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ESSAYS ON IMPLIED VOLATILITY

Abstract

This dissertation consists of three empirical essays regarding the estimate of future
market volatility implied by an option price. According to the theory of market efficiency,
this implied volatility should represent the market participants’ consensus expectation of the
volatility over the remaining life of the option. But this assertion has been hotly debated.
The first essay presents a new explanation for the previous finding that implied volatility
is biased and inefficient. I find that implied volatility varies around the market’s true
volatility expectation due to measurement error and that this measurement error biases tests
towards rejecting the informational efficiency of the implied volatility. When I control for
the measurement error utilizing instrumental variables estimation, the results in most cases
no longer reject the hypothesis that implied volatility is unbiased and informationally
efficient.

The second essay relates to the implied volatility “smile”. While previous
explanations for the smile have focused on possible errors in the pricing formula, I argue that
the smile may be caused by investors’ preferences for certain strike prices for hedging
purposes. I find that market inefficiency is partly responsible for the smile since abnormal
returns can be made over time based on the implied volatility differences. The third essay
compares the relative forecasting efficiency of implied volatilities across different strike
prices. I find, contrary to the general belief and practice, that the implied volatility calculated
from an at-the-money option is less informative than those calculated from options with

relatively higher strike prices and that an average measure may not be effective.



ESSAYS ON IMPLIED VOLATILITY

Chapter 1

Introduction

Since market volatility is a critical factor in pricing derivatives and assets with
derivative characteristics, understanding volatility is of vital interest to traders, investors,
risk managers and finance researchers. This dissertation explores the implied volatility
calculated from the observed option prices. While many aspects of implied volatility such
as its information content, predictive power, time-series properties, and volatility smile have
been studied extensively, there are still a number of unresolved issues. The aim of this
dissertation, which contains three empirical essays examining options on S&P 500 futures,
is to augment and strengthen the understanding of implied volatility in terms of three issues,
thereby facilitating more efficient use of this measure. The empirical evidence presented
in this dissertation should be informative to both practitioners and academics who are
interested in forecasting market volatility.

The first essay concerns the predictive power of implied volatility. According to the
efficient market hypothesis, all information is quickly and correctly incorporated into asset
prices. Hence, if the option pricing model is correct, the implied volatility calculated from
an observed option price should represent the market’s forecast of the underlying asset’s

volatility over the remaining life of the option. Therefore, it should be both unbiased and



informationally efficient. However, previous studies have found that implied volatility is
a biased estimator of subsequent realized volatility and is not efficient in that it fails to
incorporate all available information, including historical returns. Some studies even report
that implied volatility has lower predictive power than historical volatility which is
calculated from historical returns. Is implied volatility really a biased and inefficient
estimator or are the previous findings due to some other reasons? I argue and show that
implied volatility varies around the market’s true volatility expectation due to such factors
as bid-ask spreads, non-synchronous prices, and possible deficiencies in the pricing formula
and that this measurement error biases tests toward rejecting the informational efficiency
of implied volatility. No previous work has systematically examined the effect of
measurement error on the predictive power and efficiency tests.

The second essay relates to the implied volatility smile which has gained
considerable attention. The smile refers to the cross-sectional variation in implied volatility
across options with different strike prices but the same maturity. In other words, on a given
day, one obtains different implied volatilities over the same period from options with
different strike prices. If the option pricing model is correct and the market is efficient,
there should be no smile since, as noted above, all implied volatilities calculated from
options with the same expiration date should represent the same market forecast. The
prevailing explanation for the smile is that the Black-Scholes (1973) (BS hereafter) option
pricing model is incorrect leading researchers to propose more complicated option pricing
models. However, none of the new models has successfully explained the smile motivating

me to search for an alternative explanation. In the second essay, I test whether the smile



represents a market inefficiency rather than deficiencies in the BS formula. If the BS
formula is correct and the smile in fact represents a market inefficiency, then a trading
strategy in which one buys options with low implied volatility and simultaneously sells
options with high implied volatility should make money over time. I find that it is quite
profitable for put options even after accounting for the transaction costs.

The third essay investigates the relative forecasting efficiency of implied volatility
estimates calculated from options with different strike prices. On a given day for a given
expiration date, many different options are traded which differ by strike price and whether
they are calls or puts. As just noted, each of these contracts provides its own implied
volatility estimate and these implied volatilities differ across different strike prices. Which
of these implied volatilities should be utilized to forecast future volatility? Reflecting the
general belief that at-the-money options are the most informative because they are the most
sensitive to volatility changes, one popular procedure is to calculate the implied volatility
from at-the-money options only. Another common procedure is to average together several,
often two or four, different implied volatilities calculated from near-the-money options
thereby averaging out measurement error. Are the implied volatilities calculated from at-
the-money options more efficient? Do call options or put options yield better forecasts? Do
we miss some important information by ignoring all other calls or puts which are either in-
or out-of-the-money? Does an average necessarily reduce measurement error and improve
the forecast?

These questions are important to both researchers and practitioners. Several

previous studies compared the relative performance of different average implied volatility



estimators as well as sometimes a couple of individual implied volatility estimators.
Although their results were quite mixed, they leaned toward favoring at-the-money options.
The problem is that these studies generally suffered from limited data sets which may not
give them enough degrees of freedom. Also as far as I know, no one has systematically
investigated the relative forecasting ability of implied volatility across different strike prices
and between calls and puts. The third essay systematically examines the forecasting
efficiency of these different implied volatility estimators, i.e., estimators from individual
call or put options with different strike prices as well as a widely utilized average implied
volatility calculated from the four nearest-the-money options.

In the first essay, I find that implied volatility has considerable predictive ability for
the future realized volatility in the S&P 500 futures option market. I further find that
measurement error does exist, does affect the predictive power and efficiency tests of the
implied volatility, and is at least partially responsible for the apparent inefficiency of
implied volatility. The measurement error effect is, in general, more severe for an
individual implied volatility calculated from a randomly chosen call or put than it is for the
average implied volatility calculated from the four at-the-money options.

In the second essay, I find that market inefficiency is partly responsible for the
implied volatility smile in the options on S&P 500 futures market since abnormal returns
can be made over time by buying put options with low implied volatility and simultaneously
selling put options with high implied volatility in a delta neutral ratio. It, however, remains
a puzzle why the profits from this trading strategy are significant for puts but not for calls

and why the standard deviations of the profits are large despite the fact that the positions are



delta neutral.

In the third essay, I find, contrary to the general belief, that at-the-money options do
not yield the best forecast of future volatility in the market for options on S&P 500 futures.
Implied volatilities calculated from options with relatively high strike prices (out-of-the-
money calls and in-the-money puts) among all calls and puts with the same maturity seem
to be more informative and more efficient. Actually, up to a certain level of strike price, the
forecasting ability of implied volatility increases as strike price increases. The results are
robust across options with different time-to-maturities and hold for both the samples of
including and excluding the 1987 market crash. The results are also robust for different
measures of relative efficiency: an OLS regression measure, root mean squared error, mean
absolute error, and mean absolute percentage error.

The remainder of this dissertation is organized as follows. Chapter 2 discusses the
data and the calculation of implied, historical, and realized volatilities. Each of the three
empirical essays will then be presented. Chapter 3 examines the effect of measurement
error on the tests of predictive power of implied volatility. Chapter 4 offers and tests an
alternative explanation for the implied volatility smile. Chapter S explores the best
estimators among the implied volatilities calculated from options with different strike prices.

Finally, Chapter 6 summarizes the dissertation.



Chapter 2

Data and Volatility Measures

2.1 Data

The data for this dissertation consist of daily settlement prices of options on S&P
500 futures traded on the Chicago Mercantile Exchange from January 28, 1983 to April 30,
1998. S&P 500 futures prices over the same period are also utilized to calculate implied,
realized, and historical volatilities. Today, S&P 500 futures and options are the most widely
recognized stock index contracts in the world and have become an indispensable risk
management tool of mutual funds and institutional investors. The volatility of the S&P 500
futures can therefore be interpreted as a good measure of aggregate stock market volatility.

An advantage of using options on index futures instead of options on the index itself
is that you do not need to consider dividends in calculating implied volatility on the futures
thereby reducing calculation error. Harvey and Whaley (1992) showed that ignoring
dividends or employing other ad hoc dividend-adjusted valuation procedures can produce
large errors in pricing options on S&P 100 index. Another advantage is that arbitrage
between options and their underlying futures is easier and much cheaper than arbitrage
involving all stocks in the index.

The third advantage of the data set is that the options and their underlying futures
are traded side by side on the Chicago Mercantile Exchange and close at the same time

alleviating the problem of non-synchronous quotes. Furthermore, I utilize a much longer



data set in this dissertation than previous studies (more that 15 years of daily data). Thisis
important because the overlap in realized volatility periods sharply reduces the effective
degrees of freedom. Consider options which mature on March 20. On a given day, a
number of different implied volatilities calculated from calls or puts with different strike
prices but with this same expiration date are predicting the volatility of the underlying
futures over the same future period. In addition, the implied volatilities calculated from the
option prices on consecutive days, such as January 1, January 2, January 3, etc., are
predicting the volatility over virtually identical periods so are not independent. For
example, in more than 15 years of daily data of options on S&P 500 futures with the
underlying futures contracts maturing every three months, there are 217,226 observations
but only about 60 truly independent subsets.

Options on S&P 500 futures are American type options and are daily cash settled or
“marked to the market”. One contract of the underlying futures has a value of the S&P 500
index times 500. The minimum pricing increment, or “tick size”, is 0.05 points (equivalent
to $25). However, the Chicago Mercantile Exchange reduced the multiplier from 500 to
250 and increased the minimum pricing increment to 0.10 points (but still equivalent to $25)
on October 31, 1997.

On a given day, options differ in three dimensions: expiration date, call or put, and
strike price. Before July 1987, options on S&P 500 futures were traded only for contracts
expiring in March, June, September, and December. These options expire on the same day
as their underlying futures contracts and are traded starting about nine months or a year

before expiration. For example, the September 1986 options were traded from December



23, 1985 through September 18, 1986, or 187 trading days. In August 1987, short-term
serial contracts were introduced. These are contracts maturing in the next three months in
which there is not already a quarterly contract. For instance, April 1993 options were traded
from January 18, 1993 to April 16, 1993, or 63 trading days. The serial options do not
expire on the same day as their underlying futures but share the same underlying futures
with the next nearest March, June, September or December options. For example, the
underlying futures of October 1993 options expires in December 1993 and that of the
February 1997 options expires in March 1997.

As an example, Figure 2.1 shows that on February 25, 1997, one could trade options
with six different expiration dates. The options expiring in March, June, September and
December are quarterly cycle contracts while the options expiring in April and May are
serial contracts. But, before July 1987, one could only trade the quarterly cycle options.

In this dissertation, I stratify the options into four groups based on time to expiration.
Group 1 contains options maturing first, e.g., the March contracts in Figure 2.1. Group 2
contains the options maturing next, e.g., the April contracts in Figure 2.1. Since as an
expiration date approaches the option prices become small relative to transaction costs,
observations on options with fewer than ten business days to expiration are excluded.! On

these days, options with the second nearest expiration date move into Group 1 and options

1
To minimize data errors, observations which violate boundary conditions are also eliminated from the data
set, i.c., call prices should be greater than the present value of current futures price minus the present value
of the strike price.



with the third nearest expiration date move into Group 2, etc.? As a result, options’ time-to-
maturity ranges from 10 to 36 trading days in Group 1, from 28 to 57 trading days in Group
2, from 47 to 78 trading days in Group 3, and from 67 to 99 in Group 4.3

On a given day, for the same time to maturity, there are both calls and puts which
further differ by strike price. As we know, a call confers the right, but not the obligation,
to buy a futures contract and a put confers the right, but not the obligation, to sell a futures
contract. A call (put) with a strike price less than (greater than) the underlying futures price
is referred to as in the money. On the other hand, a call (put) whose strike price is greater
than (less than) the underlying futures price is referred to as out of the money. An option
(a call or a put) with a strike price equal to the underlying futures price is referred to as at
the money. Since the strike prices are in the increments of 5 points for options on S&P 500
futures, such as 825, 830, and 835 etc., there are seldom situations when a futures price is
exactly equal to an option’s strike price. In practice, therefore, the options with strike prices
nearest to the underlying futures price (i.e. the two nearest-the-money calls and the two
nearest-the-money puts) are often taken as the at-the-money options. Figure 2.2 illustrates

the different calls and puts on S&P 500 futures with the same time-to-maturity on a given

2
Note that for dates before July 1987, there may not be observations each date for each group.

As will be discussed in Subsections 2.2.2 and 3.3.3, there is a considerable overlap in the realized volatility
periods in the options data. The overlap within each expiration group could exist in two dimensions:
different options (calls or puts with different strike prices) observed on the same day and the same (or
different) options observed on different days. Within each expiration group, on a given day, implied
volatilities calculated from calls or puts with different strike prices are forecasting exactly the same future
realized volatility. On the other hand, realized volatilities for the same (or different) options with the same
underlying futures observed on different days are partially overlapped. For example, realized volatilities
for options with the same underlying futures contract observed on day t and day t+1 only differ because
the former is calculated from the daily retum series from day t+1 through the option expiration date while
the latter from the same daily return series but from day t+2 through the option expiration date.

9



day. In summary, options on S&P 500 futures differ in three dimensions: expiration date,
option type (call or put), and strike price. Within each expiration group, the observations
are both time series and cross-sectional.

Trading activity of options differs by time-to-maturity and strike price and also
differs between calls and puts. In general, options with shorter time-to-maturity are traded
more heavily. For the same maturity, out-of-the-money options (both calls and puts) are
more actively traded than in-the-money options while near-the-money options are usually
traded more often than far-from-the-money options. As a result, prices of far-from-the-
money options are often not observable or “stale” which tends to introduce more
measurement error. Figure 2.3 shows how the average trading volume of the options differs
by the “moneyness” which is defined as the ratio of strike price over the current underlying
futures price minus one. Within each expiration group, the closer the strike price is to the
futures price, the more frequently an option is traded. Also observe that out-of-the-money
calls (puts) are consistently traded more heavily than the corresponding in-the-money calls
(puts).

Options at every strike price may not be traded every day. Figure 2.4 illustrates the
total number of daily observations available for options with the same ranking in terms
moneyness in the data set. As shown in Figure 2.4, within each group, the number of
observations displays a pattern similar to that of the average trading volume shown in
Figure 2.3. In general, out-of-the-money calls (puts) have more observations than in-the-
money calls (puts). In the analysis, I utilize eight nearest-in-the-money calls (puts) and

eight nearest-out-of-the-money calls (puts) as shown in Figure 2.2.

10



2.2 Methodology
2.2.1 Implied Volatility
As outlined above, all the three essays concern implied volatility. These implied
volatilities are calculated utilizing Black’s (1976) model for European options on futures*:
C=e®T [F N(d,) - K N(d,)] (2.1)

P=e™" [K(1-N(d,)) - F(1-N(d,))] 22)

]n(ﬂ) + .aiT
Where =__K 2

C -- price of a call option

P -- price of a put option

T -- an option’s time to expiration
R -- risk-free interest rate *

F -- price of the underlying futures

Since it assumes European options while the options on S&P 500 futures are American, using Black’s
model introduces a small upward bias in the implied volatility. Jorion (1995) shows that this difference
is quite small relative to the typical bid-ask spread, e.g., using a European model overestimates a 12 % true
volatility as 12.02 %. Also since stock index futures, unlike individual stocks, pay no dividends, dividends
do not appear in the Black’s model for options on futures.

For the risk-free interest rate, I extract daily observations of yields to maturity of 3-month, 6-month, and
I-year Treasury bills. A simple convex combination is used to interpolate interest rates according to the
option’s time to expiration. The interest rate choice has little impact on the results because the option
pricing formula is quite insensitive to the interest rate (See Sheikh(1993)).

11



K - strike price

O -- annualized standard deviation of the continuously compounded return on the

futures.

The implied volatility for an option with strike price i on day t, Oy ; o, is calculated
by substituting the settlement price of the option with strike price i on day t for C;, in
Equation 2.1 or P;, in Equation 2.2 and solving for Oysp;, using an iterative progedure. The
implied volatilities (also the realized and historical volatilities) are annualized by
multiplying by the square root of 252 - the approximate number of trading days in one year.
In Chapter 3 and Chapter 5, I also utilize an average implied volatility (0ysp,,) Which is the
average of the implied volatilities calculated from the two nearest-the-money calls and the
two nearest-the-money puts ° since this measure is often utilized by practitioners as well as

some researchers.

2.2.2 Realized Volatility

According to the BS model and the market efficiency hypothesis, implied volatility,
Oisp;i.: » Should represent the market’s forecast on day t of actual volatility over the remaining
life of the option. To judge how well it forecasts, we must measure actual ex-post volatility
over this same period. The realized volatility, oy, 5, , over the period from day t through the

option expiration date, N, is calculated as the standard deviation of returns over this period,

6
When utilizing Oysp,, I actually ignore all the other options with the same expiration date observed on the
same day. As a result, in each expiration group, there is only one observation for this average implied
volatility per day and therefore, I have much fewer observations in each of the four groups. For example,
there are 3,212 observations of Gisp,, for group 1 observed for 3,212 trading days.

12



ie.,

1 N ) N \
Oprze = 4| 252% R} - ——— (LR 2-3)
RLZt V [N‘t‘l l‘%l ' (N-t)(N-t-1) (,.;.1 ‘) J

where R,;= In(F, / F, ;) and F, is the futures settlement price on day s and where ts N-10.”
This period is chosen to match that covered by the implied volatility calculated from the
option price.

Note that there is a considerable overlap in realized volatility in the data set. First,
options observed on the same day with different expiration dates (i.e., from different groups)
have overlaps in their corresponding realized volatilities if they share the same underlying
futures contract. In terms of the example shown in Figure 2.1, the options in Groups 2, 3
and 4 observed on February 25, 1997 have overlapped realized volatilities because they all
share the same underlying futures contract which matured on June 19, 1997. For instance,
realized volatilities for options from Group 2 and Group 3 observed on February 25, 1997
have an overlap period from May 16, 1997 through June 19, 1997. Second, options with
the same time to maturity (i.e., within the same expiration group) on a given day have
exactly the same realized volatility. In other words, on a given day, implied volatilities

calculated from calls or puts with different strike prices but the same time to maturity are

7
As discussed in Section 2.1, observations on options with fewer than ten business days are excluded since
as an option date approaches the option prices become small relative to transaction costs. In addition, the
number of observations utilized to calculate a realized volatility is determined by the number of trading
days in the option’s remaining life. Realized volatilities calculated by utilizing fewer than ten observations
are more likely subject to small sample problems. Accordingly, the last observation on realized volatility
for a given futures contract is at N-10 and the realized volatility, oy, »,, is always calculated over at Ieast
10 trading days in this dissertation.
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forecasting exactly the same realized volatility. Third, there are overlaps in observations
on different days for the same option. As shown in Equation 2.3, realized volatility, G, ,,,
calculated from the return series of a given futures contract on day t and that calculated from
the same return series on day t+1 only differ because one return, R,,,, is dropped from the
set covered by the summation sign. Gy, 7, and Og; 7, both include the returns: R,,, through
Ry. All these overlaps seriously bias the standard errors of OLS estimates downward
although the OLS parameter estimates are still unbiased and efficient. In Chapter 3, I will
discuss and utilize a technique for correcting for the heteroskedasticity and serial correlation

caused by these overlaps.

2.2.3 Historical Volatility

Besides implied volatility, historical volatility is often utilized to forecast future
realized volatility even though the majority of empirical evidence shows that historical
volatility has a lower predictive power than implied volatility. For comparison, I also utilize
a measure of historical volatility in Chapter 3 and Chapter 5. This measure is the standard

deviation of returns of the underlying futures over the last M trading days:

t t

1 2 1 2
I Py RZ - R 2.4
s, \J [M—l I-t-zl:lol s MM-1) (S't‘z‘:l“ 1

In Chapters 3 and 5, M equals forty trading days since this most closely matches the sixty
calendar day period utilized by Canina and Figlewski (1993) and some other studies.

However, the results in this dissertation are not sensitive to this choice.
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In summary, realized volatility is measured from day t through the option’s
expiration day, N, and the two forecasts for this realized volatility are calculated: implied
volatilities calculated from option prices observed on day t and the standard deviation of
returns over the last 40 trading days before day t. Figure 2.5 shows the respective data

periods utilized to calculate these three volatility measures.

2.2.4 Summary Statistics of Implied, Realized, and Historical Volatilities

Since the data set covers the 1987 market crash, all realized, historical and implied
volatilities involving returns or prices in this period are extremely high and sometimes tend
to dominate the results. Accordingly, the analyses are conducted separately for the samples
excluding and including observations affected by the 1987 stock market crash. Table 2.1
reports summary statistics for realized, implied and historical volatilities for the samples
including and excluding 1987 market crash in terms of each of the four expiration groups
as well as the overall sample. For example, the first row in Panel A shows the statistics for
all the options in the four expiration groups together including the 1987 crash while that in
Panel B reports the same statistics excluding the 1987 crash.

As shown in Table 2.1, implied volatility generally exceeds the subsequent realized
volatility. For instance, the mean of the implied volatility is 0.1686 for the overall sample
including the 1987 crash while that of subsequent realized volatility is 0.1420. This
difference is significant at the 0.01 level. Note that observations are both time series and
cross-sectional. There are 3,212 trading days but 77,123 observations in Group 1 because

on each day, implied volatility is calculated separately from up to 16 calls and 16 puts.
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Chapter 3

Essay I: Measurement Error and the Predictive Power

of Implied Volatility ®

3.1 Introduction

As well known, if the option market is efficient and the option pricing model is
correct, the implied volatility calculated from an observed option price should represent the
market’s best forecast of the underlying asset’s volatility over the remaining life of the
option. As such, it should be both unbiased and informationally efficient, that is, it should
correctly impound all available information, including the asset’s price history.
Consequently, measures of historical volatility (or other measures based on past returns,
such as a GARCH measure) should add no additional predictive power. However, the
evidence to date on this issue has been mixed. While most of the studies find that implied
volatility outperforms historical volatility in forecasting future volatility, they normally also
find that implied volatility fails to incorporate all available information, including historical
volatility. Moreover, some studies even find that implied volatility’s predictive power is
quite low. For example, using two years of transaction data for ten individual stocks,
Lamoureux and Lastrapes (1993) rejected the Hull and White (1987) class of stochastic

volatility models in favor of a GARCH model. Separately, Canina and Figlewski (1993)

8
This chapter builds on and expands my 1996 summer research project and the joint working paper with
Professor Louis Ederington “Is implied volatility an informationally efficient and effective predictor of
future volatility?”.
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found that when ex-post volatility of the S&P 100 index is regressed on the implied
volatility calculated from individual S&P 100 options, the coefficient of the implied
standard deviation is insignificant, and often negative, while the coefficient of the historical
volatility is positive and significant.

In this first essay, I examine whether the implied volatilities calculated from options
on S&P 500 futures are informationally efficient and effective predictors of actual realized
volatilities. Specifically, I explore whether the evidence against the informational efficiency
of implied volatility is due to “measurement error”, that is to deviations of implied volatility
from the market’s true volatility expectation due to bid-ask spreads, non-synchronous prices,
minimum price increments, errors in the option pricing formula, or arbitrage restrictions.
While econometrics texts commonly show that measurement error in an independent
variable tends to bias its coefficient toward zero, no previous work has systematically
investigated the effect of measurement error regarding implied volatility.

By examining more than 15 years of daily data, I find that the implied volatility
calculated from options on S&P 500 futures has considerable predictive ability. In other
words, when realized volatility is regressed on both implied volatility and historical
volatility, the slope coefficient of the implied volatility is always significantly different from
zero and larger than that of the historical volatility. At the same time, the coefficient of
historical volatility is not always significantly different from zero and the adjusted R? is
much higher than observed in previous studies on options on stock index. However, I also
find that implied volatility from options on S&P 500 futures differs from the market’s true

volatility expectation and that this measurement error is at least partially responsible for the
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apparent inefficiency of implied volatility. When I control for measurement error utilizing
an instrumental variables estimation, the predictive power of implied volatility rises while
that of historical volatility falls and in most cases implied volatility turns out to be unbiased
and efficient. Finally, I find that the results differ depending on the forecasting horizon and
whether the sample includes the 1987 stock market crash.

This essay differs from previous studies in that it tests and corrects for measurement
error and.in that it considers how sensitive the results are to the forecast horizon and whether
the data set includes the 1987 market crash. It also differs in that it utilizes a much longer
data period, more than 15 years of daily data for options on S&P 500 futures, than previous
studies. This is important because the overlap in realized volatility periods sharply reduces
the effective degrees of freedom and biases the standard error estimates.

The rest of this essay is organized as follows. The next section reviews the literature
on the relative predictive power of implied and historical volatilities and describes the
traditional test of informational efficiency. Section 3.3 describes the measurement error
hypothesis and the procedure for correcting heteroskedasticity and serial correlation caused
by the overlaps of the realized volatility periods. Section 3.4 reports the OLS results on
informational efficiency of the individual implied volatilities versus an implied volatility
average, and examines how these results depend on forecast horizon and whether the 1987
crash is included. In the meantime, the measurement error is tested and corrected through

an instrumental variables estimation. Section 3.5 summarizes and concludes this essay.
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3.2 Literature Review

Most early studies of implied volatility, such as Latané and Rendleman (1976),
Chiras and Manaster (1978), Beckers (1981), and Park and Sears (1985), were content to
test whether implied volatility contained any information regarding subsequent realized
volatility. Whether implied volatility was informationally efficient was not an issue. Most
found that implied volatility had some predictive ability and interpreted this finding as
confirmation of Black-Scholes option pricing theory.?

More recent studies have compared the relative forecasting ability of implied and
historical volatilities and have examined how efficiently implied volatility incorporates the
information available to market participants. Most follow basically the same approach.
Actual realized volatility (usually the standard deviation), oy, , , from day t through the
remaining life of the option is regressed on either implied volatility calculated from the
observed price of an option i, Ogp, ; , OF SOome measure based on historical time series data,
Ors, (either the standard deviation of returns over some past period or a GARCH estimate

derived from historical data), or both. That is they estimate:

and  Op,, = 0+ € Or . + U, 3.1

or they estimate:

One problem in most of these early studies was that implied and actual volatility periods were not matched
precisely. For instance, Chiras and Manaster (1978) measured actual realized volatility over a 20 month
period from month t through t+20 regardless of the time period covered by the implied volatility, that is,
regardless of whether the options contract matured in 20 months or 5. In addition, all of these early studies
suffered from limited data sets and, therefore, small degrees of freedom, for instance, 23 monthly
observations in the case of Chiras and Manaster (1978) and five months of daily data in the case of Park

and Sears(1985).
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Oprze = By * By Ogp e * BaOps, *+ 4y, (3-2)

The hypothesis that 05, ; , is unbiased and informationally efficient implies that ;=0 and
;=1 in the ;5 ; , version of Equation 3.1 and implies that B,=0, §,=1, and §,=0 in
Equation 3.2.

Estimates of Equation 3.2 from several previous studies are reported in Table 3.1
where, to obtain a representative summary regression for each study, I have averaged
together the estimates for different markets and data periods when a study reports more than
one. While results differ, a couple of consistencies stand out. With the single exception of
Canina and Figlewski (1993), all studies find that $,>0 and most find that it is significant,
implying that implied volatility does have informational content. On the other hand, in
almost all studies, B, >0and B, <1 (althouéh B, is very close to one in Day and Lewis’s
crude oil regression) implying that implied volatility is not an unbiased and informationally
efficient estimator.

The studies differ on whether historical time series measures add incremental
information, i.e., on the sign and significance of B,. As measured by the R?, predictability
also differs widely. It appears fairly high for crude oil, moderate for individual stocks, and
relatively low for stock indices and foreign exchange rates. In contrast to the other studies,
Canina & Figlewski (1993) (C&F hereafter) find that in the S&P 100 index option market,
implied volatility is actually a poorer forecaster of subsequent realized volatility than
historical volatility and that implied volatility adds no incremental information to that

contained in the historical volatility.
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Utilizing over seven years of daily data on 25 stock options, Bartunek and
Chowdhury (1995) compared forecasts of implied volatility, GARCH volatility and
historical volatility. Their implied volatility measure was calculated from several options
with different strike prices by a minimized-squared-pricing-error method.!® They found no
obvious superiority of any one forecast over any of the others. However, their realized
volatility period and the implied volatility period are not matched exactly as discussed in
the footnote 9. Most recently, Christensen & Prabhala (1998) compared the predictive
power of implied volatility and historical volatility by utilizing monthly data on options on
S&P 100 index. They found that implied volatility outperforms historical volatility in
forecasting future volatility and even subsumes the information content of past volatility in
some of their specifications. Their major contribution is that they utilized an instrumental
variables analysis similar to the one introduced in this essay.!! However, while correcting
the problems of overlapping in realized volatility, their nonoverlapping sampling procedure,
similar to that of Feinstein (1989), threw away most of the available observations and in
effect threw away a lot of valuable information. In addition, in their monthly data set, they
kept only at-the-money call options and ignored all the other call options and all the put

options.

10
This method was developed by Beckers (1981) and Whaley (1982) which will be further discussed in
Section 5.2.

n
The instrumental variables analysis introduced in this essay was developed independently before the
publication of Christensen & Prabhala (1998).
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3.3 Methodology
3.3.1 Measurement Error and its Impact

A finding that implied volatility is not informationally efficient could mean either
that investors are not rational or that the implied volatility, oy, , 2 does not represent
investors’ true volatility expectation, 0y, . C&F (and Figlewski, 1997) lean toward the
latter arguing that factors not in the option pricing formula influence option prices and that
market frictions impede the arbitrage and speculation which would ensure 0.gp,, = Org, in
perfect markets. This essay explores and tests this argument, which is that whether the
results rejecting the informational efficiency of 0;sp , are due to these deviations of
Oisp, from O, .

As also discussed by Figlewski (1997), there are several reasons, why the implied
volatility might differ from the market’s true expectatjon. One, 0.5, is calculated from both
the option price and the underlying asset’s price and these two prices may reflect trades at
different times. Two, bid-ask spreads in both the option and the underlying asset will
introduce measurement error as will the fact that option prices are not continuous, instead
trading in discrete minimum increments. Three, the option pricing model used to calculate
implied volatility may be in error. For instance, implied volatility is often calculated using
the Black-Scholes model which assumes (among other things) that (1) the option is
European, (2) volatility is constant (or at least deterministic), (3) returns are log-normally

distributed. Violations of any would cause the implied volatility calculated from option

12
To simplify the notation in this section, the subscript i which designates a call or a put with a different
strike price has been dropped from 05p ; -



prices using the BS formula to differ somewhat from the market’s true volatility forecast.'?
Four, hedging activities, or other factors not in the option pricing model, may push
option prices away from the prices consistent with the market’s volatility expectation and
market imperfections may prevent the arbitrage and speculation which would equate
Oisp, . With 0 .. For example, holders of stock portfolios may buy out-of-the-money puts
(pushing up their prices and implied volatilities) in order to protect against a possible market
decline even if they think the puts are somewhat overpriced. If these hedging trades push
Oisp, . above Opg , , then, in perfect markets, arbitrage and speculation should occur which
would push put prices and their implied volatilities back down. For instance, if put prices
rise relative to call prices, then put-call parity arbitrage should occur. Of course, while put-
call parity arbitrage would lower the implied volatility in put prices, it would simultaneously
tend to raise call prices above those consistent with the market’s volatility expectation -
leaving both somewhat above the market’s true expectation. If both the call and the put
prices exceed those consistent with volatility expectations, then in a perfect market,
speculators should sell both in a delta neutral ratio or sell a call (a put) option and buy (sell)
the underlying asset. Either would push option prices and implied volatilities down.
However, continually re-balancing these positions would entail large transaction costs and
the speculator would lose if actual volatility turned out to be larger than anticipated. In

summary, arbitrage and speculation may not fully return option prices to levels fully

13
A number of studies argue that the mis-pricing caused by these is likely to be minor, at least for at-the-
money options. For instance, Fleming (1998) and Jorion (1995) find that stochastic and deterministic
models yield virtually the same option prices for at-the-money options, and Jorion (1995) also reports that
the difference between American and European option prices is much smaller than normal bid-ask spreads.
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consistent with the market’s volatility expectations. The evidence on volatility smiles and
smirks indicates that some deviations exist due to reasons three and/or four.

If oy5p, varies around o, for any of these four reasons, then in ordinary least
squares estimations of Equations 3.1 and 3.2, the estimates of o, and B, will be biased
downward and those of oy and 8, will be biased upward. If historical time series volatility
(0+s,J is an important determinant of the market’s true volatility expectation, then the OLS
estimate of 8, will be biased upward as well. Hence, the evidence in Table 3.1 against the
informational efficiency of implied volatility could be explained by this measurement error.

To see this, suppose both actual and implied volatilities revolve around the market’s

true expectation, Org,, i.e.,

+€ and Oy, = O, +1, (3.3)

Note that €, is an expectational error and 1), is 2 measurement error. If investors are rational,
then the expectational error, €,, should be independent of all time t variables, including 0z,
and n,. Suppose now that Equation 3.1 is estimated using ordinary least squares and oy,
The OLS estimatoris &, = Y, 0y, , Owp + 3 Oy, Substituting the expressions in (3.3)

for Og; 2, and oy,

al = E (OTE.t + et) (o'l'E.t +nl) (3.4)

2 (Org, + M)

Since market efficiency implies that €, is independent of o, and n,, if n, is independent

of 1z, then in the probability limit,
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Var(o,;)

lim (&) =
PRI T Vartorp) + Varm)

3.5

Note that if there is no measurement error, i.e., Var(n) = 0, then the expected value of&, =1
but, if there is measurement error, ie., Var(n) > 0, then E (¢)<1. Since
&, = Oy, -& 0y = (1-&)0, +€-T and E@E) =E®) =0, if E(&)<1, then
E(@)>0. While I have examined Equation 3.1 for simplicity, it can be shown that
measurement error will cause OLS estimates of B, in Equation 3.2 to be biased downward
and of B, and B, to be biased upward.

For several reasons, Var(1) is probably particularly large in Canina and Figlewski
(1993) which may explain why their estimate of B, is smaller than in other studies. While
other studies obtain a single implied volatility for each day by averaging together the
implied volatilities calculated from individual options with the same maturity but differing
strike prices, C&F treat each strike price as a separate observation. So, while other studies
utilize the average of implied volatilities calculated from several nearest-the-money options,
C&F do not. In addition, S&P 100 index options are particularly susceptible to the non-
synchronous data problem discussed above because S&P 100 Index options market and the
NYSE do not close at the same time. Finally, as C&F point out, because of the transaction
costs involved in buying and selling 100 stocks, it is difficult to arbitrage between the option
and the underlying portfolio.

Although OLS estimates of Equations 3.1 and 3.2 are biased by measurement error,

if there exists a variable, Z, which is correlated with the market’s true volatility expectation,
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Oz, » but not with the measurement error 1, then it is possible to obtain unbiased estimates

using instrumental variables. The instrumental variables estimator of «, in Equation 3.1 is:

G z
e, = PR, (3.6)

substituting again for Oy, 2, and Oy, yields:

a = E(omt+et)zt
p = i 3.7
(O, +M) Z,

If n, and Z, are uncorrelated and markets are efficient in the sense that €, and Z, are
independent, then plim (&) =E(Y_ 0rg,Z) / E(Y_ 6;5,Z) = 1. Likewise, it can be shown

that instrumental variables estimates of the B parameters in Equation 3.2 are unbiased.

3.3.2 Instrumental Variable Selection
Consider the implied volatilities at time t and j days before: 0,5, , = O, + n, and
Oisptej = Oreaey * Misj where 1 is the measurement error in each. Since the market’s two
true volatility expectations should only differ due to new information received between t-j
and t and to the fact that o, covers j fewer days, oy, should be strongly correlated with
Org,- Whether or not the two measurement errors 1, and 1,; are correlated depends on
whether the deviations of o, from O are short- or long-lived and depends on the cause.

If the deviations are due to non-synchronous prices, bid-ask spreads, or minimum tick sizes,

then 7, and 1,; should be independent. However, if the deviations of 0,5, from Oy are due
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to errors in the option pricing formula, e.g., stochastic volatility or non-lognormal returns,
or to market imperfections, then the deviations may be more long-lived so that part of the
same error is contained in both 7, and n,;. If the time t and time t-j measurement errors are
correlated, some bias will remain in the instrumental variables estimates of Equation 3.2.

In summary, using Oy, as an instrumental variable one can test and correct for
measurement error due to clearly temporary factors, like non-synchronous quotes and bid-ask
spreads, but we may not be fully able to correct for more long-lived errors. Christensen and
Probhala (1998) utilized one period lagged implied volatility as their instrumental variable
since they utilized a monthly data set.

Employing different instrumental variables, I find that the results are robust across
different choices of instrumental variables. I tested several instrumental variables such as
an average implied volatility from the two nearest-the-money calls and the two nearest-the-
money puts or an average implied volatility calculated from all the 32 different options
which are observed one, five, or ten trading days before day t. However, to save space, I
only report the estimation using the average implied volatility calculated from the two
nearest-the-money calls and the two nearest-the-money puts observed ten trading days

before day t.

3.3.3 Correction for Heteroskedasticity and Serial Correlation
As mentioned in Chapter 2, there is a considerable overlap in realized volatility
periods in the data set. Options on S&P 500 futures differ by expiration date, between calls

and puts, and by strike price. Options observed on a given day with the same time to
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maturity (i.e., within the same expiration group) overlap in their realized volatilities.
Actually, on a given day, implied volatilities calculated from calls or puts with different
strike prices but the same maturity date are forecasting exactly the same realized volatility.
In addition, there are overlaps for options observed on different days. As shown in Equation
2.3, the 0g; 7, calculated for a given futures contract on day t and that calculated for the
same futures contract on day t+1 only differ because one return, R,,,, is dropped from the
set covered by the summation sign. Og;z, and Oy 7, both include the returns: R, , ... , Ry.
These extensive overlaps mean that even data sets with several thousand observations
effectively have far fewer degrees of freedom. More importantly, although OLS estimates
of the «’s and P’s in Equations 3.1 and 3.2 are still unbiased and efficient in the presence
of heteroskedasticity and serial correlation caused by these overlaps, the OLS estimates of
their standard errors are biased downward.

To avoid the heteroskedasticity and serial correlation problems caused by these kind
of overlaps, Feinstein (1989) and Christensen and Prabhala (1998) utilized non-overlapping
monthly data sets, which, however, threw a lot of valuable information. Hansen (1982)
provides a method to correct the heteroskedasticity and serial correlation caused by such
overlaps, which has been used by Jorion (1995) and C&F (1993) among others. Let X;
represent a row vector of the ith observations on (K-1) independent variables and let X
represent a M<K matrix of the M observations on (K-1) independent variables with 1's in
the first column. Representing the OLS regression error for the observation i with ¢,, the

Hansen variance-covariance matrix of the estimated coefficients is
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(x Ix)’l Q (x /x)‘l (3.8)
where Q can be consistently estimated by
M -2/ M M . a , ,
Q- izl: €)*X/X,+ iz-n:jzs:; QG.j) 82 (X,'X; +X,'X) (3.9)
where Q(i, j) is an indicator which is equal to one if observations i and j overlap and is equal

to zero otherwise.

3.4 Empirical Results
3.4.1. OLS Multiple Regressions and Informational Efficiency of Implied volatility

OLS multiple regressions of realized volatility on individual implied volatilities and
historical volatility using Equation 3.2 are shown in Table 3.2 where the results for the
sample including the 1987 crash are shown in Panel A and those for the sample excluding
the 1987 crash are reported in panel B. The latter is presented because the oy, s involving
the October 1987 crash are five to seven times higher than in other periods and tend to
dominate the regression results. Reflecting this, the adjusted R?s in Panel B are generally
much higher than those in Panel A. Each observation on the implied volatility in the
regressions is calculated from a single option price. This structure of the data set is similar
to that of C&F in that each observation of their implied volatilities is also calculated from
an individual option. As mentioned before, on each trading day, there are many different
options which differ by maturity, option type (call or put), and strike price. Also in the data

set, on each day there are options with up to four maturity dates which are stratified into
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four expiration groups as explained in Chapter 2. Hence, within each expiration group, all
options observed on a given day have the same time to maturity. Group 1 contains options
with time to expiration between 10 to 36 trading days while group 2 consis?s of options
expiring in 28 to 57 trading days, etc. Within each group, call (put) options with up to 16
different strike prices around the underlying futures price are utilized: eight in-the-money
calls, eight out-of-the-money calls, eight in-the-money puts and eight out-of-the-money
puts.

In Tables 3.2, both the OLS t statistic (t,;¢), and the corrected t statistic using
Hansen’s procedure (t;;) for the null hypothesis that §, = 0 are reported. t; is consistently
much lower than t; ¢ confirming that the OLS estimates of the standard errors are seriously
biased. For instance, in the first regression in Table 3.2, t,; is 4.200 while OLS tis 111.571
for the hypothesis that §,= 0. In addition, the t,; for the null hypothesis that B, = 1 is also
presented.

In sharp contrast to C&F’s finding of low predictive power for implied volatility, I
find that implied volatility has much high predictive power than historical volatility and
subsumes the information contained in historical volatility especially for options with longer
time-to-expiration. As also shown in this table, the OLS results are quite sensitive to
whether the 1987 crash period is included or excluded and to the forecast horizon. While
implied volatility is significant in all regressions, historical volatility is significant for group
1 when the crash is included and all groups when the crash period is excluded.

However, as in previous studies, the results in Table 3.2 are inconsistent with the

hypothesis that implied volatility is an unbiased and informationally efficient estimator of
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future realized volatility. If implied volatility is an unbiased and efficient predictor of actual
realized volatility and there is no measurement error, then we should observe that B,= B, =
0 and that B,= 1. In contradiction of the efficiency hypothesis, the estimated coefficients
of Oisp;, » By, are less than 1.0 in all of the regressions. They are all significantly less than
one except for groups 3 and 4 in Panel A. In further contradiction of the efficiency
hypothesis, the estimates of B, are positive and significantly different from zero in all but
two regressions. Results on whether or not historical volatility provides incremental
information, that is whether or not 8, = 0, depend on the horizon and whether or not the
1987 crash period is included. In the four regressions including the 1987 crash, the
estimates of B, are not significantly different from zero, indicating that implied volatility
subsumes the information of historical volatility. For all the regressions excluding the 1987
crash, estimates of 3, are significantly greater than zero indicating that historical volatilities
do contain some incremental information which is not contained in implied volatility in
these cases. However, the coefficients of B, are still smaller than those of implied volatility.

Table 3.3 reports the OLS results when realized volatility (0gy, ) is regressed on an
average implied volatility (Osps, ) and a historical volatility measured over the last 40
trading days. The implied volatility measure !, 0, , is the average of the four implied

volatilities calculated from the two nearest-the-money calls and the two nearest-the-money

14
As also mentioned in the footnote 6 in Chapter 2, when the average implied volatility (0sp,,, ) is utilized
all the other options with the same expiration date observed on the same day are, in fact, ignored. Asa
result, in each expiration group, there is only one observation for this implied volatility measure per day
and therefore, there are fewer observations in each of the four groups. For example, there are only 3,212
observations in group 1.
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puts. This measure is often used by practitioners as well as some researchers.'> The only
difference between Tables 3.2 and 3.3 is that the latter utilizes this average implied volatility
measure instead of all the individual implied volatilities with each serving as a separate
observation. Note that the i subscript is dropped in Table 3.3 because there is only one
observation per day in this case while there are up to 32 observations per day in each group
in Table 3.2. The coefficients of implied volatility (B,) and the adjusted R’s are much
higher in Table 3.3 than the corresponding figures in Table 3.2. For example, for options
maturing in 10 to 36 trading days when the 1987 market crash is included, B, is 0.8056 and
the adjusted R? is 0.2447 in Table 3.3 while the B, is 0.3713 and the adjusted R? is 0.2049
in Table 3.2 for the same forecasting horizon.

A comparison of Tables 3.3 with Table 3.2 suggests that, in general, an individual
implied volatility calculated from a randomly chosen option contains more measurement
error than the average implied volatility calculated from several near-the-money options and
that this measurement error is largely responsible for the low B, values and R’ in Table 3.2.
The significant improvement in the predictive ability of this average implied volatility is
probably due to the fact that this average measure is calculated from the four nearest-the-
money options which are traded most actively and should therefore contain less
measurement error caused by “stale” prices. Chapter 6 will thoroughly investigate the

relative predictive power of different implied volatility estimators across different strike

15

For exampie, the implied volatility, which Knight-Ridder Financial Company sells to the market, is
actually calculated using the two nearest-the-money calls and the two nearest-the-money puts. Jorion
(1995), however, utilized an average implied volatility calculated from one at-the-money call and one at-
the-money put.
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prices as well as this average measure. As will be shown in Chapter 6, the four components
of this average implied volatility yield much better forecast than implied volatilities
calculated from options with low strike prices but worse than some of the implied
volatilities calculated from options with relatively higher strike prices. This may partially
explain why C&F obtains much lower measures of the predictive power of implied volatility
while Jorion (1995) finds the higher predictive power. Note also that B, is often
significantly different from zero in Table 3.2 but not in Table 3.3 indicating more severe

measurement error effect in Table 3.2.

3.4.2. Measurement Error Test

Next, whether there is measurement error in the data set is tested by utilizing a
procedure proposed by Hausman (1978). In the test, the first step is to regress implied
volatility on one or more instrumental variables, then the residual from this first regression,
call it U,, is inserted as a third independent variable in the OLS estimation of Equation 3.2.
The null hypothesis of zero measurement error implies a zero coefficient for U,. If there is
measurement error in implied volatility measure, which is not repeated in the instrumental
variable(s), then a negative coefficient is expected.

The results are robust across different instrumental variables or different
combination of instrumental variables. To save space, I only report the results when utilizing
a single instrumental variable which is the average implied volatility calculated from the two
nearest-the-money calls and the two nearest-the-money puts observed ten trading days

before day t (O;sp4 ,.10). Table 3.4 shows the estimation of the second-step regressions based
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on observations on individual implied volatilities while Table 3.5 shows that based on an
average implied volatility. In both tables, the instrumental variable is Oisp, .10 As Table
3.4 shows, coefficients of U, are negative in all the regressions and significantly different
from zero in all but group 4, rejecting the no-measurement-error null. Note that this test not
only rejects the null that the implied volatility is free of measurement error but also indicates
that the measurement errors in Oy, ; , and the instrumental variable (Gispg, ..10) are at least
partially independent. In other words, while it is still possible that 1, and 1, ;o are correlated
due to a long-lived measurement error, it is clear that at least part of the measurement error
is short-lived so that its effects can be eliminated using instrumental variables estimation.
However, in Table 3.5, although the coefficients of U, are all negative, they are only
significant for group 1, group 2 and the overall sample including 1987 market crash,
implying that the average implied volatility contains relatively less measurement error than

individual implied volatilities.

3.4.3 Instrumental Variables Estimation

As shown in Tables 3.2 and 3.3 and confirmed by the measurement error tests
reported in Tables 3.4 and 3.5, in general, there is less measurement error in the average
implied volatility calculated from the two nearest-the-money calls and the two nearest-the-
money puts than a randomly chosen individual implied volatility. Compared with C&F’s
data, the measurement error here should be less since the futures and options cease trading
at roughly the same time and arbitrage is easier. Consistent with this view, I find that

implied volatility has considerable forecasting ability (and that historical volatility has little
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or less incremental predictive power) while C&F do not. Nonetheless, it remains the case
that I consistently find in Tables 3.2 & 3.3 that B,>0 , B,<1 and B,>o0> and that often
these differences are significant. I will next examine whether the measurement error which
remains in the data is responsible for these deviations of the estimated B parameters from
their theoretical values.

To correct for the bias caused by this measurement error, I estimate Equation 3.2
(without the residual term) by the instrumental variables estimation with Gygp, .10 as the
instrumental variable. The results are presented in Tables 3.6 and 3.7 where Table 3.6 is
based on all the individual implied volatilities and Table 3.7 is based on the average implied
volatility. Again the analyses are stratified by option expiration groups and are reported
with and without the 1987 crash. Comparing the coefficients in Table 3.6 with those in
Table 3.2, one observes that in all ten regressions, the instrumental variables estimates of
B, are higher than the OLS estimates, and the instrumental variables estimates of B, and B,
are smaller. In fact, in seven out of the ten regressions in Table 3.6, the coefficients of
implied volatility are not significantly different from one. Consider, for instance, the OLS
and instrumental variables estimates of Equation 3.2 for group 1, i.e., a forecast horizon of
10 to 36 trading days in Panel A in both Tables 3.2 and 3.6. While the OLS estimate of B,
is 0.3713, the instrumental variables estimate of 3, is 0.8535, a little bit smaller than one but
not significantly different from one. While the OLS estimate of B, is 0.0502, positive and
significantly different from zero, the instrumental variables estimate of B, is -0.0059,
smaller and not significantly different from zero. Finally, the estimate of 3, is reduced from

0.1589 to -0.0271 with the former significantly different from zero and the latter not.
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All the three changes are what one would expect if 05, ; , measures the market’s true
expectation with error and the three changes occur to different degrees in all ten regressions.
If the market’s true expectation is an unbiased and informationally efficient estimator of the
future actual volatility, in all of the regressions reported in Panel A of Table 3.6, B, should
be insignificantly different from zero and B, should be insignificantly different from one.
With just a few exceptions these predictions are met. The exceptions occur in the overall
sample and group 2 in Panel A and the overall sample, group 3, and group 4 in Panel B but
again estimates of B, and f3, fall and those of B, rise. A comparison of Table 3.7 with Table
3.3 shows a similar pattern. Note that in terms of the instrumental variable estimations, the
results of individual implied volatilities in Table 3.6 are quite similar to those of the average
implied volatility in Tables 3.7.

In summary, the results in this essay confirm the hypothesis that implied volatility
is only a rough measure of the market’s true expectation and accordingly implied volatility
would sometimes appear to be an informationally inefficient predictor of actual volatility.
While it is possible that more long-lived differences exist, many of the differences between
implied volatility and the market’s true volatility expectation appear to be due to short-lived
measurement error attributable to such factors as bid-ask spreads, minimum price
increments, and non-synchronous prices. When I correct for these short-lived measurement
errors by utilizing the average implied volatility observed ten trading days before day t as
the instrumental variable, the evidence in most cases no longer rejects the hypothesis that

implied volatility represents the market’s best forecast of future volatility.
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3.5 Conclusions

While this chapter contains a number of findings regarding implied-volatility and
historical volatility forecasts of the market volatility, the most important findings are these.
One, in contrast to some of the previous studies, I find that implied volatility contains
considerable information regarding future realized market volatility. Certainly, implied
volatility is a much better estimator of realized volatility than historical volatility. I argue
that Canina & Figlewski’s (1993) (C&F) finding to the contrary was probably due to two
facts: (1) their measures of implied volatility contained considerable measurement error (as
they themselves hypothesize) because of the attributes of S&P 100 index options and C&F’s
using of individual options (rather than an average), and (2) their data period was quite short
(given the many overlapping observations) and excluded the 1987 crash.

Two, results are sensitive to (1) the forecast horizon, (2) whether or not the data set
includes the 1987 crash, (3) the presence of measurement error, and (4) whether or not one
controls for the overlaps in realized volatility observations. Measurement error in implied
volatility estimates seriously biases the parameter estimates in ordinary least squares
regressions while the overlap in realized volatility observations seriously biases the standard
error estimates. Furthermore, the measurement error effect is generally more severe in an
individual implied volatility calculated from a randomly chosen option than in the average
implied volatility calculated from the four nearest-the-money options.

Three, there is no evidence that the market’s forecasts of future volatility are
irrational or fail to correctly impound all available information. Like virtually all previous

studies I find that when ex-post realized volatility is regressed on implied volatility utilizing
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ordinary least squares, the coefficient of implied volatility is less than one and the intercept
is positive - rejecting the theory that implied volatility represents an unbiased and efficient
forecast of actual volatility. However, I find that this is due to deviations of implied
volatility from the market’s true volatility expectations - deviations possibly caused by non-
synchronous price observations, bid-ask spreads, and minimum price increments. When I
control for these deviations or measurement errors by instrumental variables estimation, the
parameter estimates are, in most cases, consistent with the hypothesis that implied volatility

represents the market’s best forecast of future volatility.
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Chapter 4

Essay II: The Implied Volatility Smile and Option Market Efficiency

4.1 Introduction

Numerous studies have documented the phenomenon known as the implied volatility
smile which refers to the cross-sectional variation in implied volatility across options with
the same expiration date but different strike prices. That is, at a given time, different strike
prices yield different implied volatilities. Note that if the option pricing model is correct
and the market is efficient, then, for options with the same maturity date observed at the
same time, implied volatilities should be the same regardless of different strike prices and
therefore there should be no smile. The prevailing explanation for the smile is that the
Black-Scholes option pricing model is incorrect leading researchers to develop more
complicated option pricing models. But none of the new models has successfully explained
the smile motivating me to search for an alternative explanation.

In this second essay, I test an alternative explanation for the smile which is that the
smile exists because investors prefer to be long or short the options with certain strike
prices. For instance, stock market investors may prefer to buy far out-of-the-money puts
to protect against a market decline. This would tend to drive up the implied volatilities for
these out-of-the-money puts. In a perfect market, arbitrage would tend to eliminate these
differences in implied volatilities. But the market may not be perfect. For example, Canina

and Figlewski (1993) attribute their finding of low predictive power of implied volatility
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calculated from OEX options to, among other factors, arbitrage restrictions.

If the smile is caused by investors’ preferences for certain strike prices and these
differences are not eliminated by arbitrage, a trading strategy of selling those options with
high implied volatilities and simultaneously buying those options with low implied
volatilities in a delta-neutral ratio should make money over time. In other words, the
existence of a smile may suggest a market inefficiency. In this essay, I explore the profits
to a strategy of buying calls (puts) with low implied volatility and writing calls (puts) with
high implied volatility in a ratio to make the position delta neutral. If the strategy does not
make excess profits over time, one cannot reject the market efficiency hypothesis and the
smile may reflect a misspecification of the option pricing model. But if the strategy makes
excess profits, then one cannot reject Black-Scholes model and the smile would likely
represent some market inefficiency, such as arbitrage restrictions.

The evidence in this essay shows that the strategy based on implied volatility
differences can make significant profits over time especially for positions involving put
options, suggesting that market inefficiency may be the cause of the implied volatility smile.
In addition, the results in this essay suggest further tests to isolate the exact causes of the
smile in the S&P 500.ﬁ1tures option market.

The rest of this essay is organized as follows. The next section briefly reviews the
literature on the implied volatility smile. Section 4.3 discusses the methodology and the
hypothesis. Empirical results are presented in Section 4.4. Section 4.5 summarizes the

findings and suggests the further study for this issue.



4.2 Literature Review

Several previous studies have documented the implied volatility smile in different
markets. They generally find that implied volatility is greater for out-of-the-money and in-
the-money options than for at-the-money options, i.e., a symmetric U shaped implied
volatility across different strike prices. However, Rubinstein (1994) and Dumas, Fleming
and Whaley (1998) indicated that ‘smirk’ is a more appropriate description of the pricing
bias in equity index options since 1987, i.e., implied volatility decreases monotonically as
the strike price increases. In this essay, I find a similar pattern in the implied volatility for
options on S&P 500 futures as will be discussed in Subsection 4.3.1.

One prevailing explanation for the smile is that the Black-Scholes (1973) (BS
hereafter) model is wrong due to some incorrect assumptions. For example, BS assumes
a constant or a deterministic volatility while it might be stochastic, or BS assumes log-
normal returns and they might not be log-normal, or BS assumes European options and they
might be American options, or BS assumes no (or continuous) dividend payments and the
underlying asset may pay discrete dividends. If one of these is the cause, then, if implied
volatility were calculated using the correct formula, there would be no smile or smirk, that
is implied volatility would be the same for all strike prices. Also there would be no
consistent profits to a trading strategy of selling the options with high (BS) implied
volatilities and simultaneously buying options with low (BS) implied volatilities.

Several previous empirical studies, such as Merton (1980), French and Roll (1986),
and Schwert and Seguin (1990), claimed that the BS model’s constant volatility and

normality assumptions were not supported by the evidence. Utilizing transaction prices
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from options on S&P 500 futures from January 28, 1983 through December 30, 1983,
Whaley (1986) tested the American option pricing model and found that both a moneyness
bias and a maturity bias exist and that a riskless hedging strategy using the American (also
European) futures option pricing models generates abnormal risk-adjusted rates of return
after the transaction costs paid by floor traders. The results rejected the joint hypothesis that
the American futures option pricing models are correctly specified and that the S&P 500
futures option market is efficient for the one year sample.

Attempts at reconciling the option pricing theory with the implied volatility smile
have mostly centered around two approaches. One consists of jump-diffusion models, for
example, Jarrow and Rosenfeld (1984), Amin (1993), and Bates (1996), which augment the
BS return distribution with a Poisson-driven jump process. The other consists of the
stochastic volatility models which extend the BS model by allowing the volatility of the
return process to evolve randomly over time, such as Hull and White (1987), Wiggins
(1987), Amin and Ng (1993), and Heston (1993). However, Heynen (1994) finds that the
observed smile pattern is inconsistent with various stochastic volatility models while Das
and Sundaram (1999) find that neither jump-diffusion models nor stochastic volatility
models constitute an adequate explanation for the empirical evidence. The fact that these
new models can not explain the implied volatility smile motivates me to search for an

alternative way to explain the volatility smile.

4.3 Methodology

4.3.1 The Implied Volatility Smile for Options on S&P 500 Futures

42



Figure 4.1a illustrates the implied volatility smile or smirk for options on S&P 500
futures with 10 to 99 trading days to maturity for the sample including the 1987 market
crash, while Figure 4.1b shows the same graphs for the sample excluding the 1987 market
crash. Both figures display a cross-sectional pattern of implied volatility similar to that
reported in Rubinstein (1994) and Dumas, Fleming and Whaley (1998). As discussed in
Section 2.1, on each day t, up to 32 different options (calls and puts) with the same
expiration date are observed and utilized, i.e., eight in-the-money calls, eight out-of-the
money calls, eight in-the-money puts, and eight out-of-the-money puts. Each dot (for a put)
or diamond (for a call) in Figures 4.1a & 4.1b represents the mean “moneyness” and the
mean implied volatility for one of these 32 different options over the period from January
28, 1983 to April 30, 1998. The “moneyness” is defined as (K/F - 1) where K stands for the
strike price and F stands for the underlying futures price. The strike prices (K) for options
on S&P 500 futures are set up in increments of 5 points. The mean implied volatility is
reported on the Y axis while the mean moneyness (K/F -1) is reported on the X axis. For
example, the farthest right diamond shows the mean moneyness and the mean implied
volatility for the eighth from-the-money, but out-of-the-money, call. Similarly, the farthest
left dot shows the mean moneyness and the mean implied volatility for the eighth from-the-
money, but out-of-the-money, put. Both figures show that as strike price (moneyness)
increases, implied volatilities for both calls and puts, on average, decline monotonically up
to a certain level of moneyness and then go back up. Note that implied volatilities for puts
and calls with the same strike price are virtually the same except for high strike prices where

those for calls are lower.
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4.3.2. Hypothesis and Methodology

As discussed in Sections 4.1 and 4.2, the implied volatility smile may reflect an
incorrect option pricing model because of wrong assumptions, or it may reflect a market
inefficiency. This essay tests a trading strategy in which one sells the option with the
highest implied volatility and buys the option with the lowest implied volatility among the
16 near-the-money calls (or the 16 near-the-money puts) with the same time to expiration
on a given day. The hypothesis is that if this strategy consistently makes abnormal profits
over time, the smile may reflect a market inefficiency - not a misspecification of the option
pricing model. On the other hand, if the strategy does not make money over time, then the
smile is not a reflection of the market inefficiency and may occur because the option pricing
model is incorrect.

Under the hypothesis that the smile may reflect a market inefficiency, options with
some strike prices may be overvalued while options with some other strike prices may be
undervalued. Since the price of a call (or a put) is positively related to the volatility of the
underlying asset’s return, an option with a high implied volatility may be overpriced while
an option with a low implied volatility may be underpriced. Following the simple rule of
“buying low and selling high”, one could buy the option with the lower implied volatility
and sell the option with the higher implied volatility. For instance, in terms of options on
S&P 500 futures as displayed in Figures 4.1a and 4.1b, one would (on average) sell the
farthest out-of-the-money put or the farthest in-the-money call and (on average) buy the

relatively far in-the-money put or the relatively far out-of-the-money call among the 32
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options considered.'® Here, two specific trading strategies are plausible!” One involves
buying the call with the lowest implied volatility and simultaneously selling the call with
the highest implied volatility. Similarly, the other involves buying the put with the lowest
implied volatility and simultaneously selling the put with the highest implied volatility.
Many option traders use a delta-neutral trading strategy in an attempt to make their
positions relatively immune to changes in the underlying asset price.'® I also employ such
a strategy in order to minimize the risk. The delta of a portfolio of derivative securities is
defined as the sensitivity of the portfolio value to the underlying asset price or the
theoretical dollar change in the portfolio value for a one dollar change in the underlying
asset price. If the delta of a portfolio is zero, the portfolio is referred to as delta neutral. As
we know, the value of a derivative security such as a call or a put depends on the value of
its underlying asset. Since the price of a financial asset such as the S&P 500 futures
changes constantly, the price of a derivative on this financial asset will also change. But the

value of a delta neutral portfolio should not change with a small change in the price of its

16

Of course, Figures 4.1a and 4.1b represent the means over more than 15 years and the smiles on a given
day may not look exactly like this. In implementing the strategy, I only consider the positions which sell
in-the-money call (out-of-the-money put) and buy out-of-the-money call (in-the-money put).
17

One might suggest that there are four strategies with each combination of buying and selling puts or calls.
But actually, only two combinations will work because of the requirement for the delta neutrality of the
positions. For example, buying a call with the lower implied volatility and seiling a put with the higher
implied volatility will never make the position delta neutral.

18
Practitioners also use gamma-hedging against changes in delta and vega-hedging against changes in
volatility or a combination of them. However, in most cases, the benefits of the gamma-hedging and the
vega-hedging are small. Hull and White (1987b) compares the relative performance of various hedging
schemes. They find that the Delta-gamma hedging performs well when the traded option has a constant
implied volatility and a short time to maturity, but it can perform far worse than Delta-hedging in other
situations.
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underlying asset. It is important to realize that a position only remains delta neutral for
relatively small changes in the underlying asset’s price and for a relatively short period of
time since delta changes with both a change in the underlying asset price and passage of
time. Consequently, when delta hedging is implemented, the hedged position should be
adjusted, or rebalanced periodically. However, since rebalancing positions could be very
expensive because of the transaction costs required and because practices vary, I do not

rebalance the positions in the analysis.

For options on S&P 500 futures, deltas are calculated as follows:

call delta = o« . e ®*TN@d, >0
OF
ap 4.1)
put delta = — = e *T[N@,) - 1] <0
OF
where
P a?
d =ln(-K-) + TT
1 oﬁ

and the variables are as defined in Subsection 2.2.1.

Specifically, the delta-neutral strategy proceeds as follows. On a given day, first
identify the call with the highest implied volatility (Cy) and the call with the lowest implied
volatility (C,) among the 16 near-the-money calls ' with different strike prices but the same

time to expiration. If the difference between the highest and the lowest implied volatilities

19
To reduce measurement error, I actually only search among those options whose strike prices are within
10% from the underlying futures price, i.e. the absolute value of the moneyness less or equal to 10%.



is greater than a chosen threshold,?® 3% , buy one contract of the call with the lowest
implied volatility and simultaneously sell a number of contracts of the call with the highest
implied volatility. The number of the contracts sold is Ng. = call delta, /call delta,; , where
L stands for the low implied volatility option and H stands for the high implied volatility
option. Note that N is actually equal to N(d; )/N(d;;) as defined in Equation 4.1. Since the

value of this call position is W=C,_ - Ngc Cy, the delta of the position is

c oc, dCq
call position delta = —— = — - No —
oF oF oF
call delta, 4.2)
= call del - (——————) call del
" Gl 2y

Similarly, on a given day, buy one contract of the put with the lowest implied volatility and
simultaneously sell a number of contracts of the put with the highest implied volatility with

the number sold Ng; = put delta; /put delta;; . The delta of the put position (P, - Ngp Py, is,

t position delta e . P N P
ut position delta = —— = —= - —
put P oF oF *aF
ut del 4.3
= putdelta, - (w) putdelta, @.3)
put delta,
=0

Again, note that Ng; is actually equal to (N(dy)-1) / (N(dy)-1).
For the data on options on S&P 500 futures, more than 95% of the delta neutral

positions involving calls entail a negative net investment. That is, one receives more money

20
I analyze only the positions in which the difference between the high implied volatility and the low implied
volatility is less or equal to 50%.
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selling the high implied volatility call than one pays to buy the low implied volatility call.
Conversely, more than 95% of the delta neutral positions involving puts incur a positive net
investment. To facilitate the exposition, I only analyze call positions with a negative net
investment and put positions with a positive net investment.?! For ease of interpretation, I
also standardize the net investments to -$1 for call delta neutral positions and $1 for put
delta neutral positions. The hedged positions are held for one, five, or ten trading days or
until the options’ maturity and then are closed out. This process is repeated for each of the
four expiration dates (in each of the four groups) on every trading day from January 28,
1983 through April 30, 1998.

For a bench mark, I also calculate the profits to a simple strategy of randomly buying
calls (or puts) in the data set. A comparison of profits (losses) to this randomly buying
strategy with those of the strategy based on implied volatility differences will further
illustrate the issue. For example, if the simple randomly buying strategy makes similar or
more profits than the strategy based on volatility differences, one could not make any
conclusions about the hypothesis on implied volatility. These “benchmark™ positions are
also held for one, five, or ten trading days or until the option’s expiration and are also

standardized to $1.

4.4 Empirical Results

4.4.1 The Simple Strategy of Randomly Buying Options

21
It would be difficult to interpret the results if one includes both the positive and the negative net
investments. Suppose a $1 investment makes 5% and a -$1 investment makes 2%. Since the net
investment is zero, the return would be infinitive.
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To better understand the effectiveness of the trading strategy based on implied
volatility differences, let us first consider the profits (losses) to a simple strategy of
randomly buying calls (puts) in the S&P 500 futures option market. One would expect that
there are two factors affecting the results. First, implied volatility was generally above
realized volatility as shown in Table 2.1 as well as Figures 4.1a and 4.1b. This implies that
both calls and puts are generally overpriced and that if holding an option to expiration, one
would generally makes money by writing either a call or a put. Secondly, the sample period
of 1983 to 1998 was generally a long bull market. In 1983, the S&P 500 was around 200
and it gradually increased to around 1200 in 1998. This would implied that one would
generally make money buying calls and writing puts.

The results of investing $1 and holding for one, five or ten trading days or to the
option’s maturity are presented in Table 4.1 where Panel A is for calls and Panel B is for
puts for both samples of including and excluding the 1987 market crash. Group 1 contains
options maturing in 10 to 36 trading days and group 2 contains the options which mature
next. As Table 4.1 shows, on average, over the 1983-1998 data period, one could profit by
buying calls and/or writing puts. This holds for all four option groups, all four holding
periods, and both the samples of including and excluding the 1987 market crash. In general,
the average profits increase as the holding period gets longer. For example, for the nearest-
to-expiration calls including the 1987 market crash, the average profits are $0.1758 (or
17.58%) on an investment of $1 over a holding period of ten trading days while the average
profits are $0.0152 (or 1.52%) for a one trading day holding period.

For puts, since the figures in Table 4.1 report the profits or losses on a $1 purchase,
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it is clear that profits could have been made by writing puts. As the table shows, it was, on
average, profitable to randomly write puts over the 1983-1998 period. The profits increase
as the holding period gets longer. For example, randomly writing $1 worth of the nearest-
to-expiration puts with the sample including the 1987 market crash and holding for 10
trading days make, on average, $0.2156 (or 21.56%) while writing $1 worth of the nearest-
to-expiration puts and holding for one trading day make, on average, $0.0233 (or 2.33%).
Note that the twenty percent profits in ten trading days by writing $1 worth of puts is a
pretty good return, though, of course, the standard deviations are quite large.?

In comparison, in most cases, the profits to writing a put exceed the profits to buying
a call. Two underlying factors mentioned earlier in this subsection may explain the results.
First, a call has a positive delta and a put has a negative delta. Since the data period, 1983-
1998, roughly coincides with the great bull market, the S&P 500 futures, in general,
increases over time which causes call price increasing and put price decreasing over time.
This factor makes both buying a call and writing a put profitable. Second, according to
Table 2.1, implied volatility was, on average, greater than realized volatility over the data
period which means that in general both calls and puts were overpriced. If AF =0 ( no
change in the underlying futures price), then, on average, one should have been able to make
money by writing both puts and calls. Note that for puts both factors work in the same
direction, implying larger profits for writing puts. However, for calls these two forces

offset. This would explain why the profits to writing puts exceed the profits to buying calls.

22
Note that the standard deviation generally declines as the holding period gets shorter and follows the
pattern expected if daily profits are independent, i.e. standard deviation for a ten trading day holding
period is roughly the square root of 10 times as large as that for a one trading day holding period.
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4.4.2 Delta Neutral Strategy Based on Implied Volatility Differences

Table 4.1 demonstrates that, in general, calls were underpriced and puts were
overpriced. This, however, is not the purpose of this essay and serves only as a benchmark
for the following analysis. What I am interested in is to show that some calls (puts) are
overpriced relative to other calls (puts) with different strike prices but the same time to
maturity implying that the smile may reflect a market inefficiency.

Table 4.2 reports the profits to the strategy of buying options with the lowest implied
volatility and simultaneously selling options with the highest implied volatility in a delta
neutral ratio. Panel A reports results for call positions and Panel B for put positions. In
both panels, I report separately the results including and excluding the 1987 market crash.
The holding periods considered are one, five, or ten trading days, or to the options’ maturity
respectively. As explained above, the net investment is -$1 for a position involving calls
and $1 for a position involving puts. For calls, the results are mixed. Significant positive
mean profits are observed for group 1 with a holding period of one trading day and for
group 2 with holding periods of one and five trading days. For example, the average profits
is $0.0194 for a -$1 investment in a position involving the second nearest-to-expiration calls
with a five-trading-day holding period. The profits of this call position are quite impressive
when compared with those in Table 4.1. For example, the average profit to randomly
investing $1 in call options in group 2 with a five-trading-day holding period are $0.0542.
That means if one randomly writes these calls with a net investment of -$1 and hold for five
trading days, he / she will, on average, lose $0.0542. In contrast, on average, the strategy

based on volatility differences would make $0.0194. However, the profits for many of the
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delta neutral positions involving calls are either negative or are not significant especially for
the longer holding periods.

Looking next at the results of the trading strategy based on volatility differences
when applied to puts, I observe that the average profits are all positive and significantly
different from zero ranging from $0.0135 to $0.8847 with a $1 investment for different
groups and different holding periods as well as for both the samples of including and
excluding the 1987 market crash. For instance, the average profits are $0.5624 to investing
$1 in a delta neutral position involving the nearest-to-expiration puts with a holding period
of 10 trading days for the sample including the 1987 market crash. These profits are even
more impressive when compared with those of the simple strategy of randomly buying a
put. From Table 4.1, we know that if we randomly invest $1 in a nearest-to-expiration put
and hold for 10 trading days, we would have, on average, lost $0.2156 while, on average,
the trading strategy based on volatility differences makes $0.5624. The same pattern holds
for all the other expiration groups and all the other holding periods as well as for both the
samples including and excluding the 1987 market crash.

To further examine the performance of the delta neutral strategy based on volatility
difference relative to that of the randomly buying strategy, I reports the abnormal profits to
the delta neutral strategy in Table 4.3 in which Panel A is for positions involving calls and
Panel B for positions involving puts. The abnormal profits are defined as the difference
between the profits from investing -$1 ($1) in a delta neutral call (put) position as reported
in Table 4.2 and the average profits from investing -$1 ($1) in each of the available calls

(puts) with the same expiration date observed on the same day. All the figures in Table 4.3
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are greatly improved in comparison with those in Table 4.2, i.e., the profits are bigger and
losses are smaller. For instance, the profits for positions involving calls in groups 2 with
a holding period of five trading days are 0.0803 while those in Table 4.2 are 0.0194.
Actually, more significantly positive profits are observed for call positions in Table 4.3 than
in Table 4.2. However, the losses for groups 1 and 2 for holding until expiration are still
significantly different from zero. The abnormal profits to the delta neutral strategy
involving puts are all significantly positive and are much larger than the corresponding ones
in Table 4.2.

Up to now, the analyses in this essay have ignored the transaction costs. For options
on S&P 500 futures, the transaction costs include the clearing fee for floor traders and
include commission and bid-ask spreads for other investors. Table 4.4 reports the profits
or losses for the delta neutral positions for the sample including the 1987 market crash after
transaction costs of $10 per contract as utilized in Whaley (1986).2 The total transaction
costs are restricted to between $50 and $100. For all the call positions, the strategy based
on implied volatility difference lose money. However, for the put positions with holding
periods of 5, or 10 trading days or until expiration, abnormal profits are still large and

significant. For example, the profits from the hedged position involving puts in group 1

3
Whaley (1986) assumed $10 transaction costs per coatract for a floor trader. Actually, the clearing fee
paid by floor traders is on an order of §1.50 per contract. The transaction costs in this market are quoted
on a “round-turn” basis. Since commission rates are negotiated between each customer and his or her
broker, it is difficult to assess the exact representative commission charges. Brokers usually charge a lump
sum plus per contract fee. For example, E-trade charges its Internet customers $20 plus $1.75 per contract
with minimum commission charge of $29.95. In this essay, the average mumber of contracts for the call
positions is 1.2 and that of put positions is 8. Therefore, the $10 per contract overestimates the transaction
costs incurred by floor traders or large institutional investors but may underestimate those incurred by
individual investors.
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with a holding period of ten trading days are $0.5110 or 51.10%. But for positions with a
holding period of one trading day, transaction costs wipe out all the potential profits. In
summary, in the options on S&P 500 futures market, large average profits could be made
by floor traders or large institutional investors with a strategy of buying options with low
implied volatility and simultaneously selling options with high implied volatility, suggesting
that the implied volatility smile may reflect a market inefficiency not a misspecification of

option pricing formula.

4.4.3 Reasons for the High Risk of Delta Neutral Positions

Since the option positions in Tables 4.2, 4.3 and 4.4 are delta neutral while those in
Table 4.1 are not, one would expect the standard deviations of profits to be consistently
smaller. While the standard deviations of positions involving calls in Table 4.2 are smaller
than those in Table 4.1, the standard deviations of most of the positions involving puts are
larger. For example, the standard deviation of profits when investing in the nearest-to-
expiration puts including the 1987 market crash with a holding period of five trading days
reported in Table 4.2 is $1.9096 while that based on randomly writing puts reported in Table
4.1 is $1.4837. Why is the risk of the delta neutral strategy sometimes higher than that for
the random investment especially for the put positions? One possibility is that, while the
positions are hedged against small changes in the underlying futures, larger price changes
may occur - particularly over the longer horizons.

A second possibility is that this reflects noise in the option prices which will be

larger for the hedged position since it involves more options and also options with extreme
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implied volatilities which are usually quite far away from the money. Noise will lead to a
higher variance for the spread position since more options are involved for each position.
Suppose, for instance, a spread position involves buying a contract of one option and selling
a contract of another. The variance of the noise on this position should be roughly twice
that on a contract of a single option. Since the delta neutral strategy involves buying one
contract of the option with the lowest implied volatility and simultaneously selling a number
of contracts of the option with the highest implied volatility, the variance of this hedged
position should be larger than that of a contract of a single option and should also depend
on the hedged ratio (N for a call position and N, for a put position). Specifically, for
example, the variance of a hedged call position would be roughly {1+(Ng.)*} times that of
a single option. The ratios are, on average, around 0.2 for call positions and around 7 for
put positions - about 35 times different. Therefore, both variances of the profits (losses) for
the hedged call position and the hedged put position should be larger than the variance of
the profits (losses) for a single option. In addition, the variance of the profits (losses) for
hedged put position should be much higher than for hedged call position. That may explain
why the standard deviations are much higher for the hedged put positions than for the

hedged call positions reported in Table 4.2.

4.5 Summary

This essay shows that the smile or smirk exists in options on S&P 500 futures
market. In particular, the implied volatility decreases monotonically and eventually goes

back up as strike price increases. The prevailing explanation for the smile is that the Black-
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Scholes option pricing model is incorrect because of wrong assumptions leading researchers
to develop more complicated models. But, none of these new models has successfully
explained the smile motivating me to search for an altemative explanation.

This second essay tests an alternative explanation for the smile that the smile exists
because of the inefficiency of the option market. The results utilizing options on S&P 500
futures show that consistent profits can be made from a delta neutral trading strategy of
buying low implied volatility put options and simultaneously selling high implied volatility
put options at least for floor traders and large institutional investors, suggesting that option
market inefficiency is at least partially responsible for the implied volatility smile.
However, I do not observe the high profitability for trades involving calls.

The results suggest further tests to identify the sources of the profits to the trading
strategy based on implied volatility difference and to explain the difference in profits
between calls and puts and the large variance of the profits. This may also help isolate the
exact causes of the smile. According to the BS model, the profits / losses on an option
position can be attributed to (1) changes in the underlying futures price, (2) changes in
volatility, (3) passage of time, (4) interest rate change, and (5) residuals (noise). Based on
the total differentiation, one may explore what proportion of the variance of profits / losses

on the trades can be attributed to each of these.
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Chapter 5§

Essay III: Which Implied Volatilities are the Most Informative?

5.1 Introduction

If the option pricing model is correct and the market is efficient, the implied
volatility at time t should represent the market’s best forecast of future volatility over the
remaining life of the option. However, as discussed in Chapter 4, implied volatility varies
between calls and puts and across different strike prices. That is at time t there are, not one,
but a number of implied volatilities. Which, then, of these implied volatilities should one
utilize in forecasting future volatility? One popular procedure is to use the implied volatility
calculated from a single at-the-money option reflecting the wide spread belief that at-the-
money option is the most sensitive to volatility change, and is therefore the most
informative. Another procedure is to utilize an average implied volatility calculated from
several, often two or four, near-the-money options which is supposed to reduce
measurement error.

Several previous studies, such as Beckers (1981), Gemmill (1986), Feinstein (1989)
and Turvey (1990), compared forecasting ability of different average implied volatilities
along with the implied volatility calculated from an at-the-money option. But no one has
systematically compared the forecasting ability of individual implied volatilities across
different options (calls or puts with different strike prices). In addition, these previous

studies generally suffered from limited data sets and therefore lacked degrees of freedom.
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In these previous studies, the average implied volatilities were usually calculated from only
a few near-the-money options. Although their results were mixed, most of them leaned
towards the implied volatility calculated from an at-the-money option. Is the implied
volatility calculated from an at-the-money option really the most informative? Do we miss
some important information by ignoring all other calls or puts? Can we obtain a better
volatility forecast by utilizing other in- or out-of-the money options? Does an average
scheme effectively reduce measurement error?

This third essay examines which of the individual implied volatilities (calculated
from calls or puts with different strike prices) yields the best forecast for the future realized
volatilities of the S&P 500 futures. I find, contrary to the general belief and practice, that
the implied volatility calculated from an at-the-money option is not the most informative
among all individual implied volatilities. Up to a certain level of strike price, the implied
volatilities calculated from calls and puts with relatively higher strike prices, i.e. out-of-the-
money calls and in-the-money-puts, seem to have more predictive power.

The remainder of this essay is organized as follows. Section 5.2 reviews the
previous studies on comparing the relative predictive power of different implied volatility
averages. Section 5.3 discusses the data and methodology. The preliminary empirical

results are reported in Section 5.4. A brief summary in Section 5.5 concludes the chapter.

5.2 Literature Review
As illustrated in Chapter 4, implied volatility differs between calls and puts and

across different strike prices. Which one then should we utilize in forecasting future
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volatility? In practice, people use either a single at-the-money option or several near-the-
money options to generate an implied volatility forecast. For instance, Lamoureux and
Lastrapes (1993), Kleidon and Whaley (1992), and Xu and Taylor (1994) utilized a single
at-the-money option to obtain an implied volatility estimate for their studies. On the other
hand, Schmalensee and Trippi (1978), Jorion (1995), and Weber (1996) employed an
equally-weighted average of implied volatilities calculated from several near-the-money
options. Practitioners also tend to use an average implied volatility. For example, the
implied volatility, which Knight-Ridder Financial Company sells to investors, is actually
the mean of four implied volatilities calculated from the two nearest-the-money calls and
the two nearest-the-money puts. Bloomberg L. P. reports a weighted average call (put)
implied volatility calculated from the two “at-the-money’ calls (puts).

Researchers have also suggested several weighting schemes other than equal
weighting even though they have not been used very often in practice. The reasons for
giving different weights to different options are (1) that implied volatilities calculated from
different options are not equally sensitive to a volatility change, and (2) that different
options are not traded in the same frequency. As a result, the measurement error may vary
across different options. Latané and Rendleman (1976) suggested weighting the implied
volatilities of different options by the vega of the option, i.e., the first derivative of the
option’s price with respect to the standard deviation of the returns. Chiras and Manaster
(1978) argued that Latané-Rendleman estimator does not use proper weights since the
weights do not add to one and suggested weighting the implied standard deviation by the

price elasticity of the option with respect to its implied standard deviation. Beckers (1981)
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and Whaley (1982) suggested a quadratic loss function estimator which minimizes squared
errors of Black-Scholes option prices.

Several studies have compared the relative forecasting ability of different averaging
schemes as well as a couple of individual implied volatilities calculated from single options.
However, no previous studies have systematically compared the forecasting performance
of different individual implied volatilities between calls and puts and across different strike
prices. For example, using daily closing prices of equity call options over a 75 trading day
period from October 13, 1975 to January 23, 1976, Beckers (1981) compared the forecasting
ability of three measures of implied volatility: (1) an average in which the weights are based
on the option’s vega, (2) the minimized-squared-pricing-error implied volatility scheme, and
(3) the implied volatility calculated from the call with the highest vega. He found that the
implied volatility calculated from the call with the highest vega, which is usually at-the-
money, outperforms the other two measures. Note, however, that the data period was very
short.

Gemmill (1986) looked at 13 equity call options traded on the London Traded
Options Market. Utilizing monthly closing prices from May 1978 to July 1983, he
compared six different weighting schemes: equally weighted average of individual implied
volatilities, elasticity weights, minimized-squared-pricing-error measure, at-the-money call,
the furthest-from-the-money in-the-money call, and the furthest from-the-money out-of-the-
money call. He found that the implied volatility calculated from the furthest from-the-
money in-the-money call yields the best forecast of subsequent realized volatility but only

marginally better than historical volatility and that the furthest from-the-money out-of-the-
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money calls contained no information relevant to forecasting future volatility. As also
mentioned in his paper, the London traded option market was thin, the option and the
underlying stock prices were not simultaneously observed, and no account was taken of
dividends, leaving one skeptical of his results.

Feinstein (1989) conducted both a theoretical and an empirical studies on the
predictive power of implied volatility utilizing monthly data for options on S&P 500 futures
from June 1983 through December 1988. He compared seven measures: the nearest-out-of-
the-money call, an equally weighted average of individual implied volatilities, vega weights,
elasticity weights, the nearest-out-of-the-money put, an average of the nearest-out-of-the-
money call and the nearest-out-of-the-money put, and an intertemporal average of nearest-
out-of-the-money calls over five days. He pointed out that the BS model for at-the-money
options is well approximated by a linear function of volatility and found that the implied
volatility from the single nearest-out-of-the-money call was the most efficient and
dominated.

Using daily observations of put options on soybean and live cattle futures from
January 9, 1987, through December 30, 1988, Turvey (1990) evaluated four weighting
methods: an equally weighted average of individual implied volatilities calculated from
puts, an at-the-money put only, vega weights, and elasticity weights. He found that
weighting implied volatilities by vega, which usually puts the highest weight on at-the-
money options, provides better forecasts than the other three measures.

Corrado and Miller (1996) presented an econometric analysis of several efficient

methods utilized to estimate option implied volatilities. They found that simultaneous
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equation estimators and weighted average estimators have the same attainable variance
bound, and are equally efficient when used with appropriate weights. They further showed,
through a simulation example, that the average of implied volatilities calculated from an at-
the-money call and an at-the-money put is relatively more efficient.

In summary, these previous studies compared the relative forecasting ability of
different averaging schemes (including a couple of implied volatilities with each estimated
from a single option). Although their results were quite mixed, they leaned towards
favoring at-the-money options. But these previous studies generally suffered from limited
data sets because they utilized either monthly data or cross-sectional data over a short period
of time which did not give them enough degrees of freedom. Moreover, no one has yet
systematically compared the forecasting performance of implied volatility between calls and

puts and across different strike prices.

5.3 Data and Methodology
5.3.1 Data

In the options on S&P 500 futures market, as mentioned in Chapter 2, I utilize up
to 32 options, i.e., eight in-the-money calls, eight out-of-the-money calls, eight in-the-
money puts and eight out-of-the-money puts for each expiration date observed on the same
day. Options further away from the money are very thinly traded and therefore have fewer
observations and may contain considerable measurement error.

Table 5.1 reports the summary statistics for different implied volatility estimators,

the realized volatility, and a historical volatility measure for both the samples including and
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excluding the 1987 market crash over the period from January 28, 1983 through April 30,
1998. The means of these volatility measures are also graphed in Figures 4.1a and 4.1b.
In this table as well as other tables and figures, RLZSD represents the realized volatility
over the remaining life of an option on S&P 500 futures and HIS40 stands for the historical
volatility measured over the last 40 trading days. For an individual implied volatility, the
first three letters (ISD) stand for implied standard deviation, the fourth letter C (P)
represents a call (put) option, the fifth letter I (O) indicates an in-the-money (out-of-the-
money) option, and the last digit refers to the relative position of the option from the money.
For example, ISDCI3 represents the implied volatility calculated from a call option which
is the third from the money and in the money. Note that the strike prices are designated in
an incremental of five points.

The individual implied volatilities are listed according to their options’ strike prices
relative to the observed underlying futures prices with the lowest strike price listed first
followed by the second lowest strike price, etc. However, ISD4 is the equally weighted
average of the implied volatilities calculated from the two nearest-the-money calls and the
two nearest-the-money puts. As shown in Table 5.1 as well as Figures 4.1a and 4.1b, on
average, almost all the implied volatilities for both the samples including and excluding the
1987 market crash are higher than the subsequent realized volatility, indicating that implied
volatilities generally overestimate the realized volatility over the 1983-1998 period. For
instance, the mean of all the implied volatilities calculated from the eighth from-the-money
in-the-money calls in the overall sample including the 1987 market crash is 0.2114 while

that of subsequent realized volatility is 0.1444.
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On the other hand, the 40-trading-day historical volatility is, on average, only
slightly higher than the realized volatility but lower than the majority of the implied
volatility measures.* Figures 4.1a and 4.1b illustrate the means of various implied volatility
estimators and the mean moneyness for both the overall samples including and excluding
the 1987 market crash. Moneyness is defined as (K/F - 1) where K represents a strike price
and F stands for the underlying futures price. In fact, as Figures 4.1a and 4.1b show, on
average, implied volatility declines monotonically up to a certain strike price and then goes
back up as the strike price increases, a pattern similar to what described in Rubinstein

(1994) and Dumas, Fleming and Whaley (1998).

5.3.2 Simple Criteria for Comparing Forecasting Efficiency

To compare the forecasting efficiency of different implied volatility estimators, I
employ three commonly utilized criteria: Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), and mean absolute percentage error (MAPE).”® RMSE is simply

square root of the mean of the squared forecast errors:

N
- |L s - 1
RMSEi-\;i E‘ (Oprz. = Oggr. i’ (5.1)

2
Note that the historical volatility is not necessarily the lag of the realized volatility since the historical
volatility always covers the last 40 trading days while the period covered by realized volatility varies from
14 through 99 trading days. From Table 2.1, we can see that the means of the historical volatility are
higher than those of the realized volatility for Groups 1, 2 and 4 but lower for Group 3.

25
See Brailsford and Faff (1996).



where 0z, indicates one of the 34 different volatility estimators (32 individual implied
volatilities, one average implied volatility, and one historical volatility) and N; represents
the number of observations available for the volatility estimator ;. The MAE is computed

as the mean of the absolute values of forecast errors:

N
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Lastly, the MAPE is calculated as
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Among the three criteria, RMSE penalizes the forecast with large but infrequent errors. I

expect that RMSE is more sensitive to the 1987 market crash than MAE while MAPE is

least affected by the crash.

5.4 Empirical Results
5.4.1 Results Based on RMSE, MAE and MAPE

To compare the forecast efficiency of various implied volatility estimators, I first
evaluate them based on the three commonly used criteria defined above: the root mean
squared error (RMSE), the mean absolute error (MAE), and the mean absolute percentage
error (MAPE). The data set contains daily observations of the four nearest-to-expiration

options on S&P 500 futures with 10 to 99 trading days to expiration from January 28, 1983
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through April 30, 1998. ISD4 is the average of the volatilities calculated from the two
nearest-the-money calls and the two nearest-the-money puts and is a commonly used
measure for implied volatility because its four components are, in practice, referred to as
“at-the-money options”. As a benchmark for comparison, I also include a historical
volatility measured over the last 40 trading days, labeled as HIS40.

In total, there are 32 individual implied volatilities from calls or puts with different
strike prices, one average implied volatility (ISD4) and one historical volatility (HIS40).
RMSEs, MAEs and MAPEs along with their relative ranks for the 34 volatility measures
are reported in Table 5.2. Panel A reports the results for the sample including the 1987
market crash while Panel B reports those for the sample excluding the 1987 market crash.
The RMSE, MAE, and MAPE for each estimator are calculated by utilizing all available
observations in the data set. The number of observations available for each estimator is
reported in Table 5.1. The estimator with the lowest forecast error, therefore the most
efficient one, is given the rank of 1 while the estimator with the highest forecast error is
given a rank of 34.

Notice that all the RMSEs and MAEs in Panel A are higher than their counterparts
in Panel B while there is not much difference in MAPESs between Panel A and Panel B,
indicating the dominating effect of the 1987 market crash on RMSE or MAE. As mentioned
earlier, among the three criteria, RMSE penalizes the forecast with large but infrequent
errors. Since the volatilities are five to seven times higher during the 1987 market crash
period than in the other periods, it is not surprising that RMSEs are very sensitive to

whether including or excluding the 1987 market crash and MAEs and MAPEs are not. The
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results in Table 5.2 show just that. While the rankings for the sample including the 1987
market crash based on MAE and MAPE are similar to those for the sample excluding the
1987 market crash, the rankings between the two samples including and excluding the 1987
market crash based on RMSE are quite different especially for calls.

For a better illustration, the results in Table 5.2 are put into several graphs. Figures
5.1a and 5.1b illustrate the forecast efficiency based on RMSE for both the samples
including and excluding the 1987 market crash. The MAEs and MAPE:s for only the sample
including the 1987 market crash are graphed in Figures 5.2 and 5.3 since the 1987 market
crash does not affect these two measures very much. In Figures 5.1a, 5.1b, 5.2, and 5.3, the
X axis represents the mean moneyness and the Y axis measures either RMSE or MAE or
MAPE. There are several interesting points revealed in these figures. First, the forecasting
efficiency, in general, increases to a certain level and then eventually declines as the strike
price increases with the exception of Figure 5.1a. In other words, implied volatilities
calculated from out-of-the-money calls and in-the-money puts which are not very far from
the money have the lowest forecasting error based on all the three criteria: RMSE, MAE,
and MAPE. Second, the patterns of the forecast errors based on all three criteria match
precisely the smiles shown in Figures 4.1a and 4.1b, areverse J shape. Third, the historical
volatility (HIS40) calculated over the last 40 trading days yields better forecasts than some
options with very low strike prices but worse than other options especially those with
relatively higher strike prices except for RMSEs including 1987 market crash. Fourth, there
is no significant difference between calls and puts except for the high strike prices with the

forecast errors larger for puts again except for Figure 5.1a.
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5.4.2 Can an Average Implied Volatility Improve the Forecasting Performance?

As shown in Table 5.2 as well as in Figures 5.1a, 5.1b, 5.2 and 5.3, the implied
volatilities calculated from the four at-the-money options ISDCI1, ISDCO1, ISDPI1 and
ISDPOL1) clearly do not yield the best forecasts. They are better than the options with
relatively lower strike prices but worse than some of the options with relatively higher strike
prices. The average of these four implied volatility (ISD4) is also worse than some options
with higher strike prices and are not better than its components. This finding is important
since practitioners as well as finance researchers often obtain implied volatility estimate
from one of these four options or from the average of them. The results suggest that an
averaging scheme may not necessarily reduce the measurement error and improve the
forecasting efficiency.

Because the number of observations available varies across different volatility
estimators, the RMSEs (also the MAEs and the MAPE:) for different estimators are not
perfectly comparable. Note that ISD4 has more observations than any of its four
components since ISD4 is the average of the non-missing values of the four components
(ISDCI]1, ISDCO1, ISDPIi and ISDPO1). Suppose that ISD4 has an observation on a day
during the 1987 market crash but ISDCI1 does not. The measure for ISDCI1 would tend
to be better for this reason even if ISD4 may actually be better. To further test whether the
average implied volatility (ISD4) yields better forecast than its individual components, i.e.,
whether averaging reduces measurement error, I recalculated their RMSEs, MAEs, and
MAPEs when all the four at-the-money options with the same expiration date are observed

on a given day. That is the average measure and its components all have the same number
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of observations. The results are reported in Table 5.3. Based on all the three criteria:
RMSE, MAE, and MAPE and for both the samples including and excluding the 1987
market crash, the average implied volatility (ISD4) does not improve the forecast. The two
components with the higher strike price (the nearest-from-the-money, out-of-the-money call
and the nearest-from-the-money, in-the-money put) consistently demonstrate more
predictive power than the average implied volatility as well as the other two components
with the lower strike price.

However, there is no difference at all in the predictive power between a call and a
put with the same strike price, i.e. between ISDCI1 and ISDPO1 or between ISDCO1 and
ISDPI1. For instance, for the sample including the 1987 market crash, the RMSE for ISD4
is 0.0767 while the RMSEs for ISDCI1 and ISDPO1 with the lower strike price are both
0.0778 and the RMSEs for ISDCO1 and ISDPI1 are both 0.0757. In addition, I have tested
five more different average measures.?® Although I do not report them here for the sake of
saving space, the results for these five average measures and their individual components
reveal identical pattern as shown in Table 5.3. This suggests that averaging several implied
volatilities may not be effective in reducing measurement error and the choice of which

strike price to utilize is more important.

26

Specifically, I have tested the following average measures when all of their components are observed on
a given day:

ISD16 = the average of ISDCI1-ISDCI4, ISDCO1-ISDCO4, ISDPI1-ISDPI4, and ISDPO1-ISDPO4;
ISD8 = the average of ISDCI1, ISDCI2, ISDCO1, ISDCO2, ISDPI1, ISDPI2, ISDPO1, and ISDPO2;
ISDHS = the average of ISDCO1-ISDCO4 and ISDPI1-ISDPI4;

ISDHA4A = the average of ISDCO1, ISDCO2, ISDPI1, and ISDPI2; and

ISDH4B = the average of ISDCO3, ISDCO4, ISDPI3, and ISDPI4.

For the meaning of the symbols, please refer to the notes in Table 5.1.
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J.4.3 Are the Results Due Solely to the Bias of the Implied Volatility?

As shown in Chapter 3, implied volatilities are generally biased estimators of the
future realized volatility that is also confirmed in Table 5.1 as well as in Figures 4.1a and
4.1b. All the means of the 32 different implied volatility estimators are higher than that of
realized volatility (0.1444). It is also clear that the biases increase as the strike price
decreases. Consequently, an obvious question is whether the results in Table 5.2 merely
reflect the biases already documented in Table 5.1. In other words, if the results are just due
to the bias and one corrects for the bias by subtracting an appropriate amount from a implied
volatility estimator, then there would be no clear ranking.

In fact, the mean squared error (MSE) can be expressed in terms of the variance and

the squared bias of the forecast error. Specifically, one can decompose the MSE as follows:

MSE
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The results of this decomposition of the MSE into: (1) the variance of the forecast error
Var(Og; 7 - Oisp) and (2) the squared bias as well as their rankings are reported in Table 5.4
where Panel A and Panel B report the results for the samples including and excluding the

1987 market crash respectively. Note that RMSE is the square root of MSE so both of them
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will give exactly the same ranking. The decomposition for the sample including the 1987
market crash is also illustrated in Figure 5.4a and 5.4b where 5.4a is for calls and 5.4b for
puts. As shown in Figures 5.4a and 5.4b as well as in Table 5.4, the bias does exits and
decreases as the strike price increases but is relatively inconsequential except for very low
strike price options. MSE depends mostly on the variance of the forecast error. The ranking
by variance of the forecast error more or less resembles that by MSE. For example, in the
sample including the 1987 market crash, the implied volatility calculated from the eighth
in-the-money call (ISDCI8) has one of the largest biases, is ranked 33th in terms of MSE
before correcting the bias, and is still ranked the 33th after correcting the bias, i.e., in terms
of Var(og,, - 0;sp). Notice that the implied volatilities calculated from the options with low
strike prices are both biased and inefficient.

As shown in Table 5.4, the historical volatility has very small bias but one of the
largest variance of the forecast error. This means that even though the historical volatility
is the least biased estimator, it contains considerable noise and yields a much less efficient
forecast compared with the implied volatility in general as also reported in Chapter 3. Table
5.4 clearly shows that the findings in Table 5.2 are not solely due to the biases and the
variance of the forecast error actually plays a bigger role. That means even if one corrects
the biases, the implied volatilities calculated from the options with lower strike prices still

tend to have lower forecasting ability.

5.4.4 A Comparison Based on OLS regressions

Another possible approach for comparing forecast effectiveness is to estimate
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Equations 3.1 or 3.2 and then use the estimated equation to generate a volatility forecast,
which will provide a measure equivalent to the RMSE in Table 5.2. For instance, estimating
Equation 3.1 for the sample excluding the 1987 market crash in terms of ISDCO3, I obtain
that B, = 0.0283 and ,= 0.7116. Suppose I then use these parameter estimates to generate
volatility forecasts, e.g.,

Oxp,, =0.0283 +0.7116 05005,

The RMSE of the OLS regression is equal to

1 X 2
J =2 (au.z.: - oxsv.t)

N =1

which is very similar to RMSE in Equation 5.1. Actually, the RMSE in Table 5.2 can be
viewed as the RMSE from a regression where By= 0 and §, = 1 while the Var(og, ;- Oi5p) in
Table 5.4 can be viewed as the MSE from a regression where B, =0, , - G, and B, =1.

Table 5.5 reports the results of OLS regressions of realized volatility on various
implied volatility estimators and for comparison also on historical volatility using Equation
3.1. Figures 5.5a, 5.5b, 5.5¢ and 5.5d illustrate the regression’s RMSE, the adjusted R?, the
intercept, and the slope coefficient respectively for the sample including the 1987 market
crash. Based on the OLS regression’s root mean squared error (RMSE), the forecasting
ability for calls including the 1987 market crash decreases and then goes back up as strike
price increases although the rankings for puts are not quite clear. However, for the sample
excluding the 1987 market crash, the results based on the OLS regressions’ RMSE show a

similar pattern which is that up to a certain level, the forecast ability increases as strike price
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increases.

Further comparisons can be made in terms of adjusted R’s and the parameters of the
regressions. The adjusted R? in Table 5.5 and in Figure 5.5b, however, displays rather
consistent pattern which is that the adjusted R? increases as strike price increases for both
the calls and the puts. Since R? = 1- Regression’s MSE / Var(0g,; ). Regression’s RMSE
and the adjusted R? should give the same ranking. But they do not, probably because the
number of observations differs across different implied volatility estimators so that
Var(oy, ;) differ. However, the adjusted R? should be more important than regression’s
RMSE.

As mentioned in Chapter 3, if the option market is efficient and the option pricing
model is correct, the implied volatility calculated from an observed option price should
represent the market’s best forecast of the underlying asset’s volatility over the remaining
life of the option. As such, it should be both unbiased and informationally efficient.
Therefore we should observe that B=0 and B,=1 in Equation 3.1 and =0, B,=1, and p,=0
in Equation 3.2. As discussed in Chapter 3, however, the evidence to date on this issue has
been mixed. While most of the previous studies find that implied volatility outperforms
historical volatility in forecasting future volatility, they normally also find that implied
volatility is biased and fails to incorporate all available information. That is they find that
Bo>0, B;<1, and B, >0. Moreover, some studies even find that implied volatility’s predictive
power is quite low.

For the sample including the 1987 market crash as shown in Figure 5.5¢ and 5.5d

as well as in Panel A of Table 5.5, the intercepts are positive and significantly different from
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zero for relatively lower strike prices. The intercept decreases monotonically and become
insignificantly different from zero as strike price increases to a certain point (the fifth out-of-
the-money call or the sixth in-the-money put). The slope coefficient of the implied
volatilities increases monotonically as the strike price increases up to a certain level (the
sixth out-of-the-money call or the sixth in-the-money put). In addition, for the implied
volatilities calculated from each of the eight out-of-the-money calls as well as ISDPI3 and
ISDPIA4, the intercepts are not significantly different from zero and the slope coefficients are
not significantly different from one, indicating that these estimators are unbiased.

In contrast, the historical volatility has one of the lowest adjusted R%s (0.1143), the
largest intercept of 0.1008 and the smallest slope coefficient of 0.2936 for the sample
including the 1987 market crash. Both the intercept and the slope coefficient are
significantly different from zero indicating that historical volatility in general has lower
predictive power than most of the implied volatility estimators. For the sample excluding
the 1987 market crash shown m Panel B of Table 5.5, although the slope coefficients of the
implied volatilities are never significantly different from one but the patterns are similar to
those in Panel A. Historical volatility outperforms only several out-of-the money puts and
several in-the-money calls.

In both the samples of including and excluding the 1987 crash, the coefficients and
the adjusted R?s for the four “at-the-money” implied volatilities are ranked in the middle,
indicating again that they are not the most efficient. Further more, the average of these four
nearest-the-money implied volatilities could not improve the forecasting performance. In

both the Panel A and Panel B in Table 5.5, forecasting efficiency increases as strike price
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increases. In addition, there is not significant difference in regression’s RMSE, adjusted R?,
intercept or slope coefficient between calls and puts with the same strike price.

Next, realized volatility is regressed on both an implied volatility estimator and the
historical volatility utilizing Equation 3.2 and the results are reported in Table 5.6. The
results reveal almost the same pattemns as those reported in Table 5.5. The intercept and the
slope coefficient of the historical volatility (B,) decrease while the slope coefficient of
implied volatility increases as strike price increases. Clearly, the relative efficiency of
implied volatility increases as strike price increases based on the coefficient of implied
volatility, the adjusted R? and the regression’s RMSE. However, several implied volatility
estimators calculated from the calls (puts) with low strike prices are less efficient than
historical volatility (HIS40) in that the coefficient of the historical volatility is significantly
greater than zero and is greater than that of the implied volatility.

Table 5.2 through Table 5.6 report the results for the overall sample with the four
nearest-to-expiration options each day. To save space, I do not report the results for the four
subgroups stratified by options’ time to expiration. As a matter of fact, the results for the

four subgroups are almost the same as those reported here for the overall sample.

5.4.5. An Interpretation of the Results

The results discussed above suggest that up to a certain level, forecasting efficiency
of implied volatilities increases as the strike price increases, i.e. implied volatilities
calculated from out-of-the money calls and in-the-money puts have relatively higher

forecasting ability than those calculated from in-the-money calls and out-of-the-money puts.
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The predictive power of the implied volatility estimators calculated from the four at-the-
money options as well as their average are ranked somewhere in the middle. How should
one interpret these results?

As well known, if the option pricing model is correct and the market is efficient, then
implied volatilities calculated from options with different strike prices but with the same
expiration date should be the same. However as shown in Table 5.1 as well as in Figures
4.1 and 4.2, the implied volatility actually varies across different strike prices. Chapter 4
suggests that the smile or “smirk™ may reflect investors’ preferences for options with certain
strike prices and a market inefficiency. In consistent with this argument, an explanation for
the results reported in this chapter is that the demand for out-of-the-money puts is driven by
hedgers hedging against market declines and therefore these puts may be overpriced. If the
market were perfect, arbitrage would tend to drive these prices down. Because of the put-
call parity, in-the-money calls may also be overpriced. Figures 4.1a and 4.1b actually show
that there is no difference in implied volatility between calls and puts with low strike prices.
Therefore, the implied volatilities calculated from these options may not reflect market
expectations. Fluctuations in the implied volatilities of the low strike price options due to
fluctuations in hedging pressure will then create relatively more measurement error between
the implied volatility and the market’s true expectation.

However, options with high strike prices are demanded primarily by speculators, so
these implied volatilities may better reflect the market’s true expectation. As a result, the
options with lower strike prices may contain more measurement error than options with

higher strike prices. This can be further seen from the relationship of the measurement error
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and the slope coefficient of the OLS regressions. As discussed in Chapter 3, measurement
error tends to bias the OLS estimate of the slope coefficient downward. Table 5.5 shows
that options with higher strike prices have larger slope coefficients which is consistent with
the hypothesis that these options contain less measurement error. Similarly, the slope
coefficients of options with lower strike prices are smaller which is what one would expect
if these options contain more measurement error. In fact, as strike price increases, the slope
coefficients increase monotonically up to a certain level of the moneyness. However, the
forecasting efficiency eventually declines as strike price further increases since options
further away from the money are less actively traded and therefore contain relatively more

measurement €rror.

5.5 Summary

On a given day, for the same forecasting horizon, one can obtain a number of
different implied volatility estimates calculated from calls or puts with different strike
prices. Which of them is the most informative and should be utilized to forecast the future
volatility? One popular procedure is to utilize the implied volatility calculated from a single
at-the-money option which reflects the popular belief that at-the-money options are the most
informative and contain the least measurement error. Another common procedure is to
obtain an average over several implied volatilities calculated from near-the-money options
and ignore all the others. Although several previous studies have wmparéd the forecasting
ability of different averaging schemes, no one has systematically investigated the relative

forecasting efficiency of different individual implied volatilities calculated from calls or
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puts with different strike prices. In addition, these previous studies generally suffered from
limited data sets and therefore lacked the degrees of freedom.

By utilizing over 15 years of daily data on options on S&P 500 futures, I find,
contrary to the general belief and practice, that implied volatility calculated from an at-the-
money option is not the most efficient compared with those calculated from out-of-the-
money calls and in-the-money puts. Specifically, I find that implied volatilities calculated
from calls and puts with relatively higher strike prices have more predictive power in
forecasting future volatility. In fact, up to a certain level of strike price, the predictive
power increases as an option’s strike price increases. The empirical evidence also suggests
that averaging over several implied volatilities may not be effective, implying that the
choice of which strike price to use is more important than the weighting scheme which has
received much more attention in the literature.

The results in this chapter have also successfully explained why the regression
results for the average implied volatility calculated from the two nearest-the-money calls
and the two nearest-the-money puts presented in Chapter 3 are better than those utilizing all
the individual implied volatilities. The difference between these two regressions is
apparently not due to the averaging effect but that all the four components of the average
implied volatility actually are better estimators although not the best among all the
individual implied volatilities. The evidence helps us to identify the different levels of
measurement error for options with different strike prices. In the regression of realized
volatility on all the individual implied volatilities in Chapter 3, the majority of the

measurement error actually comes from the out-of-the-money puts and in-the-money calls.
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In addition, there is no difference in predictive power between a call and a put with
the same strike price. In comparison, historical volatility yields better forecast than some
of the options with low strike prices but worse than most of the other implied volatilities
especially those with high strike prices. The results presented in this chapter hold for
several different criteria and for both the samples including and excluding the 1987 market
crash. The results also hold for different expiration groups. This is an interesting and useful
finding in that both researchers and option traders could use the results to improve their

forecasting performance.
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Chapter 6

Dissertation Summary

Since volatility is a critical factor in pricing financial options, understanding the
estimate of future market volatility implied by an observed option price is vital interest to
practitioners and finance researchers. As well known, if the option pricing model is correct
and the option market is efficient, the implied volatility calculated from an observed option
price should represent the market participants’ consensus expectation of the volatility over
the remaining life of the option. While this assertion has been hotly debated and implied
volatility has been extensively studied, there are still a lot of unresolved issues. Utilizing
more than fifteen years of daily data on options on S&P 500 futures, this dissertation
examines implied volatility in terms of three issues, thereby facilitating more efficient use
of this measure in forecasting future volatility.

The first essay (Chapter 3) investigates the predictive power of implied volatility.
Previous studies found that implied volatility calculated from an observed option price is
a biased estimator of subsequent realized volatility and is not efficient in that it fails to
incorporate all available information, including historical returns. In contrast to some of the
previous studies, I find that implied volatility contains considerable information regarding
the future realized volatility. In general, implied volatility has more predictive power than
historical volatility. However, the results are quite sensitive to (1) the forecast horizon, (2)

whether or not the data set includes the 1987 market crash, and (3) whether or not one
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corrects for heteroskedasticity and serial correlation caused by the overlap in realized
volatility. The overlap in realized volatility estimates seriously biases the standard error
estimates. Most importantly, I find that implied volatility varies around the market’s true
volatility expectation due to measurement error caused by bid-ask spread, non-synchronous
prices, and possible deficiencies in the option pricing formula and that this measurement
error biases tests towards rejecting the informational efficiency of implied volatility. When
I control for the measurement error by utilizing instrumental variables estimation, the results
in most cases no longer reject the hypothesis that implied volatility is unbiased and
informationally efficient. No previous work has systematically examined this measurement
error effect.

The second essay (Chapter 4) relates to the implied volatility “smile” which refers
to the cross-sectional variation in implied volatility across options with different strike
prices but the same maturity date. In this essay, I document the smile or “smirk™ in options
on S&P 500 futures market from 1983 to 1998. In particular, the implied volatility
decreases monotonically and eventually goes back up as strike price increases, i.e., a reverse
J shape. Previous explanations for the smile have mostly focused on possible errors in the
option pricing formula and, as a result, researchers have developed more complicated option
pricing models such as stochastic volatility models and jump-diffusion models. But none
of these new models has successfully explained the smile, motivating me to search of an
alternative explanation.

I argue and test that the smile may be caused by investors’ preferences for certain

strike prices for hedging purposes and these differences are not eliminated by arbitrage
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because the option market may not be efficient. In other words, the smile may actually
represent a market inefficiency. I find that market inefficiency is at least partly responsible
for the implied volatility smile in the options on S&P 500 futures market since abnormal
returns can be made over time by buying put options with low implied volatility and
simultaneously selling put options with high implied volatility in a delta neutral ratio.
However, the standard deviations of the profits are quite large even though the positions are
delta neutral and the delta neutral strategy involving calls does not generate as much profits.
The results suggests further tests to identify the exact sources of the profits and to explain
the difference in profits between calls and puts as well as the large variance of the profits.

On a given day, many different options with the same expiration date are traded
which differ by strike price and whether they are calls or puts. The implied volatilities
calculated from these different options are actually forecasting the same future volatility
over the same period. Then which of the implied volatilities or which average measure is
the most informative and should be utilized in forecasting future volatility? Previous studies
have investigated the relative forecasting performance of several averaging schemes as well
as a couple of individual implied volatilities calculated from a single option. Although their
results are mixed, they tend to favor at-the-money options. But these previous studies
generally suffered from limited data sets and therefore lack the degrees of freedom.

In practice, investors and finance researchers often utilize the implied volatility
calculated from a single at-the-money option or an average over several, often two or four,
implied volatilities calculated from the nearest-the-money options and totally ignore all the

other options. Does an at-the-money option yield the best forecast? Does an average
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necessarily reduce measurement error? While no previous study has done this before, the
third essay (Chapter 5) systematically examines the relative forecasting efficiency of
implied volatilities calculated from calls and puts with different strike prices but the same
expiration date.

I find, contrary to the general belief and practice, that the implied volatility
calculated from an at-the-money option is less informative than those calculated from some
out-of-the money calls or some in-the-money puts. Up to a certain level, the predictive
ability of implied volatility increases as strike price increases. However, there is not much
difference in forecasting ability between a call and a put with the same strike price.

In contract, historical volatility generally yields better forecasts than the implied
volatilities calculated from the options with very low strike prices but worse than the
implied volatilities calculated from most other options especially from those options with
high strike prices. This suggests that in testing relative predictive power of implied
volatility and historical volatility, the choice of which implied volatility to utilize makes a
big difference. Canina and Figlewski (1993) utilized all the individual implied volatilities
and obtained a lower predictive power for implied volatility than for historical volatility.
On the other hand, Jorion (1995) employed an average implied volatility calculated from
one nearest-the-money call and one nearest-the-money put while Christensen and Prabhala
(1998) obtained their implied volatility measure from a single at-the-money call option.
According to the evidence presented in Chapter 5, it is not surprising that both Jorion (1995)
and Christensen & Prabhala (1998) conclude that implied volatility has much more

predictive power than historical volatility.
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The results are robust across options in different expiration groups and hold for both
the samples of including and excluding the 1987 market crash. The results are also quite
consistent based on several different criteria for measuring relative efficiency: root mean
squared error, mean absolute error, mean absolute percentage error, and OLS regression
measures. The evidence suggests that an average is not necessarily more informative than
its components. The choice of which strike price to utilize is more important than the
weighting schemes which have received much more attention in the literature. The findings
presented in this dissertation should be informative to both investors and finance researcher

who are interested in more efficient use of implied volatility.
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Table 2.1

Summary Statistics of Implied Voiatiiity and its Corresponding Realized and Historical Volatilities
for Options on S&P 500 Futures

Trading Realized Volatility Implied Volatility Historical Volatility
Group | Daysto | Obs RLZSD ISD HIS40

Expiration Mean| Std | Min | Max |Mean| Std | Min | Max |Mean| Std | Min | Max
all 10-99 217,226 |0.142010.0913{0.03781.3533(0.16860.05810.0633 |1.05710.1462[0.104410.0511 [1.0806
I;:‘:“l :: 1 10-36 77,123 0.1383 0.08270.0378]1.3533]0.173410.0620{0.0662 [0.9528 0.149510.110710.0511{1.0806
1987 2 28-57 65,629 [0.1411{0.0930{0.0562]1.1517]0.1670]0.06250.0675]1.0571{0.1421|0.0958]0.0511]1.0768
Crash 3 47-78 40,472 10.147810.1027{0.0619{0.95160.1638[0.04910.06330.521310.14320.1061 }0.05111.0786
4 67-99 34,002 10.145210.09140.068710.8108}0.1668 10.048410.0772]0.7927]0.1505 }0.1030]0.0564]1.0709
all 10-99 | 212,002 }0.1323]0.0481]0.03780.5540{0.16510.0494]0.06330.7078]0.1367]0.05300.05110.3807
e 1 1036 | 75,478 0.1315]0.0543 |o.osﬁl’<fs§6 0.1696]0.05380.0662 0.7078]0.1385 |0.0540/0.0511[0.3807
F‘;‘;;‘}, ¢ 2 28-57 64,316 [0.1319]0.0469[0.05620.327710.1633]0.049910.0675 [0.4732]0.1346|0.0525 {0.0511 {0.3807
Crash 3 47-78 39,099 10.133910.044010.0619}0.280410.159910.043010.063310.387810.1315}0.0471 10.0511 ]0.3609
4 67-99 33,109 {0.132910.0393 0.068710.2518[0.16450.043810.0772[0.3719{0.142910.05700.056410.3621

The data set covers the period from Jan. 28, 1983 through April 30, 1998. The implied volatility (ISD) is calculated utilizing Black’s
(1976) mode! from an observed option price. The realized volatility (RLZSD) is the standard deviation of daily returns of the
underlying futures over the remaining life of the option. The historical volatility (HIS40) is the standard deviation of daily returns of
the underlying futures over the last 40 trading days. Group 1 contains the nearest-to-expiration options, and Group 2 contains the

second nearest-to-expiration options, etc.
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|___Evidence from Previous Studies on the Rationality of Implied Volatility as a Predictor of Future Realized Volatilit
Results of the estimation of 0rt
Ors, is a time series measure, ithe
values). Some equations represent averages of several regressions.

ot Bz o, *u, are reported where Og,5, is the realized volatility, o,sp,, is an implied volatility, and
r past volatillt); and/or a GARCH measure. Standard errors are shown in parentheses (some inferred from reported t

— . —

Study Market Obs Forecast | Intercept | Implied | GARCH | Historic | R® Nofes
N horizon B vol (,) vol (B,) vol (B,)
Canina & S&P 100 daily , calls | 7-127 calendar| 0.0827 -0.0641 0.4866 | 0.1695 | avg of 32 equations.
Figlewski Index 3/83-3/87 |days (0.0284) (0.0853) (0.2201) HIS: over 60 calendar
(1993) days.
Day & Lewis| S&P 100 | weekly, |nearby contract| -0.0001 0.601 0.208 0.027 | HIS: previous week.
(1992) Index calls and: >7 days | (0.0011) | (0.583) (0.710) Realized and implied
3/83-12/89 volatility periods do
0.00018 0.632 -0.243 0.123 0.038 not match.
(0.00016) | (0.620) (0.868) (0.018)
Lamourcux [ 10 non- daily, calls |90-180 days [1627.258 | 0.6652 | -1.7516 0.2018 [ averge of 10 stock
& Lastrapes | dividend 4/82-3/84 (387.765) | (0.3726) | (0.5588) regressions,
(1993) paying
stocks 3451.775 0.4705 0.1658 -3.9105 0.4741
(882.035) | (0.2175) | (0.7577) | (1.5260)
Day & Lewis | crude oil | daily , calls | nearby and 0.004 0970 | -0.006 0.607 | HIS: same as the
(1993) futures 11/86-3/91 |second ncarby | (0.0035) | (0.157) (0.3915) forecast horizon.
contracts
0.004 0.901 0.053 -0.061 0.608
(0.0045) | (0.169) | (0.854) | (0.203) ‘
Jorion (1995)] foreign daily, calls |3-100 calendar | 0.3317 0.6313 -0.0897 | 0.1386 | averge of 3 currencies |
exchange | & puts days (0.1250) | (0.1853) (0.1007) regressions,
futures 1/85-2/92 HIS: 20 trading days.
‘ 0.3230 0.5507 0.0203 0.1380
: (0.2170) | (0.1817) | (0.2873) 3
Guo foreign daily: 30-90 trading 0.0065 0.2925 0.1539 0.0687 | avg of two curmrencies
(1996) exchange | 1/86-2/93 |days (0.0034) | (0.1327) | (0.3366) HIS: 60 trading days.
rates Realized and implied
volatility periods do




Table 3.2
The Predictive Properties of Individual Implied Volatilities - OLS Resuits }
O =po+pl° ﬁzo '.A

he realized volatility (0, ;,) over the remaining life of an option on S&P 500 futures is regressed on
lan individual implied volatility (0sp;,) and historical volatility (Guss.) measured over the last 40
rading days using daily observations from Jan. 28, 1983 through April 30, 1998. On a given day,
ifor each expiration date, eight in-the-money calls (puts) and eight out-of-the-money calls (puts) are
lutilized. The to;s and tg are OLS t statistic and t statistic by Hansen (1982) procedure respectively.
he second column represents the option’s trading days to expiration.

|
|
Trading _f
|

Days to Be B, B2 Adj R? Obs
Maturity

overal coc§c1i3e:(t) 0.0448%* | 0.4937**1T | 0.0953
tos(He: B=0) | (77.506) | (111.571) | (38.694)
1099 | t: B=0) | (5.027) | (4.200) (1.690) 0.1596 | 217,226
talHg: B=1) (4.307) |
o [ B [ | ‘
oup 1 | tors(H: 1.434 651 47.
1036 | t(Hs B=0) | (6.773) | (5.462) (3.381) 02049 | 77,123
Panel A: ty(Ho: B=1) (-9.250) '

Including coefficient | 0.0498%* [ 0.4339°%1{ [ 0.1327
the 1987 | OFOUP2 | tous(Ho: B=0) | (49.575) | (50377) | (23.634) |  cca | osoo
market 28-57 tu(Ho: B=0) | (5.515) | (3.926) (1.917) Sl
c tu(Hg: B=1) (-5.122) |
crash coctficient | 00123 | 0.8228%% | 0.0054 |
Group 3 | to(H,: B=0) | (7.118) | (64.106) (0.909) 01574 | 40472 |
47-78 tu(H,: B=0) | (0.460) | (2.907) (0.070) : '
tu(Ho: B=1) (-0.626)
coefficient | 0.0287 0.7472% -0.0546
Group 4 | to s(H,: B=0) | (15.806) | (52.998) (-8.250) 01244 | 34.002
67-99 tu(Ho: B=0) | (1.059) | (2.125) (-0.355) . ’
tu(Ho: B=1) (-0.719)
coefficient | 0.0480** | 0.2946**1t | 0.2603**
Overall | to(Hy: B=0) [ (156.418) | (116.813) | (110.665) | 02963 | 212 002
10-99 tu(Ho: B=0) | (4.584) | (6.039) (3.501) ’
ty(Ho: B=1) (-14.462)
cocfiicient | 0.0517%* | 0.2592**1f | 0.2585%*
Group 1 | tors(Hy: B=0) | (87.943) | (59.493) (59.587) | 02197 | 75478
10-36 tu(Hy: B=0) | (4.316) | (5.549) (2.979) ’
Panel B: t“(Hﬂ. B=1) — (-15.863)
Exchuding coefficient | 0.0479%* | 0.2995**1T | 0.2606°*

Group2 | tos(Ha: B=0) [ (92.113) [ (65.668) | (60.112)
the 1987 | "28.57 | t(Hap=0) [(3.750) |(s661) | (28s50) | 03258 | 64316

market tu(Ho: B=1) (-13.241) —
crash coeﬁiciﬂe:(t) 00302% | 04150°*1f | 0.2837%° ]
Group 3 | tors(Ho: P=0) | (46.300) | (75.550) | (56.650) |
ta(Ho: B=0) | (2.260) (.780) | 04277 | 39099 |

coeﬁ?c;:x(t) 0.0490%* [ 0.3114**1T | 0.2287°** }
Group 4 | to(Hy: B=0) | (75.042) | (51.159) | (48.818)

: (3749) |(2728) |(2.600) | 04112 | 33,109 |
-6.032 |

t significantly different from one at the 0.05 level. 11 significantly different from one at the 0.01 level.
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Table 3.3
The Predictive Propertws of the Average Implied Volatility - OLS Results

nearest-the-money puts) and the historical volatility (Ops, ) measured over the last 40 trading days
fusing daily observations from Jan. 28, 1983 through April 30 1998. The to; s and t; are OLS ¢t 1

X 0.8719%% | -0.0483
(3.806) [(33295) |(-3.677)
(0.705) | (3.898) (-0.508)
(-0.573)
0.0135 0.8056** | -0.0060
2892) |@19464) | (-0292)
: (1.125) | (5.534) (-0.097)
Panel A: = 0.0207 8;:'732' 0.0123
el : @77 | (15.618) | (-0.433)
, : (1.667 | (3.760) (-0.106)
mar ;‘ : (-1.017)
cras fhici 00114 | 1.0565%* | -0.0763
(-1.568) | (17.770) | (-2.778)
(-0.339) | (3.024) (-0.785)
(0.162)
0.0086 | 0.9758* 0.1382
0947) | (13.109) | (-0.395)
(0213) | (2.022) (-0.705)
(-0.050)

0.0303** | 0.6340°*11 | 0.0283
(20376) | (39.116) | (2.122)
2954) | (7.80m (0.387)
(-4.507)
0.0303** | 0.6999%*77 | -0.0453
(10.431) | (22.146) | (-1.688)
(2.658) (7.989%) (-0.483)
) (-3.42
EI;‘C’;:;% 0.0310°° | 0.6156**17 | 0.0461
th 19873 : (12213) | (21.918) | (1.942)
e : (2.613) | (7.605) (0.584)
market : (-4.749)
crash fhici 0.0198 0.6533°%F1 | 0.0951
6579) | (20643) | (3.62m)
(1456) | (6.105) (1.111)
(-3.240)
0.0449°% | 0.4387%°17 | 0.1304
(14.048) | (12414) | (5.025)
(3.001) (1.162)

* significantly dnﬂ‘erent from zero at the 0.05 level. ** significantly different from zero at the 0.01 Ievel
1 significantly different from one at the 0.05 level. tt significantly different from one at the 0.01 level.
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Table 3.4

Measurement Error Tests for Individual Implied Volatilities

= Bo * BiOisn,i,e + B2Omisa

o+ B3U, +uy,

ealized volatility (0p 2 ) over the remaining life of an S&P 500 futures option is regressed on an individual implied volatility
Oisp, i, » the historical volatility (0y54,) measured over the last 40 trading days, and the residual from the first step regression of

v 'l‘ralng Days

to Expiration

B

Including

the 1987
market
crash

Overall

10-99

coefficient
tu(Ho: f=0)

1.0744%%
(5.906)

-0.1395*
(-2.194)

-0.7598%*
(-6.886)

207,021

10-36

coefficient
tu(Ho: B=0)

0.8535%*
(7.861)

-0.0271
(-0.727)

-0.6130°*
(-4.125)

76,797

28-57

coefficient
t(Hy: =0)

1.2651%7
(4.284)

-0.3205°
(-2.379)

-0.9629**
(-3.455)

62,498

47-78

coefficient

tu(Hy: f=0)

1.3466°°
(2.661)

-0.1512
(-1.150)

4

67-99

coefficient

ty(Ho: f=0)

1.0244*
(2.088)

01617 |
(-0.733)

-1.0620°
(-2.469)

33,866

-0.4572
(-1.952)

Panel B:
Excluding
the 1987
market
crash

Overall

10-99

coefficient
tu(Ho: p=0)

0.8004%*
(6.012)

-0.0775
(-0.785)

-0.6488**
(-5.312)

202,224

10-36

coefficient

tu(Ho: B=0)

0.8568%*
(5.139)

-0.1398
(-1.080)

-0.7026%*
(-4.333)

75,224

28-57

coefficient

t(Hy: =0)

0.8613%*
(4.900)

47-78

coefficient

tu(H: B=0)

(5.405)

0.7995**

-0.1439
(-1.165)

-0.7504%*
(-3.943)

61,398

0.0471
(0.431)

-0.6012%*
(-4.096)

32,543

67-99

coefficient

* significantly different from zero at the 0.05 level.
** significantly different from zero at the 0.01 level.

0.4698"
(2.260)

0.1328

-0.2327

(0.970)

(-1.396)

33,059
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Table 3.5
Measurement Error Tests for the Average Implied Volatility

Ogizs = Bo * P10ispas + B2Owisao, + B3U, + 1,

The realized volatility (0 ) over the remaining iife of an option on S&P 500 futures is regressed on the average implied volatility
(O15p4,) calculated from the two nearest-the-money calls and the two nearest-the-money puts, the historical volatility (0ys4,)
measured over the last 40 trading days, and the residual from the first step regression of implied volatility on the instrumental

variable ( O;5p4, .10 ) and the historical volatility. Regressions use daily observations from Jan. 28, 1983 through April 30, 1998, The
t,, is the corrected ¢ statistic for the Hansen (1982

Tlng Days :
Gl’OIlp to Explratlon ) p. pt ﬂl B p.‘ Adj R Obs
cocfficient | -0.0045 | 1.0380°% | -0.1217 | -0.2088°
all 109 1 sp=0) | 0.184) | (3450) | (-1.002) | (-2481) | 2006 | 8863
Panel A: cocfficient | 0,0032 | 0.9052%% | -0.0448 | -0.1816°
ol ding ! 10-36 t(He: =0) | (0266) | (6597) | 0.792) [ (2001) | 02501 | 3.184
coclficient | -0.0157 | 12405 | -0.2829 | -0.6237*
market ; 4778 cocfficient | -0.0266 | 12182% | -0.01174 | 02177 | 1954 | 1410
crash tu(Ho: =0) | (0605) | (2732) | (-1.005) | (-1.265) | '
coeficient 0.0153 0.9277% | -0.1325 0.1594
4 67-99 ty(H:p=0) | (0427) | (2058) | (0654) | (0.645) | 01437 | 1.486
coefficient 0.0252* 0.7352%# -0.0488 -0.1935
all 10-9 | wo:p=0) | @218) | (5.646) | (0458) | (-1.600) [ 03495 | 8653
B: coefficient | 00225 | 0.8439% | -0.1504 | -0.2290
é::;zﬁng ! 10-36 W(Ho: B=0) | (1.789) | (5.601) | -1.157) | (1657 | 02970 | 312
e 1987 ; p coefficient | 00220 | 0.7849%% | 00873 | 03419 | 03732 | 2730
o 198 WHe p=0) | (1463) | (4441) | (0635 | (1546) | * '
coefficient | 0.0161 | 0.7115*% | 0.0709 | -0.1197
crash 3 -8 | wep=0) | (1.046) | (5208 | (0.692) | (-0.600) | 04674 [ 1362
cocllicient | 0.0475%% | 04026* | 0.1516 | 0.0855
4 6799 | wep=0) | 3122) | @oon | (1.093) | (04z7) | 04226 | 1449

* significantly different from zero at the 0.05 level.
** significantly different from zero at the 0.01 level.



Table 3.6
Instrumental Variables Estimates of the Predictive Properties
of Individual Implied Volatilities and Historical Volatility

The realized volatility (05, ;,) over the remaining life of an option on S&P 500 futures is regressed |
on an individual implied volatility (05 ; ) and the historical volatility (Gys,) measured over the
last 40 trading days using Oigp,,.5e 25 an instrumental variable. Regressions use daily observations
from Jan. 28, 1983 through April 30, 1998. The t,, ¢ and t; are OLS t statistic and t statistic by
Hansen (1982) procedure respectively.

Trading

Days to Be B: B, Adj R? Obs
Maturity

o coefficient | -0.0192 | 1.0744%* | -0.1395*

ov tous(Ho: p=0) [ (-16.90) | (108.49) | (-31.50)

10-99 tu(Ho B=0) | (-1337) |[(7359) |(2201) | O-0886 | 207,021
tu(He: B=1) (0.510)

) cocﬁictpc:(t) 00059 | 08535%° | -0.0271

Group 1 | tos(Hy: p=0) | (-3.68) | (6424) | (4.69)

10-36 | t(H:p=0) | (-0.502) |(9.226) |(o788) |O1374 [ 76797
Panel A: tu(Ho: B=1) (t1.584)
Includiong cocfficieat | 00259 | 12631 | 032057

y 28-57 tu(Ho: [5=0 (-1.404) | (7.031) (-3.447) ’ ’
market tu(Ho: B=1) (1.473)

crash ; cocfficient | -0.0493 | 1.3466%% | -0.1512
Group3 | tos(Hy: p=0) | (-18.46) | (65.90) | (-19.57)

4778 | t(Hs: p=0) | (-1479) | (3.954) | (-1778) | 01226 [ 33,866
tu(Hy: B=1) (1.018)
coefficient | -0.0015 | 1.0244%* | -0.1617
Group4 | tous(Hy B=0) | (-0.58) | (4558) | 1658 | 01101 | 33860

67-99 | t(Hs:p=0) |(-0.054) |(2.708) | (0861 | .
tu(Hoy: B=1) (0.064)
o cocﬁicil;:(t) 0.0106 | 0.8004%*T | -0.0775

tous(H: B=0) | (19.79) | (13042) | (-17.29)

1099 | t(H:p=0) | (0.833) |(8.725) | (0.9s4) | 01544 |202.224
tu(H,: B=1) (-2.176)
coefﬁmbe:a 0.0055 | 0.8568%% | -0.1398
Group1 | tos(Ho:B=0) | (4.89) |(67.72) | (-15.23)

1036 | w(H:P=0) | (0380) |(8799) |(1565) |00%43 | 7524
: ty(H,: B=1) (-1.471)
S o | [T S
| T8 | 2as7 | e pe0) | (0.660) |(1.646) | (13oay | 01565 | 61398

tu(Ho: B=1) (-1.232) .
cocfficient | 00005 | 0.7995°°T | 0.0471
1
|
|
|

e e

47-78 tu(Ho: B=0 (0.033) (8.072) (0.506)

tu(Hlo: B=1) | (2029)

coefficient | 0.0367°* 0.4698**11| 0.1328
Group 4 | to s(Ho: B=0) | (38.16) (43.25) (18.44)

6799 | tlHs ﬂ=0) @7 | (3981) |(1ss) | 03985 | 33059

tuy(Hy: B=1) _ -4.494

* significantly different from zero at the 0.05 level ** significantly different from zero at the 0.01 level.

t significantly different from one at the 0.0S level. 11 significantly different from one at the 0.01 level.
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Table 3.7
Instrumental Variables Estimates of the Predictive Properties

of the Average Implied Volatility and Historical Volatility

‘ The realized volatility (oy,-,) overtheremﬁninglifeofanopﬂonons&l’soo fnturaisregrened

| on the average implied volatility (Gisp., calculated from the two nearest-the-money calls and the two
nearest-the-money puts) and the historical volatility (Omss,) measured over the last 40 trading days
| using O5p(,.1¢ 5 a1t instrumental variable. Regressions use daily observations from Jan. 28,1983 |
| through April 30, 1998. The to, and t, are OLS t statistic and t statistic by Hansen (1982) ‘

i procedure respectively. The second column shows the option’s n’s trading days to maturity. |
. ﬂ. B, B, Adj R? Obs
coefficient | -0.0045 1.0380** -0.1217

10-99 ta(Hy: B=0) | (-0.291) (4.939) (-1.305) ) ’
tu(H,: f=1) (0.181)

coefficient | 0.0032 0.9052** | -0.0448

Group1 | tous(Ho: B=0) | (0.49) (14.23) (-1.56)

10-36 tu(Ho: B=0) | (0.276) | (6.756) (-0.822) 02476 | 3,184
Panel A: u(He: B=1) ____1(0.708)
mcludmg cocﬁTa’ﬁe:(t)) -0.0157 | 1.2405** | -0.2829*
the 1987 Group2 | tors(Ho: (-1.51) (10.35) (-4.23) 0.1605 | 2783

28-57 ty(H,: f=0) | (-1.01 6.200 -2.530 . ’
market tu(HL: B=l) ( 5) 51.202; ( )

cocficient | -0.0266 | 1.2182** | -0.1174
Group 3 | tors(Ho: B=0) | (-2.44) (13.84) (-3.39) 0.1950 | 1.410
47-78 tu(H,: B=0) | (-0.614) (2.768) (-1.019) . ’
ta(Hy: B=1) (0.496)
coefficient | 0.0153 0.9277 -0.1325
Group4 | tors(Hy: =0) | (1.34) (9-32) (-3.13) 0.1433 | 1,486
ty(Ho: pg=1) (-0.144)
coefficient | 0.0252* 0.7352**11 | -0.0488
10-99 tu(H,: B=0) | (2.417) (9.087) (-0.654) ' ’
tu(H: B=1) (-3.273)
coefficient | 0.0225* | 0.8439°* | -0.1504
Group 1 tors(Hy: $=0) | (6.10) (16.67) (-3.88) 02904 |3.112
10-36 tu(Hy: B=0) | (1.989) (10.119) (-1.699) ?
Panel B: t“a'E B=1) E—— ._(i& — e
Excluding coefficient | 0.0220 0.7849**¢ | -0.0873

Group2 | tors(Ho: f=0) | (6.80) (17.60) (-2.44)
the 1987 | 3357 | t(HiB=0) |(1787) |(8.009) | (0917) | 03586 | 2730

market ta(Ho: B=1) (:2.199)
coefficient | 0.0161 0.7115**t1 | 0.0709

|
\
|
|
J
i 6799 | t(Hy:p=0) | (0385) | (1.843) (-0.591)
|
!
i 47-78 | tu(Ho: P=0) | (1.128) | (7.453) (0.888)

|
|
|
Growp3 | tous(Ho:B=0) | 412) | (1680) [ 219) | gass | 1362 t
|

| tu(H,: B=1) _ (-3.022)
coefficient | 0.0475** | 0.4026*{f | 0.1516
Group 4 | tors(Ho: p=0) | (12.07) (8:24) (4.47) 0.4219 | 1.449
67-99 ta(Ho: p=0) | (3.190) (2.352) (1.310) i i
ti(Hy: =1 ______}(34%50) | | _ Mﬁ___J
* significantly different from zero at the 0.05 level. *¢ significantly different from zero at the 0.01 level.
t significantly different from one at the 0.05 level. 11 significantly different from one at the 0.01 level.
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Table 4.1
Profits (Losses) to a Random $1 Investment in Calls or Puts on S&P 500 Futures

Panel A: for Calls
Trading ’;‘;‘r‘:::lg Including the 1987 Crash Excluding the 1987 Crash
Group "’3’ s to (trading T: T:
Expiration days) Mean { Std Dev Mean=0 Obs Mean | Std Dev Mean=0 Obs
Expiration | $0.0871%* | S2.1301 | 7.535 | 33961 | $0.0978%% | $2.1382 | 8390 | 33,619
, 10.36 10 | S0.1758°% | $2.7354 | 10671 | 27,576 | $0.1802%* | $2.7442 | 10.866 | 27,375
5 $0.0913+% | $1.2345 | 14021 | 35977 | $0.0045%% | $1.3374 | 14446 | 35.74%
) $0.0152%% | $0.3468 | 8420 | 36,095 | $0.0158%% | $0.3469 | 8.749 | 36,794
Expiration | $0.2256°% | $2.1100 | 18783 | 30,901 | $0.2472%% | $2.1239 | 20277 | 30343
) 28.57 10| S0.1135% | STTITS | 18065 | 31,288 | $0.1203** | SL1149 | 18977 | 30932
5 $0.0542°% | $0.5940 | 16,184 | 31475 | $0.0579** | $0.5049 | 17.184 | 31151
T $0.0082°% | $02239 | 6.548 | 31,613 | $0.0001%F | $0.2234 | 7.203 | 31,324
Expiration | $0.2864%% | S1.0874 | 20,067 | 19,384 | $0.3071°% | $1.0965 | 21248 | 19,077
, 78 10 | $0.0317°* | $0.6376 | 6916 | 19,392 | $0.0334°* | $0.6578 | 7263 | 19.236
5 $0.0198°% | $0.4198 | 6.578 | 19,406 | $0.0206°* | $0.4201 | 6.804 | 19,303
i $0.0064% | $0.1612 | 5.542 | 19424 | $0.0063** | $0.1612 | 5425 | 19372
Expiration | $0.5667°% | $24718 | 29.564 | 16,630 | $0.5088%% | $2.4896 | 30,675 | 16.263
) 6799 10 | 500753 | 804274 | 22721 | 16,627 | $0.0774°* | $0.4270 | 23326 | 16,553
5 $0.0507°% | $0.3066 | 21.343 | 16,630 | $0.0520"* | $0.3065 | 21.814 | 16,556
] $0,0109°* | $0.,1301 | 10,829 | 16,630 | $0.0111°% | $0.1301 | 11.016 | 16,556

The data sets contain daily observations of the options from January 28, 1983 through April 30, 1998. Group 1 contains the nearest-to-maturity
options on a given day and Group 2 contains the second nearest-to-maturity options, etc. The investment (initial cash outflow) is standardized to $1
for a call or a put. The profits (losses) do not account for transaction costs. The holding periods are cither a number of trading days or until the
option’s expiration.

* significantly different from zero at the 0.05 level.

** significantly different from zero at the 0.01 level.



Table 4.1 (continued) EEE——

Profits (Losses) to a Random $1 Investment in Calls or Puts on S&P 500 Futures

66

Panel B: for Puts
Trading l;(:l::::lg Including the 1987 Crash Excluding the 1987 Crash
Group | Daysto (trading T: T:

Expiration days) Mean | Std Dev Mean=0 Obs Mean | Std Dev Mean=0 Obs
Expiration | $-0.5079%* [ $1.9151 | -49.215 | 34,445 | $-0.6065** | $0.9926 [-112.777 | 34,069

. 10-36 10 $-0.2156** | $1.7150 | -20.670 | 27,036 |$-0.2661*% | $1.0190 | -42.753 | 26,810
5 $-0.1062** | $1.4837 | -13.376 | 34,925 | $-0.1294%*| $1.2153 | ~19.817 | 34,659

1 $-0.0233**| $03452 | -12.652 | 35258 [$-0.0260** | $0.3193 | -15.243 | 35,026 ‘.

Expiration | $-0.6337** | $1.4602 | -74.671 | 29,969 |$-0.7201** | $0.8441 |-146.740 | 29,586

10 $-0.1389**] $0.9751 | -24.610 | 29,867 |$-0.1798**| $0.5101 | -60.614 | 29,578 {

2 28-37 5| 5:0.0566%%| $0.6939 | -14.123 | 29,044 | $-0.0767°% | $0.4308 | -30.663 | 20,657 |
1 $-0.0093**| $0.2647 | -6.075 | 30,012 |$-0.0131**| $0.2096 | -10.734 | 29,735

Expiration | $-0.6179%* | $1.3825 | -60.043 | 18,051 | $-0.7332%* | $0.8313 |-117.644 | 17,195

3 4778 10 $-0.0741%*] $0.4472 | -22.246 | 18,036 |5-0.0796°* | '$0.4199 | -25.350 | 17,891 |
5 $-0.0286** | $0.3421 | -11.237 | 18,030 | $-0.0295%* | $0.3403 | -11.621 | 17,943 |

1 $-0.0083**| $0.1465 | -7.601 | 18,043 | $-0.0081%* | $0.1465 | -7.431 | 18,000 |

Expiration | $-0.6567** | $1.3964 | -57.639 | 15,021 |[$-0.8000** | $0.6539 [-148.634 | 14,761 {

4 61.99 10 $-0.1055** | $0.3455 | -37.394 | 15,000 [$-0.1054** | $0.3456 | -37.303 | 14,973 |
5 $-0.0576°* | $0.2469 | -28.593 | 15,002 |$-0.0575** | $0.2470 | -28475 | 14975 \

1 $-0.0115** ] $0.1195 | -11.807 | 15,013 [$-0.0114** | $0.1195 | -11.706 | 14,986 |

=

The data sets contain daily observations of the options from Januaty?& 1983 through April 30, 1998, Group 1 contains the nearest-to-maturity
options on a given day and Group 2 contains the second nearest-to-maturity options, etc. The investment (initial cash outflow) is standardized to $1
for a call or a put. The profits (losses) do not account for transaction costs. The holding periods are either a number of trading days or until the
option’s expiration.

* sigiﬁcantly different from zero at the 0.05 level.
** significantly different from zero at the 0.01 level.
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Table 4.2

Profits (Losses) to a Delta Neutral Strategy of Buying Low Implied Volatility
Options and Selling High Implied Volatility Options with No Transaction Costs

Panel A: for Calls with a Net Investment of -$1

Trading | o0 din Including the 1987 Crash Excluding the 1987 Crash
Group Days to &

Expiration Period Mean Std Dev |T: Mean=0 Obs Mean Std Dev |T: Mean=0{ Obs
Expiration | $-0.0985** | $1.3483 | -3.812 | 2,723 [$-0.0981** | $1.3495 [ -3.791 | 2,718
{ 1036 10 $-0.0031 $1.0840 | -0.123 1,801 |$-0.0026 $1.0853 | -0.102 | 1,796
5 $0.0009 | $0.3282 0.144 | 2,571 [ $0.0013 $0.3284 | 0.196 | 2,566
1 $0.0066** | $0.0857 4011 | 2,705 | $0.0067** | $0.0856 | 4.044 | 2,700
Expiration | $-0.2608** | $1.0656 | -11.347 | 2,150 |[$-0.2586** | $1.0646 | -11.228 | 2,136
) 28-57 10 $0.0169 | $0.5265 1457 | 2,059 | $0.0199 $0.5254 1.710 | 2,045
5 $0.0194** | $0.2401 3.708 | 2,109 | $0.0210** | $0.2389 | 4.018 | 2,095
1 $0.0048** | $0.0734 3032 | 2,143 | $0.0051** | $0.0712 3312 | 2,129
Expiration | $-0.2893** | $0.8784 | -10.948 | 1,105 |]8$-0.2893** | $0.8784 | -10.948 | 1,105
3 4778 10 $-0.0032 | $0.2812 | -0.379 | 1,091 |8-0.0032 $0.2812 | -0379 | 1,091
5 $0.0060 | $0.1500 1329 | 1,098 | $0.0060 $0.1500 1329 | 1,098
1 $0.0017 | $0.0502 1.154 | 1,103 | $0.0017 $0.0502 1.154 | 1,103
Expiration | $-0.2708** | $1.2982 | -6.516 976 [$-0.2502** | $1.2864 | -6.049 967
4 67.99 10 $-0.0244** | $0.1514 | -5.036 974 [$-0.0230** | $0.1508 | -4.731 965
5 $-0.0077* | $0.1015 -2.370 976 |$-0.0064* | $0.1002 | -1.990 967
1 $-0.0002 | $0.0456 | -0.135 976 | $-0.0001 $0.0447 | -0.081 967

The data sets contain daily observations of options from January 28, 1983 through April 30, 1998. The delta neutral positions are formed by buying
the call (put) with the lowest implied volatility and simultancously selling the call (put) with the highest implied volatility among the 16 calls (16 puts)
with different strike prices but the same expiration date on a given day. The number of contracts sold is adjusted to make the position delta neutral. A
position is held only when the difference between the high and the low implied volatilities is greater than 3% and less than 50%. The net investment
for positions involving the two calls is standardized to negative $1, i.c., an initial cash inflow of $1. However the net investment for positions
involving the two puts is standardized to positive $1, i.c., an initial cash outflow of $1. The profits (losses) do not account for transaction costs.

* Ssignificantly different from zcro at the 0.05 level. *# significantly different from zero at the 0.01 level,
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Panel B: for Puts with a Net Investment of $1

%radir:g Holding Including the 1987 Crash Excluding the 1987 Crash
Exp‘iz:ﬂzn Period Mean Std Dev |T:Mean=0{ Obs Mean Std Dev |T: Mean=0| Obs
Expiration | $0.7669** | $4.1461 9.652 2,723 | $0.8847** | $2.6707 | 17.229 2,705
1 10-36 10 $0.5624** | $1.0916 | 22.492 1,906 | $0.5582** | $1.0874 | 22.364 1,898
5 $0.2398** | $1.9096 6.384 2,584 | $0.2378** | $1.9139 6.295 2,568
1 $0.0355** | $0.5176 3.568 2,711 $0.0343** | $0.5172 3.443 2,695
| Expiration { $0.8059** | $3.1514 | 11.951 2,184 | $0.7838%* | $3.1336 | 11.657 | 2,172
g 2 28.57 10 $0.3343** | $0.7042 22.117 2,171 $0.3260** | $0.6883 | 22.005 2,159
S $0.1252** | $0.6275 9.299 2,172 $0.1212%* | $0.6220 9.059 2,160
i 1 $0.0224** | $0.2676 3.903 2,181 | $0.0219** | $0.2595 3.926 2,169
| Expiration | $0.4855** | $2.7121 6.036 1,137 $0.4855** | $2.7121 6.036 1,137
|’ 3 47.78 10 $0.1665** | $0.4557 12,321 1,137 $0.1665** | $0.4557 12.321 1,137
! ) $0.0598** | $0.4129 4.879 1,134 $0.0598** | $0.4129 4.879 1,134
. 1 $0.0135** | $0.1375 3.321 1,136 $0.0135** | $0.1375 3.321 1,136
) Expiration | $0.5920** | $2.0468 8.729( 911 $0.5941** | $2.0483 8.745 909
4 6799 10 $0.1510** | $0.4123 | 11.007 903 | $0.1497** | $0.4118 | 10911 901
) 5 $0.0692** | $0.3026 6.885 907 | $0.0682** | $0.3020 6.797 905
1 $0.0184** | $0.1800 3.082 910 | $0.0182** | $0.1798 3.045 908

The data sets contain daily observations of options from January 28, 1983 through April 30, 1998. The delta neutral positions are formed by buying

| the call (put) with the lowest implied volatility and simultancously selling the call (put) with the highest implied volatility among the 16 calls (16 puts)
| with different strike prices but the same expiration date on a given day. The number of contracts sold is adjusted to make the position deita neutral, A
position is held only when the difference between the high and the low implicd volatilities is greater than 3% and less than 50%. The net investment

} for positions involving the two calls is standardized to negative $1, i.e., an initial cash inflow of $1. However the net investment for positions

olving the two puts is standardized to positive $1, i.c., an initial cash outflow of $1. The profits (losses) do not account for transaction costs.

]

* significantly different zero at the 0.05 level.

** significantly different from zero at the 0.01 fevel.



Panel A: for Calls with a Net Investment of -$1

Table 4.3
Abnormal Profits (Losses) to a Delta Neutral Stra
Options and Selling High Implied Volatility Options with No Transaction Costs

tegy of Buying Low Implied Volatility
N e s st o o

Trading | 4 1ding Including the 1987 Crash Excluding the 1987 Crash
Group Days to Period
Expiration Mean Std Dev |T: Mean=0 Obs Mean Std Dev |T: Mean=0 Obs
Expiration | $-0.0187 $2.6867 | -0.363 2,723 [$-0.0168 $2.6888 [ -0.325 2,718
. 1036 10 $0.2422** | $2.8096 3.658 1,801 | $0.2448** [ $2.8131 3.689 1,796
5 $0.1068** | $1.1130 4867 | 2,571 | $0.1078** | $1.1139 4904 | 2,566
1 $0.0196%* | $0.3157 3230 | 2,705 | $0.0197** | $0.3159 3243 | 2,700
Expiration | $-0.1142%* | $2.0426 | -2.593 2,150 [$-0.1062* | $2.0455 | -2.398 | 2,136 l
- 2 28.57 10 $0.1428** | $1.2640 5126 | 2,059 | $0.1487** | $1.2661 5312_[ 2,045 k
S 5 $0.0803** | $0.6645 5552 | 2,009 | $0.0832** | $0.6656 5724 | 2,095 |
1 $0.0152** | $0.2196 3202 | 2,143 | $0.0154** | $0.2191 3252 | 2,129 |
Expiration | $-0.0814 $1.8102 | -1.494 1,105 | $-0.0814 $1.8102 | -1.494 1,105
3 4778 10 $0.0230 $0.7465 1.020 1,001 | $0.0230 $0.7465 1.020 1,001 {
5 $0.0210 $0.4485 1.554 1,098 | $0.0210 $0.4485 1.554 1,098
1 $0.0069 $0.1564 1.473 1,103 | $0.0069 $0.1564 1.473 1,103 |
Expiration | $0.1386 $2.7424 1.579 976 | $0.1664 $2.7399 1.888 967 |
4 67.99 10 $0.0266 $0.4558 1.820 974 | $0.0327* | $0.4533 2.242 965 '
e 5 $0.0297** | $0.3208 2.894 976 | $0.0339** | $0.3192 3.300 967 |
1 $0.0069 $0.1249 1.728 976 | $0.0077 $0.1245 1.935 967 1

options on a given day and Group 2 contains the second nearest-to-maturity options, ctc. The abnormal profits are defined as the difference between

*4 significantly different from zero at the 0.01 level.

the profits from investing -$1 ($1) in a delta neutral call (put) position as reported in Table 4.2 and the average profits from investing -$1 ($1) in each
of the available calls (puts) with the same expiration date on the same day. The profits (losses) do not account for transaction costs.

* significantly different from zero at the 0.05 level.
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Table 4.3 (continued)

Abnormal Profits (Losses) to a Delta Neutral Strategy of Buying Low Implied Volatility
Options and Selling High Implied Volatility Options with No Transaction Costs

Panel B: for Puts with a Net Investment of $1

options on a given day and Group 2 contains the second nearest-to-maturity options, etc. The abnormal profits are defined as the difference between
the profits from investing -$1 ($1) in a delta neutral call (put) position as reported in Table 4.2 and the average profits from investing -$1 ($1) in each |
of the available calls (puts) with the same expiration date on the same day. The profits (losses) do not account for transaction costs. ‘J

Trading Holding Including the 1987 Crash Excluding the 1987 Crash
Group Days to Period
Expiration Mean Std Dev |T: Mean=0 Obs Mean Std Dev [T: Mean=0 Obs
ﬁﬂ)imtion $1.3502** | $4.8306 14.585 2,723 $1.5136** | $2.5853 30.450 2,705
| 10-36 10 $0.8129** | $1.2659 | 28.034 1,906 | $0.8089** | $1.2643 | 27.873 1,898
S $0.3479** | $2.8301 6.249 2,584 $0.3492** | $2.8345 6.244 2,568
1 $0.0620** | $0.7032 4.589 2,711 $0.0605%* | $0.7042 4461 2,695
l:'lx—piration $1.5428%* | $3.1301 23.035 2,184 $1.5214** | $3.1140 | 22,770 2,172 \
2 28-57 10 $0.5222** | $0.8288 29.359 2,171 $0.5137** | $0.8167 | 29.225 2,159 |
5 $0.2039** | $0.8929 10.644 2,172 $0.1998** | $0.8906 10.427 2,160 !
1 $0.0370** | $0.4048 4272 2,181 $0.0365** | $0.3980 4.273 2,169 |
Expiration | $1.1854** | $2.9079 13.746 1,137 $1.1854** | $2.9079 13.746 1,137
3 47-78 10 $0.2436** | $0.6573 12.49L 1,137 $0.2436%* | $0.6573 12,495 1,137
5 $0.0924** | $0.6419 4.847 1,134 $0.0924** | $0.6419 4.847 1,134
1 $0.0223** | $0.2247 3.348 1,136 $0.0223** | $0.2247 3.348 1,136 ‘
Expiration | $1.3789*¢ | $1.9372 21.484 911 $1.3807** | $1.9388 | 21471 909
4 67-99 10 $0.2601** | $0.5144 15.195 903 $0.2594** | $0.5147 15.126 901
5 $0.1252** | $0.3989 9.455 907 $0.1244%% | $0.3987 9.382 905
1 $0.0299** | $0.2259 3.989 910 $0.0297** | $0.2256 3.967 908
The data sets contain daily observations of the options from January 28, 1983 through April 30, 1998. Group 1 contains the nearest-to-maturity
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Profits (Losses) to a Delta Neutral Strategy Based on Implied Volatility Differences

Table 4.4

with Transaction Costs for the Sample Including the 1987 Crash

Trading }I!':I:ll::(‘lg Call Positions with a Net Investment of -$1 Put Positions with a Net Investment of $1
Group Days to (trading

Expiration days) Mean Std Dev |T: Mean=0 Obs Mean Std Dev |T: Mean=0 Obs
Expiration | $-0.1125** | $1.3830 -4.241 2,716 $0.6873** | $3.8811 9.243 2,724
i 10-36 10 $-0.0137 $1.1342 -0.513 1,798 $0.5110** | $1.0281 | 21.705 1,907
5 $-0.0124 $0.3363 -1.862 2,564 $0.1981** | $1.8217 5.530 2,585
1 $-0.0075** | $0.0866 -4.504 2,698 $0.0035 $0.4419 0413 2,712
Expiration | $-0.2792** | $1.0792 | -11.989 2,148 $0.7296** | $2.8647 | 11.903 2,184
2 28.57 10 $0.0037 $0.5373 0.315 2,057 $0.2908** | $0.6563 2&644 2,171
5 $0.0061 $0.2441 1.145 2,108 | $0.0916** | $0.5881 7.260 2,172
1 $-0.0094** | $0.0759 -5.755 2,141 $-0.0072 $0.2518 -1.337 2,181
E-?;)imtion $-0.3003** | $0.8851 | -11.279 1,105 $0.4452** | $2.5494 5.891 1,138
3 47-78 10 $-0.0119 $0.2842 -1.383 1,091 $0.1490** | $0.4932 10.189 1,138
5 $-0.0025 $0.1514 -0.545 1,098 $0.0447** | $0.4464 3.370 1,135
1 $-0.0069** | $0.0508 -4.478 1,103 $0.0010 $0.2817 0.124 1,137
Expiration | $-0.2777** | $1.3065 -6.641 976 | $0.5670** | $1.9881 8.608 911
4 67-99 10 $-0.0301** | $0.1524 -6.162 974 $0.1333** | $0.3858 | 10.382 903
5 $-0.0133** | $0.1021 -4.056 976 $0.0533** | $0.2840 5.656 907
1 $-0.0057** | $0.0460 -3.875 976 $0.0036 $0.1609 0.670 910

The data set contains daily observations of the options from January 28, 1983 through April 30, 1998. The delta neutral positions are formed by
buying the call (put) with the lowest implied volatility and simultancously selling the call (put) with the highest implied volatility among the 16 calls
(16 puts) with different strike prices but the same time to expiration on a given day. The number of contracts sold is adjusted to make the position
delta neutral. A delta neutral position is held only when the difference between the high and the low implied volatilities is greater than 3% and less
than 50%. The net investment for the delta neutral positions involving the two calls is standardized to negative $1 (a $1cash inflow). However, the net
investment for the delta neutral positions involving the two puts is standardized to positive $1 (a $1 cash outflow). Transaction costs are assumed to be
$10 per contract as suggested by Whaley (1986) and the total costs for each position are restricted to between $50 and $100.

* significantly different from zero at the 0.05 level. ** significantly different from zero at the 0.01 level.
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Table 5.1

Summary Statistics of Implied Volatility by Strike Price
Excluding the 1987 Crash

Including the 1987 Crash

Symbol

Mean

Std

Mean
K/F -1

Obs

Mean

Std

Mean
K/F -1

in-the-
money

calls

ISDCIS

02114

0.0574

ISDCI7

0.2039

0.0577

-0.0843

3,891

0.2086

-0.0751

ISDCI6

0.1962

0.0549

-0.0659 |

ISDCI5

ISDCI3

ISDCH4

e —————————————————— e ———————e———

0.1903

0.0552

-0.0567 |

4,449

0.2007 | 0.0477 |

0.0495

-0.0830
0.0742

5,107
5,860

0.1934

0.0461

-0.0652 |

01873

0.0455

-0.0562 |

-0.0457 |
-0.0343 |

ISDCI2

ISDCI1

71-0.0073

-0.0212 |

Obs

3,795
4,343
4,993
5,739
6,686
7,686
8,455
8,918

out-of-
the-
money

ISDCO1

ISDCO2
ISDCO3

0.0068

9,081

0.0208

9,032

0.0339

8,774

ISDCO4

ISDCOS

0.0452

8,232

0.0541

7,310

ISDCO6

ISDCO7

0.0625

6,268

0.0689

ISDCO8

0.0763 |

out-of-
the-
money

ISDPOS

-0.0880 |

ISDPO7

ISDPO6

ISDPOS
ISDPO4
ISDPO3

-0.0792

5,002
4,052
7,386
7,798

)7 | -0.0695

8,162

8,538

74 | 8,812

9,014

ISDPO2

ISDPO1

puts

in-the-
money

ISDPI1

ISDPI2

9,089

74 | 8,987

0.0067 |3,388

7,439

ISDPI3

ISDPI4

ISDPI5

ISDPI6

ISDPI7

ISDPI8

5,942

7 (4,528

3,379

2,619

)7 11,978
780 |1,577

Average

ISD4

Historical

520101385 0.1107

9,505

9,699

Realized

RLZSD

The notes are on the next page.

105

0.0203
0.0322
0.0427
0.0507 |
0.0609
0.0697
0.0730

9,699



Table 5.1 ]
’ Summary Statistics of Implitility by Strike *7____5

Notes:
The data set contains daily observations of options on S&P 500 futures with one of the four
nearest to expiration dates (10-99 trading days to expiration) from January 28, 1983 through April 30
1998. On a given day and for a given expiration date, I analyze up to cight in-the-money calls (puts)

and up to eight out-of-the money calls (puts).

In the symbol for an implied volatility estimator calculated from a single option, the first three
letters (ISD) represent Implied Standard Deviation. The fourth letter (C or P) stands for a Call or a
Put. The fifth letter (I or O) refers to In-the-money or Out-of-the-money. The last digit indicates the
relative position of an option from the money where 1 indicates that the option is the nearest from-
the-money and 2 indicates that the option is the second nearest from-the-money etc. For example,
ISDCI2 stands for the implied volatility calculated from the second from-the-money, in-the-money
call. See Figures 2.2, 4.1a, and 4.1b for the graphical illustration of the various implied volatility
estimators.

ISD4 is the average of the four implied volatilities: ISDCI1, ISDCO1, ISDPI1, and ISDPO1.
RLZSD stands for the realized volatility over the remaining life of an option on S&P 500
futures.
HIS40 represents the historical volatility measured over the last 40 trading days.
The sixth and the tenth columns report the mean of an option’s moneyness which defined as
(K/F -1 )v
where K -- strike price.
F - underlying futures price.
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Table 5.2
Forecasting Efficiency of Different Implied Volatility Estimators
_Based on RMSE, MAE and MAPE

33 0.7183
ISDCI7 0.1129 32 0.0804 31 0.6527
ISDCI6 0.1039 29 0.0731 29 0.5971
ISDCI5 0.0969 27 0.0669 27 | 0.5342
ISDCI4 0.0915 21 0.0605 25 0.4820
ISDCI3 0.0856 14 0.0531 23 0.4163
ISDCI2 0.0828 9 0.0472 20 0.3601
ISDCI1 0.0819 7 0.0433 18 0.3197

ISDCO3 | 0.0861 17 0.0381 5 0.2541
ISDCO4 | 0.0876 18 0.0379 r 02472
ISDCO5 | 0.0893 20 0.0376 1 0.2448
ISDCO6 | 0.0925 22 00377 | 3 02412
ISDCO7 | 0.0945 24 0.0383 6 0.2384
ISDCO8 | 0.0957 25 0.0392 10 0.2362

ISDPO8 | 0.1127 31 0.0880 34 0.7463
ISDPO7 | 0.1082 30 0.0823 32 0.6875
ISDPO6 | 0.1021 28 0.0752 30 0.6205
ISDPO5 677

days to expiration from January 28, 1983 through April 30, 1998 For the meaning of the
symbols, please refer to the notes in Table S 1. RMSE, MAE and MAPE are calculated by
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Table 5.2 (continned)
Forecasting Efficiency of Different Implied Volatility Estimators

Based on RMSE, MAE and MAPE

RMSE’s MAE’s MAPE’s
Symbol RMSE | o MAE Rank MAPE | "o o Obs
Panel B: Excluding the 1987 Crash
ISDCI8 | 0.0937 33 0.0793 33 0.7196 33 3,795
ISDCI7 0.0855 31 0.0721 31 0.6522 31 4,343
ISDCI6 0.0779 29 0.0659 29 05964 29 4,993
ISDCI5 | 0.0720 27 0.0603 | 27 05322 | 27 5,739
1ISDCI4 0.0655 26 0.0544 25 0.4306 25 6,686
ISDCI3 | 0.0579 23 0.0472 23 0.4140 23 7,686
ISDCI2 0.0519 21 0.0412 21 0.3573 21 8,455
ISDCI1 0.0477 17 0.0369 18 0.3162 19 8,918 |
ISDCO1 | 0.0447 13 0.0338 13 0.2847 14 9,081
ISDCO2 | 0.0425 9 0.0316 | 7 02626 | 8 9,032
ISDCO3 | 0.0409 6 0.0302 6 0.2483 6 8,774 |
ISDCO4 | 0.0405 5 0.0297 5 02412 5 8,232
ISDCO5 | 0.0395 3 0.0291 3 0.2388 3 —j7,3 10
1ISDCO6 | 0.0379 1 0.0283 1 02347 3 6,268
1SDCO7 | 0.0383 2 0.0284 2 0.2319 2 5,002
ISDCO8 | 0.0396 4 0.0291 3 0.2295 1 4,052
ISDPO8 | 0.0944 34 0.0825 34 0.7509 34 7,386
ISDPO7 | 0.0882 32 0.0767 32 0.6907 32 7,798
ISDPO6 | 0.0810 30 0.0697 30 0.6230 30 3,162 |
ISDPO5 | 0.0728 | 28 0.0620 28 05514 28 8,538
ISDPO4 | 0.0652 25 0.0547 26 04821 26 8,812 |
ISDPO3 | 0.0582 24 0.0476 24 0.4161 24 9,014
iISDPOZ | 0.0528 22 | 0.0419 22 0.3635 22 | 9,089 |
ISDPO1 | 0.0483 18 0.0374 20 0.3204 20 8,987 |
ISDPI1 0.0448 14 0.0341 14 0.2891 16 8,388
ISDPI2 0.0432 12 0.0326 11 02717 13 7,439 |
ISDPI3 0.0428 10 0.0323 9 0.2665 11 5,942 |
ISDPI4 | 0.0430 | 11 00327 | 12 02633 | 9 4,528 |
ISDPI5 0.0413 7 0.0317 8 | 02547 7 3,379
ISDPI6 0.0423 8 0.0324 10 0.2650 10 2,619
ISDPI7 0.0468 16 0.0356 16 0.2866 15 1,978 |
ISDPI8 0.0499 19 0.0373 19 0.2993 17 | 1,577 |
ISD4 0.0464 15 0.0357 17 0.3011 18 9,505
HIS40 0.0502 20 0.0355 15 0.2666 12 9,699

Notes: The data set contains daily observations of options on S&P 500 futures with 10-99 trading
days to expiration from January 28, 1983 through April 30, 1998. For the meaning of the
symbols, please refer to the notes in Table 5.1. RMSE, MAE and MAPE are calculated by

tions 5.1, 5.2 and 5.3

utilizin

tively.
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" Table53
| Forecasting Efficiency of the Average Implied Volatility and its Four Components

{ Symbol RMSE MAE MAPE Obs Note

Panel A: Including the 1987 Crash

I'1SDCI1 0.0778 | 0.0428 | 03265 | -0.0075 | 8,038 | In-the-money call
ITSDPO1 | 0.0778 | 0.0428 | 0.3265 | -0.0075 | 8,038 | Out-of-the-money put
[1SD4 0.0767 | 0.0410 | 03088 | -0.0003 | 8,038 |The average of the four
I ISDCO1 | 0.0757 | 0.0393 | 02923 | 0.0069 | 8,038 [ Out-of-the-money call
ISDPI1 0.0757 | 0.0394 | 02927 | 0.0069 | 8,038 | In-the-money put

Panel B: Excluding the 1987 Crash

ISDCI1 0.0479 | 0.0372 | 0.3230 | -0.0075 | 7,900 In-the-money call
ISDPO1 0.0479 | 0.0372 | 0.3230 | -0.0075 '7,300 Out-of-the-money put
ISD4 0.0461 | 0.0354 | 03052 | -0.0003 | 7,900 |The average of the four|
ISDCO1 0.0444 | 0.0338 | 0.2885 | 0.0068 7,900 | Out-of-the-money call

’ ISDPI1 0.0445 | 0.0338 | 0.2888 | 0.0068 7,900 In-the-money put

|

Notes: RMSE, MAE and MAPE are calculated by utilizing Equations 5.1, 5.2 and 5.3 respectively
when all the four nearest-from-the-money options with the same expiration date are observed on each
day. The data set contains daily observations of options on S&P 500 futures with 10-99 trading days

| to expiration from January 28, 1983 through April 30, 1998. For the meaning of the symbols, please

| refer to the notes in Table 5.1. ]
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Table 5.4
Decomposition of Mean Squared Error (MSE)
into Variance and Squared Bias of Forecasting Error

Rank Var of Rank Bias Rank
Estimator| MSE 1\:5,].; (Ontz- o) ‘I':‘yr Brrp-Frs)? Bl,i{s Obs
Panel A: Including the 1987 Crash

[ 1SDCI8 | 0.014250] 33 ]0.009925 33 0.004325 32 | 3,801
ISDCI7 | 0.012748] 32 | 0.009242 | 32 0.003506 31 4,449
ISDCI6 | 0.010791] 29 | 0.008006 | 28 | 0.002785 | 29 5,107
ISDCI5 | 0.009385] 27 [0.007172 | 20 0.002213 | 27 | 5,860
"ISDCI4 | 0.008378] 21 |0.006737 | 12 0.001641 | 25 | 6,828
ISDCI3 | 0.007324] 14 [0.006272 | 7 0.001052 23 7,849
ISDCI2 | 0.006853] 9 0.006233 6 0.000619 | 21 | 8,643

calls [ ISDCIT | 0.006709] 7 | 0.006363 9 0.000347 19 | 9.124
"ISDCO1 | 0.007068] 12 |0.006901 [ 17 | 0.000167 | 15 9,297
"ISDCO2 | 0.007376] 16 |0.007298 | 22 0.000078 10 9,251
ISDCO3 | 0.007419] 17 |0.007385 | 24 0.000034 7 9,001
[ISDCO4 | 0.007677] 18 | 0.007668 | 26 0.000009 5 8,453
[ISDCOS5 | 0.007971] 20 | 0.007969 | 27 0.000003 4 | 7,511

' ISDCO6 | 0.008562] 22 [ 0.008562 | 29 0.000000 | 2 6,469
[ISDCO7 | 0.008933] 24 | 0.008933 | 30 0.000000 1 5,183
"ISDCOS | 0.009158] 25 |0.009157 | 31 0.000001 3 | 4,216
ISDPOS | 0.012709] 31 |0.007415 | 25 0.005295 34 | 7,566

' ISDPO7 | 0.011705] 30 | 0.007330 | 23 0.004375 33 7,977
"ISDPO6 | 0.010422] 28 | 0.007005 | 18 0.003417 30 8,363
"ISDPOS | 0.009309] 26 | 0.006815 | 15 0.002494 28 8,741
ISDPO4 | 0.008591| 23 | 0.006874 | 16 0.001717 | 26 9,021
ISDPO3 | 0.007888] 19 | 0.006807 | 14 0.001082 24 | 9,222
ISDPO2 | 0.007018] 11 | 0.006337 8 0.000681 22 | 9,288

puts TISDPOI | 0.006934] 10 0.006564 | 11 0.000370 | 20 | 9,179
[ ISDPI1 | 0.006125] 3 0.005900 | 2 0.000225 16 8,561
ISDPI2 | 0.006250] 4 0.006128 | 4 0.000122 13 7,591
[ISDPI3 | 0.006289] 5 0.006192 | 5 0.000097 11 6,064
ISDPI4 | 0.006831| 8 0.006761 | 13 0.000070 | 9 4,633
ISDPI5 | 0.006022| 2 0.005955 3 0.000067 | 8 | 3,465
ISDPI6 | 0.006520] 6 0.006a22 [ 10 0.000098 12 | 2,699

[ 1SDPI7 | 0.007330] 15 |0.007208 | 21 0.000122 14 2,063
ISDPI8 | 0.005723] 1 0.005447 1 0.000276 18 1,661
Average | ISD4 | 0.007287| 13 |0.007033 | 19 0.000254 17 | 9,764
Historical| HIS40 | 0.014319] 34 [ 0.014302 | 34 0.000017 6 9,988

The notes are on the next page.
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f Estimator| MSE | Rank | Var | Rank | Bias | Rank | Obs

| Panel B: Excluding the 1987 Crash

| ISDCIS ]| 0.008773] 35 ] 0.003320 ] 36 0005354 | 33 | 3,79

; ISDCI7 | 0.007308] 33 | 0002867 | 34 |0.004441 | 31 | 4,343 |
! ISDCI6 | 0.006065] 31 | 0002543 | 32 [0003522| 29 | 4,993
|

ISDCIS | 0.005179] 29 0.002421 29 0.002758 27 5,739
ISDCI4 | 0.004289] 28 0.002142 | 26 0.002147 25 6,686

ISDCI3 | 0.003349] 25 0.001901 23 0.001448 23 7,686

ISDCI2 | 0.002696] 23 0.001760 | 20 0.000936 21 8,455

|
|
|
|
calls ISDCI1 | 0.002275] 17 0.001672 18 0.000603 19 8,918 ,
ISDCOI | 0.001996f 13 0.001606 13 0.000389 16 9,081

ISDCO2 | 0.001802 9 0.001546 0.000257 13 9,032

ISDCO3 | 0.001675 6 0.001499 0.000176

7
ry
5 0.001525 6 0.000114
ISDCO5 | 0.001561 3 0.001469 3 0.000091
1 1
2 2
|3

l ISDCO4 | 0.001638
ISDCO6 | 0.001434 0.001351 0.000083

ISDCO7 | 0.001467 0.001389 0.000078

8

6

5

y)

3

ISDCOS8 | 0.001572 4 0.001519 0.000053 2
ISDPOS8 | 0.008919| 36 0.002870 | 35 0.006048 34 7,386

32

30

28

26

ISDPO7 | 0.007784] 34 | 0.002687 | 33 | 0.005098
[ISDPOG6 | 0.006554] 32 [0.002492 | 30 | 0.004062
"ISDPO5 | 0.005302] 30 |[0.002242 | 28 | 0.003060
[ ISDPO4 [ 0.004256] 27 | 0.002036 | 25 | 0.002219
ISDPO3 [ 0.003385] 26 | 0.001880| 22 |0.001505 | 24 9,014
(1SDPO2 | 0.002791] 24 |0.001793 [ 21 | 0.000997 | 22 9,089
uts [ISDPO1 | 0.002329] 19 [ 0.001698 | 19 | 0.000631 20 | 8987
P [ ISDPI1 | 0.002009] 14 [0.001596 [ 10 | 0.000413 17 8,388
[ ISDPI2 | 0.001870] 12 | 0.001598 | 11 | 0.000272 14 7,439
ISDPI3 | 0.001832] 10 |0.001606 | 12 |0.000226 | 11 5,942
ISDPI4 | 0.001853] 11 | 0.001650 [ 17 | 0.000203 9 4,528
ISDPI5 | 0.001709] 7 |0.001546| 8 0.000163 | 7 | 3,379
ISDPI6 | 0.001788] 8 0.001582 | 9 0.000206 | 10 2,619
[ ISDPI7 | 0.002189] 16 [ 0.001940 | 24 | 0.000249 | 12 1,978
ISDPI8 | 0.002491[ 21 0.002170 | 27 | 0.000321 15 1,577
Average | ISD4 | 0.002155| 15 | 0.001647 [ 16 | 0.000508 | 18 | 9,505

Historical | HIS40 | 0.002518] 22 0.002499 | 31 0.000019 1 9,699

otes: The data set contains daily observations of options on S&P 500 futures with 10-99 trading days to
expiration from January 28, 1983 through April 30, 1998. For the meaning of the symbols, please refer

to the notes in Table 5.1. MSE is the squared error which is the square of RMSE and gives exactly
he same ranking as RMSE. As shown in Equation 5.4, MSE can be decomposed into two parts: (l)thc

variance of the forecasting error and (2) the squared bias of the average forecasting error. Var denotes
the variance of the forecasting error and Bias denotes the squared average forecasting error.
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Table 5.5
Predictive Power of Different Implied Volatility Estimators

Based on a Single Variable Regression (RLZSD, = =P+ Bio..+

112

|
|
f
{ Estimator m Rl:ll\l‘lkS%y Be By Adj. R* | Obs
‘ Panel A: Including the 1987 iash _
| ISDCI8S | 0.0925 32 0.0706** [0.3551**TF[ 0.0461 3,801
J ISDCI7 | 0.0903 29 0.0578** [0.4261**FTf| 0.0689 4,449
| ISDCI6 | 0.0851 24 0.0463** [0.4951**1f| 0.0923 5,107
? | ISDCI5 | 0.0805 17 | 0.0438%* [0.5227**F1f| 0.1138 5,860
i ISDCI4 | 0.0795 13 0.0302* [0.6108**FF| 0.1380 6,828
| "ISDCB | 00775 2 [0.0238° |0.6743°*1f| 0.1635 | 7,849
| [ ISDCI2Z | 0.0777 5 0.0215* |0.7197**Ff| 0.1832 8,643
| calls | ISDCIL | 0.0789 9 0.0183 0.7680**11| 0.1962 9,124
; [ISDCO1 | 0.0827 21 0.0135 |0.8200** 0.1971 9,297
| 'ISDCO2 | 0.0851 25 0.0128 | 0.8560** 0.1955 9,251
[ ISDCO3 | 0.0858 26 0.0103 | 0.8907** 0.2097 9,001
'ISDCO4 | 0.0874 27 0.0107 [0.9057** 0.2182 8,453
' ISDCO5 | 0.0892 28 0.0074 |0.9372** 02242 7,511
[ISDCO6 | 0.0925 31 0.0075 |0.9441** 0.2327 6,469
’ ' ISDCO7 | 0.0945 33 0.0090 |0.0383** 0.2407 5,183
, ' ISDCO8 | 0.0956 34 0.0147 [ 0.9092%* 0.2482 4216
[ISDPO8 | 0.0793 12 0.0398%* [04713**1f| 0.1244 | 7,566
' ISDPO7 | 0.0799 15 0.0374** |04986**1T| 0.1286 7971
ISDPO6 | 0.0789 10 0.0344%* [0.5339%*1f| 0.1407 8,363
“ISDPO5 | 0.0791 11 0.0295** [0.5833**ff| 0.1495 8,741
[ISDPO4 | 0.0805 18 0.0234* [ 0.6445**Tf| 0.1659 9,021
[ ISDPO3 | 0.0808 19 0.0215* [0.6869**ff| 0.1696 9,222
[TISDPO2 | 0.0782 8 0.0210* |0.7169**Tf| 0.1874 9,288
‘ s ISDPO1 | 0.0801 16 0.0176* [0.7695**fT| 0.1970 9,179
P "ISDPI1 | 0.0761 2 0.0166 0.7960**ff| 02174 8,561
“ISDPI2 | 0.0778 6 0.0167 |0.8164**F | 0.2165 7,591
“ISDPI3 | 0.0782 | 7 0.0155 |0.8316** 0.2339 6,064
ISDPI4 | 0.0817 20 0.0176  [0.8300** 0.2265 4,633 )
| ISDPIS | 0.0767 3 0.0161* [0.8418**F | 0.2725 3,465 |
| "ISDPI6 | 0.0797 14 0.0135]0.8507**f | 0.2807 2,699 }
“ISDPI7 | 0.0840 23 0.0201* |0.8102**ff] 0.2802 2,063}
| ISDPIR | 0.0716 1 0.0269%* [0.7472%*11| 0.3589 1,661 4
Average | 1SD4 0.0832 22 0.0165 |0.7958**T1| 0.2014 9,764
istorical HIS40 0.0905 0.1008** [0.2936**11]| 0.1143 9,988 |

| he notes are on thc next page.

. stgmﬁcantly different from zero at the 0.05 level.
t significantly different from one at the 0.05 level.

. ** significantly diff significantly different from zero at the 0.01 level.
11 significantly different from one at the 0.01 level.



Table 5.5 (continued)

Estimator g;g;: B 1
Panel B: Excluding the 1987 Crash
ISDCIS | 0.0471 34 |0.0660** |03297**1T
ISDCI7 | 0.0449 33 0.0562** [ 0.3880**ft
ISDCI6 | 0.0439 30 |0.0446%* |0.4626**Tt
ISDCI5 | 0.0434 28 [0.0429%* [0.4903**1T
ISDCI4 | 0.0412 24 [0.0377** |0.5307**11
| ISDCI3 | 0.0399 21 0.0306* |0.5963**f%
ISDCIZ | 0.0387 0.0300** [0.6268**{T
ISDCII | 0.0381 0.0297** [0.6528**{t
"ISDCO1 | 0.0377 0.0297** [0.6737**1f
1SDCO2 | 0.0372 0.0293** 10.6921**1}
ISDCO3 | 0.0368 0.0283** [0.7116**1T
ISDCO4 | 0.0373 0.0285** |0.7238%*F7
ISDCO5 | 0.0367 0.0273** | 0.7366**FT
ISDCO6 | 0.0352 0.0259* |[0.7485**ft
[1SDCO7 | 0.0357 0.0262* [0.7513**1t
[1SDCOS8 | 0.0375 0.0280 [ 0.7538**¢
ISDPOS | 0.0443 0.0431** |0.4218**{t
ISDPO7 | 0.0436 0.0393** | 0.4555**tT
ISDPO6 | 0.0427 0.0385** [0.4782**T
ISDPO5 | 0.0415 0.0343* o.{zuuﬁ 8,538 |
"ISDPO4 | 0.0404 0.0315* [0.5614**ft 8,812 ||

[ ISDPO3 | 0.0392 0.0312%* | 0.5896**1F 9,014

ISDPO2 J 0.0325** 10.6074**Ff| 0. 9,089_‘“
ISDPOI1 2 0.0305%* |0.6449%**t1| oO. 8,987

~ISDPI1 037 0.0290** [0.6749**T| O. 8,388

ISDPIZ | 0. 0.0288%* [0.6940**TT 722 |
T ISDPI3 | 0. 0.0260% |0.7152%*F%]
ISDPI4 | O. 0.0311** | 0.6944%*ft
“ISDPIS | O. 0.0224 | 0.7636**{T
| ISDPI6 0387 0.0185 0.7818**f
ISDPI7 2 0.0273  [0.7233%°T |
ISDPIS X 0.0346* [0.6737**{T
"1SD4 0.0298** [0.6624**TT|
HIS40 0.0707** |0.4534%*1T

Notes: The realized volatility (RLZSD,) over the remaining life of an option on S&P 500 futures is

regressed on a volatility estimator (0;,) which is either one of the 32 individual implied volatilities, or |
the average implied volatility, or the historical volatility (HIS40) measured over the last 40 trading days. |
For the meaning of the symbols, please refer to the notes in Table 5.1. The significance of the |

WSE&&SS*“““Q“MWGG

| heteroskedasticity and serial correlation caused by the overlaps in volatility.



Table5.6
Predictive Power of Different Implied Volatility Estimators

Estimator

Based on a Two Variable Regression

[ ISDCI3

ISDCI8

0.0912

ISDCI7

0.0895

0.0818**

ISDCI6

0.0846

ISDCIS
ISDCI4

ISDCI2

0.0802

0.066411

0.2204**

0.1779*t¢

0.1831**

0.0639**
0.0566**

0.3732%*1t

0.3006°°11

0.1428%*

0.1078*

0.0794

0.0384**

0.0775

0.0251*

0.0776

0.0200

0.5062**+1

0.0750

0.6547**%

0.0142

0.7428**

-0.0167

ISDCI1

0.0789

0.0140

0.8402%*

-0.0502

ISDCO1

0.0825

0.0056

0.9640**

-0.0907

ISDCO2

0.0849

0.0024

1.0368**

-0.1173

ISDCO3

0.0854

-0.0014

1.0929**

-0.1265

ISDCO4
ISDCOS

0.0871

7 |-0.0002
0.0887 | 2

1.0993**

-0.1196

-0.0056

1.1693**

-0.1400

1SDCO6

0.0920

ISDCO7

0.0939

-0.0067

1.1913%*

-0.1426

-0.0054

1.1786**

-0.1331

ISDCO8

0.0949

-0.0008

1.1599**

| ISDPO6

ISDPOS8
ISDPO7

ISDPOS5S

0.0784

0.0609**

0.2538**t1

0.0792

0.0556**

0.2974**11

0.1755**
0.1634**

-0.1349

0.0785

0.0491**

0.3638**tt

0.0138**

0.0789

0.0404**

0.4517**+F

0.0988*

ISDPO4

0.0804

0.0808

9 ]0.0250*

0.0300**

0.5606**tt

0.0604

0.6384**1t

0.0339

ISDPO2

0.0782

0.0225

0.6946**

ISDPO1
ISDPI1
ISDPI2
ISDPI3

0.0801

0.0160

0.7952**

0.0152
-0.0175

0.0761

0.0130

0.8537**

-0.0375

0.0777
0.0781

0.0116
0.0098

0.9291**

0.9034**

-0.0564

-0.0608

ISDPI4

0.0817

0.0122

0.9205**

ISDPI5
ISDPI6

0.0765

0.0074

0.9791**

-0.0550
-0.0765

0.0795

0.0027

1.0039**

-0.0778

ISDPI7

0.0840

0.0140

0.8909%%

-0.0394

ISDPI8

0.0715

0.0320**

0.6832**t1

ISD4

0.0831

* significantly different from zero at the 0.05 level. ** significantly different from at the 0.01 level.
t significantly different from one at the 0.05 level. {1 significantly different from one at the 0.01 level.
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Table 5.6 (continued)

Estimator | 8 R;;k B By B.  |Adi. R2| Obs
RMSE | pate
Panel B: Excluding the 1987 Crash
ISDCI8 | 0.0435] 33 ]0.0754** [0.01791T 0.4030%* [0.2053 | 3,795
ISDCI7 | 0.0430] 31 |0.0649** [0.1014%% 0.3574%* | 0.2168 | 4,343
"ISDCI6 | 0.0423] 28 [0.0539°* |0.17311T 0.3424%* [ 02497 | 4,993
ISDCI5 | 0.0423| 27 |0.0505%* [0.2351*Ff | 0.2937** |0.2503 | 5,739
ISDCI4 | 0.0404] 23 |0.0445°% |0.2968**1T| 0.2572** [0.2800 | 6,686
[ISDCI3 | 0.0395] 21 [0.0348%* [0.4361**Tf| 0.1693* |0.3113| 7,686
"ISDCIZ | 0.0386] 19 |0.0321°* |0.5288**1f| 0.1019 [0.3328[ 8,455
calls | ISDCII | 0.0381| 13 [0.0307** |0.5984**{f| 0.0549 |0.3491| 8,918
[ISDCOI1 | 0.0377] 9 |0.0299%* [0.6591**ff| 0.0143" [0.3619 | 9,081
I'ISDCO2 | 0.0372] 5 ]0.0289** [0.7162**1f| -0.0232 |0.3734| 9,032
[ISDCO3 | 0.0368] 4 [0.0275** [0.7651*1f | -0.0511 [0.3900] 8,774
TSDCO4 | 0.0373] 6 |0.0276** |0.7850**T | -0.0578 |0.3928] 8,232
ISDCOS | 0.0367] 3 ]0.0263** |0.8046** -0.0627 |04115] 7,310
[ISDCO6 | 0.0352] 1 [0.0248% |0.8222%* -0.0666 |0.4454 | 6,268
'ISDCO7 | 0.0357] 2 |0.0250° ]0.8294** | -0.0697 [0.4521| 5,002
ISDCO8 | 0.0375] 7 [0.0268 |0.8260** -0.0633 | 0.4316 | 4,052
ISDPOS | 0.0425] 30 |0.0506%* [0.1734*tT | 0.3331** [0.2603 | 7,386
'ISDPO7 | 0.0823] 29 |0.0463%* |0.2238**1f| 0.2976** [0.2697 | 7,798
[ISDPO6 | 0.0416] 25 |0.0439%* [0.2597**11f| 0.2760%* [0.2744 | 8,162
"ISDPOS5 | 0.0408] 24 [0.0395** |0.3259**1f| 0.2317* [0.2869 | 8,538
ISDPO4 | 0.0400] 22 |0.0357°* |0.4033**1f| 0.1774* |0.3036 | 8,812
"ISDPO3 | 0.0390] 20 [0.0341** |0.4644**ff| 0.1362 [0.3213 | 9,014
ISDPO2 | 0.0385] 17 |0.0345** |0.5050**11] 0.1087 [0.3306 | 9,089
ISDPOI | 0.0382] 15 [0.0315** |0.5904**ff| 0.0557 [0.3457 | 8,987
PUS  [TSDPIT | 0.0375] 8 [0.0293°* |0.6558°*1| 0.0190 [0.3651] 8,388
ISDPI2 | 0.0379] 11 |0.0284** [0.7215**1f| -0.0269 [0.3724 | 7,439
ISDPI3 | 0.0382] 14 |0.0261* [0.7731**f | -0.0567 |0.3891 | 5,942
ISDPI4 | 0.0384] 16 [0.0311** [0.7087**1f| -0.0143 |0.3783 | 4,528
"ISDPI5 | 0.0379] 10 [0.0211 0.8772%* -0.1062 [0.4285 [ 3,379
ISDPI6 | 0.0386] 18 [0.0170 |0.8751** -0.0836 [0.4299 | 2,619
ISDPI7 | 0.0422] 26 ]0.0273 [0.7254** -0.0020 10.3790| 1,978
ISDPIS | 0.0439] 32 [0.0370* [0.5530**ff| 0.1086 [0.3410| 1,577
Average | ISD4 | 0.0379] 12 |0.0303%* [0.6340**tf| 0.0283 |0.3570 | 9,505

Notes: The data set contains daily observations for options with 10-99 trading days to expiration from
January 28, 1983 through April 30, 1998. The realized volatility (RLZSD,) over the remaining life of
‘an option on S&P 500 futures is regressed on an implied volatility estimator and the historical volatility
(HIS40,) measured over the last 40 trading days. For the meaning of the symbols, please refer to the
notes in Table 5.1. The significance of the coefficients is based on the t statistics from the Hansen
(1982) procedure which corrects for the heteroskedasticity and serial correlation caused by the overlaps
in realized volatility.
* significantly different from zero at the 0.05 level. ** significantly different from zero at the 0.01 level.
t significantly different from one at the 0.05 level. {1 significantly different from one at the 0.01 level.
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Group 1

Group 2

Group 3

Group 4

Figure 2.1

Options on S&P 500 Futures with Different Expiration Dates

Traded on February 25, 1997

Feb. 25, 1997
"""""""" ' Mar. 20, 1997 (quarterly contract)
]
calls and puts E 17 trading days
________________ ! |
_______________ '
: 37tradingdays  April 18,1997 (serial contract)
calls and puts | !
]
'

57 trading days May 16, 1997 (serial contract)
|
|
80 trading days June 19, 1997 (quarterty contract)
|
|
143 trading days Sept. 18, 1997 (quarterly contract)

Dec. 18, 1997 ( quarterly contract)

206 trading days |
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Figure 2.2
Calls and Puts with the Same Expiration Date but Different Strike Prices

~ Utilized in this dissertation are the

elight in-the-money calls, eight out-of-the-money calls,
eight in-the-money puts, and eight out-of-the-money puts

strike price
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ot | | | t i | y | 1 | | 1 1 | l—al strike price
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~ P K
~ ~o - L d
out-of-the-money puts B L EEE PRt ik -in-the-money puts

K <F strike price = futures price K >F

K=F

Note: The cails and puts on S&P 500 futures shown here have the same expiration date and are observed on the same day.
Each hash mark represents a strike price tick.
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Figure 2.3

Average Trading Volume of Options on S&P 500 Futures by Strike Price
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Figure 2.4

Number of Observations of Options on S&P 500 Futures by Strike Price

(a) Group 1
The-nearest-to-expiration Options
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Figure 2.5
Data Periods Utilized to Calculate Realized Volatility, Implied Volatility and Historical Volatility

Implied Volatility Realized Volatility
Historical Volatility
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Figure 4.1a
Implied Volatility Smile for Options on S&P 500 Futures

with 10 to 99 Trading Days to Expiration including the 1987 Market Crash

0.22
b

0.21 —e—Calls
0.20 - --@®--Puts
g —--—RLZSD
3 019 ¢ Mean of -
S Average Implied Volatility
; 0.18 ¢ (ISD4)
T 017} Mean o
E Realized Volatility
§ 0.16 + (RLZSD)
= 0154 i
0.14 + Mean
Moneyness
0.13 A b e A — e b (KIF - 1)
8 85 883 8858583833 85 28 8
‘? q q q 9 q 9 Q q o o o o o o o (=] o o
in-the-money calls 1‘ out-of-the-money calis
out-of-the money puts at-the-money in-the money puts

Note: The data set contains daily observations of the four nearest-to-expiration options. The X axis represents the mean
moneyness of the options over ali the avallable observations. The moneyness is defined as (K/F - 1) where K is the strike
price and F is the underlying futures price. The Y axis measures the mean implied volatility over all the available
observations. The diamonds represent calls and the dots represent puts. For example, the farthest right dlamond shows
the mean moneyness and the mean implied volatility for the elghth from-the-money, out-of-the-money call. Similarly, the
farthest left dot shows the mean moneyness and the mean implied volatility for the eighth from-the-money, out-of-the-money
put. ISD4 represents the average impiied volatllity calculated from the two-nearest-the-money calils and the two nearest-the

money puts.
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Figure 4.1b
implied Volatility Smile for Options on S&P 500 Futures
with 10 to 99 Trading Days to Expiration Excluding the 1987 Market Crash
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in-the-money calls 1‘ out-of-the-money calls
out-of-the money puts at-the-money in-the money puts

Mean
Moneyness
(K/F - 1)

Note: The data set contains daily observations of the four nearest-to-expiration options. The X axis represents the mean
moneyness of the options over all the available observations. The moneyness Is defined as (K/F - 1) where K is the strike

price and F Is the underlying futures price. The Y axis measures the mean implied volatility over all the available

observations. The diamonds represent calls and the dots represent puts. For example, the farthest right diamond shows
the mean moneyness and the mean implied volatility for the eighth from-the-money, out-of-the-money call, Similarly, the
farthest left dot shows the mean moneyness and the mean implied volatility for the eighth from-the-money, out-of-the-money
put. iISD4 represents the average implied volatility calculated from the two-nearest-the-money calls and the two nearest-the

money puts.
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Figure 5.1a

Root Mean Squared Errors (RMSEs) of Different Implied Volatility Estimators

Including the 1987 Market Crash
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out-of-the money puts at-the-money in-the money puts

Note: The data set contains daily observations of the four nearest-to-expiration options on S&P 500 futures with 10 to 99
trading days to expiration. The X axis represents the mean moneyness of the options which is defined as (K/F - 1) where K
is the strike price and F is the underlying futures price. The Y axis measures the root mean squared error (RMSE). The
dlamonds represent calls and the dots represent puts. For example, the farthest right dlamond shows the mean moneyness
and the RMSE for the eighth from-the-money, out-of-the-money call. Similarty, the farthest left dot shows the mean
moneyness and the RMSE for the elghth from-the-money, out-of-the-money put. iSD4 represents the average implied

volatility caiculated from the two-nearest-the-money calls and the two nearest-the-money puts.
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Figure 5.1b
Root Mean Squared Errors (RMSEs) of Different Implied Volatility Estimators
Excluding the 1987 Market Crash
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Note: The data set contains dally observations of the four nearest-to-expiration options on S&P 500 futures with 10 to 99
trading days to expiration. The X axis represents the mean moneyness of the options which is defined as (K/F - 1) where K
is the strike price and F is the underlying futures price. The Y axis measures the root mean squared error (RMSE). The
diamonds represent calls and the dots represent puts. For example, the farthest right diamond shows the mean moneyness
and the RMSE for the eighth from-the-money, out-of-the-money call. Similarty, the farthest left dot shows the mean
moneyness and the RMSE for the eighth from-the-money, out-of-the-money put. ISD4 represents the average implied

volatility calculated from the two-nearest-the-money calls and the two nearest-the-money puts.
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Figure 5.2
Mean Absolute Errors (MAEs) of Different Implied Volatility Estimators
Including the 1987 Market Crash
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Note: The data set contains daily observations of the four nearest-to-expiration options on S&P 500 Futures with 10 to 99
trading days to expiration. The X axis represents the mean moneyness of the options which is defined as (K/F - 1) where K
is the strike price and F is the underlying futures price. The Y axis measures the mean absolute error (MAE). The
dlamonds represent calls and the dots represent puts. For example, the farthest right diamond shows the mean moneyness
and the MAE for the eighth from-the-money, out-of-the-money call. Similarly, the farthest left dot shows the mean

moneyness and the MAE for the eighth from-the-money, out-of-the-money put. ISD4 represents the average implied
volatility calculated from the two-nearest-the-money calls and the two nearest-the-money puts.
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Figure 5.3
Mean Absolute Percentage Errors (MAPES) of Different Implied Volatility Estimators
Including the 1987 Market Crash
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Note: The data set contains daily observations of the four nearest-to-expiration options on S&P 500 Futures with 10 to 99
trading days to expiration. The X axis represents the mean moneyness of the options which is defined as (K/F - 1) where K
Is the strike price and F is the underlying futures price. The Y axis measures the Mean Absolute Percentage Error (MAPE).
The diamonds represent calls and the dots represent puts. For example, the farthest right diamond shows the mean
moneyness and the MAPE for the eighth from-the-money, out-of-the-money cali. Similarly, the farthest left dot shows the
mean moneyness and the MAPE for the eighth from-the-money, out-of-the-money put. I1SD4 represents the average
implied volatility calculated from the two-nearest-the-money calls and the two nearest-the-money puts.
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Figure 5.4a
Decomposition of Mean Squared Error (MSE) into Variance and Squared Bias
for Calls Including the 1987 Market Crash
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Note: The data set contains daily observations of the four nearest-to-expiration call options on S&P 500 Futures with 10 to
99 trading days to expiration. Equation 5.4 shows that mean squared error (MSE) can be decomposed into the variance of
the forecast error and the squared bias. The X axis represents the mean moneyness of the options which is defined as
(K/F - 1) where K is the strike price and F is the underlying futures price. The Y axis measures either Mean Squared Error
(MSE), or the Variance of the forecast Error, or the squared Bias.
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Figure 5.4b
Decomposition of Mean Squared Error (MSE) into Varlance and Squared Bias
for Puts Including the 1987 Market Crash
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Note: The data set contains daily observations of the four nearest-to-expiration put options on S&P 500 Futures with 10 to
99 trading days to expiration. Equation 5.4 shows that mean squared error (MSE) can be decomposed into the variance of
the forecast error and the squared bias. The X axis represents the mean moneyness of the options which is defined as
(K/F - 1) where K Is the strike price and F is the underlying futures price. The Y axis measures either Mean Squared Error
(MSE), or the Variance of the forecast Error, or the squared Bias.
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Figure 5.5a
Regression's Root Mean Squared Errors (RMSEs) of Different Estimators
Including the 1987 Market Crash
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Note: The data set contalns daily observations of the four nearest-to-expiration options on S&P 500 futures with 10 to 99
trading days to expiration. The X axis represents the mean moneyness of the options which is defined as (K/F - 1) where K
is the strike price and F Is the underlying futures price. The Y axis measures the OLS regression's RMSE reported in Table
5.5. The diamonds represent calls and the dots represent puts. For example, the farthest right diamond shows the mean
moneyness and the RMSE of the OLS regression of the realized voiatllity on the implled volatility calculated from the eighth
from-the-money, out-of-the-money call. Similarly, the farthest left dot shows the mean moneyness and the RMSE of the
OLS regression of realized volatility on the implied volatility calculated from the eighth from-the-money, out-of-the-money
put. ISD4 represents the average impiied volatliity calculated from the two-nearest-the-money calls and the two nearest-the
money puts.
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Figure 5.5b
Regression’s Adjusted R-squares of Different Estimators
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Note: The data set contains daily observations of the four nearest-to-expiration options on S&P 500 futures with 10 to 99 trading
days to expiration. The X axls represents the mean moneyness of the options which is defined as (K/F - 1) where K is the strike
price and F Is the underlying futures price. The Y axis measures the OLS regression's adjusted R? reported in Table 5.5. The

diamonds represent calls and the dots represent puts. For example, the farthest right diamond shows the mean moneyness and
the adjusted R? of the OLS regression of the reaiized volatiiity on the implied volatility calculated from the eighth from-the-money,

out-of-the-money call. Similarly, the farthest left dot shows the mean moneyness and the adjusted R? of the OLS regression of
reaiized volatility on the implied volatiiity calcuiated from the eighth from-the-money, out-of-the-money put. ISD4 represents the
average implied volatiiity calculated from the two-nearest-the-money calls and the two nearest-the-money puts.
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Figure 5.5¢
Regression's Intercepts of Different Estimators
Including the 1987 Market Crash
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Note: The data set contains daily observations of the four nearest-to-expiration options on S&P 500 futures with 10 to 99 trading
days to expiration, The X axis represents the mean moneyness of the options which is defined as (K/F - 1) where K is the strike
price and F is the underlying futures price. The Y axis measures the OLS regression's intercept reported in Table 5.5. The
diamonds represent calls and the dots represent puts. For example, the farthest right diamond shows the mean moneyness and
the intercept of the OLS regresslon of the reallzed voiatility on the impiied volatiiity calculated from the eighth from-the-money, out
of-the-money call. Similarly, the farthest left dot shows the mean moneyness and the intercept of the OLS regression of reaiized

volatility on the impiied voiatility caiculated from the eighth from-the-money, out-of-the-money put. ISD4 represents the average
implied volatility calculated from the two-nearest-the-money calls and the two nearest-the-money puts.
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Figure 5.5d
Regression’s Slope Coefficients of Different Estimators
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Note: The data set contains daily observations of the four nearest-to-expiration options on S&P 500 futures with 10 to 99 trading
days to expiration. The X axis represents the mean moneyness of the options which is defined as (K/F - 1) where K is the strike

-+ price and F Is the underlying futures price. The Y axis measures the OLS regression's slope coefficiant reported in Table 5.5.

The diamonds represent calls and the dots represent puts. For example, the farthest right diamond shows the mean moneyness
and the slope coefficient of the OLS regression of the realized volatility on the implied volatility caiculated from the eighth from-the
money, out-of-the-money call. Similarly, the farthest left dot shows the mean moneyness and the slope coefficient of the OLS
regression of reallzed volatility on the implied volatility calculated from the eighth from-the-money, out-of-the-money put. ISD4
represents the average implied volatility calculated from the two-nearest-the-money calls and the two nearest-the-money puts.
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