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ABSTRACT

This work is concerned with three topics: error estimation, data smoothing process 

and the structural shape optimization design and analysis. In particular, the 

superconvergent stress recovery technique, the dual kriging B-spline curve and surface 

fittings, the development and the implementation of a novel node-based numerical shape 

optimization package are addressed.

Concept and new technique of accurate stress recovery are developed and applied in 

finding the lateral buckling parameters of plate structures. Some useful conclusions are 

made for the finite element Reissner-Mindlin plate solutions.

The powerful dual kriging B-spline fitting technique is reviewed and a set of new 

compact formulations are developed. This data smoothing method is then applied in 

accurately recovering curves and surfaces.

The new node-based shape optimization method is based on the consideration that 

the critical stress and displacement constraints are generally located along or near the 

structural boundary. The method puts the maximum weights on the selected boundary 

nodes, referred to as the design points, so that the time-consuming sensitivity analysis is 

related to the perturbation of only these nodes. The method also allows large shape 

changes to achieve the optimal shape. The design variables are specified as the moving 

magnitudes for the prescribed design points that are always located at the structural 

boundary.

XIV



Theories, implementations and applications are presented for various modules by 

which the package is constructed. Especially, techniques involving finite element error 

estimation, adaptive mesh generation, design sensitivity analysis, and data smoothing are 

emphasized.
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1 INTRODUCTION

1.1 Background

The efficient use of materials is a primary concern in engineering design. The 

aerospace and automotive industries have applied structural optimization to their designs 

of various structures and mechanical elements [5, 13, 55, 36]. It is generally believed that 

engineering design is an iterative process in that the design is continuously modified and 

refined until it meets all criteria set by designing engineers. Traditional design practice is 

primarily based on trial and error procedures, and therefore, requires extensive 

experience and intuition to achieve an optimal design for a complex mechanical system. 

The subject of effectively combining the structural finite element analysis technique and 

nonlinear constrained optimization algorithms has been widely investigated in the last 

two decades and optimization modules have been incorporated into a number of 

commercial finite element packages.

Applications of structural optimization are usually grouped in the literature into the 

following three categories: sizing, shape, topology and material of a structure. Early 

efforts in numerical structural optimization emphasized optimal sizing design. In other 

words, the goal was to predict the optimal element stiffness properties such as 

cross-sectional areas and moments o f inertia for truss or frame system elements, or 

transverse thicknesses in a plate structure. One of main characteristics of using such a 

sizing method is that a changing value of a design variable will not influence the



already-specified finite element mesh system. As a result, the varying responses in a 

structure due to changes in a design variable generally were a linear function of either the 

variable or its reciprocal. A substantial amount of work in optimal sizing applications can 

be found in the literature [e.g., 36].

Numerical shape optimization design (or optimal shape design), on which part of 

this study focuses, attempts to use numerical optimization techniques to achieve an 

optimal shape for an existing structure, usually through the perturbation of the structural 

boundary. An example illustrating the difference between the sizing optimization design 

and shape optimization one is that of minimizing the stress concentration at a hole in a 

plate. Sizing design would change the thickness of the plate near the hole, while shape 

design would focus on the effects of changing the shape o f the hole boundary. Generally, 

a shape optimization is a more effective method than a sizing optimization to achieve an 

optimal design, but is more involved than a sizing optimization mainly due to the fact that 

it is necessary to consider the structural boundary shape changes, to maintain an adequate 

finite element mesh, and to ensure the accuracy of the sensitivity analysis.

It should be pointed out that the vast majority of success stories about numerical 

shape optimization applications were told within the framework of planar structures 

(either plane stress or plane strain). A limited number of the reports could be found on the 

shape optimization involving plate elements in the finite element calculation.

Compared with sizing and shape optimization techniques, less research has been 

conducted on topological optimization for structures. In topological optimization, the 

optimal design is sought by changing the layout of truss or frame structural elements, or.



removing or creating internal boundaries or holes in continuum structures. The work by 

Michell in 1904 is commonly believed to be the earliest one engaging in topology 

optimization investigation. Research in this direction was essentially stagnant until 1988 

when Bendsoe and Kikuchi [10] introduced a homogenization method based on the 

relaxation concept introduced by Kohn and Strang [45]. This innovative concept 

suggested that an original optimization design should be relaxed to introduce microscale 

perforation in certain interesting design areas. A recently published monograph [11] may 

be consulted for more details regarding this topic.

Algorithms used in structural optimization generally fall into one of three broad 

categories: optimality criteria methods, random search methods, or mathematical 

programming methods. In optimality criteria methods, all of the necessary (and 

sometimes sufficient) conditions of optimality (Kuhn-Tucker conditions, for example) are 

used to generate a system of equations. The resulting equations are then solved, partly 

explicitly (if possible) and partly iteratively, to provide optimal designs. Further details 

about this method and its applications can be found in a number of excellent review 

papers by Venkayya and coworkers [77, 14].

Random search techniques, such as genetic and simulated annealing algorithms 

[33], are based on a randomized procedure that systematically generates a large number 

of sample designs, out of which the best one is selected as the optimal design. The use of 

these techniques in structural optimization has been quite recent and has primarily 

concentrated on the sizing and topological optimizations of truss and frame structures 

[e.g., 60].



In mathematical programming methods, the gradients of objective and constraint 

functions are calculated for a given design and, subsequently, used to generate optimal 

and feasible directions for specifying the next design iteration. The procedure is repeated 

until the optimal design is achieved.

As numerical optimization theory and applications were developed, intensive 

studies have also been conducted in universities and companies all over the world to 

improve the pre-processing, finite element robustness, solving and post-processing. As a 

result, finite element (FE) analysis methods have become more and more popular in 

practical designs. Among many notable improvements, accurate and economical 

prediction of the stress (strain) field from the computed displacement solutions (stress 

recovery technique) has been investigated by researchers. The successes in this path can 

be stated to be due to mainly the contributions from the progress in error estimation and 

adaptive mesh generation o f a FE solution procedure.

1.2 Scope and Objectives

There exist a number of serious deficiencies in existing shape optimization algorithms 

in the literature. Notably, these methods are all restricted to small shape changes because 

large shape changes will generally result in extreme distortion of the elements on which a 

structural solution is based in using r e  techniques, as demonstrated later. Another 

deficiency shared by existing shape optimization codes is the tediousness in preparing the 

pre-process database and the lack of a fully automatic nature due to the requirement of 

constant user interaction. The principal objective of this work is to present the



development of a novel node-based structural shape optimization package, which has a 

number of characteristics:

1) a computationally efficient and robust approach leading to accurate stress recovery 

for a planar structural problem;

2) a compact formulation for design sensitivity analysis;

3) a robust adaptive mesh generation system; and

4) a simple user interface.

This code was developed by combining the FE solvers, the error estimation, the stress 

recovery, the sensitivity analysis formulae and the proposed node-based boundary design 

point method and has been applied to a number of design problems of beam and planar 

structures. By a planar structure, we mean in this study that only membrane stress and in­

plane deflection components are involved in the FE analysis; in a plate analysis, the 

additional bending and transverse effects are included in the analysis. Special emphasis is 

placed on technical aspects of the efficient implementation.

This work is organized as follows. A literature survey and overview of structural 

shape optimization is presented in Chapter 2. This chapter covers many topics, such as 

basic concepts of the mathematical programming method, finite element error estimation, 

stress recovery techniques, design sensitivity analysis, and data smoothing methods.

We must emphasize that one of the objectives is to shed some light on the 

development, implementation and applications of adaptive mesh refinement (AMR). The 

error estimation, the stress recovery and AMR procedures are presented in Chapter 3. 

There, a compact form of a linear system of equations is developed for easy



programming and the implementation details of stress superconvergent patch recovery 

(SPR) for both triangular and quadrilateral elements are provided. Examples are included 

to illustrate the applications in adaptive mesh generation. It is noted that the developed 

stress recovery technique is also used in Chapter 7 to predict the accurate in-plane stress 

field and further to calculate the critical lateral buckling factor for a number o f different 

plate configurations. In these applications, the finite element plate models are constructed 

from the Reissner-Mindlin thick plate theory, which is outlined in the second part of 

Appendix A.

A reliable tool for design sensitivity analysis is a prerequisite for performing 

structural optimization design. Efficient and reliable methods for design sensitivity 

analysis of all implemented analysis types and finite element types must therefore be 

developed and implemented. In Chapter 4, we present a compact form of the design 

sensitivity analysis formulation. The well-known maximum shear stress and the von 

Mises stress are widely used failure criteria, and the formulation is orientated toward 

these two criteria for computational efficiency.

Direct use of a single design point movement predicted from the optimization solver 

generally leads to an unrealistic boundary shape that contains many kinks. To remedy 

this, a smoothing process is described in Chapter 5 and has been used through this work. 

There, the dual kriging B-spline fitting procedure is used from the given set of data, a 

covariance function and a prescribed number of control polygon points. The polygon 

points are next determined and a set of smoothed nodal points are then computed. It is 

emphasized that the results of a fitted curve caused by modifying the locations of the



control polygon points are not always obvious, as opposed to modifying directly points 

on the curve itself. This was a main reason why this work did not employ the control 

polygon points as the primary tool to optimizing a structural boundary as many shape 

optimization works did. Furthermore, the dual kriging fitting technique guarantees that 

the fitted curve or surface has not only high quality as a traditional B-spline fitting 

technique produces, but also passes through the data points. A number of applications in 

3-D curve and surface fittings are also presented in this chapter.

Chapter 6 is devoted to introducing the proposed node-based shape optimization 

methodology along with some implementation considerations. As will be seen, the 

method requires very little effort from users to set up the initial model. As a matter of 

fact, the only user input required is to provide an initial coarse boundary model and a set 

of boundary segments allowed to be modified to achieve an optimal shape. Then, the rest 

of designing processes is automatically executed.

Chapter 7 contains a number of example applications of structural problems to 

demonstrate the validity of the methods derived in the preceding chapters. While some 

examples are included to emphasize the importance of using the developed error 

estimation technique, a number of examples are also devoted to structural shape 

optimization designs.

The conclusions of this research and recommendations for future work are given in 

Chapter 8.

The finite element library used for this dissertation has facilities for solution of 

linear types of static, stability and dynamic analysis problems for 2-D structures, i.e..



static stress analysis, linear buckling analysis and natural frequency analysis. The code 

was developed by the author during his graduate study. Many different isoparametric 

finite elements are described and implemented in the system. A brief description of the 

planar and the Reissner-Mindlin plate finite element theories and programming 

implementation are summarized in Appendix A for easy reference and notation purpose.

A brief account of surface-area based parametrization theory and a numerical finite 

difference formulation of Gaussian and mean curvatures is presented in Appendix B. 

These techniques have important applications in 3-D the dual kriging curve and surface 

fittings.



2 LITERATURE SURVEY AND REVIEW

2.1 General

Over the last two decades, various numerical shape optimization techniques have 

been developed and applied to mechanical and structural design. This is most 

fundamentally due to the requirements and expectations from designer and customer 

standpoints that structures should be efficiently and economically designed and 

manufactured. A literature survey on stmctural optimization primarily oriented toward 

shape optimization of both planar and plate structures is presented first. Next, we 

introduce several concepts and techniques that are fundamental to the successful 

development of a structural shape optimization design and their important roles are 

emphasized.

It should be pointed out that the field of structural shape optimization is still a 

relatively new field undergoing rapid changes in methods and applications. Though a 

substantial number of research articles have appeared in this field, a relatively small 

number of real structures have been analyzed. This imbalance may result from the fact 

that a meaningful shape optimization requires a substantial amount of experience in 

structural design to formulate the problem in an adequate form.

2.2 Literature Survey of Shape Optimization

The survey is conducted in three parts: the techniques for planar structures and for



plate structures that are developed by combining the traditional solution procedure 

and numerical optimization analysis. The third part briefly discusses other concepts and 

techniques in the literature used to reach an optimal shape design.

2.2.1 Planar Structures

The subject of numerical shape optimization has been a topic of in-depth research 

for over two decades. In the early stage of its development, a straightforward procedure 

was adopted in which a set of nodal coordinates within the structure were considered as 

design variables. Zienkiewicz and Campbell [86] presented one of the first examples of 

using such an approach. They calculated design sensitivities by using the semi-analytical 

method and used sequential linear programming for numerical optimization. The 

optimum shapes of dams and rotating turbine machinery were demonstrated. Though 

simple and instinctive, this technique has two serious drawbacks: it often results in a 

large number of design variables so that only relatively simple structures can be handled; 

and, because it is difficult to maintain an adequate FE mesh during the optimization 

iterations, the elements may suffer severe distortions that can introduce inaccuracy into 

structural analysis.

Various shape representations were then proposed to reduce the number of design 

variables. The early success in using a specific shape representation for particular 

structural boundaries was demonstrated by Kristensen and Madsen [48] for a class of 

shape optimal designs. Polar coordinates and orthogonal polynomials were used to locate 

boundaries and the coefficients in these polynomials were treated as design variables. 

With this approach, the number of design variables was reduced dramatically because a
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few design variables could be used to control the boundary shape and element distortions 

were also prevented. An example given by Bhavikatti and Ramakrishnan [15] employed 

six coefficients of a fifth-order polynomial as design variables to conduct optimum shape 

investigation on the outer boundaries of rotating disks.

It is known that the representation of a curved boundary by a high order polynomial 

may result in an oscillatory boundary shape. Use of the spline functions can eliminate 

oscillation since spline functions are composed piecewise of low order polynomials. The 

two most popular members in the spline function family are Bezier and B-spline 

functions. The work by Braibant and Heury [18] was the first one in which a systematic 

approach was outlined to demonstrate the use of Bezier and B-spline functions in 

structural shape optimization. Note that in such an optimization design method, the 

polygon points were generally used as the design points. In our proposed node-based 

method, however, the design points consist of the structural boundary nodes. 

Furthermore, a general B-spline curve or surface fit does not necessarily pass through the 

data points. The dual kriging fitting technique, on the other hand, guarantees that the 

fitted curve or surface not only has high quality of a B-spline fit, but also passes through 

the data points. This powerful method will be reviewed and detailed later.

A popular alternative of reducing the number of design variables, proposed by 

Imam [40], is to use the design element concept. With this approach, a structure is first 

divided into a number of small element blocks and some of these blocks are allowed to be 

altered to yield the optimal shape. The interior nodes in the design elements are generated 

by using isoparametric shape functions or geometric blending functions. Another benefit

11



brought up by this methodology is that the initially coarse mesh can be refined in each 

design element. Its disadvantages are obvious too, however, it may be difficult to 

establish a fully automatic process given that the number and the locations of the 

predetermined design elements may be required to be modified to cope with the varying 

boundary shapes. Furthermore, incorporation of a local refinement within a single design 

element into the global FE model generally imposes a major bookkeeping load. 

Consequently, application of the shape optimization procedure based on the design 

element concept must in general be restricted to designs with small shape changes.

Numerous researchers have made significant contribution to shape optimization 

algorithms and applications in the last twenty years. Two survey papers and a conference 

proceedings, all published in 1986, reflect various research activities in optimal shape 

design up to the mid 1980’s. Ding [27] collected eight types of 2-D and 3-D structural 

examples successfully solved by the shape optimization techniques. These included the 

minimum weight design of a bridge, the maximum von Mises effective stress design of a 

spherical pressure vessel, the maximum reference stress design of a shoulder fillet, the 

minimum weight design of a torque arm and bracket, the minimum weight design of a 

plate with a hole, the minimum weight design of a plate bridge, the minimum volume 

design of concrete in a round head buttress and arch dam, and the optimal ratio of the 

maximum and minimum stress design in a four-spoked disk. It should be emphasized that 

none of these applications employed an adaptive FE modeling technique.

Haftka and Grandhi [35] emphasized the difficulties which are encountered in shape 

optimization and which are not present or are easier to solve in sizing design. They
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collected 139 references and included a table which summarized sixteen areas of shape 

optimization application: beams, brackets, columns, connecting rods, cross-sectional 

shape in torsion, dams, disks, engine main bearing caps, fillets, plate with a hole, pressure 

vessel components, rotating turbine machinery, shells, stress concentration minimization, 

torque arm, and turbine and compressor blades.

The symposium sponsored by GM Research Labs [13] emphasized the then 

state-of-the-art and future developments of shape optimization and its applications. The 

interesting thing to note in this proceedings is that it began with an article on adaptive 

analysis refinement and error estimation. Topics covered in the symposium included 

adaptive analysis refinement, shape design sensitivity analysis, modeling, and 

applications for shape optimization. It was also concluded that although many other 

methods may be used for structural shape optimization, most researchers shared 

confidence in the use of FEM as a tool for structural analysis and in the use of 

mathematical programming procedures as the ultimate algebraic minimization tool.

Belegundu and Raj an [9, 59] developed a method based on fictitious loads acting on 

an auxiliary structure. One of purposes o f employing this auxiliary system is to provide 

the smooth mesh translations for the varying structural shapes during optimization 

iterations by altering the preceding meshes, in an attempt at avoiding an overall structural 

remesh. It should be pointed out that this author applied this method in the early stage of 

his studies with only limited success. It was found that a periodic remesh is still often 

necessary to avoid excessive distortion in the mesh system.

Great strides have been taken toward shape optimization since these surveys.
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Among many journal and conference articles, the following several applications are 

emphasized due to their uniqueness. Cheu [22] considered shape optimization of 

axisymmetric structures subject to thermo-mechanical loads. The applied problem is the 

optimal shape design o f a rotating disk. Andrews [3] considered the minimization of fillet 

stresses due to bending for an epicyclic gear system consisting of basic rack, pinion 

cutter, and gear teeth. The design variables included the pressure angles and a median 

height factor. Schramm and Pilkey [66] applied shape optimization methodology in 

designs of beam cross sections subject to an applied torsion load. They used non-uniform 

rational B-splines to describe the beam boundary shapes.

2.2.2 Plate Structures

The literature cited above addresses shape optimization applications in planar 

structures under the constraints associated with in-plane displacements and membrane 

stresses. When out-of-plane bending effects become important, such a structure is 

referred to as a plate structure in this work. Most of the early developments in numerical 

plate optimal shape designs were summarized in the survey paper by Haftka and Prasad 

[34]. Besides stress and displacement constraints as in a planar optimization, they also 

emphasized the necessity o f buckling and vibration constraints in practical plate and shell 

structural designs. Also, they mentioned some difficulties in achieving an optimal 

solution.

It should be pointed out that only a limited number of successful stability and 

vibration optimization applications in plate structures have been reported in the open 

literature. Among them, the design procedures developed by Vanderplaats and his
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associates have been the most applicable and practical. By refining the force 

approximation method originated by Schmit [65], they have made a number of important 

contributions to numerical optimal designs of shape and sizing for truss, frame and shell 

structures subjected to static, vibration and buckling constraints [76] and 3-D general 

continuum structures subjected to constraints on von Mises stresses [42, 43, 44]. They 

showed that the force method for a static stress constrained structure offers a high quality 

approximation that is able to capture some of the constraint nonlinearities without the 

need for high order sensitivity analysis. Recently Gates and Accorsi [31] also applied this 

type of modeling to a rib-stiffened cylinder design.

2.2.3 Other Optimization Methods and Applications

Shape optimization problems may also be solved in direct conjunction with 

variational statements, that is, with classical analytical formulations. Prager [58] is 

generally credited with motivating this line of research. The representative work in this 

classical approach can be found in the books by Haslinger and Neittaanmaki [37] and 

Banichuk [6].

The boundary element method (BEM), combined with an optimizer, also has been 

applied to shape optimization [84]. As is known, BEM is less versatile for structural 

analysis than E^M, but, more accurate prediction of the design sensitivities, stresses, and 

displacements can be made at the boundary.

Shape optimization has also been applied to three-dimensional structures. In this 

case, the modeling plays a key role in the successful optimization. Botkin and Bennett 

[17] treated a three-dimensional part as an assembly of the two-dimensional segments,
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referred to as the stamped model. Their approach could be viewed as a novel application 

of plate and shell optimization. Three optimal shape design examples were shown in the 

aforementioned reference: an engine bearing cap; a transmission bracket; and an engine 

connecting rod. It should be noted, however, that in general a three-dimensional structure 

has to be modeled by a solid modeling technique. The idea o f using entities that define 

the geometric primitives of a solid object as design variables has been applied by 

Kodiyalam and coworkers [43]. Their results include design examples such as a 

fixed-fixed beam structure under a constant pressure load; an engine connecting rod; an 

aircraft turbine disk; and an automotive control arm.

2.3 Review of Shape Optimization Techniques

We begin with a general formulation for structural optimization within the 

framework of the mathematical programming technique. The feasible direction method is 

then outlined in such a way that it is consistent with the major steps of the CONMIN 

routine, developed by Vanderplaates [74]. This will be followed by a brief introduction of 

fundamental concepts and techniques that represent modules in this research and in most 

structural shape optimization packages. The introduction emphasizes the role that each 

module plays in the development of numerical shape optimization.

2.3.1 Mathematical Programming Technique

A structural shape optimization problem can be described as the minimization of an 

objective function subject to a number of prescribed constraints. It may be stated 

mathematically as
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Minimize F ((p})

Subject tog,({p}) <0,(1 < i < /VJ (2.1)

p‘, < p , < p % a < i < N j  

where F  and g, are the objective function and the constraint function, respectively. The 

constraints described by Equation (2.1) impose the limits involving, for example, the 

nodal displacements, the stress components, and the natural frequencies. The 

components of the vector [p} represent the design variables that are chosen to describe 

the shape of the structure that is to be optimized. The values of p\  and p" are the lower

and upper bounds of the design variable, usually referred to as side constraints in the 

literature. Here, it is also assumed that any geometrical constraints such as boundary 

slope continuity are included in these constrained equations.

The CONMIN routine [74, 75] uses the method of feasible directions to search for a 

local optimum. A search direction is determined first, and then the distance to move in 

that direction is determined that reduces the design objective the most, while not violating 

any constraints. In this study, the computed gradients of the design objective and 

constraints with respect to the design variables are fed directly into the CONMIN routine. 

A general representation in the mathematical programming method for a structural 

optimization and the essential ingredients of the method of feasible directions consistent 

with the routine are given in the above-mentioned references.

A constraint g,- is referred to as an active, or violated, one if g,- =  0 or g, > 0 . This 

theoretical definition is of little use during numerical evaluation since a precise zero is
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seldom achievable on a digital computer. In actual calculation, a tolerance band about 

zero is selected for defining when a constraint is active. In this study, the constraint is 

considered active or violated if

Q  < g. < C,„ (2.2)

or

Si >  (2.3)

where the numerical values of bounds C,, and are set to be -0.01 and 0.004, as 

suggested by Vanderplaats [74].

The objective function may be selected in many ways. In this study, the area of the 

underlying two-dimensional planar structure is selected as this function. On the other 

hand, a desirable range of a specific natural frequency can be formulated into a suitable 

form of the objective function. We emphasize that under the mathematical programming 

framework, the objective function and the constraint functions may be linear or nonlinear, 

explicit or implicit functions of the design variables, but must be continuous and should 

have continuous first derivatives.

Various sources [75, 36] may be consulted for in-depth discussions about

mathematical programming techniques, their numerical implementation, and broad

applications to engineering problems; the works by Tseng and Arora [71, 72] are 

particularly recommended.

The method of feasible directions was developed originally by Zoutendijk [92] and
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has been modified and used by Vanderplaats [74] in his popular CONMIN optimization 

program. It should be mentioned that this type of method may not be applied directly to a 

problem with any equality constraint. An equality constraint, g ({ p } )= 0 , may be 

approximated by two inequality constraints as

(2.4)

g2({p}) = -.? ({p l) + ̂ 2 ^ 0  

where £, and small prescribed positive numbers. A more sophisticated method of

including this equality constraint was developed by Kreisselmeier and Steinhauser (cf. 

[36]). One of the major advantages in using this method is that it does not increase the 

number of constraints.

2.3.2 Error Estimation and Adaptive Mesh Generation

It is known that a robust estimation of the accuracy of the finite element solutions 

plays an important role in successful structural optimization because the predicted values 

of displacements and stresses are required to guide optimization directions. It has been 

established that FE approximation error converges to zero as the number of nodal points 

increases and the areas o f elements in FE mesh decreases. How can the amount of error 

be quantified properly and how is the mesh refined?

As is known, the direct product of a displacement-based r e  method is the 

displacement and the by-products include reaction force, stress, and strain. Any one or 

several of these products may be used for error estimation purpose. Overall refinement of a 

coarse mesh system is, however, uneconomic since such an overall-refined model may
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require an unrealistically expensive computational effort and, in most cases, is unnecessary 

since it is most likely that only a few regions in a model require such highly-refined local 

meshes to obtain adequately accurate solutions. These are the questions an adaptive mesh 

refinement method (AMR) tries to answer. It is generally understood by now that AMR 

should include at least two parts. The first part is for estimating the errors in each individual 

element which can be summed up to yield a global error estimation; the other part is 

designed to guide the mesh refinement based on the above estimating results. It has 

commonly been accepted that the error estimation should be conducted on those quantities 

associated with the gradients of the obtained displacements. As a result, a proper AMR is 

generally required for efficient computation and accurate prediction of both displacements 

and their gradients (stresses and/or strains).

The importance of the gradients can also be reflected in evaluating constraints. Most of 

the critical constraints are typically associated with stress components in a structural shape 

optimization analysis. These stress components may be recovered from the displacements 

at nodal points solved by the FE equations. It was found by Barlow [7] and Hinton [39] that 

this nodal recovery led in most cases to stresses with gross errors and it was concluded that 

the stress recovery process should be conducted at the Gauss integration points used in the 

numerical integration for forming the stiffness matrix. The stresses at other points 

(including nodal points) of the element should then be formed by interpolation and/or 

extrapolation.

The calculation of more accurate stress solution has been one of the most active 

research fields in the finite element analysis community for many years. The more
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promising method, superconvergent patch recovery (SPR), was proposed by Zienkiewicz 

and Zhu [85, 91] and over the years has become a primary stress recovery method in 

commercial finite element analysis packages. This author and his supervisor have 

modified the original SPR method and extended it into an automatic 2-D adaptive mesh 

generation program. Briefly, the SPR method leads to a superconvergent estimate for the 

smoothed stress at an edge node by patching together the elements surrounding that node 

and employing a local least-squared fitting technique.

Description of the error estimation and SPR used in this research is presented in 

Chapter 3 along with implementation considerations.

2.3.3 Design Sensitivity Analysis

Design sensitivity analysis is another main topic in shape optimization. The purpose 

of this analysis is to quantify the variations of responses of a structure with respect to 

changes in the design variables. It provides the derivatives of the objective function and 

constraints with respect to the design variables, which is the essential information 

required in using a mathematical programming solver. It is also noted that the calculation 

of the design sensitivities of the structural response is often the most computationally 

intensive part of an entire optimization process, consequently, it is important to design an 

efficient algorithm for these calculations.

Implicit (or discretized) and variational (or continuum) methods are two popular 

approaches in calculating design sensitivities. The implicit method was first proposed in 

[86] and was based on manipulating the discretized FE equations. Its implementation 

requires the derivatives of the stiffness matrix and force vector. There are two approaches
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in computing these derivatives. One is based on the finite difference argument, referred to 

as the semi-analytical method in the literature, in which numerical differentiation of 

stiffness matrix is formed by a forward or central finite difference scheme. The other is 

applicable only to the isoparametric model and is referred to as the analytical method, in 

which the analytical expressions of the derivatives are derived for each entity of the 

stiffness matrix and the force vector.

It has been reported [36] that the semi-analytical method may suffer inaccuracy in a 

shape optimization process in modeling beam, plate, shell, and higher-order accurate 

finite elements, especially as the mesh is refined. Note that these models possess both 

translational and rotational degrees o f freedom. It was concluded recently by Olhoff and 

coworkers [57] that the cause of this phenomenon is related to the negative powemess of 

the design variables contained in the components of the stiffness matrix. Consequently, 

they proposed a new method for "exact" semi-analytical design sensitivity analysis, 

which was claimed to completely eliminate inaccuracy associated with the traditional 

semi-analytical approach. It is noted that the design variables in the sizing optimization, 

such as the cross-sectional areas of a truss element and the thickness o f a plate element, 

are usually included in the stiffness matrix as simple linear functions. As a result, the 

semi-analytical method used in the sizing optimization results in an adequate sensitivity 

analysis.

The variational approach, which was introduced in the late 1970’s by Haug and 

CO workers [38], starts from the fundamental principle of virtual work on which the FEM 

was based to estimate the effect due to the change of design variables. This approach was
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originally developed with the help of a material derivative. It was claimed that the 

variational approach may yield relatively accurate sensitivity analysis. It was found, 

however, that a difficulty arises in applying this approach to a structure under 

concentrated loads since the solution of the adjoint problem, which is a necessary step in 

applying the approach, leads to singular adjoint loads. As a result of this singularity, 

some local averaging technique must be used and the accuracy in the smoothed results 

may be questionable, especially for stress sensitivity analysis. Recently the control 

volume from fluid dynamics was also proposed and the results were compared with these 

using material derivative by Arora et al. [4]. Comparisons between implicit and 

variational approaches can be found in a number o f articles [e.g., 83, 24]. Two review 

articles [1, 82] can be consulted for more details.

In his research, this author has developed straightforward sensitivity formulae for 

stress constraints arising from von Mises stress and maximum shear stress criteria. They 

were successfully used in several shape optimization applications, as demonstrated in the 

following chapters.

2.3.4 Dual Kriging B-spline Fitting

In recent years, the B-spline method has rapidly become one of the most important 

curve and surface fitting techniques. Major advantages associated with a B-spline curve, 

compared to other spline formulations, are its flexibility and its variation diminishing 

property [63]. Kriging is a statistical estimation method, first proposed by Krige [47] for 

applications in mining engineering. This technique consists of describing the 

interpolating function by two parts: a draft function and a covariance (or variogram)
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function. The goal is to establish a minimum variance, unbiased estimate of the value of a 

random variable at one location from values available at surrounding locations. A major 

advantage of the kriging approach is that it is an exact interpolator. Typical applications 

of kriging method include map analysis [26] and contouring [28] in geology.

Matheron [52] and Watson [80] demonstrated the formal equivalence of cubic 

spline interpolation and the kriging technique and concluded that the spline solution 

could be derived via kriging under certain conditions. Since then, the dual formulation of 

the primal kriging equations, called the dual kriging technique, has been applied as an 

interpolation technique. Gilbert, et al. [32] applied dual kriging to the calculation of the 

optimum angle for displays and to the surface representation of the arm by using simple 

linear and trigonometric functions as the draft function. Montes [54] used Bezier spline 

functions as the draft function to investigate dual kriging curve interpolation and to 

establish the connection between Bezier curves and the dual kriging interpolation 

scheme. He also demonstrated the application of constraints associated with slope 

requirements at certain points.

Recently, Limaiem and El Marghy [50] applied the dual kriging technique to curve, 

surface and solid fitting. The theory presented by Gilbert, et al. [32] was refined to such 

an extent that the formulation could be applied directly. Limaiem and El Marghy also 

demonstrated that this method has a broad spectrum of practical applications. 

Unfortunately, their presentations are limited to such applications with uniform 

parametrization. A detailed account of this powerful technique will be presented in 

Chapter 5. There can be found many applications of this method in 3-D curve and surface
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fittings. One of our purposes there is to point out that the dual kriging technique can be 

applied in conjunction with a broader class o f parametrization methods.
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3 ERROR ESTIMATION AND ADAPTIVE MESH 

GENERATION

3.1 General

Theoretical description of error estimation and stress recovery is first presented in this 

chapter. This will be followed by a subsection dealing with mesh refinement procedure, 

which is orientated toward a triangular mesh system. An automatic triangular mesh 

generator is used as the main part of an adaptive automatic mesh generator. The 

applications of this technique are given in Chapter 6 and the node-based shape optimization 

method is presented in Chapter 7 where the lateral buckling loads of plate structures are 

considered.

In general, the calculated element stresses and strains based on the FE solution are 

discontinuous at the interface of two elements. For a homogeneous domain, however, it is 

expected that the exact stress and strain should be continuous functions across elements. 

The error due to a FE solution in each element is generally measured by the difference 

between the stresses resulting from the smoothed solution, denoted by o *, and the FE 

solution o . It is noted that the strains can also be used for the error estimation for a 

homogeneous domain.

3.2 Theoretical Development

In this work, the elemental error is defined in terms of the energy norm by
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a.
(3.1)

where the vector {a*} denotes the smoothed stress vector {ct}, whose representative 

function form will be given shortly. [C] represents the constitutive matrices of the plane 

stress problem. The global error is the root-mean-square summation of the elemental 

errors

E  =
NE

(3.2)
J

To identify the element(s) in which the FE solution suffers from large error(s), a relative 

percentage error is defined as

where

He

S  = -  jcr^[c]-^cTdfl
a

NE

e=l

(3.3)

(3.4)
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represents the strain energy resulting from the E t  solution. A value of 0.05 is usually 

chosen as the allowable upper bound rf for rjg from Equation (3.3) in most o f applications.

If any elemental error indicator is greater than the bound r f , then that element needs 

refining. Let us denote the area of the trouble element as A^, the area required after the 

refinement can be expressed by

a :  = Ae (3.5)

To better illustrate the determination procedure of the smoothed stress function a*,  

plane stress is taken as an example. Assume a functional approximation to the smoothed 

stresses with

(y''^ =[(y’̂ y y y , ( j '^ \  = [ p f \ f x x ) A f y y ) A f r y \ ]  (3.6)

where the vector [p} consists of polynomial base functions in the global x  and y 

coordinate system. The vectors {/^^}, { /^ }  and {/jj,}represent coefficient vectors to be

determined. It is noted that the above equation can also be represented in a compact form 

by

a = [ p ( x , y ) \ f }  (3.7)

where
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{pV
[ p f

[ p f

(3.8)

To compute the estimate {o* } inside the patch, the following function is minimized

m /)).  i i u - .  (f;}-kS [cr (3.9)
e=l  j = l

where AA, denotes the number of elements defining the current patch, and is the

number of Barlow points used in the element to calculate the stress {cr^} in the g-th 

element, w, denotes the weight value in the Gaussian quadrature of the integration. By 

making use of the expressions for the smoothed stress vector

{ 7* }=[P(x,-,y,•)]{/} (3.10)

and

(3.11)

one can reduce Equation (3.9) to
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V, n .

= % % %  ([m^. y, )H/) y, )\[q‘ ]J  (Cr‘{[m,. y, )I{/}-[Cl[S'(x,. >- (3.12)

where [5] represents the strain-displacement matrices of the plane stress problem; the 

superscript e highlights an association with the e-th element. The minimization of 

Equation (3.12) yields a linear system of equations

[A 1{/}=[D I (3.13)

where the coefficient matrices can be expressed by

-V, n,
[A] =  Ê Z K ; ,[ P ( .r , ,y ,) f [ C r '[ f ( x „ y ,) ]

e = l j = l

iV, n,
[D]  =  [ f ( .r „ y ,) ] [g ' ( .r , ,y , ) ]  {q ‘ }

e=\  J = l

(3.14)

The proper choice of the vector [p] depends on the type and the order of the finite 

elements used in forming the stiffness matrix. Also, these variables have a great effect on 

the implementing details when the current SPR approach is used. Therefore, two 

subsections are devoted to covering them.

3.2.1 2"^-Order Triangular Element

From our limited experience, it was found that in most applications, a patch can be 

adequately represented by a 2"** complete polynomial, that is

[p{x ,y) ]=\ \ , x ,y , x^ , xy ,y ' ^ f  (3.15)
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It is noted that it requires that the number o f integration points associated with the patch 

is not less than six, as depicted by Figure 3.1(a), or the interior integration scheme is 

used, as shown Figure 3.1(b). Otherwise, the following reduced complete polynomial

(/7(-c,y)} =  y r  (3.16)

is recommended, for instance, at the comer of the structure, as shown in Figure 3.1(b), 

and Figure 3.1(c) if the edge integration scheme is used. It is worth mentioning that no 

apparent advantage was observed by making use of the third or higher-order complete 

polynomials. To avoid the potential ill conditioning in the least square fitting 

calculations, the integration points associated with a patch is linearly translated into a two 

by two square centered at point (0,0). Also, stresses are normalized to maintain the same 

magnitude on both sides of the least square equation.
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Figure 3.1: Triangular element patches

It is noted that the recovery stress vector {a*} contains information at the 

integration points. An element may be associated with the same number of patches as the 

number of apex nodes. Consequently each of these patches contributes a different {<j*} at 

the same integration point. A quick remedy is achieved by taking the averaged values 

from these patches. However, it is felt that the following procedure is more robust since it 

takes into account the relative effects resulting from the distance between the integration 

points and the finite element nodes. For each element, {a*} may be computed at the 

integration points for each apex node. A single {o*} at each integration point inside the 

element can then be calculated by
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{â*} = Z
k

Nk {tTfe*} (3.17)

where are the shape functions associated with the apex nodes of the element. The

stress components at a node can next be recovered using stress information at the 

integration points.

3.2.2 2"̂  -Order Quadrilateral Element

A complete polynomial of up to 4'*‘ order (containing 15 coefficients) was used for 

the vector [p] if there are enough Barlow points available in the patch. The recovered 

stresses at eight points were then used to calculate the stresses at the required nine 

integration points from the eight-node isoparametric shape functions. It should be pointed 

out that the number of integration points in a full integration of Equation (3.13) depends 

on the order of the polynomial used for recovering the stresses. If the stress recovery

vector for {<J^} is a 4“̂  order complete polynomial, a 4 by 4 integration point stencil may 

be used to evaluate Equation (3.13) numerically for the purpose o f accuracy.

We have so far applied the automatic adaptive mesh generator to the structural 

model consisting of only straight-sided triangular elements (subparametric elements). For 

element refinement, the /i-refinement was exclusively used in the present work. In other 

words, an element in the previous mesh system is divided into smaller elements by 

adding a certain number of nodes within the element. Such a procedure inevitably 

requires a more involved bookkeeping algorithm to store the information on new 

generated nodes, elements, and their coimections.
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A 2-D Delaunay triangulation was included to accomplish the mesh generation and 

its subsequent refinement. The mesh quality is controlled by a given value of the 

minimum elemental angles.

Before turning to the topic of validation, it is worthwhile to mention two other 

refinement approaches. Belegundu and Rajan [9] proposed a simple refinement method 

based on a fictitious loading concept in which the mesh was updated during the 

optimization process by solving an additional finite element model with a fictitious load 

system. With their approach, no error estimation is required. This author has implemented 

this method in the early stage of this work and found that it is necessary to apply mesh 

regeneration periodically to prevent element distortions from becoming excessive. Another 

approach, developed by Kikuchi, Taylor, and their coworkers [41], was intended to achieve 

an optimal AMR process by combining AMR and a mathematical programming solver.

3.3 Validation

The developed error estimation and AMR techniques are validated by considering 

two models. The first example concerns a square plate with a center square hole and the 

plate is under the biaxial tensile loading condition. The initial triangular mesh is shown in 

Figure 3.2 and the refined ones in Figure 3.3(a) and (b). As evident, the coarse mesh is 

properly refined near the high stress regions. Figure 3.4 and Figure 3.5 show the detailed 

views of the first and the second refinements near the singularity point. It should be 

pointed out that these two figures suggest that the refinement should be an iterative 

process.
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Figure 3.2: Initial mesh of plate model
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(a)

(b)

Figure 3.3: Mesh from the first refinement with
(a) edge integration scheme; (b) interior integration scheme
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(a)

(b)

Figure 3.4: Mesh with edge integration scheme from the 
(a) first refinement; (b) second refinement
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(a)

(b)

Figure 3.5: Mesh with interior integration scheme from the 
(a) first refinement; (b) second refinement
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The next application is on a bracket model, as shown in Figure 3.6. The initial mesh, 

which consists of 338 nodes and 141 six-node triangular elements, and its refinement 

(1167 nodes and 532 elements) are depicted in Figure 3.7(a)-(c).

The results of the verification and validation tests were favorable, thereby indicating 

the r e  module and adaptive mesh generator module can be used to model structures 

adequately.

T "
100'

30 "

t=S‘

20 "

40"

Figure 3.6: Plane stress bracket model
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(a)

(b)

(c)

Figure 3.7: Meshes and the first refinements of bracket model 

(a) initial mesh; (b) mesh from interior integration scheme; (c) mesh from edge

integration scheme
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3.4 Closure

This chapter presented the concepts, theory and implementation o f finite element 

error estimations, stress recovery and adaptive mesh generation. It was demonstrated 

through the validation examples that the developed methods performed as expected. 

Further applications of stress recovery technique can be found in Chapter 7.
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4 DESIGN SENSITIVITY ANALYSIS

Sensitivity analysis o f both the objective function and the constraints will first be 

presented in terms of the derivatives of the isoparametric transformation Jacobian matrix, 

the stiffness matrix and the force vector. A compact form o f sensitivity formulae for the 

strength constraints is then presented based on either the maximum shear stress theory or 

the von Mises effective stress theory.

4.1 Introduction

The area for each individual element can be expressed in the isoparametric 

coordinates as

A, = \ \ \ [ j \ \ d ^ d T ,  (4.1)

where the integration limits are set such that

% = 0, = +1

for the triangular element and

l o = - U , = + l  (4.3)
% = -L  ïï\ = +1

for the quadrilateral element. The derivative of the area with respect to a design variable, 

p, can be expressed by
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(4.4)
U o

As a result, the sensitivity analysis for the total area (objective function) can be summed 

up from the contribution of each element to yield

dA ^  dAg

A group of constraint functions may be expressed by

s ,(W { p } )s o . ( l < i S W , )

It is noted that the displacements have been explicitly included as primary variables due 

to the fact that the displacement and strength constraints depend on these variables. In 

this way, less manipulation is required to conduct the sensitivity analysis. In fact, one of 

the primary goals in this analysis is to develop the expression for 3{a}/9p. By using the 

chain rule of differentiation, the 1*‘ order derivatives of a constraint function g,- can be 

expressed as

«III (4.5)
dp dp

where j is a vector with its components defined by

4 = - ^ .  ( l< f c < M )  (4.6)
duk

In general, it is relatively easy to calculate the first term on the right hand side of 

Equation (4.5). To compute the second term, two methods can be used. Both start firom 

the following expression
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(4.7)

which can be obtained by first differentiating the FE equations (cf. Equation (A.I) ), 

resulting in

(4.8)
dp dp dp

and then premultiplying it by

The two methods differ in their numerical implementation. The first method, 

referred to as the direct method in the literature, consists of first solving Equation (4.8)

directly for 3{«}/9/7and then taking the inner product with the vector ^ ‘}. The second 

method, referred to as the adjoint variable method in the literature, begins by defining an 

adjoint variable vector {l‘ ] such that

[8 (](l'}=  i ' T  (4.9)

and ends up with the calculation

(4.10)
dp \  dp ^

where the fact that the stiffness matrix is symmetric is used.

Determining which of the above two methods should be employed is problem- 

dependent. Generally speaking, if the number of the design variables is less than that of
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the constraints, the direct method is recommended. Because relatively few design 

variables are used in this work, only the direct method will be considered in what 

follows.

In order to evaluate the displacement and constraint sensitivities, it is required to

dg icompute —— in Equation (4.5) and the right hand side of Equation (4.8). Again, there 
dp

exist two approaches to fulfill the above calculations. For non-isoparametric elements, 

the finite difference technique is generally used, which is referred to as the semi- 

analytical method in the literature. One of the serious drawbacks associated with this 

method is that its accuracy depends heavily on the amount of perturbation in design 

variables. An alternative approach is to derive analytical expressions for these terms 

using isoparametric transformation properties. This latter method will be used exclusively 

in this work and its applications to a number of quantities are given in following sections.

4.2 Sensitivity Anaiysis Formuiae

4.2.1 Calculation o f ^
dp

As indicated before, the Jacobian |[ /^ | can be expressed in terms o f the nodal 

coordinates (x,-,y,) and the derivatives of the shape functions in the isoparametric 

coordinates (^,77). By applying the chain rule, it can be seen that

dxi dp dyi dp
(4.11)
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which can be computed by further noting that

dxi

dx,

f  d x ] dNi _3_ray 1
■

( _ d N , d  ̂dy ^
drj ' dXi

= 0

=  0

(4.12)

and

_a.ra%l= 0, By ^ dNi
dyi dyi ag

' 3 x ^ = 0, dNi
dyi [dn, dyi [a/7, a/7

_  dNi dy dN̂ i dy 
drj drj d(^

_  dNi dx dNi dx 
dyi dj] d^  d ^  drj

(4.13)

(4.14)

4.2.2 Calculation of
dp

m .Various analytical expressions have been developed for the vector —— {«}. The
dp

work by Wang et al. [79] seems to be the first one to develop analytical derivative 

expressions of the stiffness matrix and ± e  force vector, although it is based on a specific
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type of isoparametric element. Brockman [19] formulated the vector for general 

isoparametric elements using tensor notation and differential geometry techniques. The 

equations used here are derived with direct manipulation and are easily used in 

calculations.

Consider the stiffness matrix of a single isoparametric element (cf. Appendix A) in 

its integration form of

[ K \  = h \  J [ s f [ c l s ] [ y l , |  d^drj (4.15)

Its derivative with respect to the design variable p can be found as

3[k \
dp (“}e = ^ |  j" dp dp

(4.16)

where represents the local displacement vector. To numerically evaluate the above

vector, we need only to demonstrate how to calculate the matrix . This can be done
dp

by noting that the matrix [fl] is composed of the terms and N^ y with the following

derivative expressions

(4.17)

and
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dp ^N .tj

4 y\
d ^2 yi

; :

J^N yN

(4.18)

4.2.3 Calculation o f3 { /}
dp

By assuming that the intensity of the distributed loads is invariant to the perturbed 

structural boundary shape, it can be found that

,a |[ 4 l
dp J dp

dp

(4.19)

It should be further noted that from Equation (A. 14)

and

with

£=l

a |[ / l l  3%, , a |[ j],| 3y.
dxi dp dyi dp

_ ^£-.x dx{^)
dXi |[/1| dp

dy{^) 
|[/l| dp

(4.20)

(4.21)
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y= i

(4.22)

4.2.4 Strength Sensitivity Analysis

Compact design sensitivity formulae of the strength constraints, based on either the 

maximum shear stress theory or the von Mises effective stress theory, are developed here. 

In matrix notation, these two criteria, for a planar structural problem, can be represented 

by

(4.23)

where the subscript can be taken as 5 or V to represent the maximum shear stress or the 

von Mises stress, respectively. The corresponding matrices are expressed as

1 1
4 4

I 1
4 4

0 0

—  —  0

0 

1

k ] =

(4.24)

I 1
0

2
I

—— 1 0
2

0 0 3
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The strength constraint is expressed by

a l
g = ^ - l  (4.25)

where <7̂  is the square of the prescribed failure strength values, which in general can be

either one of or ( (J(~ and <y-p denote the allowable stresses for

compressive and tensile failures, respectively.) It can be shown for a pointwise strength 

constraint that

f (4. 26)
dp dp

Similar sensitivity results are also developed for the constraint in the integral form. 

Note that the constraint in the area integral form is defined for each element by

The sensitivity of this constraint form with respect to a design variable p  can be found as

d ^ d T I  (4.28)

or simply
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(4.29)

which is implemented in our package as a default option.

4.3 Implementation Notes

It is felt necessary to include a few supplementary notes that have been found to be 

helpful in actual implementation of the foregoing formulae.

It is first noted that the solution of Equation (4.8) requires the inverse of the stiffness 

matrix [K\, the reduced form (i.e., the matrix after adding the essential boundary 

conditions) of which is available in the factorized banded form used to solve for the

displacement from Equation (A.l). To take advantage of this in computing it is
dp

important to note that this vector must have the same restrictions as those used in the 

solution of the displacement vector imposed by the boundary conditions.

It was found that by multiplying some objective function sensitivities by a value of 

greater than unity during the early stage of optimization iterations helps to accelerate the 

convergence of the whole optimization process. This can be explained by Figure 4.1. 

Moving of an interior design point D to D’ causes a larger area change than moving a 

boundary design point A to A'.  Before any constraint is reached, it is more likely for point 

D to move faster than point A. As a result of a large area sensitivity value at design point 

A, the movement of this can be speeded up.
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Design Points

D ’

Figure 4.1: Illustration of objective function sensitivity by moving design points.
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5 DUAL KRIGING B-SPLINE FITTING

5.1 Background

With the rise of relatively inexpensive computing, great strides have been made in 

curve and surface fitting and interpolation. The need to fit curves and surfaces arises 

primarily from the fact that, although most physical phenomena are continuous, their 

measurement is made by discretization. From such discrete information, it is often 

desired to reconstruct the continuum features in detail using numerical fitting tools. 

Traditionally, the regression technique has been the primary tool used for such a purpose. 

Its major drawback is that such a reconstructed curve or surface may not pass through the 

available data points. An alternative is to use a pure interpolation technique. The 

interpolated results, however, usually contain undesirable oscillations. In this work, the 

dual kriging technique is used to recover parametric three-dimensional curves and 

surfaces by using a limited number of available data. An important feature of the dual 

kriging method is that the continuous, fitted curves and surfaces are constrained to pass 

through each and every discretized data point. Briefly, the dual kriging approach is to 

represent a curve or surface by the sum of draft and covariance functions. While an open- 

type cubic B-spline function is used for the draft, attention will be paid here to the effects 

on the resulting curve and surface interpolations of using different functions to model the 

covariance part. It will be shown that proper selection of a covariance function can 

enhance certain desirable properties in the recovered shapes.
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A brief summary of the dual kriging technique is given first. This will be followed 

by the theoretical formulation o f the parametric curve and surface. Three parametrization 

schemes, uniform, chord-Iength and surface-area based, are emphasized. A new scheme, 

referred to as a quasi-uniform parametrization, is proposed for surface fitting based on 

computational efficiency considerations. Finally, some results o f applying the dual 

kriging scheme to curve and surface interpolations are given. In these examples, the issue 

of selecting a suitable covariance function is addressed.

5.2 Theoretical Development

We start with the development of the dual kriging interpolation technique for a 3-D 

curve. The B-spline function is introduced along with a brief discussion of the selection 

of its knot vector and parametrization. This is followed by the formulation of the dual 

kriging interpolation algorithm by adding a covariance function part to the B-spline 

curve-fitting scheme. With these preliminaries completed, surface interpolation is 

investigated via the dual kriging scheme. As will be pointed out, significant 

improvements in computational efficiency are achieved if certain parametrization 

procedures are used.

5.2.1 Curve Interpolation

A three-dimensional curve can be defined parametrically by

f(f)  = kf).y(f),z(f)] (5.1)
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where t is referred to as the parameter restricted in the interval [0,1]. To introduce the 

dual kriging technique, we approximate the curve defined above with a combination of 

two parametric curves

P(t) = P^(t) + P^(t) (5.2)

where the first part, f^(r), referred to as the draft, can be any traditional interpolating

function, and P^(t) is the generalized covariance function (or simply the covariance

function). A brief account of issues involved in the selection of covariance functions will 

be given below.

In this work, B-spline functions are selected exclusively for the draft part. That is, 

P^{t) can be written as

M
/^(r) = % g,iV ,.^(r) (5.3)

t=i

where M  points 5,- (l < ( < M ) are referred to as the control polygon points on which the

B-spline fitting technique is based, and (l < / < Af ) are called the normalized ^-th

order B-spline basis functions, which are defined by the Cox-deBoor recursion 

relationship

1 , ^

(5.4)

i(r) = •.
10 , otherwise

N , A ‘)=  g  g  2
~ ^i+K ~  ̂ :+l
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The values of x, form a knot vector [X] and it is assumed that x, < . The entities in

the knot vector may be specified in different ways. However, the open uniform knot 

vector is used exclusively in this study. As a consequence, this knot vector [X] can be 

expressed by

=

0

i - K  + l
(5.5)

I , M - K  + 2 < i < M

For A/ available data points, a set of parametric values corresponding to these data 

points can be formed according to the chord length

[r]=[<i <2 ■•■'«] (5.6)
such that

ft = 0

(5.7)

f/v =1

M
where Dj_i j  is the chord distance between the data points and Py and D =  y .

Chord length parametrization is a convenient method for evaluating B-spline functions 

because it is independent of the coordinate system employed and can be generally
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regarded as a sufficient approximation to the arc length of the curve. An alternative 

parametrization is to set parametric values uniformly such as

(5.8)

It will be shown later that selecting a different parametrization for a curve rarely affects 

the computational efficiency of the whole procedure. However, this conclusion cannot be 

extended to surface fitting, as will be discussed below.

Now suppose that we want to approximate a body of N  data by constructing a 

continuous curve P(t) passing through each of the given data points and the integer M in 

Equation (5.3) is less than or equal to N. This can be established by imposing an 

additionally restricted condition in Equation (5.3). In the dual kriging method, the 

covariance part is generally assumed to be of the form

Pc«'l = 'LCjK{hj)  (5.9)

where hj = and t j  (l < j  < N )  denote N  parametric values. K(h)  represents a

covariance function. The most widely used covariances in the dual kriging method will 

be discussed in the following section (see Table 5.1). With Equations (5.3) and (5.9), we 

have a total of N+M  unknowns ( S,-, Cj  ). It is noted that the N  data points give us only N

equations

P ( h  ) =  Î  S , f a  ) + % C ,  K ( h , j  )
j=i y=i

(5.10)
(l < Â: < N)
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where y = -  fyj. The remaining M  equations come from the dual equations

N

Combining Equations (5.10) and (5.II) yields the equations in the matrix form

where

' M W ■[cj ■[ej

.[aF [0], .[e l .[o l

■ ^^(0) * (̂*1.2)

W =
4 *2.1) *:(o)

f  (*«.,) K(0)

(5.11)

(5.12)

(5.13)

and

[a ]=

■q ' "e," >i'
[c]= C2 [e]= Sj

. [e]=
.C y . .e«. .Py .

(5.14)

(5.15)

where (l < A: < N).  Thus, the N-k-M coefficients 5, and Cy can be determined

if the coefficient matrix in Equation (5.12) is regular. The required regularity of this
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matrix can be shown if the matrix is regular and [A] is a fvill-column rank matrix (i.e. 

rank([A]) = M  , which is also an important condition in using the least squares B-spline 

fitting) due to the following identity

■  [/] [or [a I [K] [A] ■

- [ a F W  [/]. . w [0], .[0] -[A r[A rr'[A ],

(5.16)

where [/] denotes a unit matrix. The traditional least squares B-spline fitting can be 

derived as a special example by identifying [An=[/] and [C]=[0]. In fact, it can be shown 

that with [^= [/]

[B ]=([A r[A ])''[A r [f]

[c ] = f [ / ] - [ A tA r [A ] r [ A 7 '|[ p ]

(5.17)

It should be mentioned that with the calculated polygon points fi,-, a new knot

vector may be constructed that depends on the chord length formed from these polygon 

points, also referred to as the nonuniform B-spline method [63]. Two reasons motivated 

consideration of only a uniform knot vector; exact interpolation of the available data 

points is our primary requirement; and, our calculations show very little difference 

between the results computed by uniform and nonuniform B-splines.
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5.2.2 Surface Interpolation

The next topic to be discussed is the dual kriging surface fitting. A surface can be 

described by a set of two-parameter equations

x  = P^{p,v)
y  =  P y ( u , v )  (5.18)

Z =  P ; .(U ,V )

where, as usual, .r, y  and z are the three coordinates in the Cartesian system. For 

simplicity, and with no loss of generality, we will deal with one of the three components 

in the above equations. This component can be denoted by

P(u, v) = pM = P ^ ( v) (5.19)

where the range of each of the parametric values u and v is restricted to a unit interval 

[0,1]. It is noted that the last two equalities in Equation (5.19) represent two different 

interpretations of a parametric surface. P^(u) represents a curve which is created from a

one-parameter u equation with fixed v and similar explanation is applied to F„(v).

Let ^n .m \ (l ^  n < 1 < m < be xiV^data points. It is emphasized that

the chord-distance parametric values from the discrete curve data with a fixed index m, 

for example m j, may not be identical to the parametric values with a different index m.

As a result, the notations and “v^ will be used to indicate the parametric values in the

u direction with fixed v and in the v direction with fixed u, respectively.

Similar to Equation (5.2), two one-parameter curve equations can be described by

«■=1 y=l
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and

P ^ y )  = h S l N l l ( y h t c S K ' H “>>j) (5.21)

where h'j = u —u, and ''h; =

(=1

V—“ v ,

y=i

. The forms of the covariance functions K^^\h)  and

K^~\h) , as well as the orders of the B-spline basis functions (u) and (v) , are

independent of parameters v and u, respectively.

For a fixed value v = v^.  Equation (5.20) reduces to

/ = l  y = l

(5.22)

where hj' = u — u , . The dual kriging fitting with available data points can be

expressed, similar to Equation (5.12), as

where

' k “l k ’li 

, k ' +  [0]

k ']] rk"H

,k"l I .  M

k'>]=
(%) -

(5.23)

(5.24)
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f k ) k )  ■ k ) ‘
k ']= h ) 4 '.k k )  ■■■ k )

k . ) k . )  • k . )
(5.25)

and

'- l .m ■ ■

ci"]=
/-'(I)
^ 2 .m k ‘’]= . k"]= ^2.m

^ (1 )

(5.26)

where j  = , (l < < N^^). Similarly, for a fixed value u, the dual kriging

equations passing through data points can be developed from Equation (5.21) as

' k > ]  k ’l ■[c<k ' k ’l

. k ’]" [ 0 ] , . k ’.. . [0] ,

(5.27)

where

k ? ’]= (5.28)
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and

k ^ ’]=
X I  k z )  X ' k k z )

X I ( “v . )  X ! k (“>'«.) -

'  ^ ( 2 )  ■ 
'- r t . l ’  X Î  ’

M2)
' - « . 2

k > ] =
s S

.  k " > ] =

M2)
^n,N^

o ( 2 )
° n M ^

(5.29)

(5.30)

where ■ =

where

and

“ (l < k , j <  ). It is noted that

[x"’l

L [ 0 ] ,
= k " ’ l b " ’]"'

b ^ ’]=
k " ] k ’l 

k > ] "  [0 ] ,

. . .  A ( | ( v ) . . .

(5.31)

(5.32)

(5.33)

where “hj  = V—“ v ,
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To develop an expression for J, we note that P{u,v^) = («) and

[0]
where

[e“ ]=
k " ] k i  

k ’]" [0]

and

(5.34)

(5.35)

k ' k k k r )  -  N l ' l w  (5.36)

where h'J' = u — u, , (l < y < A^„). Some simplifications can be made by considering the

-r, y and z coordinates of each data point. For the sake of presentation, the same notation 

as above is retained, but note that the formulation should be applied to each coordinate 

separately. Consequently, the scalar expression given by Equation (5.34) can be recast as

( " ) = [ o i l k ’r k " ] ’ (5.37)

and by reference to Equation (5.30), we find
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m
d)

3(1)
[Ol

" [ol

- T

- T

|F /0

f . " :

k t  [ o f e r k ’]’

(5.38)

The foregoing discussions can be simplified when the quasi-uniform 

parametrization is used for both u and v variables. That is, a parametrization of u at a 

specific V value is used for all other v values, and a similar technique is applied to the

parametrization of v. For this special case, it is noted that and are

independent of m (l < m ) and therefore will be denoted by and

respectively. Similarly, and can be denoted by and [f “̂ Ĵ.

Furthermore, the two matrices and are constant matrices, while and

are functions of only u and v, respectively, and will be denoted by |f^'^(m)J and 

[f^^^(v)] for clarity. Equation (5.38) can now be reduced to

[p“ ]=

fp(l) U.M J [ o f e "
-T

r < " ,
fp(l) f2 .  ̂ [ o f e > .

-T ri\

k 'F  [ o f e r b ? ] ’

(5.39)

Substituting Equation (5.39) into Equation (5.31) yields
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P{u,v)  =  P„(v) = (5.40)

where

[>]=

a.i 2̂.1 ■■■
^2.2 ■" ^ . . 2

[0]

2̂.iV„ •••

[0] [0]

(5.41)

Once ± e  matrix

(5.42)

is computed, a point on the surface characterized by parameters {u, v) can be calculated 

easily and efficiently by Equation (5.40).

In applying the quasi-uniform parameterization, one may intuitively choose specific 

u- and v-indices from the available data to develop chord-length parametrization. The 

choice of proper indices may not be obvious for some applications. As a compromise, 

uniform parameterization in the u- and v-directions may be used. Various parametrization 

procedures related to surface fitting have been reviewed by Theodoracatos and Bobba 

[69]. Based on that investigation and comparison, they proposed a surface-area based 

parametrization method. This method makes use of the area information associated with a 

patch formed by data points. A very brief account o f this parametrization procedure is 

given in Appendix B.
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5.3 Covariance Functions

Careful selection of the covariance function in the dual kriging method is important 

because the model chosen is used throughout the process and may influence all results 

and conclusions. It was mentioned [28] that the most widely used models in the 

geostatistical community are polynomials with odd order up to five. Matheron [52]

proposed another model, K{h) =  ln(A), which was not based on a rigorous 

geostatistical analysis. (Dubrule referred to it as spline covariance [29].) In this work, 

attention is focused on the first three covariance functions listed in Table 5.1; their 

graphic representations are shown in Figure 5.1.

i.o

0.5

m

0.0

.0.5
0.5 1.00.0

Figure 5.1 : Graphic representation of covariance functions
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These functions were also used by Gilbert, et ai. [32] and Limaiem and El Marghy 

[50]. It has been observed that the results obtained with the hybrid covariance function 

are almost identical to those found using the linear covariance function. Consequently, 

the hybrid covariance function will not be used in what follows. It is noted that a "nugget 

effect" (i.e., a constant term in the covariance function) is not included here based on the 

assumption that the data are given without error. As will be demonstrated by the 

following examples, among the covariance models in Table 5.1, the linear function 

performs best for data characterized by a low degree of continuity, because it reaches 

both ends in a nonsmooth fashion. As a result, it is expected that the use o f this model 

will yield a good approximation to a curve with a low degree of continuity. The examples 

shown later will support this assertion.

Table 5.1: Covariance functions

Functions K(h)

Linear h

Cubic

Logarithmic f 0 h = Q
\h^  ln(/i) otherwise

Hybrid
2 ^  ‘
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5.4 Applications and Discussion

The cubic B-spline function is used exclusively as the draft function in the examples 

considered below. All graphic presentations shown here are generated by dividing each 

interval of parametric values into a number of subintervals. As a result, the generated 

curves and surfaces pass through every data point, except for discrepancies due to round­

off errors introduced in the computations. Note also that selecting the number of control 

polygon points is important in that the desired curve or surface is generally better 

approximated using a large number of control polygon points, while using an excessive 

number of control polygon points may result in a considerable increase in computational 

time and severe oscillation in the approximation. Thus, the selection of the number of 

control polygon points in this work is a compromise made for each case.

It is known that the Gaussian and mean curvatures can be used as tools to 

characterize a number o f important properties associated with a fitted surface. For 

example, the algebraic sign of a Gaussian curvature value indicates the classification of 

the surface. In general, one of the many criteria used to evaluate competing surface fitting 

methods is that smaller variations of the curvature should be observed in smooth areas, 

while larger variations are expected in nonsmooth areas. Because the dual kriging 

approximation in general does not result in an expression which can be differentiated 

analytically (unlike the B-spline approximation, which can be differentiated), it is 

necessary to resort to numerical procedures to compute the Gaussian and mean 

curvatures. It is important to note that forcing the curve or the surface to pass through the 

data points disrupts the local smoothness of the recovered functions. As a result, the
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smoothness o f the fitted surface tends to become worse as the density o f  the data points 

increases. This phenomenon becomes more pronounced near the boundaries because the 

draft function consists of the open type B-spiine functions. On the other hand, this 

nonsmooth tendency may become beneficial in recovering some surfaces. In this work, 

second-order-accurate finite-difference approximations will be used to differentiate the 

kriging functions. The associated formulae can be found in Appendix B.

5.4.1 Curve Interpolation

To investigate the effects of different covariance functions and parametrization 

schemes on dual kriging interpolation, a two-dimensional curve is considered first. The 

data are generated by a hybrid function commonly used in computational fluid dynamics 

community to validate the shock capturing schemes because of its complex shape [67]. 

The analytical function is given by

y(x) =

|sin(2^cj, |x |<Y

(5.43)

l < x < l
6 3

The data set consists of 21 points on the analytical curve, as shown by solid points in 

Figure 5.2. The fitting and interpolating results are shown in Figure 5.3 through Figure 

5.6 for the uniform (dotted lines) and the chord-length (dashed lines) parameterization. 

Seven control polygon points are used in computing these results.
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Figure 5.2: Available data points o f the curve
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Figure 5.3: Pure B-spline fitting of the curve
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Figure 5.4: Linear covariance dual kriging interpolation of the curve
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Figure 5.5: Cubic covariance dual kriging interpolation of the curve
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Figure 5.6: Logarithmic covariance dual kriging interpolation of the curve
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It can be seen from Figure 5.3 that the pure B-spline fitting scheme (without a 

covariance part) yields overall unreasonable fitted curves, especially when the uniform 

parametrization is used. It is worth pointing out that the end points of the fit curves do not 

coincide to the end data points even though the open B-spline function is used. The 

explanation of this phenomenon is associated with the control polygon points calculated 

by the least squares solver. As a remedy, a constrained least squares solver or simply 

enforcement of the end polygon points equal to the end data points may be used. On the 

other hand. Figure 5.4 through Figure 5.6 demonstrate the power of the dual kriging 

method to recover complicated curves. Selection of the covariance functions and 

parameterization, however, has notable effects on the quality of the interpolated curves. It 

is observed that the interpolated curve using the linear covariance function can 

approximate very well a segment with a small curvature, for example, near the sharp 

point at X = 0.37 but deteriorates near the saddle point, just as in the B-spline fitting 

method. The interpolated curves using cubic and logarithmic covariance functions are 

qualitatively similar to each other, though the former recovers the original curve slightly 

better.

As shown in Figure 5.4 through Figure 5.6, kinks are induced around x = -0.3 and 

+0.32 in the interpolated curves when the uniform parametrization is used, which can be 

considered as a serious problem. Consequently, it may be concluded that the chord-length 

parametrization is preferred. A close examination of this issue may be conducted via 

Figure 5.7, which shows the absolute error values between the interpolated values using 

the logarithmic covariance function and the data generating function by Equation (5.43).
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On average, the error values of the interpolations using two parametrization schemes are 

comparable. Our experiences show that generally this conclusion is correct when a curve 

is considered. When switching to surface fitting and interpolation, however, the opposite 

conclusion may be drawn, as will be shown in the next example.

 D»a Curve
 U o ifa im P sia .
 Chopl-Lenat&Paa.

1.2

0.8

y

0.0

.0.4 0.0 0 4 0.8 1.2

Figure 5.7: Absolute error values between interpolated and original curves with
logarithmic covariance

5.4.2 Ship Hull Interpolation

The first example in applying the dual kriging method to surface approximation is a 

three-dimensional ship hull surface. Figure 5.8 shows a half perspective through the ship 

centerline (consisting of stem, keel and stem lines) and top views of the hull surface.
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These data were generated from Reference [30]. In this example, we choose not to 

construct the surface from symmetry by creating half of the ship hull and then mirroring 

the other half. The purpose is to evaluate the accuracy of the dual kriging interpolation 

technique to represent the ship step line area where the slope discontinuity has not been 

prevented by imposing slope conditions. The given data points are on the shear line, 

W.L.3, W.L.2, W.L.1, D.W.L., 0.75 W.L., 0.5 W.L., and keel lines from stations 1 to 13. 

To have a rectangular parametric domain for these points, extra data points must be 

created for D.W.L., 0.75 W.L., 1.5 W.L., and keel lines by applying a 3-D line fitting. 

The total number of given data points is 11 by 25, meaning that there are twenty five 

points in the fore-aft direction and eleven points from the shear line to the keel line. Due 

to the insufficient data and incomplete ship layout from the aforementioned reference, the 

aft part is not considered in this work. The number of control polygon points is prescribed 

to be 8 by 12.
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Figure 5.9 through Figure 5.11 show the interpolated surfaces using the uniform 

parametrization with the different covariance functions, in which half perspective and 

whole top views are given by (a) and (b), respectively. It is noted that physically, all these 

functions result in "pulling" or "pushing" effects, which mean that the resulting surfaces 

are forced to pass the prescribed data points. However, the influenced areas and 

magnitudes of effects due to these covariance functions are different. As can be observed 

from Figure 5.9, a strong pulling effect appears in the narrow region near the stem line. In 

contrast, the pulling effect seen in Figure 5.10 and Figure 5.11 is more gentle, especially 

that associated with the cubic covariance function. Furthermore, a close examination 

reveals that in Figure 5.9(b) there appears a notable kink on the stem line. However, the 

kink is much smaller in Figure 5.11(b) and totally disappears in Figure 5.10(b). It may be 

concluded by referring to these figures that the dual kriging scheme using the cubic 

covariance function performs best overall, producing overall contour smoothness and a 

well fit stem line.
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(a)

(b)

Figures.9: Linear covariance dual kriging interpolation of the ship hull: (a) perspective

view; (b) top view
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(a)

(b)

Figures. 10: Cubic covariance dual kriging interpolation of the ship hull: (a) perspective

view; (b) top view
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(a)

(b)

Figures. 11: Logarithmic covariance dual kriging interpolation of the ship hull: (a)

perspective view; (b) top view
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Figure 5.12 shows the fitted surface using an identical formulation as Figure 5.10, 

except that here the chord-length parametrization is invoked. The chord distances along 

the sixth and twelfth index curves are used for parametric u  and v directions. As is 

obvious, severe oscillation occurs over a large portion of the interpolated surface. An 

explanation for this behavior can be found by referring to the chord-length plot, shown in 

Figure 5.13. The u chord-length curve next to the v middle one has a cluster of u 

parametric values near u =1. Further simulations confirm that the chord-length 

parameterization along the first indices u and v curves result in smooth recovery of the 

ship hull surface.
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(a)

(b)

Figure 5.12: Cubic covariance dual kriging interpolation of the ship hull with chord- 

length parametrization: (a) perspective view; (b) top view
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Figure 5.13: Stencil of chord-length parameterization

The above-mentioned difficulties can be partially overcome using the surface-area 

based parametrization technique. Figure 5.14 shows the results corresponding to Figure 5. 

9 (i.e., linear covariance function) but with the surface-area based parametrization. It can 

be seen that the kinks experienced in using the uniform parametrization disappear (c.f. 

Figure 5.9). A similar phenomenon has also been observed in the results corresponding to 

Figure 5.11.
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(a)

(b)

Figure 5.14: Linear covariance dual kriging interpolation of the ship hull with 
surface-area based parametrization: (a) perspective view; (b) top view

85



Further evaluation of the relative performance of different covariance functions and 

parametrization methods can be obtained by comparing the Gaussian and mean 

curvatures of the fitted surfaces. It was observed, however, that at several locations in the 

parameter domain (i.e., near the stem line) the curvatures have very large magnitudes that 

are inconsistent with the rest of the domain. This is expected given that the stem part was 

not fully modeled. A plot including these large values may exaggerate their importance 

and obscure the curvature results elsewhere. To avoid this, a prescribed cutoff value of 10 

was set so that the absolute value of the curvature is within the limit of the cutoff. Two 

such plots are shown in Figure 5.15(a) and (b); corresponding to the uniform and the 

surface-area based parametrizations with the cubic covariance function, respectively. 

Both plots show correctly the large variation of the Gaussian curvatures near the center 

line (v = 0.5), though the result given by the surface-area based parametrization shows a 

wider area of influence. Both calculations show a similar phenomenon around the stem 

line (u = 1), but in this case, the surface-area based parametrization delivers a much 

smaller area of large curvature differences.
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(a)

(b)

Figure 5.15: Gaussian curvatures of fitted ships with cubic covariance by (a) 
uniform; (b) surface-area based parametrizations
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5.4.3 Human Face Interpolation

The last application example illustrates surface interpolating of a human face. Its 

shaded surface, consisting of 47 by 60 points, is shown in Figure 5.16. The interpolated 

faces by different covariance functions with either uniform or surface-area based 

parameterization are qualitatively very similar; thus, the cubic covariance function with 

uniform parametrization was selected to generate Figure 5.17. The number of control 

polygon points in this case was specified by 10 by 15.

The quantitative difference between various fitted faces can be demonstrated from 

their associated curvature calculations. Here, the effect of the parametrization is 

emphasized. The Gaussian curvatures of the faces corresponding to the uniform and 

surface-area based parametrizations with the cubic covariance function are illustrated in 

Figure 5.18(a) and (b). As can be seen, the surface-area based parametrization correctly 

distributes the grid points in the parameter domain, notably in the v-direction. It was not 

expected, however, that the approximated curvatures have such a small magnitude.
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Figure 5.16: Available data points of human face

: ii ! ! !!!

Figure 5.17: Cubic covariance interpolation of human face

8 9



(a)

(b)

Figure 5.18: Gaussian curvatures of fitted faces by (a) uniform; (b) surface-area based
parametrizations
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5.5 Closure

In this chapter, derivations of the dual kriging curve and surface interpolation 

technique were presented in a format suitable for quasi-uniform parametrization and their 

rationale were discussed. Within the framework of the dual kriging method, the 

recovering curves and surfaces are determined by two separate parts: the draft function 

and the covariance function. As there are a virtually infinite number of possible 

combinations of these two functions, attention was limited to the cubic B-spline function 

as the draft function and one of four functions as the covariance function. One of the 

objectives is to investigate the effect o f different covariance functions on the quality in 

the interpolated curves and surfaces. Examples lead to the conclusion that the cubic 

covariance is preferred overall for general shapes of curves and surfaces. On the other 

hand, the results with the linear covariance function show good shape recovery in regions 

of low continuity.

It was noted in the derivation that computational efficiency is offered for fast 

surface fitting by selecting a specific parametrization scheme. Three possible 

parametrizations, uniform, chord-length and surface-area based, were emphasized and 

compared. Although it is generally recommended in the literature to use either uniform or 

chord-length as a primary parametrization technique for a curve fitting, our results show 

that it may be beneficial to use the surface-area based scheme for a surface fitting 

because it utilizes the information of the data distribution and yields a more reasonable 

distribution of the parameters.



6 NODE-BASED STRUCTURAL SHAPE OPTIMIZATION

A novel node-based shape optimization method is developed for planar structures 

based on consideration that the critical strength and displacement constraints are 

generally located along or near the structural boundary. In this new method, the 

maximum weights were put on the selected boundary nodes of the FE model; as a result, 

the time-consuming sensitivity analysis is limited to the perturbation of only these nodes.

6.1 Background

Proper specification of design variables has long been one of the most important 

ingredients for successful shape optimization applications and many ways have been 

proposed to deal with this issue. The most popular methods include the design element 

approach [40] in which the underlying structure was divided into a number of 

substructures on which the overall FE model was based. The design variables were first 

specified at the substructure level, and then other necessary information came from 

interpolating by FE shape functions, for example. The approach was generally restricted 

to problems expected to achieve the optimal shape with a very limited range of structural 

shape change, because a dramatic change in structural shape may result in severe 

distortion of the boundary elements and leads to unreliable FE solutions.

Difficulties arise when mesh topology varies during the optimization process due to 

adaptive modeling, as it inevitably alters the number of nodes and elements. It may be
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argued, however, that the adaptive modeling is inevitable for most structural shape 

optimization applications for at least two reasons. First, during the iterations, the 

boundaries may move to such an extent that problems associated with excessive element 

distortions and unreasonably large aspect ratios can occur in some elements if the mesh 

topology is kept fixed. Figure 6.1 shows such an example, in which the meshes (initial 

and after five iterations) consist of eight-node quadrilateral elements. As is clearly shown, 

a number of elements in the altered mesh have large aspect ratios which would be 

expected to lead to inaccurate stress solutions. Second, it is generally required for an 

adaptive FE model of a large structure to accurately and economically predict the 

locations and values of critical stresses. A uniformly refined mesh is very costly and 

unnecessary. On the other hand, a coarse mesh will generally underestimate the stress 

value in an average sense, especially near the structural boundary. Thus, adaptive 

meshing is also valuable in this respect.
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(a)

(b)

Figure 6.1: Illustration of varying meshes whose topology is fixed; 

(a) initial mesh; (b) high distorted mesh
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It should be pointed out that the node-based shape optimization concept itself was 

not initiated here. In fact, it was proposed by Zienkiewicz and Campbell [86] two and a 

half decades ago. Since then many application have appeared in the literature and many 

improvements and refining modifications have been developed. As far as we know, all 

applications of the node-based shape optimization technique required important 

information, such as sensitivity analysis results, at all nodes in the FE model. This is 

obviously unnecessary due to the fact that the critical constraints associated are almost 

always located along or near the structural boundary. Furthermore, structural weight, 

which in most applications is the objective function, is perturbed only if the structural 

boundary changes. Based on this consideration and using a technique from the boundary 

layer concept in viscous fluid dynamics, the proposed method put the maximum weights 

on the boundary nodes, referred to as the design points, so that the time-consuming 

sensitivity analysis is based only on the perturbation of these nodes.

6.2 Proposed Shape Optimization Method

It is proposed that only boundary information (nodal point coordinates and types of 

elements) be used to specify all the design variables necessary for a shape optimization

design. For a boundary node, its coordinates, r  = (x, y )^ , define a single design variable 

p  as

r = r̂  + ps  (6.1)

The vector J  is referred to as the nodal moving velocity that can be either predetermined 

or recalculated at each step. Most of the optimization studies reported in the literature
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have employed the predetermined moving velocity methodology. The major disadvantage 

of this method is that it discourages the convergence of the overall iterative process 

because, as the structural boundary varies, the predetermined velocity may have to have 

its direction parallel to the boundary segment to be changed to achieve an optimal shape.

The moving velocities used in our work were recalculated at every iterative step. It 

is o f interest to note that the nodal moving velocity can be simply expressed by

? = (6 .2) 
dp

As  a result, explicit expressions can be developed for moving velocities at boundary 

nodes as follows. Suppose that a segment of the structural boundary consists of a number 

of quadratic curve elements, as shown in Figure 6.2. A  boundary node in this segment is 

identified to be either the interior node or an end node of a quadratic element. It is noted 

that a quadratic element consisting of three nodes /, j  and in an adequate sequence can 

be approximated by

.r(^) = i4)Xk

(6.3)

y(^) = Af,(^)y, + !^j{ç)yj + A/jk(Oyt

where A ,̂(^) and Oq,y, ) denote the shape function and the coordinates of the i-th node. 

Similar expressions can be developed for the other two nodes.
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Figure 6.2: Illustration of a segment of quadratical I-D elements

The normal vector at an arbitrary point o f this element can now be represented by

n = (y '(4)-^' (4)}  (6.4)

This vector can readily be used to determine the nodal moving velocities. For a node that 

connects to only a single element, the velocity s is simply identified as the normal vector 

itself. For end nodes that cotmect two elements, the average of two normal vectors 

obtained from two connected elements is used to yield the velocity. A nodal moving 

velocity generally includes both magnitude and direction. The magnitude may be 

absorbed into the design variable p  so that J  can be always assumed to be a normalized 

vector.

It has been mentioned that a design point is associated with a single design variable 

p. Therefore, the number of design variables can be reduced by decreasing the number of 

design points. It has been a common belief that curved elements are not recommended for 

FE solutions. Even if it is absolutely necessary to use them, interior nodes should be the 

midpoints of the end nodes, except when modeling a structure with singularity. 

Consequently, it is further proposed that only end nodes be selected as the candidates for
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design points. As a result of this simplification, each design variable perturbs the 

geometry of only one or two boundary elements, although its effects may likely be 

propagated into other elements by subsequent automatic mesh generation.

The sensitivity results of the objective function, the force vector and constraints 

with respect to p  can be expressed as a summation of the product of the nodal moving 

velocities and the derivatives of the functions with respect to the nodal point coordinates 

by

dp
È L
Bn

Si (6.5)

Note that the vector is zero if the coordinates are not associated with design
O';-

variables. Consequently, there are only a few nonzero sensitivities of components of the 

force vector and the stiffness matrix. On the other hand, the sensitivities of constraints 

involving the displacement are likely nonzero through the perturbation of displacement

vector . More details can be found in Chapter 4.
Bp

6.3 Implementation

To implement the present method, it is necessary to select a number of nodes as 

design points. As stated previously, these design points should always be on the structural 

boundary. Taking this into consideration, the structural boundary is first divided into a 

certain number of boundary segments. Each segment may be regarded as a design 

segment which is subjected to modification in finding an optimal structural shape. The
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selection of design segment is usually problem-dependent and will be discussed in the 

next chapter dealing with applications. Once design segments are identified, a certain 

number of nodes are then assigned to each segment as design points. The number of 

design points on each segment is initially prescribed and fixed in subsequent iterations. It 

should be pointed out that other boundary segments also need to be supplied with nodal 

points for meshing purposes. These boundary nodes can then be used to create an initial 

mesh system by using an automatic mesh generator.

After each iteration, the modified segment is smoothed by the dual kriging B-spline 

fitting technique. This smoothing procedure requires inputs of data points and number of 

control polygon points. Here, only design points are used to provide the required data 

points. Also, the number of control polygon points is specified before beginning the 

iterations. A suitable number depends on how the smoothed curve behaves. Too large a 

number of control polygon points would likely return a curve with an inordinate number 

of kinks. On the other hand, an underestimated number may results in a curve far from 

the predicted optimal shape. It was found that in general a number between one-third and 

one half of the number of data points is adequate.

6.4 Shape Optimization Package

The present method is incorporated into a FE solver to form an automatic adaptive 

shape optimization program. The main modules are shown in the flow charter. Figure 6.3. 

A simple description for these modules is presented as follows.

The first module requires primary information about locations of the design points 

and number of control polygon points. It also reads in the data concerning the initial FE
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Figure 6.3: Flow chart of the proposed optimization package
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model, types of constraints, the stress allowable values, and the threshold value;; for 

adaptive mesh refinement.

After the input module, a certain number of iterations are performed to achieve the 

optimal shape design by a series of new designs. The adaptive FE solution module is 

intended to provide reasonably accurate displacement and stress solutions. For a new 

design, the initial mesh is primarily based on distortion consideration that is enforced by 

limiting the minimum angle allowed for each element. Based on this initial model, a r e  

solution, stress recovery and error estimation are then performed. Adaptive mesh 

refinement is invoked from the information contained in the error estimation results. 

During this mesh refinement process, the boundary conditions may be updated as an 

option because the number of boundary nodes may be increased. This is automatically 

done in the program by assigning sets of specific indices for the new created boundary 

nodes.

The design sensitivity analysis module performs the sensitivity calculations of the 

objective function and the constraints. In this work, the constraint information is provided 

by checking only the boundary elements that include at least one boundary node. This is 

based on the observation that the maximum stress typically occurs at the structural 

boundary.

With the sensitivity results available, the modified CONMIN routine is used to 

provide the optimal design points from the predicted optimal design variables.

The next module performs the boundary smoothing for each design segment using 

the dual kriging B-spline fitting technique (cf. Chapter 5). It should be pointed out that
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smoothing alters the predicted optimal design, but it is the present investigator’s 

experience that this effect can be ignored because a wavy boundary is generally 

associated with larger values of the stress.

The final module performs the shape update. An auxiliary routine was developed for 

this purpose. Its used a number of system calls to automatically update input files 

requiring invoking automatic mesh generation.

The convergence conditions used in the package consist of checking the objective 

function and feasible iteration condition. If the objective function improves only 

marginally during five consecutive iterations, or if all of ten consecutive iterations stay in 

the infeasible domain, iteration stops.
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7 APPLICATIONS AND DISCUSSION

In this chapter, the methods developed in the previous chapters are applied to a 

number of problems. The first problem is the application of the stress recovery technique 

to in-plane stress calculations to find the lateral buckling load factors of plate structures. 

Then, the applications of the proposed node-based shape optimization are demonstrated.

7.1 Plate Lateral Buckling Analysis

7.1.1 Introduction

As it is known, accurate determination of in-plane stress field is critical in predicting 

a buckling load and the associated mode shape. The stress recovery technique discussed 

in Chapter 3 can be used for this purpose. In this section, we present such an application 

in which a Reissner-Mindlin plate finite element approximation is used to compute the 

plate lateral buckling loads. The in-plane stress field induced by various in-plane loads is 

provided by a plane stress FE solution using nine-node isoparametric elements with the 

help of our SPR method.

The preference of quadrilateral elements to triangular elements is due to the 

following consideration. It may be recalled that one should in general avoid using a 

triangular plate element in any FE application in which a plate structure may be subjected 

to any type of bending, torsional and buckling loads. Therefore, although a triangular 

element mesh may be used to compute the in-plane stress field for a planar structure, the
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adequate quadrilateral elements (in terms of the elemental skewness, warpness and aspect 

ratio) are strongly recommended in FE applications with plate structures.

7.1.2 Background

While the lateral stability of beams has been explored both theoretically and 

numerically [71, 78, 61], few lateral buckling analyses of plates are available in the 

literature. The work by Kondo [46] apparently was the first one to address the lateral 

buckling of beams in terms o f the lateral buckling analysis of plates. Using a simple plate 

analog to beam buckling analysis and the Rayleigh-Ritz technique, Cheng [21] presented 

the critical loads for several loading conditions. It should be pointed out that only part of 

the potential energy due to the in-plane deformations was included in his work. Cheng 

also found that his technique produced excessive errors whenever the plate configuration 

is outside of a certain range specified by the plate aspect and length-to-thickness ratios. 

Recently, Reissner [62] proposed a procedure to investigate theoretically the lateral 

buckling of plates.

The lateral buckling loads of several plate structures will be calculated using a finite 

element discretization based on the Reissner-Mindlin plate theory. It is known that when 

this approximation is applied to thin plates, a non-physical phenomenon, referred to as 

plate shear locking in the literature, usually occurs. To alleviate this problem, a selective 

reduced integration technique is used; that is, certain terms of the strain energy 

expression are integrated using numerical integration schemes of different orders. The 

effects of the aspect ratio and the length-to-thickness ratio of a rectangular plates on the 

buckling loads are highlighted through a set of validation problems. Other effects such as
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the presence of a circular hole and plate skewness are also considered and lateral 

buckling parameters for those cases are developed.

Before turning to other topics, it is noted that one of the major advantages in using 

the Reissner-Mindlin plate theory is that it is relatively easy to implement in finite 

element approximations with isoparametric element techniques because it allows one to 

neglect the issue of conforming element construction.

7.1.3 Buckling Consideration and Formulation

The Reissner-Mindlin plate theory and its r e  approximation are given in the second 

part of Appendix A. It is shown there that the determination of the lateral buckling load is 

equivalent to solving for a specific eigenvalue in the following eigenproblem

M-#cDwt = ioi (7.1)
The above generalized eigenvalue problem can be recast in the following form

(“ [ / ] - =  {0} (7.2)

where [R] is an upper triangular matrix forming the Cholesky decomposition of the 

positive definite matrix [R] such that [AT] = [R]^[R]. Note that the product 

[Rr^[ATc][Rr' can be simply formed because [R]"‘can be written as the product of a

series of matrices, each of which differs from the unit matrix only in a single column 

[81]. The standard eigenvalue solver is then applied to Equation (7.2). The reciprocal of 

the maximum eigenvalue is an approximation of the critical load parameter defined 

by

P  T
(7.3)
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where L is the characteristic length of the structure and D  is the flexural rigidity. The 

Poisson ratio is set at 0.3 in this presentation.

7.1.4 Results and Discussion

For verification purposes, the developed FE formulation is first applied to two 

standard plate buckling problems in which uniform initial stress fields are predefined:

1) a rectangular plate with simply supported or clamped boundaries and a prescribed 

uniform uniaxial load on the two opposite edges; and

2) the same plate subjected to uniform in-piane shear loading on its edges.

These examples were also used by Cheung et a i  [23] to validate their formulations. It 

was observed that the buckling loads computed here are consistently lower than those 

from the preceding reference, especially for moderately thick plates. The reason for this 

difference is that their results were generated by neglecting the rotational effects in 

forming the initial stress matrix, which effectively made the structures stiffen Other than 

these few percent differences, the results from our calculations agree well with the known 

analytical, as well as the FE, solutions.

The validation results are summarized in Figure 7.1 and Figure 7.2 for uniform 

uniaxial and shearing loading cases, respectively, with all edges being either simply 

supported or clamped. The nondimensional critical parameter used in these figures is 

defined by

(7.4)
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Figure 7.1: Uniaxial buckling parameters with selectively reduced (open symbols) and 

full integration schemes (solid symbols) for (a) S-S-S-S; (b) C-C-C-C edge boundary 

condition. Solid line represents the thin plate solution from [71]
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where is the critical in-plane force per unit length (note that in general the plane

stress results in this force).

Figure 7.1 and Figure 7.2 show that the selectively reduced scheme works well for 

relatively thin plate calculations, while it may underestimate shear stiffness in thick plate 

cases and consequently predict an unrealistic buckling parameter value. On the other 

hand, it has been noted in the literature that the full integration scheme tends to 

overestimate shear stiffness (shear locking) and thus overestimates the buckling load. It 

was observed during this study that the selectively reduced integration scheme predicted 

lower values of the buckling parameter compared to the values computed by the full 

integration scheme.
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Figure 7.2: Shear buckling parameters with selectively reduced (open symbols) and full 

integration schemes (solid symbols) for (a) S-S-S-S; (b) C-C-C-C edge boundary 

condition. Solid line represents the thin plate solution from [71]
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In the third validation case, the buckling load of a four-edge simply supported 

rectangular plate compressed by two equal concentrated loads on the two opposite edges, 

as shown in Figure 7.3, is computed to compare with the results from Timoshenko and 

Gere [71]. No displacement boundary conditions were imposed on the loaded edges in 

calculating the stresses and the double symmetries were used. The associated buckling 

parameter is defined by

k = ^ -  
D n

(7.5)

Figure 7.3: Simply supported plate compressed by two opposite concentrated loads

The buckling parameter is shown in Figure 7.4 for various plate aspect and length- 

to-thickness ratios. It should be emphasized that the results in the above reference were 

calculated in such a way that the effect of the in-plane stresses was approximated by a 

simple potential energy term associated with the points where the loads were applied. The
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regions near the loads were in compression mode and thus the exact value of the potential 

energy should generally be less than this simple approximation used there. Despite these 

differences, our calculated buckling parameters are generally in good agreement with the 

results in the above reference. It is also noted that, for this specific example, the neglected 

compressed regions are relatively small and their effect is much less critical than it would 

be in calculating the lateral buckling load o f a rectangular cantilever plate.

9
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Figure 7.4: Buckling parameters for the plate configuration shown in Figure 7.3. Solid 

line represents the thin-plate solution from [71]
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7.1.4.1 Rectangular cantilever plate

The developed FE procedure is now applied to investigate the lateral buckling 

problem of a simple rectangular cantilever plate. Consider a flat rectangular and isotropic 

plate with uniform thickness h, length a and width b, as depicted in Figure 7.5. 

Concentrated and distributed loads in the y direction were applied at the top edge of the 

mid-plane. This problem has been considered by Kondo [46] using the Rayleigh-Ritz 

approximation technique. There, the trial function for the lateral deflection w was 

approximated by a summation of characteristic functions o f slender beam free vibration 

and the in-plane stress distribution was approximated with the simple beam solution. To 

our knowledge, the paper by Cheng [21] was the only other published work dealing 

directly with the numerical calculation of the lateral buckling loads of a simple 

rectangular cantilever plate. In Cheng’s formulation, the potential energy due to the initial 

stress was approximated by an oversimplified formulation in which only a very limited 

area (in fact, only the concentrated loading position) was used, while the effects on the 

vast majority of the plate area due to the in-plane stresses were neglected. This approach 

works well for a beam structure, as demonstrated from our calculation when the aspect 

ratio is very large.
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Figure 7.5: A rectangular cantilever plate with concentrated top load

As was the case for uniform in-plane loading, the buckling parameter in this case 

depends strongly on the plate aspect ratio and, to a lesser extent, on the length-to- 

thickness ratio. We first consider the case o f concentrated load at the free end of the plate. 

Two typical loading positions are at the top (y = bH) and centerline (y = 0) locations. The 

results are summarized in Figure 7.6 and Figure 7.7 in which the characteristic length L 

was set to b. It can be seen that when the length-to-thickness ratio is sufficiently small, 

the buckling parameters differ by only a few percent. In other words, those parameters in 

a thin plate application can be viewed as if they were not dependent on the thickness 

variation. The results from Cheng’s work, based on the thin plate theory, are also included 

in the figures for comparison. It is noted in Figure 7.7 that relatively large differences 

exist between the current centerline loading case and Cheng’s calculations for relatively 

small plate aspect ratios. It is not surprising that centerline loading leads to higher

114



buckling loads than top loading, especially for the plates with small aspect ratios. As the 

aspect ratio increases, however, the current results tend to converge to Cheng’s results, 

reflecting an insensitivity to end loading details. This is an illustration of Saint-Venant’s 

principle.

Oh/a=O.OCOl 
X =0.001 
A =0.01 
V  =0.05

5 63 42
a/b, a.^ect ratio

Figure 7.6: Lateral buckling parameters of a rectangular cantilever plate with a top 

concentrated load at x  = a, y = bH. Solid line represents the approximate solution from 

[21]
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Figure 7.7: Lateral buckling parameters of a rectangular cantilever plate with a mid-width 

concentrated load at x = a, = 0. Solid line represents the approximate solution from 

[21]
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Figure 7.9 and Figure 7.10 show the values of the lateral buckling parameter for 

uniformly distributed loading (UDL) and triangularly distributed loading (TDL) on the 

top edge for typical thin plates {h/a= 0.001) (as illustrated in Figure 7.8(a) and (b)) 

together with Cheng’s results. The buckling parameter in this case is defined by

k = (7.6)

where ^o.cr represents the critical loading intensity in the UDL case or scale factor 

defined by

? = <?0.cr (7.7)

in the TDL case. It can be seen in the figures that the differences between the results from 

two calculations for the UDL are minor except for the square plate case {a/b = 1), where 

the difference exceeded 10 percent. On the other hand, for the TDL case, larger 

differences exist between the two calculations across the aspect ratio range, reaching 40 

percent at a/b = 1.

It can be observed from these results that the compression effects (and thus the 

buckling parameters) were underestimated in Cheng’s approximation for the concentrated 

loads, while they were overestimated for the distributed loads. Recall that Cheng 

accounted for energy contribution only at the point where the load is applied, whereas the 

current analysis fully accounts for the plane deformation throughout the plate.
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Figure 7.8: A rectangular cantilever plate with the (a) UDL; (b) TDL
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Figure 7.9; Lateral buckling parameters of a rectangular cantilever plate with a UDL ( % ) 

along y = bl2. Solid line represents the approximate solution from [21]
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Figure 7.10: Lateral buckling parameters of a rectangular cantilever plate with a TDL 

given by Equation (6.9) along y  = b!2. Solid line represents the approximate solution 

from [21]
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7.1.4.2 Skew cantilever plate

The lateral buckling of skew cantilever plates due to tip concentrated loads is also 

considered. The skewness of the plate is controlled by the angle a , as shown in Figure 

7.11. It is noted that a plate with skew angle a  = 90° becomes rectangular. Also, the 

buckling parameter is defined in the same form as for the rectangular plate. Equation

(7.4) or Equation (7.5). The calculated results are shown in Figure 7.12 for three skew 

angles. It can be seen that as the skew angle increases, the value of the buckling 

parameter also increases. Additional results for plates with skew angle larger than 90 

degrees are shown in Figure 7.13 for a typical thin plate (h/a = 0.001). It is instructive to 

redefine the buckling parameter using the square root of plate area as the characteristic 

length L, i.e.

D 71

In this way, the critical buckling parameter may be used as the buckling resistance per 

unit area that is useful in weight optimization practice. Figure 7.14 illustrates this area- 

based buckling parameter for a thin plate (/i/a= 0.001).
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Figure 7.11: A skew cantilever plate with clamped boundary on the left edge
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Figure 7.12: Lateral buckling parameters for concentrated top load of skew cantilever 

plates: (a) a  = 15°; (b) a  = 45°; (c) a  = 75°.
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Figure 7.13: Width-based lateral buckling parameters for concentrated top load o f skew

cantilever plates for various skew angles
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Figure 7.14: Area-based lateral buckling parameters for concentrated top load of skew

cantilever plates for various skew angles
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7.1.4.3 Circularly perforated cantilever plate

The lateral buckling analysis of circularly perforated cantilever plates has been 

reported in the literature [20]. Such plates are used extensively as the tubesheets in 

certain shell-tube heat exchangers and also appear in weight critical structures where the 

holes are created for lightening. Various loading conditions (axial, shear and bending 

along the edges) and locations of circular openings (concentric or eccentric) have been 

considered in those studies. Here, a study of the effect of circular openings on the lateral 

buckling loads in a rectangular cantilever plate is performed. The notation given in Figure 

7.5 for the rectangular cantilever plate is retained. The radius of a circular opening is 

denoted by R. The center location of the opening is defined by (.r,., y^.). Alternatively, the 

eccentricity may also be characterized by the relative position of the opening center to the. 

plate center, (Xg, y^). However, as no eccentricity is considered in the current work, the

geometric configuration can be specified by two ratios of aspect {a/b) and diameter-to- 

width {2R/b). Figure 7.15 shows meshes for relatively small {2R/b = 0.1) and large {2R/b 

= 0.5) holes, respectively.

Lateral buckling results for circularly perforated cantilever thin plates {h/a = 0.001) 

are summarized in Figure 7.16 and Figure 7.17 for loads applied at top and centerline 

locations, respectively. Comparing Figure 7.7 and Figure 7.16 shows that for top loading, 

the buckling parameter is only slightly reduced by the presence of the hole. Figure 7.8 

and Figure 7.17, however, reflect a dramatic reduction in critical load for the centerline 

loaded case.
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(a)

(b)

Figure 7.15: Meshes of circularly perforated plates with 

(a) small hole (2 R/b = 0.1); (b) large hole (2 R/b = 0.5)
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Figure 7.16: Lateral buckling parameters for circularly perforated cantilever plates under

concentrated top loading.
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Figure 7.17: Lateral buckling parameters for circularly perforated cantilever plates under

concentrated top loading
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7 .1 .5  C lo su re

Calculations o f the lateral buckling loads of cantilever plates using an isoparametric 

Reissner-Mindlin plate finite element analysis are presented. The effects of the aspect 

ratio and the length-to-thickness ratio of plates on the buckling loads are highlighted 

through a set of validation problems; the analysis was shown to be accurate. Other effects 

such as the presence of a circular hole and plate skewness are also considered and 

buckling parameters for those cases are emphasized. It was observed from the 

calculations that the shear locking phenomenon due to the use of full integration in the 

shear strain energy term did not result in any overwhelming error in predicting buckling 

loads as has been reported in thin plate bending computation, although it apparently does 

overestimate the plate stiffness.
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7.2 Applications of Node-Based Structurai Shape Optimization

The proposed node-based shape optimization method outlined above has been 

applied to several planar structures. Some of the application examples are presented next. 

It is noted that in using the dual kriging smoothing method, the 3"̂  order B-spIine basis 

and the cubic covariance functions are chosen exclusively for these examples, unless 

stated otherwise.

7.2.1 Cantilever beam

We consider the optimal shape of a tip-loaded cantilever beam of rectangular cross 

section subjected to a yield strength constraint. The configuration and the associated FE 

model are shown in Figure 7.18, in which the distributed load is specified as p = 5 psi and 

the uniform thickness t = 0.5 in. The beam is composed of an isotropic material with an

elastic Young modulus £’ = 3x10^ psi and a Poisson ratio v =  0.0; the maximum

allowable von Mises stress is d\,n, = 670 p s i, which is set to be slightly greater than the

maximum normal stress, 660 psi, in the initial beam predicted by classical beam theory. It 

should be mentioned that the Poisson ratio is set to zero to remain consistent with beam 

theory, which neglects the Poisson effect.
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Figure 7.18: Plane stress model of a cantilever beam

Twelve design points are assigned along the bottom boundary of the beam. A 

constraint that allows no movement in the x-direction is imposed on the design point at 

the tip. Also, the >'-coordinates of all design points are restricted so that they are not 

greater than 0.950, i.e., the beam thickness cannot vanish. Six polygon points are used for 

cubic B-spline smoothing in the current problem.

It is not difficult to argue that the normal x-stress at the top and bottom edges of the 

beam controls. It is noted that the von Mises stress near the top and bottom edges can be 

approximated by the absolute value of the x-stress as

Af(x)y
<̂ VM - 21

(7.9)

where M (x) and /  represent the bending moment and the moment of inertia, respectively.

The bending moment can be expressed as

M (x) = -5 [(x-5)+̂ -2x+llj (7.10)
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where function {x — a) is defined by

[ 0 , x < a

and the optimal shape for the bottom boundary can be approximated by

(7.11)

The optimum shapes of the bottom boundary from the theoretical solution. Equation 

(7.11), and the numerical result are compared in Figure 7.19. Only a few percent 

difference is observed. Note that theoretical solution vanishes at the end, whereas the 

numerical solution was constrained to remain finite. It should be emphasized that the 

current solution takes no account of possible out-of-plane deformation and therefore, 

does not account for buckling as a constraint.

O— ONUMHUCAL 
 BEAM THEORY

X

Figure 7.19: Optimal shape by numerical shape optimization and beam theory

Compared to the popular design element method (cf. Iman82), it can be seen that 

relatively little effort is required to set up a structural optimization process within the
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framework outlined here. Once the computational framework is in place, the analyst 

needs only to specify the initial geometry and design points. In general, it is far easier to 

locate the design points than to set up design element models and to prescribe moving 

directions for an arbitrary shape structure.

7.2.2 Flat plate with hole

This classical problem has been widely investigated theoretically and numerically in 

the literature [48, 18, 56]. A thin 80 by 80 inches square flat plate with a central square 

hole of 12 by 12 inches and its FE quarter model are shown in Figure 7.20. The plate

was made from an isotropic material with E = 1.0x10^ psi, v = 0.3 and the von Mises

effective stress limit = 3.4x10“̂ p s i. These parameters were set identical to those 

used by Naqib et al. [56]. The plate was assumed to have unit thickness. A biaxial stress 

field was applied by specifying pi = 15,000 psi and p2 = 10,000 psi in the x- and >•- 

directions, respectively.

□
a>

a>

TO

Figure 7.20: Plane stress model of plate with a square hole
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The analytical solution for the optimum shape o f the hole in an infinite plate under a 

biaxial loading conditions was summarized in [48], where it was shown that the hole 

should be an ellipse with the axis ratio b/a equal to the ratio of biaxial stresses, that is, b/a 

= p v  Pi. The constants a and b represent the axes o f the elhpse. Note however, that this 

conclusion was made for the infinite plate and by ignoring possible edge effects that 

occur when the hole axes were comparable to the plate length. Chong and Pinter [25] 

addressed this issue for a circular hole under the uniaxial loading conditions using FE 

solutions. They found that in general for the x-direction tensile load, as the hole diameter 

increased, the maximum x-direction normal stress, by which the stress concentration was 

calculated, increased as well, while absolute values o f the maximum y-direction normal 

stress decreased.

Seventeen design points were assigned along the hole. Symmetry constraints that 

allowed no movement in the x- and y-directions were imposed on the design points on the 

y and x symmetric lines, respectively. Also, periodic re-imposition of constraints on the 

design points was made in such a way that their x-coordinates and y-coordinates form 

monotonically increasing values. It was found that this special treatment has served two 

purposes. First, far fewer number of iterations were needed to obtain an optimal solution 

since the numerical optimization procedure needed only to seek a local optimum. Second, 

the periodic adjustment helped to prevent premature iteration termination. Seven polygon 

points were used in the cubic B-spline smoothing.

The numerical optimization started with a 6 by 6 inches square quarter hole, as 

shown in Figure 7.20, where a high stress concentration was expected. During the first
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few iterations, the optimization routine tried to smooth the hole as much as possible. 

After five steps, the smoothed hole shape and FE mesh are shown in Figure 7.21(a). The 

changes in the hole shape during the next 90 iterations are shown in Figure 7.2l(b)-(d). 

The major and minor axes ratio of the final shape was 1.43, which was only a 4.7 percent 

error compared with the analytical result. The contour plot o f the von Mises stress at the 

final step is shown in Figure 7.22. It is evident that the lack of a clear local stress 

concentration is confirmation that material has been allocated to most efficiently carry the 

applied loading.
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(a)

(b)
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(d)

Figure 7.21: Snapshots and their meshes during shape optimization after 

(a) 5 iterations; (b) 10 iterations; (c) 15 iterations; (d) 18 iterations
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Figure 7.22: The von Mises stress contour plot

It should be mentioned that in two other runs with the initial holes being either a 

circle of 6 inches radius or a very irregular shape, little difference was observed between 

the three final optimal shapes. Thus, it has been demonstrated that this shape optimization 

algorithm was very robust in dealing with large shape changes. Another critical point that 

should be noted is that, once the problem geometry and design points were defined, the 

optimum shape solution proceeded automatically with no analyst intervention. Adaptive 

mesh refinement and local error estimation made this possible.

7.2.3 Bracket

The initial bracket and model are depicted in Figure 7.23 and the material is 

isotropic with E = 1 ksi and v = 0.3. The von Mises stress was set to be 32.5 psi.
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Figure 7.23: Plane stress model of a bracket

Thirteen design points and six polygon points were used along the bottom 

boundary in this example. Geometric constraints on the design points were imposed such 

that their maximum allowed y-coordinates were at least 25 inches below the top 

boundary. This type of constraint was necessary since the stresses in the tip region were 

relatively low. The numerical results are presented in Figure 7.24(a)-(d) by four 

snapshots, which represented the shapes at approximately the 25%, 50%, 75% and the 

final stages of a 21-iteration solution. In this figure one also sees continued mesh
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refinement near the bracket mounts and at the end of the hole. It was this continued mesh 

refinement that allowed the node-based technique to undergo large changes in shape 

during the course o f the solution.

(a)

(b)
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(c)

(d)

Figure 7.24: Snapshots and their meshes during shape optimization after 

(a) 10 iterations; (b) 20 iterations; (c) 30 iterations; (d) 41 iterations
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7.2 .4  C lo su re

This section presents applications of a novel method of shape optimal design for 

general planar structures. These examples emphasize the use of information provided by 

boundaries of a structure, on which any area change depends and where the critical 

constraints normally occur. It combines the features of flexibility of nodal points and 

regularity of dual kriging B-spline blending functions. The varying structural shapes are 

modeled via adaptive mesh refinement processes so that the constraints can be calculated 

accurately and economically. It should be emphasized that this technique, unlike the 

design element method, is capable of producing large shape changes while maintaining 

appropriate finite element mesh distribution.

It can be concluded from these results that the present node-based shape 

optimization methodology avoids much of the time-consuming preprocessing required in 

specifying the proper design variables required by most existing shape optimization 

methods. By using this method, a designer is required to provide only the boundary nodes 

that define overall structure and the design segments connected by a number of the 

boundary nodes. The input required is therefore minimum.
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8 CONCLUSIONS AND FUTURE STUDY

8.1 Conclusions

This dissertation covers the necessary developmental work for a computer node­

based shape optimization code. Emphasis was placed on the development of error 

estimation, stress recovery, design sensitivity analysis, adaptive mesh generation, curve 

and surface smoothing methods and techniques for boundary design points and segments 

in which the maximum use of information provided by boundaries of a structure is made. 

The significance of the developed node-based shape optimization code becomes more 

apparent if one considers that it can handle easily the requirement that significant shape 

changes may take place during the optimization process. The various structural shapes 

are modeled using adaptive mesh refinement processes and the imposed constraints can 

be computed accurately and economically.

It has been pointed out that it is generally necessary for a user to try several sets of 

initial boundary segment and design node settings. The examples in Chapter 7 illustrated 

typical values of numbers for design points and polygon points. Even so, the present 

methodology avoids much time-consuming pre-process stage of specifying the proper 

design variables, as required in most existing shape optimization methods. Using the 

proposed method, the user is required only essentially to provide the boundary nodes that 

define the overall structure and the design segments connected by a number of the 

selected boundary nodes.
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This work has successfully demonstrated that the developed automatic adaptive 

mesh generation, shape optimization process and the stress recovery technique work 

effectively, especially as a practical shape optimization tool.

8.2 Future Study

Due to the successful applications of the proposed methods to a number o f 2-D 

planar structures, the methodology may be extended into general 3-D structural shape 

optimization designs. As evident from the preceeding applications, facilities for adaptive 

mesh generation can improve the reliability of the finite element model used during the 

redesign process and can therefore become a valuable tool for shape optimization. 

However, in general an unstructured 3-D mesh program is not available for public use, so 

it may be the only feasible choice to develop such a code, at least in a simplified version.

As can be seen, only plate finite elements are available at the present time. This 

obviously limits the application range of the current shape optimization package. So 

general shell elements should be investigated and implemented, which can be applied to a 

plate structure including the bending effects, or even to a simple shell structure. However, 

before such a process becomes a robust and practical tool in plate optimization design 

applications, the following issue must be addressed: developing robust and economical 

shell elements to accurately predict the bending and twist, maybe transverse shear 

contributions. This author started to work on this subject.

The primary feature that has made the finite element methodology so popular is its 

versilbihty. A complicated structure can be discretized into a number of different type
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elements such as beams, trusses, shell elements and solid elements. One o f the main 

future emphases is to apply the developed shape optimization methods to structures that 

may consist of different elements.
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A REVIEW OF FINITE ELEMENT ANALYSIS

In this appendix, we begin with highlighting the general procedure used in deriving a 

FE formulation. This will be followed by two sections in which two specific r e  

formulations are developed for both planar and plate structures. A validation section is 

presented at last.

A.1 General

The solution procedure in a displacement-based finite element (FE) modeling for an 

elastic structure can be divided into the following eight steps:

1) discretizing the continuum into a finite number of elements;

2) representing the displacement field of an element by its nodal displacements;

3) expressing the internal stress and strain in terms o f the nodal displacements via the 

strain-displacement equations and the constitutive relationships;

4) forming the element-level FE equation for each element;

5) assembling the obtained elemental FE equations into the global FE equations;

6) applying the boundary conditions to obtain the reduced global equations;

7) solving the resulting equations for the nodal displacements; and finally

8) recovering the strains, the stresses, and the reaction forces if desirable.

By applying steps 1) to 6), a structural FE analysis can be based on the solution {«} of the 

following linear system of equations
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W « } = { /}  (A.1)

where [AH, {«}, and {/} are the global stiffness matrix, the nodal displacement and the 

equivalent force vectors for the r e  representation, respectively. To be more specific, it is 

assumed that the total number o f the degrees of freedom (DOFs) is M, so that the 

preceding stiffness matrix and vectors are of M  dimensions. The foregoing equations 

reflect an equilibrium state for a whole structure. It is assembled from NE  equilibrium 

equations that are established by considering each element and the essential boundary 

conditions.

Only an outline of the FE formulations for planar and flat plate structures is 

presented in the following sections. More details of FE theory and applications can be 

found in a number of excellent textbooks, [e.g., 8, 87, 90]

A.2 Planar Structural Formulation

A.2.1 FE formulation

It is known that an elemental stiffness matrix for a single element in an elastic 

structure can be expressed as

= J  [B j[c][B ]d a , (A.2)
a ,

where Çlg is the physical domain of the e-th element, [5] and [C] are the strain-

displacement and the stress-strain matrices. The elemental stifftiess matrix for a two- 

dimensional isoparametric element can be derived easily. Let the element shape and 

displacement functions be expressed by
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and

iV

1
y{4^n)=%Nj{^ , r ] )y j

y=i

N
u { q ,n ) = Y ,^  j{^,T])uj 

; '
v{4,n)=Ÿ,Nj{<^,rj)vj

y=i

where the pairs { x j , y j )  and («y.vy) represent the coordinates and the displacements at

local node j  of the element. The integer iV denotes the number of nodal points in the 

element and N  j{^,T]) is the shape function associated with node j  under the isoparametric

coordinates (^,77).

It should be mentioned that two convenient coordinate systems have generally been 

utilized in illustrating a triangular isoparametric element, the area coordinates and the 

unit coordinates, as shown schematically in Figure A .I. However, only the unit triangular 

coordinate approach was used in the FE module because it was felt this approach is more 

analogous to quadrilateral isoparametric element description.
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(P.o.l) ,  Ac _ A» 

vL * Ac^ A j^ A $

Figure A.1:* Two coordinates used to illustrate a triangular parametric element

For either a quadrilateral or a triangular isoparametric element, an entity of the 

stiffness matrix [AT|c can now be expressed by

(A.5)

where h represents ± e  element thickness that is here assumed to be uniform for easy 

presentation. The integration limits have values of

4o =0* 4 i = ^ - V
% =0,/7i = + l

for a triangular element and

4o = -L  4i = +1 
rJo = - I .  m =  +1
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for a quadrilateral element. [B,- ] denotes the i-th block column of the strain-displacement

matrix [fl] in the form

0
0

(A.6)

(l < r < n )

The strain-displacement relations are translated into

with the elemental displacement vector being specified by

[u}^  = [ w f . v f . a l . v l , - "  , w

(A.7)

(A.8)

The matrix [J] is the transformation Jacobian between two coordinates (x, y ) and (^,/?) 
defined by

d x  d y

a ?
Bx By 

Btj Bt]

(A.9)

which can also be expressed explicitly in terms of nodal point coordinates (xy,yy) and

shape functions as follows

[;]= 14
In AT.

24
2.n

^ N 4
^N ,n \

4  >'1

y i

.^N ya.

(A. 10)

It is further noted that the following useful derivative relation holds for shape functions
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and

k ü  w ,_ f ' = [ y r ' k c  N , . ].yi  L- J  L f 'f .Ç

(I < / < N)
(A. 11)

■ ^ l .x ^ 2 .x ••• ^-V.x
=  [ f V

^ 2 4

_ ^ I .y ^ 2 .y ^\.TJ ^2.n
(A. 12)

Concentrated (point) and/or distributed (traction force) loads are incorporated into 

the linear system of equations through the shape functions. For example, in the 

distributed loading (or traction force) case, the components of the elemental force vector 

for the g-th element in the work equivalent form can be assembled from each of the 

element edges directly loaded by traction forces. For such an edge, the work equivalent 

force can be expressed by

+1

-I

+i
f y . i = h j p y N i \ [ j J \  d4.

-I

( l < i < K )

(A. 13)
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where and Py represent the distributed loading intensities in the x- and y-direction. The

integer Ng denotes the number o f nodal points on the considered edge, [y^] denotes the 

Jacobian transformarion matrix on the edge and its determinant is given by

+ (A. 14)

with

y=i
(A. 15)

iV.
y(^)=X^A^)yy

y=t

which give the isoparametric representation of an edge connected by Ug nodes.

Figure A.2 may be used to aim to understand the notation. This configuration 

illustrates a three-node triangular boundary element loaded on one of the edges. Here, 

N g = 2  and N  = 3.  The corresponding elemental displacement vector reduces to

(A. 16)

and the force vector is expressed as

(A. 17)
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I

Figure A.2: Distributed load on a three-node triangular element

Only quadratic triangular and quadrilateral elements are employed in this study, as 

shown in Figure A.3(a)-(c). For planar structural applications, nine and four integration 

points (or Gaussian quadrature points) are used to numerical calculate the elemental 

stiffness matrices for a quadrilateral element and a triangular element, respectively. 

Correspondingly, the numbers of the stress recovery points (Barlow points, which turn 

out to be optimal stress recovery points) are set to be four and three depending on the 

type of element. A summary of these Barlow points is given in Table A.1. The developed 

finite element solver employs the dynamic storage allocation technique, which followed 

the approach taken by Akin [2]. The stiffness matrix is stored in the band form and 

Sloan’s bandwidth optimization procedure is employed to reduce the bandwidth and to 

increase solver’s efficiency.
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M.-l)

(a)

(+1.+1)

(+1.-1)

(b)

(c)

Figure A.3: A quadratic (a) triangular; (b) 8-node; (c) 9-node quadrilateral element
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It should be pointed out that Table A. I reveals one special aspect related to a 

quadratic triangular element: these are two different versions of three Barlow points. A 

more serious problem is that there is very limited information available about their 

comparative performance. Unless stated otherwise, the edge scheme will be used in the 

package for the stress recovery.
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Element Shape Optimal integration points and

weights w,- in forming stiffness matrix

Optimal integration points and

weights Wj in stress recovery
Quadrilateral

(S'H\ = (-VÔX-VÔiô) w, 

( i .r j\  = ( - -y /o X o )  w j =  I  J l  

(ê-n \ = {--Jos. + -Joli} wj =rsT
9

^ .7)4=^.-vo!6) =r^T-^

a .T j \  =(0,0)1 w, = 1̂ ^

(^•n \  =  ( + V ô ^ - V ô ^ )  W7  =  j

'5  Y8=(+VÔZo) wg = | ^ j -

(S-nX = (+Vo-6- +V0%) vv, =

-
1

,'VJ
. w, =l

i^-nX =
I , Wj =  I

(S-nX =
1 I 1

■'v?J
, Wj =  I

(i-nX =
I

"VJ
I

" s .
. =  I

Triangular
3 ’ 3

=  

= — I W, =

^.'7)4 =

O 2 
5 5

(2 2
5 ’ 5
— I W,  = -

32

25

96

25

96

25

96

Edge scheme;

"’ = 6- |

Interior scheme:

(S'hX = f2 2 '' 
6 ’ 6 6

(S'HX -

2 1 ) _ I
3 ■ 6 / ’ 6

Table A.I: Optimal integration points and weights for quadratic elements
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A.2.2 Validation Example

The model used to verify the ETE module of the package is a classic one: a thin 80 

units by 80 units square plate with a centered circular hole of 10 units diameter. The plate 

is under unit uniaxial tensile traction in the .r-direction. Its quarter model, taking 

advantage of structural symmetry, is shown in Figure A.4

The theoretical stress solutions are available in classic elasticity books and their 

values along the x- and y-axes can be expressed by

1
2

^yy  2

4 '
2 - 5

r
+ 3 -

UJ

r r f  J r - f
— 3

(A. 18)

along the x-axis and

^yy = 2

2 - 5
v^y

+ 3

l ^ y

(A. 19)

along the y-axis, where r  = 5 is the hole radius and both x and y take values from 5 to 40. 

The triangular mesh is depicted in Figure A.5. A comparison of theoretical and the F t  

solutions is shown in Figure A.6(a) and (b). As can be seen, the approximate stress results 

agree well with the theoretical solutions.
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Px

Figure A.4: Model of a plate with a circular hole

Figure A.5: Mesh of a plate with a circular hole
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Figure A.6: Comparison of theoretical and approximate normal stresses 
(a) along x-axis; (b) along 3̂ -axis
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A.3 Reissner-Mindlin Plate Theory and Its FE Development

A.3.1 Plate Theory and Energy Forms

According to the Reissner-Mindlin plate theory, without considering the mid-plane 

stretching, the displacement field o f a plate structure, as shown schematically in Figure 

A.7. can be described by

u{x,y , z , t )= z6^(x,y, t)  

v(x ,y , z , t )= z0y(x,y, t)  

w(x,y , z , t )=  w-o(x,y,r)

(A.20)

where 6^{x,y, t)  and 6y(x,y,r) represent rotations of the mid-plane normals along the x  

and the y  axes, respectively, during the deformation, and WQ(x,y,r) represents the 

displacement of the mid-plane in the z axis direction.

Z.W

Figure A.7: Reissner-Mindlin plate notation
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Various sources (e.g. [90]) can be consulted for details of this plate theory. For our 

current presentation, an expression of the total potential energy, U, is required. It can be 

shown that this quantity can be expressed as

r
^ x .x ^ x .x

^y.y ► [Cbl ^y.y
^x.y + ̂ y .x ^ x .y  ^ y .x

V

+*VO.x dA —

(A.21)

> x . x r V
K y j

V
K:Ht 12

'y ^ L M . x r | . ^ j K x
y.yj ro . M'o.

dA

A comma indicates partial differentiation with respect to the subscript following the 

comma; h is the plate thickness, and

1 V 0
[Cb]=D V 1 0

l - v
2 J0 0

(A.22)

[C j=
K£h I 0 

0 12{\ + v)

where D = Eh^ — denotes the flexural rigidity of the plate. The constant k 

denotes the shear correction factor that is usually approximated for a rectangular cross 

section by 5/6 as proposed by Reissner [90]. The second term in Equation (A.21) 

containing the initial in-plane stress matrix

[Z„]=A (A.23)
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represents the potential energy of these stresses acting on the nonlinear parts of the 

displacement-strain relations. The physical meaning of the scalar parameter X will be 

discussed later.

A.3.2 Isoparametric Plate E lem ent Formulation

The whole plate structure is now partitioned into finite elements. The potential 

energy in each element is then calculated and summed to yield the total potential energy. 

The minimum principle of the potential energy is used to formulate an eigenvalue

problem. For an isoparametric element, recalling that N  denotes the number of nodal 

points associated with the element, then coordinates of the points in the element and the 

displacement field can be represented by

w AT 0 0
0 0

/=! 0 0
h i ] (A.24)

where } = {w,-, d^ , dy i Ÿ  represents the corresponding displacement vector. With these

transformations, the vectors in Equation (A.21) can be cast as

T

f=l

N
I
1=1

0
0

0 N i 0

0 0 N-
fe}

(A.25)
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and

0 0

^ i . y  0 0
6 , }

'a ,
e

M r  ̂ ^
= É ]■&/ }= É

J (= i (=i

0 A/,., 0

0 iV ,., 0
(A.26)

y.z iv r -I yv
= X ^g,, k ,  }= X

y.yJ 1=1 j=i

0 0 AAt.x

0 0 A^,,y
■fee}

x,x

y.y
^x.y ^y,x

N

/=l /=l

( = l

0 AA,., 0
0 0 A ,.,

0 Â ,.y Â ,.x

Â ,.x AT, 0

^ i , y  0 AA,

■&«}

(A.27)

The derivatives of shape functions with respect to x  and y  were worked out previously. 

Upon substituting Equations (A.25-27) into Equation (A.21), one can express the total 

potential energy in a single element as

(A.28)

176



where the entities in the matrices can be expressed as

- l - l

- l - l A [G „7fe)][G »i]

|[y]| dçdri (A.29)

( I S i . y S W )

Summing up the total potential energy contributed from each element and applying the 

principle of minimum potential energy leads to the following eigenproblem

([/i:]-/l[/s:c])fe}={0} (A.30)

The matrices [K\ and [Kc\ are referred to as the global stiffness and the geometric (or 

initial-stress) matrices, respectively, and

fe}= {l?l)’' . t e r . - . ( ? D O F l ’' f  (A.31)

where the subscript DOF denotes the number of degrees of freedom. Physically, Equation 

(A.30) implies that, in a linear buckling analysis, if the in-plane stresses induced by an in­

plane loading condition are varied by a factor A,, the geometric stiffness should be

changed proportionately. When nonpositivity occurs in the sum of the geometric stiffness 

and flexural stifftiess, the in-plane load is referred to as the buckling load.
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It is worth mentioning that in general the initial-stress terms arise from the given in- 

plane forces per unit length or width Nqx, Noy and l̂ oxy- Consequently, the initial-stress 

matrix becomes

n

N.oxy
N.oxv ‘ ov

(A.32)

Furthermore, it can be shown that

— I— I

0

0

0 0

0

0 (A.33)

where

The preceding equations show that under a pure axial compression load, the initial-stress 

matrix is positive definite. However, a pure shear condition generally yields a geometric 

matrix which is neither positive definite nor negative definite.

Due to the favorable results reported in the literature on nine-node Lagrangian type 

elements [90,49], this type of element will be used exclusively in this work. It has been 

widely reported that trouble arises from the application of Reissner-Mindlin theory to 

thin plate situations as the ratio o f plate thickness to span gets sufficiently small. 

Intuitively and also from a physical standpoint, as the ratio becomes sufficiently small,
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the contribution o f shear deformation to the total strain energy should become negligible 

compared to the contribution of bending deformation. It can be observed that the 

bending strain is represented by a linear term, while the transverse shear strain varies 

parabolically. To alleviate this problem, various remedies have been proposed in the last 

two decades [90]. The selective integration approach was taken here such that the 

element bending and transverse shear terms in Equation (A.29) were integrated 

numerically using 3 x 3  Gauss quadratures (full integration) for the term

I I
11  [bJ  [ c j k j l l  [ / ] |  d ^ d n  (A.33)
— I—I

while a 2 X 2 scheme (reduced integration) was used for the term

I I
11  [bJ  [ C j k l l  ( / ] |  d ^d r , (A.36)
— I—I

The full integration scheme is also applied to calculation of the geometric matrix. Note 

that it is necessary for the plane stress components to be available at the nine integration 

points in each element to form the geometric matrix. These components can be 

computed by a plane stress analysis.

179



B SURFACE-AREA BASED PARAMETRIZATION AND 

FINITE-DIFFERENCE APPROXIMATION

B.1 Surface-Area Based Parametrization

More details about this method can be found in the work by Theodoracatos and 

Bobba [69]. Here, we present the formulae for reference. The normalized «-direction 

surface-area based parametrization can be represented by

«1 = 0

(B .i)

Here

Âyi = -  Ô.y-i }< in.j ~ ̂ -i.y )

Â y2 =  ” f e - i . y - i  -  ^ . y - i ) < f e - i . y - i  “  '‘i - i j )  ( B .2)

^i,j ~  ^ 4*1 ' ŷ 1

represent the areas of two triangles resulting from the diagonal division of a quadrilateral 

patch and points on the surface in vector form. The area A is defined by

AT. A/v _

A = ^  X|Âiyi “  Âyil (B.3)
(=2 y=2
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which can be interpreted as an approximation to the surface area. Note that the 

parameters a,- in Equation (B. 1) could alternatively be defined as

“« - t S  lÂyi|-|Ây2|)
^j=2

(B.4)

However, it is felt that the former is preferred because it yields a smaller increment when 

a noncoplanar patch is encountered. Consequently, Equation (B .l) is used exclusively in 

this study.

Similarly, the normalized v-direction surface-area based parametrization can be 

represented by

vi = 0

with

1

Biji -  —(iÿ-i.y-i -  'i-i.y  )x  ('i.y ”  ^ -i.y  ) 

%2 = “ fe-i.y-i “ 'i.y-i)^ fe.y ~ 'i.y-i)

^  -  X  X |% i  “  ^ÿ2
y=21=2

(B.5)

(B.6)

181



B.2 Gaussian and Mean Curvatures and Ffnite-Oifference 

Approximation

The topic of the Gaussian and mean curvatures and their usefulness in quantitatively 

characterizing a surface can be found in many references [e.g., 63]. Here, only the 

analytical expression and the finite-difference approximation to the curvature associated 

with a surface in parametric form are given.

Let a surface be characterized by

x = Pj^u,v)
y = Py{u,v) (B.7)

z =

The Gaussian and mean curvatures at an arbitrary point o f the surface can then be 

computed by

L N - M ^K  =

H  =

E G - F ^

1 E N - 2 F M  + GL
(B.8)

respectively, where

2 E G - F ^

,u ',v

G = Fy *

M = n » r ^  (B.IO),«V

with

182



-  3r .  3^r d^r
"  dudv'

etc

n =
(B. l l )

To illustrate the finite-difference approximation, we illustrate the procedure for a 

scalar function P(u,v).  The associated finite-difïerence stencils for the first-order

derivatives are shown in Figure B .l. The first-order partial derivative—  at the grid point
du

(ui,Vj) can be approximated by

I

A%,A1 V a “A“„
(B.12)

if the grid point is not at the «-direction boundary, where A“ = «,• -  «,_[. Note that the set 

of M, may be enriched for display purpose by adding a number of interior values in each 

interval formed by the «-direction parameters. It will be assumed that the number of the 

enriched «-direction values is m. This is also applicable to the v-direction derivatives. For 

the grid points at the left u-direction boundary, i.e., {ui,vj), the following approximation

can be used

I (B.13)
^3^2 “  ̂ 2^3

while at the right «-direction boundary (u„,vj),  the derivatives with respect to « can be 

approximated by
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__________ I__________
{Pm-2.j -  + ^ m - l  j f e t - l .y  “  ^m.y ) (B.14)

Similar expressions can be derived to calculate other derivatives. It should be pointed out 

that the preceding finite-difference approximations are of second-order accuracy.

-m------

(=)

□ : ml paà*
# : snlaU* t)id pans

Figure B .l Finite-difference stencils: (a) interior points; (b) boundary points;
(c) comer point.
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