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Abstract

This study explored first-semester calculus students’ early understanding of
limits, relative to their function knowledge and graphing calculator use. The purpose was
to identify and describe students’ patterns of analytical thinking and knowledge use in
determining limit situations, as a first step in developing a grounded theory of early
development of intuitive limit concepts.

Over four task-based interviews, ten students progressed from examining local
function behavior to analyzing increasingly difficult limit situations. Written and oral
responses were analyzed relative to a four-element framework developed by the author:
(a) analyzing functions locally in graphical and numerical settings; (b) conjecturing limits
from representative graphs and tables; (c) understanding advantages and limitations of
tables and graphs to conjecturing limits, particularly when using graphing calculators;
and (d) producing multiple sources of evidence to justify a limit conjecture, and knowing
whether this evidence is sufficient. Students demonstrating these four elements were
deemed to have an intuitive-analytic understanding of the limit concept.

Students in this study had difficulty determining local fuﬁction behavior, and did
not always connect this to determining limit situations. They could read graphs and
tables to conjecture limits, but often based such conjectures on poor tables or graphs.
They learned that tables and graphs might mislead them, but rarely analyzed this, either
assuming representativeness or assuming they were being misled. These students relied
on formula-based expectations, graphs, or a few function values in determining limit
situations. They did not know how to move from “almost certain” to certain in

determining a limit situation.



These students’ function knowledge and methods of analyzing local function
behavior both did and did not influence their determination of limit situations. Partial
analyses led them to accept non-representative behavior, which led to erroneous limit
conjectures. On the other hand, even full and complete analyses did not always result in
correct limit conjectures.

The graphing calculator played a significant role. Graphs and tables on the
calculator were often taken as the “standard” of comparison, without analysis.
Awareness of calculator limitations did not necessarily imply correct limit conjectures,

due to ignoring the limitations, or erroneously assuming the effects of those limitations.



CHAPTER 1
Introduction

The concept of a limit is central to an understanding of calculus since it is the
foundation on which the definitions of continuity, derivative and integral are based. At
the same time, the limit concept appears in different contexts, such as with functions,
sequences, and series; and involves different processes, such as secant lines approaching
tangent lines, iterative mt-h&ng procedures, and area calculations. Moreover, the
mathematical definitions of limit (in each of the various contexts) differ substantially
from intuitive limit ideas. The central role of the limit concept in calculus necessitates its
early introduction, but its complexity raises several questions. What is a reasonable
starting point for introducing the limit concept? In what ways do students’ understanding
of the limit concept develop? How can this development be measured? These questions
provided the impetus for this research.

This study explored students’ early understanding of the limit concept in first
semester calculus, and identified effects of two factors influencing this development:
students’ knowledge and understanding of functions, and their knowledge and use of
graphing calculators. Specifically, students’ intuitive ideas about limits of functions at

particular points were explored through task-based interviews. Over the course of four



interviews, the tasks evolved from examining local behavior of functions to conjecturing
the existence or non-existence of specified limits, based on tables or graphs, in
increasingly difficult situations.

We begin with an analysis of some of the complexities of the limit concept. This
analysis suggests several possibly crucial elements of students’ early understanding of
limits, providing focus for the problem addressed in this research. From there, the
significance of the problem is outlined and the research questions are elaborated.

The Complexities of the Limit Concept

The limit concept is analyzed by juxtaposing the €~ limit definition with
intuitive limit ideas. Each of these components of the limit concept contributes to its
complexity. When examined side by side, however, it becomes clear that the full
complexities of the limit concept are greater than the sum of the complexities of its
components.

The -6 Limit Definition

The complexity of the € — 8 definition of a limit of a function at a particular point
begins with the language of the statement itselif:

Let fbe a function defined on some open interval that contains the number
a, except possibly at a itself. Then we say that the limit of f{x) as x

approaches a is L, and we write
lim f(x)=L

if for every number € > 0, there is a corresponding number § > 0 such that
|f(x)-l.{<e whenever 0<|x-a{<5 (Stewart, 1995, p. 71).

The quantifiers for every, there is, such that, and whenever cause difficuity (Comu, 1991;
Cottrill et al., 1996). The word limit has meanings in everyday use that interfere with the

mathematical meaning. The word approaches (and its many mathematical “synonyms”



such as converges to, and tends toward) contradicts the static nature of the definition
(Monaghan, 1991).

One approach used to introduce the e-0 limit definition is to give a specific
tolerance measurement, that is, a specific €, and ask stodents to find a suitable range of x-
values around g that will guarantee function values within the specified tolerance
measurement of L. This focuses attention on the correspondence between § and € in the
defmition. Repeating this exercise with several different values of € focuses attention on
the idea that any tolerance € will work when the limit exists.

In practice, whether using the €9 limit definition or attempting an introductory
£-9 exercise, a candidate for L must already exist. In fact, the e-9 limit definition is used
primarily to verify whether a conjectured limit is, without a doubt, the true limit. The
definition itself provides no method for conjecturing such an L. Certainly an educated
conjecture is more efficient than a random guess, and this raises the question of how to
educate students to make intelligent limit conjectures.

Intuitive Limit Ideas

One approach tised to introduce the notion of limit conjectures is to begin with an

informal idea of limit:

We write
im f(x)=L

and we say, “the limit of f{x), as x approaches a, equals L” if we can make
the values of f{x) arbitrarily close to L (as close as we like) by taking x to
be sufficiently close to a, but not equal to a.... Roughly speaking, this
says that the values of f{x) get closer and closer to the number L, as x gets
closer and closer to the number a (from either side of @) but x#a
(Stewart, 1995, p. 51).



This has the advantage that it suggests a means of conjecturing a limit, by either
computing appropriate function values or observing appropriate function values on a
graph. The disadvantage lies in the clear loss of precision of the -9 limit definition and
the retention of subtle language difficuities (Tall & Schwarzenberger, 1978). Moreover,
the activity of conjecturing a limit has its own set of complexities, due to its dependence
on tables and graphs, on students’ function knowledge, and, in modern calculus courses,
on students’ use of graphing calculators.

Dependence on tables and graphs. “Correct” intuitive limit conclusions depend
on the accuracy and consistency of the tables and graphs on which they are based. Both
tables and graphs can fail in muitiple ways to accurately represent the true nature of a
function. For example, a poor sample of x-values can lead to correct, but misleading, y-
values in a table. As another example, a poor sample of x-values can lead to incorrect y-
values in both a table and a graph when technology is being used. In this situation, both
the table and graph might be inaccurate, but still consistent with one another, which
eliminates consistency of representations as a means of detecting an inaccuracy. This is
when a student’s knowledge and understanding of functions is most important.

Influence of function knowledge. An intuitive limit conjecture, under ideal
circumstances, depends on analysis of function values and awareness of which function
values to focus on. Students must analyze function values by inputting them into a
process in which function values are compared to a target limit value, or compared to
each other, or examined for a pattern. At the same time, this analysis is useless if

students are analyzing the wrong function values. To engage in this process in both



numerical and graphical settings, and, ideally, understand how the processes differ from
and parallel one another, students need a firm understanding of local function behavior.

Influence of graphing calculator use. Graphing calculators allow easy access to
numerous intuitive limit ideas. First, graphs and tables can be produced quickly and
easily. Second, the trace feature permits a dynamic sense of the limit process, and by
indicating which ordered pairs are being “landed on”, provides a bridge between
graphical and numerical representations. Third, the zoom feature can sometimes show
how smaller viewing windows lead to more accurate limit conjectures. These features
have several drawbacks, however.

There are several ways in which graphing calculators can mislead students.
Certainly, calculator-produced tables and graphs can be misleading due to computational
limitations, but poor input choices can also lead to trouble. For example, a poor choice of
a viewing window can lead to no graph, or a misleading graph. If the interesting
behavior at a particular point is “hiding” between two pixels, then the trace feature will
not detect this. Or, if the limit situation involves a vertical asymptote, then repeated use
of the zoom feature may not detect this, since some asymptotic behavior is only visible
using a very large y-interval and a small x-interval.

Crucial Elements of Early Understanding of Limits

These analyses suggest that intuitive limit ideas are much more accessible to first
semester calculus students than the €-0 limit definition, but that intuitive limit ideas
without analytical thinking can be quite misleading. Early limit ideas are appropriately
characterized by several crucial elements. First, the ability to analyze functions locally in

both graphical and numerical settings seems to be a prerequisite. Second, students must



be able to draw correct intuitive limit conclusions from accurate graphs and tables.

Third, an understanding of the advantages and disadvantages of tables and graphs to
conjecturing limits, particularly when using graphing calculators is necessary. Finally,
students must be able to produce multiple sources of evidence to justify a limit
conjecture, and know whether their evidence leaves room for doubt. Students who
possess these four elements will be deemed to have an intuitive-analytic understanding of
the limit concept.

Evaluating whether a student actually possesses the four elements of intuitive-
analytic understanding of the limit concept is a difficuit endeavor. Designing problems
that could detect these abilities and understandings is only part of the difficulty. Student
solutions to such problems, say on homework or exams, would not necessarily reflect
their thought processes, and likciy would not provide a record of their uses of the
graphing calculator. Observation of students while they are in the process of solving
such problems and subsequent interaction with them would elicit a much richer, detailed
picture of their understandings and abilities than written work alone.

Problem Statement

The problem addressed in this study was to describe how and to what extent
students in a first-semester, graphing-calculator based, calculus course gain an intuitive-
analytic understanding of limits. The focus was on how they gained an understanding of
each of the four elements of early understanding of limits. This was accomplished
through a series of task-based interviews and questionnaires, each of which focused on

one or more of these four elements.



Significance of the Problem

Very little research exists on the limit concept, and most of that focuses on
students’ acquisition of the -8 definition, concluding that this acquisition proceeds very
slowly (Comnu, 1991; Ervynck, 1981; Tall, 1992; Tall & Vinner, 1981; Williams, 1991).
There are few descriptions of the more intuitive ideas involved in conjecturing limits
based on tables and graphs. Cottril et al. (1996) suggest that such intuitive limit ideas
may be quite complicated for students.

There is precedent for examining function knowledge and limit concepts in the
same study, with (Lauten, Graham, Ferrini-Mundy, 1994), and without (Ferrini-Mundy &
Graham, 1994) graphing calculators. These studies also used task-based interviews to
develop detailed descriptions of students’ understandings of function and limit, but the
function tasks did not focus on the function knowledge most salient to an intuitive
understanding of limits, namely local function behavior in numerical, graphical and
symbolic settings. Moreover, spontaneous use of the graphing calculator in the first
study was minimal.

Although there is extensive literature on functions, (see Harel & Dubinsky, 1992
for a small collection) much of it focuses on the definition of function and on how
understanding of the function concept itself develops. This study focuses on function
behavior and its influence on the development of students’ understanding of limits.

Thus, this study will make a significant contribution to the research. In addition,
the knowledge gained from this study has the potential to inform instruction. By

describing patterns of analytical thinking and knowledge use employed by students in



solving problems about limit situations, pedagogical strategies and mathematical
problems that account for these patterns can be constructed.
Research Questions

1. Early understanding of the limit concept. How and to what extent do the four
elements of intuitive-analytic understanding of the limit concept emerge and develop
over the course of the study? In particular, how do students analyze local function
behavior? Can they draw correct intuitive limit conclusions from accurate graphs and
tables? In what ways do students develop awareness of the advantages and
disadvantages of tables and graphs to conjecturing limits, particularly when using
graphing calculators? Do they spontaneously produce multiple sources of evidence to
justify a limit conjecture?

2. Influence of function knowledge. In what ways do students analyze local behavior of
functions in graphical and numerical settings? In particular, on what aspects of
tables, graphs and formulas do students focus, in analyzing local function behavior?
How do they decide whether a graph and a table of the same function are consistent?
How do they decide whether a table or graph reflects the true nature of the function?
Do their methods of analyzing local function behavior support or hinder their success
with determining a limit situation?

3. Influence of graphing calculator use. How do students spontaneously use graphing
calculators in analyzing functions and making limit conjectures? To what extent are
they aware of the limitations of the graphing caiculator, and how do they deal with

this? How convincing is this tool for them?



CHAPTER 2
Review of the Literature

The purpose of this chapter is to outline how previous research and the content of
the course textbook, Stewart’s Calculus, 3™ edition (1995), influenced the design of the
interview tasks and protocols in this study. Relevant literature' is reported within the
framework of the four elements of intuitive-analytic understanding of limits: (a) analysis
of local function behavior, (b) intuitive limit conjectures, (c) limitations of numerical and
graphical evideﬁce, and (d) intuitive-analytic limit conjectures.

Analysis of Local Function Behavior

The role of analysis of local function behavior in determining limit situations has
rarely been addressed directly in the literature. In the current study, there are two
dimensions of particular interest: types of local function behavior and representations of
local function behavior.
Types of Local Function Behavior

The interview tasks in the current study present several types of local function

behavior for each of the situations in which a limit exists or does not exist. This follows

! ERIC and DAI databases were searched, using key words mathematics, calculus, limits,
functions, and graphing calculators. Descriptors of found sources were used in later
searches. Document references led to other literature.



Tall’s (1990) suggestion that student exploration of both examples and non-examples of a
concept can help a student understand general properties while avoiding narrow over-
generalizations. There is promise in this suggestion, as shown by several researchers
who have used this strategy successfully in settings where a teacher introduces a concept,
discusses it with students, and then allows individual exploration (Blackett, 1987; Tall,
1986a; Thomas, 1988; as cited in Tall, 1990). On a practical note, the course textbook
(Stewart, 1995) contains many different types of local function behavior in its
introductory sections on the limit concept, suggesting that opportunities existed for
students to explore the limit concept through examples and non-examples.

The types of local function behavior selected were based on examples and
exercises in the course textbook (Stewart, 1995). In panicz.xlar, types of local behavior
implying the existence of a limit included highly oscillatory (damped) behavior and
piecewise monotonic behavior associated either with a point of continuity or an isolated
singularity. Types of local behavior implying the non-existence of a limit included
highly oscillatory behavior (not damped), asymptotic behavior associated with a vertical
asymptote, and piecewise monotonic behavior associated with a jump singularity.

The emphases placed on each of the types of local behavior stemmed from
research results of others and design considerations. Types of local function behavior
known to cause difficulties for students were emphasized. These include highly
oscillatory behavior (Cottril et al., 1996; Ervynck, 1981; Williams, 1991), asymptotic
behavior and removable singularities (Boers & Jones, 1993, as cited in Tall 1996;
Williams, 1991). Some types of local function behavior have been shown to block

engagement in analysis of local function behavior or limit situations, and thus, were de-
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emphasized. These include continuous behavior (Cottril et al., 1996; Ferrini-Mundy &
Graham, 1994; Williams 1991), and jump singularities (Ferrini-Mundy & Graham, 1994).
Multiple Representations of Local Function Behavior

Most interview tasks in the current study required students to make connections
between two or three given representations (table, graph and/or formula) of a function’s
local behavior. This stems from research results suggesting that tasks which force
students to make connections between representations are more effective than those
which merely point out connections (Thompson 1995), especially when graphing
calculators are present (Porzio, 1997). Thus, one task required matching of given graphs,
tables and formulas without the use of graphing calculators, while other tasks required
analysis of representativeness and consistency of representations in the presence of
graphing calculators. Some foliow-up questions were designed to elicit students’
understanding and use of connections between representations.

Most interview tasks provided opportunities to use the graphing calculator, but
none explicitly requested any particular use of the graphing calculator, and none were
accompanied by graphs entered in the calculator. This is a different approach than that of
Lauten, Graham, and Ferrini-Mundy (1994). They found, in a case study of one student’s
understanding of functions and limits, that while she used the graphing calculator when a
graph was provided, “she did not independently pick up the calculator to explore an idea
before answering a question” (p. 235). In the present study, opportunities to use the
graphing calculator were provided in three ways. First, all but one of the interview tasks
contained a function formula, allowing students to produce graphs and function values.

Second, some tasks provided only one or two representations, to allow students to
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produce the remaining representation(s). Third, some tasks gave misleading
representations, to allow students to generate better representations.

Students’ preferences for particular representations and beliefs about the
usefulness of different representations were explored. This was motivated by Keller and
Hirsch’s argument (1998) that, “If a student has a cognitive preference for a
representation, it is likely that the strongest connections between representations and
between concept and representation are constructed to and from the student’s preferred
representation” (p. I). They found, using a pre-test/post-test study, that first semester
calculus students do have preferences for specific representations, and that students using
graphing calculators were more likely to express a preference for graphs than students not
using technology. The current study used two questionnaires to ask students which
representation they would prefer to use to (a) describe a function’s behavior to a fellow
student (first interview), and (b) determine a limit situation (last interview).

Summary

The interview tasks in the current study incorporated several different types of
local function behavior, presenting each in graphs, tables and/or formulas. Table 1 shows
the types of local function behavior and representations presented to students over the
course of the four interviews. The tasks required students to analyze and connect various
given and spontaneously produced representations. In addition, students’ preferences for

graphs, tables or formulas were explored through questionnaires.
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Table 1

Local Function Behavior Present in Interview Tasks

Representations

Types of Local Function Behavior Graphs Tables Formulas

Limit exists
Highly oscillatory, damped +
Monotonic®, continuous® + +
Monotonic, removable singularity + + +
Limit does not exist
Highly oscillatory, not damped + + +
Asymptotic® + + +
Monotonic, jump singularity + + +

Note. Each + indicates that the associated type of function behavior was presented using
the associated representation in at least one interview task.
*Piecewise monotonic. °Students saw continuity either in a graph or a table, not both.
“Asymptotic to a vertical line.

Intuitive Limit Conjectures

Most research on students’ understanding of limits has focused on their

difficulties making the transition from intuitive ideas to more formal ideas. Nevertheless,
these studies still have much to say about students’ difficulties with the intuitive ideas
themselves. In particular, other researchers’ observations about students’ uses of tables
and graphs to make intuitive limit conjectures informed several of the interview questions

in this study.
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Tables

Research on students’ generation of and uses of numerical evidence in
conjecturing limits contributed both to the design of tables presented in the interview
tasks, and to the creation of questions eliciting students’ understanding of the tables. In
particular, special care was taken with both the content and format of the tables.

Content. There were two common characteristics of each table. First, each table
contained an “ordered pair” for the point of interest, usually indicating that the y-value
was undefined. This differs from the course textbook (Stewart, 1995) and from known
literature. Others have shown that students tend to equate the computation of a limit with
substitution of a function value (Cottril et al., 1996; Ferrini-Mundy & Graham, 1994;
Williams 1991). Several first semester calculus students in Keller and Hirsh’s study
(1998) commented that “a table-of-values gives exact answers but may skip the value of
interest” (p. 13); In the current study, it was thought that including this “ordered pair”
would prevent students from believing that they simply were not given enough
information to address the problem, and thus would encourage analysis of nearby
function behavior. Second, the remaining ordered pairs in each table were symmetric
about the point of interest with respect to x-values. Differences between adjacent x-
values were usually, but not always, successive negative powers of 10. These
characteristics follow those of tables given in the course textbook.

Format. The tables were oriented either horizontally or vertically (both
orientations appear in Stewart (1995) the course textbook), and formatted so that x-values
could be read from smallest to largest. In horizontally oriented tables, this meant that x-

values could be scanned left-to-right, from smallest to largest. For vertically oriented
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tables, this meant that x-values could be scanmed top-to-bottom, from smallest to largest.
The objective was to order the x-values in the tables to match the ordering of the x-values
on the x-axis of a graph.

Such orderings were not always employed in the course textbook or other
literature. For example, the course textbook saved space in creating a table for an even
function by putting a2 + sign in front of each x-value. Williams (1991) presented a
vertically oriented table in which the ordering of x-values to the right of the point of
interest was different from that to the left. Both of these approaches force a “reading” of
the table that is fundamentally different from the “reading” of a graph to determine one-
sided limits. In the first case, the table is scanned top-to-bottom twice, and in the second
case, each half of the table is scanned top-to-bottom. On a graph, there is no choice but
to scan left-to-right for the left-hand limit and to scan right-to-left for the right-hand limit.
Thus in the current study, the tables were formatted so that the two one-sided limits
would have to be determined using different scanning directions, as must occur in a
graph.

Understanding of tables. A number of questions about students’ understanding of
limits were created based on other studies. Cottrill et al. (1996) suggest that conjecturing
a limit from numerical evidence involves a three-step process: (a) constructing a domain
process with x-values approaching the point of interest, (b) constructing a range process
with y-values approaching the numerical candidate for a limit value, and (c) coordinating
these two processes by applying the function to the x-values in the domain process to
obtain the y-values in the range process. Students in their study had considerable

difficulty with this, some even unable to construct a domain process, focusing instead on
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a single point. That students might have difficulty even with constructing a domain
process is not surprising in light of research on limits of sequences. Much of this
research comments on students’ difficuity with deciding whether the sequence {.9, .99,
999, .9999, ...} converges to 1 or to .9, thinking that .9 is just less than 1 (Ferrini-
Mundy & Graham; Monaghan, 1991; Sierpinska, 1987; Tall & Schwarzenberger, 1978;
Tall & Vinner, 1981).

These considerations led this researcher to ask students to describe how they
“read” a table, that is, where they focused and what they looked for when using a table to
determine a limit situation. In addition, since the presentation of a table did not force
students to coordinate the domain and range processes through the function, students
were asked to explain how they decided whether the table values were correct and
reptesentedthemlenanneofdiefuncﬁon. Often, students were asked to check a few of
the ordered pairs in the table, to see if they were correct.
Graphs

Research on students’ generation of and uses of graphical evidence in
conjecturing limits and analyzing function behavior, particularly in the presence of
graphing calculators, guided the presentation of graphs in the interview tasks and
formulation of questions about students’ understanding of the graphs. Specifically, the
format of graphs was a major consideration, as decisions had to be made regarding
whether they should be formatted with respect to technology-based conventions or by-
hand conventions.

Formar. All graphs presented in the interview tasks were produced using
Mathematica, but were formatted in two different ways, depending on whether students

16



had access to graphing calculators or not. Graphs in the first interview and first task of
the second interview were formatted as if they had been drawn by hand. Each of these
graphs contained x- and y-axes labeled with appropriate units. Any vertical asymptotes
were drawn as dashed lines. A “hole” or deleted endpoint of a piece of a graph was
denoted by a small open circle. An included endpoint of a piece of a graph was denoted
by a small closed circle. These were standard conventions utilized in the course textbook
(Stewart, 1995). All other graphs were formatted as much as possible as if they were
drawn using a graphing calculator. Each of these graphs was contained in a rectangular
box with the left and bottom edges labeled with appropriate units, so students could teil
what viewing window had been used. The graphs themselves were left “as is” to
illustrate some of the technological limitations of calculator-based graphs. These
conventions for displaying “calculator-based” graphs were also observed in the course
textbook.

Understanding of graphs. Several questions about students’ understanding of
graphs were based on others’ work. First, students were asked to describe how presented
graphs did or did not reflect the true nature of the function. Tall }(1992) noted that
standard “by-hand” conventions for denoting holes, asymptotes, and jumps can be
confusing to students, since taken at face value, such circles, disks, and dashed lines do
not truly represent ordered pairs on the graph. That calculator-produced graphs do not
automatically display these characteristics with the same conventions causes even more
confusion (C. G. Williams, 1993).

Second, students were asked to describe how they “read” a graph, that is, where

they focused and what they looked for when using a graph to determine a limit situation.
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This paralleled a question asked of students using tables to determine limit situations, in
an attempt to discover any parallel difficulties in using graphs to determine limit
situations. There was reason to expect that students’ descriptions based on graphs would
refer to movement along the curve. Lauten, Graham and Ferrini-Mundy (1994) in a case
study of one student’s understanding of limits noted several instances in which she
referred to points moving along the curve, but not quite reaching the limit point.
Williams (1991) found that all ten students in his study, at some point, believed that
limits involved motion along the graph.
Summary

The tables and graphs presented to students in the interview tasks of the current
study were carefully constructed so that the content and format of each representation
largely matched those in the course textbook (Stewart, 1995). The excepﬁons were to
include the “ordered pair” of interest in each table, and to order table x-values from
smallest to largest, to aid in comparison of tables and graphs. Some graphs were
provided in a “by-hand” format and others in a “by-calculator” format. Follow-up
questions were designed to elicit students’ methods of interpreting numerical and
graphical evidence to determine limit situations.

Limitations of Numerical and Graphical Evidence

Several limit tasks from the literature and from the course textbook (Stewart,
1995), focusing on both mathematical and technological limitations, were adapted for the
current study. Typically such tasks involve presentation or generation of conflicting
information, with the hope that mathematical resolution of the conflict will result in a

more correct, i.e. more formal, understanding of the limit concept. Students’ reactions to
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such tasks have been documented in other studies, and contributed significantly to the
adaptations of tasks in the current study.
Mathematical Limitations

Two of the interview tasks in the current study included tables or graphs that were
intentionally misleading, due to mathematical limitations. A mathematical limitation
arises when idiosyncrasies of the function are improperly accounted for in producing a
table of values or a graph. This occurs when attention is restricted to x-values
insufficiently close to the point of interest, or when a poor sample of x-values yields a
non-representative table or graph. Such tasks have appeared in the literature (Williams,
1991) and also are contained in the course textbook (Stewart, 1995).

Insufficiently close x-values. One interview task, adapted from Williams (1991),
provided a rational function with a vertical asymptote at x =0 which was not apparent in
the given table aﬁd graph, due to x-values chosen too far from 0. The objective was to
predict the existence or non-existence of a limit as x approached 0. In this case, the
limitation imposed by x-values insufficiently close to 0 manifested itself in the calculator-
based graph as well as in the table, although in the graph, this was also tied to pixel
limitations. Williams’s version presented only the table and the formula, each initially
independent of the other. After his students had reached contradictory limit conjectures,
he informed them that the formula matched the table. Some rejected this, and others
automatically changed their (correct) formula-based conjectures to match their table-
based conjectures. The adaptation for the current study presented students with the
formula, table and graph of the function, in the interest of determining whether the

presence of all three representations would assist students in recognizing the misleading
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nature of the table and graph.

Poor sample of x-values. One interview task, adapted from an example in the
course textbook (Stewart, 1995), provided students with the function sin(1/x), and a table
and graph to use in predicting the limit as x approached 0. The table was misleading in
the sense that all negative x-values had corresponding y-values of 1, and all positive x-
values had corresponding y-values of -1. Stewart’s version presented function values that
all turned out to be 0, generated using “typical” x-values approaching 0, such as .1, .01,
.001, etc. The adaptation for the current study used a different table, in the interest of
seeing whether students would reject it, and produce their own function values using the
“typical” x-values.

Technological Limitations

Three interview tasks included poor tables or graphs, due to limitations of the
graphing calculator. Both subtraction inaccuracies (Tall, 1992) and pixel limitations
(Tall, 1990) have been cited as primary causes of poor tables and graphs that need to be
pointed out to students. In addition, the course textbook (Stewart, 1995) contains both
examples and exercises intended to elucidate these points.

Subtraction inaccuracies. One interview task, adapted from an exercise in the
course textbook (Stewart, 1995), raised the issue of subtraction inaccuracies. Subtraction
errors occur when two numbers very close to one another are subtracted. If two numbers
with identical decimal expansions past the carrying capacity of the calculator are
subtracted, the calculator will erroneously compute the difference as 0. Subtraction
inaccuracies can manifest themselves in both calculator-based tables and in calculator-

based graphs. This led to two adaptations of Stewart’s exercise for the current study, one
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numerical and the other graphical.

Pixel limitations. Two interview tasks (described in the section on mathematical
limitations, adapted from Stewart (1995) and Williams (1991)) raised the issue of pixel
limitations. Pixel limitations occur when interesting function behavior is “hidden”
between two pixels on a calculator-based graph. In one case, a graph with highly
oscillatory behavior near the y-axis was only somewhat well-represented, and in the other
case, a vertical asymptote at x = 0 did not appear on the graph.

It is possible for pixel limitations to manifest themselves in calculator-based
tables, if the tables are generated from x- and y-coordinates displayed while using the
trace feature. Such tables were not presented in any tasks in the current study, but
students’ propensity to use the trace feature to generate numerical informatiop was
tracked. This is an attempt to address Lauten, Graham and Ferrini-Mundy’s questions
(1994) about whether a tendency to trace along a curve creates difficuity in interpreting y-
values as vertical distances on graphs, or whether it contributes to an image of ordered
pairs as points moving along a curve.

Reactions to Mathematical Conflict

The current study’s tasks on limitations of tables and graphs intentionally
presented mathematically conflicting information. These mathematical conflicts were
explicitly pointed out to students, and practical (non-mathematical) resolution of those
conflicts was discouraged. Each task in this study was introduced and motivated with a
short paragraph suggesting that resolution of unexpected or conflicting information might
be necessary in determining a limit situation based on a table or graph. When a task

presented conflicting information, this was explicitly stated. This was followed by
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questions asking for explanation of the conflicting information either on the task itself or
in subsequent interaction. In addition, students were asked if the given table and/or graph
could be augmented, modified, or “fixed” in such a way that the conflict was resolved.

This approach to mathematical conflict was based on difficulties other researchers
have had with provoking mental conflict and mathematical resolution. Williams (1991)
investigated second semester calculus students’ understanding of limits of functions by
attempting to provoke conflict, and found that provoking conflict was extremely difficult
to accomplish due to students’ beliefs that mathematics is a collection of arbitrary and
disconnected facts, formulas, rules and procedures, with no real cohesive harmony.
Moreover, on the few occasions when conflict was evoked, students responded in
unexpected ways, for example, by deciding that the conflicts represented anomalous
circumstances, and so they need not concern themselves with resolving the conflict.
Sierpinska (1987) used this same approach with similar results, suggesting the
modification employed in the current study.
Summary

The interview tasks in the current study were designed to point out several
different causes of limitations of both numerical and graphical evidence in analyzing
limit situations. This involved presenting conflicting representations and requiring
students to analyze and resolve the conflicts. Table 2 shows the instances of poor
representations presented to students over the course of the four interviews, and the

causes of each.



Table 2

Numerical and Graphical Limitations Present in Interview Tasks

Representations
Causes Graphs Tables
Mathematical limitations
Insufficiently close x-values + +
Poor sample of x-values +
Technological limitations
Subtraction inaccuracies + +
Pixel limitations +

Notre. Each + indicates that the associated limitation was presented using the associated
representation in at least one interview task.
Intuitive-Analytic Limit Conjectures

To evaluate students’ acquisition of the fourth element of intuitive-analytic
understanding of limits, the final interview task in the current study was designed to
detect whether students would spontaneously produce multiple sources of evidence in
determining a limit situation. In fact, students had the opportunity to determine the limit
situation for certain, using the Squeeze Theorem, allowing questions eliciting students’
beliefs and understanding about the mathematical certainty of their evidence.
Multiple Sources of Evidence

Students in the current study were given only the formula of a function with
highly oscillatory, damped behavior around the origin, and asked to determine the limit

as x approached 0. Some researchers have found that students often rely on only one
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source of evidence in making a limit conjecture, with a strong preference for ad hoc
analysis of the function formula (Williams, 1991), or analysis of the graph (Ervynck,
1981; Lauten, Graham & Ferrini-Mundy, 1994, Williams, 1991). Thus, the final
interview task in the current study was designed so that if students produced only one
source of evidence, they were asked to produce more evidence, either supporting their
original conjecture or suggesting a modified conjecture.
Mathematical Certainty
Students were asked in several different ways how certain they were about their

answer. First, students were asked to respond to two multiple-choice questions:

(1) How certain are you that your conclusion is correct?

___ absolutely certain

___fairly certain, but there is room for doubt

_—__not at all certain

(2) How certain do you expect everyone else should be that your

conclusion is correct?

_ absolutely certain

___fairly certain, but there is room for doubt

__not at all certain
These multiple-choice questions were inspired by Mason, Burton and Stacey’s approach
(1982, as cited in Tall, 1992) to eliciting increasing levels of conviction from students
about their conjectures. The choices were adapted from Fishbein, Tirosh and Melamed’s
questions asking students for their level of confidence about conjectures involving the
notion of infinity. Second, students were asked whether they felt they had produced an
estimated guess or had determined the limit for certain. Finally, students who expressed
doubts were asked to explain the source(s) of their doubts.

It was anticipated that students might not articulate their sense of certainty or

doubts in terms of the mathematical soundness of their methods. This expectation

24



stemmed from other researchers’ observations about students’ perceptions of
mathematical truth. Williams (1991) found among students in his study that,
It was an article of faith that no general description of limit worked for all
cases: “T don’t think there is a definition that is going to fulfill every
function there is.” Mathematical truth, then, was truth for particular cases
(p- 232).
He also found that some students held incomplete, but very robust conceptions of limit
which could be reconciled with many counterexamples “by considering them either as
exceptions or as cases to which limits would not apply” (p. 232). Lauten, Graham and
Ferrini-Mundy (1994) and Ferrini-Mundy and Graham (1994) had similar findings.
Summary
The interview tasks in the current study culminated in a problem designed to
detect students’ spontaneous methods for determining a limit situation, and to elicit their
beliefs about the mathematical certainty of their methods. Sources of each student’s
apparent certainty or doubt were sought as comparisons to those revealed in the existing

literature.



CHAPTER 3
Method
This research employed a qualitative design involving four interviews with each
of 10 first-semester calculus students. During each interview, students worked on
mathematical tasks involving ideas related to limits. The primary data consist of
students’ written work and oral comments elicited during the interviews. These data
were analyzed for patterns of analytical thinking and knowledge use employed by each
student, within each interview and across all four interviews.
Participants
Sampling
Participants were students in a single section (128 studenﬁ) of a first-semester
calculus class (described below) at a large comprehensive state university. Students were
selected on the basis of a background questionnaire (see Appendix A) given during the
first week of the fall 1998 semester. The background questionnaire asked students to
indicate previous mathematics courses, experience with graphing calculators, experience
with the topic of mathematical limits, and whether they would be “willing to participate
in a study about how first-semester calculus students develop an understanding of

mathematical limits”. The criteria for selection, in addition to a willingness to



participate, were
(a) no previous calculus course, or
(b) little to no experience with the topic of mathematical limits (determined by a
response of: “none”, “briefly introduced”, or “I have learned the techniques but no
theory” to the questionnaire item asking about prior experience with the topic of
mathematical limits. )
Among the 46 students indicating a possible willingness to participate, 24 students
satisfied one or both criteria above, and were given more information about the study (see
Appendix B). Of these 24 students, 14 agreed to participate in the study, and 10 were
included in the final sample'. Among these 10 students, 5 were enrolled in the
researcher’s assigned discussion sections, and S were students in another teaching
assistant’s discussion sections’. |
Protection of Human Subjects

The use of human subjects in this research was approved (see Appendix C) by the
University of Oklahoma’s Institutional Review Board.

To protect their confidentiality, subjects are not identifiable from raw or refined
data. Subjects’ names and student identification numbers on the background
questionnaires were removed. Each student was assigned a numerical code, which was
the only identifying code on his or her background survey, written interview work, and

audio cassette labels. In addition, each student was assigned a pseudonym to be used in

! Four students were dropped. Two could not schedule their first interviews within the
third week. One student was not a native speaker of English, making it difficuit to
distinguish his language problems from his mathematical difficuities. The fourth student

exhibited extraordinary difficulty with even very basic questions, suggesting he was
inappropriately placed in calculus, and thus not 2 member of the population of interest.



this dissertation and any subsequent publications.

Subjects in this study were volunteers. To assure them that refusal to participate
would involve no penalty to their course grade, students were informed of this three
times: on the background survey, information handout, and consent form (see Appendix
D). To support the assurance that students need not fear grade penalties, they were
informed on the information handout that the course instructor would not know the
names of the study participants.

Subjects were informed both on the information handout and the consent form
that time devoted to the interviews might cost them study time. They were assured that if
they felt the time commitment was having a negative impact on their course work, then
they were free to discontinue their participation, with no penaity to their grade.

Course Description

This course followed a lecture-discussion format. Fifty-minute lectures were
presented to the entire class on Mondays, Wednesdays and Fridays by a full professor,
and 50-minute discussions were held for groups of 20-25 students by the researcher and
another graduate teaching assistant. All six discussion sections met between the
Wednesday and Friday lectures, primarily to discuss homework, which was collected
weekly on Fridays. Specific emphases varied from one discussion section to another
each week, depending on students’ questions.

Course topics roughly followed those in the textbook, Stewart’s Calculus, 3
edition (1995). A review of functions was presented over the first five lectures. Then the

tangent line and velocity problems were introduced, which motivated the limit concept.

2 Each teaching assistant was responsible for grading homework of his/her own students.
Overall, these homework assignments counted 5% towards students’ final course grades.
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The limit concept was first treated informally, followed by limit laws. The €-8 definition
of a limit was not covered. Then concepts of continuity and differentiability were
presented, followed by applications of derivatives.

Graphing calculators were required of all students in the course, and were used
during lectures and discussions, primarily to compute function values and draw graphs of
functions, often in tandem. Graphs and numerical data were nearly always analyzed in
terms of expected behavior, function properties and the limitations of technology. The
textbook supported the use of graphing calculators by presenting examples and exercises
that illuminated their advantages and disadvantages. Graphing calculator-based
homework problems were assigned on a regular basis to reinforce these ideas.

The professor was approached before the study for ;)ermission to conduct the
study with his students. This particular professor was known to use graphing calculators
in previous semesters, and in particular, to focus attention on their weaknesses. He was
informed that the study would investigate students’ intuitive notions of the limit concept
through interviews and would require no effort on his part. Initially, he expressed
reservations about how helpful his instruction would be to students involved in such a
study, since he had no intention of covering the € definition of limit, and didn’t really
perceive his instruction in this course to involve “teaching limits”. After assurances that
only intuitive limit ideas were being investigated, and that the omission of the e-0
definition of limit would not negatively impact the study, he agreed.

He was not requested to design his instruction or tailor homework assignments to
parallel tasks in the study. He did see the tasks in the study, but not until the third week

of lectures, when the first interviews were already in progress, and most of the material



on intuitive limit ideas had aiready been presented in the course.
Interview Tasks

Four sets of tasks were constructed, evolving from examining local behavior of
functions to conjecturing the existence or non-existence of specified limits, based on
tables or graphs, in increasingly difficuit situations. The four interviews roughly
followed the four elements of intuitive-analytic understanding of the limit concept, with
each interview focusing on one or more of these elements. Graphing calculators were
allowed on the last three sets of tasks.

Several common threads linked the tasks to one another. First, consistency and
representativeness of graphs, tables and formulas were emphasized throughout. Second,
numerous examples of local function behavior were provided, but for most limit
situations, the functions were n(;t defined at the point in question. Third, each task was
introduced with a motivating idea.

Interview 1 — Multiple Representations of Local Function Behavior

This interview focused on the first element of intuitive-analytic understanding of
limits, namely, the ability to analyze functions locally in both graphical and numerical
settings. The objectives were to examine students’ methods of recognizing the same
local function behavior in graphical, numerical, and symbolic representations; and
determine students’ preferences for graphs, tables, or function formulas.

The task (see Appendix E) involved five three-way matching problems. Students

were given formulas for five functions, all undefined at x = 3, but with different behavior

nearx=3:

=L
fR=—
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1
gx)= G_3y

x*-5x+6

Ay = x-3

_Jx=2 if x<3
”(x)‘{x-s f x>3

. 1
(x)= Sm(;:;)

Students (a) chose which graph (among 8 choices) matched each function, (b) chose
which table (among 8 choices) matched each function, and (c) explained in 3-5 written
sentences how they chose the graph and table for a particular function.

There were five versions of this task: in part (c), each student explained his or her
reasoning for only one of the five functions. All tables contained the same x-values,
starting with x = 2, ending with x = 4, and intermediate x-values approaching 3. Each
table matched one of the graphs, so it was possible to match a table and a graph, and for
neither to match the formula.

The first of two questionnaires was given at the end of thxs interview. Four
multiple-choice items comprised this questionnaire (see Appendix F), each requesting a
brief explanation. These items asked for preferences for graphs, tables, or formulas; and
for beliefs about the usefulness of these representations when describing a function to a
fellow student.

Interview 2 - Intuitive Limit Conjectures and their Qualifying Factors

This interview focused on both the second and third elements of intuitive-analytic

understanding of limits. First, the ability to draw correct intuitive limit conclusions from

accurate graphs and tables was addressed. Second, the possibility was raised that graphs
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and tables can be inaccurate. The objectives were to explore how students conjectured a
limit’s existence or non-existence based on a representative graph or table; examine how
students decided whether a graph or table represented the true nature of a function’s local
behavior; and determine if students recognized causes of poor graphs or tables.

Two different tasks were given, each designed in graphical and numerical
versions (see Appendices G and H). Students completed either the graphical versions, or
the numerical versions of both tasks. The first task®, presented a representative graph
(table of ordered pairs) of a rational function, without the function formuia. Students (a)
conjectured the existence or non-existence of three limits, and (b) for each potential limit,
either conjectured a limit value or explained why the limit did not exist.

The second task* presented three graphs (tables of ordered pairs) of the function

g(x) =2(%-_{,
X

along with the function formula. Only one graph (table) represented the true nature of the
function near the origin. Students (a) chose the most representative graph (table), (b)
determined what the chosen graph (table) implied about the limit as x approached 0, and

(c) explained how the other graphs (tables) misled them about hx_rg g(x).

Interview 3 — Multiple Representations of Limit Situations
This interview continued the focus on the third element of intuitive-analytic
understanding of the limit concept, and began to focus on the fourth element. Here, the

possibility was raised that graphs and tables can be inconsistent with one another, or

3 This problem was not explicitly adapted from any source, but is quite similar to several
?toblems in the textbook, (Stewart, 1995).

This problem was adapted from an exercise in the textbook (Stewart, 1995). See
Discussion 4 in Appendix O for Stewart’s version.
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consistent with one another but still inaccurate. In addition, the issue of multiple sources
of evidence to justify a limit conjecture was introduced. The objectives were to examine
how students decided, in light of conflicting or consistent representations, when a graph
or table represented the true nature of a function’s local behavior; and see if students
generated new and better information about particular limit situations in the face of poor
and conflicting information.

Two tasks comprised this interview (see Appendix I). In the first task’, students

1(x) = sm( 5) ,
p <

a misleading table of ordered pairs, and a fairly representative graph of a function. The

were given the formula

table and graph clearly contradicted one another. Students (a) decided if the table was
representative, (b) decided if the graph was representative, and (c) decided what was true

about l,i_i"}t(x) .
In the second task®, students were given the formula

h(x)=x+1+

10®x’

a misleading table of ordered pairs, and a misleading graph of a function. The table and
graph did not contradict one another, except at the point at which the limit was to be
determined. Students (a) decided if the table and graph contradicted one another, (b)
decided if the table was representative, (c) decided if the graph was representative, and

(d) decided what was true about lix_xgh(x) .

S This problem was adapted from an example in the textbook, (Stewart, 1995).
$ This problem was adapted from a task given by Williams (1991).
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Interview 4 — Intuitive-Analytic Limit Conjectures

This interview focused on the fourth element of an intuitive-analytic
understanding of limits, namely the ability to produce multiple sources of evidence to
justify a limit conjecture, and know whether this evidence leaves room for doubt. The
objectives were to describe students’ chosen strategies in analyzing a limit situation; and
evaluate students’ convictions about their conjecture, and about the value of intuitive
limit ideas in analyzing limit situations.

The task involved one multi-part problem’ (see Appendix J). Given just the

f(x)=x* cos(l) ,
X

students decided what was true about li_%;f(x). producing their own evidence. In

function formula

addition, students indicated whether they were convinced their conjecture was right, and
whether others should be convinced their conjecture was right. In the event that students
failed to produce multiple sources of evidence to justify their conjecture, they were asked
to produce additional evidence to either support their original conjecture or to indicate
that their original conjecture should be modified.

The second of two questionnaires was given at the end of this interview (see
Appendix K). This was a follow-up to the first questionnaire, with four parallel items.
These items asked students for their preferences for graphs, tables, or function formulas;
and for their beliefs about the usefulness of these representations when making educated

guesses about limit situations.

7 This problem was not explicitly adapted from any source, but is quite similar to several
problems in the textbook (Stewart, 1995).



Data Collection

Random assignment. The five versions of the task in interview 1 and the two
versions of the tasks in interview 2 were counterbalanced, and 14 file folders were
produced, each containing one of the ten possible collections of interview tasks. These
14 collections of interview tasks were then randomly assigned to subjects prior to the first
interview.

Interview protocols. For each phase of interviews, a pre-established protocol was
used (see Appendix L) to ensure timely completion of the interviews and uniformity of
oral instructions and baseline oral questions. The baseline oral questions for the second,
third and fourth sets of interviews were produced after preliminary analyses of the
previous set of interviews. This allowed for follow-up questions and probes to issues that
arose in earlier interviews. In a&dition to following the interview protocols, the
researcher audiotaped each interview, took notes during each interview, and used a
stopwatch to note time periods devoted to task completion, and to interactions.

Class notes. To provide context to students’ responses in the interview tasks, the
researcher took extensive notes during all lectures, writing what the instructor wrote on
the blackboard, describing graphing calculator tasks, writing the instructor’s questions
and especially writing comments indicative of his viewpoints on graphing calculator-
based conclusions.

Data Preparation

Demographics. The background data were summarized by gender and by high

school graduating class. In addition, demographics on the final sample of students and

the entire class were compiled for comparison purposes.
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Transciptions. Interview tapes were transcribed as completely and as accurately
as possible. In particular, all verbal interactions were transcribed, brief pauses (usually
shorter than 5 seconds) were indicated with ellipsis marks (...), and long pauses (usually
at least 5 seconds) were timed with a stopwatch so the length of a pause could be noted.
Students’ recorded comments were compared with their written work and the
researcher’s interview notes, leading to parenthetical remarks within the transcripts
describing students’ actions during the interaction. In some cases, there were brief
periods of audible but indeterminable dialogue. These periods were indicated with
blanks (___).

Content summaries. Class notes were summarized to establish the course content
to which students were exposed prior to each interview. To validate their accuracy, these
summaries were compared to notes taken by the other teaching assistant. In addition, the
content was cross-referenced with students’ actual interview dates, to detect possible
differences due to different content exposure.

Data Analysis
Data Matrices

Three data matrices were designed to help organize the task-response data for
each student. These three matrices (described in detail below) focused on (a) intuitive-
analytic understanding of limits, (b) influence of function knowledge, and (c) influence of
graphing calculator use within each of the four interviews. Each cell of each data matrix
contained relevant evidence about a particular student’s responses, in a particular
interview, pertaining to a specific element of that matrix’s theme.

The evidence in the data matrices consisted of students’ analytical thinking and
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knowledge use exhibited in their written and oral responses, or indicated in the
researcher’s interview notes. Analytical thinking is taken to mean students’ thought-
processes, whether correct and appropriate or not, employed in making decisions during
the course of solving a problem. Knowledge use is taken to mean a student’s collection
of “knowledge”, correct and appropriate or not, on which his or her thought processes
depend.

Matrix on intuitive-analytic understanding of limits. This matrix contained a
column for each interview, and 2 row for each of the four elements of intuitive-analytic
understanding of limits. The first interview did not address the second, third, or fourth
elements of intuitive-analytic understanding of limits. The second interview did not
address the fourth element of intuitive-analytic understanding of limits. Thus there were
four empty cells in this matrix. |

Matrix on influence of function knowledge. This matrix contained a column for
each of interviews 2, 3, and 4, and four rows addressing the sub-questions of research
question 2: (a) analysis of local behavior, (b) consistency among representations ()
accuracy of representations, and (d) evaluation of the influence of function knowledge.
A separate cell with data from interview 1 provided context for the data on function
knowledge in subsequent interviews.

Matrix on influence of graphing calculator use. This matrix contained five
columns, one for each task on which a student might have used a graphing calculator:
task 2 of interview 2, tasks 1 and 2 of interview 3, questions 1-3 and questions 4-6 of
interview 4. The four rows addressed the sub-questions of research question 3. Each cell
of the first row indicated whether and when the student used graphing calculator, by
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marks in a checklist: none, before writing, during writing, and/or after writing (during
interaction). Each cell of the second row described how the student used the graphing
calculator and whether those uses were spontaneous or prompted, by marks in a checklist:
draw graph, set window, zoom in/out, trace, other, compute values, unknown use. The
third row was devoted to a written description of the order of events for that task.

Finally, the fourth row was devoted to evaluation of the influence of graphing calculator
use.

Detection, Validation and Use of Patterns

By student. For each student, data were examined within the three task-based
matrices to generate preliminary categories of analytical thinking and knowledge use.
These preliminary categories were modified and refined by re-analyzing the written
work, transcripts, and interview notes to identify supporting or contradictory data.

Each sm;ient’smponmtothetwoqmﬁonnaixm were transferred to a fourth
data matrix for comparison of responses to parallel questions. Relevant transcript data,
whether supportive or contradictory, were included in the matrix to allow a comparison
of questionnaire responses to spontaneous comments during the interviews.

Across students. The three sets of task-based data matrices were analyzed in a
three-step procedure. First, the data were analyzed within interviews. Patterns of
analytical thinking and knowledge use within each interview provided evidence
addressing the research objectives underlying that interview. Second, the matrices were
analyzed within matrix sub-themes. Patterns of analytical thinking and knowledge use
within each matrix sub-theme provided evidence addressing the sub-questions of the

overall research questions. Finally, the evidence accumulated in the first two steps was
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analyzed to detect emerging relationships between the answers to the sub-questions,
providing a plausible picture of these students’ intuitive-analytic understanding of limits,
and the influence of their function knowledge and graphing calculator use on this

understanding.

39



CHAPTER 4
Data Summaries

Data are summarized in three sections, beginning with data from the background
questionnaire. Interview data are summarized by interview, and illustrated using
individual students’ responses. Finally, interview questionnaire data are summarized by
item.

| Students’ Backgrounds

Data from the background questionnaire (Appendix A) are presented in Appendix
M. Each table reports demographics by gender and high school graduating class, and
includes totals for the entire course and for the final sample of students in the study.

Relative to the entire course, several biases appeared in the final sample, some
unintentional and others due to the selection criteria. First, the final sample was
unintentionally biased in favor of male participants, against engineering majors, and in
favor of little graphing calculator experience, as is shown in Tables M1, M2, and M4,
respectively. Second, the final sample was intentionally biased towards students with no
prior calculus courses, and with little experience with limits, as is shown in Tables M3
and M6, respectively.

On the remaining questionnaire items, the distributions of responses were roughly



comparable for the entire course and the final sample. In particular, both groups were
primarily freshmen with few indicating an intention to major or minor in math (see Table
M2). Most students expected the graphing calculator to be very helpful to them in
learning calculus, liked computers and calculators a lot, felt they had average to high
aptitude with computers and calculators, and felt they had average to high aptitude with
math (see Tables M4, MS and M6).
Interviews

Interviews were conducted between the third and eighth weeks of the fall 1998
semester (see Appendix N for a schedule). The interview data are presented sequentially.
To provide context for each interview, the course content up to that point in the semester
is briefly summarized (see Appendix O for full details on lecture and homework content).
Overall results for each interview are then presented, along with selected student
responses to illustrate or qualify general conclusions.
Interview 1

Context. The lectures prior to interview 1 involved functions, intuitive limit ideas,
limit laws, slopes of tangent lines, and instantaneous velocity. The graphing calculator
was introduced in the first week with a worksheet (see Appendix P), and from that point
on, was used to compute function values and draw graphs, nearly always in tandem.
Graphing calculator-based graphs were nearly always analyzed with respect to computed
function values, expected function behaviors, or related graphs, often for the purpose of
pointing out the limitations of the graphing calculator.

General results. Students’ approaches to this triple-matching task were
characterized by two elements. First, their formula-based expectations were minimal,
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especially with asymptotic and oscillatory behaviors. Either they did not immediately
recognize a function’s local behavior, or one feature dominated their analysis. Second,
ordered pairs ruled their choices, at least initially. Jason and Brad’s approaches to this
task illustrate these conclusions.

Students’ difficulties with asymptotic and oscillatory behaviors can be seen in

their graph-table choices for the functions

£ =—2 and () =si x—i—3)

Table 3 shows the distribution of students’ triple-matches on this task. Each table cell
represents one of the 64 possible graph-table choices. Graphs (rows) and tables
(columns) are listed so that the eight main diagonal cells represent the eight correct
graph-table matches. In addition, the first five main diagonal cells represent the graph-
table pairs corresponding to the functions f, g, h, p, and ¢, respectively. A letter within a
cell indicates that a student matched that function’s formula with that cell’s graph-table
pair. For example, the upper left cell contains four f’s, indicating that four students
matched the formula for function fto graph C and table H. The table aiso shows initial
choices in parentheses. In every case, an initial choice was changed to a correct choice.

Notice that only four of the ten students selected the correct graph-table pair for
the function f, and two of those four initially chose incorrect graphs. Four students
selected graph A: a piecewise linear graph with a jump at x = 3. Three students (two,
initially) selected graph G, a highly oscillatory graph. One student could not decide on a
graph. The conclusion that students did not expect asymptotic behavior from this
function is reinforced by their apparent success with the function g, which also has

asymptotic behavior.
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Table 3

Distribution of Triple Matches in Interview 1 Task

Tables

Graphs H F A B D G E C Blank

C ffff ®) g

j4:4:4:44
H ) g8
hhhhh
D hhhh | (h)h)
P
PPPPP

E @ | peop

G (XD t 11114

B g

F g t t

A f h fff
Blank f tt

Note. A letter within a cell indicates that a student matched that function’s formula with
that cell’s graph-table pair. Each main diagonal cell represents a matching table and
graph, the first five representing correct matches for the functions f, g, 4, p and 1,
respectively. Letters in parentheses represent initial (or second*) choices. Letters

without parentheses represent final choices.
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Notice that only five students selected the correct graph-table pair for the function
t. One student selected the correct graph, and two others selected the other oscillatory
graph. The remaining two students could not decide between the two oscillatory graphs.
Some students expected oscillatory behavior since the function formula involved the sine
function, but simply guessed between the two oscillatory graphs.

Students’ dependence on computing ordered pairs was evident from both their
problem-solving approaches and their explanations of their choices shown in Table 4 and
Table 5. Nine students actually computed ordered pairs with pencil and paper with at
least one function while completing this task. Five students’ explanations referred to
“plugging in points” or “substituting values”.

Table 4

Written Explanations for Correct Triple Matches in Interview 1 Task

Students Explanations
X) = ———
8(x) =y
Brad To find the graph, I found the graph that skyrocketed as it approached

graph H ‘3’. Since I know that when you take decimals and square them and
table F then divide very small #s by 1 you get huge outputs.

Laura The table I figured out by plugging in points and using the process of
graph C,H elimination. For a while, I though [sic] the graph was C because I
table F figured that the higher the x-value (after 3) the closer the graph would

be to zero. Then (as I was writing this) I realized that the same would
be true with negative values with a high absolute value. Because there
is a a [sic] square in the denominator and a positive number on top the
graph can never cross the x-axis and become negative so it is H. The
numbers really close to 3 result in high values.

(table continues)



Students Explanations
h) = x*-5x+6
x-3

Brandon | ¢ ctored the polynomial into E =52 414 reduced it to (x-2) to
graph D x-3
table A help me find out what the line looked like. But I kept in mind that the

function was undefined at x = 3.

Matt My first reaction was plugin [sic] numbers from tables. Then it was
graph D factored out on top and (x - 3) was cancelled on top and bottom leaving
table A (x - 2). Then I used the table to find the graph.

Paul I factored the function into w I then proceeded to cancel
graph D x-3
table B, A  out the 2 (x-3)’s, leaving me with the equation i(x) = (x - 2). Then, I

plugged in points to find the table and graph, while seeing if the
answers I got made logical sense with what I thought the graph would
look like.
x=2 if x<3
”(x)z{x—.% if x>3

Josh First, I saw that there was a hole at 3. I substituted values for the first
graph E equation and looked it [sic] its graph. Then I did the same for the
table B second equation.

. 1
t(x)= x_-3)

Jason Using the first equation, I noticed that y rose quicker the closer it got to
graph G 3 which would make the period on the last equation shorter as it
table D approached 3.

Mike I used the info that 0.84147 = sinl so I guessed that —0.84147 =sin-1.
graph G Using this I picked table D and by using the stats on table D I chose
table D graph G.
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Table 5

Written Explanations for Incorrect Triple Matches in Interview 1 Task

Students Explanations
1
f(x)= T3
Mark First, I just put the variables into the functions and tried to find the set

graph A of numbers that held true throughout the entire set. After I picked out
table C those, I used them to see if those points matched the lines on the graph.
The t(x) function has me stumped because I just can’t remember what

sin-1 is.

1
(x—-3)?
Alan I tried to simplify the numerator first. Next I substituted x values.
graph C Finely [sic] I made an educated guess as to the graph.
table E

g(x)=

Jason’s approach. Ultimately, Jason made correct matches for each function, but
he had trouble with the graph of f(x) =1/(x-3). He began by choosing graph G, with
the highly oscillatory behavior, for this function. In fact, Jason began the task by
computing ordered pairs: he computed the ordered pairs (0,-1/3), (1,-1/2), and (2,-1), ail
of which appear to be points on graph G. Jason was one of three students who did this.
All three were convinced (at least initially) by their ordered pairs that this was the correct
graph of f.

In explaining his choices for the trigonometric function, Jason appeared to have

made a reasonably good connection between the functions f(x) =1/(x-3) and

1(x) = sin(l/(x - 3)) , writing,



Using the first equation, I noticed that y rose quicker the closer it got to 3
which would make the period on the last equation shortter as it aproached
[sic] 3.
But there were two oscillatory graphs, and his explanation does not indicate why he
chose one over the other. When asked about this, he revealed that he wasn’t really sure
about his answer, saying,
I knew it was one of these two [pointing to graphs F and G] and I kind of
guessed it was that one [graph G] because that one looked more like a sine
wave than that one... but I think it may have been that one too. I don’t
know. It was one of the two.
Upon asking him what he meant by “this one looks more like a sine wave”, he replied
A sine wave kind of goes like this: [drawing a graph of sin(x) on [-T, 7]
without axes]... and that one [pointing to graph F], it started out, it kind of
was a W or something.
Essentially, Jason’s focus was on the oscillatory behavior of the function, and he
appeared to apply his knowledge of sin(x) by way of a global comparison with graphs F
and G.

Brad’s approach. Brad made three incorrect choices. Like Jason, Brad selected
graph G for the function f(x) =1/(x—3), based on ordered pairs he had computed.
However, Brad did not recognize this error, and it subsequently caused erroneous choices
for the function #(x) =sin(}/(x—3)).

Upon asking Brad if he was able to use his knowledge of some functions to help
him figure out some of the others, he responded,

I used process of elimination to figure out which one the sine one was.
Because I knew it had to be one of these, either F or G. Since I already
put G for the first one, I just chose this other one, and then I figured out
the corresponding table.

He clearly knew the trigonometric function had to match either graph F or graph G, and
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yet saw no contradiction in having matched graph G to the function f(x)=1/(x~3). In
fact, at no point during the interaction did this occur to him.

Brad’s written explanation of his choices for the function g(x)=1/(x-3)* makes
it clear that his understanding of this function’s local behavior was based on computing
ordered pairs:

To find the graph I found the graph that skyrocketed as it approached ‘3°.
Since I know that when you take decimals and square them and then
divide very smail #’s by 1 you get huge outputs.
In fact, he did compute ordered pairs for the function g as well as for the functions f and
D, the piecewise linear function. At the same time, it is clear that, although he knew the
graph of g “skyrocketed” as it approached 3, this knowledge did not transfer to the graph
of f- Brad’s responses to this task suggest that he has little or no sense of what type of
local function behavior to expect based on a function formula.
Interview 2

Context. At this point in the semester, all of the major limit ideas had been
presented, including limit laws, the Squeeze Theorem, and computation of derivatives
using limits. The graphing calculator had been used in class to point out limitations of
both graphs and tables in predicting limits. Students had just completed the third
homework assignment the previous Friday, which covered intuitive limit ideas both
graphically and numerically. In particular, students saw a problem similar to task 2 in
lecture, and were assigned the textbook problem on which task 2 was based in
homework. See lecture 7 and discussion 4 summaries in Appendix O.

General results. First, in conjecturing limits from tables and graphs, students

initially tended to restrict their attention to particular locations in the table or graph. For



example, with tables, several looked at ordered pairs only to one side of the point in
question, or, even more restrictive, looked at just one ordered pair next to the point in
question. For graphs, some first looked for a point or hole at the pertinent x-value.
Second, many students turned to the graphing calculator to draw a graph to compare to
the given graphs or tables in the second task. These students took the calculator’s graph
as the standard. Third, students’ understanding of the causes of poor graphs or tables was
very vague. They had a general notion that round-off errors would cause problems, and
believed that the calculator could not “handle” small numbers. The effects of these
limitations on numerical computations seemed quite believable (although mysterious) to
most students, but they seemed unable to grasp the effects that computational limitations
would have on the calculator’s ability to draw accurate anci representative graphs.
Students’ written responses to the three limit situations in this interview’s first
task are presented Table 6, Table 7, and Table 8, respectively. Table 6 indicates that all
nine students “correctly” determined the existence of a limit at the removable singularity,
but Mark believed this was simply due to the function being undefined at x = 1. Eight
students “correctly” determined that the limit was 6, but Laura determined this by an
“averaging” process based on the function values in the table closest to x = 1. Table 7
indicates that eight students “correctly” determined the non-existence of a limit at the
vertical asymptote, but most explained this by saying the left hand limit was different
from the right hand limit, with Josh and Paul not recognizing the vertical asymptote.
Mark reiterated his notion that the non-existence of a function value at the point of
interest implies the limit must exist. Table 8 shows some variety in responses, with six

students believing the limit existed at the point of continuity. Mark and Brad decided the
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limit did not exist because the function was defined at x =4. Matt decided the limit did
not exist, based on a hasty perusal of the table: by focusing only on the negative and
(understood) positive signs on the function values, he concluded this was the same as the
previous limit situation. Notice that Laura refers to her “averaging” process used in the
first limit situation, and that Paul seems to have only looked at the limit from the left.
Table 6

Written Responses to Removable Singularity Limit Situation in Interview 2 Task 1

Studenms E DNE Explanation or suggested limit value for IE.’ f(x)
Numerical version
Jason 7 6
Josh 4 6 because the left and right hand limits approach 6
Laura 4 6 both .999 and 1.000 are equal distance from 1 and their
corresponding y values are equidistance [sic] from 6
Mark 4 I think that this exists since at the x-value 1 it is undefined.
The limit is undefined as it approaches from the left and the
right.
Matt v/ The y values approach 6 from both sides
Paul 4 6 As x gets closer to 1, the y values get progressively closer
to 6. At 1, xis actually undefined.
Graphical version
Brad v/ 6
Brandon 6

Mike v/ (/) the whole sic] on the graph at x = 1 tells me that {x) is
undefined at x = 1 (at least I’'m not shown a value on the
graph in this range) but li!_xix=6

Note. E =exists. DNE = does not exist. (v ) indicates an initial choice, later changed.



Table 7

Written Responses to Vertical Asymptote Limit Situation in Interview 2 Task 1

Students E DNE

Explanation or suggested limit value for li’_ng(x)

Numerical version
Jason Y Because lim f(x) # im f(x)
Josh because the left and right hand limits are different
‘lfgx_f(x) closer to +8000 Bf(x) closer to -8000
Laura v/ it looks like there is an asymtopte [sic] at that point and
bm f(x)=c ’lggf(x)=—°°
Mark / I also believe that this exists since it is undefined at the x-
value of 2. The only difference is that the graph does not
continue up, but decreases
Martt v The y values approach different numbes sic] depending on
what side it comes from
Paul V) 4 f
[student’s strike-through] The left and right Himits are not
equal?
Graphical version
Brad (/) ¢  both one sided limits are different
Brandon / The lim is differs [sic] from Gm
Mike the y-value can get as large as desired by taking a value of x

that is close enough to 2 (from the left) and the exact
opposite from the right so 1‘13 is undefined

Note. E =exists. DNE = does not exist. (v ) indicates an initial choice, later changed.

51



Table 8

Written Responses to Point of Continuity Limit Situation in Interview 2 Task 1

Students E

Explanation or suggested limit value for li_ef(x)

Numerical version

Jason v/ 0 [Initially wrote 4, but during interaction indicated he had
been thinking 0]

Josh v/ because the left and right hand limits are the same both
approach 0

Laura v/ 0 for the same reason at [sic] the first question

Mark I don’t believe that this limit exists because as it approaches
4 and when it reaches 4 it has the value zero. This is why I
do not believe this exists.

Matt same as above [Presumably, he is referring to his explanation
for the limit as x approaches 2: The y values approach
different numbes [sic] depending on what side it comes
from].

Paul v/ 0 as x gets closer to 4, the y value becomes a smaller and
smaller negative #. Eventually it will reach 0

Graphical version

Brad at x = 4 there is a y-value; it doesa’t skip

Brandon 0

Mike / as x approaches 4 from both sides f{x) approaches 0 from

both sides lil_l'l}f(x)=0

Note. E = exists. DNE = does not exist.

Students’ written responses to this interview’s second task are presented in Table

9. Although five students selected the “correct” graph or table, namely A, each of these

students relied on a calculator-based graph to determine his or her choice. Three students

could not explain how the other tables/graphs would be misleading.
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Table 9

Written Responses to Interview 2 Task 2

Table/graph
Students A B C lim g(x) Explanation of tables/graphs
Numerical version

Jason Y 1img(x)=0  Irappears that it’s approaching 33 in A and

32inB.

Josh 4 the limit as they suggest the calculator is powerful
x—0o0of g(x)  enough to calculate these small numbers
=1/3 accurately. but it really is not

Laura 4 173

Fable-C:the-values-are-se [student’s strike-
through] Idon’t know

Mark / I think it The other table causes me to believe that this
shows that this limit does not exist and that as x approaches
limit exists. zero that it goes to infinity.

Matt 4 It has a limitof They round off too much
173

Paul / That limit= .3 Table B: & [It doesn’t] show a smooth,

steady upward curve like my graph seems to

indicate. It jumps at some points. Table C:

Shows the graph is practically horizontal,

which isn’t the case according to my graph.
Graphical version

Brad 4 it=0 no clue

Brandon v 4 B-nolimit C-0

Mike v/ because closeto [blank]

x =0 the curve
Ax)isat0
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Paul’s approach (numerical version). Paul’s written response to the limit as x
approached 1 (there was a hole at x = 1) seemed quite reasonable:

As x gets closer to 1, the y-values get progressively closerto 6. At 1, xis
actually undefined.

However, he had difficulty with the limit as x approached 2 (there was an asymptote at x
= 2), initially believing it was 8000. Now it appeared he was only paying attention to one
side of the table, and focusing on the ordered pair next to x = 2. This one-sided bias was
also apparent in his written response to the limit as x approached 4 (there was a root at x
=4):

As x gets closer to 4, the y-value becomes a smaller and smaller negative
#. Eventually it will reach 0.

After writing the above answer, Paul crossed out his expla;laﬁon for the limit as x
approached 2, and wrote:

The left and right limits are not equal?
I questioned why he originally thought the limit existed and what made him change:

Paul: I was looking at it [the limit as x approached 2] too one-sidely, and
well, L, I just recently learned in calculus that the, that the right- and left-
hand limits need to be, need to be the same in order for that limit to exist.
I: Okay.

Paul: And so, in, in all of my recent math experience, I hadn’t been
informed of that, and so

I: Okay.

Paul: I was just looking too narrowly, and just looking as it got close to 2
from one side, because that’s all I ve ever done before

I: Okay.

He: until last week.

His focus on the ordered pair next to x = 2 in the table arose later in response to a
question about the limit as x approached 2 from the left.

Paul: As x approaches 2 from the left, it looks like it gets real large, like
about 8000.



I: Okay, would you say the limit is equal to 8000?

Paul: Um, I'd uh, I suppose so. Yes. Yeah.

I: Okay, now why do you say that?

Paul: Just... maybe for the same reason that I said that, it seems like, like
the closer it gets to 2 it starts to level off at about 8000, because that’s
—____that’s getting closer and closer to that, but it doesn’t exceed.

Essentially Paul treated the table as if it were complete, not thinking to extend the
behavior exhibited in the table to ordered pairs not displayed. When this possibility was
raised, then he re-evaluated his initial guess.

I: What would you expect, so, for example, if I were to stick an extra x-
value and y-coordinate in there

Paul: Mhm.

I: and the x-value is 1.9999, four nines,

Paul: Okay.

I: What would you expect a y-value to be,

Paul: Um

I: based on this graph, uh, based on the table? )

Paul: Based on the table... I would expect, well, looks like I made a
mistake, now that you say that, with respect to, it looks like the decimal
place moves. Um... I would expect it to be [pause of 13 seconds] I don’t
know, get larger? Because it almost, it almost seems now that I look at
this a second time,

I: Mhm.

Paul: that it’s just getting incredibly huge, even as these, these little
numbers

I: Mhm.

Paul: get smaller.

I: Mhm.

Paul: So I would expect it to jump up. It wouldbean _____, so it looks
like I did have it wrong.

I: So, so then, tell me again, so what do you think now about the limit as x
goes to 2 from the left?

Paul: Um, it’s probably infinite.

In the second task in this interview, Paul began by drawing a graph of the function

m -
g(x)= ——(x,) =
x
on his graphing calculator in the window [-5, 5] x [-5, 5]. Initially he was confused by
the graph produced by the calculator, so he checked to make sure that the function was
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entered correctly. It was suggested that he think about what x-values were in the tables,
and he tentatively decided to zoom in at the origin. After zooming in a second time, he
still felt that the graph did not seem to make sense, because the function was supposed to
be undefined at x=0. Then a discussion ensued, largely dominated by the researcher,
about how the graphing calculator draws graphs and that it will draw a few points and
connect them with straight lines, often drawing through holes in the graph. After all of

this (7.75 minutes was devoted to this entire interaction) it came out that he expected a

vertical asymptote at x = 0, based on his observation of the x* in the denominator of the
function formula.
Paul: Yeah, I was looking, I was looking for, like, a, um, something like
this, [draws a pair of axes and small piece of a vertical asymptote to the
left of the y-axis] something that that approached, but didn’t quite get, I
think that’s it
I: [Interrupting] Oh I see, so you’'re thinking maybe there was a vertical

asymptote at 0.
Paul: That’s what I was thinking, yeah.

I: Okay.
Paul: And I was hoping that, yeah.
Now, earlier in the dialog, Paul indicated his intended strategy very clearly:
I’'m going, what I was planning on doing was, um, using, graphing this out
and so decide, and if that proves it, that, that some of the tables can be
misleading. Then, um, look at each of the tables, at some values and try
and get a sense of what the graph looked like it was going to be.
So he strongly expected asymptotic behavior at the origin, drew the graph (perhaps to
ascertain the nature of the asymptotic behavior) intending for the calculator-based graph
to be his standard of comparison, and was derailed by the graph that actually appeared.
After finally accepting that there might be a hole at 0, he was able continue with the task.
Ultimately, Paul chose table A (the correct table) because it matched the graph on

his graphing calculator, saying,
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I chose A because um, because it’s uh, it looked, when I looked at the
graph, it seemed like it was a, it was a steady parabola shape, upwards
parabola shape, and umn, this had the only values that seemed to fit with
that.

He responded to question 3, “How do the other tables misiead you about the liggg(x) ”

by describing graphs that would match those tables, and comparing those imaginary
graphs to his calculator-based graph. When pressed, he responded that table C would
imply the limit as x approached 0 was 0, and ventured that table B might imply the limit
was .3, but he really wasn’t sure.

When asked why the calculator would give incorrect output values, he responded,
Possibly because the calculator just isn’t capable of handling values that
small, or maybe if we, if we zoom in so close in attention, like, extremely
close, or too close, maybe it just starts to do, like, funky things, that, like,
computationally, but when you look at it as a whole, it doesn’t.

About a minute later, he seemed to have a new insight:
“I bet it’s ‘cause, it’s ‘cause the rounding off. The calculator is rounding
off to significant figures, like on, like on how the tangent affects the x,
because these values are a lot smaller, ____.
Paul never seemed to have more than a vague sense that round off errors and lack of
ability to handle small numbers would cause computational problems. He still believed
the graph would be right. The message that tables can be misleading was not lost on
Paul, as will be clear in his responses to interview 3.
Interview 3

Context. At this point in the semester, students had been working on

computations of tangent line slopes, velocities, instantaneous rates of change, and

derivatives using limits. They had taken the first exam, which included four limit

problems, one requiring the computation of values and one requiring the Squeeze
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Theorem. These four limit problems were gone over in lecture after the exam. The
Squeeze Theorem was revisited in order to show
sinx

im—=1,
=0 x

and this result was used to compute limits of other functions involving trigonometric
functions.

General Results. For many students, the calculator-based graph was still the
standard by which they decided whether a given graph or table represented the true nature
of a function’s behavior. At the same time, there is evidence that values given in tables
were rejected outright, but values produced with a graphing calculator were accepted as
true. Students’ did not always generate new information about particular limit situations,
and when they did, it was not always better information. Ultimately, many based their
decisions about limit situations on poor information.

Students’ written responses to this interview’s first task are presented in Table 10.
Notice that each of the three students incorrectly determining the representativeness of
the table and graph initially believed the table was not representative. Even among those
who correctly identified the representativeness of the table and graph, several used
incorrect reasoning to determine that the limit did not exist.

Students’ written responses to this interview’s second task are presented in Table
11. The four students deciding that the graph and table did contradict one another cited
the discrepancy at the origin as their reason. Notice that nearly every student conjectured
that the limit existed and equaled 1. No one except Mike seemed to have any expectation

that this function should have a vertical asymptote at x = 0.
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Table 10

Written Responses to Interview 3 Task 1

Table Graph
Students Y N Y N Response to ‘,i_i‘:‘(‘)
“Incorrect” evaluations of representativeness

Alan o) v It should not be as random as it aproaches
[sic] O.

Laura® ) does not exist lim =1 lim =-1

Mike V) v/ it’s undefined

“Correct” evaluations of representativeness

Brad / 4 it goes to zero

Brandon (v) 4 It doesn’t exist

Jason / / It is undefined because lim #(x) # lim r(x)

Josh / / it does not exist

Mark / / I don’t think that this limit exists because it
is hard to tell from the graph and the table
doesn’t give me any reason to believe it
exists.

Matt / 4 When it approaches O the graph shows the
varience [sic] while the table shows a
straight line that breaks at 0 and continues
on the negative side.

Paul v/ / I think it approaches 0. When I put in

really small decimal values of x into the
equation I get zero, and the graph seems to
ossilate [sic] around that point.

Note. (¥ ) indicates an initial choice, later changed.

*Laura's written response to the representativeness of the graph is unclear.
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Table 11

Written Responses to Interview 3 Task 2

Table Graph
Students Y N Y N Response to Eig}h(x)
Yes: table and graph contradict one another

Brad v/ 4 it=1

Josh WD v/ it approaches 1

Mark v/ v Ithink the limit exists according to the
table, but I am not for sure because of what
the graph depicts.

Paul® 4 v Isupposeitis 1, at least looking at the
apparent limits from the right and left
sides.

No: table and graph do not contradict one another

Alan® 4 / It exists and is approximately y = x

Brandon (/) / That it is 1

Jason / limh(x) =1

Laura / lim =1

Matt v/ / the limit exist. it approaches 1 but is not
defined at x =0.

Mike v/ v/ itis undefined

Note. (V') indicates an initial choice, later changed.
*Josh initially chose Yes, then No, before deciding Yes for the table. ®Paul initially
thought the graph and table did not contradict one another. “Alan initially thought the

graph and table did contradict one another.



Paul’s approach. Paul began by drawing a graph of the function. He responded
to whether the table reflected the true nature of the function by writing, “I doubt it...[his
ellipsis marks]. I’ve learned to rarely trust these values.” As for the graph, he wrote, “I
trust the graph a little more however... [his ellipsis marks]. I believe this to be more
accurate.” His distrust of values in the given table did not, however, extend to values he
produced on the calculator.

Distrusting the given table, he fell into the trap of entering his own values of x, to

decide what was true about li_ilgt(x) , writing,

I think it approaches 0. When I put really small decimal values of x into
the equation, I get zero, and the graph seems to oscillate around that point.

Note that there was no analysis at all of whether the values in the given table or
his own values actually represented the true nature of the function. Moreover, he took
the oscillation around O as “‘supporting” evidence that his conjecture is correct.

Josh’s approach. Josh also began by drawing a graph on the graphing calculator,
but he rejected the table based on his belief that calculator could not calculate the y-
values correctly, saying, A

I looked at the table and I saw that this side was just saying 1, 1, I, 1 and
um, the other side’s saying negative 1, so I thought, because uh, you
know, it can’t be 0, so that’'s why I _____. All the calculator’s doing is
taking really, really, really small numbers close to 0 and probably all the
significant digits are reporting the number that it’s taking the sine of as 0,
so the sine of 0 is going to be 1. So that’s why the graph was reporting
____because, like, it doesn’t have the power to calculate the real digits.

When asked why he thought that the graph did reflect the true nature of the
function, he said,

Because I knew that it was, like, a sine curve and I just kind of looked at it
and thought, since it is a sine curve, it’s going to have up and down,
maximum and minimum spots, kind of thing. It couldn’t be a straight line.
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His reasoning behind his conjecture that the limit did not exist was even more

interesting.

I looked at the graph, and I couldn’t tell by the graph, because it’s all

together, and then I looked at the table, and it looked like it was, you

know, undefined at 0 and it was approaching negative 1 from the right and

approaching 1 from the left, so I just determined it didn’t exist based on

that.
So, despite his earlier conclusion that the table did not reflect the true nature of the
function, he used the table to predict the limit situation. Eventually, he was abie to
describe how the graph was oscillating more and more, why it was doing that, and that it
didn’t seem like you could pick a2 number that it was going to. This insight that infinitely
many oscillations implied the limit did not exist would reappear in interview 4.

Josh exhibited quite different difficulties i the second task of this interview.

After initially misreading the x-values in the table, he decided (correctly) that the graph
and table did match one another except at x = 0. He decided (erroneously) that the table
did match the true nature of the function by comparing it to the graph.

Josh: I just matched it with the graph... and, like, realized that it matched

the graph and everything, except for at 0. [ knew it couldn’t be defined at

0, so,

I: Okay.

Josh: That’s prety much .

I: Okay. Um, okay, so are, uh... Are all of these, these x and y-values,

these are all correct?

He: ... Mmm. Seems so.

I: Okay. Let’s check a few of them and see.
He checked two values on his calculator. Then ensued a discussion of the effect of the
10” term in the formula. When asked if it was possible to make the fractional expression
of the formula very large, he correctly responded, “You’d have to multiply by something

really, really little,” but he had great difficulty carrying this out. He initially changed his
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mind and decided the fraction could not be made larger than 1, re-evaluated and decided
that 102 would create 1, and then repeatedly confused the relative sizes of the numbers
10% and 10®. Ultimately, he did correctly compute the y-value of approximately 2
corresponding to 10" and recognized that 10! would result in an even larger y-value,
hence the table was not reflecting the true nature of the function.

After deciding that function must have an asymptote at x = 0, Josh was asked if it
were possible to draw the graph on the graphing calculator so that the vertical asymptote
would appear. Initially, he suggested zooming in. After some prompting which included
a reminder about the y-value of 2 at x = 10”2, he amended this, saying that a larger y-
range and smaller x-range were needed. Having decided this, he then had trouble
entering the function formula, entering range values, and choosing a suitable viewing
window. Initially he graphed the function on the x-range [-107, 10”7}, which gave what
appeared to be the constant function 1. Then he tried the x-range [-10>, 10>}, which
gave no graph at all. He thought this might be due to the power of the calculator. After
more discussion on the possibility of using the x-range [-10%?, 10"}, he turned to enter
this in the calculator, and asked, “This will be, like, a bigger x-value, right? Than 10 to
the-minus 30, or something like that?” After more discussion about why 10~*° was the
wrong direction to go, he finally was able to draw a correct graph.

At all times in this second task, Josh exhibited a very weak sense of numbers, and
this tremendously hindered his ability to deal with this function. In addition, he had
considerable trouble with the mechanics of entering information into the graphing
calculator. In fact at one point, he asked how to enter a number like 102, According to

his background questionnaire, Josh had no experience with graphing calculators prior to



this course.

Summary. Both of these students made correct intuitive limit conjectures. Paul
correctly based the limit conjecture of 0 on his calculated values of 0 in task 1. Josh
correctly determined the limit situation from the given table of values in task 1; and
correctly conjectured that the limit was 1 in task 2, based on the given table and graph.
That their conjectures were based on bad sources of information was not really clear to
either student in task 1, and quite difficult for Josh to recognize in task 2. Essentially,
these students relied on easy sources of data, and their “supporting” evidence was
minimal.

Interview 4

Context. At this point in the semester, students were finishing the last homework
assignment containing limit problems, which focused on limits involving trigonometric
functions. The Squeeze Theorem had been used in lectures 8, 9, 15, and 16 and a limit
problem similar to the one in this task was given on the first hour exam (between lectures
14 and 15). The lectures at this point were devoted to computations of derivatives, using
the derivative rules.

General Results. Students employed several strategies in analyzing this limit
situation, including deciding what to expect based on the formula, drawing a graph and
computing function values. For the most part, each student’s initial impression
dominated his or her solution. No one used the Squeeze Theorem, although several
students wrote similar ideas. They were aware that their techniques gave them educated
guesses rather than certain answers, and many believed that it was possible to determine

the limit situation for certain, but they did not know how one would go about doing that.



Most students’ doubts stemmed from lack of confidence in their own abilities rather than
from understanding of the lack of mathematical soundness of the techniques they were
using.

Students’ written responses to the limit situation in this task are presented in
Table 12, Table 13 and Table 14. Notice that most students describe the behavior of the
function, or focus on one aspect of the function’s behavior in their initial explanations.
When additional evidence is requested however, several students refer to tables and/or
graphs.
Table 12
Incorrect Written Responses Requiring Additional Evidence in Interview 4 Task

Explanation about h_l‘!‘; f(x) Additional evidence
_ Josh (wrong — wrong)
(+ small #(-1 —+1) as the function’s x value approaches 0, the

The limit does not exist because as you maximum values and minimum values
get closer to 0, the quantity 1/x will get seem to be different because the value of
larger causing the cosine function to just  (x?) will constantly change although the
keep on repeating so then you just cosine function will repeat

multiply the small number squared by the

quantity c“(ux). Zeanad i~

Zowntd T~

(table continues)
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Explanation about lxg f(x)

Laura (right— wrong)

infinity if x =.005 f(x)=1.25x 107
lim f(x)=—= Hm f(x)=c 0 if x =.001 f(x)=5.6x10"
i ifx=.0005 9x10%
-0 if x = .0001 1x10®
lim f(x)=0 ifx=.00005 2x10”

1 if x=.00001 -1x10"°
cm(-;)asx—)Oisbetween-landlbm ifx= 000005 5x10°
x* will be smaller and smaller as x—0 1 x=:000001  -1x10°°
and 3o the value of f(x) will grow if x=.0000005  5x 107
. ingly smaller if x=.0000001 -9x10"

if x = 00000005 5x 10°
there is no limit x > 0" = ﬁx-l.%f(‘t) is
undefined

Mark (wrong —right)

I don’t think that this exists. I feel this
way because by looking at the graph of
the function as x — 0 from the left and as
x approaches zero from the right, I think
that there is a different values for each
one. This is why I do not think that the
limit exists. After zooming in on the
graph it appears that the is [sic] not
continuous and that the limit still does not

exist.

o
N

Something that indicates that I need to
change my conclusion is that the
calculator is unable to portray the true
graph since the values as x — 0 are so
small. This leads me to believe that the
limit does not exist. Knowing that this is
possible it causes me to believe that the
limit does exist. If I also put values in that
become closer to zero I find that I get y
values getting closer and closer to zero.
This also helps me believe that there is a
limit.




Table 13

Correct Written Responses Requiring Additional Evidence in Interview 4 Task

Explanation about h‘_z.z.} f(x) Additional evidence
Jason (right —right)
I'think im f(x) =0 because as x -lSw{-l—JSI and the graphing
x

approaches 0, x* approaches 0 and 0

) calculator appears to approach O too. If
times any thing is 0.

you put numbers in for x that approach 0,

fUx) approaches 0.
Mike (right—right)
f=x -l-) ) Y
A A x S -.10403
1 -.00839
x drives this part to o .001 562x 107
if x—0 .0000001 -9.072x 10°'S
cos keeps cu{—l-) between ,,P)\
x N .
1and -1 \ \ /
x* drives function to zero \ > —
as x—0 \
Y
so lim sheuld-be-clese-to-zer0 =0 Yo geb clorer
vy zevo
Paul (right —right)
. . 1 I graphed out this function and found that
I think that the limx —{=0,
=0 x y is undefined where x =0. That makes

because the x? term in front of makes sense. But on either side of O, at a very
small value of x, I see that y equals a very

small number as well.

whatever value you get out of coa[i-]

very small.
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Table 14

Correct Written Responses in Interview 4 Task

Explanation about lgg f(x)

Brad
lim=0

=0
1) I manually pluged [sic] in small numbers
2) graphed it and zoomed in a lot

Brandon

li_tgxzco{-l-)=0 I conclude as x gets smaller and smaller at points very close to 0 the
x x

y value get very close to O and it is true for the other side because cos x = cos(—x) and

(~x)? is the same as x*

Matt
I believe the li_rgf(x) is 0. When x becomes smaller the x* also becomes a very small

number and by multiplying it with cos }J/t then a small number is retumed.

Students’ responses to questions 2 and 3, and if applicable, questions 5 and 6 are
presented in Table 15. Each cell in the table represents one possible combination of
responses to questions 2 and 3 (rows) and to questions 5 and 6 (columns). For example,
Jason initially responded that he was absolutely certain (A) of his own conclusion and
that everyone else should be fairly certain (F) of his conclusion. After producing more
evidence, Jason at first responded the same way (A-F) but changed his mind and

responded A-A, believing now that everyone else should be absolutely certain of his
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conclusion. Notice that “fairly certain™ was the “favorite” response.
Table 15

Student Certainty of Conclusion Correctness in Interview 4 Task

Later certainty
(self-others)
Early A-A A-F F-A F-F N.A.
certainty
(self-others)
A-A Laura: r—>w
A-F Jason: r—r (Jasomn) (Josh)
Mike: r—r

F-A Brad: r
F-F ~ (Mike) Mark: w—r Brandon:r

Josh: w—ow Matt: r
F-N Paul: r—r

Note. A=absolutelycertain,F=fairlyccnain,N=notatallcerﬁin,NA. =not
applicable. Names in parentheses indicate initial choices, later changed.

Josh's approach. Josh’s approach was dominated by his newfound knowledge
that infinitely many oscillations meant the limit could not exist. He began by drawing a
graph on the graphing calculator, and zooming in. He wrote quite a bit, and drew the two
graphs (see Table 12) he produced on his calculator.

(+ small #)(-1 —+1)
The limit does not exist because as you get closer to 0, the quantity I/x
will get larger causing the cosine function to just keep on repeating so then
you just multiply the small number squared by the quantity cos(l/x).
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It seemed that Josh both understood the local behavior of this function near the origin,
and did not understand how this related to the limit situation. To understand this better,
Josh was asked about the graph.

I: Okay. So, what does the graph on the calculator lead you to believe?
Josh: It makes you think that, just as you get closer, well, I graphed it on
the calculator, and it looks like it’d be approaching somewhere just below
the x-axis,

I: Okay.
Josh: like, ___, or some small number. Then I zoomed in, and it looks
like it’s just going to repeat, keep on bouncing up and down.

I: Okay. How many times do you think it’s going to bounce up and down?
Josh: Probably an infinite number of times.

I: Okay.

Josh: Cosine is just going to keep on repeating.

I: Okay. K it bounces up and down infinitely many times, is it, is it
bouncing up and down to the same values at the top and bottom?

Josh: ... No, because you’re multiplying your, the cosine of it, even
though your cosine is repeating, you’re still multiplying by a smaller, a
different x-value as you’re

I: Mhm.

Josh: x is getting... constantly changing.

I: Okay. So, what is it that makes you think that the limit does not exist?
Is it that bouncing up and down that makes you think it doesn’t exist?
Josh: Pretty much, because that’s, that’s the thing. It just says, I got close,
but even if I took smaller and smaller values, it’s never going to getto a
certain number

I: Okay.

Josh: because the smaller numbers you take, it’s going to just

I: Okay.

He: It’s different on each side.

After asking Josh to continue with the problem, he graphed the function in the
window [-5, 5] x [-5, 5] and zoomed in four times, concluding that his original conjecture
was correct. He described the apparent lack of a curve in a neighborhood of 0 as being
possibly due to the calculator’s limited ability to handle small numbers. At the same
time, he acknowledged that the graph was “acting like it’s so close to the x-axis you can’t

see it,” and that it was still going up and down towards 0 but very close to the x-axis,
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“because your x-squared is making it get smaller and smaller.” He correctly indicated

that, based on the graph alone, the limit would be 0, but followed this with,

I still think it does not exist because your, the cosine formula is just going
to keep on repeating, so it’s not really going to a set value... and you're
just changing the ___ by a small x-value.

How does he reconcile these two things? This was revealed at the end of the interview.
I: Do you understand the limit situation now more, or less, or about the
same after you tried to generate additional evidence?

Josh: Mmm. [ understand it more, because I just went back and looked at
that again and made sure that, you know, as I got closer, and then I looked
at the calculator and that helped me because I figured that thing just can’t

compute the real small, because when I zoomed in four times,

I: Mhm.

Josh: from arangeof -5 ____.

From Josh’s perspective, the graph helped him by convincing him that the graphing

calculator could not give him a good graph, and therefore, he could safely ignore the

graphical evidence and rely on his initial impression.
Paul’s approach. Paul started out with an initial guess that the limit was 0, based
on his analysis of the function formula, writing

I think that the li_:gx’cos{—l-]=0,becausethe x? term in front of makes
x x

whatever value you get out of cos[l] very small.
x

It’s not clear from this that he understands the boundedness of the cos(1/x) is a
consideration. In any event, after making his initial conjecture, he computed three values
before being convinced.

In answering questions 2 and 3, Paul indicated that he was fairly certain of his
conclusion, but thought everyone else should be not at all certain. When I asked him

where the doubts come in, he responded, “I really don’t know what I'm doing”, “I know
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that just plugging in values doesn’t always work”, and “T know that there is different
ways to look at things and I just focused on the one that I see, which one’s obvious.”

In the second part of the task, he immediately tumed to the graphing calculator to
draw a graph, zoomed in four times and traced, writing,

I graphed out this function and found that y is undefined where x = 0.
That makes sense. But on either side of 0, at a very small value of x, I see
that y equals a very small number as well.

I asked him if the graph was a surprise to him or was he expecting what he saw?

Paul: It was... I thought I knew what the limit was, as x approaches 0, but
the rest of the graph seems kind of, I didn’t exactly know what to expect
as far as what the whole graph looked like, but I don’t know where it
seemedto .

I: Okay. So how would you describe the way that the graph behaves
overall?

Paul: overall?

I: Yeah.

(Pause of 10 seconds)

Paul: Idon’t know. It just seems to oscillate, like a smaller and smaller
I: Uh huh.

Paul: period,

I: Yeah.

Paul: until it, until it gets to the, to the 0 point where it, and then it, it
doesn’t exist there.

I: Okay, so what is it about the function formula that, that leads you to
believe that’s the correct way for the graph to behave?

Paul: that’s the correct way for the graph to behave... Um... um, this
number right here, of x, um, affects the, the range of the function and as it
gets smaller, then the range probably should as well,

I: Okay.

Paul: as well as the fact that it’s undefined at 0 which this graph __ .

Notice, that Paul did not comment on the cos(1/ x) piece of the function formula, or on
how the oscillations came to have “smaller and smaller periods”. This element of the
function seems to be either irrelevant or very mysterious to him.

Summary. Both Paul and Josh started out with an expectation that dominated

everything else. Paul focused the damping effects of the x> term, and Josh focused on
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the oscillatory effects of the cos(l1/x) term. Each of them made correct intuitive limit
conjectures, but in Paul’s case, he initially used only three function values, and Josh
simply rejected his graphical evidence. Beoth initially produced only one other source of
evidence.
Questionnaire Data

All 10 students completed the first questionnaire' (see Appendix F) at the end of
interview 1 (week 3), and 9 students completed the second questionnaire (see Appendix
K) at the end of interview 4 (week 8). There were differences between the first and
second questionnaires on both preferences (items 1 and 2) and beliefs (items 3 and 4).
First, an overwhelming initial preference for graphs changed to a preference for function
formulas. Second, early beliefs that graphs, tables and formulas suffice to describe a
function were replaced by beliefs that graphs and tables could be mlslwdmg Details for
each pair of parallel items on the two questionnaires are presented below.
Item 1

Which one of the following would you prefer to use (Q1) when describing how a
Jfunction behaves to a fellow student, and (Q2) when analyzing a limit situation? (a) a
graph, (b) a table of ordered pairs, or (c) the function formula. Please explain ina
sentence or two why you chose the one you did.

Table 16 shows the preference changes on this item. On the first questionnaire,
nine students preferred graphs. On the second questionnaire, five weeks later, six

students’ preferences had switched to formulas.

"Throughout this section, Q1 = questionnaire 1 and Q2 = questionnaire 2.



Table 16

Preference Changes on Item 1
Q2 Preference
Q1 Preference Graph Table Formula No Response
Graph 2 1 5 1
Table 0 0 1
Formula 0 0 0

Students’ explanations of their choices in item 1 are presented in Table 17. In
questionnaire 1, students generally referred to the visual nature of graphs, although few
articulated why or how the visual nature of graphs helped them in understanding
functions. By the second questionnaire, the practicality of being able to produce tables
and graphs given the function formula took precedence.

Table 17

Explanations of Graph — Formula Preferences in Item 1

Students Questionnaire 1 Questionnaire 2

Graph — Formula
Brad You can personify the graph and tell  If I have a formula then I can derive
what it did — most people are visual  a table and graph and then have all

learners. those.
Jason You can visually see “what is I can get a graph and table if I have
happening”. the function and you know the true

nature if you have it.

(table continues)
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Students Questionnaire 1 Questionnaire 2
Graph — Formula

Josh When you see a graph, it gives youa A graph can be misleading by not
visible reference to show how the showing you how a function acts in
function increases, decreases, or is a small enough interval. A table of
undefined at certain points ordered pairs may also mislead you

by not showing a small enough
interval. The function can allow you
to compute any number and see
some properties of that function

Laura It is easier to see what the function  You can plug it into the graphing
is doing and to see a pattem even calculator and zoom in a lot.
though it can be very difficult to
draw a graph by just looking at a
function.

Mike Because it is a visual way of Because you can get the graph and
showing the behavior whereas a ordered pairs from the formula, but
table or formula are not always you may not really understand these
easily decipherable. two things without the formula.

Graph — Graph

Brandon Graphs have every point on them so  In a graph, you have infinite
you get a better understanding of amounts of plotted points. It helps
what the function does. you get a better view of what the

function is doing at all places.

Paul Because visual representations are It gives the most information I can
easier to understand, in my opinion. manipulate (if I have the trace
Plus they are more precise. function). It also gives a visual

representation of what’s happening,

which is helpful to me.
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Students Questionnaire 1 Questionnaire 2

Graph — Table
Mark I think most people would learmn Because graphs can be very
better if they can actually visualize  misleading and if I only see a
something. function formula I cannot picture
what is happening.
Graph — No Response
Alan Because I am a visual leamer and [Not applicable]
graphs help me more than data.

Table — Formula
Matt A table describes a function alonga  With the function formuia, a student
line letting you know exact points can make a graph and table, or plug
and chug.

Item 2

If you could choose two things to help you (Q1) tell a fellow student how a
function behaves, and (Q2) analyze a limit situation, which pair would you prefer? (a) a
graph and a table of ordered pairs, (b) a graph and the function formula, or (c) a table of
ordered pairs and the function formula. Please explain in a sentence or two why you
chose the pair you did.

Table 18 shows the preference changes on this item. The graph-formula pair was
the overwhelming favorite: eight students selected this pair at least once, and six selected
it twice. Every student selected a representation pair that included his or her preferred

solo representation, as indicated in item 1.
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Table 18

Preference Changes in Item 2

Q2 Preference

Q1 Preference = Graph-Table  Graph-Formula Table-Formula No Response

Graph-Table 1 0 0 1
Graph-Formula 0 6 I
Table-Formula 0 1 0

Students’ explanations of their choices in item 2 are presented in Table 19. To
see how these choices relate to their choices in item 1, students’ preference changes on
item 1 are indicated below their names. Notice that two students changed dramatically.
Jason originally preferred the graph most of all, and by the fourth interview, this was his
least preferred representation. Similarly, Matt’s most preferred representation at the

beginning, tables, was his least preferred by the end of the study.



Table 19

Explanations of Graph-Formula — Graph-Formula Preferences in Item 2

Students Questionnaire 1 Questionnaire 2
Graph-Formula — Graph-Formula
Brandon I chose them because a table of  With the function formula, you
graph —graph ordered pairs is hard to get a can tell what values might be
mental picture of. With the plugged in that would cause the
graph and the function youcan  graph to be misleading.
relate the two together.
Paul I like the graph for the I can infer a table of ordered
graph —graph previously stated reason, and if  pairs from those two anyway,
my fellow student understands  and I prefer the graph most,
the graph, the studentcan best  second only to the formula.
learn about the function by
seeing how the graph is accrued
from the formula.
Brad The ordered pair is just a I would rather have the primary
graph—formula representation of the function. source than a table aiready
The function layout is more completed.
important.
Josh This shows you how the I would choose the graph b/c it
graph—formula function relates to the graph. will show you many ordered
The table is not needed because  pairs of a function at once (not
you can substitute and solve for all) and with the function you
values. could compute nearly all plus
see properties of the function.
(table continues)

78



Students Questionnaire | Questionnaire 2
Graph-Formula — Graph-Formula
Laura The graph is a good beginning  [No explanation given.]
graph—formula  but the function formula would
probably be more acceptable on
a test.
Mike A graph is just a differenttype =~ Because ordered pairs can be
graph —>formula of table so with this misleading because of their
combination, I get all three. “missing links”.
Graph-Table — Graph-Table
Mark This way they can see what it This way I could see if the
graph —table looks like and also how the graph matched the table and if
numbers are being manipulated they are telling me the same
information.
Graph-Table — No Response
Alan I think many people are visual {Not applicable]
graph—->NR leamners
Graph-Formula — Table-Formula
Jason Without the formula, it is The table shows some pairs a
graph —formula  difficult to get accurate values  graph might not.
for the variables.
Table-Formula — Graph-Formula
Matt The table shows the answers to A graph can help you visualize
table—formula  the formula, letting you know the function and the formula

where the function is at every can let you make a table.
step of the way.




Item 3

Would using all three (a graph, a table of ordered pairs, and the function
Jformula) help more than using just two of the three in (Q1) telling a fellow student how a
Junction behaves, and (Q2) analyzing a limit situation? (a) Always, (b) Sometimes, or (c)
Never. Why do you think this?

Table 20 shows the belief changes in this item. At the beginning, seven students
believed that all three representations would always help more than just two. By the end
of the study, only four students expressed this belief.

Table 20
Belief Changes in Item 3
Q2 Beliefs”

Q1 Beliefs Always Sometimes Never No Response
Always 3 3 0 1
Sometimes 1 1 0
Never 0 1 0

Students’ explanations for their beliefs in item 3 are presented in Table 21.
Notice that in questionnaire 2, the possibility of misleading tables or graphs is cited to

justify both “sometimes” responses and “always” responses.



Table 21

Explanations for Beliefs in Item 3
Students Questionnaire 1 Questionnaire 2
Always — Sometimes

Josh You would have a quick reference As long as the information
for the information to relate it to corresponds and each thing doesn’t
each other. tend to lead you to a different

answer.

Matt When all three tools are at hand, the  Some things can be misleading.
student can grasp an understanding  You cannot trust all info given to
of the function from 3 different you, but with the formuia, you can
angles. make your own graphs and tables.

Paul It works out the steps, it teaches It can help clarify situations... to
each little part of how to do the show exactly what’s going on.
problem. This allows studentsto  [Student’s ellipsis marks and
know what they are doing, and best  underlining. ]
understand what the math means.

Sometimes —» Sometimes

Jason The more information you have the = The more information you have the

easier it is to explain. better, but the information
sometimes is misleading.
Never — Sometimes

Mike I think that if an accurate graph is I would say never, but since [
present than [sic] a table is not haven’t encountered every limit
necessary. situation, I'll give the ordered pairs

the benefit of the doubt.
(table continues)
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Students Questionnaire 1 Questionnaire 2
Always — Always
Brad You can memorize how a graph You can cooberate [sic] your answer
looks and then remember the kind of to be certain of correctness.
function that lead [sic] to this graph
so as to remember the graph and
corresponding function for the test.
Laura Because a student will probably It gives you the most information to
encounter all 3 and should be work with.
familiar w/ all of them.
Mark I think most of the time it all helps ~ Because a graph and a table of
because all students are different and ordered pairs can both be
one might better understand one misleading. If you have all three
process better than the other. you can use each of them to obtain a
conclusion.
Sometimes — Always
Brandon The graph I believe is always going It just gives you more facts to
to be useful but the function formula support your theory and help
sometimes can get confusing. It evaluate your conclusion.
should still always be included
though.
Always —> No Response
Alan It gives more proof for a problem’s  [Not applicable]

solution.
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Item 4

(Q1) Is it possible that these three (a graph, a table of ordered pairs, and a
function formula) wouldn 't provide enough good information for you to tell a fellow
student how a function behaves? (a) Yes, or (b) No? Why do you think this? (Q2) What
are some of the drawbacks of relying on these three (a graph, a table of ordered pairs,
and the function formula) when analyzing a limit situation?

Table 22 shows students responses to item 4 in both questionnaires. Initiaily,
students were evenly divided about the sufficiency of three representations to describe a
function’s behavior. Six students responded “no” to item 4 in questionnaire 1, but
Mark’s explanation suggests that he really believes the answer is “yes”. By the end of
the study, all nine students completing the second questionnaire acknowledged the
misleading nature of graphs and tables. Three students even elaborated uﬁon how graphs,

tables and even formulas can be misleading.
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Table 22

Explanations for Item 4
Students Questionnaire 1 Questionnaire 2
No responses in questionnaire 1
Brad I can’t think of any other way to Sometimes they “lie”.
explain the concept
Brandon If I can look at the graph know all In a table of ordered pairs, there
the points and see how the formula  might be gaps in between the plotted
works I think I would be able to give points where the function is moving
a pretty good detailed report on the  or becoming discontinuous. The
function. function formula can become a
drawback if you assume something
that is fake. A graph can be
misleading because it can not tell
you you have to find out if there are
changes at infinitely small points.
Jason You can see what is happening at The graphs and tables can be
any point as long as you have the misleading under certain situations.
function.
Josh This should be adequate information Sometimes the graph and table of
to solve and explain the functions. ordered pairs may be misleading.
Mark I think if the information is Each of them can give you
thoroughly explained that it would information that can cause you to
be sufficient, but it is still going to misinterpret what is actually trying
be a little confusing to anyone. to be represented.
Matt The 3 of these together can definea A graph or table can be misleading
function down to the teeth. if they are analyzing too close or far
away from the limit. Idon’t see
much drawback to the formula.
(table continues)



Students Questionnaire 1 Questionnaire 2
Yes responses in questionnaire |

Alan If the data a [sic] graphs become [Not applicable.]
extremely detailed and confusing.

Laura Some functions don’t seem to do Sometimes they are deceptive and
what you would expect. don’t represent every odd result the

function might have.

Mike Because [ haven’t been exposed to  The graphs are many times
many functions I'm sure. misleading. Ordered pairs have

“missing links”. Function formulas
can be cumbersome and sometimes
cannot prove a limit. None of these
can be used in every limit situation
to find a’ limit.

Paul Especially for complicated They can be misleading in their
functions, there needs to be some information, one must pick the best
explaining as to why something way to find the limit.
happens, not just that it does.

[Student’s underlining.}




CHAPTER 5
Results

Results are presented in four subsections. First, emerging patterns of analytical
thinking and knowledge use are summarized. These patterns lead to conclusions about
each of the three main research questions.

Emerging Patterns

Several patterns of analytical thinking and knowledge use emerged from these
students’ interview data. At the same time, certain mathematically correct and relevant
strategies and knowledge were noticeably absent from students’ written and oral
responses. The categories of analytical thinking and knowledge use, both present and
absent in these students’ responses are described below and summarized in Table 23.
Analytical Thinking Categories

Specific instances of analytical thinking present in students’ solutions fell into
two categories: (a) partial analytic strategies, and (b) inappropriate dismissal of evidence.
At the same time, students’ consistently failed to analyze the representativeness of
calculator-based evidence.

Partial analytic strategies. Many of these students employed partial analytic

strategies. That is, they made conclusions based on only part of a formula, table or graph.



For example, Paul, in interview 2 decided that the x> term in the denominator of the
function formula implied there must be an asymptote. He also initially thought, in
interview 2, that observing values in one half of the table would tell him the limit. Josh,
in interview 3 decided that because the graph oscillated it must match the function with
the sine in it.

Inappropriate dismissal of evidence. Several students inappropriately dismissed
evidence. This occurred when they dismissed evidence (good or bad) without analysis or
with erroneous reasoning. For example, Paul, in the third interview immediately rejected
the given table of values in the first task, without any analysis. Josh rejected that same
table based on his assumption that the calculator could not calculate the values correctly.
Josh also initially rejected the given graph of sin(z/x) in interview 3 because it was
difficult to interpret. He rejected his calculator-based graph in interview 4, based on his
belief that the calculator could not compute the ordered pairs near the origin correctly.

Analysis of graphing calculator evidence. Most students failed to analyze the
representativeness of the graphs and function values they produced on the calculator.
This does not mean that no analysis occurred. Quite a few of them zoomed in and traced
along a graph, or selected a small number of domain values to substitute into the function
to generate data about a limit situation. However, this was almost never preceded by an
analysis of whether the exhibited behavior was reasonable and represented the true nature
of the function.

Knowledge Use Categories
Students seemed to draw upon three categories of knowledge in approaching

these tasks: (a) naive theorems, (b) false assumptions, and (c) out-of-context knowledge.



Noticeably absent from students’ knowledge use were: (2) numerical knowledge, or (b)
mathematical theorems.

Naive theorems. Many students applied naive theorems. These were students’
own if-then statements that they came to believe were true. Sometimes, these naive
theorems were outright false, and other times they were nearly correct. For example, one
student Brad, declared that if a function is defined at the point of approach, then the limit
does not exist. He explained the truthfulness of this statement by saying a limit is
approached but not reached. As another example, Josh believed that if a function
oscillated infinitely many times on approaching the relevant point, then the limit does not
exist. He explained the truthfulness of this statement by describing how the function just
kept going back and forth and did not go to any one number.

False assumptions. Many conclusions were based on false assumptions. For
example, some students assumed the evidence they were analyzing was complete and
correct. Paul exhibited this assumption in determining a one-sided limit from a table
when he failed to extend the values of the table to ordered pairs not shown. As another
example, many students assumed the calculator would produce good graphical and
numerical information, turning to this tool after rejecting presented tables and/or graphs.
False assumptions differ from naive theorems in their lack of a clear if-then structure.
They often served as (apparently unconscious) additional hypotheses in students’
approaches.

Out-of-context knowledge. Many students drew upon correct or nearly correct
knowledge in related but not necessarily relevant contexts. Often this was the final step,

either aimed at “confirming” a conjecture, or generating an answer when all other
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knowledge seemed to be insufficient. For example, Jason, in interview 1 tried to equate

the shape of the sin(x) graph to that of sin(1/(x—3)). Paul, in interview 3, attributed
significance to the oscillation of sin(7z/x) around 0 in his conjecture that the limit as x
approached O was 0. Josh, in reference to the non-existence of the limit of x*cos(l/x)as

x approached 0 in interview 4, commented at the end, “It’s different on each side.”
Numerical knowledge. Quite a few students appeared to make no use of basic
numerical knowledge. Some examples that could have been applied to the tasks in the
current study are: common values of sin(x) when x is given in radians, radian-degree
conversions, approximate sizes of numbers given in radians, relative sizes of numbers
with different numbers of digits after the decimal point, absolute sizes of a numbers like
10™, and relative sizes of numbers like 10™ and 10™. Students rarely brought these facts
to bear in their own solutions, and had extreme difficulty coping with these ideas during
interaction. Only after extensive interaction did this knowledge come to the surface,
suggesting that students did possess the knowledge, but were largely unable to access it.
Mathematical theorems. Students rarely made correct use of mathematical
theorems. Some attempted to use a naive version of the theorem that a limit exists if and
only if the left- and right-hand limits exist and are equal to show when a limit did not
exist. Often, they forgot the hypothesis that the one-sided limits must exist. No one

referred to the Squeeze Theorem in interview 4.
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Table 23

Patterns of Knowledge Use and Analytical Thinking

Knowledge Use Analytical Thinking
Present
e Naive theorems e Partial analytic strategies
e False assumptions e Inappropriate dismissal of
e Out-of-context knowledge evidence
Absent
e Numerical knowledge e Analysis of graphing

e Mathematical theorems calculator evidence

Early Understanding of the Limit Concept

Research questions. How and to what extent do the four elements of intuitive-
analytic understanding of the limit concept emerge and develop over the course of the
study? In particular, how do students analyze local function behavior? Can they draw
correct intuitive limit conclusions from accurate graphs and tables? In what ways do
students develop awareness of the advantages and disadvantages of tables and graphs to
conjecturing limits, particularly when using graphing calculators? Do they spontaneously
produce multiple sources of evidence to justify a limit conjecture?

Analysis of local function behavior. These students had little success at
determining local function behavior. Initially, they resorted to ordered pairs. When they
had a calculator available, they sometimes relied on the calculator to show them the

“right” graph or the “right” function values. When they had erroneous formula-based



expectations, it was very difficult for them to consider alternative possibilities.

Intuitive limit conjectures. Students were able to read graphs and tables to make
correct intuitive limit conjectures by the end of the study. Often however, these
conjectures were based on non-representative tables or graphs.

Limitations of numerical and graphical evidence. The problem involving the
three different tables (or graphs) of the function

g(x) =.t21(x_3)__£
X

was a turning point for many students. Several of them “learned” that all tables have
“bad” data, and in the next interview automatically rejected the table. By the end of the
study, all of the students understood that tables and graphs might mislead them, but they
rarely analyzed this, especially when the graph or table was produced on their calculator.
Typically, they either assumed representativeness or assumed they were being misled.
There seemed to be no middle ground for these students.

Intuitive-analytic limit conjectures. Decisions about limit situations seemed to
stem from focusing on a particular part of the formula and applying a naive theorem. For
example, the x* in the formula x* cos(l/x) combined with the naive theorem that small
numbers multiplied by anything give small numbers leads to the conclusion that the limit

of x*cos(l/x) as x approaches 0 is 0. On the other hand, the cos(l/x) in the formula
x* cos(l/x) combined with the naive theorem that infinitely many oscillations implies a
limit does exist leads to the conclusion that the limit of x* cos(l/x) as x approaches 0

does not exist.

These students found many ways to “support” whatever their initial idea was
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about a limit situation, if they had one, including graphs primarily and function values
occasionally. Mathematical theorems rarely came into play.

When asked whether they had made an educated guess or determined the limit
situation for certain in interview 4, most students indicated that it was an educated guess,
although they were “almost certain”. They readily acknowledged that it was probably
possible to determine the limit situation for certain, but indicated that they did not know
how to do that.

Influence of Function Knowledge

Research questions. In what ways do students analyze local behavior of functions
in graphical and numerical settings? In particular, on what aspects of tables, graphs and
formulas do students focus, in analyzing local function behavior? How do they decide
whether a graph and a table of the same function are consistent? How do they decide
whether a table or graph reflects the true nature of the function? Do their methods of
analyzing local function behavior support or hinder their success with determining a limit
situation?

Focus of analysis. Students tended to focus on only partv of each table, graph or
formula they encountered, either ignoring the rest, or deciding the rest was not relevant.
They seemed to focus on whatever was the easiest part for them to comprehend. For
example, in analyzing the function sin(l/(x —3)) in the first interview, several students
focused on the “sin” part of the formula and looked for a graph that oscillated since they
knew that sin(x) is an oscillatory function.

Consistency decisions. Students’ decisions about consistency of tables and graphs

depended on whether both graph and table were given, or whether one of the



representations was generated on the calculator. In the first case, the decision usually
involved checking that a few ordered pairs from the table lay on the graph. Some
students were more careful with this than others, and noticed that the “ordered pair”

(0,undefined) given in the table of the function

h(x)=x+1+

10®x

did not match the apparent ordered pair (0,1) on the graph of A. In the second case, with
a given table and a calculator-based graph, some students traced along the curve,
comparing the ordered pairs on the calculator screen with the ordered pairs in the given
table. One student, Paul, in interview 2, indicated that he imagined what the graphs
matching the given tables should look like, and compared those imaginary graphs to the
calculator-based graph.

Representativeness decisions. Students “detected” representativeness in many
different ways. Some students believed that consistency of representations implied
representativeness. For example, in interview 3, numerous students contended that both

the graph and table given for

h(x)=x+1+

10®x

represented the true nature of the function because they did not contradict one another.
Other students believed the only the table represented the true nature of this function h,
because the table mostly matched the graph and had the “ordered pair” (0,infinity), which
fit the formula. In other tasks, if a student’s calculator-based graph did not contradict the
given graph or table, then the given graph or table was considered representative.

Influence on determination of limits. These students’ function knowledge and



methods of analyzing local function behavior both did and did not influence their
determination of limit situations. Partial analyses led them to accept non-representative
behavior, which led to erroneous limit conjectures. On the other hand, even full and
complete analyses did not always result in correct limit conjectures.

Influence of Graphing Calculator Use

Research questions. How do students spontaneously use graphing calculators in
analyzing functions and making limit conjectures? To what extent are they aware of the
limitations of the graphing calculator, and how do they deal with this? How convincing
is this tool for them?

Spontaneous uses. Overwhelmingly, students’ approached the interview tasks by
drawing graphs on their calculators, often in a standard viewing window, such as [-10,10]
x [-10,10] or [-5,5] x [-5,5]. Zooming in repeatedly was their standard method for
detecting the local behavior of a function. This was even their first suggestion on finding

an appropriate viewing window in which to see the vertical asymptote of the function

1
h(x)=x+1+
(x)=x 10®x

in interview 3. Occasionally, students used the trace feature or computed function values
in the home screen to generate numerical evidence.

Awareness of limitations. Most students accepted that calculators have limited
computational abilities, but could not articulate how those limitations would arise, other
than to say they were due to round-off errors. As a consequence of this and the fact that
the calculator’s deficiencies were always illuminated by a limit as x approached 0, some
students came to believe that the computational limitations would always arise in

computations involving x-values near 0. Only one student seemed to connect the
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calculator’s computational limitations to its graphical limitations. The rest could not
fathom how the calculator might produce an incorrect ordered pair for a function’s graph,
despite acknowledging the calculator’s limited computational abilities.

Awareness of pixel limitations was mixed. Only some students could explain
how a calculator-based graph might not show a hole in the graph. Those who could not
explain this also could not explain the basic process by which a calculator draws a graph:
namely it plots points and connects them with “straight” lines. For these students, the
mechanics of the calculator’s production of graphs seemed to be a complete mystery.

Students dealt with the calculator’s limitations in extreme ways. Either they
ignored the possibility, and assumed the calculator-based information was correct, or they
assumed the calculator was incorrectly computing numbers, and ignored the calculator-
based information. Thus, awareness of calculator limitations did not necessarily imply
correct limit conjectures.

How convincing. Most students took the graphs and tables produced by the
calculator as the “standard” of comparison, without analysis. For many studeats, the
calculator-based information was more convincing than the information presented in the
interview tasks. Students seemed to feel some sense of ownership of the information
they produced on the graphing calculator. Hence, they were more willing to believe the

calculator-based information than the information presented in the tasks.
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CHAPTER 6
Discussion
The data generated from these interview tasks provides rich and detailed
descriptions of how and to what extent these students gained an intuitive-analytic
understanding of limits. However, much remains to be said about how these data in the
current study compare to what was expected, what others have found in similar
situations, and what might have happened under different circumstances. In particular,
several aspects of the design seemed to influence the quantity and quality of data
generated. The data actuaily generated, in tum, influenced the validity of the conclusions
reached. Thus the discussion centers on design and validity issues.
Design Issues
Three elements of the design appeared to influence students’ approaches to the
tasks: (a) the lack of explicit requests for written explanations, (b) the choices of
examples and non-examples, and (c) the lack of precise directions. Each aspect affected
the data gathered, and suggested changes for future research and teaching efforts.
Written Explanations
The lack of explicit requests for written explanations in some tasks limited some

students’ engagement in the thinking process. It was thought at the outset, that



explanations could be elicited in the interactive phase of the interviews, but there was
evidence that this allowed students to avoid thinking through their answers. This was
evident in cases when students wrote answers without explanations, followed by long
pauses in response to requests for explanations, and a willingness to switch their answers.
The inclusion of explicit requests for written explanations in some tasks boosted
some students’ engagement in the thinking process. Some students made several tries at
a written explanation, either erasing or crossing out earlier versions, and occasionally
changing their answer in the process. The positive effect of writing on the thinking
process was most clear in Laura’s explanation in interview lof her choices of a graph and

table for the function

The table I figured out by plugging in points and using the process of
elimination. For a while, I thought the graph was C because I figured that
the higher the x-value (after 3) the closer the graph would be to zero.
Then (as I was writing this) I realized that the same would be true with
negative values with high absolute value. Because there is a square in the
denominator and a positive number on top the graph can never cross the x-
axis and become negative so it is H. The numbers really close to 3 result
in high values.

Wahlberg (1999), who studied second semester calculus students’ understanding
of limits through writing assignments, found a similar positive effect of writing. This
suggests greater use of written explanations in future research, as it will generate more
data for validation purposes and it may contribute to a more uniformly high engagement
in interview tasks.

Examples and Non-Examples
The examples and non-examples seemed to influence students’ thought processes



substantially in subsequent interviews, and not always to their benefit. In particular,
students “learned™ several unintended lessons. For example, Paul “learned” during
interview 2 that tables themselves are not to be trusted. He did not “leam” to distrust the
source of the poor tables in interview 2, namely the graphing calculator. Josh also
“learned” during interview 2 that tables can be misleading. He also seemed to “learn”
that constant, apparently exact function values in a table could only come from
computational mistakes made by the graphing calculator, because he immediately,
without analysis, assumed that the table in task 1 of interview 3 had incorrect y-values.

Davis and Vinner (1986), in a study of high school calculus students’
understanding of sequences, found that students often “misinterpreted their own
experience”, inappropriately attributing generality to details salient in a particular
example. Zaslavsky (1989, as cited in Leinhardt, Zaslavsky & Stein, 1990) found that
both correct and incorrect notions presented in examples were remembered, and that
weak students reasoned from specifics of remembered examples rather than formal
definitions. This suggests that the use of examples and non-examples is quite powerful,
but can contribute to misconceptions. It is conceivable that if earlier examples and non-
examples had been revisited and re-examined as the “lessons learned” exhibited
themselves, then students might have developed appropriate interpretations of earlier
experiences.

Lack of precision in many of the task directions was deliberate, to prevent
students from detecting the interviewer’s “desired™ answer, but this resuited in many
different interpretations of the directions. For example, Josh, in describing how the two



other tables for the function

g(x)= ﬂ(%-_i

could mislead someone about the limit as x approached 0, described how the presence of
the function values in the tables could lead one to believe that the calculator was capable
of calculating the function values correctly. This was an unexpected but very interesting
response. Would the presence of the function values on the graphing calculator screen
lead him to believe that the calculator is capable of calculating the function values
correctly? Does he think that the calculator should be retorning something different, like
the word “error”, if it can not compute the function values correctly? In this case and
others, different interpretations led to students not engaging in the intended tasks, yet the
unexpected interpretations also gave valuable insights. Given that these were task-based
interviews, it was possible to follow up during interaction and pose more focused
questions. However, if written work were to comprise the data in a future study, then
serious thought would have to be given to the trade-off between precise questions and
those more open to interpretation.
Validity Issues

Two characteristics of the data influenced the validity of conclusions about
students’ patterns of analytical thinking and knowledge use: (a) oral responses, and (b)
graphing calculator use observations. The first aids in the validity of the conclusions
reached about students’ thought processes, and the second raises questions about the
validity of conclusions reached about the influence of students’ graphing calculator use.
Oral Responses.

Oral responses contributed positively to the validity of students’ patterns of
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analytical thinking and knowledge use. Students’ comments during interaction were
often unexpected, revealing quite different thinking strategies than would have been
assumed from their written work alone. For example, some students wrote “correct”
answers, but their oral explanations revealed entirely erroneous lines of reasoning. Other
students wrote “correct” answers and nearly correct explanations, but when pressed
further, indicated uncertainty or switched their answers. Other researchers (Tall, 1990,
1992; Tall & Vinner, 1981) have noted similar phenomena.
Graphing Calculator Use Observations

Observations of students’ graphing calculator use were limited. Whether a
student turned to the graphing calculator first was always noted. As much as possible,
" the interviewer noted the actions students took with the graphing calculator. While
students worked on their own though, it was often impossible to observe any more than
that the student drew a graph. Occasionally, the interviewer interrupted to ask to see the
graph and what viewing window was chosen, especially if the student seemedto be at a
standstill. Sometimes during interaction, students were asked what they did with the
calculator, and in this way, their calculator use could be reconstructed. However, neither
of these techniques was systematically employed. In annotating and summarizing
students’ graphing calculator use, instances when students’ graphing calculator actions
were unknown were noted as such. Thus, the graphing calculator use reported in this
study should be treated with caution.

Directions for Future Research
There are several directions in which future research on limits could go. First, it

would be useful to know if the suggested changes in the interview tasks result in data that
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tells a different story than unfolded here. Second, there is a question of whether the
results that appear to be true of these students generalize to the larger population of first
time calculus students. Finally, given that other researchers have concluded that
understanding of limits develops slowly, it would be interesting to know the stability of
the patterns of analytical thinking and knowledge use found in the present study.
Conclusion

This study provided detailed descriptions of ten students’ early understanding of
the limit concept, suggesting that these students made small gains in developing an
intuitive-analytic understanding of limits. Most developed the ability to draw correct
intuitive conclusions from graphs and tables, but had difficulty determining whether a
table or graph reflected the true nature of the function’s local behavior. They tended to
accept graphing calculator outéut at face value, despite an increased awareness of the
possibility of non-representative graphs and tables. Some could produce multiple sources
of evidence to justify a limit conjecture, but many of their doubts stemmed from second-
guessing themselves mtﬁa than an evaluation of the mathematical soundness of their
arguments. These results partially stemmed from an inability to accept limitations of the

graphing calculator, and partially from weaknesses in their function knowledge.
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Appendix A
Background Questionnaire - Math 1823 Section 200 - Fall 1998
Please complete the following short questionnaire. This will help your instructor have
some background information on the students in the class. This information is not used
for your grade.

1. Name

2. ID Number

3.Male_____ Female ____
4. How are you classified?
—__ Freshman ____Sophomore ___ Jumior ____Senior

Other (What? )

5. Are you considering a major or minor in math? Yes No

If you have decided on a major, what is it?

6. When did you graduate from high school? 19

7. How many students were in your high school graduating class? students

8. What mathematics classes did you have in high school and when?
— Algebralinl9____

—_Geometryin 19__
—_Algebrallin 19__

— Trigonometryin 19___
—_ AdvancedMathin 19____
____Precalculusin 19___

—_Calculusin 19___

105



— Other ( )in 19

— Other ( )in 19

9. Which of the following mathematics classes (if any) did you have at the University of

Oklahoma before, when, and what was your course grade?

—_Intro. to Elementary Functions (Math 1503) in Fall/Spring/Summer of 19_____
Course Grade: A BC D F W

—_Elementary Functions (Math 1523) in Fall/Spring/Summer of 19_____
CourseGrade: ABCDFW

——_Calculus I (Math 1823) in Fall/Spring/Summer of 19_____

10. What mathematics classes (if any) did you have at other colleges before, when and

where?

____ Beginning Algebraat __ in Fall/Spring/Summer of 19___
—_Intermediate Algebra at in Fall/Spring/Summer of 19__
—_College Algebra at in Fall/Spring/Summerof 19____
—Trigonometry at in Fall/Spring/Summerof 19____

—— Precalculus at in Fall/Spring/Summer of 19____
—_Intro. to Elementary Functions at in Fall/Spring/Summer of 19__
—Elementary Functions at in Fall/Spring/Summer of 19____
—_Calculus I at in Fall/Spring/Summer of 19____
—_Other( )at in Fall/Spring/Summer of 19____
— Other ( ) at in Fall/Spring/Summer of 19_____

11. Which graphing calculator (if any) do you already know how to use?

12. Which of the following best describes your experience with graphing calculators?
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—_ None

—_I'have seen one or two demonstrations
—_TI'have seen more than two demonstrations
— I have used graphing calculators once or twice

I have used graphing calculators frequently in (how many?) of my classes

—_ Other (Please explain)

13. How helpful do you expect the graphing calculator to be to your understanding and
learning of calculus in this class?

— Very unhelpful

— Somewhat unhelpful

—_Undecided

— Somewhat helpful

__Very helpful

14. What is your general feeling about calculators and computers?

__Ilike them a lot

—_They are okay

I can take them or leave them

—__Ido not like them

I really hate them

15. How would you rate your aptitude with computers and calculators?

— low

—_somewhat below average

average
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— somewhat above average

—high

16. How would you rate your math aptitude?
—low

—somewhat below average

average

—_somewhat above average

—high

17. Which of the following best describes your experience with the topic of
mathematical limits? (Check any that apply.)

—_None

——_Briefly introduced

——_Ihave learned the techniques but no theory

I have learned both the techniques and the theory

—— I have been using mathematical limits for one year

—__ I have been using mathematical limits for more than one year

——_Other (Please explain)

18. Please write any additional comments that can help determine your background in
mathematics.

19. Would you be willing to participate in a study about how first-semester calculus
students develop an understanding of mathematical limits? It would involve 4 short
interviews with one of the teaching assistants, which should take a total of 2-3 hours

of your time outside of class. (Saying yes now does not commit you to participating,
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only that you will be contacted with further information. Saying no will involve no
penaity to your grade, and means that you will not be asked again.)
Yes, I might be willing to participate in the study, after finding out more details.

No, I am not willing to participate in the study.
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Appendix B
Information Handout

August 26, 1998

Thank you for your willingness to consider participating in my Ph.D. dissertation
research study. This letter will provide you with more information about the topic of the
study, why you were selected, and what your participation would involve. If you still
have questions about the study after reading this letter, you may contact me by phone at
321-1929 or by e-mail at bergthold@ou.edu.

Let me begin by saying that this is a study about how first semester calculus
students develop an understanding of limits. In particular,'l want to determine what
makes it difficult for students to understand limits, and how I might help them overcome
those difficulties, so that instruction of this topic can be improved.

Your background questionnaire indicated that you either have not had a calculus
course before this semester, or that you have had little or no exposure to the topic of
mathematical limits, (or both). This makes you an ideal candidate for my study because I
am particularly interested in the successes and difficulties students have when they are
just beginning to learn about the limit concept. By participating, you may acquire a better
understanding of limits than you would have gained otherwise, since you will be
spending extra time studying this topic. In addition, your participation may potentiaily
result in better instruction on the topic of limits for future students.

Your participation would involve four interviews with me, each lasting from 20 to

30 minutes, in my office (Physical Sciences 929). . Each interview will be recorded on
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an audiocassette tape. During each interview, you will be asked to (a) fill out a short
questionnaire, (b) attempt some math problems involving or related to limits, and (c)
discuss any difficulties you are having with these problems. Sometimes you will solve
the problems with the help of a graphing calculator and other times without the help of a
graphing calculator.

The interviews will take place mostly on Mondays and Tuesdays over the course
of 7 weeks, beginning next week (the week of August 31* to September 4®) and ending
the week of October 12 to the 16®. The interview schedule is included on the back. I
would prefer to do all of the interviews on Mondays and Tuesdays, but other days of the
week can be accommodated if necessary. You will need to bring your graphing
calculator to the last three interviews.

These interviews are completely independent of your work in the Calculus I
course in which you are enrolled. The professor does not know who the research
participants are, and will not see any of the work you do in the interviews. All of the
records (written work and audiocassettes) will be kept confidential. To ensure this, all of
your records will be labeled with a random numerical code, rather than with your name or
other identifying code.

Having said all of this, let me now say that you are under no obligation to
participate, and there will be no penalty to your grade in your Calculus I course if you
choose not to participate. Moreover, if you do choose to participate, you may discontinue
your participation at any time, with no questions asked and no penalty to your grade.

I would be very grateful to have your participation in this research study. Thank

you for your consideration.
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Sincerely, Trisha Bergthold

Please check the appropriate box below and return this letter to me or to Gabriel Matmey
at the end of lecture on Wednesday or during your discussion section on Wednesday or

Thursday.

Yes, I really do want to participate in the study, and I’ ve indicated on the back my

top three preferences for when to do the first interview next week.

—__ No, I think [ would rather not participate in the study.
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Monday Tuesday Wednesday Thursday Friday
24 August 25 26 27 28
31 1 September |2 3 4
Interview 1 Interview 1
7 8 9 10 11
Labor Day
Holiday
14 15 16 17 18
Interview 2 Interview 2
21 22 23 24 25
Exam 1 in
Calculus I
28 29 30 1 October 2
Interview 3 Interview 3
5 6 7 8 9
12 13 14 15 16
Interview 4 Interview 4
19 20 21 22 23
Exam 2 in
Calculus I
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Interview Times for week of August 31% to September 4. Please indicate your top three

choices for an interview time on Monday or Tuesday by putting numbers in the

appropriate boxes. If necessary, choose a time on Wednesday or Thursday. You will be

contacted about your interview time on Thursday or Friday.

Monday 8-31 | Tuesday 9-1 Wednesday 9-2 | Thursday 9-3 | Friday 94
10:30-11 10:30-11 10:30-11 10:30-11 XXXXXXXX
XOXXXXXX
XXXXOXXX | 11:30-12 11:30-12 11:30-12 XXXXXXXX
XXXXXXXX XXXXXXXX
12:30-1 12:30-1 12:30-1 12:30-1 XXXXXXXX
XXXXXXXX
1:30-2 1:30-2 XXXXXXXX 1:30-2 XXXXXXX
XXXXXXXX XXXXXXXX
2:30-3 2:30-3 XOXXXXXX 2:30-3 XXXXXXXX
XXXXXXXX XOXXXXX
3:304 3:304 3:304 3:304 XXXXXXXX
XXXXXXXX
4:30-5 XOOXXXXX | XKXXXXXXX XXX | XKXOXXXXXX
XXOOXXXXX | XXX XX XXOXXXXXX | XKXXXXXXX
5:30-6 5:30-6 5:30-6 5:30-6 XXOXXXXX
XOXXXXX
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Appendix C

Human Subjects Permission

The Unwversity of Oklahoma

OFFICE OF RESEARCH ADMINISTRATION

August 20, 1998

Ms. Trisha A. Bergthold
711 1/2 West Brooks Street
Norman OK 73069-4602

Dear Ms. Bergthold:

Your research proposal, “The Development of the Limit Concept in First Semester
CWSM'mbmmer.EMTW,Chﬁrofdnmsﬁmﬁom

Review Board, and found to be exempt from the requirements for full board review and
approval under the regulstions of the University of Oklishoma-Norman Campus Policies
and Procedures for the Protection of Human Subjects in Research Activities.

Shouid you wish to deviste from the described protocol, you must notify me and obtain
prior approval from the Boerd for the changes. If the research is to extend beyond 12
months, you must contact this office, in writing, noting any changes or revisions in the
protocol and/or informed consent form, and request an extension of this ruling.
If you have any questions, please contact me.
Sineerdy

M. Petry
Administrative Officer
Institutional Review Board

KMP:pw
FY99-29

cc:  Dr. E. Laurette Taylor, Chair, IRB
Dr. Curtis McKnight, Mathemstics
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Appendix D
Informed Consent Form for Participation in a Research Project

Being Conducted Under the Auspices of the University of Oklahoma — Norman Campus

Study Title: The Development of the Limit Concept in First Semester Calculus Students
Sponsor: Dr. Curtis McKnight, Mathematics Department
Principal Investigator: Trisha Bergthold, Mathematics Department
Description of the Study

The purpose of this research is to learn how students in first semester calculus
develop an understanding of the limit concept. In particular, we want to determine what
makes it difficult for students to understand limits, and how we might help them
overcome those difficulties, so that we can improve our instruction of this topic. Your
participation in this research project will involve 4 interviews outside of class time with
the principal investigator. Each interview will last approximately 20-30 minutes, and will
be recorded on an audiocassette tape. During each interview, you will be asked to (a) fill
out a short questionnaire, (b) attempt some math problems involving or related to limits,
and (c) discuss any difficulties you are having with these problems. Sometimes you will
solve the problems with the help of a graphing calculator and other times without the help
of a graphing calculator.
Potential Risks and Benefits of Participation

The time it takes you to participate in the 4 interviews may cost you study time

for this or other classes. If, at any point, you feel that the time required to participate in
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this study is having a negative affect on your course work, you are free to discontinue
your participation.

Your participation may potentially result in you acquiring a better understanding
of limits than you would have gained otherwise, since you will be spending extra time
studying this topic. In addition, your participation may potentially result in better
instruction on the topic of limits for future students.

Subject’s Assurances

Your participation is voluntary. Refusal to participate will involve no penaity to
your course grade and you may discontinue participation at any time without penaity to
your course grade.

All of the records (written work and audiocassettes) will be kept confidential. To
ensure this, all of your records will be labeled with a random numerical code, rather than
with your name or other identifying code.

If you have questions either about the research itself or about your rights as a
research subject, you may contact Trisha Bergthold by phone at (405) 321-1929 or (405)

325-6711 or by e-mail at bergthold @ou.edu.

Signature Date:
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Appendix E
Task for Interview 1, Version 1 of 5

In calculus, we will need to analyze and describe some rather complicated functions.
Sometimes it helps to examine graphs and tables of ordered pairs of functions when we
do this.

All of the functions below are undefined at x = 3, but each function “behaves” very
differently at x-values near x = 3. Match each function formula to its corresponding
graph and table.

Function formula Corresponding Graph Corresponding Table

1
f(x)—x—_g

|

(x-3Y

g(x)=

x*-5x+6

h(x)= x-3

x-2 if x<3

p(x)={x_3 if x>3

t(x)=si —l-]

x-3

Please write, in 3-5 sentences, how you figured out the graph and table for the function
1
f(x)=

x=3"
or, if you didn’t figure them out, then write what you tied.
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-0.5 20
-0.75
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(174 |

Table A

X 2 2.5 29 2.99 2.999 3 3.001 3.0l 31 35 4

y 0 0.5 0.9 0.99 0.999 undefined 1.001 1.01 1.1 1.5 2
Table B

X 2 2.5 29 299 2.999 3 3.001 3.01 3.1 S 4

y 0 0.5 0.9 0.99 0.999 undefined 0.001 0.01 0.1 0.5 |
Table C

3 2 2.5 29 2.99 2.999 3 3.001 3.01 31 35 4

y -1 -0.5 0.1 -0.01 -0.001 | undefined [ 1.001 1.01 1.1 1.5 2
Table D (y-values in this table are approximated to 6 decimal places.)

x]__2 | 25 | 129 299 | 2999 3 3.001 301 30 35 | 4
y | -0.841471 | -0.909297 | 0.544021 | 0.506366 | -0.826880 | undefined | 0.826880 | -0.506366 | -0.544021 | 0.909297 | 0.841471
Table E (y-values in this table are approximated to 6 decimal places.)

x 2 25| 29 | 2% 2.999 3 3.001 3.01 31 35 |4

y | 0.540302 | -0.416147 | -0.839072 | 0.862319 | 0.562379 | undefined | 0.562379 | 0.862319 | -0.839072 | -0.416147 | 0.540302
Table F

X 2 25 29 2.99 2.999 3 3.001 3.01 31 35 4

y 1 4 100 10,000 | 1,000,000 | undefined | 1,000,000 | 10,000 100 4 1
Table G

X 2 2.5 2.9 2.99 2.999 3 3.001 3.0l 3.1 35 4

y l 2 10 100 1000 undefined | -1000 -100 -10 -2 -1
Table H

X 2 2.5 29 299 2.999 3 3.001 3.01 3.1 3.5 4

y -1 ) -10 -100 -1000 | undcfined [ 1000 100 10 2 1




Appendix F
Questionnaire 1

Graphs, tables of ordered pairs, and function formulas each tell us different things about
functions. By answering the following questions, you will indicate how helpful each of
these sources of information is to you in understanding functions.

1. 'Which one of the following would you prefer to use when describing how a function
behaves to a fellow student?
a graph
—__atable of ordered pairs
____ the function formula
Please explain in a sentence or two why you chose the one you did.

2. If you could choose two things to help you tell a fellow student how a function
behaves, which pair would you prefer?
—_agraph and a table of ordered pairs
—_ a graph and the function formula
—__ atable of ordered pairs and the function formula
Please explain in a sentence or two why you chose the pair you did.

3. Would using all three (a graph, a table of ordered pairs, and the function formula)
help more than using just two of the three in telling a fellow student how a function
behaves?

Always

—___Sometimes
—_Never
Why do you think this?

4. Is it possible that these three (a graph, a table of ordered pairs, and a function
formula) wouldn 't provide enough good information for you to tell a fellow student
how a function behaves?

—_Yes
— _No
Why do you think this?
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Appendix G

Tasks for Interview 2, Graphical Version*

Sometimes, a graph of a function can suggest whether certain limits exist or not, and, if
so, what those limits might equal. This is only possible, though, if the graph actually
reveals the true nature of the function.

The graph below is one that does show the true nature of a function f.

1. Use the graph to make educated guesses whether the limits below exist or not.
2. If a limit exists, then suggest what its value might be. If a limit does not exist, then

explain in a few sentences how the graph shows this.

Possible Limit

Suggestion

Explanation or Suggested Limit Value

lim f(x)

x=l

This graph of f suggests
that this limit
—__exists

—___does not exist

lim f(x)

x=2

This graph of fsuggests
that this limit
—__exists

—___does not exist

lim f(x)

This graph of f suggests
that this limit
—___exists

—__does not exist
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It can happen that a graph of a function does not reflect the function’s true behavior,
especially when a calculator is used to draw the graph. Then the graph can actually be
misleading, suggesting conclusions that tum out to be false.

Below are three different graphs of the same function
tan -—
g(x)= ———(;3 x
for x-values near 0. Each graph was drawn using a computer algebra system. Graphing g
in the same viewing rectangles on your graphing calculator would produce similar
graphs. Only one graph reveals the true nature of this function for x-values near 0.

A

1. Which graph best reflects the
true nature of the function g for
x-values near 0?

-

! 2. What does your chosen graph

Q © o o
©Q N P O o

-1 0 1 lead you to conclude about
. i (2)?
1
0.8}
0.6}
0.4}
0.2}
0 3. How do the other graphs
-5.-10"¢ 0 5..10° mislead you about lxi_%g(x)?
c
1
0.8
0.6}
0.4}
0.2}
ot
-1.-10¢ .0 1.-10°¢

*Task 2, on this page, was adapted from Stewart (1995).
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Appendix H
Tasks for Interview 2, Numerical Version*

Sometimes, a table of ordered pairs of a function can suggest whether certain limits exist
or not, and, if so, what those limits might equal. This is only possible, though, if the table
of ordered pairs actually reveals the true nature of the function.

The table below (given in three pieces) is one that does show the true nature of a function
£, for x-values near 1, x-values near 2, and x-values near 4. (The y-values in italic are
approximated to 6 decimal places. All other y-values are exact.)

X y X y X y
0 0 1.5 15 3.5 -2.333333
0.5 2.333333 1.9 79.8 39 -0.410526
0.9 5.072727 1.99 799.98 3.99 -0.040101
0.99 S5.900792 1.999 7999.998 3.999 -0.004001

0.999 5.990008 2 undefined 4 0
1 undefined 2.001 -7999.998 4.001 0.003999
1.001 6.010008 2.01 -799.98 401 0.039900
1.01 6.100808 2.1 -79.8 4.1 0.390476

1.1 7.088889 2.5 -15 4.5 1.8

1.5 15 3 -6 S 3.333333

1. Use the table to make educated guesses whether the limits below exist or not.
2. If a limit exists, then suggest what its value might be. If a limit does not exist, then
explain in a few sentences how the table shows this.

Possible Limit Suggestion Explanation or Suggested Limit Value

lim f(x) This table of ordered
= pairs of f suggests that
this limit

—_exists

____does not exist

lim f(x) This table of ordered
=2 pairs of fsuggests that
this limit

exists
—___does not exist

lim f(x) This table of ordered
e pairs of f suggests that
this limit

exists

—does not exist
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It can happen that a table of ordered pairs of a function does nor reflect the function’s
true behavior, especially when a calculator is used to compute y-values for ordered pairs
of the function. Then the table can actually be misleading, suggesting conclusions that
turn out to be false.

Below are three different tables of the same function
tan -—
g( x) = _%
for x-values near 0. The y-values were computed using a calculator. The y-values in
italic are calculator output, rounded to 6 decimal places. All other y-values are identical
to the calculator’s output. Only one of the tables reveals the true nature of this function
for x-values near 0.

Table A Table B Table C
X y X y X y
0.5 0.370420 -0.0005 333333 -0.0000001 0
-0.1 0.334672 -0.0001 33333 -0.00000005 0
-0.05 0.333667 -0.00005 333336 -0.00000001 0
-0.01 0.333347 -0.00001 333 -0.000000005 0
-0.005 | 0.333337 -0.000005 3336 -0.000000001 0
-0.001 0.333334 -0.000001 3 -0.0000000005 0
0 undefined -0.0000005 32 0 undefined

0.001 0.333334 0 undefined 0.0000000005 0
0.005 0.333337 0.0000005 32 0.000000001 0
0.01 0.333347 0.000001 3 0.000000005 0
0.05 0.333667 0.000005 3336 0.00000001 0
0.1 0.334672 0.00001 333 0.00000005 0
0.5 0.370420 0.00005 333336 0.0000001 0

0.0001 33333

0.0005 333333

4. Which table best reflects the true nature of the function g for x-values near 0?

5. What does your chosen table lead you to conclude about Ll_il‘} g(x)?

6. How do the other tables mislead you about 9_:2 g(x)?

*Task 2, on this page, was adapted from Stewart (1995).
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Appendix I
Tasks for Interview 3*
A limit conjecture is most likely to be true if it is based on a table or a graph that reflects
the true nature of the function. So, analyzing a limit situation involves analyzing whether
the table or graph is misleading.

A graph and a table of ordered pairs of the function

t(x) = su\( f)
X

for x-values near 0 are given below. However, the table and graph contradict one
another.

X y

273 1

277 1 oF
211 1
215 1
2/19 1
223 1 ,
0 | undefined 0
23 -1

2/19 1

215 1

V11 1 -1}
27 -1 -0.6 -0.4 -0.2 (] 0.2 0.4 0.6
23 1

1. Does the table reflect the true nature of the function ¢ for x-values near 0?

2. Does the graph reflect the true nature of the function ¢ for x-values near 0?

3. What do you think is true about li_ingt(x) ?

*Task 1, on this page, was adapted from Stewart (1995).
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A graph and a table of ordered pairs of the function

1
h(x)=x+1+
(x) m

for x-values near 0 are given below.

x y
0.1 0.9
20.01 0.99 -1
20.001 0.099
20.0001 | 0.0999
0.00001 | 0.99999
20.000001 | 0.999999 1t
0 undefined
0.000001 | 1.000001
0.00001 | 1.00001
0.0001 | 1.0001 0.9
0.001 1.001 0.
0.01 101
0.1 L1

1. Do the graph and table contradict one another?
2. Does the table reflect the true nature of the function Ak for x-values near 0?

3. Does the graph reflect the true nature of the function A for x-values near 0?

4. What do you think is true about ljgh(x)?

*Task 2, on this page, was adapted from Williams (1991).
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Appendix J
Tasks for Interview 4*
Sometimes a limit cannot be determined by manipulating symbols from the function

formula. We must then use other methods to analyze the situation, make an educated
guess and, if possible, determine conclusively whether the limit exists.

f(x)=x* co{i) .
x

1. What do you think is true about [i_%f(x) ? Explain how you arrived at your

conclusion.

Consider the function

2. How certain are you that your conclusion is correct?
_____ absolutely certain
__ fairly certain, but there is room for doubt
____not all certain

3. How certain do you expect everyone else should be that your conclusion is correct?
____absolutely certain
_____ fairly certain, but there is room for doubt
____not all certain

*Similar to exercises in Stewart (1995).
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4. Produce some additional evidence that either indicates your original conclusion is
correct, or indicates that you need to modify your conclusion.

5. Now, how certain are you that your (possibly modified) conclusion is correct?
—_ absolutely certain
—_ fairly certain, but there is room for doubt
—__not all certain

6. Now, how certain do you expect everyone else should be that your (possibly
modified) conclusion is correct?
— absolutely certain
—_ fairly certain, but there is room for doubt
—_notall certain
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Appendix K
Questionnaire 2

Graphs, tables of ordered pairs, and function formulas each tell us different things about
limits of functions. By answering the following questions, you will indicate how helpful
each of these sources of information is fo you in understanding limits of functions.

I. Which one of the following would you prefer to use when analyzing a limit situation?
—agraph
___ atable of ordered pairs
—_ the function formula

Please explain in 2 sentence or two why you chose the one you did.

2. If you could choose two things to help you analyze a limit situation, which pair
would you prefer?
a graph and a table of ordered pairs
a graph and the function formula
____ atable of ordered pairs and the function formula
Please explain in sentence or two why you chose the pair you did.

3. Would using all three (a graph, a table of ordered pairs, and the function formula)
help more than using just two of the three in analyzing a limit situation?
— Always
— Sometimes
Never
Why do you think this?

4. What are some drawbacks of relying on these three (a graph, a table of ordered pairs,
and the function formuia) when analyzing a limit situation?
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Appendix L

Interview Protocols

Interview 1 Protocol

I

Thank you for being willing to participate in my study. Before we begin, you need to
read this informed consent form and sign it. The green copy is for you to keep.
I am going to turn on the tape recorder now, but please try to ignore it.
During each of these interviews, you will work on some mathematics problems.
They will likely be unfamiliar to you and somewhat difficult, but don’t worry about
this. I am more interested in your thought processes than your solutions, so I would
like you to think out loud as much as possible. At first, you will work on your own
(thinking out loud) until you feel you’ve done everything you can to solve the
problem. During that time, I will watch and take notes. Then I'll ask a few questions
about the problem and your thought processes. Finally, there is a brief questionnaire
to complete at the end of the interview. Is all of this clear?
Here is the problem. There are three one-sided pages. You may write on all of them,
but you should put your answers on the first page. Here is scratch paper in case you
need it. Go ahead and begin, and, once again, please think out loud.
Follow-up questions

(a) Do you see how each function is undefined at x = 3?

(b) Do you see how each function behaves differently at x-values near x = 3?

(c) Did you use your knowledge of some functions to help you on the other

functions?

(d) What does it mean for the table to correspond to the formula?
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(e) What does it mean for the graph to correspond to the formula?
(f) What does it mean for the graph to correspond to the table?
(g) Other:
(h) Other:
(i) Other:
() Other:
6. Please fill out this short questionnaire.
7. Thank you very much. That is all I need from you today. May I sign you up now to

do the next interview?
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Participant Interview Date Start Time

Duration _________

Interview 2 Protocol

I am going to turn on the tape recorder now, but please try to ignore it, as before.
During this interview, there are two problems, each with three parts. You may use
your graphing calculator, but you may find that this is unnecessary. I'll let you work
on the first problem until you feel you’ve done everything you can do, and then I'll
ask you a few questions about it. Then we’ll repeat this with the second problem. Is
this clear?

Here is the first problem. Make sure you read from the beginning.

Time

Follow-up questions
(a) Is it difficult to tell from this table/graph what the limit situations are?
(b) How do you actually read the table/graph? Where are your eyes focusing, and
what are you looking for?
(c) What can you say about the limit of f(x) as x approaches 2 from the left?
Okay, let’s set this problem aside for now. Here is the second problem. Again, make
sure you read from the beginning.

Time

Follow-up questions
(a) How did you choose your table?

(b) Why do you suppose the other tables turned out to be so misleading?
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(c) Aren’t closer x-values supposed to give you better information about the
corresponding y-values?

9. Time

10. That’s all for today. The third interviews are in two weeks, and I would like to do the
fourth interviews the week immediately after that. Is this okay, and may I schedule you

for both of those now?
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Participant Interview _____Date Start Time

Duration

Interview 3 Protocol

L.

2.

I am going to turn on the tape recorder now, but please try to ignore it, as before.
During this interview, there are two problems, each with several parts. You may use
your graphing calculator. I'll let you work on the first problem until you feel you’ve
done everything you can do, and then I'll ask you a few questions about it. Then
we’ll repeat this with the second problem. Is this clear?

Here is the first problem. Make sure you read from the beginning.

Time

Follow-up questions

(a) How did you decide whether the table reflects the true nature of the function?

(b) Do you think that the y-values in the table are correct? (Try computing a few
y-values to see.)

(c) Can you point to places on the graph that correspond to some of the ordered
pairs in the table? (For example, where is the ordered pair (-2/3,1) located on
the graph?)

(d) If you only had this table of ordered pairs for this function, what would you
expect the graph to look like?

(e) How did you decide whether the graph reflects the true nature of the function?

() If you only had this graph for this function, what might some ordered pairs in

the table look like? Can you “fix” the table here so that it better matches the

graph?
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(g) Up here (point to statement), I said that the table and graph contradict one
another. Do you believe that’s true?

(h) How did you figure out the limit situation in problem 3?

(i) What can you say about the limit of t(x) as x approaches O from the left?
From the right?

. Okay, let’s set this problem aside for now. Here is the second problem. Again, make

sure you read from the beginning.

. Time

. Time

. Follow-up questions

(a) How did you decide whether the table and graph contradict one another?

(b) Do the table and graph include the same range of x-values and y-values?

(c) What does the graph tell you about h(0)? What does the table tell you about
h(0)? Which of these situations is right? How do you know?

(d) Does the graph match the table for the rest of the ordered pairs?

(e) How did you decide whether the table reflects the true nature of the function?

(f) Could you “fix” the table here so that it better reflects the true nature of the '
function?

(2) How did you decide whether the graph reflects the true nature of the function?

(h) Could you draw a graph that would better reflect the true nature of the
function?

(i) Now, after fixing the table and graph, what do you think is true about the limit

of h(x) as x approaches 0?
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Participant ___ Interview Date Start Time

Duration

Interview 4 Protocol

1. Iam going to turn on the tape recorder now, but please try to ignore it, as before.

2. During this interview, there is one problem with several parts. You may use your
graphing calculator. I'll let you work on the first parts of the problem until you feel
you’ve done everything you can do. Then, I’'ll ask you a few questions about your
work, and give you the remaining parts of the problem. When we are done discussing
your work on those parts, there will be a short questionnaire. Is this clear?

3. Here is the problem. Make sure you read from the beginning.

4. Time

5. Follow-up questions

(a) At the beginning, I wrote that sometimes a limit cannot be determined by
manipulating symbols from the function formula. Can this limit be
determined by manipulating symbols?

(b) What other methods can be used to analyze a limit situation?

(c) The first thing you tried was a graph/table. Are you certain that the
graph/table reflects the true nature of the function?

(d) Do you think that the best you can do in this situation is to make an educated
guess about the limit situation?

(e) Is it possible for some educated guesses to be more reasonable than others?

(© Do you think it’s possible to determine for sure what the limit situation must

be?
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6. Okay, let’s set this aside for now. Here are the remaining parts of the problem.
These refer to the same problem.

7. Time

8. Follow-up questions
(a) Your evidence in this part agrees/disagrees with your evidence in the first
part. Can you explain this?
(b) Do you understand the limit situation more or less now that you have tried to
generate additional evidence?
(c) Can you think of a way to determine for sure what the limit situation must be?
9. Thank you for your efforts. I have a short questionnaire for you to fill out and then
you will be done.

10. Time
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Appendix M
Background Questionnaire Data
Table M1

Gender and High School (HS) Class Demographics for Entire Course and Volunteers (V)

Group Entire \"/ Vé&met Agreedto Final
course criteria  participate  Sample
Male
1998 HS graduate 77 31 15 9 8
Pre-1998 HS graduate 13 3 3 2 1
(93-97 graduating classes)
Females
1998 HS graduate 24 9 4 2 1
Pre-1998 HS graduate 7 3 2 1 0

(90, 96-97 graduating classes)

Note. Enroliment: 128 students. Completed questionnaires: 121.
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Table M2

College Classification and College Major Demographics (Items 4 & 5)

Males Females Total

Group 1998 Pre-1998 1998 Pre-1998 Entire  Final

HS Class HS Class HS Class HS Class Course Sample

College

Classification
Freshman 77 2 24 2 105 9
Sophomore 7 2 9 0
Junior 3 2 S 1
Senior i 0 1 0
Other 0 1 1 0

College Major
No Response or 15 3 S 3 26 i
Undecided
Engineering® 44 2 6 3 55 4
Science/Tech.” 21 9 13 0 43 7
Humanities® 0 0 2 1 3 0

Maj/min in math?

Yes 8 1 4 0 13 2
No 64 11 18 6 99 8
No Response 5 1 1 0 7 0
Not sure 0 0 1 1 2 0
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Note. Every major listed was counted once. Six students indicated double majors.
*Majors listed were engineering, aerospace, chemical, civil, computer, electrical,
environmental, industrial, mechanical, and petroleum. ®Majors listed were architecture,
astronomy, astrophysics, computer science, construction science, chemistry, geology,
geophysics, management information sciences, mathematics education, meteorology, pre-
pharmacy, and pre-medicine. “Majors listed were sociology, English, and public

relations.
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Table M3

Math Background Demographics (Items 8-10)

Males Females Total

Prior Math Courses 1998 Pre-1998 1998 Pre-98 Entirc  Final

HSClass HSClass HS Class HS Class Course Sample

High school 57 2 18 1 78 4
calculus
Math 1503 at OU 7 3 10 0
Math 1523 at OU 9 5 14 0
Math 1823 at OU 2 o 2 0
College courses i
elsewhere
College Algebra 3 1 4 1
Trigonometry 3 1 4 I
Pre-calculus 1 0 1 0

Note. Each pre-calculus course listed was counted once. Some students took more than

one pre-calculus course. OU = University of Oklahoma.
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Table M4

Graphing Calculator Use, Experience and Expectations Demographics (Items 11- 13)

Males Females Total
Graphing 1998 Pre-1998 1998 Pre-1998 Entire Final
Calculator Category HS Class HS Class HS Class HS Class Course Sample
Models in use
No Response 12 5 2 3 22 4
TI 73 7 24 3 107 6
Hewlett Packard 3 1 2 0 6 0
Casio 3 0 3 1 7 0
More than one 10 0 5 0 15 . 0
Experience
None 3 1 0 0 4 1
Seen 1-2 demos 1 1 1 2 5 1
Seen >2 demos 1 0 1 2 4 0
Used 1-2 times 11 7 0 1 19 5
Used often (M)* 61(2.7) 42.7) 22(2.9) 203) 89(2.8) 3(1.3)
Expect helpful?
Very unhelpful 10 2 3 1 16 I
S. unhelpful 8 1 2 0 11 0
Undecided 7 0 1 3 11 1
S. helpful 24 5 4 1 34 1
Very helpful 28 4 14 2 48 7
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Note. The graphing calculator experience among the 24 students who met the criteria
was: none — 1, seen 1-2 demos — 3, seen >2 demos — 1, used 1-2 times — 7, used
frequently — 12 (2.9). One male, pre-1998 HS class, did not respond to item 13. TI =
Texas Instruments. S. =Somewhat.

3M = Average, within cell, of prior classes with graphing calculator use.
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Table M5

Attitudes about Calculators and Computers (Items 14 & 15)

Males Females Total

Atitude Category ~ 1998  Pre-1998 1998  Pre-1998 Entire  Final

HSClass HS Class HS Class HS Class Course Sample

Feelings
I like them a lot 51 9 13 5 78 8
They are okay 21 2 9 2 34 2
I can take them or 5 1 1 0 7 0
leave them
I do not like them 0 0 1 o 1 0
I really hate them 0 0 0 0 0 0
Aptitude
Low 1 2 1 0 4 0
S. below average 4 0 1 0 5 0
Average 23 3 11 4 41 5
S. above average 25 3 10 3 41 3
High 24 4 2 0 30 2

Note. One male, pre-1998 HS class, did not respond to these items. S. =Somewhat.
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Table M6

Perceived Math Aptitude and Experience with Mathematical Limits (Items 16 & 17)

Males Females Total

Experience Level 1998 Pre-1998 1998 Pre-98 Entire  Final

HSClass HS Class HS Class HS Class Course Sample

Math Aptitude
Low 0 0 0 0 0 0
S. below average 1 1 1 1 4 1
Average 9 3 5 2 19 2
S. above average 49 6 14 4 73 6
High 18 3 5 0 26 1
Limits Experience
None ' 8 5 3 2 18 4
Brief introduction 12 4 5 1 22 1
Techniques, but 9 0 4 2 15 4
no theory
Techniques and 15 2 3 1 21 1?
the theory
Used limits 1 year 23 2 7 0 32 1
Used >1 year 10 0 3 1 14 0
No Response 1 1 1 0 3 0

Note: Each level checked was counted once. Some students checked two levels.

*This student checked both this level and “used limits 1 year”.
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Appendix N

Interview and Course Content Schedule

Monday Tuesday Wednesday Thursday Friday
17 August 18 19 Lecture 2 20 21 Lecture 3
Lecture 1 Discussion 1 Discussion 1
24 Lecture 4 25 26 Lecture 5 27 28 Lecture 6
Discussion 2 Discussion 2 Homework 1
due
31 Lecture 7 I September 2 Lecture 8 3 4 Lecture9
Week for Discussion 3 Discussion 3 Homework 2
Interview 1 due
8 students MT,
2 students WTh
7 Holiday 8 9 Lecture 10 10 11 Lecture 11
Discussion 4 Discussion 4 Homework 3
due
14 Lecture 12 | IS 16 Lecture 13 | 17 17 Lecture 14
Week for Discussion 5 Discussion 5 Homework 4
Interview 2 due
7 students MT,
2 students WTh
21 Exam 1 22 23 Lecture 15 24 25 Lecture 16
Discussion 6 Discussion 6 Homework 5
due
28 Lecture 17 | 29 30 Lecture 18 | 1 October 2 Lecture 19
Week for Discussion 7 Discussion 7 Homework 6
Interview 3 due
10 students MT
S Lecture 20 6 7 Lecture2l |8 9 Holiday
Week for Homework 7 Discussion 8
Interview 4 due
7 students MT, Discussion 8
2 students WTh
Figure N1

Note. One student did not do interviews 2 and 4.

147




Appendix O
Course Content Summary

Lecture 1. A review of functions was begun. A function was presented as a rule
that assigns numerical values to each number in a certain set. As an example, a table of
world population estimates during certain years was presented, followed by a graph of the
ordered pairs in the table. The instructor pointed out that the graph gave more
information than the table, and said, I want you to always have a graph in mind when
you see a function.” The second example was

gx)=x*-2for0sx<4,
given with the acknowledgement that many functions would be given by formulas, but
this was not necessary. To illustrate this, a third example was given: for each natural
number n, -
h(n) = the digit in the nth decimal place of 2.

Lecture 2. Three more examples of functions were presented, each a piecewise
function with a different context. The first example involved no context, and was
presented as an illustration that some functions require more than one formula:

x+2 if x=<l1

j(x)={ 2 if x>l
The second example was the cost of renting a car as a function of miles driven, assuming
that a car rental company charges $50 for the first 100 miles and 10 cents per mile
thereafter. Given this context, students, interacting with the instructor, constructed the

function:
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50 if x<100
k(x)= {50+%(x—100) if x>100°
The third example was the absolute value function: a function whose formula can be re-
expressed as two piecewise-defined formulas. Domain and range were presented and
illustrated using the six examples of functions presented earlier.

Discussion 1. A worksheet (see Appendix P) was given introducing students to
basic graphing calculator operations and limitations. In particular, students learned how
to enter numerical expressions for computation and function formulas for drawing of
graphs. Zooming in on a point and tracing along a curve were touched upon, and issues
related to viewing window dimensions were raised.

Lecture 3. The notion of instantaneous speed was discussed in an attempt to lead
students to think of limit ideas. Ideas were elicited from the instructor as to how one
would calculate such a quantity. Student suggestions led to calculating (with the
calculator) average velocities over smaller and smaller intervals. This raised the issue of
division by zero in relation to calculating instantaneous speed, which the instructor
promised would be revisited in weeks to come. Then he remmoh to the ideas of domain
and range in the context of creating new functions by addition, subtraction,
multiplication, division and composition of other functions, presenting several examples.

Lecture 4. Families of functions were introduced, and examined by
simultaneously graphing several curves of each family, using graphing calculators, and
discussing properties of each family or functions within a family. Polynomials were

presented first, and discussed with respect to evenness and oddness. Students were told

to be familiar with graphs similar to x, x*, x’, x*, and x°, both individually and as a
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family and how they relate to one another, as that was the whole point to graphing them
simultaneously. Trigonometric functions were presented next, and discussed with respect
to periodicity. The vehicle for this discussion was a simultaneous graph of sin(x) and
cos(x) in the viewing window [-6.4,6.4]x[-4,4] on the graphing calculator. The
discussion of this pair of graphs began with the instructor’s comment “The calculator
should not know anything you don’t know.” He then proceeded to ask several questions.
What is sin(n) for all n? What is cos(nm) for all n? Where do they cross? At what
height? What is the domain of each function? The range? What is the period of each
function?

Lecture 5. Families of functions were touched upon again, this time focusing on
exponential and logarithmic functions. The ideas of shifting and scaling were presented,
with examples based on trigonometric functions. The instructor introduced the tangent
and velocity problems, commenting, “Finding slopes of tangents and understanding what
is meant by velocity are the two problems which motivate almost everything we’ll do in
calculus I. In this section, we’ll see how both require us to study limits.”

Discussion 2. Students were finishing the first homework assignment, due in
lecture 6. That assignment contained 9 problems, primarily focusing on domain and
range of functions. This assignment was due the Friday before most of the first

interviews were conducted. It should be noted that among the functions in this

assignment were:

2 x> +5x+6
s M fW=—"0

g(x)=
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both of which were very similar to functions in the matching task in interview 1. In
addition, the assignment included a piecewise defined function, an example of which was
also included in the matching task in interview 1.

Lecture 6. This lecture began with an example. The problem of finding the slope
of the tangent to x” at (1,1) was approached using approximations with secant lines.
First, the slopes of a few secant lines were computed by hand. Then, the secant slope
function was drawn on the graphing calculator to, “see if we can see any limiting
behavior”, as the instructor put it. After drawing the secant slope function on the
graphing calculator, the “zoom in” and “trace” features were used to gather what the
instructor called “experimental” evidence, leading the class to conjecture that 3 was the
slope of the tangent line. The instructor commented, “Not only does the experimental
evidence indicate the slope is 3, but in fact there is no doubt that the slope is 3.” To show
that this was sﬁ, the instructor wrote the following passage on the board.

Considerations such as these lead us to realize that the required slope is given by

the limit

3 _ LY
imX ! oy ETDE XD Gt e x ) =3
= x-1 =l (x_l) P

Next, came an example involving velocity. Given that the distance traveled after time t
was s =12, the velocity at time ¢ = 7 was calculated directly using an algebraic technique
similar to the previous example. These two examples, both handled with algebraic
techniques, were then used to set up the next example, which could not be handled in this

way. The instructor suggested that one way to handle a problem like

li_lg(l + x)x
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was to use the calculator to generate a table of values or a graph, although this would give
experimental evidence only. After finding function values for x= .1, .01, .001, and
00000001, it was pointed out that this limit was equal to the number e, something that
numerical and graphical evidence might hint at, but could not reveal definitively.

Lecture 7. This lecture was primarily devoted to examples of limits for which the

graphing calculator would fail in some way. The first example to be considered was
2z
liisin(xi»l)-i—cos—— l).
x x

Several test values, such as x = .000001, .0000001, etc., were entered in the calculator,
resulting in values very close to .84147, at which point the instructor asked, “Is there any
reason why we should not believe that?” Upon graphing the function in the viewing
window [-2,2]x[-2,2], and zooming in, it was revealed that the function appeared to be
“bouncing around a lot”, contradicting the numerical information. What was causing the

trouble? The trouble stemmed from poor choices of x-values: substituting x-values of the

form +10™ into cos2 always results in the number 1, causing the calculator to produce
X

values close to sin(1) for the function. It was suggested that less deceiving numbers like
x = .00000171t would be more helpful. The example was summed up in the following way
by the instructor: *“ Putting in values like x = .00001 seems to indicate the limit is about
.84. Drawing the graph would make us a little suspicious. In fact, the limit does not
exist. You should write yourself a few more notes to convince yourself of this. I looked
at the graph to see if the numbers are telling the whole story. Every time [ use the
calculator, I'm suspicious, and I don’t want just a little evidence, but a lot of evidence.”

The next example considered was
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. A2 +1-1
hm——z——-.
x=0 X

This limit was ultimately calculated algebraically, but first numerical evidence was
generated. For x-values .01, .001, .0001 and .00001, the function values were very near
5, but for x-values 10> and 106, the calculator returned 0. A graph was then drawn,
and the trace feature suggested that .5 was the limit. In fact, students were told, the limit
was equal to .5 and this was shown algebraically. What was the problem with the
calculator? The instructor answered, “It can’t deal with small numbers because it must
round off. The calculator is almost doomed to failure because we are always interested in
small values divided by small values. If you are relying on the calculator, you need lots
of evidence. A graph is helpful but only if you believe what you see. You have seen the
dangers of experimentation but sometimes this is all you can do.” -

Next, one-sided limits, including infinite limits, were explained by means of a
graphical example. The instructor commented, “When you take a limit, you want to
know what is the behavior of this function nearby.... One message you should be getting
is that graphs are very valuable.” Finally, the limit laws were introduced, with the
comments that they had already been used in many examples, and that one had to ensure
that all of the individual limits made sense.

Lecture 8. This lecture was part of the pre-interview 1 experience for 2 of the 10
students. Limit laws were continued and two theorems were presented. First, the
theorem that a limit exists if and only if the left and right hand limits exist and are equal
was presented along with the comments, “This shows that the value of a limit can be
found by calculating the corresponding one-sided limits. It also gives a way to prove that

certain limits do not exist, in particular, if the corresponding one-sided limits are not
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equal.” Second, the Squeeze Theorem was presented as a means of calculating a limit for
a “nasty” function g, if one could find simple functions f and & meeting the hypotheses of
the theorem. Exercises from the textbook were presented as examples to illustrate the

limit laws. Extensive time was devoted to understanding

lxi_rgxsin(i) .
First, an ad hoc analysis of the function led to the conclusion that sin(l/x) was bouncing
back and forth very rapidly, but x is trying to get to 0. Then the function was graphed on
the graphing calculator in the window [-3,3]x[-2,2], and everyone zoomed in at the origin
three times, upon which the professor suggested that perhaps the squeeze theorem would
be of help. After applying the Squeeze Theorem to show that the limit was 0, the
professor commented, “Keep this example in mind because it is kind of generic because
sine or cosine of anything is between —1 and 1.” Further analysis of this function
involved finding out why it appeared to level out as x-values became larger, and finding
x-values at which the function equaled x or —x.

Discussion 3. Students were finishing the second homework assignment due in
lecture 9. This assignment contained 9 problems focusing on function transformations
and predicting tangent line slopes and instantaneous velocities from numerical data
generated about secant line slopes and average velocities.

Lecture 9. This lecture began with a recap of results obtained the previous lecture

about the function xsin(l/x), including a reminder that the limit as x approached 0 had

been determined to equal 0 by the Squeeze Theorem. Continuity was introduced and the
Intermediate Value Theorem was presented followed by an application involving finding

a root of cosx = x, correct to one decimal place. It was pointed out to students that this
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process of finding a root was the basis of what their calculators were doing in solving an
equation. The professor commented, “T want you to understand what your calculator is
doing.” (The Monday following lecture 9 was a holiday.)

Lecture 10. The ideas of tangent line slope, velocity, and instantaneous rate of
change were reviewed, using several exercises from the textbook as examples. First, the
slope of the tangent line to

y=1-2x-3x*
at the point (-2, -7) was computed using limits. This led to an equation of the tangent
line. Both the function and the tangent line were graphed on the graphing calculator in
the window [-10,10]x[-10,10}, and the zoom-in feature was used around the point (-2, -7)
to see that the two functions are indistinguishable after zooming in close enough.

In the second example, the slope of the tangent line to |

y=x —4x+1
at x = g was computed, leading to straightforward computations producing equations of
two different tangent lines. After determining what the graph of the function ought to
look like for large positive and large negative x-values, it was graphed on the graphing
calculator along with the two tangent lines in the window [-3,3]x[-3,3]. This graph was
used to illustrate that a tangent line can cross a curve at a point of tangency; that is,
tangents have nothing to do with staying on one side or the other of the curve, so one
must always use the ideas of limits.

Finally, a velocity problem based only on a graph of the position function was
presented. This involved determining from the graph what the initial velocity was,
whether the car was going faster at one point or another, whether it was slowing down or
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speeding up at certain points, and what was happening between certain points. Students
were informed that there was a lot of information in this curve and that it would be a
good exercise to plot the velocity curve based on the graph of the position curve.
Discussion 4. Students were finishing the third homework assignment, due in
lecture 11. The assignment contained 16 problems, focusing on limits, continuity and the
intermediate value theorem. Specifically, students computed limits (two-sided and one-
sided) of one function given graphically (no formula), which contained a cusp, a jump, a
vertical asymptote and a hole. This was very much like the function given in task 1 of
interview 2, both in the graphical and numerical versions. A piecewise function, given as
a multi-piece formula, required a graph be drawn and several limit situations be
determined. A rational function was given, with instructions to find the vertical
asymptotes and draw the graph. Most important, the problem on which task 2 of

interview 2 was based was assigned. Here is the full statement of the problem.

(a) Evaluate h(x) = 2E"%) forx=1,0.5,0.1, 0.05, 0.01, 0.005.
P <

(b) Guess the value of lim 22X~
x—0 x

(c) Evaluate h(x) for successively smaller values of x until you finally reach 0 values
for h(x). Are you still confident that your guess in part (b) is correct?
Next, students were asked to estimate the value of

lim6 -2
=0 x

by graphing the function y = (6* —2%)/x, and state the answer to two decimal places.

These problems were followed by five limit exercises utilizing the limit laws. In one
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case, the limit did not exist because of a vertical asymptote, and in another case, the limit
did not exist because the left and right limits were not equal.

Next, two piecewise functions were given, requesting graphs and explanations for
why they were discontinuous at a given point. One piecewise function was given with a
constant ¢ appearing in both pieces of the formula, and directions to find the constant ¢
making the function continuous on the real line.

Finally, two applications of the intermediate value theorem were given, the
second requiring students to use their graphing calculators to find an interval of length
0.01 containing a root of the function in question.

Lecture 11. Derivatives were introduced in terms of limits with the admonition,
“You should never forget that you are computing a limit when you find a derivative.”
Examples of computing derivatives using limits were given, based on

2
JB—x.

The geometric interpretation of a derivative was presented by showing a graph of a

f(x)=ax+b and f(x)=

function (no formula) and drawing a plausible graph of the derivative function. The
theorem that differentiability implies continuity was proved, and a counterexample to the
converse, namely the absolute value function, was presented.

Lectures 12. Derivative computations dominated this lecture. First, the derivative

at x = @ was computed, using limits, for the function
2

fx)=x—-—.
x

A graph of y = x—2/x was drawn on the graphing calculator, and it was pointed out that

when x is very big, the function looks like y = x. Then, the graph was analyzed to
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determine what the derivative should look like, and the derivative function was then
graphed on the graphing calculator to confirm the predicted behavior. Differentiation
formulas were introduced next, followed by several computational examples.

Lecture 13. This lecture was part of the pre-interview 2 experience for 2 of the 9
students who did this interview. The hour was strictly devoted to presenting examplies of
derivative computations using the derivative rules.

Discussion 5. Students were finishing the fourth homework assignment, due in
lecture 14, and also preparing for the first exam. The assignment contained seven
problems, focusing on computations of tangent line slopes, velocities and instantaneous
-mws of change, using limits.

Lecture 14. This hour was devoted to answering questions in preparation for the
exam to be given the following Monday. Topics raised were domain and range,
continuity, and the Intermediate Value Theorem.

Lecture 15. This was the lecture following the first hour exam, so a considerable
amount of time was devoted to going over the exam problems. The exam included one
problem requiring students to calculate the following four limits, with instructions to “use
a calculator only if you know of no other technique and then give the answer to three
decimal places”.

5 —
x -1 and limx® cos-l- )
x—0 x

im

~ x-1

\/xz+4—2
x2

timt- =), i

Calculator use was necessary for the second limit, and the fourth limit required the

Squeeze Theorem. Notice that the function in the fourth limit is similar to the function

used in the task for interview 4.
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After going over the exam, derivatives of trigonometric functions were introduced
by showing geometrically that

sin6

cosf < <1,

and hinting that the Squeeze Theorem could be used to find the derivative of sin(x) at the
Discussion 6. Students were finishing the fifth homework assignment, due in
lecture 16. The assignment contained 17 problems, focusing on computing derivatives by
the limit definition and by differentiation rules, recognizing or drawing graphs of
derivative functions based on graphs of functions, and applications of derivatives.
Lectures 16, 17 and 18. The 16™ lecture began by applying the Squeeze Theorem
to the inequality established in the last lecture, to arrive at the conclusion

im328 — 1.
60 6

This led to limit computations of the derivatives of sin(x) and cos(x), computations of
derivatives of other trigonometric functions using these results and the differentiation
rules, and computations of other limits dependent on the one above. Lecture 17
continued with computations of derivatives based on the rules for differentiating
trigonometric functions. Lecture 18 introduced the chain rule and presented several
computational examples.

Discussion 7. Students were finishing the sixth homework assignment, due in
lecture 19, and also beginning to think about the seventh homework assignment due the
following week in lecture 21 (a Wednesday). Assignment 6 contained 10 problems,

focusing on limits involving trigonometric functions, and derivatives of functions
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containing trigonometric functions. Assignment 7 contained 8 problems, all involving
computations of derivatives, using the chain rule.

Lectures 19, 20 and 21. Lecture 19 presented more chain rule derivative
examples, and introduced implicit differentiation. Lecture 20 provided examples of
implicit differentiation, including orthogonal trajectories. Lecture 21 was part of the pre-
interview 4 experience for 2 of the 9 students who did that interview. That lecture

presented higher order derivatives, including computations and graphical interpretations.
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Appendix P
Graphing Calculator Worksheet
TI-85 Introduction
Primary Reading: TI-85 Guidebook chapters 1,4,12 and 14
Stewart: Review and Preview Chapter, section 3, pp. 26-31

Essential Terminology: viewing rectangle, xrange, yrange, xmin, xmax, xscale, ymin,
ymax, yscale, zooming in, zooming out, aspect ratio.
1. Enter the expression V4 +3° +2sinz in the home screen. Press ENTER. Is the result
what you expected? Explain in a sentence or two.
2. Use the LIST command to find the square roots of the numbers 1, 2,4, 9, and 16 all at
once. Is the resuit what you expected? Explain in a sentence or two.
3. Graph h(x) = x with the default viewing rectangle of [ -10, 10 } x [ -10, 10 ]. Now try
the following w;iewing rectangles. Describe what you see in each case, and explain why
the graph appears so differently in each viewing rectangle.

a. [-10, 10} x [-1, 1]

b. [-1, 1] x [-10, 10]

c.[0,1]1x [-1,0]
4. Graph f(x) =sin(x) with the viewing rectangle [-2x, 2t ] x [-1, 1]-

a. Use TRACE to approximate a maximum value of f and a positive root of f.

What are the exact answers?

b. Use ZOOM to zoom in on the graph near the point (1,0). What do you see?

Is this what you expected to see?
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S.Graph g(x) = x* —18x’ +107x* —210x in the viewing rectangle [-10, 10] x [-10, 10].
Note, g(0) = 0, but the graph doesn’t show this. Now graph g(x) in the viewing rectangle

[-1, 8] x [-130, 10]. Is this a better viewing rectangle? Why or why not?

6. By graphing, estimate the domain and range of f(x)=vI10+100x-10x* . Find the

exact answer analytically.
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