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A bstract

This dissertation systematically investigated the impact of non-isothermal drilling 

on borehole stability for boreholes drilled in fluid-saturated porous formations, and 

subjected to an arbitrarily  oriented stress field. Emphasis was put on the analyses 

of problems occurring in shales, i.e., the therm al diffusivity is generally greater than 

the fluid diffusivity; and conductive, rather than  convective, heat transfer dominates 

the tem perature diffusion process. The thermal-hydraulic-mechanical (THM), or 

thermoporomechanical processes discussed in this dissertation are fully-coupled. 

The thermoporoelastic near-wellbore behavior was thoroughly discussed based on 

the derived analytical thremoporoelastic solutions. Theoretical and numerical mod­

els for the investigation of non-linear and thermoporoelastoplastic responses were 

also developed.

In the theoretical development part, a set of fully-coupled thermoporoelastic 

governing equations were proposed and some drawbacks in an existing model dis­

cussed. Formulae for stress- and temperature-dependent thermoporoelastic param ­

eters were derived based on the micromechanical model of volumetric response; 

non-linear behavior for some thermoelastic and thermodynamics properties were 

reviewed. Following this, the basic theories for plasticity and failure were revis­

ited, and the fully-coupled thermoporoelastoplastic constitutive relations for plastic 

strain and the change of fluid content per unit volume, and for a strain harden­

ing/softening Driicker-Prager material model were deduced.

In the model development part, thermoporoelastic analytical solutions, includ­

ing the general solution for axisymmetric loading condition; dimensionless solutions 

for some extreme boundary conditions; the  solution for a borehole subjected to 

non-hydrostatic far-field loading; and solution for inclined boreholes, were derived. 

These models furthered the current technologies in this field by taking into ac­

count the complete TH M  coupling mechanism and arbitrary borehole orientations

x v i i



with respect to the in-situ stress field. A finite element model which is capable 

of simulating the behaviors of highly non-linear and quasi-static thermoporoelasto­

plastic systems was also developed. This is an entirely new application attem pts 

in the area of fully-coupled THM modelling. The validation of the finite element 

model was carried out for several doubly-coupled problems with known solutions. 

The models developed in this part provide effective tools for both evaluating the 

potential impacts of thermoporoelastic processes on wellbore stability, and the rel­

ative importance of taJdng into account the non-linear emd thermoporoelastoplastic 

behavior.

In the application part, the basic mechanisms of coupled thermoporoelastic pro­

cesses influencing borehole stability were thoroughly investigated through a diag­

nostic example. In addition, the potential impacts of non-isothermal drilling on the 

stability of boreholes subjected to arbitrary stress field were illustrated through two 

application examples. The results from these examples have shown that heating 

the borehole can significantly increase the potential of near-wellbore shear failure 

a t early times. Heating also imposes a high potential of borehole spalling. On the 

other hand, cooling the borehole tends to stabilize the borehole at the beginning of 

the drilling; but with time, it could induce time-delayed lost circulation, wellbore 

spalling, and passive and active shear failures, especially when the cooling effects 

is combined with the high m ud weight. In particular, if an originally cooled bore­

hole is gradually heated up during deepening, time-delayed failure could occur in 

the upper sections of a borehole. Due to their high porosity and low permeability, 

thermal effects are especially significant in shales, which could be a new explana­

tion for the high problematic rate in  shales. Quantitatively, the impacts of thermal 

effects on wellbore stability could be significant, it could provide solutions for those 

wellbore problems th a t cannot be predicted by isothermal analyses. The findings 

from these analyses are especially im portant for ofifehore high-temperature, high- 

pressure and deep wells, where high mud weight are usually required to manage the 

high pressure, a  small am ount of t^ p e r a tu r e  change on the wellbore wall could

xvm



bring in various time-delayed borehole problems. It also implied th a t cooling the 

borehole could be an  eflFective way to stabihze the wellbore in these wells, as long 

as the upper part of the wellbore are cased in time.
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1 Introduction

1.1 R esearch M otivations and O bjectives

W ith the past decade’s m aturation  in modem drilling technology, the petroleum 

industry has realized the tremendous value of developing fields utilizing highly devi­

ated, extended-reach and  horizontal wells. Such wells promise, for a slightly higher 

development cost, faster production rates and higher reserve access compared to 

the conventional vertical wells. However, the wellbore stability problems associated 

with these wells are also m uch more di&cult to manage. Earlier studies on the  sta­

bility of inclined boreholes developed the analytical solutions considering formations 

to be linear elastic media[26][2][l20]. Recently, Cui et al.[43] derived the analytical 

poroelastic solution tak ing  into account the coupled pore fluid effects. However, all 

the afore-mentioned solutions considered only isothermal wellbore conditions.

During the drilling of an  oil or gas well, the tem perature of the drilling mud 

is usually quite different firom the formation tem perature. Due to the geothermal 

gradient, the drilling fluid is usually cooler than  the form ation when it first reaches 

the bottom  of the hole. W hen the borehole deepens, the same section will gradually 

be heated up by the drilling fluid th a t is heated up further downhole. For example, 

for a 3000 m -depth well drilled in an  area with a geothermal gradient of G.03°C/m 

and a surface tem perature of 15° C, the bottom  hole could be cooled up to  55° C and 

the upper section, a t about 1000m depth, could be heated up to 30° C [39]. Such 

a tem perature difference can significantly change the stress and pore pressure dis­

tributions around the borehole. Hence, an assumed isothermal wellbore condition 

m ay lead to erroneous predictions o^ wellbore stability condition, especially for the



offshore high-tem perature, high-pressure and deep wells.

The fact th a t drilling is a non-isothermal activity is common knowledge, but 

the potential im pact of the thermal effects on wellbore stability has basically been 

overlooked by industry, even though some field cases have been reported blaming 

tem perature for time-delayed borehole failures[7l], and cooling the m ud can effec­

tively reduce wellbore problems[99]. P art of the reason for industry to believe that 

thermal effects is a  trivial problem is due to the fact th a t the existing analyses are 

essentially uncoupled, i.e., tem perature is taken into account via the thermal ex­

pansion coefficient of the rock formation which only results in an additional stress 

term. The fully-coupled thermoporomechanical analyses conducted in this disserta­

tion reveal th a t the thermal effects can be crucial to the wellbore stability (mainly 

due to the high pore pressure induced), much more significant than  the results 

predicted by uncoupled models, especially when fluid diffusivity of the formation is 

smaller than  the  therm al diffusivity, such as in shales.

It is well known th a t 95% of the wellbore instability problems occur in shale, 

and no uniform recognition has been reached so far as to w hat are the controlling 

mechanisms responsible for these problems. Studies conducted in this dissertation 

revealed the potential causes for the high problematic rate  in  shales, and suggested 

a new explanation for the major shale failure mode th a t has been confirmed by 

laboratory tests [132].

The m ajor objective of this dissertation is to systematically investigate the im­

pacts of non-isothermal drilling processes on borehole stability for boreholes drilled 

in fluid-saturated porous formation, and  subjected to a stress field th a t is arbitrar­

ily oriented w ith  respect to the borehole axis. Emphasis is p u t on the anzdyses for 

problems occurring in shales, i.e., the thermal diffusivity is generally greater than  

the fluid diflFusivity; and  conductive, instead of convective, heat transfer dominates 

the tem perature diffusion process. The thermal-hydrauhc-mechanical (THM), or 

thermoporomechanical processes discussed in this dissertation are fully-coupled. 

The non-linear and  elastoplastic rock behavior on borehole stability are mean to



be investigated as well.

1.2 D issertation  O utline

Chapter 1 stated the research motivations and objectives for this dissertation. A 

brief overview of the dissertation is also given a t the end of this chapter.

Chapter 2 is a  general review of the state of the a rt of wellbore stability studies, 

including a summary of commonly seen wellbore instability problems, the analysis 

for the factors influencing the wellbore stability, and an overview of the existing 

predictive models. In particular, a review of the current technologies on coupled 

THM modelling, and th e ir  applications to wellbore stability study are given in this 

chapter.

Chapter 3 contains th e  basic theories applied in the subsequent chapters for the 

thermoporoelastic/ plastic modelling. First, a set of thermoporoelastic governing 

equations was proposed and  some drawbacks in an existing model discussed; then, 

formulae for some of the stress- and temperature-dependent thermoporoelastic pa­

rameters were derived based on the micromechanical model of volumetric response 

and constitutive relations; non-linear behaviors for other thermoelastic and ther­

modynamics properties were also reviewed. Following this, the basic theory for 

plasticity and failure were revisited; and finally, the fully-coupled thermoporoe- 

lastoplastic constitutive relations for plastic strain  and porosity, and for a strain 

hardening/softening Drûcker-Prager material model were developed.

Chapter 4 presents th e  thermoporoelastic analytical solutions obtained in this 

dissertation, including th e  genered solution for axisymmetric loading condition; di- 

mensionless solutions for some extreme boundary conditions; the solution for a 

borehole subjected to non-hydrostatic far-fleld loading; and the solution for in­

clined boreholes. Therm oelastic solutions for inclined boreholes was also derived a t 

the end of this chapter for the purpose of comparison.

Chapter 5 describes th e  development of a fully-coupled thermoporoelastoplastic
7



finite element model. The model is capable of simulating the behavior of highly 

non-linear and quasi-static therm oporoelastoplastic systems. Verifi.cations of the 

model is carried out for several doubly-coupled problems with known solutions. 

The model provides a powerful tool for th e  evaluation of the relative im portance of 

taking into account the non-linear and poroelastoplastic behavior.

Chapter 6 consists of three application examples; Case I, a case th a t is de­

signed to investigate the basic mechanisms of coupled thermoporoelastic processes 

influencing borehole stability; and Case II and III which illustrate the potential 

significant im pacts of non-isothermal drilling process on the stability of a vertical 

borehole subjected to a non-hydrostatic stress field, as well as the more general case 

of an inclined borehole. Recommendations are made at the end of the chapter on 

how to avoid borehole problems during drilling under non-isothermal conditions.

Finally, in Chapter 7, a summ ary of the studies conducted in this disserta­

tion are given, and  the m ajor contributions of the work are outlined. Based on 

the current study, recommendations are proposed on potentially im portant fu ture 

developments.



2 General Review on Wellbore Stability 

Studies

2.1 Com m on W ellbore In stab ility  Problem s

Problems related to  wellbore instability are a well known source of additional costs 

to the petroleum industry, especially when dealing w ith hostile environments such 

as extremely weak, plastic and reactive formations; tectonically very active areas 

where formation is highly stressed and discontinuous; unfavorable lithology se­

quences which narrows the mud-weight window, and high formation tem perature 

and pressure. One area where operators experienced immense wellbore problems 

is the US Gulf Coast [3], where borehole collapse and  sanding are plaguing many 

completions because of the  presence of unconsolidated weak sands and reactive 

shales. There is no doubt th a t  highly geopressured sections and high tem peratures 

in deep wells in this area added to the complexity of the problem. Another typical 

area is the Cuisiana field in  Colombia [5] where approximately 10% of the well costs 

are spent coping w ith bad  holes, mainly because of the  abnormally high tectonic 

stresses and complicated geological setting a t the foot of Andes. In  addition to 

the hostile environments, th e  increasing use of highly-deviated, extended-reach and 

horizontal wells, and other innovative technologies such as underbalanced drilling 

and multilaterials, has definitely escalated the demand for wellbore stability  studies.

Wellbore failures can occur during dr illin g , completion, and production of a

well, whenever the stresses around the borehole exceed the local streng th  of the

formation. The commonly observed wellbore failures can be divided into four types:
?



hole closure, hole enlargement, fracturing and sand production (Figure 2.1):

• Borehole closure is a ductile-type of compressive shear failure, i.e., the failure 

due to excessive deformations. Failure of this type occurs in weak and plastic 

formations such as salt and some shales. W hen this happens, repeated bore­

hole reaming will be required at the least. In severe cases, it can cause stuck 

pipe and logging tools, or even casing collapse.

• Borehole enlargement means either a breakout or a washout. Breakout here 

stands for a  locally occurring brittle-type compressive shear failure, with their 

location as well as geometry vary according to  the relative magnitude of the 

three principal stresses acting along the borehole wall. W ashout is a to tal 

collapse of a section of the wellbore. It could be due to the sloughing of reac­

tive shales, severe shear failure in weak formations such as coal, or borehole 

spalling due to circumferential tensile failure. The debris from hole enlarge­

ment can accumulate in the borehole, leading to stuck pipe, or even inducing 

further borehole collapse. Besides, the resulted out-of gauge hole can further 

affect directional control, the quality of logging, and the cementing jobs.

• Fracturing means tensile failure in radial or transverse directions w ith respect 

to the borehole. It is mainly due to too high a  wellbore pressure; bu t borehole 

inclination and rock anisotropy also play im portant roles. W hen this happens, 

drilling fluid might will lost into the formation, leading to  the lost of drilling 

tim e and  an increase in cost. In extreme situations, differential pipe sticking 

can happen.

• Sanding is a common problem during the production of relatively weak sand­

stones, when drawdown is high enough to  break and remove formation par­

ticles. Fluid velocity and hydrodynamic forces play im portant roles in the 

problem. Serious sanding problems limit the production rate  which could 

render the well useless. It also causes damage to equipment.



The classical failure modes mentioned above perceive the formation as a con­

tinuum medium. Pre-existing discontinuities in the rock mass can bring additional 

wellbore problems as well. Shear displacements along an pre-existing discontinuity 

could occur[98], and "key blocks” [66] in a fractured network can drop into the well.

2.2 M ajor Factors Influencing W ellbore S tab ility

The factors influencing the stability of a wellbore can be divided into two cate­

gories: uncontrollable, and controllable. In trying to strike a balance between the 

minimum mud weight or the maximum drawdown, and the integrity of a borehole, 

continuous efforts are being made to  accurately evaluate the eflects of uncontrollable 

factors such as the in-situ stresses, formation pore pressure, and rock properties, 

and optimizing the design of controllable factors such as m ud weight, its physical 

and chemical composition, and borehole orientations (including inclination and az­

imuth). But not as much attention has been paid to the effects of discontinuity 

and mud tem perature, even though field observations related to them are reported 

from time to  time in the literature. Apart from the reason th a t the theories related 

to these topics are more complicated and less matured than  the classical elasticity 

and plasticity, the m ajor reason th a t hinders the application of the discontinuity 

theory lies in the difficulty of accurately characterizing the distribution of the dis­

continuities along the borehole. But the major reason for the less attention to the 

tem perature effects is because of the traditional thoughts th a t it is not a significant 

issue.

2.3 E xisting  P red ictive M odels

Since Hubbert and Willis [80] first applied Kirsch’s [22] solution to predict the stabil­

ity of a  vertical borehole subjected to a non-hydrostatic far field stress and constant 

borehole fluid pressure, considerable efforts and spectacular progresses have been



made in developing mathematical models th a t predict the wellbore responses as 

accurately as possible. According to th e ir theoretical background, the mechani­

cal wellbore stability  models can generally be divided into three categories: elas­

tic/plastic models, poroelastic/ plastic models, and  discontinuum mechanics model.

Typically presented by Goodman’s jo in t element[67], CundaU’s distinct elements 

[45] and Shi’s key block theory[66], Discontinuum mechanics models were originated 

in late 70’s and  popularly used in rock engineering problems such as tunnelling and 

mining- B ut such approach are not commonly used in wellbore stability  analyses 

in the petroleum  industry. The only published application so far is by Rawling et 

a/.[l27] v/ho sim ulated a set of lab polyaxial tests using Cundali’s distinct elements 

model[46]. As it  was mentioned before, the  m ajor reason hindering the application 

of discontinuity models could be the difficulty of accurately characterizing the three- 

dimensional fracture distribution in a deep borehole, which is the basic requirement 

for using this type of model. Since discontinuity and fracture networks are com­

monly observed in rock masses, the discontinuum  model would be the  only possible 

way of providing accurate predictions of wellbore problems, once the  deformations 

of the discontinuity dominates the rock response around the borehole. Because of 

this, one would believe that the application of discontinuum models would find its 

way in the petroleum  industry in the future, w ith the associated developments in 

geophysics and  logging technology.

E lastic/p lastic  models do not account for the transient pore pressure changes 

during the stress redistribution around th e  borehole, even though the effective stress 

law m ay be used. After Hubbert and  Willis, Faihurst[57] derived the solution 

for the stress distribution around an inclined borehole by including the stresses 

induced by anti-plane sheeu. Later, Bradley[26] published a series of analyses on the 

effects of borehole inclination and in-situ stress field on wellbore stability  based on 

Fairhurst’s solution. Even though Fairhurst’s model and Bradley’s work considered 

only isotropic an d  linear elastic rock behavior, they provided one of the  most reliable 

tool, and revealed the most significant physical insight into the effects of in-situ
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stress field and borehole inclination on wellbore stability. They are recognized 

as the most valuable fundam ental developments, and are still the most popularly 

referred works in wellbore stability studies.

In the late 80’s, Aadn0y[2][l] developed a semi-analytical model taking into ac­

count the influence of rock anisotropy on inclined borehole stability, but his model 

could only solve for the stresses along the borehole wall, and it was limited to 

an isotropic shear failure criterion. Ong and Roegiers[l20][119] modified Aadnoy’s 

model by presenting the stress as a function of borehole radii and adopting an 

anisotropic shear failure criterion. Based on Ong and Roegiers’s model, a well­

bore stability analysis tool was developed which is presently extensively used in the 

petroleum industry[47]. Later, Li et al. further improved Ong’s wellbore stabil­

ity analysis tool by including a horizontal stress determ ination model as it's front 

end[93|[94j. Since only 10% of the rock formations exhibit isotropic material prop­

erties, and 30% of the rocks has an anisotropy ratio of more than 1.5 for Young’s 

moduIus[118], the anisotropic model appears to  be more realistic compared to the 

isotropic models.

Both the field observations and lab tests results have shown that the linear- 

elastic models give a higher stress concentration rate around the borehole; and thus, 

require a much higher m ud weight to prevent active shear failure[l27][l51]. This is 

because the linear elastic models do not take into account the large deformations 

rock experiences before failure, which will release a  certain amount of stresses, or 

energy, around the borehole. Besides, the peak-strength failure criterion, which 

is usually used together w ith  the elastic model, assumes th a t wellbore failure is 

synonymous to one point a t the borehole wall reaching the peak-strength of the 

rock. B ut in reality, stress transfer starts as soon as one point in the material 

reaches its yield limit, and  a  plastic zone around the borehole, which is characterized 

by its large deformation and  low stresses, will finally form. As long as the borehole 

deformations are w ithin the  tolerance of the drilling tool, the wellbore can generally 

be considered eis being stable during this stage. In other words, deformations.



instead of stresses, is a more suitable criterion for the judgement of borehole failure 

when plastic deformation comes into play. If, otherwise, the stresses are used as 

failure criterions, it is proper to believe th a t a wellbore reached its strength limit 

only when the stresses in m ost of the area around the borehole, instead of one 

point, reached its peak strength. Furthermore, most of the rock-type material 

exhibits strain-softening a t the later stage of the deformation, i.e. deformation 

increases with the decrease of the stresses, and failure may be occurring only when 

localized softening zones are developed, further extending the bearing capacity of 

the rock.

Conservative prediction itself is not a  serious problem for the industry. However, 

there are frequent cases where m ud weights predicted to prevent active shear failure 

and fracturing cross each other in m ud weight stability profile, i.e., an  imaginary 

negative safe operating m ud weight window will be produced, which means either 

fracturing or differential pipe sticking will occur, or the wellbore will collapse by 

active shear failure, no m atter w hat m ud weight is chosen. The design goal is to 

use the lowest possible m ud weight to prevent active shear failure; and hence, to 

obtain a widest possible m ud weight window. In viewing the differences between 

the failure mud weight predicted by the linear elastic model and the laboratory and 

field observations, and the possibility th a t less conservative mud weight predictions 

can be obtained from elastoplastic analyses, substantial work has been directed 

toward the investigation of the elastoplastic rock behavior, and develop the more 

realistic elastoplastic predictive models.

The pioneer work in elastoplastic stress analysis around a cylindrical cavity 

dated back to 1938 by Fenner[58]. Over the years, numerous solutions to predict 

the size of the failure zone and plastic deformation around underground cylin­

drical cavities induced by th e  stress redistribution due to the excavation[28][110], 

drilling[l2][70] and production[7][131][l09] (to cite a few) have been developed. 

An extensive review on the models under hydrostatic loading can be found in [28]. 

Due to the high complexity involved, the similar analysis for non-hydrostatic stress
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field started to receive attention only after the finite element m ethod had been 

applied to this field[ll][129]. As a m atter of fact, the only semi-analytical model 

that has been developed so far is by Detounay and Fairhurst[53]. Their model 

considers a wellbore drilled in an elastoplastic dilatant material, subjected to a 

non-hydrostatic stress field, bu t there are several restrictions in their solution such 

as only a  limited range of deviation from hydrostatic loading can be considered. The 

analysis which refiect more realistic conditions such as inclined boreholes [56] [151], 

and strain-hardening/softening features [151], are all produced using finite element 

method.

The formation surrounding the borehole is often permeated with fiuids, and 

the pore pressure changes due to drilling or production are a transient diffusion 

process. This means the stability  condition of a  borehole could also change with 

time because of the effective stress law. In viewing the limitation of elastic/plastic 

model in capturing this feature, poroelastic/plastic models were developed.

Haimson and Fairhurst presented the first poroelastic borehole stability model 

based on an asymptotic solution[72]. Detoumay and Cheng derived a  fully-coupled, 

poroelastic semi-analytical solution for a vertical borehole subjected to a non­

hydrostatic stress field[51]. Recently, Cui et al. further extended Detoum ay and 

Cheng’s work and developed a model th a t is able to evaluate the stability of in­

clined boreholes [43]. The above poroelastic models consider the rock formation as 

isotropic m aterial and with isotropic poroelastic properties. On the other hand, 

semi-analytical and  finite element models which take into account the anisotropic 

poroelastic rock properties were also developed[4] [44].

Comparing to  poroelasticity, the development and  application of poroelastoplas­

tic wellbore stability models are still in their infancy. Attem pts have been seen in 

the literature to conduct poroelastoplastic wellbore stabihty analyses by incorporat­

ing the steady state  or transient pore pressure distribution into the existing semi- 

analytical plastic borehole models[154] [25] [102]. But these are not fully-coupled 

poroelastoplastic models, and  they ,jiever break the limitation of one-dimensional
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or hydrostatic loading condition. Besides the mathematical difficulties involved 

in solving these problems analytically, the lim ited understanding of fully-coupled 

poroelastoplastic rock constitutive behavior also hindered the development in this 

direction. The finite element method has been adopted by several authors to carry 

out fully-coupled poroelastoplastic analyses in fluid injection during hydrocarbon 

production[138], and other apphcations[92]. However, the fully-coupled poroelasto­

plastic analysis for borehole stability has not been seen yet.

2.4 C oupled  T heruial-hydraulic-m echauical M od­

ellin g

Since SchifiEman[134] first extended the Biot theory[14] [15] [16] for non-isothermal 

systems, substantial literature on the modelling of coupled THM response of fluid- 

saturated  porous media has been accum ulated over the years due to its relevance to 

many engineering applications including nuclear waste disposal[21][20][90][l36][137] 

[140]; geotherm al energy production[l03] [104][13]; seasonal tem perature variation 

on the behavior of structure foundations [105] ; fluid injection for hydraulic frac­

turing or w ater flooding[123][77][138]; therm al recovery of heavy oil [150] [79]; and 

wellbore instability  control during the drilling of gas and oil wells[40] [156]. Diverse 

forms of governing equations taking into account the THM coupling a t different 

levels of generality have been developed [20] [13] [103] [90] [88] [40]. Due to  the com­

plexity of cross-coupling mechanisms involved in this type of problem, the  m ajority 

of boundary and  initial value problems of such type are solved by various numer­

ical techniques [76] [90] [137] [140]. Very few problems of two or three-dimensional 

geometry, such as a  heated borehole[l04] [156] or a spherical heat source in infinite 

media[21][20], are solved analytically. As a  m atter of fact, these existing analyti­

cal solutions are limited to  axisymmetric boundary conditions, which renders the 

problems one-dimensional mathematically.

For a  phenomenologically coupled problem, the complexity of the analysis de-
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pends on the level of coupling which is being simulated. Figure 2.2 is a schematic 

diagram of coupling mechanisms for a fully-coupled THM system.

Thermomechanical coupling has been studied by many authors[113] [114] [115][18] 

in the past. W ith  very few exceptions[18], these now classical studies consider 

mainly the coupling mechanism I, and are lim ited in the context of thermoelas­

ticity. Coupling mechanism II is traditionally ignored based on the observation 

that the tem perature variations induced by mechanical deformations is very small 

compared to  the stra ins/ stresses induced by tem perature variations[ll5]. As to the 

mechanism th a t mechanical deformation m ight influences the thermal properties, 

which in tu rn  could render the thermal behavior non-linear, very few studies have 

been reported[l41], and the subject are not well understood as of today.

Between early 70’s to  mid 80’s, great advances in simulating coupled fluid flow 

and heat transfer problems have been made in conjunction with the geothermal 

energy research. Various models, including lum ped param eter and distributed pa­

ram eter models; single and multi-phased (mainly water-steam system) models; and 

models considering one or two-way coupling mechanism, have been developed[107] 

[157] [27] [106] [64] [89]. Solutions to these models m ostly rely on numerical proce­

dures such as finite elements and finite diflerences [106] [64]. Non-linearity due to 

the convective heat transfer or non-linear thermodynamic parameters which usu­

ally involves in these types of modelling can lead to serious numerical difficulties 

such as numerical dispersion and oscillations. Semi-implicit and implicit iteration 

procedures such as the Newton-Raphson m ethod were generally used to dealing 

with such problems. Although the scanty input parameters limited the successful 

applications of these models in field problems [107], the development and implemen­

tation of them  accum ulated a  lot of experiences in dealing with numerical difficulties 

related to non-linear systems.

Subsidence, consolidation and some time-delayed failure phenomena are mainly 

governed by the hydraulic-mechanical coupling mechanisms. Even though numer­

ous predictive models, including sop|iisticated non-linear and elastoplastic models.
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have been developed and applied to  the prediction and diagnosis of field observed 

problems of these types, most of these models take into account coupling mech­

anism  V only, and ignore the coupling mechanism VI[34][126][74], with very few 

exceptions[92]. Only in recent years, attention started  to  tu rn  to the modelling 

of more realistic two-way coupling mechanisms. As s ta ted  in the last section, sig­

nificant advances have been achieved recently for quasi-static, poroelastic type of 

time-delayed failure analyses in some applications[52][42j. However, fully-coupled 

poroelastoplastic modelling are very scanty as of today. In particular, the effects 

of coupling processes on the constitutive relations and tim e and environmental 

variable-dependent material properties, especially at the failure stage, are not well 

understood and require further investigations.

In spite of the long history of recognizing the im portance and broad range of 

application requirements, the modeling of fully-coupled TH M  process is still in an 

early stage of development compared w ith other topics in rock mechanics. On the 

one hand, it is limited by the lagged-behind theoretical developments related to 

these problems, such as the di&culties in computational m athem atics and applied 

mechanics, especially when a real geomechanical system is considered, i.e., when 

fractures, discontinuities, non-linear and plastic constitutive behavior are involved; 

on the  other hand, the lack of applicable test cases for the  verification, validation 

and  evaluation of the m athem atical models also hinders the development. Never­

theless, substantial progress has been made in THM modeling through the need 

of evaluating long-term safety of radioactive waste disposal since the mid 80’s. A 

special issue in Int. J. Rock Mech. Min. Sci. & Geomech. A6str.[144] reported the 

results of some so-called bench-mark tests (initial-boundary value problems designed 

to  compare results from different models and codes applied to  solve them) and test 

cases (actual laboratory or field experiments th a t are to be modeled) firom the first 

phase of an international cooperative research project established under D E C O - 

V A L E X  - a multidisciplinary effort dedicated to the DEvelopment of C O upled 

models and their VALidation against E xperim ents. T he project has nine fund­
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ing organizations from seven countries and over a dozen research teams [85]. Ten 

finite element models, including two/three-dimensional fully-coupled THM  models 

for elastic[32] or equivalent elastoplastic[19] porous media, two/ three-dimensional 

coupled THM models for non-linear elastic [23] or elastoplastic [112] [111] fractured 

porous media w ith  special joint elements, two-dimensional coupled THM model 

for porous/ fractured media with crack tensor approach[75], two-dimensional TM 

model without fluid flow[73]; and four D istinct Element models which simulate 

two-dimensional, quasi-static, coupled THM  process for discrete, deformable block 

assemblages[97], were developed/applied in the project. All the finite element mod­

els developed/applied in the project take into account the convective heat transfer 

except the TM  model[73]. Besides, few analytical and semi-analytical solutions to 

the coupled TH M  problems were also developed/compiled for further bench mark­

ing purposes [128]. Although the models developed in the D E C O V A L E X  project 

are not yet ready to be applied to the real geological system with full confidence, 

it significantly furthered the fully-coupled THM  modelling technology .

While significant progress in THM modelling are being made in the field of 

radioactive waste management, little a tten tion  has been paid to their effects on 

wellbore instabilities, as was mentioned in the introduction of this dissertation. As 

a starting step, analytical solutions for transient tem perature and pore pressure 

diffusion around a borehole subjected to axisymmetric loading have been derived 

by Coussy[40], Wang[l55][156], and Mctigue[l04] for conductive heat transfer, and 

by Hojika et of. [79] for convective heat transfer. No work has been reported so 

far for fully-coupled THM  solutions for a  borehole subjected to a non-hydrostatic 

stress field, or inclined boreholes. No attem pts have been made for the coupled 

thermoporoelastoplastic modelling either.
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3 Theoretical Background

3.1 Int roduct ion

This chapter develops and summarizes the basic theories adopted in this disserta­

tion. The developments are based on B iot’s self-consistent theory [14, 15, 16] for 

fluid-saturated porous media. Small perturbation  hypotheses are adopted, includ­

ing inflnitesimal deformations of the m atrix  so th a t the concept of the Eulerian 

strain tensor is applicable; infinitesimal m atrix  displacements so th a t Darcy’s law 

can be defined in term s of absolute fluid velocity, instead of relative velocity of 

the fluid with respect to  grains. This has been shown to be vahd when grain dis­

placements do not exceed 5% of the thickness of the  compacting unit[62). The fluid 

considered in this study is a  single liquid phase. T he potential phase changes, chem­

ical and creep effects are ignored. The concept of effective heat transfer is adopted, 

i.e., same tem perature for both the m atrix solid and  pore fluid, which is based on 

an assumption th a t local heat exchanges between the solid and the fluid are rapid 

enough in comparison w ith  global heat and fluid diffusions. Finally, the hypothesis 

of negligible inertia will be added so th a t the  deformations are considered to be 

quasi-static.

3.2 G overning Equations

The governing equations for thermoporoelastic problems, w ithin the context de­

fined above, can be expressed in terms of the field equations governing the matrix 

deformations, fluid flow through pore space, and  heat flow through both  pore fluid
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and porous matrix. These field equations can be derived based on the constitu­

tive relations for the porous m atrix, the pore space, the fluid and heat diffusions, 

together with the conservation laws for momentum, mass and energy. The deriva­

tions here closely follow the framework of Rice and  Cleary[130] formulation, and 

Kurashigue’s[88] approach for the inclusion of therm al effects. The to tal stress, cr.y 

(tensile positive), pore pressure variation, p (compressive positive), and tempera­

ture variation, T, are chosen as the basic dynamic variables. The corresponding 

conjugate kinematic quantities are the solid strain, Sij, and fluid content change for 

unit volume pore fluid, Ç.

3.2.1 Constitutive relations

Consider an elementary porous medium volume large enough to be considered the 

equivalence of the macroscopic porous medium, and a continuum assumption to be 

justified, the constitutive equations for the porous m atrix  and the pore space can be 

obtained based on the thermodynamics principles for fluid-saturated thermoelastic 

porous m aterials[37][88], i.e.

£ij — CijkiCTki +  BijP + o^fjT (3.1)

A<  ̂=  BkiCTki +  Dp 4- o:pT (3.2)

where o’ki,eij,A(f),p^T  are to ta l stresses, average strains, change in porosity, and 

pore pressure and tem perature changes from an initial equilibrium status, respec­

tively.

The elastic parameters tensor Cijki, Biy, for isotropic materials has the following 

form:

Cijki =  ^  (SikSji 4- SiiSki — ^ ^  (3 3)

^  2G B (14-i/)(1 +  i/«)‘̂ " 
where B is Skempton’s[139] pore pressure coefficient:

19



D can be expressed as:

and K and ccfj are the bulk modulus and the linear therm al expansion coefficient 

tensor, i.e.

«
(3.8)

In the above equations, <p is the initial porosity, G  is the shear m odulus, K / is 

the  bulk modulus of the pore fluid, K , is the effective bulk modulus of the solid 

constituent, a  is Biot’s coefficient of effective stress, u is Poisson’s ratio, is the 

undrained Poisson’s ratio, oi^  is the linear therm al expansion coefficient of the 

porous m atrix, and Qp is the volumetric therm al expansion coefficient of the pore 

space.

Equation (3.1) can be re-arranged to present in a  more convenient form:

“  è  +  2G (i

where o'** is the flrst invariant of the stress tensor and is the volum etric therm al 

expansion coefficient of the porous matrix.

Ekjuation (3.9) can also be presented in terms of strain, i.e.

<Tij =  2G ^  (3.10)

The change in fluid mass for the unit volume m aterial m  =  P /^ , can be expressed

as:

A m  =  p /A 0  +  A p /^  (3.12)

The change in fluid density due to pore pressure and  tem perature variations can 

be expressed as:

A p , = ^ l r t >  +  ^ | „ T  (3.13)
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where, by definition,

l r=  , ^ r \ p  =  -P /o :/  (3-14)P K f  1

where a j  is the volumetric therm al expansion coefficient of the pore fluid. Substi­

tu ting  (3.14) into (3.13), and then into (3.12), one obtains:

A m  = p f ^A(l) + -^4> — a ^ T ( ^  (3.15)

Substituting (3.4) and (3.6) into (3.2), one has:

“  2 G B a  +  r ) ( l ’+

Using (3.16) and (3.15), the following constitutive relations for the change of 

mass content per unit volume of fluid saturated porous m aterial are obtained:

A m  =  p f (3.17)

or, presenting these equations in terms of the change of fluid content per unit 

reference volume;

Equation (3.18) can further be simplified as:

(  “  2 G B a + w ( i + ^ . )  ( " ' ' + & ) + «  -

by applying the following relationship:

1^1 M 9 (^ . -  f)
B \ K  K 'J  +  ( ' *

Substituting Skempton’s pore pressure coefficient, B, into (3.19), one finally 

obtains:

^“ 2G(1 -klj (“■“ + &) + K -
By identifying the consequence of positive entropy production as implied by

existing relationships between the fluxes and their driving forces[37], the following
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constitutive relations for the coupled mass and heat diffusion processes can be 

obtained;

+  ^ijT j (3.22)

hi = -kJ^Tj +  L'ijPj (3.23)

where qi and hi denote the fluid mass and the heat flux, respectively, while Lij and 

L'ij are cross-effect coefficients. The former represents the thermo-osmosis effects, 

analogous to Soret’s diffusion in a solution, the latter is analogous to the Dufour’s 

effect in solutions.

For isotropic materials, the permeability coefficient tensor, Kij, and the thermal 

conductivity tensor, kj^, can be reduced to:

Kij =  KÔij (3.24)

kf. =  k^6ij (3.25)

Since the cross effects terms in (3.22) and (3.23) are much smaller in general 

compared to the first term, they are usually neglected. So one obtains the following 

form for the constitutive relations, or diffusion equations, by substituting (3.24) and 

(3.25) into (3.22) and (3.23):

qi =  -p fK p ,i  (3 26)

hi =  -k '^ T i (3.27)

3.2.2 Conservation Laws

There are three conservation laws in the present quasi-static non-isothermal context: 

• The first is a  momentum balance or equilibrium equation:

<Jijd =  0 (3.28)

where body forces are neglected.
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•  The second is the local fluid mass conservation. Assuming no fluid mass 

supply, it has the general form of:

d A m
dt + =  0 (3.29)

Substituting (3.26) into (3.29), one obtains:

d A m
dt

or.

=  0 (3.31)

• The last one is the energy conservation equation. Neglecting the terms repre­

senting the interconvertibility of thermal and  mechanical energy, and for the 

case of no heat source, the energy balance for an elementary volume yields 

the following equation[38] :

-  (C ,Tq,) . (3.32)

where pt and Q  are the mass density and specifi.c heat for the bulk material, 

and C / is the specific heat of pore fiuid. The first term  on the right hand side 

of this last equation represents the conductive heat transfer through the bulk 

material. The second term  on the right-hand side represents the convective 

heat transfer through the  pore fluid flow.

Elquation (3.32) is similar to  the microscopic energy balance equation for a

homogeneous fluid phase, and  is established based on the concept of effective heat

transfer, i.e., a  uniform mean tem perature gradient is imposed in a fluid-saturated, 

homogeneous porous medium. In other words, the mean tem perature of the m atrix  

solid and fluid phases are equal for an elementary volume.

An alternative way of expressing energy balance for fluid-saturated porous media 

is to distinguish the mean tem perature between the m atrix solid and the pore fluid. 

The energy balance equations will be established for each phases, and the heat flux
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transferred from one phase to the other is expressed by means of a heat transfer 

coefficient;3d| [79!. This model is more difficult to use compared to the one th a t 

IS adopted in this dissertation, because more param eters are involved, and some 

of them, such as the heat transfer coefficient between the two phases are difficult 

to determine accrrately. But it is a more suitable model when the fluid velocity 

is high; hence, the occurrence of a signiflcant tem perature diflerences between the 

solid and fluid phases are possible.

3.2.3 Field Equations

3.2.3.1 D eform ation Field Equation

Substituting th e  geometric relationship for small deformations: i.e.

-=ij =  ^  {Uij +  Uj,i) (3.33)

Skk — '^k.k (3.34)

into (3.10), one obtains the following modified Navier equation in terms of displace­

ments:

-  (V.: -  =  0 (3-35)

3.2.3.2 F luid D iS iisiv ity  Field Equations

Diflerentiating equations (3.10) and (3.34) twice leads to:

o 'ii .j j =  2G “  3o:pjj -  (3.36)

^kk,jj — (3.37)

Differentiating (3.35) with respect to  Xi, solving and substitu ting into 

(3.37), then into (3.36), the following com patibility equation in terms of stresses is 

obtained:
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Diffrrcntiatîng (3.21) with respect to Zj, and substitu ting (3.38) into it.

one obtains;

So; — 7
a ( l  -  2t/)
2 G ÏÎT V )

3 2q ( I - 2 i/ ) \ 4 G (1 -H /)q^
B  ( l - i / )  ( l - u )  3

(3.39)- ( a j  -  a ,o ) T j j

Solv-ing P jj £rom (3.39) and substituting into (3.31). the fluid diffusivity equation 

can be obtained:

dt
=  c/

f  2 a ( l  — 2u)
Cj; ;; (3.40)

where.

(3.41)
_  2kGB=^(1 -  i/)(l 4- 

9(1 — u^) {u,i — u) 
is the fluid diffusivity coefficient.

If one differentiates (3.21) w ith respect to t. substitutes into (3.31) and re­

arrange the expression, the fluid diffusion field equation can be expressed in terms 

of pore pressure:

dp 2kG B^  (1 -r i/) (1 -r f/u) B dcTkk 2GB^ (1 l/) (1 4 -1/̂ ) , t  t \
-   ---------------------------------------  l ~ a r  ' wd t

(3.42)

Applying the relationship between cr̂ k and Skk • equation (3.42) can alternatively 

be expressed as:
In r H!T

(3.43)S - " dt

where.

M  = 2G {i/u — î )
a2 (1 _  2i/) (1 -  2i/u)

(3.44)

is the Biot modulus.

3.2.3.3 Therm al D iffusivity Field Equation

Substituting (3.26) and (3.27) into (3.32), one obtains the therm al diffusivity field 

equation:

dt PtCt ' PtCt
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c ^ r ,.  +  (Tp,),.

where.

c^ =

PtCt
(3.45)

(3.46)

is the thermal diflFusivity coefficient for the bulk material.

.\s  one can see. the displacement, pore pressure and thermal field equations de­

rived for a fluid-saturated, isotropic, thermoporoelastic body are completely coupled 

with each other through equations (3.35), (3.40) and (3.45), where pore pressure 

and tem perature coupling involves non-linearity.

Choosing stress, aij, to replace the displacements tif, and pore pressure, p, to 

replace the change of fluid content, Ç, as the field variables, the above field equations 

can alternatively be presented in the following form:

dp
dt

=  M

dt

dt dt

PtCt
{TiP^i + Tp^ii)

(3.4T)

(3.48)

(3.49)

3.2.4 Kurashige’s Model

The above derivation closely follows Kurashige's[88] work. However, Kurashige 

adopted an assumption in his derivation that pores thermally expand with their 

shapes remaining similar; so the volumetric thermal expansion coefficient of pore

space, o-p , was expressed as:
r  ' r

Op =

hence, the fluid diflFusivity field equation had the following form:

%
dt =  +

2 a ( l  -  2i/)
T.n

(3.50)

(3.51)
(1 - 1/) 3

It should be pointed th a t  the assumption (3.50) has not been substantiated 

by experiments. On the contrary, experiments on sandstone by Von Gonten and
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Choudhary[l52} showed th a t the pore volume will decrease w ith  tem perature at 

constant pressure because of the therm al expansion of mineral grains into the pore 

space. Results of tests by Ashqar[10], Janah[84j and Somerton[141] also showed 

that this is the case (also for sandstones). According to the existing experimental 

data, the contraction of pore volume is small until the tem perature variation reaches 

about 100°C and this value varies w ith the initial porosity. T he  lower the initial 

porosity, the higher the critical tem perature and the amount of the  contraction due 

to the larger fraction of solid content. Above the critical tem perature  range, the 

thermal contraction increases a t  a nearly constant rate (see F igure 3.1).

The am ount of the pore volume contraction may also be a function of mineral 

composition of porous matrix, and  pore pressure. Especially, the effects of pore 

pressure on the amount of pore volume contraction is prom inent. The high pore 

pressure limits the contraction of pore volume (see Figure 3.2). Because of this, 

shales m ay not have as significant pore volume contraction as it was observed for 

sandstones, o r even behave otherwise (z.e. pore volume expands while heating).

Because of their high permeability, heating or pressurizing does no t induce pore 

pressure in sandstone samples if the measurements last relatively long, and the test 

conditions are not strictly set up as undrained, which is most probably  the case of 

those published experiments (the test conditions are, unfortunately, no t described 

in details in the literature). However, due to the extremely low permeability of 

shales, the pore pressure induced in shales by heating can be very high as will be 

shown in the modelling section of this dissertation (Chapter 4). If the effects of pore 

pressure on pore volume change overwhelm the effects of solids expansion into the 

pore, the pore volume can expand instead of contracting. In this case, assumption 

(3.50) m ight be applicable. Nevertheless, the behavior of pore volume change with 

tem perature depends upon the form ation type and environmental conditions. It is 

more suitable to  treat the volumetric thermal expansion cceflhcients for m atrix and 

for pore space as two independent parameters. The accuracy of the model will rely 

on the accuracy of the param eters obtained from physical observations.
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Another assumption th a t had been adopted by Kurashige[88], but elim inated 

in the model derived in this chapter, is the local heat balance assumption of:

ptCtTt =  éPf Cf T f  (3.52)

where Tt and T /  are bulk material and pore fluid tem perature, respectively.

Even though applying this assumption can further simplify the energy balance 

equation (3.45), it does not physically represent the local heat balance condition 

correctly. The local heat balance should be represented simply by an equilibrium  

tem perature between the fluid and solid phases [38].

3.3 N on-linear and P lastic  R ock  B ehaviors

As indicated in the above section, the response of a  coupled thermoporoelastic sys­

tem  is non-linear in nature if the convective heat transfer is significant enough, 

even if all the param eters involved in the system are linear. In addition, sim ilar 

to a solid material, the constitutive relations change drastically and irreversible 

deformations occur when the elastic limit of effective stresses for a porous m aterial 

are exceeded[33][138j. Even if the stresses rem ain within the elastic limit, m any 

experimental observations have evidenced th a t the reaction of some m aterial prop­

erties to the change of stress, pore pressure and tem perature is non-linear [13][52] 

[81] [86] [92] [166]. The linear relations are applicable only to a limited range of stress 

and tem perature variations.

3.3.1 Stress- and Temperature-dependent Material Prop­

erties

3.3.1.1 Porosity and Perm eability

The dependency of porosity and permeability upon the effective stress or pore fluid 

pressure has been studied by many authors, bo th  theoretically and experimentally.
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Among them. Geertsma[65) suggested that, within the elastic range of m atrix de­

formation. porosity is a linear function of confining pressure and fluid pressure:

0  =  0n +   ̂ {dpc -  dp) (3.53)

where p^ is the confining pressure, and 0n is the porosity at the previous loading 

stage. Garg and Nur[63| proposed a non-linear expression for stress-dependent 

porosity as a power series in the volumetric strain of porous m atrix  and pore fiuid. 

They also showed th a t their equation reduces to Equation (3.53) when the term s of 

second order or higher are neglected. Finol and Farouq All [60] derived the following 

linear relations for the porosity change with the oil pressure in a black oil system  

w ith an immobile water phase:

0  =  <pTi (1 4- Cpdpo) (3.54)

where Cp is the uniaxial compaction coeflicient, p , is the oil pressure. The above 

relationships are based on the experimental work. Recently, Cui[42| derived an 

expression for effective stress-dependent porosity following CaroU's[29| microme­

chanics model of porous m aterial deformation and Mackenzie's[95] formula of bulk 

modulus for porous media with spherical-like pores:

<p — exp
3

(3.55)

where Gs is the shear modulus of m atrix  solids which can be considered to be stress 

independent[116]; and,

+  (3.56)

is the m ean effective stress. Assuming to be the m ean effective stress a t a 

reference status, then is the porosity with respect to this reference state.

Equation (3.55) can be extended to include the tem perature effects (see Ap­

pendix A for the derivation):

(? =  exp -  <%n) +  -  “ m) (T  -  Tn)
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where T  is the current tem perature and T„ is the tem perature a t the reference 

state.

Equations (3.55) and (3.57) are based on the strict theoretical derivation, hence, 

they are universe relationships, and should not be limited to a certain rock or fluid 

type, or influenced by the environmental factors such as initial stress, pore pres­

sure and tem perature, like most of the experimentally obtained correlations do. 

However, these relationships are subject to certain assumptions and their applica­

bility to a real rock-fluid system is yet to be substantiated. One of the two major 

assumptions on which the derivations are based are: (1) the pores are nearly spher­

ical; and, (2) the volumetric response of the porous medium is Hnear elastic. For 

a real fluid-saturated porous system where the mechanical response is non-linear 

due to the existing of crack-Hke pores, or progressive pore collapse for rocks that 

have a very high porosity. Equations (3.55) and (3.57) might only be applicable to 

small ranges of stress and tem perature variations: and hence, have to be used in 

incremental form.

Past investigations showed that perm eability is also a complex function of ef­

fective stress and pore pressure[167]. A typical assumption in the literature is 

that permeability is primarily dependent upon the changes in porosity. For one­

dimensional consolidation of soils, the relationships between the void ratio (the 

ratio of void volume to solid volume) and permeability are typically logarithmic as 

shown in Figure 3.3, according to the experimental studies[108][91].

For the rocks a t greater depths, a well-known correlation between the porosity 

and permeability is Carman-Kozeny’s relation[l33]:

k = kn (3.58)

where k^ and (p„ are reference values of perm eability and porosity, respectively.

By assuming the permeability to be proportional to the bjt^-th (b** is a positive 

number) power of the porosity[24], the following relationship for the effective stress
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and temperature-dependent permeability based on Equation (3.57) can be derived: 

k = kn exp (<Xr. -  <Knn) +  (^p “  (T  ~  ^n) |  (3-59)

where kn is the permeability a t the reference state.

Equation (3.59) can be expressed in another form:

In k  = ]nkn-hbki (cr(„ — cr(„„) +  ( a j  — (T — r„ )  (3.60)

By dropping the temperature-related term  in (3.60), the equation qualitatively 

agrees w ith the relationship developed experimentally by McKee[101j where the 

permeability in logarithmic scale decreases linearly with the increase of the Terza- 

ghi’s effective compressive stress.

3.3.1.2 Poroelastic Parameters

Experimental results have shown th a t, even for hard rocks for which the rock m atrix  

has a comparable compressibility compared to the rock grain, the mechanical prop­

erties for the rock grain, such as the bulk modulus K j, can be taken as constant in 

the range of the stress change induced by drilling or p roduction[ll6j. However, the 

poroelastic properties for the bulk m aterial, such as the drained bulk modulus K. 

dem onstrate highly non-linear effects[63] [116]. According to che porosity relation­

ship (3.57), the stress and tem perature dependency of the poroelastic param eters 

can also be derived (see Appendix A):

G =  G. (3.62)

where.

•  -  1“ '

^  a + {1 — (()ne^) K J K f +  4>n^  ̂ ^  ^

 ̂ = 2 ( %
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I  = -  jI ;  (</„ -  + K  -  (T -  r„) (3.66)

Similarly to porosity and permeability, this set of equations should be used in 

incremental form.

3.3.1.3 T herm oelastic Param eters

Although the study of the non-linear response of thermoelastic param eters to stress, 

pore pressure and tem perature are far from complete, limited experim ental studies 

on stress- eind tem perature-dependent thermoelastic parameters, such as chermal 

expansion, therm al conductivity and therm al diffusivity coefficients, for the dry or 

fluid saturated rocks (mainly sand stone) have been reported in the literature[141].

Thermal Expansion

The experiments on an  outcrop sandstone under stress free conditions have 

shown that the therm al expansion coefficient increases non-linearly w ith  the in­

crease of tem perature, as shown in Figure 3.4. Typically, it can approxim ately 

be treated as linear below a certain tem perature (400°C), increases rapidly when 

temperature further increases beyond the  linear range, then the therm al expan­

sion stops at above a certain tem perature (about 600° C). The results also show 

that cooling goes via a diflterent path. However, if the rocks did no t experience 

extremely high tem peratures so th a t the perm anent structure dam age or plastic 

deformation did not occur, it can be expected th a t rock shrinkage during cooling 

follows the same p a th  as heating.

On the other hand, it was reported th a t the thermal expansion coefficient of 

these rocks decreases w ith an increase in stresses [145] [159]. Sweet [145] estim ated 

that the volumetric therm al expansion of low permeability sandstones decreases 

by 25% upon rising the stress from atmospheric pressure to 100 ^IP a . Wong 

and Brace's [159] work showed th a t the therm al expansion of Cheshire quartzite 

decreased about 25% under much larger pressure variations ( from lOON'IPa to
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500MPa).

Therm al Conductivity

Sonierton[l41] developed the following empirical model for tem perature-dependent 

therm al conductivity for sandstone, based on the experimental results and guided 

by Tikhom irov’s [148] work:

-  10"^ (T  -  293) (A:^ -  1.38) (3.67)

X k^o ( l .8 X IQ -^T)"*^'^^ 4- 1.28 (3.68)

where k ^  is the thermal conductivity at 20°C, T  is the tem perature in Kelvin, and 

bo th  Atjo and  are in W /m -k. Both the study by Somerton[14l] and Tikhomirov[148| 

have shown the moderate negative gradients of therm al conductivity with tem per­

ature for high conductivity rocks, but small positive gradients for low conductivity 

rocks, as shown in Figure 3.5.

Therm al conductivity increases with stresses because increases in stress improve 

the therm al contact between mineral grains and  increases the density of the rock. 

The change in thermal conductivity with the added stress is generally small, and 

the m agnitude decrease w ith the increase of the  stresses as shown in Figure 3.6. 

For sandstones, Edmondson[55| reported from 10% to 13% increase in thermal 

conductivity for about 7 ^ IPa stress increase a t low environmental stress level (6 to 

25 VCPa). Woodside and Messmer[161| reported about 12% increase per 7 }v'IPa at 

low stress ranges (0-7 \ IP a ) , and 2.5% increase per 7 ZvIPa at higher stress ranges 

(14-28 ^/IPa). The results reported by Somerton[14l] are similar to Woodside’s [161] 

work.

T he effects of stress and tem perature variation on therm al diffusivity exhibit 

the sim ilar tendency as th a t of the thermal conductivity (Figure 3.7).
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3.3.1.4 Fluid Properties

Some of the fluid properties such as density, viscosity, compressibility, thermal 

capacity and expansion, are very sensitive to tem perature and pressure variations. 

The temperature- and pressure-dependent fluid properties, such as density, viscosity 

and compressibility have been studied by numerous authors for a wide range of 

fluid types, and tem perature and pressure conditions, to cite a few[36|[100|. A few 

studies on the therm al properties for some fluids have also been reported in the 

literaturefl22i[124|[125j, bu t the data under reservoir or deep subsurface conditions 

is scanty.

Based on his experim ental investigations, Fernandez[59] proposed the following 

state equation for water:

1
Pf =  Pfn exp — a f  { T  — T n )  -r  —  (p  — P n) (3.69)

where pfn is the fluid density at reference tem perature and pore pressure Tn and 

Pn-

The above equation can be linearized by expanding the exponential function 

and keep only the first order terms:

1
Pf =  Pfv i 'T  — T n )  +  —  (p  — P n )

AT;
(3.70)

Equation (3.70) has been used by Bear and Corapcioglu[l3] in  their modelling 

of consolidation of aquifers during hot water injection or pumping.

Bird et aZ. [17] proposed the following model for tem perature-dependent dynamic 

viscosity of liquids:

p  =  PnGxp (? ■ è)]
where p„ is the viscosity of liquids a t reference tm eperature T„, and  A is a constant. 

Huyakron and Pinder[82] suggested the following expression:

p  =  IQ-® X 239.4 X 10(248.37/T+X33.15) (3.72)

where T  is in degrees Celsius and p  is in (g/cm  s).
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Sorey[142j suggested the following formula for tem perature-dependent therm al 

expansion coefficient:

and Perry 's handbook[124j proposed the following cubic equations for the tem perature- 

dependent thermal expansion for liquids:

a'^ = a T  + (3.74)

where a . (3 and 7  are constants which vary for different materials. The tem perature 

range for the above formula are from 0 to 160° C.

The tem perature-dependent thermal conductivity and thermal capacity for some 

fluids are given in table form by Ozbeck and Phillips [122] and Phillips et a/. [125].

In general, the influence of tem perature on these properties are more significant for 

oils than  for salt water. This is also true for all the other fluid properties. The 

tem perature effects on fluid thermal conductivity seems to be small and can be 

treated  linearly for most common subsurface conditions.

3 .3 .1 .5  S u m m ary

The m ajority  of the information about the tem perature- and stress-dependent ther­

moelastic properties is based on laboratory studies conducted on sandstones. The 

studies for other rock types (especially for shale, which is very im portant for well- 

bore stability studies) are basically non-existent. Besides, the data available so far. 

including the thermal properties for fluids, is relatively scanty, gind does not reflect 

the response of systematic changes in tem perature, effective stress and pore pres­

sure, especially under subsurface high tem perature and high pressure conditions. 

So, it is hard to come up w ith convincing general non-linear phenomenological 

models for these properties. For this reason, the non-linear malysis and discus­

sion in  this dissertation is m ainly concentrated on the thermoporoplastic behavior. 

However, with the incremental algorithm for general non-linear problem developed 

in this dissertation, it is convenient to incorporate tem perature, stress, pore pres-
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sure, and even other factor-dependent parameters into the current m odel, once such 

information becomes available.

3.3.2 Thermoporoelastoplastic Constitutive Relations

3.3.2.1 P lastic ity  in  G eological M aterials

Plasticity, or irreversible deformations often occur in ductile-type engineering ma­

terials, when stresses exceed the limits of elasticity of a m aterial. A n im portant 

characteristic of geomechanical problems a t all scales is the occurrence of such de­

formations, because the plastic p a rt of the total deformations is in  general much 

larger than  the elastic part. Besides, plastic analyses is the only way to  give accurate 

failure prediction if a  m aterial is ductile enough to go through plastic deformations 

before its final failure. The behavior of a system is said to be elastoplastic when 

the elastic deformations of the system  is not negligible, and thus included in the 

plastic analysis.

The plastic behavior of m aterials can generally be divided into three types: 

strain hardening (stress increase is required for an increase of s tra in ), stra in  soft­

ening (stress decrease associated w ith  strain increase) and ideal p lasticity  (stress is 

constant during the increase of plastic strain). Figure 3.8, which is a typical axial 

stress/axial strain  curve from a triaxial compression test of a geological material, 

illustrates the h a r d e n in g  and softening processes at different loading stages. The 

recognized mechanism for strain hardening is that of microcracks initiation and 

frictional s lid in g  at the grain-size level, (EC section in Figure 3.8). Once sufficient 

microcracks have formed to allow the formation of localized shear bands, strain 

softening occur (CD section in Figure 3.8).

A yield function defines the lim its of elasticity under any possible combination 

of stresses. In a  n-dimensional stress space, or loading space, a yield function repre­

sents a surface which separate the elastic s ta te  from an outer zone of impermissible 

stress states (Figure 3.9 ). This surface changes with increasing deform ation in the
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case of strain hardening/softening (Figure 3.9 (b) and (c)), and keeps unchanged 

in the case of ideal plastic deformation (Figure 3.9 (a)).

3.3.2.2 General E lastoplastic C onstitutive R elations for N on-isotherm al

Fluid Saturated Porous M edia

In a non-isothermal poromechanical system, the yield surface, presented in terms of 

macroscopic parameters, is a  function of stresses, pore pressure, tem perature and 

hardening/softening parameters:

f  ((T^,p,r,«P) =  0 (3.75)

where,

=  (3.76)

is the hardening/softening param eter.

W hen the material first reaches its elastic limit, or the initial yield surface.

/cP =  0. During successive elastoplastic deformations, the size and position of the

yield surface changes consistently as a function of during hardening or softening, 

but keeps unchanged during ideal plastic deformation (Figure 3.9). For isotropic 

hardening/softening, the yield surface in loading space simply expands/ shrinks, 

homotheticly and concentrically, from the initial yield surface, as shown in Figure 

3.9. (d).

For a fluid-saturated porous medium, the plastic deformations include both  the 

perm anent m atrix deformations as well as the perm anent changes in fluid contents 

due to the perm anent change in connected porosity. The magnitude and  direction 

of the plastic strain  and plastic porosity can be defined by the following flow rule 

based on the nomahty principle [41]:

where Q is the pléistic potential and dX is a non-negative scalar factor called plastic 

multiplier[78j. Since plastic deformations are irreversible, they cannot be deter­

mined solely by the current loading, but rather are dependent upon th e  loading
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history. So. the plastic strain and plastic porosity can only be calculated incremen­

tally.

Assuming th a t the yield condition is continuously satisfied while the plastic 

deformations, and  hence, the consistency condition dF  =  0 holds, the differentiation 

of Equation (3.75) gives:

d f  ^ ( d F d K P  d F \ ^  dFdKP ^ _ ( d F d K P  d F \ ^ ^  ^

(3.78)

Substituting (3.77) into (3.78), solving dX, and then substituting dX back into 

(3.77), the plastic strain  and plastic porosity can be solved :

j  +  ( 5 #  +  # r ) dQ
( a S L â iÀ .J Q .  d(Tij  ̂ ^

8ËF j  ■ dffij

dF
dOsTi ' +  ( I & Ç  +  ^ )  +  j r )  dQddP =  —^ ^ ^ ------ ^  (3.80)

(  aF_aj!P \  . §Si dp
^ dKP dĉ j J ■ dp

Once F,Q  and  kP are specified, the thermoporoelastoplastic constitutive rela­

tions can be determ ined through:

dsij =  dSij -r d^ij

=  Cijkida/ci + Bijdp 4- aJjdT  4- defy (3.81)

do =  d(f>̂ 4-  d(pP

=  BkidcTki-r Ddp + a ^ d T + déP (3.82)

W hen Q = F.  the fiow rule is called associated. The associated flow rule are 

commonly used together with the failure functions that are independent of the 

hydrostatic stress component, such as Tresca and Von élises failure criteria[78] to

predict the ideal-plastic and hardening behavior of metals. For geomaterials, it

has been observed th a t the associated flow rule overestimates the dilation; hence, 

non-associated flow rules are often required[96].

Very few studies has been found in the literature about the tem perature de­

pendency of yield surfaces and hardening parameters. Kosar[87] and Agar[6]’s
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experimental studies on oil sands concluded that the peak strength is not sensitive 

to tem perature change up to 225" C. Since the tem perature variation during drilling 

is far below this level, only isothermal plastic behavior models are adopted in this 

study.

3.3 .2 .3  Mohr-Coulomb and Drücker-Prager Failure Criteria

A wide -variety of isothermal yield functions and plastic potentials have been de­

veloped and used for geomaterials[35][165]. Among these, the most popularly used 

yield functions for relatively hard rock are Mohr-Coulomb and Drücker-Prager fail­

ure criteria.

The Mohr-Coulomb failure criterion in terms of principal stresses is:

F  = {cz — p) — (cTi — p) 4- ?u (3.83)

where,

where Ç)/ is the angle of internal friction; and.

& =  (3.85)

is the uniaxial compressive strength, where c is the cohesion. In the principal stress 

space, the Mohr-Coulomb criterion is a hexagonal pyramid with its axis coincident 

w ith the trisector of the space, and the three coordinates of the vertex equal to 

c c o t é f ,  as shown in Figure 3.10. W hen the angle of internal friction reduces to 

zero, the Tresca failure criterion is restored from Equation (3.83), as shown in the 

same figure.

The Mohr-Coulomb failure function generally fits the experimental d a ta  better, 

bu t the gradient vector cannot be defined a t the ridges of the yield surface which 

brings some practical difficulty in modelling. For this reason, the Drücker-Prager 

failure criterion which has the form of a right circular cone in principal stress space,
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as shown in Figure 3.11, is often iised. Presented in terms of the stress invariants, 

the Drücker-Prager failure criterion is:

■F =  \J J '2 4- Sûîrfp — fcrfp (3.86)

where.

/  =  CT» (3.87)

is the first invariable of total stress tensor: and,

J*2 =  ~  (3.88)

is the second invariable of deviatoric stresses, and k^p are functions of c and 4>f, 

and can be determ ined by matching (3.86) with (3.83). W hen the Drücker-Prager 

cone surface is inscribed tangentiaUy inside the Mohr-Coulomb pyramid[54] (Figure 

3.12):

Qrfp =  , and  kdp =  3c cos g /  (3.89)
y 9  4-3 sin 0 /  y'9 4-3 sin 0 /

When the Drücker-Prager cone surface graphically passes th rough  the comers

of the Mohr-Coulomb pyramid[l64]:

Equation (3.89) always gives a failure load equal to or less th a n  th a t from Mohr- 

Coulomb failure criterion, and is thus a lower bound to the M ohr-Coulomb criterion. 

On the other hand, Equation (3.90) represents an upper bound by giving a collapse 

loads equal to or greater than that from Mohr-Coulomb criterion. In the case of 

0 /  =  0 , Equation (3.86) reduces to Von élises's yield law.

3.3.2.4 A  Drücker-Prager M odel for Strain H ardening and Softening

Even though the study  of post-yield behavior of geological m ateria l has had  a long 

history, almost no study has been conducted so far as to how the interactions of 

solid and fluid phases influence the post-failure behavior of fluid sa tu rated  porous
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media, except the recent theoretical development by Coussy[41j, who modified the 

solid mechanics flow rule for the application to porous media based on the principles 

of volumetric response (Equation (3.77)). Among the existing extensive post-yield 

constitutive models and plastic analyses for fluid saturated porous media, the ex­

tension of the solid mechanics plasticity theory to incorporate the effective stress 

law is the most common practice. Even though this type of constitutive models 

usually give reasonable prediction to the total stress-strain behavior, as they are 

evidenced by numerous experiments, they are not adequate to describe the pore 

pressure redistribution induced by the perm anent pore deformations during the 

plastic deformation of the porous material. The attem pt in this section is to derive 

the relations for both the elastoplastic deformation and plastic porosity according 

to a hardening/softening constitutive model for fluid saturated porous m edia, based 

on the concept of effective stress and theoretical work by Coussy[41], in  trying to 

fill the above-mentioned gap.

By assuming an isotropic strain hardening rule, with the hardening param e­

ter linked only to the plastic strain, a Drücker-Prager model extended to  describe 

hardening/softening behaviors by allowing the cone angle to vary during the plas­

tic deformation has been used previously for the elastoplastic analysis of che bore­

hole stability and other geomechanical problems in sohd phase m aterials exhibiting 

both hardening/softening behaviors[151] [147] [153]. Presented in terms of effective 

stresses, the loading function of the model is:

F  = y / j ^ -  3adp Odp -  = 0  (3.91)

where,

=  a *  +  °=dpD“— (3 92)Odp +  Kdp
describes the cone angle variation during the post-failure plastic deformation; and,

Kdp = J  (3.93)

is the hardening param eter defined by the isotropic strain hardening rule where
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is the second invariants of deviatoric plastic strains:

(3.94)

4  =  4  -  (3.95)

=  4  (3.96)

and a^p =  k^p/Za^p = ccot <p/. In the case of hardening, a^p is the apex angle of the 

initial failure cone, and a°p 4- a^p is the apex angle of failure cone a t peak strength. 

In the case of softening, a^p is the apex angle at peak strength  and a^p — ja^pj is 

the apex angle a t residual strength. Bdp is a constant.

The following Eow potential is adopted for non-associated flow rule. :

Q = y/7^ + 3 0 d p [ ^ - p )  (3.97)

where.

=  7 0 dp (0 <  7  <  1) (3.98)

3.3.2.5 T herm oporoelastoplastic Constitutive R elations

To facihtate the implementation of the plastic model in the finite element solution 

in Chapter 5, m atrix  notations are adopted in the following derivations. 

Substituting the elastic and plastic strain components into (3.81):

d e  =  de^+de^ =  D~^ (d(T+cddp + a ^ K ld T )  -h dAb (3.99)

where Dg is the elastic constant m atrix; and b =  dQ jd tJ  can be obtained by 

differentiating (3.97) with respect to the total stress tensor:

b  =  r—  [  ‘2-Bdp\JJ'-l +  ^Pdp\f^  +  Sy ‘̂ 0dp\jJ'i +  ^3 2 S iy  2Sy2 2S ja  
2 y  dg  L

(3.100)

Introducing the hardening modulus, A, the consistency relations d F  =  0 can be 

presented in the following form:

1 d F
aFà.(r-rCLdp—AdX=Q .4 =  —u T ô — d/c^p (3.101)

dX OKdp
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w h e r e

(3.102)
da-

I

2 Y .I2
“^dp\J  •■̂2 '̂ 1 "h ■5y ^ ^ d p \j '^1 “i" 25xy ^-^y: 25 ;j

and
dF

a! — — Sckjp (3.103)
d p

Multiplying both  sides of (3.99) with a^Dg, and elim inating a ^ d tr  by using

(3.101):

a^D gde =  —a dp+Ad\-\-aFciLdp +  aFot^K ldT  -4- a^DgdAb (3.104)

The plastic multiplier can be obtained by rearranging (3.104):

a^Dgded- (o! — a ^ o l)  dp — a F o ^ K ld T
  h r r ^ f e b -----------------------

Substituting (3.105) into (3.99) and re-arranging, the poroelastoplastic consti­

tutive relations for this model can be derived:

da- =  (Dg -  Dp) d £ -  ( a l  -h D^) d p -  { a ^ K l  -b D j )  d T  (3.106)

where,

Dgb (a ' — a^al)
^  =  . 4 L m . b

To determine A, one first substitutes (3.100) into (3.77) and obtains the devia­

toric incremental plastic strains:

deP =  - ^ s  (3.110)
2 y ^
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Then, using (3.93), (3.94) and (3.88), it can be shown that:

dX — dp (3.111)

Substituting (3.111) into (3.101) and using (3.91) and (3.92) , A can be obtained:

A =
d F  _  3 a ^ B *

dUfip {B^p 4- Kdp)̂ - a - ) ] (3.112)

From (3.77) one has:

=  dXb', 6'  =  §  =  - 3 0 ^  
dp

(3.113)

Substitu ting (3.105) into (3.113):

a^D ede-f fa ' — a ^ a l )  dp — a F a ^ K ld T  
d ^  =  -3/3dp X A +  a^D eb

Replacing cr&t in Equation (3.16) w ith 6kk by using (3.11) , and  representing 

(3.16) in increm ental form :

d(p~ =
— u) 9(1 — u) (1 4- 2uu) (i^u — î ) j_

:d£kk — •;— —,— m r " — ^ “PS  (1 4- î u) (1 — 2u) 2GB^ (1 4- (/) (1 — 2u) (1 4- î u)

dT  (3.115)
'  \  P B ( l  +  f / J ( l - 2 f / ) ,

Substituting bo th  (3.114) and (3.115) into (3.82), and rearranging;

B { l  + u ^ ) { l - 2 u )  ^  A 4- a m , b

9 (1 -  i/) (1 4- 2i/u) (i/ti -  !/)
2GB^ (1 + 1/) (1 -  2u) (1 + i / ^ f  A 4- a^D eb  ' K f

'  T  3 (î u -  I/) a  
O i^  —

rm 4- 3 r̂fp

fa' — a ^ a l )  _ q 
A 4- a m  

aFaZ,K l
d T

dp

(3.116)
-P S  (1 +  K.) (1 - 2 u ) j  ' A +  aHDeb 

The therm oporoelastoplastic constitutive relation for the change of fluid content 

per unit reference volume can be obtained by substituting (3.116) into (3.15) and 

rearranging;

C  =
3 (i/u -  y) n/g a^D gde

-----------------------:<Uh,  -5  (1 4- Ki) (1 — 2z/)
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4-

9 ( 1 - W  (1 +  21/J K - W  (g  ̂ -  a ^ o j)
2GS2 (1 +  I/) (I -  2u) (I  4- Uuf  ^  +  aHDeb

3 (i/u -  (/) o:^ \  - ^ a^ca^KI
B  (1 + Uu) (1 — 2i/) +  2Pd]

dp

A +  a^D«b
dT(3.117)
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Figure 3.1: Pore volume contraction of three sand stones as function of tem perature 
a t constant stress conditions (after Somerton, 1992 )
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Figure 3.10: Mohr-Coulomb and Tresca yield functions in principal stress space 
(after R. D. H art, 1981)
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Figure 3.11: Drùcker-Prager and Von Mises yield functions in principal stress space 
(after R. D. Hart, 1981)
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Figure 3.12; U pper and  lower bound Drûcker-Prager yield surfaces (after R. D. 
H art, 1981)
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4 Thermop or o elastic Solutions

4.1 Introduction

This chapter presents the analytical solutions obtained in this dissertation for the 

condition of fully-coupled thermoporoelasticity, including the general solution for 

ajdsymmetric loading condition; dimensionless solutions for some extreme boundary 

conditions: the solution for a borehole subjected to non-hydrostatic far-held loading 

and solution for inclined boreholes. In addition, the thermoelastic solution for 

inclined boreholes is also derived at the end of the chapter for the purpose of 

comparison.

4.2 General Solutions For Irrotational D isplace­

m ent F ield

The displacement field under the condition of axisymmetric loading is irrotational. 

This allows the decoupling of the displacement field from tem perature and pore 

pressure fields, as it is presented in the following derivations. Decoupling greatly 

simplifies the solution procedure, and this section constitutes one of the im portant 

components for the solution of general borehole problems in which the displacement 

field is generally rotational.
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d x

4.2.1 Decoupling of Displacement Field from Temperature 

and Pore Pressure Fields

For the irrotational displacement field, the displacement can be expressed as the 

gradient of a scalar function. ^  ; i.e.

Ui.: =  =» =  (4.2)

az 6 $  a '
-  ^.iii -  g^2 +  ^j2  Q^. ^

y  Uijjdx = J  ̂ ,ijjdx

J  d x  dy"̂  d x  dz^ dx
52$  ^  M
5x^ ' 9 t/2 5~2

=  (4.4)

Expanding Equation (3.35) according to the rectangular coordinate system no­

tation:

r  (  4. ÉfZfz ^  ^  G f  9 ^  9^Uy ^  d^u, \
[ d x ^  dy^ dz^ J ' 1 -  21/ V dx^ dydx  ' dzdx  j   ̂ ’

then replacing Ui w ith

\  dx^ dy^dx dz^dx j  1 — 2i/ \  dx^ d^ydx d'^zdx j  

■  ' «
Equation (4.7) can be re-arranged to have the following form:

2 0 ( 1 - , . )  ( m  a"$  8 ^$  \  ap i G ^ ( i  + u )d T
(1 — 2i/) y dx^ dy^dx d z^dx  j  d x  3 (1 — 2u) dx
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Integrating Equation (4.8) on both  sides and using (4.4), one obtains:

where g{t) is an arbitrary function of time.

Substituting %  into (3.11) and re-arranging:

(4.9)

CTkk =
1 -r 1/ 
1 —  1/

a p  -f
2 G a l  (1 +  UŸ 

3 ( 1 -  2i/) (1 -  u)
T  — 3ap —

2G(1 +  u) 
(1 -  2u) 1 —  1/

2(1 -  2u) AG (1 4- u) 
-ap —

1 4* 1/

9{i)

(4.10)
1 — 1/ ^ 3 (1  — I/) ^  1 — u

Formulations of the pore pressure and temperature diffusion equations for irro­

tational displacement field can be obtained through the following procedure: 

Substituting (4.10) into (3.21) and re-arranging:

o ( l  — 2i/)
2G(1 4 -1/)

q (1 —  2u)  

2G{1 4- u)
, a { l - 2 i / )

3 2(1  -  2u)
B  1 - u

«7(f)

a P -

(4.11) 

T

(4.12)
2G (1 — £/)'

Differentiating (4.12) w ith respect to t while keeping all the coefficients constant:

%
dt

0 (1  — 2i/)
2G (l-hu )
, o:(l -  2u) dg{t) 

^ 2 G { l - u )  dt

2 (1 -  2 u ) 
1 - u

■a
dp
dt 3 ( 1 - 1 / )

d T
dt

(4.13)

Substituting (4.13) into (3.31):

o:(l — 2u) 
2G(1 -h u)

3 2 ( l - 2 u )
B  1 - u

a
d t

2a ( l  -  2 u )a ^  _
3 ( 1 - u )  

g ( l  — 2u) dg(t) 
' 2 G ( l - u )  dt

af(p)
d T  
dt

(4.14)

and re-arranging:

^  _  2kGB^ (1 - u ) ( l - { -  u^y  
dt 9 ( u ^ -  u) (1 — £/„) ■Pjj
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_ 2G B^  (1 - ! / ) ( !  +  t/u) 
9 (t'„ - ( / ) ( ! - 1/̂ ) 

B {1  -^-u^)dg{t)
3 (1 — î u) dt

f
=  (4.16)

where.

c ^  =  — 
K

(4.17)

For infinite  or semi-infinite domains, the function ^(t) is identically zero, since 

£, p and T  m ust vanish a t infinity in Equation (4.9). Thus Equation (4.16) is 

decoupled from the  displacement field and becomes:

m  =

This way, the displacement field has been decoupled from the pore pressure and 

tem perature fields, bu t the pore pressure and tem perature field are still coupled 

with each other th rough  the convective heat transfer term.

4.2.2 Dimensionless DifRisivity Equations

To facilitate the param etric  study, the following dimensionless variables are intro­

duced:

• T ' =  T /Tm , Tm is the disturbance of the tem perature at the boundary from 

the initial s ta te ;

• p' =  p /p m , Pm is the disturbance of the pore-pressure a t the boundary from 

the initial s ta te :

• =  Xt/ro. Tq is a  representative length (wellbore radius in weUbore problem); 

and.
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Using the above introduced dimensionless variables:

d t
(4.20)

dx^ dy^ dz^
^  Pm /  5 V  5 V  '

rg y5x'2 ^2/^
Pm  /

=  u r P j i

d T  T m d T '

d t  ± Q ÿ

(4.21)

(4.22)

T j;
g r  , ^
5x^ ay2 az^

rq ax'^ ' ap^  a z '2 
T_!T̂  rr-T/ 
y.2 .Ji (4.23)

rg
Tmpn

J - ( r ^ ] + ± ( r ? £ ]  + ± ( t ^ \ ' \
dx ' da/ J d'if a?/ j  dz' ^ dz'

(4.24)

Substituting Equations (4.20) to (4.24) into the diflFusivity field equations (4.16) 

and (3.45), one obtains:

P m d j /  f P m  I

c/'

T j n d T  r ' ^ ^ r p i  , I ^ P f C f T j n P r n  ( r p i  i  \

(4.25)

(4.26)
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Re-arranging Equations (4.25) and (4.26), the dimensionless temperature and 

pore pressure difiFusion equations for the irrotational displacement field can be ob­

tained ( note that the primes for the dimensionless variables have been dropped for 

simplicity ):
d T
—  =  AoT^ii +  Ai (Tp,t)^ (4-27)

where,

+  (4,28)

.4o =  4 . -4i =  A, =PtCt cl Pm

4.2.3 Diffusivity Equations in Cylindrical Coordinate Sys­

tem

According to  the relationship between cylindrical and rectangular coordinate sys­

tems:

4- 9 ~  arctan —. z ■= z (4.29)
X '

and applying the chain rule, the following transformation relationships (assume 

plane strain condition; so p  and T  are independent of z) can be obtained:

—  = ^  cos9 - - ^ s \ n d  (4.30)
o x  or  r ad

2 a r, ^  sin0 cos0 d  sin^0_  .  _ e o s « - 2 ^ -----; ------+

d  sin 9 cos 9 sin^ 9 ,
+ ^ 8 9 ^ ^ +  W —

| .  =  | . 3 i n 9  +  i | c o s 9  (4.32)

^  . 2 a n s in 0 COS0 d cos^9
g - s  =  ^ +  — ; —  +

5  sin 0 cos 0 B  ̂ cos^9 . ,
-■^gé— ;:s—  + W ^ —  ( « 3 )
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dx d x
'd-p I d p  . ^ ' s œ  „ i s r r  .

dp d T  2 a %" <9T COS 6 sin 9
® ' â ; â ë — —

dp d T  sin 6 ces 9 dp d T  sin^ 9
d9 dr d9 d9

ÊEÊI.
dy dy

( ^ s i n ô + i ^ c o s » )  +

dp d T  . 2 n 9p <9T CCS 9 sin 9

dp d T  sin 9 ces 9 dp d T  ,  „
+ â@ & :— 7 — +  â â W ^
dp d T  ^  dp d T  _  dp d T  1 dp dT  
d x  d x  ' dy dy dr dr ^  d9 d9

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

Expanding the dimensionless thermal diffusivity Equation (4.27) in a  rectangu­

lar coordinate svstem :

d T
=  -loT» +  -4i (Tp,i) .

rQ2rp Q2jr\ a  (  dp '  
%  % ,

(4.42)

then applying (4.30) to (4.41):

d T  , f d ^ T  l â T
dt =  Ao 

+ .4i

(4.43)

(4.44)

y dr^ ' T dr

'ÊE— 4.2 -Ê E Ê I.  - r  r JuÉ !pV
dr dr  r^ â9 d9 r  i9r r^ d9“̂ j

Assuming p =  p(r, t) and T  = T{r, t) for irrotational displacement field and ther­

mal diffusion from a circular borehole, the above equation can frirther be simplified 

as:

§ E Ê L  I Ê Ed T  , [ d ^ T  l d T \  , 
=  + dr dr ' ^ ^ dr

The pore pressure diffusion equation (4.28) can be expressed as:

dp , d T
at = + /It-g;-

(4.45)

(4.46)
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4.2.4 Some Simplified Scenarios

Equations (4.27) and (4.28) are coupled with each other, w ith non-linearity in the 

tem perature field so they are difficult to solve analytically. But in some cases, the 

coupled equations can be simplified by ignoring some terms according to the values 

of coefficients and Ag.

4 .2 .4 .1  S cen a rio  1

If .4i is very small compared to .4o, ( or (F c^ , which means the thermal 

diflFusivity is much greater than  the fiuid diflFusivity), it would be satisfactory enough 

to ignore the non-linear term  in tem perature diffusion equation (4.27). The physical 

meaning for this simplification is th a t the conductive heat transfer dominates the 

therm al diffusion process and tha t the convective heat transfer due to the pore 

fiuids fiow is negligible. This simplification further decouples Equations(4.27) from 

(4.28):

^  =  A>r,a (4.47)

%  =  P..-i +  ■ 4 2 ^  (4.48)

and thus, the analytical solutions for these equations under initial and boundary 

conditions can easily be obtained. This scenario is especially im portant for shale 

stability modelling.

4 .2 .4 .2  S c en a rio  2

If both .4o and Ai  are very small, which means the fiuid diflFusion is much faster

than  the therm al diflFusion, it can be assumed th a t the fiuid diflFusion becomes

steady before the tem perature begins to change. So. the diflFusion equations can be 

simphfied into the following form:

P,ii =  0 (4.49)

d T
=  AoT,ii -K (Tp.J_, (4.50)
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The fluid diffusion equation in this scenario can be readily resolved and the 

thermal diffusion equation can be solved numerically. This scenario is important 

for the modelling of short-term , high pressure fluid injection.

4 .2 .4 .3  S cenario  3

If Ai  is very large compared with Ai, which means the convective heat transfer by 

pore fluids flow dominates the thermal diffusion process, the diffusion field equation 

can be simplified as:

^  =  A. (Tr ,),- (4.51)

P, i i  =  0 (4.52)

This scenario can be applied to the modelling of long-term fluid injection in 

highly porous media.

4.3 Solutions for Borehole Problem s

This section presents two analytical solutions simulating the thermoporoelastic pro­

cess triggered by drilling a  borehole in saturated porous media, and subject to a 

step constant tem perature change together with mud pressure acting on the bore­

hole wall. The analysis bears a special meaning in wellbore stability control during 

drilling. The problems are solved by the Laplace transform method. The solution 

is closed-form in Laplace domain; and is then inverted to the time domain by using 

Stehfests algorithm. For very small characteristic times where Stehfest's algorithm 

can not be applied, asym ptotic solutions are derived. Thermoelastic solution for 

inclined boreholes is also obtained a t the end of the section for the purpose of 

comparison.

65



4.3.1 Boreholes Subjected to Non-hydrostatic Stress Field

4.3.1.1 Problem  Definition

The problem under consideration is an  infinitely long circular borehole excavated in 

infinite poroeiastic medium. The borehole is subjected to a non-hydrostatic far-field 

stresses, a  borehole fiuid pressure and a constant temperature on borehole wall as 

shown in Figure 4.1. Borehole fluid pressure is assumed to be applied immediately 

after the drilling, and the fluid temperature is different from the virgin formation 

tem perature.

Coussy[40] and Wang and Papamichos[l56] attem pted to solve similar problems. 

Coussy[40| developed a model which superimposes the temperature induced pore 

pressure and  stresses onto a pure elastic stress distribution due to non-hydrostatic 

stress field, which is not a coupled thermoporoelastic model. Whereas the model 

proposed by Wang and Papamichos[156] is based on an assumption th a t a stead- 

state of the  stress and pore pressure have been reached before the heat and fluid 

exchange s ta rts  on the borehole wall. This assumption is suitable for the case of fluid 

injection but not for the case of modelling wellbore stability during drilling. In this 

section, a  frdly-coupled thermoporoelastic model without such lim itations are devel­

oped. It is worth to note that the solution given by Wang and Papamichos [136] for 

the condition th a t fluid diffusivity equals to thermal diflFusivity, which is a singular­

ity in the solution for the general condition, is wrong. They dem onstrated through 

their early-time asymptotic solution that the singularity term can be canceled out. 

But this renders the pore pressure diffusion at the singularity is completely inde­

pendent of the tem perature condition, which is not true physically. A complete 

solution will be presented in this section.

4 .3 .1.2 Solutions

By ignoring the non-linear convective heat transfer term in the therm al diffusivity 

equation (3.45), field equations (3.35), (3.40) and (3.45) are linear and the thermal
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diffusivity equation is decoupled from the displacement and pore pressure diffusivity 

equations. Following Detoum ay and Cheng[5l], the problem can be solved by 

dividing the load due to excavation and m ud circulation disturbances into three 

loading modes, and  superimposing the results from the three loading modes onto 

the virgin form ation condition. Assuming th a t the wellbore is aligned along one 

of the in-si tu  principal stress directions, and th a t po, To and (Tg ^  03 are initial 

formation pore pressure, temperature, and in-situ principal stresses perpendicular 

to the borehole axis, the boundary conditions for each of the three loading modes 

are as following:

Mode 1:

Mode 2:

Mode 3:

al»  =  f f ( f ) ( P „ - p „ )  (4.53)

al»  =  0 (4.54)

=  0 (4.55)

=  0 (4.56)

=  0 (4.57)

=  0 (4.58)

n(2) =  H[t) (Pm -  Po) (-i-59)

o-g) =  -S o H {t)co s2 d  (4.61)

crj? =  SoH {t)sm 2d  (4.62)

=  0 (4.63)

=  0 (4.64)

where r,d ,Po,So  are defined in Figure 4.1; pm and Tm are wellbore pressure and mud
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tem perature during drilling, and H  (t) denotes the Heaviside unit step function.

i ï ( t )  =  0 for t <  0

H{t)  =  1 for i >  0
(4.65)

For all the three loading modes, the induced stress, pore pressure and tem per­

ature vanish at in fini tv.

Solutions for Loading M odes 1 and 3

In modes 1 and 3. the tem perature boundary condition is zero, so the solutions 

given by Detoumay and Cheng[5l] can directly be adopted with a modification for 

taking into account the internal borehole pressure.

The solution for mode 1 is:

.2
=  H ( t )  {Po -  p „ )  ^  

crj;' = - i î ( ( ) ( P „ - p „ ) 4

(4.66)

(4.67)

The solution in the Laplace domain for mode 3 is:

fi'o cos 26

sa.=.(3)ee
So cos 29

sa.=(3)
râ

So sin 29

So cos 29

B  {1 -r 
3 (1 — î u)

H (1 -r i/,̂ )
3 (1 — I/y)

2B  (1 4- i/u) 
3 (1 — i/^)

- 3 C a ^

Cl
C2

(1 -  Ki)

(4.68)

Cl

Cl - / f i ( A r )  +  ^ ^ , ( A r )

(4.69) 

C2 a"
2 (1  — £/u)

9 (1 — I/„) (j/u — !/) 3 (1 -  u^) r2

(4.70)

(4.71)
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■where =  s jc ^ , and C\, Ci, Cz are constants obtained from boundary conditions:

X a { D - i - \ - D \ ) — u) Kzi^Xa)

Solution for Loading M ode 2

Temperature

By ignoring the non-linear coupling term  in Equation (3.45), the thermal diffu- 

si'vity equation deteriorates to a  classical heat conduction equation which has the 

following form in a polar coordinate system:

The equation is decoupled from the fluid and displacement field equations and 

can be solved -with the following boundary and initial conditions:

T  =  {Tm — To)H{t) a t r  =  a. (4.76)

T  =  0 a t r  =  oc, (4.77)

Transforming (4.75) to (4.77) into the Laplace domain:

g . i g - , . - .

T  = (Tm — T q) / s , at r  =  a and t >  0 (4.79)

f  =  0, a t r  =  oo or t  <  0 (4.80)

where =  s/cT.

The solution for this problem can be found in Carslaw and Jaeger[3l]; i.e.

rp(2 ) _  H{t){J'm — Tq) Ko{qr)
5 Ko{qa)  ̂ ^

69



where Kn is the modified Bessel function of the second kind of order n. 

Inverting this solution into the time domain,

- i r .
7T Jo

(C^) ~  ^  (C°) Jo (Çr) dç 
^  (c«) 4- y;? (c«) c

(4.82)

and introducing the dimensionless variables r  =  and R  — r /a ,  the expression

(4.82) becomes;

= H{t){Trr,-To) - 1  r
TT Jo

_rç2 Jo{^)yQ ~  ^0 (*̂ ) Jq dÇ
Jg (?) +  (?)

(4.83)

For T < 0.3, and relatively small R  values, the integral (4.83) can be evaluated 

by the following asym ptotic solution[83] :

T (i? ,r ) (2 )  =  H { t ) { T m - T o )
2 t ~. 4R

ie rf  c
R - l

2r i

- (
L  +  _ i ______

32 16fi! Z2R?) Rk
■ - 2  _ c  -f? — 1 , —TÎ erf c ; h

2t 2

where.

i^er£cx = j  f" ^erfcçdç, n. =  l , 2 ....,

i erf cx =  —= e  — x erf cx
y/ir

erf cx = - f l  +  2x^) erf cx —

(4.84)

(4.85)

(4.86)

(4.87)

Pore Pressure

Because of the axisymmetric loading condition in loading mode 2, the pore pres­

sure diffusivity equation (3.40) can further be decoupled from the displacement field 

equation as derived in section 4.2.1. In a cylindrical coordinate system, the pore 

pressure diffusivity equation (4.16) (dimensionless form (4.46)) has the following 

form:

(4,88)dj.2 J. Qj. cf d t  dt
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For a given tem perature distribution, the pore pressure induced by both  ex­

cavation and applying the mud pressure can be obtained by solving the non- 

homogeneous pore pressure diffusivity equation with the following initial and botmd- 

ary  conditions:

P =  (Pm -  Po) H{t)  a t r  =  a, 

p =  0 a t r  =  oc,

Transforming Equations (4.88) to (4.90) into the Laplace domain:

(4.89)

(4.90)

(4.91)

where jc ^ .

p  =  {pm —po)/s ,  at r  = a and t >  0

p =  0 , a t r  =  oc or t  <  0

The solution for the homogeneous equation of Equation (4.91) has the same

form as (4.81):

P =
H ji) (Pm -P o )  KajXr) 

s Ko{Xa)

It can be verified that:

Pp —
c f ^ f

(4.92)

(4.93)
1 — c^jc^

is a special solution of Equation (4.91) [155]. The final solution for non-homogeneous 

equation (4.91) in the Laplace domain is the summ ation of the above two solutions. 

By applying the boundary condition, the solution has the following form:

(pm -  Po) -
ç f - ^ jT ^ - T o ) ] Ko(Xr) . H {t){T m - % )  Ko{qr)

1 -  c f / c ^  \ Ko{Xa) ' (1 -  c //c ^ )  s Ko{qa)
(4.94)

Inverted into time domain, the following expression can be found:

p(r, t) (2) _ f f ( t )  (pm — Po) —
c ^ ( T ^  -  T o )  

1 — c //c ^

2 _^/^2tJo{Ça)Yo (çr) -  Vp (ça) Jp (çr) dçr
7T Jo
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_i r
TT 7o

7o(çq)yo (çr) -  Vq (ça) ./p {gr) dç
Jo (ça) 4- (ça) ç

Introducing the dimensionless time f a ^ , and for small value of r^ , r.and

R .  the pore pressure distribution can be evaluated by the following formula:

(4.95)

=  H{t) . cf'^ iTrn-To)  
l _ c / / c T H i e r fc - ^ -r ; !  +

2r / i  4.R

. ^  R - l  , I 9 ^ r /  2 ^
“  (3 2  +  6H “  3 2 ^ J  i î *

R  —  1 
c —  +

2T /i

c ^ iy ( i ) ( T ^ - T o )
1 — c //(F

V32 6 H

erf c—
2r i

E -  1 

' 2t 2

9 \  r  .5 R - l
.32 ■ 5H 3 2 j p j n '

Note that in Equation (4.94), the factor ^1 — c-^/c^j appears in the denominator, 

which would appear to have a singular behavior when fluid diffusivity is identical 

to  thermal diffusivity. However, taking the limit of Equation (4.94) :

(4.96)

H{t)
lim

c/ S (Pm -  Po)
C^^{Tm-To)  

1 -  c //c^
KojXr) , c ^ H ( t) (T ^  -  To) Ro(gr)
KoiXa) ' ( l - c Z / c ^ s  Koiqa)

(4.97)

yields the following finite solution for the pore pressure:

, ATo(Ar) H { t)e { T rr .-T o )  ( rK ,{Xr) aK ,{Xa)K q { X t ) \

P  ̂ IPn, ^2^ (,K o(A a) (Ko(Aa))" /
(4.98)

In fact, solution (4.94) goes smoothly through j(F  =  1 , which means no 

special physical phenom ena will occur when therm al diffusivity and fluid diffusivity 

are identical.

Alternatively, the solution given by Equation (4.98) can be directly obtained 

from (4.91) as following;

Replacing g by A in (4.81), then substituting into (4.91). one obtains:

(4.99)
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The equation. (4.99) is satisfied by a special solution of;

A complete solution of pore pressure is obtained by combining the homogenous 

solution of Equation (4.99), with its special solution, Equation (4.100):

Substituting the boundary condition (4.59) into (4.101) yields exactly Equation

(4.98).

Stresses

Solving (3.35), the radial displacement Ur can readily be obtained:

"̂ 4 + I  + # 4 ; r
The stress components in a polar coordinate system can be derived by obtaining 

the relevant strain  components from Equation (4.102) and then substituting into 

constitutive equation (3.10):

t ) i ,  +  j T  . r ( c ,  t)d .T (1 — u) Ja ’ 3 (1 — u)

(1 — i/) 3 (1 — u)
(Tro = 0 (4.105)

By applying the boundary conditions (4.57) for mode 2 to Equation (4.103), 

A is zero. Laplace transforming Equations (4.103) and (4.104), then  substituting 

Equations (4.81) and (4.94) or (4.98) into them, the stress distributions for mode 

2 in the Laplace dom ain can be solved:

(1 — 2u) a  
{ l - u ) 1 — c //c ^  
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c ^{T „  -  To)
1 — j  (F

K l (qr) aKi {qa)
rqKo (qa) r^qKo {qa)

3 ( 1 - W
Ki (qr) aK i {qa)

rqKo {qa) r^q^o  {qa)
(4.106)

-(2) ^  (1 — 2l/ )  O'

{ 1 - u ) (Pto — Po) —

;^ (A r)
+

c f^{T m -T o)

err{T ^-T o )  
1 — c/ f cT

Ki{qr)

K i  (Ar) aK i  (Aa)

Xo(Aa) j 1 —c^/c^ 

2go=m (1 + 1/)

rXKo (Aa) r^XKo (Aa)

^ J ^ { q a )  ^  Ko{qr)
rqKo{qa) v^qKo{qa) Ko{qa)

3 ( 1 - W

For =  cF, one obtains: 

2G c ^  (1 +  W

{Tm — To)
Ki {qr) a K i {qa) ^ { q r )

rqKo {qa) r'^qKo {qa) Ko{qa)
(4.107)

sa.;r(2) _ee

3 ( 1 - W

(1 — 2u)

( 1 - W

, . (1 -  2u) a
{Im — l o )  (P T n  -  P o )

'  %2 (Ar) a'^K^iXa)

K\ (Ar) aK i  (Aa)

{ T m  — T q) X^Ko{Xa) r^X^Ko{Xa)

rXKo (Aa) r^XKo (Aa) 

(4.108)

(1 — 2u) a
(Pw -  Po)

Ki (Ar) aK i  (Aa)
{ 1 - u )

^ e { T m - T o )  

2 C (^ (1 4 -W

, K o { X r )  

K o { X a )

rXKo (Aa) r^XKo (Aa)

K; (Ar) a^Kz (Aa)
4-

3 ( 1 - W
'{Tm — To)

rKi{Xr)
2A2/fo(Aa) 2r^X^Ko{Xa) ‘ 2XKo{Xa) 

Ki(Ar) a K i  (Aa) ^  K o { X r )

rXKo (Aa) r'^XKo (Aa) Ko{Xa)
(4.109)

Final Solution

The solutions in the time domain for large values of r  and R  for tem perature 

and pore pressure distribution Equations (4.81), (4.94)and  (4.98), eind stress distri­

butions for loading modes 2 and 3, can be obtained by directly applying numerical 

Laplace inversion m ethods such as Stehfest’s algorithm[143].
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T he final solution for tem perature, pore pressure and stress distribution for the 

problem defined in Figure 4.1 can be obtained by superimposing solutions from 

modes 1 to 3 onto the original stress and pore pressure fields:

(Trr =  -P o  +  So COS 29 +  (7^) +  (7^) +  (7^  ̂ (4.110)

age =  —Po — So cos 26 +  a^l^ +  a ^  +  a ^  (4.111)

azz = a ^ + u  (c7̂ > 4- <7̂  ̂4- a^^  4- 4- a^^ 4- -  a  (1 -  2i/) 4-

(4.112)

(Trà = —So sin 29 4- a^^ (4.113)

P =  Po 4- 4- (4.114)

T  =  7L4-T(^) (4.115)

where the superscript represents the solution for loading modes i.

4.3.2 Inclined Boreholes

This section presents the analytical solution for the tem perature, pore pressure 

and stress distribution around an inclined borehole, i.e., a borehole with its axis 

arbitrarily  oriented with respect to the in-situ principal stresses. The problem is 

solved by the superposition of three fundamental problems: a thermoporoelastic 

plane-strain problem; an elastic uni-axial stress problem: and an elastic anti-plane 

shear problem.

4.3 .2 .1  Problem  Definition

Figure 4.2-(a) is the schematic diagram  of an  inclined borehole. Sx‘, and Sz' are 

the in-situ  principal compressive stresses; po and To are virgin form ation pore pres­

sure and  temperature; and Pm and Tm are the wellbore pressure and  tem perature 

applied by the drilling fluid, respectively. The local borehole coordinate system, 

xyz ,  w ith  its z-axis coinciding with the borehole axis, are related to the global co­

ordinate system, a /i/y . by an azim uth angle, formed by ro ta ting  an angle pz'
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about the ?-axis, and an inclination angle, ipy, formed by further ro ta ting  an angle 

if y about the y-aods. The borehole coordinate system x y z  is selected as the solu­

tion domain for the conveniences of borehole failure analyses. The in-situ principal 

stresses, Sx‘,Sy ',Sz ',  can be converted to the stresses under borehole coordinate 

system, Sx, Sy, Sx, Sxy,Syz, Szx, via the transformation given by Fjaer et al.[61], as 

shown in Figure 4.2-(b).

The following boundary conditions are assumed at the instant after drilling;

In the far field ( r  —*■ oo) :

(Txi = —Sx

Oyy =  —Sy

= - S x

(^xy =  -S x y

Cfyz =  -S y z

O'xz =  -S x z

P = Po

T  =■-To

(4.116)

Along the borehole wall (r =  a):

Œrr =  — S r H  { ~ t )

(Trà =  —SrdH  (—t)

arx = - S r z H { - t )  (4.117)

P  =  - p o f f  ( - t )  +  P m H  ( t )

T  = TmH  ( t ) - T o

where Sr- and SV- are the far-field compressive stress components in cylindrical 

coordinates. H  [t) denotes the Heaviside unit step function (4.65), and H  {—t) is 

defined as I — H  (t) such that:

H { - t )  =  1 

H { - t )  =  0

for t <  0 

for i > 0
(4.118)
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4.3.2.2 Loading D ecom position

For a linear thermoporoelastic system defined by (3.35), (3.40) to (3.45) w ithout 

the convective heat transfer term, the problem defined in Figure 4.2 can be solved 

by the superposition technique. Similar to the procedures in Cui et a/. [43], the 

original problem can be decomposed into three sub-problems as shown in Figure 

4.3:

Problem  I

As shown in Figure 4.3-(b), problem I is a thermoporoelastic plane-strain prob­

lem. The boundary conditions for this problem are:

d (r —>• oo):

O’xx =  - S x

=  —Sy

(Tzz =  —1/ {Sx 4- Sy) — O! (1 — 2u) po — 2211+") a^To

O'xy — S xi-sy

^yz — (tzz — 0

(4.119)

P=Po  

T  =  To

Along the borehole wall (r =  a):

CTrr =  —SrH  {—t)

(TrB =  —SrD-H (~t)

arz =  0 (4.120)

p = -p o H  ( - t )  +PmH {t)

 ̂ T  = T m H { t ) - T o

Problem  II

Problem II, as shown in Figure 4.3-(c), is a uniaxial loading problem. The 

boundary conditions for this problem are:
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In the far field (r —► oo)

Tzz =  - 5 ,  + [u (5 , -f 5 ,) +  a  (1 -  21/) po +

( T x x  ~  T y y  =  <Txy ~  ~  X Z  —  P  —  T  =  0

.Along the borehole wall (r =  a) : 

CTrr = (Tra =  <yrz = P  = T  =  0

(4.121)

(4.122)

Problem  III

Problem III. as shown in Figure 4.3-(d), is an anti-plane shear problem. The 

boundary conditions for this problem are:

In the far field (i— *■ oc) :

(T x x  — O’y y  — 0~zz ~  T iy  =  P  =  T  =  0 

T y z  =  Syz

Tzz “  Sxz

(4.123)

(4.124)

Along the borehole wall (r =  a) :

tTVr ~  — p ~  T  =  0

Trz =  —SrzH  (~ i)

Note th a t the summation of boundary conditions (4.119) to (4.124) reproduces 

the boundary conditions (4.116) and (4.117).

4.3.2.S Solutions 

For Problem  I:

The problem  defined by boundary conditions (4.119) and (4.120) has the out- 

of-plane displacement u,, fluid flux qz and heat flux h- vanish. It is a plane strain 

borehole subjected to a non-hydrostatic stress field, a constant borehole pressure 

and a constEint tem perature diSerence along the borehole waU. The problem can be 

solved by further decomposing the problem into three sub-loading modes as derived 

in the last section ((4.110) to (4.115)). Since solutions (4.110) to  (4.115) are given in
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a coordinate system, assumlly named as z!', with, its xi' axis coinciding w ith  the 

in-plane (the plane that is perpendicular to the borehole axis) rninimiim principal 

stress (Figure 4.4), there is an angular difference between th e  coordinate

systems x y z  and x/'y"zf', i.e.

Q r ^ Q -  9" (4.125)

where 9 and ff' are the polar angles in x y z  and x!']/'z!' systems respectively, and,

=  (4.126)

The in-plane maximum and minimum principal stresses in coordinates

are:

  Sx  +

<Tx"x"
The final solution for problem I in a polar coordinate system, complying with 

the x'’’y ’c'’ coordinates, can be expressed as:

J'(^ = To +  T^^) (4.128)

p(n = Po (4.129)

= -P o  +  So COS 29" -h (4.130)

-iP = —Pq — So COS 29" 4- CTgp -r CTgP -r CTgp (4.131)

~ 2 uPq +  u +  cr^p +  o-^P +  cr̂ P -f cr^P) 

- a ( l  2^)pM

(4.132)

(4.133)

-iP = —So sin 29" 4- (4.134)

= (4.135)

where,

So =  ~  (4.137)

In (4.128) to (4.135), the superscript represents the solution for Problem  I. 

The expressions for p(i)-(2) and are the tem perature, pore pressure
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and stress distribution for sub-loading modes 1 to 3, according to the superscripts 

(1) to (3). The solution referring to the coordinate system xy z  can be obtained by 

replacing 9" w ith  9 — Or In Equations (4.128) to (4.135).

For Problem  H:

Since the boundary conditions a t the borehole wall are zero for this problem, 

as shown in Equation (4.122), the drilling and the following pressurization of the 

borehole do not arouse any disturbances for this specific problem, i.e.. the solution 

is time independent, or, elastic[43j. In fact, it is given by a constant (Tzz prevailing 

everywhere:

=  —Sz 4- u {Sx +  S,j) +  a  (1 — 2u) Po -r - — ^ ----- ^-oi^To

'rtf dz

(4.138)

(4.139)

For Problem  HI:

For this problem, the stress disturbance due to drilling is introduced by the 

sudden drop of surface traction cTrz on the borehole wall fi-om -Sr- to zero. Since 

normal stress is kept unchanged in this anti-plane shear problem, no pore pressure 

will be generated as a response to the unloading of <Trz; hence, the solution is again 

elastic. The solution for this problem can be found in [26]:

=  — (Sxz COS 9 4- Syz sin^) 

=  — (5 x2 sin 9 — Syz COS 9)

1 - ^

'rà

(4.140)

(4.141)

(4.142)

The Final Solution

Superimposing the solutions from Problems I to III yields the final solution of 

the overall problem  (omitting the zero components):

Œrr =  (tĤ (4.143)
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<Tgg = (4.144)

(Tzz (4.145)

(Tra = (4.146)

(Trz = (4.147)

<Tgz =  4 " '> (4.148)

P =  p!') (4.149)

T = (4.150)

4.3.3 Thennoelastic Borehole Solutions

Thennoelastic solutions for the stress distributions around an inclined borehole de­

fined in Figure 4.2 can be obtained by superimposing a transient stress distribution 

term  induced by the transient temperature distribution onto Bradley’s solution[26]:

'S x -‘r S , j \  a^ \  , /'Sx — S y \  ( .  3a^ 4a^'
(Trr- —

CTgg

COS 26

— S x y  ( 1 -r j sin 20 — -r cr̂ ë ' +  êa

1 - r  COS 20

ST) (T )

=  — u

2 2 
2 (Sx — Sy) cos 20 4- 46"zÿ^ sin 20

(4.151)

(4.152)

(4.153)

(Tra =  (S x  ~  S u
f.2 j ------- ' \ *• jA ' J.2

{T)
(Taz =  { - S x z  sin0 -t- cos 0) 1 -i- — +  a%.

=  { S x z  COS 0 - r  S y x  sin 0) 1̂ -

(4.154)

(4.155)

(4.156)

81



where d is the polar angle in borehole cylindrical coordinate system as shown in 

Figure 4.2; and:

{l-k-u) 1
= _ ^ C T (C .iK

.S T  =

cr^P =  1/ ( c r^  4-o-JP)

=  o-flP =  <^rP =  0

(4.157)

(4.158)

(4.159)

(4.160)

Laplace transforming (4.157) and (4.158) , substituting (4.81) into them  and 

integrating, the analytical solutions for (4.157) and (4.158) in the Laplace domain 

can be obtained:

(T) _  (1 + u) {Tm — To)
"  3 (1 -  I/) qsKo (ça)

2 G a l  (1 +  i/) (Tm -  To)

Ki (qr) aKi (qa)

= 3 (1 — 1/) qsKo (ça)
K l (qr) aKi  (ça)

2 G a l  (1 -f- u) {T^ -  To) Kp jqr) 
3 { l  — u )  s  K q  (ça)

where q is the same as it was defined in (4.78).

(4.161)

(4.162)

(4.163)
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G r  — -  P q ■ S q

Pm > ^ m

J. X Po ’

Gjj — -  P q +  Sq

Figure 4.1: Schematic diagram  for a borehole subjects to a non-hydrostatic stress 
fields and wellbore pressure and tem perature which are different from initial for­
mation pore pressure and  temperature
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z: I

(a) An inclined borehole

m

%z

►  S.

y

(b) Far-Held stresses in borehole coordinate system

Figure 4.2: Schematic diagram of an  inclined borehole
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(a)
'XZ

Po> T q
/ s

i L

/ ^  ‘" xy

4

X

► s.’xy

X

+
xz

Figure 4.3; Loading decomposition scheme for inclined borehole problem
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X

►

'xy

Figure 4.4: Relationship between the two local coordinate systems
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5 Finite Element Model For 

Thermop oro elast oplast icity

5.1 Introduction

Analytical solutions have the advantages to be computationally stable, accurate 

and effective, compared to the numerical solutions, and thus, are convenient and 

cost effective to conduct parametric studies. Significant physical insights to most 

of the engineering problems are usually revealed from exercising such analytical 

solutions. They are also recognized as an indispensable tool to validate numerical 

solutions. However, analytical solutions are generally subjected to m any strict 

assumptions, and only attainable for relatively simple geometries, initial/boundary 

conditions, and m aterial properties: hence, their abilities to handle real application 

problems are very limited. When realistic physical conditions such as non-linearity, 

anisotropy, heterogeneity and complex geometries are to be taken into accoimt. 

numerical solutions have to be sought.

Being one of the most popular numerical methods, the finite element method 

is widely used in solving stress/strain/deform ation-related engineering problems, 

because of its be tte r flexibility in dealing with arbitrary geometries, and greater 

capability of treating higher order boundary conditions, compared to the tradi­

tional finite difference method. In this chapter, three-dimensional finite element 

formulations and the algorithm for fully-coupled, non-linear, thermoporoelastoplas- 

tic models derived in Chapter 3 are developed. A two-dimensional version of the 

finite element program  is implemented and extensively validated.
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5.2 F in ite  Elem ent Form ulae

5.2.1 Weak Statement of Governing Equations

The problems posed by governing equations (3.47) to (3.49) with given boundary 

conditions for each fields can equivalently be expressed in the following integral 

form:

W ia ^ jd n  +  Wi (o-ijUj - f i ) d r  = Q (5.1)

=  - L

d t
dO.

-  Wp {Kp̂ iUi - q ) d r
ri

(5.2)

dt
d n

dT (5.3)

where Q represents the solution domain; F represents the boundary of the solution 

domain; and are arbitrary scalar functions; cr^nj =  Tj is the stress boundary 

condition: Kp.iTii =  q and n p /C f (Tp^i)  ̂rii — k^TiUi =  h  are. respectively, fluid and 

heat (both convective and conductive) flow across the boundary.

Using Green's formulae and selecting Wx =  —Wx, the weak form  of (5.1) to 

(5.3) are w ritten  sis:

[  W i j a i ^ d n -  [  W if,dT = 0 (5.4)
Jn

dSkk 
■ dt

f T T  / t "\ d 7  1 dp- ( a a „  +  a , ÿ - a , )  — -/  W ^,,K p ,idn  +  [  W„
Jn Jci

= [  WpqcH

^  { w T ,ik ^T i  +  Wr,iKp fC fT p ,i  +  W r P t C t ^ ^  dÜ -  J ^^W rh d T  = 0 (5.7)

dl%5.5)

(5.6)
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5.2.2 Spatial Discretization

The essence of the finite element method is to discretize the solution domain into an 

assembly of elements, each with n nodals; and then approximate the displacement, 

pressure and tem perature fields within each element according to their nodal values 

and via spatial interpolation functions (shape functions). Adopting the m atrix and 

vector notations, this approximation can be expressed as:

u  =  N «u 

P =  Npp 

T  = N t T

(5.8)

(5.9)

(5.10)

where u  =  {ux, Uy,u,}  , p, and T are displacement, pore pressure and tem perature 

field variables;

r
u  = 4^) 4 )

p  = p(.̂ ) . . .

T  = f( i) Ÿ’(nT)
lT

are nodal values of displacement, pore pressure and temperature: and.

0 0 

0 0 

0 0

Np =

N t  =

(5.11)

(5.12)

(5.13)

(3.14)

(5.13)

(5.16)

are shape function m atrices. Superscript ^ for a vector or matrix denotes their 

transposition; and n^, rip and n^ are the nodal numbers in each element for the 

interpolation of displacement, pore pressure and tem perature, respectively.
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The gradient relationships can be expressed as;

£ =  Bu {ü} 

Vp = Bp{p} 

VT = B t { t }

where B  ̂ , Bp and B r  are matrices of the gradients:

B „ =

0 0  . .. 0 0

0 0  . .. 0 ,v W ) 0

0 0 . .. 0 0 /vCiv*)
'  UrZ

0  . .. /Vl".*) Ar(7it.) 0

0 . .. 0 /V(n«)
«,y

0 ... 0 - ’ u,x .

Bp =

B t  =

Substituting into (5.4) to (5.7):

< 2
(1) 
T,y
( 1)

iV.

iV,

,VW)••• - P,X
/VW)— •‘''p.y

. ..

. . .  iV|7> 

... .V<!7> 

. . .

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

• the constitutive relation for stress and strain ( equation (3.10) in matrix 

notation):

<r =  D e  — odp -  a ^ K l T  (5.23)

where,

1 =  [1,1,1,0,0,0]

•  the approximate relations (5.8) to (5.10);

•  the gradient relations (5.17) to (5.19);
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and transforming (5.4) to (5.7) into m atrix notations, one obtains the following 

approximated weak formulae of the governing equations:

V W ^  (D B,^ü -  a lN p P  -  a l K T N r T )  d n  -  = 0 (5.25)

V W j  /cBppdn 4- ^  W p o F ^ d n  -  J ^ W p  ( a ^ l  +  a'^cp -  a j )

=  — /  — 4- [  WpqdT (5.26)
Jn M  ^ d t J r i

f  V W ^ fc^ B rT d n  4- f  V W l ^ K p f C f B p p N r t d n  =  -  f  W r P t C t N r ^ d n  
Jn J n  J n dt

+  f  W rhdT  (5.27)
Jr>̂

Adopting G alerkin’s m ethod by which the original shape functions for displace­

ment, pore pressure and  tem perature are selected as weighting functions W, Wp 

and W t*. respectively, the equations (5.25) to (5.27) are converted into the following 

form:

/  B ^ (DBuÛ -  oIN pp  -  a ^ /O N r T )  d Q  -  N ^ f  d T  =  0 (5.28)

/  B j« B p p d fi 4- jT

=  X  M  +  “> - “?) N r f  dfi -  I N J d n  (5.29) 

-h [  N^gdT (5.30)

[  B ^ fc^ B rT d n 4- [  B^/cp/C /B ppN ^T dfi 4- [  N l p t C t N r ^ d n  
Jn  Jn  Jn  d t

=  f  (5.31)
Jph.

The above system  can be re-arranged to present in the following concise form;

K ^u  4" Cupp 4- C uj'T  =  Fu (o.32)

91



where.

_ _ (TV
KçrfT-T 4- K ci,7-T 4- Q r r  — F/, (5.34)

IQ  =  /  
Jn

(5.35)

C^p = - J  B ^alN p d n (5.36)

C^T = -  f  B l a l K J N r d nJn
(3.37)

F„ =  /  N ^ td T  
Jr^ (5.38)

Kp =  — J  B^/cBpdf2 (5.39)

Cpu =  - ^ N j c d ^ B „ d n  =  C^p (5.40)

Cp. (5.41)

Cpp (5.42)

F , = -  [  N jgdT  
vr?

(5.43)

KrdT =  f  B ^ k ^ B r d n  Jn
(5.44)

Kcur =  J^B^KpfCfBppJSij-dü (5.45)

CxT — f  N^ptCtN-rdD Jn
(5.46)

Fh = f  N ^hdT  
Jv^

(5.47)

Differentiating both sides of (5.32) with time and re-arranging, the system (5.32) 

to (5.34) can be expressed as:

IQ CuT dVL 0 0 0 u dt
Cpu Cpp CpT

1
dt dp > 4- 0 Kp 0 < p F ,

0 0 C t t d T 0 0 Î crfp ”b I^cup T

or in a more concise form:

-b C X  =  F
at

(5.48)

(5.49)
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5.2.3 Temporal Discretization

Adopting the two-level recurrence scheme for the temporal discretization, the field 

variables at time t can be obtained by:

Ü p T = [ i - 0 7  W (5.50)Q£fc+A£fc p£fe+A£it 'p£fc+A£fc

where ôü =  {t — tk) f  Atk- When 07 =  0, 1/2. 2/3, and 1, the above recurrence 

scheme corresponds to an explicit, Crank-Nicolson, Galerkin or an  implicit schemes 

in finite difference method, respectively.

Substituting (5.50) into (5.51) , replacing dt by Atk, multiplying both  sides of 

(5.51) by Aüfc and re-arranging:

K u C u p C u T du

C p u C p p CpT < dp > 4 -

0 0 Ct t d f

0 0 0

0 zuKpAtk  0

0  0  0 7  ( K c d p  - r  K c v p )  Atk

u

p

T

0 0 0 u F u

= 0 — ( 1  — 07) K p A t f e 0 < P ► 4 -  < F , A £ f c

0 0 — ( 1  — 07) {Kr,dp 4 -  K ç u p )  A£fc T
tfe

F f t A i f c

£fc-rA£fc

(5.51)

Using:

dû Q£fc+A£fc _  Q£fc

dp p£fc+A£fc _  p£fe

d f 'p£fc+A£fc _  >p£fc

(5.52)

and re-arranging, (5.51) can finally be presented as: 

C u

P

T

K.J C„p Cup

Cpu Cpp +  0/KpA£fc CpT

0 0 Q r r  -r n j (Kcrfp +  Kcup) A i*

Ku Cup C,^r

C p u  C p p  — ( 1  — 07)  K p A £ f c  C p x

0  0  C jT  — ( 1  — 07) (K c r fp  4 -  K ç u p )

£|:t A£j:

U

< P

T
tfc
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F,A£fc

F^Atfc

or in a more concise form:

(5.53)

[B +  a7A£fcC] =  [B — A£fc (1 — tir) C] Xt^ +  F (5.54)

5.2.4 Partitioned Solution Procedure

Since the coefficient matrix [B +  ûjAüfcC] in (5.54) is not symmetric, a partitioned 

solution procedure proposed by Schrefler[135] is introduced to restore the symmetry 

of the coefficients so that a simpler solver can be used and the computation is more 

effective. Moreover, the partioned system of equations are better conditioned. 

Separating B as:

B  =  B ^ 4 -B ^  (5.55)

where.

B^ =

B ^ =

ICu '-'up

'pu

c

c

0

0

0

pp

0 C t t

0 0 CuT 

0 0 CpT 

0 0 0

( 5 .5 6 )

(5.57)

substituting ( 5 .5 6 )  and ( 5 .5 7 )  into ( 5 .5 4 )  and re-arranging, one has:

[b ^  +  o7A£fcC] Xe,+At. =  [B -  Atk  (1  -  t v )  C ]  X ,, +  F  -  B^X ,,+A ,, ( 5 .5 8 )

The solution proceeds by separating the solution of tem perature fields from 

( 5 . 5 8 ) . The Ttfc+Atfc is first predicted by the formula:

(5.59)
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Then the isothermal displacement and pore pressure fields are solved by the follow­

ing formulae:

K u C up
<

u

C pu Cpp 4- mKpAtk _ P

K u C u p C

tfc+Atfc

'tiT

Cpu Cpp — (1 — tzr) K p A i k  C p x

u

p
T

tfe

Fu ' C u t '
+  « ► — < >

FqAtk

Then the tem perature field is solved:

(5.60)

(5.61)

(5.62)

[C t t  +  (Kçrfp +  K^up) Atk] (5.63)

=  [Cttt “  (1 — Î") (Kçdp-f-Kctp) Atfc] T f j i . - I - F/iAtfe (5.64)

5.2.5 Algorithm for Non-linear and Elastoplastic Analysis

Many com putational techniques for non-linear and  elasto-plastic finite element anal­

yses have now become widely accepted in practical engineering applications. De­

tailed assessments of these techniques can be found in a wide range of publications [121] 

[162][48][149][117][8][9]. Their application in geomechanics has also received consid­

erable attention and has been the subject of m any texts and conferences [49] [69] [50] [158].

There are three basic solution techniques for non-linear finite element analyses: 

iterative, incremental, and mixed procedures[48] [149]. In a purely iterative method, 

the to tal load is applied in one step and successive corrections are perform ed un­

til equilibrium is satisfied. Among the m any iterative schemes, the initial stress 

m ethod implements the corrections by transferring the unequilibrium stresses. As­

suming a m aterial satisfying the following general non-linear constitutive relations:

<T =  D gp ( s )  s

=  ( f î e  — D p )  £
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= <Tg -  <Tp (5.67)

A direct iteration scheme obtains the final results through the following procedures;

Kou^ =  F  (5.68)

(5.69)

K ^_iu‘ =  F , z =  l ,2 , . . .  (5.70)

until Ui % Ui_i; where

IQ =  y  ( s J B d y  (5.71)

and

u° =  0 (5.72)

Substituting (5.66) into (5.71):

K i =  y  B ^D gB dy  -  y  B ^D p B d y  (5.73)

=  Ke -  Kp (5.74)

In the initial stress m ethod, the stifl&iess m atrix K , is kept constant throughout 

the iteration:

K i  =  K g  ( 5 .7 5 )

and the error induced by such an approximation will be gradually corrected by 

redistributing the extra stresses <7p, which is determined by the constitutive relations 

(5.66), in a way th a t is m athem atically similar to the treatm ent of initial stresses:

K g U * = F  +  R * - \  i =  1,2,... (5.76)

where,

R * - i  =  y  ( 5 .7 7 )

=  K p u '-^  ( 5 .7 8 )

The iteration will be term inated when Un-i w Un.
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In a sub-incremental initial stress method:

KeAu‘ = R'~\ t =  L2,... (5.79)

where.

R° =  F , u  =  f ^ A u ‘ (5.80)

and the iteration will be term inated when Au* w 0.

In non-linear and plastic analyses, an incremental formulation is considered 

essential for dealing with general loading paths and the  history dependent properties 

of plastic deformation. A purely incremental scheme (tangent stiffness method)

generates the solution as a sequence of piecewise linear steps:

K^Au* =  A F \  i =  1,2, ...n (5.81)

u  =  (5.82)

where is a tangent stifeiess m atrix which needs to  be evaluated explicitly a t the 

beginning of each load increments. Since the basic equilibrium equations are never 

completely satisfied at any stage, the results tends to exhibit cumulative errors.

A mixed procedure, which is the one that is adopted in this dissertation, consists 

in loading incrementally, and taking into account the  non-linearity by iteration at 

each load level. The additional effort in such a procedure is offset by the fact th a t

the accuracy can be assessed at each loading stage.

5.2.6 Program Flow Chart

Figure 5.1 is a  flow chart of the calculation sequences for the algorithms developed 

in this chapter. As a m atter of fact, the coupled TH M  analysis is realized by com­

bining virtually two independent programs: a therm al analyzer which calculates the 

change of tem perature field with time, and an isothermal consolidation tool which 

takes care of the non-linear and elastoplastic analysis of stress /s tra in / displacement 

during the tem perature and pore pressure diffusion. Two sub-iteration processes
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are involved in a completed analysis cycle (i.e. w ithin one time step): iteration 

for plastic analysis and iteration induced by the partioned solution procedure. The 

iteration procedure required for the non-linearity due to both the field variable- 

dependent material properties and convective heat transfer is accomplished at the 

same time during the seek of equilibrium of the partioned system. When the sys­

tem  non-linear feature is strong, load can be incrementally applied within each time 

step so th a t the influence of loading path  can be reflected more realistically.

5.3 Im plem entation  and V alidation o f FE M odel

The numerical scheme developed in this chapter has been programmed using For­

tran  language and implemented on a personal computer. Since the m ajor purpose 

of this chapter is to develop and validate an effective finite element model which 

can conduct the THM coupled, non-linear and poroelastoplastic analysis for the 

investigation of wellbore instability in fluid-saturated porous media, only a two- 

dimensional plane strain model was actually implemented at this stage to avoid un­

necessary computational efforts inherently associated w ith three-dimensional model. 

Once the two-dimensional algorithm  is validated, extension to the three-dimensional 

model is ju st a m atter of increase one more DGF in each node for the displacement, 

which should not have any m ajor technical obstacle. Four-node linear isoparamet­

ric elements are adopted, and  the performance of the code is extensively validated 

in the following sections.

5.3.1 Steady State and Transient Temperature Distribu­

tion

The testing of the thermal analyzer started with comparing the finite element model 

output of steady state tem perature distribution in the cross-section of an infinitely 

long thick-walled tube subjected to a constant tem perature potential at the inner 

face of the tube, as shown in Figure 5.2. The problem and its analytical solution
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Ç Start ^

/  Input; initial & far- 
field boundary 

conditions

Note: ■ calculations within isothermal 
consolidator 

** calculations within thermal 
analyzer

Y es

Nono
no

Yield?

Y es

Y es
no

Convergent ?

Yes

'artioned system 
equilibrium ?

t = t + At

Borehole 
Temperature B.C.Predict temperature field

'Calculate stress field

Calculate temperature field

Borehole pressure 
and pore pressure 

B.C.

Update equivalent nodal 
force vector

Update pore pressure and 
displacement fields

Stress redistribution & 
porosity correction

Output intermediate results 
(optional)

"Borehole Generation
borehole stress release & 

thus induced undrained pore 
pressure and displacements

'&"Calculate stress and pore 
pressure dependent material 

properties and update 
stiffness matrixes

*&**Calculate stress, pore 
pressure and temperature 

dependent material prpoperties 
and update stifness matrixes

Figure 5.1: Calculation sequences for non-linear and thermoporoelastoplastic algo­
rithms
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are given in equations (5.83) to (5.85), respectively.

I err „

T  | r = a =  Ta

T  | r = 6 =  T, 

Tblogra -  T a lo g n

(5.83)

(5.84)

(5.85)
Iog(ra/ri)

The finite element mesh for the problem is shown in Figure 5.3 and the com­

parison of the numerical solution with the analytical one is shown in Table 5.1. As 

one can see, excellent agreement between the two solutions was obtained.

The accuracy of the time-dependent tem perature distribution was tested by a 

linear heat conduction problem with a known analytical solution as shown in Figure

5.4. It is a three-side insulated plate (infinitely long in the direction perpendicular 

to the cross-section shown in Figure 5.4) w ith a zero initial tem perature. For any 

time t >  0, a imit tem perature is applied at the left hand side of the plate. The 

problem can be presented by a non-dimensional linear heat conduction equation:

d^T d T  
dx^ dt

(5.86)

with the boundary and initial conditions:

T  =  1 at X = 0. “  0 a t r  =  4:

T  (z, 0) =  0, 0 <  r  <  4

The exact solution for the problem is given by Carslaw and Jaeger[3l]:

(5.87)

T  =  l - Ez 17t (2A :-1 )
exp < -

(2k — 1) 7T
8

t  > sin
(2A: — l)-rzx

8
(5.88)

As shown in Figure 5.4, the problem was discretized into four elements. Figure

5.5, Tables 5.2 and 5.3 are the comparison of numerical and  analytical solutions for 

the transient tem perature distribution at x  =  1.0 for different recurrence schemes. 

They show th a t for all th e  recurrence schemes, the num erical solutions give excellent
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r == 0.1157 (m) r == 0.1714 (m)
T ("C) T («C)

Node Num. Ana. Node Num. Ana.
89 46.8903 46.9 67 38.5068 38.5
90 46.8853 46.9 68 38.5039 38-5
91 46.8903 46.9 69 38.5075 38.5
92 46.8888 46.9 70 38.5067 38.5
93 46.8865 46.9 71 38.5052 38.5
94 46.8914 46.9 72 38.5085 38.5
95 46.8865 46.9 73 38.5053 38.5
96 46.8889 46.9 74 38.5068 38.5
97 46.8904 46.9 75 38.5076 38.5
98 46.8854 46.9 76 38.5041 38.5
99 46.8905 46.9 77 38.5072 38.5

r == 0.2934 (m) r == 0.7469 (m)
T («C) T(“C)

Node Num. Ana. Node Num. Ana.
45 27.4309 27.4 12 7.28479 7.3
46 27.4292 27.4 13 7.28400 7.3
47 27.4313 27.4 14 7.28492 7.3
48 27.4309 27.4 15 7.28471 7.3
49 27.4301 27.4 16 7.28433 7.3
50 27.4320 27.4 17 7.28517 7.3
51 27.4301 27.4 18 7.28435 7.3
52 27.4310 27.4 19 7.28474 7.3
53 27.4315 27.4 20 7.28497 7.3
54 27.4294 27.4 21 7.28407 7.3
55 27.4312 27.4 22 7.28488 7.3

Table 5.1: Comparison of the numerical with the analytical solutions for the steady 
state tem perature distribution in thick-waüed tube example
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approximation to the analytical solution except a t very early times. The relative 

errors monotonically decrease with the increasing of time for all the recurrence 

schemes. The accuracy of the numerical solutions, including the early time solution, 

improves with the decreasing time step as shown in Table 5.4. However, even when 

the time step is very small, the noise in the early time solution still exists as shown 

in the same table.

The finite difference solution for the problem in question is imconditionally 

stable for any size of time step if 1/2 < zu < 1. Whereas in finite element method, 

the stability of the solution is also dictated by the size of the smallest element [163] 

and the total DOF of the problem[160|. Since the increase of the to ta l DOF and the 

decrease of the element size will commensurately reduce the maximum allowable 

time-step size[160|[l63|, the discussion of improving the solution quality via increase 

the element numbers are not conducted here. The time step of 0.187 adopted in 

Figure 5.5 and Tables 5.2 and 5.3 are the theoretically derived maximum time 

step allowable[160| for a stable solution of the above defined problem, and for the 

recurrence schemes th a t 1/2 <  < 1. However, as one can see, noise exists in very

early times for all the recurrence schemes, and for even very small time step size.

According to [163]. this early time noise is associated with the physically unre­

alistic initial condition, i.e.. step loading, such as the suddenly applied tem perature 

at t =  0 in this example. Traditionally recommended way of reducing this noise is 

to replace the step loading with ramp loading, such as the two-step s ta rt in [160] 

(i.e., apply the tem perature through the first two, instead of one, time steps ). 

Since ramp loading brings in errors of replacing a step function with a weighted 

loading function, it m ay or may not be necessary, depending on how well the as­

sumed step function approximates the real loading condition, and the interested 

solutions reside in w hat time range.
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t Ana. C-N err. (%) Galerkin err. (%) Implicit err. (%)
0.19 0.10199 -0.08635 -184.66 -0.00249 -102.44 0.01955 -80.83
0.37 0.24755 0.17606 -28.88 0.18638 -24.71 0.19242 -22.27
0.56 0.34510 0.30569 -11.42 0.30400 -11.91 0.30491 -11.65
0.75 0.41356 0.38812 -6015 0.38397 -7.16 0.38329 -7.32
0.94 0.46458 0.44648 -3.9 0.44216 -4.83 0.44104 -5.07
1.12 0.50439 0.49076 -2.7 0.48671 -3.51 0.48554 -3.74
1.31 0.53654 0.52586 -1.99 0-55214 -2.68 0.52105 -2.89
1.50 0.56321 0.55450 -1.55 0.55118 -2.14 0.55021 -2.31
1.68 0-58582 0.57843 -1.26 0.57555 -1.75 0.57472 -1.90
1.87 0.60536 0.59882 -1.08 0.59641 -1.48 0.59572 -1.59
2.06 0.62252 0.61652 -0.96 0.61458 -1.28 0.61404 -1.36
2.24 0.63781 0.63214 -0.89 0.63065 -1.12 0.63025 -1.19
2.43 0.65161 0.64615 -0.84 0.64507 -1.00 0.64480 -1.05
2.62 0.66421 0.65889 -0.80 0.65818 -0.91 0.65801 -0.93
2.81 0.67584 0.67062 -0.77 0.67021 -0.83 0.67013 -0.84
2.99 0.68665 0.68152 -0.75 0.68136 -0.77 0.68137 -0.77
3.18 0.69679 0.69176 -0.72 0.69179 -0.72 0.69186 -0.71
3.37 0.70636 0.70142 -0.70 0.70160 -0.67 0.70173 -0.66
3.55 0.71544 0.71062 -0.67 0.71090 -0.64 0.71106 -0.61
3.74 0.72410 0.71939 -0.65 0.71974 -0.60 0.71994 -0.57

Table 5.2: Comparison, of the numerical and analytical solutions for the transient 
tem perature distribution for different recurrence schemes ( d t =  0.187, x =  1.0 )
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t Ana. C-N err. (%) Galerkin err. (%) Implicit err. {%)
3.93 0.73238 0.72780 -0.63 0.72820 -0.57 0.72840 -0.54
4.11 0.74032 0.73588 -0.60 0.73630 -0.54 0.73652 -0.51
4.30 0.74796 0.74367 -0.57 0.74408 -0.52 0.74432 -0.49
4.49 0.75533 0.75119 -0.55 0.75158 -0.50 0.75182 -0.46
4.68 0.76244 0.75846 -0.52 0.75882 -0.47 0.75905 -0.44
4.86 0.76931 0.76549 -0.50 0.76582 -0.45 0.76603 -0.43
5.05 0.77596 0.77230 -0.47 0.77258 -0.44 0.77279 -0.41
5.24 0.78240 0.77890 -0.45 0.77913 -0.42 0.77933 -0.39
5.42 0.78864 0.78530 -0.42 0.78548 -0.40 0.78566 -0.38
5.61 0.79469 0.79151 -0.40 0.79163 -0.38 0.79180 -0.36
5.80 0.80055 0.79753 -0.38 0.79759 -0.37 0.79775 -0.35
5.98 0.80625 0.80337 -0.36 0.80338 -0.36 0.80325 -0.34
6.17 0.81177 0.80905 -0.34 0.80900 -0.34 0.80912 -0.33
6.36 0.81714 0.81445 -0.32 0.81445 -0.33 0.81456 -0.32
6.54 0.82235 0.81990 -0.30 0.81975 -0.32 0.81984 -0.30
6.73 0.82741 0.82509 -0.28 0.82489 -0.30 0.82496 -0.30
6.92 0.83232 0.83013 -0.26 0.82988 -0.29 0.82994 -0.29
7.11 0.83709 0.83502 -0.25 0.83473 -0.28 0.83477 -0.28

Table 5.3: Comparison of the numerical and analytical solutions for transient tem­
perature d istribution for different recurrence schemes ( dt =  0.187, x  =  1.0 )(cont.)
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t Ana. dt =  0.01 err. (%) dt =  0.1 err. (%) dt =  0.5 err. (%)
0.1 0.02540 -0.56794 -2335.59 -0.15586 -713.51
0.2 0.11382 0.08802 -22.67 0.02707 -76.22
0.3 0.19668 0.18832 -4.25 0.14637 -25.58
0.4 0.26352 0.26203 -0.57 0.23151 -12.15
0.5 0.31728 0.31879 0.48 0.29520 -6.96 0.0718 -77.37
0.6 0.36128 0.36413 0.79 0.34517 -4.46
0.7 0.39799 0.40142 0.86 0.38573 -3.08
0.8 0.42917 0.43280 0.85 0.41953 -2.25
0.9 0.45603 0.45969 0.80 0.44827 -1.70
1.0 0.47947 0.48306 0.75 0.47312 -1.32 0.44486 -7.22
1.1 0.50016 0.50362 0.69 0.49487 -1.06
1.2 0.51858 0.52187 0.63 0.51411 -0.86
1.3 0.53513 0.53820 0.57 0.53128 -0.72
1.4 0.55010 0.55294 0.52 0.54672 -0.61
1.5 0.56373 0.56631 0.46 0.56070 -0.54 0.52809 -6.32
1.6 0.57622 0.57852 0.40 0.57343 -0.48
1.7 0.58772 0.58973 0.34 0.58509 -.0.45
1.8 0.59836 0.60008 0.29 0.59583 -0.42
1.9 0.60826 0.60969 0.23 0.60578 -0.41
2.0 0.61751 0.61865 0.18 0.61504 -0.40 0.59917 -2.97

Table 5.4: Influence of tim e-step size on the numerical solutions ( x=1.0 )
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5.3.2 One-dimensional Consolidation

The classical one-dimensional consolidation problem of Terzaghi[l46] considers a 

soil layer of height H, resting on a rigid impermeable base: and a constant loading 

(7, is applied on top of the layer imder drained conditions (Figure 5.6). Recently, 

Detoumay and Cheng[52] re-analyzed the problem in light of the Biot theory. The 

mathematical model and its analytical solution for the transient displacement and 

pore pressure distribution can be found in [52] :

i - ' S -  i‘ «

(5.90)

where.

is a poroelastic constant, and.

(5.91)

1 — 2 i/

^  (1 -  (1 -  2u)
M ( l - y )  ( 1 - 2 I / J  ' ^

is the storage coefficient. The dimensionless coordinate and time, % and r, are 

defined as:
c^t

x =  ^ ;  r  =

and.

f'l (x. t)  =  1 -  £  sin «xp { - m V r j  (5.95)mTT \  2 y ^

F2 ix ,  r)  =  cos [1 -  exp ( - m V r ) ]  (5.96)

This problem has been selected to test the displacement-pore pressure coupling 

function in the isothermal consolidation tool. The soil layer is discretized into ten 4- 

node isoparametric elements. The finite element mesh and the boimdary conditions
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are shown in Figure 5.7. The m aterial properties for the problem are listed in Table 

o>o>

Figure 5.8 is the comparison of the transient displacement a t the top of the 

soil layer. Figures 5.9 and 5.10 represent pore pressure distributions along the layer 

depth a t certain times. As one can see, excellent agreements between the analytical 

and numerical solutions are obtained for all the cases.

E (GPa) u G(GPa) M (GPa)
20.6 0.189 8.66 48.2

a K, V K (m ^/M Pa/day)
0.733 0.3086 0.281 8.64 X 10-®

Table 5.5: Material properties for one-dimensional consolidation problem

5.3.3 Temperature-induced Pore Pressure and Stresses

The Case I in Chapter 6, pore pressure and stresses induced by the tem perature 

variations only in a fully-coupled TH?^I system, was selected to validate the three- 

field coupling function in the finite element code. The finite element mesh for this 

case and their thermal and hydraulic boundary conditions are shown in Figure 5.11.

Figures 5.12 to 5.15 are the comparisons of tem perature distributions along 

the borehole radius at different times. It can be seen th a t the numerical solution 

gives an  excellent approximation to the analytical solution at times less than 1 day. 

Starting from 1 day, the two results begin to separate a t the outer boundary. At 10 

days, the prediction by the numerical solution is totally  different from the analyt­

ical solution. This is because the influence of different outer boundary conditions 

between the numerical model and  analytical model s ta rt to  interfere the comparison 

at la ter times. In the numerical model, the calculation domain is predetermined 

as a finite domain, whereas the analytical model is obtained assuming an infinite 

outer boundary. Starting a t the time when the developing tem perature front hits 

the outer boundary of numerical model, the tem perature a t the outer boundary is 

not a  fixed value anymore, b u t changes with time, because the ou ter boundary is
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set as a free boundary in the numerical model in this example. Even if the outer 

boundary was prescribed as a fixed far-field tem perature , i.e. T& =  0. in the nu­

merical model, the problem considered in the numerical model is still not the same 

problem as the analytical model described. So the two results cannot be compared 

after the tem perature front hit the outer boundary of the numerical model.

Figures 5.16 to  5.19 are tem perature induced pore pressures. Similarly to the 

tem perature profiles, good agreement between the analytical and numerical solu­

tions are obtained a t times less than 1 day, but the outer boundary conditions come 

into play a t later times eind the two results start to deviate at times greater than 1 

day.

Figures 5.20 to  5.23 are the comparisons of the total radial and  circumferential 

stresses along the borehole radius (note that the Biot coefficient, a .  adopted in 

this example is different from what is adopted in Case I in C hapter 6 ). Figures 

5.20 to 5.23 show th a t the numerical results for the stresses s ta rt to  deviate away 

from the analytical results in earlier times compared to that of the temperature 

and pore pressure. This is because, on the one hand, in finite element method, 

displacements, rather than stresses, are adopted as the field variables as it is shown 

in Equation (5.25), hence, the accuracy of stresses is a level lower com pared to that 

of first level field variables such as pore pressure, temperature an d  displacement: 

on the other hand, detailed analysis of the change of displacement field had been 

conducted for this example and the results showed that the disturbeinces of the 

displacement reach the outer boundary a t an earlier time compared to th a t of the 

tem perature and  pore pressure, which is the m ajor reason for the  lower accuracy 

of stresses in this example.

It is worth to mention th a t once the finite element mesh for a certain example 

is predeterm ined, the output point for the stresses are fixed, if a peak value is in 

between the two output points, this im portant information could be missed, and 

adjusting the m esh to accommodate all the im portant information is not a straight 

forward work. As a m atter of fact, the same problem exists for the outputs of all
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transient numerical models. Since the purpose of running examples in this section is 

to compare the results with existing analytical solutions and validate the functions 

of the program, no analyses regarding the peak value in each time are conducted 

at the present stage.

From the comparison of the last example in this section one can see th a t either 

a large enough simulation domain, or an exact time-dependent outer boundary 

condition are essential to obtain  rehable results from the numerical models for 

transient analysis.

5.3.4 Elastoplastic Analysis of Thick-walled Tube

The elastoplastic algorithm in the program is tested via the classical thick-waUed 

tube problem.

Assuming a thick-walled tube with an inner diameter, a, of 2 meters and an 

outer diameter, b, of 8 meters: subjected to an internal pressure, p. of 230 kg/cm^: 

and has the following m aterial properties:

Young's modulus E  =  2.1 x 10® kg/cm"

Poisson's ratio i / =  0.17 (5.9 c)

Uniaxial compressive strength  =  200 kg/cm^

The material is ideal elastoplastic and the plastic deformation conform w ith the 

Von Y'lises law. The analytical solutions for the problem are[l21]:

Plastic radius r  ̂ is determined from the following formula:

% (5.98)

Stresses inside the plastic area:

2 r
(7r=(T2 =  —p-( ÿ=Çu hi — (5.99)

v 3  d

o-g =  (Ti =  - p  +  ^1 4 - l n ^ j  (5.100)
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• Stresses inside the elastic area:

CTr =  (73 = ?U
v/3 62

gu r
y/3à^ \r-‘

The radial displacement at the interface of elastic and plastic area:

1 + u

(5.101)

(5-102)

Urs = 62 _  p2
62

(1 — 2i/) +  — (5.103)

According to the symmetric condition, a quarter of the structure was selected, 

and discretized into 360 elements and 399 nodes. The comparison of the analytical 

and numerical solutions are listed in Table 5.6 and 5.7. As one can see, the numerical 

model produce good approximation to the analytical solutions.

Ts (m ) u „  (cm )
Analytical 3.64 0.2459
Numerical 3.60 0.2602
Relative Error -1.1% 5.82%

Table 5.6: Comparison of numerical and analytical solutions for the radius of plastic 
zone and the radial displacement at the interface of elastic and plastic zone

CTe {kg/crri^) (7r {kglcrri^)
Radius (m) Ana. FE Err.(%) Ana. FE Err.(%)

2.1 12.21 16.20 32.70 -218.7 -213.0 2.61
2.5 52.47 55.93 6.59 -178.5 -173.4 2.90
2.9 86.75 90.69 4.54 -144.19 -139.56 3.21
3.5 130.18 120.80 -7.20 -100.76 -110.0 -9.17
3.9 124.5 120.70 -3.05 -76.68 -74.96 3.00
4.6 96.21 93.41 -2.90 -48.40 -46.96 3.00
5.4 76.37 74.12 -2.90 -28.56 -27.70 3.00
6.2 63.71 61.82 -3.00 -15.9 -15.4 3.10
7.0 55.13 53.49 -3.00 -7.32 -7.09 3.10
7.8 49.05 47.59 -3.00 -1.24 -1.19 4.00

Table 5.7: Comparison of the numerical and analytical solutions for the stress 
distribution along the borehole radius
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r = O.I

Figure 5.2: The schematic diagram  of a thick-walled tube subjected to a constant 
tem perture potential a t the inner face of the tube
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1100 12h = 045

Figure 5.3: The F E  m esh for the thick-walled tube example
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Figure 5.4; The schematics and FE mesh for a three-side insulated p late  with a 
zero initial tem perature and  a unit temperature at the left-hand side of the plate ( 
for t >  0 )
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Figure 5.6: Schematic diagram of one-dimensional consolidation problem
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Figure 5.7: The FE  mesh for one-dimensional consolidation problem
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t = 0.1 day
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Figure 5.9: Comprison of num erical and analytical solutions for the pore pressure 
distribution along the layer dep th  ( t  =  0.1 day )
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Figure 5.10: Comprison of numerical and analytical solutions for the pore pressure 
distribution along the layer depth ( t =  1 day )
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Tb= free boundary 
Pb = free boundary
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Figure 5.11: The FE mesh and the thermal and hydraulic boundary conditions for 
the Case I in Chapter 6
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t = 0.01 day (860s)
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Figure 5.12: Comparison of num erical £ind analytical solutions for tem perature 
distribution along the borehole radius ( t =  0.01 day )
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t = 0.1 day (8,600s)
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Figure 5.13: Com parison of numerical and analytical solutions for tem perature 
distribution along the borehole radius ( t =  0.1 day )
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t = 1 day (86,000s)
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Figure 5.14: Comparison of numerical and analytical solutions for tem perature 
distribution along the borehole radius ( t =  1 day )
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t = 10 days (860,000s)
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Figure 5.15: Comparison of numerical and analytical solutions for tem perature 
distribution along the borehole radius ( t  =  10 day )
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Figure 5.16: Comparison of numerical and analytical solutions for tem perature 
induced pore pressure along the borehole radius ( t =  0.01 day )
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Figure 5.17: Comparison of numerical and analytical solutions for tem perature 
induced pore pressure along the borehole radius ( t =  0.1 day )
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t = 1 day (86,000s)
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Figure 5.18: Comparison of numerical and analytical solutions for tem perature 
induced pore pressure along the borehole radius ( t =  1 day )
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Figure 5.19; Comparison of numerical and analytical solutions for tem perature 
induced pore pressure along the borehole radius ( t =  10 day )
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t = 0.01 day (860s)
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Figure 5.20: Comparison of numerical and analytical solutions for the total radial 
stress distribution along the borehole radius ( t =  0.01 day )
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Figure 5.21: Comparison, of numerical and analytical solutions for the to tal circum­
ferential stress distribution along the borehole radius ( t =  0.01 day )
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Figure 5.22: Comparison of numerical and analytical solutions for to tal radial stress 
distribution along the borehole radius ( t  =  0.1 day )
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Figure 5.23: Comparison of numerical and analytical solutions for to ta l circumfer­
ential stress distribution along the borehole radius ( t =  0.1 day )
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6 Applications

This chapter discusses the applications of the thermoporoelastic solutions obtained 

in this dissertation. Clear physical insight into how the coupled TH2vI process 

influences borehole stability will be provided through the analyses conducted. The 

potential significant im pacts of non-iso therm al drilling on the stability of inclined 

boreholes wiU be illustrated through a couple of numerical examples. Note that 

assum ption (3.50) is applied in the following analyses due to lack of pore contraction 

data for shale for a more accurate model.

6.1 Basic M echanism s o f T herm oporoelastic Pro­

cesses A ffecting Borehole S tab ih ty

6.1.1 Case I

In the following subsection, the basic mechanisms of thermoporoelastic processes 

affecting borehole stability will be illustrated through a diagnostic example: a sec­

tion of a vertical borehole drilled in a shale, and  subjected to trivial initial and 

boundary conditions except for the fact th a t a 50° C tem perature difference is im­

posed on the borehole wall (Figure 6.1). The form ation properties adopted for this 

example are listed in Table 6.1. Note that the sign of the to tal stress tensor has 

been changed to compressive positive in this section, to comply w ith the traditional 

rock mechanics convention.
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G  (xlO®Pa) B K (darcy/cp) u
3.82 0.78 0.766 X 10-^ 0.24 0.31

c^' (m^/s) c/'^' (Pa/=C) <Po
18 X 10~® 300 X 10-® 1.6 X 10-® 5.2 X 10® 0.14

Table 6.1: Thermoporoelastic Properties for Case I

6.1.2 Temperature-induced pore pressure and stresses

Figure 6.2 shows the transient tem perature distribution, a typical conductive heat 

transfer case. The formation is gradually heated up while keeping the wellbore 

tem perature constant. The tem perature gradient a t a fixed point decreases w ith 

time after the heat front reaches this point. At a fixed tim e, the tem perature 

gradient decreases with distance. For the case of cooling, one could see th a t the 

formation will gradually be cooled off, by reversing the sign of the y-value in Figure 

6 . 2 .

Figure 6.3 is the temperature-induced transient pore pressure distribution. Be­

cause of the assum ed permeable boundary conditions, the pore pressure is kept 

equal to zero along the borehole wall, but a significant pore pressure peak is gen­

erated near the borehole at early times. The peak decays w ith  time, and moves 

away firom the borehole. If, on the other hand, one considers the pore pressure his­

tory at a fixed point inside the formation, one would observe a gradual increase at 

the beginning, a  peak, and then subsidence. In the case of cooling, the significant 

pore pressure drop near the borehole will occur at the beginning of the cooling. 

W ith time, the originally decreased pore pressure will gradually recover towards its 

original state.

Figures 6.4 and 6.5 present to tal radial and circumferential stresses induced 

by borehole tem perature variations, respectively. The solid lines indicate the re­

sults from the thermoporoelastic model and the dotted  lines indicate the exact 

thermoelastic results. As one can see, the impact of pore pressure on the stress dis­

tribution is significant. At early times, substantial differences between the results 

from the two models are observed near the borehole, especially for the circumfer­
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ential stress. A significant compressive stress peak is initiated inside the formation 

for the thermoporoelastic model, but not for the thermoelastic model. At later 

times, the difference moves inside the formation and the two results converge to­

ward each other near the borehole wall. This is because heating induces significant 

pore pressure near the borehole a t early times. W ith time, the pore pressure near 

the borehole gradually dissipates, and the peak moves into the formation. Note 

tha t a tensile circumferential stress zone is generated inside the formation, a t the 

back of the compressive stress zone. This is because the expansion of the m aterial 

a t the inner face of the borehole geometry, due to heating, imposes a  tension on the 

outer side material, a mechanism similar to the fracturing of a glass when hot water 

is suddenly poured into it. For weak formations subjected to low initial stresses, 

this could imply a potential of fracture initiation firom inside the formation.

6.1.3 Implications for Wellbore Stability

6.1.3.1 Shear Faiilure P otential

H eating

The second feature revealed by Figures 6.4 and 6.5 is thar the m axim um  differ­

ence between the circumferentieil and radial stresses occurs at the borehole wall for 

the thermoelastic model, but inside the formation for the thermoporoelastic model, 

and the difference for the thermoporoelastic model is almost double the value of the 

thermoelastic one. This implies th a t heating the borehole will greatly increase the 

potential of instantaneous shear failure, especially when combined w ith the signifi­

cant pore pressure rising, as shown in Figure 6.6. The failure is much more severe in 

the thermoporoelastic case, and tends to initiate from inside the form ation, rather 

than  on the borehole wall. W ith  time, the stress difference gradually decreases, 

emd pore pressure gradually decays, so the borehole becomes more stable as far as 

shear failure is concerned.
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Cooling

The tendency is reversed in the case of cooling. Instantaneously, bo th  the stress 

differences and the pore pressure will be decreased by the wellbore cooling, so 

the borehole is temporarily stabilized as far as shear failure is concerned. However, 

time-delayed failure could occur with the recovery of both stress difference and pore 

pressure w ith time, as shown in Figure 6.7. Note that for the case of a permeable 

boundary condition, the borehole wall always has the highest shear failure potential 

during cooling, and this potential does not change with time. In o ther words, the 

permeable boundary condition implies th a t the thermoporoelastic process does not 

come into play on the borehole wall.

6.1 .3 .2  A xial Failure Potential

Figures 6.8 and 6.9 present comparisons of the different stress components. It is 

observed th a t the axial stress is greater than  the circumferential stress at both 

early and later times. This feature is unique for the tem perature induced stresses. 

For a borehole in plane strain condition, the axial stress is always much smaller 

compared to the circumferential stress in the case of isothermal disturbances, such 

as borehole drilling and following pressurization. This implies a higher potential 

for the shifting of the shear failure plane from a transverse to axial direction under 

non-isothermal condition, as shown in Figure 6.8-(b).

6.1.3.3 Tensile Failure Potential 

S palling

Figure 6.10 displays the effective radial stress distribution at various times. For 

the case of wellbore heating, significant effective tensile radial stresses are developed 

near the borehole at early times, implying a high potential of borehole spalling 

{spalling here is defined as the radial tensile failure). This is due to  the high pore 

pressure combined with the negligible increase in radial compressive stress induced 

by heating the wellbore. In the case of cooling, there is a shght potential for time-
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delayed spalling to occur from inside the formation.

Fracturing

Figure 6.11 plots the transient effective circumferential stress distribution. It 

can be seen th a t heating imposes a potential of fracture in itiation  from inside the 

formation at early times. Based on the conventional therm oelastic analysis, it is 

known that heating increases the potential of borehole shear failure, because the 

expansion of the m aterial around the borehole during heating increases the com­

pressive stress as well as the stress difference. Cooling, on the o ther hand, increases 

the potential of fracturing because of the circumferential tensile stress induced by 

the material shrinkage. In  a thermoporoelastic process, heating could increase the 

potential of fracture initiation because of the high pore pressure generated. In the 

case of cooling, the maximum tensile stress always occurs on the  borehole wall, so 

the fracture will always be initiated from the boundary. However, a  tensile stress 

zone will develop into the formation with time, which can facilitate time-delayed 

fracture development.

6.1.3.4 Tim e-delayed H eating-type o f Problem s

Because of the geothermal gradient, the drilling fluid is always cooler than the 

formation when it first reaches the bottom  hole, so the bottom  hole will be stabilized 

at the beginning of drilling. When the borehole further deepens, the same section 

will be gradually heated up, as shown in Figure 6.12, implying a  potential of time- 

delayed heating-type of problems, such as shear failure and spalling, occurring at 

the upper section of the borehole.

6.1.3.5 Failure P otential for Different Formations

Assuming K urashige’s assumption (3.50) is applicable for shale, and substituting 

(3.50) into Equation (3.42), one can see th a t the pore pressure induced by the 

temperature variation is proportional to two factors: (i) the differential therm al ex­
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pansion between the porous m atrix and pore fluid; and (ii) the formation porosity. 

It is also commonly known th a t the pore pressure accumulation in a poroelastic 

system is significantly affected by the formation permeability. Whereas the dif­

ferential therm al expansion is more or less typical for a general rock-fluid system, 

the porosity and permeabihty can be quite different for different formations. The 

high pore pressure generation and accumulation in a thermoporoelastic process re­

quires a high formation porosity and a low permeability, amd shale is right in this 

category. Figure 6.13 plotted  the pore pressure generated for different formations 

while keeping all other conditions constant. It can be seen tha t the pore pressure 

generated in shale is much higher compared to other formations. This could be a 

new explanation why shale is so problematic compared to other formations.

6.2 A pplication  Exam ples

In this subsection, the impact of the thermoporoelastic process on borehole stability  

will be further illustrated through a couple of application examples.

6.2.1 Case II

The first example is a vertical well drilled in shale, subjected to a non-hydrostatic 

stress field, internal borehole pressure and tem perature difference, as shown in 

Figure 6.14. The formation thermoporoelastic properties are the same as those 

listed in Table 6.1, and it is characterized by a uniaxial compressive strength of 20 

^'IPa and an internal friction angle of 30°.

6.2.1.1 Shear Failure

The Mohr-Coulomb failure criterion is adopted here for the shear failure analysis. 

The criterion can be expressed in terms of the maximum shear stress S  as:

S  =  — \̂J{<yee — cr-n-Ÿ +  lo'rd -1)
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and the mean effective stress P* :

^  +  ^rr) -  P (6-2)

In the S  — P* space, the Mohr-Cotolomb criterion is expressed by a straight line:

5  = P' s\n.<t>f   9u (6.3)

where 0 /  is the internal fihction angle, and is the uniaxial compressive strength 

of the material. T he stress points above the straight line indicate that shear failure 

wiU occur (Figure 6.15) . This analysis assumed th a t failure is independent of the 

out-of-plane stress cr .̂

Figure 6.15 presents the stress profiles along the cr/i-direction at various times. 

The solid lines denote the thermoporoelastic solutions for the condition of heating a 

borehole up to 50°C. The dotted lines represent the poroelastic solutions. Heating 

the borehole obviously increases the potential of shear failure significantly. For a 

mud weight that happens to be safe for the case of an isothermal poroelastic process, 

shear failure near the  borehole region exists under non-isothermal conditions. As 

it is stated in the last subsection, this is a direct consequence of significant pore 

pressure and stress changes induced by heating the borehole. Figure 6.15 also 

indicates that instantaneous failure may occur from inside the formation and this 

potential decreases w ith time (note the peak point in stress profile at t =  0.001 

day). In addition, the failure potential increases w ith time along the borehole wall, 

indicating a mechanism for time-delayed shear failure. However, this mechanism 

is actually due to  the mode 3 poroelastic effects[51]. As it was mentioned earlier, 

the thermoporoelastic process does not come into play on the borehole wall for the 

permeable boundary models.

Figure 6.16 presents the stress histories of two points along the U/i-direction, one 

point on the borehole wall and one slightly inside the formation, and for heating 

the borehole at different temperatures while keeping the wellbore pressure constant. 

Again, it clearly indicates th a t heating increases the potential of shear failure, and 

this potential increases monotonically with the increase of tem perature. As it is
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showed in Figure 6.15. Figure 6.16 again indicated the potential of instantaneous 

shear failure inside the formation (notice the stress at earlier time for A T =  30°C), 

and the decrease of this potential with time: as well as the increase of failure 

potential on the borehole wall with time.

Figure 6.17 displays the isochrones of stress distribution around the borehole, 

at r  =  1.1a, for heating, cooling and isothermal conditions. While heating the 

borehole increases the potential of shear failure, cooling the borehole stabilizes the 

borehole at the early stages after drilling. However, time-delayed failure will occur 

at later time, as indicated in the figure (after cooling the borehole for 10 days 

). Note th a t in the case of heating, the highest failure potential occurs along the 

minor horizontal stress direction (Figure 6.18-(a)). which means the shear failure is 

an active one and it can be prevented by increasing the m ud weight. Whereas the 

time-delayed shear failure during cooling occurs along the m ajor horizontal stress 

direction, which means a passive shear failure(Figure 6.18-(b)); hence, increasing 

the mud weight will worsen the situation. As a m atter of fact, the time-delayed 

failure during cooling is a combined effect of wellbore cooling and higher mud 

weight. This mechanism wUl be explained further when discussing Case III.

6.2.1.2 Tensile Failure 

Spalling

Figure 6.19 plotted the isochrones of effective radial stress profiles along the cr̂  

direction for the condition of heating the wellbore by 50° C. It can be seen that 

instantaneously after drilling, large tensüe stresses developed near the borehole 

wall. As it is stated before, this is due to the high pore pressure combined with 

the negligible increase in radial compressive stress induced by heating the wellbore 

and the phenomena implies a  spalling failure, or chip formation, during drilling.

According to the report by Salisbury[132], a series of test on shade samples sim­

ulating downhole tem perature and pressure condition has been conducted and the 

data  revealed th a t spalling is one of the m ajor failure mode in shales. Prior to that.
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a case of heating induced borehole spalling was also observed in an exhaust passage 

of an underground diesel-powered electric generator installation[68]. However, the 

traditional elastic/plastic wellbore stability models does not predict spalling as a 

major potential failure mode.

Fracturing

Figure 6.20 shows the isochrones of the circumferential stress distribution around 

the borehole, slightly inside the formation, for both poroelastic and thermoporoe­

lastic solutions. In this case, the thermoporoelastic solution gives a higher fracture 

initiation pressure than  the  poroelastic solution under the condition of borehole 

heating and a lower fracture initiation pressure under the condition of borehole 

cooling, which complies w ith the common concept th a t  heating decreases, but cool­

ing increases the fracture potential. This is a case where the thermoelastic effects 

overwhelm the thermoporoelastic effects, i.e.. the change of effective stress due to 

the change of pore pressure w ith tem perature is less prominent than the change 

of effective stress due to the  change of thermoelastic stress. In other words, the 

change of pore pressure is no t significant enough to reverse the sign of the effective 

stress. Theoretically, if the increase/decrease of pore pressure due to the rise/lower 

of the tem perature dom inates the circumferential effective stress response, heating 

can increase, and cooling can decrease the potential of fracture initiation, as it wiU 

be iUustrated in case III.

Since pore pressure due to  the cooling/heating recovers/ decays with time, frac­

ture potential increases / decreases with time for the  case of cooling/heating, as 

shown in the figure, implying the potential of time-delayed lost circulation in the 

case of cooling, and an improved condition for the case of heating.

6.2.2 Case III

The last example is an inclined borehole driUed in shale (Figure 6.21), and in a 

tectonicaUy stressed area w ith a strike-slip fault type in-situ stress regime, where:
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Sx> =  29MPa, Sy' =  20MPa. Sz> =  25^fPa.

The initial pore pressure was assumed to be Q.SR/IPa, the wellbore radius is 0.1m. 

and the tem perature difference applied on the borehole wall is .30° C. The formation 

thermoporoelastic properties are given in Table 6.2.

G (Pa) B u t'a K (darcy/cp)
8.88 X 10^ 0.596 0.189 0.314 0.5 X lO"’’

00 (m^/s) (Pa/°C)
0.14 3.5 X 10"® 3.0 X 10-^ 1.5 X 10"® 5.2 X 10°

Table 6.2: Thermoporoelastic properties for Cases II and III 

6 .2 .2 .1  S h e a r  F a ilu re

Figure 6.22 presents the movement of stress clouds with tem perature and time 

changes in cr^ — space, where:

/ CTj -f CT3
=   n P (6.4)

is the effective 2D mean stress; and.

7m —
CTl — (T3 (6.5)

is the maximum shear stress. The stress clouds plotted are for the stresses around 

the borehole a t r  =  1.1a. for a fixed wellbore azim uth =  30°, and a deviation 

angle '~py — 60°. The straight line in the plot is the Mohr-Coulomb failure criterion 

for a m aterial th a t is characterized by a uniaxial compressive strength =  25?^IPa 

and an effective internal firiction angle <?/ =  30° . The part of the stress clouds 

residing above the straight line means failure will occur in a certain portion of the 

wellbore.

Again, as indicated in the figure, heating or cooling of a wellbore can signifi­

cantly change its stability condition, especially a t the early stage of the tem perature 

variation. A t t =  0.001 day after drilling, the stress clouds for heating, isothermal 

and cooling conditions are far apart from each other. While the isothermal stress
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cloud IS located near the failure criterion. 95% of the stress cloud for the heating 

condition resides above the failure criterion implying an almost complete failure 

of the wellbore. Whereas the stress cloud for the cooling condition moves farther 

below the failure criterion, implying a significantly stabilized wellbore condition. 

At 10 days after drilling, the stress clouds for the non-isothermal condition move 

close to the stress cloud assuming an isothermal condition. Note th a t under the 

same tem perature conditions, the movement of the stress clouds is basically along 

the <7̂  axis, indicating th a t the dominant reason for the stress change with time in 

a non-isothermal poroelastic process is due to the pore pressure diffusion. Under 

the heating condition, the highest pore pressure appears a t the beginning, and it 

gradually decays w ith time. Hence, the effective stress increases, and the wellbore 

becomes more stable with time. Under cooling condition, the pore pressure is low­

ered a t the beginning, and gradually recovers with time. Hence, a borehole will be 

stabilized at the beginning of cooling but failure potential will increase with time, 

as indicated in the figure. Since the stress clouds for the different tem peratures is 

aligned along a direction neither parallel to the nor to the axis, it means 

that the thermoporoelastic process effects not only the pore pressure, but also the 

to tal stresses around the borehole - a phenomenon th a t can only be captured by 

a coupled thermoporoelastic model. Also note tha t the tim e-dependent effects are 

much more significant under non-isothermal conditions compared to that under an 

isothermal condition.

Figure 6.23 shows the change of the maximum effective collapse stress around 

the borehole as a  function of borehole deviation angles and wellbore temperature. 

The effective collapse stress is defined by:

o^s i n( pr - - — (6.6)Tcol =  T m -  ̂ ^

A positive value of r^oi represents failure. So, Figure 6.23 provides an illustration 

of how close the wellbore is to shear failure at different wellbore tem peratures, and 

for different deviation angles.

The curves in  Figure 6.23 can be divided into two groups: one for small times
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and one for longer time periods. The curves within the small tim e group are 

parallel to each other, implying that the instantaneous tem perature effect itself is 

independent of the borehole deviation angle. In fact, for the two-dimensional plane 

strain model adopted here, the tem perature effects is clearly independent of the 

borehole azimuth and deviation angles, disregarding time. The unparailel curves 

during cooling for the large times are due to the change of the m axim um  shear 

failure location compared to the heating and isothermal conditions. If the failure 

location happens to be fixed for all the tem perature conditions, the curves within 

each time group will be parallel to each other, as shown in Figures 6.24 and 6.25. 

W ithin each tem perature group, the stability condition changes slightly w ith the 

borehole deviation angle and  with time. For example, the collapse stress decreases 

more for the low deviation angle boreholes and decreases less for the high deviation 

angles in the case of heating, but it increases less for low deviation angle boreholes 

and increases more for the high deviation angle boreholes imder wellbore cooling 

conditions. However, theses effects are due to the time-dependent pore pressure 

and stress changes induced by mode 3 loading in problem I. which is a  function of 

the in-plane stress difference; hence, it varies with the borehole deviation angles.

A general tendency presented for all the tem perature conditions is th a t the fail­

ure potential decreases w ith an increase of the wellbore deviation angle; indicating 

th a t horizontal wells have the most stable wellbore condition. This is due to the 

strike-slip in-situ stress regime in this example where horizontal well sees a smaller 

in-plane stress difference than  a vertical well.

Similar as presented in Figure 6.22, heating greatly increases the potential of 

shear failure, whereas cooling imposes a potential of time-delayed failure, for all the 

borehole deviation angles.

6.2.2.2 Fracturing

Figure 6.24 plotted the effective fracturing stress

^/rc ~  '^sns (6.T)
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as a function of borehole deviation angle; where is the m inim um  circumfer­

ential stress around the borehole, and is the tensile streng th  of the material 

which is assumed to be zero in this example, afrn > 0 represents a safe wellbore 

condition, and dfrr. <  0 represents radial fractures will be in itiated  on the borehole 

wall.

Figure 6.24 shows that, instantaneously, heating increased the potential of frac­

ture initiation. As it is stated in the last example, this reversion from the common 

knowledge th a t heating will decrease the potential of fracturing is because of the sig­

nificant pore pressure variation induced by the non-isothermal poroelastic process. 

W ith time, the fracturing potentials change slightly with the borehole deviation 

angle with tim e, for the same reason given in Figure 6.23. Note th a t the time- 

dependent effects are much more prom inent for the condition of cooling compared 

to the condition of heating. As it is mentioned in the last case, this is actually a 

combined effect of high-pressure and high-temperature.

The pore pressure diffusion process induced by the over-balanced mud weight is 

analogous to the process of tem perature diffusion via conductive heat transfer while 

keeping the borehole tem perature constant: the pore pressure inside the formation 

gradually rises w ith time. W hen it is combined with the pore pressure decaying 

process during the  wellbore heating, the two effects will cancel each other. When 

it is combined w ith the pore pressure recovering process during wellbore cooling, 

the two effects will add to each other, which results in a significant difference in 

time-dependent effects during heating and cooling.

In h igh-tem perature, high-pressure and  deep wehs, high m ud weight are usually 

required to counteract the high form ation pressure, and cooling effects can be sig­

nificant a t the beginning of the drilling. Therefore, it is necessary to be aware of 

the potential time-delayed lost circulation in these wells, as shown in Figure 6.24, 

especially if over-balanced mud weights are used for some reason.

The most common practice of preventing wellbore instability  is to increase the 

mud weight. However, in a poroelastic system, one has to be cautious w ith the long
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term  effects of increasing m ud weight. Besides the time-delayed lost circulation, 

overly high mud weights can also induce time-delayed passive shear failure, as it is 

shown in Figures 6.17 and 6.18. and time-delayed spalling, as it will be explained 

in Figure 6.26.

6.2.2.3 Spalling

Figure 6.25 presents the effective radial stress as a function of borehole deviation 

angle and tem perature. Again, assuming the formation tensile streng th  to be zero. 

A positive effective radial stress means a safe wellbore; otherwise, the borehole 

spalling, or chip formation, will occur.

Figure 6.25 shows th a t heating the wellbore imposes a high po ten tia l of instan­

taneous wellbore spalling, and the potential decreases with time; whereas cooling 

the wellbore tends to induce time-delayed borehole spalling. This tendency is more 

or less unaffected by the borehole deviation angle because the effective radial stress 

near the borehole is dom inated by the wellbore and formation pressures, both of 

which are independent of the borehole deviation angles.

Figure 6.26 is a further illustration of the combined effects of highly overbal­

anced mud pressure and  high-tem perature on wellbore problems. W hen the mud 

weight is low. the non-isothermal and the unloading process dom inate the pore 

pressure diffusion process; hence, borehole spalling occur at early times, but the 

wellbore becomes more stable w ith time, which is normal for the case of borehole 

heating. When the m ud weight is abnormally high (an unpractical high mud weight 

was intentionally selected to demonstrate the mechanism), the over-balanced mud 

weight win dominate the pore pressure diffusion process. Under this condition, 

the wellbore is very stable a t early times as far as the borehole spalling; is con­

cerned. However, the effective radial stresses substantially decrease w ith  time, and 

time-delayed spalling wiU finally occur.
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6.3 Summary

A conventional m ud weight stability profile which is used in drilling design for the 

prediction of safe operating mud weight window comprises the critical mud weights 

for active, passive shear failures, and firacturing. If considering the formation as 

a thermoporoelastic system, it is indispensable to include the critical mud weights 

for borehole spalling in mud weight stability profiles, because high mud weight is 

usually required to  prevent the heating-induced borehole spalling, but high mud 

weights also impose higher potential of passive shear failure and fracturing as well. 

The mud weight required to prevent borehole spalling could be higher than the 

mud weight required to prevent the active shear failure under the same temperature 

conditions. In this case, the safe operating m ud weight window will be narrowed.

In addition, the long-term safe operating mud weight windows which take into 

account the disadvantageous long-term effects such as wellbore cooling, high mud 

weight, and tem perature evolution along the borehole, are also necessary for the 

prevention of time-delayed failures, and the right selection of the casing points.
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Oh =  0 shale

O h =  0

pm — PO — 0
Tm-To= 50°C

Figure 6.1: Boundary and initial conditions for Case I
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7 Conclusions, Contributions and 

Recommendations

7.1 Conclusions

Coupled TH^I behavior is one of the most comphcated physical phenomena in rock 

mechanics. The accurate prediction of such behavior is important for many engi­

neering disciplines including wellbore instability control during drilling, completion 

and production of oil or gas wells.

This dissertation was aimed at developing fuUy-coupled thermoporomechanical 

models for the prediction of borehole behaviors during non-isothermal drilling, and 

quantitatively investigating the impacts of the non-isothermal drilling processes on 

wellbore instability.

Thermoporoelastic models (TH^I coupling) for the prediction of the stabihty of 

an inclined borehole subjected to non-isothermal drilling conditions were developed. 

The role of the thermoporoelastic process on the condition leading to borehole shear 

failure, spalling, and breakdown following drilling under non-isothermal conditions 

were illustrated through several examples. It showed that heating the borehole 

can significantly increase the potential of near-wellbore shear failure at early times. 

Heating also imposes a high potential of borehole spalling. On the other hand, 

cooling the borehole tends to stabilize the borehole at the beginning of the drilling; 

but with time, it could induce time-delayed lost circulation, wellbore sp a llin g , and 

passive and active shear failures, especially when the cooling effects is combined 

with the high mud weight. In particular, if an originally cooled borehole is gradually
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heated up during deepening, time-delayed failure could occur in the upper sections.

By assuming a two-dimensional plane strain model, the thermoporoelastic pro­

cess itself is independent of the borehole deviation angle. But the combination of 

the thermoporoelastic effects with the effects of in-situ stress regime and borehole 

direction complicates the stability analysis.

The coupled thermoelastic solution (TM coupling) for the prediction of inclined 

borehole stability were also derived and the thermal induced stresses compared 

with the ones obtained from the coupled THÂ I model. While the stress peak al­

ways appears inside the formation in a thermoporoelastic solution, the maximum 

tangential stress appears on the borehole wall for thermoelastic solution, and the 

magnitude of both tangential and radial stresses are much smaller compared with 

the thermoporoelastic solution. This means that pore pressure plays a critical role 

in thermal-related borehole problems in porous media. The thermoelastic solution 

can not adequately describe the real physical phenomena occur downhole.

A parametric study was also conducted and the effects of formation properties 

such as porosity and permeability on the thermoporoelastic effects were discussed. 

Whereas the thermoporoelastic effects is significant in shale formations, it is neg­

ligible for porous but permeable formations such as sandstones. Thermal effects 

are significant only in shaley formations, because of their high porosity and low 

permeability.

In addition to the thermoporoelastic analyses, work on the investigation of non­

linear and elastoplastic poromechanical behavior were also conducted. A set of 

temperature- and stress-dependent formation and poromechanical parameters were 

derived, and non-linearity of other variables also studied and discussed. A finite 

element model with the capability of conducting fully-coupled non-linear and ther- 

moporoelastoplastic behavior was developed and thoroughly validated.
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7.2 Contributions

The fuUy-coupied thermoporomechanical analytical models for wellbore stability 

analysis developed in this dissertation furthered the current technologies in this 

field by taking into account the complete THTvI coupling mechanism and arbi­

trary borehole orientations with respect to the in-situ stress field, compared to the 

existing work. The theoretical study on the non-linear, stress- and temperature- 

dependent thermoporomechanical parameters, and the development of non-linear 

thermoporoelastoplastic finite element model for borehole stability study are en­

tirely new application attempts in the area of fully-coupled THiVI modelling. Both 

the analytical and numerical models could be effective tools to predict, more ac­

curately, the impacts of non-isothermal drilling processes on wellbore stability for 

boreholes drilled in fluid-saturated porous media. The work conducted in this 

dissertation can also be applied to the investigation of other non-isothermal geome­

chanics problems such as fluid injection and compaction/consolidation.

The findings from the thermoporoelastic analyses provide clear ph\"sical insights 

into the mechanisms for four types of time-delayed borehole failures: an additional 

mechanism for the high failure rate in shales; and the potential for the failure to 

initiate inside the formation. The results have shown that the impacts of thermal 

effects on the wellbore stability could be significant. It could provide solutions 

for those wellbore problems that cannot be predicted solely by isothermal analyses. 

These findings are especially important for offshore high-temperature, high-pressure 

and deep wells, where high mud weight are usually required to manage the high 

pressure. A small amount of temperature change on the wellbore wall could bring 

in various time-delayed borehole problem. It also implied that cooling the borehole 

could be an effective way to stabilize the wellbore in these wells, as long as the 

upper part of the wellbore are cased in time.
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7.3 Recommendations

Based on the current studies, the following recommendations are made for potential 

important future developments.

•  As stated in Chapter 3 (section 3.2.4), the expansion of pore volume in a fluid- 

saturated, non-isothermal system is one of the critical parameters for accurate 

modelling. The current observation on sandstones revealed a contrary ten­

dency from past assumption, and the data for shales have not been looked 

upon yet. Further laboratory investigation on this parameter is necessary to 

improve the quality of modelling.

• The formulae derived in this dissertation for temperature and stress-dependent 

formation and poroelastic properties (Chapter 3, sections 3.3.1.1. 3.3.1.2, and 

Appendix A) are purely theoretical derivations and have not been substanti­

ated by laboratory experiments. Validation of these relationships via reliable 

laboratory tests are necessary and important before applying them to any 

modelling and predictions.

•  Generally, the information on both temperature- and stress-dependent ther­

moporoelastic properties (including matrix and fluid properties) are very 

scanty, especially for shale, and under deep subsurface conditions. The study 

on thermoporoelastoplastic constitutive relations and failure criteria are also 

very limited. The lack of thorough study on this aspect limited both the 

model development as well as their validation and field application. With 

the ever improving modelling technologies, systematic laboratory and field 

investigations on non-linear and plastic thermoporomechanical rock behavior 

will become more and more an indispensable key for successful predictions.

• Investigation of the impacts of non-linear and thermoporoelastoplastic be­

havior on wellbore stability has not been conducted in this dissertation and 

this is a major direction for the future work in this field. No study has been
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conducted in this regard before, and as it is stated in Chapter 2, the experi­

ence from the comparison of elastic and elastoplastic analyses revealed great 

discrepancies in the predicted borehole behavior.

An important simplification for the obtaining of two-dimensional borehole 

solutions is the assumption of uniform temperature distribution along the 

borehole axis. In reality, temperature distribution along the borehole axis 

changes with time constantly due to the circulation of drilling fluid. This 

means the temperature in a fixed point on the borehole wall is a function 

of time, and so are the borehole stability conditions. Because of this, the 

development of an effective borehole temperature evolution model and the 

incorporation of such a model into the borehole stability analysis model would 

be a key improvement to the current work.

There are two common assumptions adopted in the analytical thermoporoe­

lastic wellbore models developed in this dissertation: the completely perme­

able wellbore boundary condition and the step loading of temperature on 

the borehole wall. These assumptions could affect the accuracy of early- 

time, near-wellbore analysis because the start of fluid exchange between the 

wellbore and formation lags behind the application of wellbore pressure and 

temperature, especially for low permeable formations such as shales, and the 

quantity of the exchange are also dependent on many conditions. Besides, 

heating or cooling the wellbore cannot physically be realized instantly. The 

reasons that hinder the application of more realistic boundary conditions are 

the lack of knowledge about the fluid exchange condition on the borehole wall, 

and the time-dependent temperature rising/lowering during heating/cooling 

of the wellbore. Studies on these issues are imperative to the further improve­

ment of the current models.
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Appendix A: Stress- and

Temperature-dependent Formation 

Properties and Poroelastic Parameters

Isothermal effective stress-dependent porosity, permeability and poroelastic param­

eters are derived by Cui[42]. The work conducted here extended Cui’s derivation 

by including temperature effects.

From the micromechanical model of linear poroelasticity[30], the volumetric 

response for the porous matrix and pore space can be expressed in terms of the 

volumetric deformation of the solid phase, dVg/Vs, and the relative deformation of 

the pore space and porous solids, d ç j  (1 — é):

f  =
dVj, _  dVs , dé  ,

By including the temperature effects, the constitutive relations for the porous 

matrix and pore space can be expressed as:

dV dp
V K

dVj, -  ^ dp
Vp K ,

(A.3) 

(A.4)

Where K'  ̂ and K "  are two bulk moduli. Under the assumption of isotropy and 

homogeneity, both are equal to /Cg[52|.

Eliminating dV/V from (A.l) and (A.3) , one obtains:
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Eliminating dVpfVp from (Æ2) and (A 4), one obtains:

Eliminating dV^/% from (A.5) and (A6) and solving for déjà'.

By invoking the Betti-Maxwell reciprocal theorem, it can be proven that[52]:

Kp =  (A.3)

By assuming spheric pores, Mackenzie[95] derived the following approximate 

relationship for the relationship between the drained bulk modulus of the bulk 

material, and the bulk modulus and the shear modulus of the solid phase, and 

porosity:

Solving 0  from (A9):

® ^  “ 4G, + \ k

and substituting into (A .8). then into (A.7), one obtains:

^   ̂ (“p ~

Integrating equation ( A l l )  yields the following expression for stress- and temperature-

dependent porosity:

0 =  ©n6xp ^  ( t4  -  -f-(a j -  (T -  r„) (A.12)

The stress- and temperature-dependent bulk modulus can be deduced by sub­

stituting (A.12) into (A.9):

1 1  1
K  Ks I — én exp X

(1 4- a<pn exp x) (A.13)

where.

“ = 2 ( î ^

^  « X  -  +  ( û î p  -  Q ! m )  ( î ’ -  ^ n )  ( A . 1 5 )
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The relationship:

K .  —
2Gs(l 4- 1/ 3 )

(A.16)
3(1 -  21/ 3 ) 

is applied in. the above derivation.

Mackenzie[95] also derived a formula for the shear modulus of bulk material 

based on the shear modulus and bulk modulus of the solid phase, and porosity:

50(3A :,+4G ,)'
1 -

9 K 3 4- 8 G3

Substituting (A.12) into (A. 17), one obtains:

15 (1 -  U3 )

(A.17)

1 - 0T»expx (A. 18)
7 - 0 U3

For an isotropic material, the effective stress coefficient a  and Skeptom’s coef­

ficient B  can be expressed in terms of bulk moduli and porosity in the following 

form[52|:

B  = K s / K  -  1

(A..19)

(A.20)
K./K4-W A T / - ( l + ÿ )

Substituting (A.12) into (A. 19) and (A.20), the stress- and temperature-dependent 

effective stress and Skempton coefficients can be obtained:

(1 4 - a ) 0 n e x p x
a  =

B =

1 4- acf>n exp x

a 4- (1 — exp %) K s / K f  4- 0„expa;

(4u21)

(A.22)
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