

O)

CO

u

i ) ( ro Î

CO

g  Number of spikes

g

ro

1 ▲ I

g  Number of spikes

o>



CO
I

00 ;

O

CO

O
I

o

o
I

CO

74



1 - 2

H5)

4 - 6

3 - 6 3 - 9 6 - 9



CM

O

O
I

CO

O
I

O

o
I

CO

CM

O

76



Novel combination Well-lerned

!
(s');

$

r v 4 )

i
5 .

X

zi



1-6 1-11

lAk
1-4 6-9

âàm (Ak

11-14



m w

6-9 t7-L

LL-L 9-1



1-6 1-11

éaLii ééIa
1-4 6-9

1

jàJLi k li

11-14

I

s



1-6 1 - 1 1

1-4 6-9
I

t - j j

n-14

00



R R

O

R

O

O
R o

o
R

Q
R

O
R

O O 
R

R

R O
O

R

O
R

82



I z : | I
C)—iQi—K} —IT I I
Ç>HOH(JM
I î f

1 :4 :
(o)l—101—10

I  I î
)l 101 0

r
I
V

0 M 0 M 0

t - Z  \
gs



1-2 1-5

1-4 5-8 9-12

■ ■ ■



58

I ro

c nI
CO cn

01

ro



98

Relative learning speed  [dw)
o
cn o bb

Q.

o
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