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ESSAYS ON IMPLIED VOLATILITY

Abstract

This dissertation consists o f three empirical essays regarding the estimate o f future 

market volatility implied by an option price. According to the theory of madcet efSciency, 

this implied volatility should represent the market participants’ consensus acpectation o f the 

volatility over the remaining life o f the option. But this assertion has been hotly debated. 

The first essay presents a new explanation for the previous finding that implied volatility 

is biased and inefficient. I find that implied volatility varies around the madcet’s true 

volatility expectation due to measurement error and that this measurement error biases tests 

towards rejecting the informational efficiency of the implied volatility. When I control for 

the measurement error utilizing instrumental variables estimation, the results in most cases 

no longer reject the hypothesis that implied volatility is unbiased and informationally 

efBcient.

The second essay relates to the implied volatility “smile”. While previous 

explanations for the smile have focused on possible errors in the pricing formula, I argue that 

the smile may be caused by investors’ preferences for certain strike prices for hedging 

purposes. I find that madcet inefficiency is partly responsible for the smile since abnormal 

returns can be made over time based on the implied volatility differences. The third essay 

compares the relative forecasting efficiency of implied volatilities across different strike 

prices. I find, contrary to the general belief and practice, that the implied volatility calculated 

firom an at-the-money option is less informative than those calculated from options with 

relatively higher strike prices and that an average measure may not be effective.
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ESSAYS ON IMPLIED VOLATILITY

Chapter 1 

Introduction

Since market volatility is a  critical fector in pricing derivatives and assets with 

derivative characteristics, understanding volatility is of vital interest to traders, investors, 

risk managers and finance researchers. This dissertation explores the implied volatility 

calculated fi-om the observed option prices. While many aspects o f implied volatility such 

as its information content, predictive power, time-series properties, and volatility smile have 

been studied extensively, there are still a number of unresolved issues. The aim o f this 

dissertation, which contains three empirical essays examining options on S&P 500 futures, 

is to augment and strengthen the understanding o f implied volatility in terms of three issues, 

thereby facilitating more efficient use o f this measure. The empirical evidence presented 

in this dissertation should be informative to both practitioners and academics who are 

interested in forecasting market volatility.

The first essay concerns the predictive power of implied volatility. According to the 

efficient market hypothesis, all information is quickly and correctly incorporated into asset 

prices. Hence, if  the option pricing model is correct, the implied volatility calculated fix>m 

an observed option price should represent the market’s forecast o f the underlying asset’s 

volatility over the remaining life o f the option. Therefore, it should be both unbiased and

1



infonnationally efficient However, previous studies have found that implied volatility is 

a biased estimator o f subsequent realized volatility and is not efficient in that it fails to 

incorporate all available information, including historical returns. Some studies even report 

that implied volatility has lower predictive power than historical volatility which is 

calculated from historical returns. Is implied volatility really a biased and inefficient 

estimator or are the previous findings due to  some other reasons? I argue and show that 

implied volatility varies around the market’s true volatility expectation due to such foctors 

as bid-ask spreads, non-synchronous prices, and possible deficiencies in the pricing formula 

and that this measurement error biases tests toward rejecting the informational efficiency 

o f implied volatility. No previous woric has systematically examined the effect of 

measurement error on the predictive power and efficiency tests.

The second essay relates to the implied volatility smile which has gained 

considerable attention. The smile refers to the cross-sectional variation in implied volatility 

across options with different strike prices but the same maturity, hi other words, on a given 

day, one obtains different implied volatilities over the same period from options with 

different strike prices. If  the option pricing model is correct and the market is efficient, 

there should be no smile since, as noted above, all implied volatilities calculated fiom 

options with the same expiration date should represent the same market forecast. The 

prevailing explanation for the smile is that the Black-Scholes (1973) (BS hereafter) option 

pricing model is incorrect leading researchers to propose more complicated option pricing 

models. However, none o f the new models has successfully explained the smile motivating 

me to search for an alternative acplanation. In the second essay, I test whether the smile



represents a market inefficiency rather than deficiencies in the BS formula. I f  the BS 

formula is correct and the smile in fact represents a maricet inefficiency, then a trading 

strategy in which one buys options with low implied volatility and simultaneously sells 

options with high implied volatility should make money over time. I find that it is quite 

profitable for put options even after accounting for the transaction costs.

The third essay investigates the relative forecasting efficiency o f implied volatility 

estimates calculated firom options with different strike prices. On a given day for a given 

expiration date, many different options are traded which differ by strike price and whether 

they are calls or puts. As just noted, each of these contracts provides its own implied 

volatility estimate and these implied volatilities differ across different strike prices. Which 

o f these implied volatilities should be utilized to forecast future volatility? Reflecting the 

general belief that at-the-money options are the most informative because they are the most 

sensitive to volatility changes, one popular procedure is to calculate the implied volatility 

from at-the-money options only. Another common procedure is to average together several, 

often two or four, different implied volatilities calculated finm near-the-money options 

thereby averaging out measurement error. Are the implied volatilities calculated finm at- 

the-money options more efficient? Do call options or put options yield better forecasts? Do 

we miss some important information by ignoring all other calls or puts which are either in- 

or out-of-the-money? Does an average necessarily reduce measurement error and improve 

the forecast?

These questions are important to both researchers and practitioners. Several 

previous studies compared the relative performance of different average implied volatility



estimators as well as sometimes a couple o f individual implied volatility estimators. 

Although their results were quite mixed, they leaned toward Ëtvoring at-the-mon^f options. 

The problem is that these studies generally suffered 6om  limited data sets which may not 

give them enough degrees o f freedom. Also as frr as I know, no one has systematically 

investigated the relative forecasting ability o f implied volatility across difroent strike prices 

and between calls and puts. The third essay systematically examines the forecasting 

efficiency o f these different implied volatility estimators, i.e., estimators from individual 

call or put options with different strike prices as well as a  widely utilized average implied 

volatility calculated from the four nearest-the-money options.

hi the first essay, I find that implied volatility has considerable predictive ability for 

the future realized volatility in the S&P 500 futures option market. I further find that 

measurement error does exist, does affect the predictive power and efficiency tests o f the 

implied volatility, and is at least partially responsible for the apparent inefficiency o f 

implied volatility. The measurement error effect is, in general, more severe for an 

individual implied volatility calculated fix>m a randomly chosen call or put than it is for the 

average implied volatility calculated from the four at-the-money options.

In the second essay, I find that maricet inefficiency is partly responsible for the 

implied volatility smile in the options on S&P 500 futures market since abnormal returns 

can be made over time by buying put options with low implied volatility and simultaneously 

selling put options with high implied volatility in a delta neutral ratio. It, however, remains 

a puzzle why the profits fix>m this trading strategy are significant for puts but not for calls 

and why the standard deviations o f  the profits are large despite the foct that the positions are



delta neutral.

In the third essay, I find, contrary to the general belief fiiat at-the-money options do 

not yield the best forecast o f future volatility in the market for options on S&P 500 futures, 

hnplied volatilities calculated firom options with relatively high strike prices (out-of-the- 

money calls and in-the-money puts) among all calls and puts with the same maturity seem 

to be more informative and more efGcient Actually, iq) to a certain level of strike price, the 

forecasting ability o f implied volatility increases as strike price increases. The results are 

robust across options with different time-to-maturities and hold for both the samples o f 

including and excluding the 1987 maricet crash. The results are also robust for different 

measures o f relative efficiency: an OLS regression measure, root mean squared error, mean 

absolute error, and mean absolute percentage error.

The remainder o f this dissertation is organized as follows. Chapter 2 discusses the 

data and the calculation o f  implied, historical, and realized volatilities. Each of the three 

empirical essays will then be presented. Chapter 3 examines the effect o f measurement 

error on the tests o f predictive power o f implied volatility. Chapter 4 offers and tests an 

alternative explanation for the implied volatility smile. Chapter 5 explores the best 

estimators among the implied volatilities calculated fiom options with different strike prices. 

Finally, Chapter 6 summarizes the dissertation.



Chapter 2 

Data and Volatility Measures

2.1 Data

The data for this dissertation consist o f daily settlement prices o f options on S&P 

500 futures traded on the Chicago Mercantile Exdiange horn January 28,1983 to April 30, 

1998. S&P 500 futures prices over the same period are also utilized to calculate implied, 

realized, and historical volatilities. Today, S&P 500 futures and options are the most widely 

recognized stock index contracts in the world and have become an indispensable risk 

management tool of mutual funds and institutional investors. The volatility o f the S&P 500 

futures can therefore be interpreted as a good measure o f aggregate stock market volatility.

An advantage o f using options on index futures instead o f options on the index itself 

is that you do not need to consider dividends in calculating implied volatility on the futures 

thereby reducing calculation error. Harvey and Whaley (1992) showed that ignoring 

dividends or employing other ad hoc dividend-adjusted valuation procedures can produce 

large errors in pricing options on S&P 100 indac. Another advantage is that arbitrage 

between options and their underlying futures is easier and much Chester than arbitrage 

involving all stocks in the index.

The third advantage o f the data set is that the options and their underlying futures 

are traded side by side on the Chicago Mercantile Exchange and close at the same time 

alleviating the problem o f non-synchronous quotes. Furthermore, I utilize a much longer



data set in this dissertation than previous studies (more that 15 years o f daily data). This is 

important because the overlap in realized volatility periods sharply reduces the effective 

degrees o f freedom. Consider options which mature on March 20. On a given day, a 

number o f different implied volatilities calculated from calls or puts with different strike 

prices but with this same expiration date are predicting the volatility o f the underlying 

futures over the same future period. Id addition, the implied volatilities calculated from the 

option prices on consecutive days, such as January 1, January 2, January 3, etc., are 

predicting the volatility over virtually identical periods so are not independent For 

example, in more than 15 years o f daily data o f options on S&P 500 futures with the 

underlying futures contracts maturing every three months, there are 217,226 observations 

but only about 60 tm ly independent subsets.

Options on S&P 500 futures are American type options and are daily cash settled or 

'"marked to the market**. One contract o f the underlying futures has a value of the S&P 500 

index times 500. The minimum pricing increment, or “tick size**, is 0.05 points (equivalent 

to $25). However, the Chicago Mercantile Exchange reduced the multiplier from 500 to 

250 and increased the minimum pricing increment to 0.10 points (but still equivalent to $25) 

on October 31,1997.

On a given day, options differ in three dimensions; expiration date, call or put, and 

strike price. Before July 1987, options on S&P 500 futures were traded only for contracts 

expiring in March, June, September, and December. These options expire on the same day 

as their underlying futures contracts and are traded starting about nine months or a year 

before expiration. For example, the September 1986 options were traded from December



23, 1985 through September 18,1986, or 187 trading days, b i August 1987, short-term 

serial contracts were introduced. These are contracts maturing in the next three months in 

which there is not already a quarterly contract For instance, ̂ m l  1993 options were traded 

from January 18, 1993 to April 16,1993, or 63 trading days. The serial options do not 

expire on the same day as their underlying futures but share the same underlying futures 

with the next nearest March, June, Sq)tember or December options. For «cample, the 

underlying futures o f October 1993 options expires in December 1993 and that o f the 

February 1997 options expires in March 1997.

As an «cample. Figure 2.1 shows that on February 25,1997, one could trade options 

with six different expiration dates. The options expiring in March, June, September and 

December are quarterly cycle contracts while the options expiring in April and May are 

serial contracts. But, before July 1987, one could only trade the quarterly cycle options.

In this dissertation, I stratify the options into four groups based on time to expiration. 

Group 1 contains options maturing first, e.g., the March contracts in Figure 2.1. Group 2 

contains the options maturing next, e.g., the April contracts in Figure 2.1. Since as an 

expiration date approaches the option prices become small relative to transaction costs, 

observations on options with fewer than ten business days to expiration are excluded. ' On 

these days, options with the second nearest expiration date move into Group 1 and options

To tntnmiiy^ data CHOIS, observations which violate boundary conditions are also eliminated from die data 
set, Le., call prices should be greater dian die present value of current futures price minus the present vahw 
ofthe strike price.



with the third nearest expiration date move into Groiq> 2, e tc / As a result, options* time-to- 

maturity ranges fiom 10 to 36 trading days in G roi^ 1, fipom 28 to 57 trading days in Group 

2, firom 47 to 78 trading days in Group 3, and firom 67 to 99 in Group 4 /

On a given day, for the same time to maturity, there are both calls and puts which 

further differ by strike price. As we know, a call confers the right, but not the obligation, 

to buy a futures contract and a put confers the right, but not the obligation, to sell a futures 

contract A call (put) with a strike price less than (greater than) the underlying futures price 

is referred to as in the money. On the other hand, a call ^ u t) whose strike price is greater 

than (less than) the underlying futures price is referred to as out o f the money. An option 

(a call or a put) with a strike price equal to the underlying futures price is referred to as at 

the money. Since the strike prices are in the increments o f 5 points for options on S&P 500 

futures, such as 825, 830, and 835 etc., there are seldom situations when a futures price is 

exactly equal to an option's strike price. In practice, therefore, the options with strike prices 

nearest to the underlying futures price (i.e. the two nearest-the-money calls and the two 

nearest-the-money puts) are often taken as the at-the-money options. Figure 2.2 illustrates 

the different calls and puts on S&P 500 futures with the same time-to-maturity on a given

Note that for dates before July 1987, there may not be observations each date for each group.

As will be discussed in Subsections 2.22 and 333, Aere is a considerable overly in die realized volatility 
periods in the options data. The overlap withm each expiration group could exist in two dimensions: 
different options (calls or puts with different strike prices) observed on die same day and the same (or 
different) options observed on different days. Widiin each expiration group, on a given day, inqilied 
volatilities calculated fiom calls or puts with different strike prices are forecasting exacdy the same future 
realized volatility. On the odier hand, realized volatilities for die same (or different) options widi the same 
underlying futures observed on different days are partially overhgiped. For exanqile, realized volatilities 
for options with the same underlying futures contract observed on day t and day H i only differ because 
the former is calculated fiom the daily return series fiom day H I through the option expiration date while 
the latter fiom the same daily return series but fiom day t+2 through the option expiration date.



day. In summary, options on S&P 500 futures differ in three dimensions: expiration date, 

option type (call or put), and strike price. W ithin each expiration group, the observations 

are both time series and cross-sectional.

Trading activity o f options differs by time-to-maturity and strike price and also 

differs between calls and puts. In general, options with shorter time-to-maturity are traded 

more heavily. For the same maturity, out-of-the-m on^ options (both calls and puts) are 

more actively traded than in-the-money options while near-the-money options are usually 

traded more often than far-firom-the-money options. As a result, prices o f far-from-the- 

money options are often not observable or "stale" which tends to introduce more 

measurement error. Figure 2 3  shows how the average trading volume o f the options differs 

by the “moneyness” which is defined as the ratio o f strike price over the current underlying 

futures price minus one. W ithin each expiration group, the closer the strike price is to the 

futures price, the more frequently an option is traded. Also observe that out-of-the-money 

calls (puts) are consistently traded more heavily than the corresponding in-the-money calls 

(puts).

Options at every strike price may not be traded every day. Figure 2.4 illustrates the 

total number o f daily observations available for options with the same ranking in terms 

moneyness in the data s e t As shown in Figure 2.4, within each group, the number o f 

observations displays a pattern similar to that o f the average trading volume shown in 

Figure 2.3. In general, out-of-the-money calls (puts) have more observations than in-the- 

money calls (puts). In the analysis, 1 utilize e i^ t  nearest-in-the-money calls (puts) and 

eight nearest-out-of-the-money calls (puts) as shown in Figure 2.2.

10



2J1 M ethodology

2.2.1 Im plied Volatility

As outlined above, all the three essays concern implied volatility. These implied 

volatilities are calculated utilizing Black’s (1976) model for European options on futures^:

C=e-*̂ T [F N(d,) - K N(d2)] (2.1)

P=e-«̂ T [K(l-N(d2)) - F(l-N (d,))] (2.2)

d 111
‘ o / f

d j = d j  -

C ~  price o f a call option 

P — price o f a put option 

T — an option’s time to expiration 

R — risk-free interest rate ^

F — price o f the underlying futures

5

Since it assumes European options while die options on S&P 500 futures are American, using Black’s 
model introduces a simll upward bias in the implied volatility. Jorion (1995) shows that diis difference 
is quite small relative to die typical bid-ask spread, e.g., using a European model overestimates a 12 % true 
volatility as 12.02 %. Also since stock index futures, unlike individual stocks, pay no dividends, dividends 
do not appear in the Black’s model for options on futures.

For the risk-fiee interest rate, I extract daily observations of yields to maturity of 3-month, 6-mondi, and 
I-year Treasury bills. A sinqile convex combmation is used to interpolate interest rates according to the 
option’s time to expiration. The interest rate choice has Ihde impact on die results because the option 
pricing formula is quite insensitive to the interest rate (See Sheikh(1993)).

11



K — strike price

a ~  annualized standard deviation o f the continuously compounded return on the 

futures.

The implied volatility for an option with strike price i on day t, is calculated 

by substituting the settlement price of the option with strike price i on day t  for in 

Equation 2.1 or in Equation 2.2 and solving for Oi s d using an iterative proqedure. The 

implied volatilities (also the realized and historical volatilities) arc armuaUzed by 

multiplying by the square root o f252 - the ̂ jproximate number of trading days in one year. 

In Chapter 3 and Chapter 5 ,1 also utilize an average implied volatility (Oisimj) which is the 

average o f the implied volatilities calculated from the two nearest-the-money calls and the 

two nearest-the-money puts  ̂since this measure is often utilized by practitioners as well as 

some researchers.

2.2.2 Realized Volatility

According to the BS model and the market efSciency hypothesis, implied volatility, 

îsDÂt > should represent the market’s forecast on day t o f actual volatility over the remaining 

life o f the option. To judge how well it forecasts, we must measure actual ex-post volatility 

over this same period. The realized volatility, o, , 7 , , over the period from day t through the 

option expiration date, N, is calculated as the standard deviation of returns over this period.

When utflizing I actually ignore all die odier options with die same expiration date observed on die 
same day. As a result, in each expiration group, diere is only one observation for diis average inplied 
volatility per day and therefore, I have much fewer observations in each of the four grotqis. For exanple, 
there are 3,212 observations of Ogo*, for group 1 observed for 3,212 trading days.

12



i.e..

®RLZ.t 252» [— i—  Î R /  -  ---------!--------- ( I R ) : ,  (2.3)
N -t-1  i«t*i (N -t)(N -t- l)

where R,= ln(F, /  F^,) and F, is the futures settlement price on day s and where t^  N-107 

This period is chosen to match that covered by the implied volatility calculated from the 

option price.

Note that there is a considerable overlap in realized volatility in the data se t First, 

options observed on the same day with difierent expiration dates (i.e., from different groups) 

have overlaps in their corresponding realized volatilities if they share the same underlying 

futures contract In terms o f the example shown in Figure 2.1, the options in Groups 2, 3 

and 4 observed on February 25,1997 have overlqxped realized volatilities because they all 

share the same underlying futures contract which matured on June 19,1997. For instance, 

realized volatilities for options from Group 2 and Group 3 observed on February 25,1997 

have an overlap period from May 16,1997 through June 19,1997. Second, options with 

the same time to maturity (i.e., within the same expiration group) on a given day have 

exactly the same realized volatility. In other words, on a given day, implied volatilities 

calculated from calls or puts with different strike prices but the same time to maturity are

As discussed in Section 2.1, observations on options with fewer than ten business days are excluded since 
as an option date q>proacfaes die option prices become small relative to transaction costs. In addition, die 
number of observations utilized to calculate a realized volatility is determined by the number of trading 
days in the option’s remaining life. Realized volatilities calculated by utdeing fewer than ten observations 
are more likely subject to small sanqile problems. Accordingly, die last observation on realized volatility 
for a given futures contract is at N-10 and the realized voladhty, Om ,. is always calculated over at least 
10 trading days in this dissertation.
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forecasting exactly the same realized volatility. Third, there are overl^s in observations 

on diffoent days for the same option. As shown in Equation 2.3, realized volatility, Op, ?» 

calculated horn the return series of a given futures contract on day t and that calculated from 

the same return series on day t+1 only differ because one return, is dropped from the 

set covered by the summation sign. Op,y , and ag^z#*, both include the returns: through

R{4 . All these o v e rl^ s seriously bias the standard errors o f OLS estimates downward 

although the OLS parameter estimates are still unbiased and effrcient. hi C hu ter 3, I will 

discuss and utilize a technique for correcting for the heteroskedasticity and serial correlation 

caused by these overlaps.

2.2.3 H istorical Volatility

Besides implied volatility, historical volatility is often utilized to forecast future 

realized volatility even though the majority o f empirical evidence shows that historical 

volatility has a lower predictive power than implied volatility. For comparison, I also utilize 

a measure o f historical volatility in Chapter 3 and Chapter S. This measure is the standard 

deviation o f returns o f the underlying futures over the last M trading days:

2 5 2  i  R /  -  * (  È  R , ) ‘ ] (2 '* )

hi Chapters 3 and 5, M  equals forty trading days since this most closely matches the sixty 

calendar day period utilized by Canina and Figlewski (1993) and some other studies. 

However, the results in  this dissertation are not sensitive to this choice.
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In summary, realized volatility is measured 6om  day t through the option’s 

expiration day, N, and the two forecasts for this realized volatility are calculated; implied 

volatilities calculated from option prices observed on day t and the standard deviation of 

returns over the last 40 trading days before day t  Figure 2.5 shows the respective data 

periods utilized to calculate these three volatility measures.

2.2.4 Summary Statistics o f Implied, Realized, and H istorical Volatilities

Since the data set covers the 1987 market crash, all realized, historical and implied 

volatilities involving returns or prices m this period are extremely high and sometimes tend 

to dominate the results. Accordingly, the analyses are conducted separately for the samples 

excluding  and including observations affected by the 1987 stock maricet crash. Table 2.1 

reports summary statistics for realized, implied and historical volatilities for the samples 

including and excluding 1987 market crash in terms o f each o f the four expiration groups 

as well as the overall sample. For example, the first row in Panel A shows the statistics for 

all the options in the four expiration groups together including the 1987 crash while that in 

Panel B reports the same statistics excluding the 1987 crash.

As shown in Table 2.1, implied volatility generally exceeds the subsequent realized 

volatility. For instance, the mean o f the implied volatility is 0.1686 for the overall sample 

including the 1987 crash while that o f subsequent realized volatility is 0.1420. This 

difference is significant at the 0.01 level. Note that observations are both time series and 

cross-sectional. There are 3,212 trading days but 77,123 observations in Group 1 because 

on each day, implied volatility is calculated separately fix>m up to 16 calls and 16 puts.

15



Chapter 3

Essay I: Measurement Error and the Predictive Power 

of Implied Volatility '

3.1 Introdnction

As well known, i f  the option maricet is cfBcient and the option pricing model is 

correct, the implied volatility calculated from an observed option price should represent the 

m arket’s best forecast o f the underlying asset’s volatility over the remaining life o f the 

option. As such, it should be both unbiased and informationally efficient, that is, it should 

correctly impound all available information, including the asset’s price history. 

Consequently, measures o f historical volatility (or other measures based on past returns, 

such as a G ARCH measure) should add no additional predictive power. However, the 

evidence to date on this issue has been mixed. While most o f the studies find that implied 

volatility outperforms historical volatility in forecasting future volatility, they normally also 

find that implied volatility fails to incorporate all available information, including historical 

volatility. Moreover, some studies even find that implied volatility’s predictive power is 

quite low. For example, using two years o f transaction data for ten individual stocks, 

Lamoureux and Lastrapes (1993) rejected the Hull and White (1987) class o f stochastic 

volatility models in favor o f a GARCH model. Separately, Canina and Figlewski (1993)

This chapter builds on and expands my 1996 summer research project and the joint working paper with 
Professor Louis Ederington “Is inçlied volatility an informationally efBcient and effective predictor of 
future volatility?”.
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found that when ex-post volatility o f  the S&P 100 index is regressed on the implied 

volatility calculated from individual S&P 100 options, the coefBcient o f the implied 

standard deviation is insignificant, and often negative, while the coefBcient o f the historical 

volatility is positive and significant

In this first essay, I examme whether the implied volatilities calculated fiom options 

on S&P 500 futures are infisnnationally efficient and effective predictors o f actual realized 

volatilities. Specifically, I «cplote whether the evidence against the infoimational efficiency 

o f implied volatility is due to “measurement error’*, that is to deviations o f implied volatility 

firom the market’s true volatility expectation due to bid-ask spreads, non-synchronous prices, 

minimum price increments, errors in the option pricing formula, or arbitrage restrictions. 

While econometrics texts commonly show that measurement error in an independent 

variable tends to bias its coefficient toward zero, no previous work has systematically 

investigated the eSect o f measurement error regarding implied volatility.

By examining more than 15 years o f daily data, I find that the implied volatility 

calculated from options on S&P 500 futures has considerable predictive ability. In other 

words, when realized volatility is regressed on both implied volatility and historical 

volatility, the slope coefficient o f the inq>lied volatility is always significantly different fiom 

zero and larger than that o f the historical volatility. At the same time, the coefficient o f 

historical volatility is not always significantly different fix>m zero and the adjusted is 

much higher than observed in previous studies on options on stock index. However, I also 

find that implied volatility fix>m options on S&P 500 futures differs fix>m the market’s true 

volatility expectation and that this measurement error is at least partially responsible for the
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apparent inefficiency o f implied volatility. When I control for measurement error utilizing 

an instrumental variables estimation, the predictive power o f implied volatility rises while 

that o f historical volatility falls and in most cases implied volatility turns out to be unbiased 

and efficient Finally, I find that the results differ dq>ending on the forecasting horizon and 

whether the sample includes the 1987 stock market crash.

This essay differs from previous studies in that it tests and corrects for measurement 

error and in that it considers how sensitive the results are to the forecast horizon and whether 

the data set includes the 1987 market crash. It also differs in that it utilizes a much longer 

data period, more than 15 years o f daily data for options on S&P 500 futures, than previous 

studies. This is important because the overly  in realized volatility periods sharply reduces 

the effective degrees o f freedom and biases the standard error estimates.

The rest o f this essay is organized as follows. The next section reviews the literature 

on the relative predictive power o f implied and historical volatilities and describes the 

traditional test o f informational efficiency. Section 3.3 describes the measurement error 

hypothesis and the procedure for correcting heteroskedasticity and serial correlation caused 

by the overlaps o f the realized volatility periods. Section 3.4 reports the OLS results on 

informational efficiency o f the individual implied volatilities versus an implied volatility 

average, and examines how these results depend on forecast horizon and whether the 1987 

crash is included. In the meantime, the measurement error is tested and corrected through 

an instrumental variables estimatiotL Section 3.5 summarizes and concludes this essay.

18



3.2 Literature Review

M ost early studies o f implied volatility, such as Latané and Rendleman (1976), 

Chiras and Manaster (1978), Beckers (1981), and Park and Sears (1985), were content to 

test whether implied volatility contained cany information regarding subsequent realized 

volatility. Whether implied volatility was informationally efBcient was not an issue. Most 

found that implied volatility had some predictive ability and interpreted this finding as 

confirmation of Black-Scholes option pricing theory.’

More recent studies have compared the relative forecasting ability o f implied and 

historical volatilities and have «cammed how efBciently implied volatility incorporates the 

information available to market participants. Most follow basically the same approach. 

Actual realized volatility (usually the standard deviation), o„  ̂  , ,  fix)m day t through the 

remaining life of the option is regressed on either implied volatility calculated from the 

observed price of an option i, o,^   ̂„ or some measure based on historical time series data, 

Ojs^ (either the standard deviation o f returns over some past period or a GARCH estimate 

derived from historical data), or both. That is they estimate:

O r l z . ,  = « 0  +  +  \ t  a n d  «^RLZ., =  < +  “ i ^ T s . ,  +  " ,  ( 3  1 )

or they estimate:

One problem in most of diese early studies was diat inq>lied and actual volatility periods were not matched 
precisely. For mstance, Chiras and Manaster (1978) measured actual realized volatility over a 20 month 
period &om mondi t dnough t+20 regardless of the time period covered by die implied volatility, that is, 
regardless ofi^diedier the options contract matured in 20 months or S. In addition, all of diese early studies 
suffered from limited data sets and, therefore, small degrees of freedom, for instance, 23 monthly 
observations in die case of Chiras and Manaster (1978) and frve mondis of daily data in the case of Park 
and Sears(1985).
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®RLZ.. = Po + + P2®TS.t + “u  (32)

The hypothesis that O isd . i ., is unbiased and inAimationally efBcient implies that Oo= 0  and 

a ,= I in the version o f Equation 3.1 and implies that P@=0, Pj=l, and p2 = 0  in 

Equation 3.2.

Estimates o f Equation 3.2 finm several previous studies are reported in Table 3.1 

where, to obtain a representative summary regression for each study, I have averaged 

together the estimates for different markets and data periods when a study reports more than 

one. While results differ, a couple of consistencies stand ou t With the single exception o f 

Canina and Figlewski (1993), all studies find that Pi > 0 and most find that it is significant, 

implying that implied volatility does have informational content. On the other hand, in 

almost all studies, p o > 0  and Pi < 1 (although P, is very close to one in Day and Lewis’s 

crude oil regression) implying that implied volatility is not an unbiased and informationally 

efficient estimator.

The studies differ on whether historical time series measures add incremental 

information, i.e., on the sign and significance o f P .̂ As measured by the R \ predictability 

also differs widely. It ^»pears 6 irly high for crude oil, moderate for individual stocks, and 

relatively low for stock indices and foreign exchange rates. In contrast to the other studies, 

Canina & Figlewski (1993) (C&F hereafter) find tiiat in the S&P 100 index option market, 

implied volatility is actually a poorer forecaster o f subsequent realized volatility than 

historical volatility and that implied volatility adds no incremental information to that 

contained in the historical volatility.
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Utilizing over seven years o f daily data on 25 stock options, Bartunek and 

Chowdhury (1995) compared forecasts o f implied volatility, GARCH volatility and 

historical volatility. Their implied volatility measure was calculated from several options 

with different strike prices by a miimnized-squared-pricing-error method. T h ^  found no 

obvious superiority o f any one forecast over any o f  the others. However, their realized 

volatility period and the implied volatility period are not matched exactly as discussed in 

the footnote 9. Most recently, Christensen & Prabhala (1998) compared the predictive 

power o f implied volatility and historical volatility by utilizing monthly data on options on 

S&P 100 index. They found that implied volatility outperforms historical volatility in 

forecasting future volatility and even subsumes the information content o f past volatility in 

some o f their specifications. Their major contribution is that they utilized an instrumental 

variables analysis similar to the one introduced in this essay." However, while correcting 

the problems o f overlapping in realized volatility, their nonoverlapping sampling procedure, 

similar to that o f Feinstein (1989), threw away m ost o f the available observations and in 

effect threw away a lot o f valuable information, hi addition, in their monthly data set, they 

kept only at-the-money call options and ignored all the other call options and all the put 

options.

1 0

This method was developed by Beckers (1981) and Whaley (1982) which will be further discussed in 
Section 5.2.

11
The instrumental variables analysis introduced in diis essay was developed independently before die 
publication of Christensen & Prabhala (1998).
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33  Methodology

3.3.1 M easurement Error and its Impact

A finding that implied volatility is not informationally efBcient could mean either 

that investors are not rational or that the implied volatility, OgD , , "  does not represent 

investors’ true volatility expectation, 0 ^ ^ . C&F (and Figlewski, 1997) lean toward the 

latter arguing that factors not in the option pricing formula influence option prices and that 

market fiictions impede the arbitrage and speculation which would ensure ajsp,, ~  ™

perfect markets. This essay explores and tests this argument, which is that whether the 

results rejecting the informational efSciency o f Oisq, , are due to these deviations o f

®ISD.i f r o n i  OTE.( •

As also discussed by Figlewski (1997), there are several reasons, why the implied 

volatility might differ fiom the market’s true expectation. One, Ogo, is calculated fit>m both 

the option price and the underlying asset’s price and these two prices may reflect trades at 

different times. Two, bid-ask spreads in both the option and the underlying asset will 

introduce measurement error as will the fact that option prices are not continuous, instead 

trading in discrete minimum increments. Three, the option pricing model used to calculate 

implied volatility may be in error. For instance, implied volatility is often calculated using 

the Black-Scholes model which assumes (among other things) that (1) the option is 

European, (2) volatility is constant (or at least deterministic), (3) returns are log-normally 

distributed. Violations o f any would cause the implied volatility calculated firom option

12

To sinq>liiy die notation in this section, the subscript i which designates a call or a put with a different 
strike price has been dropped 60m ai^  , y
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prices using the BS fonnula to differ some^^diat fiom the m arket's true volatiHty forecast.'^ 

Four, hedging activities, or other factors not in the option pricing model, may push 

option prices away fiom the prices consistent with the maricet’s volatility expectation and 

market imperfections may prevent the arbitrage and speculation which would equate 

Otsp. ( with t • For example, holders o f stock portfolios may buy out-of-the-mon^ puts 

pushing up their prices and implied volatilities) in order to protect against a possible market 

decline even if  they think the puts are somewhat overpriced. I f  these hedging trades push 

OisD t above Ote. c > then, in perfect markets, arbitrage and speculation should occur which 

would push put prices and their implied volatilities back down. For instance, if put prices 

rise relative to call prices, then put-call parity arbitrage should occur. O f course, while put- 

call parity arbitrage would lower the implied volatility in put prices, it would simultaneously 

tend to raise call prices above those consistent with the m arket's volatility expectation - 

leaving both somewhat above the m arket's true expectation. If  both the call and the put 

prices exceed those consistent with volatility expectations, then in a perfect market, 

speculators should sell both in a delta neutral ratio or sell a call (a put) option and buy (sell) 

the underlying asset. Either would push option prices and implied volatilities down. 

However, continually re-balancing these positions would entail large transaction costs and 

the speculator would lose if  actual volatility turned out to be larger than anticipated. In 

summary, arbitrage and speculation may not fully return option prices to levels fully

13
A number of studies argue that die mis-piicing caused by these is likely to be minor, at least for at-the- 
money options. For instance, Fleming (1998) and Jorion (1995) find that stochastic and deterministic 
models yield vhtualfy the same option prices for at-die-money options, and Jorion (1995) also reports diat 
the difference between American and European option prices is much smalle r than normal bid-ask spreads.
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consistent with the m arket's volatility expectations. The evidence on volatility^ smiles and 

smirks indicates that some deviations exist due to reasons three and/or four.

I f  OgD , varies around for any o f these four reasons, then in ordinary least 

squares estimations o f Equations 3.1 and 3.2, the estimates o f a , and P, will be biased 

downward and those o f ocq and Po will be biased upward. If  historical time series volatility 

(Ojs^t) is an important determinant o f the maricet's true volatility expectation, then the OLS 

estimate o f P% will be biased upward as w ell Hraice, the evidence in Table 3.1 against the 

informational efSciency o f implied volatility could be «plained by this measurement error.

To see this, suppose both actual and implied volatilities revolve around the market’s 

true expectation, Oje ,̂, i.e.,

®RLZ.t “  ®TB.t ®ISD.t ■ ®TB.t ( 3 - 3 )

Note that €, is an expectational error and q , is a measurement error. If  investors are rational, 

then the expectational error, should be independent of all time t variables, including Otej

and q,. Suppose now that Equation 3.1 is estimated using ordinary least squares and Ogo ,. 

The OLS estimator is ^  o ^ ^  ^  o^g ,. Substituting the «pressions in (3.3)

for ORI7 , and Ojsd ,,

(3.4)

Since market efSciency implies that e* is independent o f O j^  and q ,, ifq , is independent 

o f OxE.» then in the probability limit,
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V a r(a _ ) 
p lun (ft,) -  +Var(Ti)

Note that if  there is no measurement error, i.e., Var(T]) = 0, then the expected value offt, = 1  

but, i f  there is measurement error, i.e., Var(Ti) > 0, then E( f t , )<l .  Since 

* 0  = ®RLz"*i®isD = ( l - A i ) 0 g ^ + € - T |  and E (i) = E(ti) = 0 , i f  E( f t , )<l ,  then 

E(Ag)>0. W hile I have examined Equation 3.1 for simplicity, it can be shown that 

measurement error will cause OLS estimates o f pi in Equation 3.2 to be biased downward 

and o f Po and Pz to be biased upward.

For several reasons, Var(q) is probably particularly large in Canina and Figlewski 

(1993) which may explain why their estimate o f P, is smaller than in other studies. While 

other studies obtain a single implied volatility for each day by averaging together the 

implied volatilities calculated from individual options with the same maturity but differing 

strike prices, C&F treat each strike price as a separate observation. So, while other studies 

utilize the average o f implied volatilities calculated finm several nearest-the-money options, 

C&F do not. In addition, S&P 100 index options are particularly susceptible to the non- 

synchronous data problem discussed above because S&P 100 Index options market and the 

NYSE do not close at the same time. Finally, as C&F point out, because o f the transaction 

costs involved in buying and selling 1 0 0  stocks, it is difBcult to arbitrage between the option 

and the underlying portfolio.

Although OLS estimates of Equations 3.1 and 3.2 are biased by measurement error, 

if  there exists a variable, Z, which is correlated with the market’s tme volatility expectation,
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OfE.!, but not with the measurement error then it is possible to obtain unbiased estimates

using instrumental variables. The instrumental variables estimator o f a , in Equation 3.1 is;

*■ ■

substituting again for o=,7 , and 0 ^ , 4  yields:

«; = (3.7)

If  q, and Z, are uncorrelated and markets are efficient in the sense that e, and Z, are 

independent, then plim (&() = E (%] 0 7 5 .1 ^ 1) / E “ 1. Likewise, it can be shown

that instrumental variables estimates o f the P parameters in Equation 3.2 are unbiased.

3.3.2 Instrumental Variable Selection

Consider the implied volatilities at time t and j days before: o ^ ^ , = and

®isD t-j “ °TE t-j * where q is the measurement error in each. Since the market’s two 

true volatility expectations should only differ due to new information received between t-j 

and t and to the fact that 0 5̂ . 1  covers j fewer days, OrE4  j should be strongly correlated with 

Whether or not the two measurement errors q, and q,^ are correlated depends on 

whether the deviations o f 0 ^ ) from are short- or long-lived and depends on the cause. 

I f  the deviations are due to non-synchronous prices, bid-ask spreads, or m inim um  tick sizes, 

then q, and q,.j should be independent However, if  the deviations o f Oiso 6 0 m Oje are due
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to errors in the option pricing formula, e.g., stochastic volatility or non-lognoimal returns, 

or to market imperfections, then the deviations may be more long-lived so that part o f the 

same error is contained in both % and If  the tim e t  and time t-j measurement errors are

correlated, some bias will remain in the instrumental variables estimates o f Equation 3 2 .

In summary, using as an instrumental variable one can test and correct for 

measurement error due to clearly temporary factors, like non-synchronous quotes and bid-ask 

spreads, but we may not be fully able to correct for more long-lived errors. Christensen and 

Probhala (1998) utilized one period lagged implied volatility as their instrumental variable 

since they utilized a monthly data set

Employing different instrumental variables, I find that the results are robust across 

different choices o f instrumental variables. I tested several instrumental variables such as 

an average implied volatility fiom the two nearest-the-money calls and the two nearest-the- 

money puts or an average implied volatility calculated fiom all foe 32 different options 

which are observed one, five, or ten trading days before day t. However, to save space, I 

only report foe estimation using foe average implied volatility calculated fiom foe two 

nearest-the-money calls and foe two nearest-the-money puts observed ten trading days 

before day t.

3.3.3 Correction fo r  Heteroskedasticity and Serial Correlation

As mentioned in Ch£q)ter 2, there is a considerable overlap in realized volatility 

periods in foe data set Options on S&P 500 futures differ by expiration date, between calls 

and puts, and by strike price. Options observed on a given day with foe same time to

27



maturity (i.e., within the same expiration group) overly  in their realized volatilities. 

Actually, on a  given day, implied volatilities calculated from calls or p u ts with different 

strike prices but the same maturity date are forecasting exactly the same realized volatility. 

In addition, there are overlaps for options observed on different days. As shown in Equation

2.3, the OgTTt calculated for a  given futures contract on day t  and diat calculated for the 

same futures contract on day t+ 1  only differ because one return, is dropped from the 

set covered by the summation sign. Op,y. and O rj^ , both include the returns: . — » Rx

These extensive overlaps mean that even data sets with several thousand observations 

effectively have far fewer degrees o f freedom. More importantly, although OLS estimates 

o f the a ’s and P’s in Equations 3.1 and 3.2 are still unbiased and efBcient in the presence 

o f heteroskedasticity and serial correlation caused by these overlaps, the OLS estimates o f 

their standard errors are biased downward.

To avoid the heteroskedasticity and serial correlation problems caused by these kind 

o f overl^s, Feinstein (1989) and Christensen and Prabhala (1998) utilized non-overlapping 

monthly data sets, which, however, threw a lot o f valuable information. Hansen (1982) 

provides a method to correct the heteroskedasticity and serial correlation caused by such 

overlaps, which has been used by Jorion (1995) and C&F (1993) among others. Let X, 

represent a row vector o f the fth observations on (K-1 ) independent variables and let X 

represent a M ^K matrix o f the M observations on (K-1) independent variables with I's in 

the first coluirm. Representing the OLS regression error for the observation i with e,, the 

Hansen variance-covariance matrix o f the estimated coefBcients is
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(X'X)‘‘ Û ( X ' X ) ‘ (3.8)

where Q can be consistently estimated by
M M M

Û = E ( ê /X /X ;+  E E Q(Lj) 8 j8  (X/X + X /X j) (3.9)
i - l  i-1 j» i*J

where Q(i, j) is an indicator which is equal to one if  observations i and j  overkq) and is equal 

to zero otherwise.

3.4 Em pirical Results

3.4. J. OLS M ultiple Regressions and Inform ational Efficiency o f Im plied volatility

OLS multiple regressions o f realized volatility on individual implied volatilities and 

historical volatility using Equation 3.2 are shown in Table 3.2 where the results for the 

sample including the 1987 crash are shown in Panel A and those for the sample excluding 

the 1987 crash are reported in panel B. The latter is presented because the OrlzS involving 

the October 1987 crash are five to seven times higher than in other periods and tend to 

dominate the regression results. Reflecting this, the adjusted R^s in Panel B are generally 

much higher than those in Panel A. Each observation on the implied volatility in the 

regressions is calculated fi?om a single option price. This structure o f the data set is similar 

to that o f C&F in that each observation o f their implied volatilities is also calculated finm 

an individual option. As mentioned before, on each trading day, there are many different 

options which differ by maturity, option type (call or put), and strike price. Also in the data 

set, on each day there are options with up to four maturity dates which are stratified into
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four expiration groups as explained in C huter 2. Hence, within each expiration group, all 

options observed on a given day have the same time to maturity. Group 1  contains options 

with time to expiration between 10 to 36 trading days while group 2 consists o f options 

expiring in 28 to 57 trading days, etc. Within each group, call ^ u t)  options with up to 16 

different strike prices around the imderlying futures price are utilized: eight in-the-money 

calls, eight out-of-the-money calls, eight in-the-money puts and eight out-of-the-money 

puts.

In Tables 3.2, both the OLS t statistic (toLs)> and the corrected t statistic using 

Hansen’s procedure (t») for the null hypothesis that Pi = 0 are reported. ^  is consistently 

much lower than tots confirming that the OLS estimates o f the standard errors are seriously 

biased. For instance, in the first regression in Table 3 2 , t» is 4.200 while OLS t is 111.571 

for the hypothesis that Pi= 0 . fit addition, the Ig for the null hypothesis that P, = 1  is also 

presented.

In sharp contrast to C&F’s finding o f low predictive power for implied volatility, I 

find that implied volatility has much high predictive power than historical volatility and 

subsumes the information contained in historical volatility especially for options wifii longer 

time-to-expiration. As also shown in this table, the OLS results are quite sensitive to 

whether the 1987 crash period is included or excluded and to the forecast horizon. While 

implied volatility is significant in all regressions, historical volatility is significant for group 

1  when the crash is included and all groups when the crash period is excluded.

However, as in previous studies, the results in Table 3.2 are inconsistent with the 

hypothesis that implied volatility is an unbiased and informationally efBcient estimator o f
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future realized volatility. I f  implied volatility is an unbiased and efBcient predictor o f actual 

realized volatility and there is no measurement error, then we should observe that Po= Pz ~ 

0 and that P,= 1 . In contradiction o f the efficiency hypothesis, the estimated coefficients 

o f OjsDjji, P„ are less than 1 . 0  in all o f the regressions. T h ^  are all significantly less than 

one except for groups 3 and 4 in Panel A. hi further contradiction o f the efficiency 

hypothesis, the estimates o f P@ are positive and significantly different firom zero in all but 

two regressions. Results on whether or not historical volatility provides incremental 

information, that is whether or not P% =  0 , depend on the horizon and whether or not the 

1987 crash period is included. In the four regressions including the 1987 crash, the 

estimates o f p% are not significantly different firom zero, indicating that implied volatility 

subsumes the information of historical volatility. For all the regressions excluding the 1987 

crash, estimates o f P2  are significantly greater than zero indicating that historical volatilities 

do contain some incremental information which is not contained in implied volatility in 

these cases. However, the coefficients o f P2  are still smaller than those o f implied volatility.

Table 3.3 reports the OLS results when realized volatility (Op, 7  , ) is regressed on an 

average implied volatility (Oisd4 j  ) and a historical volatility measured over the last 40 

trading days. The implied volatility measure 0 ^ 0 4 ^, is the average o f the four implied 

volatilities calculated fiom the two nearest-the-money calls and the two nearest-the-money

14
As also mentioned in die footnote 6 in Chapter 2, when the average inqtlied volatility ) is utilized 
all the other options with the same expiration date observed on die same day are, in fiict, ignored. As a 
result, in each expiration group, there is only one observation for this inqilied volatility measure per day 
and dierefore, diere are fewer observations in each of the four groups. For exanqile, there are only 3,212 
observations in group 1.

31



puts. This measure is often used by practitioners as well as some researchers.'^ The only 

difference between Tables 32, and 3.3 is that the latter utilizes this average implied volatility 

measure instead o f all the individual implied volatilities with each serving as a separate 

observation. Note that the i  subscript is dropped in Table 3.3 because there is only one 

observation per day in this case while there are up to 32 observations per day in each group 

in Table 3.2. The coefBcients o f implied volatility (PO and the adjusted are much 

higher in Table 3.3 than the corresponding figures in Table 3.2. For «cample, for options 

maturing in 10 to 36 trading days when the 1987 market crash is included, P, is 0.8056 and 

the adjusted is 0.2447 in Table 3.3 while the Pi is 0.3713 and the adjusted is 0.2049 

in Table 3.2 for the same forecasting horizon.

A comparison o f Tables 3.3 with Table 3.2 suggests that, in general, an individual 

implied volatility calculated firom a randomly chosen option contains more measurement 

error than the average implied volatility calculated firom several near-the-money options and 

that this measurement error is largely responsible for the low p, values and R ^  in Table 3.2. 

The significant improvement in the predictive ability o f this average implied volatility is 

probably due to the fact that this average measure is calculated firom the four nearest-the- 

money options which are traded most actively and should therefore contain less 

measurement error caused by “stale" prices. C luster 6  will thoroughly investigate the 

relative predictive power o f different implied volatility estimators across different strike

IS

For exanqile, the inqilied volatility, which Knight-Ridder Financial Conqiany sells to the market, is 
actually calculated using die two nearest-the-money calls and die two nearest-die-money puts. Jorion 
(1995), however, utilized an average inqilied volatiliQr calculated from one at-die-money call and one at- 
die-money put
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prices as well as this average measure. As will be shown in C huter 6 , the four components 

o f this average implied volatility yield much better forecast than implied volatilities 

calculated from options with low strike prices but worse than some of the implied 

volatilities calculated from options with relatively higher strike prices. This may partially 

explain why C&F obtams much lower measures o f the predictive power o f implied volatility 

while Jorion (1995) finds the higher predictive power. Note also that is often 

significantly different fit>m zero in Table 3.2 but not in Table 3.3 indicating more severe 

measurement error effect in Table 3.2.

3.4.2. Measurement Error Test

Next, whether there is measurement error in the data set is tested by utilizing a 

procedure proposed by Hausman (1978). In the test, the first step is to regress implied 

volatility on one or more instrumental variables, ftien the residual fix>m this first regression, 

call it U„ is inserted as a third independent variable in the OLS estimation of Equation 3.2. 

The null hypothesis of zero measurement error implies a zero coefficient for U*. If  there is 

measurement error in implied volatility measure, which is not repeated in the instrumental 

variable(s), then a negative coefficient is expected.

The results are robust across different instrumental variables or different 

combination o f instrumental variables. To save space, I only report the results when utilizing 

a single instrumental variable which is the average implied volatility calculated fiom the two 

nearest-the-money calls and the two nearest-the-m on^ puts observed ten trading days 

before day t (Ogix. ,̂g). Table 3.4 shows the estimation o f the second-stq) regressions based
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on observations on individual implied volatilities while Table 3 ^  shows that based on an 

average implied volatility, h i both tables, the instrumental variable is OisD4 .«.io- As Table

3.4 shows, coefBcients o f Ut are negative in all the regressions and significantly different 

fiom zero in all but group 4, rgecting the no-measurement-error null. Note that this test not 

only rqects the null that the inched volatility is fiee o f measurement error but also indicates 

that the measurement errors in Oqô and the instrumental variable (o^sotwo) ate at least 

partially independent In other words, while it is still possible that %  and are correlated

due to a long-lived measurement error, it is clear that at least part o f the measurement error 

is short-lived so that its effects can be eliminated using instrumental variables estimation. 

However, in Table 3.5, although the coefficients o f U* are all negative, they are only 

significant for group 1, group 2 and the overall sample including 1987 market crash, 

implying that the average implied volatility contains relatively less measurement error than 

individual implied volatilities.

3.4.3 Instrum ental Variables Estimation

As shown in Tables 3.2 and 3.3 and confirmed by the measurement error tests 

reported in Tables 3.4 and 3.5, in general, there is less measurement error in the average 

implied volatility calculated fiom the two nearest-the-money calls and the two nearest-the- 

money puts than a randomly chosen individual implied volatility. Compared with C&F’s 

data, the measurement error here should be less since the futures and options cease trading 

at roughly the same time and arbitrage is easier. Consistent with this view, I find that 

implied volatili^  has considerable forecasting ability (and that historical volatility has little
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or less incremental predictive power) while C&F do n o t Nonetheless, it remains the case 

that I consistently find in Tables 3 2  & 3.3 that o , $ , < 1 ^nd o > ^nd that often 

these differences are significant. I will next examine whether the measurement error which 

remains in the data is responsible for these deviations o f the estimated P parameters fiom 

their theoretical values.

To correct for the bias caused by this measurement error, I estimate Equation 3 2  

(without the residual term) by the instrumental variables estimation with as the

instrumental variable. The results are presented in Tables 3.6 and 3.7 where Table 3.6 is 

based on all the individual implied volatilities and Table 3.7 is based on the average implied 

volatility. Again the analyses are stratified by option expiration groups and are reported 

with and without the 1987 crash. Comparing the coefficients in Table 3.6 with those in 

Table 3.2, one observes that in all ten regressions, the instrumental variables estimates o f 

P, are higher than the OLS estimates, and the instrumental variables estimates o f Po and p% 

are smaller. In fact, in seven out o f the ten regressions in Table 3.6, the coefficients of 

implied volatility are not significantly different fiom one. Consider, for instance, the OLS 

and instrumental variables estimates of Equation 3 2  for group 1, i.e., a forecast horizon of 

10 to 36 trading days in Panel A  in both Tables 3 2  and 3.6. While the OLS estimate o f Pi 

is 0.3713, the instrumental variables estimate o f P, is 0.8535, a little bit smaller than one but 

not significantly different fi-om one. While the OLS estimate o f Po is 0.0502, positive and 

significantly different firom zero, the instrumental variables estimate o f Po is -0.0059, 

smaller and not significantly different finm zero. Finally, the estimate o f P% is reduced firom 

0.1589 to -0.0271 with the former significantly different fix>m zero and the latter no t
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All the three changes are what one would expect if  Oî p ,-, measures the market’s true 

expectation with error and the three changes occur to different degrees in all tor regressions. 

If  the madcet’s tme expectation is an unbiased and informationally efScient estimator of the 

future actual volatility, in all o f the regressions reported in Panel A o f Table 3.6, Pq should 

be insignificantly different fixjm zero and P, should be insignificantly different firom one. 

With just a few exceptions these predictions are m et The acceptions occur in the overall 

sample and group 2 m Panel A and the overall sample, grotq) 3, and group 4 in Panel B but 

again estimates of Pq and Pz fall and those o f P, rise. A comparison o f Table 3.7 with Table

3.3 shows a similar pattern. Note that in terms o f the instrumental variable estimations, the 

results o f individual implied volatilities in Table 3.6 are quite similar to those o f the average 

implied volatility in Tables 3.7.

hi summary, the results in this essay confirm the hypothesis that implied volatility 

is only a rough measure o f the maricet’s true expectation and accordingly implied volatility 

would sometimes appear to be an informationally inefScient predictor o f actual volatility. 

While it is possible that more long-lived differences exist, many of the differences between 

implied volatility and the maricet’s true volatility expectation zgipear to be due to short-lived 

measurement error attributable to such factors as bid-ask spreads, minimum price 

increments, and non-syncfaronous prices. When I correct for these short-lived measurement 

errors by utilizing the average implied volatility observed ten trading days before day t as 

the instrumental variable, the evidence in most cases no longer rejects the hypothesis that 

implied volatility represents the market’s best forecast o f future volatility.
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3.5 Conclusions

While this chapter contains a number o f findings regarding impliechvolatility and 

historical volatility forecasts o f the market volatility, the most important findings are these. 

One, in contrast to some o f the previous studies, I find that irttplied volatility contains 

considerable information regarding future realized market volatility. Certainly, implied 

volatility is a much better estimator o f realized volatility than historical volatility. I argue 

that Canina & Figlewski’s (1993) (C&F) finding to the contrary was probably due to two 

6 cts: ( 1 ) their measures o f implied volatility contained considerable measurement error (as 

they themselves hypothesize) because o f the attributes of S&P 100 indec options and C&F’s 

using o f individual options (rather than an average), and (2 ) their data period was quite short 

(given the many overlapping observations) and excluded the 1987 crash.

Two, results are sensitive to (1) the forecast horizon, (2) whether or not the data set 

includes the 1987 crash, (3) the presence o f measurement error, and (4) whether or not one 

controls for the overl^s in realized volatility observations. Measurement error in implied 

volatility estimates seriously biases the parameter estimates in ordinary least squares 

regressions while the overlap in realized volatility observations seriously biases the standard 

error estimates. Furthermore, the measurement error effect is generally more severe in an 

individual implied volatility calculated from a randomly chosen option than in the average 

implied volatility calculated firom the four nearest-the-money options.

Three, there is no evidence that the market’s forecasts of future volatility are 

irrational or fail to correctly impound all available information. Like virtually all previous 

studies I find that when ex-post realized volatility is regressed on implied volatility utilizing
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ordinary least squares, the coefiScient o f inched volatility is less than one and the intercept 

is positive - rejecting the theory that inq>lied volatility represents an unbiased and efhcient 

forecast o f actual volatility. However, I find that this is due to deviations o f implied 

volatility finm the madcet's true volatility expectations - deviations possibly caused by non- 

synchronous price observations, bid-ask spreads, and minimum price increments. When I 

control for these deviations or measurement errors by instrumental variables estimation, the 

parameter estimates are, in most cases, consistent with the hypothesis that implied volatility 

represents the market’s best forecast o f future volatility.
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Chapter 4

Essay II: The Implied Volatility Smile and Option Market Efficiency

4.1 Introdaction

Numerous studies have documented the phenomenon known as die implied volatility 

smile which refers to the cross-sectional variation in implied volatility across options with 

the same expiration date but different strike prices. That is, at a given time, different strike 

prices yield different implied volatilities. Note that if  the option pricing model is correct 

and the market is efGcient, then, for options with the same maturity date observed at the 

same time, implied volatilities should be the same regardless o f different strike prices and 

therefore there should be no smile. The prevailing explanation for the smile is that the 

Black-Scholes option pricing model is incorrect leading researchers to develop more 

complicated option pricing models. But none of the new models has successfully explained 

the smile motivating me to search for an alternative explanation.

hi this second essay, I test an alternative explanation for the smile which is that the 

smile exists because investors prefer to be long or short the options with certain strike 

prices. For instance, stock madcet investors may prefer to buy far out-of-the-money puts 

to protect against a market decline. This would tend to drive up the implied volatilities for 

these out-of-the-money puts, h i a perfect market, arbitrage would tend to elim inate these 

differences in implied volatilities. But the market may not be perfect For example, Canina 

and Figlewski (1993) attribute their finding o f low predictive power o f implied volatility
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calculated 6 om OEX options to, among other factors, arbitrage restrictions.

I f  the smile is caused by investors’ preferences for certain strike prices and these 

differences are not eliminated by arbitrage, a trading strategy o f selling those options with 

high implied volatilities and simultaneously buying those options with low implied 

volatilities in a delta-neutral ratio should make money over time. In other words, the 

existence o f a smile may suggest a market inefGciency. In this essay, I explore the profits 

to a strategy o f biQung calls (puts) wifii low implied volatility and writing calls (puts) with 

high implied volatility in a ratio to make the position delta neutral. I f  the strategy does not 

make excess profits over time, one cannot reject the market efSciency hypothesis and the 

smile may reflect a misspecification o f the option pricing model. But if  the strategy makes 

excess profits, then one cannot reject Black-Scholes model and the smile would likely 

represent some market inefGciency, such as arbitrage restrictions.

The evidence in this essay shows that the strategy based on implied volatility 

differences can make significant profits over time especially for positions involving put 

options, suggesting that market inefGciency may be the cause o f the implied volatility smile. 

In addition, the results in this essay suggest further tests to isolate the «cact causes o f the 

smile in the S&P 500 futures option market.

The rest o f this essay is organized as follows. The next section briefly reviews the 

literature on the implied volatility smile. Section 4.3 discusses the methodology and the 

hypothesis. Empirical results are presented in Section 4.4. Section 4.5 summarizes the 

findings and suggests the further study for this issue.
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4.2 Literature Review

Several previous studies have documented the implied volatility smile in different 

markets. They generally find that implied volatility is greater for out-of-the-money and in- 

the-money options than for at-the-mon^r options, i.e., a symmetric U  shaped implied 

volatility across different strike prices. Howevo*, Rubinstein (1994) and Dumas, Fleming 

and Whaley (1998) indicated that *smirk' is a more q)propriate description o f the pricing 

bias in equity index options since 1987, i.e., implied volatility decreases monotonically as 

the strike price increases. In this essay, I find a similar pattern in the implied volatility for 

options on S&P 500 futures as will be discussed in Subsection 4.3.1.

One prevailing explanation for the smile is that the Black-Scholes (1973) (BS 

hereafter) model is wrong due to some incorrect assumptions. For example, BS assumes 

a constant or a deterministic volatility while it might be stochastic, or BS assumes log

normal returns and they might not be log-normal, or BS assumes European options and they 

might be American options, or BS assumes no (or continuous) dividend payments and the 

underlying asset may pay discrete dividends. If  one o f these is the cause, then, if  implied 

volatility were calculated using the correct formula, there would be no smile or smirk, that 

is implied volatility would be the same for all strike prices. Also there would be no 

consistent profits to a trading strategy o f selling the options with high (BS) implied 

volatilities and simultaneously buying options with low (BS) implied volatilities.

Several previous empirical studies, such as Merton (1980), French and Roll (1986), 

and Schwert and Seguin (1990), claimed that the BS model’s constant volatility and 

normality assumptions were not siq)ported by the evidence. Utilizing transaction prices
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from options on S&P 500 futures from January 28, 1983 through December 30, 1983, 

Whaley (1986) tested the American option pricing model and found that both a moneyness 

bias and a maturity bias exist and that a riskless hedging strategy using the American (also 

European) futures option pricing models generates abnormal risk-adjusted rates o f return 

after the transaction costs paid by floor traders. The results rejected the joint hypothesis that 

the American futures option pricing models are correctly specified and that the S&P 500 

futures option market is efficient for the one year sample.

Attempts at reconciling the option pricing theory w ith the implied volatility smile 

have mostly centered around two approaches. One consists o f jump-dififiision models, for 

example, Jarrow and Rosenfeld (1984), Amin (1993), and Bates (1996), which augment the 

BS return distribution with a Poisson-driven jump process. The other consists o f the 

stochastic volatility models which extend the BS model by allowing the volatility o f the 

return process to evolve randomly over time, such as Hull and White (1987), Wiggins 

(1987), Amin and Ng (1993), and Heston (1993). However, Heynen (1994) finds that the 

observed smile pattern is inconsistent with various stochastic volatility models while Das 

and Sundaram (1999) find that neither jump-diffusion models nor stochastic volatility 

models constitute an adequate explanation for the empirical evidence. The fact that these 

new models can not explain the implied volatility smile motivates me to search for an 

alternative way to explain the volatility smile.

4 3  M ethodology

4.3. J The Im plied Volatility Smile fo r  Options on S&P 500 Futures
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Figure 4.1a illustrates the implied volatility smile or smirk for options on S&P 500 

futures with 10 to 99 trading days to maturity for the sample including the 1987 madcet 

crash, while Figure 4. lb  shows the same gn^hs for the sample excluding the 1987 madcet 

crash. Both figures display a cross-sectional pattern o f implied volatility similar to that 

reported in Rubinstein (1994) and Dumas, Fleming and Whaley (1998). As discussed in 

Section 2.1, on each day t, up to 32 different options (calls and puts) with the same 

expiration date are observed and utilized, i.e., eight in-the-money calls, eight out-of-the 

m o n ^  calls, eight in-the-money puts, and eight out-of-the-money puts. Each dot (for a put) 

or diamond (for a call) in Figures 4.1a & 4.1b represents the mean “moneyness” and the 

mean implied volatility for one o f these 32 different options over the period from January 

28,1983 to April 30,1998. The “moneyness” is defined as (K/F -1 ) where K stands for the 

strike price and F stands for the underlying futures price. The strike prices (K) for options 

on S&P 500 futures are set up in increments o f 5 points. The mean implied volatility is 

reported on the Y axis while the mean moneyness (K/F -1) is reported on the X axis. For 

example, the farthest right diamond shows the mean moneyness and the mean implied 

volatility for the eighth firom-the-money, but out-of-the-money, call. Similarly, the farthest 

left dot shows the mean mon^mess and the mean implied volatility for the eighth fix>m-the- 

money, but out-of-the-m on^, p u t Both figures show that as strike price (moneyness) 

increases, implied volatilities for both calls and puts, on average, decline monotonically up 

to a certain level o f moneyness and then go back up. Note that implied volatilities for puts 

and calls with the same strike price are virtually the same except for high strike prices where 

those for calls are lower.
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4.3.2. Hypothesis and M ethodology

As discussed in Sections 4.1 and 4.2, the implied volatility smile may reflect an 

incorrect option pricing model because o f wrong assumptions, o r it may reflect a madcet 

inefGciency. This essay tests a trading strategy in which one sells the option with the 

highest implied volatility and buys the option with the lowest implied volatility among the 

16 near-the-money calls (or the 16 near-the-money puts) with the same time to acpiration 

on a given day. The hypothesis is that if  this strategy consistently makes abnormal profits 

over time, the smile may reflect a market inefficiency - not a misspecification o f  the option 

pricing model. On the other hand, if  the strategy does not make money over time, then the 

smile is not a reflection o f the market inefficiency and may occur because the option pricing 

model is incorrect

Under the hypothesis that the smile may reflect a market inefficiency, options with 

some strike prices may be overvalued while options with some other strike prices may be 

undervalued. Since the price o f a call (or a put) is positively related to the volatility o f the 

underlying asset’s return, an option with a high implied volatility may be overpriced while 

an option with a low implied volatility may be underpriced. Following the simple rule o f 

“buying low and selling high”, one could buy the option with the lower implied volatility 

and sell the option with the higher implied volatility. For instance, in terms o f options on 

S&P 500 futures as displayed in Figures 4.1a and 4.1b, one would (on average) sell the 

farthest out-of-the-mon^ put or the Arthest in-the-money call and (on average) buy the 

relatively far in-the-money put or the relatively far out-of-the-money call among the 32

44



options considered.'^ Here, two specific trading strategies are plausible*.̂  One involves 

buying the call with the lowest implied volatility and simultaneously selling the call with 

the highest implied volatility. Similarly, the other involves buying the put with the lowest 

implied volatility and simultaneously selling the put with the highest implied volatility.

Many option traders use a delta-neutral trading strategy in an attempt to make their 

positions relatively immune to changes in the underlying asset p r i c e . I  also employ such 

a strategy in order to minimize the risk. The delta o f a portfolio o f derivative securities is 

defined as the sensitivity o f the portfolio value to the underlying asset price or the 

theoretical dollar change in the portfolio value for a one dollar change in the underlying 

asset price. If  the delta o f a portfolio is zero, the portfolio is referred to as delta neutral. As 

we know, the value o f a derivative security such as a call or a put depends on the value of 

its underlying asset. Since the price o f a financial asset such as the S&P 500 futures 

changes constantly, the price o f a derivative on this financial asset will also change. But the 

value o f a delta neutral portfolio should not change with a small change in the price of its

16

17

IS

Of course. Figures 4.1a and 4.1b represent the means over more than IS years and the smiles on a given 
day may not look exactly like this, hi implementing die strategy, I  only consider the positions which sell 
in-the-money call (out-of-the-money put) and buy out-of-the-money call (in-the-money put).

One might suggest that diere are four strategies with each combination of buying and selling puts or calls. 
But actually, only two combinations will work because of die requirement for the delta neutrality of the 
positions. For example, buying a call widi the lower inqilied volatility and selling a put with the higher 
implied volatility will never make the position delta neutral.

Practitioners also use gamma-hedging against changes in delta and vega-hedging against changes in 
volatility or a combination of diem. However, in most cases, die benefits of the gamma-hedging and the 
vega-hedging are small Hull and White (1987b) conqiares die relative performance of various hedging 
schemes. They find diat die Delta-gamma hedging performs well when the traded option has a constant 
implied volatility and a short time to maturity, but it can perform fiu worse than Delta-hedging in odier 
situations.

45



underlying asset It is important to realize that a  position only remains delta neutral for 

relatively small changes in the underlying asset's price and for a relatively short period of 

time since delta changes with both a change in the tmderlying asset price and passage of 

time. Consequently, when delta hedging is implemented, the hedged position should be 

adjusted, or rebalanced periodically. However, since rebalancing positions could be very 

expensive because o f the transaction costs required and because practices vary, I do not 

rebalance the positions in  the analysis.

For options on S&P 500 futures, deltas are calculated as follows:

where

call delta = > 0
dF

put delta = ^  = e ' ’̂ ^[N (d,) -  1] < 0 
dF

d.=-

(4.1)

a / r

and the variables are as defined in Subsection 2.2.1.

Specifically, the delta-neutral strategy proceeds as follows. On a given day, first 

identify the call with the highest implied volatility and the call with the lowest implied 

volatility (C J among the 16 near-the-mon^ calls wiüi diffoent strike prices but the same 

time to expiration. I f  the difference between the highest and the lowest implied volatilities

19
To reduce measurement error, I actually only search among those options whose strike prices are within 
10% from the underlying futures price. Le. the absolute value of the moneyness less or equal to 10%.
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is greater than a chosen threshold,^ 3% , buy one contract o f the call with the lowest 

implied volatility and simultaneously sell a number o f contracts o f the call with the highest 

implied volatility. The number o f the contracts sold is Nsc =  call delta^ /call delta», whore 

L stands for the low implied volatility option and H stands for the high implied volatility 

option. Note that is actually equal to N(dJ/N(d») as defined in Equation 4.1. Since the 

value o f this call position is Wc=Cl - Ngc C», the delta o f the position is

aw _ dC. dC„
call position delta = ------  =   -  N ._------

dF dF dF
call delta. (4.2)

= call delta. -  (-------------- ) call delta,,
^  call deltag ^

=  0

Similarly, on a given day, buy one contract o f the put with the lowest implied volatility and 

simultaneously sell a number o f contracts o f the put with the highest implied volatility with 

the number sold Ngp = put delta^ /put delta». The delta o f the put position (P^ - Ng? P») is,

dWj, dP, 3P_
put position delta = ^  -  N^p-----

6F 8F dF
put delta, (4.3)

= put delta, -  ( ) put deha*
^  nutdelt» "put deltUg

=  0

Again, note that Ngp is actually equal to (N (dJ-l) /  (N(d»)-1).

For the data on options on S&P 500 futures, more than 95% o f the delta neutral 

positions involving calls entail a negative net investment That is, one receives more m on^

20
I analyze only the positions in v«diich die difference between die high inqilied volatility and die low inqilied 
volatility is less or equal to 50%.
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selling the high implied volatility call than one pays to buy the low implied volatility call. 

Conversely, more than 95% o f the delta neutral positions involving puts incur a positive net 

investment. To facilitate the exposition, I only analyze call positions with a negative net 

investment and put positions w ith a positive net investment^' For ease o f interpretation, I 

also standardize the net investments to -SI for call delta neutral positions and SI for put 

delta neutral positions. The hedged positions are held for one, five, or ten trading days or 

until the options* maturity and then are closed out This process is repeated for each o f the 

four expiration dates (in each o f the four groups) on every trading day firom January 28, 

1983 through April 30,1998.

For a bench mark, I also calculate the profits to a simple strategy o f randomly buying 

calls (or puts) in the data set. A comparison of profits (losses) to this randomly buying 

strategy with those o f the strategy based on implied volatility differences will further 

illustrate the issue. For example, if  die simple randomly buying strategy makes similar or 

more profits than the strategy based on volatility differences, one could not make any 

conclusions about the hypothesis on implied volatility. These “benchmaiic” positions are 

also held for one, five, or ten trading days or until the option’s «cpiration and are also 

standardized to $ 1 .

4.4 Empirical Results

4.4.1 The Simple Strategy o f Randomly Bvying Options

21
It would be difGcult to interpret die results if one includes both the positive and die negative net 
investments. Suppose a $1 investment makes 5% and a -$1 investment makes 2%. Since the net 
investment is zero, die return would be infinitive.
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To better understand the effectiveness o f the trading strategy based on implied 

volatility differences, let us first consider the profits (losses) to a simple strategy of 

randomly buying calls (puts) in the S&P 500 futures option maricet One would expect that 

there are two factors affecting the results. First, implied volatility was generally above 

realized volatility as shown in Table 2.1 as well as Figures 4.1a and 4.1b. This implies that 

both calls and puts are generally overpriced and that if  holding an option to «cpiration, one 

would generally makes monty by writing either a call or a p u t Secondly, the sample period 

o f 1983 to 1998 was generally a long bull m arket h i 1983, the S&P 500 was around 200 

and it gradually increased to around 1200 in 1998. This would implied that one would 

generally make money buvin^ calls and writing puts.

The results o f investing $1 and holding for one, five or ten trading days or to the 

option’s maturity are presented in Table 4.1 where Panel A is for calls and Panel B is for 

puts for both samples o f including and excluding the 1987 market crash. Group 1 contains 

options maturing in 10 to 36 trading days and group 2 contains the options which mature 

next. As Table 4.1 shows, on average, over the 1983-1998 data period, one could profit by 

buying calls and/or writing puts. This holds for all four option groups, all four holding 

periods, and both the samples of including and excluding the 1987 market crash. In general, 

the average profits increase as the holding period gets longer. For example, for the nearest- 

to-expiration calls including the 1987 maricet crash, the average profits are $0.1758 (or 

17.58%) on an investment o f $1 over a holding period o f ten trading days while the average 

profits are $0.0152 (or 1.52%) for a one trading day holding period.

For puts, since the figures in Table 4.1 report file profits or losses on a $1 purchase^
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it is clear that profits could have been made by jvritm g puts. As the table shows, it was, on 

average, profitable to randomly write puts over the 1983-1998 period. The profits increase 

as the holding period gets longer. For example, randomly writing $1 worth of the nearest- 

to-expiration puts with the sample including the 1987 market crash and holding for 10 

trading days make, on average, $0.2156 (or 21.56%) while writing $ 1  worth of the nearest- 

to-expiration puts and holding for one trading day make, on average, $0.0233 (or 2.33%). 

Note that the twenty percent profits in ten trading days by writing $1 worth o f puts is a 

pretty good return, though, o f course, the standard deviations are quite large.^

In comparison, in most cases, the profits to writing a put exceed the profits to buying 

a call. Two underlying factors mentioned earlier in this subsection may explain the results. 

First, a call has a positive delta and a put has a negative delta. Since the data period, 1983- 

1998, roughly coincides with the great bull market, the S&P 500 futures, in general, 

increases over time which causes call price increasing and put price decreasing over time. 

This factor makes both buying a call and writing a put profitable. Second, according to 

Table 2.1, implied volatility was, on average, greater than realized volatility over the data 

period which means that in general both calls and puts were overpriced. If AF = 0 ( no 

change in the underlying futures price), then, on average, one should have been able to make 

money by writing both puts and calls. Note that for puts both factors work in the same 

direction, implying larger profits for writing puts. However, for calls these two forces 

o£&et This would explain why die profits to writing puts exceed the profits to buying calls.

22
Note that the standard deviation generally declines as die holding period gets shorter and follows the 
pattern expected if daily profits are independent, Le. standard deviation for a ten trading day holding 
period is roughly the square root of 10 tunes as large as that for a one trading day holding period.
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4.4.2 D elta Neutral Strategy Based on Im plied Volatility D ifferences

Table 4.1 demonstrates that, in general, calls were underpriced and puts were 

overpriced. This, however, is not the purpose o f this essay and serves only as a benchmark 

for the following analysis. What I am interested in is to show that some calls 0>uts) are 

overpriced relative to other calls Q)uts) with different strike prices but the same time to 

maturity implying that the smile may reflect a market inefGciency.

Table 4.2 reports the profits to die strategy ofbuying options with the lowest implied 

volatility and simultaneously selling options with the highest implied volatility in a delta 

neutral ratio. Panel A reports results for call positions and Panel B for put positions. In 

both panels, I report separately the results including and excluding the 1987 market crash. 

The holding periods considered are one, five, or ten trading days, or to the options’ maturity 

respectively. As explained above, the net investment is -$1 for a position involving calls 

and SI for a position involving puts. For calls, the results are mixed. Significant positive 

mean profits are observed for group 1  with a holding period o f one trading day and for 

group 2 with holding periods of one and five trading days. For example, the average profits 

is $0.0194 for a-SI investment in a position involving the second nearest-to-expiration calls 

with a five-trading-day holding period. The profits o f this call position are quite impressive 

when compared with those in Table 4.1. For example, the average profit to randomly 

investing SI in call options in group 2 with a five-trading-day holding period are $0.0542. 

That means i f  one randomly writes these calls with a net investment o f -SI and hold for five 

trading days, he /  she will, on average, lose $0.0542. hi contrast, on average, the strategy 

based on volatility differences would m ake $0.0194. However, the profits for many of the
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delta neutral positions involving calls are either negative or are not significant especially for 

the longer holding periods.

Looking next at the results o f the trading strategy based on volatility differences 

when ^ p lie d  to puts, I observe that the average profits are all positive and significantly 

different fix>m zero ranging  from $0.0135 to $0.8847 with a $1 investment for different 

groups and differoit holding periods as well as for both the samples o f including and 

«(eluding the 1987 market crash. For instance, the average profits are $0.5624 to investing 

$ 1  in a delta neutral position involving the nearest-to-expiration puts with a holding period 

o f 10 trading days for the sample including the 1987 market crash. These profits are even 

more impressive when compared with those o f the simple strategy o f randomly buying a 

p u t From Table 4.1, we know that if  we randomly invest $1 in a nearest-to-expiration put 

and hold for 1 0  trading days, we would have, on average, lost $0.2156 while, on average, 

the trading strategy based on volatility differences makes $0.5624. The same pattern holds 

for all the other expiration groups and all the other holding periods as well as for both the 

samples including and excluding the 1987 maricet crash.

To further examine the performance o f the delta neutral strategy based on volatility 

difference relative to that o f the randomly buying strategy, I reports the abnormal profits to 

the delta neutral strategy in Table 4.3 in which Panel A  is for positions involving calls and 

Panel B for positions involving puts. The abnormal profits are defined as the difference 

between the profits from investing - $ 1  ($ 1 ) in a  delta neutral call ^u t) position as reported 

in Table 4.2 and the average profits from investing -$1 ($1) in each o f the available calls 

(puts) with foe same expiration date obswved on foe same day. All the figures in Table 4.3
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are greatly inqmoved in comparison with those in Table 4 2 , Le., the profits are bigger and 

losses are smaller. For instance, the profits for positions involving calls in groups 2 with 

a holding period o f five trading days are 0.0803 while those in Table 4 2  are 0.0194. 

Actually, more significantly positive profits are observed for call positions in Table 4 3  than 

in Table 4.2. However, die losses for groups 1 and 2 for holding until expiration are still 

significandy different firom zero. The abnormal profits to the delta neutral strategy 

involving puts are all significandy positive and are much larger than the corresponding ones 

in Table 4.2.

Up to now, the analyses in this essay have ignored the transaction costs. For options 

on S&P 500 futures, the transaction costs include the clearing fee for floor traders and 

include commission and bid-ask spreads for other investors. Table 4.4 reports the profits 

or losses for the delta neutral positions for the sample including the 1987 market crash after 

transaction costs o f $10 per contract as utilized in Whaley (1986).^ The total transaction 

costs are restricted to between $50 and $100. For all die call positions, the strategy based 

on implied volatility difference lose money. However, for the put positions with holding 

periods o f 5, or 10 trading days or until expiration, abnormal profits are still large and 

significant For «cample, the profits fiom the hedged position involving puts in group 1

23

Whaley (1986) assumed SIO transaction costs per contract for a floor trader. Actually, the clearing fee 
paid by floor traders is on an order of S1.S0 per contract The transaction costs in dûs maricet are quoted 
on a “round-tum” basis. Since commission rates are negotiated between each customer and bis or her 
broker, it is difBcuh to assess die exact representative commission charges. Brokers usually charge a hmq) 
sum phis per contract fee. For exançle. E-trade charges its hnemet customers $20 phis $1.75 per contract 
widi Tntntmiim commission charge of $293)5. hi this essay, die average number of contracts for the call 
positions is 12 and diat of put positions is 8. Therefore, die $10 per contract overestimates die transaction 
costs incurred by floor traders or large institutional investors but may underestimate those incurred by 
individual investors.
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with a holding period o f ten trading days are $0.5110 or 51.10%. But for portions with a 

holding period o f one trading day, transaction costs wipe out all the potential profits, hi 

summary, in the options on S&P 500 futures market, large average profits could be made 

by floor traders or large institutional investors with a strategy ofbuying options with low 

implied volatility and simultaneously selling options wifii h i ^  implied volatility, suggesting 

that the implied volatility smile may reflect a market inefGciency not a misspecification of 

option pricing formula.

4.4.3 Reasons fo r  the High R isk ofD elta Neutral Positions

Since the option positions in Tables 42,4.3 and 4.4 are delta neutral while those in 

Table 4.1 are not, one would expect the standard deviations o f profits to be consistently 

smaller. While the standard deviations o f positions involving calls in Table 4.2 are smaller 

than those in Table 4.1, the standard deviations o f most o f the positions involving puts are 

larger. For example, the standard deviation o f profits when investing in the nearest-to- 

expiration puts including the 1987 market crash with a holding period of five trading days 

reported in Table 4.2 is $1.9096 while that based on randomly writing puts reported in Table

4.1 is $1.4837. Why is the risk o f the delta neutral strategy sometimes higher than that for 

the random investment especially for the put positions? One possibility is that, while the 

positions are hedged against small changes in the underlying futures, larger price changes 

may occur - particularly over the longer horizons.

A second possibility is that this reflects noise in the option prices which will be 

larger for die hedged position since it involves more options and also options with extreme
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implied volatilities which are usually quite £tr away from the money. Noise will lead to a 

higher variance fr>r the spread position since more options are involved for each position. 

Suppose, for instance, a spread position involves buying a contract o f one option and selling 

a contract o f another. The variance o f  the noise on this position should be roughly twice 

that on a contract o f a single option. Since the delta neutral strategy involves buying one 

contract o f the option with the lowest implied volatility and simultaneously selling a number 

o f contracts o f the option with the highest implied volatility, the variance of this hedged 

position should be larger than that o f a contract o f a single option and should also depend 

on the hedged ratio (Nsc for a call position and Ns? fo ra  put position). Specifically, for 

example, the variance o f a hedged call position would be roughly {l+(Ngc)^} times that o f 

a single option. The ratios are, on average, around 0.2 for call positions and around 7 for 

put positions - about 35 times different Therefore, both variances o f the profits (losses) for 

the hedged call position and the hedged put position should be larger than the variance o f 

the profits (losses) for a single option. In addition, the variance o f the profits (losses) for 

hedged put position should be much higher than for hedged call position. That may explain 

why the standard deviations are much higher for the hedged put positions than for the 

hedged call positions reported in Table 4.2.

4.5 Sum m ary

This essay shows that the smile or smirk exists in options on S&P 500 futures 

market. In particular, the implied volatility decreases monotonically and eventually goes 

back up as strike price increases. The prevailing explanation for the smile is that the Black-
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Scholes option pricing model is incorrect because o f wrong assunq>tions leading researchers 

to develop more complicated models. But, none o f these new models has successfully 

explained the smile motivating me to search for an alternative explanatioiL

This second essay tests an alternative explanation 6 r the smile that the smile exists 

because o f  the inefficiency o f the option maricet The results utilizing options on S&P 500 

futures show that consistent profits can be made fiom a delta neutral trading strategy of 

buying low implied volatility put options and simultaneously selling high implied volatility 

put options at least for floor traders and large institutional investors, suggesting that option 

market inefficiency is at least partially responsible for the implied volatility smile. 

However, I do not observe the high profitability for trades involving calls.

The results suggest further tests to identify the sources o f the profits to the trading 

strategy based on implied volatility difference and to ocplain the differoice in profits 

between calls and puts and the large variance o f the profits. This may also help isolate the 

exact causes o f the smile. According to the BS model, the profits / losses on an option 

position can be attributed to ( 1 ) changes in the underlying futures price, (2 ) changes in 

volatility, (3) passage o f time, (4) interest rate change, and (5) residuals (noise). Based on 

the total differentiation, one may explore what proportion of the variance o f profits /  losses 

on the trades can be attributed to each o f these.

56



Chapter 5

Essay HI: Which Implied Volatilities are the Most Informative?

5.1 Introduction

I f  the option pricing model is correct and the market is efGcient, the implied 

volatility at time t should represent the maricet’s best forecast of future volatility over the 

remaining life o f the option. However, as discussed in Chapter 4, implied volatility varies 

between calls and puts and across different strike prices. That is at time t there are, not one, 

but a number o f implied volatilities. Which, then, o f these implied volatilities should one 

utilize in forecasting future volatility? One popular procedure is to use the implied volatility 

calculated from a single at-the-m on^ option reflecting the wide spread belief that at-the- 

money option is the most sensitive to volatility change, and is therefore the most 

informative. Another procedure is to utilize an average implied volatility calculated from 

several, often two or four, near-the-money options which is supposed to reduce 

measurement error.

Several previous studies, such as Beckers (1981), Gemmill (1986), Feinstein (1989) 

and Turvey (1990), compared forecasting ability o f different average implied volatilities 

along with the implied volatility calculated from an at-the-money option. But no one has 

systematically compared the forecasting ability o f individual implied volatilities across 

different options (calls or puts with different strike prices). In addition, these previous 

studies generally suffered from limited data sets and therefore lacked degrees o f fireedom.
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In these previous studies, the average inched volatilities were usually calculated 6 om only 

a few near-the-money options. Although their results were mixed, most o f them leaned 

towards the implied volatility calculated from an at-the-money option. Is the implied 

volatility calculated from an at-die-money option really the most informative? Do we miss 

some important information by ignoring all other calls or puts? Can we obtain a better 

volatility forecast by utilizing other in- or out-of-the money options? Does an average 

scheme effectively reduce measmement error?

This third essay examines which o f the individual implied volatilities (calculated 

from calls or puts with different strike prices) yields the best forecast for the future realized 

volatilities o f the S&P 500 futures. I find, contrary to the general belief and practice, that 

the implied volatility calculated finm an at-the-money option is not the most informative 

among all individual implied volatilities. Up to a certain level o f strike price, the implied 

volatilities calculated finm calls and puts with relatively higher strike prices, i.e. out-of-the- 

money calls and in-the-money-puts, seem to have more predictive power.

The remainder o f this essay is organized as follows. Section 5.2 reviews the 

previous studies on comparing the relative predictive power o f different implied volatility 

averages. Section 5.3 discusses the data and methodology. The preliminary empirical 

results are reported in Section 5.4. A brief siunmary in Section 5.5 concludes the chapter.

5.2 Literature Review

As illustrated in Cluq)ter 4, implied volatility differs between calls and puts and 

across different strike prices. Which one then should we utilize in forecasting future
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volatility? In practice, people use either a single at-the-m on^ option or several near-the- 

money options to generate an implied volatility forecast For instance, Lamoureux and 

Lastrapes (1993), Kleidon and W haley (1992), and Xu and Taylor (1994) utilized a single 

at-the-money option to obtain an implied volatility estimate for their studies. On the other 

hand, Schmalensee and Trippi (1978), Jorion (1995), and Weber (1996) employed an 

equally-weighted average o f implied volatilities calculated firom several near-the-money 

options. Practitioners also tend to use an average implied volatility. For example, the 

implied volatility, which Knight-Ridder Financial Company sells to investors, is actually 

the mean o f four implied volatilities calculated fiom the two nearest-the-money calls and 

the two nearest-the-money puts. Bloomberg L. P. reports a weighted average call (put) 

implied volatility calculated fiom the two “at-the-money” calls ^u ts).

Researchers have also suggested several weighting schemes other than equal 

weighting even though they have not been used very often in practice. The reasons for 

giving different weights to different options are ( 1 ) that implied volatilities calculated fiom 

different options are not equally sensitive to a volatility change, and (2 ) that different 

options are not traded in the same fioquency. As a result, the measurement error may vary 

across different options. Latané and Rendleman (1976) suggested weighting the implied 

volatilities o f different options by the vega of the option, i.e., the first derivative o f the 

option’s price with respect to the standard deviation o f  the returns. Chiras and Manaster 

(1978) argued that Latané-Rendleman estimator does not use proper weights since the 

w e i^ ts  do not add to one and suggested weighting the implied standard deviation by the 

price elasticity o f the option with respect to its implied standard deviatioru Beckers (1981)
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and W haler (1982) suggested a quadratic loss function estimator ixdiich mitiimi7 .es squared 

errors o f Black-Scholes option prices.

Several studies have conqiared the relative forecasting abihQr o f different averaging 

schemes as well as a coiqtle o f individual implied volatilities calculated 6 om single options. 

However, no previous studies have systematically compared the forecasting performance 

of different individual implied volatilities between calls and puts and across different strike 

prices. For example, using daily closing prices o f equity call options over a 75 trading day 

period fiom October 13,1975 to January 23,1976, Beckers (1981) compared the forecasting 

ability o f three measures o f implied volatility: ( 1 ) an average in which the weights are based 

on the option’s vega, (2 ) the minimized-squared-pricing-error implied volatility scheme, and 

(3) the implied volatility calculated fiom the call with the highest vega. He foimd that the 

implied volatility calculated fiom  the call with the highest vega, which is usually at-the- 

money, outperforms the other two measures. Note, however, that the data period was very 

short.

Gemmill (1986) looked at 13 equity call options traded on the London Traded 

Options Market. Utilizing monthly closing prices fiom May 1978 to July 1983, he 

compared six different weighting schemes: equally weighted average o f individual implied 

volatilities, elasticity weights, mirnmized-squared-pricing-error measure, at-the-m on^ call, 

the furthest-fiom-the-money in-the-money call, and the furthest fiom-the-money out-of-the- 

money call. He found that the implied volatility calculated fiom the furthest fiom-the- 

money in-the-m on^ call yields the best forecast o f subsequent realized volatility but only 

marginally better than historical volatility and that the furthest fiom -the-m on^ out-of-the-
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money calls contained no information relevant to forecasting future volatility. As also 

mentioned in his pq>er, the London traded option market was thin, the option and the 

underlying stock prices were not simultaneously observed, and no account was taken o f 

dividends, leaving one skeptical o f his results.

Feinstein (1989) conducted both a theoretical and an empirical studies on the 

predictive power o f implied volatility utilizing monthly data for options on S&P 500 futures 

from June 1983 through December 1988. He compared seven measures: the nearest-out-of- 

the-money call, an equally weighted average o f individual implied volatilities, vega weights, 

elasticity weights, the nearest-out-of-the-money put, an average o f the nearest-out-of-the- 

money call and the nearest-out-of-the-money put, and an intertemporal average o f nearest- 

out-of-the-money calls over five days. He pointed out that the BS model for at-the-money 

options is well approximated by a linear function o f volatility and found that the implied 

volatility fi-om the single nearest-out-of-the-money call was the most efficient and 

dominated.

Using daily observations o f put options on soybean and live cattle futures fi-om 

January 9, 1987, through December 30, 1988, Turvey (1990) evaluated four weighting 

methods: an equally weighted average o f individual implied volatilities calculated fit>m 

puts, an at-the-money put only, vega weights, and elasticity weights. He found that 

weighting implied volatilities by vega, which usually puts the highest weight on at-the- 

money options, provides better forecasts than the other three measures.

Corrado and Miller (1996) presented an econometric analysis o f several efficient 

methods utilized to estimate option implied volatilities. They found that simultaneous
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equation estimators and weighted average estimators have the same attainable variance 

bound, and are equally efficient when used with qtpropriate weights. They furdier showed, 

through a simulation example, that the average of implied volatilities calculated from an at- 

the-money call and an at-the-money put is relatively more efficient.

In summary, these previous studies compared the relative forecasting ability o f 

different averaging schemes (including a couple o f inqrlied volatilities with each estimated 

from a single option). Although their results were quite mixed, they leaned towards 

frvoring at-the-mouQr options. But these previous studies gen ia lly  suffered from limited 

data sets because th ^  utilized either monthly data or cross-sectional data over a  short period 

o f time which did not give them enough degrees o f freedom. Moreover, no one has yet 

systematically compared the forecasting performance o f implied volatility between calls and 

puts and across different strike prices.

5.3 Data and Methodology

5.3.1 Data

In the options on S&P 500 fitures market, as mentioned in Chapter 2 ,1 utilize up 

to 32 options, i.e., eight in-the-money calls, eight out-of-the-money calls, eight in-the- 

money puts and eight out-of-the-money puts for each expiration date observed on the same 

day. Options further away from the m o n ^  are very thinly traded and therefore have fewer 

observations and may contain considerable measurement error.

Table 5.1 reports the summary statistics for different implied volatility estimators, 

the realized volatility, and a historical volatility measure for both the samples including and
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excluding the 1987 market crash over the period from January 28, 1983 through April 30, 

1998. The means o f these volatility measures are also graphed in Figures 4.1a and 4.1b. 

In this table as well as other tables and figures, RLZSD represents the realized volatility 

over the remaining life o f an option on S&P 500 futures and HIS40 stands for the historical 

volatility measured over the last 40 trading days. For an individual implied volatility, the 

first three letters (ISD) stand for implied standard deviation, the fourth letter C (P) 

represents a call (put) option, the fifth letter I (O) indicates an in-the-money (out-of-the- 

money) option, and the last digit refers to the relative position o f the option from the money. 

For example, ISDCB represents the implied volatility calculated from a call option which 

is the third from the money and in the money. Note that the strike prices are designated in 

an incremental o f five points.

The individual implied volatilities are listed according to their options’ strike prices 

relative to the observed underlying futures prices with the lowest strike price listed first 

followed by the second lowest strike price, etc. However, ISD4 is the equally weighted 

average o f the implied volatilities calculated from the two nearest-the-money calls and the 

two nearest-the-money puts. As shown in Table 5.1 as well as Figures 4.1a and 4.1b, on 

average, almost all the implied volatilities for both the samples including and mccluding the 

1987 market crash are higher than the subsequent realized volatility, indicating that implied 

volatilities generally overestimate the realized volatility over the 1983-1998 period. For 

instance, the mean o f all the implied volatilities calculated from the eighth from-the-money 

in-the-money calls in the overall sample including the 1987 market crash is 0.2114 while 

that o f subsequent realized volatility is 0.1444.
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On the other hand, the 40-trading-day historical volatility is, on average, only 

slightly higher than the realized volatility but lower than the majority o f the implied 

volatility measures.^ Figures 4.1a and 4.1b illustrate the means o f various implied volatility 

estimators and the mean moneyness for both the overall samples including and excluding 

the 1987 market crash. Moneyness is defined as (K/F -1) where K rqnesents a  strike price 

and F stands for the underlying futures price, h i fact, as Figures 4.1a and 4.1b show, on 

average, implied volatility declines monotonically up to a certain strike price and then goes 

back up as the strike price increases, a pattern similar to what described in Rubinstein 

(1994) and Dumas, Fleming and W hal^ (1998).

5.3.2 Simple Criteria fo r  Comparing Forecasting Efficiency

To compare the forecasting efGciency o f different implied volatility estimators, I 

employ three commonly utilized criteria: Root Mean Squared Error (RMSE), Mean 

Absolute Error (MAE), and mean absolute percentage error (MAPE).^ RMSE is simply 

square root o f the mean o f the squared forecast errors:

RM SE. = ^  ^  (®RLZ.t "
N  j t=l

24

Note that the historical volatility is not necessarily the lag of the realized volatility since the historical 
volatility always covers die last 40 trading days vdide die period covered by realized volatili^ varies from 
14 through 99 trading days. From Table 2.1, we can see that die means of die historical volatility are 
higher than those of the realized volatility for Groups 1,2 and 4 but lower for Group 3.

25

See Brailsford and Faff (1996).
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where <̂Esr.i.t indicates one o f the 34 different volatility esthnators (32 individual implied 

volatilities, one average implied volatility, and one historical volatility) and N; represents 

the number of observations available for the volatility estimator i. The MAE is computed 

as the mean o f the absolute values of forecast errors;

1
~  ^  I^RLZ.( ~  ^ E S T .L tl  ( 5 - 2 )

Lastly, the MAPE is calculated as

M A PE j = —  2  ^ESTÂtl (5 .3 )
®RLZ,t

Among the three criteria, RMSE penalizes the forecast with large but infrequent errors. I 

expect that RMSE is more sensitive to the 1987 market crash than MAE while MAPE is 

least affected by the crash.

5.4 Empirical Results

5.4.J Results Based on RMSE, MAE and MAPE

To compare the forecast efGciency o f various implied volatility estimators, I first 

evaluate them based on the three commonly used criteria defined above: the root mean 

squared error (RMSE), the mean absolute error (MAE), and the mean absolute percentage 

error (MAPE). The data set contains daily observations o f the four nearest-to-expiration 

options on S&P 500 futures with 10 to 99 trading days to expiration fitmi January 28,1983
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through April 30, 1998. ISD4 is the average o f the volatilities calculated 6 om  the two 

nearest-the-m on^ calls and the two nearest-the-money puts and is a commonly used 

measure for implied volatility because its four components are, in practice, referred to as 

"at-the-money options”. As a  benchmark for comparison, I also include a historical 

volatility measured over the last 40 trading days, labeled as HIS40.

hi total, there are 32 individual implied volatilities from calls or puts with different 

strike prices, one average implied volatility (ISD4) and one historical volatility (HIS40). 

RMSEs, MAEs and MAPEs along with their relative ranks for the 34 volatility measures 

are reported in Table 5.2. Panel A  reports the results for the sample including the 1987 

madcet crash while Panel B reports those for the sample excluding the 1987 market crash. 

The RMSE, MAE, and MAPE for each estimator are calculated by utilizing all available 

observations in the data se t The number o f observations available for each estim ator is 

reported in Table 5.1. The estimator with the lowest forecast error, therefore the most 

efficient one, is given the rank o f 1  while the estimator with the highest forecast error is 

given a rank o f 34.

Notice that all the RMSEs and MAEs in Panel A are higher than their counterparts 

in Panel B while there is not much difference in MAPEs between Panel A and Panel B, 

indicating the dominating effect o f the 1987 market crash on RMSE or MAE. As mentioned 

earlier, among the three criteria, RMSE penalizes the forecast with large but infrequent 

errors. Since the volatilities are five to seven times higher during the 1987 market crash 

period than in the other periods, it is not surprising that RMSEs are very sm sitive to 

whether including or excluding the 1987 market crash and MAEs and MAPEs are n o t The

66



results in Table 5J. show ju st that. While the rankings for the sample including the 1987 

market crash based on MAE and MAPE are similar to those for the sample excluding the 

1987 market crash, the rankings between the two samples including and excluding the 1987 

market crash based on RMSE are quite different especially for calls.

For a better illustration, the results in Table 5.2 are put into several graphs. Figures 

5.1a and 5.1b illustrate the forecast efGciency based on RMSE for both the samples 

including and excluding the 1987 market crash. The MAEs and MAPEs for only the sample 

including the 1987 market crash are graphed in Figures 5.2 and 5.3 since the 1987 market 

crash does not affect these two measures very much. In Figures 5.1a, 5.1b, 5.2, and 5.3, the 

X axis represents the mean moneyness and the Y axis measures either RMSE or MAE or 

MAPE. There are several interesting points revealed in these figures. First, the forecasting 

efGciency, in general, increases to a certain level and then eventually declines as the strike 

price increases with the exception o f Figure 5.1a. In other words, implied volatilities 

calculated from out-of-the-money calls and in-the-money puts which are not very far fi-om 

the money have the lowest forecasting error based on all the three criteria: RMSE, MAE, 

and MAPE. Second, the patterns o f the forecast errors based on all three criteria match 

precisely the smiles shown in Figures 4.1a and 4.1b, a reverse J sh ^ e . Third, the historical 

volatility (HIS40) calculated over the last 40 trading days yields better forecasts than some 

options with very low strike prices but worse than other options especially those with 

relatively highor strike prices except for RMSEs including 1987 market crash. Fourth, there 

is no significant difference between calls and puts eccept for the high strike prices with the 

forecast errors larger for puts again except for Figure 5.1a.
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5.4.2 Can an Average Im plied Volatility Improve the Forecasting Performance!

As shown in Table 5 ^  as well as in Figures 5.1a, 5.1b, 5J2 and 5.3, the implied 

volatilities calculated from the four at-the-money options (ISDCIl, ISDCOl, ISDPll and 

ISD PO l) clearly do not yield the best forecasts. T h ^  are better than the options with 

relatively lower strike prices but worse than some o f the options with relatively higher strike 

prices. The average o f these four implied volatility (1SD4) is also worse than some options 

with higher strike prices and are not better than its components. This finding is important 

since practitioners as well as finance researchers often obtain implied volatility estimate 

fi-om one of these four options or firom the average o f them. The results suggest that an 

averaging scheme may not necessarily reduce the measurement error and improve the 

forecasting efGciency.

Because the number o f observations available varies across different volatility 

estimators, the RMSEs (also the MAEs and the MAPEs) for different estimators are not 

perfectly comparable. Note that ISD4 has more observations than any o f its four 

components since ISD4 is the average o f the non-missing values o f the four components 

(ISDCIl, ISDCOl, ISDPll and ISDPOl). Suppose that ISD4 has an observation on a day 

during the 1987 market crash but ISDCIl does not. The measure for ISDCIl would tend 

to be better for this reason even if  ISD4 may actually be better. To further test whether the 

average implied volatility (ISD4) yields better forecast than its individual components, i.e., 

whether averaging reduces measurement error, I recalculated their RMSEs, MAEs, and 

MAPEs when all the four at-the-mouQr options with the same expiration date are observed 

on a  given day. That is the average measure and its components all have the same number
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o f observations. The results are reported in Table 5.3. Based on all the three criteria: 

RMSE, MAE, and MAPE and for both the samples including and excluding the 1987 

maticet crash, the average implied volatility C^D4) does not improve the forecast The two 

components with the higher strike price (the nearest-foom-the-money, out-of-the-money call 

and the nearest-fiom -the-m on^, in-the-money put) consistently demonstrate more 

predictive power than the average implied volatility as well as the other two components 

with the lower strike price.

However, there is no difference at all in the predictive power between a call and a 

put with the same strike price, i.e. between ISDCIl and ISDPOl or between ISDCOl and 

ISD Pll. For instance, for the sample including the 1987 market crash, the RMSE for ISD4 

is 0.0767 while the RMSEs for ISDCIl and ISDPOl with the lower strike price are both 

0.0778 and the RMSEs for ISDCOl and ISDPll are both 0.0757. In addition, I have tested 

five more different average measures.^^ Although I do not report them here for the sake o f 

saving space, the results for these five average measures and their individual components 

reveal identical pattern as shown in Table 5.3. This suggests that averaging several implied 

volatilities may not be effective in reducing measurement error and the choice o f which 

strike price to utilize is more im portant

26
Specifically, I have tested the following average measures when all of their components are observed on 
a given day:
ISD16 = the average ofISDCII-ISDCI4, ISDC01-ISDC04, ISDPI1-ISDPI4, and ISDP01-ISDP04; 
ISD8 = the average of ISDCIl, ISDCI2, ISDCOl, ISDC02, ISDPll, ISDP12, ISDPOl, and ISDP02; 
ISDH8 = the average of ISDC01-ISDC04 and ISDPI1-ISDPI4;
ISDH4A = the average of ISDCOl, ISDC02, ISDPll, and ISDPI2; and 
ISDH4B = the average of ISDC03, ISDC04, ISDPD, and ISDPI4.
For the meaning of the symbols, please refer to the notes in Table 5.1.
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5.4.3 A re the Results Due Solely to the Bias o f the Im plied Volatility!

As shown in Chapter 3, implied volatilities are generally biased estimators o f the 

future realized volatility that is also conhnned in Table 5.1 as well as in Figures 4.1a and 

4.1b. All the means o f the 32 different mq>lied volatility estimators are higher than that o f 

realized volatility (0.1444). It is also clear that the biases increase as the strike price 

decreases. Consequently, an obvious question is whether the results in Table 52, merely 

reflect the biases already documented in Table 5.1. hi other words, if  the results are just due 

to the bias and one corrects for the bias by subtracting an tgipropriate amount fiom a implied 

volatility estimator, then there would be no clear ranking.

In fact, the mean squared error (MSE) can be expressed in terms of the variance and 

the squared bias o f the forecast error. Specifically, one can decompose the MSE as follows;

M SE .  ^ 2 ( 0 , ^  -  C gn)'

“  ^  t  ~  ^R L z) ~  ~  ®ISD^ ~  ®ISD^ ]

=  -  ^R L Z) -  (^JSD  -  ®ISd ) ] "  +  ~  ô ^ j , )  ] "  ( ^ . 4 )

~  ^  t  (®RLZ ~  ®ISD^ ~  (^R L Z  ~  ®ISD^ 1 "*■ [  (® io z  ~~ ®ISD^ ]

= V ar( O j^  -  o^jj) + (bias)^

The results o f this decomposition o f the MSE into: (1) the variance of the forecast error 

Var(ORLz - Oisn) and (2) the squared bias as well as their rankings are reported in Table 5.4 

where Panel A  and Panel B report the results for the samples including and excluding the 

1987 market crash respectively. Note that RMSE is the square root o f MSE so both o f them
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will give exactly the same ranking. The decomposition for the sample including die 1987 

market crash is also illustrated in Figure 5.4a and 5.4b where 5.4a is for calls and 5.4b for 

puts. As shown in Figures 5.4a and 5.4b as well as in Table 5.4, the bias does exits and 

decreases as the strike price increases but is relatively inconsequential except for very low 

strike price options. MSE depends mosdy on the variance of the forecast error. The ranking 

by variance o f the forecast error more or less resembles that by MSB. For example, in the 

sample including the 1987 market crash, the implied volatility calculated from the eighth 

in-the-money call (ISDCI8 ) has one o f the largest biases, is ranked 33th in terms o f MSE 

before correcting the bias, and is still ranked the 33th after correcting the bias, i.e., in terms 

of VarfoKi^ - Ggn). Notice that the implied volatilities calculated from the options with low 

strike prices are both biased and inefScient

As shown in Table 5.4, the historical volatility has very small bias but one o f the 

largest variance o f the forecast error. This means that even though the historical volatility 

is the least biased estimator, it contains considerable noise and yields a much less efScient 

forecast compared with the implied volatility in general as also reported in Chapter 3. Table

5.4 clearly shows that the findings in Table 5.2 are not solely due to the biases and the 

variance of the forecast error actually plays a bigger role. That means even if  one corrects 

the biases, the implied volatilities calculated fi-om the options with lower strike prices still 

tend to have lower forecasting ability.

5.4.4 A Comparison Based on OLS regressions

Another possible approach for comparing forecast effectiveness is to estimate
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Equations 3.1 or 32  and then use the estimated equation to generate a volatility forecast, 

which will provide a measure equivalent to the RMSE in Table 52. For instance, estimating 

Equation 3.1 for the sample excluding the 1987 market crash in terms o f ISD C03,1 obtain 

diat Po = 0.0283 and Pi= 0.7116. Suppose I then use these parameter estimates to generate 

voIatiUty forecasts. e.g„ =o.0 2 «  . 0 .7 n 6 o ^ „ , ,  ■

The RMSE o f the OLS regression is equal to

^  ^  (®RLZ.tN t«i

which is very similar to RMSE in Equation 5.1. Actually, the RMSE in Table 5.2 can be 

viewed as the RMSE from a regression where Po= 0 and P, = 1 while the VarCog^z - ^ kd) ™ 

Table 5.4 can be viewed as the MSE from a regression where P, = 5, ,  ̂  -  0^^ and P, = 1.

Table 5.5 reports the results o f OLS regressions o f realized volatility on various 

implied volatility estimators and for comparison also on historical volatility using Equation 

3.1. Figures 5.5a, 5.5b, 5.5c and 5.5d illustrate the regression’s RMSE, the adjusted R \ the 

intercept, and the slope coefficient respectively for the sample including the 1987 market 

crash. Based on the OLS regression’s root mean squared error (RMSE), the forecasting 

ability for calls including the 1987 market crash decreases and then goes back up as strike 

price increases although the rankings for puts are not quite clear. However, for the sample 

excluding the 1987 market crash, the results based on the OLS regressions’ RMSE show a 

similar pattern which is that up to a certain level, the forecast ability increases as strike price
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mcreases.

Further comparisons can be made in terms o f adjusted and the parameters o f the 

regressions. The adjusted in Table 5.5 and in  Figure 5.5b, however, displays rather 

consistent pattern which is that the adjusted R  ̂mcreases as strike price increases for both 

the calls and the puts. Since R* = 1- Regression’s MSE / V arfo,, 7  ). Regression’s RMSE 

and the adjusted R  ̂should give the same ranking. But they do not, probably because the 

number o f observations differs across different implied volatility estimators so that 

VarfOp, 7 ) differ. However, the adjusted R  ̂should be more important than regression’s 

RMSE.

As mentioned in Ch£q>ter 3, if  the option madcet is efficient and the option pricing 

model is correct, the implied volatility calculated fix>m an observed option price should 

represent the market’s best forecast o f the underlying asset’s volatility over the remaining 

life o f the option. As such, it should be both unbiased and informationally efficient. 

Therefore we should observe that Po=0 and P,=l in Equation 3.1 and Po=0, P ,= l, and P2=0 

in Equation 3.2. As discussed in C huter 3, however, the evidence to date on this issue has 

been mixed. While most o f the previous studies find that implied volatility outperforms 

historical volatility in forecasting future volatility, th^r normally also find that implied 

volatility is biased and fails to incorporate all available information. That is they find that 

Po>0, P t< l, and P%>0. Moreover, some studies even find that implied volatility’s predictive 

power is quite low.

For the sample including the 1987 market crash as shown in Figure 5.5c and 5.5d 

as well as in Panel A o f Table 5.5, die intercepts are positive and significantly different fiom
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zero for relatively lower strike prices. The intercept decreases monotonically and become 

insignificantly different fiom zero as strike price increases to a certain point (the fifth out-of- 

the-money call or the sixth in-the-money put). The slope coefficient o f the implied 

volatilities increases monotonically as the strike price mcreases up to a certain level (the 

sixth out-of-the-money call or the sixth in-the-money put). In addition, for the implied 

volatilities calculated finm each o f the eight out-of-the-money calls as well as ISDPI3 and 

ISDPI4, the intercepts are not significantly different fix>m zero and the slope coefficients are 

not significantly different from one, indicating that these estimators are unbiased.

In contrast, the historical volatility has one o f the lowest adjusted R^s (0.1143), the 

largest intercept of 0.1008 and the smallest slope coefficient o f 0.2936 for the sample 

including the 1987 market crash. Both the intercept and the slope coefficient are 

significantly different firom zero indicating that historical volatility in general has lower 

predictive power than most o f the implied volatility estimators. For the sample excluding 

the 1987 market crash shown in Panel B o f Table 5.5, although the slope coefficients o f the 

implied volatilities are never significantly different fi-om one but the patterns are similar to 

those in Panel A. Historical volatility outperforms only several out-of-the money puts and 

several in-the-money calls.

In both the samples o f including and occluding the 1987 crash, the coefficients and 

the adjusted R^s for the four “at-the-money” implied volatilities are ranked in the middle, 

indicating again that they are not the most efficient Further more, the average o f these four 

nearest-the-money implied volatilities could not improve the forecasting performance. In 

both the Panel A and Panel B in Table 5.5, forecasting efficiency increases as strike price
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mcreases. hi addition, there is not significant difference in regression's RMSE, adjusted R?, 

intercept or slope coefBcient between calls and puts with the same strike price.

Next, realized volatility is regressed on both an implied volatility estimator and the 

historical volatility utilizing Equation 3.2 and the results are reported in Table 5.6. The 

results reveal almost the same patterns as those reported in Table 5.5. The intercept and the 

slope coefBcient o f the historical volatility (P2 ) decrease while the slope coefBcient o f 

implied volatility increases as strike price increases. Clearly, the relative efBciency o f 

implied volatility increases as strike price increases based on the coefBcient o f implied 

volatility, the adjusted R  ̂and the regression’s RMSE. However, several implied volatility 

estimators calculated fiom the calls ^u ts) with low strike prices are less efBcient than 

historical volatility (HIS40) in that the coefBcient of the historical volatility is significantly 

greater than zero and is greater than that o f the implied volatility.

Table 5.2 through Table 5.6 report the results for the overall sample with the four 

nearest-to-expiration options each day. To save space, I do not report the results for the four 

subgroups stratified by options’ time to expiration. As a matter o f fact, the results for the 

four subgroups are almost the same as those reported here for the overall sample.

5.4.5. An Interpretation o f the Results

The results discussed above suggest that up to a certain level, forecasting efBciency 

o f implied volatilities increases as the strike price increases, i.e. implied volatilities 

calculated fiom out-of-the money calls and in-the-monty puts have relatively higher 

forecasting ability than those calculated fiom in-the-monty calls and out-of-the-money puts.
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The predictive powo* o f the implied volatility estimators calculated from the four at-the- 

money options as well as their average are ranked somewhere in the middle. How should 

one interpret these results?

As well known, if  the option pricing model is correct and the market is efiScient, then 

implied volatilities calculated from options with different strike prices but with the same 

expiration date should be the same. However as shown in  Table 5.1 as well as in Figures

4.1 and 4.2, the implied volatility actually varies across different strike prices. Chapter 4 

suggests that the smile or “smirk” may reflect investors* p resen ces for options with certain 

strike prices and a market inefSciency. In consistent with this argument, an «planation for 

the results reported in this chs^ter is that the demand for out-of-the-mon^ puts is driven by 

hedgers hedging against market declines and therefore these puts may be overpriced. I f  the 

market were perfect, arbitrage would tend to drive these prices down. Because o f the put- 

call parity, in-the-m on^ calls may also be overpriced. Figures 4.1a and 4.1b actually show 

that there is no difference in implied volatility between calls and puts with low strike prices. 

Therefore, the implied volatilities calculated from these options may not reflect market 

expectations. Fluctuations in the implied volatilities o f the low strike price options due to 

fluctuations in hedging pressure will then create relatively more measurement error between 

the implied volatility and the market’s true expectation.

However, options with high strike prices are demanded primarily by speculators, so 

these implied volatilities may better reflect the maiket’s true expectation. As a result, the 

options with lower strike prices may contain more measurement error than options with 

higher strike prices. This can be further seen from the relationship o f the measurement error
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and the slope coefBcient o fü ie  OLS regressions. As discussed in Chapter 3, measurement 

error tends to bias the OLS estimate o f the slope coefficient downward. Table 5.5 shows 

that options with higher strike prices have larger slope coefficients which is consistent with 

the hypothesis that these options contain less measurement error. Similarly, the slope 

coefficients o f options with lower strike prices are smaller which is what one would expect 

if  these options contain more measurement error, hi 6 ct, as strike price increases, the slope 

coefficients increase monotonically up to a certain level o f the moneyness. However, the 

forecasting efficiency eventually declines as strike price further increases since options 

further away from the money are less actively traded and therefore contain relatively more 

measurement error.

5.5 Summary

On a given day, for the same forecasting horizon, one can obtain a number of 

different implied volatility estimates calculated from calls or puts with different strike 

prices. Which o f them is the most informative and should be utilized to forecast the future 

volatility? One popular procedure is to utilize the implied volatility calculated ft>m a single 

at-the-money option which reflects the popular belief that at-the-money options are the most 

informative and contain the least measurement error. Another common procedure is to 

obtain an average over several implied volatilities calculated from near-the-money options 

and ignore all the others. Although several previous studies have compared the forecasting 

ability o f different averaging schemes, no one has systematically investigated the relative 

forecasting efficiency o f different individual implied volatilities calculated from calls or
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puts with different strike prices. Di addition, these previous studies generally suffered fix>m 

limited data sets and therefore lacked the degrees o f freedom.

By utilizing over 15 years o f daily data on options on S&P 500 futures, I find, 

contrary to the general belief and practice, that implied volatility calculated fix>m an at-the- 

money option is not the most efBcient compared with those calculated from out-of-the- 

monQT calls and in-the-mon^ puts. Specifically, I find that implied volatilities calculated 

from calls and puts with relatively h i^ e r  strike prices have more predictive power in 

forecasting future volatility, hi fact, up to a certain level o f strike price, the predictive 

power increases as an option’s strike price increases. The empirical evidence also suggests 

that averaging over several implied volatilities may not be effective, implying that the 

choice o f which strike price to use is more important than the weighting scheme which has 

received much more attention in the literature.

The results in this chs^ter have also successfully «(plained why the regression 

results for the average implied volatility calculated from the two nearest-the-money calls 

and the two nearest-the-money puts presented in Chapter 3 are better than those utilizing all 

the individual implied volatilities. The difference between these two regressions is 

apparently not due to the averaging effect but that all the four components o f the average 

implied volatility actually are better estimators although not the best among all the 

individual implied volatilities. The evidence helps us to identify the different levels o f 

measurement error for options with different strike prices, hi the regression o f realized 

volatility on all the individual implied volatilities in Chapter 3, the majority o f the 

measurement error actually comes from the out-of-the-mon^ puts and in-the-money calls.
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k  addition, there is no difference in predictive power between a call and a put with 

the same strike price, h i comparison, historical volatility yields better forecast than some 

o f the options with low strike prices but worse than most o f the other inqilied volatilities 

especially those w ith high strike prices. The results presented in this chz^ter hold for 

several different criteria and for both the samples including and excluding the 1987 market 

crash. The results also hold for different expiration grotqis. This is an interesting and useful 

finding in that both researchers and option traders could use the results to improve their 

forecasting performance.
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Chapter 6 

Dissertation Summary

Since volatility is a critical factor in pricing financial options, understanding the 

estimate o f future market volatility implied by an observed option price is vital interest to 

practitioners and finance researchers. As well known, if  the option pricing model is correct 

and the option market is efBcient, the implied volatility calculated fiom an observed option 

price should represent the market participants’ consensus expectation o f the volatility over 

the remaining life o f the option. While this assertion has been hotly debated and implied 

volatility has been extaisively studied, there are still a lot o f  unresolved issues. Utilizing 

more than fifteen years o f daily data on options on S&P 500 futures, this dissertation 

«(amines implied volatility in terms o f three issues, thereby facilitating more efficient use 

of this measure in forecasting future volatility.

The first essay (Chapter 3) investigates the predictive power o f implied volatility. 

Previous studies found that implied volatility calculated fix)m an observed option price is 

a biased estimator o f subsequent realized volatility and is not efficient in that it fails to 

incorporate all available information, including historical returns. In contrast to some o f the 

previous studies, I find that implied volatility contains considerable information regarding 

the future realized volatility. In general, implied volatility has more predictive power than 

historical volatility. However, the results are quite sensitive to (1) the forecast horizon, (2) 

whether or not the data set includes the 1987 market crash, and (3) whether or not one
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corrects for heteroskedasticity and serial correlation caused by the overlap in realized 

volatility. The o v erly  in realized volatility estimates seriously biases the standard error 

estimates. Most importantly, I find that implied volatility varies around the market’s true 

volatility expectation due to measurement error caused by bid-ask spread, non-synchronous 

prices, and possible deficiencies in the option pricing formula and that this measurement 

error biases tests towards rejecting the informational efficiency of implied volatility. When 

I control for the measurement error by utilizing instrumental variables estimation, the results 

in most cases no longer reject the hypothesis that implied volatility is unbiased and 

informationally efficient No previous work has systematically examined this measurement 

error effect

The second essay (Chapter 4) relates to the implied volatility “smile” which refers 

to the cross-sectional variation in implied volatility across options with different strike 

prices but the same maturity date. In this essay, I document the smile or “smirk” in options 

on S&P 500 futures market firom 1983 to 1998. In particular, the implied volatility 

decreases monotonically and eventually goes back up as strike price increases, i.e., a reverse 

J shape. Previous explanations for the smile have mostly focused on possible errors in the 

option pricing formula and, as a result, researchers have developed more complicated option 

pricing models such as stochastic volatility models and jump-diffiision models. But none 

o f these new models has successfully explained the smile, motivating me to search of an 

alternative explanation.

I argue and test that the smile may be caused by investors’ preferences for certain 

strike prices for hedging purposes and these differences are not eliminated by arbitrage
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because the option maiket may not be efBcient h i other words, the smile may actually 

rqiresent a maiket inefBciency. I find that market inefBciency is at least partly responsible 

for the implied volatility smile in the options on S&P 500 futures market since abnormal 

returns can be made over time by buying put options with low implied volatility and 

simultaneously selling put options with high implied volatility in a delta neutral ratio. 

However, the standard deviations o f the profits are quite large even though the positions are 

delta neutral and the delta neutral strategy involving calls does not generate as much profits. 

The results suggests further tests to identify the exact sources of the profits and to explain 

the difference in profits between calls and puts as well as the large variance o f the profits.

On a given day, many different options with the same expiration date are traded 

which differ by strike price and whether they are calls or puts. The implied volatilities 

calculated firom these different options are actually forecasting the same future volatility 

over the same period. Then which o f the implied volatilities or which average measure is 

the most informative and should be utilized in forecasting future volatility? Previous studies 

have investigated the relative forecasting performance o f several averaging schemes as well 

as a couple o f individual implied volatilities calculated finm a single option. Although their 

results are mixed, they tend to favor at-the-money options. But these previous studies 

generally suffered fiom limited data sets and therefore lack the degrees o f fieedom.

In practice, investors and finance researchers often utilize the implied volatility 

calculated finm a single at-die-money option or an average over several, often two or four, 

implied volatilities calculated fix>m the nearest-the-money options and totally ignore all the 

other options. Does an at-the-money option yield the best forecast? Does an average
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necessarily reduce measurement error? W hile no previous study has done this before, the 

third essay (Chapter 5) systematically examines the relative forecasting efBciency o f 

implied volatilities calculated firom calls and puts with different strike prices but the same 

expiration date.

I find, contrary to the general belief and practice, that the implied volatility 

calculated fiom an at-the-money option is less informative than those calculated fiom some 

out-of-the money calls or some in-the-m on^ puts. Up to a certain level, the predictive 

ability o f implied volatility increases as strike price increases. However, there is not much 

difference in forecasting ability between a call and a put with the same strike price.

In contract, historical volatility generally yields better forecasts than the implied 

volatilities calculated firom the options with very low strike prices but worse than the 

implied volatilities calculated fiom most other options especially fiom those options with 

high strike prices. This suggests that in testing relative predictive power o f implied 

volatility and historical volatility, the choice o f which implied volatility to utilize makes a 

big difference. Canina and Figlewski (1993) utilized all the individual implied volatilities 

and obtained a lower predictive power for implied volatility than for historical volatility. 

On the other hand, Jorion (1995) employed an average implied volatility calculated fiom 

one nearest-the-mon^ call and one nearest-the-money put while Christensen and Prabhala 

(1998) obtained their implied volatility measure fiom a single at-the-money call option. 

According to the evidence presented in C luster 5, it is not surprising that both Jorion (1995) 

and Christensen & Prabhala (1998) conclude that implied volatility has much more 

predictive power than historical volatility.
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The results are robust across options in different expiration groups and hold for both 

the samples o f including and «eluding the 1987 market crash. The results are also quite 

consistent based on several different criteria for measuring relative efGciency: root mean 

squared error, mean absolute error, mean absolute percentage error, and OLS regression 

measures. The evidence suggests that an average is not necessarily more informative than 

its components. The choice o f which strike price to utilize is more important than the 

weighting schemes which have received much more attention in the literature. The findings 

presented in this dissertation should be informative to both investors and finance researcher 

who are interested in more efficient use o f  implied volatility.
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Table 2.1
Summary Statistics of Implied Volatility and Its Corresponding Realized and Historical Volatilities

for Options on S&P 500 Futures

Group
Trading 
Days to 

Expiration
Obs

Realized Volatility 
RLZSD

Implied Volatility 
ISD

Historical Volatility 
HIS40

Mean Std Min Max Mean Std Min Max Mean Std Min Max

Panel A; 
Include 
1987 
Crash

all 10-99 217,226 0.1420 0.0913 0.0378 1.3533 0.1686 0.0581 0.0633 1.0571 0.1462 0.1044 0.0511 1.0806
1 10-36 77,123 0.1383 0.0827 0.0378 1.3533 0.1734 0.0620 0.0662 0.9528 0.1495 0.1107 0.0511 1.0806
2 28-57 65,629 0.1411 0.0930 0.0562 1.1517 0.1670 0.0625 0.0675 1.0571 0.1421 0.0958 0.0511 1.0768
3 47-78 40,472 0.1478 0.1027 0.0619 0.9516 0.1638 0.0491 0.0633 0.5213 0.1432 0.1061 0.0511 1.0786
4 67-99 34,002 0.1452 0.0914 0.0687 0.8108 0.1668 0.0484 0.0772 0.7927 0.1505 0.1030 0.0564 1.0709

Panel B; 
Exclude 

1987 
Crash

all 10-99 212,002 0.1323 0.0481 0.0378 0.5540 0.1651 0.0494 0.0633 0.7078 0.1367 0.0530 0.0511 0.3807
1 10-36 75,478 0.1315 0.0543 0.0378 0.5540 0.1696 0.0538 0.0662 0.7078 0.1385 0.0540 0.0511 0.3807
2 28-57 64,316 0.1319 0.0469 0.0562 0.3277 0.1633 0.0499 0.0675 0.4732 0.1346 0.0525 0.0511 0.3807
3 47-78 39,099 0.1339 0.0440 0.0619 0.2804 0.1599 0.0430 0.0633 0.3878 0.1315 0.0471 0.0511 0.3609
4 67-99 33,109 0.1329 0.0393 0.0687 0.2518 0.1645 0.0438 0.0772 0.3719 0.1429 0.0570 0.0564 0.3621

The data set covers t 
(1976) model from a 
underlying futures o 
the underlying future 
second nearest-to-ex

le period from Jan. 28,1983 through April 30, 1998. The implied vo 
n observed option price. The realized volatility (RLZSD) is the stand 
yer the remaining life of the option. The historical volatility (HIS40) 
:s over the last 40 trading days. Group 1 contains the nearest-to-expir 
piration options, etc.

atility (ISD) is calculated utilizing Black’s 
ard deviation of daily returns of the 
is the standard deviation of daily returns of 
ation options, and Group 2 contains the



Table 3.1
Evidence from Previous Studies on the Rationality of Implied Volatility as a Predictor of Future Realized Volatility

Results of the estimation of “ Pq * P| °jsd n  ̂P% * "i c®̂® reported where Oruz,, is the realized volatility, o,;p , , is an implied volatility, and 
0^1 is a time series measure, either past volatility and/or a (jARCH measure. Standard errors are shown in parendieses (some inferred from reported t 
values). Some equations represent averages of several regressions.

Study Market Obs Forecast
horizon

Intercept
(P.)

Implied
vol(p,)

GARCH 
vol (Pi)

Historic 
vol (pi)

R* Notes

Canina&
Figlewski
(1993)

S&P 100 
Index

daily, calls 
3/83-3/87

7-127 calendar 
days

0.0827
(0.0284)

-0.0641
(0.0853)

0.4866
(0.2201)

0.1695 avg of 32 equations. 
HIS: over 60 calendar 
days.

Day & Lewis 
(1992)

S&P 100 
Index

weekly,
calls
3/83-12/89

nearby contract 
and: >7 days

-0.0001
(0.0011)

0.00018
(0.00016)

0.601
(0.583)

0.632
(0.620)

0.298
(0.710)

-0.243
(0.868)

0.123
(0.018)

0.027

0.038

HIS: prenons week 
Realized and inqrlied 
volatility periods do 
not match.

Lamoureux 
& Lastrapes 
(1993)

10 non
dividend 
paying 
stocks

daily, calls 
4/82-3/84

90-180 days 1627.258
(387.765)

3451.775
(882.035)

0.6652
(0.3726)

0.4705
(0.2175)

-1.751P
(0.5588)

0.1658
(0.7577)

-3.9105
(1.5260)

0.2918

0.4741

averge of 10 stock 
regressions.

Day & Lewis 
(1993)

crude oil 
futures

daily, calls 
11/86-3/91

nearby and 
second nearby 
contracts

0.004
(0.0035)

0.004
(0.0045)

0.970
(0.157)

0.901
(0.169)

-0.006
(0.3915)

0.053
(0.854)

-0.061
(0.203)

0.607

0.608

HIS: same as the 
forecast horizon.

1 Jorion (1995) foreign
exchange
futures

daily, calls
&puts
1/85-2/92

3-100 calendar 
days

0.3317
(0.1250)

0.3230
(0.2170)

0.6313
(0.1853)

0.5507
(0.1817)

0.0203
(0.2873)

-0.0897
(0.1007)

0.138(1

0.1380

averge of 3 currencies 
regressions.
HIS: 20 trading days.

Guo
(1996)

foreign
exchange
rates

daily;
1/86-2/93

30-90 trading 
days

0.0065
(0.0034)

0.0057
(0.0034)

0.2925
(0.1327)

0.4558
(0.1890)

0.1539
(0.3366)

0.2974
(0.3264)

-0.2120
(0.1275)

0.0687

0.0907

avg of two currencies 
HIS: 60 trading days. 
Realized and implied 
volatility periods do 
not match.
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Table 3^
The Predictive Properties of Individual Implied Volatilities - OLS Results

The realized volatility (Obit.) over the remaining life of an option on S&P 500 futures is regressed on 
an indfvidmd implied volatility (Oawj and historical volatility measnred over the last 40 
trading days using daily observations from Jan. 28,1983 th ro n g  April 30,1998. On a given day, 
for each expiration date, eight in-the-money calls (puts) and eight ont-of-the-mon^ calls (puts) are 
utilized. The tg^s and tg are OLS t  statistic and t  statistic by Hansen (1982) procedure respectively. 
The second column represents the option’s trading days to expiration.

Trading 
Days to 

M aturity
P. P. Pi AdjR: Obs

Overall
10-99

coefBcient
tois(Ho:P=0)
ta(Ho:P=0)
*h(Ho:P=1)

0.0448**
(77.506)
(5.027)

0.4937**#
(111.571)
(4300)
(-4307)

0.0953
(38.694)
(1.690) 0.1596 217326

Panel A:

Group 1 
10-36

coefficient 
toLs(Ho- P ^ ) 
ta (H o :M  
WH*: P=l)

0.0502**
(61.434)
(6.773)

03713**#
(62.651)
(5.462)
(-9350)

0.1589**
(47.864)
(3381) 03049 77,123

Including 
the 1987 
market 
crash

Group 2 
28-57

coefGcient 
tbts(Ho: P=0) 
tg(Ho: p=0)
ta(Ho: P=l)

0.0498**
(49.575)
(5.515)

0.4339**#
(50.377)
(3.926)
(-5.122)

0.1327
(23.634)
(1.917) 0.1663 65,629

Group 3 
47-78

coefficient 
*oLs(Ho- P® )̂ 
tg(Ho:P=0) 
t„(Ho: P=l)

0.0123
(7.118)
(0.460)

0.8228**
(64.106)
(2.907)
(-0.626)

0.0054
(0.909)
(0.070) 0.1574 40,472

Group 4 
67-99

coefGcient 
foLs(Ho- P ^ ) 
tw(Ho:p=0)
t„(Ho: P=l)

0.0287
(15.806)
(1.059)

0.7472*
(52.998)
(2.125)
(-0.719)

-0.0546
(-8350)
(-0.355) 0.1244 34,002

Overall
10-99

coefGcient
toLs(Ho: p=0)
t„(Ho:p=0) 
WHo: P*l)

0.0480**
(156.418)
(4.584)

03946**#
(116.813)
(6.039)
(-14.462)

03603**
(110.665)
(3.501) 03963 212,002

Panel B:

Group 1 
10-36

coefGcient 
tbLs(Ho- P ^ ) 
^Ho:P=0) 

p=I)

0.0517**
(87.943)
(4316)

0.2592**#
(59.493)
(5349)
(-15.863)

03585**
(59.587)
(2.979) 03197 75,478

Excluding 
the 1987 
maricet 
crash

Group 2 
28-57

coefGcient 
toLs(Ho* P ^ ) 
t«(Ho:p=0) 
ta(Ho: p=l)

0.0479**
(92.113)
(3.750)

03995**#
(65.668)
(5.661)
(-13341)

03606**
(60.112)
(2.850) 0.3258 64316

Group 3 
47-78

coefGcient 
toLs(üo> P ^ ) 
îh(Ho:P=0)
tH(Ho: P=l)

0.0302*
(46.300)
(2.260)

0.4150**#
(75.550)
(5306)
(-7.761)

03837**
(56.650)
(2.780) 0.4277 39,099

Group 4 
67-99

coefGcient 
toLs(Ho: P=0)
îh(Ho:P=0)

0.0490**
(75.042)
(3.749)

0.3114**#
(51.159)
(2.728)
f-6.0321

03287**
(48.818)
(2.600) 0.4112 33,109

* significantly different from zero at the 0.05 level. ** significantly different from zero at the 0.01
t  significantly different from one at the 0.05 level, t t  significantly different from one at the 0.01

level.
level.
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Table 33
The Predictive Properties of the Average Implied Volatility - OLS Results

Realized volatility (OrlzJ  over the remaining life of an option on S&P 500 futures is regressed on the 
average implied volatility (g,^ J  (calculated from the two nearest-the-money calls and the two 
nearest-the-monqr puts) and the historical volatility J  measured over the last 40 trading days 
using daily observations from Jan. 28,1983 through April 30,1998. The toLs and t ,  are OLS t

Trading 
Days to 

Maturity
p. P. P% AdjR* Obs

Panel A: 
Including 
the 1987 
market 
crash

Overall
10-99

coefGcient 
toLsCH*: PM)) 
*H%:P=0) 
t«(Ho: P=l)

0.0115
(3.806)
(0.705)

0.8719**
(33395)
(3.898)
(-0.573)

-0.0483
(-3.677)
(-0308) 03024 9.764

Group 1 
10-36

coefGcient
toLs(Ho:
ta(Ho:p=0)
tn% : P=l)

0.0135
(2.892)
(1.125)

0.8056**
(19.464)
(5.534)
(-1336)

-0.0060
(-0.292)
(-0.097) 03447 3312

Group 2 
28-57

coefGcient 
fbts(Ho: P=0) 
tn(Ho: P=0) 
tH%: P=l)

0.0207
(3.771)
(1.667)

0.7871**
(15.618)
(3.760)
(-1.017)

-0.0123
(-0.433)
(-0.106) 0.1914 3,029

Group 3 
47-78

coefGcient 
toLs(Ho- P ^ )

tH%: P=l)

-0.0114
(-1.568)
(-0339)

1.0565**
(17.770)
(3.024)
(0.162)

-0.0763
(-2.778)
(-0.785) 03048 2,021

Group 4 
67-99

coefGcient
tbisCH«:P=0)
tnC H o:^)
WHo:p=l)

0.0086
(0.947)
(0313)

0.9758*
(13.109)
(2.022)
(-0.050)

-0.1382
(-0.395)
(-0.705) 0.1511 1,502

Panel B: 
Excluding 
the 1987 
maricet 
crash

Overall
10-99

coefGcient
tois(Ho:P=0)
t„(Ho: P=0) 
t„(Ho: P=l)

0.0303*-*
(20376)
(2.954)

0.6340**tt
(39.116)
(7.807)
(-4.507)

0.0283
(2.122)
(0387) 03570 9,505

Group 1 
10-36

coefGcient
toLs(Ho;P=0)
tn(Ho:P=0)
tn(Ho:P=l)

0.0303**
(10.431)
(2.658)

0.6999**tt
(22.146)
(7.989)
(-3.426)

-0.0453
(-1.688)
(-0.483) 0.2969 3,136

Group2
28-57

coefGcient 
toLsOHo- P ^ )

tnCHo: P=l)

0.0310**
(12313)
(2.613)

0.6156**tt
(21.918)
(7.605)
(-4.749)

0.0461
(1.942)
(0.584) 0.3813 2,946

Group 3 
47-78

coefGcient 
tbts(Ho: P=0) 
t«(Ho:p=0) 
^i(Ho:P=I)

0.0198
(6379)
(1.456)

0.6533**tt
(20.643)
(6.105)
(-3340)

0.0951
(3.627)
(1.111) 0.4463 1,964

Group 4 
67-99

coefGcient 
tois(Ho: P ^ )  
t|](Ho: P=0) 

0= 1)

0.0449**
(14.048)
(3.001)

0.4387**tt
(12.414)
(2388)
(-3311)

0.1304
(5.025)
(1.162) 0.4263 1,459

* significantly different from zero at the 0.05 level
t  significantly different from one at the 0.05 level

** significantly different from zero at the 0.01 level, 
t t  significantly different from one at the 0.01 level

93



Table 3.4
Measurement Error Tests for Individual Implied Volatilities

OrLZ.1 “ Po P|0|SD.I.I Pẑ HIMM Pl^kl ^
Realized volatility over the remaining life of an S&I 
((fisD,i,i) * historical volatility (OmswJ measured over the 
implied volatility on the instrumental variable ( o,sm.mo ) 
28,1983 through April 30,1998. The t» is the corrected t si

500 futures option is regressed on an individual Implied volatility 
last 40 trading days, and the residual from the first step regression of 
id the historical volatility. Regressions use daily observations from Jan. 
tatistic from the Hansen (1982) procedure.

Group Trading Days 
to Expiration P. P. Pi Pi AdjR* Obs

Panel A: 
Including 
the 1987 
market 
crash

Overall 10-99 coefficient 
t„(Ho: P=0)

-0.0192
(-1.067)

1.0744**
(5.906)

-0.1395*
(-2.194)

-0.7598**
(-6.886) 0.1786 207,021

1 10-36 coefficient 
WHo: p=0)

-0.0059
(-0.368)

0.8535**
(7.861)

-0.0271
(-0.727)

-0.6130**
(-4.125) 0.2277 76,797

2 28-57 coefficient 
yHo: P=0)

-0.0259
(-0.906)

1.2651**
(4.284)

-0.3205*
(-2.379)

-0.9629**
(-3.455) 0.1861 62,498

3 47-78 coefficient
VHo: P=0)

-0.0493
(-0.925)

1.3466**
(2.661)

-0.1512
(-1.150)

-1.0620*
(-2.469) 0.1814 33,866

4 67-99 coefficient
t„(Ho:P=0)

-0.0015
(-0.037)

1.0244*
(2.088)

-0.1617
(-0.733)

-0.4572
(-1.952) 0.1257 33,860

Panel B; 
Excluding 
the 1987 
market 
crash

Overall 10-99 coefficient 
yHo: p=0)

0.0106
(0.734)

0.8004**
(6.012)

-0.0775
(-0.785)

-0.6488**
(-5.312) 0.3269 202,224

1 10-36 coefficient 
t„(Ho: P=0)

0.0055
(0.324)

0.8568**
(5.139)

-0.1398
(-1.080)

-0.7026**
(-4.333) 0.2525 75,224

2 28-57 coefficient 
tnfHo: P=0)

0.0102
(0.536)

0.8613**
(4.900)

-0.1439
(-1.165)

-0.7504**
(-3.943) 0.3685 61,398

3 47-78 coefficient 
WHo: P=0)

0.0005
(0.027)

0.7995**
(5.405)

0.0471
(0.431)

-0.6012**
(-4.096) 0.4704 32,543

4 67-99 coefficient 
UHg: P=0)

0.0367*
(1.981)

0.4698*
(2.260)

0.1328
(0.970)

-0.2327
(-1.396) 0.4161 33,059

* significantly different from zero at the 0.05 level.
** significantly different from zero at the 0.01 level.
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Table 3.5
Measurement Error Tests for the Average Implied Volatility

®RI.7,I “ Po PtO|SlM.I Pj^l **l
The realized volatility fo„ ? over the remaining iife of an option on S&P 500 futures Is regressed on the average implied volatility 
(<̂ isD4.i) calculated from the two nearest-the-money calls and the two nearest-the-money puts, the historical volatility (Ohiw.i) 
measured over the last 40 trading days, and the residual from the first step regression of Implied volatility on the Instrumental 
variable ( o,so4,,.|o ) and the historical volatility. Regressions use daily observations from Jan. 28,1983 through April 30,1998. The 
tu is the corrected t statistic for the Hansen (1982) procedure.

Group Trading Days 
to Expiration P. P. P> Pj AdjR: Ohs

Panel A: 
Including 
the 1987 
market 
crash

all 10-99 coefficient 
yHo P=0)

-0.0045
(-0.184)

1.0380**
(3.450)

-0.1217
(-1.002)

-0.2988*
(-2.481) 0.2006 8,863

1 10-36 coefficient 
UHo: P=0)

0.0032
(0.266)

0.9052**
(6.597)

-0.0448
(-0.792)

-0.1816*
(-2.001) 0.2501 3,184

2 28-57 coefficient 
UHq: p=0)

-0.0157
(-0.493)

1.2405**
(2.958)

-0.2829
(-1.361)

-0.6237*
(-2.343) 0.1929 2,783

3 47-78 coefficient
V % p=o)

•0.0266
(-0.605)

1.2182**
(2.732)

-0.1174
(-1.005)

-0.2177
(-1.265) 0.1954 1,410

4 67-99 coefficient 0.0153
(0.427)

0.9277*
(2.058)

-0.1325
(-0.654)

0.1594
(0.645) 0.1437 1,486

Panel B: 
Excluding 
the 1987 
market 
crash

all 10-99 coefficient
tH(Ho.P=0)

0.0252*
(2.218)

0.7352**
(5.646)

-0.0488
(-0.458)

-0.1935
(-1.600) 0.3495 8,653

1 10-36 coefficient 
t„(Ho: P=0)

0.0225
(1.784)

0.8439**
(5.601)

-0.1504
(-1.157)

-0.2290
(-1.657) 0.2971 3,112

2 28-57 coefficient 
t«(Ho: P=0)

0.0220
(1.463)

0.7849**
(4.441)

-0.0873
(-0.635)

-0.3419
(-1.546) 0.3732 2,730

3 47-78 coefficient 
t„(Ho: p=0)

0.0161
(1.046)

0.7115**
(5.208)

0.0709
(0.692)

-0.1197
(-0.600) 0.4674 1,362

4 67-99 coefficient 
tH(Ho: P=0)

0.0475**
(3.122)

0.4026*
(2.067)

0.1516
(1.093)

0.0855
(0.427) 0.4226 1,449

* significantly different from zero at the 0.05
** significantly different from zero at the 0.01

level.
level.



Table 3.6
Instrumental Variables Estimates of the Predictive Properties 

of Individual Implied Volatilities and Historical Volatility

The realized volatility fo=,,.l over the remaining life of an option on S&P 500 futures is regressed 
on an individual implied volatility (Goô  ̂j  and the historical volatiBtv measured over the
last 40 trading days using Oqd4̂ „  as an instrumental variable. Regressions use daily observations 
from Jan. 28,1983 through April 30,1998. The toLs and t ,  are OLS t statistic and t  statistic by

Trading 
Days to 

Maturity
3. 3. Pi A djR : Obs

Panel A: 
Including 
the 1987 
market 
crash

Overall
10-99

coefficient 
toLs(Ho: P=0) 
t«(Ho:p=0) 
t«(Ho:p=l)

-0.0192
(-16.90)
(-U37)

1.0744**
(108.49)
(7359)
(0.510)

-0.1395*
(-3130)
(-2391) 0.0886 207.021

Group 1 
10-36

coefficient 
*6ls(Hb* P ^ )
WHo:p=0)

P=l)

-0.0059
(-3.68)
(-0.502)

0.8535**
(6434)
(9326)
(-1.584)

-0.0271
(-4.69)
(-0.788) 0.1374 76,797

Group 2 
28-57

coefficient 
loLs(Ho: ^ 0) 
îh(Ho:P=0)

P=l)

-0.0259
(-9.99)
(-1.404)

1.2651**
(45.41)
(7.031)
(1.473)

-0.3205**
(-20.60)
(-3.447) 0.0419 62,498

Group 3 
47-78

coefficient
tois(Ho: P=0)
t„(Ho:P=0) 
tH%: P=l)

-0.0493
(-18.46)
(-1.479)

13466**
(65.90)
(3.954)
(1.018)

-0.1512
(-1937)
(-1.778) 0.1226 33,866

Group 4 
67-99

coefficient 
*6ls{Ho‘ P ^ ) 
t„(Ho:P=0) 
tnOHo: 3=1)

-0.0015
(-0.58)
(-0.054)

1.0244**
(45.58)
(2.708)
(0.064)

-0.1617
(-16.58)
(-0.867) 0.1101 33,860

Panel B: 
Excluding 
the 1987 
market 
crash

Overall
10-99

coefficient 
toLs(Ho: P=0) 
tH(Ho: 3=0) 
ta(Ho: 3=1)

0.0106
(19.79)
(0.833)

0.8004**t
(130.42)
(8.725)
(-2.176)

-0.0775
(-17.29)
(-0.954) 0.1544 202,224

Group 1 
10-36

coefficient 
lois(Ho* 3 ^ ) 
*H%:P=0) 
WHo:P=I)

0.0055
(4.89)
(0380)

0.8568**
(67.72)
(8.799)
(-1.471)

-0.1398
(-1533)
(-1.565) 0.0243 75324

Group 2 
28-57

coefficient 
*OLs(Ho: P=0) 
1h(Ho* P=0) 
*H(Ho: 3=1)

0.0102
(11.77)
(0.660)

0.8613**
(78.88)
(7.646)
(-1332)

-0.1439
(-16.81)
(-1.304) 0.1565 61,398

Group 3 
47-78

coefficient 
toLs(Ho‘ 3=0) 
t„(Ho:P=0) 
tw(Ho:3=l)

0.0005
(0.49)
(0.033)

0.7995**t
(78.73)
(8.072)
(-2.024)

0.0471
(637)
(0.506) 0.3591 32,543

Group 4 
67-99

coefficient 
lois(Ho- 3=0) 

3=0) 
3=1)

0.0367**
(38.16)
(2.717)

0.4698**tt
(4335)
(3.981)
(-4.4941

0.1328
(18.44)
(1339) 0.3985 33,059

* significantly difierent from zero at the 0.05 level,
t  significantly difierent from one at the 0.05 level. t t  significantly different from one at the 0.01

96
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1 Table 3.7
Instrumental Variables Estimates of the Predictive Properties 

of the Average Implied Volatiiity and Historical Volatility
K̂LZU ~  Po Pl̂ lSOU Pl®HI»«U

The realized v 
on the average 
nearest-the-m<

through April 
procedure res]

olatflity (0RLZ4) over the remaining life of an option on S&P 500 fhtnres Is regressed 
implied voladliQr (OgM, cslcniated firom the two nearest-the-money calls and the two 

»nqr puts) and the historical voladHQr (OhbmjJ measured over the last 40 trading days 
IS an instrumental variable. Regressions use daHy observations from Jan. 28,1983 
30,1998. The toLs end tg are OLS t  statistic and t  statistic by Hansen (1982) 
iiectively. The second column shows the option’s trading days to maturity.

P. P. Pz AdjR* Obs

Panel A: 
Including 
the 1987 
market 
crash

Overall
10-99

coefGcient 
*oLs(Ho: P°°0) 
ta(Ho:P=0) 
ta(Ho:P=l)

-0.0045
(-0.98)
(-0.291)

1.0380**
(23.78)
(4.939)
(0.181)

-0.1217
(-6.10)
(-1305) 0.1941 8,863

Group 1 
10-36

coefGcient 
toLs(H<h P ^ )  
ta(Ho:P=0) 
tH(Ho;P=l)

0.0032
(0.49)
(0.276)

0.9052**
(1433)
(6.756)
(-0.708)

-0.0448
(-136)
(-0.822) 03476 3,184

Group 2 
28-57

coefGcient 
toLs(Ho' P ^ )  
îh(Ho:P=0)
tH%: P=l)

-0.0157
(-1.51)
(-1.015)

13405**
(1035)
(6300)
(1302)

-03829*
(-433)
(-2.530) 0.1605 2,783

Group 3 
47-78

coefGcient 
foLs(Ilo- P ^ )

tuCHo: P=l)

-0.0266
(-2.44)
(-0.614)

13182**
(13.84)
(2.768)
(0.496)

-0.1174
(-339)
(-1.019) 0.1950 1,410

Group 4 
67-99

coefGcient 
toLs(H<h P ^ )  
t„(Ho:p=0)
tn(Ho:P=l)

0.0153
(134)
(0385)

03277
(932)
(1.843)
(-0.144)

-0.1325
(-3.13)
(-0.591) 0.1433 1,486

Panel B: 
Excluding 
the 1987 
market 
crash

Overall
10-99

coefGcient 
toLs(H(h P ^ ) 
t„(Ho:p=0)
WHo: P=l)

0.0252*
(13.16)
(2.417)

0.7352**#
(29.61)
(9.087)
(-3373)

-0.0488
(-2.58)
(-0.654) 0.3447 8,653

Group 1 
10-36

coefficient 
toLs(Ho: P=0)
tH<Ho:P=0)
tH ^ P = l)

0.0225*
(6.10)
(1.989)

0.8439**
(16.67)
(10.119)
(-1.872)

-0.1504
(-3.88)
(-1.699) 03904 3,112

Group 2 
28-57

coefGcient
toLs(Ho:P=0)
t«(Ho:p=0) 
tn(Ho: P=l)

0.0220
(6.80)
(1.787)

0.7849**t
(17.60)
(8.009)
(-2.194)

-0.0873
(-2.44)
(-0.917) 03586 2,730

Group 3 
47-78

coefGcient 
foLs(Ho: P ^ )

^i(Ho:P=l)

0.0161
(4.12)
(1.128)

0.7115**#
(16.80)
(7.453)
(-3.022)

0.0709
(2.19)
(0.888) 0.4664 1362

Group 4 
67-99

coefGcient 
toLsCH)* P ^ )
ta(Ho:P=0)

0=1)

0.0475**
(12.07)
(3.190)

0.4026*#
(834)
(2352)
f-3.4901

0.1516
(4.47)
(1310) 0.4219 1,449

* significantly different from 
t  significantly different from

zero at the 0.Q5 level, 
one at die 0.05 level

** significandy different from zero at the 0.01 level,
t t  significandy different from one at the 0.01 level.
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Table 4.1
Profits (Losses) to a Random $1 Investment in Calls or Puts on S&P 500 Futures

Panel A: for Calls

Group
Trading 
Days to 

Expiration

Holding
Period

(trading
days)

Including the 1987 Crash Excluding the 1987 Crash

Mean Std Dev T:
Mean=0 Obs Mean Std Dev T;

Mean=0 Obs

1 10-36

Expiration $0.0871** $2.1301 7.535 33,961 $0.0978** $2.1382 8.390 33,619
10 $0.1758** $2.7354 10.671 27,576 $0.1802** $2.7442 10.866 27,375
5 $0.0913** $1.2345 14.021 35,977 $0.0945** $1.2374 14.446 35,748
1 $0.0152** $0.3468 8.420 36,995 $0.0158** $0.3469 8.749 36,794

2 28-57

Expiration $0.2256** $2.1109 18.783 30,901 $0.2472** $2.1239 20.277 30,343
10 $0.1135** $1.1115 18.065 31,288 $0.1203** $1.1149 18.977 30,932
5 $0.0542** $0.5940 16.184 31,475 $0.0579** $0.5949 17.184 31,151
1 $0.0082** $0.2239 6.548 31,613 $0.0091** $0.2234 7.203 31,324

3 47-78

Expiration $0.2864** $1.9874 20.067 19,384 $0.3071** $1.9965 21.248 19,077
10 $0.0317** $0.6376 6.916 19,392 $0.0334** $0.6378 7.263 19,226
5 $0.0198** $0.4198 6.578 19,406 $0.0206** $0.4201 6.804 19,303
1 $0.0064** $0.1612 5.542 19,424 $0.0063** $0.1612 5.425 19,372

4 67-99

Expiration $0.5667** $2.4718 29.564 16,630 $0.5988** $2.4896 30.675 16,263
10 $0.0753** $0.4274 22.721 16,627 $0.0774** $0.4270 23.326 16,553
5 $0.0507** $0.3066 21.343 16,630 $0.0520** $0.3065 21.814 16,556
1 $0.0109** $0.1301 10.829 16,630 $0.0111** $0.1301 11.016 16,556

The data sets contain daily observations of the options from January 2 
options on a given day and Group 2 contains the second nearest to-ma 
for a call or a put The profits (losses) do not account for transaction c 
option’s expiration.

B, 1983 through April 30,1998. Group 1 contains the nearest to-maturity 
turity options, etc. The investment (initial cash outflow) is standardized to $1 
osts. The holding periods are either a number of trading days or until the

.......................................
* significantly difierent from zero at the 0.05 level.
** significantly difTerent from zero at the 0.01 level.
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Table 4.1 (continued)
Profits (Losses) to a Random $1 Investment in Calls or Puts on S&P 500 Futures

Panel B: for Puts

Group
Trading 
Days to 

Expiration

Holding
Period

(trading
days)

Including the 1987 Crash Excluding the 1987 Crash

Mean Std Dev T:
Mean=0 Obs Mean Std Dev T:

Mean=0 Obs

1 10-36

Expiration $-0.5079** $1.9151 -49.215 34,445 $-0.6065** $0.9926 -112.777 34,069
10 $-0.2156** $1.7150 -20.670 27,036 $-0.2661** $1.0190 -42.753 26,810
5 $-0.1062** $1.4837 -13.376 34,925 $-0.1294** $1.2153 -19.817 34,659
1 $-0.0233** $0.3452 -12.652 35,258 $-0.0260** $0.3193 -15.243 35,026

2 28-57

Expiration $-0.6337** $1.4692 -74.671 29,969 $-0.7201** $0.8441 -146.740 29,586
10 $-0.1389** $0.9751 -24.610 29,867 $-0.1798** $0.5101 -60.614 29,578
5 $-0.0566** $0.6939 -14.123 29,944 $-0.0767** $0.4308 -30.663 29,657
1 $-0.0093** $0.2647 -6.075 30,012 $-0.0131** $0.2096 -10.734 29,735

3 47-78

Expiration $-0.6179** $1.3825 -60.043 18,051 $-0.7332** $0.8313 -117.644 17,795
10 $-0.0741** $0.4472 -22.246 18,036 $-0.0796** $0.4199 -25.350 17,891
5 $-0.0286** $0.3421 -11.237 18,030 $-0.0295** $0.3403 -11.621 17,943
1 $-0.0083** $0.1465 -7.601 18,043 $-0.0081** $0.1465 -7.431 18,000 1

4 67-99

Expiration $-0.6567** $1.3964 -57.639 15,021 $-0.8000** $0.6539 -148.634 14,761
10 $-0.1055** $0.3455 -37.394 15,000 $-0.1054** $0.3456 -37.303 14,973
5 $-0.0576** $0.2469 -28.593 15,002 $-0.0575** $0.2470 -28.475 14,975
1 $-0.0115** $0.1195 -11.807 15,013 $-0.0114** $0.1195 -11.706 14,986

The data sets contain daily observations of the options from January 28,1983 through April 30,1998. Group I contains the nearest-to-maturity 
options on a given day and Group 2 contains the second nearest-to-maturity options, etc. The investment (initial cash outflow) is standardized to $I 
for a call or a put The profits (losses) do not account for transaction costs. The holding periods are either a number of trading days or until the 
option’s expiration.

* significantly difTerent from zero at tite 0.05 level.
** significantly difTerent from zero at the 0.01 level.
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Table 4.2
Profits (Losses) to a Delta Neutral Strategy of Buying Low Implied Volatility 

Options and Selling High Implied Volatility Options with No Transaction Costs

Panel A: for Calls with a Net Investment of -$1

Group
Trading 
Days to 

Expiration

Holding
Period

Including the 1987 Crash Excluding the 1987 Crash

Mean Std Dev T: Mean=0 Obs Mean Std Dev T; Mean=0 Obs

1 10-36

Expiration $-0.0985** $1.3483 -3.812 2,723 $-0.0981** $1.3495 -3.791 2,718
10 $-0.0031 $1.0840 -0.123 1,801 $-0.0026 $1.0853 -0.102 1,796
5 $0.0009 $0.3282 0.144 2,571 $0.0013 $0.3284 0.196 2,566
1 $0.0066** $0.0857 4.011 2,705 $0.0067** $0.0856 4.044 2,700

2 28-57

Expiration $-0.2608** $1.0656 -11.347 2,150 $-0.2586** $1.0646 -11.228 2,136
10 $0.0169 $0.5265 1.457 2,059 $0.0199 $0.5254 1.710 2,045
5 $0.0194** $0.2401 3.708 2,109 $0.0210** $0.2389 4.018 2,095
1 $0.0048** $0.0734 3.032 2,143 $0.0051** $0.0712 3.312 2,129

3 47-78

Expiration $-0.2893** $0.8784 -10.948 1,105 $-0.2893** $0.8784 -10.948 1,105
10 $-0.0032 $0.2812 -0.379 1,091 $-0.0032 $0.2812 -0.379 1,091
5 $0.0060 $0.1500 1.329 1,098 $0.0060 $0.1500 1.329 1,098
1 $0.0017 $0.0502 1.154 1,103 $0.0017 $0.0502 1.154 1,103

4 67-99

Expiration $-0.2708** $1.2982 -6.516 976 $-0.2502** $1.2864 -6.049 967
10 $-0.0244** $0.1514 -5.036 974 $-0.0230** $0.1508 -4.731 965
5 $-0.0077* $0.1015 -2.370 976 $-0.0064* $0.1002 -1.990 967
1 $-0.0002 $0.0456 -0.135 976 $-0.0001 $0.0447 -0.081 967 1

The data sets contain daily observations of options from Januaiy 28,1983 through April 30,1998. The delta neutral positions are formed by buying 
the call (put) with the lowest implied volatility and simultaneously selling the call (put) with the highest implied volatility among the 16 calls (16 puts) 
with different strike prices but the same expiration date on a given day. The number of contracts sold is adjusted to make the position delta neutral. A 
position is held only when the difference between the high and the low implied volatilities is greater than 3% and less than 50%. The net investment 
for positions involving the two calls is standardized to negative $ I, i.e., an initial cash inflow of $ 1. However the net investment for positions 
involving the two puts is standardized to positive $1, i.e., an initial cash outflow of 81. The profits (losses) do not account for transaction costs.

significantly different from zero at the 0.05 level. ' significantly different from zero at the 0.01 level.



Table 4.2 (continued)

Panel B: for Puts with a Net Investment of $1

Group
Trading 
Days to 

Expiration

Holding
Period

Including the 1987 Crash Excluding the 1987 Crash

Mean Std Dev T: Mean=0 Obs Mean Std Dev T: Mean=0 Obs

1 10-36

Expiration $0.7669** $4.1461 9.652 2,723 $0.8847** $2.6707 17.229 2,705
10 $0.5624** $1.0916 22.492 1,906 $0.5582** $1.0874 22.364 1,898
5 $0.2398** $1.9096 6.384 2,584 $0.2378** $1.9139 6.295 2,568
1 $0.0355** $0.5176 3.568 2,711 $0.0343** $0.5172 3.443 2,695

2 28-57

Expiration $0.8059** $3.1514 11.951 2,184 $0.7838** $3.1336 11.657 2,172
10 $0.3343** $0.7042 22.117 2,171 $0.3260** $0.6883 22.005 2,159
5 $0.1252** $0.6275 9.299 2,172 $0.1212** $0.6220 9.059 2,160
1 $0.0224** $0.2676 3.903 2,181 $0.0219** $0.2595 3.926 2,169

3 47-78

Expiration $0.4855** $2.7121 6.036 1,137 $0.4855** $2.7121 6.036 1,137
10 $0.1665** $0.4557 12.321 1,137 $0.1665** $0.4557 12.321 1,137
5 $0.0598** $0.4129 4.879 1,134 $0.0598** $0.4129 4.879 1,134
1 $0.0135** $0.1375 3.321 1,136 $0.0135** $0.1375 3.321 1,136

4 67-99

Expiration $0.5920** $2.0468 8.729 911 $0.5941** $2.0483 8.745 909
10 $0.1510** $0.4123 11.007 903 $0.1497** $0.4118 10.911 901
5 $0.0692** $0.3026 6.885 907 $0.0682** $0.3020 6.797 905
I $0.0184** $0.1800 3.082 910 $0.0182** $0.1798 3.045 908

The data sets tx>ntain daily observations of options from January 28,1983 through April 30,1998. The delta neutral positions are formed by buying 
the call (put) with the lowest implied volatility and simultaneously selling the call (put) with the highest implied volatility among the 16 calk (16 puts) 
with different strike prices but the same expiration date on a given day. The number of contracts sold is adjusted to make the position delta neutral. A 
position is held only when the difference between the high and the low implied volatilities is greater than 3% and less than 50%. The net investment 
for positions involving the two calls is standardized to negative $ 1, i.e., an initial cash inflow of $ 1. However the net investment for positions 
involving the two puts is standardized to positive $ 1, i.e., an initial cash outflow of $ 1. The profits (losses) do not account for transaction costs. |

significantly difierent from zero at the 0.05 level. ' significantly difierent from zero at the 0.01 level.
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Table 4.3
Abnormal Profits (Losses) to a Delta Neutral Strategy of Buying Low Implied Volatility 

Options and Seiiing High Impiied Volatility Options with No Transaction Costs

Panel A: for Calls with a Net Investment of $1

Group
Trading 
Days to 

Expiration
Holding
Period

Including the 1987 Crash Excluding the 1987 Crash

Mean Std Dev T: Mean=0 Obs Mean Std Dev T: Mean=0 Obs

1 10-36

Expiration $-0.0187 $2.6867 -0.363 2,723 $-0.0168 $2.6888 -0.325 2,718
10 $0.2422** $2.8096 3.658 1,801 $0.2448** $2.8131 3.689 1,796
5 $0.1068** $1.1130 4.867 2,571 $0.1078** $1.1139 4.904 2,566
1 $0.0196** $0.3157 3.230 2,705 $0.0197** $0.3159 3.243 2,700

2 28-57

Expiration $-0.1142** $2.0426 -2.593 2,150 $-0.1062* $2.0455 -2.398 2,136
10 $0.1428** $1.2640 5.126 2,059 $0.1487** $1.2661 5.312 2,045
5 $0.0803** $0.6645 5.552 2,109 $0.0832** $0.6656 5.724 2,095
1 $0.0152** $0.2196 3.202 2,143 $0.0154** $0.2191 3.252 2,129

3 47-78

Expiration $-0.0814 $1.8102 -1.494 1,105 $-0.0814 $1.8102 -1.494 1,105
10 $0.0230 $0.7465 1.020 1,091 $0.0230 $0.7465 1.020 1,091
5 $0.0210 $0.4485 1.554 1,098 $0.0210 $0.4485 1.554 1,098
1 $0.0069 $0.1564 1.473 1,103 $0.0069 $0.1564 1.473 1,103

4 67-99

Expiration $0.1386 $2.7424 1.579 976 $0.1664 $2.7399 1.888 967
10 $0.0266 $0.4558 1.820 974 $0.0327* $0.4533 2.242 965
5 $0.0297** $0.3208 2.894 976 $0.0339** $0.3192 3.300 967
1 $0.0069 $0.1249 1.728 976 $0.0077 $0.1245 1.935 967

The data sets contain daily observations of the options from January 2 
options on a given day and Group 2 contains the second nearest to-ma 
the profits from investing -$1 (SI) in a delta neutral call (put) position 
of the available calls (puts) with the same expiration date on the same

S, 1983 through April 30,1998. Group 1 contains the nearest-to-maturity 
turity options, etc. The abnormal profits are defined as the difference between 
as reported in Table 4.2 and the average profits from investing -SI (SI) in each 
day. The profits (losses) do not account for transaction costs.

significantly difierent from zero at the 0.05 level. ** significantly difierent from zero at the 0.01 level.
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Table 4.3 (continued)
Abnormal Profits (Losses) to a Delta Neutral Strategy of Buying Low Implied Volatility 

Options and Selling High Implied Volatility Options with No Transaction Costs

Panel B: for Puts with a Net Investment of $1

Group
Trading 
Days to 

Expiration
Holding
Period

Including the 1987 Crash Excluding the 1987 Crash
Mean Std Dev T: Mean-0 Obs Mean Std Dev T: Mean-0 Obs

1 10-36

Expiration $1.3502** $4.8306 14.585 2,723 $1.5136** $2.5853 30.450 2,705
10 $0.8129** $1.2659 28.034 1,906 $0.8089** $1.2643 27.873 1,898
5 $0.3479** $2.8301 6.249 2,584 $0.3492** $2.8345 6.244 2,568
I $0.0620** $0.7032 4.589 2,711 $0.0605** $0.7042 4.461 2,695

2 28-57

Expiration $1.5428** $3.1301 23.035 2,184 $1.5214** $3.1140 22.770 2,172
10 $0.5222** $0.8288 29.359 2,171 $0.5137** $0.8167 29.225 2,159
5 $0.2039** $0.8929 10.644 2,172 $0.1998** $0.8906 10.427 2,160
1 $0.0370** $0.4048 4.272 2,181 $0.0365** $0.3980 4.273 2,169

3 47-78

Expiration $1.1854** $2.9079 13.746 1,137 $1.1854** $2.9079 13.746 1,137
10 $0.2436** $0.6573 12.495 1,137 $0.2436** $0.6573 12.495 1,137
5 $0.0924** $0.6419 4.847 1,134 $0.0924** $0.6419 4,847 1,134
1 $0.0223** $0.2247 3.348 1,136 $0.0223** $0.2247 3.348 1,136

4 67-99

Expiration $1.3789** $1.9372 21.484 911 $1.3807** $1.9388 21.471 909
10 $0.2601** $0.5144 15.195 903 $0.2594** $0.5147 15.126 901
5 $0.1252** $0.3989 9.455 907 $0.1244** $0.3987 9.382 905
1 $0.0299** $0.2259 3.989 910 $0.0297** $0.2256 3.967 908

The data sets contain daily observations of the options from January 28,1983 through April 30,1998. Group 1 contains the nearest-to-maturity 
options on a given day and Group 2 contains the second nearest-to-maturity options, etc. The abnormal profits are defined as the difference between 
the profits from investing -$1 ($1) in a delta neutral call (put) position as reported in Table 4.2 and the average profits fiom investing -$1 ($1) in each 

1 of the available calls (puts) with the same expiration date on the same day. The profits (losses) do not account for transaction costs.



Table 4.4
Profits (Losses) to a Delta Neutral Strategy Based on Implied Volatility Differences 

with Transaction Costs for the Sample Including the 1987 Crash

Group
Trading 
Days to 

Expiration

Holding
Period

(trading
days)

Call Positions with a Net Investment of-$l

Mean Std Dev T: Mean=0 Obs

Put Positions with a Net Investment of $1

Mean Std Dev T: Mean=0 Obs

Expiration $1.3830 -4.241 2,716 $0.6873** $3.8811 9.243 2,724

10-36
10 $-0.0137 $1.1342 -0.513 1,798 $0.5110** $1.0281 21.705 1,907

$-0.0124 $0.3363 -1.862 2,564 $0.1981 $1.8217 5.530 2,585
1 $-0.0075** $0.0866 -4.504 2,698 $0.0035 $0.4419 0.413 2,712

g

Expiration $-0.2792** $1.0792 -11.989 2,148 $0.7296** $2.8647 11.903 2,184

28-57
10 $0.0037 $0.5373 0.315 2,057 $0.2908** $0.6563 20.644 2,171

$0.0061 $0.2441 1.145 2,108 $0.0916** $0.5881 7.260 2,172
1 $-0.0094** $0.0759 -5.755 2,141 $-0.0072 $0.2518 -1.337 2,181

Expiration $-0.3003** $0.8851 -11.279 1,105 $0.4452** $2.5494 5.891 1,138

47-78 10 $-0.0119 $0.2842 -1.383 1,091 $0.1490** $0.4932 10.189 1,138
$-0.0025 $0.1514 -0.545 1,098 $0.0447** $0.4464 3.370 1,135

1 $-0.0069** $0.0508 -4.478 1,103 $0.0010 $0.2817 0.124 1,137
Expiration $-0.2777** $1.3065 -6.641 976 $0.5670** $1.9881 8.608 911

67-99
10 $-0.0301 $0.1524 -6.162 974 $0.1333** $0.3858 10.382 903

$-0.0133** $0.1021 -4.056 976 $0.0533** $0.2840 5.656 907
1 $-0.0057** $0.0460 -3.875 976 $0.0036 $0.1609 0.670 910

The data set contains daily observations of the options from January 28,1983 through April 30,1998. The delta neutral positions are formed by 
buying the call (put) with the lowest implied volatility and simultaneously selling the call (put) with the highest implied volatility among the 16 calls 
(16 puts) with different strike prices but the same time to expiration on a given day. The number of contracts sold is adjusted to make the position 
delta neutral. A delta neutral position is held only when the difference between the high and the low implied volatilities is greater than 3% and less 
than 50%. The net investment for the delta neutral positions involving the two calls is standardized to negative $I (a $ leash Inflow). However, the net 
investment for the delta neutral positions involving the two puts is standardized to positive $1 (a SI cash outflow). Transaction costs are assumed to be
$10 per contract as suggested by Whaley (1986) and the total costs for each position are restricted to between $50 and $100.____________________

* significantly different from zero at the 0.05 level. ** significantly different from zero at the 0.01 level.



Table 5.1
Sammary Statistics of Implied Volatility by Strike Price

Volatility Symbol
Including the 1987 Crash Exclnding the 1987 Crash

Mean Std Mean
K/F-1 Obs Mean Std Mean

K/F-1 Obs

calls

ISDCI8 02114 0.0574 -0.0843 3,891 02086 0.0495 -0.0830 3,795
ISDCI7 02039 0.0577 -0.0751 4,449 02007 0.0477 -0.0742 4,343
ISDCI6 0.1962 0.0549 -0.0659 5,107 0.1934 0.0461 -0.0652 4,993

in-the-
money

ISDCI5 0.1903 0.0552 -0.0567 5,860 0.1873 0.0455 -0.0562 5,739
ISDC4 0.1817 0.0521 -0.0460 6,828 0.1790 0.0448 -0.0457 6,686
ISDCB 0.1726 0.0508 -0.0345 7,849 0.1700 0.0437 -0.0343 7,686
ISDCI2 0.1653 0.0511 -0.0213 8,643 0.1625 0.0432 - 0.0212 8,455
ISDCIl 0.1592 0.0508 -0.0073 9,124 0.1562 0.0427 -0.0073 8,918
ISDCOl 0.1543 0.0494 0.0069 9297 0.1514 0.0421 0.0068 9,081
ISDC02 0.1505 0.0490 0.0210 9,251 0.1474 0.0415 0.0208 9,032

out-of-
the-

money

ISDC03 0.1477 0.0496 0.0342 9,001 0.1442 0.0413 0.0339 8,774
ISDC04 0.1455 0.0510 0.0456 8,453 0.1418 0.0414 0.0452 8232
ISDC05 0.1438 0.0512 0.0548 7,511 0.1398 0.0416 0.0541 7,310
ISDC06 0.1442 0.0540 0.0636 6,469 0.1393 0.0420 0.0625 6,268
ISDC07 0.1465 0.0567 0.0707 5,183 0.1407 0.0430 0.0689 5,002
ISDC08 0.1500 0.0604 0.0788 4,216 0.1431 0.0432 0.0763 4,052

puts

ISDP08 02129 0.0635 -0.0891 7,566 0.2091 0.0522 -0.0880 7,386
ISDP07 02066 0.0615 -0.0800 7,977 02033 0.0544 -0.0792 7,798

out-of-
the-

money

ISDP06 0.1993 0.0598 -0.0702 8,363 0.1958 0.0497 -0.0695 8,162
ISDP05 0.1906 0.0569 -0.0597 8,741 0.1873 0.0475 -0.0592 8,538
ISDP04 0.1825 0.0557 -0.0477 9,021 0.1791 0.0460 -0.0474 8,812
ISDP03 0.1737 0.0532 -0.0353 9,222 0.1706 0.0450 -0.0350 9,014
ISDP02 0.1663 0.0524 -0.0215 9,288 0.1632 0.0442 -0.0214 9,089
ISDPOl 0.1599 0.0516 -0.0074 9,179 0.1567 0.0430 -0.0074 8,987
ISDPIl 0.1548 0.0504 0.0067 8,561 0.1518 0.0422 0.0067 8,388
ISDPI2 0.1510 0.0501 0.0204 7,591 0.1480 0.0420 0.0203 7,439
ISDPI3 0.1505 0.0520 0.0325 6,064 0.1472 0.0425 0.0322 5,942

in-the-
money

ISDPI4 0.1523 0.0533 0.0431 4,633 0.1486 0.0432 0.0427 4,528
ISDPI5 0.1533 0.0558 0.0516 3,465 0.1486 0.0427 0.0507 3,379
ISDPI6 0.1565 0.0585 0.0623 2,699 0.1504 0.0427 0.0609 2,619
ISDPI7 0.1641 0.0648 0.0721 2,063 0.1557 0.0457 0.0697 1,978
ISDPI8 0.1720 0.0717 0.0818 1,661 0.1610 0.0466 0.0780 1,577

Average ISD4 0.1588 0.0525 9,764 0.1550 0.0427 9,505
Historical HIS40 0.1485 0.1107 9,988 0.1373 0.0527 9,699
Realized RLZSD 0.1444 0.0961 9,988 0.1330 0.0473 9,699

The notes are on the next page.
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Table 5.1 (continned)
Summary Statistics of Impiied Volatfli^ by Strike Price

Notes:
The data set contains daily observations o f options on S&P 500 futures with one of the four 

nearest to expiration dates (10-99 trading days to e^qnration) from January 28,1983 through April 30, 
1998. On a given day and for a given expnation date, I anafyze iq> to eight in-the-money calls ̂ mts) 
and up to eight out-of-the money calls (puts).

In the symbol for an implied volatility estimator calculated from a single option, the first finee 
letters (ISD) represent Inq)lied Standard Deviation. The fourth letter (C or P) stands for a Call or a 
Put. The fifth letter (I or O) refers to In-the-money or Out-of-die-money. The last digit indicates the 
relative position of an option from the money where 1 indicates tfiat the option is the nearest from- 
the-money and 2 indicates that the option is the second nearest from-the-money etc. For example, 
ISDCI2 stands for the implied volatility calculated from die second from-the-money, in-the-money 
call. See Figures 2.2,4.1a, and 4.1b for die graphical illustration of the various inqilied volatility 
estimators.

ISD4 is the average of the four inqilied volatilities: ISDCIl, ISDCOl, ISDPIl, and ISDPOl. 
RLZSD stands for die realized volatility over the remaining life of an option on S&P 500 

futures.
HIS40 represents the historical volatility measured over the last 40 trading days.
The sixth and the tenth columns report the mean of an option's moneyness which defined as 

(K/F-1),
where K — strike price.
 F -  underlying futures price.______________________________________
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Table 5.2
Forecasting EfBciency of Différent Implied Volatility Elstlmators 

Based on RMSE, MAE and MAFE

Symbol RMSE RMSE*s
Rank MAE 1 MAE*: 

1 Rank MAPE MAPE*s
Rank Obs

Panel A: Inclntling the 1987 Crash
ISDCI8 0.1194 33 0.0875 33 0.7183 33 3,891
ISDCI7 0.1129 32 0.0804 31 0.6527 31 4,449
ISDQô 0.1039 29 0.0731 29 0.5971 29 5,107
ISDCI5 0.0969 27 0.0669 27 0.5342 27 5,860
ISDCI4 0.0915 21 0.0605 25 0.4820 25 6,828
ISD 03 0.0856 14 0.0531 23 0.4163 23 7,849
ISDCI2 0.0828 9 0.0472 20 03601 21 8,643
ISDCIl 0.0819 7 0.0433 18 0.3197 19 9,124
ISDCOl 0.0841 12 0.0409 14 03893 14 9397
ISDC02 0.0859 16 0.0393 11 03681 9 9351
ISDC03 0.0861 17 0.0381 5 03541 6 9,001
ISDC04 0.0876 18 0.0379 4 03472 5 8,453
ISDC05 0.0893 20 0.0376 1 03448 4 7,511
ISDC06 0.0925 22 0.0377 3 03412 3 6,469
ISDC07 0.0945 24 0.0383 6 03384 2 5,183
ISDC08 0.0957 25 0.0392 10 03362 1 4316
ISDP08 0.1127 31 0.0880 34 0.7463 34 7,566
ISDP07 0.1082 30 0.0823 32 0.6875 32 7,977
ISDP06 0.1021 28 0.0752 30 0.6205 30 8,363
ISDP05 0.0965 26 0.0677 28 0.5505 28 8,741
ISDP04 0.0927 23 0.0608 26 0.4825 26 9,021
ISDP03 0.0888 19 0.0538 24 0.4178 24 9322
ISDP02 0.0838 11 0.0478 21 0.3660 22 9388
ISDPOl 0.0833 10 0.0438 19 0.3238 20 9.179
ISDPIl 0.0783 3 0.0399 13 03927 15 8,561
ISDPI2 0.0791 4 0.0386 8 03756 12 7,591
ISDPI3 0.0793 5 0.0383 7 03703 11 6,064
ISDPI4 0.0827 8 0.0395 12 03677 8 4,633
ISDPI5 0.0776 2 0.0377 2 03584 7 3,465
ISDPI6 0.0807 6 0.0388 9 03682 10 2,699
ISDPI7 0.0856 15 0.0427 16 03883 13 2,063
ISDPI8 0.0757 1 0.0422 15 03975 17 1,661
ISD4 0.0854 13 0.0428 17 03050 18 9,764
HIS40 0.1197 34 0.0509 22 03948 16 9,988
Notes: The data set contains daily observations of options on £S&P SCO futures with 10-99 trading
days to expiration from Januaiy 28, 1983 through April 30,1998. For the meaning of die
symbols, please refer to the notes in Table 5.1. RMSE, MAE and MAPE are calculated by 
utilizing Equations 5.1,52 and 53 respectively.
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T able5JS(
Forecasting EfBciency o f DifTere 

Based on RMSE,

continne^
nt Implied Volatility Estimators 
MAE and MAPE

Symbol RMSE RMSE’s
Rank MAE MAE’S

Rank MAPE MATE’S
Rank Obs

Panel B: Exclnding the 1987 Crash
ISDCI8 0.0937 33 0.0793 33 0.7196 33 3,795
ISDCI7 0.0855 31 0.0721 31 0.6522 31 4343
ISDCI6 0.0779 29 0.0659 29 0.5964 29 4,993
ISDCI5 0.0720 27 0.0603 27 0.5322 27 5,739
ISDCI4 0.0655 26 0.0544 25 0.4806 25 6,686
ISDCI3 0.0579 23 0.0472 23 0.4140 23 7,686
ISDCI2 0.0519 21 0.0412 21 03573 21 8,455
ISDCIl 0.0477 17 0.0369 18 03162 19 8.918
ISDCOl 0.0447 13 0.0338 13 03847 14 9,081
ISDC02 0.0425 9 0.0316 7 03626 8 9,032
ISDC03 0.0409 6 0.0302 6 03483 6 8,774
ISDC04 0.0405 5 0.0297 5 03412 5 8332
ISDC05 0.0395 3 0.0291 4 03388 4 7,310
ISDC06 0.0379 1 0.0283 1 03347 3 6368
ISDC07 0.0383 2 0.0284 2 03319 2 5,002
ISDC08 0.0396 4 0.0291 3 03295 1 4,052
ISDP08 0.0944 34 0.0825 34 0.7509 34 7,386
ISDP07 0.0882 32 0.0767 32 0.6907 32 7,798
ISDP06 0.0810 30 0.0697 30 0.6230 30 8,162
ISDP05 0.0728 28 0.0620 28 03514 28 8338
ISDP04 0.0652 25 0.0547 26 0.4821 26 8,812
ISDP03 0.0582 24 0.0476 24 0.4161 24 9,014
ISDP02 0.0528 22 0.0419 22 0.3635 22 9,089
ISDPOl 0.0483 18 0.0374 20 0.3204 20 8.987
ISDPIl 0.0448 14 0.0341 14 03891 16 8,388
ISDPI2 0.0432 12 0.0326 11 03717 13 7,439
ISDPI3 0.0428 10 0.0323 9 03665 11 5,942
ISDPI4 0.0430 11 0.0327 12 03633 9 4,528
ISDPI5 0.0413 7 0.0317 8 03547 7 3,379
ISDPI6 0.0423 8 0.0324 10 03650 10 2,619
ISDPI7 0.0468 16 0.0356 16 03866 15 1,978
ISDPI8 0.0499 19 0.0373 19 03993 17 1.577
ISD4 0.0464 15 0.0357 17 0.3011 18 9,505
fflS40 0.0502 20 0.0355 15 03666 12 9,699
Notes: The data set contains daily observations ol 
days to expiration 6om January 28,1983 through 
symbols, please refer to the notes in Table S.l. R 
utilizing Equations 5.1.5.2 and 5.3 respectively.

options on S&P 500 futures with 10-99 trading 
April 30,1998. For die meaning of die 

MSE, MAE and MAPE ate calculated by
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Table 5 3
Forecasting EfBciency of the Avenge Implied Volatility and its Four Components 

when they are all Observed Based on RMSE, MAE and MAPE

Symbol RMSE MAE MAPE Mean
K/F-1 Obs Note

Panel A: Including the 1987 Crash

ISDCIl 0.0778 0.0428 0.3265 -0.0075 8,038 In-the-money call
ISDPOl 0.0778 0.0428 03265 -0.0075 8,038 Out-of-the-money put
ISD4 0.0767 0.0410 0.3088 -0.0003 8,038 The average o f the four
ISDCOl 0.0757 0.0393 03923 0.0069 8,038 Out-of-the-money call
ISDPIl 0.0757 0.0394 03927 0.0069 8,038 in-the-money put

Panel B; Excluding the 1987 Crash

ISDCIl 0.0479 0.0372 0.3230 -0.0075 7,900 ha-the-money call
ISDPOl 0.0479 0.0372 0.3230 -0.0075 7,900 Out-of-the-money put
ISD4 0.0461 0.0354 0.3052 -0.0003 7,900 The average of the four
ISDCOl 0.0444 0.0338 03885 0.0068 7,900 Out-of-the-money call
ISDPIl 0.0445 0.0338 03888 0.0068 7,900 In-the-money put
Notes: RMSE, MAE and MAPE are calculated by utilizing Equations S.l, 5.2 and 53 respectively 
when all the four nearest-fromrthe-money options widi the same expiration date are observed on each 
day. The data set contains daily observations of options on S&P 500 futures with 10-99 trading days 
to expiration from January 28, 1983 through April 30, 1998. For the meaning of the symbols, please 

1 refer to the notes in Table 5.1.
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Table 5.4
Decomposition of Mean Squared Elrror (MSE)

Into Variance and Squared Bias of Forecasting Error

Estimator MSE
Rank

by
MSE

Varof
(o*Lz-Onm)

Rank
by

Var

Bias Rank
by

Bias
Ohs

Panel A: Including the 1987 Crash
ISDCI8 0.014250 33 0.009925 33 0.004325 32 3,891
ISDCI7 0.012748 32 0.009242 32 0.003506 31 4,449
ISDCI6 0.010791 29 0.008006 28 0.002785 29 5,107
ISDCI5 0.009385 27 0.007172 20 0.002213 27 5,860
ISDCI4 0.008378 21 0.006737 12 0.001641 25 6,828
ISDCI3 0.007324 14 0.006272 7 0.001052 23 7,849
ISDCI2 0.006853 9 0.006233 6 0.000619 21 8,643

calls ISDCIl 0.0067Ô9 7 0.006363 9 0.000347 19 9,124
ISDCOl 0.007068 12 0.006901 17 0.000167 15 9,297
ISDC02 0.007376 16 0.007298 22 0.000078 10 9,251
ISDC03 0.007419 17 0.007385 24 0.000034 7 9,001
ISDC04 0.0076TT 18 0.007668 26 0.000009 5 8,453
ISDC05 0.007971 20 0.007969 27 0.000003 4 7,511
ISDC06 0.008562 22 0.008562 29 0.000000 2 6,469
ISDC07 0.008933 24 0.008933 30 0.000000 1 5,183
ISDC08 0.009158 25 0.009157 31 0.000001 3 4,216
ISDP08 0.012709 31 0.007415 25 0.005295 34 7,566
ISDP07 0.011705 30 0.007330 23 0.004375 33 7,977
ISDP06 0.010422 28 0.007005 18 0.003417 30 8,363
ISDP05 0.009309 26 0.006815 15 0.002494 28 8,741
ISDP04 0.008591 23 0.006874 16 0.001717 26 9,021
ISDP03 0.007888 19 0.006807 14 0.001082 24 9,222
ISDP02 0.007018 11 0.006337 8 0.000681 22 9,288
ISDPOl 0.006934 10 0.006564 11 0.000370 20 9,179
ISDPIl 0.006125 3 0.005900 2 0.000225 16 8,561
ISDPI2 0.006250 4 0.006128 4 0.000122 13 7,591
ISDPI3 0.006289 5 0.006192 5 0.000097 11 6,064
ISDPI4 0.006831 8 0.006761 13 0.000070 9 4,633
ISDPI5 0.006022 2 0.005955 3 0.000067 8 3,465
ISDPI6 0.006520 6 0.006422 10 0.000098 12 2,699
ISDPI7 0.007330 15 0.007208 21 0.000122 14 2,063
ISDPI8 0.005723 1 0.005447 1 0.000276 18 1,661

Average ISD4 0.007287 13 0.007033 19 0.000254 17 9,764 1
Historical mS40 0.014319 34 0.014302 34 0.000017 6 9,988 I
The notes are on the next page. 1
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Table 5.4 (continned)
Estimator 1 MSE 1 Rank 1 Var 1 Rank 1 Bias Rank 1 Obs

Panel B: Excluding the 1987 Crash
ISDCI8 0.008773 35 0.003320 36 0.005454 33 3,795
ISDCI7 0.007308 33 0.002867 34 0.004441 31 4343
ISDCI6 0.006065 31 0.002543 32 0.003522 29 4393
ISDCI5 0.005179 29 0.002421 29 0.002758 27 5,739
ISDCI4 0.004289 28 0.002142 26 0.002147 25 6,686
ISDCI3 0.003349 25 0.001901 23 0.001448 23 7,686
ISDCI2 0.002696 23 0.001760 20 0.000936 21 8,455

calls ISDCIl 0.002275 17 0.001672 18 0.000603 19 8,918
ISDCOl 0.001996 13 0.001606 13 0.000389 16 9,081
ISDC02 0.001802 9 0.001546 7 0.000257 13 9,032
ISDC03 0.001675 6 0.001499 4 0.000176 8 8,774
ISDC04 0.001638 5 0.001525 6 0.000114 6 8332
ISDC05 0.001561 3 0.001469 3 0.000091 5 7,310
ISDC06 0.001434 1 0.001351 1 0.000083 4 6368
ISDC07 0.001467 2 0.001389 2 0.000078 3 5,002
ISDC08 0.001572 4 0.001519 5 0.000053 2 4,052
ISDP08 0.008919 36 0.002870 35 0.006048 34 7,386
ISDF07 0.007784 34 0.002687 33 0.005098 32 7,798
ISDP06 0.006554 32 0.002492 30 0.004062 30 8,162
ISDP05 0.005302 30 0.002242 28 0.003060 28 8,538
ISDP04 0.004256 27 0.002036 25 0.002219 26 8,812
ISDP03 0.003385 26 0.001880 22 0.001505 24 9,014
ISDP02 0.002791 24 0.001793 21 0.000997 22 9,089

puts ISDPOl 0.002329 19 0.001698 19 0.000631 20 8,987
ISDPIl 0.002009 14 0.001596 10 0.000413 17 8,388
ISDPI2 0.001870 12 0.001598 11 0.000272 14 7,439
ISDPI3 0.001832 10 0.001606 12 0.000226 11 5,942
ISDPI4 0.001853 11 0.001650 17 0.000203 9 4,528
ISDPI5 0.001709 7 0.001546 8 0.000163 7 3,379
ISDPI6 0.001788 8 0.001582 9 0.000206 10 2,619
ISDPI7 0.002189 16 0.001940 24 0.000249 12 1,978
ISDPI8 0.002491 21 0.002170 27 0.000321 15 1,577

Average ISD4 0.002155 15 0.001647 16 0.000508 18 9,505
Historical HIS40 1 0.002518 22 0.002499 31 0.000019 1 9,699
Notes; The data set contains daily observations of options on S&P 5001 
expiration from January 28,1983 through April 30,1998. For the meai 
to the notes in Table 5.1. MSE is die mean squared error which is the s< 
the same ranking as RMSE. As shown in Equation 5.4, MSE can be dec 
variance of the forecasting error and (2) die squared bias of the average 
the variance of the forecasting error and Bias denotes the squared avera

iitures with 10-99 trading days to 
ling of the symbols, please refer 
pare of RMSE and gives exacdy 
%mqx)sed into two parts: (1) the 
forecasting error. Var denotes 
ge forecasting error.
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T ables^
Predictive Power of Different Implied Volatility Estimators 

Based on a Single Variable Regression ( RLZSD, = Po + P, +

Estimator Reg’s
RMSE

Rank by 
RMSE P. 1 & Adj. R* Obs

Panel A: Including the 1987 Crash
ISDCI8 0.0925 32 0.0706** 0.3551**tt 0.0461 3,891
ISDCn 0.0903 29 0.0578** 0.4261**tt 0.0689 4,449
ISDCI6 0.0851 24 0.0463** 0.4951**tt 0.0923 5,107
ISDCI5 0.0805 17 0.0438** 0.5227**tt 0.1138 5,860
ISDCI4 0.0795 13 0.0302* 0.6108**tt 0.1380 6,828
ISDCI3 0.0775 4 0.0238* 0.6743**tt 0.1635 7,849
ISDCI2 0.0777 5 0.0215* 0.7197**tt 0.1832 8,643

calls ISDCIl 0.0789 9 0.0183 0.7680**tt 0.1962 9,124
ISDCOl 0.0827 21 0.0135 0.8290** 0.1971 9297
ISDC02 0.0851 25 0.0128 0.8560** 0.1955 9251
ISDC03 0.0858 26 0.0103 0.8907** 0.2097 9,001
ISDC04 0.0874 27 0.0107 0.9057** 0.2182 8,453
ISDC05 0.0892 28 0.0074 0.9372** 0.2242 7,511
ISDC06 0.0925 31 0.0075 0.9441** 0.2327 6,469
ISDC07 0.0945 33 0.0090 0.9383** 0.2407 5,183
ISDC08 0.0956 34 0.0147 0.9092** 0.2482 4,216
ISDP08 0.0793 12 0.0398** 0.4713**tt 0.1244 7,566
ISDP07 0.0799 15 0.0374** 0.4986**tt 0.1286 7,977
ISDP06 0.0789 10 0.0344** 0.5339**tt 0.1407 8,363
ISDP05 0.0791 11 0.0295** 0.5833**tt 0.1495 8,741
ISDP04 0.0805 18 0.0234* 0.6445**tt 0.1659 9,021
1SDP03 0.0808 19 0.0215* 0.6869**tt 0.1696 9222
ISDP02 0.0782 8 0.0210* 0.7169**tt 0.1874 9288

puts ISDPOl 0.0801 16 0.0176* 0.7695**tt 0.1970 9,179
ISDPIl 0.0761 2 0.0166 0.7960**tt 02174 8,561
ISDPI2 0.0778 6 0.0167 0.8164**t 02165 7,591
ISDPI3 0.0782 7 0.0155 0.8316** 02339 6,064
ISDPI4 0.0817 20 0.0176 0.8300** 02265 4,633
ISDPI5 0.0767 3 0.0161* 0.8418**t 0.2725 3,465
ISDPI6 0.0797 14 0.0135 0.8507**t 02807 2,699
ISDPI7 0.0840 23 0.0201* 0.8102**tt 02802 2,063
ISDPI8 0.0716 1 0.0269** 0.7472**tt 0.3589 1,661

Average ISD4 0.0832 22 0.0165 0.7958**tt 02014 9,764
Historical mS40 0.0905 30 0.1008** 0.2936**tt 0.1143 9,988
The notes are on the next page.

significantly difTerent from zero at the 0.05 level,
t  significantly different from one at the 0.05 level.

' significantly different from
t t  significantly different from

zero at the 0.01 level,
one at the 0.01 level.
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Table SJS (condnuwQ
Estimator Reg’s

RMSE
Rank by 
RMSE 1 "■

Adj. R: Obs
Panel B: Excluding the 1987 Crash

i s o a s 0.0471 34 0.0660** 03297**# 0.1067 3,795
ISDCI7 0.0449 33 0.0562** 0.3880**# 0.1452 4,343
ISDCI6 0.0439 30 0.0446** 0.4626**# 0.1902 4,993
ISDCI5 0.0434 28 0.0429** 0.4903**# 03084 5,739
ISDCI4 0.0412 24 0.0377** 03307**# 03493 6,686
ISDCI3 0.0399 21 0.0306* 0.5963**# 03994 7,686
ISDCI2 0.0387 19 0.0300** 0.6268**# 03286 8,455

calls ISDCIl 0.0381 13 0.0297** 0.6528**# 0.3480 8,918
ISDCOl 0.0377 9 0.0297** 0.6737**# 0.3619 9,081
ISDC02 0.0372 5 0.0293** 0.6921**# 03733 9,032
ISDC03 0.0368 4 0.0283** 0.7116**# 03892 8,774
ISDC04 0.0373 6 0.0285** 0.7238**# 0.3917 8332
ISDC05 0.0367 3 0.0273** 0.7366**tt 0.4100 7,310
1SDC06 0.0352 1 0.0259* 0.7485**# 0.4436 6368
1SDC07 0.0357 2 0.0262* 0.7513**# 0.4501 5,002
ISDC08 0.0375 7 0.0280 0.7538**t 0.4300 4,052
1SDF08 0.0443 32 0.0431** 0.4218**# 0.1981 7,386
ISDP07 0.0436 29 0.0393** 0.4555**tt 03239 7,798
1SDP06 0.0427 27 0.0385** 0.4782**tt 03367 8,162
ISDP05 0.0415 25 0.0343* 0.5214**# 03619 8,538
1SDP04 0.0404 22 0.0315* 0.5614**# 03900 8,812
ISDP03 0.0392 20 0.0312** 0.5896**# 03138 9,014
1SDP02 0.0386 17 0.0325** 0.6074**# 0.3260 9,089

puts ISDPOl 0.0383 15 0.0305** 0.6449**# 0.3446 8,987
ISDPIl 0.0375 8 0.0290** 0.6749**tt 0.3651 8,388
1SDP12 0.0379 10 0.0288** 0.6940**# 03722 7,439
ISDP13 0.0382 14 0.0269* 0.7152**# 0.3880 5,942
ISDP14 0.0384 16 0.0311** 0.6944**tt 0.3788 4,528
1SDP15 0.0380 12 0.0224 0.7636**tt 0.4238 3,379
1SDP16 0.0387 18 0.0185 0.7818**t 0.4270 2,619
1SDP17 0.0422 26 0.0273 0.7233**t 03793 1,978
1SDP18 0.0441 31 0.0346* 0.6737**# 0.3359 1,577

Average 1SD4 0.0379 11 0.0298** 0.6624**tt 0.3567 9,505
Historical H1S40 0.0409 23 0.0707** 0.4534**tt 0.2550 9,699
Notes: The realized volatility (RLZSDJ over the remaining life of an option on S&P 500 futures is 
regressed on a volatility estimator (o^) which is either one of the 32 individual inq)lied volatilities, or 
the average inq>lied volatility, or the historical volatility (HIS40) measured over the last 40 trading days. 
For the meaning of the symbols, please refer to the notes in Table 5.1. The significance of the 
coefficients is based on the t  statistics fiom the Hansen (1982) procedure which corrects for the 
heteroskedasticity and serial correlation caused by the overlaps in realized volatility.
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Table 5.6
Predictive Power o f Different Implied Volatility Estimators 

Based on a Two Variable Regression 
( RLZSD| “  Pe ̂  Pî isiw.» ̂  PiBŒS40, )

Estbnator Reg’s
RMSE

Rank
by

RMSE 1 k Adj. R* Obs

*anel A: Incinding the 1987 Crash
ISDCI8 0.0912 30 0.0992*# 0.0664ft 0.2204** 0.0733 3,891
ISDCI7 0.0895 29 0.0818** 0.1779*tt 0.1831** 0.0856 4,449
ISDCI6 0.0846 24 0.0639** 03006**tt 0.1428** 0.1021 5,107
ISDCI5 0.0802 17 0.0566** 03732**tt 0.1078* 0.1196 5,860
1 8 0 0 4 0.0794 14 0.0384** 0.5062**tt 0.0750 0.1407 6,828
ISD 03 0.0775 4 0.0251* 0.6547**t 0.0142 0.1635 7,849
ISDCI2 0.0776 5 0.0200 0.7428** -0.0167 0.1833 8,643

calls ISDOl 0.0789 11 0.0140 0.8402** -0.0502 0.1972 9,124
ISDCOl 0.0825 21 0.0056 0.9640** -0.0907 02002 9297
ISDC02 0.0849 25 0.0024 1.0368** -0.1173 02008 9251
ISDC03 0.0854 26 -0.0014 1.0929** -0.1265 02162 9,001
ISDC04 0.0871 27 -0.0002 1.0993** -0.1196 02243 8,453
ISDC05 0.0887 28 -0.0056 1.1693** -0.1400 02325 7,511
ISDC06 0.0920 31 -0.0067 1.1913** -0.1426 02417 6,469
ISDC07 0-0939 32 -0.0054 1.1786** -0.1331 02495 5,183
ISDC08 0.0949 33 -0.0008 1.1599** -0.1349 02581 4216
ISDP08 0.0784 9 0.0609** 02538**tt 0.1755** 0.1453 7,566
ISDP07 0.0792 13 0.0556** 0.2974**tt 0.1634** 0.1436 7,977
ISDP06 0.0785 10 0.0491** 03638**tt 0.0138** 0.1509 8,363
ISDP05 0.0789 12 0.0404** 0.4517**tt 0.0988* 0.1545 8,741
ISDP04 0.0804 18 0.0300** 0.5606**tt 0.0604 0.1676 9,021
ISDP03 0.0808 19 0.0250* 0.6384**tt 0.0339 0.1701 9222
ISDP02 0.0782 8 0.0225 0.6946** 0.0152 0.1874 9288
ISDPOl 0.0801 16 0.0160 0.7952** -0.0175 0.1971 9,179
ISDPIl 0.0761 2 0.0130 0.8537** -0.0375 02180 8,561
ISDPI2 0.0777 6 0.0116 0.9034** -0.0564 0.2179 7,591
ISDPI3 0.0781 7 0.0098 0.9291** -0.0608 02358 6,064
ISDPI4 0.0817 20 0.0122 0.9205** -0.0550 0.2281 4,633
ISDPI5 0.0765 3 0.0074 0.9791** -0.0765 02766 3,465
ISDPI6 0.0795 15 0.0027 1.0039** -0.0778 02849 2,699
ISDPI7 0.0840 23 0.0140 0.8909** -0.0394 02813 2,063
ISDPI8 0.0715 1 0.0320** 0.6832**tt 0.0300 03599 1,661

Average ISD4 0.0831 22 0.0115 0.8719** -0.0483 02024 9,764
The notes are on the next page.

t  significantly different from one at the 0.05 level f t  significantly different from one at the 0.01 level.
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1 Table 5.6 (continaed)

Estimator Reg’s
RMSE

Rank
by

RMSE
P. Pi Pi Adj. R: Obs

1 Panel B: Excluding the 1987 Crash
ISDCI8 0.0445 33 0.0754** 0.0179# 0.4030** 02053 3,795

calls

ISDCI7 0.0430 31 0.0649** 0.1014# 0.3574** 02168 4343
ISDCI6 0.0423 28 0.0539** 0.1731# 0.3424** 02497 4393
ISDCI5 0.0423 27 0.0505** 0.2351*# 02937** 02503 5,739
ISDCI4 0.0404 23 0.0445** 02968**# 02572** 02800 6,686
ISDCD 0.0395 21 0.0348** 0.4361**# 0.1693* 0.3 il3 7,686
ISDCI2 0.0386 19 0.0321** 0.5288**# 0.1019 03328 8,455
ISDCIl 6.0381 13 0.0307** 0.5984**# 0.0549 0.3491 8,918
ISDCOl 0.0377 9 0.0299** 0.6591**# 0.0143 0.3619 9,081
ISDC02 0.0372 5 0.0289** 0.7162**# -0.0232 0.3734 9,032
ISDC03 0.0368 4 0.0275** 0.7651*# -0.0511 0.3900 8,774
ISDC04 0.0373 6 0.0276** 0.7850**t -0.0578 0.3928 8332
ISDC05 0.0367 3 0.0263** 0.8046** -0.0627 0.4115 7,310
ISDC06 0.0352 I 0.0248* 0.8222** -0.0666 0.4454 6268
ISDC07 0.0357 2 0.0250* 0.8294** -0.0697 0.4521 5,002
ISDC08 0.0375 7 0.0268 0.8260** -0.0633 0.4316 4,052

puts

ISDP08 0.0425 30 0.0506** 0.1734*# 0.3331** 02603 7386
ISDP07 0.0423 29 0.0463** 02238**# 02976** 02697 7,798
ISDP06 0.0416 25 0.0439** 02597**# 02760** 02744 8,162
ISDP05 0.0408 24 0.0395** 0.3259**tt 0.2317* 02869 8,538
ISDP04 0.0400 22 0.0357** 0.4033**# 0.1774* 0.3036 8,812
ISDP03 0.0390 20 0.0341** 0.4644**# 0.1362 0.3213 9,014
ISDP02 0.0385 17 0.0345** 0.5050**tt 0.1087 0.3306 9,089
ISDPOl 0.0382 15 0.0315** 0.5904**tt 0.0557 0.3457 8,987
ISDPIl 0.0375 8 0.0293** 0.6558**# 0.0190 0.3651 8,388
ISDPI2 0.0379 11 0.0284** 0.7215**# -0.0269 0.3724 7,439
ISDPI3 0.0382 14 0.0261* 0.773 l* * t -0.0567 0.3891 5,942
ISDPI4 0.0384 16 0.0311** 0.7087**tt -0.0143 0.3788 4,528
ISDPI5 0.0379 10 0.0211 0.8772** -0.1062 0.4285 3,379
ISDPI6 0.0386 18 0.0170 0.8751** -0.0836 0.4299 2,619
ISDPI7 LO.0422 26 0.0273 0.7254** -0.0020 0.3790 1,978
ISDPI8 0.0439 32 0.0370* 0.5530**# 0.1086 0.3410 1,577

Average ISD4 0.0379 12 0.0303** 0.6340**tt 0.0283 0.3570 9,505
Notes: The data set contains daily 
January 28,1983 through April 3 
an option on S&P 500 futures is r 
(HIS40J measured over die last 4 
notes in Table 5.1. The significai 
(1982) procedure which corrects 
in realized voIatiliQr.

observations for options with 10-99 trading days to expiration from 
}, 1998. The realized volatility (RLZSDj over the remahung life of 
egressed on an inq>Iied volatility estimator and the historical volatility 
0 trading days. For die meaning of the symbols, please refer to die 
ice of the coefiticients is based on die t statistics from the Hansen 
br the heteroskedasticity and serial correlation caused by the overhgis

significantly different from zero at the 0.05 leveL ** significantly different from zero at the 0.01 level, 
t  significantly different from one at the 0.05 level t t  significantly different from one at the 0.01 level.
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Figure 2.1
Options on S&P 500 Futures with Different Expiration Dates

Traded on February 25,1997

Feb. 25,1997

ON

Group 1

Group 2

Group 3

Group 4

; calls and puts

! calls and puts

I calls and puts

I calls and puts

I calls and puts

I calls and puts

Mar. 20, 1997 (quarterly contract)
17 trading days

37 trading days April

57 trading days

8,1997 (serial contract)

May 16,1997 (serial contract)

80 trading days June 19,1997 (quarterly contract)

143 trading days Sept. 18,1997 (quarterly contract)

206 trading days
Dec. 18,1997 ( quarterly contract)



Figure 2.2 
Calls and Puts with the Same Expiration Date but Different Strike Prices

Utilized in this dissertation are the 
eight in-the-money caiis, eight out-of-the-money caiis, 

eight in-the-money puts, and eight out-of-the-money puts

in-the-money rails out-of-the-money calls

out-of-the-money puts i-the-money puts

strike price -  futures price 
K = F

K <F

strike price 
K

strike price 
K

Note; The caiis and puts on S&P 500 futures shown here have the same expiration date and are observed on the same day. 
Each hash mark represents a strike price tick.
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Figure 2.3
Average Trading Volume of Options on S&P 500 Futures by Strike Price
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Figure 2.4
Number of Observations of Options on S&P 500 Futures by Strike Price

(a) Group 1 
The-nearest-lo-explrallon Options

(b) Group 2 
The-second-nearast lo-explrallon Options
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Figure 2.5
Data Periods Utilized to Calculate Realized Volatility, Implied Volatility and Historical Volatility

Implied Volatility Realized Volatiiity

o

Historical Volatility

N
option maturity

t
current time

t-4 0
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Figure 4.1a 
Implied Volatility Smile for Options on S&P 500 Futures 

with 10 to 99 Trading Days to Expiration including the 1987 Market Crash
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Moneyness
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Note; The data set contains daily observations of the four nearest-to-expiration options. The X axis represents the mean 
moneyness of the options over aii the avaiiabie observations. The moneyness Is defined as (K/F -1 ) where K Is the strike 
price and F Is the underlying futures price. The Y axis measures the mean implied voiatiiity over aii the avaiiabie 
observations. The diamonds represent caiis and the dots represent puts. For example, the farthest right diamond shows 
the mean moneyness and the mean implied voiatiiity for the eighth from-the-money, out-of-the-money call. Similarly, the 
farthest left dot shows the mean moneyness and the mean Implied voiatiiity for the eighth from-the-money, out-of-the-money 
put. iSD4 represents the average implied voiatiiity calculated from the two-nearest-the-money caiis and the two nearest-the 
money puts.
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Figure 4.1b
Implied Volatility Smile for Options on S&P 500 Futures 

with 10 to 99 Trading Days to Expiration Excluding the 1987 Market Crash
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Note: The data set contains dally observations of the four nearest-to-explratlon options. The X axis represents the mean 
moneyness of the options over all the available observations. The moneyness Is defined as (K/F -1 ) where K Is the strike 
price and F Is the underlying futures price. The Y axis measures the mean Implied volatility over all the available 
observations. The diamonds represent calls and the dots represent puts. For example, the kirthest right diamond shows 
the mean moneyness and the mean Implied volatility for the eighth from-the-money, out-of-the-money call. Similarly, the 
krthest left dot shows the mean moneyness and the mean Implied volatility for the eighth from-the-money, out-of-the-money 
put. ISD4 represents the average Implied volatility calculated from the two-nearest-the-money calls and the two nearest-the 
money puts.
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Figure 5.1a
Root Mean Squared Errors (RMSEs) of Different Implied Volatility Estimators

Including the 1987 Market Crash
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Note; The data set contains daily observations of the four nearest-to-expiration options on S&P 500 futures with 10 to 99 
trading days to expiration. The X axis represents the mean moneyness of the options which is defined as (K/F -1) where K 
is the strike price and F is the underlying futures price. The Y axis measures the root mean squared error (RMSE). The 
diamonds represent caiis and the dots represent puts. For example, the ferthest right diamond shows the mean moneyness 
and the RMSE for the eighth from-the-money, out-of-the-money call. Similarly, the farthest left dot shows the mean 
moneyness and the RMSE for the eighth from-the-money, out-of-the-money put. ISD4 represents the average implied 
voiatiiity calculated from the two-nearest-the-money caiis and the two nearest-the-money puts.
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Figure 5.1b
Root Mean Squared Errors (RMSEs) of Different Impiied Volatility Estimators

Excluding the 1987 Market Crash
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Note: The data set contains dally observations of the four nearest-to-explratlon options on S&P 500 futures with 10 to 99 
trading days to expiration. The X axis represents the mean moneyness of the options which Is defined as (K/F -1) where K 
is the strike price and F is the underlying futures price. The Y axis measures the root mean squared error (RMSE). The 
diamonds represent calls and the dots represent puts. For example, the farthest right diamond shows the mean moneyness 
and the RMSE for the eighth from-the-money. out-of-the-money call. Similarly, the ferthest left dot shows the mean 
moneyness and the RMSE for the eighth from-the-money, out-of-the-money put. ISD4 represents the average implied 
volatility calculated from the two-nearest-the-money calls and the two nearest-the-money puts.
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Figure 5.2
Mean Absolute Errors (MAEs) of Different Implied Volatility Estimators

Including the 1987 Market Crash
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Note: The data set contains daily observations of the four nearest-to-expiration options on S&P 500 Futures with 10 to 99 
trading days to expiration. The X axis represents the mean moneyness of the options which is defined as (K/F -1) where K 
is the strike price and F is the underlying futures price. The Y axis measures the mean absolute error (MAE). The 
diamonds represent calls and the dots represent puts. For example, the farthest right diamond shows the mean moneyness 
and the MAE for the eighth from-the-money, out-of-the-money call. Similarly, the farthest left dot shows the mean 
moneyness and the MAE for the eighth from-the-money, out-of-the-money put. ISD4 represents the average Implied 
volatility calculated from the two-nearest-the-money calls and the two nearest-the-money puts.



Figure 5.3
Mean Absolute Percentage Errors (MAPEs) of Different Implied Volatility Estimators

Including the 1987 Market Crash
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Note; The data set contains daily observations of the four nearest-to-expiration options on S&P 500 Futures with 10 to 99 
trading days to expiration. The X axis represents the mean moneyness of the options which is defined as (K/F -1) where K 
Is the strike price and F is the underlying futures price. The Y axis measures the Mean Absolute Percentage Error (MAPE). 
The diamonds represent calls and the dots represent puts. For example, the farthest right diamond shows the mean 
moneyness and the MAPE for the eighth from-the-money, out-of-the-money call. Similarly, the hirthest left dot shows the 
mean moneyness and the MAPE for the eighth from-the-money, out-of-the-money put. ISD4 represents the average 
implied volatility calculated from the two-nearest-the-money calls and the two nearest-the-money puts.



Figure 5.4a
Decomposition of Mean Squared Error (MSE) into Variance and Squared Bias

for Caiis including the 1987 Market Crash
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Note: The data set contains daily observations of the four nearest-to-explratlon call options on S&P 500 Futures with 10 to 
99 trading days to expiration. Equation 5.4 shows that mean squared error (MSE) can be decomposed into the variance of 
the forecast error and the squared bias. The X axis represents the mean moneyness of the options which is defined as 
(K/F -1) where K Is the strike price and F Is the underlying futures price. The Y axis measures either Mean Squared Error 
(MSE), or the Variance of the forecast Error, or the squared Bias.
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Figure 5.4b
Decomposition of Mean Squared Error (MSE) into Variance and Squared Bias

for Puts Including the 1987 Market Crash
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Note; The data set contains daily observations of the four nearest-to-expiration put options on S&P 500 Futures with 10 to 
99 trading days to expiration. Equation 5.4 shows that mean squared error (MSE) can be decomposed into the variance of 
the forecast error and the squared bias. The X axis represents the mean moneyness of the options which is defined as 
(K/F -1) where K is the strike price and F is the underlying futures price. The Y axis measures either Mean Squared Error 
(MSE), or the Variance of the forecast Error, or the squared Bias.



ss

I
I
§

I

Figure 5.5a
Regression's Root Mean Squared Errors (RMSEs) of Different Estimators

Including the 1987 Market Crash
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Note: The data set contains daily observations of the four nearest-to-expiration options on S&P 500 futures with 10 to 99 
trading days to expiration. The X axis represents the mean moneyness of the options which is defined as (K/F -1) where K 
is the strike price and F is the underlying futures price. The Y axis measures the OLS regression's RMSE reported in Table 
5.5. The diamonds represent calls and the dots represent puts. For example, the farthest right diamond shows the mean 
moneyness and the RMSE of the OLS regression of the realized voiatiiity on the implied voiatiiity calculated from the eighth 
from-the-money, out-of-the-money call. Similarly, the farthest left dot shows the mean moneyness and the RMSE of the 
OLS regression of realized volatility on the Implied volatility calculated from the eighth from-the-money, out-of-the-money 
put. ISD4 represents the average impiied voiatiiity calculated from the two-nearest-the-money caiis and the two nearest-the 
money puts.
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Figure 5.5b
Regression's Adjusted R-squares of Different Estimators

Including the 1987 Market Crash
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Note: The data set contains daily observations of the four nearest-to-expiration options on S&P 500 futures with 10 to 99 trading 
days to expiration. The X axis represents the mean moneyness of the options which is defined as (K/F -1) where K is the strike 
price and F is the underlying futures price. The Y axis measures the OLS regression's adjusted reported In Table 5.5. The 
diamonds represent caiis and the dots represent puts. For example, the farthest right diamond shows the mean moneyness and 
the adjusted of the OLS regression of the reaiized voiatiiity on the impiied voiatiiity calculated from the eighth from-the-money, 
out-of-the-money call. Similarly, the fôrthest left dot shows the mean moneyness and the adjusted R  ̂of the OLS regression of 
reaiized voiatiiity on the impiied voiatiiity calculated from the eighth from-the-money, out-of-the-money put. ISD4 represents the 
average impiied voiatiiity calculated from the two-nearest-the-money caiis and the two nearest-the-money puts.
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Figure 5.5c
Regression's Intercepts of Different Estimators

Including the 1987 Market Crash
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Note: The data set contains dally observations of the four nearest-to-explratlon options on S&P 500 futures with 10 to 99 trading 
days to expiration. The X axis represents the mean moneyness of the options which Is defined as (K/F -1) where K is the strike 
price and F is the underlying futures price. The Y axis measures the OLS regression's intercept reported in Table 5.5. The 
diamonds represent caiis and the dots represent puts. For exampie, the farthest right diamond shows the mean moneyness and 
the Intercept of the OLS regression of the reaiized voiatiiity on the impiied voiatiiity calculated from the eighth from-the-money, out 
of-the-money call. Similarly, the farthest left dot shows the mean moneyness and the intercept of the OLS regression of reaiized 
volatility on the impiied voiatiiity caiculated from the eighth from-the-money, out-of-the-money put. ISD4 represents the average 
impiied volatility calculated from the two-nearest-the-money calls and the two nearest-the-money puts.
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Figure 5.5d
Regression's Slope Coefficients of Different Estimators

including the 1987 Market Crash

Average Implied Volatility 
(ISD4)

Historical Volatility 
(HIS40)

I

— — ' HIS40

g  g  

9  9
S

— H - - - - - - - - - - - 1- - - - - )  -
CO in  

o  o  o
9  9  9  9  9

in-the-money calls 
out-of-the money puts

-4 h-
8  g 5  8  5  8  8

o  d . d  d  d
T

at-the-money

I 8 8 8  8 g

Mean
Moneyness

(K/F-1)

out-of-the-money calls 
In-the money puts

Note: The data set contains dally observations of the four nearest-to-explratlon options on S&P 500 futures with 10 to 99 trading 
days to expiration. The X axis represents the mean moneyness of the options which Is defined as (K/F -1) where K Is the strike 
price and F Is the underlying futures price. The Y axis measures the OLS regression's slope coefficient reported In Table 5.5.
The diamonds represent calls and the dots represent puts. For example, the terthest right diamond shows the mean moneyness 
and the slope coefficient of the OLS regression of the realized volatility on the Implied volatility calculated from the eighth from-the 
money, out-of-the-money call. Similarly, the farthest left dot shows the mean moneyness and the slope coefficient of the OLS 
regression of realized volatility on the implied volatility calculated from the eighth from-the-money, out-of-the-money put. ISD4 
represents the average Implied volatility calculated from the two-nearest-the-money calls and the two nearest-the-money puts.



l i r ,

IMAGE EVALUATION 
TEST TARGET (Q A -3 )

/ /

%  
%

1.0

1.1

1.25

12^
116

1.4

12.0

1.8

1.6

150mm

%

>1P P U E D  A  I IW IG E  . I n c
1653 East Main Street 
Rochester. NY 14609 USA 
Phone: 716/482-0300 

----------------Fax: 716/288-5989

0 1993. AppOad Image. Inc.. AH Rights Reserved

W “


