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Abstract

We have calculated the Landau level (projected) Green's functions and the density
of states of a two-dimensional electron gas in a perpendicular magnetic field as
effected by impurity srattering using several different approximations. The material
parameters which we choose correspond to GaAs/GaAlAs heterostructures. At the
simplest level we include the effects of Landau level mixing. An approximation to
the vertex correction is then added to the calculation. and the results are compared.
Finally we add the electron-electron interaction to the model in place of the vertex
correction. In all cases. the electron spin is considered. We find that the vertex
correction over-compensates for the screening and vields unreasonable resuits. In
addition. we find the dynamic electron-electron screening to be a dominant factor in
determining the properties of the system and bridges the gap between low and high

magnetic field behavior.
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Chapter 1

Introduction

The goal of this work is to examine the energy states of a perfect two-dimensional
electron gas (2DEG) in a perpendicular magnetic field as they are affected by an
external potential provided by “impurities”. The results presented here are the
results of several numerical models all of which would not be realistically possible
to solve without the aid of large computers.

Why study this type of system in the first place? We live in a three dimensional
houses. eat three dimensional food. and wear three dimensional clothes. The truth is
we also live in a world of constraints. There are forces which for the most part limit
our movement to a quasi-two dimensional space. Gravity constrains our movemert
more or less to the surface of the earth. Strangely enough. we also live in a quantumn
mechanical world where energies have strangely discrete values. (It is just that these
values are so closely spaced that we can not usually discern them from one another
so that we think that we live in a continuum.)

The kev to this is quantum confinement. In the syvstem we wish to study. electrons
are constrained to move in a two dimensional space which is provided by quantum
effects. So we can effectively produce a two dimensional electron gas. We will be
studying semi-conductor devices in which this is the case although other systems
such as liquid Helium interfaces offer this same quantum confinement.

It was postulated by Shrieffer in 1957 that the electrons confined in the inversion
laver of a MOS structure (Metal Oxide Semiconductor) would not behave classically-.
However. if the interface between the two materials is not “smooth™ enough. the

scattering from the interface would mask the quantum effect. The quantum signature



was not seen until the work of Fowler. Fang. Howard. and Stiles (1966) via magneto-
conductance measurements. Subsequently. much of the early experimental work
in this area was performed using silicon MOSFETs (Metal Oxide Semiconductor
Field Effect Transistors.) Later. engineering processes produced better and better
samples as driven by the electronics industry. Other similar systems were studied
using newer more promising materials (for ever faster electronic devices.) Processes
such as MBE (Molecular Beam Epitaxy) and MOVCD (Metal Organic Chemical
Vapor Deposition) produced clean devices with controllable doping parameters and
sharp interfaces. Several of the [II-V semiconductors are very closely lattice matched
and provide a rich field of study.

We will be primarily interested in the Gallium Arsenide/Aluminum Gallium
Arsenide (GaAs/AlGaAs) heterostructures. Growth processes are such that this
svstem may be fabricated so that the interface is very nearly atomically smooth
between the two extremely pure materials. In addition. there are several aspects of
the silicon MOSFET that we wish to ignore such as the vallev degeneracy of silicon.
Gallium arsenide is a direct gap semi-conductor with a conduction band which is
virtually parabolic at low energy or temperature. his will allow us to approximate
the svstem as a perfect 2DEG. The only differences which are meaningful to our
model between a perfect 2DEG and the real world GaAs/AlGaAs are the effective
electron mass. the dielectric constant and the effective Landé g-factor. (i.e. some
slightly modified phyvsical constants.) Since we can't live in a perfect world. we will
throw in some “impurities” to model the dopants of the material which provide the
extra electrons in the conduction band. Yet. we will limit them to an infinitely thin
sheet parallel to the 2DEG. We could account for a more realistic distribution of
impurities which varies over a finite region in the third dimension by multiplying
by the appropriate form factor or by explicitly integrating the potential over the
distribution along the : axis. This adds unneeded computational complexity and

does not significantly affect the results.

[RV]




1.1 GaAs/GaAlAs Heterostructures

Before we continue with our theoretical description of the perfect two dimensional
electron gas. let us stop and lock a bit closer at the properties of the physical system
which we are using as the basis for this model.

Typically some material from the fourth row of the periodic table is added to the
material with the wider band gap (GaAlAs) to provide extra electrons which will
accumulate at the interface. [t is typicai to use silicon. The GaAs is left undoped.
This layver of electrons forms a quasi-2DEG which is confined by the sharp potential
well formed at the discontinuity. Tvpically these electron donors are separated from
the interface by an undoped GaAlAs “spacer” layer in order to reduce the scattering
effects in the interface. Subsequently carrier mobilities of up to 15 x 10%cm*/\’s can
be achieved at liquid helium temperatures. It is in these materials that the Integer
Quantum Hall Effect (IQHE) and particularly the Fractional Quantum Hall Effect
(FQHE) have been studied.

As such. this is not strictly a 2DEG but rather a quasi-2DEG since typically
more than one bound state exists in the potential well. However. due to the sharp
narrow triangular shape. there are typically two or three widely spaced states. If
we are careful not to over-fill the lowest of these energy levels (~subbands™) and
maintain low temperatures. then we will find that the system does behave much like
a true 2DEG.

Such effects (IQHE and FQHE) provided the original motivation of this work
which was to correlate the low magnetic field Shubnikov-deHaas oscillations to the
observed properties in the high magnetic field IQHE and FQHE regime. Extracting
information from these magneto-resistance measurements lead to a detailed interest
into the form of the density of states (DOS) of this 2DEG. As such we will concentrate
on the form of the DOS in this svstem. However. we will addtionally talk about

the enhanced Landé g-factor and the magneto-plasmon response functions as they

apply to this system.



1.2 The Basics

We will be studyving specifically the system where a magnetic field is applied perpen-
dicularly to the interface. Classically this is the electron in a magnetic field problem

where the electron feels the force given by:

F=-tx B (1.1)

N I

in Gaussian units where we have B = B:. The electron obeyvs Newton's Law such

that we have:

. _eB
b=, (1.2)
mc
. B
by = ——r, (1.3)
mec

where we have ignored the : direction. The solution to this set of equations is a

circular orbit with angular frequency

Lo = B (1.4)

me
where m is the mass of the electron. B is the magnetic ficld in Gauss. e is the
electron charge in esu’s and c is the speed of light in ¢cm/s?. This is the characteristic
frequency of the system. (The cyclotron energy in GaAs = 0.17me\"/T.)

In the quantum case this syvstem is described by the Hamiltonian:

1 /. e \?
H=— (" —.—1) 1.5
am \P * c (1.3)
where 1 is the vector potential such that
Vxdi=8 (1.6)

It turns out that the vector potential is not unique. There are two common choices.

The first is the “Landau Gauge™ which has

-

A= Brj (1.7)



and the second is the “symmetric gauge” where

- B
A= F(-yr+1y) (1.8)

4

They each vield the same physical result as we should hope. Each has its advantages
for different calcuations. The Landau gauge as we have written it will end up
quantizing the v-momentum of the electron while the symmetric gauge will quantize
the z component of the angular momentum. Therefore they each yvield a set of basis
wavefunctions which may be translated in to the other. For the most part we will
be using the Landau gauge in our discussion unless we wish to make use of the
cvlindrical svmmetry of the svmmetric gauge.

The quantum mechanical view of this system is essentially the same as the clas-
sical in that the characteristic frequency of the system is still «.. The solution to
the the wave equation gives us the result that the energies are quantized by

1 ‘
E,=(n+ ;)—)fi.uc, where n=0.1.2.3.... (1.9)

with the wavefunctions

vy = (Lat2¥ NU) "2 H (o)l — ple™ 5 e (1.10)
in the Landau gauge. L is the length of the sample (using periodic boundary con-
ditions). | = /& = ei‘[% is the “magnetic length™ and p are the quantized y-

<

momententa given by
p= 7 where v=1.2.3.4.... (1.11)

and the Hy(z) are the Hermite polynomials. In the symmetric gauge the wave

functions are given by:
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where m > 0 is an integer which represents the quantization of the z-component of
the angular momentum and the L7 (x) are generalized Laguerre polynomials. Both
of these results are calculated in Appendix A.

In a large svstem of non-interacting electrons the density of states of this system
would be a series of large delta function spikes. Each of these “Landau levels™ will

contain a density of electrons for each spin given by the Landau degeneracy
L e
gL = — (1.13)

This is a massively degenerate system as % = 2.418 x 10'%m™T~!. This relation

may be obtained most easily from (1.10) by considering a finite width of the sample.

117, If we use the fact that r/l — pl > 0 we can obtain an expression as follows:

W/l = pmael = 0
Pmez  _ 1
i 2
l/ma.z‘ 1
L T A (1.14)

since %< simply describes the maximum density of the Landau level.

Of course in a real system the electrons are interacting with each other and any
external potentials. Under these conditions. each of these Landau levels will broaden
to a finite width. Then we can consider that the conductivity of the 2DEG is going
to be proportional to the density of states at the Fermi Energy. If we then perform
an experiment where we measure the conductivity (or the resistiviy) of the sample
we will find that the conductivity oscillates as the magnetic field is increased due to
the increasing Landau level degeneracy which alters the number of occupied Landau
Levels. These oscillations are called “Shubnikov-de Haas™ oscillations and are clearly
observed. There is actually much more to the calculation of the conductivities of the

2DEG. but the essential features do correlate directly with the shape of the density

of states.



1.3 Moving Forward

With some of the basics in hand. we are about to move into the world of many body
Green's function techniques. Before. we embark on this journey. let us state exactly
what we will be doing.

We are going to treat our system as a perfect two-dimensional electron gas with
a magnetic field applied perpendicularly to the election sheet. The electrons will
scatter from impurities which are in a plane parallel to the 2DEG separated by a
distance. a. We are going to assume that the impurities are singly charged. randomly
distributed with a two dimensional density. .V;. and interact with the electrons via
the Coulomb force. Since we are targeting our model toward GaAs/AlGaAs het-
erostructures with a parabolic band structure. we will be using the effective mass
approximation with m* = 0.067m,.. Additionally. the dielectric constant for the bare
material will be taken as x = 12.8 and the effective Landé g-factor will be taken as
g = —0.44.

With some of these details out of the way. let us make a small disclainier before
attacking the Green’s function techniques. Making seuse of the discussions on this
topic in the journals can be very frustrating if one wants to keep track of the details.
Since a relatively small group of researchers is working on this topic. there seems
to be a general understanding of the basic assumptions and formulations by this
small group. We will aftempt to remedy a bit of this. Obviously. a comprehensive
treatment of Green's functions techniques cannot be covered here. Therefore. we
assume that the audience is somewhat familiar with these techniques or at least has

access to the basic texts [17. 13, 14] on this subject. Now. let us proceed.

-



Chapter 2

The Green’s Function Approach

2.1 Impurity Scattering

Starting with the Hamiltonian:

-

AN
H=vhor +> V(7= R (2.1)

where hg is the Hamiltonian for the non-interacting electron and the corresponding

Green's function as given by the expansion in terms of the unperturbed Green’s

functions Go(r5. ta: Fy. t):

G(Eg.tgll-"l,tl) = GQ(I-':_).tglFl.tl) (2.2)
+ /dr”qdt'[Go(r*._,.t._,:Fq.t'l)L'(r“'l)Go(r"'l.t’l;Fl.tl)
+...
we will look at the formal concepts of impurity scattering.
For brevity. let us write this expansion in the form
G(1.2) = Go(l.2) +/d1'G0(1, U (1)G(1'.2)
+ f d1'd? Go(1. 1)\ C(1NG(L. 2) U (2)G(2.2) +...  (2.3)

where we have used the notation 1’ to represent the particle’s position. r';. and time.

.




Since the arrangement of the impurities will be different in every sample and
many measurements such as transport measurements give averaged properties. what
we are truly interested in is the average of the Green's function over all possible im-
purity distributions. Now. exactly what do we mean by ~averaging over all possible

impurity distributions?” We shall define it as:

(f{Ri})lz%/dﬁx---dé;\;f{ﬁ.'} (2.4)

where V is the dimensional volume of the sample. (This would actually be an area
in a two dimensional system.) Using this definition. we will now continue to look at

the impurity average of the Greens™ function.

(G2.1);, = Goll.2) /dlc(n) (NG 1)),
+(/d1'd2’G0(1_ 1)U (1)G L. 20 (NG 2)),

+...
Since Gy is independent of the impurities we see that
(Go(1.2)); = Go(1.2) (2.5)
so that we have

(G(1.2));r = (Gol1.2)); (2.6)
+ [V Go(1. 1)Go(1'. 2L (1)1

+/d1 d2' Go(1.1')Go( 1. 2)Go(2'. 20U (1T (2 )

+...

So now we only have to deal with terms of the form (L'(1")),. (C'(1")U°(2'));. etc.

Now, the first of these averages is given by:

[ EV)
-1
-~

w /de ‘dRy, Zx 2.




In order to make this more manageable we will expand the potentials in terms of

their Fourier transforms as:

dkl . _: —lEl‘(;’l“éJ (28)

CaN = 5% /de dRy,

_ diy o & NP
= /( ) vik) ZV" /(IRI rlR\(

’

5 A e

—0

\ n;

“Wrﬁm:mw

v(0)

This first term is just proportional to the spatial average of 17(F). Since the average

is just a constant energy offset. we can adjust the potential so that ¢(0) = 0 and

therefore (L°(1')); = 0. We will see that this greatly simplifies our calculation.
Continuing. our next major contribution then comes from (C'(1"){7(2'));. Again

we shall write the potentials in terms of their Fourier transforms to obtain:

) 1 = ”
CONCEN: = 55 [dii...dRy, (2.9)
N, -
x Y U7 - R)V(rs - R))
Ly

e now have to consider two cases. { = j and i # j. Let us look at the second case.

If i # j. then the impurity average separates so that

1/—']:\-— /dﬁl o 'dé.'\', e_iEl‘(ﬁl_é')e—igg.(r"l*fif) = (210)
L[ s citeiiiniol [ [ 05 —ifafan i
3 focea] [ f o)

10



1 -
— YR lkl -r L, zkn r'
For case where i = j we have

1 L
1AL /dR' o dRy emtrim R gkt =) (2.11)
- i/dﬁie-lip(r'l‘_él)e_i,;l,(r'r!_}‘z")
vV

1_1;: /dﬁ'_e—i(ﬂol?-_v)-é,e—z(l;1~r-’1~53-r73)

1. - A
= =d(k; + ky)eFrrmr)
SR+ o)

Thus equation (2.9) becomes

(A2 = (2.12)
al dky, dky -, -~ 1 .- P A
=2 | G gt RO (R (k) i) e
Norodky dky - - 1A - o5 s
+Z/ (9733 27) v(ky)e (k) Sacky + ky)etrtra=ry)
Ni(Vi=1) Ni dk, - = R(P
Vg(zﬁ)g [L(O)] +1}(27‘)3/(2)7)3':(1“[)‘:(—!"[)( tr )

Because we have chosen ¢(0) = 0 this becomes

; (lk - i . _,.l .
COE)1 = s [ ek e (2.13)
(2m)* J (2m)?
where we have used the fact that for a real potential ¢( —k) = (k).
Now let us create a more general expression for these impurity averages. \We

could have written (2.9) as

W), = ;‘«'i%/dﬁi"(ﬁl _B)V(P, - R) (2.14)
+ ViV =1) [3/(1&‘,'?1—3” /dm Iy — R)
= N(V)V(@)) + NV = D)

11



Using this notation and continuing with this process. we can see that

(CarENrE) = (2.15)
= NV = DOV =20 ()2 (D)
S ATATES D BRIN NI ACIINES)

perm

+ N TE@)T(3D)
= NJ{U(IHV(ET(3)

and

({CAHCEENUENUHEY), = (2.16)
= NN = DNV = 2)(V = 3) (T (I3 (D)
+ V(N =1, = 2) Z(i UNCHNNENNNER))
perm
FN(N = 1) ST ()Y @V EHTE))
perm
+ NN = 1) S (rO T3 TED)
perm

FN(T(AO)VHT(3) ()
= N {(1HTEYTEHTED)
+N (N = 1) Do (TANTEI(EENITED)

perm

where we can evaluate

From this point. we can see that it will more practical to deal with the Fourier

transform of the impurity potential.



2.2 The Meaning of Gv(FE)

In the study of the behavior of a two dimensional electron gas in a magnetic field. we
find that there are several entities that are used in the calculation of the properties
of the svstem which are not adequately explained. if they are explained at all. In
order to gain a better understanding of the approximations and the entities which
we are using. we need to examine closely several of the finer details associated with
these objects.

Exactly what does Gy (E) represent? Assuming that we already know what
a Green's function. G(r}. 7: 3. ™) represents. how are these functions related? To
answer these questions up front. let us make the statement that this is a “projection”
of the Green's Function that is most like the .V** non-interacting Green’s function
representing an electron on the V% Landau Level. Although this statement is a
bit vague. it accurately describes the spirit of this Green's function. \Why would
we be interested in such an object? An analogy would be the orbital description
of atoms and atomic bonds. We have a relatively ~good idea™ of the shapes of the
electronic clouds such that we may understand bonding behavior. Here we have
a “good idea” of what the highly degenerate Landau Levels represent and what it
takes to excite the svstem from one state to another for a non-interacting electron.
This will hopefully give us insight into how impurities (and the Coulomb interaction)
effect the single electron excited states of the system.

With these ideas in mind let us proceed to lay out a more rigorous treatment of

G~ (E). The first thing to realize is that our system is time translational so that we

may write:

!

Gri.m:r2.m) =G(r.rxm —m) (2.18)

W
IV

which allows us to take the Fourier Transform of the Green's Function to obtain
G(ri.r3: E). Of course this is not the end of the story. We still have to massage this
into the entity which we will use in our calculations.

Starting with the definition of the single particle non-interacting retarded Green’s

function, in general we have:

GR(A.mimm) = —i([we(ri. t1). (3. 02) )1 — t2) (2.19)

13



—zzmm (730 [entr). ch(t2)] (0000t — 1)
— "lzon ’.l —lE,.t; 1E tne( t'_’)

= ——zZon (o (r3)e Entti=tdg(t, —t,)

which we can Fourier transform to obtain:
R x iE E
SRR E) = / dte'® | =3 onli)oL (e Al (2:20)
-

x<
= ~iTour)e; “_,/O dt "=

on(n)on(rz)
Y TECE

n

where we have used the subscript n to represent each of the unique unperturbed
eigenstates.

Let us now take the the expectation value of G(ri.r5: E) for a given eigenstate
in our syvstem. In term of the eigenstates of the unperturbed electron in a magnetic

field expressed in the Landau gauge. |Vp). we have:

(VipG(A. 3 E)Nipy) = [ diidiz ok, (DGR 15 Eloxip(3)  (221)
g s (r)oN,,. (12) -
= /drldrgo_\-lm Zp E E 2P O.\'lpl(r'l)
— Z O-:Vl .\'-.'dplp-_'
.\Vgp'_i E - E'\l‘
-
~ E-Ey

as a result of the orthogonality of the wavefunctions. We would like however to make
this object cover the entire Landau level subspace. So we will opt to sum over all of
the states in the Landau Level. Now we have:

! g
G lB) =Y g—F— = FEo ¢
Pt AR} A

!v
o
N

14



In this way we can proceed to write the non-interacting Green's function as a

sum of the projections on the Landau levels.
. L . = -~
G&(r./:E) = o Y GENE) Y oy, (ri)oxplr3) (2.23)
v 2

where g; is the Landau level degeneracy for the system.

We can now see that we can separate G (ri.r5: E). the non-interacting Green's
function. into its Landau level projections. Can we separate the interacting Green's
function in the same manner?

To begin this aspect of the discussion. let us consider this system to now be

influenced bv an external potential (7). We need to look at a progression of terms

like:
Iy, = G(f(r_[.r'-}:E) (2.24)
T, = / AR GR(7. /3 EYU(R3)GR(r3. 13 E) (2.25)
T, = /dr';';dr'f;G{f(r'{.r}:E)C'(IE)G[’,Z(I".-}-l’-iIE)L'(I'])G(?(ﬁ-’315) (2.26)

The first of these terms. Ty can obviously be separated into its Landau level pro-

jections as we have just finished showing this fact. Let us then look at the second

term:
Ti(ri.m:E) = /dr’;’;GSz(r’{. /3 EYU(i3)GR(R3. 3. ) (2.27)
— = ON\DL(ﬂ)O.“{;p!(";) o
= /dr:;‘%l [ E_.E.\. L("})
N, 2("—1.3)@,‘\‘._, ._.( 3)

Z [ pE - F —p }

Nap2 Na
_ Z oxp(r1)oN,p, (r2) =

(E_. E\.)(E - E;\i_.) Np.Napa

Nip1.Nop2




Once again taking the expectation of a single state and summing over the Landau

level subspace we obtain:
Tiv(E) = Y _(Np|Th|.Vp)
p

= ;/dﬁdﬁ}

O\p(rllo\xpx(rl)o\ (”)O\p(“)
S (E - Ex)E - Ex,)

Nipu.Nape
XU xp.Naps
Tl 1 L
= . .\p..\.’pE — EA\' E _ E_\’
= Y UnpxpGin(EYGE(E) (2.28)
p
We can also reconstruct this term as:
=Y Tix(E) (2.29)
AY

Let us continue this inductive investigation by considering the next term.

.v

L(iE) = (2.30)
= [ i3 [ driGo(si. 53 EXU(55)Gols5. Fiz E)U () Ga(F3. 73 E)

= /dm/dm [O\”"ér‘)z\\p(”
Nipt

x L'(r’;})Z{O\”’g’OE\\)p }

\2pa

ONaps(F1) O3 2p3
X I'4) Z [ al p3E 4 E}'\P
A 3
Z L‘- . . L'— . i o.\.xpi(’?l)of\'_—,pa(r:))
T N TR RR(E —EG)(E = Ex,)(E — Ex,)

Nip1.Napa.N3ps

Taking the expectation value:

LN(E) = (2.31)
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= Z _/ dridry Z Uvipy.Vapa U Napa Napa
)

Nip1.N2p2.Napa
o.'\'p(ﬁ )@:V'lpx (r1 )0:\'3173 (I‘E)d).\'p(f';)

(E— Ex)(E — Exv,)(E - Ey,)

= Z Z L \p \nan’\ypo \p 1 1 1
7 Nape E-EvE-Ev,E-Ey
= Z Z L'-\'p-.\':p-.vL"\':p-:..f\'pGo.v(E )Go.\'-_.(E )Go.\'(E )
P Napy

Since the interacting form of the Greens function involves a sum of terms such as
these. we can conclude by induction that it can be continue to be decomposed in
this manner. Yet. there is one other class of terms which we would like to show is
of this form which arises when an electron is temporarily excited to another state
leaving an unoccupied state behind which behaves like a positively charged electron.
This “electron-hole™ pair is originally excited with the energy £ to the state with

energy a. This term is given by:

Oy 2O
T(ri.r:E) = — da/dr;drd (ri.r3) Z Nip (73) .\-.Pl(r‘) (2.32)
2 Nipy a—Ey,
O-\'zp:("—i)o,‘\'..p.,("?}) S,
— ‘ T )
* \Z‘; E-a—-Ey, (ri.732)
AQU (o idir—r Oxpy (F3)0 5, (1)
= — da/dr dri | —=1"(gi)e' i) Ny
27 3ary (27)?2 ! .szpx a— Exy,
O Napa(F1)ON,p, (73) / d@y .. -
X == ,,‘(36""(” r;
\z,; E—a-Ey, (27)? 42)
dqy, dg o
= 5[l T [ e @@
...M \lpl -‘ “ "
“'[-\'IPI-'V'JP (q-') “[:V'gpg..\-lpl (ql)
& — E:.\'1 E—-a- E_\'__,
where
My gy Nop2 (@) = (Nip1]€T7| Nopa) (2.33)

Now. this is essentially the polarizability of the electron gas as it reflects the response

to an external potential. We have a slightly different approach to this term since we

17



have the potential interaction which initiated the state and the interaction generated

when the state decavs. We can separate out the potential terms so that

-1 Myip %0 (@) M xaps Ny (@)
To E. = ——/d 1P1..vV2p2 ap2.NVipy
pot(E-) 2T @ ‘le%:\.w_z a—Eyv, E-a-Ey,
= Z '1[-'"1111--\'-.-11'.' (q) "[\'w;‘--\'lm (q)
Nip1.Napo
x / da GB, ()GE (E - a) (2.34)

One of the primary advantages of using this form of the Green’s function is that the
spectral function A(x) is just the energy density of states and is easily calculated

from:
1
A(E) == / d7 ImGR(7. 7 E) (2.35)

We should notice that taking the sum of the expectation values of G*(F.7: E) is

equivalent to taking the spatial contraction of the Green's function as in the following

example.
[arclrE) = [aF ‘\Z; Q’E(—Qo—gf(ﬂ (2.36)
1
- 2(Te )
= Z\:G;?\.(E) (2.37)
Of course then we can treat
AN(E) = %ImG_‘{.(E) (2.38)

as the effective density of states for a “Landau level” for the interacting system.
These quantities are ultimately what we wish to calculate in order to get a better

understanding of the density of states.
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2.3 Combining Gy(E) with Impurity Scattering

Now that we have looked at impurity scattering and the form of the Green’s func-
tion which we are using. it is time to combine both of these principles. This final
combination will result in the tools which we will use to develop our model of the
two dimensional electron gas in a magnetic field. Returning to our expansion of the

Green's function but this time after we Fourier transform the time dependence:

GR(ri./:E) = GErl.m:E)+ /dr?, GrA. i EYU(R)GH(r3. 15 E) (2.39)
+ /dr';';dr] G(f(r'{. r: E)(.’(r})Géz(r';';. ri: E)C’(r})G(',?(r]. ra: E)
+...

Now we want to express this in terms of our Gx(E). so let us expand each of the
GE&(ri.r3: E) terms as:

0.\'1;”("—{)0_'\’[,,1("3) 5
2.40
E—-FEy, ( )

GYAR./mE) = Y

Mgy

-\ e - L
= Z 0-\‘1;»1("1)0.\'1;»1(r’-’)y_L"Gg.\’z(E)

Nipr

where again g; is the Landau level degeneracy. Substituting this into 2.39 we get:

GR(r{.r: E)

|v1

(Z Oxpy (F1)ON p, -.;) G()\I( )) (2.41)

Nipt

+ /dr’_i (Z Oxp (T1)ON (T .) C )) (r3)

Vip

(Zo\p("? O\ (13 ) GO\( ))

Naps

Vip1

+ /dr'!dnl (Z OVLP:\rl)o\lpx 1) GO\I( )) L(r3)

Nap2

X (Z ONap2 (13O N, (T ) Gm,( )) L(r3)

(Zo\aps("~l)@\/3p3( ry) — GO\;,(E))

Nips
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l - - -
= - Z ox,pi (F1)0N, p, ( 2)G(§\"(E) (2.42)
gL v
Nipy
1 o _ |
+ 2 > OA\':Px("I)OA\:_,p._,("'.))G(ﬁ\'l(E)C .\',pl..\'gngﬁ\-g(E)
gL Nipg
Nepz
1 bad » - " - v N
+ 3 Z O'\"pl(rl)o-\'spzx(r:’-)c"f\'l (EX -\'1P|-.\"_'P:fo)2.\":(E)
L™ N
Napa
Vapg

Now we are ready to take the expectation value of this expression to obtain:

GRE) = ¥ [ diidiz o}, (f)ox,(BIGR (. 73 E) (2.43)
p

I

1
> —Gov(E)
p 9L
1 .
+ Z — G (EN .\'p..\'pG(‘;z_\'(E)

2

p gL~

1 B .
+ Y —= 3 GEAE) Unpxaps GO (EV Ny xp GOV (E)

p IL” Nip,

Note that the first term is simply given by G&.(E) after summing over p. This is
exactly what we want except that now we would like to take the average over all

impurity distributions. Following the procedure that we discuss previously we form:

(GRIEW: = (G&(EW (2.44)

1 - 1
> E<G§N(£)L vpxpGon (ENe
p

1 . . .
Z g—s- Z <G([)2N(E)L'.\'p..\"2p2 G(!)z;\"_) (E)L .\’-_ypg..\"pG(ﬁv(E)> I
p

Nap2



Remember that the unperturbed Green's function is independent of the impurities

so we may take them out of the impurity average. Therefore we have the expression:

(GH(E))r = Ggy(E) (2.45)
1
+ FG(ﬁ\( GON (Zc\p \p>l

+ Z GO \ CO;VQ ( E)G(LV ( E) (Z L"—.\'p..v‘_'p'_) L i\}pg..\’p) !
p

g[‘ Vnp
+

Now all we need to deal with are terms like (3", Uxp.vp) - To take care of these we

will again use the Fourier representation of the potential.

11 (F) ' (2.46)

I

2

The quantity Uy, p,;.v.p, NOW becomes:

) . 17 o )
Cxiprvops = (W1 Pllz/ (q v((j')e"’(" ol Nopy) (2.47)

' dq - IG-ry\- —id-R.
= Z/ ; _Izl'(‘i')(-\ e TT| Nopaye TR
«

/() -)‘[\lPI\P’ (DZE’ 7 f

where now we have used the notation

Mypy Nap: (@) = (N1 [€77] Vapa) (2.48)
We are now ready to take the impurity averages. The impurity average of the second
in equation (2.43) is

N, d
Q-2 Unpapht = (Z/ (2 q) e(Q) Mp.xp(4) Z ) (2.49)
p n

p




Z/( e(q) Myp.vp (n(; BT,

Nio o
- Z/ 2“)2U((D Mypxp(@) 55 v (27)°8(q)

N,
= 52 r(0)Mypxpl0)

=0

since we have chosen to let the constant energy offset. v(0). to be zero. Now. if we

look at the third term in (2.45). we see that this one will give us something more

interesting:

( Z L ’~\'P-»\".‘P~.' (’»-\-DP'.‘ u\'p) I
p

N,

deé - - K
Z( B zl., l’(ql).‘[_\'p"\-:p!((h) E e R.,
p (2 )' ~

dgs
X /(2:13 e(@2) Mxap, vplq2) Z‘-’_"h Ri>

(l d()
Z/ ql 1 L(fh)L((l-)‘[\p\p((11)‘[\;: ~Np(q2)

% (Z o1 R e—iqT.v-RE)[

ad

dqy dgy - . - -
Z/ - 3 - 2 v(q)e(q2) Mxp xyp (G1) M xsps. vp(G2)

p
" (.\.»(.;_‘._2_ S 2m S + T 2m) G + ”3))

ViV, —-1
) ™ Mg 0) Mg 301101 (0)
p

& -
_Z/( . s M Np.Naps (G1) Mivypa. \P(—(Il) e(qu)e(—qi)

da, - - -
—Z/ il \[\p Napa (q1) My, 2P, \p( g )r(giie(—qy)
(2.50)

[V
(EV]




where again we have set the constant potential offset to zero. We can plug this

expression back into equation (2.45).

(GUE)N = GR(E) 5.
1
T3 > GEAE)GEL(EYGEN(E)

IL” Ny

(V]
Ut
_—
~

V; dq - - . -~
X—‘v E / ——(‘)zl)z “I.\'p--\';'p-:(ql)-‘[.\i'zp-_“.\'p( —q1 )(‘(([1)1_‘(—(11)
p KA

-+

We could continue generating terms like this forever. At this point we should have

a pretty good feel for the tyvpes of expansions that we are dealing with here.



Chapter 3

Standard Methods for Calculating the Density of

States

3.1 The Self Consistent Born Approach

Using our Green's function techniques. we are now ready to proceed with the calcu-

lation of the density of states of a two dimensional electron gas in a magnetic field.

Our first try with this will vield what we will call the Self Consistent Born approach.

Essentially this involves a simple self-consistent impurity scattering as given by the

following two diagrams:

Ty(E) =

G(E)==Som= = —»— + (3.2)

In equation form. this gives us:

1 . .
SV(E) = Y. —{UnpxapsGal EYCNupovpd 1 (3.3)
Napap IL
1 .
G.\’(E) - E _ Ei\[ _ S;\,’(E) (3’4)

where g; = (27/)~! is the Landau level degeneracy. We have dropped the first term

in the self-energy since this gives just the average energy of the interaction as we did



in our general treatment of impurity scattering. Now we can substitute the second

equation into the first to obtain:

1

Lv(E) = Unp.Nopal® 3.5
~(E) .\':Zp-:p (10 Np.Napa )rE — Ev ~S~(E) (3.5)

To simplify this a bit let us make the assignmeunt

Ly 1 i ) '
v = — S U vpxap: s (3.6)
9L pp,

so that
1

1.
A = —FZ' ;.
.\(E) \Z—‘ 4 ‘\"\'-'E —_ E.\' o S\'J(E)

(3.7)

Now if we assume that we are dealing with magnetic field large enough that the wave
functions do not overlap significantly. the diagonal terms of l‘r-’\\ will dominate.

Therefore we ignore all off-diagonal terms such that

I

l .,
S - E = —r‘. . 38
N(E) 1 N EC Ev —Sv(E) (3.8)
With a little rearrangement. the equation becomes a simple quadratic
” 1,
[EV(E) +(Ex —E)Sv(E) + Ir.'\'.\' =0 (3.9)
with the solution
E~Eyv)+J(E—-Eyv):-T%,
Sy (E) = { N) \/(.) v) NN (3.10)
So now we have an expression for the Green's function:
2 : B
Gr(E) = o [(5 — Ex) = J(E - Ex)? -3, (3.11)
VN

Now we notice that Gy(E) has an imaginary component when the energy is within
['%y of a Landau level. In order for the Green's function to be a retarded Green's

function, it needs to be analytic in the upper half of the complex plane. This requires

[\V]
(U1



us to choose the solution which gives the negative imaginary part. The Landau level

density of states is then given by

Dy(E) = —-(271) 'ImGy(E)
soy 2 E - Ex\?
= —(227)"! 1—( ):’E—E'<[‘--
) [-.v.\ \J r.\’.\ i .\’ > LNy
= OIE—E.\'I>[‘\\ (3[2)

where we have added in the factor of g; = (27/%)~! which we have omitted in our
Gox(E) to account for the Landau level degeneracy. We can then see that the
density of states is a series of semi-elliptic states centered around the Landau level
energies. This discussion usually continues with the assumption that we have short

range scatterers. \We can then approximate the potential as
1(F) = 12627 (3.13)
which gives the simple result that
Cyy = 102780 127 (3.14)

though the derivation of this in the Landau gauge is not exactly simple. Starting

with (3.6) we have

4 -k 1 g2 -
Doy = oo ([ diifi ok (VT = Ro)ows ()
X 0%y (73)V:02(r3 — R3)0xp, (F3)): (3.15)
which reduces to
T L - - . ‘
r.\';\" = g’—[‘" :- Z (o.\"pl(RQ)OJ\'-P'.’(Ra)oi\'p-_v(Rd)o_\'pl(R3)>[ (3.16)
p1p2

Now. remembering our discussion about impurity scattering. we will take the average

over all impurities. Note that here we did not use the Fourier transform of the




potential due to the simple nature of the potential. Still we have two cases. In the

first case o # .7 and. in the second case o« = .J. Therefore we have:

1 -
Doy = 4@aNZ5 5 5 [ dRudRs 0%, (Ra)oxm (Ra)o%,, (Ri)osy, (R))
pip2 azd
1 - - .
£ AN IS TS [ AR, 0%, (Ba)oxp (Ra)oky, (Ra)oxp (Ra) (3.17)
pw- a

We have already shown that this first term is removed by subtracting a suitable
constant from the potential without any effect which we have done implicitly by
ignoring the first contribution. Therefore we shall drop it from our expression. The

remaining term may be dealt with as follows:

F‘\—,\- = ZZ/CIR O\pl o\p (R )o\.p lzt)o.\'pl([?-‘n)
pxp« a
g1 = - -
= 13T F [dR. 0%, (Faoxy (Ra) (3.18)
Pt a

where we have used the property of the wavefunctions that

I

Z O,'\-lp(’-")o.v._,p(f') = 3‘_?0.,\'1 N (3.19)
p suen
Continuing. we have
1
Tvy = 4172351
V P o
Y
= 4122571
14 143
) ni .
Fyy = {1 ;ﬁ (3.20)

which gives us the result that we have claimed.
This result bears a striking resemblance to the result obtained from the Born
approximation in zero magnetic field. In this zero field case. we have for this two

dimensional system:

1 ks
_— = Qﬁrli/EO—"FO(ekl "fk:) ITkxk:I-
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2 [ kadk
= @n?n; [ Zto(en, - ex,) Tioes

2

(27)2
= ni [ dew, [Tk, (3.21)
with
T = [ diog, (A, (7 (3.22)

where v, (F) are the wavefunctions of the initial state and o, (F) are the wavefunc-
tions of the final (scattered) state. For the case of a delta function potential. this
vields the result

1 -
—=nm|l)" (3.23)
-
We can now relate the two quantities by inserting
-*) 1
Vo= — (3.24)
mt

into equation (3.20) obtaining the relation

f’)\\ = r2 = -L.

(3.25)

~

So we have a simple relation between the Landau level width and the scattering time
in the zero field Born approximation. Therefore this approach is known as the “Self
Consistent Born Approximation™ (SCBA).

To summarize. if we ignore the inter-Landau level interactions in our system we
obtain the result that the density of states has a semi-elliptic form. In addition.
if we consider only short range scatterers. the width of these semi-elliptic states is
independent of the Landau level index and can be related to the zero field scattering

time in the Born approximation.



3.2 The Single-Site Approximation

The next “improvement™ to the Self Consistent Born approach. is the Single-Site
Approximation. [1] This time we consider that the electrons can scatter more than
once from the same impurity. In fact we will sum the entire infinite series to obtain
our result. However. once again we will ignore inter-Landau level interactions. This
is of course a good approximation at high magnetic fields. Diagrammatically this

approximation is given by:

V; N; AY
} ’)l(\ %\
S\(E) =—=+==+=,.‘:,=:i=\+ (3-)-6)

and

G (E) ==>-==—->—+ (3.27)

where once again we are solving self-consistently for the interacting Green’s func-

tions.

Thus. we have the sum:

Sv(E) = 2= Z(\mlh]\m)

+ 2N ST ANmIVE Noma) Gy, (E)(Nama| Vi N m)
\mm

+ 2 Y (NmiVINoma)G v, (E)(Nama V7 Namy)
x Gy (E (\'3m3|Y,|\m)
+ ... (3.28)

where this time we have used the symmetric gauge to describe our wavefunctions.
As is usually the case with this tvpe of expression. we may simplify the sum and
include terms of all orders by realizing its self-similar properties. To continue. we

can form an operator O such that

Sy(E) = 272N, Y (Nm|V;0[ N m) (3.29)



where the self-similarity vields the expression:

O=1+ Y | Vam)Gyy(ENNams] 170 (3.30)

.\'gm'_l

which we can easily solve for O such that
-1
0= [1 -y l.\/’-_)mg)G‘v._.(E)(.V;,mg[l",jl (3.31)

Nama

so that we have an expression for the self energy given by:
“-
! - - ) [N )

1 - Z.\’-_'ﬂlv_» [‘\_)rn-))G-\'.'(E)<‘\-’,n-)i‘ I

YVW(E) = 27.["’.\}2(.Vnzl<
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m Nymga
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( — i - ) |-V m)
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m
Nymg

1
AY - AY 3.32
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Here we have used the fact that the wavefunctions form a complete set in order to
avoid dealing with the commutation of the 1; and O operators in the steps to come.

Continuing.

Sv(E) = 272N Y (Nmg|Vi|Nmy)

m
Namga

x (Namg| ( !

. . ) Nm)  (3.33)
1- l;\#3m3)Gy3(E)(.\;;m;;ﬂ1

by using the orthogonality of the wavefunctions, (N3m3|N2ma) = dxy va0mam.-
We still cannot deal with this expression without applyving our further assumption
that the Landau levels do not overlap significantly. Therefore. we can ignore all of

the off-diagonal Landau level terms in the sum. Again, this is a valid assumption for
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high magnetic fields where the energy broadening due to scattering is much smaller

than the large cvclotron energy. Proceeding.

SVW(E) = 27N Y (NmiVi| N my)

mma

1
Nm. . Y 3.
(Nl (1 - |.Vm3>c.\»<E)<.\'mm',) vy B3

Since we are using the symmetric gauge and we have a cvlindrically svmmetric

potential. so that (_Vm[i.}[.\'mg) = o',,,sm(.\/'mif}l.\'m). we may write.

Cv(E) = 27PN Y (Nm|V|Nm)

m

x{Nm| ( - ! — ) I\Nm)
L= INm)GN(EY(Nmil;

= 27%N, Z (Nm|V{Nm)

ENTEIET (3.35)
m L—=G(Nm|V|Nm)

Additionally. we may separate out the first term in the original series so that

Sv(E) = 22PN, (Nm|V3{Nm)

(_\fmﬂ",!.\'m)2

+ 272N - 3.36
Zn: G = (Nm|V7{Nm) ( )

One then solves this self-consistent set of equations. The result is again for high
magnetic fields. The density of states in this approximation shows a large asymmetry
with a sharp cutoff on the high energy side and a truncated tail on the low energy
side. In addition. the solution predicts that below a certain critical density N/?'.
the level splits into p impurity bands each tending toward the same asymmetry.
[1. pages 1525-1526] On the other hand. if the density of scatters is increased. the

behavior returns to that of the self-consistent Born results.

3.3 The Many-Site Approximation

The next particular approximation in the set of approximations set forth by Ando

is the Many-Site Approximation. [2. 4] This approximation naturally extends the
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Single-Site Approximation to scattering many times from more than one impurity
site. Once again short range scatterers are assumed and inter-Landau level interac-

tions are ignored. The diagrams for this approximation are given by

X
n ,)(\ ,”l<\ SN o -
" :*+===\+¢=\+ (33‘)
§ . IA&(X“ //\\e’q):\\
u Ny N s WS 7 W7 NN
< " U I)( » N “\\ v » "\\%{ 9«
2N = 0ttt N i S S\ o T T S kT N (3.38)

Unfortunately. this approach is limited because it vields nnphysical results due
to a problem with the analyticity: the imaginary part of the retarded self energy
becomes positive in certain regions of the solution. This is most likely a result of
truncating the approximating series. However. for the case of high densitv weak
short-range scatterers. the series may be summed to give an asymptotic expansion.
(2. p.626] The asymptotic expansion is necessary since the approximate series does
not converge. Ultimately. it can be shown that the result vields a shape for the
Landau Levels which has high and low energy tails. These tails drop off more
rapidly that for a Gaussian shaped energy level which has been conjectured as the
the shape of the density of states. Additionally the levels approach the semi-elliptic
limit as the Landau level index increases. [t can also be shown that as the density of
scatters increases the effect of multiple scattering from the same impurity decreases

therefore again vielding SCBA behavior.



Chapter 4

The Models and Approximations

The starting point for these calculations is based on the work of Xie. Li and Das
Sarma (24| in 1990 where theyv set out to develop a method to extend the sim-
ple Self Consistent Born model by including the Landau level interactions. They
also extend this model by including the effect of non-linear static screening via the
Random Phase Approximation (RPA). This allows for the relaxation of two of the
basic assumptions in the Self Consistent Born Approximation. This approach no
longer requires that the Landau levels have negligible overlap. and it allows the
model potential to be the much more realistic Coulomb potential as seen by the
two dimensional electron gas. Of course. this is obtained by solving self-consistently
for both the scattering and the screening effects. As such we will need to rely on
numerical methods to generate the results in this framework.

In the course of this odessy. we will be looking at several different models which
take Landau level mixing into account. Our approach will be slightly different than
that taken by Xie. Li and Das Sarma. In the first model which we will look at.
we will not include the effects of the so-called ~vertex correction.” As we will see.
the essential characteristics of the system can be studied without the additional
computational effort required by the inclusion of the vertex correction. In our second
model. we will add a vertex correction to the calculation. but we will make a different
approximation than that of Nie et al. This will be done to provide a reasonable
extension of our first model. From this point. we will add the electron spin to each
of the models and explain what effects that it has on the calculations.

In our next chapter. we will introduce a model which includes non-static screening

introduced via the electron-electron interaction. This enhancement will produce
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results that are somewhat different than these static model. We will defer further

discussion of the non-static case to the next chapter.

4.1 Our First Model

In our first treatment of this system. we will essentially follow the same procedure
which we applied in the Self Consistent Born approach. However. we will include a
modification to the impurity potential in the form of the static screening provided by
the 2DEG. We will use the Random Phase Approximation (RPA) to self-consistently

calculate a static dielectric constant for this svstem. In diagrammatic format this is

given by:
Ty (4.1)
G~ (E) (4.2)
(4.3)
(4.4)

For our system. we will assume that the impurities are distributed randomly in
a two dimensional plane which is parallel to the 2DEG and separated by a distance
a from the 2DEG. One could use a more complicated distribution for the impurities
along the third dimension. but the major effect would be to modify the result with an
appropriately calculated structure factor. In fact. it effectively adds more disorder
to the system. Yet. the basic calculation is unchanged as noted by Xi. Li and Das
Sarma (1990) We will continue in these footsteps. The two dimensional Fourier

transform of the impurity potential is then given by (Appendix F):

() = e (43)
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where x is the dielectric constant of the bulk material. Therefore the screened

potential given by the random-phase approximation (RPA) is

0
u(q) = F’(g) (4.6)
where
(@) = 1= 1o @) (4.7)
is the static dielectric function.
Veelq) = 2:; (4.8)

is the 2D Fourier transform of the electron-electron Coulomb interaction. and I1(g) is
the irreducible static polarizability. Therefore all together our diagrammatic equa-

tion (4.3) becomes

1:(q)

u(q) = - (1.9)
@ = o0

E_é_:p_qa

= ——-—"i::e_—— (4.10)
1 - -—;q—H((n

(4.11)

Now our first diagram (4.1) for the self energy is

. dq 2 2
ZV(E) = N 2 Gn(E) [ ool Vens @Plu(@F (4.12)
N AT

where we should recognize this as being similar to the second term of (2.51). The
difference is in this equation. we are substituting the unperturbed Greens function
with the full self-consistent Green's function and the impurity potential with the
screened (RPA) impurity potential. (In addition. we have used the fact that u(—¢)
is the complex conjugate of u(q) for any real potential.) We will rewrite this in a

slightly different form making the assignment

1 2 _ g . 2, g2 .
ivw = ~Vi/@‘j)§|~"fmv~.»(ff)l lu(q) (4.13)




This will allow us to write this set of equations in a manner similar to the SCB

approach. .
CN(E) = Z II’;\—_,V._,'ZGA\E(E) (4.14)
N2

Here. the I v v, represent the Landau level coupling constants. and the diagonal terms
may be recognized as the widths of the semi-elliptic levels in the SCB approximation.

The last diagram will require a bit more work. In order to deal with this effec-
tively at finite temperature. we will have to use the Matsubara representation of the
polarizability. (Although it is a bit confusing. we will be using the same simbols for
the temperature Green's functions as we do for the retarded Green’s functions. The
only difference will be that the arguments of the temperature functions will contain
an imaginary part. This is to reduce the number of symbols which clutter the equa-
tions.) \We will then generate the familiar retarded form from our final result. To

begin we have:

(], ic) = _9_; S S My nape (DG N (iGn + i) G vy (i) Mxypevp(—0)  (4:13)
iCa NP

Napa

where here we have used the full matrix elements which also depend on the mo-
mentum. One other point to notice here is that we are starting with the non-static
diagram. We will later take the limit as w — 0 in order to obtain the static result.
In order to proceed we will start by considering the sum over the Matsubara fermion

2n+1)x
nj))

frequencies ((, = represented by

i . . . e
= ——;ZGN(LQ" + w)G N, (1C,) (1.16)
7 iCa
Since we are using the self-consistent Green'’s functions. we will need to write them

in their spectral form.
(4.17)

c .-L .
G.\'(iw) — / dr-: N (I)

- W — I
Therefore S becomes

1 1
ip+itw—xiC—y

1 = *
S = 3t [ @ m T
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- / dr / dy Ax(2) Ay (9)S2 (4.18)

where now
Sp= -1 > : = (4.19)
Ty it iw —riCa -y ’

Sums of this type are covered in many textbooks. However. due to the importance
of these types of sums in this subject. we will brieflv layout the way to proceed. The

first thing to realize is that the poles of

1
4.20
e+ 1 ( )
are at exactly the fermion frequencies. Therefore
L Fv) L . R
= - Fli —— 121
271 }{dCe"C +1 3 %.: {icn) ;,,: edm + | ( )

where the n,, are the poles of F(x) with the residues R,,. This relation will only
hold if F(.) is analytic evervwhere except the simple poles at ,,. Here. we have
selected a contour whose radius tends towards infinity. This implies that we also
must satisfy the condition

lim |wF(L)] =0 (4.22)

‘=

let us note that our sum S, satisfies these conditions. So. we have for our case:

1 1 1 1
— ) S,
3w J o \ex + 1 (C +iw — r) <C + —y) B
1 1
edlr—) + l) (1‘ — i - y)
1 ) 1
e +1/ \y+iv—r

Il

-+

S~~~

since the contour we have chosen is zero. Now. we have

1 1 1 1
y = ) -)
52 [(8316-.3w+1) (;r—iw~y> v (edy-i-l) (y-f-iw—r)] (4.24)




Since « is a boson frequency (w, = 3—‘}—") the factor

e—ldu.' = e—'Zmu =1 (4'

[ N]
(1]
-

so that

5 = 5
> [(eh + 1) (1' — e = !/) * (e-’y + 1) (,1/ +iw — J‘)] (4.26)

Now we can substitute this in to (4.18) which gives us

S = /j:c dr /::c dyAx(r)dn,(y) [(edz:_ 1) <Jf — zulu - !/)
- (edyl-f- 1) (!H-ii' ‘I)J

[t () AxGsste = )
) Anv,(Y)GNly + i)

- L

/_ T e np(2) [Av(0)G, (£ = iw) + Avy (DGy(r +i)]  (4.27)

o+ 1

Now. if we take this result and plug it back into (4.15) we have the expression

[(g.iw) = gs z l-‘[.\'p--\'zpz(‘ﬂ'g

Napa

x / T drnp(r) [Ax ()G, (£ = i) + Axa (£)Gx (0 + i)]

= gs Z l-\[.\'p..\':pz((nlg

Napa

« /_cc dr np(z) [Av(£) G (2 — is) + A (LG (0 + iw)] (4.28)

where we have used the symmetry of the sum over Landau level indices in order to
alter the sum in the last step. We can now perform our analytic continuation. and
also let w — 0. The first term now becomes the advanced Green's function while

the second term becomes the retarded greens function. Since these are complex
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conjugates of each other. we may write them solely in terms of the retarded function.

Therefore. for the retarded polarizability. we now have:

H((i‘ O) = Gs Z ,~‘[;\'p..\'-3p-_t ((Dll /;Qc dx nF(’r)'_l:\'(I):zR-eG.\'g(I)

Np
Napy

= —gf Z ‘~‘[-\'p..\’:pz(‘n|2 /_i dr ”F(J')Im{G.V(I)G_\'g(J')] (4.29)

" .\'p
Nape

where we have substituted the fact that —1 times the imaginary part of the retarded
Green's function is equal to the spectral function. Last. taking the sum over the
momenta which essentiallv adds the Landau level degeneracy (See Appendix B.2).

we end up with:

(g = '?f;l‘-’ |.\I_\-._\~.:((j')|2 [_’cd.lf ne(r)m(Gy ()G, ()] (4.30)

AT

1w

Therefore in summary our model becomes the self-consistent solution of the following

set of equations.

. 1 5
Cy(E) = ZIF_\-.\-._.-G.\-Q(E) (4.31)
Na
L Sy g
Gy(E) = E_Ev_<v(E) (4.32)
1 5 ; dq Y >
Tow’ = N[ G s @ Plu@P? (4.33)
_ Vi(q) .
‘@ = T one (134)
(g = _')_9;‘[2 S [Myxa (@) / dr np()m{Gy(2)G . (z)]  (4.35)
Fan NN —C

Notice that the first two of these equations may be solved self-consistently given the
proper set of ['yy,. Since these are just a simple set of real numbers. our solution
to this set of equations will be very similar even under vastly different impurity
potentials. In fact. we shall see in our results that we will observe this behavior.
The third equation implies that the longer the range of the interaction the more

coupling will exist between the Landau levels as we would expect. Therefore. the
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coupling will be more important for our Coulomb interaction than it is for a delta
function interaction as in the SCBA.

In the last equation. we have the result that the polarizability is related to the
overlap of the Landau levels below the Fermi Energy. If we look at the structure of
the Green's functions we will realize that this quantity is primarily negative since
the low energy tail of the real part of the Green's function is mostly negative and
the imaginary part is negative. Therefore the strength of the potential is reduced or
“screened.”

Consider the situation were the Fermi energy is well above the center of level
V. The real part of the Green’s functions looks approximately anti-symmetric while
the imaginary part looks approximately svmmetric. Their product then looks an-
tisymmetric about the center of the level. In this case the integral of the product
will tend to zero thus making the impurity interaction larger. Therefore. we should
expect the lowest filled Landau levels to have the most scattering and consequently

exhibit the largest level broadening. This is what we will see.

4.2 The Second Model

The step in our progression of models is to include the effects of the vertex correction.
This essentially modifies our expression for the irreducible polarizability. [n terms

of the Feynman diagrams this is given by:

1@ = -CO+CB

As is implied by the dynamics of the diagram. here we will be taking into account

(4.36)

the interaction of “electron-hole™ pairs with the impurities in the system. Here we
are talking about the “hole” left in the 2DEG after an electron is excited to another
state. This interaction will shorten the effective lifetime of the “electron-hole™ pairs

which screen the impurity potential and reducing its effect on the electrons. The
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new and improved irreducible polarizability in term of the Matsubara temperature

Green's functions is therefore given by:

[1(q. i) = ————Z Z My, v ( Gyliw + ()G vy (1Ca) 7 v N (G b + iCn. 1Cs)

P2

(4.37)
where we have taken the liberty of pre-summing over the momenta as it just vields
the factor of (271%)~!. ~ v, (. iw + i(,.i(,) represents the vertex correction. [t is
given by the expression:

NN (§ i+ 1Gne iG) = Man(@) + D Grliw +iGa)G i, (ia)
LT

X Wvnyrz@ver. (g iw +1Ca-1G,)  (4.38)
where
- % dga - - =\ G g3y -
Wy = (27) ——u( =) u(G) My (=) M., (gz)e" TP (4.39)

Diagrammaticly these expressions are given by:

AR
AW
vl bw + G iGa) = N + X (4.40)
.\r.-_) L')
.\f: L
1 -
. AY ,
Wyverr.(q) = ’:‘ (4.41)
Ny Ly

We will approach this problem in the same manner as in the first model. Only in

this case. we now have the expression for the sum as:

= ——ZG w + lCn. G\.,(lgn) A (Q w+ lQn lQn) (44..).)
l(n
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If we assume that the vertex correction is analytic. then after the contour integration

the second sum becomes:

1 . 1 - :
Ss = ng(r) (——-————) v (G Lor —iw) +ne(y) (-————) vy + e y)

Ir—itw—Yy y+iw —y
(4.43)
which gives us the result that
= [ drne(n) (Ax(2)G (i = i) ynaldr = i)
+ A (D)Gy(r + iw) vy (G o + iw. )] (1.44)

This expression is a bit trickier than in our first model. In the total expression for
[1(q. ix). we can use the same technique of exchanging the indices of the symmetric
sum as we did previously. If we also let § — —¢ in the integral of the second sum

we end up with:

G iv) = )_ . / dr np(r)Ay(r)
2zl NN,
X [G.\:_.(.l - [“’)-\[.\'2.\"(—(T)ﬁ‘.\'.\'z((i' r.r — lu,)
+ G (.I.' + l..u) ‘[\ Na (D""\;:Av(—(i. €T+, .I‘)J {1.45)

Although it mayv be difficult to see. it may be shown by the symmetry of (4.38)
and (4.39). that the two terms in brackets are in fact the complex conjugates of
each other. Notice. that this time we cannot simply take the imaginary part of the
product of the Green's functions. Therefore we have for the polarizability in our

second model.

— e

T2 5

x<
NG i) = -2 % [ dene(s) ImGy(o)
x Re [G_\—..,(.L' + i) My, v (S0) v 2 + i )] (4.46)
In its current form equation (4.38) is very difficult to deal with due to the self-

consistent dependency. Even though it is possible to carry out this calculation. it

would prove to be very computationally intensive. With this in light. we will opt to




make the approximation that the scattering in the vertex does not alter the Landau

level indices of the electrons. In other words. we will only account for the case when
WyNa.Lr, XONLON L, (4.47)

so that we have

. Vi - - .
MWyn, (@) = 5= quq-lu(-qz)u(qg).\[_\g\-(rj‘).\f.\-.b\:,((f)./o(qq-_)lz) (4.48)

-4

where we have also performed the integral over the angular dependence of the mo-
mentum. (The zeroth order Bessel function can be easily verified in many math-
ematical references as the result of integrating over the cosine factor in the cross
product.)

Notice that the terms we are ignoring are second order in the overlap of the
wavefunctions. so that we expect that this will be a good approximation. After

making this assumption. we have:

Myna ()

N (@ i+ G iC) = I — 14
¥e (- o+ iGn- iGn) 1= Gy (ic + iCa) G i WV v 3 () (149

where we were able to collect the terms containing ~ vy, on one side of the equation
which vields great computational savings.

We must now take the static limit of this set of equations. We have the following
set of equations in terms of the retarded Green’s functions which we will substitute

for the simple expression for the polarizability in the previous model:

g = _:‘?_,%_52/ dz np(z) ImGy (x)
" .\'.\r': -

x  Re [Gu,(x) My,x(<@)7xx:(7. 1) (4.50)
— ‘\ [ NNo ( (2) -
NN .E - = - 4" 1
(@ E) = T G B (@ (4:51)
-\’ri I — D) C -
Wan (@) = 7 Gdqau(—q2)u(@) My (@) M. N, (@) Jo(ggal®)  (4.32)
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4.3 The Inclusion of Electron Spin

Once we have gotten a good grasp of the previous models. we would like to include
the effects of the electron spin. This is especially important in a magnetic field due
to the Zeeman effect. In the systems we are studying. there is an enhancement of
the spin split energy which is verv apparent in magneto-resistance measurements.
We would like to be able to see if we can recreate this behavior with our models.
Inclusion of spin into these models is very straight forward. Since. we have
no idea about the magnetic properties of the impurities. we will assume that theyv
contribute no direct mechanism to alter the spin of a scattered electron. In this case.
the matrix elements become diagonal in the spin indices. Therefore. the equations

in our first model become:

1 > A
Tyvol(E) = ZIF.\'.\’Q'G.\'-W(E) (4.53)
N
1
. - 154
CxelB) = ETEL CSw(B) (424
1 ‘-) — ’,- dq~ R R 2 2 -
Tvw’ = .\,f——(zﬁ)_l;‘w_\_\!(,m |u(§)] (1.55)
11(q) .
_ 136
“D = L@ (420
Mg = _.)_9_;12 S [ Myw (@) / dr np(2)Im[G vo ()G (1)} (4.57)
=1 NNoo -
where now |
Eve=Nuo+ 3g;LB (4.38)

and the spin degeneracy g; = 1.

If we look closely. we will see from the first two equations that the solution. for
the most part. splits into two independent spin gases. The only place that there is
an interaction is indirectly via the Fermi Energy in the polarizability. There is no
direct exchange energy term here although one could be added in an ad hoc manner.
So. the only difference that we should see is in the broadening of the Landau levels.

This obviously will not account for the enhanced spin splitting. However. it will
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provide a “more correct”™ broadening result. For completeness. the vertex corrected

model now has the polarizability as:

[(q) = ——_i;lz Z/ dr ne(r) ImG . (x)
T NNl
x Re [G.\:._,a(I)i‘[.v._...\'(——.(I)"!.\'.\'-_»a((f- I)] (4.59)
~ g _ My x.(q)
Wl B) = G BN G B () 60

. V; - . .

Wyv.(q) = ;_f/(I-zd(I-zU("(12)U((l‘z)1[.\'.-\'(’?')-‘[.\'-_-.\':((D-]n(llflel') (4.61)

Again this only slightly modifies the results. Unless there are verv large magnetic
fields. these two spin gases will add to vield results very close to the non-spin case.
Therefore. we conclude that for static RPA. our calculations will not yield any

significant difference with the inclusion of spin.



Chapter 5

Living a Non-Static World

5.1 What’s Wrong With Static?

One of our original goals was to understand how spin played a part in this system.
Therefore this separation of spin gases was a less than satisfactory result. There
must be something more to this system. There must be something which we are
missing.

Searching through the literature. there were several ways to proceed. One of the
directions we could have taken would be after the calculation of Xu and Vasilopoulos
[25]. They included the effects of the phonon interaction with the 2DEG. Their
results seem somewhat promising in predicting the spin splitting. However. it was
our feeling that the same type of result could be achieved independently of the
lattice. It is obvious that we must include some type of effect which allows the spin
gases to shift in energy bevond the bare Zeeman effect. Let it also be noted that the
approach of Nu and Vasilopoulos although self-consistent did not include the Lande
g-factor enhancement in the self-consistency.

The work of Efros. Pikus and Burnett {7] had accounted for linear and non-
linear electron-electron screening in the high magnetic field limit. Their approach
seemed viable but their focus is toward the high field limit and the Integer Quantum
Hall Effect (IQHE). Towards this end. they chose the direction of modeling the 2D
random potential and concentrating on activation energies. However. the key seemed
to lie somewhere in this method.

We then turned our interest towards non-static methods. As it turns out. after

several failed attempts, we realized that fixed impurities (impurities with elastic
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scattering) have no method of exchanging energy. Therefore. impurity scattering by
itself leads to a static screening model since we have the requirement that §; = —¢
and {; = ¢ = 0 at the impurity as is demonstrated by the result in equation
(4.13). This fact left us with an instinctive way to proceed. First. let us look at the

non-static polarizability.

5.2 The Non-static Polarizability

Recall that in our first model. we took the polarizability to be equal to the electron-

hole propagator in the full self-consistent system. That is to say-.

I(q) =© (5.1)

which ended up giving us
- - _ gs 2
II(g.iw) = By Z RYEEA(D)
k4 NN
/ dz np(2) [An(£)G (£ — i) + Av(2)G oy (r + )] (5.2)

before the we took the static limit and analytic continuation. Now. let us take the

analytic continuation. letting iw — E + id. Now we have

(7. E) = o [, ..\1.\-..\»2(4)1"
x / dr np(2)Av(2) G (& = E ~ i) + Gy, (x + E + id)]
= ) )Z)\Z\,I‘[\\ (DI
x / dr np(2)m(G y(2)] [GY, (x ~ E) + Gyl + E)] (5.3)

where we have expressed our results in the final equation in terms of the retarded
Greens functions and G;(E) is the complex conjugate of G x(E) (which also happens
to be an alternative representation of the advanced Green's function).

Now, let us stop a moment and look at what we are tryving to do. \We are looking

for collective modes of the system which will effect the overall energy structure. We
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are looking for the effects of the so-called *magneto-plasmons™. So. we are reallv
looking for the zeros of the non-static dielectric function. Once we have calculated
the dynamic polarizability. this is a simple task since all we need to do is plug it
back into

€(q.E) = 1 - 1..(QI(q. E) (5.4)

In reality. it is not quite that simple as the impurities add sufficient scattering to the
svstem to damp the magneto-plasma oscillations. Instead let us use the properties
of

( 1 _1) __ Ve(@IUq- E) (5.5)
€(q. E) 1 = Vee(q)Il(q. E) '

[t can be seen from this equation that this entity is itself a Green's function. [n fact
it actually represents the propagation of a magneto-plasmon. Therefore. if we look
at the imaginary part of this entity. we will have the spectral function. We then will
be able to access the properties of the magneto-plasmons in the system. Notice that
we can calculate. in the first approximation. the dvnamic properties from the static

impurity resulit.

5.3 Magneto-plasmons

We will take a moment here to examine the work of Smith. MacDonald and Gumbs
[20]. They produced a very nice calculation of the single particle self-energy in a
2DEG in a perpendicular magnetic field using non-static screening. The approach
is similar to the plasmon pole approximation used at zero magnetic field which they
call the “magneto-plasmon pole™ approximation. Here the effects of the collective
modes of the electrons in a magnetic field are accounted for by a single magneto-
plasmon pole. The frequency- of this pole is determined by using both the f~sum rule
and the zero-frequency Kramers-Kronig relation. [17. 13. 14] In terms of equations

this approximation is given by

1 1
( * —l)z—g( S > (5.6)
€(q.w) TA\L —wg+i0 w+wg+id
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where w, is the frequency (energy) of the plasmon pole and a is the pole strength

which is given by

(1)
-1
~—

alq) = —wnq (5.
The static screening result then produces

o [z(ql*u)] -1 o

which allows us to produce the value of plasmon pole frequency. This approximation

is then used to calculate a correction to the electron self-energy. In their specific

model. the self energy is calculated by

(5.9)

| 1
SRPA () = My, ( =
v (1) )“ Z i Z,, €(q. 1Ca) i(wy — Cn) — Ny

Again thev use the Random Phase Approximation to account for the screening where

their polarizability is given by

(nF(E,\’a) — nF(E_\:_.a)> (5.10)

- 1 2
W7 E) =55 2 My P\ £ 55 Ern = oy

VN,

Using this framework theyv proceed to calculate the correlation correction to the

self-energy. This is given by

S(E) = Z/ on LM s (@@

Vo
(g E f2(q. Exyo) ) =
= 5.11
X (E < —E\,, T E+wo,-Ev, (5.11)

where

AGE) = =220 np(E) + npley) (5.12)

—

"

G E) = =20 np(E) + na(—uy) (5.13)

—

i
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The total self energy is given by:

Evo(E) =I5, (E) + TV (E) (5.14)

and 1
T (E) = —(270%) / My (DP e Dne(Exy) (5.15)

it (27)°

is the electron exchange energy.

Their findings suggest that this method gives good results for the spin split
enhancements at high field. They also make the statement that in their RPA model.
the correlation energyv is solely dependent on inter-Landau level excitations as the
polarizability is zero if .V = \N,. As it turns out. if there is any impurity broadening
of the Landau levels. this is not strictly the case.

After assimilating this information. we now have a framework in which to pro-
ceed. \We will develop our own formulation of this problem with our own form of

(5.11).

5.4 Our Very Own Non-static Model

\We will develop our own formulation of this problem. We will generate a correlation
correction similar to (5.11) with electron-electron effects and impurity scattering.
We will also opt to ignore the “vertex correction™ due to the excessive computation
which would be required to handle it properly. That is to sayv. we will be proceeding
with a non-static formulation of our first model by including non-static electron-
electron effects.

Therefore the model which is proposed for study is given by the following Feyn-

man diagrams:




Notice that the polarizability and subsequently the dielectric function apply to both
the impurity scattering and the electron-electron scattering. vet only the static limit
(« = 0) is used in calculating the screened impurity potential due to the requirement
that the impurity scattering is elastic.

Since we. have already talked about the non-static polarizability. let us concen-

trate on the self-energy which is now given by
Exo(E) = SNP(E) + Z%,(E) (5.21)

were we have split the contributions of the self-energy into the impurity and electron
interaction parts. The first part is just the the same self-energy from our static

models. The second part is the heart of our discussion.

The Matsubara temperature Green's function for the electron-electron self-energy

is given by

1 dq

_\a(z_,u)::-} ERE (1[\ v (D? Z )C\.,,( — in) (5.22)
This may by broken down into two further parts as
ESAE) =EF0(E) + TX5(E) (5.23)

which are respectively. the exchange and correlation energies. The first of these is

given by:

. 1 ..
S?\?;(u‘:l’) = _3 (771’ Z ' ‘[\ Ny ((Dl Z ‘ee q—)G\ a(tw l@n) (3.1

(]
o
W=
e

and the second is given by

e ! dq
S;N'a(z"*"u = 3/ Z ZI\[\ w(@)i ZLee((D (e(q lQn



-1

We have done this in order to write the second expression in terms of ‘(qlC
which we have stated is a Green's function itself. This will allow us to decompose
this expression into its spectral form.

To handle the exchange term we need to again use our path integral techniques

to evaluate the frequency sum:

S = —%ZG‘\:_,,(&:+£(,,) (5.26)
_ __/ Z Avao (s (5.27)
e (U
(5.28)
which reduces to evaluation the sum
RS o — (5.29)
3 Cn tw + lQn -

Now S, does not exactly meet our criteria for the path integral technique since it
does not behave appropriately at the boundaries. In order to deal with this we will

2an )

evaluate the contour integral (using Bose frequencies. <5*

1 o1 esT
LD e o T Sy
. e(.t )
= -—52 + !(_EI'(I) I — |
L
= S-) -
Toedr -1
=0 (5.30)
giving us the results that
Sy = —ng(x) (5.31)
x<
S = —/ drAx,o(L)np(r) (3.32)
-

dq 2 x
"HE) = - [ g & M @PYl@ [ drdso(eine(z)

[V]]
o



1 dq e <
= ;_/ (27:-1)2 g—;l;"[NNg(Q)lz‘ ee(q_) /_x([IIIII[G‘\'.J,,(.L‘)]TIF(I) (3.33)

We will now proceed to evaluate the electron-electron correlation in the same man-

ner. First we need to express the Green’s functions in (5.25) in their spectral form.

Here we will use B(.q. y) to denote the spectral function for ; q‘_ 7 — L So now we

wish to take the sum:

= §<Z (6((1 iCa)
S d dy B ! L (5.34
= jZ/ I ANn,g (1) / yB(q.y) ) B Sy 5.34)

which gives us
I 1 L
Y = —— 5.35
2= 3 f\j (z’(,, — y) (zc,, ¥ ic —-.L‘) (535)

- - - *)
Here we are taking the sum over Bose frequencies such that ¢, = =5*. Therefore we

17{(1_ ] 1 1
itk =y \CFin—r

= -5,
1

1
el —1 (y-i-i'.u—r)

1 1 .
+ pdr—iw) 1 (r e — y) (5.36)

1) G;\:_,a-(iua' + iCn)

have

which gives us

S, = 1 1 + 1 L
2T e y+iw—r et~ 1 \r—iv—y

1
= ng(y) (;:‘i__';) + nr(z) (r —~lw — .l/)

_ nB(y)—nF(I) (.3 3‘—)
T ytiw-—1 '




This expression may be written in many forms due to the relations

ng(—r) = —ng(r) -1 (5.38)

np(—r) = l—flp(l') (5-39)

We will opt to choose the following:

ng(y) — ne(r)
Y + e — I
~ng(—y) — 1 —ng(r)
Yy+iw—r
_ _np(=y) +np(-2x) (5.40)
y + iw' - T ’

S, =

which now gives us

_nB<—y)+np<—.r)> G5a1)

x< <
S = /_x drdy,q(r) /;x dyB(q. y) ( P

In order to make this expression more like (5.11). we are going to let y — —y and

use the symmetry of the spectral function. B(¢. —y) = —B(q{. y). This gives
< > - ng(y) + np(—r) -
S= [ dedvola) [ dyBlay) (5= (5.42)

which is essentially (5.11) if we were to use the spectral functions in the unperturbed

case:

Avs(r) =(Eng — 1) (5.43)
B(y) = 0(wp — y) — d(wp + v) (5.44)

To continue. S becomes:
’x -— -
S = [ dyB(@y)nsy)Guliv - y)

+ /;O:C dl'_{_,\.'.za(l‘)np(—;lf) (6_((1-7\%_—;7 e 1) (545)




where we have evaluated the appropriate spectral functions. Now. we end up with

the complete expression for the correlation self-energy:

TV (E)

= L@l [ ot
v A7

X (/_i dyB(q. y)ng(y)G x,e(E — y)

- 1
-+ ‘/;xd.l':l;\'-_-a’(-r)np(—[) <m - l))

. lqg .
= —éZl.‘[.\"\'g(q)lz/(?.(:)-Zlee((n

TN,
= 1
X </—‘wc dy Im <€((T y)) ng(y)G .o (E — y)
e [trtmiGnatalet-n (g <)) s

where we have used the relationship between the spectral functions and the imagi-

nary part of the Green's functions to simplify the total expressions.

After all is said and done. we now have a complete set of equations which may

be used to calculate the density of states the 2DEG self-consistently in terms of our

model. The result of our work is the following set of self-consistent equations terins

of the retarded functions:

EvelE) =
SWR(E) =
LVW(E) =
TV (E) =

x

+
GyolE) =

CPP(E) + TTUE) + ZUE) (5.47)
1 f -

Z —r.\’_\'g'G.\'ga(E) (5.48)
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1 . Crodi . , N
Tvv? = Vi [ S Mvm @Plu(@)? (552)

1 (2m)?
L 17(q)
“w) = T 223
0G.E) = ~355 3 Myx(@F
A NN

x / " drnp(n)mGy(r) [Gy,(r = E) + Gule + )] (3.54)

At this point. all that is necessarv is to perform the actunal calculation using a
computer. [mplementing the computer model itself leads to several challenging

features of this calculation.



Chapter 6

The Calculations

6.1 Design Decisions

Once we have our model equations in place. we must generate the appropriate com-
puter program to make this calculation a reality. Although we have hinted at the
computational complexity of this model. one should note that our non-static calcu-
lation requires a supercomputer class of machines. With that in mind. we are going
to aim at some level of efficiency.

One of the first decisions that we made was to scale the model. Tvpically in
these systems. one scales the calculation in atomic units where lengths are scaled
in terms of the Bohr radius and the energies are scaled in terms of the energies
of a hydrogenic atom (Rydbergs). We have opted to scale our system in terms of

the magnetic units. Therefore lengths are scaled in terms of the magnetic length.

[ = eﬁg;. and energies are scaled in terms of the cvclotron energy in the system.
hee = i'n—f;—‘i. This allows us. for example. to treat factors of the Landau degeneracy

as. g; = (2mx)~ ! etc. As a whole. this will reduce the number of multiplications and
allow for easy adjustment of the calculation range. This has the added advantage
of allowing for simple comparison of the results of different magnetic field strengths.
but we must keep this in mind when translating to standard energy units.

Another design decision was to explicitly calculate the real and imaginary parts
separately instead of using Fortran’s intrinsic COMPLEX type. This was to allow
us to both save on extra computations when they were not needed and to allow us to
use the special significances of the real and imaginary parts of the Green’s functions

and self-energies.
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We also followed in the footsteps of Xie. Li. and DasSarma by generating the

impurity density. .V;. from the zero field mobility. [24] We do this by employing the

I 2rm . dq
=y / (8
s R (2,~.)'-’f" (©)

relation

o1 o(q — &
u; [2A:psin 3” Mg~ kr) (6.1)
2 q

where

fi(8) = 1—cosé
£0) =1 (6.2)

describes the transport scattering and single particle scattering angular dependence
respectively. Since 7, is inversely proportional to the impurity density. it is straight-
forward to generate .V; from the zero field mobility. We have used the Thomas-Fermi
expression for the potential to start. Therefore. keep in mind that this should be
viewed as a model parameter rather than an experimental mobility. Using .V, di-
rectly would probably be a better idea. except that the impurity densityv in these

samples is not a well known quantity.

6.2 Numerical Techniques

The formulation of this problem lends itself for the most part to evaluating sets of
integrals. We have not chosen to implement any special integration techniques since
most of the integrals can be reduced to simple sums. The only restriction on these
sums is that many of them represent improper integrals which span from —x to x.
The only precaution we must take here is that we make sure that our selected range
of integration is large enough to contain the parts which are significantly different
from zero. Such is the case with the energy range. If we let our energy range
start too close to the lowest Landau level energy. the level width may become too
large and a significant amount of the imaginary part of the Green’s function will be
unaccounted for. This will cause the calculated Fermi energy to be too large which
will in turn destabilize out whole calculation.

Additionally, we do not want our Landau level widths to become too small with

respect to our numerical energy grid spacing between energy points. This will yvield
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a poor approximation when integrating over the density of states. As a rule. we
would like at least ten energy points to span the width of the energy level.

We use a binary search method to calculate the Fermi energy at finite tempera-
ture. This is done by taking an initial guess for the Fermi energy as the midpoint of
the energy range. and integrating (summing) the product of the Fermi distribution
function and the density of states. If our estimate gives too many electrons. we
set the top of our range to the current estimate and set the new estimate to the
midpoint of this new range. If we have too few electrons we choose the upper half as
our new range. This process continues until we have reached the specified tolerance.
Since we calculate the Fermi energy in this way. we have a verv “smooth™ response
to changes in electron density as compared to a zero temperature result which would
give changes in multiples of the energy step size. Therefore. we use a very small but
finite temperature in order to calculate zero temperature properties and maintain
numerical stability. We have chosen our temperatures to reflect the temperatures of
“real-world” experiments.

In certain cases where special functions were not available in the mathematical
libraries. we needed to resort to calculating our versions. The Laguerre polynomials
are calculated via Horners method using the standard representations for the coeffi-
cients. and using the recursive definitions for calculating the factorials. In the case
of the zeroth order Bessel function. we found that not all systems have this in their
libraries. Therefore. we calculated our own by splicing the Tayvlor series expansion
and the asyvmptotic expansion for this function. To avoid excessive computation
of these special functions in the first place. we opted to trade off size for speed by
pre-calculating the matrix elements and the Bessel functions before beginning the

numerical self-consistency loop.

6.3 Convergence

Although. we have written out our various self consistent models. nothing guarantees

that theyv will converge. In our various static calculations we have taken the following

approach.
To begin, we see that equations (4.31) and (4.32) may be solved independently

given a set of [y y,. We have found that if we generate all the quantities in a large self
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consistent loop that these two equations yvield various computational discontinuities
which cause no end of problems with the calculation. However. since we may attack
the solution of (4.31) and (4.32) independently at each energy point. we can achieve
vastly improved convergence. Essentially the problem arises at the spectral edges of
the Landau levels which may take thousands of iterations to converge. This behavior
is caused by the fact that the relative change of the solution between iterations is
largest at the discontinuous edges. Meanwhile. the centers of the Landau levels may
take as few as ten iterations to converge to our given tolerance.

Using this approach. the self consistent loop is designed as follows: Given a
starting set of Green's functions and a starting potential calculated in an ad hoc
way from the zero field mobility. we then calculate the I' vy, which we then use to
calculate the self-energies and Greens functions. Using these new Green's functions
as calculated in the method above. we then calculate the static polarizability and
subsequently the new version of the Fourier transformed potential which is then used
to calculate the new [yy,. We use a bit of admixturing of the Green’s functions
(a weighted sum of the old and new solution) in an ad hoc fashion to help stabilize
the solution. This loop is continued until the Greens functions stabilize to a given
tolerance. Using this method. we can achieve excellent convergence for the static
model with out the vertex correction.

For the second model. we add the vertex correction. which essentially adds a step
to the calculation of the potential. which involves calculating the vertex coupling.
11 vy, (§). before calculating the static polarizability. Otherwise the method remains
unchanged. The model which includes the vertex correction does not converge as
well as the model without the vertex correction. This is due to the feedback from
the vertex corrections tendency to dyvnamically adjust the amount of Landau level
broadening. The convergence is still acceptable. It should be noted however. a very
small amount of “background” static scattering is added to the system to promote
stability. This takes the form of a very small but non-zero imaginary part added to
the self-energy. We have determined that this does not effect our results except to

hasten the convergence.
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6.4 Dynamic

Originally when we performed the non-static model calculation. it was not very
stable. It turned out that by enforcing the Kramers-Kronig relationship between
the real and imaginary parts of the Green's function. we were able to condition our
svstem so that we now have excellent convergence.

A few special features are emploved in order to speed the calculation and im-
prove the performance. For the most part. the spectral function (also related to the
imaginary part of the Green's function) for this system is zero everywhere outside
of our finite range of energies (enough to include all the Landau levels plus a little
buffer). The real part typically drops off as w~!. This means that if we perform
integrals (approximate sums) over all energies involving the real part of the Green's
functions. we will have problems. The kev to handling this is to calculate the integral
over the imaginarv part and then use the Kramers-Kronig relationship to generate
the real part. These types of integrals occur in the polarizabily and in 1 — 1. This
technique allows us to obtain these quantities as accurately and quickly as possible.

Once we have the polarizablity and the dielectric function. we generate the non-
static electron-electron self-energy. This is calculated in a few steps in order to keep

the computational complexity manageable. This involves calculating the quantity

Kvaa(e) = [ daqiMys(a)Vla) - = 1 (6.3)
0 e(r.q)

This is then used to calculate TS (E) via

SH(E) = 55 ) / T dr IRy (@)ne(e)Gre(E - 1)
A RS —_C
+ IMG o (2)](1 ~ np(2)) Ky, (E 1) (6.4)

The same type of thing may be done for the exchange energy. Here

<
v = [ dag M (@Vele) (6.5)
and
1 x -
YV (E) = 7.2 NZ XN N, [/_oc dx Im.\’ga(.’r)np(.l')} (6.6)



We then proceed to calculate the static impurity part of the self-energy using the
non-static electron-electron interaction as part of the Green’s function. This allows
us once again to avoid the instability at the spectral edges in the impurity scattering

term of the self energy.

6.5 Calculation Times

When we developed the initial calculation based on the work of Xie et. al. [24]. this
model took several hundred iterations and several hours on a Sun workstation. After
some model refinements. we reduced this time down to several minutes to obtain
an answer for the static model. On a sixteen processor Cray .J90. we can obtain an
answer for the non-vertex static model in a few seconds. The vertex model takes
somewhat longer do to the double sum over Landau level indices. (It is proportional
to the square of the number of Landau levels calculated.) This fact combined with
the poor convergence properties. leads to run times of several minutes on the same
Cray J90.

The dyvnamic model is another matter entirely. The calculation time for a con-
verged point currently is on the order of a five to ten hours of CPU time. though on
a multiprocessor machine this may take only an hour or so of wall-clock time. There-
fore. this calculation would not have been able to be performed with our original

computational resources.




Chapter 7

The Results

7.1 A Road Map for the Discussion of the Results

Although we have deliberately kept this system as simple as possible. we are still
left with a fairly large set of parameters: Impurity density. impurity plane distance.
magnetic field. electron sheet density and temperature. In addition. we have six
models after we include spin. To perform a full analysis of these models could take a
veryv long time. Therefore. we will present some of the features that characterize the
basic results along with some of the more intriguing aspects. We will break up our
results into two categories. those results arising from basic impurity screening with
out including the electron-electron interactions and the result generated with the
electron-electron interaction with impurity scattering. Of course. we will examine
the first category in more detail since it sticks closest to the currently accepted (self-
consistent Born) view of the 2DEG in a perpendicular magnetic field. and we would
like to understand the ramifications of using this approximation before introducing
electron-electron interactions intc the model.

In this first part we will explore the differences of the four “static™ models: vertex
corrected vs. uncorrected and spin vs. no spin. We will look at the basic shape of
the levels. and the level widths as a function of several of the parameters. From this
examination. we will try to deduce the validity of the approximations and provide
insight on any practical improvements. We will also brieflv look at the dielectric
response function using the static model as the base calculation.

In the second part, we will provide a somewhat less comprehensive look at the

dynamically screened model with spin. The primary focus of this discussion will
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focus on the self-consistent dielectric response function as it seems to provide the
most insight into the validity of this model. We will also discuss the features of
the density of states in terms of the contributions of each of the individual Landau

levels.

7.2 The Statically Screened Models

We will begin with the simplest model. the one without spin and without the addi-
tional vertex correction. Our first figure (Fig. 7.1) demonstrates the basic output of
the model where each of the contributions of the the Landau levels ( —%[mG’_\-(E })
is displayed. A single state is highlighted in order to show how the electrons for a
single Landau level are distributed. The overall shape of the major component of
these levels is semi-elliptic in nature keeping with the theme of SCBA. This should
not be much of a surprise since there is minimal overlap of the levels.

Note that the Landau levels do share electrons and that the side peaks do have
a suggestive shape. By “shared™ we mean that some of the electrons have energies
which overlap with other Landau levels even in the presence of an energy gap.
We would expect that these “shared” electrons should contribute some interesting
effects to transport calculations. This would be especially interesting if one were
to strengthen the boundary conditions in order to isolate the differences hetween
electrons with different momenta.

As levels overlap more and more. the shape of the Landau levels becomes more
and more “Lorentzian™ in nature as shown in figure 7.2. This is important since
the assumption that the levels are Lorentzian in nature does lead to reasonable
predictions for the Shubnikov-de Haas oscillations at low magnetic field. [8]

In order to get a feel for the Shubnikov-de Haas oscillations and the transport
properties in general. we have plotted the Fermi energy and the density of states at
the Fermi energy versus magnetic field in Figure 7.3 . Here we will consider that the
conductivity is essentially proportional to the density of states in the neighborhood
of the Fermi energy. This is not too bad of an assumption at low temperatures. The
Fermi energy might be a bit confusing in here as it is plotted in magnetic units which
change with magnetic field. If one takes this into account. they will see that the

Fermi energy is relatively constant at low magnetic fields and that it responds to the
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Figure 7.1: The density of states in terms of the individual Landau Levels as output
from the basic model without spin and without the vertex correction. (a = 504)
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gaps between the Landau levels that form at higher magnetic fields. The DOS at the
Fermi energy does reflect the general behavior of the Shubnikov-de Haas oscillations
except for the absence of the spin split peaks which are observed at higher magnetic
fields.

The widths of the Landau levels oscillate with magnetic field as indicated in
Figure 7.4. When the level just above the Fermi energy is just about completely
de-populated. the widths of the levels increase dramaticallv. This is a result of the
decrease in the number electrons available for screening when a level is completely
full. It is not energetically favorable for an “electron-hole pair™ to form due to the
large energy gap. The reduction in screening is then seen as an increase in scattering
and therefore an increase in the level width. Of course. one could also view this as
an attempt of the system as a whole to keep the Fermi energyv as close to the zero
field value as possible. The level widths of the whole system adjust accordingly.

To see some of the dependence of the level width at half the maximum value
versus Landau level index. let us look at Figure 7.5. This shows the general inverse
relationship between the level index and the level width for a system of many oc-
cupied Landau levels (v = 33). The anomalies at the ends are due to the sharp
semi-elliptic peaks in the highest and lowest level in the calculation. Since we can
not realistically calculate an infinite number of levels. we can assume this behavior
continues bevond our calculated limit.

Figures 7.6 and 7.7 represent the level width versus the mobility at filling factors
v =6 and v = 7. There is a general inverse relationship between the mobility and
the level width. Of course the mobility which we calculate is inversely proportional

to the impurity density.

The last parameter which we will consider is the distance of the impurity plane
from the 2DEG. The overall result is shown in figure 7.8 which demonstrates the
inverse relationship between the impurity distance and the widths of the levels. \We
should be very careful about how we interpret these results as .V;. the impurity
density is calculated from the “zero field mobility” using this parameter along with
the electron sheet density. Therefore, the results here show the qualitative behavior

which we would expect by changing the distance between the impurities and the
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2DEG: as the impurities get closer to the 2DEG the effective scattering time is
reduced thus increasing the level width and decreasing the mobility.

This brings us to the point where we can discuss the effects that the vertex
correction has on this calculation. At first glance we notice that the result produces
wider Landau levels than the corresponding result without the vertex correction
indicating that the screening in the system is reduced. We have already predicted
that this factor would reduce the screening. The question remains about whether
our specific approximation of the vertex correction has vielded reasonable results.

If we look at figure 7.9 we see that the level widths for the vertex corrected
model are definitely wider. To get some insight into what causes this. let us refer
to figure 7.10 where we can see that the magnitude of the polarizability is smaller
for the vertex corrected model especially at low q. This tells us that the long range
interaction is stronger for the vertex corrected model. At high ¢ (short range)
the two models become virtually identical. In 7.11. we see that by lowering the
mobility. the polarizability of the vertex corrected model becomes more like that of
the simpler model. The vertex correction reduces the strength of the polarization of
the electron gas by including the effects of scattering on the polarizablity. Another
interesting facet of the relationship of the polarizability between the two models is the
dependence on magnetic field or more accurately the filling factor. Figure 7.13 shows
that at v = 4 both models displayv a verv similar polarizability. Meanwhile at v =5
(figure (7.15). the polarizability displays a very different behavior. Remember that
both of these results are coming from models which neglect the spin split energy. and
here. we are using the filling factor from the spin model. So we are really comparing
the results between a fully populated level and a half populated which lies just
below the Fermi energy. We have already noted that as the scattering increases the
two polarizabilities become more alike. We also see that the levels widths increase

(leading to increased scattering) at even numbered filling factors.
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The comparisons of the density of states for these cases are displayed in figures
7.12 and 7.14 where we can see the relative differences in the level widths. The
artifacts which are apparent between the first and second Landau level peaks arise
as a result of the overlap of two semi-elliptic states. This suggests that the vertex
corrected model gives a Landau level width dependence which is closer to SCB than
the uncorrected model. This can be viewed as a result of the reduction in inter-
Landau level interaction by including the vertex. This also has the effect rhat the
level widths do not change as much with filling factor as the uncorrected model.

The Landau level widths at half maximum versus the mobility for the vertex
corrected model are shown in figures 7.16 and 7.17 as compared with the results
from the model without the vertex correction presented in figures 7.6 and 7.7. In
the vertex corrected model. there is a sharp saturation at g = 50.000cm?/1’s where
the level width does not want to decrease below fiw.. In fact we actually see a slight
increase in width with magnetic field which is more noticeable at v = 7. This is
an odd behavior which suggests that something is “wrong™ with vertex corrected
model. In fact. the range of this graph is limited since the numerical results at
higher mobilities do not converge. This problem seems to arise as the polarizability
suddenly displays a small positive value at ¢ = 0 which severely overestimates the
long range interaction of the electron gas as the system gets near to a solution
which then causes the numerical calculation to fail dramatically. The calculation
then cssentially resets itself. begins to converge. and then repeats the whole process
again. This strongly suggests that our vertex correction over-estimates the reduction

in screening.

So far we have not included spin in these discussions. For the calculations we
have displayed the spin split energy is 1.47 x 107 2Ax, which is a small fraction of
these level widths. Therefore. we do not expect to see any significant difference
in the results unless we are looking at high density, high magnetic fields and high
mobility. Figure 7.18 which displays the density of states at the Fermi energy versus
magnetic field highlights this fact using the model without the vertex correction.

We did not obtain usable results for the magnetic field runs using the vertex

correction. This is as a result of the instability which we mentioned above.
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In order to gain insight into our next set of calculations. let us take a brief look at
the response function as a function of both momentum and energy. using the static
model with spin and without the vertex correction as our starting point. Figure
7.19 demonstrates the type of peaks we develop in the response functions which are
suggestive of the magneto-plasmon modes. We will see a slightly different result in

our calculation which includes the dyvnamic electron screening.

7.3 Including Electron-Electron Effects

After looking at the staticly screened impurity scattering model in some detail. it is
time to focus on the output of the model which includes the electron-electron inter-
actions which we have called the non-static model. It will become readily apparent
that neglecting the collective motion of the electron gas as we did in the static model
is a gross oversimplification of the system. We will find that the dynamic properties
and active modification of the energy level positions and widths are key properties
of this system.

To begin. we will look at a system with many Landau levels. We chose this as a
starting point because a system with a large number of filled levels will not display
large exchange energy effects. The basic results are shown in figure 7.20 where we
are comparing the static and non-static models. In this graph. we have aligned the
Fermi Energies of both models to E = 0 since the results of the two models are offset
by the large exchange energies. (In an experimental system. typically we measure
evervthing from the Fermi-energy anvhow. and we have already arbitrarily chosen
the zero energy point anvhow.) As we can see the difference in behavior is quite
large. Looking at the contribution from each of the individual levels in figure 7.21.
we immediately see that most of the the levels are not semi-elliptic but instead have
long negative tails. It is true that we saw this type of behavior in the static model
due to the level overlap. but here even the lowest Landau level displays this feature.
We will also notice that as the levels increase in energy toward the Fermi level. the
shapes of the levels start to become more abrupt and begin to take on the shape

found in the Many-Site Approximation.
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Figure 7.19: Im_ 5 as calculated from the Green’s functions resulting from the
static impurity model. (N, = 2 x 101em—2, p = 100,000cm?/Vs, T = 4.2K,

a = 50A, B = 1.3787)
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While developing the computational model for the non-static system, we had
quite a bit of difficulty getting the system to converge. While studying the conver-
gence, we realized that the dielectric response displayed an interesting reorganization
as seen in figure 7.22. The response function, now showed some signs of the zero
field plasmons. It was pointed out [15] that the result looked very much like the
zero field result of Wendler and Pechstedt. [23, page 209] This can be seen more
clearly in figure 7.23 which displays the peaks of |Im[;(—q‘,75—)]|. Here, we can see this
characteristic inverted parabolic-like shape as is seen in the calculations of Wendler
and Pechstedt.

The convergence problems were eventually overcome, and we were able to calcu-
late the density of states for different mobilities and densities at various magnetic
fields. Figure 7.24 shows how the density of states varies with mobility. The electron-
electron effects do modify the system significantly, but the effect of impurity density
still dominates the width of the Landau levels. The basic broadening due to the
impurity scattering is not lost amidst large effects due only to the electron-electron
scattering.

Figure 7.25 shows the effect of the electron sheet density with fixed mobility.
Here we can see that we have essentially the behavior that we would expect with
sharper narrower levels at higher densities.

Figures 7.26 thru 7.31 show the corresponding response functions for this system.
We can see that the peaks in the response function become more defined as the

Landau levels become more defined while the major parabolic feature still remains.

Up to this point, we have not talked about adding spin to the systems. In the
many level solutions we have discussed above, we had actually included the spin in
the model although the filling factor was chosen deliberately to minimize any spin
interaction. Essentially, the results are no different for the model without spin in
this regime. If we do look at higher magnetic fields, we find that the spin split
enhancement due to the exchange energy can become quite large as seen by the
spacing of the peaks in the density of states at the Fermi energy in figure 7.32 at
filling factor v = 3. Yet, when both spins are populated evenly as in figure 7.33
where v = 6, the spin splitting is virtually given by the bare Landé g factor, and
therefore we can resolve only half as many levels. We also notice how the levels
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Figure 7.26: The dielectric response function for N, = 2 x 10em™2, T = 4.2K,
g =10,000cm?/V's, a = 50A, B = 0.390T
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Figure 7.27: The dielectric response function for N, = 2 x 10'em=2, T = 4.2K,
¢ = 30,000cm?/V's, a = 50A, B =0.390T
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Figure 7.28: The dielectric response function for NV, = 2 x 10'em~2, T = 4.2K,
p = 80,000cm?/V's, a = 50A, B = 0.390T
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Figure 7.29: The dielectric response function for N, = 2 x 10''em™2, T = 4.2K,
g = 100,000cm?/V's, a = 50A, B = 0.390T
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Figure 7.30: The dielectric response function for N, = 1 x 10*em™2, T = 4.2K,
g = 50,000cm?/V's, a = 504, B = 0.195T
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become strongly truncated and how a “gap” opens up at the Fermi energy which
agrees well with experiment.

The polarizability at these higher magnetic fields also displays some interesting
features. Here in figure 7.34 we can see three distinct ridges which represent three
collective modes which correspond to the three filled spin split levels. We can also
see that magnetic field damps out these modes at larger momenta. In figure 7.35,
we see

Finally, as a bit of a test, we ran the model with the same parameters at v = %
which is shown in figure 7.36. Here we can see how the Fermi energy divides the the
fully filled spin level and fully empty spin level while the half filled spin-split level

has a sharp symmetric peak centered on the Fermi energy with smooth tails.
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Figure 7.33: The density of states at v = 6. (N, = 2 x 10!em-2, u =
50,000cm?/Vs, T = 4.2K, a = 50A, B = 1.3787)
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Figure 7.34: The dielectric response function at v = 3. (N, = 2 x 10''em™2,
T = 42K, p = 50,000cm?/V's, a = 50A, B = 1.378T)
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Figure 7.35: The dielectric response function at v = 6. (N, = 2 x 10'em™2,

g = 50,000ecm?/Vs, T = 4.2K, a = 50A, B = 2.757T)
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Figure 7.36: The density of states at v = 3. (N, = 2 x 10'em=2, p =
50,000cm?/Vs, T = 4.2K, a = 50A, B = 5.514T)
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Chapter 8

Conclusions

8.1 Conclusions

We have performed several numerical calculations which have helped us look into
the structure of the density of states of a two-dimensional electron gas as affected by
impurities in an applied perpendicular magnetic field. We have looked at impurity
scattering in terms of the self-consistent random phase approximation with and
without an approximation of the “vertex correction™. \We have also extended these
models by including the self-consistent electron-electron interaction. In doing this.
we have calculated the dvnamic dielectric response function at large range of filling

factors. In this journey we have found:

e Static impurity screening produces models which have a semi-elliptic Landau

level shape especially in the high field. high mobility limit.

e When the simplest inter-Landau level interactions are included. the widths of
the energy levels are strongly influenced by the filling factor. Landau level
widths grow as the system approaches integer filling factors as fewer electron

states are available for screening.

e Adding a vertex correction which includes inter-Landau level interaction but
not inter-Landau level exchange over-estimates the reduction in screening (a

smaller magnitude of the polarizablity) and produces instabilities when Landau

levels cease to overlap.
e Spin is ignorable in the static impurity scattering models.
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e Adding dvnamic electron-electron interactions to the standard impurity scat-
tering picture. produces a density of states which is more consistent with low
to intermediate magnetic field results. At low magnetic fields the densitv of
states takes on a more Lorentzian shape which has been shown to work well

to predict the behavior of Schubnikov-de Haas oscillations. [18]

e At higher magnetic fields. the dvnamically screened model produces results
which are consistent with the self-consistent Born and many-site approxima-

tions.

e The electron exchange terms in the dynamic model provide a mechanism to
predict the large Landé g-factor enhancement which is seen at odd filling factors
in high magnetic fields. (Electron spin is not ignorable in the non-static model.)
The exchange term is driven by the relative populations of the electron spins
providing a positive feedback which serves to enhance the spin-splitting of the

Landau levels.

8.2 Extensions and Enhancements

There is certainly much more that could be done with this calculation. Due to time
constraints. we chose to only to deal with the density of states. Once we have a
good model for the density of states. the path to many more “physical” calculations

has been opened. Some of these include
e \We have not generated magnetic field spectra for the non-static model.

e The mobility in these calculations is a model parameter based on a simple

Thomas-Fermi screening at zero field. This could definitely be improved.

e Temperature dependence is also very important in these system. and there is a

wealth of information to be gained from studyving the temperature dependence.
e Adding the additional effects of a tilted magnetic field would also be interesting.

e Modeling of more “real world” systems could be achieved by including inter-

subband interactions and more realistic impurity distributions.
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e Calculation of the transport properties is a very exciting topic. considering the
importance of the Quantum Hall Effect to the solid state physics world. [t may
be possible to reconstruct the Greens function from our calculation using the
G~ (E). the unperturbed wavefunctions. and careful treatment of the boundary
conditions. This would then allow for the calculation of the Green’s function

for the current density which would then allow for the detailed investigation

of the transport.
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Appendix A

The Electron in a Magnetic Field

A.1 Landau Gauge

Counsider an electron confined to a plane with a perpendicular magnetic field. The

Hamiltonian for this situation is given by

1 - .
Ho = —(5+ .4 (A1)
2m

o e

where we shall choose 1 to be in the Landau gauge A= B.rj Thus we have:

Hy, = L (mv + EB:J:j) ——1— (mv + gB:rj) (A.2)
c 2m ¢

2m

o e ( B\? ,
_ )L <-h-\7- + —CEzsz:rP— + (5—) J;-)

2m dy c

A2 92 . ? iR o . lrn 22
= ihwel — + ~muir?
2dm \9zr2 dy? dy " 2

where «, = % is the cyclotron frequency. Now we can see that the Schroedinger

equation is separable and we can write the wave function as
L g ;
g =y L2e'P? (A.3)

where L is the width of the sample in the y direction. After making this substitution

we obtain

(_hz 02 h2p2

1 2 9
T a2 o hwepr + §mwcx ) vy = Ev, (Ad)
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Now let us make a further substitution of

.\':J:—-F-lﬁzr—p[2 (A.5)

Wecall= /- = ,/P—’g—: the magnetic length. Finally we get

()2+1n X ey = Evy (A.6)
’md\’ e e o

which we recognize as the Hamiltonian for the harmonic oscillator. We can now

define two operators

1 Jd
b v -
a = m( hO\ +m.4,r\) (A7)
1 d .
a = ﬁ (hb__{: + "lwc-\> (A.8)
(A.9)
We can then see that we can write the Hamiltonian as
h 0) ]. . fl“‘”(,‘
<3‘n—ﬁg+ 17.9 AY > = «q (L-&--—:_)— (A.10)
_ i he
= aa — 2
Thus. we have the commutation relation
[a. a] = hue (A.11)
Now we see that if we apply a’ to both sides of the above equation
. $ flu,'c $ :
a'|a'a + -5 vy = E(u'vy) (A.12)

. hw, .
(a‘a—fzu;c-i— _ )(u‘w,\-) = E(u'uvy)

(afa + h—?) (ufey) = (E + hwe)(uTuy)
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Therefore a' raises the energy state of the system. Correspondingly we can prove
that a lowers the energy state. Since the ground state cannot be lowered then we

expect that

avy, =0 (A.13)
Expanding upon this idea:
1 a .
\/?n‘ (ﬁa—\: + ﬂlwc.\) Uy, =0 (A1)
This vields the solution
Invy, = rr-;;;c X? + const. (A.15)
X2
Uy, = Hde a7

n

vy, = (af)" ey (A.16)
1

N\
= [ hl e " 1o 3T
= | Vam U ax T e e

Rewriting this slightly

i) e
vy, = Al—] ex= |e
An Vv2m

-=
n

L
= Ae [ a(.\'/l.)} ¢

..‘Ir

S (—ha_c.)f + m“,-,.\') e.'jl'j‘j! =
2

= AH(X/D)e 3
(A7)

where we have made use of Rodriques’ formula for the Hermite polynomials to obtain

the closed form. After normalizing we end up with the solutions

2

vy, = (T32%l) 2 Ho (X5 (A.18)

108




Which ultimately vields the answer

-—4:/(-—pllz

Uvp = (L2%n) 2 Hy(r/l — pl)e T P (A.19)

A.2 Symmetric Gauge

Let us now opt for the symmetric gauge. 4 = %i(—yi -+ rj). Now our Hamiltonian
becomes
P

B- <
Hy = ; [ﬁ'+ e——., —(=y1 + rj) (A.20)
1 c

o
|-

- = eB; & 2
= Dy + Dy, —C—(rpy —yp:) + ——5

| =

- P)

.+.

: 12

[RV]
3

(r* + .I/“')]

- P2 omu? 1
_L WC 2 —
Im + 8 y ) - 2*(:[-:

N

2
D mwy 5
e )
2m S )+

l

Let us define some new operators:

d = ¢i—m (<ipe + 552) (A.21)
a = \/;E (ipr + "’;%) (A.22)
b= ﬁ (—[py I q) (A.23)
b = 7—;—__—7; (ipy + m;cy) (A.24)

Remembering that [z.p.| = ifi and [y.p,] = ih we look at

|~

a'e = (—ipr + %ﬁir) (z’px—i- ’";.L) (A.25)
1 I (% .om mu?
= ﬁ(p;—zp:—z—r'ﬂpz S TPe + r')
1 P (5] mw?
= _2—5<p;+z—2—-[1: Pz + 461’)
1 ,  mw? hewe
T om (p =T )— 1
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Additionally. we see that

= — L) - .2
am \P* 7 7] 1 A-26)
so that we can form the commutation relationships
ﬁ“"l.‘ -
[(l. (lf] = —5— (:\.2! )
Fl.w'
f . c "
[p-0] = = (1.28)
Last. let us look at
th_ pt 1 . mee ) mwe .
aov—ba = _)Tn' —ip: + 5 L)Wy + D) Yy (A.29)
1 mw, oM,
“Im (“’py T ”) (’p‘ e I)
_ 1 5 mM&e .)_nlu.
= g7 (25 ey~ 25 )
= iS(rpy — ypr)
= i?L,
With these relationships we can now write
Hy = ala+bb+ 2L+ (A.30)
: ; - + ; fl..'.',-
= ada+bb+i(ba—ah)+ 5
o o hwe
= (aT + zb’) (a — ib) + —
- b,
— ot c
= u'u-+ 3
where now we have again defined two new operators
ut = (af +ib") (A.31)
u = (a-—1b) (A.32)
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Before we continue let us look at the commutation relation

[(afa +51b) . %L] = [(a'a+b'b) . (a' - bta)] (1.33)
= ab'[a’. a] + [b.bT]a’d — [a.a']bTa — bla[b'. b]
h, he hw . hw
_ f (o4 _ [ag f _ C f c
= ab 3 Qab ?_ba-+-b"r.z.2
= 0

Thus we have the result that the energy and the z-component of angular momentum

are simultaneous observables. Continuing with our commutation relations. if we now

look at
wu' = (a—ib) (af + ibf) (A.34)
= aa' +i(abl — ba') + b’
fl..u’ : & <o
= af b ¥ c 4Lz
-—aa+_)+bb+2+2[,:

= adla+bb+ *TL + A,

= ulu+ he,

we see that

[uf. u| = ho (A.35)
Now.
Hor = Evu (A.36)
(ufu + ﬁ?) v = Ev
u (uTu + E%) v = Fuv

hw
<uuf + ——C) ur = FEuv

<u7u + h,wc) (ww) = (£ —hwe) (uv)
Ho(uvw) = (£ — huwe)(uv)

111




So we see that u is an operator that lowers the energy of the state by A... We can

make a corresponding observation for u’ which raises the energy of the state by hw.,.

Since the angular momentum is a good quantum number what do these operators

do to effect the angular momentum of a state? We see

. Lev

_;_i (a*h — b'a) o

[-5 tw-r)]

u% (a— i;) (a'b—bla) v

_f_‘ [(afb ~bla)a—i(a'b—b'a)b+ i%(a - u;)] A
L (uv)

o (1.37)

[.v
l.ue
l.uts

[ (ue)

(l. — h)(ue)

Thus we see that the u operator also lowers the angular momentum by 4. We can

also see that u' raises the angular momentum by /. Now to calculate the ground

state of the system. Since we cannot lower the energy below the ground state then

Hlg = 0

so that

(a ~— ib)

1 . me, i . mee \ |
[m(%* 7 *‘) T (‘Py*T’/)_
L [ﬁ <ir - [_Q_) + m%(r —iy)

V2m | \9z~ 9y 2 o

1 . a i mw, |
(G- tw)

where we have now changed to cvlindrical coordinates using

rcosf

rsind

Lo

Lo

L'g

g

(1.38)
= 0 (A.39)
= 0
= 0
= 0
(A.40)
(A.41)




d Jd 1. d
cosO—a—r - ;sm 0705
.0 1
5; = sin 05? + ;cos 9;9;

In cvlindrical coordinates. we also see that

: d d ., 0
L_- = *l’.l (Ia—y - l]a'?> = —Ifl('.-ja

Thus we can decompose the wavefunction as vy = vyt so that

L: U = l:t.
L 2L = [: Lgl'y
L.vg = Iy
., 0
—lha—e = l:L'o

(A44)

(A.45)

Therefore we have the solution for v using the periodic boundary conditions that

L = eil;O

(A.16)

with /. an integer. Since the electron has a negative charge. the electron is counter-

rotating with respect to the magnetic field. Thus. it is advantageous to talk about

negative angular momentum. With this in mind. let us set m. = [ so that

Lp = e—im;@

Now. substituting this result into the above equation we get

2 ar r 06 2
d hm. mw,
_——-— v
or r 2 ro
This equation now has the solution:
mwe
Inv,g = m.lnr— Tf-_l—r‘ + const.

0

(A.AT)

(A.43)

(A.49)
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mwe .2
tyg = ArMe T w T

Thus the ground state solution for this svstem is

L _meer -
to = ArMre T el (A.50)

Now let us use a form of the raising operator to generate the wave function in general.
\We could be tempted to use u' by itself. but as we saw this also increases the angular

momentum. Hence. let us develop another related operator.

q=re* (A.51)
Now. obviously
Gl0m. = L0m.~1 (.‘\')2)

so that this operator lowers the angular momentum of the ground state wavefunction

(and therefore increases m..) Let us proceed by considering the operator

(uf)nq" = [—i (—hg; - -{?% + rn;;cr)}" [re"o]" {A.33)

2m

Though let us first generate another related operator defined as

g=rte™” (A.54)
We find
et! 9 thd  mu N N
2m (_hEF o8 2 r) [rte | = (A.35)
I Al —1 19 th (- d me.
T V2m | ror) T\ ' a8) T 2
i0 A s
_ [.-10]|_¢© L0 hd me -
B [r © ][ 2m ( har -8 2 r)] (.56)
Putting this another way
[u'.4] =0 (A.57)
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Thus we can transform the operator:

with

ug=1a" =

L

2m

Now we may rewrite our newly constructed raising operator as

()"

All together we have

L'n.rn;

(&) = («'9)" @ (A.58)
= (@) ¢ (A.60)

- (@)
(A.61)

_a\n
= (uT) r<" Com.

n R X Mee 2 o
— (MT) :11'(')n‘m:)€_ T e im.4

Our goal now becomes to simplify this expression to something that we know. To

continue. let us make a variable substitution

Using the transformations

we transform af to become

a' =

S

_ m...'.'c _)
T 2h
2h
s2
mw.
9 M&e L 6
Z §2 —
2h Jds

(A.63)

(A.64)




so that now

n

\’.4.'2 C) 1 nem, s
U, (5) = [ e (—.— - Li+,—) AT g emmed (A.66)

Now if we rewrite this slightly as

Unom. (8) = (A.67)
- n
—mz s m: s mw? 17, 1 04_1 _ms s
= $ TexlsTe ? —_—— — ——+ ]| s T e?
2 ds 2598 2
% Isno-m:e s —xm.-0
r P n
~m: s m: s mw? 7, m; 1 _m: s
= S 2 e s 2 e 2 _——— — — —_ S T e
2 Js DS 2
X _llﬂné-m:e-s —tm.0
5 n
_m s J . s i
— T3 el (_5_) Afsn‘m:e Se im.-8
L)

_ r -3 2 R f M o) —im:0
= A'sTTer(—1)"nls™e L (s5)e™"

= A'(—l)nnls%e—%LT’ (s)etm=0

Where we have used Rodriques’ formula for the associated Laguerre polynomial to

obtain the final result. Now. if we substitute s back into our result we get

. ( _ Mie o = —Z22r? rme Mue 3y _im.g
Ln.m:(r-e) —-{n( 2 I') e R [‘n ( oh r )6’ (.\68)

Writing this in terms of the magnetic length l; = |/ —":—‘; and normalizing the wave-

function we finally obtain

n! 3 P2\ T r2o-
e 9 — S — ; Lm_ — TH —im.8 AL
cnms(7-6) (QTlé(r;.-i-m)') (215) e e (4.69)
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Appendix B

The Matrix Elements

B.1 Calculation of the Matrix Elements

[n order to consider the interactions between Landau levels. we must consider the

matrix elements (\Vple'¥™|.V'p’) where

RO,
2,2

Unplr.y) = LT3 (2V NIzl "2e— 70 Hy(x/l = pl) (B.1)
and Hy(r) is a Hermite polyvnomial of order N. Thus we have

Mypyy = (Nple]
= / dr / dlj elq.'FU,\'p ( F‘) U'Nrp (F)

- 0

/

L—ge—ipy(g—'\'.\fgﬁ%[)‘%e; T H_\—(r/l—pl)}
1 pl

% [ —%eip'y(g.\"-\rl!h_; )‘%e_.:.:l‘_‘ — H_\'(.l'/l _pll)]

L .
= [ dy%(?‘V*'\'_\'!,\"!71'12)'%e‘("""’y”'p-”""”’
x 0

—iz/l=ph)* = (x/1=p'1)>

X e 7 Hy(x/l — pl)H\+(x/l = p'l)
L , o,
= (K/L)/ dy e'lay—p+p")y
0
9 /oc d i Ie —(z/l=ph? —ix/1-p' D2
re'’ 2
-

x Hy(x/l — pl)Hx(z/l - p'l)
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. - - T . . 1 - . .
where we will let A" = (2¥*V VIV'I7/2)~3. Now if we perform the integral over v.

then we have

Mypxy = K& (q—p+Dp) (B.3)
X /oc dxe[iq.-r‘?;”(t’*p’)-(e;';"_ﬂp_'-;ﬁ)J
X H\(.L‘/l Pl H\ (I/f
= KNd'(q p~i—p)/cc (l.ze‘i—ﬂ:!/_,{_:M,:
5 —x
xe(L;L’)-eiq:(E‘}",)e —"‘I_:F’ -p’*:p:.

x Hy(z/l - pl)H (/] —

= KN (q,—p+pe q:-(%&)e—%

(21—21)" 22 e p2?)
- B3 _p TEpTiv)
X e € :

x /_  dr Hy(c/l — pl)Ho (£l

Now let us make a change in variables letting r — & + 2-=EL=9:L 56 that now we
have
. a212 iqel? L“.&I _ El:g’: :
.‘[4\’},”\’:[,/ = K O'((Iy — p-*—pl)e‘_l%e ¢ ( : )e ( 2 ) (B'_“
x e oy pl—pl—igl
X dIeTH_\'(% + p [)-) s )
[ —p'l — iq,l
(L4 AP

Now we see that the arguments of the Hermite polynomials may be rewritten so that

_.ﬁ '_y_

Mypay = K&(g,—p+p)e et () 2 (B.3)
b / dIe—TTH‘\'(I/l —a"YHy (r/l + a)
-2

—p'l+ig:l _ qui~+igzl
2 - 2

where a = & taking into account the delta function. From a table

of standard integrals we find that

/ T AX e Hy(X + a)Ha (X +b) = (B.6)
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1N V- N
722V ¥ ANLT M (~2ab)

for vV > M. Ultimately we obtain the result

1ol

().‘(qy _p+p’)eiq’l;‘(2:-'!i)(,_fl‘l

RALILS /).
Myp vy = (T) 1 (B.7)
. ‘\—, ~ - . / n-—m 2 2
y (51gn( :)qyl + qul) L g_é)

where n = max(.V. V') and m = min(.V. N'). Furthermore. we can substitute £e*

for s—ig—'l(—i\;’—“—%;l&‘i:ii”—l. so that we have
1
n=mmI\ * art?(232)
.‘[.\-p._\vp/ = (T) i) ((Iy—p-f-[)’)(’l ( 2 )el(ﬂ mjo (BS)

. n—m RN
_22 fql -
X e 4 <?) an rn(T)

m'\?_, w2 B2

= (7> d*(g, —~p+pe ()

2.2 P\ a2l
x ez(n—m)oe—’T— (QT) L;;l—m( [.) )

with o = arctan(%)sign(.\” - N).

B.2 A Look at (¢ — p)

We have used the notation ¢*(q — p) for the delta functions in our calculation of the
matrix elements. This is to indicate that thev are not necessarily the function we

are familiar with. Let us use the definition:

. 1 L
0 (q—p) = f/o dy e 9=PW (B.9)
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Let us examine some of the properties of this entity. First let us take the case where

2 . : :
p = == where n is an integer. In this case we have:

L
Lildy =1. if g =
rJo @Yy = g =
Ve at )L _
Pla=-p =y G =0 lfq—“" (B.10)
edta—piL | _ erql _ . h .
a-p) = da-pm Ot erwise
So. if p and q are multiples of 2%.
(4= P) = 0ap (B.11)

where 0 is the Kronecker delta function. If ¢ is between these values this does not

hold true. However. if we look at

2 L )
/ dq%/ dy e"7PY f(q)
_ "‘/ dy F(y)e~" (B.12)

/_z dqd™(q — p) f(q)

where F(y) is just the inverse Fourier transform of f(q). Notice that this essentially
reconstructs the function f in a periodic manor as this represents the Fourier series
for f(q) over the region [0. L]. Then. if L get large. 6*(¢ — p) approaches the behavior
of the Dirac delta function except for the prefactor %’ This turns out not to bhe
a problem. if there is another factor to essentially cancel this dependence. This
happens quite frequently in our Green's functions calculations where there is are
factors of % which multiply the expression. The integrals over the v- momentum
sums combined with the integrals over the x component of momentum are then
responsible for the somewhat mysterious appearance of the factors of 27'

Before we end this discussion. let us look at two further properties of this delta

function:

X
/ dg2d* (g2 — p)d(g—q) = / dq:—/ dy, "%~ ”“‘—/ dy, €979

= 77/ on/ dql/ du)e"l-(J.‘—yl) —tpYL p1qY2
27

= T [ dn [ duadtys - yemion e
= Jo 0
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and
; . 1 /L ‘ 1 /L
YD &g-p)p—q) = ZP:Z/O dy, e““"””‘zfo dyy !PT
_ .L/L ([1/1 /L dl/-) ei(qyl~q2y2)zplp(y2—y”
L2Jo 7" Jo 77 ;o

1 rL L .
= f/o d'ylfo dys " TR 5 (yy — yy)

1 L 1(q—q2}y
- duyy e4—92)y1
1;/0 yre

= 07(q— @) (B.14)
where we have used the fact that
1 ; kd ;2zn
T Zem(y:—yz) —~ Z et T (mm) — My2 — y1) (B.13)
p n=0

is the Fourier series of a Dirac delta function.
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Appendix C

Feynman Diagrams for a 2DEG in a Magnetic

Field

Feynman diagrams are extremely useful for associating the phvsical significance of

a Green's function equation with the underlying equations themselves. Here we

will enumerate some of the rules associated with the particular Green's functions as

developed in this work. To begin we can make the following associations:

N

1
E: N

1 TN

(V]

-

q
lf\ACN,?Q
q

STINPWGN(E)(Npls (C.1)
p

aq T
‘;e(Fl —_ _tl) = / (‘):)2”((1 UGS (C.).)

L.I((Deuf-(ﬂ—ﬁ.) (C.3)

The rules for a simple diagrams with two external vertices end up as follows:

1) Label all vertices.

2) Identifv the external vertices. If each of the external vertices are connected

only to one electron propagator. then this diagram is dependent on Energy

and the Landau level index. If the external vertices are connected to a pair

of electron propagators or a potential propagator. then the resultant diagram

depends on momentum and possibly energy.

3) Include a factor of —1 for all electron loops.




4) Take the impurity average of all F,. (This introduces a factor of .V; for each

diagrammed impurity and provides restrictions on the momenta.)
3) Sum over all internal Landau level indices.

6) Integrate over all internal energies. (For the Matsubara temperature Green's

functions. sum over all internal Matsubara frequencies.)

Alternatively one can use the representation:

{‘l = VNidag... (C.4)
] === 23 = 3 Gy(E) (C.5)
E: .\/ p
1 PRy 2 .
NiprNVapo q NapsNaps = U(@) My py Naps (§) Myspanips (=) (C.6)
1 ANANANX (J-F -
Nipi Vapa (T Fa = L"I(q-)J[.\'xpl-\'zp-_'(q-‘)e_lq ” (C i )

In this formulation. the rules for a simple diagrams with two external vertices

end up as follows:
1) Label all vertices.

2) Identifv the external vertices. If each of the external vertices are connected
only to one electron propagator. then this diagram is dependent on Energy
and the Landau level index. If the external vertices are connected to a pair
of electron propagators or a potential propagator. then the resultant diagram

depends on momentum and possibly energy.
3) Include a factor of —1 for all electron loops.
1) Integrate over all 7,.
5) Sum over all internal Landau level indices.

6) Integrate over all internal energies and momenta. (For the Matsubara temper-

ature Green’s functions. sum over all internal Matsubara frequencies.)




Appendix D

Hermite Polynomials and Their Integrals

We will start with the Hermite polvnomials as defined by Rodriques™ formula as

i[?_(e—rz)

Hu(z) = (—=1)"e™
dr?

First we see that there is a parity to the Hermite polvnomials:

: d"
Ho(=1) = (=1 o—(e™ )

d(—r)

n g I
= (-1 (=) (e ™)
= (—1)"Ha(x)

Now from our definition:
. d" 5
—(—z)? —(—1\" —(—r)?
e Hu(r) =(-1) d(—r)“(e )

and using the fact that

T e =3 (7) sgno

RN ¢4
dr =0

we see that

Hpin(z)e™ = (-1)"

(D.1)

(D.3)
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n

= (=03 (§) (FUEH HE e

k=0
so that we finallv we end up with the identity:
" /n

Hpon(2) =3 ( A ) (—1)"* Hy (£) HO 9 (1)

k=0

(D.6)

\We now can use this formula along with Hy(x) = 1 and H,(r) = 2r to generate two

important relations for the Hermite polynomials. The first is
. /n y Nk
Ho () = ) (L) (=) *He(x)H" M (r)

k=0
n

== Z (Z) (—I)n—k[‘[k(.l')(l]-)("—k)

k=n-1

= 2rH,(x) —2nH,_(r)
and the second is

_ : yi=k (L—k),
Hiom(r) = Z( ) He(o)H ()
Ho(£)Hi () — Hly(2) Holx)
= 2rH,(r) - H, (r)

Additionally we see that if we combine these two expressions we obtain
H!\(z) = 2nHo_y ()

Now using this equation recursively we obtain the relation

26 n!

(n —k)!

Hr(ik)(l') = Hn—k(-t)

and using our above equation with z = 0 we get

(n— 1"

mHn-'ll(O)

H.(0) = =2(n — 1)H,_»(0) = (-2)'

(D.9)

(D.10)

(D.11)



Substituting Hy(0) = 1 and H,(0) = 0. we see

(—2)%(3 - 1), neven

H,.(0) = { (D.12)
0. n odd
Combining these results. we get
2k n! Y2k n—k . .
H,(l“(O) — (—n:k—)'(—z) 2 (_2_ - 1)'!. (n — lm) even (Dl3)
0. (n — k) odd

Now we may write the Taylor expansion of H,(r) about xr =0 as

n

n-k _nek ! -k _1\n—k
Ho(x) = 3 (-1 2% L )W(” - £ (_____1+(.)1) )J-" (D.14)

o (n—k

which may alternately be written as

z onld-nn o
Hn(l‘)) = 12:(:)(—1)12 lml’ t (D].'))

_ : 1\ n- 9 yn—2l
= LUy

Now that we have these few tidbits under our belt. let us take a look at integrals

of the form

[ e = [dr=nre) (D.16)

= [Hn—l(I)e—Iz]x

e

{0. n>0
V7 n=0

We can use this result to look at the orthogonality property of H,(r). Let us start

with x
I= /d:ce“’“an(:r)Hm(.r) (D.17)
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We proceed by again using Rodriques’ formula and then integrating by parts such

that
x an ,
[ = _/ dr (=1 2= (e™™) Hu(r)dr (D.18)
n ! _r? >
= [(—1) Hon() 7€ )]_x
—!—/dz(-l)" i ——(e"F)H' (1)
I drn-1
= [Hu(2)Haoi(2)e /dan () HY ()

= 2nl/d.L'Hn—[(l')Hm—l(I)

[f we continue this process we obtain

2"m!

/ dr Hy_n(2) (D.19)

(m—n)!
-

Now we use our previous result to obtain

Mpl/w. n=um
vE (D.20)

/ dr e Hy(r)Hp(r) = {O n#m

Now let us try

[ = /dxe 2l (r + a)Hm(z) (D.21)

Using the derivative properties of the Hermite polynomials

x

oI 20

— e . —:-— ').)

- 4 dze ™ o (Hy(z + ) Hp(2)) (D-22)
= 9n / dIe_Ian_l(-L' + a)Hm(I)




8"[ an_ x .
dak (n— "’)!_4 dre n—k(L +a)Hp(r) (D.23)

Now let us use a Taylor expansion about a = 0 so that

x ;)kn' < .
= -_— re-% (r £ 5
f Lgu k'(n — k)!:£ dre n-k(r)Hp(r)a (D.24)

The only non-zero term in this sum is when n — & = m so that

x
» )n m,1|
/dxe"" Hy(r+a)Hn(x) = (n—_T)'r—n—'V"m’\/_a" m (D.23)
2nn!
= ——V7a"™ "
(n —m)!

with the condition that n > m. We come finally to the last integral which we use in

calculating the matrix elements:
[= [ dee = Hylz +a)Hn(r +b) (D.26)

Again using the derivative properties of the Hermite polynomials we can write

¢ Am! »
g—% = e /d.re T Hp(r+a)Hpy,_(r +b) (D.27)
[ At 3
% = m /dre TH(r+a)Hpn_ (1)
b=0
_ )1m| Mn \/:an_(m_”

(m—-Dt(n—(m- 1))

Again expanding in a Taylor series this time about b =0 we find

- _2m! 2"n! n—(m—10)
= 7"’ —(m— .2
! Z%(m“l)!(n—(m—[))!l! @ b (D.28)
= m!n!
P ‘)n n—m
2 Y T = (=D )
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- !
(n+ (n—=m))! (—2ab)!

_  _j=9n,n-m S —1)
= Vr2la mlg( 2 (m—D'm+(n—m)~{(m-1)U"

After comparing this sum to the standard table we find that it becomes a Generalized

Laguerre polvnomial so that
o o
/ dr e~ Ho(x + a) Ho(r +b) = /72 a" ™ m! L"=™) (—2ab) (D.29)
-

provided that n > m. In the case that n < m we can exchange the roles of the two

polvnomials so that

[ dre = Hy(r +a)Hp(z +b) = /Z2m™ "nIL{m=")(—2qb) (D.30)
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Appendix E

Kramers—Kronig and II(w, q)

Starting with the expression for [I(iw. q)

NV

[~z [~ dyavr@avan B2 L g o

We can now rewrite this expression in term of the Greens’ Functions as

H(iq}.

) =
T Peo) B[ dr Ay (0)Gale + i) (2)

+ / dy Ax o (y)G v oy = u)f(y)}
S Pew)P [ defe

NV

X {Av o (r)Gro(r +iw) + Axg(r)G o (r — i)}

(E.1)

Now performing the analytic continuation. we let iw — & + id with ¢ — 0 so that

H(w‘. q)

= Z [-"-’.\:.\"(‘I)I2 /_i dr f(r)

NV

x { Ay o (£)GR L (r + i) Ay o ()G oo (x — i)}

Now from the Kramers-Kronig relations we have that

GR(.’L‘

GR(y) = ——/ dr P

(E.3)
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G(r)

r =Yy

GMy) = é/_x dr P (E.5)

If we apply these to our expression for [I(.. q) we obtain
o< [I o,
[ P—(~i) = (E.6)

= [T s el [ e s

—x =Y v

x { Ay (2GR (2 +2) + 4 \-.,,(r)G-:-,_,,,u- — )

= Zl‘[\\((ll/ dr f(r

NNV

GR
x{A,\-, /dw ”":)

A (e
+ :l_\'.a(z)/ dw PG‘\ i (_Iy )}

= Zm\\m/ dr f(r

AYA Y

{ vt [ G—_I—_),
e G, (L

+ Ay (2) / dw-P“—"’”(i}

—.b', + I — Yy
= Z I,\[,\'__\"(q)lz /_Z dr f(r)

AT

x{ Avor(2) (-2) G o+ )
— Avolo) (5) Gt - y)}
= (-3) pORRIAC] [ drs
x { Axr 0 (2)GR (2 + y) + Ano(2)GY (2 — )}

= (—%) (y.q)

Thus we have our final result:

[I(w. q)
W=y

T oC
[I(y.q) = —7 /_deP
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By separating the real and imaginary parts we end up with the following two ex-

pressions
mMl(y.q) = —l/x de P ﬂf—(’—) (E.8)
Rell(y.q) = = / [’“” (ft(.q) (E.9)
< =Y




Appendix F

Calculating the Fourier Potential

We have have a two dimensional potential that looks like

which we can express in cylindrical coordinates as

e'.’ ptdT cos g

2w x
. :—/ d9/ dr
(@) K Jo 0 " r\/r'~'+a'-’

Performing the ¢ integral first and using the identity
[ dgete? = 2m1o(0)
0

where .Jy(b) is the zeroth order Bessel function we arrive at

2we? < rJo(qr)

1(a) = Ak LT
@ Kq Jo Vri+a?
Proceeding. we make the substitution r = gr vielding

2re? < z.Jo(r)

() = == _Ed)
D=~ h “Imrga
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Now using the fact that

< rJo(r) b -
Bt h Sl . F.
/(; dr e e (F.7)
we have _
2we?
V(q) = e ™ (E.8)
kq

F.1 Proof of the Bessel function identity

We wish to prove the relation (F.4)

I
ho
=
SN
oty
[~
-

2n
/ df Pib cos §
0

Using the series expansion for

we find that our integral becomes

lb(osﬁ)

/ 40 00 = / 9 Z (F.10)
0 m=0
Exchanging the sum and the integral we find:
/ZKdee‘bcmg = i gbl"_/z: df (cosB)™ (F.11)
0 = m! Jo
Now n
27 9~ (1 m .
/ df (cos®)™ ={ =" (3)" (). meven (F.12)
0 0. m odd
so that

/Of df (cos)™ = i ((lzbr)l”;l [‘27’ (é)zn (_):)] 1)

134




since we recognize the series for .Jo(h)

1 b*\"
e (-T) (F.14)

=Z(
n=0

F.2 The second integral

Deriving the second integral relation requires a bit more trickery. Ve begin by

defining the following three functions as:

x r.Jy(r)dx

0 Vr?+a?
> Jy(r)dr
. - 0 (F.16
@ = Ueva ’

< rJ§(xr)dr

u(a) =

. = kil Sl (F.1
w(a) 0 Toro 1)
The zeroth order Bessel equation may be written in the form
rJo(x) + Jy(r) + xJg(x) =0 (F.18)
Therefore we find the first relationship that we are looking for. namely
< rJo(r) + Jy(x) + xrJy(r)
+o(a) + wla) = / ir F.19
u(a) + v(a) + w(a) | W= d.t { )
= 0
In addition we know that
/ Jo(z)dr = 1 (F.20)
0
so that we find our second relationship
el —_ —qa. 7 (
8_u+aL = / dr aI]O(z) ajO(l{) (F.21)
da (z+a?)? (r+a?)?

_ / da: [ a/o( ) ]
[ aJo(l') J
Vz? +a?],
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Last. we find that

o /oc . [——a".]o(.v) 2 (I‘)J
v 3

(z*a2)?  (r-a?)
_ -~ i rJg(r)
= /0 dr P [———___1_2 +a2}
[ r.Ji(x) ]"

0
= 0
since
Ji(r) = —=Jy(x)
Ili_{r;./,,(.t) =0

All together we have the syvstem of equations

u+v+uw = 0
du
— +1 = 0
da+ae+
drv
——w =0
ada w

Taking the derivative of (F.27) we have

d?u dv
+a—+v=0

da? da

Now substitution in (F.26) and (F.28) we have

d?u wt d*u
—t+wtyv = — —
da? da?
= 0

(F.23)
(F.24)
(F.25)

(F.26)
(F.27)

(F.28)

(F.30)

(F.31)
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The general solution to this equation is
u(a) = de™" + Be" (F.32)

with 4 and B as arbitrary constants. Now we realize that

x rJo(r)dr

O=) Vo

- /°° Jo(r)dr = 1 (F.33)
0

Also. we see that
rJo(r)dr

A e = e

We find that the choice of 4 = 1 and B = 0 fulfill these boundary conditions. so

=0 (F.34)

that we are left with

u(a) =e™ (F.35)
Thus we have proven
x r.Jo(xr)dr N
—_— = F.36)
/o vVrI?+a? ¢ (
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Appendix G

Program Listings

The Fortran 90 code that follows is the result of a long history of revisions. [t
originally started as a Fortran 77 code. Therefore. it still shows a little bit of its
history and has deliberately been left in somewhat raw form as various pieces are
added and removed. This particular product is a merger of several versions which
included different physics. This allowed for a more consistent treatment of the
different models. This was made possible by moving to Fortran 90 which allows for
modules that superseded the old common block methods. Along with the program.

we have included the Makefile and a sample input parameter file.

G.1 Dbesselj0.f90

! A function to calculate the Oth order Bessel function

This function uses either a Taylor series or an asymtotic
series depending upon the value of x. Note the optimal
cutoff was determined empirically as approximately 12.7.
These series were obtained from the CRC Mathmatics Handbook

FUNCTION jO(x)
! TOL is a local parameter

USE scondo_consts
! .. Function Return Value ..

REAL (wp) :: jO
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! .. Parameters ..
REAL (wp), PARAMETER :: tol = 1.0E-16_wp

! .. Scalar Arguments ..
REAL (wp), INTENT(IN) :: x

I .. Local Scalars ..
REAL (wp) :: ival, jval, kval, oldterm, psum, gsum, &
sum, term, val, z

! .. Intrinsic Functions
INTRINSIC abs, cos, sqrt, sin

LA

! Choose either the Taylor series or the asymtotic series
IF (abs(x)<12.7E0_wp) THEN

! This is the Taylor series
z = ~0.25EQ_wp*x*x
ival = 0.0EO_wp
term = 1.0EO_wp
sum = 1.0EO_wp
! Calculate and sum terms until sum changes less than tolerance
DO WHILE (abs(term)>tol*abs(sum))
ival = ival + 1.0EO_wp
term = term*z/(ival*ival)
sum = sum + term
END DO
val = sum
ELSE

! This is the asymtotic series
z = ~1.0EO_wp/ (64.0EQ_wp*x*Xx)

ival = 0.0EO_wp
jval = ~1.0EO_wp
term = 1.0EO_wp

oldterm = 2.0EQ_wp
sum = 1.0EO_wp
! Calculate first asymtotic series until terms diverge
DO WHILE (abs(term/oldterm)<1.0EO_wp)
ival = ival + 2.0EO_wp
jval = jval + 4.0EO_wp
kval = jval - 2.0EO_wp
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oldterm = term
term = term*z*kvalxkval*jval*jval/(ival*(ival-1.0EO_wp))
psum = sum
sum = sum + term
END DO

ival = 1.0EQ_wp
jval = 1.0EO_wp
term = -0.125E0_wp/x
oldterm = 2.0EO_wp
sum = term
! Calculate second asymtotic series until terms diverg
DO WHILE (abs(term/oldterm)<1.0E0_wp)

ival = ival + 2.0EO_wp
jval = jval + 4.0EO_wp
kval = jval - 2.0EO_wp

oldterm = term
term = term*z*kvalskval*jval*jval/(ivalx(ival-1.0EO_wp))
qsum = sum
sum = sum + term
END DO

! Combine series results with asymtotic expression
z = x - 0.25EQ0_wp*pi

val = sqrt(2.0EO_wp/(pi*x))

val = val*(psum*cos(z)-qsum*sin(z))
END IF
jo = val
RETURN

END FUNCTION jO
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G.2 besstab.f90

! Subroutine to store table of Bessel functions
! in order to save calculation time

SUBROUTINE besstab(bessval,nqpts,qgsize)
USE scondo_consts

! .. Scalar Arguments ..
REAL (wp), INTENT(IN) :: gsize
INTEGER, INTENT(IN) :: nqpts

! .. Array Arguments
REAL (wp), INTENT(OUT) :: bessval(:,:)

! .. Local Scalars ..
REAL (wp) :: gs2, tmp
INTEGER :: i, j

! .. External Functions ..
REAL (wp), EXTERNAL :: jO

t _. Intrinsic Functions ..
INTRINSIC float

gs2 = gsizex*qsize
DO j = 1, ngpts
tmp = float(j-1)*qs2
DO i =1, j
bessval(i,j)
END DO
D0i=1, j
bessval(j,i)
END DO
END DO
RETURN
END SUBROUTINE besstab

jO(float (i-1)*tmp)

bessval(i,j)
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G.3 Dbigw.f90

! Subroutine to calculate W(N,L,N,L;q)

! which is the vertex coupling. Note that the
! approximation used here ignores inter-Landau
! coupling in the vertex correction

Variables:
upotsq - The square of the potential as a function of q
bw - W(N,L,N,L;q)
nimp - The impurity density
qsize - The momentum spacing
nqpts - The number of momentum points
nllev - The number of Landau levels

SUBROUTINE bigw(bessval,bw,upotsq,pjelem,ngpts,gsize,nllev,nimp)
USE scondo_consts
! .. Scalar Arguments
REAL (wp), INTENT(IN) :: nimp, gsize
INTEGER, INTENT(IN) :: nllev, nqpts

! .. Array Arguments

REAL (wp), DIMENSION (:,:,:), INTENT(GUT) :: bw
REAL (wp), DIMENSION (:,:), INTENT(IN) :: bessval
REAL (wp), DIMENSION (:,:,:), INTENT(IN) :: pjelem

REAL (wp), DIMENSION (:), INTENT(IN) :: upotsq

! .. Local Scalars
REAL (wp) :: fact, jnl, p, val
INTEGER :: i, j, 1, n

! .. Local Arrays
REAL (wp) :: jnl2(nllev,nllev)

! .. External Functions ..
REAL (wp), EXTERNAL :: jelem, melem

! .. Intrinsic Functions ..
INTRINSIC float




bw(1:ngpts,1:nllev,1:nllev) = 0.0EO_wp

IMIC$ DO ALL AUTOSCOPE
DO j = 1, ngpts

p = float(j-1)*qgsize
val = p*upotsq(j)

DO n = 1, nllev

D01 =1,n
jnl2(1,n) = pjelem(j,n,n)*pjelem(j,1,1)*val
jnl2(n,1) = jni2(1,n)
END DO !1
END DO !1In
DO 1 = 1, nllev
DO n = 1, nllev
IMIC$ GUARD

bw(1l:nqpts,n,l) = bw(l:ngpts,n,l) + &
bessval(l:nqgpts,j)*jnl2(n,1)
!MIC$ END GUARD
END DO !'n
END DO !'1

END DO !j .
! Xie, Li and Das Sarma have an expression equiv. to
! bw(n,1,i)=bw(n,l,i)*qsize/(2.0d0*pi)
! but it was determined that they missed a factor of

! the impurity density (here = nimp)

fact = nimp*qgsize/(2.0E0_wp*pi)
bw(1i:ngpts,l:nllev,1:nllev) = bw(l:ngpts,l:nllev,1l:nllev)*fact

RETURN
END SUBROUTINE bigw
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G.4 chempot.f90

! A function to calculate the chemical potential
! (Fermi energy) by integrating the density of states
! and using a binary search

Variables:

dstat - The density of states
esize - The energy spacing

ns - The 2-D density

lopot - Low potential estimate
cutoff - The cutoff value for sum
sum - The integral sum

FUNCTION chempot(dstat,nepts,esize,ns,beta)

USE scondo_consts

. Function Return Value ..

REAL (wp) :: chempot

. Parameters ..

REAL (wp), PARAMETER :: tol = 1E-10_wp

. Scalar Arguments ..

REAL (wp), INTENT(IN) :: beta, esize, ns
INTEGER, INTENT(IN) :: nepts

. Array Arguments

REAL (wp), INTENT(IN) :: dstat(:)

. Local Scalars
REAL (wp) :: besize, betae, cutoff, esfact, estima, &

hipot, lopot, sum
INTEGER :: 1, nmax

. Intrinsic Functions

INTRINSIC exp, float, int, min

cutoff = ns/esize
besize esizexbeta

|
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lopot
hipot

OEO_wp
float (nepts-1)*esize

DO WHILE ((hipot-lopot)>=tol)
estima = 0.5E0_wp*(lopot+hipot)

esfact = beta*estima
sum = OEO_wp
nmax = min(nepts,int((80EO_wp/beta+estima)/esize))
DO i = 1, nmax
betae = float(i-1)*besize -~ esfact
sum = sum + dstat(i)/(exp(betae)+1E0_wp)
END DO

IF (sum>cutoff) THEN
hipot = estima

ELSE
lopot

END IF

estima

END DO

chempot = estima

RETURN
END FUNCTION chempot
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G.5 densos.f90

! A subroutine to calculate the density of states
! from the imaginary part of the Green’s functions

! Variables
! grnfi - Imaginary part of the Greens fcn
! dstat - The density of states

SUBROUTINE densos(dstat,grnfi,nepts,nllev)

USE scondo_consts
USE scondo_spin

! .. Scalar Arguments
INTEGER, INTENT (IN) :: nepts, nllev

! .. Array Arguements
REAL (wp), DIMENSION(:), INTENT(OUT) :: dstat
REAL (wp), DIMENSION(:,:,:), INTENT (IN) :: grofi

t .. Local Scalars
REAL (wp) :: fact
INTEGER :: i, j, sp
fact = -0.5EQO_wp*gs/(pi*pi)
dstat(1l:nepts) = OEO_wp
DO sp = 1, spinstates
DO j = 1, nllev
dstat(1:nepts) = dstat(l:nepts) + grnfi(l:nepts,j,sp)
END DO !j
END DO 'sp

dstat(1:nepts) = dstat(l:nepts)*fact

RETURN
END SUBROUTINE densos
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.6 findener.f90

! A subroutine to find the energies of the levels
! from the Greens Functions using various methods

SUBROUTINE greng(grnfr,grnfi,esize,eoff,nepts,nllev,magfield)

USE scondo_consts
USE scondo_spin

! .. Scalar Arguments ..
REAL (wp), INTENT(IN) :: eoff, esize, magfield
INTEGER, INTENT(IN) :: nepts, nllev

! .. Array Arguments
REAL (wp), INTENT(IN) :: grnfr(:,:,:), gronfi(:,:,:)

! .. Local Scalars ..
REAL (wp) :: cume, cume2, e, ecross, oldval, temp, vmax, cumesq

INTEGER :: i, j, sp

! .. Intrinsic Functiomns ..
INTRINSIC abs, sqrt

WRITE (73,1) magfield
DO i =1, nllev
DO sp = 1, spinstates
ecross = OEO_wp
vmax = OEO_wp
oldval = grnfr(1,i,sp)
cume = OEO_wp
cumesq = OEO_wp
cume2 = OEO_wp
DO j = 1, nepts
e = float(j-1)
! Zero crossing of the real part of the Green’s function
IF (oldval*grnfr(j,i,sp)<=0EO_wp) THEN
oldval = grafr(j,i,sp)
temp = abs(grnfi(j,i,sp))
IF (vmax<temp) THEN
vmax = temp
ecross = e
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END IF
END IF
! Calculate mean value of the energy and the RMS value

cume = cume + exgrnfi(j,i,sp)
cumesq = cumesq + exe*grnfi(j,i,sp)
cume2 = cume2 + grnfi(j,i,sp)

END DO

cume = cume*esize*esize

cume?2 = cume2*esize

cumesq = cumesq*esize*esize

ecross = ecross*esize

WRITE (73,1) ecross - 0.5EO_wp*esize - eoff - O.5EO_wp
WRITE (73,1) (cume/cume2) - eoff - 0.5EO0_wp
WRITE (73,1) sqrt((cumesq/cume2)-(cume*cume)/(cume2*cume2))
END DO !sp
END DO !'i

WRITE (73,%) °’ °’
1 FORMAT (1X,E12.6)

RETURN
END SUBROUTINE greng
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G.7 findwdth.f90

! A routine to calculate the full width at half max
! of the individual Landau levels.

SUBROUTINE findwdth(grnfi,magfield,esize,nepts,nllev)
t .. Include Lines ..
USE scondo_consts
USE scondo_spin

I .. Scalar Arguments ..
REAL (wp), INTENT(IN) :: esize, magfield
INTEGER, INTENT(IN) :: nepts, nllev

! .. Array Arguments ..
REAL (wp), INTENT(IN) :: grnfi(:,:,:)

t .. Local Scalars ..
REAL (wp) :: hmx, mx, wdth
INTEGER :: i, j, lin, rin, sp

! .. Intrinsic Functions ..
INTRINSIC float, min

WRITE (74,1) magfield

DO i = 1, nllev

DO sp=1, spinstates
mx = OEO_wp

! Use min since we are really looking for -Im(G(E))
DO j = 1, nepts
mx = min(mx,grnfi(j,i,sp))

END DO
hmx = 0.5E0_wp*mx

! Find left half max

j=1

DO WHILE ((j<nepts) .AND. (hmx<grnfi(j,i,sp)))
j=3j+1

END DO

lin = j




! Find right half max

Jj = nepts

DO WHILE ((j>1) .AND. (hmx<grnfi(j,i,sp)))
j=i-t

END DO

rin = j

wdth = float(rin-lin)*esize

WRITE (74,1) wdth
1 FORMAT (1X,E10.4)

END DO !sp
END DO !'i

WRITE (74,%) ’ °

RETURN
END SUBROUTINE findwdth
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G.8 fourpot.fo0

! A subroutine to calculate the Fourier transformed

! potential from the dielectric function. It also

! creates the absolute square of the dielectic fctn.

! tfflag signals that the Thomas-Fermi result be returned

! Variables:

! upot - The potential

! upotsq - The square of the potential

! bigpi - The polarizability

! aimp - The impurity plane distance

! esqr - The E-M coupling constant (e**2)

! dieconst - The dielectric constant

! tfcnst - The Thomas-Fermi const for the polarizability
! tfflag - Signals to use the TF approx for the potential
! gsize - The momentum spacing

! nqpts - The number of Momemtum points

SUBROUTINE fourpot(bigpi,upot,upotsq,aimp,nqpts,gsize, &
dieconst,esqr,tfflag,tfcnst)

USE scondo_consts

!t .. Scalar Arguments
REAL (wp), INTENT(IN) :: aimp, dieconst, esqr, qsize, tfcnst
INTEGER, INTENT(IN) :: ngpts, tfflag

! .. Array Arguments
REAL (wp), INTENT(IN OUT) :: bigpi(:)
REAL (wp), INTENT(OUT) :: upot(:), upotsq(:)

t .. Local Scalars ..
REAL (wp) :: fact, q
INTEGER :: i

! .. Intrinsic Functions

INTRINSIC exp, float
1

I We set u(gq=0)=0 which is just a constant energy offset so
! that all our equations are consistant
upot (1) = OEO_wp
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upotsq(1) = OEO_wp

IF (tfflag==1) THEN
fact = dieconst/(2.0EQ_wp*pi*esqr)
DO i = 2, ngpts
q = float(i-1)*qgsize
upot(i) = exp(-qg*aimp)/(fact*q+tfcnst)
END DO
upotsq(1:ngpts) = upot(1l:ngpts)*upot(1:nqpts)
! This is the equivilent polarizablity in the TF approx
! Generate this here for use in possible admixturing
! of the polarizability
bigpi(l:ngpts) = -tfcnst
ELSE
fact = dieconst/(2.0EQ_wp*pi*esqr)
DO 1 = 2, nqpts
q = float(i-1)*gsize
upot(i) = exp(-g*aimp)/(fact*q-bigpi(i))
upotsq(i) = upot(i)*upot(i)
END DO
END IF

RETURN
END SUBROUTINE fourpot

(V]
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G.9 geneps.f90

! a subroutine to calculate the nomstatic Polarization
! and 1/epsilon

SUBROUTINE geneps(epsr,epsi,grnfr,grnfi,pjelem,nllev,nqpts, &

nepts,qsize,esize,fermieng,beta,esqr,dieconst)

USE scondo_consts
USE scondo_spin

! .. Scalar Arguments ..

REAL (wp) :: beta, esize, fermieng, gsize, esqr, dieconst

INTEGER :: nepts, nllev, nqpts

! .. Array Arguments
REAL (wp), DIMENSION(:,:),INTENT(OUT) :: epsr,epsi
REAL (wp), DIMENSION(:,:,:),INTENT(IN) :: grnfi, grnfr
REAL (wp), DIMENSION(:,:,:),INTENT(IN) :: pjelem

! .. Local Scalars
REAL (wp) :: cksum, e, fact, fct2, mnq, nvl, nv2, &
q, sum, sum2, f
REAL (wp) :: srule
INTEGER :: i, j, k, 1, nmax, nmaxb, sp

! .. Local Arrays ..
REAL (wp) :: bot(nepts), frmi(nepts)

REAL (wp) :: bbr(mepts,nllev,nllev), bbi(nepts,nllev,nllev)

REAL (wp) :: bppr(nepts,nqpts), bppi(nepts,ngpts)

! .. Intrinsic Functions ..
INTRINSIC exp, float, int, min, sqrt

PRINT *, “"Entering NSPOLAR"
! Generate Fermi distribution
nmax = min(nepts,int(((80EO_wp/beta)+fermieng)/esize))
DO 1 = 1, nmax
e = float(i-1)*esize -~ fermieng
frmi (i) = 1EO_wp/(exp(beta*e)+1E0_wp)
END DO
DO i = nmmax + 1, nepts
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frmi(i) = OEO_wp
END DO

! Generate the entity B_{NN’}(E) which is used
! to generate the polarizability

PRINT *, "Epsilon step 1"
fct2=1E0_wp/pi
bbr(i:nepts,l:nllev,1:nllev)
bbi(1:nepts,l:nllev,1:nllev)

OEO_wp
OEO_wp

PRINT *, "Epsilon step 2"
DO i = 1, nmmax
DO sp = 1, spinstates
IMIC$ DO ALL AUTOSCOPE
DO 1=1,nllev
DO k=1,nllev
DO j = 0, nepts-i
! bbr(j+1,k,1)=bbr(j+1,k,1)+frmi(i) &
! xgrnfi(i,1,sp)*grnfr(i+j,k,sp)
bbi(j+1,k,1)=bbi(j+1,k,1)+frmi(i) &
*grnfi(i,l,sp) *grnfi(i+j,k,sp)
END DO !j
DO j =0, i-1
! bbr(j+1,k,1)=bbr(j+1,k,1)+frmi(i)&
! *grnfi(i,1,sp)*grnfr(i-j,k,sp)
bbi(j+1,k,1)=bbi(j+1,k,)~frmi(i) &
*grnfi(i,1,sp)*grnfi(i-j,k,sp)
END DO !j
END DO 'k
END DO !1
END DO !sp
END DO 'i

IGenerate real part by Kramers-Kronig relation and using fact that
! this function is odd
DO i=1,nepts
IMIC$ DO ALL AUTOSCOPE
DO 1=1,nllev
DO k=1,nllev

154




DO j=1,nepts
IF (i /= j) THEN
bbr(j,k,1)=bbr(j,k,1)+bbi(i,k,1)/float(i-j)
END IF
END DO !j
END DO 'k
END DO !'1
END DO 'i
DO i=2,nepts
!MIC$ DO ALL AUTOSCOPE
DO 1=1,nllev
DO k=1,nllev
DO j=1,nepts
bbr(j,k,1)=bbr(j,k,1)+bbi(i, k,1)/float(i+j-2)
END DO !j
END DO 'k
END DO !'1
END DO !'i
IMIC$ DO ALL AUTOSCOPE
DO 1=1,nllev
DO k=1,nllev
DO i=1,nepts
bbr(i,k,1l)=bbr(i,k,1)*fct2
END DO 'i
END DO 'k
END DO 1

! Generate polarizability from B_{NN’}(E) and [M_{NN’}{"2

PRINT *, “Epsilon step 3"
bppr(1:nepts, 1:ngpts)=0E0_wp
bppi(l:nepts,1:nqpts)=0E0_wp

PRINT *, "Epsilon step 4"
DO 1=1,nllev
DO k=1,nllev
IMIC$ DO ALL AUTOSCOPE
DO j=1,nqgpts
bppr(1:nepts, j)=bppr(l:nepts,j) &

+pjelem(j,k,1)*pjelem(j,k,1)*bbr(1:nepts,k,1)

bppi(l:nepts, j)=bppi(l:nepts,j) &

ot
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+pjelem(j,k,1l)*pjelem(j,k,1)*bbi(1:nepts,k,1)
END DO !j
END DO 'k
END DO !1

PRINT %, "Epsilon step 5"

! This factor = -gs*esize/(2*pix*pi)
fact = -gs*esize/(2E0_wp*pi*pi)
bppr(1:nepts,1:ngpts)=bppr(1:nepts,1:ngpts)*fact
bppi(1:nepts,1:nqpts)=bppi(1l:nepts,1:nqpts)*fact

IF (1==0) THEN
PRINT *, "Writing Polarizability"
OPEN(unit=80,file=’Polout.x’,status='unknown’)
DO j=1,nqpts,2
DO i=1, nepts,5
write(80,"(E12.4, E12.4, E12.4, E12.4)") &
float(j-1)*qsize,float (i-1)*esize,bppr(i,j),bppi(i,j)
END DO
END DO
CLOSE(80)
END IF

! This expression for 1/epsilon-1 has been simplified to remove the
! 1/q dependence

PRINT *, “"Epsilon step 6"
fact=(dieconst*qsize)/(2.0EO_wp+*pi*esqr) ! reusing fact
'MIC$ DO ALL AUTOSCOPE
DO j=1,ngpts
f=fact*float(j-1)
DO i=1, nepts
bot (i)=(f-bppr(i, j))**2+bppi(i, j)*bppi(i, j)
END DO !i
DO i=1, nepts
epsr(i,j)=((f-bppr(i,j))*bppr(i,j) &
~bppi(i,j)*bppi(i,j))/bot(i)
epsi(i,j)= £*bppi(i,j)/bot(i)
END DO !i
END DO !j
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! A Quick sum rule test ---

srule=0EO_wp
DO i=2,nepts

srule = srule+epsi(i,2)/float(i-1)
END DO

PRINT #*,’Sum rule yields --->’,srule

IF (1==0) THEN
PRINT *, "Writing Epsilon"
OPEN (unit=80,file=’nspolout.x’,status=’unknown’)
DO j=1,nqpts,2
DO i=1, nepts,5
write(80,"(E12.4, E12.4, E12.4, E12.4)") &
float(j-1)*qsize,float(i-1)*esize,epsr(i,j),epsi(i,j)
END DO
END DO
CLOSE(80)
END IF

RETURN
END SUBROUTINE geneps

(V]
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G.10 greens.f90

]
!
!
1
!
!
|
!
1
!
!

A subroutine to calculate the Green’s functions for
each landau level from the self energy

! Greens returns a value indicating the state of

! convergence which is the average absolute deviation
! between the old and new imaginary parts.

! Additionally it calculates the maximum deviation

! between old and new imaginary parts which

it returns as a maximum admixturing value.

! This is used in order to avoid large transient
! spikes in the greens functions which arise due
! to quantization error.

! New greens functions are stored temporarily to
! be used later in admixturing.

Variables:

grofr,grnfi - The old greens functions (real and imag)

selfr,selfi - The self energy (real and imag)
ngr,ngi - New greens functions
nepts - Size of energy grid
eoff - Position of Oth Landau level minus one
esize - Energy spacing
nllev -~ Number of Landau levels
conchk - Measure of convergence
hgmub - Spin split energy

FUNCTION greens(ngr,ngi,grnfr,grnfi,selfr,selfi,nepts,eoff, &

esize,nllev,hgmub)

USE scondo_consts
USE scondo_spin

. Function Return Value
REAL (wp) :: greens

. Scalar Arguments
REAL (wp), INTENT(IN) :: eoff, esize, hgmub
INTEGER, INTENT(IN) :: nepts, nllev

158



. Arrays Arguements ..

REAL (wp), INTENT(IN) :: grnfi(:,:,:), grnfr(:,:,:)
REAL (wp), INTENT(OUT) :: ngi(:,:,:), ngr(:,:,:)
REAL (wp),INTENT(IN) :: selfi(:,:,:), selfr(:,:,:)

. Local Scalars ..

REAL (wp) :: conchk, nvl, nv2
INTEGER :: i, j, sp

. Local Arrays ..

REAL (wp) :: bot(nepts,nllev,spinstates), &
dnmr (nepts,nllev,spinstates)
REAL (wp) :: spen(spinstates)

. Intrinsic Functions ..

INTRINSIC float, sqrt

IF (spinstates == 2) THEN
spen(1) = -hgmub
spen(2) = hgmub

ELSE
spen = OEO_wp

END IF

DO sp = 1, spinstates
DO j = 1, nllev
DO 1 = 1, nepts
dnmr(i,j,sp) = (float(i)*esize-(float(j) &
+eoff+spen(sp))-selfr(i,j,sp))
bot(i,j,sp) = 1.0EO0_wp/(dnmr(i,j,sp)*dnmr(i,j,sp) &
+selfi(i,j,sp)*selfi(i,j,sp))
END DO !'i1
END DO !j
END DO !sp
ngr(i:nepts,l:nllev,l:spinstates) = &
dnmr (1:nepts,1:nllev,l:spinstates) &
*bot (1:nepts,1:nllev,1:spinstates)
ngi(1l:nepts,1l:nllev,l:spinstates) = &
selfi(i:nepts,1:nllev,1l:spinstates) &
*bot (1:nepts,1:nllev,1:spinstates)




conchk = OEO_wp
nvl = OEO_wp
nv2 = OEO_wp
DO sp = 1, spinstates
DO j = 1, nllev
DO i = 1, nepts
conchk=max(abs(ngi(i,j,sp)-grnfi(i,j,sp)),conchk)
nvi=max(abs(ngi(i,j,sp)),nvl)
nv2=max (abs(grnfi(i,j,sp)),nv2)
END DO 'i
END DO !j
END DO !'sp

greens = conchk/sqrt(nvi*nv2)

RETURN
END FUNCTION greens
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G.11 greens2.f90

!
!

t— tem  tm e em e e tem jews  em e

ta- tam em em tem e e cem e

A subroutine to calculate the Green’s functions for
each landau level from the self energy

This version takes both the static and non-static self energies
to calculate the greens functions

Greens returns a value indicating the state of
convergence which is the average absolute deviation
between the old and new imaginary parts.
Additionally it calculates the maximum deviation
between old and new imaginary parts which

it returns as a maximum admixturing value.

This is used in order to avoid large transient
spikes in the greens functions which arise due
to quantization error.

New greens functions are stored temporarily to
be used later in admixturing.

Variables:

grofr,grnfi - The old greens functions (real and imag)
selfr,selfi - The self energy (real and imag)

ngr,ngi - New greens functions
nepts - Size of energy grid
eoff - Position of Oth Landau level minus one
esize - Energy spacing
nllev -~ Number of Landau levels
conchk - Measure of convergence
hgmub ~ Spin split energy

FUNCTION greens2(ngr,ngi,grnfr,grnfi,selfr,selfi,nsr,nsi, &
nepts,eoff,esize,nllev,hgmub)

USE scondo_consts
USE scondo_spin

. Function Returm Value ..
REAL (wp) :: greens2

.. Scalar Arguments
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REAL (wp), INTENT(IN) :: eoff, esize, hgmub
INTEGER, INTENT(IN) :: nepts, nllev

. Arrays Arguements ..
REAL (wp), INTENT(IN) :: grnfi(:,:,:), grnfr(:,:,:)

REAL (wp), INTENT(OUT) :: ngi(:,:,:), ngr(:,:,:)
REAL (wp), INTENT(IN) :: selfi(:,:,:), selfr(:,:,:)
REAL (wp), INTENT(IN) :: nsi(:,:,:), msr(:,:,:)

. Local Scalars ..
REAL (wp) :: conchk, nvl, nv2
INTEGER :: 1, j, sp

. Local Arrays ..
REAL (wp) :: bot(mepts,nllev,spinstates), spen(spinstates)
REAL (wp) :: domr(nepts,nllev,spinstates), &

dnmi (nepts,nllev,spinstates)

. Intrinsic Functions ..

INTRINSIC float, sqrt

IF (spinstates == 2) THEN
spen(1) = -hgmub
spen(2) = hgmub

ELSE
spen=0EO_wp

END IF

DO sp = 1, spinstates
DO j = 1, nllev
DO i = 1, nepts
domr (i, j,sp) = (float(i)=*esize-(float(j)+eoff+spen(sp)) &
-selfr(i,j,sp) -nsr(i,j,sp))
dnmi(i,j,sp) = selfi(i,j,sp) + nsi(i,j,sp)
bot(i,j,sp) = 1.0EO_wp/(dnmr(i,j,sp)*domr(i,j,sp) &
+dnmi (i, j,sp)*dnmi(i,j,sp))
END DO !i
END DO !j
END DO !sp
ngr(l:nepts,i:nllev,1:spinstates) = &
dnmr (1:nepts,1:nllev,l:spinstates) &
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*bot(1:nepts,1:nllev,1:spinstates)
ngi(l:nepts,1l:nllev,1:spinstates) = &

domi (1:nepts,i:nllev,i:spinstates) &

*bot (1:nepts, 1:nllev,1:spinstates)

conchk = OEO_wp

nvi = OEO_wp

nv2 = QOEO_wp

DO sp = 1, spinstates

DO j = 1, nllev

DO i = 1, nepts

conchk=max(abs(ngi(i,j,sp)-grnfi(i,j,sp)),conchk)
nvl=max(abs(ngi(i, j,sp)),nvl)
nv2=max (abs(grnfi(i,j,sp)),nv2)

[l

END DO !'i
END DO !j
END DO !sp

greens2 = conchk/sqrt(nvi*nv2)

RETURN
END FUNCTION greens2
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G.12 jelem.f90

! A function to generate the matrix element Jnn’

! Variables:

! n - Landau level n

! np - Landau level n’
! novmfact - n!/m!

FUNCTION jelem(n,np,ql)
USE scondo_consts

! .. Function Return Value ..
REAL (wp) :: jelem

! .. Scalar Arguments ..
REAL (wp), INTENT(IN) :: ql
INTEGER, INTENT(IN) :: n, np

! .. Local Scalars ..
REAL (wp) :: ff, novmfact, val, x
INTEGER :: i, mm, nn

I .. External Functions
REAL (wp), EXTERNAL :: laguerre

!t .. Intrinsic Functions ..
INTRINSIC exp, sqrt, float

IF (np>n) THEN

nn = np

mm = n
ELSE

nn = n

mm = np
END IF

novmfact = 1.0EQO_wp

ff = float(nn)

IF (mm/=nn) THEN
DOi=mm, np -1
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novmfact = novmfact*ff
ff = ff - 1EO_wp
END DO
END IF

IF (mm/=nn) THEN
x = ql*ql
val = sqrt(1E0_wp/novmfact)*(ql/sqrt(2E0_wp))** (nn-mm)
!FPP$ EXPAND (laguerre)
jelem = valxexp(-0.25EO_wp*x)*laguerre(nn-mm,mm,0.5EQ_wp*x)
ELSE
x = ql*ql
!FPP$ EXPAND(laguerre)
jelem = sqrt(1EO_wp/novmfact)+*exp(—~0.25E0_wp*x) &
*laguerre(0,mm,0.5E0_wp*x)
END IF
RETURN
END FUNCTION jelem

! A subroutine to pre-calculate the matrix elements
! which are stored in pjelem
SUBROUTINE jeltab(pjelem,nqpts,gsize,nllev)
USE scondo_consts
! .. Scalar Arguments ..
REAL (wp), INTENT(IN) :: gsize

INTEGER, INTENT(IN) :: nllev, nqgpts

! .. Array Arguements
REAL (wp), INTENT(OUT) :: pjelem(:,:,:)

! .. Local Scalars ..
INTEGER :: i, iq, j

{ .. External Functions ..
REAL (wp), EXTERNAL :: jelem
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! .. Intrinsic Functioms ..
INTRINSIC float
i
IMIC$ DO ALL SHARED(pjelem,nqpts,nllev,gqsize) PRIVATE(j,i,iq)
DO j =1, nllev
DOi=1, j
DO iq = 1, nqpts
'FPP$ NEXPAND(jelem)
pjelem(iq,i,j) = jelem(i-1,j-1,float(ig-1)*qsize)
pjelem(iq,j,i) = pjelem(iq,i,j)
END DO
END DO
END DO

RETURN
END SUBROUTINE jeltab
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G.13 laguerre.f90

! Function to return the value of the associated laguerre
! polynomial

I Variables:

FUNCTION laguerre(alpha,n,x)

USE scondo_consts
! .. Function Return Value ..
REAL (wp) :: laguerre

! .. Scalar Arguments ..
REAL (wp), INTENT(IN) :: x
INTEGER, INTENT(IN) :: alpha, n

! .. Local Scalars
REAL (wp) :: aval, ival, naval, tot, trm
INTEGER :: i

! .. Intrinsic Functions
INTRINSIC float
{
! Calculate m=0 term (n+alpha)!/n'alpha!
trm = 1.0EO_wp
IF (alpha>0) THEN
ival = 1.0EO_wp
naval = float(n+alpha)
DO i = 1, alpha
trm = trm*naval/ival
ival = ival + 1.0EO_wp
naval = naval - 1.0EO_wp
END DO
END IF

| Calculate and add the rest of the terms using:
! Tm= [x(m-n-1)/m(m+alpha)] Tm-1

tot = trm
IF (n>0) THEN
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ival = 1.0EQ_wp

naval = float(n+1)

aval = float(alpha)

DOi=1, n
trm = trm*x*(ival-naval)/(ival*(ival+aval))
tot = tot + trm
ival = ival + 1.0EO_wp

END DO

END IF

laguerre = tot

RETURN
END FUNCTION laguerre
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G.14 llcouple.f90

! Subroutine to calculate the landau level coupling

! Variables:

! upotsq - The potential squared

! oqgamma - The Landua level coupling

! nimp - The impurity density

! nllev - The number of Landau levels

! gsize - The momentum spacing

! ngpts - The number of momemtum points

SUBROUTINE 1llcouple(oggamma,pjelem,upotsq,ngpts,qsize,nllev,nimp)
USE scondo_consts

! .. Scalar Arguments ..
REAL (wp), INTENT(IN) :: nimp, gsize
INTEGER, INTENT(IN) :: nllev, ngpts

! .. Arrays Arguements ..
REAL (wp), INTENT(OUT) :: oqgamma(:,:)
REAL (wp), INTENT(IN) :: pjelem(:,:,:)
REAL (wp), INTENT(IN) :: upotsq(:)

! .. Local Scalars .
REAL (wp) :: fact, q, qupot2
INTEGER :: j, k

t .. Intrinsic Functions
INTRINSIC float

fact = nimp*qsizexqsize/(2EO_wp*pi)
oqgamma(1:nllev,1:nllev) = OEO_wp

DO k = 1, nqgpts
q = float(k-1)
qupot2 = q*upotsq(k)
DO j = 1, nllev
oqgamma(1:nllev,j) = oqgamma(i:nllev,j) &
+ qupot2xpjelem(k,l:nllev,j) &
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*pjelem(k,1:nllev, j)
END DO
END DO

DO j = 1, nllev
oqgamma(1l:nllev, j) = oqgamma(l:nllev,j)=*fact
END DO

RETURN
END SUBROUTINE 1llcouple
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G.15 main.fo0

! This is a unified version of the set of programs used

! to calculate the density of states of a 2DEG under several
! approximations.

PROGRAM scondo

USE scondo_consts

USE scondo_interfaces
USE scondo_control
USE scondo_spin

! .. Local Scalars ..

REAL

REAL

(wp)

(wp)

INTEGER ::

bot, cong, converg, ctol, dl, d2, de,
dieconst, e, econc, eoff, esize, esqr, &

fermieng, impconc, impdist, mage, magfield, &
maglen, magstep, mfact, mobil, nimp, ns, &
oldcon, oldcong, omegac, q, qsize, refef, &
tau, tauc, temp, tfcnst, val, val2, zef
:: gstar, hgmub, eupper, rng
i, it, itmax, j, k, 1, nbpts, nepts, nllev, &

nsitmax, ngpts, sp

! .. External Functions ..
REAL (wp), EXTERNAL ::

! .. Intrinsic Functions ..
INTRINSIC aint, float, int, min, sqrt

! .. Arrays

REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL

(wp),
(wp),
(wp),
(wp),
(wp),
(wp),
(wp),
(wp),
(wp),

ALLOCATABLE ::
ALLOCATABLE ::
ALLOCATABLE ::
ALLOCATABLE ::
ALLOCATABLE ::
ALLOCATABLE ::
ALLOCATABLE ::
ALLOCATABLE ::
ALLOCATABLE ::

tauconst

grafr(:,:,:), grnfi(:,:,:)
selfr(:,:,:), selfi(:,:,:)
ngr(:,:,:), ngi(:,:,:)
upot(:), upotsq(:)
bessval(:,:)

bigpi(:), newbpi(:)
dstat(:)

pjelem(:,:,:)

oggamma(:, :)

:: adfac, adfacmax, adfacmin, aimp, beta, &

&
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REAL (wp), ALLOCATABLE :: epsr(:,:), epsi(:,:)

REAL (wp), ALLOCATABLE :: nsr(:,:,:), nsi(:,:,:)
REAL (wp), ALLOCATABLE :: spen(:)
REAL (wp), ALLOCATABLE :: bw(:,:,:)

. Namelists

NAMELIST /material/dieconst, mfact, gstar
NAMELIST /sample/mobil, econc, impdist
NAMELIST /run/temp, magfield, magstep, nbpts
NAMELIST /energy._mom/esize, eoff, eupper, gsize, &
nepts, nqpts, nllev
NAMELIST /converge/ctol, itmax, nsitmax
NAMELIST /calcctrl/include_non_static, include_spin, &
include_static_vertex
NAMELIST /writectrl/write_static_polar, write_ns_polar, &
write_static_greens, write_ns_greens, &
write_epsilon
NAMELIST /files/diagfile,dosfile,elevelfile,ewidthfile, &
greensfile, specfile, staticpolarfile, &
nsgreensfile, nsspecfile, nspolarfile, &
epsilonfile

! These have since been deprecated but give a good idea what type
! of parameters we are using.

! Material prameters (hard coded)

dieconst = 12.8E0_wp

mfact = 0.067EO_wp

gstar = -0.44EQ_wp

! Sample parameters
mobil = 40000_wp
econc = 2.0E11_wp
impdist = S50E-8_wp

! Test case parameters (hard coded)
temp = 1.2E0_wp

magfield = 1.653E4_wp
magstep = 1.653E3_wp
nbpts = 1
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! Energy and momemtum parameters
esize = .006EO_wp
eoff = 1.5E0_wp

gsize = .025EQ_wp
nepts = 2000
ngqpts = 400
nllev = 8

! Tolerances

ctol = 1E-10_wp

! Iteration maximums
! itmax=30
itmax = 20

! param.in now has all of the configuration info
! Read parameter file
OPEN (unit=5,file=’runparam.in’)
READ (unit=5,nml=material)
READ (unit=5,nml=sample)
READ (unit=5,nml=run)
READ (unit=5,nml=energy_mom)
READ (unit=5,nml=converge)
READ (unit=5,nml=calcctrl)
READ (unit=5,nml=writectrl)
READ (unit=5,nml=files)
CLOSE (5)

! Handle spin cases

IF (include_spin) THEN
spinstates=2
gs=1E0_wp

ELSE
spinstates=1
gs=2E0_wp

END IF

! specfile = ’spcout.x’
! dosfile = ’dosout.x’
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staticpolarfile = ’bpiout.x’
greensfile = ’grnout.x’
diagfile = ’diaout.x’
elevelfile ’elvout.x’
ewidthfile ‘wthout.x’

t- em tem e .

OPEN (unit=8,file=specfile,status=’unknown’)

OPEN (unit=9,file=dosfile,status=’unknown’)

OPEN (unit=70,file=staticpolarfile,status=’unknown’)
OPEN (unit=71,file=greensfile,status=’unknown’)
OPEN (unit=72,file=diagfile,status=’unknown’)

OPEN (unit=73,file=elevelfile,status=’unknown’)
OPEN (unit=74,file=ewidthfile,status=’unknown’)
OPEN (unit=75,file=nsspecfile,status=’unknown’)

! Set up allocatable arrays
ALLOCATE(grnfr(1:nepts,1:nllev,1:spinstates))
ALLOCATE(grnfi(1:nepts,1l:nllev,l:spinstates))
ALLOCATE(selfr(1:nepts,1:nllev,l:spinstates))
ALLOCATE(selfi(1:nepts,l:nllev,1:spinstates))
ALLOCATE(ngr(1:nepts,i:nllev,l:spinstates))
ALLOCATE(ngi(1:nepts,1l:nllev,l:spinstates))
ALLOCATE (upot (1:ngpts))

ALLOCATE (upotsq(1:ngpts))

ALLOCATE(bessval(l:nqgpts,l:nqpts))

ALLOCATE (bigpi(1:ngpts))

ALLOCATE(newbpi(1:nqgpts))

ALLOCATE(dstat (1 :nepts))

ALLOCATE (oqgamma(1:nllev,1:nllev))

ALLOCATE(pjelem(1:nqgpts,1l:nllev,1l:nllev))

ALLOCATE (epsr(1:nepts,1:nqpts))

ALLOCATE(epsi(1:nepts,1:nqpts))

ALLOCATE(nsr(1:nepts,1:nllev,l:spinstates))

ALLOCATE(nsi(1:nepts,1:nllev,1l:spinstates))

ALLOCATE(spen(1:spinstates))

IF (include_static_vertex) THEN
ALLOCATE(bw(1i:ngpts,1i:nllev,i:nllev))

END IF
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! Calculate the scattering parameters
tau = 1E-7_wp*mobil*mfact*emass/emks
tauc = tauconst(econc,dieconst,mfact,impdist)
impconc = 1.0EO_wp/(tauxtauc)
PRINT *, ’'Tau=’, tau
PRINT *, °’Ni=’, impconc

! Initialize bessel table
CALL besstab(bessval,ngpts,qsize)

! Initialize matrix element table
CALL jeltab(pjelem,ngpts,qsize,nllev)
DO k = 1, nbpts
PRINT #,’Magnetic Field (Tesla) =’, (magfield*1E-4_wp)
! Calculate scaling
maglen = sqrt(hbar*cspeed/(echg*magfield))

omegac = echg*magfield/(emass*mfact*cspeed)
mage = hbar*omegac

beta = mage/(boltz*temp)

zef = 2EQ_wp*pirhbar*hbar*econc/(gs*emass*mfact)
esize = (float(nllev+1)+eoff+eupper)/float(nepts)
PRINT *, zef, nllev, esize

hgmub=.25E0_wp*gstar*mfact
PRINT *, ’Spin split energy=’, hgmub

! Generate starting point Greens functions
IF (spinstates == 2) THEN
spen(1)= -hgmub
spen(2)= hgmub
ELSE
spen=0E0_wp
END IF

val = -0.5E0_wp+*hbar/(tau*mage)
PRINT *, ’val=’, val




! Scale

DO sp = 1, spinstates
DO i = 1, nllev
DO j = 1, nepts

val2 = float(j)*esize - (float(i)+eoff + spen(sp))

bot = 1.0EO_wp/(val2+val2+vals*val)
grnfr(j,i,sp) = val2xbot
grnfi(j,i,sp) val*bot
END DO !j
END DO !'i
END DO !sp

parameters

ns = econc*(maglen*maglen)
nimp = impconc#*(maglen*maglen)
aimp = impdist/maglen

esqr = echgxechg/(maglen*mage)
PRINT *, ’1=’, maglen

PRINT *, ’Ec=’, mage

tfcnst = (maglen/hbar)

tfcnst = gs*tfcnst*xtfcnst*emass*mfact*mage/pi
PRINT *, ’Scaled parameters:’

PRINT *, ’Sheet Density = ’, ns

PRINT *, ’Impurity Density = ’, nimp

PRINT #*, ’Impurity Distance = ’, aimp

PRINT *, ’E-M Coupling = ', esqr

PRINT *, ’T-F Constant = ', tfcnst

CALL densos(dstat,grnfi,nepts,nllev)

adfacmax = 1EO_wp
adfacmin = 1E-2_wp
adfac = 1EO_wp

rng = 1EO_wp

! Calculate the Fourier potential using
! Thomas-Fermi as initial potential

CALL fourpot(bigpi,upot,upotsq,aimp,ngpts, &
gsize,dieconst,esqr,1,tfcnst)

CALL llcouple(oqgamma,pjelem,upotsq,ngpts,qsize,nllev,nimp)
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! Give a starting point selfenergy
selfr(l:nepts,1:nllev,1:spinstates)=0
selfi(1l:nepts,l:nllev,1:spinstates)=1E-5_wp
DO sp = 1, spinstates
DO 1 = 1, nllev

DO j = 1, nllev

selfr(i:nepts,j,sp) = selfr(l:nepts,j,sp) &

1}

+ oqgamma(j,1)*grnfr(1:nepts,l,sp)
selfi(1l:nepts,j,sp) = selfi(l:nepts,j,sp) &
+ oqgamma(j,1)*grnfi(l:nepts,1,sp)
END DO !j
END DO '1
END DO !sp

! From now on we have got a starting point

CALL selfenergy(oqgamma,selfr,selfi,nepts,nllev, &
esize,eoff , hgmub)

converg = greens(ngr,ngi,grnfr,grnfi,selfr,selfi, &
nepts,eoff,esize,nllev,hgmub)

oldcon = converg

CALL mix(ngr,ngi,grnfr,grnfi,nepts,nllev,1E0_up)

CALL densos(dstat,grnfi,nepts,nllev)

fermieng = chempot(dstat,nepts,esize,ns,beta)

PRINT *, ’Fermi Energy=’, fermieng-0.5EO_wp-eoff

IF (include_static_vertex) THEN
CALL bigw(bessval,bw,upotsq,pjelem,nqpts,qsize,nllev,nimp)
cong = vertpol(bw,grnfr,grnfi,pjelem,bigpi,newbpi,nllev, &
fermieng,nqpts,nepts,qsize,esize,beta)
ELSE
cong = polarize(grnfr,grnfi,pjelem,bigpi,newbpi,nllev, &
fermieng,nqpts,nepts,qgsize,esize,beta)
END IF
CALL pmix(bigpi,newbpi,nqpts,1E0_up)

! The big self consistent loop
it = 1
DO WHILE ((converg>ctol) .AND. (it<=itmax))
CALL fourpot(bigpi,upot,upotsq,aimp,nqpts,qsize, &
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dieconst,esqr,0,tfcnst)
CALL 1lcouple(oqgamma,pjelem,upotsq,nqpts,qsize,nllev,nimp)

CALL selfenergy(oqgamma,selfr,selfi,nepts,nllev, &
esize,eoff ,hgmub)

oldcon = converg

converg = greens(ngr,ngi,grnfr,grnfi,selfr,selfi,nepts, &
eoff ,esize,nllev, hgmub)

CALL mix(ngr,ngi,grnfr,grnfi,nepts,nllev,adfac)

CALL mix(ngr,ngi,grnfr,grnfi,nepts,nllev,1EO0_wp)

CALL densos(dstat,grnfi,nepts,nllev)
fermieng = chempot(dstat,nepts,esize,ns,beta)
oldcong = cong
IF (include_static_vertex) THEN
CALL bigw(bessval,bw,upotsq,pjelem,nqpts,qsize, &
nllev,nimp)

cong = vertpol(bw,grnfr,grnfi,pjelem,bigpi,newbpi, &
nllev,fermieng,nqpts,nepts,qsize,esize,beta)
ELSE
cong = polarize(grnfr,grnfi,pjelem,bigpi,newbpi,nllev, &
fermieng,ngpts,nepts,qsize,esize,beta)
END IF

IF (cong >= oldcong) THEN

adfac = max(5E-3_wp, .5EO_wp*adfac)
adfac = adfac/(1.0_wp + (cong/oldcong))
rng=max (rng*.95_wp,adfacmin)

ELSE
adfac = min(1.7EO_wp*adfac,1EO_wp)
adfac = adfac/(1.0_wp - (cong/oldcong))
adfac = min(adfac,rng)

rng=min(rng*1.5_wp,adfacmax)
END IF
CALL pmix(bigpi,newbpi,ngpts,adfac)
CALL pmix(bigpi,newbpi,nqpts,1E0_wp)

PRINT *, ’Iteration’, it

PRINT *, ’Fermi Energy=’, fermieng-0.5EQ_wp-eoff
PRINT *, ’Convergence---————-—-- >’, cong

PRINT *, ’Greens >, converg
PRINT *, ’Adfac=’, adfac
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WRITE (72,2) it, cong, converg
it =it + 1
PRINT *, ’' °

END DO

CALL greng(grnfr,grnfi,esize,eoff,nepts,nllev,magfield)
CALL findwdth(grnfi,magfield,esize,nepts,nllev)

DO i = 1, nepts

e = float(i-1)*esize

WRITE (9,1) e - .5EO_wp - eoff, dstat(i)*2EO_wp*pi/gs
END DO
WRITE (9,%) '&’

IF (write_static_greens) THEN
DO j = 1, nllev
DO sp = 1, spinstates
DO i = 1, nepts
e = float(i-1)*esize
WRITE (71,1) e - .5EO_wp - eoff, -grnfi(i,j,sp)/pi
END DO !i
WRITE (71,*) &’
END DO !sp
END DO !j
END IF

IF (write_static_polar) THEN
DO i1 = 1, nqgpts
q = float(i-1)*gsize
WRITE (70,1) q, bigpi(i)
END DO
WRITE (70,%) ’&’
END IF

! Estimate density of states at the Fermi energy
d1 = dstat(int(fermieng/esize))
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1

d2 = dstat(int(fermieng/esize)+1)
de = fermieng - aint(fermieng/esize)*esize
refef = refineef(oqgamma,fermieng,nllev,esize,eoff,hgmub)
WRITE (8,3) magfield, fermieng-0.5E0_wp-eoff, &
di + (d2-d1)+de, refef
magfield = magfield + magstep

! If we want epsilon from the nonstatic calculation
IF (write_epsilon .AND. .NOT. include_non_static) THEN
CALL geneps(epsr,epsi,grnfr,grnfi,pjelem,nllev,nqpts, &
nepts,qsize,esize,fermieng,beta,esqr,dieconst)
PRINT *, "Writing Epsilon"
OPEN(unit=80,file=epsilonfile, status=’unknown’)
DO j=1,nqgpts,2
DO i=1, nepts,5
write(80,"(E12.4, E12.4, E12.4, E12.4)") &
float(j-1)*qsize,float(i-1)*esize,epsr(i,j), &
epsi(i,j)
END DO
END DO
CLOSE(80)
END IF

IF (include_non_static) THEN
! Do the nonstatic calculation

adfac=1E0_wp
it =1

! The nonstatic self consistant loop

! Use a constant number of iterations for now
DO WHILE (it <= nsitmax)

CALL geneps(epsr,epsi,grnfr,grnfi,pjelem,nllev,ngpts, &
nepts,qsize,esize,fermieng,beta,esqr, &
dieconst)

CALL selfe_corr(grnfr,grnfi,selfr,selfi,nsr,nsi,epsi, &
epsr,pjelem,nepts,nqpts,nllev,qsize, &
esize,fermieng,beta,esqr, &
dieconst,eoff,hgmub)
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CALL selfenergy2(oqgamma,selfr,selfi,nsr,nsi,nepts, &
nllev,esize,eoff, hgmub)

! Police the imaginary part of the selfenergy
! Probably not necessary anymore
selfi=min(selfi,OE0_wp)

grnfi=min(grnfi,OEO_wp)

! Convergence logic -- needs work
oldcon = converg
converg = greens2(ngr,ngi,grnfr,grnfi,selfr,selfi, &
nsr,nsi,nepts,eoff,esize,nllev,hgmub)
IF (it > 1) THEN
IF (converg>oldcon) THEN
adfac = max(1E-1_wp, .9E0_wp*adfac)
ELSE
adfac = min(1.5E0_wp*adfac, .97E0_wp)
END IF
END IF
! CALL mix(ngr,ngi,grnfr,grnfi,nepts,nllev,1.0_vwp)
CALL mix(ngr,ngi,grnfr,grnfi,nepts,nllev,adfac)
CALL densos(dstat,grnfi,nepts,nllev)

IF (write_ns_greens) THEN
OPEN(UNIT=90, FILE=nsgreensfile, STATUS=’unknown’)
DO j =1, nllev
DO sp = 1, spinstates
DO i = 1, nepts
e = float(i-1)*esize
WRITE (90,’(2E12.4)’) e - .S5EO_wp - eoff, &
-grnfi(i,j,sp)/pi
END DO !'i
WRITE (90,%) ’&’
END DO !sp
END DO !j
CLOSE(90)
END IF

fermieng = chempot(dstat,nepts,esize,ns,beta)

PRINT #*, ’Iteration’, it
PRINT *, ’Fermi Energy=’, fermieng-0.5EQ_wp-eoff
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PRINT *, ’Greens ’, converg
PRINT *, ’Adfac=’, adfac

cong = polarize(grnfr,grnfi,pjelem,bigpi,newbpi,nllev, &
fermieng,nqpts,nepts,qsize,esize,beta)
CALL pmix(bigpi,newbpi,ngpts,1E0_wp)
CALL fourpot(bigpi,upot,upotsq,aimp,nqpts,qsize,dieconst, &
esqr,1,tfcnst)
CALL 1lcouple(oggamma,pjelem,upotsq,ngpts,qgsize,nllev,nimp)

it = it+1
END DO

'Write out DOS
DO 1 = 1, nepts
e = float(i-1)*esize
WRITE (9,1) e - .S5EO_wp - eoff, dstat(i)*2E0_wp*pi/gs
END DO
WRITE (9,*) &’

IF (write_epsilon) THEN
PRINT *, "Writing Epsilon"
OPEN(unit=80,file=epsilonfile,status=’unknown’)
DO j=1,ngpts,2
DO i=1, nepts,5
write(80,"(E12.4, E12.4, E12.4, E12.4)") &
float(j-1)*qsize,float(i~1)*esize, &
epsr(i,j),epsi(i,j)
END DO
END DO
CLOSE(80)
END IF

! Write out DOS at the Fermi energy

dl = dstat(int(fermieng/esize))
d2 = dstat(int(fermieng/esize)+1)
de = fermieng - aint(fermieng/esize)=*esize

WRITE (75,’(1X,3E17.8)’) magfield, fermieng-0.5EO_wp-eoff, &
d1 + (d2-di)#de
END IF !Do nonstatic



N

magfield = magfield + magstep

END DO ! End magnetic field loop
FORMAT (1X,2E18.8)

FORMAT (1X,I6,1X,3E16.8)

FORMAT (1X,4E17.8)

CLOSE (unit=75)
CLOSE (unit=74)
CLOSE (unit=73)
CLOSE (unit=72)
CLOSE (unit=71)
CLOSE (unit=70)
CLOSE (unit=9)
CLOSE (unit=8)

STOP
END PROGRAM scondo
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G.16 melem.f90

! A function to generate the matrix element Mnn’
! in our case n=n’ so we simplify it to Mnn

FUNCTION melem(n,ql)

USE scondo_consts
1 .. Function Return Value ..
REAL (wp) :: melem

! .. Scalar Arguments ..
REAL (wp), INTENT(IN) :: ql
INTEGER, INTENT(IN) :: n

't .. Local Scalars ..
REAL (wp) :: x

! .. External Functiomns ..
REAL (wp), EXTERNAL :: laguerre

!t .. Intrinsic Functions
INTRINSIC exp

x = ql*ql
IFPP$ EXPAND(laguerre)
melem = exp(-0.25E0_wp*x)+*laguerre(0,n,0.5E0_wp*x)
RETURN
END FUNCTION melem
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G.17 mix.f90

! A subroutine to admixture the new greens functions
! with the old

! Variables:

! ngr,ngi - New real and imag greens functions
! grnfr,grnfi - Real and imag greens functions
! adfac - The admixturing factor
t nepts - The number of energy points
! nllev - The number of Landau levels

SUBROUTINE mix(ngr,ngi,grnfr,grnfi,nepts,nllev,adfac)

USE scondo_consts
USE scondo_spin

! .. Scalar Arguments
REAL (wp), INTENT(IN) :: adfac
INTEGER, INTENT(IN) :: nepts, nllev

! .. Array Arguments
REAL (wp), INTENT(IN OUT) :: granfi(:,:,:), granfr(:,:,:)
REAL (wp), INTENT(IN) :: ngi(:,:,:), ngr(:,:,:)

! .. Local Scalars .
REAL (wp) :: adcaf

adcaf = 1.0EO_wp - adfac

grnfr(l:nepts,1:nllev,1:spinstates) =&
ngr(1:nepts,1:nllev,1:spinstates)*adfac + &
grafr(1:nepts,l:nllev,1:spinstates)*adcaf

grnfi(l:nepts,l:nllev,l:spinstates) = &
ngi(1:nepts,i:nllev,i:spinstates)*adfac + &
grnfi(l:nepts,1:nllev,1:spinstates)+*adcaf

RETURN
END SUBROUTINE mix
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G.18 pmix.f90

- tem  sem cew  jem

A subroutine to admixture the new polarizability
with the old

Variables:
bigpi - The polarizability
newbpi - The new polarizability
adfac - The admixturing factor
nqgpts - The number of momemtum points

SUBROUTINE pmix(bigpi,newbpi,nqpts,adfac)
USE scondo_consts

. Scalar Arguments
REAL (wp), INTENT(IN) :: adfac
INTEGER, INTENT(IN) :: ngpts

. Array Arguments
REAL (wp), INTENT(IN OUT) :: bigpi(:)
REAL (wp), INTENT(IN) :: newbpi(:)

. Local Scalars ..

REAL (wp) :: adcaf
INTEGER :: i

adcaf = 1.0EO_wp - adfac

bigpi(l:ngpts) = newbpi(l:nqgpts)*adfac + bigpi(l:nqpts)+*adcaf

RETURN
END SUBROUTINE pmix
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G.19 polarize.f90

! A subroutine to calculate the Polarization

FUNCTION polarize(grnfr,grnfi,pjelem,bigpi,newbpi,nllev, &
fermieng,nqpts,nepts,qsize,esize,beta)

USE scondo_consts
USE scondo_spin

! .. Function Return Value ..
REAL (wp) :: polarize

! .. Scalar Arguments ..
REAL (wp), INTENT(IN) :: beta, esize, fermieng, gsize
INTEGER, INTENT(IN) :: nepts, nllev, nqpts

! .. Array Arguments ..
REAL (wp), INTENT(IN) :: grnfr(:,:,:), gronfi(:,:,:)
REAL (wp), INTENT(IN OUT) :: bigpi(:), newbpi(:)
REAL (wp), INTENT(IN) :: pjelem(:,:,:)

! .. Local Scalars ..
REAL (wp) :: cksum, e, fact, mng, nvl, nv2, q, sum2
INTEGER :: i, j, k, 1, nmax, sp

I .. Local Automtic Arrays ..
REAL (wp) :: frmi(nepts)

! .. Intrinsic Functions ..
INTRINSIC exp, float, int, min, sqrt

! Generate Fermi distribution
nmax = min(nepts,int (((80EO_wp/beta)+fermieng)/esize))
DO i = 1, nmax
e = float(i-1)*esize - fermieng
frmi(i) = 1EO_wp/(exp(betaxe)+1E0_wp)
END DO
DO i = mmax + 1, nepts
frmi(i) = OEO_wp
END DO
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! The

IMICS
IMIC$1
IMIC$2

IMIC$

IMIC$

prefactor
fact = -gs*esize/(2.0EO_wp*pi*pi)

newbpi(l:nqpts) = OEO_wp

DO sp = 1, spinstates
DO ALL shared(nllev,frmi,grnfr,grnfi,newbpi,
nmax,pjelem,nqgpts,sp)
private(j,k,1,sum?2)
PO k = 1, nllev
PO 1 = 1, nllev
sum?2 = OEO_wp
DO j 1, nmax
sum2 = sum2 + frmi(j)*(grnfr(j,k,sp)*grnfi(j,1,sp) &
+grnfr(j,1,sp)*grnfi(j,k,sp))

END DO

GUARD
newbpi(1:nqpts) = newbpi(l:nqgpts) + &
pjelem(1l:ngpts,k,1l)*pjelem(1:nqpts,k,1l) *sum2
END GUARD
END DO 'k
END DO !'1
END DO !sp

newbpi(1:nqpts) = newbpi(1l:ngpts)*fact

! Return Convergence check

EN

cksum = OEO_wp

nvl = OEQ_wp

nv2 = OEOC_wp

DO i = 1, nqpts
cksum=max (abs (newbpi (i) -bigpi(i)),cksum)
nvl = max(abs(bigpi(i)),nvl)
nv2 = max(abs(newbpi(i)),nv2)

END DO

polarize = cksum/sqrt(nvi*nv2)
CLOSE (90)

RETURN

D FUNCTION polarize
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G.20 refineef.f90

! A subroutine to refine the value of the density of states
! at the Fermi Energy

FUNCTION refineef (oqgamma,ef,nllev,esize,eoff,hgmub)

USE scondo_consts
USE scondo_spin

! .. Function Returm Value ..
REAL (wp) :: refineef

! .. Scalar Arguments
REAL (wp), INTENT(IN) :: ef, eoff, esize, hgmub
INTEGER, INTENT(IN) :: nllev

! .. Array Arguments ..
REAL (wp), INTENT(IN) :: oqgamma(:,:)

! .. Local Scalars
REAL (wp) :: bi, bot, br, diff, dos, keval, sumi, sumr, xtol
INTEGER :: i, it, j, k, maxit, sp

! .. Local Arrays
REAL (wp) :: osli(nllev,spinstates), oslr(nllev,spinstates)

REAL (wp) :: sli(nllev,spinstates), slr(allev,spinstates)
REAL (wp) :: spen(2)

! Take care of the spin energy
IF (spinstates == 2) THEN
spen(1) = -hgmub

spen(2) = hgmub
ELSE

spen = OEO_wp
END IF

oL
| Recalculate the Self energies at this energy point
! using the coupling constants.
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xtol = 1E-12_wp
maxit = 100000

oslr(1:nllev,1:spinstates) = OEO_wp
osli(l:nllev,l:spinstates) = -1E-5_wp
diff = 1EO

it =1

DO WHILE ((diff>=xtol) .AND. (it<=maxit))
DO sp = 1, spinstates
DO j = 1, nllev
sumr = OEO_wp
sumi = -1E-5_wp
keval = ef - eoff - spen(sp)
DO k = 1, nllev
keval = keval - 1EO
br = keval - oslr(k,sp)
bot = 1EO_wp/(br*br+osli(k,sp)*osli(k,sp))
sumr = sumr + oqgamma(j,k)*br*bot
sumi = sumi + oqgamma(j,k)*osli(k,sp)*bot
END DO
slr(j,sp) = sumr
s1i(j,sp) = sumi
END DO !j
END DO !sp
diff = OEO_wp
DO sp = 1, spinstates
DO j = 1, nllev
br = oslr(j,sp) - slr(j,sp)
bi = osli(j,sp) ~ sli(j,sp)
diff = diff + br*br + bix*bi
oslr(j,sp) = 0.5EO_wp*(slr(j,sp)+oslr(j,sp)) !'Admixture
osli(j,sp) = 0.5EO0_wp*(sli(j,sp)+osli(j,sp))
END DO !j
END DO !sp
it = it + 1
END DO

dos = OEO_wp
keval = ef - eoff
DO sp = 1, spinstates

DO 1 = 1, nllev
keval = keval - 1EO_wp

! Now sum the imaginary parts of the Green’s functions to get the DOS
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br = keval - oslr(i,sp) - spen(sp)

dos = dos + osli(i,sp)/(br*br+osli(i,sp)*osli(i,sp))
END DO !i
END DO !sp

refineef = -0.5EO_wp*gs*dos/(pi*pi)

RETURN
END FUNCTION refineef
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G.21 scondo_consts.f90

| The Header file for the Self Consistent DOS
MODULE scondo_consts
IMPLICIT NONE

INTEGER, PARAMETER :: wp = kind(0.0DO)
! Array Size Parameters
INTEGER, PARAMETER :: esp = 3001, 1lsp = 17, gsp = 801
! System Parameters
! REAL (wp), PARAMETER :: gs = 1EO_wp
! Physical Parameters
REAL (wp), PARAMETER :: boltz = 1.38062E-16_wp
REAL (wp), PARAMETER :: cspeed = 2.997925E10_wp
REAL (wp), PARAMETER :: echg = 4.80325E-10_wp
REAL (wp), PARAMETER :: emass = 9.10956E-28_wp
REAL (wp), PARAMETER :: emks = 1.60219E-19_wp
REAL (wp), PARAMETER :: hbar = 1.05459E-27_wp
REAL (wp), PARAMETER :: oneev = 1.60219E-12_wp
REAL (wp), PARAMETER :: pi = 3.14159265358979E0_wp
! .. Intrinsic Functions
! INTRINSIC kind
END MODULE scondo_consts




G.22 scondo_control.f90

! The control module allows sharing of different control parameters
! which are read in via the name-list facility. The object here is

! to have a fully configurable program without recompilation

MODULE scondo_control

LOGICAL :: include_non_static
LOGICAL :: include_spin
LOGICAL :: include_static_vertex

LOGICAL :: write_static_polar
LOGICAL :: write_ns_polar
LOGICAL :: write_static_greens
LOGICAL :: write_ns_greens
LOGICAL :: write_epsilon

CHARACTER(80) :: diagfile
CHARACTER(80) :: dosfile
CHARACTER(80) :: elevelfile
CHARACTER(80) :: ewidthfile
CHARACTER(80) :: greensfile
CHARACTER(80) :: specfile
CHARACTER(80) :: staticpolarfile
CHARACTER(80) :: epsilonfile
CHARACTER(80) :: nsgreensfile
CHARACTER(80) :: nsspecfile
CHARACTER(80) :: nspolarfile

END MODULE scondo_control
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G.23 scondo_interfaces.f90

MODULE scondo_interfaces
INTERFACE
SUBROUTINE densos(dstat,grnfi,nepts,nllev)
USE scondo_consts
REAL (wp), DIMENSION(:), INTENT(OUT) :: dstat
REAL (wp), DIMENSION(:,:,:),INTENT (IN) :: grnfi
INTEGER, INTENT(IN) :: nepts, nllev
END SUBROUTINE densos
END INTERFACE

INTERFACE
SUBROUTINE besstab(bessval,nqpts,qgsize)
USE scondo_consts
REAL (wp), DIMENSION(:,:), INTENT(OUT) :: bessval
INTEGER, INTENT(IN) :: ngpts
REAL (wp), INTENT(IN) :: gsize
END SUBROUTINE besstab
END INTERFACE

INTERFACE
SUBROUTINE selfenergy2(oqgamma,selfr,selfi,nsr,nsi,nepts, &
nllev,esize,eoff,hgmub)
USE scondo_consts

REAL (wp), DIMENSION(:,:), INTENT(IN) :: oqgamma
REAL (wp), DIMENSION(:,:,:), INTENT(IN OUT) :: selfr, selfi
REAL (wp), DIMENSION(:,:,:), INTENT(IN) :: nsr, nsi

INTEGER, INTENT(IN) :: nepts
INTEGER, INTENT(IN) :: nllev
REAL (wp), INTENT(IN) :: esize,eoff,hgmub
END SUBRQUTINE selfenergy?2
END INTERFACE

INTERFACE
SUBROUTINE selfenergy(oqgamma,selfr,selfi,nepts,nllev, &
esize,eoff ,hgmub)
USE scondo_consts
REAL (wp), DIMENSION(:,:), INTENT(IN) :: oqgamma

REAL (wp), DIMENSION(:,:,:), INTENT(IN OUT) :: selfr, selfi

INTEGER, INTENT(IN) :: nepts
INTEGER, INTENT(IN) :: nllev




REAL (wp), INTENT(IN) :: esize,eoff, hgmub
END SUBROUTINE selfenergy
END INTERFACE

INTERFACE
FUNCTION greens(ngr,ngi,grnfr,grnfi,selfr,selfi, &

nepts,eoff,esize,nllev,hgmub)

USE scondo_consts

REAL (wp), DIMENSION(:,:,:), INTENT(OUT) :: ngr, ngi
REAL (wp), DIMENSION(:,:,:), INTENT(IN) :: grnfr, granfi
REAL (wp), DIMENSION(:,:,:), INTENT(IN) :: selfr, selfi

INTEGER, INTENT(IN) :: nepts
REAL (wp), INTENT(IN) :: esize,eoff
INTEGER, INTENT(IN) :: nllev
REAL (wp), INTENT(IN) :: hgmub
REAL (wp) :: greems
END FUNCTION greens
END INTERFACE

INTERFACE

FUNCTION greens2(ngr,ngi,grnfr,grnfi,selfr,selfi, nsr, nsi, &
nepts,eoff,esize,nllev,hgmub)

USE scondo_consts

REAL (wp), DIMENSION(:,:,:), INTENT(OUT) :: ngr, ngi
REAL (wp), DIMENSION(:,:,:), INTENT(IN) :: grnfr, grnfi
REAL (wp), DIMENSION(:,:,:), INTENT(IN) :: selfr, selfi

REAL (wp), DIMENSION(:,:,:), INTENT(IN) :: nsr, nsi
INTEGER, INTENT(IN) :: nepts
REAL (wp), INTENT(IN) :: esize,eoff
INTEGER, INTENT(IN) :: nllev
REAL (wp), INTENT(IN) :: hgmub
REAL (wp) :: greens

END FUNCTION greens2

END INTERFACE

INTERFACE
SUBROUTINE mix(ngr,ngi,grnfr,grnfi,nepts,nllev,adfac)
USE scondo_consts
REAL (wp), DIMENSION(:,:,:), INTENT(IN) :: ngr, ngi

REAL (wp), DIMENSION(:,:,:), INTENT(IN OUT) :: grnfr, grnfi

INTEGER, INTENT(IN) :: nepts, nllev
REAL (wp), INTENT(IN) :: adfac




END SUBROUTINE
END INTERFACE

INTERFACE
FUNCTION chempot(dstat,nepts,esize,ns,beta)
USE scondo_consts
REAL (wp), DIMENSION(:), INTENT(IN)
INTEGER, INTENT(IN) :: nepts
REAL (wp), INTENT(IN) :: esize,ns,beta
REAL (wp) :: chempot
END FUNCTION chempot
END INTERFACE

INTERFACE

:: dstat

FUNCTION polarize(grnfr,grnfi,pjelem,bigpi,newbpi,nllev, &
fermieng,nqpts,nepts,qsize,esize,beta)

USE scondo_consts

REAL (wp), DIMENSION(:,:,:), INTENT(IN)
REAL (wp), DIMENSION(:,:,:), INTENT(IN)
REAL (wp), DIMENSION(:), INTENT(IN OUT)
REAL (wp), DIMENSION(:), INTENT(IN OUT)

INTEGER, INTENT(IN) :: nllev
REAL (wp), INTENT(IN) :: fermieng
INTEGER, INTENT(IN) :: ngpts,nepts

REAL (wp), INTENT(IN) :: gsize,esize,beta
REAL (wp) :: polarize
END FUNCTION polarize

END INTERFACE

INTERFACE

:: grnfr, gronfi
:: pjelem

:: bigpi

:: newbpi

FUNCTION vertpol(bw,grnfr,grnfi,pjelem,bigpi,newbpi,nllev, &
fermieng,nqpts,nepts,qsize,esize,beta)

USE scondo_consts

REAL (wp), DIMENSION(:,:,:), INTENT(IN)
REAL (wp), DIMENSION(:,:,:), INTENT(IN)
REAL (wp), DIMENSION(:,:,:), INTENT(IN)

REAL (wp), DIMENSION(:), INTENT(IN OUT)
REAL (wp), DIMENSION(:), INTENT(IN OUT)

INTEGER, INTENT(IN) :: nllev
REAL (wp), INTENT(IN) :: fermieng
INTEGER, INTENT(IN) :: ngpts,nepts

REAL (wp), INTENT(IN) :: gsize,esize,beta

:: bw

:: grafr, grnfi
:: pjelem

:: bigpi

:: newbpi
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REAL (wp) :: polarize
END FUNCTION vertpol
END INTERFACE

INTERFACE
SUBROUTINE jeltab(pjelem,ngpts,qsize,nllev)
USE scondo_consts
REAL (wp), DIMENSION(:,:,:), INTENT(OUT) :: pjelem
INTEGER, INTENT(IN) :: ngpts
REAL (wp), INTENT(IN) :: gsize
INTEGER, INTENT(IN) :: nllev
END SUBROUTINE jeltab
END INTERFACE

INTERFACE
SUBROUTINE llcouple(oqgamma,pjelem,upotsq,nqpts,qsize,nllev,nimp)
USE scondo_consts

REAL (wp), DIMENSION(:,:), INTENT(OUT) :: oqgamma
REAL (wp), DIMENSION(:,:,:), INTENT(OUT) :: pjelem
REAL (wp), DIMENSION(:), INTENT(IN) :: upotsq

INTEGER, INTENT(IN) :: ngpts
REAL (wp), INTENT(IN) :: gsize
INTEGER, INTENT(IN) :: nllev
REAL (wp), INTENT(IN) :: nimp
END SUBROUTINE llcouple
END INTERFACE

INTERFACE
SUBROUTINE fourpot(bigpi,upot,upotsq,aimp,nqpts,qgsize,dieconst, &
esqr,tfflag,tfcnst)
USE scondo_consts
REAL (wp), DIMENSION(:), INTENT(IN QUT) :: bigpi
REAL (wp), DIMENSION(:), INTENT(OUT) :: upot,upotsq
REAL (wp), INTENT(IN) :: aimp
INTEGER, INTENT(IN) :: nqpts
REAL (wp), INTENT(IN) :: gsize,dieconst,esqr
INTEGER, INTENT(IN) :: tfflag
REAL (wp), INTENT(IN) :: tfcmst
END SUBROUTINE fourpot
END INTERFACE

INTERFACE
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SUBROUTINE pmix(bigpi,newbpi,nqpts,adfac)
USE scondo_consts
REAL (wp), DIMENSION(:), INTENT(IN OUT) :: bigpi
REAL (wp), DIMENSION(:), INTENT(IN) :: newbpi
INTEGER, INTENT(IN) :: ngpts
REAL (wp), INTENT(IN) :: adfac

END SUBROUTINE pmix

END INTERFACE

INTERFACE
FUNCTION refineef(oqgamma,ef,nllev,esize,eoff,hgmub)
USE scondo_consts
REAL (wp), DIMENSION(:,:), INTENT(IN) :: oqgamma
REAL (wp), INTENT(IN) :: ef
INTEGER, INTENT(IN) :: nllev
REAL (wp), INTENT(IN) :: eoff,esize,hgmub
REAL (wp) :: refineef
END FUNCTION refineef
END INTERFACE

INTERFACE
SUBROUTINE findwdth(grnfi,magfield,esize,nepts,nllev)
USE scondo_consts
REAL (wp), DIMENSION(:,:,:), INTENT(IN) :: grnfi
REAL (wp), INTENT(IN) :: magfield,esize
INTEGER, INTENT(IN) :: nepts,nllev
END SUBROUTINE findwdth
END INTERFACE

INTERFACE
SUBROUTINE greng(grnfr,grnfi,esize,eoff,nepts,nllev,magfield)
USE scondo_consts

REAL (wp), DIMENSION(:,:,:), INTENT(IN) :: grnfr,grnfi
REAL (wp), INTENT(IN) :: esize,eoff

INTEGER, INTENT(IN) :: nepts,nllev

REAL (wp), INTENT(IN) :: magfield

END SUBROUTINE greng
END INTERFACE

INTERFACE
SUBROUTINE geneps(epsr,epsi,grnfr,grnfi,pjelem,nllev, &
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nqgpts,nepts,qsize,esize,fermieng,beta, &
esqr,dieconst)

USE scondo_consts

REAL (wp), DIMENSION(:,:),INTENT(OUT) :: epsr,epsi

REAL (wp), DIMENSION(:,:,:),INTENT(IN) :: grnfi, grnfr

REAL (wp), DIMENSION(:,:,:),INTENT(IN) :: pjelem

INTEGER :: nepts, nllev, nqgpts

REAL (wp) :: gsize, esize, beta, fermieng, esqr, dieconst

END SUBROUTINE geneps
END INTERFACE

INTERFACE
SUBROUTINE selfe_corr(grnfr,grnfi,selfr,selfi,nsr,nsi,epsi, &
epsr,pjelem,nepts,nqgpts,nllev,qsize, &
esize,fermieng,beta,esqr, &
dieconst,eoff ,hgmub)
USE scondo_consts
REAL (wp), DIMENSION(:,:,:),INTENT(IN) :: grnfi, gronfr
REAL (wp), DIMENSION(:,:,:),INTENT(OUT) :: selfr, selfi
REAL (wp), DIMENSION(:,:,:),INTENT(OUT) :: nsr, nsi
REAL (wp), DIMENSION(:,:),INTENT(IN) :: epsr,epsi
REAL (wp), DIMENSION(:,:,:),INTENT(IN) :: pjelem
INTEGER :: nepts, nllev, ngpts
REAL (wp) :: gsize, esize, fermieng, beta, esqr, &
dieconst, eoff, hgmub
END SUBROUTINE selfe_corr
END INTERFACE

INTERFACE
SUBROUTINE bigw(bessval,bw,upotsq,pjelem,nqpts,qsize,nllev,nimp)
USE scondo_consts
REAL (wp), DIMENSION (:,:), INTENT(IN) :: bessval

REAL (wp), DIMENSION (:,:,:), INTENT(QOUT) :: bw
REAL (wp), DIMENSION (:), INTENT(IN) :: upotsq
REAL (wp), DIMENSION (:,:,:), INTENT(IN) :: pjelem

INTEGER, INTENT(IN) :: ngpts
REAL (wp), INTENT(IN) :: gsize
INTEGER, INTENT(IN) :: nllev
REAL (wp), INTENT(IN) :: nimp
END SUBROUTINE bigw
END INTERFACE
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END MODULE scondo_interfaces




G.24 scondo_spin.f90

! Handles the uniform treatment of spin

MODULE scondo_spin
USE scondo_consts

REAL (wp) :: gs = 1EO_wp
INTEGER :: spinstates

END MODULE scondo_spin
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G.25 selfe_corr.f90

! A subroutine to calculate the electron-electron
! self energy correction

SUBROUTINE selfe_corr(grnfr,grnfi,selfr,selfi,nsr,nsi,epsi, &
epsr,pjelem,nepts,nqpts,nllev,qsize, &
esize,fermieng,beta,esqr, &
dieconst,eoff ,hgmub)

USE scondo_consts
USE scondo_control
USE scondo_spin

! .. Scalar Arguments ..
REAL (wp) :: beta, esize, fermieng, gsize, esqr, &
dieconst, eoff, hgmub
INTEGER :: nepts, nllev, ngpts

! .. Array Arguments ..

REAL (wp), DIMENSION(:,:,:),INTENT(IN) :: grnfi, grnfr
REAL (wp), DIMENSION(:,:,:),INTENT(IN) :: selfr, selfi
REAL (wp),DIMENSION(:,:,:), INTENT(OUT) :: nsr,nsi

REAL (wp), DIMENSION(:,:,:),INTENT(IN) :: pjelem

REAL (wp), DIMENSION(:,:),INTENT(IN) :: epsr,epsi

! .. Local Scalars ..
REAL (wp) :: cksum, e, fact, mnq, nvl, nv2, q, sum, sum2, f
REAL (wp) :: srule
INTEGER :: i, j, k, 1, nmax, nmaxb,sp

t .. Local Arrays ..
REAL (wp) :: bot(mepts), frmi(nepts), bose(nepts), nbose(nepts)
REAL (wp) :: dnmr(nepts), dnmi(nepts)
REAL (wp) :: chi(nllev,nllev),xnt(nllev,spinstates), &
xchg(nllev,spinstates)
REAL (wp) :: kr(mepts,nllev,nllev),ki(nepts,nllev,nllev)
REAL (wp) :: spen(spinstates)

I .. Intrinsic Functions .
INTRINSIC exp, float, int, min, sqrt
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PRINT *, "Entering New Self"
! Generate Fermi distribution
nmax = min(nepts,int(((80EC_wp/beta)+fermieng)/esize))
DO i = 1, nmax
e = float(i-1)*esize - fermieng
frmi(i) = 1EO_wp/(exp(betaxe)+1E0_wp)
END DO
DO i = nmax + 1, nepts
frmi(i) = OEO_wp
END DO

! Generate Bose distribution
nmaxb = min(nepts,int (((80EO_wp/beta))/esize))
bose(1)=0EO_wp !fix for bad point at zero
DO i = 2, nmaxb
e = float(i-1)*esize
bose(i) = 1EO_wp/(exp(betax*e)-1EQ_wp)
END DO
DO i = nmaxb + 1, nepts
bose(i) = OEO_wp
END DO

! Generate Negative Bose distribution

nbose(1)=0EO_wp !fix for bad point at zero
DO i = 2, nmaxb

e = float(i-1)*esize

nbose(i) = 1E0_wp/(exp(-beta*e)-1EQ_wp)
END DG
DO i1 = nmaxb + 1, nepts

nbose(i) = -1EO_wp
END DO

INow calculate the Self Energy Correction

IF (spinstates == 2) THEN
spen(1) = -hgmub
spen(2) = hgmub

ELSE
spen = OEO_wp

END IF




! Create the complex entity K(x) where
I K_{NN_2}(x)= \int_0"\ifty dq q
! * [M_{NN_2}["2 * V_e(q) 1/\epsilon(x,q)

PRINT #*,’Calculating K s - step 1’
kr(1l:nepts,1:nllev,1:nllev)=0E0_wp
ki(l:nepts,i:nllev,1:nllev)=0EO0_wp

! Note that q * V_e(gq)=const

PRINT #*,’Calculating K s - step 2’
DO j=1,nqgpts
IMIC$ DO ALL shared(nllev,nepts,pjelem,epsr,epsi,kr, ki, j)
IMIC$1 private(1,k)
DO 1=1,nllev
DO k=1,nllev
kr(1:nepts,k,1l)=kr(1:nepts,k,l) &
+ pjelem(j,k,1)*pjelem(j,k,1)*epsr(i:nepts,j)
ki(1l:nepts,k,1)=ki(1l:nepts,k,1l) &
+ pjelem(j,k,1)*pjelem(j,k,1)*epsi(l:nepts,j)
END DO 'k
END DO 'l
END DO !j

PRINT *,’Calculating New selfenergy’
nsr(1:nepts,1:nllev,1l:spinstates)=0E0_wp
nsi(1i:nepts,i:nllev,1l:spinstates)=0E0_wp

PRINT =*,’Calculating New selfenergy stage 2’
! This is the positive energy interaction
D0 1=1,nllev
DO j=1,nepts
DO sp=1,spinstates
IMIC$ DO ALL shared(nllev,nepts,frmi,sp,j,l,nsi,frmi,grnfi,ki)
IMICS$1 private(k,i)
DO k=1,nllev
DO i=j+1,nepts
I nsr(i,k,sp)=nsr(i,k,sp)+(1EO_wp-frmi(j)) &
*grnfi(j,1,sp)*kr(i-j+1,k,1)
nsi(i,k,sp)=nsi(i,k,sp)+(1EO_wp-frmi(j)) &



*grnfi(j,1,sp)*ki(i-j+1,k,1)
END DO !i
END DO 'k
END DO !sp
END DO !j
END DO !1

PRINT #,’Calculating New selfenergy stage 3’
DO 1=1,nllev
DO j=0,nepts-1
DO sp=1,spinstates
'MIC$ DO ALL shared (nllev,nepts,nsr,nsi,bose,grnfr,grnfi,ki,sp,j,1)
IMIC$1 private (k,1i)
DO k=1,nllev
DO i=j+1,nepts
! nsr(i,k,sp)=nsr(i,k,sp)+ &
! bose(j+1)*grnfr(i-j,1,sp)*ki(j+1,k,1)
nsi(i,k,sp)=nsi(i,k,sp)+ &
bose(j+1)*grnfi(i-j,1,sp)*ki(j+1,k,1)
END DO !'i
END DO 'k
END DO '!'sp
END DO !j
END DO !1

! This is the negative energy interaction
PRINT *,’Calculating New selfenergy stage 4’
DO 1=1,nllev
DO j=1,nepts
DO sp=1,spinstates
IMIC$ DO ALL shared(nllev,nepts,nsi,frmi,grnfi,ki,sp,j,1)
IMIC$1 private(k,i)
DO k=1,nllev
DO i=1, ]
i nsr(i,k,sp)=nsr(i,k,sp) &
! +(1EO_wp-frmi(j))*grnfi(j,1,sp)*kr(i-j+1i,k,1)
nsi(i,k,sp)=nsi(i,k,sp) &
-(lEO_wp~-frmi(j))*grnfi(j,1,sp)*ki(j-i+1,k,1)
END DO !'i
END DO 'k
END DO !sp
END DO !j

(W]
]
(9]}




END DO !1

PRINT *,’Calculating New selfenergy stage 5’
DO 1=1,nllev
DO j=1,nepts-1
DO sp=1,spinstates

IMIC$ DO ALL shared(nllev,nepts,nsr,nsi,nbose,grnfr,grnfi,ki,sp,j,1)

IMIC$1 private(k,i)
DO k=1,nllev
DO i=1,nepts—-j
! nsr(i,k,sp)=nsr(i,k,sp) &
! -nbose (j+1)*grnfr(i+j,1,sp)*ki(j+1,k,1)
nsi(i,k,sp)=nsi(i,k,sp) &
-nbose(j+1) *grnfi(i+j,1,sp)*ki(j+1,k,1)
END DO !i
END DO 'k
END DO !'sp
END DO !j
END DO !1

PRINT #*,’Calculating New selfenergy stage 6’
fact=-esqr*qsize*esize/(dieconst*pi)

! nsr(1i:nepts,1:nllev,1:spinstates)= &
! nsr(1l:nepts,l:nllev,1:spinstates)*fact
nsi(1l:nepts,1:nllev,1l:spinstates)= &
nsi(l:nepts,l:nllev,1:spinstates)*fact

! Do a Kramers-Kronig on the self-energy -- what an improvement
nsr=0.0_wp
DO sp=1,spinstates
DO k=1,nllev
DO i=1,nepts
DO j=1,i-1
nsr(j,k,sp) = nsr(j,k,sp)+nsi(i,k,sp)/float(j-i)
END DO
DO j=i+1,nepts
nsr(j,k,sp) = nsr(j,k,sp)+nsi(i,k,sp)/float(j-1i)
END DO
END DO
END DO
END DO




nsr= -nsr/pi

! This is the Exchange term
PRINT *,’Calculating Exchange part of new selfenergy’
chi(l:nllev,1:nllev)=0E0_wp

DO j=1,nqpts
DO k=1,nllev
DO 1=1,nllev
chi(k,1l)=chi(k,1)+pjelem(j,k,1)*pjelem(j,k,1)
END DO
END DO
END DO

xnt(1:nllev,1:spinstates)=0E0_wp
DO i=1,nepts
DO sp=1,spinstates
DO k=1,nllev
xnt (k,sp)=xnt (k,sp) +frmi (i) *grnfi(i,k,sp)
END DO 'k
END DO !sp
END DO 'i

xchg(1l:nllev,1:spinstates)=0E0_wp

DO sp=1,spinstates

DO 1=1,nllev
xchg(1:nllev,sp)=xchg(l:nllev,sp)+chi(1:nllev,1)*xnt(1l,sp)

END DO !l

END DO !sp

fact=esqrxesize*qsize/(dieconst*pi)
xchg(1i:nllev,1:spinstates)=xchg(l:nllev,1:spinstates)*fact

!Temporary
DO k=1,nllev

IF (spinstates == 2) THEN
PRINT *,k,xchg(k,1),xchg(k,2)
ELSE
PRINT *,k,xchg(k,1)
END IF
END DO




! Add the exchange energy to the self emergy correction

IMICS$

PRINT

PRINT

DO ALL AUTOGSCOPE

DO sp=1,spinstates

DO k=1,nllev
nsr(l:nepts,k,sp)=nsr(l:nepts,k,sp)+xchg(k,sp)

END DO 'k

END DO !sp

IF (1==0) THEN
*,’Writing New selfenergy’
OPEN (unit=80,file=’newself.x’,status=’unknown’)
DO k=1,nllev
DO sp=1,spinstates
DO i=1,nepts
write(80,°’(i3, el12.4, el2.4, el12.4)’) k, &
float(i-1)*esize, &
nsr(i,k,sp), nsi(i,k,sp)
END DO !1i
END DO !sp
END DO 'k
close(80)
END IF

*, "Exiting New Self"

RETURN

END SUBROUTINE selfe_corr



G.26 selfener.f90

! A subroutine to calculate the self energy

SUBROUTINE selfenergy(oqgamma,selfr,selfi,nepts,nllev, &
esize,eoff ,hgmub)

USE scondo_consts
USE scondo_spin

! .. Scalar Arguments
REAL (wp), INTENT(IN) :: eoff, esize, hgmub
INTEGER, INTENT(IN) :: nepts, nllev

! .. Array Arguments
REAL (wp), INTENT(IN) :: oqgamma(:,:)
REAL (wp), INTENT(IN OUT) :: selfi(:,:,:), selfr(:,:,:)

! .. Local Scalars ..
REAL (wp) :: bis, brs, diff, e, keval, xtol
INTEGER :: i, it, j, k, maxit, n, sp

' .. Local Arrays

REAL (wp) :: bot(nllev,spinstates), br(nllev,spinstates), &
fbi(nepts,nllev,spinstates), &
fbot (nepts,nllev,spinstates), &
fbr (nepts,nllev,spinstates), &
fsli(nepts,nllev,spinstates), &
fslr(nepts,nllev,spinstates), &
sli(nllev,spinstates), slr(nllev,spinstates)

REAL (wp) :: spen(spinstates)

! .. Intrinsic Functiomns ..
INTRINSIC float

xtol = 1E-14_wp
maxit = 40000

IF (spinstates == 2) THEN
spen(1) = -hgmub
spen(2) = hgmub

ELSE




spen = OEO_wp
END IF

! Set the upper limit small for machines like workstations
! and about 80 for the Cray J90

DOn =1, 40
fslr(l:nepts,1l:nllev,l:spinstates) = OEO_wp
fsli(1l:nepts,1:nllev,l:spinstates) = -1E-5_wp

DO sp = 1, spinstates
DO j = 1, nllev
keval = eoff + float(j) + spen(sp)
DO i = 1, nepts
fbr(i, j,sp) = float(i-1)*esize - keval - selfr(i,j,sp)
fbot(i,j,sp) = 1EO_wp/(fbr(i,j,sp)*fbr(i,j,sp) &
+selfi(i,j,sp)*selfi(i,j,sp))

END DO 'i
END DO !j
END DO !sp

fbr(1l:nepts,l:nllev,1l:spinstates) = &
fbr(1:nepts,i:nllev,1:spinstates) &
*fbot (1:nepts,1:nllev,1:spinstates)

fbi(1l:nepts,l:nllev,l:spinstates) = &
selfi(1l:nepts,1l:nllev,l:spinstates) &
*fbot (1:nepts,l:nllev,1:spinstates)

DO sp = 1, spinstates
DO k = 1, nllev
DO j = 1, nllev
fslr(1:nepts,j,sp)

fslr(1l:nepts,j,sp) &
oggamma (j,k)*fbr(1:nepts,k,sp)
fsli(l:nepts,j,sp) &

+

fsli(1l:nepts,j,sp)

+ oqgamma (j,k)*fbi(1l:nepts,k,sp)
END DO !j
END DO 'k
END DO !sp
selfr(i:nepts,il:nllev,1:spinstates) = &

0.8EO0_wp*fslr(i:nepts,1l:nllev,1:spinstates) + &

0.2E0_wp#*selfr(l:nepts,1:nllev,1:spinstates)
selfi(l:nepts,1l:nllev,l:spinstates) = &

0.8E0_wp*fsli(1l:nepts,1:nllev,1l:spinstates) + &
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0.2E0_wp*selfi(l:nepts,l:nllev,l:spinstates)

END DO

IMIC$ DO ALL
!MIC$1 SHARED(nepts,esize,eoff,oqgamma,selfr,selfi,
IMIC$2 maxit,nllev,xtol,spen,spinstates)
IMIC$3 PRIVATE(i,j,k,sp,keval,diff,it,br,bot,slr,sli,brs,bis,e)
DO i = 1, nepts
keval = float(i-1)*esize - eoff
diff = 1EO_wp
it =1
DO WHILE ((diff>=xtol) .AND. (it<=maxit))
DO sp = 1, spinstates
DO k = 1, nllev
br(k,sp) = keval - float(k) - selfr(i,k,sp) - spen(sp)
bot(k,sp) = 1EO_wp/(br(k,sp)*br(k,sp) &
+selfi(i,k,sp)*selfi(i,k,sp))

slr(k,sp) = OEO_wp
sli(k,sp) = -1E-5_wp
END DO 'k
END DO !sp

DO sp = 1, spinstates
DO k = 1, nllev
slr(l:nllev,sp) = slr(l:nllev,sp) &
+ oqgamma(1:nllev,k)*br(k,sp)*bot(k,sp)
sli(l:nllev,sp) = sli(l:nllev,sp) &
+ oqgamma(1:nllev,k)*selfi(i,k,sp)*bot(k,sp)
END DO !k
END DO !sp

diff = OEO_wp
DO sp = 1, spinstates
DO j = 1, nllev

brs = selfr(i,j,sp) - slr(j,sp)

bis = selfi(i,j,sp) - sli(j,sp)

diff = diff + brs*brs + bis*bis

selfr(i,j,sp) = 0.8EO0_wp*slr(j,sp) &
0.2E0_wp*selfr(i,j,sp)
0.8E0_wp*sli(j,sp) &

+

selfi(i,j,sp)



+ 0.2EQ0_wp*selfi(i,j,sp)

END DO !j
END DO !sp
it = 1t + 1

END DO

IF (it>=maxit) THEN
e = float(i-1)*esize
PRINT *, ’Bad point at e=’, e, diff

END IF

END DO

RETURN
END SUBROUTINE selfenergy
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G.27 selfener2.f90

! A subroutine to calculate the self energy
! In this case we are iterating including the non static part of the
! self energy.

SUBROUTINE selfenergy2(oqgamma,selfr,selfi,nsr,nsi,nepts,nllev, &
esize,eoff, hgmub)

USE scondo_consts
USE scondo_spin

! .. Scalar Arguments ..
REAL (wp), INTENT(IN) :: eoff, esize, hgmub
INTEGER, INTENT(IN) :: nepts, nllev

! .. Array Arguments ..
REAL (wp), INTENT(IN) :: oggamma(:,:)
REAL (wp), INTENT(IN OUT) :: selfi(:,:,:), selfr(:,:,:)
REAL (wp), INTENT(IN) :: nsi(:,:,:), nsr(:,:,:)

t .. Local Scalars ..
REAL (wp) :: bis, brs, diff, e, keval, xtol
INTEGER :: i, it, j, k, maxit, n, sp

! .. Local Arrays ..

REAL (wp) :: bot(nllev,spinstates), br(nllev,spinstates), &
bi(nllev,spinstates), &
fbi(nepts,nllev,spinstates), &
fbot (nepts,nllev,spinstates), &
fbr(nepts,nllev,spinstates), &
fsli(nepts,nllev,spinstates), &
fslr(nepts,nllev,spinstates), &
sli(nllev,spinstates), slr(nllev,spinstates)

REAL (wp) :: spen(spinstates)

t .. Intrinsic Functions
INTRINSIC float

xtol = 1E-14_wp
maxit = 40000



spen(1)
spen(2)

-hgmub
hgmub

! Set the upper limit small for machines like workstations
! and about 80 for the Cray J90
D0n =1, 40
fslr(1l:nepts,1l:nllev,1:spinstates) = OEO_wp
fsli(1l:nepts,1l:nllev,1:spinstates) = -1E-5_up

DO sp = 1, spinstates
DO j = 1, nllev
keval = eoff + float(j) + spen(sp)
DO 1 = 1, nepts
fbr(i,j,sp) = float(i-1)*esize - keval &

- selfr(i,j,sp) - msr(i,j,sp)
fbi(i,j,sp) = selfi(i,j,sp) + msi(i,j,sp)
fbot(i,j,sp) = 1EO_wp/(fbr(i,j,sp)*fbr(i,j,sp) &

+ fbi(i,j,sp)*fbi(i,j,sp))

END DO !'i

END DO !j

END DO !sp

fbr(1:nepts,1:nllev,1:spinstates) = &
fbr(1:nepts,1:nllev,1l:spinstates) &
*fbot (1:nepts,1:nllev,1l:spinstates)

fbi(1i:nepts,l:nllev,i:spinstates) = &
fbi(1l:nepts,1:nllev,1:spinstates) &
*fbot (1:nepts,1l:nllev,1:spinstates)

DO sp = 1, spinstates
DO k = 1, nllev
DO j = 1, nllev
fslr(l:nepts,j,sp) = fslr(i:nepts,j,sp) &
+ oqgamma (j,k)*fbr(1:nepts,k,sp)
fsli(1l:nepts,j,sp) &
oqgamma (j,k)*fbi(l:nepts,k,sp)

fsli(1:nepts, j,sp)

+

END DO !j
END DO 'k
END DO !sp

selfr(1:nepts,i:nllev,1l:spinstates) = &
0.8E0_wp*fslr(l:nepts,i:nllev,1:spinstates) + &
0.2E0_wp*selfr(1l:nepts,l:nllev,l:spinstates)




selfi(l:nepts,1l:nllev,l:spinstates) = &
0.8EQ_wp*fsli(1l:nepts,1l:nllev,l:spinstates) + &
0.2E0_wp#*selfi(i:nepts,1i:nllev,l:spinstates)

END DO

IMIC$ DO ALL
IMIC$1 SHARED(nepts,esize,eoff,oqgamma,selfr,selfi,
IMIC32 maxit,nllev,xtol,spen,nsr,nsi,spinstates)
IMIC$3 PRIVATE(i, j,k,sp,keval,diff,it,br,bi,bot,slr,sli,brs,bis,e)
DO i = 1, nepts
keval = float(i-1)*esize - eoff
diff = 1EO_wp
it =1
DO WHILE ((diff>=xtol) .AND. (it<=maxit))
DO sp = 1, spinstates
DO k = 1, nllev
br(k,sp) = keval - float(k) - selfr(i,k,sp) &
- nsr(i,k,sp) - spen(sp)
bi(k,sp) = selfi(i,k,sp) + nsi(i,k,sp)
bot (k,sp) = 1EO_wp/(br(k,sp)*br(k,sp)+bi(k,sp)*bi(k,sp))
slr(k,sp) = OEO_wp
sli(k,sp) = -1E-5_wp
END DO !k
END DO !sp
DO sp = 1, spinstates
DO k = 1, nllev
slr(i:nllev,sp)

L}

slr(i:nllev,sp) &
+ oqgamma(1:nllev,k)*br(k,sp)*bot (k,sp)
sli(i:nllev,sp) &
+ oqgamma(1:nllev,k)*bi(k,sp)*bot(k,sp)

sli(1l:nllev,sp)

END DO 'k
END DO !sp

diff = OEO_wp
DO sp = 1, spinstates
DO j = 1, nllev
brs = selfr(i,j,sp) - slr(j,sp)
bis = selfi(i,j,sp) - sli(j,sp)
diff = diff + brs*brs + bisx*bis
selfr(i,j,sp) = 0.8EO_wp*slr(j,sp) &

N
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0.2E0_wp*selfr(i,j,sp)
0.8E0_wp*sli(j,sp) &
0.2E0_wp*selfi(i,j,sp)

W+

selfi(i,j,sp)

+

END DO !j
END DO !sp
it = it + 1
END DO
IF (it>=maxit) THEN
e = float(i~1)*esize
PRINT *, ’Bad point at e=’, e, diff
END IF
END DO

RETURN
END SUBROUTINE selfenergy2




G.28 tauconst.f90

! A function to evaluate the integral which relates
! the quantum scattering time to the impurity density
! Using Thomas-Fermi

FUNCTION tauconst(econc,dieconst,mfact,impdist)

USE scondo_consts

.. Function Return Value ..

REAL (wp) :: tauconst

. Parameters

REAL (wp), PARAMETER :: gss = 2EOQ_wp

. Scalar Arguments ..

REAL (wp), INTENT(IN) :: dieconst, econc, impdist, mfact

. Local Scalars ..

REAL (wp) :: bot, cl, c2, c3, c4, dx, £, kf, sn, sum, val, x
INTEGER :: i, nsteps

. Intrinsic Functions ..

INTRINSIC sqrt, exp, float, sin

nsteps = 1000

kf = sqrt(4.0EO_wp*pi*econc/gss)

cl = 4.0EQ_wp*pixhbar/(emass*mfact*gss*gss)
c2 = -8.0E0_wp*kf*impdist

c3 = 0.5E0_wp*dieconst*kf+*hbar/echg

¢3 = c3+*hbar/(emass*mfact*gss)/echg

c4 = 1.0EO_wp

dx = pi/float(nsteps)

sum = 0.0EO_wp

x = 0.0EO_wp

f = 1.0EO_wp

DO 1 = 1, nsteps
f=1.0d0-cos(2.0E0_wp*x)
sn = sin(x)
bot = c3*sn + c4

(V]




val = fxexp(c2*sn)/(bot*bot)
sum = sum + val
X =x + dx

END DO

tauconst = cl#*sum*dx

RETURN
END FUNCTION tauconst



G.29 vertpol.fo90

I A subroutine to calculate the Polarization
! This is with the vertex correction.

FUNCTION vertpol(bw,grnfr,grnfi,pjelem,bigpi,newbpi,nllev, &

fermieng,nqpts,nepts,qsize,esize,beta)

USE scondo_consts
USE scondo_spin

t .. Function Return Value ..
REAL (wp) :: vertpol

! .. Scalar Arguments

REAL

(wp), INTENT(IN) :: beta, esize, fermieng, gsize

INTEGER, INTENT(IN) :: nepts, nllev, ngpts

! .. Array
REAL
REAL
REAL
REAL

t .. Local
REAL

Arguments
(wp), INTENT(IN) :: bw(:,:,:)
(wp), INTENT(IN) :: grnfr(:,:,:), grnfi(:,:,:)

(wp), INTENT(IN OUT) :: bigpi(:), newbpi(:)
(wp), INTENT(IN) :: pjelem(:,:,:)

Scalars ..

(wp) :: cksum, e, fact, mnq, nvl, nv2, q

INTEGER :: i, j, k, 1, nmax, sp

1 .. Local
REAL
REAL
REAL
REAL

Automtic Arrays ..

(wp) :: frmi(nepts)

(wp) :: br(nepts), bi(nepts)
(wp) :: g2r(nepts), g2i(nepts)
(wp) :: bot(nepts),res(nepts)

! .. Intrinsic Functions ..
INTRINSIC exp, float, int, min, sqrt, sum

Lo,

! Generate
nmax
DO i

e =

Fermi distribution

= min(nepts,int (((80EO_wp/beta)+fermieng)/esize))
= 1, nmax

float(i~1)*esize - fermieng

frmi (i) = 1EO_wp/(exp(beta*e)+1E0_wp)




END DO

DO 1 = nmax + 1, nepts
frmi(i) = OEO_wp

END DO

fact = -gs*esize/(pi*pi)
newbpi(1:nqpts)=0EO0_wp

IMIC$ DO ALL
IMIC$1 shared(nqpts,nllev,nepts,newbpi,bw,grnfr,grnfi,pjelem,
IMIC$2 frmi,nmax,spinstates)
IMIC$3 private(i,j,k,1,sp,g2r,g2i,br,bi,bot,res)
DO i1 = 1, ngpts
DO sp = 1, spinstates
DO k = 1, nllev
D01 =1, nllev
! Cut Integral at nmax to save time
g2r(1:nmax) = grnfr(i:nmax,k,sp)*grnfr(i:nmax,l,sp) &
- grnfi(l:mmax,k,sp)*grnfi(l:nmax,1,sp)
g2i(1:nmax) = grnfr(1:nmax,k,sp)*grnfi(l:nmax,1l,sp) &
+ grnfr(1:mmax,1,sp)*grnfi(l:nmax,k,sp)
br(1:nmax) = 1.0EO_wp - bw(i,k,1)*g2r(1:nmax)
bi(1:nmax) = -bw(i,k,1)*g2i(1:nmax)
bot(1:nmax) = br(l:mmax)*br(l:mmax) &
+bi(1:nmax) *bi(1:nmax)
res(i:nmax) = (br(1l:nmax)*grnfr(1:nmax,k,sp) &
+bi(1:nmax)*grnfi(l:nmax,k,sp)) &
*grnfi(1:nmax,l,sp)*frmi(1:nmax)/bot (1:nmax)

newbpi(i) = newbpi(i) + pjelem(i,k,l) &
*pjelem(i,k,1)*sum(res(1:nmax))

END DO !'1
END DO 'k
END DO !sp
END DO !i

newbpi(l:nqpts) = newbpi(l:ngpts)*fact
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! Return convergence information
cksum = OEO_wp
nvl = OEO_wp
nv2 = OEO_wp
DO i = 1, ngpts
cksum=max (abs (newbpi(i)-bigpi(i)),cksum)

nvl = max(abs(bigpi(i)),nv1)
nv2 = max(abs(newbpi(i)),nv2)
END DO

vertpol = cksum/sqrt(avi*nv2)
RETURN
END FUNCTION vertpol

N




G.30 Makefile

.SUFFIXES: .f90 .o

# Choose the compiler
FORT = £f90 -e 1
#FORT = £90

# Set the optimization

#0PT = -0 -byte_kinds -ccargs ’-06 -funroll-all-loops’
#0PT = -04 -tune host

OPT = -Oscalar3,vector3,task3,inline3 -dp

#0PT = -05 -qarch host -qtune host

# Uncomment these for systems without the Bessel functions
#BESSF = besselj0.£90
#BESSO = besseljO.o

SRC = $(BESSF) densos.f90 jelem.f90 main.f90 polarize.f90 \
besstab.f90 fourpot.f90 laguerre.f90 melem.f90 selfener.fS0 \
chempot.f90 greens.f90 llcouple.f90 mix.f90 \
tauconst.f90 pmix.f90 \
findener.f90 refineef.f90 findwdth.f90 \
geneps .f90 selfe_corr.f90 selfener2.f90 greens2.f90 \
vertpol .f90 bigw.£90

OBJ = $(BESSO) densos.o jelem.o main.o polarize.o besstab.o \
fourpot.o laguerre.o melem.o selfener.o \
chempot.o greens.o llcouple.o mix.o tauconst.o pmix.o \
findener.o refineef.o findwdth.o \

geneps.o selfe_corr.o selfener2.o greens2.o \

vertpol.o bigw.o

140D = scondo_consts.o scondo_interfaces.o scondo_control.o \
scondo_spin.o

scondo: $(0BJ) $(MOD)
$(FORT) -o scondo $(0BJ) $(MOD)

scondo_consts.o: scondo_consts.f90

o
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$(FORT) $(OPT) -c scondo_consts.f90

scondo_interfaces.o: scondo_interfaces.f90 scondo_consts.o
$(FORT) $(OPT) -c scondo_interfaces.f90

scondo_control.o: scondo_control.f90
$(FORT) $(OPT) -c scondo_control.f90

scondo_spin.o: scondo_spin.f90 scondo_consts.o
$(FORT) $(OPT) -c scondo_spin.f90

# -lperf
$(0BJ) : scondo_consts.o scondo_spin.o

main.o: scondo_interfaces.o scondo_control.o scondo_spin.o
selfe_corr.o: scondo_control.o scondo_spin.o

.£90.0: $(SRC)
$(FORT) $(OPT) -c $<

clean:
rm $(0BJ) scondo $(MOD) #*.mod

print-source:
enscript -Gr2 $(SRC)

N
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G.31 runparam.in

&material
dieconst=12.8,
mfact=0.067,
gstar=-0.44 /
&sample
mobil=50000,
econc=2.0ell,
impdist=50e-8 /
&run
temp=4.2,
magfield=2.068e4,
magstep=2.000e2,
nbpts=1 /
&energy_mom
esize=0.006,
eoff=15.5,
eupper=1,
qsize=0.025,
nepts=6000,
nqpts=400,
nliev=4 /
&converge
ctol=le-5,
itmax=20,
nsitmax=20 /
&calcctrl
include_non_static=T,
include_spin=T,
include_static_vertex=F /
&uritectrl
write_static_polar=F,
write_ns_polar=F,
write_static_greens=F,
write_ns_greens=T,
write_epsilon=T /
&files
diagfile="diaout.x",
dosfile="dosout.x",
elevelfile="elvout.x",
ewidthfile="wthout.x",

N




greensfile="grnout.x",
specfile="spcout.x",
staticpolarfile="bpiout.x",
nsgreensfile="nsgrnout.x",
nsspecfile="nsspcout.x",
nspolarfile="nspolout.x",
epsilonfile="epsout.x" /
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