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ABSTRACT

Past research on conductive poiymer-matrix composites has focused on the 

relationships between concentration, geometry, and dispersion of the discontinuous 

phase and the physical properties of the resulting material. However, the volume 

fraction -  geometry approach does not take into account the influence of polymer 

morphology and polymer-filler interactions on the composite properties. The work 

presented in this dissertation addresses the changes in the polymer morphology and 

structure resulting from the addition of the conductive filler. In addition, the effect of 

modifying the polymer-filler interface in conductive composites on the physical 

properties of the resulting material was also investigated.

Wide angle x-ray scattering (WAXS), conductivity, optical microscopy, stress 

relaxation, and differential scanning calorimetry (DSC) measurements, were used to 

show the effect of filler addition and uniaxial orientation on the morphology o f the 

matrix and the physical properties of reticulate doped polymer composites. Reticulate 

doping consists of casting a composite film from a solution containing a polymer and a 

charge-transfer complex (CTC) and allowing the conductive, free radical salt to 

recrystallize as the solvent is removed from the polymer. In this study, the CTC, 

tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) was supported by PE. It has

xxii



been shown that increasing TTF-TCNQ concentration shifts the preferential orientation 

of the crystalline phase of the PE firom slightly perpendicular to slightly parallel to the 

casting surface. WAXS measurements were made on samples that were uniaxially 

stretched at 80°C and cooled to room temperature. These experiments showed a smaller 

incremental increase in crystalline orientation with increasing TTF-TCNQ. This 

observation was consistent with a drop in initial relaxation times calculated from room 

temperature stress relaxation experiments. In the unoriented composites, increasing 

TTF-TCNQ loading had no effect on PE crystallinity, however, the increase in 

crystallinity caused by uniaxial stretching was decreased by the presence of TTF-TCNQ.

Isothermal crystallization experiments have been carried out for nickel - low-density 

polyethylene (LDPE) composites from 95° to 104° C. In this study, the effect of nickel 

in filled LDPE composites on the crystallization kinetics of the LDPE crystallites has 

been quantified and compared to the filler’s effect on electrical and thermal properties. 

The crystallization kinetics were altered by the nickel addition in two ways; reducing the 

nucléation time for a given isothermal crystallization temperature and increasing the 

crystallization rate. The rates were compared by fitting the data to the Avrami equation. 

The Avrami exponent was not effected by the addition of nickel, indicating the change 

was due to increased crystal growth rate rather than a nucléation effect. An upward shift 

in the Avrami rate constant was found between 7.5 and 10 percent nickel by volume for 

all temperatures studied. The shift occurred at the end of the critical region in electrical 

conductivity, and we believe the shift is due to the formation o f a continuous network of

X X lll



nickel particles causing an increase in the local heat dissipation. The network of nickel 

particles described by percolation statistics, used to characterize electrical conductivity, 

is also useful in explaining the changes in crystallization kinetics.

The electrical resistance of polymeric materials loaded with conductive fillers can be 

divided into three major categories: the intrinsic resistance of the filler and matrix, the 

particle-particle contact resistance, and the tunneling resistance. A method for 

decreasing both the particle-particle contact and turmeling resistance in particulate filled 

LDPE composites which involves coating the particles with polypyrrole (PPy) using 

admicellar polymerization has been developed. Nickel flake, alumina, and glass fibers 

were used as substrates for polymerization and represent conductive, resistive, and 

insulating materials, respectively. Addition of PPy to the conductive and resistive 

particulates lead to an increase of 2 to 4 orders of magnitude in composite conductivity 

at concentrations above the percolation threshold without significantly changing the 

thermal or mechanical properties of the composite. It is believed that these resistances 

are reduced by the formation of PPy “molecular wires” which occur as a result o f chain 

entanglements at high filler loading. Samples prepared by different polymer-filler 

mixing techniques had different plateau conductivities, indicating that the processing 

method influences the composite conductivity. The incremental increase in 

conductivity of glass fiber - LDPE composites due to the PPy-coating was minimal.

The limitation of this technology is the ability to get uniform coverage necessary to 

obtain greater increases in conductivity on non-conductive substrates.
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ELECTRICALLY CONDUCTING POLYMER 
MATRIX COMPOSITES: A 

MORPHOLOGICAL AND STRUCTURAL
PERSPECTIVE

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Electrically conducting thermoplastic composites consist of a conductive filler supported 

by an insulating polymer matrix. The advantages of using thermoplastic composites 

versus other conducting materials include processibihty, flexibility, ability to absorb 

mechanical shock, corrosion resistance, tunable thermal conductivity, ability to form 

complex parts, parts consolidation, and conductivity control.’ Much of the research in 

conductive composites was initiated to find an inexpensive method for electromagnetic 

shielding of computers and electronic equipment as these devices moved firom shielded 

rooms to desktops in homes and oflBces. Examples of other applications for conductive 

composites, both present and future, include conductive adhesives, cold-forming



electronic connections (solders), switching devices, electronic packaging, and surge 

protection devices.^

Polymer-matrix composites can be made using either thermoplastics or thermosets as 

the supporting matrix/ Thermoplastics are polymers which melt upon heating, and 

thermoplastic-matrix composites are formed by melting or dissolving the insulating 

phase, then combining it with the conductive phase through conventional mixing 

methods. Thermoplastic composite products can be shaped and formed through typical 

polymer processing techniques such as injection molded or extrusion. Thermosets are 

cross-linked polymers, which do not dissolve and degrade before melting. Thermoset 

composites are produced by mixing the conductive filler with a monomer or an 

uncrosslinked polymer, then allowing the crosslinking reaction to take place. Two-part 

epoxies are the most common thermoset-matrix for conductive composites, and parts 

that require shaping are often processed by reaction injection molding.

Electrically conducting thermoplastic composites were first introduced into the 

commercial market as electronic packaging for computer chips, motherboards, memory 

chips, and other devices. Electronic packaging is still the largest market, and these 

composites have traditionally been carbon black filled polyethylene or polypropylene 

because carbon black does not deteriorate the mechanical properties to the same degree 

as metals. Recently, aluminum filled composites have also been used where high 

conductivity is required. Conductive epoxies have traditionally been marketed as 

conductive adhesives and cold-forming solders. These applications use epoxies filled



with gold, silver, nickel, or copper flake or fibers, which allow conductivity on the order 

of 10̂  S/cm.

Two landmark studies of conduction in metal filled polymers were reported by 

Gurland in 1966, and Malliaris and Turner in 1971. Gurland studied hot pressed 

polymers filled with silver and showed that there was a relationship between the degree 

of contiguity or connectedness and conduction.^ In order to achieve conduction in filled 

polymer systems, conductive pathways of filler particles must form throughout the 

matrix allowing electrons to freely move from one side of the material to another.® 

Percolation statistics quantitatively relates the volume fraction of the filler to the 

electrical conductivity o f the composite. As shown in Figure 1-1, the composite 

conductivity increases slowly with increasing filler concentration until the critical volume 

fi"action is reached.* At Vc, which is termed the critical volume fi"action or the 

percolation threshold, a very sharp jump in conductivity is obtained over a very small 

range in concentration, referred to as the critical region. In this critical region the 

conductivity, a, and concentration have a power law relationship as given by Equation 1 - 

1 ,

C T x (V -V c )^ P "  [ l - I ]

where V is the volume fraction.® The power law index, tper, is a function of the 

interactions between the polymer and the matrix.*® The critical region ends when all of 

the filler particles are involved in at least one conductive pathway and higher filler 

concentrations only achieve moderate changes in conductivity.
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The size and shape of the filler particles affect the percolation threshold. As the size 

of the filler particles decreases, the surface area available for conductive contacts 

increases relative to particle volume, thus causing the formation of conductive pathways 

at lower volume firactions. For spherical powders, the percolation threshold is 

approximately 30 percent filler by volume, but if fibers are used, the critical volume 

fi'action becomes a function of the aspect ratio (length divided by diameter). For aspect 

ratios larger than 100, conduction can occur at a volume fraction as low as 6 percent.

Janzen was the first to point out that the conductivity data for composite materials, 

even with the same filler and polymer, was inconsistent." This inconsistency may be a 

result of the samples having different polymer morphologies. In systems of carbon black 

supported by polypropylene (PP), acrylonitrile butadiene styrene terpolymer (ABS), and 

polycarbonate (PC), PP composites had a higher conductivity at a given filler 

concentration. Since PP is semi-crystalline, the filler particles were excluded from the 

crystalline regions increasing the filler concentration in the amorphous phase, thus 

increasing the probability of forming conductive pathways and lowering the critical 

volume fraction.'- Recently, the dependence of the composite conductivity on the 

morphology of the matrix polymer was shown by isolating carbon black in one phase of a 

polymer blend. "  Vc is also affected by the dispersion and morphology of the filler 

particles. Malliaris and Turner studied pressed, powder-mixed composites of nickel- 

filled polyethylene (PE) and polyvinylchloride (PVC) resins which formed segregated 

phases of metal and polymer.*'* By increasing the degree of segregation, the critical



volume fraction was reduced. Choosing a semicrystalline polymer as the matrix can 

induce this segregation. Bigg et al. have shown that the filler particles are excluded from 

the crystalline regions of the sample, thus increasing the absolute filler concentration in 

the amorphous regions. Since the amorphous regions of the polymer tend to be 

continuous, conductive pathways form at lower bulk concentrations, thus requiring less 

filler content to achieve the same conductivity.

Above the critical volume fraction, the composite conductivity is affected by the 

intrinsic conductivity of the filler and matrix, and polymer-filler interactions. In systems 

with high polymer-filler adhesion, the polymer forms a thick film around the conductive 

filler which limits the particle-particle contact, thus the composite has low conductivity 

but good mechanical properties. In systems with weak polymer-filler adhesion, the 

particles have a higher probability of contacting, but the mechanical properties 

deteriorate significantly. The intrinsic balance between conduction and mechanical 

properties has been a major stumbling block in bringing electrically conducting 

thermoplastic composites to many commercial markets.

The parameters summarized below have experimentally been shown to effect the 

conductivity of electrically conducting thermoplastic composite;’

• The type, size, or shape of the filler particles.

• The dispersion of the filler in the polymer matrix.

• The volume fraction of the filler.

• The interactions between the polymer and the conductive filler.



• The morphology and crystallinity of the matrix polymer.

1.2 CONDUCTION MECHANISMS

The resistance to electron flow in conductive composites, schematically shown in 

Figure 1-2, is comprised of three resistances: the intrinsic resistivity of the filler material, 

the particle-particle contact resistance, and the tunneling resistance. The particle- 

particle contact resistance is the resistance due to forcing the electron through a small 

conductive area. The tunneling resistance is a result of electrons passing through a very 

thin insulating film which is possible when the film thickness is less than 100 À. Any 

modifications to the composite that affect at least one of the three resistances can change 

the composite conductivity.

1.2.1 Intrinsic Resistance o f the Filler

1.2.1.1 Band Theory

Band theory explains the differences between conduction mechanisms for conductors, 

semi-conductors, and insulators, as well as describes the necessary transitions to transform a 

material fi"om one class to a n o t h e r . E l e c t r o n s  are classified as being either core 

electrons, which are always bound to the atomic nucleus, or valence electrons, which are 

sometimes bound to the nucleus and at other times are not, depending on the energy level of



Figure 1-2 Resistances in Composites; a) Intrinsic Resistance of Filler; b) Particle- 
Particle Contact Resistance; c) Tunneling Resistance

w

(<100 A



the atoms. As the molecular orbitals begin to hybridize, a valence band, where the electrons 

are tightly held by the atom to which they correspond when filled, and a conduction band, 

where the electrons are fi-ee to move throughout the material, form with an energy gap 

between the two bands. In order for conduction to occur, the electrons must be in the 

conduction band. The energy gap is the defining characteristic of metals, semi-conductors, 

and insulators. As shown in Figure 1-3 (a), in electrical conductors the valence and 

conduction bands overlap due to the unfilled electron energy level, thus there is no energy 

gap and electrons fi"om the unfilled energy can move fi-eely throughout the material. This is a 

characteristic of all metals and is often referred to as metal-like conduction. Figure I-3(b) 

shows the extremely small band gap indicative of a semi-conductor, which is easily overcome 

through photon absorption or temperature elevation. An insulator, schematically depicted in 

Figure l-3(c), has such a large energy gap between the valence and conductive bands that 

electron transfer is prohibited.

1.2.1.2 Metals

Depending on the type of material used as the filler, the conduction mechanism of the 

filler particles will be very different. Metals, such as gold, silver, copper, and nickel, are 

often used as fillers and have conductivities on the order of 10  ̂siemens per centimeter.

In metals, the electrons in the valence band can be approximated as a fi’ee electron gas.

In this approximation, the valence electrons of each atom in a lattice are fi-ee to move



Figure 1-3 Band Theory; a) Conductor, b) Semi-Conductor, c) Insulator
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while the core electrons are tightly bound to the positively charged nucleus.^* This 

approximation is fairly accurate in metals because the volume of the core nucleus is small

compared to the volume of the entire atom and because the core electrons shield

thevalence electrons from the ionic core. Equation 1-2 gives the conductivity for the for 

a free electron gas.

a  = [1.2]
■n.

Where nc is the electron density of the conduction electrons, q is the electron charge, m, 

is the effective electron mass, and t  is the collision time, as defined by Equation 1-3, in 

terms of the electron mean free path (mfp) and the electron velocity (Ve).

mfp = v,T [1-3]

1.2.1.3 Organic Conductors

In the ground state, most organic materials are insulators because there are no 

partially filled energy levels and the gap between the valence and conduction bands is 

very large. The energy gap must be overcome in order for these intrinsically insulating 

materials to become conductors.^” Two classes of conductive organic conductors, 

charge-transfer complexes (CTC) and electrically conducting polymers (CP) both use 

chemical modification (doping) of the molecular orbitals in order to eliminate the band 

gap .^^  Doping consists of chemically treating the pi-orbitals with a charge transfer agent 

which is either an electron acceptor, close to the valence band energy level, or an electron
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donor, close to the conduction band energy level.̂ '*’̂ ’̂® In organic conductors bands 

formed by atoms in close spatial proximity and similar crystaJlographic and electronic 

environments because of uniform pi-orbital orientation. This situation is realized in 

planer molecules with a network of conjugated double bonds, as depicted for both the 

CTC tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) and the CP polypyrrole 

(PPy) in Figure I-4(a) and I-4(b), respectively, which have extensive overlap of the p%- 

orbitals.^ Equation 1-4 is used to describe conduction, and while often used for ionically 

conductive materials, also applies to electrically conductive organic conductors.

a  = qri|i [1-4]

Where q is the electron charge, t\ is the concentration of charge carriers, and n is the transfer 

mobility. Mobility is an experimentally determined value.

1.2.1.4 Charge Transfer Complexes

Organic charge transfer complexes, such as TTF-TCNQ [Figure l-4(a)], are used as 

fillers in reticulate doped polymer-matrix composites.^^ Many CT complexes form rod­

shaped crystals and have an intrinsic conductivity of approximately 500 S/cm. Doping occurs 

as an organic free radical salt if formed from two organic molecules with overlapping pz 

orbitals. The crystal structure of the resulting salt creates a conduction band, which 

allows electrons associated with the pi-bonds to conduct through this network of p% 

orbitals, thus creating a quasi-1-dimensional synthetic metal.

12



Figure 1-4 Organic Conductors; a) Charge-Transfer Complex: tetrathiafiiivalene- 
tetracyanoquinodimethane (TTF-TCNQ); b) Conductive Polymer: 
polypyrrole (PPy)
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1.2.1.4 Electrically Conductive Polymers

An example of an electrically conducting polymer, polypyrrole, is shown in Figure l-4(b). 

The addition of the dopant creates a polymeric or polyradical cation salt along the conjugated 

backbone of the polymer, thus allowing the conduction of the electrons associated with the pz 

orbitals. Unlike metals and CTC, the electrical conductivity of CP can be controlled by the 

amount of charge transfer agent introduced, thus allowing the tuning of the conductivity 

from insulating to conducting.^* The conductivity of CP’s range from approximately 10'̂  to 

200 siemens per centimeter depending on the procedure for synthesis, doping, and film 

formation.

1.2.2 Partlcle-Particle Contact Resistance

In polymer-matrix composites, the conductivity o f the composite is several orders of 

magnitude lower than that of the conductive filler. Even if the conductive particles are 

contacting each other, there is still a particle-particle contact resistance due to electrons 

being forced through small contact areas. This particle-particle contact resistance (Rcr ) 

is mathematically modeled by Equation 1-5.'^

[1-5]

Where po is the resistivity of the filler and d is the contact area diameter. The contact 

resistance has experimentally been shown to be important for any system where the ratio 

of the diameter of the filler to the contact diameter is greater than ten.
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Figure 1-5 Tunneling Potential Barrier
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1.2.3 Tunneling Resistance

In systems with good polymer-filler adhesion, a thin polymer film coats the outside of 

the particles. Since the polymer is an insulator, the overall resistance is increased by the 

presence of this film. If the film thickness is less than 100 Â, conduction through 

quantum mechanical tunneling can occur. According to classical Newtonian physics, an 

electron in the conductive phase would not be able to penetrate the polymer-filler 

interface and conduction would stop. Wave - particle dualism explains why tunneling 

occurs: the polymer film creates a potential barrier between two conductive phases, but 

this barrier can be overcome if the wavelengths of the electrons are similar to the width 

of the potential barrier. Figure 1-5 shows schematically the potential barrier of the 

polymer film in turmeling, where E is the energy, x is the distance, b is the film thickness, 

kvv is the wave-vector, and H is the height of the barrier. The height of the barrier is 

related to the difference in energy of the conduction band of the polymer film and the 

Fermi energy of the conductive phase. If it is assumed that region 1 and region 3 in 

Figure 1-5 can be represented by the free electron model, then the current density (j) due 

to turmeling can be expressed by Equation 1-6.

j = ^(f,(E)[l-f3(E)]dE/^2% -Z{E,kj^)dE  [1-6]
» (2n)Z

Where fi and fs represent the Fermi distribution functions for region I and region 3, 

respectively, and Z denotes the tunneling probability of electrons at a given energy. The
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wave-vector ki represents a vector made up of the components of the wave vector 

perpendicular to the turmeling current.

1.2.4 Temperature Dependence of Electrical Conductivity

Unlike homogeneous materials, the temperature dependence of conductivity for 

polymer-matrix composites is a not a function of the discontinuous conductive phase.^ 

Below the percolation threshold, as shown in Figure 1-6, the conductivity of the 

composite is nearly that of the polymer and the resistivity decreases exponentially with 

increasing temperature. Figure 1-7 shows the resistivity versus temperature profile for 

volume fractions greater than the percolation threshold. The resistivity initially increases 

with temperature due to the positive coefficient of expansion of the polymer. As the 

matrix expands the conductive particles move away from each other until the network 

has been ruptured, at which point the conductivity is again nearly that of the polymer- 

matrix, and at higher temperatures the resistivity decreases until the matrix either melts 

(thermoplastics) or degrades (thermosets). In both of these cases, it is the effect of 

temperature on the polymer-matrix that is responsible for the temperature dependence of 

the composite conductivity.
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Figure 1-6 Temperature Dependence of Composite Resistivity in Iron Filled Styrene- 
Acrylonitrile Composite Below the Critical Volume Fraction (V<Vc) - This 
figure was adapted fi"om reference 29
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Figure 1-7 Temperature Dependence of Composite Resistivity in Iron Filled Sytrene
Acetonitrile Composites at a Concentration of 30% by Volume (V>Vc) - This 
figure was adapted firom reference 29
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1.3 PERCOLATION THEORY

As discussed in the introduction, percolation theory is used to model the conductivity of 

composite materials based on the critical volume fraction (Vc). Three approaches are taken in 

the literature; statistical, thermodynamic, and structure oriented percolation/

Statistical percolation focuses on the quantity of the filler and filler packing. In this 

approach, three distinct regions are defined as in Figure 1-8. Region I is where the volume 

fi'action is less than Vc and the average number of contacts per particle, m, is less than one. 

The conductivity is almost constant with increasing filler content in this region. The second 

region called the critical region, starts at Vc and the conductivity increases rapidly with 

increasing volume fraction. At Vc, m is equal to one and hence the probability of forming an 

infinite chain becomes non-zero. Acording to a statistical percolation model, the 

conductivity, cr, in the critical region is given by a power-law relationship as shown in 

Equation 1-7.*

a = a o ( V - V ^ ) ‘-  [1-7]

V is the volume fraction of the conductive filler, and tpcr is the empirically determined 

power-law index, which typically ranges from 1.5 to 1.6. Finally, the critical region 

ends when m is equal to 2 and the conductivity becomes approximately constant once 

again.

While statistical percolation does give the correct shape of the conductivity curve, it 

does not explain the difference in conductivity for different polymer - filler systems at the

2 0



Figure 1-8 Statistical Percolation Model
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same volume fraction. This led to the development of thermodynamic percolation 

models based on the overall interfacial free energy, the surface tensions, and the 

interactions between the filler and the polymer. The thermodynamic model was derived 

for mixing of the polymer and filler while the polymer is a melt. The model assumes the 

kinetics of the adsorption of the polymer melt on the particulate surface are equal to the 

adsorption process in low viscosity fluids. Below the critical volume fraction, the filler 

particles are distributed unevenly in fiat agglomerates. As the concentration of filler is 

increased, compressive forces caused by the surface tensions of the polymer and filler 

force the agglomerates together. The interfacial energy o f the particles will force the 

filler to form a three-dimensional network as the phases come to thermodynamic 

equilibrium. Lux has shown that even though this type o f model does give a stronger 

theoretical basis for conductivity than statistical percolation models, the predictions do 

not match experimental results.^”

Mamunya et.al., recognizing that both the polymer and the filler affect conductivity, 

extended the statistical percolation theory of conduction to include a material factor that 

is a function of the volume fraction of filler to account for the interactions between the 

filler and the matrix.^ ̂ The expression for the material factor is given by Equation 1-8.

êff “ 1̂ 2̂
t, = t,se““̂ ®  ̂ [1-8]

(v .-v j
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For most particle filled systems, S=2 8 Vc, t|=1.7, u=0.35, and Vm is defined as the filler 

packing density coefficient which is equal to the weight of the filler divided by the 

volume of the filler as determined by vibration compression. The final expression for the 

conductivity of the composite is given by Equation 1-9.

,0.35
a  =  C p  + ( G f  - G p ) (^l.7(l+28VcO" [1-9]

Where Gf and Gp are the conductivity of the filler and matrix, respectively. This model 

is empirical and the parameters for each polymer - filler pair must be determined 

experimentally, thus limiting the predictive value. While it has been acknowledged that 

the morphology affects the conductivity of the composite material, little quantitative 

work has been done to show this dependence.

Theories and models based on statistical and thermodynamic percolation, while 

describing the shape of the conductivity curve, do not fully explain conduction in 

polymer composites. A structure - oriented percolation model of conduction has been 

proposed for ceramic - metal conductive composites using an effective medium 

approach.^^ A theoretical network o f spheres replaces the real conductive network, with 

some spheres having a conductive core and an insulating surface, while others have an 

insulating core and a conductive surface. The volume fraction of each type of sphere is 

determined through a core volume fraction. The spheres are randomly placed in a matrix 

forming conductive pathways. This model has been successful in predicting the behavior 

o f randomly mixed composites where the microstructure is known.
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Another type o f structure oriented model is to use a fractal approach. Most 

percolation models tend to neglect the distribution o f the filler particles in the polymer- 

matrix or try to treat the problem using Euclidean geometry. The particles inside the 

polymer-matrix are assumed to be randomly mixed, which leads to an inhomogeneous 

disordered medium. Zhang et. al. used fractal analysis to describe the conductivity of the 

composites.^^ The filler particles are assumed to form aggregates inside the polymer- 

matrix which are o f a fractal dimension. The fractal dimension reflects the 

connectedness of the filler and is directly correlated to the probability of forming a 

continuous conductive network. The expression for conductivity is given by the 

Equation 1-10.

a , = Va,-+ 0 - V)ap [1-10]

The distribution function (g), given by Equation 1-11, relates the probability of the filler

forming a conductive network to the fractal exponent (L’).

g = V ^  [1-11]

Where “a” is an experimentally determined material parameter. The fractal exponent can

be determined from small-angle scattering experiments.
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1.4 PROJECT OVERVIEW

Research reported to date on conductive composites bas focused on the 

characterization of physical properties and filler dispersion. Studies on the effect of the 

filler concentration and particle geometry on the thermal, electrical, and mechanical 

properties are very common and many models have been proposed to describe the 

property changes of these systems. The morphology of the polymer also influences the 

percolation threshold because it partially dictates particulate dispersion. While many 

studies have looked at the influence of dispersion and segregation o f the filler particles 

on physical properties, little work has been done on the influence o f the particulates on 

polymer structure and morphology. The polymer-filler interface influences particle- 

particle contact and turmeling resistance, yet few studies exist on surface modification of 

particulates for conductive composites. This dissertation expands our understanding of 

the interaction between the matrix polymer and the filler in electrically conducting 

thermoplastic composites by addressing, in limited scope, the following questions;

• How does the presence of the filler affect the polymer?

• How does particulate surface modification change the properties of the 
composite material?

Chapter 3 and 4 address the effect of the filler on the matrix and Chapter 5 addresses 

how particulate surface modification changes the physical properties. Chapter 3 reports 

a wide-angle x-ray scattering (WAXS) study of TTF-TCNQ -  low density polyethylene 

(LDPE) composites. The experiments investigated the effect of TTF-TCNQ on the
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preferential orientation of the LDPE crystallites in uniaxially stretched composite films. 

The effect of nickel in filled LDPE composites on the crystallization kinetics of the 

LDPE crystallites has been discussed in Chapter 4. Finally, a method for increasing 

conductivity in particulate-filled LDPE composites via surface modification of the filler is 

presented in Chapter 5.
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1.5 NOTATION

a Electrical Conductivity

V Volume Fraction

Vc Percolation Threshold

tp e r Power Law Index

Hc Electron Density

q Electron Charge

rric Electron Mass

X Collision Time

mfp Mean Free Path

n Concentration of Charge Carriers

Transfer Mobility

Ve Electron Velocity

R c r Particle -  Particle Contact Resistance

Po Intrinsic Resistivity o f Filler

d Contact Diameter

E Energy

X Distance

k w , k l ,  k z  

k s ,  k l

Wave Function

b Film Thickness
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j Current Density

fu 2̂, 6 Fermi Distribution Function

H Height of the Tunneling Barrier

Z Tunneling Probablilty

h Planks Constant

Go Proportionality Constant

m Number o f Contacts Per Particle

tcff Effective Power Law Index

s Mamunya’s Constant

u Mamunya’s Exponential Factor

Gf Conductivity of Filler

Gp Conductivity of Polymer -  Matrix

g Distribution Function

a Experimentally Determined Material Factor

L’ Fractal Exponent

Vm Maximum Packing Fraction
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CHAPTER 2

EXPERIMENTAL PROCEDURES

2.1 INTRODUCTION

The work described in this dissertation characterized the effects of filler 

concentration, processing, and filler surface modification on the properties of 

electrically conducting low density polyethylene (LDPE) composites. This chapter 

systematically describes the procedures used for preparation of composite films, 

morphological experiments, and physical property evaluation.

2.2COMPOSITE FILM PREPARATION

2.2.1 Solution Casting

LDPE was dissolved in decalin, xylene, or chlorobenzene at 110°C. The filler was 

added and the mixture was allowed to reheat to 110°C. After re-heating, the mixture 

was stirred for 2 minutes and cast onto a 70°C mercury surface. LDPE quickly formed 

a gel, which did not allow the filler particles, even very dense nickel particles, to settle 

from solution. The composite dried imder a chemical hood for 48 hr. The composite 

film was removed from the mercury surface and allowed to dry for another 48 hr at
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25°C under the hood. Residual solvent was then removed by placing the sample in a 

vacuum oven at 70°C for an additional 48 hr. The film thickness was measured using a 

micrometer and varied from 0.6 to 0.9 mm.

2.2.2 Powder Mixing

Composite films were produced by manually powder mixing the components for 5 

minutes in a sealed container. The mixed powder was then compression molded into a 

1 % inch diameter pellet using a mold temperature of 120°C and mold pressure of 5000 

psi. The pellet was then placed in a platen press, heated to 120°C, then compressed to 

the desired thickness of approximately 1 millimeter.

2.2.3 Extrusion

A Killion KL-100 Extruder single-screw extruder with one part of the screw having 

a back mixing section was used to produce the composite films. The temperatures of 

three zones were 150°C, 150°C, 160°C back to front and the die head temperature was 

120°C. In order to achieve uniform mixing, the material was passed through the 

extruder 3 times. During the first two passes the extrudate was sent through a pelletizer 

(Figure 2-1(a)). On the third pass, a water-cooled calendaring system was used, as 

depicted in Figure 2-1(b).
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Figure 2-1 Extrusion Processing; a) Pelletizer; b) Calendaring
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Figure 2-2 Stretcher
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2.2.4 Uniaxial Orientation

A motor driven stretching apparatus built at The University of Oklahoma was used to

uniaxially orient solution-cast samples parallel to the casting surface. Brittle failure o f the 

highly filled samples was overcome by heating all samples to approximately 80°C before 

stretching. The samples were cooled under stress to room temperature by forced air.

23MORPHOLOGICAL STUDIES

2.3.1 Orientation Characterization through Wide Angle X-Ray Scattering (WAXS)

Orientation was measured as a function of draw ratio by wide angle x-ray scattering 

(WAXS). When an x-ray beam is diffracted by a polymer, rings of diffracted x-ray 

intensity form, which correspond to the d-spacing of a specific crystallographic plane (i.e. 

correspond to a specific diffraction angle). In unoriented materials, the crystal planes are 

randomly distributed in space and there is no change in intensity with azimuthal angle, 

X, as in Figure 2-3 (a). However, if the crystallographic planes are preferentially 

oriented, then maximums in intensity with % are observed (Figure 2-3 (b)). By 

measuring the x-ray intensity as a function of the azimuthal angle at a constant 

scattering angle (a specific d-spacing or intensity ring), a quantitative assessment o f the 

polymer chain orientation can be made.

Full characterization of the reticulate doped composites required measurements at 

different filler concentrations, different draw ratios, and two different scattering angles
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Figure 2-3 WAXS Patterns; a) Unoriented Samples; b) Oriented Samples
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Figure 2-4 a) WAXS Coordination System; b) WAXS Experimental Geometry
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(20). By carrying out these studies at Stanford Synchrotron Radiation Laboratory 

(SSRL), high photon flux synchrotron radiation allowed characterization to be 

performed quickly. The WAXS measurements were obtained using the coordination 

system defined in Figure 2-4(a). The Z axis is defined as the crystalline chain axis (the c- 

axis) and the angles a , p, and e are the angles between the stretching direction, ^  and the 

X, Y, and Z axes, respectively.' In Figure 2-4(a), the points a, b, and c form a crystalline 

reflection plane that

has a unit vector, N, normal to the plane surface. The angle of orientation ((j)) is the angle 

between N and a unit vector, ^  in the stretching direction.

S = cos(a) i + cos(P) j + cos(e) k [2-1]

N = cos(E) i + cos(F) j + cos(G) k
- -  -  [2 -2 ]

N = e i + f j + g i c

The coefficients of N are denoted e, f  and g to simplify the expressions below and are 

determined from the reflection plane [hkl] and the crystal structure. The angle (j) is given 

by Equation 2-3.

cos((|)) = N • S = e cos(a) + f  cos(P) + g cos(e) [2-3]

Squaring and averaging Equation 2-3 gives Equation 2-4.

< cos^(^) >= e^ < cos^(a) > +f^ < cos^(p) > +

g^ < cos^ (e) > +2ef < cos(a) cos(P) > [2-4]
+ 2fg < cos(P)cos(s) > + < 2 egcos(a)cos(e) >
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To determine the average value of <coŝ ((j>)> experimentally, the scattered intensity at a 

given 20 was averaged over the azimuthal angle (%), given by Equation 2-5.

< cos^ ((f)) >= cos  ̂(0) < cos^ ( x )  >  [2-5]

As shown in Figure 2-2(b), the sample was rotated in the azimuthal direction with the

detector fixed at an angle 2 0  to determine <coŝ (<j>)> according to the expression above.

The second term on the right side of Equation 2-5 was determined from Equation 2-6.

tc/2 _
f I(x)cos (%)sin(%)d%

< cos^ (x) >= ^    [2-6]

JI(x)sin(x)dx
0

where I is the intensity of the scattered x-rays. In practice, the integrals were replaced 

by sums as shown in Equation 2-1}

2 9
Z1(X) cos-(x)sin(x)

< c o s ^ ( X ) > = - ^ -------------------  [2-7]

il(x)sin(x)
0

Equation 2-4 has a total of six unknowns, hence without further simplifications, at least 

five crystal planes would be required to determine the orientation functions in each 

direction. The orthogonality of the system provides the sixth equation.
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cos^(a) + cos^(P) + cos^(s) = 1 [2-8]

The angles a, p, and s are evaluated from Equation 2-4. If the pure axial crystal plane 

reflections can be obtained then only three planes need to be studied and Equation 5 

simplifies as shown in Equation 2-9.

.2 , 1   2 ,< cos ((()}j Oo ) > = c o s  (a)

< cos^ (*okO ) cos^ (P) [2-9]
2 2 <cos ((j)ooi)>=cos (e)

Another simplification can be made for particular crystal structures allowing fewer than 

five reflection planes to be required. Because PE has an orthorhombic crystal structure 

the cross product terms in Equation 2-4 are zero as shown in Equation 2-10 and only 

two reflection planes were required for characterization.

< cos^ ((j)) >= e^ < cos^ (a ) > +
2  9 9 9

f  <cos (P)>+g <cos (e)>

PE [110] and [200] reflection planes, at 21.4® and 23.7°, respectively, were used for 

characterization of the crystalline orientation.^ '* The values of e, f, and g for the [110] 

reflection plane are 0.554, 0.832, and 0, while those of [200] are 1,0, and 0, 

respectively.

The orientation of the composite films was quantitatively characterized as cos^ (e), 

where e is the angle between the stretching direction, ^  and the polymer chain axis, 

shown as the Z axis in Figure 2-7(a). The value o f cos^(e) can be between 0 and 1. If 

the orientation of the chain axis is perpendicular to the stretching direction, then cos^(s)
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is 0. If the chain axis is parallel to the stretching direction, then cos\e) is I . When the 

chain axis is randomly distributed, then cos^(e) is 1/3.

2.3.2 Optical Microscopy

A Nikon Optical Microscope at a magnification o f 800X was used to observe the 

large-scale structure of fillers in composites.

2.3.3 Atomic Force Microscopy (AFM) and Scanning Tunneling Microscopy 
(STM)

AFM and STM was done using a Multimode NanoScope III SPM (Digital 

Instruments). STM was done in both standard height mode and current imaging 

tunneling spectroscopy (CITS) mode with mechanically cut Pt-Ir tips. A CITS image is 

a collection o f scanning tunneling spectroscopy (STS) plots that correspond to a data 

point in an STM image. An STS curve is a plot of the tunneling current at a specific 

surface position obtained as a function of the bias voltage applied to the sample at a 

fixed separation from the scanning tip. CITS reveals the conductivity distribution in the 

scanned area. Samples of both the nickel and PPy coated nickel were prepared by 

evenly pressing a small amount of flake on a thick layer of Parafilm®. A conducting 

path between the flakes and the bottom steel sample holder was constructed with silver 

glue. This sandwich structure (flakes - parafilm - steel disc) ensured the images 

obtained were only a function of the surface morphology of the flakes.
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23.4 Scanning Electron Microscopy

Images were obtained from The University of Oklahoma Electron Microscopy 

Laboratory using an ETEC Autoscan SEM with GW Type 113 back scatter. The images 

were taken at a magnification of 300X. Samples were prepared by cutting a thin slice from 

the cross section of the composite films with a Stanley Blade®.

2.3.5 Fractional Crystailinity

The crystailinity was determined by differential scanning calorimetry measurements 

using a Perkin-Elmer DSC 11 calorimeter at a scanning rate o f 10° per minute and a 

computerized data acquisition system designed at the University of Oklahoma.

Appendix B is the procedure used to calibrate the DSC-H using the computerized data 

acquisition system. The heat of melting (AHf) for a sample of known polymer mass and a 

purely crystalline polymer (AHf°) indicated crystailinity (%) by Equation 2-11.^

AHp
X=—i  [2-11]

Heat of melting for a sample, shown schematically in Figure 2-5, was determined 

experimentally by integrating the baseline subtracted DSC output over the temperature 

range in which the sample melts.^ The literature value of the heat of melting for pure 

crystalline LDPE, AH °, was assumed to be 282 J/g.^
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Figure 2-5 Schematic Diagram of DSC Melting Curve

Temperature
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2.4 ISOTHERMAL CRYSTALLIZATION
Isothermal crystallization experiments were conducted using a Perkin-Elmer DSC 11

differential scanning calorimeter with a computerized data acquisition system 

developed at the University of Oklahoma. The sample was heated to 117°C and held at 

that temperature for 5 minutes to ensure complete melting. The sample was then quickly 

cooled at a rate of 320°/minute to a specific isothermal crystallization temperature (Figure 

2 -6 (a)). In order to isolate heat evolution due to crystallization from that of sample 

cooling, for each isothermal crystallization temperature a companion cooling curve was 

measured as shown in Figure 2-6(b). The difference between the upper and lower 

temperature for the companion cooling curve was the same as the difference between 

117°C and the isothermal crystallization temperature, and the lower temperature for the 

companion cooling curve was 117°C. The companion cooling curve was then subtracted 

from the isothermal crystallization curve giving the result shown in Figure 2-6(c). Prior to 

subtraction, the companion-cooling curve was adjusted for the difference in composite 

heat capacity, Cpc, as shown by Equations 2 - 1 2  and 2-13:*

CpE =1.98 + 3.70xIO'^T [2-12]

Cpe = C pe( 1 - w) + wC n P-13]

where the temperature, T, is in °C, w is the weight fraction, and Cpe is the heat capacity for 

LDPE. The heat capacity for nickel, Cn, was assumed to be 0.456 J/g°C.^ The 

crystailinity as a function of time for a sample of known polymer mass, mp, was 

determined by Equation 2-14, and shown for LDPE at 100°C in Figure 2-7.*°
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Figure 2-6 DSC Output for LDPE at 100°C; a) Raw Data; b) Cooling Curve; 
c) Corrected Data with Features Due Totally to Crystallization
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Figure 2-7 Crystailinity as a Function of Time for LDPE at 100°C
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x (,)  = A(9'"''k.x,oo p .M ,
AHf X mp X fjgc

Where rdsc is the DSC range setting in cal/min, and fdsc is the DSC calibration constant 

determined from the indium crystallization peak. The area under the crystallization 

curve, A(t), as a frmction of time was determined experimentally by integrating the 

cooling curve subtracted DSC output over the time period in which the sample 

crystallizes.

2.5 PHYSICAL PROPERTY EVALUATION

2.5.1 Conductivity Measurements

Depending on the filler loading of the composites, one of two methods was used to 

measure DC electrical conductivity. The conductivity at high filler loading was 

measured using four-point probe geometry, as outlined in the American Standard for 

Testing and Materials (ASTM) Standard D-4496 for moderately conductive materials. 

Copper electrodes were attached using a silver conductive epoxy (TRA-CON, BA- 

2902). The current was sent through the outer electrodes using a Keithley 6 IOC 

electrometer as a current source and the voltage was measured using a Keithley 176 

multimeter. The resistance, R, of the composite was determined from the linear portion of 

the current versus voltage curve by linear regression. The resistivity was calculated using 

Equation 2-15,
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p . l . f a g b R  p-15]
CT C r

where er is the film thickness, 5r is the width, and Cr is the length as shown in Figure 

2 -8 (a).

The conductivity of the composite films with low filler loading was measured using 

the sandwich method as outlined in ASTM standard D-257 for insulating materials. Thin 

composite films were placed in a Keithley Model 6105 Resistivity Chamber with a guard 

ring to bleed off surface current and one pound of contact pressure. A voltage was induced 

across the sample using a Keithley 247 High Voltage Power Source and the induced 

current was measured using a Keithley 6 IOC Electrometer. The same algorithm was used 

to calculate the resistance as for the four-point probe geometry. Equation 2-15 was used to 

determine the resistivity, but with the dimension parameters 3 r  being the height, bR, the 

width, and c r , the distance between electrodes, as shown in Figure 2-8(b).

A different method was used to measure the powder conductivity of the filler; Figure 

2-8(c) shows the geometry for the conductivity measurements of the fillers. Vibrational 

packing facilitated the maximum possible packing in the sample cell. A current was 

induce through the sample with an Instek model PS-6010 DC power supply and the 

voltage drop across the sample cell was measure using a Keithley 197A multimeter. 

Equation 2-16 yielded the conductivity of the fillers,

p = l =  [2- 16]
CT C r
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Figure 2-8 Geometry for Different Conductivity Measurements; a) Four-point Probe; 
b) Sandwich; c) Powder Conductivity
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tr being the diameter and c the length of the conductivity chamber as shown in Figure 2- 

8(c).

2.5.2 Thermal Conductivity Ratio

The ratio of the composite thermal conductivity to the polymer thermal conductivity, 

kc/kp, was determined from the cooling curves for the melts and given by equating the 

dimensionless parameters of the heat transfer equation as given in Equation 2-17.* *

«etc
b? hi

[2-17]

where t is the time required for thermal equilibrium for a specified temperature change, be 

and bp are the sample thicknesses, and the thermal diffrisivity of each phase, ai, is given by 

Equation 2-18.

Oi = - ^  [2-18]
Pi^i

where kj is the thermal conductivity, pi is the density, and C] is the heat capacity of the i**' 

phase. In each case, the thickness was determined from the mass of the polymer and the 

geometry of the system.

2.5.3 Tensile Properties

The tensile properties of the composites were measured with an Instron TT-C-L 

tensile tester with a specially designed computerized data acquisition system at a
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stretching rate of 2.5 nun/min. The samples were produced with a ASTM Standard D- 

1708 die.

2.5.4 Stress Relaxation Measurements

The stress relaxation properties of the composites were measured with an Instron 

TT-C-L tensile tester with a specially designed computerized data acquisition system. 

An initial strain rate of 2.1 percent induced at a rate of 2.54 cm/min was used. The 

samples were produced with an ASTM Standard D-1708 die.
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2.6 NOTATION

X ,Y ,Z Cartesian Coordinates

S Vector in the Stretching Direction

N Vector Normal to the Crystalline Plane

a Angle between S and the X axis

P Angle between S and the Y axis

G Angle between S and the Z axis

a,b, C Points Forming a Crystal Plane

E Angle between N and the X axis

F Angle between N and the Y axis

G Angle between N and the Z axis

e, f,g cos(E), cos(F), cos(G)

h,jM Miller Indices

4) Angle between S and N

0 Diffraction Angle

% Azmuthal Angle

p Resistivity

cr Electrical Conductivity

R Resistance

ra Radius of Powder Conductivity Cell

aa Height of Sample for Conductivity Measurements
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ba. Width of Sample for Conductivity Measurements

Or Length of Sample for Conductivity Measurements

Oç Thermal Difhisivity of the Composite

ttp Thermal DiSlisivity of the Polymer

be Thickness of the Composite Samle

bp Thickness of the Polymer Sample

tc Cooling Time of the Composite

tp Cooling Time of the Polymer

a. Thermal Diffusivity of the i**’ Phase

ki Thermal Conductivity of the i'*’ Phase

pi Density of the i'̂  Phase

Ci Heat Capacity of the i*** Phase

X Fractional Crystallinity

AHf Experimentally Determined Heat of Fusion

AHf° Heat of Fusion for Pure Crystalline Polyethylene

CpE Heat Capacity of Polyethylene

Cn Heat Capacity of Nickel

Cpc Heat Capacity of the Composite

t Time

X(t) Fractional Crystallinity as a Function of Time

A(t) Area as a Function of Time
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f flp Mass

Tdsc DSC

fdsc DSC'
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CHAPTERS

WTOE ANGLE X-RAY SCATTERING STUDY 
OF CRYSTALLINE ORIENTATION IN 

RETICULATE DOPED POLYMER 
COMPOSITES

3.1 INTRODUCTION

Reticulate doping consists of casting a composite film from a solution containing a 

polymer and a charge-transfer complex (CTC) and allowing the conductive, free radical 

salt to recrystallize as the solvent is removed from the polymer. In this study, a highly 

branched, low molecular weight polyethylene (PE) was doped with the CTC 

tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ). Wide angle x-ray 

scattering (WAXS), conductivity, optical microscopy, stress relaxation, and differential 

scanning calorimetry (DSC) measurements were used to show the effect of the addition 

of filler and uniaxial orientation on the mechanical and electrical properties of the 

composites.
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3.2 BACKGROUND AND LITERATURE REVIEW

One novel method for producing conductive thermoplastic composites is reticulate 

doping of polymers with an organic charge transfer complex (CTC).' Reticulate doping 

consists of casting a composite film from a solution of both the polymer and CTC and 

allowing the conductive salt to microcrystallize in the polymer matrix forming 

conductive pathways.^ Most CTC form long rod shaped crystals with high aspect ratios, 

thus conducting electricity at very low filler concentrations.^’'* Ulanski et. al. 

determined that recrystallization required for optimum conditions depends the viscosity 

of the solution and the solvent evaporation rate.^ Since both the viscosity and 

evaporation rate are temperature dependent, there is an optimum temperature for casting 

of the composite films for each charge transfer complex - polymer pair. At the optimum 

casting conditions, reticulate doped polymers conduct electricity at very low filler 

concentrations. In order to ensure recrystallization with some tetracyanoquinodimethane 

(TCNQ) salts, the composite must also have TCNQ° added to the composite. ® These 

systems have a maximum conductivity at the ratio [TCNQ°]/[TCNQsait]=l. Because the 

filler concentration is low, the mechanical properties of the composite are similar to 

those of the unfilled polymer matrix. Deformation of the matrix by cold drawing at an 

elongation as low as 6 percent destroyed the microcrystailine structure of the CTC and 

decreased the conductivity of the composite by two orders of magnitude.^ The greatest 

disadvantage to some organic conductors is the tendency to lose in conductivity in 

ambient conditions or over time. The conductivity of the CTC - polymer composites
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remained constant for over one year because the insulating matrix protected the salt 

from the environment. *

Studies of the conductivity of solution cast films as a function of casting 

temperature, solvent, and concentration of CTC in the solution have been carried out for 

free-radical salts such as tetrathiothetracene-tetracyanoquinodimethane (TTT-TCNQ), 

tetrathiafulavalene-TCNQ (TTF-TCNQ), N-methyl phthalazinum (TCNQ)i 

(mPht(TCNQ)2), N-propyl phthalazenium (TCNQ)2  (PrPht(TCNQ)2) and 2,2’- 

Bipyrydylamine (TCNQ)2  (BIPA(TCNQ)2) in amorphous polymers, such as 

polycarbonate (PC) and polymethamethylacrylate (PMMA), as well as semicrystalline 

polymers such as polyethylene (PE) and polypropylene (PP).’ The AC conductivity, 

thermopower, and magnetic properties of TTT-TCNQ and TTF-TCNQ films have been 

studied in order to obtain greater insight into charge transfer conduction mechanisms in 

reticulate doped polymers. '  ’ In addition, Finter et. al. have tested a modified method 

for reticulate doping of polymers by in-situate complex formation and crystallization 

directly in the matrix as a method for producing films of insoluble charge transfer 

complexes.'^

Often secondary shaping methods are required in order to obtain the necessary shape 

for a polymer composite application. Many of these processes change the morphology 

of the cast film and cause orientation of the polymer, which affects the relationship 

between CTC and the supporting matrix. This study looks at the effect of orientation 

via uniaxial stretching on the properties o f reticulate doped polymer composites.
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Uniaxially stretching a polymer composite aligns the filler particles in the stretching 

direction and creates internal stresses. The alignment of the anisotropic conductive filler 

increases conductivity in the stretching direction, due to an increased number of particle- 

particle contacts. However, the centers o f the particles also become separated, hence a 

plot of conductivity in the longitudinal direction versus draw ratio generally shows a 

maxima due to these two competing effects. To further complicate this behavior, the 

internal stress can affect the efficiency of electron transfer from one particle to another, 

especially at low strains. Our experiments were not able to separate these complicated 

phenomena, rather they indicated how these effects combine to change the conductivity in 

the stretching direction.

Composites of TTF-TCNQ supported by a highly branched, low molecular weight 

polyethylene (PE) were produced with varying filler concentrations and draw ratio. TTF- 

TCNQ, shown in Figure l-5(a), was chosen as the CTC. TTF-TCNQ has a very high 

single crystal conductivity of approximately 500 S/cm, is well characterized and scatters 

at angles that do not overlap with scattering from PE in selected regions.'^’*'* PE was 

chosen because it is often used as the supporting matrix in conductive thermoplastic 

composites. PE was a highly branched, low molecular weight polymer with a density of 

0.906 g/cc. The weight average molecular weight was 35,000 g/mole and the 

polydispersity index was 4.5. The melting point of the material was approximately 

90°C and the melt flow index was 2250 grams per 10 minutes at 190°C. This particular 

grade of PE, while having a lower melting point and crystallinity than most commercial
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grades of low density polyethylene, was chosen as the matrix because o f its solubility in 

chlorobenzene at high polymer concentrations. WAXS experiments were done in 

conjunction with conductivity measurements, optical microscopy, stress relaxation 

measurements, and differential scanning calorimetry (DSC) in order to more fully 

understand the effects of TTF-TCNQ on the matrix morphology and bulk properties of 

reticulate doped polymer composites.

3.3 EXPERIMENTAL PROCEDURES

TTF was synthesized and purified by the procedure outlined by Narita and Pittman 

and summarized in Appendix C.'^ TTF was complexed with TCNQ (Aldrich) by 

crystallization from a solution of acetonitrile (Aldrich). Composite films were produced 

by making a 10 mM solution of TTF-TCNQ in chlorobenzene (Aldrich). PE (Aldrich) 

was dissolved by adding 10 milliliters of chlorobenzene for every gram of PE at 100°C. 

The procedure for solution casting outlined in Section 2.2.1 was followed for film 

production. The physical property measurements for conductivity (2.3.1 ), tensile 

modulus (2.4.3), stress relaxation (2.4.4), and fractional crystallinity (2.3.5) were carried 

out for each sample concentration. The procedures used in WAXS and optical 

microscope images are described in sections 2.3.1 and 2.3.2, respectively.

62



3.4 RESULTS AND DISCUSSION

As expected, reticulate doping of polymers allows conductive pathways to be 

formed at very low volume fractions due to the formation of microcrystallites inside the 

matrix.*^*’ ** Figure 4 shows the percolation diagram for the unstretched PE 

composites. The conductivity profile should follow a sigmodal curve where the 

percolation threshold is the point of the upturn in the diagram. The lack of an upturn in 

Figure 3-4 indicates that the critical volume fraction is below 2.5 percent by volume (4.5 

percent by weight). The percolation threshold for the TTF-TCNQ composites is much 

lower than that of conventional fillers such as carbon black and metal powders, which 

have critical volume fractions of 10 percent and 30 percent, respectively.’̂ ’̂® The 

critical region ends when the conductivity is no longer a strong function of volume 

fraction which, for the TTF-TCNQ - PE system, is between 5.0 and 10.0 percent by 

volume (8.8 and 17.0 percent by weight).

Figure 3-2 contains two photos from a Nikon Optical Microscope of the TTF-TCNQ 

both at 320X (a) showing the long rod shaped particles and at 800X (b) showing the 

branching from one particle. Optical microscopy showed that there was a large 

distribution of aspect ratios of the TTF-TCNQ for a given volume fraction and both the 

maximum and average aspect ratios were drastically affected by the volume fraction of 

filler. The maximum aspect ratio, shown in Figiure 3-3(a), was largest for the TTF- 

TCNQ cast onto a surface with no matrix and consistently decreased as a function of 

TTF-TCNQ volume fraction in the reticulate doped composites. The average aspect
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ratio, shown in Figure 3-3 (b), decreased rapidly in presence of the matrix, but was 

constant at high filler loading. Metal fibers with a similar aspect ratio still required at 

least 5 percent by volume in order to create a continuous conductive network, a much 

higher volume fraction than found in this study for TTF-TCNQ.^’ There was a 

significant amount of branching of the TTF-TCNQ particles which probably decreases 

the percolation threshold by acting as an interconnect for TTF-TCNQ.

Experimentally obtained diffraction patterns for TTF-TCNQ and PE are shown in 

Figures 3-4 and 3-5, respectively. Table 1 contains the literature values for the unit cell 

parameters, density, and heat of fusion (AHf) for both components. The unit cell 

parameters obtained from the diffraction pattern closely matched those from the 

literature, confirming that the filler was TTF-TCNQ. Figure 3-6 shows 2© from 20° to 

25°, the region of interest for the orientation studies, for both the TTF-TCNQ and the 

PE and indicates that there is no significant scattering of the TTF-TCNQ at either [110] 

or [200] PE reflection planes.

Figures 3-7 show pole figures at a diffraction angle of 21.4° for 10 percent by 

volume TTF-TCNQ at draw ratios of 1.0 and 2.0, respectively. For perfectly unoriented 

materials the relative intensity would be constant. The slight increase in intensity with % 

in Figure 3-7(a) indicates a slight preferential orientation in the unstretched composites, 

while in Figure 3-7(b), the sharper increase in intensity with azimuthal angle, %, shows 

much higher PE crystalline orientation. Figure 3-8 shows the orientation as a function
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Figure 3-1 Percolation Diagram for TTF-TCNQ filled PE
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Figure 3-2 Optical Microscope Image of TTF-TCNQ Particles; a) 320X Magnification; 
b) 800X Magnification
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Figure 3-3 a) Maximum Aspect Ratio of TTF-TCNQ as a Function of TTF-TCNQ 
Concentration; b) Average Aspect Ratio of TTF-TCNQ as a Function of 
TTF-TCNQ Concentration
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Figure 3-4 Diffraction Pattern for TTF-TCNQ
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Figure 3-5  Dif&action Pattern for PE
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Table 3-1 Crystallographic Parameters and Physical Properties

M aterial U n it C ell P aram eters D en sity AHf

Ceil a b c Angle Amorp.
Ig/ccI

Cryst.
[g/ccl

U/g]

Polyethylene Orthorhombic 7.4 4.9 2.5 0.851 1.002 282

TTF-TCNQ Monoclinic 12.3 3.8 18.5 104.5 1.620 336
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of TTF-TCNQ volume fraction for the unstretched samples. In composites with TTF- 

TCNQ concentrations of 0, 2.5, and 5 percent by volume, the PE crystallites were 

slightly oriented perpendicular to the casting surface. In samples with higher filler 

concentrations in the plateau region of conductivity, the crystallites were oriented 

slightly parallel to the casting surface. Reticulate doping has been shown to form long 

rod shaped crystals with the conducting phase forming a two-dimensional network 

parallel or at small angles to the casting p l a n e . T h i s  network oriented the PE 

crystallites parallel to the casting surface as indicated by the shift in initial orientation 

from slightly perpendicular to slightly parallel to the casting surface.

Figure 3-9 shows the orientation of the PE crystallites as a function of draw ratio for 0, 

2.5, 10, and 20 percent by volume TTF-TCNQ. As expected, crystalline orientation in 

the stretch direction increased with increasing draw ratio. The increase in orientation 

resulting from uniaxial stretching decreased with increasing filler concentration, i.e. the 

slope of the lines in Figure 3-9 were lower for higher TTF-TCNQ concentrations. One 

explanation for this behavior is that the addition of TTF-TCNQ to the polymer causes a 

decrease in the relaxation time. To test this hypothesis, stress relaxation measurements 

were performed.

Stress relaxation measurements were done at room temperature, while stretching 

was done at approximately 80°C. Thus, the relaxation measurements are not directly 

comparable to the stretching conditions, but give some insight into the effect ofTTF-
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Figure 3-6 W AXS comparison for TTF-TCNQ and PE
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Figure 3-7  Chi Scan at 21.4° for a 10 % by Volum e TTF- TCNQ Composite; a)
Unstretched; b) Stretched to 1=2.0 (The solid lines have been added to 
guide the eye and are not intend to indicate any functional form of the 
intensity.)
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Figure 3-8 Orientation of Unstretched TTF-TCNQ filled PE as a Function of Filler 
Volume Fraction; The line drawn at cos^(s) = 1/3 represents a sample with 
no net polymer chain orientation; cos^(s) < 1/3 represents a sample with 
preferential orientation perpendicular to the casting surface; cos^(s) > 1/3 
represents a sample with preferential orientation parallel to the casting 
surface

0.50 •

0.45 -

0.40 •
CO 0.35 '

(N
c/3
O 0.30 •
o

0.25 •

0.20 '

0.15 J
0 5 10 15 20

Volume Fraction TTF-TCNQ [Percent]

74



TCNQ on the relaxation process. Figure 3-10 is a plot of the first 30 seconds of the 

relaxation measurements for several different concentrations o f TTF-TCNQ. The 

downward shift indicates faster relaxation for increasing TTF-TCNQ. This effect was 

quantified by fitting the experimental data to relaxation models to determine the 

relaxation time constants as a function of filler volume fraction. The simple Maxwell 

model shown in Equation 3-1, with one relaxation time, t, was used to model the data, 

but this model had an average correlation coefficient of 0.845 and clearly did not fit the 

data.

The failure of the one parameter model was not imexpected since polymeric 

materials have several different relaxation processes occurring simultaneously at 

different rates, such as segmental motion, chain coiling and imcoiling, and chain 

alignment.^ Models with only one time constant are usually only valid over a very 

limited range of time and real polymer systems often require the characterization of 

several time constants.^** The Maxwell - Wiechert model, shown in Equation 3-2, was 

used to model the data.

-t
E(t) 00

= ZE;e": [3-2]
E(0) 0

An acceptable fit with an average coefficient of determination of 0.970 was obtained
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Figure 3-9 Orientation of Stretched TTF-TCNQ-Filled PE as a Function of Draw Ratio 
and Filler Volume Fraction
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Figure 3-10  Stress Relaxaüon o f  TTF-TCNQ-Filled PE as a Function o f  Filler Loading
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with two terms and the equation was truncated after the second term as shown in 

Equation 3-3.^^

zL zi
| ^ = E „ e ' o . E , e ’ . [3-3]

Ei are the dimensionless relaxation moduli and ti are the relaxation times. Eo and E; 

were 0.49+0.03 and 0.34±0.04, receptively, with no significant changes with volume 

fraction of TTF-TCNQ. The tensile modulus was 115±16 MPa and was also not 

affected by the presence of the filler. Therefore, the constant tensile modulus is 

consistent with the observed constant relaxation moduli.

Relaxation times, however, were not constant with volume fraction indicating that 

perhaps different relaxation times might account for the difference in orientation of 

stretched found in WAXS experiments. Figure 3-11(a) shows the relaxation time 

corresponding to the slower process, ti, may slightly decrease with increasing volume 

fraction, but the errors in measurement make it difficult to draw this conclusion with 

certainty. Figure 3-11(b) shows that the relaxation time corresponding to the faster 

process, to. definitely decreased with increasing volume fraction and remained constant 

at filler loadings above the critical region. Figure 3-11 indicates that relaxation of the 

unfilled PE or low volume fraction filled polymers was slower than that of the highly 

filled polymer. Therefore the initial hypothesis was confirmed: the addition of TTF- 

TCNQ causes a decrease in the relaxation time and may be the cause of the decrease in 

PE crystallite orientation in WAXS measurements.
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Stretching the composites led to an initial increase in conductivity followed by a 5 

order of magnitude drop in conductivity, measured in four-point probe geometry, as 

shown in Figure 3-12. Initial stretching caused an increase in conductivity most likely 

as a result of TTF-TCNQ particles forming more linear conductive pathways. As draw 

ratio increased further, the conductive rods were either broken by the stress or the rods 

were pulled apart leading to fewer conductive pathways and a decrease in conductivity.

The fractional crystallinity of the unstretched material was determined by DSC to be 

22.7±1.6 percent and was unaffected by volume fraction of filler. Because this fractional 

crystallinity was extremely low for a polyethylene, the crystallinity was calculated from 

WAXS experiments to confirm the DSC results. The fractional crystallinity from WAXS 

using the parameter 8=3.25 as reported by Kakudo and Kasai was 19.9% for the unfilled 

material which is well within the normal differences found by these two methods.^^ 

Figure 3-13 shows the baseline subtracted DSC curves for the 2.5 percent TTF-TCNQ 

composites as a function of draw ratio. As expected, the crystallinity did increase with 

draw ratio, but the addition samples of TTF-TCNQ inhibited crystallization during 

stretching as shown in Figure 3-14. The incremental increase in crystallinity due to 

stretching declined with TTF-TCNQ volume fraction until the concentration was above 

the critical region, where no increase in crystallinity with stretching was observed.
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Figure 3-11 a) Slower Relaxation Time as a Function of Volume Fraction TTF-
TCNQ; b) Faster Relaxation Time as a Function of Volume Fraction 
TTF-TCNQ
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Figure 3-12 Composite Conductivity as a Function of Volume Fraction TTF-TCNQ and 
Draw Ratio (parallel to stretching direction)
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Figure 3-13 Baseline Subtracted DSC Curves for Stretched, 2.5% TTF-TCNQ 
Composite Films as a Function of Draw Ratio
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3.5 CONCLUSIONS

Solution cast films of PE showed orientation of the crystallite lamella 

perpendicular to the casting surface, but the addition of TTF-TCNQ microcrystallizing 

inside the matrix forced PE crystals to preferentially form parallel to the casting surface. 

Uniaxial stretching parallel to the casting surface increased the orientation of the 

crystallites along the stretching direction. The incremental increase in orientation with 

stretching was decreased with higher filler loading. The conductivity o f the composites 

decreased by approximately 5 orders of magnitude by stretching to a draw ratio of 2.0.

In addition, the firactional crystallinity of the PE was not affected by the volume firaction 

of TTF-TCNQ. The incremental increase in fractional crystallinity attained by 

stretching decreased in the critical region, and above the critical region the fractional 

crystallinity was constant for all draw ratios tested.
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Figure 3-14 Fractional Crystallinity of TTF-TCNQ-Filled PE as a Function of Draw 
Ratio
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3.6 NOTATION

E Angle between S and Z; see Figure 2-4(a)

% Azimuthal Angle

S Vector in the Stretching Direction

Z Cartesian Coordinate

k Draw Ratio (length/initial length)

AHf Heat of Fusion

t Time

E(t) Relaxation Modulus

E(0) Young’s Modulus

Ei Dimensionless Relaxation Modulus

Ti Relaxation Times

Eo Dimensionless Relaxation Modulus Corresponding to the Faster Relaxation

Process

To Relaxation Time Corresponding to the Faster Relaxation Process

E[ Dimensionless Relaxation Modulus Corresponding to the Slower Relaxation

Process

Ti Relaxation Time Corresponding to the Slower Relaxation Process
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CHAPTER 4

ISOTHERMAL CRYSTALLIZATION OF 
NICKEL FILLED LOW DENSITY 

POLYETHYLENE

4.1 INTRODUCTION

The effect of nickel filler on the crystallization kinetics of low-density polyethylene 

(LDPE) crystallites has been quantified and compared to the filler’s effect on electrical 

and thermal properties. The crystallization kinetics were changed by the addition of 

nickel in two ways; the nucléation time for a given isothermal crystallization 

temperature was reduced and the crystallization rate increased. Crystallization rates 

were compared by fitting the data to the Avrami equation. The Avrami exponent was 

not affected by the addition of nickel, indicating the change in crystallization rate was 

due to increased crystal growth rate rather than nucléation. The increase in crystal 

growth rate was consistent with the increase in composite thermal conductivity caused 

by the addition of nickel. However, an anomalous jump, not present in the bulk thermal 

conductivity, occurred between 7.5 and 10 percent nickel by volume for all temperatures 

studied. This jump coincided with the end of the critical region in electrical
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conductivity. The cause of this jump is not absolutely clear; however, we believe the 

shift is due to the formation o f a continuous network o f nickel particles causing an 

increase in the local heat dissipation.

4.2 BACKGROUND AND LITERATURE REVIEW

4.2.1 Isothermal Crystallization

Semi-crystalline polymers, such as low and high density polyethylene (LDPE, 

HDPE), polypropylene (PP), and polyethylene terephthalate (PET) play an important 

role as commodity thermoplastics because of the unique physical properties that result 

from the combination of amorphous and crystalline regions. These thermoplastics have 

very high production rates and are used in applications such as fibers, films, packaging, 

plastic parts, and bottles. The study of polymer crystallization is important because the 

strength and elasticity depend on the fractional crystallinity, and processing parameters, 

such as mold pressure and cooling time, are dependent on the overall crystallization 

rate.'’̂ ’̂

Thermodynamics predicts crystallization of small molecules very well and 

equilibrium conditions usually dictate the final state o f the material. In polymers, the 

final state is usually far from equilibrium and the crystallization process is a competition 

between kinetic factors involved in the organization o f polymer chains and the 

requirements of thermodynamic equilibrium. In isothermal crystallization, the
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transformation from an amorphous melt begins after some specific time period, the 

nucléation time, during which no measurable crystallization occurs. During nucléation, 

growth centers form, and these growth centers provide templates for crystallization. 

After a growth center has formed, the polymer begins to crystallize through lamella 

formation in a spherulite structure. Crystal growth continues until a spherulite impinges 

upon another growing spherulite, another phase, or the polymer no longer has enough 

chain mobility for continued growth.

A theoretically derived equation for first order, heterogeneous nucléation with three- 

dimensional crystal growth is presented in Equation 4-1.'*

In
1

U - X r J
= -7 t-^ N o G ^ t^  [4-1]

3 Pm

Where,

No is the total number of heterogeneous particles added to the system, G is the constant 

linear crystal growth rate, t is the time, and ps and pm are the crystalline and melt 

densities. For systems with one-dimensional and two-dimensional growth, the power of 

t and G are 1 and 2, respectively. In real polymer systems, the assumptions used in 

deriving Equation 1 are seldom accurate, but the derivation does give insight into the 

variables that effect crystallization. Avrami proposed a semi-empirical equation where 

the nucléation and linear growth rates are embodied in the crystallization rate constant.
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K, and the dimensionality is characterized by the Avrami exponent, n, as shown in 

Equation 4-3/

Xr(t) = l - e - ' ^ ' "  [4-3]

The Avrami exponent is rarely a whole number and is a function of both the nucléation 

mechanism and the dimensionality of growth, so dimensionality cannot be fully 

determined from kinetic data alone. Some commonly accepted guidelines state that n 

varies from 1 to 4 and is related to the dimensionality since the regions from 1 to 2, 2 to 

3, and 3 to 4, generally indicate 1, 2, and 3 dimensional growth, respectively. After 

rapid crystalline growth, a pseudo-equilibrium level of crystallization is obtained. 

However, if the polymer remains at the isothermal crystallization temperature 

indefinitely, secondary crystallization will occur over very long times at an extremely 

slow rate.

The addition of fillers and additives to polymers has motivated new studies on the 

effect these modifiers have on crystallization. Glass, carbon, aramid, and cellulose 

fibers have been studied.®'^’* In some cases, the fibers acted as nucleating agents by 

enhancing the nucléation density and speeding the crystallization process, while in other 

cases the fibers impinged upon the growing crystal, thus stopping grovyth in one or more 

dimensions. This effect is polymer specific, as the same fiber can cause an 

enhancement in the nucléation density in one polymer and have no influence in 

another.^ Particle size also plays a role; studies on particulate composites with fillers
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such as carbon, titanium dioxide, and calcium carbonate have shown that particles under 

5 pm in diameter acted as nucleating agents, while larger particles impinge growing 

crystals thus dampening the overall crystallization rate.*°’**

Although metal filled systems have been studied extensively for property changes 

such as enhanced thermal and electrical conductivity, theological and mechanical 

properties and density,’̂ ''^ ’** little work has been done on the effect metal has on the 

crystallization kinetics of semi-crystalline thermoplastic composites. Maiti et. al. 

studied the crystallization kinetics of polypropylene (PP) in nickel-PP composites, but 

this work was limited to volume fractions below 3.4 percent by volume where 

mechanical properties are exponentially decaying.*^ All experiments on this nickel-PP 

system were done below the region where a continuous network of nickel particles had 

formed; i.e. below the percolation threshold. We are aware of no studies on metal- 

thermoplastic systems to determine the effect o f a metal on the crystallization kinetics at 

concentrations equal to or above the percolation threshold. Recently, our research has 

focused on the characterization of conductive thermoplastic composites and has shown 

that in films of nickel-filled LDPE the fractional crystallinity increased with increasing 

filler loading under the conditions used to prepare the f i l m s . T h i s  work prompted us 

to examine the effect of the filler on the crystallization kinetics of nickel-filled LDPE 

composites.
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4.2.2 Thermal Conductivity

The effect of fillers on the thermal conductivity of composite systems has been well 

documented.**’*̂  The thermal conductivity of a composite, kc, increases with increasing 

filler loading. Equation 4-4 is an empirical relationship correlating thermal conductivity 

of a composite, kc, to the thermal conductivities of both the filler and the polymer, kf

and kp, the volume fraction, V, the maximum packing fraction, Vm, and the particle

20geometry.

kg 1 + ABV 
kp " l - B Y V

[4-4]

Where

and

kp
B =   [4-5]

^  + A 
kp

Bigg has shown that the value o f A, a factor related to the geometry of the system, is 

related to the aspect ratio for anisotropic filler particles.^* Progelhof, Thome, and 

Ruesch have completed a review of the thermal conductivity of composite materials.^ 

This work shows that in metal-filled polymer matrix composites, the network of 

metal particles increases the crystallization rate by increasing heat transfer during this
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exothermic process. Differential-scanning calorimetry (DSC) was used to measure the 

isothermal crystallization rate of nickel-filled LDPE with varying nickel concentrations. 

In addition, the electrical and thermal conductivities were measured and compared to 

changes in crystallization kinetics.

4.3 EXPERIMENTAL PROCEDURES

Films of randomly cut nickel flake (Alfa Aesar), with a maximum diameter of 44 

pm and an average thickness of 0.37 pm, supported by LDPE were produced by 

extrusion (Section 2.2.3) with varying concentrations o f filler. The crystallization rate 

(Section 2.3.6.1), fractional crystallinity (Section 2.3.5), electrical conductivity (Section 

2.5.1), and thermal conductivity ratios (Section 2.5.2) were measured as a function of 

nickel content. The network formation as a function of volume fraction was 

qualitatively examined by scanning electron microscopy (Section 2.3.4).

The melt temperature o f LDPE was 105.4±1.2°C and isothermal crystallization 

experiments were done at varying temperatures between 95° and 104°C. The data was 

fit to the Avrami equation. Equation 4-3, with the Jandel Scientific software package, 

Sigmaplot®, using the Marquardt-Levenberg nonlinear “best fit” algorithm.
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4.4 RESULTS AND DISCUSSION

4.4.1 Electrical Conductivity

Figure 4-1 shows the percolation diagram for the nickel-filled LDPE composites and 

indicates that the percolation threshold of nickel is between 5 and 7.5 percent nickel by 

volume. This critical volume fraction is lower than in most metal-filled systems 

because the flakes are randomly cut and anisotropic; therefore the flakes have a higher 

number of contacts per particle.^’̂ '* The plateau region, where a continuous network of 

conductive filler particles has formed, began at approximately 10 percent by volume.

4.4.2 Scanning Electron Microscopy (SEM)

SEM was used to qualitatively observe the formation of the network of nickel 

particles as the volume fraction of nickel increased. Micrographs (3 OCX), shown in 

Figure 4-2, visually follow the percolation diagram, that is, at low volume fraction the 

particles are randomly distributed in the material and have a low number of contacts per 

particle. At the percolation threshold, indicated by the 5 and 7.5 percent nickel images, 

the number of contacts per particle drastically increases. At 10 and 20 percent by 

volume, i.e. the plateau region of electrical conductivity, almost every particle is 

connected to other particles in a network. SEM images also confirm the randomness of 

the nickel flakes’ shape. The large distribution of flake sizes allows more efficient 

packing, thus reducing the percolation threshold. Upon closer inspection at higher
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Figure 4-1 Percolation Diagram for N ickel Filled LDPE
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Figure 4-2 SEM  Images for Nickel Filled LDPE at a Magnification o f  300X
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Figure 4-3 Uncorrected Crystallization Curves for PE at Various Temperatures
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magnification (not shown), hook shaped regions at the edge o f the flakes come together 

during processing to make more efficient interconnects and increase the bulk 

conductivity of the composites.

4.4.3 Isothermal Crystallization

Figure 4-3 shows the uncorrected isothermal crystallization curves for the material 

with the longest cooling time required, pure polyethylene, at temperatures of 93°, 96°, 

98°, and 100°C. As the isothermal crystallization temperature decreases, the time 

required for cooling begins to overlap with the beginning o f crystallization and 

isothermal crystallization is not achieved. Only a small amount of crystallization occurs 

for temperatures above 95°C; before the sample reaches the isothermal crystallization 

temperature, thus, this study was limited to temperatures between 95° and 104°C.

Figure 4-4 shows the isothermal crystallization rate of LDPE as a ftmction of time for 

2.5, 5, 10, and 20 percent nickel by volume at a 100°C. The nucléation time, i.e. the 

time corresponding to the onset of crystallinity, decreases as the concentration of filler 

increases. The higher slope between 0 and 90 percent relative crystallinity for materials 

with more nickel indicates a faster crystallization rate. Finally, at higher nickel 

contents, the curves terminate more abruptly. The first two effects can be explained by 

an increase in thermal conductivity of the composite, while the abrupt termination is 

probably due to impingement by nickel particles.

Crystal growth is an exothermic process, and any set o f conditions that increase the 

heat transfer rate would be expected to increase the rate of nucléation and the linear
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growth rate, G. The Avrami crystallization rate constant was used to quantify the 

increase in the rate of crystallization as shown in Figure 4-5. As expected, for a given 

nickel loading there was a slight increase in the Avrami rate constant, K, with 

temperature, but this change was much smaller than that due to the increase in filler 

volume fraction. In fact, K increases sharply between 7.5 and 10 percent nickel by 

volume, which is the same volume fraction that corresponds to the beginning of the 

plateau region in electrical conductivity.

The thermal conductivity ratio, calculated from Equations 2-13 and 2-14 (Figure 4- 

6(a)), also increased monotonically with increasing filler loading. The data was fit 

using Equation 4-4; the best-fit value of A was 12.05 with Vm being set at 0.52. Vm was 

fixed at this value because the nickel flakes were randomly oriented and anisotropic.^* 

According to the correlation given by Bigg, this value of A corresponds to an average 

aspect ratio of approximately 8. °̂ In Figure 4-6(b), the ratio (K</Kp)*  ̂represents the 

ratio of linear growth rates for the composite and polymer, Gc/Gp. At low volume 

fractions, the growth rate ratio follows the thermal conductivity, but Gc/Gp increases 

much more rapidly than the thermal conductivity above the critical region. In fact, 

complete network formation appears to cause a very steep jump in growth rate. The 

continuous network of nickel particles at high concentrations may cause increased local 

heat transfer as the energy is more efficiently dissipated. In other words, as the 

concentration of filler is increased, local temperature gradients caused by the heat of 

fusion of the polymer chains will be reduced.
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Figure 4-4 Crystallization as a Function o f  Volume Fraction for 2.5, 5, 10, and 20
Percent N ickel Filled LDPE
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Figure 4-5 Avrami Rate Constant, K, as a Function o f  Temperature and N ickel Content
in Nickel Filled LDPE
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Figure 4-7 shows the crystallization kinetics for a composite made with silica, which 

has a similar thermal conductivity to the thermal conductivity o f the polymer. The 

addition of silica decreased the overall crystallization rate; actually slightly impeding 

crystallization. As expected, without the increased thermal conductivity, no increase in 

crystallization rate was observed.

The Avrami exponent, shown in Figure 4-8, was not sensitive to nickel volume 

fraction, thus indicating that the dimensionality was not changed by the presence of the 

filler. Since the Avrami exponent depends on the mechanism of nucléation, the 

invariance of n with the addition of nickel indicates that nucléation was not the source 

of the increased crystallization rate. In fact, for particulates with sizes similar to the 

nickel used in this study, the overall crystallization rate is usually slowed by the addition 

of filler consistent with the results presented for the silica-filled composites. Therefore, 

the increase in crystallization rate is due to an increase in the linear growth rate, G. 

Because crystallization is exothermic, the improved heat transfer provided by the nickel 

particles is the cause o f this increase in linear growth rate. This work demonstrates that 

the increase in crystallization rate is greatest for materials where a continuous network 

of high thermal conductivity filler has formed.

4.4.4 Fractional Crystallinity

This study of crystallization kinetics in metal-filled composites was motivated by
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Figure 4-6 Heat Transfer Effects; a) Thermal Conductivity Ratio, kc/kp ([A]
Experimental Data; [—] Nielsen’s Model; b) Avrami Rate Constant Ratio, 
(Kc/Kp)*^, which Corresponds to the Ratio of the Linear Growth Rates, 
Gc/Gp ([■] Experimental Data; [—] Nielsen’s Model (for isothermal 
crystallization at 100°C)
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Figure 4-7 Crystallization as a Function of Volume Fraction for 5, 10, 15, and 20 
Percent Silica Filled LDPE (isothermal crystallization temperature was 
100°C)
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Figure 4-8 Avrami Exponent, n, as a Function o f Temperature and Concentration in 
Nickel Filled LDPE
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the increase in the fractional crystallinity in extruded composite films [see Figure 4- 

9(a)]. As shown in Figure 4-9(b), the addition of nickel to the LDPE did not have a 

significant effect on the fractional crystallinity in these high temperature, isothermal 

crystallization experiments; instead, the crystallization rate increased. This difference is 

almost certainly due to the difference in the rapid cooling, non-isothermal conditions of 

film extrusion versus the isothermal conditions of a DSC crystallization experiment. 

Both observations are almost certainly due to the same underlying phenomena: the 

increased heat transfer of the composite relative to the polymer resulting from the 

addition of the nickel particles.

The fractional crystallinity actually decreased slightly with increasing temperature in 

the isothermal crystallization experiments. From thermodynamics, the fractional 

crystallinity should increase with increasing isothermal crystallization temperature. 

However, crystallization kinetics were followed in the initial time period of 

crystallization and only a quasi-equilibrium was reached. Since secondary 

crystallization was not examined, the counter-intuitive lower fractional crystallinity at 

higher crystallization temperatures might have resulted.

4.5 CONCLUSIONS

We have shown that the network of nickel particles described by percolation 

statistics, used to characterize the electrical conductivity, is also important in 

determining crystallization kinetics. A large jump in electrical conductivity over a very
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short range of concentration occurs when the first continuous pathways of nickel 

particles form; complete network formation corresponds to the plateau region in 

electrical conductivity. In crystallization, complete network formation causes a sharp 

increase in linear crystal growth rate, much larger than the bulk thermal conductivity 

would predict. We believe that complete network formation causes the energy released 

during crystallization to be more effectively removed in a microscopic sense. The 

continuous network of nickel particles dissipates the heat of crystallization, thus 

allowing crystallization to occur more rapidly.
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Figure 4-9 Fractional Crystallinity; a) As a Function of Nickel Concentration for
Extruded LDPE Composite Films; b) As a Function of Temperature and 
Nickel Volume Fraction in Isothermally Crystallized LDPE Composite Films
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4.6 NOMENCLATURE

Xr Relative crystallinity

Ps Crystalline density

Pm Melt density

X(t) Fractional crystallinity as function of time

t Time

X(oo) Final fractional crystallinity

No Number of particles added to the system

G Linear growth rate

K Avrami rate constant

n Avrami exponent

kc Composite thermal conductivity

kp Polymer thermal conductivity

kf Filler thermal conductivity

V Volume fraction

Vm Maximum packing fraction

A Neilson geometric constant

B Empirical parameter defined by Equation 4-5

Y Empirical parameter defined by Equation 4-6
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CHAPTER 5

POLYMER MATRIX COMPOSITES: 
CONDUCTIVITY ENHANCEMENT 

THROUGH POLYPYRROLE COATING 
OF PARTICULATES

5.1 INTRODUCTION

The electrical resistance of polymeric materials loaded with conductive fillers can 

be divided into three major categories: the intrinsic resistance of the filler and matrix, 

the particle-particle contact resistance, and the tunneling resistance. A method for 

decreasing both the particle-particle contact and tunneling resistance in particulate filled 

low density polyethylene (LDPE) composites which involves modifying the particle 

surface by the addition o f an ultrathin polypyrrole (PPy) film by admicellar 

polymerization has been developed. This method has been applied to nickel flakes, 

alumina, and glass fibers: which represent conductive, resistive, and insulating 

particulates, respectively. It is believed that these resistances are reduced by the 

formation of PPy “molecular wires” which occur as a result o f chain entanglements at 

high filler loading. Coating the particulates with PPy leads to an increase in 

conductivity at concentrations above the percolation threshold without significantly
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changing the thermal or mechanical properties of the composite. The inherent loss in 

conductivity with stretching was reduced by the PPy surface modification and the 

“molecular wire” theory can also explain this phenomenon.

5.2 BACKGROUND AND LITERATURE REVIEW

Due to the importance of the polymer-filler interactions on the physical properties of 

the polymer matrix composite, modification of the filler surface can lead to changes in 

the overall properties. Previous studies indicate that the surface of inorganic 

particulates, such as silica, alumina, titanium dioxide, or copper oxide, can be modified 

by the addition of conductive polymer films inducing changes in the overall 

conductivity and/or surface mor pho l ogy . Be ca us e  most conductive polymers are 

intractable, the films are formed by polymerization on the surface o f the particulate by 

techniques such as electrochemical oxidation, chemical initiation or chemically initiated 

polymerization on surfaces with oxidative sites.'*’̂ '̂  The addition of ultrathin, 

electrically conductive polymer films changes the nature of the interaction between the 

particles, thus effecting the physical properties of the composite.

Others have reported changes in specific mechanical properties of particulate-filled 

polymer-matrix composites through the modification of the filler surface. For example, 

methacrylate and epoxy functional silane coupling agents have been used to modify 

clay, wollastonite, and quartz particulates in polyolefin composites.’ The composites 

with the coupling agents have higher moduli, stiffiiess, and strength-to-weight ratios
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than composites made from the unmodified fillers. Mechanical strengths of polymer- 

matrix composites with inorganic particulate fillers, such as silica, have also been 

enhanced by the addition of an ultrathin coating added by admicellar polymerization. 

The ultrathin polymer film apparently makes the filler more compatible with the 

polymer host by building a bridge of physical bonds between the filler and the matrix.* 

This study reports the increase in electrical conductivity above the percolation threshold 

due to the addition of an ultrathin conducting polymer film on the filler surface. To 

date, we are aware of no prior studies of increasing the conductivity of particulate filled 

polymer-matrix composites above the percolation threshold by this type of surface 

modification.

Many processing techniques, such as profile extrusion, film blowing, or calendaring, 

stretch or orient the polymer. As the conductive composites are stretched, the filler 

particles are pulled apart and the conductive pathways are broken, resulting in a 

decreased conductivity.’ In systems with anisotropic filler particles, the initial 

stretching induces a slight increase in conductivity as the filler particles become aligned 

then decreases exponentially as the filler particles are pulled apart.”

Ultrathin polymer films are often used to change the surface of a substrate in order 

to enhance properties such as adhesion to another material or corrosion resistance.

Other possible applications for materials modified with ultrathin coatings include 

chromatographic packing, inorganic core ion exchange resin, and substrates for 

immobilized hydrophobic enzymes." One recently introduced mechanism to add an 

ultrathin film to a substrate is termed admicellar polymerization.^ Polypyrrole (PPy)
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has been shown to form ultrathin conductive films on the surface of both plate and 

particulate substrates through admicellar polymerization/^ This paper expands this 

technology by modifying fillers that are conductive, resistive, and insulating and 

determining the effect on the conductivity of a thermoplastic composite made with the 

modified filler.

5.2.1 Admicellar Polymerization

Admicellar polymerization can be visualized as the two-dimensional surface 

analogue of emulsion polymerization with the micelle being replaced by a surfactant 

bilayer. There are four steps in this process: admicelle formation, monomer 

solubilization, initiation and polymerization, and washing. A schematic representation 

of the four steps is shown in Figure 5-1 and described briefly below.

5.2.1.1 Admicelle Formation

A bilayer of surfactant, called an admicelle, is adsorbed on the surface of the 

substrate in water. The pH of the solution is adjusted so that the head groups of a 

surfactant are attracted and held to the substrate surface. An adsorption isotherm is a 

plot of the surfactant adsorption as a function of concentration in solution at a constant 

temperature and is shown schematically in Figure 5-2. In Region 1, only random 

adsorption of surfactant molecules occurs on the surface of the substrate. As 

concentration of surfactant increases, more structured adsorption occurs as the heads of
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Figure 5-1 Schematic Diagram o f  the Admicellar Polymerization Process
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the surfactant are attracted to the surface and the tails draw towards each other, but 

uniform coverage of the surface is not attained in Region II. In Region III, a uniform 

bilayer of surfactant molecules has formed on the surface. In region IV, no more 

surfactant adsorbs to the surface of the substrate; in many cases the transition between 

Regions III and IV corresponds to the critical micelle concentration (cmc) where 

micelles first begin to form in solution. It is important that micelles do not form in 

solution so as to prevent emulsion polymerization. To perform an admicellar 

polymerization, the surfactant concentration must be below the critical micelle 

concentration, but sufficiently high to favor admicelle formation on the particle surface.

5.2.1.2 Solubilization

After the surfactant bilayer has formed on the substrate’s surface, hydrophobic 

monomer is added to the solution. The monomer partitions to the adsorbed bilayer.

5.2.1.3 Polymerization

The polymerization reaction is initiated with a water-soluble initiator.

5.2.1.4 Washing

After polymerization, the modified particulates are collected and washed to remove 

the outer layer of surfactant.

Admicellar polymerization has been performed on silica, glass fibers, nickel, and
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Figure 5-2 Schematic Diagram o f  an Adsorption Isotherm
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alumina with monomers such as styrene, ethylene, propylene, tetrafluorethylene and 

pyrrole. The kinetics of the admicellar polymerization reaction have been studied and 

modeled by Wu et al. An in-depth study of solubilization and adsolubilization was 

done by Funkhouser et al? Articles based on the work presented in this chapter have 

been published by our research group.

In this study, the surface o f nickel flakes, alumina, and glass fibers were modified 

by the addition of polypyrrole (PPy), an intrinsically conductive polymer, by admicellar 

polymerization. The nickel flake was characterized by both an optical microscope and 

scanning tunneling microscopy (STM) in order to determine the nature of the coating. 

Both the fillers and the modified fillers were incorporated into a low-density 

polyethylene (LDPE) matrix and the electrical conductivity of the samples was 

measured as a ftmction of concentration. The effect of processing on the conductivity 

of the composites was determined by preparing samples by both solution casting and 

extrusion, as well as testing the conductivity as a function of draw ratio for the solution 

cast composites. In addition, the tensile properties of the LDPE and fractional 

crystallinity of the composite were also determined.

5.3 EXPERIMENTAL PROCEDURES

5.3.1 Adsorption Isotherm

In all cases, an ionic surfactant, sodium dodecyl sulfate (Aldrich) was used. The pH 

of the water solution was adjusted to be below the point of zero-charge for each
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substrate and is listed in Table 5-1. Adsorption isotherms for nickel flake (Sigma) and 

glass fibers (Owens Coming, Fiberglas Reinforcements) were measured; the adsorption 

isotherm for alumina (DeGussa) has already been published.^ Solutions of sodium 

dodecyl sulfate (SDS) from 1000 to 12000 pM were prepared for the adsorption 

isotherm measurements and as standards for HPLC calibration. Four grams of nickel 

flake or two grams of glass fibers was placed in 30 milliliters of solution for each 

concentration and allowed to equilibrate for 24 hours. A Shimadzu 10-A HPLC with a 

Waters 486 tunable UV absorption detector was used to measure the final concentration 

of SDS in solution. The SDS adsorbed per gram of substrate was determined from the 

difference in the concentration between the standard solution and the solution, which 

contained the sample.

5.3.2 Admicellar Polymerization

Admicellar polymerization was performed on nickel flake, alumina, and glass fibers 

at the conditions specified in Table 5-1. Surfactant concentrations were adjusted so that 

polymerizations took place in Region III of the isotherm. The pH of the solution was 

adjusted to the desired value using hydrochloric acid and SDS was allowed to adsorb on 

the surface for 24 hours. Pyrrole (Aldrich) was filtered through a packed bed of basic 

alumina, added to the reaction, and given 24 hours to solubilize into admicelles.

Sodium persulfate (Aldrich) was used to initiate the oxidative reaction at a molar ratio 

of pyrrole to initiator of 1:1. The reaction was carried out for 24 hours at 25°C to
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ensure completion. Particulates were collected by vacuum filtration and washed with 

water, then air dried for 24 hours prior to vacuum oven drying at 70°C for an additional 

24 hours.

5.3.3 Particulate Characterization

Samples of both the filler and surface modified filler were placed in a Linburg Hevi- 

Duti Furnace overnight at 800°C to remove the PPy-coating by burning. The samples 

were weighted in a Mettler H31AR Balance before and after burning. Assuming the 

oxidation was the same for both samples, the weight fraction of PPy was determined 

from a mass balance.

Images of the uncoated and coated particles were compared using an optical 

microscope and scanning tunneling microscopy (STM) and current imaging tunneling 

spectroscopy (CITS), as outlined in Sections 2.3.2 and 2.3.3, respectively.

5.3.4 Film Preparation

The volume fraction o f filler, V, was determined from the filler weight fraction and 

the density of both phases as shown in Equation 5-1.

W p

V = ----------  [5-1]
W p  1 -  W p  ^
 - 4 - ------ --
PF P p
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Where wp is the filler weight fraction, and pp and pp are the densities of the filler and 

matrix, respectively. For the PPy-coated composites, the volume of PPy is accounted 

for as shown in Equation 5-2.

W p  W p p y

V =  ^    [5-2]
W p  "^PPy 1 — W p

PF PPPy Pp

Where the weight fraction of PPy, wppy, was determined as outlined in Section 5.3.3 and 

pPPy is the density of polypyrrole.

Composite films were produced using solution casting (Section 2.1.1), extrusion 

(Section 2.2.2), and powder mixing (Section 2.2.3). The solvent used for LDPE in this 

study was xylene. Uniaxial stretching was performed by the method described in 

section 2.2.4.

5.3.4 Characterization

Conductivity, tensile properties, and fractional crystallinity were measured using the 

procedures in Section 2.4.1, 2.4.3, and 2.3.5, respectively.
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T able 5-1 Polymerization Conditions

Filler SDS I îM] Pyrrole [mM] pH Filler [g/L|
Nickel Flake 7500 20 4 50
Alumina 11000 76 3 30
Glass Fibers 4250 8 3 40
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5.4 RESULTS AND DISCUSSION

5.4.1 Adsorption Isotherms

Figure 5-3 shows the adsorption isotherm for the nickel flake. Region III adsorption 

was approximately 17 p.moIs per gram of nickel flake corresponding to a final SDS 

concentration in solution o f6600 pM. Data in the plateau region of adsorption was 

quite scattered and repeated testing did not remove the scatter from the data. The same 

amount of scatter was not seen in either the glass fibers (Figure 5-4) or alumina and 

may be a result of non-uniform particle areas in the randomly cut flakes.

The adsorption isotherm for the glass fibers showed a Region III adsorption of 

approximately 8 pmols per gram of glass fibers corresponding to a final concentration 

of 3900 pM in solution after adsorption. Alumina adsorbed approximately 300 pmols of 

SDS per gram of alumina corresponding to a final SDS concentration of 400 pM. 

Differences in adsorption are due to the difference in surface areas of the substrates.

The surface area of alumina is approximately 100 m^/g as a result of porosity. Nickel 

flake and glass fibers are non-porous and have a much smaller surface area per gram of 

material and hence much less SDS can absorb. Therefore, the polymer coating on the 

nickel flake and glass fibers will be completely on the outside of the substrate and much 

less pyrrole is needed.
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Figure 5-3 Adsorption Isotherm o f  Sodium  Dodecyl Sulfate on N ickel Flake
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Figure 5-4 Adsorption Isotherm of Sodium Dodecyl Sulfate on Glass Fibers at a pH of
3.0
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5.4.2 Particulate C haracterization

The weight fraction of PPy on nickel was determined to be approximately 5.8 

percent. The large-scale structures of nickel and PPy-coated nickel flakes, observed 

under an optical microscope, were similar. Both were flakes of approximately 40 pm 

with sharp edges and the grain boundary size of nickel and PPy-coated nickel were 

about the same (below 1 pm). No PPy were observed, indicating that the polymer was 

preferentially polymerized on the nickel surface.

STM, AFM, and CITS were used to investigate the structure o f the PPy-coating on 

the surface of the nickel flakes. Figure 5-5 is a I pm STM image o f PPy-coated nickel, 

which shows aggregates protruding up to 300 nm vertically from the substrate surface. 

The protrusions measured by section analysis ranged in thickness from 20 to 150 nm. 

To further understand the underlying PPy film, a 0.5 cm x 0.5 cm nickel foil (0.1 mm, 

Alfa Aesar) was coated with PPy under the same conditions as the flake, except without 

stirring. Figure 5-6 shows two AFM images: the image on the left is a bare nickel and 

the image on the right is PPy-coated. PPy-coating increased the horizontal total linear 

grain size by approximately 50 nm. Even though STM and AFM were able to show 

increased protrusions and grain size, distinguishing the film from the substrate in 

topographical images was difficult to achieve due to the randomness of the flake cuts.

Figure 5-7 is a 100 nm X 100 nm STM and CITS image of PPy-coated nickel. The 

upper left frame in the figure is a standard STM height image in which the tunneling 

current is kept constant, while the image on the right is a CITS image. The PPy,

130



Figure 5-5 STM  Image o f  PPy-coated N ickel Flake (scan size, l|m i x 1 |im; set point, I
nA; bias voltage 2V)
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Figure 5-6 AFM Images of Bare (left) and PPy-coated (right) Nickel Foils (image size, 
502 nm x 502 nm)
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Figure 5-7 STM and CITS Images o f  PPy-coated N ickel (scan size, 100 nm x 100 nm;
bias, 2 V; bias for CITS Image I V)
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shown as bright regions, in the STM image is consistent with CITS and indicates the 

higher resistivity of the PPy (2 mQ«cm) than that of nickel (6.97 |iQ«cm.‘̂ **’ Both the 

presence of the protrusions and the higher presence indicate that PPy has coated the 

nickel surface in a patch-wise structure.

5.4.3 Nickel Composites

5.4.3.1 Conductivity

Figure 5-8 shows the percolation diagram for solution cast nickel and PPy-coated 

nickel flakes and indicates a percolation threshold for both composites of approximately 

5 percent by volume. The conductivity curves have the same shape, but above the 

critical volume fraction the conductivity o f the PPy-coated nickel-filled composites is 3 

orders of magnitude greater (10'^ S/cm vs 10'^ S/cm) than the composite made from the 

uncoated nickel.

Increased conductivity in the composite films at a given filler loading is a result of 

either a decrease in the resistivity of the filler, or a decrease in the particle-particle 

contact and/or tunneling resistances. The resistivity of both the coated and uncoated 

nickel flakes was measured as approximately I . I ohm-cm. In order to determine if the 

surface modification could have significantly increased the resistivity of the flakes, the 

resistivity, with and without the addition o f the PPy-coating was calculated. For these 

simplified calculations, all resistances were assumed to be the same in each direction so
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Figure 5-8 Percolation Diagram for Nickel and PPy-coated Nickel -  Mixing by 
Solution Casting

Nickel Flake 
PPy Coated Nickel
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that all the currents canceled except for the current along the direction o f  the voltage 

drop. The randomly shaped flakes were modeled as uniform disks. The particle- 

particle contact resistance of the powder, Rcr, was calculated using Equation 5-3,

R c r = ^  [5-3]

where po (6.97 pn«cm) is the intrinsic resistivity of the flakes and d is the contact 

diameter. The average contact diameter was estimated to be approximately 0.79 pm by 

geometrical considerations. The approximate resistivity of the uncoated nickel flakes 

was calculated to be 2.8 ohm-cm, which is close to the measured value o f 1.1 ohm-cm. 

Based on a uniform monolayer of the PPy-coating the particle and the film resistance in 

series with the packing resistance, the estimated resistivity of the modified nickel 

powder was calculated to be approximately 8.8 ohm-cm. While these values are only 

approximate, they show that the PPy-coating should have significantly increased the 

resistivity o f the powder. This inconsistency between the measured and calculated 

trend in resistivity is probably due to non-uniform coating of the particles as observed in 

the STM images. Non-uniform coatings of PPy particulates has been reported in the 

literature using a different polymerization technique than the one used here.* Both the 

calculated and the experimental resistivities testing indicate that the increase in the 

conductivity of the composite is not a result of a lower filler resistance.

Since the conductivity of the nickel and PPy-coated powders are not significantly 

different, we believe the three order o f magnitude increase in conductivity is due to the 

combination of two phenomena. First, the admicellar coating reduces the particle-
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Figure 5-9 Schematic Diagram of Molecular Wire Formation in PPy-coated Nickel- 
LDPE Composites

Nickel
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particle contact resistance. Figure 5-9 is a schematic diagram of the possible 

interactions of the PPy-coating with the polymer matrix. PPy entanglements are 

probably formed between the particles and act as bridges. These entanglements 

increase the contact area between the nickel particles by, in effect, becoming “molecular 

wires” connecting the filler particles causing an increased contact area due to contacts 

of PPy particles outside the polymer matrix. Further, the PE matrix shrinks during 

solvent evaporation and crystallization, internal stresses place forces on the filler 

particles. The PPy-coating softening the surface enhances this effect. The softer 

surface on the PPy-coated nickel particles will also increase the contact area versus the 

non-coated material. Second, entanglements between the PPy and the LDPE will “short 

circuit” the tunneling resistance because the film thickness between the conductive 

pathways decreases due to formation o f conductive polymer paths between nickel 

particles.

In order to determine how processing effects the conductivity enhancement of the 

PPy-coated nickel filler, composites of PPy-coated nickel and nickel flake were 

preparedby melt mixing in an extruder. The 3 order of magnitude incremental increase 

in composite conductivity due to the PPy-coating was decreased to 2 orders of 

magnitude when the composites were processed by extmsion as shown in Figure 5-10. 

The high shear in the extruder may dislodge some of the PPy film or the particles may 

be broken apart by mechanical forces exposing more non-coated surface area.

Figure 5-11 shows the conductivity versus draw ratio for both the nickel and PPy- 

coated nickel at a volume fraction in the critical region (7 percent) in the stretching
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direction. As with the conductivity profile, in the critical region the conductivity of the 

nickel and PPy-coated nickel are approximately 5 x 10"̂  S/cm. The composites 

followed the same trend in conductivity versus draw ratio by initially increasing, then 

decreasing exponentially as the filler particles are pulled apart breaking the conductive 

pathways.

Above the critical region (Figure 5-12), the nickel filled composite shows the same 

trend as in the critical region, but the PPy-coated nickel composite only shows a slight 

decrease in conductivity at draw ratios as high as 2.5. This observation, as depicted 

schematically in Figure 5-13, is consistent with the nickel flakes being connected by the 

PPy “molecular wires.” Intrinsically conducting polymers, such as polypyrrole (PPy), 

contain conjugated backbones with sp^ hybridized orbitals that lead to overlap of the 

unhybridized p orbitals along the chain. Orientation o f the polymer chains leads to 

more linear conductive pathways that increase the conductivity o f the material in the 

stretching direction. The PPy entanglements that tie the particles together and become 

more conductive with draw ratio may counter the loss in conduction due to the filler 

particles being pulled apart.

S.4.3.2 Crystallinity

As shown in Figure 5-14, the crystallinity of LDPE increased with increasing 

volume fraction. While the data indicates that the PPy-coating does slightly increase 

the crystallinity at low volume fractions, there is no statistical difference in crystallinity
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Figure 5-10 Percolation Diagram for Nickel and PPy-coated Nickel — Mixing by 
Extrusion
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Figure 5-11 Conductivity versus Draw Ratio for Nickel and PPy-coated N ickel - LDPE
Composites in the Critical Region (7 % by volume filler)
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Figure 5-12 Conductivity versus Draw Ratio for Nickel - LDPE (A )  and PPy-coated
N ickel - LDPE (■ )  Composites in Plateau Region (13 % by volume filler)
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Figure 5-13 Schematic Diagram o f  PPy Entanglements During Stretching

Nickel - Stretched
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at high filler loadings. The high branching o f the LDPE matrix prevents the polymer 

from forming large crystalline regions and the crystallinity is consistent with other 

highly branched polyethylene.^”

S.4.3.3 Mechanical Properties

The tensile modulus of the composite materials increased with increasing volume 

firaction, as shown in Figure 5-15. However, the elongation at break, shown in Figure 

5-16, and the ultimate strength, shown in Figure 5-17, decreased exponentially by the 

initial addition of the nickel due to the creation of fracture points at the nickel - LDPE 

interface. The addition of the PPy-coating to the nickel did not significantly change the 

mechanical properties as PPy is not miscible with LDPE. PPy is much stiffer than 

LDPE and is not soluble in xylene and may act as a mechanical reinforcing agent 

similar to nickel under these conditions. To test this hypothesis, the mechanical 

properties of a 29 percent by volume LDPE - PPy blend were measured. The blend 

showed similar values in tensile modulus, elongation at break, and ultimate strength as 

that of the metal flake filled composites. This indicates that PPy is acting as a filler and 

that interfacial adhesion between the filler and the polymer-matrix was not significantly 

changed by the addition of the PPy-coating.

5.4.4 Alumina and Glass Fiber Composites

Figure 5-18 shows the percolation diagram for alumina, indicates tliat the
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Figure 5-14 Crystallinity versus Concentration o f  N ickei-LDPE (A ) and PPy-coated
Nickel-LDPE (■ )  Composites
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percolation threshold is between 10 and 15 percent by volume, and was not affected by 

the addition o f the PPy-coating. The significantly higher percolation threshold of 

alumina compared to the nickel flakes is a result of a much lower aspect ratio of the 

former. The plateau conductivity for the PPy-coated alumina composites was on the 

order of 10"̂  S/cm, a 4 order of magnitude increase over the non-coated composites. As 

discussed above, the powder conductivity of the nickel flakes was not affected by the 

addition of the PPy-coating indicating that the primary electron transfer phase was the 

nickel particles.

The coated alumina had a powder conductivity of approximately 10"̂  S/cm, compared 

to ICf* S/cm for the non-coated alumina powder. This result, coupled with the shift in 

the percolation threshold, indicates that a significant fraction of electron transfer occurs 

in the PPy phase independent of the alumina.

The percolation diagram for the glass fiber composites is not presented here. Above 

the percolation threshold, composites made from the coated material had a 1 order of 

magnitude higher conductivity than the composite made from the non-coated glass fiber 

(10‘‘̂  vs. 10'*'’). We believe this result indicates that even though the glass fiber is 

above the percolation threshold, no continuous network of PPy molecules exists in this 

material.
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Figure 5-15 Tensile M odulus versus Concentration o f  N ickel-LDPE (A ) and PPy-
coated Nickel-LDPE (■ ) Composites
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Figure 5-16 Elongation at Break versus Concentration o f  Nickel-LDPE (A )  and PPy-
coated Nickel-LDPE (■ )  Com posites
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Figure 5-17  Ultimate Strength versus Concentration o f  Nickel-LDPE (A )  and PPy-
coated Nickel-LDPE (■ )  Composites
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Figure 5-18 Percolation Diagram for Powder M ixed Alumina
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5.5 CONCLUSION

PPy-coating by admicellar polymerization increases the conductivity of nickel-filled 

LDPE above the percolation threshold by approximately 3 orders o f magnitude. This 

increase may be due to the formation of “molecular wires” created by PPy 

entanglements at the particle-particle interface. These entanglements probably decrease 

the particle-particle contact resistance by increasing the contact area of the filler 

particles and may also reduce the tunneling resistance by decreasing the film thickness 

through which a conducting electron must hop.

The large-scale structures of PPy-coated nickel and nickel flakes are similar. The 

flake is approximately 40 pm and no PPy particles mixed with PPy-coated nickel flakes 

were observed. The film-like and strand-like structures observed in STM images of 

PPy-coated nickel confirms the existence ofPPy on the nickel flakes. The small-scale 

STM study showed the film-like structure had lower conductivity than that of the nickel 

substrate.

The typical loss in conductivity with draw ratio was not observed in the PPy-coated 

nickel composites at filler concentrations above the critical region. This retention in 

conductivity may be explained by the stretching of the “molecular wires” which allows 

the conductive pathways to stay intact. The mechanical properties o f the composite 

were not affected by the addition o f PPy-coating. This composite system has enhanced 

electrical properties, which may expand the processing techniques available for metal 

filled polymer matrix composites.

151



The mechanical and thermal properties of the composite were not affected by the 

addition of the PPy-coating. The crystallinity of the LDPE increases with increasing 

filler concentration. At higher volume fractions the coating did not statistically affect 

the crystallinity. The tensile modulus increased with filler concentration, but the 

ultimate stress and elongation at break decreased with the increasing filler concentration 

due to poor polymer-filler adhesion. The mechanical properties of the composite were 

not affected by the addition of the PPy-coating to the nickel particles as a result of the 

immiscibility ofPPy in LDPE.

The admicellar polymerization technology has been shown as a viable method for 

producing ultrathin, conductive films on particulates to be used as fillers for conductive 

composites. The surface modifications increase the conductivity by at an order of 

magnitude over the unmodified films conductive, resistive, and an insulator substrates. 

The limitation of this technology is the ability to get uniform coverage necessary to 

obtain greater increases in conductivity on non-conductive substrates.
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5.6 NOTATION

V Volume Fraction o f  Discontinuous Phase

Pf Piller Density

P p  Matrix Polymer Density

pppy Density of Polypyrrole

wp Filler Weight Fraction

wppy Weight Fraction of Polypyrrole

Rcr Particle-Particle Contact Resistance

po Intrinsic Resistivity of Filler

d Contact Diameter
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CHAPTER 6

CONCLUSIONS 
AND 

FUTURE WORK

6.1 INTRODUCTION

Past research on conductive polymer-matrix composites has focused on the 

relationships between concentration, geometry, and dispersion of the discontinuous 

phase and the physical properties of the resulting material. However, the volume 

fraction -  geometry approach does not take into account the influence of polymer 

morphology and polymer-filler interactions on the composite properties. The work 

presented in this dissertation has focused on the following questions:

• How does the presence of the filler affect the polymer?

• How does particulate surface modification change the properties of the 
composite material?

The preferential orientation and crystallization kinetics studies presented in Chapters 3 

and 4, respectively, describe changes in the matrix polymer induced by the filler. 

Changes in both the electrical conductivity and processibility of the composite due to 

modifications of the particulate surface are presented in Chapter 5.
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6.2 HOW DOES THE PRESENCE OF THE FELLER AFFECT THE 
POLYMER?

These studies have shown that the filler changes the structure and morphology of the 

polymer in the following ways:

• Addition of whisker like fibers by reticulate doping formed a two-dimensional 
network in the casting plane. This network of TTF-TCNQ changed morphology 
by shifting the preferential orientation o f the LDPE crystallites from 
perpendicular to parallel to the casting surface.

• An incremental increase in preferential orientation of the uniaxially stretched 
TTF-TCNQ -  LDPE was observed with increasing draw ratio, but this 
incremental increase was reduced at higher filler loadings.

• Addition of metal flakes alters the crystallization kinetics due to the changes in 
local heat transfer.

6.2.1 Polymer Crystallite Orientation

WAXS was used to study PE crystallite orientation in reticulate doped polymer 

composites of TTF-TCNQ supported by PE. The solution cast films of PE showed 

orientation of the crystallite lamella perpendicular to the casting surface, but the 

addition of TTF-TCNQ microcrystallizing inside the matrix forced PE crystals to 

preferentially form parallel to the casting surface. Uniaxial stretching parallel to the 

casting surface increased the orientation of the crystallites along the stretching direction. 

The incremental increase in orientation with stretching was decreased with higher filler 

loading.
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WAXS studies were only performed on systems of TTF-TCNQ, which form 

branched whiskers with high aspect ratios. The change in preferential orientation has 

been attributed to the formation of a two-dimensional network of TTF-TCNQ parallel to 

the casting plane. Additional experimentation with fillers produced in different shapes, 

such as spheres, flakes, and fibers, could induce different preferential orientation 

profiles for each geometry.

Many novel switching devices have been designed based the temperature 

dependence of composite conductivity. Studying the temperature dependence of the 

CTC -  polymer composites may lead to devices for applications in as temperature 

induced switching devices. In addition, only the DC conductivity was measured and 

characterization of the AC conductivity may also improve our understanding of 

reticulate doped polymer composites.

All samples in the WAXS study were solution cast. Testing different processing 

techniques, such as extrusion and calendaring, which may also produce a two 

dimensional network of anisotropic particles, would provide additional insight into the 

cause of the shift in preferential orientation. This work should also be expanded to 

include non-conductive fillers, such as reinforcing agents.

6.2.2 Crystallization

Isothermal crystallization experiments have been carried out for nickel-LDPE 

composites fi’om 95° to 104° C. The network of nickel particles described by
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percolation statistics, used to characterize electrical conductivity, can also be applied to 

changes in crystallization kinetics. There is an upward shift in the crystalliiation rate, 

which corresponds to the end of the critical region in electrical conduction. 1 believe the 

continuous network of nickel particles dissipates the heat o f crystallization, thus 

allowing crystallization to occur more rapidly.

Work has already begun to expand the crystallization kinetics study from isothermal 

crystallization to in-situ film formation in extruded nickel-LDPE composites. Nickel 

supported by LDPE was examined with varying filler loadings and draw ratios. A plunger 

type extruder with a film die head and a stretching apparatus, shown in Figure 6-1, was 

built at the University o f Oklahoma. As shown in Figure 6-2, the device mounted 

directly to the %-circle o f a wide angle x-ray scattering camera. The effect of nickel on 

the crystallization of the LDPE was studied in-situ by specifying a particular bragg 

reflection peak and setting the detector at its scattering angle (9) in order to measure the 

intensity versus crystallization time. In order to fully characterize the relationship 

between processing properties and crystallization time, samples with both increasing 

volume fraction and draw ratio were examined. These experiments were done in 

conjunction with conductivity measurements and viscometry in order to understand the 

effects of nickel on the electrical properties of the composites and the crystallization 

kinetics of the polymer.
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Figure 6-1 Plunger Extruder with Film D ie and Stretching Apparatus
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Figure 6-2 Extruder and Stretcher shown in %-Circle
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6.3 HOW DOES PARTICULATE SURFACE MODIFICATION 
CHANGE THE PROPERTIES OF THE COMPOSITE 
MATERIAL?

The addition of an ultrathin PPy film to the surface of particulates for applications in 

conductive composites induced the following changes in composite properties and 

processibility:

• Polypyrrole (PPy) coating o f the particulates enhanced composite conductivity 
due to the reduction in the particle-particle contact and tunneling resistances.

• The PPy coating increased conductivity for conductive and resistive fillers: 
however, conductivity for insulating fillers did not increase substantially.

• The loss o f conductivity due to processing was reduced by the addition o f the 
PPy film.

• Mechanical properties were not affected by the addition of the PPy coating.

The admicellar polymerization technology has been shown as a viable method for

producing ultrathin, conductive films on particulates to be used as fillers for conductive 

composites. The typical loss in conductivity with draw ratio was not as significant in 

the PPy-coated nickel composites at filler concentrations above the critical region. 

Addition of a polypyrrole film to nickel particulates increased the conductivity of 

nickel-filled composite 2-3 orders of magnitude, depending on the processing method 

used to mix the polymer and the filler. In aluminum oxide, the conductivity increased 4 

orders o f magnitude. The larger increase in the latter is probably due to the fact that 

polypyrrole acts as an alternate current path in portions of the composite, since the 

conductivity of polypyrrole is actually larger than the conductivity of alumina. In glass 

fiber composites, the increase in conductivity with the addition of a coating to the filler
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was minimal, which confirms that polypyrrole does not form a continuous network 

throughout the sample.

If the polypyrrole film totally covered the glass surface, then the polypyrrole 

network would have been continuous since the glass concentration was well above the 

percolation threshold. The composite conductivity in this case would be expected to be 

on the order of 10-5 S/cm. Changing polymerization conditions, in particular the 

surfactant used, might provide better coverage. In fact, a systematic study of reaction 

variables (surfactant type, surfactant amount, polymer amount) needs to be made for all 

three types of fillers. It may be possible to "fine tune" the plateau conductivity for a 

particular application by controlling these variables. Characterization of the conductivity 

as a function of both surfactant and monomer content should be obtained by varying 

each of these variables independently and measuring percolation diagrams.

The capability of using the modified particulate composites as temperature 

switching devices should be addressed through characterization of the temperature 

dependence of composite conductivity and could be carried out for both AC and DC 

conductivity. Experimentation into the time dependence of the conductivity would also 

help in understanding the reliability of devices produced from these conductive 

materials.

The mechanical properties of the composite films were not affected by the addition 

of the PPy coating due to the immiscibility of the PPy and LDPE. Other types of 

conductive polymers may be more compatible with the matrix polymer and better

163



adhesion at the filler-polymer interface could be achieved. This interface enhancement 

may increase the mechanical properties, while reducing the typical loss in conductivity 

associated with good polymer-filler adhesion by forming entanglements of the 

conductive polymer with matrix phase.

6.4 CONCLUSIONS

The morphology of the matrix and the structure of the polymer-filler interface play 

an essential role in the physical properties of the resulting composite. The experiments 

described in this dissertation have only begun to characterize the effect of the filler on 

the polymer and the interfacial phenomenon. By expanding this work, tailoring 

conductivity for specific applications through control of polymer morphology and filler 

coating might be possible.
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APPENDIX A

X-RAY BEAM ALIGNMENT OF THE HUBER 
6 CIRCLE DIFFRACTOMETER: STANFORD 

SYNCHROTRON RADIATION 
LABORATORY BEAM LEVE: 7-2

A.1 INTRODUCTION

The procedure to align the Huber 6-Circle Diffractometer was compiled from notes 

taken at the Stanford Synchrotron Radiation Laboratory (SSRL) in January 1997. This 

document was updated from notes taken during beam alignment in February 998 and 

from a short outline of alignment procedures provided by SSRL staff scientists.

A.1.1 Equipment Setup

Figure A-1(a) is a photograph of the Huber Diffractometer on beam line 7-2 at 

SSRL and Figure A-1(b) is a schematic diagram of the experimental setup. The x-ray 

beam is delivered to the hutch through a set of culmination slits with dimensions 

specified by the user, but set by the SSRL staff prior to the beam line being turned over 

to the users. After the x-ray beam enters the hutch, it through a vacuum flight path to 

scattering by air. A sets of slits are directly attached to the entrance o f the flight path
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that to eliminate beam broadening. An x-y positioner attached to the flight path was 

used to align the flight path with the beam. The x-ray beam then passes through the 

sample, which is attached to the %-circle. Another set of slits, used to define the 

diffraction angle, is attached to the entrance of the flight path to the detector.

A. 1.2 Overview of Alignment Procedures

The following steps are required in aligning the Huber 6-Circle Diffractometer:

1. Telescope Alignment - Align the center o f the chi and phi circles with a pin, then 
align the cross-hairs of the telescope to the center of the chi circle.

2. Align the beam by setting a pinhole at the center of the chi circle and doing a 
horizontal and vertical table scan to find the maximum intensity.

3. Find 2-theta = zero by slitting down on the slits in front of the ionization chamber 
and doing a 2-theta scan. The point o f maximum intensity is set as 2-theta = 
zero.

4. Set theta = 0

5. Center the initial intensity via the x-y positioner supporting the front slits and set 
the slit width and height.

6. Set the chi hardware and software limits.

7. Set the 2-theta hardware and software limits.

8. Set discriminator upper and lower limits from a known bragg reflection.

Note: Another set of motorized collimating slits located in front of the detector
flight path can also be adjusted, but were left completely open for the experiments
described in this dissertation.
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Figure A -1 X-ray Experimental Setup a) Photograph b) Schematic Diagram
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A.2 PRE-ALIGNMENT PROCEDURES

Most of the alignment procedure requires the measurement of the direct x-ray beam. 

The germanium detector used in the experiment cannot be used in the direct beam and 

must be replaced by an ionization chamber before alignment begins. The ionization 

chamber has two electronic hookups, the first for the high voltage power input - the red 

wire- (strait) and the second to be attached to the Keithley amplifiers - the green wire - 

(bent), then on to the computer system.

After the ionization chamber has been put in place, the 2-theta arm must be balanced 

to keep from over burdening the motor (see Figure A-2). This is done with weights 

located in the far left hand comer of the hutch or the diffractometer cabinet located 

across the pedestrian walkway. These should either be bolted into place or held into 

place by vinyl tape, which can be purchased from the storeroom. Balance is achieved 

when the set screw on the 2-theta arm can be released without significant movement of 

arm.

Note: After the ionization chamber is replaced with the Germanium Detector, the 2- 
theta arm must be re-balanced.

Before alignment begins, the motors to be used both for alignment and for the actual 

experiments must be set up on the computer. These motors include:

T heta

2Theta
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Figure A-2 Side View of Huber Dif&actometer with Ionization Chamber 
used in Alignment.
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Chi
Phi
TABLE (TABLE VERTICAL)
THOR (TABLE HORIZONTAL)
VERT (X-Y POSITIONER VERTICAL)
HORZ (X-Y POSITIONER HORIZONTAL)
S2V (MOTORIZED SLITS VERTICAL)
S2H (MOTORIZED SLITS HORIZONTAL)

From the $-prompt, you can list ail motors by using the following command:

ASSIGN

The motor numbers can be changed or additional motors assigned by the set command: 

SET [MOTOR NAME] AT [MOTOR NUMBER]

For example:

Set 2THETA AT Ml

would set the 2THETA motor as motor 1. Up to 8 motors can be assigned. The motor 

properties can be viewed or changed via the motor control command by typing,

MOT/C

at the $-prompt.

A.3 ALIGNMENT PROCEDURES

A.3.1 Chi and Phi Circle Alignment.

The chi and phi circles are made up of a Huber 512 eulerian cradle and a Huber 410 

goniometer and the goniometer head is a Huber type 1003; these are depicted 

schematically in Figures A-3 and A-4. The chi and phi alignment allows rotation in
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either direction without any spatial deviation. The rotation of the chi and phi circles is 

done manually during alignment by loosening the set screws on the side of each circle. 

These are large hexagonal screws, but are only finger tight and can easily be loosened. 

There are several directional controls that can be adjusted in order to obtain this 

alignment. The first is the z-control on the Huber 410 goniometer, located at the bottom 

of the goniometer. The second the x and y positioners on the Huber 1003 Goniometer 

head. A special tool is required in order to make these adjustments. The third is the 

diagonal adjustment on the Goniometer head. Place the calibration pin, shown in Figure 

A-5, in the Goniometer head and view through the telescope while making all 

adjustments.

• Rotate the Chi Circle while making adjustments to the three dimensional 
controls.

• Rotate the Phi Circle While making adjustments to the three dimensional 
controls.

• Repeat this process until there is no spatial deviation upon rotation in both the 
chi and phi directions.

After the Chi and Phi alignment is finished, the telescope must be set such that the

cross-hairs are aligned directly on the center of the pin (which should be exactly at the

center of the Chi circle). This is done by loosening the alien screws holding the

telescope in place and making the appropriate adjustments.
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Figure A-3 Side V iew  o f  Chi and Phi Circles

Side View chi Circle

Huber 512 Cradle

3  Telescope

Alignment Pin A

Gomiometer Head

Huber 410 phi circle

Gomiometer

n

172



Figure A-4 Front V iew  o f  Chi and Phi Circles
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Figure A-5 Photograph of Chi and Phi Circles with Calibration Pin in Goniometer 
Head.
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A.3.2 Beam alignment through the center o f the chi circle.

Figure A-2 is a schematic drawing o f the Huber Diffractometer, as it would be 

arranged for alignment for the pole figure measurements. The Germanium Detector 

must be replaced with the ionization chamber and the 2-theta arm must be balanced as 

discussed above. The pin (from Section A.3.2) in the Huber Goniometer Head model 

1003 is replaced with an alignment pinhole through an absorbing lead shield as shown 

in Figures A-6 and A-7.

Open all three sets of slits and follow the procedure listed below:

A.3.2.1 Vertical Alignment

•  Do a LINE SCAN above and below the pinhole. By the following command:

LINE [MOTOR! [INCREMENT] [NUMBER OF POINTS]

• The increment is the distance between points and the number of points is the 
number both before and after the point at which the motor is currently located. 
For example:

LINE TABLE 0.1 20

• This line scan will scan 20 points every 0.1 millimeters above and below the 
height at which the vertical motor is located for a total of 40 points.
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Figure A-6 Pinhole for Alignment
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Figure A-7 Photograph o f  Pin Hole on Goniometer Head
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• Line Scan can the table vertically and plot this in s-plot

• To start s-plot open a new window and at the $ prompt type:

SPL

Once the SPL prompt has been obtained, type: DISPLAY

• To watch the progress, type:

UPDATE/REPEAT

• When the scan has fished press [CONTROL][C] to stop the display, then at the 
prompt type:

FIT

• One of the items listed by the fit is the maximum value. If you prefer to find this 
point firom the data itself, type:

CURSUR

• Now set the table vertical motor to the height that corresponds to the maximum 
intensity by typing:

TABLE [MAXIMUM VALUE]

• For example, if the maximum value occurred at 45.35 millimeters then to set the 
table to 45.35 millimeters type:

TABLE 45.35

Repeat this process for smaller values of the increment until satisfied that the 

maximum intensity is going through the center of the hole.
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A.3.2.2 Horizontal Alignment

The procedure for the horizontal alignment is the same as vertical alignment, except 

motor THORZ is being optimized.

The line scan would be as follows:

LINE THORZ 0.1 20 

Setting the motor position would follow the as follows:

THORZ 16.25

A.3.3 Setting 2-THETA = zero

Setting 2-THETA to zero is done by doing a line scan with the 2THETA motor and 

optimizing the intensity.

• The line scan is set by the following command line:

LINE 2THETA 0.1 20

• Follow the same procedure as in the table alignment in order to determine the 
maximum position.

• To set the value first move the motor to the maximum position by a command 
line similar to:

2THETA2.15

• To reset 2.15 (or whatever the value is) to zero type:

2THETA/RESET 0

• Repeat with smaller increments to optimize this procedure.
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A 3 .4  Set Thêta =  0.

THETA was set equal to zero by using a removing the set screw on the front end of 

the diffractometer and using a level to determine the point where it was perpendicular to 

the table. This is not an exact technique, but since the theta will not be used in the 

experiment, it was not necessary to be more exact than this.

A.3.5 Set Front and Back Slits

• Remove the pinhole.

A.3.5.1 Front Slits

A.3.5.1.1 Vertical Alignment

• Set the vertical position on the front slits

• Do a LINE scan with the VERT motor

• Move the motor at the maximum intensity

• Repeat until optimized

A.3.5.1.2 Horizontal Alignment

• Set the horizontal position on the front slits

• Do a LINE scan with the HORZ motor

• Move the motor at the maximum intensity

• Repeat until optimized
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A.J.S.2 BACK SLITS

• Set the vertical and horizontal slits at the desired dimensions.

• Repeat the 2THETA motor alignment with very small increments.

Note: This also optimizes the 2THETA alignment using the smaller beam size.

A.3.6 Set Chi hardware and software limits

A.3.6.1 Hardware Limits

• Set the minimum angle the chi motor will move without binding the electrical 
cords or contacting/damaging any other equipment. This is a limit switch which 
will turn off the motor if contacted

• This is done by placing the switch at the appropriate angle and tightening the set 
screw.

A.3.6.2 Software Limits

• Set the software limits for each motor in the computer by going to the motor 
control screan:

MOT/C

• Then change the limit by typing:

Phi

• It is best to set these limits based on what your experiment will require while 
setting the hardware limits based on what the equipment can do thus giving a 
double check that the equipment will not be damaged.
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A.3.7 Setting the 2THETA Hardware and Software Limits

A.J. 7.1 Hardware Limits

The hardware limits are set by the same procedure for the CHI limits except the 
major considerations are to have the germanium detector NEVER be directly in 
the beam. The lower limit must be at least 3°.

A.3.7.2 Software Limits

• Software limits are set by the same procedure as for the CHI software limits.

A.3.8 Set Discriminator Limits

• The discriminator removes all signals except those coming from the desired 
components (i.e. inelastic scattering).

• Replace the ionization chamber with the germanium detector.

• Balance the 2THETA arm.

• Set 2Theta at a known diffraction angle for a known sample (alumina in our 

case).

# Set the upper and lower windows of the discriminator using the oscilloscope as a 
guide

NOTE: I may need a little help with this one determining which signal is the 
primary signal.

A.4 HELPFUL SSRL STAFF

• Bart Johnson bart@slac.stanford.edu
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•  Sean Brennan

• John Arthur

Tom Hostetler

Dave Day 

Duty Operators

bren@sIac.stanford.edu

jarthur@siac.stanford.edu

hostetler@siac.stanford.edu

dday@siac.stanford.edu
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APPENDIX B

DSC CALIBRATION PROCEDURES

B.l INTRODUCTION

This appendix is designed to be a systematic procedure for obtaining a baseline and 

calibrating the DSC II and supersedes the operation manual due to the modifications to 

the cooling system and the addition o f a computerized data acquisition. Due to the 

different types of experiments possible with DSC equipment, this appendix only 

outlines setting up the equipment, obtaining a baseline, and calibration of the 

temperature scale.

B.2 EQUIPMENT SET UP

1. The computer used with the DSC-U is on a cart and is also used in data collection 
with other equipment. Two wires, white and gray, are attached to the DAS800 
board in the computer. Attach the wires as labeled on the yellow wires on the 
DSC.

2. Turn power on to both the DSC and the computer.

3. Connect the helium cylinder to the purge line and set the regulator at a discharge 
pressure of 20 psi.
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4. Connect the nitrogen cylinder to the glove box gas inlet connection. Set the flow 
to 10 scfh.

5. The DSC is equipped with a connection and hose for a 160L dewar o f liquid 
nitrogen (LN). Connect the LN dewar and open the liquid valve on the top.
Allow the DSC to fill until the level indicator reaches the first black line, then shut 
the valve.

6. Allow the system to equilibrate for approximately 60 minutes. Additional LN will 
be required during the equilibration.

B.3 BASE LINE CALIBRATION

Before beginning the calibration of the baseline, the high temperature (T h) and low 

temperature (T J must be determined. It is suggested Th be set at least 50° above T l be 

set at least 50° below the temperature range of interest in the experiments. The 

scanning rate (SR.) should also be re-determined.

1. Set cooling rate to 320° per minute.

2. Set heating rate to SR.

3. Set low temperature set point to Tl.

4. Set high temperature set point to Tr.

5. Set range to 10 meal.

6. Place empty aluminum pans in both the sample and reference holders.

7. Use the program:

• c:\das800\temp\dscbgd.exe

• Start Temp. = Tl

• End Temp. = T h
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•  Scanning Rate =  SR

8. Press the heat button and enter simultaneously.

9. View baseline on computer to determine needed changes; Figure B-1 shows the 
effects of different control changes.

• Should changes in the ATy be required, an estimate of the numerical change 
required can be obtained from Equations B-1 and B-2, with H estimated as 
shown in Figure B-2 (in inches).

ATb = H*60 [B-1]

Tb=Tb + ATb [B-2]

10. Repeat as necessary. An acceptable baseline has a variation between the 
beginning and ending of less than 50 arbitrary units (AU).

The calibrated base line, as depicted schematically in Figure B-3, will have program

peaks at the initial and final temperatures.

B.4 TEMPERATURE RANGE CALIBRATION

B.4.1 Gallium Sample

1. Load an empty pan into the reference chamber.

2. Load the gallium sample into the sample chamber.

3. Heat or cool chamber to 280°K.

4. Start computer program:

• C:\das800\temp\dsccal.exe
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Figure B-1 Changes in DSC Controls; a) Calibration Zero; b) Calibration Range; c) 
ATb; Clockwise and Counterclockwise refer to the rotation o f the control 
knob

Clockwise C ounterclockwise

/

1 1

/

Tem perature Tem perature
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Figure B-2 ATb Change Estimation; Initial and Final Peaks are Program Peaks
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Figure B-3 Schematic Diagram of Base Line with Initial and Final Temperature 
Program Peaks
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• Start Temp = 280

• End Temp = 320

• Scan Rate = SR

Note: The melt temperature of gallium is 302.9°K.

5. Press the heat button and enter on the computer simultaneously.

6. Determine the melt temperature from the DSC output using the dsccal.exe 
graphics routine.

B.4.2 Indium Sample

1. Load an empty pan into the reference chamber.

2. Load the indium sample into the sample chamber.

3. Heat or cool chamber to 415°K.

4. Start computer program:

• C:\das800\temp\dsccal.exe

• Start Temp = 415

• End Temp = 440

• Scan Rate = SR

Note: The melt temperature of indium is 429.8°K.

5. Press the heat button and enter on the computer simultaneously.

6. Determine the melt temperature from the DSC output using the dsccal.exe 
graphics routine.
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B.4.3 D eterm ine N ew  T em perature Calibration R ange Setting

1. Determine the indicated difference between the melting points of gallium and 

indium.

2. Use Equations B-3 to determine the change in the range calibration setting. The 
actual difference in melting points of gallium and indium, ATact, is 126.9°.

AR =  r 2 AT ind AT act

AT act

3. The new temperature calibration range setting is determined by Equation B-4.

R = R + AR [B-4]

4. Change the Temperature Range Calibration to the new setting, R.

5. Repeat this the procedure outlined in Section B.4 unit the difference between the 
melting points of gallium and indium is 126.9°.

B.5 TEMPERATURE ZERO CALIBRATION

1. Load the gallium sample in the sample chamber.

2. Set heating rate to SR.

3. Heat or cool chamber to 280°K.

4. Start computer program:

• C:\das800\temp\dsccal.exe

• Start Temp = 280

• End Temp = 320
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•  Scan Rate = SR

Note: The melt temperature o f  gallium is 302.9°K .

5. Press the heat button and enter on the computer simultaneously.

6. Adjust the temperature calibration zero; clockwise to adjust the temperature 
lower; coimterclockwise to adjust the temperature higher.

7. Repeat this process until the gallium melt temperature reads 302.9°K.

B.6 ENERGY CALIBRATION

1. Load the indium sample in the sample chamber.

2. Set heating rate to SR.

3. Heat or cool chamber to 280°K.

4. Heat until the indium melt peak is produced (T=429.8°K).

5. Calculate the area under the peak, A.

6. The transition energy, AHt, for indium is 6.8 cal/gram and is equal to the Equation

Where K is DSC calibration constant, r is range sensitivity, w is weight of 
sample, and S is 1. K is determined by rearranging Equation B-5, as shown in 
Equation B-6.

AHt*W*S [B-6]
R*A

The energy calibration can also be done with gallium; the transition energy is 19.19 

cal/gram.
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B.7 ADDITIONAL NOTES

If using oriented samples, you can only get one heating because the heating will 
change the morphology of the sample.

The base line is sensitive to the liquid nitrogen level. For optimal results, the 
liquid nitrogen should be refilled to the first black line between each step of 
calibration and between each sample.
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APPENDIX C 

TTF SYNTHESIS

C.l INTRODUCTION

Tetrathiafulvalene (TTF) was synthesized and purified by a three-step procedure 

adapted from Narita and Pittman. '

1. Synthesis of l,3-dithioIe-2-thione (intermediate)

2. Synthesis 1,3-dithiolium hydrogen sulfate (intermediate)

3. Synthesis of TTF

This appendix is designed to be a step-by-step procedure.

C.2 SYNTHESIS PROCEDURE

C.2.1 l,3-dithioie-2-thione

C.2.1.1 Synthesis

1. Obtain 10 Ibm dry ice from the chemistry stock room.

2. Add the dry ice to the baths filled with propanol.

• The first bath contains the stainless steal condenser.

194



Figure C-1 a) l,3-dithiole-2-thione; b) Synthesis o f  Sodium Acetylenide

a

H

C
+ Na

Na+

C

C C

H H
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• The second bath contains the I liter reactor (orange top 1 liter flask).

3. Condense 600 milliliters of ammonia into the reactor

4. The reactor contains 3 holes:

• Nitrogen spurge/blanket.

• Acetylene inlet.

• Purge hole.

5. Add 9.2 grams (0.4 mole) o f sodium in small chunks.

• The sodium was is cut using an exacto knife with a clean blade on a
clean rubber mat. Sodium reacts violently with water and care must be 
taken not to have any moisture contact.

• The sodium is weighted in a polypropylene petri dish.

• When the sodium is added to the reactor, the ammonia turns a deep blue 
color. Give 10 to 15 minutes to allow all of the sodium to dissolve.

• After the sodium has been charged to the reactor, fill the petri dish with 
the residual solvent with propanol. The propanol reacts with the with the 
sodium slowly.

6. Bubble acetylene in until all the sodium is reacted

• at dry ice temperatures this is approximately 2 minutes.

• This is indicated by the solution turning a milky white color.

7. Add 400 milliliters of anhydrous ether.

• The ether is introduced using a funnel through the same port used for 
sodium.
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Figure C-2 a) Reaction o f Sodium Acetylenide with Sulfur b) Reaction with Carbon 
Disulfide

a

Na
C C

- Na+

C C

H H

- Na+

C

+ es
c /

c

H H

Na
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•  This must be added in two 200 milliliter portions in order for the solution to 
stay below the boiling point o f ammonia.

8. Add 12.8 grams (0.4 mole) o f sulfur.

• In order to keep the sulfur powder from being fluidized, the nitrogen 

purge must be turned o ff during the sulfur addition.

• Make sure to restart the nitrogen purge after the addition of the sulfur.

• As the sulfer reacts, the solution turns a deep purple color.

9. Add a magnetic mixer to the solution.

10. Remove reactor from dry ice bath and place it on a stirring hot plate at a low 
temperature setting (3) and a medium to high mixing speed (6).

11. Allow ammonia to evaporate - takes about I 1/2 hours for the reactor to heat to 
room temperature and the ammonia to evaporate.

• The solution was kept imder nitrogen during the entire operation.

• When the solution has reached room temperature, turn off the heat part 
of the hot plate, but continue to stir the mixture.

12. Add 600 milliliters of acetonitrile.

13. Two 120 milliliter container fixed with a lid and tube for pumping were 
prepared with the following ingredients:

• 12 milliliters o f carbon disulfide.

• 100 milliliters of anhydrous ether.

14. Pump the carbon disulfide solution into the reaction vessel slowly o f I hour.

15. Allow the solution to react for an additional hour.

16. Add 100 milliliters of 12M hydrochloric acid to 100 milliliters of deionized 

water.
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17. Add the acid mixture to the reaction mixture.

18. Allow the solution to mix for 10 minutes.

C.2.1.2 Separation

C. 2.1.2.1 Filtration

1. Filter the solution.

2. Phase separate the water and organic phase.

C. 2.1.2.2 Ether Liquid-Liquid Extraction

1. Add 100 milliliters o f anhydrous ether to the water phase.

2. Phase separate the water and ether phases. Add the ether to the organic phase.

3. Repeat step 22 additional several times (approximately 1 liter of ether used in the 
extraction.

4. Add 2 grams of magnesitun sulfate to dry the organic phase and stir.

• Allow at least 2 to 4 hours, but it is good if you let it set overnight.

5. Filter the solution to remove the magnesium sulfate.

6. The ether was removed by distillation (bp 38°C).

7. Filter the solution to remove black by-products.

C.2.1.2.3 Methylcyclohexane Liquid-Liquid Extraction

1. 200 milliliters of methylcyclohexane brought to a boil.
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Figure C-3 Acidification
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• The boiling point is I01.8°C.

2. Add the boiling methylcyclohexane to the acetonitrile phase.

3. The solution was phase separated.

4. The liquid -liquid extraction with methylcyclohexane was repeated four times.

C.2.1.2.4 Crystallization o f 1,2-dithiole-2-thione

1. Distill the solution to remove all residual acetonitrile and all of the 
methylcyclohexane so the mother liquor contains 300 milliliters.

2. Filter the solution to remove byproducts that were carried into the reaction mixture 
by the residual acetonitrile.

3. Place the solution in a 500 milliliter beaker with a stopper and seal with parafilm.

4. Place in freezer overnight to allow crystallization to take place.

5. Separate the methylcyclohexane from the crystals by allowing the crystals to settle 
in a glass petri dish and taking the liquid off the top.

6. Allow the crystals to dry in the glove box for 48 hours.

The crystals are yellow-orange in color and have a melting point of approximately 

49°C, which was measured by DSC to ensure the correct product was obtained. The 

reaction yield was low and several batches were required before enough l,3-dithiole-2- 

thione was obtained to use in the next step of the synthesis. Refngeration was required 

in order to keep the intermediate from reacting.
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C.2.2 Synthesis o f  1^ -D ith iolium  H ydrogen Su lfate

The 1,3-dithiole-thone synthesized by the procedure in Section C.2.1 was reacted 

with peracetic acid to form a salt, 1,3-dithioIium hydrogen sulfate.

1. Obtain dry ice from the chemistry store room.

2. Form a dry ice bath by adding dry ice to 2-propanol in a insulated container.

3. Dissolve 12.7 grams (0.095 mol) of 1,3-dithiole-thione in 250 milliliters of 
reagent grade acetone in a 1 liter reactor.

• MW (1,3-dithiole-thione) = 134.24 g/mol.

4. Place the solution in the dry ice bath and cool to -50°C.

5. Add 0.38 mol of peracetic acid (dissolved in acetic acid) to 150 milliliters of 
reagent grade acetone.

• The density o f the peracetic/acetic acid solution is 1.130 g/cc.

• The molecular weight of the peracetic acid is 76.05 g/mol.

• The weight fraction of the peracetic/acetic acid solution is 32 percent
peracetic acid.

• The volume of acid solution to add to the acetone is 80 milliliters.

6. Charge approximately 50 milliliters of the peracetic/acetic acid/acetone solution 
to the reactor.

7. Remove the reactor from the dry ice bath.

8. Allow the reactor to worm to 15°C.

9. Place the reactor back in the dry ice bath and cool to -50°C.

10. Repeat steps 6 through 9 until all of the acid solution has been charged to the 
reactor. While the reactor is at approximately 15“C, filter the solution using the 
vacuum filter to collect the solids (1,3-Dithiolium Hydrogen Sulfate).
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11. Dry the salt overnight in the glove box.

The physical appearance o f the salt is brown/orange (like dirt). The yield was 

approximately 87 percent (16.6 grams).

C.2.3 TTF Synthesis

The final product, tetrathiaflilvalene (TTF) was formed by coupling the 1,3- 

dithiolium hydrogen sulfate.

1. Dissolve 0.03 moles (6.0 grams) of 1,3-dithiolium hydrogen sulfate (MW = 200.2 

grams per mole) in 200 milliliters of acetonitrile.

2. Add a nitrogen inlet so the reaction can be done in an inert environment.

3. Add a magnetic stirrer.
• note that the dithiolium hydrogen sulfate does not completely dissolve in 

the acetonitrile.

4. Purged the solution with nitrogen for 15 minutes.

5. Add 5 milliliters of triethylamine (0.035 moles) was added dropwise over a 15 
minute period.

• Triethylamine MW =101.19 grams per mole.
• Triethylamine density = 0.726 grams per milliliter.

6. Allow the solution to react for an additional 15 minutes.

7. Add excess deairated water to precipitate the TTF.

8. Stir for 10 minutes.

9. Filter to collect the solids.

10. Dry in glove box overnight.
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11. Dissolve the filtrate in boiling cyclohexane.

12. Dilute with n-hexane.

13. Cool overnight at 5°C (in refiigerator).

14. Separate crystals from mother liquor.

15. Allow crystals to dry in glove box.

16. Distill the mother liquor to 150 milliliters.

17. Cool overnight at 5°C.

18. Separate crystals from mother liquor.

19. Allow crystals to dry in glove box.

Yield was approximately 80 percent. The product was a long orange needle with a 

melting point of approximately 119.5°C as determined by DSC.
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