INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700  800/521-0600






THE UNIVERSITY OF OKLAHOMA
GRADUATE COLLEGE

THREE-DIMENSIONAL FINITE ELEMENT
MODELING OF TWO-PHASE
FLUID FLOW IN DEFORMABLE

NATURALLY FRACTURED RESERVOIRS

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the

degree of
DOCTOR OF PHILOSOPHY

By
FANHONG MENG
Norman. Oklahoma

1998



UMI Number: 9914411

UMI Microform 9914411
Copyright 1999, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI

300 North Zeeb Road
Ann Arbor, MI 48103



©Copyright by Fanhong Meng 1998
All Rights Reserved



THREE-DIMENSIONAL FINITE ELEMENT
MODELING OF TWO-PHASE
FLUID FLOW IN DEFORMABLE

NATURALLY FRACTURED RESERVOIRS

A DISSERTATION APPROVED
FOR THE SCHOOL OF PETROLEUM AND GEOLOGICAL
ENGINEERING

BY

—~tg

Yy

fos g —

MA- ch‘/\am% TLEUWOA_

Mzwﬁg



Dedicated to my family and friends ...

v



Acknowledgments

A dissertation is never the work of a lonely hunter. In my case. I have been so
blessed with the support. collaboration and encotragement from so many special
people.

My wholehearted thanks first go to my advisor. Dr. Jean-Clande Roegiers. His
academic advice. gnidance. encouragement. financial support. and close reading
of innumerable drafts of the dissertation have been invaluable. Furthermore. his
enthusiasm and devotion to rock mechanics. his scientific rigor. and his commitment
to excellence have constantly led me to strive for the best. I have to say he is the
best advisor [ have ever had and can ever expect to have.

I deeply appreciate Dr. Mao Bai for his help. guidance. and suggestions in
conducting the research work for this dissertation. My gratitide aiso goes to Dr.
Musharraf Zaman for his professional and technical help in my research work. Innu-
merable research meetings and countless discussions also led 22 journal/conference
papers or technical reports. Moreover. they read my research papers and my disser-
tation with excruciating scrutiny and helped me to clear any conceptual confusion
and avoid even typo errors.

I also thank other members of my advisory committee, Dr. Annj Gupta, Dr.

Michael Wiggins and Dr. Roy Knapp, for their advice and help. It is from them



that I learned several subjects in petroleum engineering which [ had lacked but
which were essential for my dissertation and future career.

[ also want to give my thanks to all my groupmates. especially Dr. Huaxing
Zhang. Dr. Mazen Kanj. Dr. Mian Chen. Mauro Bloch and Zhengying Shu. for so
many intellectual. interesting and personal exchanges from which I learned so much.

My appreciation goes to the help of all the members of the Rock Mechanics
Institute at The University of Oklahoma with special thanks to Ms. Carla Cates.
Mr. Don Cruickshank. Dr. Thurman E. Scott. Dr. Younane Abousleiman and
Ms. Leslie Flenniken. I am very grateful to them for keeping RMI such a pleasant
work environment and for nizking these vears such a constrictive and wonderful
experience for me.

My profound gratitiide goes to my family for sharing each bit of trouble and
happiness in my life. The understanding, encoiiragement and support always came
from my mother and father. I want to thank my brother for taking part of my
responsibility to take care of our parents and comfort them when they needed it
most. Actually as a doctor and researcher working in the medical school of the
University of Washington. he may contribiite more to our society for his studies
on AIDS and cancer. The support and love from my family have been a main
inspiration for me to accomplish the research work at The University of Oklahoma.

This dissertation is dedicated to them.



Contents

Acknowledgments v
List of Figures X
List of Tables xvi
Abstract xviii
1 Introduction 1
1.1 Objectives of the Research . . . . . . . .. .. ... .. ........ 3

1.2 Problem Definition . . . . . . . . . . ... .. ... ... .. .. 4
1.2.1 Naturally Fractured Reservoirs . . . . ... .. .. ... ... 4

1.2.2 Two-PhaseFlow . . . . . . . .. .. .. .. .. . ..... )

1.2.3 Reservoir Compaction . . . .. .. .. ... .. .. ...... 6

1.3 Literature Review . . . . . . . . . . ... 6
1.3.1 Naturally Fractured Reservoirs . . .. ... ... ... .. .. 6

1.3.2 Simulation of Fluid Flow in Fractured Reservoirs . . . . . . . 10

1.3.3 Coupling of Fluid Flow and Rock Deformations . . . . . . .. 14

1.4 Outline of the Dissertation . . . . . . . .. .. ... ... ....... 17

2 Theoretical Formulations 19
2.1 Imtroduction . . . . . . . . . . . e e e e 19



o
(8]

Preliminary Calculations and Relationships . . . . . . . .. .. .. ..

2.2.1 Porosities and Saturations . . . . . . . . .. .. ... ... ..

2.2.2  Fluid Pressure . .

2.23 Capillary Pressures . . . . . . . . ... ... ... ... ..

2.2.14 Relative Permeability . . . . . .. . .. ... ... ... ...

2.3 Immiscible Two-Phase Flow Continuity Equations . . . . . . . .. ..

2.3.1 Mass Conservation Equations . . . . . .. ... ... .. ...

2.3.2 Variation of Fluid Densities and Porosities . . . . . . . . . ..

2.4 Rock Deformations . . .

2.4.1 Constitutive Relationships . . . . . . . .. ... .. ... ...

2.4.2 Equilibrium Equations . . . . . . ... .. ..o 0L

3 Numerical Implementation

3.1 Nimmerical Methods . . .

3.1.1 Finite Difference Method . . . . . . . . . . . . . . ... . ...

3.1.2 Finite Element Method . . . . . . . . . . . . ... .. ... ..

3.2 Finite Element Discretization . . . . . . . . . . . . .. . . ... ...

3.2.1 Problem Domain

3.2.2 Weighted Residunals Method . . . . . . .. .. ... ... ...

3.2.3 Shape Function .

3.2.4 Nodal Unknowns and Discretization of the Equations . . . . .

3.2.5 Discretization in Time . . . . . . . . . . . . .. .. ... ...

3.2.6 Boundary and Initial Conditions. . . . . . . . . .. ... ...

3.2.7 Evaluation of Coefhicients . . . . . . . . . . .. .. ... ...

3.3 Computational Procedure

4 DModel Validation

viii

20
21

22

[SV] o
ot ot

[\)
ot

34
34
36



4.1

4.2
+.3

Elasticity and Steady-State Flow

4.1.1 Elastic Problem . .. . . ..
4.1.2 Steady-state Flow . . . . . .

One-dimensional Consolidation . .

Dual-porosity Two-phase Flow Problem . . . . . . . .. . ... . ...

Parametric Analyses

3.1

[$]] O Ot
e (9] o

(S]]
(1]

(¢}
(o))

Pure Elasticity and Steady-state Flow

Single-porosity Single-phase
Single-porosity Two-phase
Dual-porosity Single-phase
Dual-porosity Two-phase
Examples
5.6.1

5.6.2

Model Applications

6.1
6.2
6.3

6.4

Laboratory Tests
Finite Element Scheme
Single-porosity Approach
6.3.1
6.3.2 Two-phase Fluid Flow
Dual-porosity Approach
6.4.1

6.4.2 Two-phase Fluid Flow

Conclusions and Recommendations

7.1

Conclusions

ix

Single-phase for Single-porosity and Dual-porosity

Two-phase for Single- and Dual-porosity

Single-phase Fluid Flow . .

Single-phase Fluid Flow . .

136



7.2 Recommendations

Nomenclature
References

A Derivations of Volume Changes

A.l Decomposition of the State of Stress

A.2 Bulk Volume Variations

A.3 Variation in Total Pore Volume

A.3.1 Pore Volume Change Due to Mean Stresses and Pressires

A.3.2 Betty's Reciprocity Theorem

A.3.3 Pore Voliime Change Due to Deviatoric Stresses

A4 Variation in Solid Volume

B Terms in Finite Element Matrices

159

164

176

176

178
178

. 179

180
180
181

182



List of Figures

1.1 Naturally fractured medinm (after Kazemi. 1969). . . . . . . . . . ..

2.1 Capillary pressure with saturation . . . . . .. .. ... ... ... ..
2.2 Capillary pressures in a fractured reservoir with imbibition . . . . . .

2.3 Water saturation with relative permeability . . . . .. ... ... ..

3.1 Discretization of three-dimensional problem domains . . . . . . . ..
3.2 Three-dimensional elements . . . . . . . ... .. ... ... .....
3.3 Linear shape function for 1-D element with two nodes. . . . . . . ..

3.4 Schematic process of the solution procedure. . . . . .. . . . . .. ..

4.1 Finite element mesh and boundary conditions for elastic test 1. . . . .
4.2 Irregular element mesh for elastictest 2. . . . .. . .. .. .. ....
4.3 Irregular element mesh for elastictest 3. . . . . . . .. ... ... ..
1.4 Steady-state flow test. . . . . . .. .. ...
4.5 Consolidation problem and boundary conditions. . . . . . . . . .. ..
1.6 Pore pressture distribution along column forcase L. . . . . . . . . ..
4.7 Displacement with time at top column forcase 1. . .. ... . .. ..
4.8 Pore pressure distribution along the column for case 2. . . . . . . ..
4.9 Displacement with time at top column forcase2. . .. .. .. .. ..
4.10 Water saturation with capillary pressure. . . . . . . . . . ... .. ..

4.11 Surface subsidence with time. . . . . . . . . . .. . .. . ... ....



4.12
4.13
4.14

[$]] ot ot
- (V] (V]

(S]]
(S]]

Water pressiire changes near the top and at the bottom. . . . . . .. 74

Qil pressure change near the top and at the bottom. . . . . . . .. .. 74
Water saturation changes at the top and the bottom. . . . . . . . .. 75
Surface displacement response for single- and dual-porosity approaches. 83

Pressiire changes for single- dnal-porosity approaches. . . . . . . . .. 83
Displacements along the column. . . . . . . . . .. . .. ... ... 84
Pressure changes along the column. . . . . . . . . . .. .. ... ... 84
Surface subsidence for different fractiire permeabilities. . . . . . . . . 86
Bottom pressiure for different fracture permeabilities. . . . . . . . .. 86
Surface subsidence for different fracture spacings. . . . . . .. . . .. 87
Bottom matrix pressures for different fracture spacings. . . . . . . .. 88
Bottom fracture pressiires for different fracture spacings. . . . . . .. 88
Surface subsidence with time. . . . . . . . .. ... ... 91
Bottom pressure changes with time. . . . . . . . . . ... ... L. 91
Water saturation change at the bottom with time. . . . . . . . . . .. 92
Water saturation changes at the surface with time. . . . . . . . . .. 92
Water saturation with two sets of capillary pressures. . . . . . . . .. 93
Surface subsidence with time for different capillary pressures. . . . . . 94
Saturation at bottom with time. . . . . . . . ... ... ... 95
Saturations near surface with time. . . . . . . .. ... .. ... L. 95
Oil pressures at bottom with time. . . . . . . .. ... ... L. 96
Water pressures at bottom with time. . . . . . . . . ... ... .. .. 96
Water pressures near surface with time. . . . . . . . .. .. ... . 97
Oil pressures near surface with time. . . . . . .. . .. .. ... ... 97
Rock sample configuration. . . . . . . . .. .. ... .. ... ... 100
Mesh view in both horizontal and vertical planes. . . . . . . . .. .. 101

xil



6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27

6.28

Fliud pressures and displacements with time. . . . . . . . . .. . . .. 104

Cross-sections and points for the analysis. . . . .. ... ... . . .. 104
Fliuid pressure distributions at vertical plane. t = 1sec. . . . . . . .. 105
Fluid pressure distributions at horizontal plane. z = -0.1 m. t = 1 sec. 105
Displacements along x-axis at vertical plane. t = 1sec. . . .. .. .. 106
Displacements along x-axis at horizontal plane.t = 1sec. . . . . . . . 106
Fluid pressure contours at vertical plane. t =35sec. . . . . .. .. .. 107
Fluid pressure contoirs at horizontal plane. t =3sec. . . . . . . . . . 107
Displacements along x-axis at horizontal plane. t =5 sec. . . . . . . . 108
Fluid pressures and displacements along x-axis with time. . . . . . . . 109
Fluid pressures at vertical plane. t =1sec. . . . . . .. . ... .. .. 110
Fluid pressures at horizontal plane. t =1sec. . . . .. . ... .. .. 110
Fluid pressures at vertical plane, t =3sec. . . . . . . . . ... .. .. 111
Fluid pressures at horizontal plane. t =5sec. . . . ... ... .. .. 111
Displacements along x-axis at vertical plane.t = lsec. . . . . .. .. 112
Displacements in radial direction at horizontal plane. t = 1 sec. . . . 112
Displacements along x-axis at vertical plane. t = 3sec. . . . . . . .. 113
Displacements in radial direction at horizontal plane. t = 5 sec. . . . 113
Water pressures and displacements with time. . . . . . . . .. . . .. 116
Water saturations with time at different points. . . . . . . . .. . .. 116
Water pressures at central vertical plane. t =1sec. . . . . . . . . .. 117
Water pressures at central horizontal plane, t = 1sec. . . . . . . . .. 117
Water pressures at central vertical plane, t =3sec. . . . . ... ... 118
Water pressures at central horizontal plane, t =3sec. . . . . . . . .. 118
Water saturations at central vertical plane, t = 1sec. . . . . . . . .. 119

Water saturations at central horizontal plane. t = 1sec.. . . . . . .. 119

xiii



6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39
6.40
6.41
6.42
6.43
6.44
6.15
6.46
6.47
6.48
6.49
6.30
6.51
6.92
6.33
6.54

Water saturations at central vertical plane.t =35sec. . . . . . . . .. 120

Water saturations at central horizontal plane. t =3sec.. . . . . . .. 120
Displacements along x-axis at vertical plane.t = Il sec. . . . . .. .. 121
Displacements at central horizontal plane along x-axis. t = 1sec. . . 121
Displacements along x-axis at horizontal plane. t =3 sec. . . . . . . . 122
Displacements at central horizontal plane along x-axis. t = 5 sec. . . 122
Fluid pressures with time at different points. . . . . . . . . .. .. .. 125
Displacements along x-axis with time at different points. . . . . . . . 125
Fliid pressure at vertical plane. t = 1sec. .. .. ... ... ... .. 126
Fluid pressures at horizontal plane. t =1sec. . . . .. . ... .. .. 126
Fluid pressires at vertical plane.t =3sec. . . . . . . . . . .. .. .. 127
Fliuid pressures at horizontal plane. t =3sec. . . . .. . ... .. . 127
Displacements along x-axis at vertical plane.t = lsec. . . . . . . .. 128
Displacements along x-axis at horizontal plane. t =l sec. . .. .. .. 128
Displacements along x-axis at vertical plane.t = 3sec. . . .. .. .. 129
Displacements along x-axis at horizontal plane. t =5 sec. . . . . . . . 129
Fluid pressiires and displacements along x-axis with time. . . . . . . . 131
Fluid pressires in the matrix at vertical plane. t = 1 sec. .. . . .. 132
Fluid pressires in the matrix at horizontal plane, t =l sec. . . . . . . 132
Fluid pressures in the matrix at vertical plane. t = 5sec. . . . . . . . 133
Fluid pressures in the matrix at horizontal plane. t = 3 sec. . . . . . 133
Displacements along x-axis at vertical plane.t = 1sec. . . .. .. .. 134
Displacements along radial direction at horizontal plane. t =1 sec. . . 134
Displacements along x-axis at vertical plane.t =3sec. . . .. .. .. 135
Displacements along the radial direction at horizontal plane. t = 5 sec.135

Matrix water pressure changes with time at different locations. . . . . 137



6.55 Fracture water pressure changes with time at different locations. . . . 137

6.56 Matrix water saturation changes with time at different locations. . . . 138
6.57 Fracture water saturation changes with time at different locations. . . 139
6.58 Displacement changes with time along x-axis at different locations. . 139

6.59 Matrix water pressure distributions in vertical plane. y = 0. t = 1 sec. 141
6.60 Matrix water pressires in horizontal plane.z = -0.1 m. t = 1 sec. . . 141

6.61 Matrix water pressure distributions in vertical plane. y = 0.t = 5 sec. 142

6.62 Matrix water pressires in horizontal plane. z = -0.1 m. t = 53 sec. . . 142
6.63 Fracture water pressures in vertical plane. y = 0.t = lsec. . . . . . . 143
6.64 Fracture water pressures in horizontal plane. z = -0.1 m. t = 1 sec. . 143
6.65 Fracture water pressiures in vertical plane. y = 0.t =5sec. . . . . . . 144
6.66 Fractire water pressires in horizontal plane. z = -0.1 m. t = 5 sec. . 144
6.67 Matrix water saturation distributions in vertical plane. t = 1 sec. . . 143
6.68 Matrix water saturations in horizontal plane. t = lsec. . . . . . . .. 145
6.69 Matrix water saturation distributions in vertical plane. t = 5 sec. . . 146
6.70 Matrix water saturations in horizontal plane. t =3sec. . . . . . . .. 146
6.71 Fracture water satiration distributions in vertical plane. t = [ sec. . . 147
6.72 Fracture water saturations in horizontal plane. t = 1sec. . . . . . . . 147
6.73 Fracture water satiration distributions in vertical plane. t = 5 sec. . . 148
6.71 Fracture water saturations in horizontal plane. t = 3sec. . . . . . . . 148
6.75 Displacement distributions along x-axis in vertical plane. t = 1 sec. . 149
6.76 Displacements along x-axis in horizontal plane. t =1 sec. . . . . . . . 149
6.77 Displacement distributions along x-axis in vertical plane. t = 3 sec. . 130
6.78 Displacements along x-axis in horizontal plane. t =3 sec. . . . . . .. 150

6.79 Displacement distribiutions along y-axis in horizontal plane. t = 1 sec. 151

6.80 Displacements along y-axis in horizontal plane, t =3 sec. . . . . . . . 151



6.81 Matrix water pressures with time in no-loading and loading cases. . . 133
6.82 Fracture water pressures with time in no-loading and loading cases. . 133
6.83 Displacements along x-axis with time in no-loading and loading cases. 154

6.84 Displacements along z-axis with time in loading cases 154

A.1 Decomposition of the stressstate. . . . . . .. ... ... ... ... 176



List of Tables

41
4.2
4.3
4.4

o]]
—

(4]
o

6.1
6.2
6.3
6.4
6.5

Pressure distributions. . . . . . . ... . o000 64
Parameters nused in consolidationcase 1. . . . . . .. ... .. .. .. 67
Parameters nused in consolidationcase2. . . . . . . ... ... .. .. 70
Parameters used in two-phase validation. . . . . . .. ... .. .. .. 72
Parameters nsed in theexample. . . . . . . . .. ... ... ...... 82
Parameters nsed in two-phasecase. . . . . . . .. ... ... ... .. 90
Different methods used in the similation of the permeability test. . . 102
Parameters used in single-phase single-porosity case. . . . . . . . . .. 103
Parameters sed in two-phase single-porosity case. . . . . . . . . . .. 114
Parameters nsed in single-phase dual-porosity case. . . . . . . . . .. 124
Parameters used in two-phase dual-porosity case. . . . . . .. .. .. 136

xvii



Abstract

In many engineering problems. such as those in petrolenm and geotechnical en-
gineering. reservoir rocks have to be modeled as poroiis materials saturated with
finids. In order to accurately predict the behaviors of the reservoir and fluid flow.
the solid-phase deformations and fluid-phase flow must be fully-coupled in the nu-
merical calculation. Understanding and quantifving two-phase flow in fractured
porous media is important for mathematical modeling and nimerical simulation of
petroleum reservoirs. geothermal reservoirs. coal-beds exploited for methane and
niclear waste repositories. Both the need for abundant energy and the demand for
a clean environment have motivated many studies of two-phase flow in fractured
reservoirs. In this dissertation. a mathematical model for two-phase fliid flow in a
deforming fractured reservoir has been developed.

The naturally fractured reservoir is treated as a donble-porosity medinm con-
sisting of the primary rock matrix system. which contains large amount of fliiids but
has lower permeability. and the fracture system which represents a small voliume of
fluid but die to its higher permeability transmits a large portion of finid through
the porous media. For the two-phase fluids, not only do both fluids flow through
the rock matrix and the fractures, but also the effects of the capillary pressures.

saturations and the variation of relative permeability need to be taken into account.

xviil



The numerical model is based on the rigorous conservation equations of momen-
tum and mass. in which the solid deformations of the fractured porous media are
limped while the fluid pressiires of the wetting and non-wetting phases are evalu-
ated separately but linked through mass interchange terms for the two interactive
media. i.e.. matrix and fractures. The mathematical formulation describes a fully
coupled governing equation system which consists of the equilibrium equations for
the rock deformations and the continuity equations for two immiscible fliids flowing
in a fractiired porois medium.

Following the theoretical work is the construction of the nimerical schemes.
The nimerous unknowns are resolved through the finite element techniqiie. which
enables the soliitions to be obtained in the general three-dimensional space domains
and integration in time domains. In this model. material properties are represented
by the defined eight-node block elements. which form a mesh that is discretized by
the user to fit the shape of the object to be modeled. This non-linear system of
equations in the finite element model is solved using the direct iteration method.
in which each iteration is controlled by the error analyses of the unknowns. And
the elements of the coefficient matrices of the highly non-linear system are npdated
during each iteration in terms of the independent variables.

The developed theoretical formulation and numerical model are validated against
several cases where the analytical solutions or other model resilts are readily avail-
able. The performance of the numerical code is tested first by a couple of deconpled
cases: elasticity and steady-state flow. The analytical solution for a single-phase
single-porosity traditional consolidation problem is then used to verify the numer-
ical algorithm for coupled poroelastic systems. Finally a fillly coupled two-phase
flow and solid deformation problem is presented to compare results from both the

developed model and the finite difference model. The results from this case indicate



the validity and capability of the model.

Several applications including traditional consolation problems and simulation
of rock sample behavior in the laboratory are presented to illustrate additional per-
formance and capability of the model. Parametric studies. such as fractiure spacing
and the ratio between the fracture permeability and the rock matrix permeability.
allow better inderstanding of the developed model and the physical characteristics
in the studied problem. A example problem is presented to demonstrate the signif-
icant different results from both the single-porosity and dual-porosity approaches.
For simulating the rock sample characteristics. a series of studies have been carried
ont which include single-phase and two-phase fliid flow in both single-porosity and
dual-porosity approaches.

In comparison with other existing models of two-phase flow and solid deforma-
tion in fractured porous media. the present study offers more precise definition for
the interactive response between the matrix and the fractires in view of flow. In
addition. the comprehensive coverage of the influential mechanisms in the present
analysis is secured by complying with the rigorous theoretical derivations. rather
than formulating the governing equations based on a phenomenological fashion. as
shown in some other current models.

The developed numerical model can be a powerful tool to solve different prob-
lems in petrolenm engineering. such as purely elasticity. steady-state flow. coupled
problems of single-porosity single-phase. single-porosity two-phase. dunal-porosity
single-phase and dual-porosity two-phase. Also it can be used to simulate difficult
problems. for example water-flooding, reservoir evaluation. borehole stability and

reservoir sitbsidence.



Chapter 1

Introduction

Two-phase flow through fractires occurs in many subsurface flow systems that are of
engineering interest in the context of energy resoiirces recovery (petrolenm. natiral
gas. geothermal water and steam) and environmental protection areas (chemical
contamination in groundwater aquifers. partially saturated zones).

Experience with two-phase flow has been considerably more extensive in the
petrolenm engineering field than in the field ot groundwater hydrology. Although
both fields have a common basis in the physics of immiscible fluids. they address
different sets of problems. For example. interest in fractured petrolenm reservoirs
commonly focises on prediction of oil displacement from matrix blocks under vari-
ouis recovery plans. Predicted pressure changes in each fluid phase are key variables
in characterizing reservoir performance. In geothermal systems. the phases of inter-
est are steam and water. and an important area of concern is the generation and
migration of steam with a decline in the reservoir pressure. In environmental ap-
plications. an important issiie concerns the redistribiition of an organic solvent in
a water-satirated medinm that initially contains none of this phase. In this case
the interest is in the spatial extent and distribution of solvent in the subsurface
(Committee on fracture characterization and fluid flow, 1996).

Understanding the fluid flow behavior is particularly essential for the successful



development of a naturally fractured reservoir. It is estimated that siich formations
contain a substantial amount of oil. Because of the usunally low primary prodiction
from these reservoirs and the increasing scarceness of new oil fields. the application
of enhanced oil recovery processes in naturally fractured reservoirs is now receiving
a greater attention. Yet. fluid flow phenomena in such reservoirs are not adequately
1inderstood: and considerably more research needs to be done in this area.

Numerical simulation is recognized as a valuable tool for reservoir engineering
studies. Simulation enables one to forecast field performance inder a variety of
proditction schemes. An oil-field can only be produced one time: and once the
prodiction scheme is selected. it is often irreversible. The advantage of reservoir
simulation lies in the fact that the simulation model can be run many times at
relatively low cost. allowing engineers to experiment with several sets of input data:
i.e. the models can easily be “exercised”. Observation of modeling results helps
engineers choose the best set of well locations and prodiction schemes.

Simulation of two-phase flow in a naturally fractured petroleum reservoir is nor-
mally carried ont by nusing the concept of dual continua, also called “dual-porosity”.
Finite element. finite difference. boundary element and analytical methods have
been employed to solve the equiations resulting from the dual-porosity approach.

Special attention should be given to the reservoir deformation or subsidence
problems. Numerous field studies related to reservoir compaction and subsidence
problems have been reported in the literatiire. examples of which are the Wilmington
Oil field. Long Beach. California (Allen, 1968); the oil fields along the Bolivar Coast
of Lake Maracaibo, Venezuela (Merle et al., 1976); the Groningen gas field, The
Netherlands (Schoonbeek. 1976) and the Ekofisk Field in the North Sea (Marius.
1990).

In petroleum engineering, rocks have to be modeled as porous media saturated



with pore fluids. such as oil and water. The analyses of the fully coupled systems of

the stress-fluid-flow in the naturally fractured reservoir have been studied for many

years.

1.1 Objectives of the Research

The major purpose of this dissertation is to study the behavior of two-phase finid

flow through deformable naturally fractiired reservoirs. Based on the objectives. the

following goals are set:

1.

[V

The dnal-porosity concept is applied in this study for the naturally fractured
reservoirs. The fractired rock has two degrees of porosity. one corresponding
to the fractures (fissures) and the other corresponding to the rock pores. The
reservoir system is viewed as a poroelastic skeleton infiltrated by a two-state
fluid. one flowing through the fractires and the other flowing through the

pores.

The necessary mathematical formulations for describing the two-phase fuid
flow and reservoir deformations are proposed. The fluid flow and reservoir
deformation effects are fully coupled through this study. which means one
process influences the other and the overall response can not be predicted
by considering each process independently. The mathematical derivations of
the two immiscible and compressible fluids flowing in a deformable fractured
saturated reservoir consist of the equilibrium equation for rock displacements
and stresses, and the continuity equations for four fluid pressures in both
rock matrix and fissure, respectively. Those balance equations have taken
into account the effects of capillarity, saturation and the variation of relative

permeability.



3. A three-dimensional computer program is developed based on the derived
formulations to simulate the coupled immiscible two-phase fluids flow in a
deformable naturally fractured reservoir. The finite element method is used
not only for solving the fully coupled systems but also for incorporating dif-
ferent boundary conditions and irregular reservoir shapes and heterogeneous

reservoir properties.

4. The two-phase flow problem in deformable fractired reservoir is simulated
using the proposed model. Also this model offers the ability to study other
kinds of fluid flow problems:; for example, elasticity. steady-state flow. single-
porosity single-phase flow. single-porosity two-phase flow. and dual-porosity
single-phase flow. The finite element code is validated through comparison
with analytical solutions for pure elasticity problems. consolidation problems.
And also the two-phase similation results are compared between this model

and a finite difference model.

1.2 Problem Definition

1.2.1 Naturally Fractured Reservoirs

Fracture is a term used for all types of generic discontinuities. Folding. faulting
and subsidence of sediments over geologic time cause fracturing. Natural fractures
affect all phases of the petroleum reservoir life from the accumulation of oil to
the techniques used to manage oil production. The existence of fractures in oil
reservoirs was known as early as the 1860’s. However. in the last thirty or forty
years a significant interest in the effect of fractures on oil production has developed.
This interest was sparked by the discovery of the giant fields in the Middle East and
the Spraberry trend of West Texas. The interest aroused by these discoveries made

the industry more aware of the presence and effects of fractures in other reservoirs
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(Kazemi and Gilman. 1993).

Naturally fractured reservoirs compose a wide variety of rock mineralogy (car-
bonate. diatomite. granite. schist. sandstone. shale and coal). porosity and perme-
ability. Carbonates inclide limestone. dolomite and chalk. Fractured limestones are
prevalent in the giant and prolific fields of the Middle East. Fractured dolomites are
exemplified by the San Andres formation in many West Texas fields. and fractired
chalks are fornd in Texas (Austin Chalk). the North Sea (Ekofisk) and other parts
of the world (Kazemi and Gilman. 1993).

1.2.2 Two-Phase Flow

In this dissertation. the term two-phase flow means that two immiscible fluids. such
as oil and water. coexist and flow in the available pore space of a porouis medium.
This problem has been examined for several decades in an effort to enhance hy-
drocarbon recovery from fractured reservoirs and to assist in understanding where
petrolenm reservoirs are likely to be located. Many petroleum reservoirs are sitii-
ated in fractured porous formations (Priess and Tsang. 1990). In these reservoirs.
two- and three-phase flow of oil. water and gas occirs natirally and in response to
production and injection operations. Many natural gas reservoirs with two-phase
flow of gas and water are located in tight rocks with predominant fractiire perme-
ability. A different kind of two-phase flow. namely. water/vapor flow with strong
phase change and latent heat effects. occurs in geothermal reservoirs and in hy-
drothermal convection systems. Most of these systems are found in fractured rocks
with low matrix permeability. Strong two-phase flow eflects of water/vapor and wa-
ter /noncondensible gas are expected near geologic repositories for heat-generating
or corroding radioactive wastes. Two-phase flow in fractures also occurs at many
industrial and waste disposal sites where organic fluids have been spilled and are

infiltrating fractured rock as nonaqueous liquids (Pruess and Tsang, 1990).
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1.2.3 Reservoir Compaction

The term compartion is used to describe the reduction of sediment volume as a con-
sequence of fluid extraction. In a very simplified view. a sedimentary rock can be
seen as being composed of grains and open spaces. called pores. filled with some fluid
(water. oil or gas). When this rock is under stress. the total stress applied is sup-
ported by the grains (effective stress) and the pore fliid (pore pressure). The study
of fluid flow in deformable-saturated porous media as a conpled flow-deformation
phenomenon started with the work of Terzaghi (1943) who developed and used a
one-dimensional consolidation model. Since then. Biot (1941) has extended the
consolidation theory into a more general three-dimensional case. based on a linear

stress-strain constitutive relationship and Darcy’s flow law.

1.3 Literature Review

Simulation of fluid flow and multiphase flow in fractured porons media is a problem
of importance in a number of disciplines inclnding groundwater hydrology. petrolenm
engineering. soil. geotechnical and geothermal reservoir engineering. Predicting the
behavior of miltiphase flow in naturally fractured reservoirs has presented a chal-

lenge for petroleum reservoir engineers for many years.

1.3.1 Naturally Fractured Reservoirs

For solving fractured reservoir problems. there are two distinctly different approaches.
The dual-porosity model approach characterizes a fractured rock mass as a statis-
tically homogeneouis medium consisting of a combination of fractures and porous
rock matrix (Evans. 1981). The probability of finding a fracture at any point in
the system is the same as finding one at any other point. The discrete model ap-

proach. however. attempts to model the actual geometry of both the fractures and



the porous rock matrix (Evans. 1981). Thus. it is necessary to determine from the
field the geometry. locations. orientation. apertire variations and fluid-mechanical
properties of each fracture. and to incorporate this information into the mathemat-
ical model. This review will be focused on the dual-porosity approach which will be
used in this study.

For the dual-porosity approach. the naturally fractured reservoirs can often be
classified as a system of two physical domains. The primary rock matrix which
contains large amount of fluids has a rather low permeability: and the fracture
which constitites a small volume but has the ability to transmit a large portion of
flow throngh the porous medium. As a result. researchers tend to conceptualize the
naturally fractured reservoir as a double-porosity medinm: one porosity represents
the matrix blocks and the second represents that of the fractures and vugs.

Barenblatt et al. (1960) established the mathematical foundation of low behav-
ior in dnal-porosity rocks. He considered the reservoir as two overlapping continua
— matrix and fractures. Flow between the matrix and the fractiires was accounted
for by the case of source functions.

Later. Warren and Root (1963) developed a radial model for well transient test-
ing purposes (Figure 1.1). According to them. the double-porosity medium had two
classes of porosity. The primary porosity was controlled by deposition and lithifi-
cation. The void systems of sands. sandstones and limestones were typical of this
class. The secondary porosity. on the other hand. was controlled by fracturing and
jointing. Vugs. joints and fissures which occur in formations siuch as shale, siltstone.
schist. limestone or dolomite were typical of this class of porosity.

In Warren and Root’s model. the matrix rock containing the primary porosity
was homogeneous and isotropic and was contained within a systematic array of iden-

tical, rectangular blocks. These blocks provided flow to the fractures which, in turn,
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Fignre 1.1: Naturally fractured medinm (after Kazemi. 1969).

transported the fliuid to the well. Superimposed on this system was an orthogonal
system of continuous. uniform fractires which were oriented such that each fracture
was parallel to one of the principal axes of permeability. Fliid flow in the reservoir
occurred throngh the fractures. which were anisotropic. with local exchange of fliids
between the fractiire system and matrix blocks. but flow commiinication between
matrix blocks did not occur.

Odeh (1963) attempted to generalize the concept of Warren and Root to accom-
modate a fractured reservoir in which the pattern of fractires was not known. In his
paper. the matrix blocks acted like sources which continnously feed the fractures.
The net fluid movement toward the wellbore oceirred only in the fractiires and the
fractures’ flow capacity and the degree of fracturing of the reservoir were 1niform.

Warren and Root. and Odeh used these conceptual models to develop analytical
solutions. These solutions were subsequently extended by Kazemi et al. (1969a).

In the same year Kazemi (1969b) presented a “layer cake”™ model wherein the
porous blocks and fractured matrix each occupied a different layer (Figure 1.1). Of

significance in this model formulation was the recognition that porous medium flow



was not only orthogonal to the fractures but responded as a continnum over the
entire model. As a result of this conceptualization. two mass balance equations
appeared: one for the fractures and one for the porous blocks. The equations de-
scribing the layer cake model of Kazemi were solved numerically. Kazemi’s model
differed from Warren and Root’s model in that the reservoir consisted of a set of
nniformly spaced horizontal matrix layers with a set of horizontal fractures as spac-
ers. The fractures were arranged horizontally. whereby the fracture flow converged
radially towards the wellbore.

Theories presented by Aifantis (1977. 1980). Khaled ef al. (1984) and Wilson
and Aifantis (1982) provided a suitable framework in which the flow-deformation
behavior of dial-porosity media could be fully coupled. Barenblatt’s equations can
be recovered from Aifantis’ equations as a special case when the rock is assumed
to be rigid. Aifantis’ theory first provided an alternative derivation of his fissired
rock equations through a proper extension of Biot’s classical model of flow in sin-
gle porosity media: and. secondly. developed a finite element methodology for the
numerical solution of the relevant equations. The derivation of the governing equa-
tions is done by viewing the system as an elastic skeleton infiltrated by a two-state
fluid. one flowing through the fissures and the other flowing through the pores.
Constitutive assumptions were made for both the fluid strains and total stress. In
conformity with the classical theory of Biot. the basic postilates are the equilibrinm
equation for the total stress and a two-state Darcy’s law specifying the flow pro-
cess in the two types of pores. Under assumptions of solid isotropy. small strains.
slight fluid compressibility. absence of macroscopic viscosity and complete satura-
tion. five second-order linear partial differential equations for five unknowns (three
solid displacements and two fluid pressures) are derived.

A constitutive model was presented by Elsworth and Bai (1992) to define the



linear poroelastic response of fissured media and determine the influence of dunal-
porosity effects. In their model, a stress-strain relationship and two equations rep-
resenting conservation of mass in the porous and fractured material are required.
Later. a series of papers were published to study the behavior of dual-porosity media
(Bai et al.. 1993: Bai et al.. 1994: Bai and Meng, 1994: Bai and Roegiers. 1994: Bai
et al.. 1995: Bai and Roegiers. 1995: Bai ef al.. 1995).

Lewis and Sukirman (1993a. 1993b). Ghafouri and Lewis (1996) and Lewis and
Ghafouri (1997) have developed a model to study the fractured porous media via
the dual-porosity concept. In their model. the imposed external loads and /or well
prodiiction both create a pressure gradient between the fliuid within the matrix pores
and the fluid in the adjacent fractures. The fluid within the matrix is sqiieezed out
into the fissiired continiim due to the prodiiced gradient. Hence. flow towards the
prodiicing well takes place through the fissiired network. In their model. the frac-
tired porois media are divided into two overlapping but distinct continua. the first
represents flow and deformations in the porous matrix while the second represents
flow in the fissires. Some assumptions in their model are qiiestionable: within the
first contimuim. the fluid low is assumed to be coupled with the matrix deformations
only. It means that only pressiire in the matrix affects the equilibrinum equation:
and that pressire in the fissures has no influence. Also the compressibility of the

fissure is ignored in their assumptions.

1.3.2 Simulation of Fluid Flow in Fractured Reservoirs

Models that simulate two-phase flow in fractured rock systems arise in petroleum
reservoir engineering, in the analysis and development of some geothermal systems
and in contaminant hydrogeology. Many papers on single- and two-phase flow in
naturally fractured porois media have appeared in the literature and were reviewed

in the previous Section.
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Mattax and Kyte (1962) were the pioneers on the two-phase flow problem. Their
paper gave insight into the mechanism of oil displacement from matrix blocks in
a fractured porous rock. They focused on oil recovery by water imbibition from
matrix blocks in water-drive reservoirs. From experimental data they developed
an empirical oil-recovery correlation in which “the tirme required to recover a given
fraction of oil fromn a matriz block is proportional to the square of the distance
between fractures .

Braester (1972) was also among the first to develop analytical solutions to the
multiphase flow in fractured media problems. His conceptual model was similar to
that of Barenblatt et al. (1960). but his mathematical formulation was different.
The source fitnction in his model described the connection between the fractures
and the blocks was defined in terms of the potential gradient in the fractures. the
capillary pressure difference between the liquid in the fractures and the matrix
blocks. and the density difference between liquid phases.

Bossie-Codreanui et al. (1985) reported that the first attempt to apply the dual-
porosity approach to simulate multiphase flow in fractured reservoirs was presented
by Reiss et al. (1973). In their approach a conventional three-dimensional three-
phase model was used to simulate the fracture behavior.

Another early paper describing a two-phase water-oil flow model was published
by Kazemi et al. (1975). This model employed a three-dimensional finite-difference
formnlation to solve the equations. Their model accounted for imbibition. gravity
effects. relative mobility and variations in reservoir properties. Their model formu-
lation generated a conservation equation for the blocks and one for the fractures.
The two equations were coupled by assuming the matrix flux to the fractures to
be proportional to the pressure difference between matrix and fracture. This as-

sumption. which has been called the “pseudo steady-state” or “lumped-parameter”
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assumption. was inherent in the early formulation of Barenblatt ef al. (1960) and
sed by nearly all subsequent researchers during that period.

In the years since the above work was published. a number of more sophisticated
models were developed. Rossen (1977) presented the simulation of naturally frac-
tured reservoir with semi-implicit source terms. The model treated only the flow
in the fracture system while considering the rock matrix blocks as source terms.
The sonrce terms were functions of the rock matrix and the fluid properties. with
fracture saturations and pressures defining the boundary conditions. Matrix blocks
siurroiinded by gas were assiimed not to transfer water from the matrix rock to the
fracture: and matrix blocks surrounded by water were assiumed not to transfer gas
from the matrix rock to the fracture.

Dugnid and Lee (1977) studied the flow of a single-phase fluid through fractured
poroiis media. In their development. the fractured porous medium was treated as an
elastic incompressible solid containing two different porosities. The primary porosity
was considered isotropic and the second porosity. associated with the fractures. was
anisotropic. The fluid was considered slightly compressible and the fluid velocity in
both the primary pores and the fractiires was assiumed small. This latter assumption
allowed the nonlinear portion of the acceleration term in the equation of motion to
be neglected. Two sets of governing equations were required to describe flow in
fractured porous media. one for each type of porosity. These two sets of equations
were colpled by the flow interaction terms between fluid in the primary pores and
fluid in the fracture. The finite-element Galerkin method was used to solve this
coupled system of equations for transient flow of water in a confined leaky aquifer.
Duguid and Lee’s work was significant in that it attempted to model simultaneously
the flow in both the matrix rock and the fractures. and in their recognition that

acceleration terms might have an effect on the equation of motion in the fracture.
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Swann (1976. 1978) and Williams (1977) also studied reservoir performance in
fractured media by 11sing models developed along the theories of Barenblatt et al.
(1960) and Warren and Root (1963). In Swann’s first paper. he focused on relating
the fractired reservoir properties to the well test plots. as opposed to describing the
flow phenomena occurring in the rock matrix blocks and the fractures. In his second
paper. he presented an analytical theory that describes waterflooding in fractured
reservoirs.

One of the most sophisticated multiphase models was presented by Thomas et al.
(1983). In their paper. the development of a three-dimensional. three-phase model
for simulating water. oil and gas flow in a naturally fractured reservoir was de-
scribed. The reservoir was assuumed to be comprised of a continuous fractiire system
filled with discontinuoins matrix blocks. Therefore. flow in the reservoir occurred
through the fractiire system with local transfer of fluids between the fractures and
the matrix blocks: but there was no communication between the matrix blocks. As a
result. the governing equations were derived from three fracture flow equations. one
for each phase. conpled with three matrix-fracture flow terms. The mathematical
formulation was implicit in pressure. water saturation and gas saturation or satura-
tion pressure for both the fracture flow and the matrix-fracture flow. A geometrical
factor was used in the matrix-fracture flow terms to account for the sirface area
of the matrix blocks per unit volume and a characteristic length associated with
the terms. Hysteresis on relative permeability and capillary pressiires as well as the
variation of the gas-oil interfacial tension were incorporated into the model. Several
examples were given to demonstrate the utility of their simulation model.

For cases where significant fluid flow occurs between matrix blocks, the dual-
porosity model has been extended to what are known as dual-permeability models.

The fracture network and matrix blocks were viewed as two superimposed continua,
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with both the fractures and the matrix forming continuons flow paths across the
reservoir. A “dual-permeability” concept was proposed by Hill and Thomas (1985).
Their model differed from the dual-porosity model by the addition of interblock
matrix flow terms. If these additional terms were set to zero. the dual-porosity for-
mutlation was recovered. One needs to realize that dual-permeability models reqrire
miiwch greater compiiting time than the dual-porosity models. Gilman and Kazemi
(1988) used the dnal-permeability idealization to develop an efficient algorithm to
acconnt accurately for gravity effects both in the fractire and the matrix. They also
accounted for viscons displacements in matrix blocks caused by pressure gradient in
the fracture network.

The presentation by Gilman (1986) was notable inasmuich as it introduced explic-
itly the concept of 1sing a numerical solition within the matrix blocks to determine
the fluid transfer rate to the fractures. A similar strategy was introdiiced by Wi and
Pruess (1988). They reported a grid refinement scheme to calculate more accurately
fliiid movement and heat transfer in the matrix as a finction of time. An integrated

finite-difference model to simulate oil recovery in a fractured medinm was formed.

1.3.3 Coupling of Fluid Flow and Rock Deformations

During the last 10 years. many established oil companies and also individual re-
searchers have conduicted extensive investigations into the problem of reservoir com-
paction and its surface subsidence. The remarkable stuiccess of their modeling pro-
cedures in predicting such a complex deformation behaviour mainly resulted from
soil consolidation theory developments which began in the early 20’s. The study of
flow of fluids in deformable. saturated. porous media as a coupled flow-deformation
phenomenon started with the work of Terzaghi (1943) who developed and used a
one-dimensional consolidation model. His consolidation theory has been one of the

major incentives for the development of soil mechanics. In petroleum engineering,
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many authors have observed the relationship between soil consolidation theory and
the occiurrence of reservoir compaction problems that can indiice a considerabie
amount of subsidence at the surface (Lewis and Sukirman. 1993a: Finol and Ali.
1973). From field observations. it is obvions that reservoir compaction is die to the
increased effective stress cased by pore pressure changes during the prodiiction of
hydrocarbons from the reservoir.

The fundamental work of Biot (1941. 1953) on the general theory of consolidation
provided the constitutive stress-strain relationships un which the analysis of stress
and fluid flow in deformable porous elastic media was based. Solutions for fully
coupled and non-linear behavior of consolidation were quite numerous (Zienkiewicz.
1977: Noorishad et al.. 1982; Khaled et al.. 1984: Ghafouri and Lewis. 1996). The
donble-porosity model together with the poroelasticity theory were applied widely
to problems of consolidation. siirface subsidence. evaluation of the stress. pressiire
and failure fields around boreholes (Detournay and Cheng, 1988: Elsworth and Bai:
1992: Bai and Meng. 1994: Bai ef al.. 1995). Also a lot of attempts have been
made in simulating multiphase flow in a deforming porous medium (Li et al. 1990:
Schrefler and Zhan. 1993: Lewis and Sukirman. 1993a. 1993b).

The paper presented by Li ef al. (1990) gives the theory of two-phase fluid flow
in a porous medium. They adopt a continuum approach. in which a representative
element volume around any mathematical point considered in the domain always
contains the solid and two-phase fluid flow. and the classical microscopic mass bal-
ance law of continuuum mechanics will hold for each phase. Based on the generalized
Biot theory, their model takes into account the effects of matrix and fluid com-
pressibilities. interphase mass exchange and capillary. The full mathematical model
resilts from two non-linear mass balance equations for the two fliiid phases and one

non-linear equilibriim equation for the total mixture, subjected to Darcy’s law for



multiphase flow and the constraint defining capillary pressiire between both fluids.

A lot of papers have been found recently studying the fully conpled effect of
miltiphase fluid flow with solid deformation (Li and Zienkiewicz. 1992: Sun et al.
1997: Li and Fan. 1997: Chin and Prevost. 1997: Gawin et al. 1997: Klubertanz ef
al.. 1997). The only paper which considered multiphase flow through deformable
fractured porous media is given by Lewis and Ghafouri (1997). Their model is
based on the theory of double-porosity and accounts for the significant influence of
coupling between fluid flow and solid deformations. A Galerkin-based finite element
method was applied to discretize the governing equations both in space and time
domains. The final set of equations represented a highly non-linear system as the
elements of the coefficient matrices were updated diring each iteration in terms
of the independent variables. As discussed before. some of their assumptions are
not reasonable. Also their formulations are given from phenomenon. not from the
theory. In such case. some parts in their equations are questionable.

Based on the literature review. it is found that to date. fewer of the existing
models have been utilized to specifically study the combined effect of two-phase
flow in a deformable saturated reservoirs. Two-phase flow in fractured reservoirs
is considered in many papers. but the reservoir is treated as a rigid solid. Some
published papers take into account the coupling effect between the multiphase flow
and deformations of the reservoir, but the reservoir is considered as an homogeneotis
poroits media. Although many models are used to simulate fluid flow in deformable
fractured reservoirs, the fluid is chosen as a single phase instead of multiphase.
Thus. the work in this dissertation provides the detailed fiindamental theory and
the numerical solutions for the coupled effect of two-phase flow in a deformable
fractured reservoirs.

When using the dual-porosity method, it should be noted this approach is lim-
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ited and only meaningful if the size of elements (in the finite element method) or
gridblocks (in the finite difference method) is less than that of the matrix block

(Mattax and Dalton. 1990).

1.4 Outline of the Dissertation

Chapter 1 covers the general introdiiction laying ot the objectives for this disserta-
tion and defining the problem. A critical literatire review of numerical modeling for
the multiphase fluid flow and fully coupled rock-fluid system in naturally fractired
media is included.

Chapter 2 derives the appropriate expressions for two-phase fluid flow in frac-
tired porons media using the dual-porosity concept. For this fully coupled system.
four equations for the fluid flow aspect and three equations for the solid are devel-
oped. Those equations consider the effects of capillary pressure. relative permeabil-
ity and saturation changes.

Chapter 3 contains the details of the numerical implementation. The numerous
unknowns are solved through the finite element technique. which enables the so-
lutions to be derived in general three-dimensional domains. The considerations of
poroelasticity. the variations of density and porosity . and the infliience of capillary
pressire. relative permeability and saturation are also explained.

Chapter - focuses on the validation of the nuumerical algorithm. The theoretical
formulations and numerical solutions are validated against pure elasticity. steady-
state flow and consolidation cases where the analytical solutions are readily available.
Also the two-phase flow results are compared between this model and the finite
difference method.

Chapter 3 investigates the parametric influence. Through the parametric changes,

the model allows to study the behaviors of pure elasticity. steady state flow. single-
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porosity single-phase flow. single-porosity two-phase flow. dual-porosity single-phase
flow and dual-porosity two-phase flow. In addition. the parameter studies give better
understanding of the model and physical behaviors of the examined problem.
Chapter 6 includes the application of the numerical model. The single-phase and
two-phase flow characteristics of the rock sample and flow behaviors are numerically
simiilated. Thronugh the horizontal injection and vertical injection simulations in
both single-porosity and dual-porosity approaches. the se of the model. the solid
deformation characteristics and fluid flow behaviors can be better uinderstood.
Finally in Chapter 7. conclusions and recommendations for futire studies are

given.

18



Chapter 2

Theoretical Formulations

2.1 Introduction

The basic mechanism of fluid flow in fractured porois media may be explained as
follows: the applied external loads and/or well production both create a pressiure
gradient between the fluid within the matrix pores and the fluid in the fractures.
The fluid within the matrix is squeezed ot into the fractiired medinm die to this
gradient. Subsequently. flow towards the prodiicing well takes place through the
fissired network. In this dissertation. the naturally fractured reservoir is considered
as two overlapping continua. one representing the porous matrix while the other
representing the deformable fractures (fissures). Based on the dual-porosity concept.
the derivations of the seven governing equations for two-phase flow in a deformable
naturally fractured reservoir include the equilibrinm and the continuity equations.
These balance equations need also to take into accoint the effects of capillarity and
the variation of relative permeability and saturation.

The following characteristics and assumptions are made:

1. The reservoir is treated as a double porosity medium. One porosity is associ-
ated with the primary rock matrix and the second porosity is associated with

the fractures:
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The rock is a poroelastic compressible solid sibject to small deformations.

However. other constitutive laws for the rock behavior may also be utilized:

Fluid velocities in both the primary rock pores and the fractires are assumed

to be small. In such case. Darcy’s law is valid:

The analysis is related to a macroscopic level which contains a representative

sample of rock matrix and fractiure geometry;

The fluid pressures. saturations. porosities. permeabilities and other properties

of both the porous media and the fluids are considered separately:

The two-phase fluid flow within each continuum is independent of the flow in
the other continnum and any coupling between the fluid flow in the porous
matrix and the fracture is controlled only throigh a interchange term which

is assumed to be in quasi-steady state:
The rock matrix and fracture systems are assumed to be fully satirated: and.

In the following mathematical formulations. subscripts 1 and 2 always refer
to the rock matrix and fractured systems: while subscripts 0 and w stand for
vil and water phases. respectively. The stress is defined as tension positive

whereas the pressure is compressive positive.

2.2 Preliminary Calculations and Relationships

The main objective in this simulation is to determine the reservoir displacements.
the two-phase fluid pressures and saturations for both rock matrix and fracture
systems within any given point of the reservoir domain. As will be seen later. the

coefficients of the determined non-linear partial differential equations, in addition
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to being functions of the independent variables. are also functions of the depen-
dent variables. Those coefficients account for the effects of reservoir heterogeneity.
relative permeability. rock and fluid compressibility factors and capillary pressiires.
These parameters are either pressure- or saturation-dependent. Therefore. all the
existing parameters must be converted to an appropriate form before being able to

adequately formulate the equations.

2.2.1 Porosities and Saturations

Consider a representative elementary volume in a domain containing a sufficient
mixture of rock pores. fracture matrix. and water and oil phases. Pore spaces are
represented by porosities, i.e. ¢ for the rock matrix and ¢y for the fractire matrix
part. The volume fraction which constitutes rock is, therefore. given by (1— ¢;—
¢»). Hence. the volume fraction occupied by the fluid is (¢ + ¢2).

The total volume of the medium is:
V=V, +Vi+1; (2.1)

where V" represents the total volume. and the subscripts s. 1 and 2 of the remaining
volume terms denote fluid in the solid. fluid in the pore spaces. and fluid in the
fractures. respectively. Porosities are defined for each of the components of the
medium as:
|2 Vi
By = —: ) = —; hy = — 2.2

Introdicing the time differential operator as:
(2.3)

where ug; is the solid velocity. Applying Equation (2.3) allows the flexibility of
switching between the Lagrangian and the Fulerian coordinate systems; the former

being a moving coordinate system.
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Computing the derivatives of matrix and fracture porosities with respect to time

give:
D¢, 1 /DV, DV
TY=V(Dt_%DJ ;
D¢ 1 /DV, DV 24
Dt_V(Dt_%DJ

The fraction of pore space occnpied by each fluid is referred to as the saturations.

It is assumed that the pore volume is completely filled up with a combination of
immiscible fluids. Therefore. the sum of the fluid phase saturations must equal to
unity for both matrix and fracture systems. i.e..
Sto+Siw=1

where again. Sy,. S\, are the saturations for oil and water phases in the matrix.

and S,,. 5y, are the equivalent saturations for the fractires. respectively.

2.2.2 Fluid Pressure

In a dual-porosity system. there are four fluid pressures. P,,. P, are the oil pressures
in the matrix and the fracture systems: and P,,,. P, are the water pressiires in the
matrix and the fracture systems, respectively.

The average pressures can be weighted by the saturations for both matrix and
fracture systems as (Lewis et al. 1993a):

(2.6)
RZ = S?o-P‘lo + S‘lw-P‘Zw

{ -Pl = SloPlo + Slvule

Even though rock tends to be more water-wet than oil-wet. it can be further
assumed that both water and oil phases are in contact with the solid. In the eval-
iation of solid deformations in the dual-porosity poroelastic media, the traditional

methods would consider that the influence of pore pressures is assessed with respect

to the individual medium, while the solid deformations due to the volumetric strain
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are either neglected in the case of the fractures (Wilson and Aifantis. 1982): or sep-
arate deformations are distinguished for the matrix and for the fractures (Elsworth
and Bai. 1992).

Differentiating Equation (2.6) with respect to time. one obtains:

aPl o aPl,, 351,, . ale 381'”
T = ety F STy T 1)
<.
aRl aP?O as’la a[)'zw 352,,,
=S, —— — y, v —— ) 1y
T T TR TR T

2.2.3 Capillary Pressures

Capillary pressure plays a major role in defining the initial distribiition of fluids in a
reservoir and can have a significant influence on the fluid phase pressiire variations
and fluid movement.

For a given rock. the water/oil capillary pressitres depend not only on the satu-
ration but also on the direction of saturation changes. When the displacing fluid is
the wetting phase (e.g.. water displacing oil). the saturation change is in the imbi-
bition cycle. When the displacing fluid is the non-wetting phase (e.g.. oil displacing
water). the saturation change is in the drainage cycle. Figure 2.1. Although it is
possible to formulate a model that accounts for the hysteresis resulting from the
change of direction of flow. in most situations the directions of flow can be predicted
and only one set of capillary pressure curves is required.

In a filly-saturated oil reservoir, the fluid pressiure values at any point are related
by their capillary pressure relationships. In general, capillary pressure is defined as

the difference between the non-wetting and the wetting phase pressures. i.e..
Pc = Pnan.—wettiny - Pwettiny (28)

Therefore. for water-wet oil reservoirs, the following expressions are sed:

23



007 |— — — — 4
S §
D 005|— oS —
o - o 3
o 83
a | » 5
ol =
b c Q QO
© = €N o
—_— o Q o 3
= 2 2 L ®
Q. 003 — % — Lo
© e (=2
(& = £35
28
3
c =
oot — — — — — - - = L. =
0.0 1.0

Weting phase saturation

Figure 2.1: Capillary pressure with saturation

For matrix oil-water system.

Plc = Plo - le (2.9)

For fracture oil-water system.

RZ!: = on - le (2-10)

As shown in Figure 2.2, the capillary pressure in the fractiire declines rapidly
with increasing water saturation (Kazemi ef al. 1975). This sets up a pressire
differential between the rock matrix and the fractures. causing oil to flow to the
fracture and water to flow to the matrix, which is the imbibition effect. In some
papers. for the fractured network system, the capillary effect has been ignored or
has little influence (Lewis, 1993a).

The capillary pressure and water saturation relationship are generally known

from laboratory experiments.
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Figure 2.2: Capillary pressures in a fractiured reservoir with imbibition
2.2.4 Relative Permeability

Relative permeability relationships are influenced by the history of the rock/fluid
system. sich as pore geometry. wettability. fluid distribution and saturation history.
Both the endpoint values and the shapes of relative permeability functions influence
calculated reservoir simulation results. sich as fluid pressures and saturations. The
basic shapes of the relative permeability curves for the principal rock types in a
reservoir are usiually defined by laboratory tests on representative core samples.

Figure 2.3 shows a typical oil reservoir relative permeability curve.

2.3 Immiscible Two-Phase Flow Continuity Equa-
tions

2.3.1 Mass Conservation Equations

Consider the mass of a representative elementary volume V' in a porous medium.

Since this volume is composed of fluid and solid, the governing equations for the
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Figure 2.3: Water saturation with relative permeability

conservation of masses of fluid and solid will be derived separately.

The mass of the solid component of the medinm can be expressed as the volume
fraction of the porous solid. V; = (1 — ¢) V. times the density of the solid. p;. where
¢ is the sum of matrix and fracture porosities. @ = ¢; + ¢, (Duguid and Lee. 1977).

For a lumped solid deformation system of the dual-porosity mediium. the mass

conservation of the solid constituent requires that (Li ef al. 1990):

dv=0 (2.11)

DM, D ‘ o A(1—9¢)p, I(1—0)psuy
Dt ~ Dt u(l—‘*’)p‘*d"‘/[ a T o

34

It should be noted that Equation (2.11) may contain the discrete porois medium.

If continitum mechanism is assumed to prevail, Equation (2.11) can be simplified as:

9(1=9)p, , (L= 6)pst

= 2.12

Similarly, the mass conservation equations for the water and oil phases in both

rock matrix and fracture systems are as follows:



\

a’Sww
P1Oo1whP1 4

a¢151wP1wU1wi —T. =0

at

3:1:,—
a(bl'slr)plal'jlm'

9¢1510P10 +

ot

B ~-I,=0

3¢2 S2wp2w '2wi

ad’svw‘w
D202wpP2 +

ot

Ah2520020 n

ami + Fw =0

a¢252op2oU 20i

at

D +I,=0

(2.13)

where Ui, Utni. Uswi and Uy, are the intrinsic phase velocities for both fluid phases
in the matrix and in the fractire system: piu, P1,. p2w and ps, are the densities of
the water and oil phases in the matrix and the fractures: I, and T, are the rate of
fluid mass (water and oil) transferred between the porous blocks and the fractiures
per unit bulk volume of the medium. The interchange flux between the matrix
and fractures can be expressed as a function of both time and space. Adopting
the simplified assumption of quasi-steady state flux. suggested by Barenblatt et al.

(1960) and Warren and Root (1963). the following relationship can be written:

kipix
T, = /‘L” 7 e O (Prr — Por) (2.14)
I

where 7 stands for oil or water phases; the factor ¥ is defined as (Warren and Root.

1963):
_ 4n(n +2)
=—F=

T (2.15)

S
where n = 1,2, 3 is the number of normal sets of fissures; and s is the average porous
block dimension: or. in other words, the average fissure spacing.

Darcy velocities for both fluid phases are defined as:

( Ui = 151w (Ulwi - usi)
U1pi = 1510 (Ui — Usi)

(2.16)
Ui = P22 (Vowi — i)

| Uooi = $2S2, (Ui — i)
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or.

Upri = qb,,S,,,r (Urrrrx - u,,-) (2.17)

where the subscript n = 1,2 stands for the rock matrix and fracture systems. and
T = o.w for the oil and water phases. respectively.

Substituting the first equation in Equation (2.16) into the first Equation of (2.13).
expanding the derivatives of Equation (2.12) and the first equation of Equation

. one ends up with the following

7
(2.13). and considering (*); to be equal to (,(*

().’Ei
expressions:
()p, aq‘}z 3p, a¢1 f)ps ,
_({ I - - + —-¢ sWsii — sUyig
brpr TPy, f’l T o V2 v1p
—UgiPeP2i — UsiP2Psi — WsiPsPri — UiD1Psi + Pslbyii + UsipPsi =0 (2.18)
) v aplvu , ab‘lm 390
(,—’)l*slw_ + 0 Prw—F— Slwplw +(f)lSlw/)lvu”'~nz +‘plpl'u“' Slruz
ot ot It
+¢)ISlvuusiplw.i + Slluplw“’si(pl.i + Plwlbiwii + UlwiPlwi — rw =0 (219)
or.
— @9 (E + usiPs.i) - ( ?t + Mg, z) - <_?t— + WUsifPs.i
dqg d
—ps < 512[ + ”si¢l.i> <-8—pt— + ufszﬂs.i) + (]- — ¢y — (rol) Psllsi i = 0 (2:)-0)
[ Oprw , IS1w
(rr)lblm pl + Ui Pluw.i + D1 1w l + u:n.’blw 1 + Prwliwii
. ot
Ay :
+StwPiw T + 1gi®1i | + O1S1wPrwtlsii + UlwiPrwi — Lw =0 (2.21)

Considering Equation (2.3), the previous equations become:

Dp, D
e~ p 0, O
D¢’1 Dp, , _ 5 99
Dt + Dt + (l - ¢)l - (D?) PsUsii = 0 ("‘"""‘)
; Dplw DSlw D¢1
¢lslw Dt +¢1plw D +Slwp1w Dt
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+¢lSlvuplluu.~n’.i + Prwliwi: + UywiPiw.: — Fw =0 (223)
From Equation (2.22). the following expression can be obtained:

Doy _ 92 Dps D¢2_ﬂDps+_1_Dps

Dt ps Dt Dt ps Dt ps Dt

+ (1= 1 — o) Uiy (2.24)

Substituting Equation (2.24) into Equation (2.23). one gets:

. Dpl , DSlw , , Slwpllu Dps
(,DlSlw th + ‘Plplw’ﬁ" + (1 — @ — ([)2) _;,,——Dt— + Prwliwii
e . D¢ -
+(1 - (P'Z)blwplw“'si.i - blwplvu_ﬁ + UtwiPrlwi — Fvu = 0 (220)

Dt

However. an equation relating the change in fracture porosity to the change in
fluid pressures is required. Deriving Equation (2.1) with respect to time. one obtains

(Peter and Geogre. 1983):

DV _ DV, DVi DV

2.9
Dt =Dt "Dt T D (2.26)
Combining Equations (2.4) and (2.26) gives:
D¢, 1 DV,  DVy  DV; o o
Dt - V[( (rf)'Z) Dt ¢2 Dt @2 Dt ("'"“I)

Considering the mass conservation equations for each phase and for both rock

matrix and fracture systems in differential form. i.e.

( D(psV5s) _
Dt

D(plw‘/lw) —_
D¢t

D(plo‘/lo)
Dt

D (p2-w ‘/).w) -
Dt

D(pZa%o) =
\ Dt

0

0

=0 (2.28)

0

0
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where Vi,,. V|,. Vo and V,, are the volumes of the water and oil fluid in the matrix
and the fractures. respectively.

The relationship between changes in pressiure and volume is given through the
concept of compressibility, C = ——é;%; or stiffness. K = é From the definitions of
compressibility of fluid and porosity. the following relationships for different systems

can be written:

1. rock matrix:

DV, _ D P, _ _D(Sl,,PI,, + StwhPiw) (2.29)
ViDt K,Dt K,Dt T
2. fractures:
i DV} _ _L DP2 _ ___1_ D(S').r)P‘zr) + S‘ZvvuP‘Zw) (() 30)
Va Dt K, Dt K, Dt -

where K; and K, are the fluid bulk moduli of rock matrix and fractiires. defined as:
Ky =8,Kiw+ 51,K1, and Ky = Sy, Koy + S3, Ky, (Matthews and Russell. 1967):
Ky. K1,. Ky, and K,, are the water and oil fluid bulk moduli in the matrix and
the fracture systems.

3. water in rock matrix:

LDplw _ 1 D‘/lm 1 DP\HJ

- — = 231
Piw Dt ‘/lw Dt Klw Dt ( )
4. oil in rock matrix:
L Dpp _ LDV L DBy, (2.32)
Pin Dt ‘/[,, Dt [(1,, Dt
3. water In fractures:
1 Dpoy 1 DVou _ 1 DBy (2.33)
P Dt Vaw Dt Ky, Dt
6. oil in fractures:
iDpza _ 1 D‘/g,, _ 1 DP)D (234)

P20 Dt B ‘/20 Dt B K2o Dt
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7. solid:

_]'_Dps 1 DV:I _]-_DPI 1 DP? U‘gi(l—a:‘) (935)

p. Dt~ V., Dt K, Dt @ Kn.s Dt 3(1 - @)K,

where.

DP, 1 DP,

i = 30 s + B T Ks D (2:36)
and with K; = K,(1 — ). K, = K,.s(1 — ay): « is Biot’s constant: K,. K, and K,
are the bulk moduli of the solid skeleton. moduli of the grains and fractire normal

stiffness. respectively: s is the fracture spacing. The derivations of Equations (2.35)

and (2.36) will be found in Appendix A. then Equation (2.35) becomes:

. (03 — 4) DPy + (@ —¢) DB — (1 — ay)ug;
1Dp, 1DV, K, Dt Kns Dt (2.37)
b Dt .V, Dt (1-¢) ’
where ay = il B Rearranging Equations (2.29)-(2.34) and (2.37). gives:
) + Gy
(( DVi _ 0V DP
Dt B (Slw[(lw +Svlo[(1r)) Dt
D‘/:Z (,"1)2‘/' DPz

Dt~ (SawKaw + SonKay) DU
Dplw — Plw DPlvu

Dt K, Dt

Dp[f, - Plo DPlo
Dt K., Dt

< Dp‘zw _ P2aw DRZw (2-38)

Dt K, Dt

Dp,, _ Pw DP,,
Dt Ky, Dt

(a;;—q))DPl (a;,—(j;)DPg .
Dps _ Ps " Ks Dt + [(ns Dt (1 C!_';) usz,z
Dt (1—¢1—¢9)

DV, _ (Ot:s"'¢) DP, (a:x—(r/’) DP,
Dt V[ K. Dt T Kw Dr (LT o)t

31



Substituting Equations (2.27) and (2.38) into Equation (2.23). it follows that:

b1 SI wys

le DPluz LS (Of:x - <P) DPl + (CY:; - (ﬁ) DP,
Alm Dt twPlw Ks Dt Kns Dt

—(1 - ay) “'si.i}

—Suprn 4 — (1 — o) da DP, D21 D P
e (S‘ZtuK-‘Zw + 520K2o) Dt (Slw Klw + Slof\’lo) Dt

| (azs—¢) DPy | (a3 — ) DP, . DSy,
+<a2[ K. Dt T Ks D (T tms p+dipwTge

+(1 - (92)Slwplwusi.i + Prwliwii + UpwiPrw: — rvu =0 (2~39)

To obtain the final form of the flow equation in an amenable form. neglecting

, L. D(x)  d(x) o , _
the convective terms'. i.e. TR and combining Equations (2.7) and (2.39)

with Darcy’s law. results in:

k
Upri = - krr[ﬂ’ (Pmrz + pmrgh) (2.40)
Mo

where subscript 7 stand for the rock matrix and fractire systems. while subscript T
are the oil and water fluid phases; k, are the intrinsic permeabilities in the matrix and
fracture systems: k., are the relative permeabilities and pi,- are the viscosities of the
oil and water phases in the matrix and fracture. respectively: g is the gravitational
acceleration and h is the height above a reference level. Then the governing flow

equation for the water phase in the matrix can be written as the follow form:

) el G A
aﬁi’")} -l <52,, T -—
R e G

'With small solid velocity. and variable distributions in space not change dramatically, the
convective terms may be neglected.
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- a[)lw a&S'lw p]wkl , db‘lw
+Slw It + le It ) e krlw (le.i +le.(jh),,- +‘PlleT
Pruky
+(1 - (rf)2)alislwplwusi.i - L krlw\Il (le - P‘Zw) + lev =0 (241)
Lw

The conservation of mass for water and oil in the matrix and in the fissiires may

be generally expressed as:

AS, -
- + P —=
o ot

. v /)adP‘ v R (a:i—"f" -(1[)5) ap-z

(,f),,b,,,r[T::;-d—ZT + SpaPnm (1 — d¢) [ K’: S 7
at

S
at

+Smrapm.- +P (?S,r,r) + (a:; —(f),, —([')5) (S&zapf—;

ot ™ ot K,s ot

, P ISex S Prm (L — be) e P
S T Ny Pn’ -
e TrheT )| T (Sex Ker + Ses Ke) Se=~5
A Pex 9Sex Sux Py PP , 0Pz S,z
o= T Fay, ) SorFom + Sy ko) o=~ T E=5
OP,, as,,,,) Pk ds

Sy T + P ot "krmr (P + {)mrgh)'i + (pnpw—dt'r—"

Loy
Pizk:
Hix

+(1 — ¢e)asSpmppmttsii — (—1)7 kriz¥ (Pir — Por) + Qume =0 (2.42)

where 1 # € = 1.2 for the rock matrix and fissures: 7 # @w = w. o for water and oil
phases. respectively. The injection and production of water and oil in the matrix
and fracture systems are taken into account by introducing appropriate nodal sotrce

terms. i.e. Q. Q1. Q2w and Qs,, respectively.
2.3.2 Variation of Fluid Densities and Porosities

The fluid densities in the fluid flow equations can be expressed in terms of fluid
pressures. Equation (2.38) shows these relationships. Also these equations can be
written as:

dpnw _ AP

=—m 2.43
o~ Ko (2-43)
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Integrating both sides of the above equation: and considering the initial Auid

densities. pp.. and initial fluid pressures. PY . one obtains:
0 1 0
Pnx = Py €XP 7 (Pmr — Pm\') (2.44)
e
The changes of rock matrix and fractiure porosities can be determined at each
timestep by solving Equations (2.24) and (2.25) in an explicit manner. Neglecting
the convective terms and regrouping Equation (2.25) gives:

d¢, _ dpyw =~ @1 dS)y . (a5 — 1 — o) APy 4 M
A~ o dt TS dt K, i TS,

(a3 — ¢y — dy) dPy
+ Kn.s dt + (aI{ ¢2)ust.x +

UpwiPlw.: _ Fvu
Slwplw Slwplw

(2.45)

The above equation is discretized in time as:

'PQH —' (,f); — (Drll /)rllrjl — prllvu + (f)rl‘ b’?'tl - ?w + (a_ . ([)n)?Ln~ 4 “’?wi/)rllm.i
At P, At o A L STt
Oy — " Pn+l — pr ay — " Pn-H - pn 'U,"’ . F::
+( 3 ’ ‘P ) 1 1 + ( 4 ¢ ) 2 2 + E:l.l - — ~ (246)
[\s At Kns At blcu blvu/)lw

All the terms are known at time n and the terms in right-hand side of equation

at time n + | are also known. In such case. the porosity ¢3*' can be obtained.

in-1

Following the same reasoning, ¢]"" can also be determined as:

O ot _ (¢ )M P (g BT B

At K, At K,s At
oyt — ¢f . .
- ) + (1 — @7 — &f) uly; (2.47)

2.4 Rock Deformations

2.4.1 Constitutive Relationships

The relationships between changes in total stresses (;;) and intergranular stresses

}; are given by (Terzaghi, 1943):
0y = 0y — 16 Pl — 6;5 Py (2.48)

34



where subscripts 1 and 2 refer to the rock matrix and the fractured systems: o;

represents the effective stresses. | and ay are the pore pressure ratio factors. which

K, K,
— . Qo = 1 -
K, nS

can be evaluated approximately as: a; =1 — . where K, is the

fissire normal stiffness and s is the fissure spacing; 6;; is the Kronecker delta. which
by definition is suich that: §;; = 1. when i = j and §;; = 0 when i # j.

The linear constitutive relationships for the system are defined as:

oi; = Dijrisu (2.49)
And the inverse relation recovered from Equation (2.49) is:

zij = Cijuo (2.50)

where Dy, is the elasticity matrices. C;j is the compliance matrices for the system.
respectively. Those matrices will be defined sibsequently.

Substituting Equation (2.48) into Equation (2.50) gives:

ij = Cijrior + Cijrice1 6Py + Cijriabp Py (2.31)

1L}

or.

0, = Dijkt(fkl — Crimn16mn P1 — Cl:lmna'zéman) (2-52)

The elasticity matrix D;jx can be defined explicitly. in a three-dimensional ge-

ometry for an isotropic medium, as:

[ Dijri ] = (Cijkl)—l =

Cdyy dip diz 00 ]
dyy dyp dyz 0 0

_ 1 d3; dyp dsz 0 0

- I Dijkl I 0 0 0 d44 0

0 Q 0 0 dss O

0 0 0 0 0 des |

0
0
0

o=
0 (2.33)
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where. the compliance matrices are as follows:

1 —v —v 0 0 0
-v 1 —v 0 0 0
1} —v —v 1 0 0 0 -
Comw =%l o 0 o 20+v) 0 0 (2:54)
0 0 0 0 21+v) 0
L0 0 o0 0 0 21+v) |
and.
21+v)]* (1 3 27 .
 Dijra | [ 5 B g (2.33)
20 +)1* 1 1 v? _
diy =dgp =dyy = [ ( £ )] (E;—E> (2.56)
20+ (v V2 .
dyy=dy =diy =ds =dy =dy = [ ( E )} (E + E;) (2.37)
21+v)]* (1 32 2w _
dyy = dss = deg = [T] ('E; s (2.38)
where E is the elastic modulus. v is Poisson’s ratio.
2.4.2 Equilibrium Equations
The equilibrium equation of motion for a solid may be written as:
0.5 + Fi=0 (2.39)

where F; is the vector of body tractions. The strain-displacement relationship is
defined as:

= (s + 150 (260)

Inserting Equation (2.52) into Equation (2.39). the expanded equilibrium equa-

tion can be expressed as:

(Dijrizkr = DijriCrimn@16mn Pt — DijriCrimn@abmn Po) j + Fr =0 (2.61)

The stage is now set for a description of the general numerical solution of these

fully coupled equations and of particular finite element formulations which have been
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incorporated into the computer programs. The finite element method is applied to
discretize the governing equations both in the space and time domains. How to
solve this highly non-linear system. how to choose unknowns and how to update the
coefficient matrices during each iteration in terms of the independent variables are

also presented in the next Chapter.



Chapter 3

Numerical Implementation

In general two types of approaches can be used to obtain solutions to a mathe-
matical model: analytical methods and numerical methods. When using analytical
methods one seeks to obtain a functional representation for the solition of the par-
tial differential equations. If the analytical solution can be obtained. the accuracy
is perfect and can be used to study reservoir behavior. to interpret data from lab-
oratory and field experiments. and to verify the accuracy of solutions obtained by
numerical methods. The principal limitation of analytical methods is that solutions
can only be obtained by imposing severely restrictive assumptions about the reser-
voir properties. boundary conditions. or initial conditions. In most field situations.
however. the assumptions required to obtain solutions using analytical methods are

not satisfactory.

3.1 Numerical Methods

Numerical methods do not require the restrictive assumptions 1sed in analytical
methods. Several types of numerical methods have been used to solve fliid flow
problems, the two principal ones being the finite difference method and the finite
element method. Although the word “method” is singular, these terms actually refer

to two rather large groups of numerical procedures.
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3.1.1 Finite Difference Method

The finite difference method was first applied to problems of fluid flow in the mid-

60’s (Brice et al.. 1953: Freeze and Whitherspoon. 1966: Pinder and Bredehoeft.

1968: Gambolati et al.. 1973: Zaman et al.. 1991 and Trescott and Larson. 1977).

The method has a number of advantages that contribute to its continited widespread

use and popularity:

L.

o

[¢]]

For simple problems (e.g.. one-dimensional. steady-state flow in an isotropic
and homogeneous reservoirs) the mathematical formulation and computer im-
plementation are easily understood by those without advanced training in

mathematics or computer programming;
Good textbooks are available to help the beginner:

Efficient numerical algorithms have been developed for implementing the finite

difference method on computers:

Well-documented computer programs for solving flow problems are widely

available at little or no cost:

The accuracy of solutions to steady-state and transient flow problems is gen-

erally quite good: and.

Several case histories have been published that describe siccesshil applications

of the method.

Unfortunately the finite difference method also has disadvantages:

1.

The method works best for rectangular or prismatic reservoirs of uniform com-

position;
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2.

It is difficult to incorporate irregitlar or curved reservoir boundaries. anisotropic

and heterogeneous reservoir properties; and.

The accuracy of the solutions to fluid flow problems is lower than can be
obtained by the finite element method (Istok. 1989). One of the important

reasons. for example. is that the boundary conditions can not be satisfied

exactly.

3.1.2 Finite Element Method

The finite element method was first used to solve groundwater flow problems in

the early 70’s (Price et al.. 1968; Javandel and Witherspoon. 1968: Zienkiewicz

and Parekh. 1970: Pinder and Frind. 1972; Gupta and Tanji. 1976; Neuman and

Witherspoon. 1970: Dugnid and Abel. 1974. Lewis and Schrefler. 1987). The method

has several advantages:

L.

o

Irregilar or curved reservoir boundaries can be approximated using elements
with straight sides or matched exactly nusing elements with curved boindaries.
The method. therefore. is not limited to “nice” shapes with easily defined

bouindaries:

The anisotropic and heterogeneous reservoir properties can be easily incorpo-

rated. This allows the method to be applied to reservoirs composed of several

materials;

The size of the elements can be varied. This property allows the element grid

to be expanded or refined as the need exists:

The accuracy of solutions to fluid flow and solid deformation problems is very

good (exact in some cases); and,
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5. Solutions to the transient and solid deformation problems are generally more

accurate than solutions obtained by the finite difference method (Istok. 1989).

The principal disadvantages of the finite element method for solving problems

are:

1. For simple problems. the finite element method requires a greater amount of
mathematical and computer programming sophistication than does the finite
difference method (although this disadvantage disappears for more compli-

cated problems): and.

o

There are fewer well-docuumented compuiter programs and case histories avail-

able for the finite element method than for the finite difference method.

In this dissertation. the finite element method will be nsed and the program

structure will be based on Zienkiewicz’s book (1977).

3.2 Finite Element Discretization

3.2.1 Problem Domain

The first step in the solution of the coupled fluid flow and solid deformations problem
by the finite element method is to discretize the problem domain. This is done by
replacing the problem domain with a collection of nodes and elements referred to as
the finite element mesh {Figure 3.1). Elements may be of any size and the size and
shape of each element in the mesh can be different. In this dissertation. the elements
with six-. seven-. or eight-nodes are chosen for the three-dimensional problem as
shown in Figure 3.2. The values of the material properties are usually assumed to
be constant within each element but are allowed to vary from one element to the

next.
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When preparing the finite element mesh it is important to know that the preci-
sion of the solution obtained and the level of computational effort required to obtain
a solution will be determined to a great extent by the number of nodes in the mesh.
A coarse mesh has a smaller number of nodes and will give a lower precision than
a fine mesh. However. the larger the number of nodes in the mesh. the greater will

be the required computational effort and cost.

Figure 3.1: Discretization of three-dimensional problem domains

o
&
:

Six-nodes Seven-nodes Eight-nodes

Figure 3.2: Three-dimensional elements

3.2.2 Weighted Residuals Method

The second step in the finite element method is to derive an integral formulation

for the governing coupled equations. This integral formulation leads to a system of
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algebraic equations that can be solved for values of the field variable at each node
in the mesh. Several methods can be used to derive the integral formnulation for a
particular differential equation. The method of weighted residuals is a more general
approach that is widely used in fluid flow and solid deformation modeling (Istok.
1989).

In the method of weighted residuals. an approzimate solution to the boundary
or initial value problem is defined. When this approximate solution is substituted
into the governing differential equations. an error or residial occurs at each point
in the problem domain. Then the weighted average of the residuals for each node
in the finite element mesh is forced to equal zero.

Consider a differential equation of the form:
L@(z.y.2)]—-F(z.y,z)=0 (3.1)

where L is the differential operator: ® is the field variable. and F is a known function.

An approximate solution. ®. is defined as:
D (r.y.z)=S Ni(r.y.z) ¥, (3.2)
i=1

where N; are interpolation functions or shape functions: ®; are the unknown values
at the nodes: and m is the number of nodes in the mesh. When the approximate
solution is substituted into Equation (3.1). the differential equation is no longer

satisfied exactly and has the following residual term:

~

L [<I> (x,y,:)] ~F(z,y,z)=R(z.,y,2) =0 (3.3)

where R is the residual or error due to the approximate solution. The residual varies
from point to point within the problem domain. At some point it may be large and

at other points it may be small.
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In the method of weighted residuals. the weighted residuals at the nodes are

forced to be equal to zero. i.e.
/W' (r.y.2) R(x.y.2)dQ=0 (3.4)
Q

where W (x.y.z) is a weighting function and Q represents the problem domain.

Substitnting Equation (3.3) into Equation (3.4) gives:
// Wi(z.y,z) {L [;IS (z.y, z)] - F(z.y. :)}dQ =0 (3.3)
Q

In this dissertation. Galerkin’s Method is used for the weighting function. In
Galerkin’s Method the weighting function for a node is identical to the interpolation

function (shape function) used to define the approximate solution 3.

3.2.3 Shape Function

In the finite element method. the shape fiinction. V. is used to obtain the expres-
sions for the variation of the unknown variables within an element in terms of the
nodal values. Let ® (x.y, z) = unknown function. then one can write:
D,
o,
{® (r.y.2)} = INJ{® (5. y.2);} = [Nila--- Na] { (3.6)
®,
The element. N,. of this matrix must be such that it takes on a valiue of unity
when evaluated at the geometric coordinates of the i** selected node and has zero
value at all the other remaining selected nodes. Figure 3.3 shows linear shape

functions for one-dimensional elements with two nodes. It should also be noted that

the shape function. V;, must satisfy the following conditions (Zienkiewicz, 1977):

1. The number of shape functions, /V;, must be equal to the number of nodal

values of the element at the selected nodes;
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Continuity must be provided at nodes and also at element interfaces:

3. The shape function must provide completeness for rigid body displacements

and satisfy the constant strain criterion: and.

4. The shape fiinction must possess derivatives to the highest order appearing in

the variational functional or the differential equation for the problem.

N

= X

node i node j

Figure 3.3: Linear shape function for 1-D element with two nodes.

For the three-dimensional eight-noded rectangular prism element (Figure 3.2).

the shape functions have the following form:

Il
4'—‘
D
00

1
Ny =5 (1+€6) (L+m:) (1 +¢G) i (3.7)

where (£.1.(¢) are the element normalized coordinate system. The equations used
to transform the element geometry from the system coordinates. (x.y,z), to the

element normalized coordinates, (£, . (). are:

( r—c.
f:
a
{ = Yy—Ye (3.8)
b
\ ¢ = c




where (... y..z.) are the global coordinates of the center of gravity of the three-

dimensional rectangular prism element. which has dimensions 2a (parallel to x-

axis) x 2b (parallel to y-axis)x2c (parallel to z-axis).

The partial derivatives of the shape fiinctions are given by:
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(3.9)

where [J] is called the .Jacobian matriz and can be found explicitly in terms of the

element local coordinates. (£,7.(). and the element nodal coordinates. (z,y. z) . i.e.
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Equation (3.9) can be rewritten as:
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3.2.4 Nodal Unknowns and Discretization of the Equations

The finite element discretization of the equilibrium and flow equations may be ex-
pressed in terms of the nodal displacements. u. nodal water fluid pressures. and

nodal water saturations. Two ways can be chosen to select the nodal iinknowns:

1. Nodal displacements. nodal water and oil pressures. i.e. u. Py,. P,,. P, and

PZD; and.

o

Nodal displacements. nodal water pressures and water saturations. i.e. u. P,

[)2,‘,. Slw and Sgw.

Other variables like Si.;. S2w. S1, and Ss, in case 1. and Py,, Ps,. S1, and Sy, in
case 2 can be replaced by Piy. Pow. P, and Py, for case 1. and Py.. Pyw. S1 and
Sy for case 2. respectively. The replacement considers both the capillary pressure
and saturation relations. defined in Equations (2.3). (2.9) and (2.10). The nodal
1nknowns in case 1 are discussed in detail through this work.

Defining all quantities in term of nodal variables as follows:
de = Br?u 8P1w = Nf)P[,,,, aP[,, = N(?Pl,,,

APy, = NOP,,. OP,, = NOP,, (3.12)
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where N is the vector of the shape function defined in Equation (3.7): B is the strain

displacement matrix, defined as:

[ ON;
2z
AN;
0 Ay
0 0
dy Oz
AN;
0 oz
8N,-
_ 0
L 0z

0 |

d N;
dz

0
Ay
IN;

ErR

[

b
X
o0

(3.13)

As far as the equilibrium equation is concerned. its most general form is given

as:

/ BT90dV — f =0

(3.14)

where Of is an incremental vector of applied boundary tractions. and the integration

is completed over the volume of the domain (dV).

Considering substituting Equations (2.52) and (3.12) into Equation (3.14). di-

viding by 9t. one obtains:

- /u BTa,mNd

where the vector m is [1,1,1,0,0,0].

P
/ BTDijk,BdV% _ / BTa,mNdV L2

ot

(3.15)

Incorporating Equation (2.7) into Equation (3.15) gives the equilibrium equation

the following form:

du

/BTDijk,B——dV—/BTalmN (Sl,,

ot

(‘)le aSlw
ot

+Sw_ Pw
w g A
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35S, 0Py, 8S3,\ ., Of
+P2r) ac +S2w Bt +P2w .)t >dV Bt (3.16)

In Equation (3.16). the saturation derivative terms can be replaced by Equations
(2.3). (2.9) and (2.10):

du
at

F)Pl,, AS1, OP..

T ——— ——————
/ B D.uBo, Ot 9P, ot

—dV — /BTO![mN (b[,,

At " ap,. at ot

ASpyy Oy, Py, 052,‘,> o

=Py - == 3.17
Y N TR N T P AV =5, (3.17)

+Slw—ap"” + Py P ‘”) dv — / BTa,mN (Smap”’

Or.

Ku+ Llwplcu+L21uP2vv+LlaPla + LGpu—f =0 (3.18)

where a superscript dot identifies the time derivative. A detailed explanation of the
coefficients are given in Appendix B.

For four flow equations in matrix and fracture media. Galerkin's principle was
also nsed to obtain the discretized forms of Equation (2.42).

For the rock matrix and for the case of water phase. Equation (2.42) is combined
with Equations (3.12). (2.5). (2.6). (2.7). (2.9) and (2.10) to generate the following
equation:

u;k h, § i
— [INTEEZLE JUN (P + pragh) dV + [ NTg,81, 21

Hiw v K 873}

deflwdv /N Stwpra (1 = dn) N{(ax — ¢ — D)

K,

~ a]-)lu.r a‘Slw a[Jlo a-Plu: a[)Ia
[blw .)t PlcaPlc ( af Bt ) ( Slw) ?t ]

(ag — @y — o) AP, 0Sow (OP, 0Py,
1 X S2w___

RS - PZ ©

K,s ot P, \ Ot ot
S1wp w(l W?)‘f’z
_ T 1w/l
* ( ‘SZ'U) at :I } dV '/N (S2w K2w + 5201{20) N
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aP’Zo
a ¥ap, \ ot e )”1_5“"") at ]dv

+/NT¢1,01deSlw (3P10 _ 3P|w> dv

y [ Spu APy, OSau (6132,, APy,

dP,. \ ot ot

Slmle¢2‘Pl
- [ NT - —N | =P,
/" (Sle[w + SloKlo) ,: I aPl::
- (‘)le aplo

+SI'UT +(1- Slw) BN

aSvlw a1310 ale
at 1ol

dV — NTplwkl krlw
K Hiw

Ju

4V + Q=0 (3.19)
ot

The integration of the equation listed above usually requires the use of nimer-

X\I’N(le e Pz,u) dV +/NTmT(1 - (lj?)S[w[)le!:{B

ical techniques. and a standard method is that of Gaussian quadrature. where the

integrands are evaluated at specific points of the element and boundary surfaces and
then weighted and summed (Zienkiewicz. 1977).

Equation (3.19) may be written as:
Kl‘ul:l+ (Wlm + Ew) X le - EvuP2-vv+WllPl'u

+W P+ W 3Py, + W, Py, = —Quuw (3.20)

Repeating the same process for other conditions in Equation (2.42). the following
discretized forms can be obtained:

Matrix oil phase:

K, a+ (W[,, + E,,) x Py, — E0P20+W21le

+W22P10+W23P2W+W24P20 =-Q, (3.21)

Fracture water phase:

szl:l+ (W‘zw + Ew) X P2w - E1ule+W3[le

+W32P10+W33P2w+w34p‘20 = —Qay (3.22)
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Fracture oil phase:
Kzol:l-i- (Wg,, + E,,) X PQ,, - E,,P[,,"["W.uplw

+W P+ W uPoy + WPy, = —Q,, (3.23)

A detailed explanation of the above coefficients are listed in Appendix B. Equa-
tions (3.20)-(3.23) represent a set of differential equations in time and are most

conveniently represented in matrix form as:

0 0 0 0 0 u
0 W,,+E, 0 -E, 0 P,
0 0 Wlo + Eo 0 —Eo Plo +
0 -E, 0 w,., +E, 0 P,,
| 0 0 -E, 0 Wy, +E, | | Pa |
( Kl Llru Lla L2w L‘Zo ( u ] %
Klw Wll Wl'.’. Wl.’$ wl«l d le —Qlw
+| Ki, Wy Wy Wy Wy 7 P, | = -Q,, (3.24)
Kow Wy W, Wi Wy, Py, —Quu
| Ky, Wy Wy Wi Wy | Py, | -Qs, J

Since the discretization in space has been carried out. Equation (3.24) now rep-
resents a set of differential equations in time. The values of u, Py,,. Pi,. Py and P,

at different values in time may be obtained by means of appropriate time-stepping

algorithms.

3.2.5 Discretization in Time

Those coupled equations need to be rearranged prior to finding the solution in time.
All terms on the right-hand side are known. The matrix relation may be integrated

in time by using any convenient representation of the time derivatives. Using a fully



implicit scheme. such that:

( 1
strAL _ L [ trAe ¢
u X (u u )
1
Pth}‘—}At - 3_ (P‘ +AL Ptm)
) Pg:‘-}L\L - _:\_ (Pt +AL Piw) (3.25)
1
H—At _ L ct».Lt
P At ( )
\ p;:m=§( tFAL_Ptzo)
and substituting Equation (3.23) into Equation (3.24) gives:
[ Kl Llw Llo
1 Klw (Wlw + Ew) At + wll WI‘Z
KV Ki, W, (W, + E,) At + Wy,
K. -E, At + Wy, Wi,
| K W —-E,At+W,,
L‘Zw L2o [ u Tera
—E,Al + Wiy Wiy Py,
Wi —E, At + Wy, P,
(Wy, + E,) At + Wy Wy, P,,
Wz (Wy, + E) At + Wy 11 P,, ]
_ _ - o t+AL
Kl L Lw L In L'Zw L‘Zn F u i ﬂ
| Kie Wo W W Wy || Pu | | &
=3 K, Wy Wy Wy W, P, | + -Q,, (3.26)
| Kyw Wz Wy, Wi Wy, Py, -Q,,
| Ky, Wa W Wy Wi | | Pa, -Qu, |

Equation (3.26) is formed for all

internal nodes of the problem domain and

those boundary nodes where the pore pressure valiies and/or displacements are

not prescribed. The number of equations is thus equal to the number of unknown

variables.

The complete set of equations may be used in the time-stepping procedure out-

lined above to determine the values of u, Py, Pi,, Psy and P,, at any point in time

relative to their initial values (Lewis and Schrefler, 1987).
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3.2.6 Boundary and Initial Conditions

The partial differential equation that governs the model generally will have an in-
finite amount of soliutions. and in order to select from this family of functions the
one that describes a particular physical system. it is necessary to impose additional
conditions on the solution. These additional conditions. boiindary and initial con-
ditions. serve to further characterize the system being modeled.

Two different types of boundary conditions are usually applied: firstly. by spec-

ifying the values of pressiire and displacement or Dirichlet’s boundary condition as:

P.=P,
™o (3.27)
Uu=1u

or. secondly. by prescribing the flow rate and loading force or Neumann’s boundary

condition:
Qo = Qnwb

F=F

where again ) = 1. 2 represents the matrix or the fracture systems: and @ = w. o rep-

(3.28)

resents the water or oil phases. respectively. The values gy Py are the prescribed
flow and pressure valies at the boundary. respectively: u,. Fj, are the displacements
and loading forces on the boundary. In the special case of a closed boundary. also
known as an “impermeable” or “no-flow boundary”. the flux should be eqnal to
zero. t.e. Qnm = 0.

Normally, the initial conditions of a reservoir system can be defined by specifying
the initial distribution of fluid pressure within the reservoir and/or its saturation,
depending on the unknowns used in the formulation and the updating procedure.

In this work, the initial conditions for the three-dimensional reservoir system can



be defined as follows: '
u’(z.y.z) = u'(z.y, 2)

Pl(x.y.2) = Pl(z.y.2)

\ P{)n(x'y' ’:) = P{,,(J:]j:) (3.29)

B, (2.4.2) = Py (r.y.2)

\ Py (z.y.2) = Pj(x.y.2)

where PP,. P}. P}, and P, are the water and oil pressiires in the rock matrix and

fracture for node (r,y, ) at time zero: Pi,. Pi . P;, and P}, are the initial water

o w
and oil pressures in the rock matrix and fracture systems. respectively. u" and u!
are the displacement values at time zero and the initial displacement values. Also.
the initial capillary pressiures and relative permeabilities in rock matrix and fracture
systems should be defined. The initial saturations may be determined through the

relationship with the initial capillary pressures.

3.2.7 Ewvaluation of Coefficients

Equation (3.26) represents a fully coupled and highly non-linear system which re-
quires a similtaneous solition. The coefficients of the non-linear partial differential
equations. in addition to being functions of the independent variables. are also func-
tions of the dependent variables.

For the present system of equations. the coefficients account for the effects of
reservoir heterogeneity. relative permeability. rock and fluid compressibility fac-
tors, and capillary pressure. These parameters are either pressure- or saturation-
dependent. How one can obtain the solutions when the coefficients depend on these
solutions will now be discussed.

First, these coefficients may be evaluated from the pressures or saturations of
the previous timestep. This approach implies that these coefficients do not change

rapidly from one timestep to the next one. This would be true if pressures and
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saturations are also not changing rapidly. That is. the pressures and saturations are
averaged in time between the last timestep values and the current values. Then. the

coefficients are evaluated from the P"*!/2 values. whereas the parameters such as

+1/2 F1/ 1/ P
krtw. krow- kr1, and k.., are evaluated from the S;',: / . 2",:[/2. S;‘,,H/Z and S.?,,H/)'

values. The current values of pressires or saturations may be compiited from the

following formulae given by Settari and Aziz (1973). and Aziz and Settari (1979):

Atn+l

)rn+l=
L u" + ~n

(o -oumh (3.30)

Whereas. the average values in time may be obtained from:

Uttt un

+1/2 __
ur - 2

(3.31)

Second. for an iterative method. these coefficients are evaliated from the most
current pressiires or saturations of the last iteration within the same timestep. This
also means that iterative procedures are performed within each timestep to obtain
the final solutions since all the coefficients are dependent on the unknowns (Aziz
and Settari. 1979). The non-linear parameters were uipdated within each iteration
level by using the most recent calculations of fluid pressires. The new values of
fluid saturation were obtained from the saturation-capillary curves using the most
recent calculation of capillary pressures. In this study. the second method is used.

Equation (3.26) must provide a stable solution to be of any practical nse. In
this study. the stability of the final solution is monitored by applying a convergence
criterion. which is based on the maximum relative unknown changes since the last

iteration. 1.e.
k+1 k
Ui - [jl
Uk

T

where U; is the unknowns, e.g., u, Py, Py,, Po, and P,,, at node i; (k+ 1) and k

€ (3.32)

are the new and old iteration levels, respectively;
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¢ is the convergence limit value, which is chosen according to the requirement
of the solution accuracy; the smaller its valie. the longer the calculation time. In
this dissertation. the value of € is taken as 0.05. which implies that the relative error

between two iterations is limited to 5%.

3.3 Computational Procedure

Equation (3.26) forms the required system of seven partial differential equations for
two-phase flow in deformable fractured reservoir. Examination of these equations
reveals that there are fifteen unknowns. namely. w.. u, u.. Py,. Pyy. P,. P,
kriw- krio. kraw. kr2o. Stw. S1o. Sow. and Si,. Thus, eight auxiliary equations are
required to obtain a general solution. These auxiliary equations are merely two sets

of constitutive relations. The first set consists of the following relations:
krvw = f(Stw); keo = f(Siw: S1o)
kraw = f(S2): keso = f(Sow. Sa5) (3.33)
Si1o+ S1w=10: Sy + Saw, = 1.0
The second set consists of the relations between capillary pressiures and satura-

tions. These relations may be written in the form:

Plr.' = Plo - Plu/ =f(SII)', Slvu)
(3.34)
PZ:: = P2o - PZw = f(S‘zm S‘Zw)

The iterative steps to solve this problem are thus as follows:

(1) Start from time t = tq, inputting data from the given initial values of pres-
sures, saturations. relatively permeabilities and capillary pressures:

(2) Calculate the non-linear coefficient terms in Equation (3.26). Note that all
non-linear parameters were updated within each iteration level by using the most
recent calculations of fluid pressures;

(3) Solve for the unknowns, u, Py, Py,, Po and P,,, at each Gaussian points;
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(4) Calculate new oil saturations from saturation-capillary relation. find capillary

pressures. and from fluid saturations get relatively permeabilities:
FEEL _ 7k
T 14

(5) Repeat steps (2)-(4) until the convergence condition iE

satisfied at each nodal point: and.

(6) Go to next timestep and repeat steps (2)-(3).

Figire 3.4 shows a schematic process of the similtaneous solution procedure for
solving a fully implicit formulation of Equation (3.26).

Following the model development. some validation cases are given in the next

Chapter.
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Figure 3.4: Schematic process of the solution procedure.
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Chapter 4
Model Validation

The formulation presented in the foregoing Chapters is coded nsing the FORTRAN
Langnage in three-dimensional space and in the time domain. using eight-noded
rectangilar elements. In order to validate the computer program. some analytical
problems should be simulated. However. there are no siitable problems available in
the open literature. and only a few simple analytical solutions and some hypothetical
problems do exist. Some of the extreme limiting cases are validated.

Among those validation problems. elasticity and steady-state flow problems
are the simple tests for the load-deformation and fluid flow cases: while the one-
dimensional consolidation problem is the simplest problem for the conpled flnid-rock
systems. Finally. the two-phase flow problem is given to illustrate the capabilities

of the model and to validate this finite element model with a finite difference model.

4.1 Elasticity and Steady-State Flow

4.1.1 Elastic Problem

The elastic validation test is carried out by using different element mesh arrange-
ments. The resilts from numerical elastic solutions are then evaluated by comparing
them with the available analytical solutions. The purposes of those examples are to

test the performance of the finite element program system, to understand the influ-
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ence of different meshes and different element shapes. and to check the accuracy of
the numerical solutions.

A cubical block is loaded vertically by a uniformly distributed load of 7, = 1
MPa. The block has a Young's modulus £ = 100 M Pa and a Poisson’s ratio
v = 0.2 (Figure 4.1). The influence of irregnlar meshes is evaliated by considering
two other cases shown in Figures 4.2 and 4.3 with the same boundary conditions as
in Figure 4.1.

The analytical solutions of the strain components are calciulated from the general

stress-strain relations (Jaeger and Cook. 1979):

1+v v
4T T 0u T E(fkkéij (4.1)

(L]

The analytical solutions of the nodal displacements may be obtained from:

( 74
'U,I=/ 5“d.'L'
0

Y
< 'lLy = /n 522(1'_11 (42)

| U, = /; Syzdz

where (0,0.0) is a fixed boundary node.

The errors of the nodal displacements between the numerical and analytical
solutions are defined as ||Unumericat — Wanayticat]]. Three cases show the errors are
equal to zero. which means an exact match between the analytical and numerical
solutions was achieved.

The boundary conditions can be either forces or displacements according to
the given problem. Generally, the displacements of the unknowns in the partial
differential equations will be found through force boundary conditions. On the
contrary. for the displacement boundary conditions, the solved reactions are the

applied forces. Both conditions are tested in the elastic example.
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Figire 4.1: Finite element mesh and boundary conditions for elastic test 1.

zZ
y l l Oz= 1MPa l
7 8
x[ 0
l 4 — .
T t i . 3
B PRSPt ok ik M 18
B e e = (3 PP
10 [N HEE ' 12
‘ sy ! ' 0.5
A R
X :'_:.___/:26_____‘727
v le-ing .-
)c.'.-..,ga: ......... -
1 A DX 4

o
S
N
3
N
N
3

T
1

Figure 4.2: Irregular element mesh for elastic test 2.
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Figure 4.3: Irregular element mesh for elastic test 3.
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4.1.2 Steady-state Flow

Single-phase steady-state confined flows of an incompressible fluid which obey Darcy’s
law. compose the simplest class of flows in a porous medium. Nevertheless. the in-
vestigation of this class of flows is important for both theory and practice.

The simplest type of flow is a parallel rectilinear flow between two drainage
galleries with a constant pressure over each gallery. Figure 4.1 shows the flow is
parallel to the vertical axis with flow boundary conditions at both top and bottom
surfaces. and no flow through the sides of the column. From Equation (2.42), the

J E@P)

one-dimensional form of the equation for steady-state flow is simply: — < N
p 0z

0z
0. where k, is the permeability of the porous media in the vertical direction. u is
the viscosity of the fluid and P is the fluid pressure. In this case. the pressure is
distributed linearly over the column; at the top (: = 0) P = P,. and at bottom

(z = L) P = P,. Then it is easy to obtain the following relationship:

_b-p

P=—’Pl L

X z (4.3)

Twenty elements are nsed in this test with L = 10 rn. P, = 10.0 M Pa. P, = 2.0
k.
MPa and = = 0.1 m'/(MN - s). Table 4.1 shows the exact match of the pressire

L
distributions along the column comparing numerical and analytical solutions.

4.2 One-dimensional Consolidation

One-dimensional consolidation is one of the most well-known examples of poroelas-
ticity, and its analytical solution is available. The solid column displacements and
the single-phase fluid flow are fully coupled in this problem. A cubic porous media
column is subjected to a constant load F' and confined on the sides and bottom by

rigid, frictionless, impermeable walls. The boundary and loading conditions of the
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Figure 4.4: Steady-state flow test.

Table 4.1: Pressure distributions.

| z (m) | Numerical | Analytical
0.0 10.0 10.0
1.0 9.20 9.20
2.0 8.40 8.40
3.0 7.60 7.60
4.0 6.80 6.80
3.0 6.00 6.00
6.0 5.20 5.20
7.0 1.40 4.40
8.0 3.60 3.60
9.0 2.80 2.80
10.0 2.00 2.00

column are depicted in Figure 4.5. The analytical solution for the pore pressure in
this 1-D consolidation problem using the Biot’s poroelasticity theory (Biot. 1941) is

given by Detournay and Cheng (1993) as:

P(z,t) = P,J1 - F(X,T)| (4.4)
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where.

> -L ¥ P o
FIXT)=1= 5 —ein (’"g Y) exp(—m?=2T) (L.5)
and.
B(1+v,)
Pi=——r————~o, .

31— 20,) " (+6)

I ct
X=2, == 7
L =1 (47

in which ¢ is the material compressibility. B is Skempton coefficient’s (Skempton.
1954). L is the column length. x and ¢ are the coordinate and time. respectively: o,
is the instantaneously applied force. and v, is the undrained Poisson’s ratio.

At the top of the layer. the analytically derived settlement is given by:

o UzL(l e 2”’1) Uy — V )
=Sca-w ttaooa=wmy/® (4.8)
where.
f(T) = m:[Z; ——mzwz[l — exp(—m*7*T)] (1.9)

and G is the shear modulus.

The colimn. with L = 1 m. is subjected. at ¢ = 0% sec. to a vertical uniform
compressive distribution of o, = 1 M Pa on the top surface: the sirface is otherwise
free from stress and exposed to the atmosphere. Twenty block elements and eighty-
four nodes were 1sed in the calculations. Materials properties are given as following

(the wunits of the parameters are listed in Table 1.2):

v=202, G =1.0, c=1.0
Case 1l Incompressible fluid materials, B = 1 and v, = 0.5, that leads:
kz -
E =24, a=1.0, M = oo, — =0.375
m
K =1.333, Ks =00, K;=o00
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Case 2 Compressible materials. B = 0.8 and v, = 0.4. that leads:

k,
E =24, a = 0.89286, M = 4.18133, — =0.53811
7
K = 1.333, K, = 12.445, Ky =0.1183

where the related formulations are listed below:

([ E=2G(1+v)

] ()
B(1-2v)(1+v,)
M= (12-G ?(.Z)_(IU)— %)
} K= 3_(1%2}7) (4.10)
Ko=1 [—(a

1l _ae-é, 9

M- K OTK

ks o (1 —20)% (1 — w)
L2 261 = ) (ve - )

Also the related parameters applied in the analytical and numerical calculations
are listed in Tables 4.2 and 4.3.

The comparisons between the analytical solutions (solid lines) and numerical
results (scattered points) are made for the temporal evolution of pressure and dis-
placements for both cases. Figures 4.6 and 4.8 show that the fluid pressiure changes
along the column at different times for case 1 and case 2. while Figures 1.7 and 1.9
demonstrate that the displacements change with time at the column top for case 1
and case 2, respectively. It is seen that an excellent match between the analytical

and numerical solutions has been achieved.
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Figure 4.5: Consolidation problem and boundary conditions.
Table 4.2: Parameters used in consolidation case 1.
| Parameter Definition Magnitude Units |
E modulus of elasticity 2.4 MN/m?
v Poisson’s ratio 0.2
ay Biot coefficient 1.0
Ky fluid bulk modulus 1.0E10 MN/m?
o1 matrix porosity 0.2
ki/p matrix mobility 0.375 m*/(MN-s)
K, solid grain bulk modulus 1.0E10 { MN/m?
B Skempton coefficient 1.0
Uy undrained Poisson’s ratio 0.5
[ loading stress 1.0 MN/m?

4.3 Dual-porosity Two-phase Flow Problem

The developed model is further validated in the simulation of a poroelastic soil
column with two immiscible porous fluids subjected to a step loading as discussed

in the previous Section. The results obtained using the fully-implicit fully-coupled
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Figure 4.6: Pore pressure distribution along column for case 1.
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Figure 4.7: Displacement with time at top column for case 1.
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Figure 1.8: Pore pressure distribution along the column for case 2.
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Figure 4.9: Displacement with time at top column for case 2.
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Table 4.3: Parameters used in consolidation case 2.

Parameter Definition Magnitude Units
E modulus of elasticity 2.4 MN/m*
v Poisson’s ratio 0.2
Q Biot coefficient 0.89286
Ky fluid bulk modulus 0.1183 MN/m?
Dy matrix porosity 0.02

ky/p matrix mobility 0.53811 | m'/(MN:s)
K, solid grain bulk modulus 12.445 MN/m?
B Skempton coefficient 0.8
Vy undrained Poisson’s ratio 0.4
o loading stress 1.0 MN/m?

calculations.

finite element model will be compared with those obtained from the finite difference

The height. length and width of the column are 4 m. 4 m and 1 m. respectively.
In the finite element layout. 20 block-type elements with 84 nodes are iised. The
basic boundary and initial conditions are identical to the previous case. For the

two-phase fluid flow problem. some additional conditions need to be included in the

e The initial water and oil satiurations are assumed to be 0.35 and 0.65 for

the single porosity system and the dual-porosity system:

e The relative permeability and water saturation relationship is achieved

via statistical analyses (least square) of the data.

With reference to

Mattax and Dalton (1990), the following empirical relationships were

used in the calculations:

{

kro = 1967353 — 1.358552 — 1.80945,, + 1.3031
krw = 1.95525% — 1.172552 + 0.2329S,, — 0.0151

(4.11)

These relationships have been graphically represented by Figure 2.3.
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e The capillary pressure and water saturation relationship is given from the

referenced curves described by Dagger (1997), which can be expressed as:

P _ 13.159 — 10.84595,,
e 1 + 3.6262S,,

X 6.98 x 10™* (M Pa) (4.12)

This relationship is designed for the imbibition process. which is schemat-
ically shown in Figure 4.10. In general. the capillary pressiires in the
matrix and fracture systems are not equal to each other. The matrix
capillary pressiire is generally greater than the fractiire capillary pressure
(Kazemi ef al. 1975). However. an identical capillary pressure is used in
both matrix and fractiire systems in this validation problem (Nakornthap

et al.. 1986).
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5.0E-2 {

»
Q
m
N
—

W
o
m
N
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0.0E+0 —— g v T - v v + v
[} Q.1 Q.2 Q.3 Q.4 Q.8 Q.6 Q.7 Q.8 Q.9 1
Water saturation, Sw

Figure 4.10: Water saturation with capillary pressure.

Other related parameters used in the calculation are listed in Table 4.4.
The results obtained from the present finite element code are shown in Figures

4.11 through 4.14 for the dual-porosity two-phase flow case. Those figures show
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Table 4.4: Parameters nsed in two-phase validation.

L—Parameter Definition Magnitude Units
E modulus of elasticity 3000.0 MN/m?
7 Poisson’s ratio 0.2
a Biot coefficient 0.861
Qe 0.722
K normal fracture stiffness 30000.0 MN/m?/m
Ky fluid bulk modulus 3000.0 MN/m?
o matrix porosity 0.2
O fracture porosity 0.05
k\/tw. k1 /1, | matrix mobility 9.87E-6. 6.58E-6 | m*/(MN-s)
ky/ . ka/ 12, | fracture mobility 9.87E~L. 6.58E-4 | m*/(MN-s)
s fracture spacing 0.2 m
K solid grain bulk modulus 12000.0 MN/m?*
A loading stress 2.0 MN /m?

the comparison of the non-linear results for the tested soil column obtained from
the present finite element model and those presented by the finite difference model
of Shu (1998). Figure 4.11 demonstrates the changes of surface subsidence with
time. The results obtained show the same trends for the two models. The largest
differences occur only at the early time between these two methods. This may be
caused by the methods nsed to solve the partial differential equations in the finite
element and the finite difference approaches. The implicit method is used in the
finite element approach, while the explicit method is applied for the finite difference.

The pressure changes near the column top (5% distance in the total height) and
at the bottom of the column for the matrix and the fracture are illustrated in Figures
4.12 and 4.13. The pressures at the bottom of the column are larger than that at
top surface. This can be rationalized by the fact that the bottom stays in no-flow
conditions and the top surface is drained. Also this figure shows that the pressures

change faster in the fracture than in the matrix. In other words. the pressiure in the
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matrix has a higher value than the pressure in the fracture: inducing fluid flow from
the matrix to the fracture. The difference between oil pressire and water pressire
is actually the capillary pressure. The results from both models match well.
Figure 4.14 shows the water saturation changes at the surface and bottom of the
coluimn. The water saturations increase in both the matrix and the fracture systems
in early times which indicates more oil comes out of the column than water. Later.
the water saturations maintain a constant value. It can be seen that both finite
element and finite difference model predictions are identical; indicating the validity

of the present dual-porosity two-phase program code.
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o
m
&
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Finite difference method

Surface displacement,
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0.0E+00
1.0E+00 1.0E+01 1.0E+02 1.0E+03

Time, sec.

Figure 4.11: Surface subsidence with time.

It is clear that the developed finite element model has passed all the tested
examples. Those results indicate the validity and the capability of the model for
simulating two-phase flow coupled with solid deformations in fractured media in
three dimensions. In the next Chapter, different kinds of coupling problems will

be solved using the dual-porosity two-phase finite element model. Those problems
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Figure 4.12: Water pressure changes near the top and at the bottom.
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Figure 4.14: Water saturation changes at the top and the bottom.

include pure elastic. steady-state flow. single-porosity single-phase. single-porosity

two-phase. dual-porosity single-phase and parametric studies.



Chapter 5

Parametric Analyses

The developed model and the program can be easily used for other problems which
include pure elasticity. steady-state flow, single-porosity single-phase. single-porosity
two-phase. dual-porosity single-phase and dual-porosity two-phase problems.

At first. the different kinds of problems will be discussed and the related formu-
lations will also be given. Those formulations are derived from Equations (2.42) and
(2.61) which are the basic equations for the coupling problems of solid deformations
and two-phase fluid flow (water and oil) under the dual-porosity concept. Later.
some examples will be given to demonstrate how the code works and to show the

obvious differences in the results.

5.1 Pure Elasticity and Steady-state Flow

Although the numerical results of pure elasticity and steady-state flow have been
validated in the previous Chapter, the basic concepts and related formulations are
given in this Section.

For the pure elastic problems, some parts in Equation (3.26) shoild be modified

due to:

1. fluid pressures have no influence on the solid media;

2. no time effect; and,
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3. no fracture effect, which means the solid material is single-porosity homoge-

neous media.

For the steady-state flow problem. the following items need to be considered in

order to nse Equation (3.26):

1. no time effect;

o

no fracture influence;

3. the solid material is an homogeneous media:

4. no fliud exchange between rock matrix and fracture;
5. single-phase fluid flow; and.

6. no volumetric strain effect on the fluid flow.

Under all the above assumptions. the matrix (3.26) can be written as:

K, 0 000 u f
0 Wy, 000 P Qi
0 0 000 P, |=]| O (5.1)
0 0 000 P, 0
0 0 000 P,, 0

Equation (5.1) allows to solve the pure elastic and steady-state flow problems.

5.2 Single-porosity Single-phase

For the traditional single-porosity (no fracture) porous media, the developed model
can also be used to simulate the coupled processes between the solid rock deforma-

tions and single-phase fluid flow.
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On neglecting the contribution from the fracture fluid pressure. the fracture
pressure term in the solid equilibrium equation disappears. But care has to be
taken with the solid deformation effects on the fluid flow equations. Based on the

single-porosity-single-phase concept. the following changes need to be considered:

1. no fracture influence on the porous media:

to

the fluid interchange between the rock matrix and the fractiires does not exist:

and.

o

single-phase fluid flow. which means the changes of capillary pressure. satura-

tion. relative permeability have no effect on the final equations.

The case of single-phase fluid flowing at saturated conditions is considered here:
thus Equation (3.26) can be further simplified. The related formulation is expressed

as:

[ K, Liw 000 u ]
Klw WlwAt'*‘W“ 0 0O le
RN 0 000]||P, _
At
O 0 0 0 O P2w
0 0 00 0] Py
_ - . o t+AL
K, Lw 000} u 1° %
Kiw Wi p 000 P -Q,
1 w
—— ] 0 0 000|]| P, = 9
At ! + 0 (5-2)
0 0 0 00 P, 0
0 0 000]|]| Py, 0

[t is noted that if L;, and K,,, are equal zero. the solid deformations and the
fluid flow are not coupled: and the solutions include two parts: one is the elastic

soliition and the other is the transient flow solution.
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5.3 Single-porosity Two-phase

In the case of an immiscible two-phase fluid flow (water and oil) problem. more con-
siderations should be given than what was mentioned in the previous Section. Those
considerations include the influence of capillary pressire due to the pressure differ-
ence between two fluids. saturation changes because the pore space occupied by the
fluid is changed and the relative permeability changes. Also the relations between
capillary pressire and saturation. between relative permeability and saturation play
a very impaortant role in two-phase flow problems.

At this stage. the coefficients in the equations are dependent on the unknowns;
hence. non-linearity is introduced.

Equation (3.26) will be modified according to the changes listed below:

1. no fracture influence on the porous media; and.

2. fluid interchanges between rock matrix and fractire do not exist for the two-

phase fluids.

The coupled equations for solid deformation and two-phase fluid flow becorne:

[ K, Liw Li, 00][ u ]
Kin WAL+ Wy, Wi, 00| P
Lk, Wa WLAL+ Wy 0 0| | Py, -
AL 0 00| Py
0 0 0 00| Py
K, L. L, 00][ u 1l [ gi 1
T O I 0 B
=X Ki, Wy Wy 00 Po | +| —Qu (3.3)
0 0 0 00]|Pa 0
|0 0 0 00]|Py 0 |




Again if Ly, Ly,, K;,, and K, are equal zero, the results represent both elastic

and transient two-phase flow solutions.
5.4 Dual-porosity Single-phase

One method to represent the naturally fractured reservoirs is the dual-porosity ap-
proach. Many studies have been carried out using this concept in which different
properties have been attributed to the pores and fissures: and this has proved to be
a more reliable method when dealing with heterogeneous porous media.

Even for the single-phase fliiid flow problem. there exist two fluid presstures in the
reservoir: in the fractures and in the rock matrix. Thus. the solid rock deformations
are affected not only by the loading conditions but also by those two fluid pressures.

For the fluid flow equations. one term will be added to the single-porosity single-
phase problem to take into account the fluid interchange between the fractures and
the matrix.

Equation (3.26) needs to ignore the effect of the capillary pressire. saturation
and relative permeability because the problem is single-phase.

The finite element approximation will be obtained as follows:

[ K, Ly, 0 Ly, 0 u ]
Ki, Wi, ,At+W,;, 0 Wi 0 P,
110 0 0 0 o|| P -
At Ko Wi 0 Wyo,At+Wszz 0 P,
0 0 0 0 0 i P,,
" K, Luw 0 Ly 0][ u ]° | E;it 1
. Kiow Wip 0 Wiz 0 Piw —Quu
=% 0 0O 0 0 o0 P, | + 0 (5.4)
Ky, Wiz 0 Wy 0 Paw —Qau
0 0 0 0 0]|Py 0
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As discussed in previous Sections. if Ly,, La,. K;, and K, equal zero. the
resilts will show both the elastic solution as well as the transient fliiid flow solution

in a dual-porosity system.

5.5 Dual-porosity Two-phase

The detailed formulations and physical explanations have been given in Chapters 2
and 3. The final coupled solid deformations and two-phase fluid flow (water and oil)
equations are expressed in the finite element form shown in Equation (3.26). Differ-
ences from the previous Section are the introduction of capillary pressiires. satira-
tions and relative permeabilities effects. Also those capillary pressures. satirations
and relative permeabilities exist in both the fractures and the matrix systems.
The following Section will show some results calculated for these different prob-

lems.

5.6 Examples
5.6.1 Single-phase for Single-porosity and Dual-porosity

A column loaded at the top surface (Figure 4.5) is considered as the first example.
The height. length and width of the column are 7Tm. 2m and 1lm. respectively.
Twenty block-type elements and eighty-four nodes are used in this problem. The
fluid pressures are equal to zero at the top surface; everywhere else. the surface of
the colimn is assumed to be sealed and insulated.

Table 3.1 shows the material properties used in the example for both the single-
porosity single-phase and the dual-porosity single-phase cases.

The column top surface settlement versus time is shown in Figure 5.1. It may
be observed that for the dual-porosity model a more rapid surface displacement is

predicted. Also Figure 5.2 demonstrates the fluid pressure changes at the bottom
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Table 5.1: Parameters used in the example.

| Parameter Definition Values (A* / B*) Units

E modulus of elasticity 3000.0 / 3000.0 | MN/m?

v Poisson’s ratio 0.2/0.2

o, Biot coefficient 0.861 / 0.861

ay 0.0 / 0.861

K, normal fracture stiffness | 40000.0 / 40000.0 { MN/m?*/m
K, fnid bulk modulns 3000.0 / 3000.0 | MN/m?

1 matrix porosity 0.2/0.2

g fracture porosity 0.0 / 0.05
ki/u matrix mobility 9.87E-6 / 9.87E-6 | m'/(MN's)
kafp fracture mobility 0.0 / 9.87E-5 m*/(MN-s)

s fracture spacing 1.0E10 / 0.3 m

K, solid grain bulk modulus | 12000.0 / 12000.0 | MN/m?

a, loading stress 0.2 /0.2 MN/m?

A*=Single-porosity single-phase case;

B*=Dual-porosity single-phase case.
of the column. Again the fluid pressures in the dual-porosity model changes faster
than for the single-porosity model. This may be attributed to the presence of a
fractire network within the porous medinm which results in a more rapid drainage
of the fluid and. consequently. a faster rate of pore pressiure dissipation and surface
settlement.

Figure 5.3 shows the displacements along the column for both the single- and
dual-porosity methods at different times. Again the surface displacements from the
dual-porosity approach are larger than the displacements from single-porosity at
the same time. The pressure changes along the column are illustrated in Figure 5.4.
It is shown again that the pressures along the column in the dual-porosity system
changes faster than the pressures in the single-porosity system.

The physical characteristics of single- and dual-porosity models are essentially
contrasting since, in dual-porosity, the fractures have low porosity and high perme-

ability, whereas in both single- and dual-porosity the matrix shows high porosity
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Figure 5.1: Surface displacement response for single- and dual-porosity approaches.
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and low permeability. As a result. in dynamic conditions. the fractiure network will
exhibit a small storage capacity, and thus, a very short transient time owing to its
high permeability. whereas in single-porosity the matrix will exhibit a large storage
capacity associated with a long transient time resulting from its low permeability.

Moreover. it may be observed that the final settlement and fluid pressures pre-
dicted by this model are precisely the same values for both dual-porosity and single-
porosity approaches. Actually. the final settlements have the same values as that of
the pure elastic solutions: while the final fluid pressires are equal to the values of
the initial fluid pressures of the fractured porous medium.

Figure 5.5 depicts the top surface subsidence for different &/k,, ratios in which
k.. the rock matrix permeability, is kept constant and equal to 9.87E—6 m* /(M N -
s). while k. the fracture permeability. changes. As expected. the higher ratio will
calise a more rapid consolidation. It is shown that the final values of the surface
subsidence are the same for all permeability ratios. The bottom pressire changes
are demonstrated in Figure 5.6. In this figure it is clear that the pressure drops
faster for higher ratios k;/kp,. Also Figure 5.6 shows that in fractured media the
pressure is either higher in the matrix than in the fracture with higher ratio of
k¢/km or closer in both systems with lower ratio of k/k,,, which means that more
flow interchanges take place from the rock matrix to the fracture regions for higher
k¢/km ratios. This will cause the fluid within the fractures to be depleted rapidly.
especially with higher ratios ky/kn.

For highly fractured formations, a more rapid rate of the column top surface
subsidence is indicated in Figure 5.7. Different fracture spacing values, s! = 0.1,
0.2 and 0.3 m, are considered in the calculations. Smaller values of spacing mean

more fractiures in the media and show faster consolidation rates. The behavior of

! Fracture spacing is defined as the distance between two parallel fractures of a fracture set.
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bottom fluid pressures is displayed in Figures 5.8 and 5.9. It may be noted that at
early times the pressiures in both matrix and fracture systems with smaller fracture
spacing values are higher: while at later times. this situation is reversed because
with smaller spacing values (i.e. more fractures) the permeability per umnit volume

is higher. then the fluid will be rapidly depleted.
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Figure 5.7: Surface subsidence for different fracture spacings.

5.6.2 Two-phase for Single- and Dual-porosity

Using the same example as shown in the previous Section with similar boundary
and initial conditions. the relationship between the relative permeability and water
saturation is obtained using Equation (4.11), and shown in Figure 2.3. The rela-
tionship between the capillary pressure and the water saturation is expressed by
Equation (4.12), which is represented in Figure 4.5. Other related parameters used

in the calculation are listed in Table 5.2.
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Figure 5.10 demonstrates the changes of surface subsidence with time for both
single- and dual-porosity systems nnder two-phase fluid flow conditions. It is ob-
served that for the dual-porosity model a more rapid surface subsidence occurred.
This behavior is similar to what was discussed in Section 6.1 dile to the presence of
a fractiure network within the porous medium.

Figure 3.11 shows the fluid pressure changes at the bottom of the column. Again
the water and oil pressures in a dual-porosity system change faster than the pressires
in a single-porosity system.

The water saturation changes at the column bottom and at the top surface are
illustrated in Figures 5.12 and 5.13. It is shown that. at the bottom. saturations
change faster for the dual-porosity system. especially at early times. compared to the
single-porosity system. which is relative stable in the early time and only changes
at later times. Also in the dual-porosity system. the saturation changes in the
fractures are faster than the saturation changes in the matrix. At the top surface.
the saturation values change a little with higher values in the fractures. The water
satiration values increase in both surface and bottom of the column. which means

more oil moves ot of the column than water.
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Table 3.2: Parameters used in two-phase case.

| Parameter Definition Values (A* / B*) Units

E modulus of elasticity 3000.0 / 3000.0 | MN/m?

v Poisson’s ratio 0.2 /0.2

a Biot coefficient 0.861 / 0.861

™ 0.0 / 0.815

K, normal shear fracture stiffness | 30000.0 / 30000.0 | MN/m?/m

K, fluid bulk modulus 3000.0 / 3000.0 | MN/m?*

@1 matrix porosity 0.2 /0.2

g fracture porosity 0.0 / 0.05
kit matrix water mobility 9.87E-6 / 9.87E-6 | m*/(MN's)
ky/ matrix oil mobility 0.0 / 6.38E-6 m* /(MN-s)
K/t fracture water mobility 9.87E-4 / 9.87E-4 | m*/(MN-s)
ka/ptn fracture oil mobility 0.0 / 6.58E-4 m*/(MN's)

5 fracture spacing 1.0E10 / 0.3 m

K, solid grain bulk modulus 12000.0 / 12000.0 | MN/m?

T, loading stress 0.2 /0.2 MN/m?

A*=Single-porosity two-phase case:
B*=Dual-porosity two-phase case.

For the analysis of the capillary pressure influence. two different sets of capillary
pressiire data were 1ised in the calculations of the dual-porosity system. Those data
are expressed in the following equations and graphically represented by Figure 5.14
(Dagger. 1997).

13.159 — 10.8459S,,
2 1+ 3.62625,,

P? = If’)e;_cz% x 6.98 x 1073(M Pa)

P! = x 6.98 x 107*(M Pa)

(5.5)

where superscripts 1 and 2 represent first and second capillary pressure data, re-
spectively.

The surface subsidences for both cases are plotted in Figure 5.15. Same trends
are observed for the two cases, except the displacement values for case 1 is slightly

higher.
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Figure 5.16 shows the water saturation changes at the bottom of the column.
The changes of water saturation in the fractiure are faster than in the matrix for both
cases. Figure 5.17 represents the water saturation changes near the surface of the
column (5% distance in the total height) and shows the same behavior compared to
the saturation changes at the bottom. After passing the transition period, the values
of the water saturations remain stable at the bottom and near the top surface of the
column. For both the fracture and the matrix. the saturation values keep higher for
capillary pressure case 2.

The water and oil pressure changes near the column top and at the bottom of
the column for the matrix and fracture are illustrated in Figures 5.18. 5.19, 5.20 and
3.21. The pressures at the bottom of the column are larger than that near the top

surface because the bottom remains undrained, causing the pressures at the bottom
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to reach higher values. Also those figures show that the pressures in the matrix have
a higher value than the values of the pressure in the fractures. The effects of the
capillary pressiure are limited for the pressire changes. For case 1 and case 2 of the

capillary pressures. the pressiure changes are very close to each other.
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Figure 5.15: Surface subsidence with time for different capillary pressures.

Next Chapter will show the applications using this dual-porosity model to sim-

ilate the single- or two-phase flow problems in the laboratory.
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Chapter 6

Model Applications

The capabilities of the finite element model have been demonstrated in several prob-
lems presented in the previous Chapters. For practical purposes. the model is used
here to simitlate the behavior of a rock sample which may be tested in the laboratory
in an attempt to measure the fluid flow. permeability and rock properties.

The developed model may also be used to predict fluid flow behavior and to
study the effect of anisotropic permeability. In addition. the present work is capable
of studying the intact rock and fractured rock characteristics nder single- or two-

phase fluid flow conditions.

6.1 Laboratory Tests

Because of the direct relationship with production rate. the study of formation
permeability is of great concern to petrolenm engineers. In the cases of intact
and fractured media, the permeabilities should be considered as stress-dependent in
response to stress variations.

During fluid injection/withdrawal, various stress states occur ranging from com-
pression to tension. These induced stresses cause the joints or fractures to open or
close which in turn strongly affects the magnitude of the permeability.

The rock sample permeability can be measured in the laboratory. In general,
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laboratory permeability tests are performed based on constant head (Al-Dhahir
and Tan. 1968). transient or pulse-decay (Brace et al. 1968) and constant flowrate
(Morin and Olsen. 1987) methods. During such tests. either flowrate or pressure can
be controlled at the injection point. While. at the observation point. either pressure
or flowrate may be measured. It is assiumed that the sample is fully jacketed except
at the injection and observation points.

There are two methods to obtain the relative permeability. One method relies
on analytical expressions which must be determined experimentally. Another possi-
bility is to determine the relative permeability directly via laboratory experiments.

Two types of laboratory experiments are used for the determination of relative
permeability: steady flow experiments and unsteady flow experiments (Bear. 1988).
The most commonly uised methods are based on steady flow. The tested sample. or
core. is mointed either in a plexiglass tube or in a pressiurized ribber sleeve, and a
steady flow of the two fluids is established through it. The two fluids used in the ex-
periment are introduced simultaneously at the inflow end. at a certain ratio. through
separate piping systems. When steady flow conditions are reached. the pressures
in the two fluids at either end of the sample. the rates of flow and the saturation
are determined. The relative permeability corresponding to this satiration state
can then be calculated. The injected ratio is then increased. removing more of the
wetting phase, until once again steady state conditions are established. The process

is repeated until a complete relative permeability curve is obtained (Bear, 1988).

6.2 Finite Element Scheme

Fluid flow through rock samples can be simulated by using the developed finite
element model. Figure 6.1 shows a configuration used for measuring the horizontal

rock permeability in the laboratory. The cylindrical sample is 0.2 m in height and
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0.1 m in diameter. Vertical permeability can also be measured through the vertical

injection.

Fixed boundary A No flow boundary
Loy _[CA S
, P.q
Bré3 < _—l B
£ PIPPERY] ol |
L a
0.1m 0.1m
e — p———
E
s
B—B A—A

Figure 6.1: Rock sample configuration.

The finite element mesh arrangement is depicted in Figire 6.2. Because of the
symmetries of the sample geometry. boundary conditions and applied flow rate or
pressure conditions. the calculation needs only to be carried out in half of the sample.
A total of four layers are considered in the vertical direction. 42 elements and 54
nodes in each horizontal plane. Eight-node isoparametric elements are used in this
study case. The total nodal and element numbers are 270 and 168. respectively.

The boundary and initial conditions used in the cylindrical sample are as follows:

(a). displacement boundaries

uz(z,y.0,t) = u,(z,y,0,t) =u,(z,y,0,¢) =0
uz(z,y.—0.2,t) = u,(z,y,—0.2,¢t) = u,(z,y,-0.2,¢t) =0 (6.1)

uy(z,0,2,t) =0
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Figure 6.2: Mesh view in both horizontal and vertical planes.

(b). low boundaries

No flow is allowed through the sample boundaries. except at the injection and
withdrawal points.

(c). initial conditions

Fluid pressures are set to zero at £t = 0. For the two-phase flow case. the initial
water saturations are S,, = 0.35 and S, = 0.65. respectively.

The applications of simulating the permeability tests are listed in Table 6.1. The

detailed explanations for each application are discussed in the follow Sections.

6.3 Single-porosity Approach

In this Section, the simulation is carried out by using the single-porosity approach.

Both single-phase and two-phase fluid flow cases are considered in the study, in
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Table 6.1: Different methods used in the simulation of the permeability test.

Single-phase. horizontal injection
Single-porosity approach || Single-phase, vertical injection
Two-phase. horizontal injection

Single-phase. horizontal injection
Dual-porosity approach | Single-phase. vertical injection

Two-phase. horizontal injection. no loading
Two-phase, horizontal injection with loading

which the water is injected at one side and withdrawn at other side of the sample
for the horizontal injection case. and injected at the top and withdrawn at the

bottom of the sample for the vertical injection case.

6.3.1 Single-phase Fluid Flow

For the case of a single-phase fluid in a single-porosity problem. there are two cases

to study: horizontal and vertical injections.
Horizontal Injection

In the experiment to test rock sample permeability. single-porosity single-phase
flnid flow test is commonly used for its simplicity. The single-phase fluid (water)
is injected through one side of the rock sample by controlling the flowrate or fluid
pressure. and the pressures or flowrate are also controlled on the other side of the
sample. The parameters used in the horizontal injection simulation are shown in
Table 6.2.

Figure 6.3 shows the changes in fluid pressures and displacements in the x-
direction with time at some points of the rock sample shown in Figure 6.4. The
fluid pressures decrease with time. Higher pressure values appear near the injection
area and decrease with the positions from injection to withdrawal areas.

Figures 6.5, 6.6, 6.7 and 6.8 demonstrate the contours of the fluid pressures and
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Table 6.2: Parameters used in single-phase single-porosity case.

ﬁ’arameter Definition Magnitude Units

E modulus of elasticity 3000.0 MN/m?
v Poisson’s ratio 0.2

Qa Biot coefficient 0.861

K, fluid bulk modulus 3.0E3 MN/m?
& matrix porosity 0.2

ki/p matrix mobility 9.87E-6 | m*/(MN-s)
K, solid grain bulk modulus 1.2E4 MN /m?
Q. injection water flow rate 5.0E-7 m* /s

the displacements at the cross-sections of central vertical plane (y = 0 at Figure 6.4)
and central horizontal plane (z = -0.1 m at Figure 6.4) at the beginning of the fiuid
injection. While the changes of fluid pressures and displacements after 5 timestep
are shown in Figures 6.9, 6.10 and 6.11. Comparing with Figure 6.3. Figures 6.5.
6.6. 6.9 and 6.10 also show the changes of fluid pressures with higher values around
the injection area and the pressiires decreasing with time. The displacements show
that the rock volume increases with the larger values near both the injection and the
withdrawal areas. [t is noted that the sample volume change is die to the pressire

increase which results in the pore volume expansion.
Vertical Injection

The fluid is injected through the center of the sample top surface by controlling the
flowrate or fluid pressures, and also the fluid pressires or flowrate are controlled
at the withdrawn area which is located in the center of the sample bottom. For
the vertical injection experiment, the permeability along z-direction of the sample
(Figure 6.2) can be obtained. The parameters used in the simulation are similar to
the previous case and shown in Table 6.2.

Figure 6.12 demonstrates the changes of fluid pressures and displacements along

x-direction with time in some points of the rock sample (Points B, C and D in
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Figure 6.3: Fluid pressures and displacements with time.
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Figure 6.8: Displacements along x-axis at horizontal plane, t = 1 sec.
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Figure 6.11: Displacements along x-axis at horizontal plane. t = 5 sec.

Figire 6.4). respectively. Together with Figures 6.13. 6.14. 6.15 and 6.16. which
show the fluid pressure distributions aroiind both the sample central vertical plane
and central horizontal plane at two different timesteps: it can be seen that the fluid
pressiires decrease as time elapses.

The changes of displacements along the x-axis across the vertical planes are
shown in Figures 6.17 and 6.19 for two different timesteps. Figures 6.18 and 6.20
represent the displacements along radial direction at the horizontal plane. The
displacements decrease with time and show that the rock sample volume increases

with fluid injected from the top.
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Figure 6.12: Fluid pressures and displacements along x-axis with time.
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Figure 6.18: Displacements in radial direction at horizontal plane, t = 1 sec.
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6.3.2 Two-phase Fluid Flow

For the two-phase fluid flow simulation, the relationships between the relative per-
meability and the water saturation remain the same as predicted by Equation (4.11).
Also the relationship based on the same expression as Equation (4.12) and Figure
4.5 is nsed for the capillary pressure and water saturation curves. The parameters

used in the two-phase simulation are listed in Table 6.3.

Table 6.3: Parameters used in two-phase single-porosity case.

rPa.rameter Definition Magnitude Units

E modulus of elasticity 3000.0 MN/m?
v Poisson’s ratio 0.2

o Biot coefficient 0.861

K, fluid bulk modulus 3.0E3 MN/m?
o matrix porosity 0.2

ki/p matrix mobility 9.87E-6 | m*/(MN's)
K, solid grain bulk modulus 1.2E4 MN /m?
Qu injection water flow rate 5.0E-8 m* /s

Figures 6.21 and 6.22 illustrate the changes of water pressures and displacements
along the x-direction. and water saturations as a function of time for points A, B, C
and D of the rock sample (Figure 6.4), respectively. The water pressures decrease
with time when the locations are close to the injection area and when the analyzed
points are near withdrawal area the water pressures increase a little at the beginning
then decrease. In this case study, the fluid (water) is instantaneously injected into
the rock sample. In such case, the changes of the fluid pressures will reach the
highest values immediately after the injection, then decrease to the initial fluid
pressure values at the locations close to injection area. While at the points near the
withdrawal area, the fluid pressures will increase at the beginning time, and then

decrease. This is due to the fact that the fluid pressures will achieve the highest
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values after a period of time of injection.

The water saturations show a faster increase when close to the injection area. The
displacements indicate that the rock sample volume increases around the injection
area because the water fills the pore volume. while at the withdrawal area the sample
volume shrinks at the very early time. then expands due to the fact that fluid start
to fill the pore space.

Figures 6.23. 6.24. 6.25 and 6.26 show the water pressure distributions around
the sample central vertical plane (y = 0 at Figure 6.4) and central horizontal plane (z
= -0.1 m at Figure 6.4) at two timesteps. It also can be seen that the water pressures
are higher at the beginning than at later times. and higher at the injection than
withdrawal areas.

The changes of water saturation across the vertical and horizontal planes are
shown in Figures 6.27. 6.28. 6.29 and 6.30. The displacing process (e.g.. water
displacing oil) can be clearly seen along the moving front of the injected water.

The displacements depicted in Figures 6.31. 6.32. 6.33 and 6.34 demonstrate
that the rock sample volume increases due to the fluid filling the pore voliume of the

sample.
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Figure 6.24: Water pressures at central horizontal plane, t = 1 sec.
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6.4 Dual-porosity Approach

For the fractured rock sample, the more reasonable method for the simulation is
to nse the dual-porosity approach. Single-phase and two-phase fluid flow cases are
involved in the examples. Also for the two-phase horizontal injection case. bath
considering the external loading and without external loading cases are compared.
For the no external loading case (only fluid injection). the fixed boundaries on the
top and bottom of the specimen are designed. And for the loading case (external
loading and fluid injection). the uniaxial load is imposed on the top of the sample,

which allows the compression of the sample in the vertical direction.

6.4.1 Single-phase Fluid Flow

This case is studied using the dual-porosity approach in which horizontal and vertical
injections are considered. The parameters in the simulation are listed in Table 6.4.

It shoild be noted that in general. o) and ay, in Table 6.4. are not equal to each
other (Bai et al.. 1993). Based on an experimental study. Walsh (1981) suggested
that «, varies between 0.5 and 1.0. In that work it was determined that o, = 0.9 for
joints with polished surfaces and a; = 0.36 for a joint made from a tension fracture.
However. for this particular simulation, it is assumed that these two parameters

were equal.
Horizontal Injection

Figure 6.35 demonstrates the changes of water pressures in both the rock matrix and
the fracture with time at some points of the rock sample (Figure 6.4), respectively.
Both pressures in the rock matrix and the fractures decrease with time. At the
early time, the pressures in the fractures are higher than the pressures in the rock
matrix. While at positions not close to the injection area, it can be seen that the

water pressures are higher in the rock matrix than in the fractures.
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Table 6.4: Parameters used in single-phase dual-porosity case.

L Parameter Definition Magnitude Units

E modulus of elasticity 3000.0 MN/m?*
v Poisson’s ratio 0.2

Qy, Qg Biot coefficient 0.861
K, normal fracture stiffness 1.2E5 MN/m?/m
Ky fluid bulk modulus 3.0E3 MN/m?
&1 matrix porosity 0.2
¥ fracture porosity 0.05

ki/u matrix mobility 9.87E-8 | m*/(MN-s)

ka/p fracture mobility 9.87TE-6 | m*/(MN-s)
s fracture spacing 1.0E-2 m
K, solid grain bulk modulus 1.2E4 MN/m?
Qu injection water flow rate 5.0E-7 m* /s

The changes of the displacements along the x-direction in Figure 6.36 indicate
that the rock sample volume increases around the injection area because the water
fills the pore voliime. and the expansion of the volume decreases with time. While
at the withdrawal area the volume also expands. but with a small valiie compared
with the voliume change in injection area. This is the fact that higher fluid pressiures
exist in the injection area than in the withdrawal area.

Water saturations show more faster increase when the locations are close to
injection area. This is because the injected water moves from the injection area to
the withdrawal area. Gradually the injected water fills the whole sample.

Figures 6.37. 6.38. 6.39 and 6.40 show the water pressure distribiitions around
the sample central vertical plane and central horizontal plane at two timesteps. It
can be seen that the water pressures are higher at the beginning than the later time,
and also higher at the injection area than withdrawal area.

The displacements depicted in Figures 6.41, 6.42, 6.43 and 6.44 also show the

increase of the changes of the sample volume.
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Vertical Injection

In this case. the fluid is injected through the center of the sample top surface and
withdrawn from the area which is located in the center of the sample bottom. The
parameters used in the simulation are shown in Table 6.4.

Figure 6.45 demonstrates the changes of fluid pressures and displacements along
the x-direction as a function of time at some points of the rock sample (Points B.
C and D in Figure 6.4). respectively. The fluid pressures in both the rock matrix
and the fracture decrease with time except in locations far from the center. like
point D. where the pressiires in the matrix increase at the very early time. The
pressures are higher when the analyzed points are close to the center of the sample
than those located far from the center. When comparing the displacements along
the x-direction in points B. C and D, it can be seen that the largest value appears in
point D. and the smallest value in point B. This indicates that the largest changes of
the displacements along the x-direction which represent the rock sample expansion
will appear at the boundary of the sample.

Figures 6.46. 6.47. 6.48 and 6.49 show the matrix fluid pressure distribitions
around both the sample central vertical plane and central horizontal plane at two
different timesteps.

The changes of displacements along x-axis across the vertical planes are shown in
Figures 6.50 and 6.51 for two different timesteps. Figures 6.52 and 6.53 represent the
displacements along the radial direction in a horizontal plane. The displacements
decrease with time and show the rock sample volume increases with fliid injected

from the top.
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6.4.2 Two-phase Fluid Flow

In order to simulate two-phase fluid flow in fractured rock samples. the relationships
between the relative permeability and the water saturation are assiimed to remain
the same as expressed by Equation (4.11); and Equation (4.12) and Figure 4.5 are

used. The parameters used in the two-phase simiulation are listed in Table 6.5.

Table 6.5: Parameters used in two-phase dual-porosity case.

| Parameter Definition Magnitude Units
E modulus of elasticity 3000.0 MN /m?
v Poisson’s ratio 0.2
Q. ay Biot coefficient 0.861
K, normal fracture stiffness 1.2E6 MN/m?/m
Ky fluid bulk modulus 3.0E3 MN/m?
ol) matrix porosity 0.2
¢y fracture porosity 0.05
ki/ matrix mobility 9.87E-8 | m'/(MN:s)
ko/p fracture mobility 9.87E-6 | m'/(MN-s)
s fracture spacing 1.0E-2 m
K, solid grain bulk modulus 1.2E4 MN/m?
Quw injection water flow rate 5.0E-8 m* /s
a, uniaxial loading stress 10.0 MN/m?

Figure 6.34 demonstrates the water pressure changes in the rock matrix for
points A. B. C and D shown in Figure 6.4. At the very early time. the pressures
increase with the water injected into the sample; then the pressures decrease with
time. The water pressures in the fractures, compared with the water pressures in
the rock matrix. show an overall decreasing trend as time elapses (Figure 6.53). The
oil pressures in the rock matrix and the fracture systems are very close to the water
pressures in each system.

The water saturation changes in the rock matrix and the fracture systems are
depicted in Figures 6.56 and 6.57, respectively. Both systems show the water sat-

uration changes faster at points close to the water injection area. In addition. the
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water saturations in the fracture system increase faster than the same positions in
the rock matrix system due to the higher mobility characteristics of the fracture
system.

The displacements along the x-axis for those four points (A. B. C and D in
Figure 6.1) are illustrated in Figure 6.58. Water is injected into the rock sample
which causes the sample volume to expand. Again. the largest expansion takes
place in the beginning close to the water injection area. then the sample volume
shrinks with time due to the pore pressure decreasing. While in the withdrawal
area. the sample volume will expand at early times until it reaches a maximum

before shrinking with time.
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Figure 6.56: Matrix water saturation changes with time at different locations.
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The rock matrix water pressure distributions in the central vertical plane (y =
0. Figure 6.2) and horizontal plane (z = —0.1 m, Figure 6.2) are shown in Figures
6.39. 6.60. 6.61 and 6.62 at two different timesteps. Figures 6.63. 6.64. 6.65 and
6.66 show the fracture water pressure distributions in both the central vertical and
horizontal planes.

The water saturation distributions in the rock matrix in both the central vertical
and horizontal planes at two different timesteps are depicted in Figures 6.67, 6.68.
6.69 and 6.70. respectively. The figures show that the water satiurations increase with
time in both cross-sections. The water saturation moving from the right side of the
figures (water injection areas) to the left side of the figures is clearly demonstrated
in those figures. Figures 6.71. 6.72, 6.73 and 6.74 show the fractiure water saturation
distributions in both vertical and horizontal planes. The water saturation changes
in the fractire system not only demonstrate the values increasing with time. but
also show a larger value than the water saturation changes in the rock matrix at the
same point and at the same time. This is again because the injection water moves
faster in fracture system which has a higher mobility than the rock matrix system.

The displacements along the x-axis are shown in Figures 6.75. 6.76. 6.77 and
6.78. respectively. The values in the figures represent the sample volume expansion
after the water injection. The largest expansion valiles occur at the injection points.
And the changes of sample expansion decrease with time. Figures 6.79 and 6.80
show the displacements along y-axis in central horizontal plane for two timesteps.
At the beginning, the largest displacements appear near the injection point. Then
as time elapses, the largest values move up to the top and bottom sides of the

horizontal plane.
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Figure 6.70: Matrix water saturations in horizontal plane, t = 5 sec.
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Figure 6.72: Fracture water saturations in horizontal plane, t = 1 sec.

147



-0.00

-0.02
-0.041
-0.061

-0.081

Z(m)

-0.101

-0.121

-0.14

-0.164

-0.18

Figure 6.73: Fracture water saturation distributions in vertical plane. t = 5 sec.

Figure 6.74: Fracture water saturations in horizontal plane. t = 3 sec.
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Figure 6.76: Displacements along x-axis in horizontal plane, t = 1 sec.
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Figure 6.77: Displacement distributions along x-axis in vertical plane. t = 3 sec.

Figure 6.78: Displacements along x-axis in horizontal plane, t = 3 sec.
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The rock sample is further considered to be subjected to an uniaxial loading at
the top surface. The boundary and initial conditions are exactly same as previously.
except the top surface moves in the vertical direction. The loading stress is equal
to 10 MPa.

Figures 6.81 and 6.82 compare the results of the water pressures in both rock
matrix and fractire systems with time for no-loading and loading cases. Both cases
demonstrate the same trend in pressiure changes. A larger pressure value is obtained
in the loading case than in the no-loading case. which is reasonable because the
loading stress will increase the pore pressures inside the rock sample.

The displacements along the x- (horizontal) and z- (vertical) directions are rep-
resented in Figures 6.83 and 6.84. respectively. As expected. larger displacement
valiies are shown in Figure 6.83 under loading condition. The rock sample also

shows larger expansions under loading condition.
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Chapter 7

Conclusions and
Recommendations

7.1 Conclusions

This dissertation addressed the two-phase fluid flow problems in deformable natu-
rally fractured reservoirs. Theoretical and numerical approaches were pursiied. The
dnal-porosity system was used to describe the fractured porous medium in which
different properties had been attributed to the rock matrix and the fractures. The-
oretical and numerical efforts culminated in the developments of a fully coupled
three-dimensional finite element code. It is believed that the developed numeri-
cal tool gives a more powerful means to solve different and difficult problems in
petrolenum engineering as well as in other engineering areas. The major conclusions

and contributions of this study can be summarized as follows:

1. The derivations of the developed numerical model are based on the rigorous
theory of the conservations of momentum and mass. rather than formulating
the governing equations in a phenomenological background as shown in some
current models. In comparison with the existing models for two-phase flow
and solid deformation in fractured porous media, the present model offers

more precise definition for the interactive responses between the matrix and
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the fractures with respect to fluid flow.

A three-dimensional finite element code has been developed which properly
similates the coupled behaviors of the poroelastic solid and the two immis-
cible fluids in a deformable saturated fractured reservoir. The dual-porosity
concept was applied to the fractured porous media. which means that the
porous medium comprises fractiures. with higher permeability and lower stor-

age. as well as solid matrix. with lower permeability and higher storage.

The non-linear system of equations in the finite element model has been solved
using the direct iteration method. in which each iteration is controlled by the
error analyses of the unknowns. The elements of the matrix coefficients of
the highly non-linear system are updated during each iteration in terms of the

independent variables.

The performance of the developed numerical code has been extensively val-
idated in three different categories. The first contains the simplest tests of
the pure elasticity and the steady-state flow. The second simulates the con-
solidation problem for the coupled rock-fluid systems. Although those tests
only involve single-phase flow and single-porosity they can. however. serve as a
partial check for the present code. Finally, the problem of the two-phase flow
in the deforming fractured porous medium was investigated. All the tested
examples demonstrated the validity. stability and capability of the developed

code.

The presented model gives more opportunities and choices to simulate differ-
ent problems including uncoupled and coupled situations. The pure elastic
problem and steady-state flow cases are typical examples of uncoupled prob-

lems. While several cases are involved in the coupled problems, for example
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single-phase fluid flow in both single-porosity and dual-porosity media, and

two-phase fluids flow also in both single-porosity and dual-porosity media.

. The surface subsidence with dual-porosity presents more fast changes than the

results obtained from single-porosity method. The fractured porous media
behaviors depend on a large extent on the fracture properties. Two most
important properties are the fracture permeability and fracture spacing which
are negligible in single-porosity approach. Therefore. a dual-porosity model
is more realistic in such cases than those with a conventional single-porosity

model.

With increasing fracture permeability, both surface subsidences and fluid pres-
sires change faster. Those behaviors demonstrate that if fractiire permeability
is higher. the fluid will flow faster in the fracture system which causes the fluid
pressire to drop faster and subsidences increase faster. On the other hand.

the smaller the fracture spacing is. the faster the subsidence occirs.

The studied examples in the parametric analysis show that for the fractured
porous media the fluid pressures in the rock matrix are higher than the pres-
siures in the fracture system, which may be explained as the fluid within the
rock matrix is squeezed ot into the fracture system dite to the pressure dif-
ference. For the column problem, bigger difference between the rock matrix
pressire and the fracture pressure is observed near the top sirface than at the
bottom of the column, which is attributed to the fact that the top surface is
drained. In addition. the fluid interchange is also the functions of the fraciure

geometry.

For the two-phase flow in fractured porous media, the water saturations demon-

strate larger changes in the fracture system than in the rock matrix. More oil
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will flow into the fracture system so that the water saturation in the rock ma-
trix will increase. From the fracture point of view. although oil flows into the
fracture from the rock matrix. much more oil will move out from the drainage
area leading to increase water saturation in the fractures. It is also noted that

the capillary pressures will affect the saturation changes.

For all practical purposes. the developed model was nused to simulate the be-
havior of laboratory rock samples. Several cases were studied which includ-
ing combinations of horizontal injection. vertical injection. single-phase. two-
phase. single-porosity. dual-porosity. no-loading and loading situations. Those
simulations may be used for the future studies in stress-dependent permeabil-

ity.

o

The developed model will be of great utility in simulating two-phase flow in
deformable saturated oil reservoir. One typical example is waterflood. It
also gives the opportunities to study the problems including single-phase fluid
flow. reservoir subsidence, reservoir heterogeneity. groundwater flow and un-
saturated zone problem in soil mechanics. and contaminant transport pollution

in environment area.

7.2 Recommendations

The rigorous theoretical formulations and the finite element numerical scheme have

been demonstrated through this dissertation. Yet only a few case studies were car-

ried out. The followings are some implementation issues that need fiirther research

and developments:

1.

additional material balance checks are needed after the convergence has been

checked so that the model conserves mass at all times. This balance check
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requires that the rate of fluid accumulation minus the divergence of velocity
must be equal to the net flow of the reservoir system, i.e. total flow from any

external soiirce minis the total outflow from the reservoir:

the influence of choosing different element sizes needs further study. especially

in the case of non-linear problems:

the convergence criterion may be influenced by the choice of the method to
solve the non-linear equations. such as direct method. successive overrelax-
ation (SOR) and Newton-Raphson methods. Hence. this convergence criterion

might probably be further optimized;

in the simulation. the vahie of At is assumed to be 1.0 second. In such case.
the changes of the unknowns in the period of 0 to 1 second need to be further
investigated. One method to deal with this problem is to take smaller value
of At. such as 0.1 second and see how it inflilences the various pressure and

displacement graphs:

. conduct more case analyses for the actual fractured reservoir production prob-

lems;

extend the current model to simulate three-phase fliid flow problems:

. examine the fracture properties. siich as the effect of non-Darcy flow:

extend the presented theory to elastoplastic model to solve other problems like

sanding control and borehole stability;
enable the model to study the stress-dependent permeability; and,

improve the code interface.
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Nomenclature

K
K,

.
K,

K,

[(sll

K,

Kiw
K,
Ko
K20
Kiro

strain displacement matrix

compressibility
elasticity compliance matrices (i. j. k. |=1. .. ..
elasticity matrices (i. j, k. I=1..... 3)

Young’s modiilus

body force vector

Jacobian matrix

stiffness

bulk moduli of the solid skeleton
bulk moduli of the fractured media
bulk moduli of the solid grain
fracture normal stiffness

fracture shear stiffness

fluid bulk moduli of rock matrix
fluid bulk moduli of fracture
water bulk moduli of rock matrix
oil bulk moduli of rock matrix
water bulk moduli of fracture

oil bulk moduli of fracture

oil relative permeability of rock matrix
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WUy

Uy

oil relative permeability of fracture
water relative permeability of rock matrix
water relative permeability of fracture
differential operator

mass

interpolation functions or shape functions
nuumber of normal set of fractures
average pressiure in rock matrix
average pressitre in fractiure

oil pressure in rock matrix

oil pressure in fracture

water pressire in rock matrix

water pressiire in fracture

capillary pressure

capillary pressure of rock matrix
capillary pressure of fracture

error

oil saturation of rock matrix

oil saturation of fracture

water saturation of rock matrix

water saturation of fracture

fracture spacing

time

velocity

Darcy water velocity in rock matrix

Darcy water velocity in fracture
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Uy, = Darcy oil velocity in rock matrix

Lo, = Darcy oil velocity in fracture

Uiw = intrinsic water velocity in rock matrix

U, = intrinsic water velocity in fracture

Ui, = intrinsic oil velocity in rock matrix

Ui, = intrinsic oil velocity in fracture

V = total volume of the fractured porous medinum

Vs = solid volume of the fractured porous medium

Wi = pore volume of the fractured porous medinm

Vy = fracture volume of the fractured porous medinm
Vp = total pore volume

4% = weighting function

Y,z = .y, - directions in a cartesian coordinate system
Greeks

s = strain

i = strain tensor (i, j=1. ..., 3)

= strain component [

=ff = strain component [I

=1 = strain component III

Skk = volume strain

v = Poisson’s ration

E.n.¢ = £, n. ¢ directions in a local coordinate system
b1 = rock matrix porosity

9 = fracture matrix porosity

by = solid matrix porosity
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Ps
Plw
Pln

P2

Hiw
Mo
Hio

H20

Subscripts

1

density of solid

density of water in rock matrix
density of oil in rock matrix
density of water in fracture
density of oil in fracture

rate of water transferred between the rock matrix and the frac-
ture per nnit volume

rate of oil transferred between the rock matrix and the fractire
per unit volume

water viscosity in rock matrix

water viscosity in fracture
oil viscosity in rock matrix
oil viscosity in fracture

convergence limit value

stress
stress tensor (i. j=1.....3)
effective stress tensor (i. j=1..... 3)

mean stress

Biot’s constant

Kronecker Delta

domain

unknown values at the nodes
time-step

Laplace operator

rock matrix system

fracture system
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b = boundary domain

T = volume domain

s = solid system

w = water

) = oil

7! = 1 for rock matrix and 2 for fracture
T = w for water and o for oil
Superscripts

0 = initial values

-1 = Inverse

k = iteration level
T = transpose

n = time

164



References

N

ot

~l

Aifantis E.C.. Introducing a Multi-Porous Medium. Developments in Mechan-
ics. Vol.8. p.209-211. 1977.

Aifantis E.C.. On the Problem of Diffusion in Solids. Acte Mechanica. Vol.37.

p.265-296. 1980.

Al-Dhahir Z.A. and Tan D.C.. A Note on One-dimensional Constant-head
Permeability Tests. Geotechn.. Vol.18. p.499-505. 1968.

Allen D.R.. Physical Changes of Reservoir Properties Caused by Subsidence
and Repressurizing Operations. Wilmington Field. California. JPT. p.23-29.
1968.

Aziz K. and Settari A.. Petroleum Reservoir Simulation. Elsevier Applied

Science Publishers. New York. 1979.

Bai M.. Elsworth D. and Roegiers J.-C., Multi-Porosity /Multi-Permeability
Approach to the Simulation of Naturally Fractured Reservoirs. Water Resour.

Res., Vol.29. No.6, p.1621-1633, 1993.

Bai M., Ma Q. and Roegiers J.-C., A Nonlinear Dual-Porosity Model, Appl.
Math. Modelling, Vol. 18, p.602-610, 1994.

Bai M. and Meng F.H.. Study of Naturally-Fractured Reservoirs Using Three-

Dimensional Finite Elements, Report for the Rock Mechanics Research Insti-

165



10.

11.

13.

14.

16.

tute. The University of Oklahoma. Nov.. 1994.

Bai M. and Roegiers J.-C.. On the Correlation of Nonlinear Flow and Linear
Transport with Application to Dual-Porosity Modeling, .J. Pet. Sci. Eng.,
Vol.11. p.63-72. 1994.

Bai M.. Elsworth D.. Roegiers J.-C. and Meng F.H.. A Three-Dimensional
Dual-Porosity Poroelastic Model. International Symposium on mining Tech-
nology: Rock Mechanics and Strata Control in Mining and Geological Engi-

neering. Beijing. China. 1995.

Bai M.. Roegiers J.-C. and Elsworth D.. Poromechanical Response of Fractired-
Porous Rock Masses. Journal of Petroleum Science and Engineering . Vol.13.

p.155-168. 1995.

Bai M. and Roegiers J.-C.. Modeling of Heat Flow and Solute Transport in
Fractured Rock Masses. Proc. 8th Int. Congress Rock Mechanics. Japan.

1995.

Barenblatt G.I.. Zheltov I.P. and Kochina LN.. Basic Concepts in the Theory
of Seepage of Homogeneous Liquids in Fissured Rocks. Prikl. Mat. Mekh..
Vol.24. No.3. p.852-864, 1960.

Bear J.. Dynamics of Fluids in Porous Media. Dover Publications. Inc.. New

York. 1988.

. Biot M.A.. General Theory of Three-Dimensional Consolidation. .J. Appl.

Phys.. Vol.12, p.155-164, 1941.

Biot ML.A., Theory of Elasticity and Consolidation for a Porous Anisotropic
Media, J. Appl. Phys., Vol.26, p.182-185, 1955.

166



18.

19.

(S
8

. Bossie-Codreanu D.. Bia P.R. and Sabathier J.C., The “Checker Model © Im-

provement in Modeling Naturally Fractured Reservoirs with a Tridimensional.

Triphasic. Black-Oil Numerical Model. Soc. Pet. Eng. .J.. p.743-756, 1985.

Brace W.F.. Walsh J.B. and Frangos W.T.. Permeability of Granite under
High Pressure. .J. Geophys. Res.. Vol.73. p.2225-2236. 1968.

Braester C.. Simultaneous Flow of Immiscible Liquids Through Porous Media.
Soc. Pet. Eng. .J.. p.297-303, 1972.

Briice G.H.. Peaceman D.W. and Rachford H.H.. Calculation of Unsteady-
State Gas Flow Through Porous Media. Petrol. Trans. AIME 198. p.74-92,
1953.

. Charlez P.A.. Rock Mechanics. Volume 1, Theoretical Fundamentals. Editions

Technip. Paris. 1991.

. Chin L.Y. and Prévost J.H.. Three-Dimensional Computer Modeling of Cou-

pled Geomechanics and Multiphase Flow, Computer Methods and Advances

in Geomechanics. p.1171-1176. Balkema. Rotterdam. 1997.

Committee on Fractiire Characterization and Fluid Flow. Rock Fractures and
Fluid Flow - Contemporary Understanding and Applications. National Academy

Press. Washington. D.C.. 1996.

. Dagger M.A.S.. A Fully-Coupled Two-Phase Flow and Rock Deformation

Model for Reservoir Rock, Ph.D dissertation, the University of Oklahoma.

1997.

. Detournay E. and Cheng A.H-D., Poroelastic Response of a Borehole in a

Non-Hydrostatic Stress Field, Int. .J. Rock Mech. Min. Sci. Geomech. Abstr..
Vol.25, No.3. p.171-182, 1988.

167



(3]
~1

30.

31.

32.

33.

34.

Detournay E. and Cheng A.H-D.. Fundamental of Poroelasticity. Ch.5 in Com-
prehensive Rock Engineering, Vol.2, Editor. Fairhurst C.. Pergamon Press.

1993.

. Dugnid J.O. and Abel J.. Finite Element Galerkin Method for Flow in Frac-

tiired Porous Media. in Finite Element Methods in Flow Problems. Oden J.T..
Zienkiewicz O.C.. Gallagher R.H. and Taylor C.. eds.. p.599-615. University

of Alabama Press. Huntsville. 1974.

Dugnid J.O. and Lee P.C.Y., Flow in Fractured Porous Media. Water Re-

sources Research. Vol.13. No.3. p.538, 1977.

Elsworth D. and Bai M.. Flow-Deformation Response of Dual-Porosity Media.

Journal of Geotechnical Engineering, Vol.118. No.l. Jan. 1992.

Evans R.D.. A Proposed Model for Multiphase Flow Through Naturally Frac-
tured Reservoirs. SPE Paper, No. 9940. SPE-AIME. Dallas. TX. 1981.

Finol A. and Farouq Ali M.. Numerical Simulation of Oil Production with

Simultaneous Ground Subsidence. SPEJ. Vol.15. p.411-124. 1975.

Freeze R.A. and Witherspoon P.A.. Theoretical Analysis of Regional Ground-
water Flow: 1. Analytical and Numerical Solutions to the Mathematical

Model. Water Resour. Res.. Vol.2, p.641-656. 1966.

Gambolati G., Gatto P. and Freeze R.A.. Mathematical Simulation of the

Subsidence of Venice, 2, Results, Water Resour. Res., Vol.9, p.721-733. 1973.

Gawin D.. Simoni L. and Schrefler B.A.., Numerical Model for Hydro-Mechanical
Behaviour in Deformable Porous Media: A Benchmark Problem, p.1171-1176,
Balkema. Rotterdam, 1997.

168



36.

37.

38.

39.

40.

41.

42.

43.

. Ghafouri H.R. and Lewis R.W., A Finite Element Double Porosity Model for

Heterogeneous Deformable Porous Media. [nt. .J. Analytic. Numer. Meth.

Geomech.. Vol.20. p.831-844, 1996.

Gilman J.R.. An efficient Difference Method for Simulating Phase Segregation
in the Matrix Blocks in Double-Porosity Reservoirs. Soc. Pet. Eng. .J.. p.403-
413. July. 1986.

Gilman J.R. and Kazemi H.. Improved Calculations for Viscous and Gravity
Displacement in Matrix Blocks in Dual-Porosity Simulators. .J. Pef. Tech..

p.60-70. Jan.. 1988.

Gupta S.K. and Tanki K.K., A Three-Dimensional Galerkin Finite Element
Solution of Flow Through Multiaquifers in Sutter Basin. California. Water

Resour. Res.. Vol.12. No.2, p.135-162. 1976.

Hill A.C. and Thomas G.W.. A New Approach for Simlating Complex Frac-
tired Reservoirs. SPE Paper, No. 13537. SPE-AIME. Dallas. TX. 1985.

Istok J.. Groundwater Modeling by the Finite Element Method. Water Re-

sources Monograph 13. American Geophysical Union. 1989.

Jaeger J.C. and Cook N.G.W.. Fundamentals of Rock Mechanics. Chapman
and Hall. 1979.

Javandel [. and Witherspoon P.A.. Application of the Finite Element Method
to Transient Flow in Porous Media, Society of Petroleurn Engineers Journal,

Vol.8. No.3, p.241-252. 1968.

Kazemi H., Seth M.S. and Thomas G.W., The Interpretation of Interference
Tests in Naturally Fractured Reservoirs with Uniform Fracture Distribution,

Soc. Pet. Eng. J., 9, p.463-472, 1969a.

169



44.

46.

43.

49.

Kazemi H.. Pressure Transient Analysis of Naturally Fractured Reservoirs with

Uniform Fracture Distribution. Soc. Pet. Eng. J.. 9, p.451-462, 1969b.

. Kazemi H. and Gilman J.R.. Multiphase Flow in Fractured Petrolenm Reser-

voirs. Flow and Contaminant Transport in Fractured Rock, p.267-270. Aca-

demic Press. Inc.. 1993.

Kazemi H.. Merril L.S. Jr., Porterfield K.L. and Zeman P.R.. Numerical Sim-
ilation of Water-Oil Flow in Naturally Fractured Reservoirs. Soc. Pef. Eng.

J.. 16. p.317-326. 1975.

. Khaled M.Y .. Beskos D.E. and Aifantis E.C.. On the Theory of Consolidation

with Double Porosity - III A Finite Element Formulation. Inf. .J. Analytic.

Numer. Meth. Geomech., Vol.8, p.101-123. 1981

Klubertanz G.. Laloui L. and Vulliet L.. Numerical Modeling of Unsaturated
Porons Media as a Two and Three Phase Medium: A Comparison. Computer
Methods and Advances in Geomechanics. p.1171-1176. Balkema. Rotterdam.

1997.

Lewis R.W. and Ghafouri H.R., A Novel Finite Element Double Porosity
Model for Multiphase Flow Through Deformable Fractured Porous Media.
Int. J. Analytic. Numer. Meth. Geomech., Vol.21, p.789-816. 1997.

. Lewis R.W. and Schrefler B.A.. The Finite Element Method in the Deforma-

tion and Consolidation of Porous Media. Wiley, Chichester. 1987.

. Lewis R.W. and Sukirman Y., Finite Element Modeling of Three-Phase Flow

in Deforming Saturated Oil Reservoirs, Int. J. Analytic. Numer. Meth. Ge-

omech.. Vol.17. p.5377-598, 1993a.

170



60.

. Lewis R.W. and Sukirman Y.. Finite Element Modeling for Simulating the

Surface Subsidence above a Compacting Hydrocarbon Reservoir. Int. .J. An-

alytic. Numer. Meth. Geomech.. Vol.18. p.619-639. 1993b.

. Li X. and Fan Y., Finite Element Analysis of Transient Deformation and

Seepage Process in Unsaturated Soils. Computer Methods and Adwvances in

Geomechanics. p.1171-1176. Balkema. Rotterdam. 1997.

54. Li X. and Zienkiewicz O.C., Multiphase Flow in Deforming Porous Media and

Finite Element Solutions, Computer & Structures, Vol.45. No.2. p.211-227.

1992.

. L1 X.. Zienkiewicz O.C. and Xie Y.M.. A Numerical Model for Immiscible

Two-Phase Fluid Flow in a Porous Medinm and Its Time Domain Solution.

Int. J. for Numer. Meth. in Eng., Vol.30. p.1195-1212. 1990.

. Marius J.M.. Ekofisk Reservoir Voidage and Seabed Subsidence. .JPT. p.1434-

1438. 1990.

. Mattax C.C. and Dalton R.L.. Reservoir Simulation. SPE Monograph. Vol.13.

1990.

. Mattax C.C. and Kyte J.R.. Imbibition Oil Recovery from Fractiurred, Water-

Drive Reservoirs. Soc. Pet. Eng. J., Trans., AIME, Vol.225. p.177-184. 1962.

. Matthews C.S. and Russell D.G., Pressure Buildup and Flow Tests in Wells,

SPE Monograph, Vol.1, 1967.

Merle H.A.. The Bachaquero-Study: A Composite Analysis of the Behavior of
a Compaction Drive/Solution Gas Drive Reservoir, JPT, p.1107-1114, 1976.

171



61.

63.

6.

66.

68.

69.

Morin R.H. and Olsen H.W., Theoretical Analysis of the Transient Pressure
Response from a Constant Flow Rate Hydraulic Conductivity Test. Water
Resources Res.. Vol.23. p.1461-1470, 1987.

Nakornthap K. and Evans R.D., Numerical Simulation and Reservoir Charac-
terization of Multiphase Fluid Flow in Naturally Fractured Formations. SPE

15130. 1986.

Neumann S.P. and Witherspoon P.A.. Finite Element Method of Analyzing
Steady Seepage With a Free Surface. Water Resour. Res.. Vol.6. No.3. p.889-
897. 1970.

Noorishad J.. Ayatollahi M.S. and Witherspoon P.A.. A Finite Element Method
for Conpled Stress and Fluid Flow Analysis in Fractured Rock Masses. Int. .J.
Rock Mech. Min. Sci. & Geomech. Abstr.. Vol.19. p.185-192. 1982.

. Nur A. and Byerlee J.D.. An Exact Effective Stress Law for Elastic Defor-

mation of Rock with Fluids. .J. Geophys. Res.. Vol.76. No.26. p.6414-6419.
1971.

Odeh A.S.. Unsteady-state Behavior of Naturally Fractured Reservoirs. Soc.

Pet. Eng. J.. 5. p.60-66. 1965.

. Peter S.H. and Geogre F.P.. Computational Methods in Subsurface Flow. Aca-

demic Press. Inc.. New York, 1983.

Pinder G.F. and Bredehoeft J.D.. Application of the Digital Computer for
Aquifer Evaluation, Water Resour. Res., Vol.4, p.1069-1093. 1968.

Pinder G.F. and Frind E.O., Application of Galerkin's Procedure to Aquifer
Analysis, Water Resour. Res., Vol.8, No.1, p.108-120, 1972.

172



~I
o

=~
ut

=}
~1

79.

. Price H.S.. Cavendish J.C. and Varga R.A.. Numerical Methods of Higher

Order Accuracy for Diffusion Convection Equations. Society of Petroleum En-

gineers Journal. p.293-303. 1968.

. Pruess K. and Tsang Y.W.. On Two-Phase Relative Permeability and Cap-

illary Pressure of Rough-Walled Rock Fractures. Water Resources Research.
Vol.26. No.9. p.1915-1926. Sept.. 1990.

Reiss L.H.. Bossie-Codreanu D. and Lefebvre du Prey E.J.. Flow in Fissured
Reservoir. SPE Paper, No.4343, London. 1973.

. Rossen R.J.. Simulation of Naturally Fractured Reservoirs with Semi-Implicit

Source Terms. Soc. Pet. Eng. J.. 17. p.201-210. 1977.

. Settari A. and Aziz K.. Treatment of Nonlinear Terms in the Nimerical So-

lution of Partial Differential Equations for Multiphase Flow in Porous Media.

Int. J. Multiphase Flow. Vol.1. p.817-844. Pergamon/Elsevier. 1975.

. Schoonbeek J.B.. Land Subsidence as a Result of Natural Gas Extraction in

the Province of Groningen. SPE Paper, No.5751. 1976. p.23-29. 1968.

. Schrefler B.A. and Zhan X.. A Fully Coupled Model for Water Flow and

Airflow in Deformable Porous Media, Water Resour. Res.. Vol.29. No.1. p.155-

167. 1993.

. Shu Z.Y.. Personal Communication, 1998.

. Skempton A.W., The Pore-Pressure Coefficients A and B. Geotechnique. Vol 4,

p.143-147, 1954.

Sun Y., Sakajo S. and Nishigaki M., Application Research on a Numerical

173



80.

31.

83.

34.

86.

88.

Model of Two-Phase Flows in Deformation Porous Medium, Computer Meth-

ods and Advances in Geomechanics, p.1171-1176. Balkema. Rotterdam, 1997.

Swann A.. Analytical Solutions for Determining Naturally Fractured Reservoir

Properties by Well Testing, Soc. Pet. Eng. J.. 6, p.117-122. 1976.

Swann A.. Theory of Waterflooding in Fractured Reservoirs. Soc. Pet. Eng.
J.. 4. p.117-122. 1978.

. Terzaghi K.. Theory Soil Mechanics. John Wiley & Sons. New York. N.Y..

1943.

Thomas L.K.. Dixon T.N. and Pierson R.G.. Fractured Reservoir Simnulation.

Soc. Pet. Eng. J.. p.42-34, 1983.

Trescott P.C. and Larson S.P.. Comparison of Iterative Methods for Solving
Two-dimensional Groundwater Flow Equations. Water Resour. Res.. Vol.13.

No.1. p.125-136. 1977.

. Walsh J.B.. Effect of Pore Pressure and Confining Pressure on Fracture Per-

meability. Int. .J. Rock Mech. M. Sci. Geomech. :Abstr.. Vol.18. No.3.

p.429-435. 1981.

Warren J.E. and Root P.J.. The Behavior of Naturally Fractured Reservoirs.
Soc. Pet. Eng. .J., Trans.. AIME. Vol.228. p.245-255, 1963.

. Williams J.L.. The Infliience of Induced Vertical Fractures on Overall Reservoir

Performance, SPE Paper, No.6381, Midland. TX. March. 1977.

Wilson R.K. and Aifantis E.C., On the Theory of Consolidation with Double
Porosity, Int. J. Eng. Scz., Vol.20, No.9, p.1009-1035, 1982.

174



89.

90.

91.

92.

Wit Y.S. and Pruess K.. A Multiple-Porosity Method for Simulation of Nati-
rally Fractured Petroleum Reservoirs. SPE Reservoir Engineering, p.327-336.
1988.

Zaman M.. Gopalasingam A. and Laguros J.G.. Consolidation Settlement of
Bridge Approach Foundation. Journal of Geotechnical Engineering, Vol. 117.

No.2. p.219-240. 1991.

Zienkiewicz O.C. and Parekh C.J.. Transient Field Problems: Two-Dimensional
and Three-Dimensional Analysis by Isoparametric Finite Elements. [nferna-

tional .Journal of Numerical Methods in Engineering, Vol.2. p.61-71. 1970.

Zienkiewicz O.C.. The Finite Element Method. McGraw-Hill. 3rd edition. New
York. 1977.

175



Appendix A

Derivations of Volume Changes

These basic derivations are based on Charlez’s book (1991).

A.1 Decomposition of the State of Stress

The constitutive law of the equivalent material can be determined easily by de-

composing the actual state of stress into three elementary components according to

Figure A.1.
G -P P CrPr+P2
1tt it it ittt
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Figure A.1: Decomposition of the stress state.
Hooke’s law is written as:
£y = HTVO','J' - %O’kké,;j (Al)



where £ is Young's modulus; v is Poisson’s ratio; ow = 0z, + 0,y + 0. for the

three-dimensional stress conditions and §;; is the Kronecker delta.

e Component [ corresponds to the hydrostatic loading of the matrix and leads

I .

to a deformation state z; :

N, Py

:'ij == _glz
where K, is the bulk modulus of the solid grain.

6,‘]' (:\.2)

e Component II corresponds to the hydrostatic loading of the fracture and leads

to a deformation state =/ :

oo _ b

b;; (A.3)
where 3K, is the fracture stiffness and s is the fracture spacing.

e Component III corresponds to the loading of the dry equivalent material and

leads to a deformation state =///:
1+v v
:.i[j” = T (O'i]‘ + Pléij + P25,-j) - E (Ukk 4+ 3P[ + 3Pz) 6ij (A-L)

The overall strain is obtained by adding Equations (A.2). (A.3) and (A.4) which
leads to:

1+v v 1 1\ A 1 1 P _
sy = ———0; — — Ok 0ij —_— = —b;; _— — —&; A.
] E Tij EUU' ]+(Kt KJ) 3 ]+<K¢ Kns> 3Y (A.5)

where K, is the bulk modulus of the equivalent dry material.

The effective stress can be written as (Nur and Byerlee. 1971):

05 = 05 + 1 P16y + ay Pyé; (A.6)
with.
;= 1-— i[g—t
{a =1- Kj &0
2 Kns



Ope = Ok + 301 Py + 30, Py (A.8)
Substituting Equations (A.6). (A.7) and (A.8) into Equation (A.3). it follows:

14+v . | 2]
T T %G T Eo'kk‘sij (A.9)

It shows that the effective stresses and not the total stresses govern the strain of a

fractured porous elastic material.

A.2 Bulk Volume Variations

The bulk volume variations can easily be obtained from Hooke's law (Equation

(A.3)). The volume strain =y is such that:

==

K, K,s

AV 1 fow
(ﬂ"i+PI+P2

)_Pl &)
3

(A.10)

A.3 Variation in Total Pore Volume

It is clear that the variation of total pore voliime is generated by normal stress

components. The normal total stress can be decomposed into two parts with @ =

Tkk

3

0ij = Gb;j + (045 — 76;5) (A.11)

The analysis of the variations in total pore volume also can be divided into two

parts:

1. the pore volume variations due to mean stresses and pressures. i.e. 7. P and

Py; and,

2. the pore volume variations due to deviatoric stresses, i.e. g;; — 70;;.
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A.3.1 Pore Volume Change Due to Mean Stresses and Pres-
sures

The total pore volume is the sium of the matrix pore voliime and the fracture volume.
t.e. V, = Vi + V,. The total pore volume and the bulk voliume are assumed to be
a function of the mean stress @ and pressures P, and P,. The relative variations in

total pore volume will. therefore. be such that:
dav, 1 (9V, av, av,
S _ 2 (2 d dP A12
( )da-{- <8P1 P+ V 3P, P, (A.12)

v, V,\oo
) from Equation (A.12), consider the stress path do = —dP, -

-

vV

To eliminate { —2
o eliminate (33
dP,. Then Equations (A.2). (A.3) and (A.10) lead to:

v _ dP_ dP, _ _dv, |
V Ks Kn kk + = “kk - Vs (A'lg)
Since dV,, = dV — dV,, taking account of Equation (A.13) one gets:
dP, dP, _ dP, dP,)\ ..
dv, = — < i + Kns) V-V, = (f\’s + % s) v, (A.14)
Equations (A.13) and (A.14) lead to the identity with d = —d P, — d Py:
# dV, d ,
av. _dV, _dV, _ db _ dB (A.13)

V V., V, K, Kus
Since dd = —dP, — dP,, Equation (A.12) will be written by taking account of

Equation (A.13) as:

_dP dP, =--1-(3V)dpl-i(m>dp2 %(av )dpl 1 <m/)dg
P

K; Kugs Vo \ 95 Vo \ 05 aP, oP,
(A.16)
... 0V, av, '
By eliminating —= and == between Equations (A.12) and (A.16). the following
ap, AP,
equation is obtained:
dv, APy dP; 1 [dV,
—£ =- — dd + dP A.
72 <K5+A +v;, vl (do +dP, +dP, ) (A.17)
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A.3.2 Betty’s Reciprocity Theorem

The final expression of the variation in total pore volime for a material subjected to
an increment dc of mean total stress and to the variations d P, and dP, of pressures.
is obtained by applying Betty’s reciprocity theorem to two transformations: on one
hand the case in which the mean total stress varies between @ and 7 + d& whereas
the pressires remain constant and, on the other. that in which @ remains constant
whereas the pressures vary from (P, + ) to (P, +dP, + P, + dP,). Betty’s reci-
procity theorem will be written as:

av
5 (dP, + dP,)

IV,
(‘#) 45 x (dP) +dP;) = [

] d(dP, +dP,) x d& (A.18)

Also Equation (A.18) may be written:

OP +0P, 0o
v v,

(A.19)

Taking acconunt of Equation (A.10), the left side of above equation can be expressed

as:
dP, 0P 1 1 Kol o1 |
av+av‘v(i_i)+v(_1__l)‘v(m az) (4.20)
K—t K_., KL [{nS
The right side of Equation (A.19). therefore. can be written as:
P _ YV e (A.21)

o5 T(—cﬂil +
The final expression of the relative variation of total pore volume. Equation (A.17),

will be in the following form:

d{/p d.P] dP2 1 1 (a37eD}
—P = = o dd +dP, +dP. .22
Vo (Ks+Kns)+¢<Ktal+a‘z)(J+ L +Hdh) (4.22)

A.3.3 Pore Volume Change Due to Deviatoric Stresses

The same reasoning with the deviatoric components of Equation (A.11) leads to the

expression:
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4, 101 oo
Ve o \Kia; + ay

) (do-ijéij —dﬁ) =0

(A.23)

From the above derivation. it is clear that the total pore volime variations are

caused by mean stresses and pressures, not by deviatoric stresses. Equation (A.22)

remains valid in the general case for the pore volime change.

A.4 Variation in Solid Volume

The relative solid volume change can be expressed as:

dv, d(V-V,) 4V _dV, 1 4V ¢ dV, (A.24)
Vv, V-V, V-V, V-V, 1-¢V 1-9V =
Substituting Equations (A.10) and (A.22) into Equation (A.24) leads to:
dokg
dv, 1 ' +dP, +dP, (1= an) dP, dP, (.25
— — - A.25
V, 1-¢ K, UK, Kas
where az = by
o1 d KdP,  K.dP.
After considering Equation (A.10), Tk +dPy, +dPy =dsi K, + tK Ly \[:, 32’
the variation of relative solid density can be written as:
dps dV; 1 Q3 — ¢’ Qg — @
T V. Toe| K DTG T medua (429
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Appendix B

Terms in Finite Element Matrices
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