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RISKY ASSET PRICE EXPECTATIONS FORMATION
AND

EMERGENT MARKET BEHAVIORS 

ABSTRACT

We model how individuals with diverse beliefs form their price expectations in the 
light of events in a market that is perpetually novel and constantly evolving. Our 
model is unique in that it take into consideration the fact that people, when making 
decisions in an ill-defîned and complex environment, will exploit their innate ability to 
think in fuzzy notions as well as reason inductively in these fuzzy notions. The 
apparatus we employ to model learning and expectations formation is the genetic- 
fuzzy classifier system. The formulation of this apparatus, and the study of the 
complications that can arise when investors hold heterogeneous expectations that may 
change over time as well as their implications for security prices constitute the primary 
focus of this dissertation.

We find several interesting and intriguing results. First, results from our computer 
simulations reveal that market behaviors which are otherwise treated as anomalies in 
standard asset pricing models emerge naturally in our model. Second, our results 
provide support for the two diametric views held by academician and traders—that is, 
while academic theorists in general view the market as rational and efficient, market 
traders typically see the market as psychological, organic, and imperfectly efficient. 
Lastly, our simulations produce time series behaviors of prices and trading volume 
that bear strong resemblance to corresponding time series behaviors observed in real 
financial markets. In summary, we find 1) positive autocorrelation in trading volume, 
2) positive contemporaneous correlation between trading volume and volatility, and 3) 
slightly excess kurtosis, ARCH-liked features, and low autocorrelation in the returns 
time series.

XI



1. INTRODUCTION

What is finance? Campbell, Lo and MacKinlay (1997) eloquently summarized

the essence of finance as a discipline in the following few sentences.

The starting point fo r every financial model is the uncertainty facing investors, 
and the substance o f every financial model involves the impact o f uncertainty on 
the behavior o f investors and, ultimately, on market prices. Indeed, in the 
absence o f uncertainty, the problems o f financial economics reduce to exercises in 
basic microeconomics. The very existence o f financial economics as a discipline 
is predicated on uncertainty. (Campbell, Lo and MacKinlay 1997, p.3)

Indeed, this is the very spirit behind this dissertation. In this dissertation, we focus on

the implications upon asset prices and market behaviors of an element of uncertainty

that has emerged because investors are unable to form objective and precise price

expectations in real financial markets' (see Section 1.2 in this chapter). We capture

this element of uncertainty with an alternative model of the process that determines

how price expectations are formed. What makes our model unique is that it takes into

consideration the recognized fact that investors will take advantage of their innate

ability to reason inductively and analyze in fuzzy terms when they have to make

decisions in a complex and ill-defined environment.

Our approach is inspired by research findings about human learning behavior 

from psychology and is based on techniques that have emerged firom recent advances 

in machine learning and Artificial Intelligence research. Like most recent

' It is important to point out that this breakdown in our ability to form objective price expectations is 
not due to limitations in our computational ability; it happens because the problem is inherently 
ill-defined making it impossible for us to pin down a price expectations 6om a sea of many 
plausible price expectations that everyone can agree upon objectively. We will say more about 
this in Section 1.2.

1



contributions in this area, we are encouraged by the promise of ûuitfui results offered 

by these new methods of analysis^. The apparatus we employ to model expectations 

formation is a hybrid system called the genetic-fuzzy classifier^. We will argue later 

in this chapter that our approach will not only address the criticisms of existing 

learning models, but will also provide a more accurate picture of how investors 

actually form their expectations in real life.

It is important to accurately capture the way in which investors form their price 

expectations in real life because, like Shiller (1984, 1989) and Keynes (1936), we 

suspect that the so called anomalies and empirical puzzles^ in real financial markets 

are somehow related to the manner in which price expectations are formed in real 

markets (see our discussion in Section 1.2). In addition, since asset prices are ' 

ultimately driven by price expectations, a model that accurately c^tures how 

expectations are shaped will help to shed l i^ t  on how prices are formed in real 

markets.

Despite the gravity of these issues, theoretical finance and economic literature 

have largely ignored the need to model in a realistic maimer the way that investors 

form their price expectations in real life .̂ Instead, theorists have mainly focused on

 ̂Varian (1993, p.l) argued that the recent upsurge in interest in this and other traditionally difficult 
research questions is most likely due to the availability of better methods of analysis that promise 
researchers more huitful ways of addressing these questions.

 ̂See Cox (1994).
* Some examples are market crashes, mean reversion, relatively high level of trading, presence of

technical trading, excess volatility, volatility clustering etc. These behaviors are curious from the 
stand point of standard neoclassical models with strong underlying rationaUty assumptions.

 ̂Varian (1993) has argued that this is because theorists did not have the right tools to address the 
problem and it is not because they are not interested in the problem.
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equilibrium situations in which they can design clever ways to circumvent the diffîcult 

question of how price expectations are formed. To this end, a common approach in 

many neoclassical models is to invoke the rational expectations argument^. But these 

models typically impose strong rationality assumptions about the abilities and 

behaviors of economic agents which some of us have found to be rather unappealing. 

For instance, Herbert Simon^, one of the most well known and vocal dissidents, has 

argued that:

A comparative examination o f the models o f adaptive behaviour employed in 
psychology (e.g. learning theories), and o f the models o f rational behaviour 
employed in economics, shows that in almost all respects the latter postulate a 
much greater complexity in the choice mechanisms, and a much larger capacity in 
the organism fo r obtaining information and performing computations, than do the 
former. Moreover, in the limited range ofsituations where the predictions o f the 
two theories have been compared (See Thrall et al. 1954, Chapters 9, 10,18), the 
learning theories appear to account for the observed behaviour rather better than 
do the theories o f rational behaviour.

Both from these scanty data andfrom an examination o f the postulates o f the 
economic models it appears probable that, however adaptive the behaviour o f 
organisms in learning and choice situations, this adaptiveness falls short o f the 
ideal of'maximizing’postulated in economic theory. Evidently, organisms adapt 
well enough to 'satisfice'; they do not, in general, 'optimize'.
(Simon 1992, p.3 9)

Despite these criticisms, many theorists have maintained that the underlying

* This entails making strong rationality assumptions so that every agents in the model will arrive at the 
same price expectations. Another common approach in neoclassical models is to assume a 
tâtonnement process, see Arrow and Hahn (1971).

’ Furthermore, according to Simon:
Neoclassical economic theory assumes that the problem agenda, the way in which problems are 
represented, the values to be achieved (utility junction), and the alternatives available for choice 
have all been given in advance. It has no systematic way o f explaining how problems get on the 
agenda .... what is it that people value and how values change, or how action alternatives are 
created .... Hence it is incapable o f creating a genuine economic dynamics. (Simon et al. 1992, 
p.5).

For more information, see the bounded rationality works of Herbert Simon—Simon 1947, 1955, 
1957,1959, 1976,1982,1986, Simon et al. 1992.



rationality assiunptions are sound because evolutionary forces in the markets will 

eventually select for rational behaviors*. Most of us are familiar with this argument 

and have in general accepted its validity. But Blume and Easley (1992) recently 

challenged the validity of this conventional wisdom by demonstrating clearly in 

several different cases that this conventional intuition in general is not vahd. Yet the 

above hand waving by theorists is not a serious issue if the concern is equilibrium 

analysis. However, if the intent is to explain real market phenomena, neoclassical 

rationality models will undoubtedly be inappropriate because real markets can hardly 

be considered as equilibrium systems^.

To model expectations formation in the presence of disequilibrium, we make 

use of a genetic-fuzzy classifier system.'® Even though our classifier system is similar 

in many aspects to that used in the Santa Fe Institute Artificial Stock Market model 

(the SFI model), there is a crucial difference. We have allowed the economic agents in 

our model to use fuzzy rules of thumb instead of the more restrictive conventional 

rules used in the SFI model. To illustrate the difference between conventional rules 

and fuzzy rules, consider the following conventional rule as compared to the fuzzy 

rule.

* See for instance the arguments of Alchian (1950), Friedman (1953), or a recent discussion of 
Alchian's contribution to economics by Demsetz (1996).

’ Kenneth Arrow, one of the pioneer architects of the neoclassical framework, recently raiseds the
concern that "the attainment of equilibrium (inevitably) requires a disequilibrium process", and in 
the presence of disequilibrium it will not be meaningful to talk about rational behavior in the sense 
defined in neoclassical theory (Arrow 1986, p.S387).

A Classifier system is a machine learning system that is capable of learning syntactically simple rules 
so that it may operate in an arbitrary environment What we have done differently is to replace 
the conventional rules typically found in these systems with fiizzy rules.



Conventional Rule: I f market index is greater than {0.9), then a is {0.2) and b is {0.8) 

Fuzzy Rule: I f market index is {high), then a is {low) and b is {high)

In these rules, a and b are the parameters to be used in a linear forecast equation for 

forecasting next period price. The market index, both a and b, and the fuzzy sets (low 

and high) are assumed to have been scaled to operate over the interval [0,1] (also 

known as the universe of discourse). In our ̂ plication, a fuzzy set is a mathematical 

mapping that transforms the magnitude of a variable into a qualitative expression that 

describes how large or small the variable is. This can be easily accomplished by, for 

instance, drawing a curve over the universe of discourse, [0,1], and letting the vertical 

height spanned by this curve be constrained to the membership values of [0%, 100%]. 

The membership value indicates to what degree a variable is a member of a fuzzy set; 

a membership value of 100% will indicate a 100% member whereas a membership 

value of 0% will represent a non-member.

It is obvious that the difference between these two rules lies in the way the 

second rule uses fuzzy sets instead of crisp numbers to define the states. An apparent 

problem with a conventional rule is it implies a sudden and definite change in decision 

at the cut-off point. For instance, had the market index been a tiny firaction less than 

0.9, say market index is 0.899, this condition in the rale will not be fulfilled and the 

rule will not be activated. Our introspection should convince us that we do not make 

such extreme decision changes over a tiny change in the relevant decision variable. In 

contrast, a fuzzy rale allows for a more gradual change in decision. A decline in the 

market index value to 0.899 will still satisfy the condition in the fuzzy rale although it



now satisfies the condition to a lesser degree. This will in turn result in a 

proportionate change in the values for the forecast parameters, a and h. There are 

other advantages to using fuzzy rules and these will be discussed in Section 1.3.

The way our genetic-fuzzy classifier system operates is straight forward. 

Expectations formation is effected by a set of fuzzy rules of thumb contained in the 

system and learning is simulated by systematically evolving the rules with the aid of a 

genetic algorithm (GA). Each rule contains a set of conditions and a set of forecast 

parameters presented in the format "If conditions, then forecast parameters”. 

Whenever the conditions in a fuzzy rule are matched to the prevailing state in the 

market, the forecast parameters in that same rule are used in a linear forecast equation 

to forecast next period price” . This forecast then forms the new price expectations at 

that point in time.

One important contribution of this work is the demonstration that behaviors 

which would have been considered anomalies (for instance, market crashes, mean 

reversion, relatively high level of trading, presence of technical trading, excessive 

volatility, etc.) within the standard asset pricing jframework will emerge naturally in a 

firamework where individuals are allowed to form their expectations using the 

approach we have proposed. Another equally intriguing result is that this model lends 

support to the two diametric views held by academic theorists and market traders” . 

Academic theorists in general see the market as rational and efficient, but market

” The forecasting equation we will use is: Ej^,+,+d,+,)=a(p,+d,)+b.
This is the same result obtained by Ardiur et al. 1996,1997, and Palmer et al. 1994 in their Santa Fe 

Institute Artificial Stock Market Model.



traders typically view the market as psychological, organic, and imperfectly efficient. 

Both views are certainly consistent with the behaviors we have seen in real financial 

markets. If we were to examine historical financial market data, we will see that 

financial markets, while most of the time, seem to be quite efficient, on occasions, can 

also exhibit moods and personality'^. In addition, the statistical behaviors of the time 

series of prices and trading volume, arising firom our simulations, are also comparable 

to those firom real financial markets. Returns are found to have low autocorrelations 

and slightly excess kurtosis (although the magnitude for kurtosis is still smaller than in 

actual returns). The returns series also appear to exhibit the signature "ARCH" 

behaviors commonly seen in time series of actual stock returns. Volatility in returns 

are found to be contemporaneously correlated with trading volume and trading volume 

is autocorrelated.

To sum up, the formulation of our model, and the study of the complications 

that can arise when investors hold heterogeneous expectations that may change over 

time as well as their implications for security prices, will constitute the primary focus 

of this research.

The rest of this chapter is devoted to a critique of some existing learning 

models and a discussion of the roots of market anomalies and the motivations for our

This is especially evident dining market crashes. One good example is the recent market crash on 
October 27, 1997. On that day, the Dow Jones Industrial Average suffered its biggest point drop 
in history. This occurred despite the fact that fundamentals of the United States economy are 
strong (and have been for the past several years) and the prospects for continued growth, with low 
inflation and low unemployment, are equally great. On die following day, October 28,1997, the 
U.S. stock markets soared back with the Dow Jones Industrial Average posting its biggest point 
gain in history amid record volume.



genetic-fuzzy approach to modeling expectations formation. In Chapter 2, we present 

an informal tutorial on fuzzy logic and genetic algorithm. The intent of Chapter 2 is 

not to provide a rigorous theoretical underpinnings for these methods but to present a 

practical and yet intuitive approach to these methods. Chapter 3 describes the 

modeling of expectations formation in more details and sets up the framework of our 

artificial stock market model. The basic firamework of the market is similar to a 

typical neoclassical two-asset market. The various controlled experiments that are 

conducted are also discussed in this chapter. Chapter 4 presents and discusses the 

results. Chapter 5 concludes with a summary of the main results and offers 

suggestions for future research.

Before we proceed any further, we would like to state that many of the ideas 

and views presented here are not original. They represent the collective wisdom of our 

predecessors in various disciplines. Nonetheless, this dissertation is unique in that it 

brings to bear the knowledge scattered amongst various disciplines to provide a 

unified approach to model economic decision making under uncertainty.

1.1 On the Modeling of Learning Behavior

The literature on learning has distinguished existing approaches as either based 

on rational learning or ad hoc learning. In the rational learning literature, we have 

models that derive learning behavior from Savage's axioms about preferences (Savage 

1954). Learning in these models occurs as individuals repeatedly update their priors

Sargent (1993) and Kiiman and Salmon (1995) provide good reviews of recent learning models in 
economics.
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using Bayes's rule in the light of new information as they seek to maximize their 

expected utility under uncertainty. Since Bayesian learning is a consequence of 

assumptions about preferences, this approach has been referred to as rational 

leaming^^. In contrast, in the ad hoc learning literature, we have models that typically 

employ non-bayesian learning mechanisms borrowed from the literature on statistics, 

econometrics, and machine learning and Artificial Intelligence. Because there appears 

to be no unifying principle that underlies the construction of these models, unlike in 

the former case, this approach has consequently been labeled as ad hoc learning^.

Although both streams of literature, in general, acknowledge that agents are 

boundedly rational and 6ce informational constraints, the learning mechanisms 

considered in the literature thus far are not entirely satisfactory. For instance, there are 

substantial evidence that Bayes theorem lacks empirical relevance and yet Bayesian 

learning remains a very popular approach’’. Salmon (1995, p.236) suggested that, 

perhaps, this is because theorists still seem to be more concerned with how people

Examples of rational learning models include the earlier works of Prescott (1972), Cyeit and
DeGroot (1974) (section titled "Consistent Model"), Rothschild (1974) and Townsend (1978), and 
more recent w ork of Frydman (1981), Townsend (1983a, 1983b), McLennan (1987), Mirman et 
al., (1984), Bray and Kreps (1986), Easley and Kiefer (1989), Kiefer and Nyarko (1988,1989), 
and Blume and Easley (1993) among many others.

Examples of ad hoc learning models include Radner (1972), Cyert and DeGroot (1974) (section titled 
"Inconsistent Model"), DeCanio (1979), Evans (1985), Bray and Savin (1986), Lucas (1986), 
Marcet and Sargent (1988,1989a, 1989b, 1989c), Nyarko (1990,1991a, 1991b), Woodford 
(1990), Linn and Stanhouse (1997), etc.

Kahneman et al. (1982) show that likelihoods and preferences expressed by individual experimental 
subjects do not satisfy the coherence properties that are necessary for the existence of subjective 
probabilities. Moreover they are found to update probabilities but they do not appear to use 
information efficiently in that posterior probabilities differ quantitatively and systematically from 
those predicted by the use of Bayes's rule (Nelson and Winter 1982, Edwards 1968, Tversky and 
Kahneman 1974, Cyert and DeGroot 1987). Grether (1992) also describes experiments in which 
it seems clear that individuals systematically fail to take "proper" account of prior probabilities.



should behave rather than how they actually do behave. Salmon also pointed out that:

It seems strange from the behavioral point o f view, for instance, to assume, as is 
the case with the standard statistical models o f "rational" learning, that agents 
have complete knowledge o f the relevant economic structure and yet are assumed 
to be completely ignorant ofperhaps just a subset o f the parameter values within 
that s t ruc tu reT he  economic interactions that have taken place in the past to 
have /e/î an individual in such an odd state are unspecified. (Salmon 1995, 
p.237)

In a similar vein, Bullard lamented that:

Many theorists choose to suppose that agents ignore the interaction o f beliefs and 
outcomes—they ignore behavioral uncertainty—leading to learning schemes that 
are inherently misspecified (Bray 1982). The misspecijication causes these 
decision rules to be biased, although they are often shown to converge to MMIE 
eventually. In fact, this kind o f interpretation implies that agents in many models, 
since they all use the same method o f forming expectations, collectively adhere to 
biasedforecast functions—a requirement that is especially dubious considering 
that no agent is allowed to respecijy the forecast function i f  the bias is detected. 
(Bullard 1990,p.333)*’

To resolve these inconsistencies, Salmon suggested that,

A more reasonable position might be that agents'knowledge o f the structure and 
their learning activity evolve symbiotically and the manner by which learning 
takes place adapts to their increased understanding o f their economic 
environment which in turn may grow, according to economic incentives, through 
deliberately increased interaction with that environment. Some flexibility within 
the method o f learning is then needed as the agent's approximation to reality 
improves. (Salmon 1995, p.237-238)

There are at present two methodologies in the learning literature that can potentially

address these problems and they are the artificial neural networks (see Cho 1992 and

"  Often for instance the "regression parameters" are assumed to be unknown but die residual variance 
is assumed to be known.

MMIE refers to Mills-Muth implicit expectations. Bullard gives it a special name to distinguish it 
from the concept of rational expectations. The intention is to emphasize that there is a process 
that drives the formation of MMIE. Mathematically, it is described by: X*^=E,(X,+J, where X is 
the forecast of X, and E, is the mathematical expectations operator based on information available 
at time t.
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Salmon 1995) and the classifier system (see for instance Arifovic 1991, 1994,1995, 

1996, Arifovic and Eaton 1995, Arthur 1995, and Arthur et al. 1996,1997). In 

comparison to the other methods (Bayesian learning, least square learning etc.), these 

two approaches generally assume much less mathematical sophistication (in the 

conventional sense) on the part of the agents. Rather than relying on conventional 

mathematics or statistics, these mathematically less sophisticated agents solve 

complex problems using intuitive methods. But this should not be taken to imply that 

these agents are inferior to the mathematically more sophisticated agents in solving the 

complex decision problems they are faced with. In fact, we will argue in the next two 

sections that these intuitive methods are actually more suited to dealing with the sort 

of complex and ill-defined problems that the agents encountered.

Both these approaches in general allow agents to learn about the structure of 

their forecast fimctions as well as the relevant parameters of these functions.

However, in an artificial neural networks, all that agents can see are the inputs and 

outputs to the neural networks. Learning takes place in a black box so that agents may 

still be imaware of what their forecast functions look like or what the relevant 

parameters are even if  they have already learned the correct structure for their forecast 

functions.

In contrast, learning is transparent to the agents in a classifier system. A 

classifier system allows agents to hold a multitude of different forecast functions 

which they repeatedly test and revise as they learn fi-om their interactions with the 

environment. Hence, agents know precisely what their forecast functions look like,

11



what the parameters are, and which of the forecast functions works best at any point in 

time.

Another interesting feature intrinsic in a genetic classifier system is its forward 

looking characteristic. A genetic classifier system constantly creates and holds on to 

new forecast functions which may not be useful at the present time but might become 

useful at some point in time in the future. This feature is not presence in an artificial 

neural networks which functions more like a curve fitting machine. In addition, 

Arthur et al. (1996) have argued that the characteristics of a genetic classifier system 

closely resemble the induction process that people use to make decisions when they 

are confironted with an ill-defined environment (see the next section).

Therefore, a classifier system is a more appealing approach than the artificial 

neural networks, and it is for these reasons that we have decided to use a variation of a 

classifier system to model expectations formation in our model.

1.2 Expectations Formation and Market Created Uncertainty

As yet, no intuition has been provided to explain why the approach we have 

proposed for modeling learning and expectations formation might explain the 

anomalies and transition dynamics we see in real markets. In order to understand why 

our model will work, we need to get to the roots of these market anomalies^®. It is 

instructive at this point to take a step back and ask what it will take for a model to 

account for the market anomalies we have seen. Since models are necessarily

We should emphasize that the so called market anomalies are not really anomalies per se. They are 
called "anomahes" only because they cannot be explained by standard asset pricing models.
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abstractions of the real world, their successes will ultimately hinge on incorporating 

those elements that are essential to explaining what they are intended to explain. 

Although no one knows for certain what the essential ingredients for explaining 

market anomalies are, empirical evidence (see Shiller 1989) seem to suggest that a 

certain type of market created uncertainty (see Peck and Shell 1991), intentionally 

sidestepped in standard asset pricing models (probably because of its analytical 

intractability), may potentially explain the seemingly anomalous behaviors in real 

financial markets.

Specifically, we are referring to Üie uncertainty created as a result of the 

interactions (either directly and/or indirectly) among heterogeneous market 

participants who have to learn to form their expectations in a market environment that 

is inherently ill-defined. The difficulty here is that under such circumstances, people 

will not be able to deduce their expectations logically^* (see Arthur 1994,1995). 

Consequently, each market participant will have to form his price expectations based 

on his subjective forecast of the expectations of the rest of the market participants. 

When this is the case, and when no one is absolutely certain of what true fimdamental 

values are, the market can develop a life of its own and respond in ways that are not 

correlated with movements in fimdamental values^. According to Arthur,

Arthur finds that in markets where individuals form their expectations heterogeneously, deductive 
reasoning will not provide any closure and will result in indeterminacy (see also discussions by 
Arrow 1986, Blume and Easley 1995).

^  Geimotte and Leland (1990), and Jacklin, Kleidon and Pfleiderer (1992) have demonstrated that 
uncertainty among market participants about the proportions of investors who follow various 
investment strategies is sufficient to produce market crashes, even if investors rationally update 
their beliefs over time.
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...the sense he makes o f the Rorschach [bold added to replace italics] pattern o f 
market information It is influenced by the sense he believes others may make o f 
the same pattern. I f  he believes that others believe thé price will increase, he will 
revise his expectations to anticipate upward-moving prices (in practice helping 
validate such belies). I f  he believes others believe a reversion to lower values is 
likely, he will revise his expectations downward. All we need to have self 
reinforcing suspicions, hopes, and apprehensions rippling through the subjective 
formation o f expectations (as they do in real markets) is to allow that It contains 
hints—and imagined hints—o f others ' intentions. (Arthur 1995, p.23)

Hence, the process of expectations formation under such circumstances can be 

precarious. This view ofthe market is akin to that of Keynes’s (1936, p.150). Keynes 

has regarded asset prices as "the outcome of the mass psychology of a large number of 

ignorant individuals,” with professional speculators mostly trying to outguess the 

future moods of irrational traders, and thereby reinforcing asset price bubbles. In a 

similar vein, Dreman (1977, p.99) maintained that individual investors, including 

professionals do not form opinions on independently obtained information^^. Their 

forecasts of future events are heavily influenced by "the thinking of the group."

Similar views have also been advanced by Black (1986), De Long et al. (1989,1990), 

Shiller (1984, 1989), and most recently, Soros (1994).

But what makes the problem worse is that such behavioral imcertainties 

diminish the incentives for arbitrage which in turn impair the market natural tendency 

to return itself to its fundamentals. In particular, these uncertainties create two types 

of risk for potential arbitrageurs. Shleifer and Summers (1990) identified these risks 

as identification risk and noise trader risk (future resale price risk).

Identification risk arises because uncertainty in the market makes it difficult for

^  See also Dreman (1982).
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potential arbitrageurs to distinguish between price movements driven by noise trader 

actions and price movements driven by pieces of private information which they have 

not yet received. Hence it is difScult for potential arbitrageurs to exploit noise traders 

because they can never completely assure themselves that the price movement was 

driven by noise, which create profit opportunities, and not by news that the market 

knows but they have not yet heard.

In addition, there is also the risk that price may move further fi-om fundamental 

value by the end of the speculator’s investment horizon. This latter risk is known as 

the noise trader risk or future resale price risk. On that accoimt, an investor who 

knows, even with certainty, that an asset is overvalued will still take only a limited 

short position because noise traders may push prices even further firom their 

fundamental values when it comes time to close the arbitrage position.

Another type of risk, fundamental risk, although not due to the market 

uncertainty we have discussed, can also limit arbitrage. Fimdamental risk is inherent 

in the market. It is the possibility that the fundamental value of the stock may change 

against the arbitrage position before the position is closed. Even if noise traders do not 

move prices away firom fimdamental values, changes in the fundamentals themselves 

might move the price against the investor.

Altogether, these problems make arbitrage risky and limit arbitrage. Because 

arbitrage plays an "error-correction" role in the market to bring asset prices in line with 

their fundamental values, this role will be hampered when arbitrage is limited. As a 

result, asset prices may deviate firom fundamental values and such deviations may
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persist hence weakening whatever correlation there may have been between 

movements in asset prices and movements in their fundamental values.

The imphcation of this discussion is that when we impose the assumption of 

“mutual consistency in perceptions” in rational expectations models, we leave miss out 

the market created uncertainty outlined above which is precisely what is needed to 

explain the seemingly anomalous behaviors in real markets. Therefore, to account for 

market anomalies, we must allow the agents in our model the opportunity to form their 

expectations independently based on their subjective evaluations. But how do we 

model such expectations formation? Before we can answer this question, we need to 

first investigate how humans reason in situations that are ill-defined and uncertain.

We have earlier alluded to the fact that deductive reasoning will break down in

an environment that is ill-defined. But if deductive reasoning will not work, how then

can individuals form their expectations? Arthur et al. (1996) argues that individuals

will form their expectations by induction (see also Arthur 1991, 1992, Blume and

Easley 1995, Rescher 1980). So what is induction or inductive reasoning? Nicholas

Rescher defined it as follows:

Induction is an ampliative method o f reasoning—it affords means for going 
beyond the evidence in hand in endeavor to answer our questions about how 
things stand in the world. Induction affords the methodology we use in the search 
for optimal answers.

Induction as a cognitive method proceeds by way o f the systematization o f  
question-resolving conjecture with experience, by fitting conjectural extensions 
sufficiently tightly into the overall setting o f our other (generally tentative) 
commitments. Though induction always involves a leap beyond the information in 
hand, it only endorses these leaps when the fit is sufficiently close. (Rescher 
1980, p.87)
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Simply put, induction is a means for finding the best available answers to our 

questions that transcend the information at hand. In other words, the conclusions we 

draw in an induction are suggested by the data at hand rather than logically deduced 

from them. Logical deduction fails because the information we have at hand leave 

some gaps in our reasoning. In order to complete our reasoning, we fill those gaps in 

the least risky, minimally problematic way, as determined by plausibilistic best-fit 

considerations. Although this may sound like guesswork, it is really more than guess 

work; it is responsible estimation in the sense that we are willing to commit ourselves 

to the tenability of the answer which we put forth. In other words, we must find the 

answers to be both sensible and defensible.

Inductive reasoning follows a two-step process: possibility-elaboration and 

possibility-reduction. The first step involves creating a spectrum of plausible 

alternatives based on our experience and the information available. In the second step, 

these alternatives are tested to see how well they answer “the question” or how well 

they connect the existing incomplete premises to explain the data observed. The best 

fit connection is then accepted as a viable explanation for the data observed. 

Subsequently when new information become available or when the underlying 

premises change, the^t of the current connection may not be good anymore. When 

this happens a new alternative will take over.

So how can induction be implemented in economic models? Arthur et al.

(1996) visualize induction taking place as follows. Under this scheme of rationalizing, 

each individual in the market continually creates a multitude of “market hypotheses”
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(this corresponds to the possibility-elaboration step discussed above). These 

hypotheses which represent the individuals’ subjective expectational models of what 

moves the market price and dividend are then simultaneously tested for their 

predictive ability in the market. In the end, those that perform well in predicting 

market movements will be retained and acted upon in buying and selling decisions, 

and the others that perform badly will be dropped (this corresponds to the possibihty- 

reduction step). In addition, as new information enter or emerge from the market, 

other new hypotheses will be generated and be tested as above. This process is carried 

out repeatedly as individuals learn and adapt in a constantly evolving market '̂*.

The expectations formation process we have just described can be adequately 

modeled by letting each individual forms his expectations using his personal genetic- 

fuzzy classifier system. Each genetic-fuzzy classifier system contains a set of 

conditional forecast rules that guide the decision making. We can think of these rules 

as the subjective "market hypotheses" held by each individual. Inside the classifier 

system is a genetic algorithm that is responsible for generating new rules, testing all 

existing rules in the market place, and weeding out bad rules. The possibility- 

elaboration step is then captured by the constant formulation of new conditional 

forecast rules in the system and the possibility-reduction step is represented by the 

subsequent testing of these conditional forecast rules and the eventual removal of the 

bad ones. The next section will discuss in more depth the rationale behind our 

approach.

See also a related discussion by Baumol and Quandt (1964).
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1.3 Rationale for our Genetic-Fuzzy Approach

We have briefly touched on the motivations for using the genetic-fuzzy system 

back in the last two sections, we now develop a more complete argument in the 

following two sub-sections. The first sub-section discusses the rationale for 

incorporating fuzzy reasoning in the system and the second sub-section explains the 

reasons for using a genetic classifier system.

1.3.1 Why Use Fuzzy Logic?
Some cognitive psychologists have indicated that fuzzy logic offers a

reasonably accurate model of the way humans think and reason, and they further

suggested that perhaps our ability to efficiently process an immense amount of

complex information, some of which are intrinsically vague, is the outcome of

applying fuzzy logic to our reasoning and thought processes. However, for us to have

confidence in using fuzzy set theory to model the way humans think and reason, there

are two questions that need to be addressed. Smithson (1987) drew our attention to the

following two questions. First, "are there evidence that support the hypothesis that at

least some categories of human thought are fuzzy?" and second, "are the mathematical

operations of fuzzy sets as prescribed by fuzzy set theory a realistic description of how

humans manipulate fuzzy concepts?" For answers to these questions, we refer to the

evidence cited in Smithson.

There is a considerable body o f psychological research which demonstrates that 
prototypicality in natural semantic categories is a graded concept (e.g., Rosch 
(1973a), Rosch and Mervis (1975), Hersh and Caramazza (1976)), and that 
people widely agree and show reliability in ranking or rating the exemplarity o f 
stimuli in semantic categories. Likewise, some anthropological research has
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shown that gradedness applies across cultures. Kay and McDaniel (1975) found 
the fitzzy set representation o f gradedness in color categories more suitable than 
the earlier (Berlin and Kay 1969) notions o f "focus ” ctnd "boundary Kempton 
(1978) was able to extend traditional cognitive anthropological fo lk taxonomic 
methods viajuzzy set methods in elicting taxonomic judgments about footwear 
and pottery, in two cultures. Burgess et al. (1983) discovered that the Tarhumara 
color-terms carry obligatory modifiers which specify the grade o f membership o f 
a stimulus in a color-category. (Smithson 1987, p. 55)

Fuzzy negation has not been very systematically critiqued either philosophically 
or psychologically. Hersh and Caramazza (1976) are among the few  researchers 
to have empirically investigated the fit between subjects ' own ratings o f 
membership in A and A , andfuzzy-set predictions for membership in A . They 
found a high degree o f correspondence between standardfuzzy negation (that is, 
m^- = 1 - m̂ O and the proportion ofpeople who indicated a stimulus was not a 
member o f set A. However, their investigation did not use direct membership 
ratings and did not investigate any other kinds o f fuzzy negation. (Smithson 1987, 
pp. 59-60)

Apparently, the standardfuzzy set account o f intersection and union does not 
always apply to concepts that most people would agree involve conjunction and 
disjunction. However, at least in some cases modified versions o f the theory may 
work well. And it is worth bearing in mind that several empirical investigations 
have found quite a goodfit between juzzy set operators and data. Oden (1977) 
found that the product operator fit better than the "min "for "and. " but the 
difference was not large. Thole et al. (1979). on the other hand, found that the 
"min "fit the best (and this was confirmed in a more rigorous reanalysis in 
Smithson 1984). Zimmerman and Zysno's (1980) generalized connective was 
based on the product operator, which caused them to conclude that this operator 
corresponds most closely with human judgment. However, my reanalysis o f their 
data using least-squares estimates o f an alternative generalized connective 
indicated that the difference in f it  between a connective based on "min " and one 
based on the product was negligible. Furthermore, in at least one application I  
have found that the bounded sum works best. The question o f which intersection 
and union operators best reflect psychological reality still is open, and the answer 
may well turn out to be context-dependent. (Smithson 1987, pp. 64-65)

Perhaps the most interesting conceptual discussion about various multivalent and 
fitzzy logics for behavioral scientists is Dubois and Trades's (1980. pp. 155-169) 
assessment o f the compatibility ofseveral such logics with Piagetian criteria for 
human reasoning. Briefly. Piaget claimed that adult reasoning requires the 
capacity to distinguish among and relate together four kinds o f transformations: 
(1) identity. (2) negation, (3) reciprocity, and (4) correlativity. ...
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They find that the Arithmetic Rule for implication using either the min-max, 
product, or bounded sum operators is compatible with Piagetian criteria, but the 
Maxmin Rule using the min-max operator is not. ...
From this land o f evidence and ...by writers such as Gaines (1975), it appears 
that the Arithmetic Rule probably holds up the most consistently under conceptual 
scrutiny. ... Aside from apparent consistency with Piagetian theory, however, 
little is known about which o f these logics, i f  any, really models human reasoning. 
(Smithson 1987, pp. 73-74)

All in all, the evidence presented do seem to provide support for the use of fuzzy set

theory to model the way humans think and reason.

Additional evidence that are more relevant to economics are the survey 

findings of Katona (1975). Katona (1975) pointed out that "while most people can be 

induced to make a guess as to the direction of change in the near future of major 

macroeconomic variables, they are reluctant to give quantitative estimates of the 

extent of the change." Based on decades of survey research on the general public in 

the United States, Katona concluded that "the majority knew whether unemployment 

had increased or decreased in the preceding months, whether profits or retail sales had 

gone up or down, and also whether interest rates had risen or fallen, but did not know 

how much larger or smaller any of these magnitudes were." Therefore, Katona's 

findings also seem to suggest that people think in terms of fuzzy notions.

We turn our attention now to the other considerations that have motivated us to 

use fuzzy logic. The task of modeling expectations formation in an environment that 

is continually evolving and novel poses two unique difficulties that conventional 

mathematics are ill-equipped to handle. First, the problem is intrinsically ill-defined.

It is ill-defined because investors who may hold diverse beliefs, clearly do not have an
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objective method to form their expectations as this would require each of them to 

perform the impossible task of forecasting the expectations of all the other investors. 

Conventional mathematics is not tuned to handling ill-defined problems because we 

are not able to precisely define such problems in the language of conventional 

mathematics. And when we cannot precisely define the problems, we obviously are 

not going to be able to solve them. Second, inherent in this problem is a source of 

uncertainty that caimot be appropriately modeled by conventional probability theory. 

This is the vagueness that permeates human thoughts and human discourse. Since 

human thoughts and human discourse mold expectations, it is crucial to have a proper 

model of this element of uncertainty. These difficulties are not unique to our problem. 

They are in fact common in most complex systems, especially humanistic systems.

In order to cope with the immense burden of modeling complex systems using 

conventional approaches, scientists have often opted to sacrifice the realism of the 

models in favor of unrealistic simplifying assumptions and attribute the unmodeled 

portion of the systems to random noise. Although such approaches have worked well 

with simple mechanistic systems which can be precisely defined and where the 

inherent uncertainties arise primarily from random noise, such approaches are totally 

unsuited for modeling complex systems for the reasons discussed above as well as the 

common wisdom that in complex systems, we cannot hope to get meaningful results 

unless our assumptions are also realistic or relevant in the context being modeled. A 

case in point is the rational choice models in economics which we already know have 

been unable to account for various phenomena in the real economy.
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It is in fact such difficulties that have motivated Lotfi Zadeh to develop his 

fuzzy set theory. In his struggle to develop a better ̂ proach to model complex 

systems, Zadeh came to notice how easily humans make decision based on imprecise, 

non-numerical information in complex situations, and it hit upon him that at the heart 

of the problem is the precision that is demanded by conventional mathematics. The 

stumbling block in conventional mathematics is the need to precisely define a problem 

before we can solve it. As we have argued, in some cases, we simply are not able to 

precisely define the problems. The key to overcoming this stumbling block is to 

create a new branch of mathematics that is capable of handling imprecise or vague 

non-numerical data. Zadeh has clearly articulated the need for such a mathematics in 

his paper titled "From Circuit Theory to System Theory." In that paper, Zadeh argued 

that:

There is a fairly wide gap between what might be regarded as “animate ” systems 
theorists and “inanimate ” systems theorists at the present time, and it is not at all 
certain that this gap will be narrowed, much less closed, in the nearfuture. There 
are some who feel this gap r^ects the fundamental inadequacy o f the 
conventional mathematics—the mathematics ofprecisely-defined points, 
functions, sets, probability measures, etc.—for coping with the analysis o f 
biological systems, and that to deal effectively with such systems, which are 
generally orders o f magnitude more complex than man-made systems, we need a 
radically different kind o f mathematics, the mathematics offitzzy or cloudy 
quantities which are not describable in terms o f probability distributions. Indeed, 
the need for such mathematics is becoming increasingly apparent even in the 
realm o f inanimate systems, for in most practical cases the a priori data as well 
as the criteria by which the performance o f a man-made system is judged are far 
from being precisely specified or having accurately known probability 
distributions. (Zadeh 1962, p. 857)

The need for a mathematics of "cloudy" quantities led Zadeh to develop the 

concept of fuzzy sets and the related mathematics for manipulating such sets.
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According to Ebrahim Mamdani, the genius of the fuzzy approach is “the possibilities 

of implementing 'rules of thumb' experience, intuition, heuristics, and the fact that it 

does not need a model of the process” (Kosko 1993, p. 169). But what is even more 

important is a recent result from Kosko. Kosko (1992) has demonstrated clearly that 

fuzzy systems are universal approximators. In simple terms, it means that fuzzy 

systems are able to approximate general nonlinear functions to any desired degree of 

accuracy. This makes fuzzy systems particularly valuable for modeling complex 

nonlinear relationships which we either do not know how to specify or do not know 

how to solve analytically in the language of conventional mathematics.

The strength of fuzzy logic has attracted many compliments. For instance,

Goguen remarked that:

The inexactness o f description is not a liability; on the contrary, it is a blessing in 
that sufficient information can be conveyed with less effort. The vague 
description is also easier to remember. That is, inexactness makes for greater 
efficiency. (Goguen 1981)

A down to earth analogy here will help to bring his point across. Suppose your 

friend sees a truck speeding towards you. A precise way of conveying the information 

to you could be, “A 6-wheeled 3-ton black truck traveling at 50 mph is accelerating 

towards you at a rate of 10 mph”. The fuzzy way of conveying the same information 

would be “Watch out! A tmck is speeding towards you.” It is clear how you would 

have preferred to be alerted under such circumstance^ .̂ The ingenuity here is that by

^  To give a second analogy, suppose you are given the task of explaining in 300 words the contents of 
a 10 page essay. This can be acconçlished by lifting sentences out of the essay to make up the 
300 words, or by writing a 300 words summary for die 10 pages essay. The first approach 
(analogous to the conventional approach) would be very precise because the sentences are exact 
duplicate of those in the essay, however, its content would be not as relevant or as meaningful as it
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being less precise in our description, we can be more relevant in our communication

(given our constraints). In a similar vein, economist Riccardo Viale has argued that:

. ..i f  classical logic were accepted as the canon o f deductive inferential rationality 
one would reach the absurdity o f having to accept the countless conclusions, 
trivial but correct, which are implied by a set o f valid premises. This would have 
fatal consequences for man's ability to adapt to his environment. Other 
inferential rules are therefore needed to select and skim significant deductions 
from trivial ones.... Secondly, it is not clear why one shouldfavor classical logic 
over any types o f logic, which offer advantage offormalizing the concepts o f 
possibility and necessity, or non-monotonic types o f logic and “Juzzy logic, " 
which can emulate the ambiguity, poor resolution and contradictoriness o f human 
reasoning. (Viale 1992, pp.174-175)

The core of these observations is what Zadeh had, in his earlier work, referred to as the

principle o f incompatibility.

.... the essence o f this principle is that as the complexity o f a system increases, our 
ability to make precise and yet significant statements about its behavior 
diminishes until a threshold is reached beyond which precision and significance 
(or relevance) become almost mutually exclusive characteristics. It is in this 
sense that precise quantitative analyses o f the behavior o f humanistic systems are 
not likely to have much relevance to the real world societal, political, economic, 
and other types o f problems which involve humans either as individuals or in 
groups. ” (Zadeh 1973, p. 28)

Other researchers have also voiced similar sentiments. For instance, Tong pointed out 

that:

The [complex] process is often highly nonlinear and has large number o f 
variables. It is often hard to discover the underlying mathematical structures, 
and there is often a large amount o f process knowledge expressible only in 
linguistic terms. There are many other reasons but they all basically derive from 
the sheer complexity o f the process ... as systems become more complex, it 
becomes increasingly difficult to make mathematical statements about them which 
are both meaningful and precise. (Tong 1978, p. 143)

will merely contain a collection of scattered thoughts. On the conUary, the second approach 
(analogous to the fuzzy logic approach) would not be as precise, but its content will be more 
meaningful as it will attempt to connect the ideas in the entire essay and make sense out of it. The 
latter approach will not be as precise because in the summary you will need to use words or 
phrases that encompass a fuzzier and larger set of thoughts (see Zadeh 1973, pp. 28-29).
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To sum up, the reasons leading to our decision to use a fiizzy system are: 1) it 

is a better model of certain aspects of human thoughts and reasoning, 2) it is a better 

approach for dealing with problems that are ill-defined and inherently -vague, and 3) it 

is a lot simpler and more efficient that a conventional system. A fuzzy system is 

simpler and more efficient than a conventional system because fuzzy sets allow us to 

compress a lot o f information into very few simple fuzzy notions. This is one of the 

reasons why conventional expert systems have had limited success in most real world 

applications thus far. A conventional expert system typically requires hundreds of 

rules to simulate real-world situations, while in contrast, a fuzzy expert system would 

generally requires only tens of rules to perform similar tasks (see Moffat 1990). Given 

the above reasons, it is not difficult to understand why fuzzy systems have grown in 

popularity over the years. Zadeh foresaw more than 30 years ago that an 

electromechanical controller would respond better to imprecise input if its behavior 

was modeled on spontaneous human reasoning. Zadeh’s vision has finally 

materialized. Fuzzy logic based controllers have proven their worth in many areas 

where conventional logic based controllers have failed.

1.3.2 Why Use a Genetic Classifier System?

The two reasons for using a genetic classifier system are: 1) it offers a general

and yet robust firamework for modeling decision making and learning in a perpetually 

novel environment, and 2) it provides a fairly accurate representation of the reasoning 

systems that humans use.
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The design of a classifier system is modeled after the simplistic but unusually 

robust survival machinery employed by living organisms. This survival machinery is 

evidently robust because organisms have relied on it not only to survive but to prosper 

for millions of years in a harsh and constantly evolving natural environment. At the 

heart of this machinery are two components: a stimulus-response system which tells 

the organisms how to behave under various conditions, and an algorithm for 

modifying the stimulus-response system as the organisms adapt to changes in the 

enviroiunent.

Our classifier system models this survival machinery as a system of fuzzy 

conditional action rules that are systematically evolved by a genetic algorithm (GA).

A system of conditional action rules capture the essence of a stimulus-response system 

while a GA mimics the optimization process that takes place at the genetic level of an 

organism. Like the stimulus-response system, a set of fuzzy conditional action rules 

determines how the system should respond under various environmental conditions. 

This gives us a very general but simple jframework for modeling complex decision 

making. A GA makes use of artificial production, crossover and mutation operators to 

systematically improve the conditional action rules as the environment changes. 

Chapter 2 will discuss GAs in more depth. For now, we will simply state that Holland 

has shown that a general and yet robust parallel search and optimization algorithm can 

be created firom combining these three artificial genetic operators together. Holland's 

schema theorem basically asserts that a GA is capable of finding the optimal solutions 

to any optimization problem and that it will arrive at these solutions at an exponential

27



rate^ .̂ This result was subsequently confirmed by De Jong (1975) when he 

successfully applied GAs to the optimization of various complicated functions with 

the following charactCTistics; 1) continuous/discontinuous, 2) convex/nonconvex, 3) 

unimodal/multimodal, 4) quadratic/nonquadratic, 5) low-dimensionality/hi^- 

dimensionality, and 6) deterministic/stochastic. Such strengths make a GA an 

invaluable tool for modeling learning.

Now turning our attention to the second reason, we are interested in whether 

there are reasons to believe that a genetic classifier system captures certain key 

features of the reasoiting systems humans actually use. Psychologists have argued that 

our mind holds two different reasoning systems^ .̂ To illustrate, consider the problem 

of figuring out the change at the cash register̂ ®. It is not uncommon to find that 

sometimes the answer will spring to our mind intuitively, but at other times we will 

have to do some mental arithmetic to arrive at the answer.

Sloman (1996) recently distinguished these two reasoning systems as 

associative and rule-based. An associative system operates reflexively and can handle 

both concrete images as well as abstract notions. It also allows us to produce "quick 

and dirty" answers based on heuristics just as in the example above. As the name

See for instance, Holland (1992), Goldberg (1989) and the discussion in Section 2.6 of this 
dissertation.

However, psychologists have yet to agree on a precise definition of these two systems, or on where to 
draw the line that distinguishes one system from the other. For instance, Smolensky (1988) 
distinguishes these systems as intuitive processor versus conscious rule interpreter, Hinton (1990) 
calls it intuitive and rational processors, Schneider and Shiffrin (1977) use the terms automatic 
and controlled processing, Evans (1989) describes them as perceptually based matching process 
and linguistic-logical process, and Shastri and Ajjanagadde (1993) distinguish them as reflexive 
and reflective reasoning.

This example is from Sloman (1996, p.l).

28



suggests, an associative system helps us make sense of new information by associating 

the new information with the knowledge already existing in our mind. The way an 

associative system processes information is analogous to the process used by police 

ofBcers to compose a picture of a suspect by putting together pieces of different parts 

of a face based on accounts given by eye witnesses. This process allows police 

ofBcers to create a picture that closely resemble what a suspect might looked like even 

though none of the ofBcers may have seen the suspect before. Likewise, a similar 

process help us interpret new information that we may have never encountered before. 

People in general are unconscious of associative processing in the mind. In contrast, 

people are usually conscious of rule-based processing which is known to be 

responsible for the “logical, hierarchical and casual-mechanical” aspects of humans 

reasoning. Our ability to perform mathematical calculation via systematic application 

of rules is a good example of rule-based processing.

But how do we use these two systems and how do these two systems interact to 

influence our decision? Sloman maintained that the two systems do not have their 

own exclusive problem domain, but rather they have overlapping domains; domains 

that differ depending on the individual's knowledge, skill and experience. Sloman 

explained that:

Together, they lend their different computational resources to the task at hand; 
they function as two experts who are working cooperatively to compute sensible 
answers. One system may be able to mimic the computation performed by the 
other, but only with effort and inefficiency and even then not necessarily reliably. 
The system  have different goals and are specialists at different lands o f 
problems. When a person is given a problem, however, both system may try to 
solve it: Each may compute a response, and those responses may not agree. 
(Sloman 1996, p.6)
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A classifier system with conditional action rules that are evolved 

systematically in a parallel fashion (via a GA) resembles the associative system that 

Sloman talked about. There are two levels of association at play when agents use 

classifier systems to guide their decision making. At a macro level, agents in the 

model attempt to associate the rules to the states of the market they have observed by 

matching the conditions in the rules with the current market state.

However, what is more important is the next level of association which takes 

place in the background (not noticed by the agents). This is found in the GA within 

the classifier system where association is done at the level ofthe schemas. In a 

classifier system, rules are coded as strings of numbers. A schema is a similarity 

template which we can generalize firom a collection of strings representing the rules. 

For instance, a possible schema for the strings {00110,00111,01110} is (0*11*), 

where the symbol represents a "wild card". Schemas are useful in that they enable 

a GA to quickly find general patterns that lead to better decision making.

Furthermore, in a GA, the search take places in parallel among all existing schemas. 

This phenomenon is known as implicit parallelism^®. Both the use of schemas and the 

implicit parallelism make a GA very efficient in processing information.

Our mind also appears to order and reorder concepts in successively more 

abstract form like the schema representations in a GA. The advantages of such sub-

^  Holland has shown in his Schema theorem that the implicit parallelism inherent in a GA allows it to 
process on the order of schemata per generation where N is the number of strings in the 
population. To put this in perspective, if we have 100 strings, a GA will process on the order of a 
million schemata.
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conceptual representations are twofold. Like the schemata in a GA, these sub- 

conceptual representations in our mind allow more efficient storage and processing of 

new information. Instead of having to store every piece of new information as it is, 

our mind can instead represent the new and perhaps complex information as sub- 

conceptual models. These sub-conceptual models serve as building blocks for bigger 

and more complex notions. In addition, such sub-conceptual models not only 

symbolize a concept but also represent some of its internal structure. They constitute 

an analysis of a concept. The advantage of including such analyses in a representation 

is to permit simpler and faster processing of reasoning^®. This process is termed 

representational redescription by Clark and Karmiloff-Smith. Our capacity to 

generalize and to use analogy are all a part of this redescription process.

Once the association is done and a rule is selected, agents in our financial 

market model then proceed to calculate their holdings of assets in a systematic 

mechanical fashion. This part of the thought process resembles the rule-based system 

Sloman has discussed. To sum up, our artificial agents, in making their decisions, 

make use of the same two systems of reasoning in a cooperative fashion just as 

humans would in their reasoning and decision making processes.

A more general fi-amework for studying human reasoning is the mental model 

fiamework as Gamham and Oakhill have argued recently(1994, p.341). They have 

urged psychologists to use this fi-amework for unifying research on thinking and

This is the same reason why a GA so efficient This will become obvious after our discussion of the 
Schema Theorem in Chapter 2.
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reasoning in psychology. As a matter of fact, both the associative system and rule- 

based system outlined above can be interpreted in terms of a mental model framework. 

Mental models are cognitive views that humans construct to try to make sense of how 

things work. When faced with a problem, our mind constructs mental models to 

resolve the problem by integrating in novel ways the rq>resentations stored in our 

memory (the same sort of representations we have discussed previously). For 

instance, suppose we are given a task of supporting a coffee cup several inches above a 

surface using only a sheet of paper^’. Solving this problem would require much more 

than activating the schemas for “paper” and “cup”. In this case, a useful mental model 

might contain information about operations that can be performed with paper, the 

weight of the cup, and so on.

In our model, individuals’ mental models of what moves prices and dividends 

in the market are represented by rules in a classifier system. The manner in which the 

rules are evolved with a GA resembles the manner in which mental models are 

formulated in our minds. For instance, the constmction of a mental model involves an 

incremental updating of the representation on the basis of the present and past input. 

So the resultant representation in any given moment guides the interpretation of 

subsequent input. This gradual updating of mental models is captured by the use of 

the reproduction and crossover operators in a GA. In constructing a new rule (new 

mental model), the reproduction operator determines which existing rules (existing 

mental models) will be allowed to contribute to the new rule. The selection is based

This example is from Holland et al. (1989).
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on the rules’ predictive ability. The crossover operator then genetically crossovers the 

selected rules to create a new rule. Therefore the new rule is a hybrid of those existing 

rules which have proven to be successful in the past, and this new rule in turn 

influences how the system interacts with subsequent inputs.

Another important point to keep in mind is that the rules in our classifier

system do not cover all possible contingencies, and this is typical of decision-making

in the real world. For instance, Hogarth (1980) has argued that;

... under most circumstances it is not reasonable to talk about finding ‘all the 
alternatives ’. The generation o f alternatives is a lengthy and costly process, and 
one where, in real-world situations, even minimal completeness can seldom be 
guaranteed. Theories o f optimal search can cast some light on such processes, 
but, because o f limits on complexity, human alternative-generating behavior 
observed in the laboratory is usually best described as heuristic search aimed at 
finding satisfactory alternatives, or alternatives that represent an improvement 
over those previously available. (Hogarth 1980, p.5)

The manner in which we have allowed the rules to be evolved by a GA in our model is

also in agreement with Hogarth's interpretation; that is, "it is a heuristic search aimed

at finding satisfactorily alternatives that represent an improvement over those

previously available." Recent studies in cognitive psychology suggest that this

heuristic search is conducted in parallel rather than sequentially. This is captured by

the parallel search characteristics intrinsic in a GA (See Rumelhart, McClelland and

the PDF research group 1987, and Holland, Holyoak, Nisbett and Thagard 1986).
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2. FUZZY LOGIC AND GENETIC ALGORITHMS

The objective of this chapter is to provide a tutorial on fuzzy logic and genetic 

algorithms. The intention here is not to provide a rigorous discussion of the theory of 

fuzzy sets^  ̂or genetic algorithms but to present a practical and intuitive approach to 

these methods. The presentation will begin with fuzzy logic by introducing the 

concepts of fuzzy sets in Section 2.1, presenting the concepts of membership function 

and fuzzy logical operators in Section 2.2, illustrating how to construct a fuzzy 

inference system in Section 2.3, and finally, discussing recent developments in Section 

2.4. This is followed by the presentation of genetic algorithms. Section 2.5 provides 

an overview of genetic algorithms and Section 2.6 discusses the fundamental theorem 

of genetic algorithms. In Section 2.7 we compare the GA to conventional 

optimization methods. Section 2.8 describes the basic elements in a genetic algorithm. 

In Section 2.9, we look at a simple ^plication of a GA, and finally, in Section 2.10 we 

discuss the crux of a genetic-fuzzy classifier system.

2.1 What is a Fuzzy Set?

A fuzzy set differs from a classical set in that it has no well-defined boundary. 

To appreciate the gist of Lotfi A. Zadeh’s innovation, close your eyes for a moment, 

and picture in your mind, a group of “old” persons around you. You will realize, in

Klir and Folger (1988) have shown that an isomorphism exists between logic and set theory. As such 
the term fuzzy logic and fuzzy set theory will be used interchangeably. To be more precise, some 
may argue that it is really a fuzzy subset theory and not fuzzy set theory. However, like the 
majority, we prefer to use the term fuzzy set theory. Both Klir and Folger (1988) and Klir and 
Yuan (1995) are good introductory text on fuzzy sets theory.
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your attempt to classify this set of “old” persons, that the boimdaiy of this set is not 

“crisp”. There is no clear cut-off for classifying whether a person is old or not old.

For instance, we do not think of a 40 year-old person as old and a 39 year-old as not 

old. Instead, what we have in our mind, is a fiizzy boundary that allows for varying 

degree of membership to the set of “old” persons. Consequently, even though both a 

39 year-old person and a 40 year-old person may be members of the set of “old” 

persons, they will not have the same degree of membership. The 39 year-old person 

would be a member of this set to a lesser degree than the 40 year-old.

Moreover, the 39 year-old and 40 year-old persons may also, at the same time, 

be members of the reciprocal set—the set of “young” persons. In this case, the 39 

year-old person would be a member of the set of “young” persons to a greater degree 

than the 40 year-old. Therefore, within this new paradigm, an entity may belong to 

both a set and its complement at the same time^. It follows then that, within this 

paradigm, a statement like—“A 40 year-old person is old”—can no longer be an 

absolutely true or an absolutely false statement any more. It has to fall somewhere 

between false and truth. The notion of fuzzy sets has therefore extended the arena of 

classical two-valued Boolean logic to one where there is a gradual and perhaps even 

continuous transition between the false state and the truth state. Instead of absolute 

truth or false, “everything is [now] a matter of degree” (Kosko 1993, p. 18). Needless

"Young" is taken to be synonymous with "not old” (i.e. the complementaiy set) here.
^  Such inconsistency would not have survived in the Boolean logic paradigm for Boolean logic

requires an entity to be either a member (truth) or not a member (false) of a set, and cannot permit 
any overlap between a set and its complement -  “truth” and "false”. It is therefore interesting to 
note how such seemingly inconsistent ideas can fit in nicely within the fuzzy set paradigm.
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to say, such gradual transition between false and truth will allow us to better represent 

the vague or imprecise concepts inherent in our natural language. However, as we 

have seen in Chapter 1, this innovation is more than just an interesting exercise in 

modeling imprecise linguistic concepts. It is actually an integral component of a very 

powerful theory for modeling complex and ill-defined systems. We will explore how 

it could be applied later in Section 2.3 and Section 2.10. In the next section we look at 

how to set up membership functions and how logical operators work on fuzzy sets.

2.2 Membership Function and Fuzzy Set Operators

2.2.1 Membership Function
We have mentioned in the last section that a fiizzy set has no well-defined

boundary. To formalize the concept of fiizzy set, Zadeh (1965) introduced the notion 

of graded membership or a membership function. A membership function is a 

mathematical function that maps elements fi*om a crisp set into real numbers in the 

interval [0,1]. Figure 1 and 2 illustrate the difference between a classical set and a 

fiizzy set of “tall” (“not tall”) persons. In a classical set, an element either belongs to 

or does not belong to a set. Hence if we consider anyone who is at least 6* tall as 

"tall", and anyone who is less than 6' tall as "short" or "not tall", we can then represent 

this concept by the crisp cut-off at 6' in figure 1.

This is unlike in the fiizzy world where an element can be a member of a set 

and its complement at the same time. ‘Tuzziness” is represented by drawing a curve 

to allow for a varying degree in tallness as shown in figure 2. This curve is called a
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membership function. The membership function tells us to what degree an element 

belongs to a fuzzy set. It assigns to each element in the fuzzy set a number in the 

interval [0,1]- The degree of membership in a fuzzy set can be read off the vertical 

axis. A membership value of 0 means that an element does not belong to the fuzzy 

set, and a membership value of 1 means an element is a complete member of the fuzzy 

set.

Take for instance, a person of height 5’ 6". Most would agree that this person 

is not very tall. By that we are merely expressing our opinion of the degree o f tallness, 

and not whether this person is tall or not tall. In the fuzzy set representation of tall 

persons, this height might have a membership value of 0.6 (see figure 2). This means 

that this person is a 60% member of the set of “tall” persons (notice that this person is 

also a 40% member of the set of “not tall” persons^^). In this example, a fuzzy set has 

allowed us to properly describe the vague notion—"tall". In contrast, we are not able 

to faithfully represent this notion by probability theory. It is not the same to say that 

there is a 60% chance that this person is tall. By saying this, we are implying that this 

person could be tall or short, and it is more likely that this person is tall. Obviously, 

this does not capture the true meaning of what we have in mind. Hence, a vague 

concept is best represented by a fuzzy set.

2.2.2 Fuzzy Set Operators

As with conventional set theory, the concepts of complement, intersection, and

union can also be defined for fuzzy sets. In the following definitions, p. denotes the

See Section 2.2.2 for the relationship between a set and its complement.
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membership function and X the universe of discourse^ .̂

Complementation [J^OT)

Complementation corresponds to the logical operator “not.” The complement (-, A) 
of

a fuzzy set A is defined by

(2.1) p_^(x) = l-p^(% ), x & X

Intersection {AND)

The intersection coiresponds to the logical operator “AND.*' The intersection of two 

fuzzy sets A and B on X, denoted A fl B, is defined by

(2.2) M ^ { x )  = Tiân{p^{x);fig{x)}, x e X

Union {OR)

The union corresponds to the logical operator “OR.” The union of two fuzzy sets A 

and B on X, denoted AU B, is defined by

(2.3) li^ua(^) = max{p (̂%); Pg(;r)}, x e X

We illustrate these concepts by applying the above operators to two fuzzy sets, 

A and B. Figures 3 and 4 show the fuzzy sets A and B prior to applying these 

operators, and figures 5, 6 and 7 show graphically the outcomes after applying the 

complementation, intersection, and union operators respectively to the fuzzy sets A 

andB.

The universe of discourse of any fiizzy set A in X is defined to be the set of points in X for which the 
membership function for A is positive).
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Having defined the fuzzy logical operators, a few comments are in order before 

we conclude this section. Although the above definitions are commonly used for 

logical operators, they are by no means the only operational definitions. Some other 

alternative definitions for the pair of AND and OR operators are the Product operators 

and the Bounded Sum/Difference Operators^ .̂ However, unlike the Min-Max 

operators defined above, these other alternatively defined operators do not satisfy 

idempotency and distributivity. In addition, if there are existing errors associated with 

the membership grades, these alternative operators will further compound the existing 

errors. Fortunately, this error compounding does not happen with the use of the Min- 

Max operators. Nevertheless, the alternatively defined AND and OR operators may be 

preferred for other reasons. For example, the AND operator of the Product pair is 

useful because it resolves the Eubulidean paradox (Smithson 1987, p. 27). There are 

also alternative definitions for the Complementation operator and they are the Sugeno 

Class complements and the Yager Class complements^®.

So far we have only discussed how to represent simple vague adjectives with 

fuzzy sets and how logical operators work on these fuzzy sets. However, our natural

Product Operators
(x) = (x) • (x) ; x e  X

//xua (^) = (^) + (^) -  l^A (^) •  W  ; X e  X
Bounded Sum/Difference Operators

^7V D ://^(x) = max{0,/z^(x)+Pa(x)-l} ; x e X
OA: ; / ^ 5(x) = min{l,//^(x) + //B(x)} ; x e  X

Sugeno Class Complements: //_^(x,A) = ̂ — \ > x e A ’
* + (x)

Yager Class Complements: l̂_Ĵ  (x, -I) = (1 -  (x)^ , x e%
As a matter of fact, the standard complementation operator we have defined is a special case of the 

Yager class complements; it is obtained by setting A=l.
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languages are certainly more interesting than just the plain adjectives we have 

considered. In our natural languages, we often use linguistic hedges such as “not 

very”, “very”, “somewhat”, “more or less” etc. Zadeh refers to this class of hedges as 

Type I hedges and has suggested representing these linguistic hedges as operators on 

fuzzy sets (Zadeh 1972). The operators for representing these linguistic hedges are : 

Normalization, Concentration, Dilation, Contrast Intensification and Fuzzification. 

Zadeh has also discussed another class called Type II hedges which is used to describe 

hedges like “technically”, “essentially”, “practically” etc.. Readers interested in the 

modeling of these hedges may want to consult Zadeh’s original paper—“A Fuzzy-Set- 

Theoretic Interpretation of Linguistic Hedges” (Zadeh 1972). In the next section we 

show how the operators defined above can be used in a fuzzy inference system or a 

fuzzy controller to guide decision making.

23 Constructing a Fuzzy Inference System

A fuzzy inference system is a type of expert system, and like all expert 

systems, it is in essence a computer-based system that is designed to emulate the 

reasoning process of a human expert within a specific domain of knowledge. The 

design of a fuzzy inference system is quite simple conceptually. It consists of four 

modules: a fuzzification module, a fuzzy rule base, a fuzzy inference engine, and a 

defuzzification module. The relationships among these four modules and the working 

environment are illustrated in a schematic diagram in figure 8.

The fuzzification module is one of the two modules that interfaces directly
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with the external environment. As the name suggests, the function of the fuzzification 

module is to convert the values of the relevant decision variables it has measured in 

the environment into appropriate fuzzy sets (actually truncated fuzzy sets). The fuzzy 

rule base contains a set of fuzzy decision making or control rules. These rules are 

typically expressed as if-then rules. For instance, one such rule might look like "If it is 

warm and the room is full then set the speed of the air conditioner’s compressor high-" 

The inference engine then takes the fuzzified inputs and combines them with the 

relevant fuzzy rules to make inferences regarding the output variables. The product of 

the inference engine are fuzzy outputs which will need to be transformed back into 

non-fuzzy values to guide decision making or for control purposes. This last step is 

accomplished by the defuzzification module which is the second module that 

interfaces directly with the external environment.

To fully appreciate the inner workings of a fuzzy inference system, let us now 

discuss the basic steps involved in the design of a fuzzy inference system and explore 

how it works in practice. For the purpose of illustration, we will consider the design 

of a fuzzy system for trading a stock.

The first step in the design involves identifying the relevant input and output 

variables and their ranges of values (which include setting up the universe of 

discourse), and selecting the fuzzy sets to represent the possible states of these 

variables. To keep things simple, we will restrict our fuzzy trading system to only two 

inputs—a price indicator and a volume indicator. The price indicator measiues the 

percentage change in price, and the volume indicator measures the level of trading

41



volume. The price indicator and the volume indicator are allowed to have three 

possible states ("low", "normal" and "high") and two possible states ("normal" and 

"low") respectively. We assume that these two variables have been scaled to operate 

over the universe of discourse of [-0.5,0.5] and [0,1] respectively.

Next we construct membership functions for both inputs. We use three 

membership functions for the price indicator to represent “low” (closer to -0.5), 

“normal” (around 0), and “high” (closer to 0.5). For the volume indicator, we use two 

membership functions to represent “high” (closer to 1), and “normal” (closer to 0). 

Various shapes, such as triangular, trapezoidal, bell curve, sigmoid curve, etc., have 

been used in practice for membership functions. But the shape is generally less 

important than the number of membership functions and their placement. We will use 

the triangular membership functions for the price indicator and the trapezoidal 

membership functions for the volume indicator. Figures 9 and 10 show the 

membership functions for both inputs.

The output we want obviously is a trading decision—that is, "buy", "sell", or 

"hold." We will use three triangular membership functions to represent these 

decisions and we restrict the corresponding universe of discourse to [-1,1]. Figure 11 

shows the membership functions for the trading decision. We will also assume that a 

defuzzified output value of less than -0.3 represents a sell decision, and of greater than 

0.3 represents a buy decision. Any value between these two values will result in a 

decision to hold.

Having set up the fuzzy sets, we can now explore how the fuzzification module
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works. Suppose that the price and volume indicators have the values of 0.2 and 0.65 

respectively. To fuzzify these input values, we must first determine for each variable 

if the fuzzy set representing the antecedent in a given rule include the given value in 

its range. If it does, fuzzification entails truncating the hei^it of this fuzzy set to the 

point where the input value intersects this fuzzy set. The effect of fuzzification is 

illustrated by the top two pictures in figures 12 tolS. Referring to figure 12, we can 

see that the input value of 0.2 for the price indicator has caused the corresponding 

fuzzy set to be truncated at a membership value Of 0.4. In the case of the volume 

indicator, it is truncated at a membership value of 0.8. Therefore, the effect of 

fuzzification is to transform the crisp input values into membership values that 

indicate the degree to which these values have satisfied the fuzzy antecedents in the 

rule. If the given input value falls outside the range of the corresponding fuzzy set in a 

mle, as is the case in the top left picture in figure 15, the outcome will be a zero 

membership value.

The next step in the design is to construct a set of fuzzy rales to guide the 

trading decision. In practice, these rules are set up by consulting experts in the area 

we are modeling. Alternatively, these rales can also be learned fi-om past data (see 

Kosko 1993, pp. 157-171,214-222). But when neither approach is possible, the rales 

can be set up by trial and error. To illustrate, suppose our intention is to mimic a 

positive feedback trading strategy. A positive feedback strategy involves buying when 

there is an upward price momentum and selling when there is a downward price 

momentum. An upward (downward) price momentum is identified by a volume-
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driven price increases (decreases). Accordingly, we can construct the rules for this 

strategy as follows.

Rule 1: I f  the price indicator is high and the volume indicator is high, then the 
trading decision is buy.

Rule 2: I f  the price indicator is normal then the trading decision is hold.

Rule 3: I f  the volume indicator is normal, then the trading decision is hold.

Rule 4: I f  the price indicator is low and the volume indicator is high, then the 
trading decision is sell.

The third step involves the design of the inference engine. Here we decide on 

how to interpret the logical connectives in the rules, the implication method and how 

to aggregate the outcomes fix>m each rules. As we have mentioned earlier, there are 

several possible definitions for the fiizzy logical operators 'ANLf, 'OR' and 'NOT 

(complement). For reasons discuss in the last section, we will use the Min-Max 

logical operators in our example. Recall that the effect of the 'AND' operator is to pick 

out the minimum membership value fi-om a group of fiizzy elements connected by the 

'AND' operator. Since we have used the 'AND' operator in the first and last rule above, 

the joint effect of the antecedents in each rule will be determined by the minimum 

membership values of the two fiizzy antecedents in each of these two rules. Going 

back to figure 12 again, the membership values for the antecedents have been 

determined to be 0.4 and 0.8 for the price and volume indicator respectively. 

Therefore, the joint effect should be a membership value of 0.4 (the minimum of the 

two values).

Implication involves computing the effect this joint membership value of the
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antecedents has on the consequent in the same rule. There are numerous ways in 

which this can be achieved and one such approach is motivated by the parallels in 

classical logic. It is well known in classical logic (i.e. binary logic) that the truth value 

of p ^ q  is the same as either-i/>v 9 or (/> a  q r) v - ip . Alternative fuzzy 

implications can be derived by substituting the various definitions for the fuzzy logical 

operators a  (AND) and v (OR) into these two expressions. Some examples are the 

Kleene-Dienes implication, the Lukasiewicz implication, and Zadeh implication (for 

more details see Driankov, Hellendoom and Reinfirank 1993, pp.85-87).

Of all the implication operators, the most important one known in the fuzzy 

control literature is the Mamdani implication^ .̂ It is based on the intersection 

operator, i.e., p=>q = p A q . We have used the Mamdani implication in our example. 

In practice, the Mamdani implication is implemented with the min operator which has 

the effect of truncating the height of the fuzzy set for the consequent to the joint 

membership value of the antecedents determined above. This explains why the 

bottom picture in figure 12 shows that the consequent has been truncated at the 

membership value of 0.4.

Figures 12 to 15 show how each rule has responded to the given input values, 

and the effect of implication is illustrated by the bottom picture in each of these 

figures. Notice that there is no logical connective in Rule 2 and 3. In these cases, the 

joint membership value of the antecedents is just the membership value of the only

The Mamdani implication is important because it will not have "interaction.’’ Basically, this means 
that it will produce the same result regardless of whether it uses composition based inference or 
individual rule based inference. See Driankov, Hellendoom and Reinfrank (1993, pp.101-102).
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antecedent that is present in each rule. In the case of Rule 4, althou^ there are two 

antecedents, the first one is not satisfied by the given value. The first antecedent 

therefore yields a membership value of zero. Consequently, the joint membership 

value is zero and the fuzzy set for the consequent is cut off at zero. This implies 

therefore that the output firom Rule 4 is an empty fuzzy set.

The next task that has to be performed by the inference engine is to consolidate 

the truncated fuzzy set firom each rule. This can be accomplished by either taking the 

union or the intersection of all the resulting truncated fuzzy sets that represent the 

consequent. The choice will depend on whether we treat the rules as disjunctive or 

conjunctive. If we treat the rules as disjunctive, we will obtain a conclusion for a set 

of given input values whenever the joint membership value of the antecedents is non­

zero for at least one rule. On the other hand, if we consider the rules as conjunctive, 

then we will obtain a conclusion only if the joint membership value of the antecedents 

is non-zero for all the rules. The interpretation of the rules as either disjunctive or 

conjunctive depends on their intended use and the way the joint membership value for 

the antecedents in each rule is determined. For the example we are considering, 

clearly we want to treat the rules as disjunctive. We therefore take the union of all the 

truncated fuzzy consequent. The result is the largest fuzzy set that can be formed firom 

superimposing the truncated fuzzy sets of the consequent on each other. This final 

output fuzzy set is illustrated in figure 16.

The final step is to design the defuzzification module. The purpose as we have 

mentioned before is to convert the final fuzzy set obtained by the inference engine to a
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real value so that it may be used for control purposes or guide decision making. Of the 

numerous defuzzification methods that have been proposed, the six most popular ones 

are: Centroid or Center-of-Area method, Center-of-Sums method, Center-of-Largest- 

Area method, First-of-Maxima method, Middle-of-Maxima method, and Height 

defuzzification method. These defuzzification methods are illustrated in figures 17 to 

22 °̂.

In most practical applications, a major consideration in the choice of a 

defuzzification method is its computational complexity. The Height method, Middle- 

of-Maxima method and the First-of-Maxima method are the faster ones among the six 

methods listed above. Other considerations to keep in mind are Continuity, 

Disambiguity and Plausibility. Continuity will ensure that a small change in the input 

will not result in a large change in the output. The problem of ambiguity arises when 

the result of the defuzzification method is not unique. This happens when for instance 

the Center-of-Largest-Area method is applied to two fuzzy sets that have identical 

areas. A defuzzified output is considered plausible if it lies approximately in the 

middle of the support of the corresponding fuzzy set and has a high degree of 

membership in the same fuzzy set. We apply the Centroid method to our example. It 

is apparent fi-om figure 16 (since the bulk of the set is concentrated on the right side), 

that even without carrying out the defuzzification, the decision is to buy. The 

calculation of the centroid gives a value of 0.333 which confirms a buy decision as

^  See Driankow, Hellendoom and Reinfrank (1993, pp.132-141) for details on how to carry out these 
calculations.
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expected'*’. In the next section, we explore recent developments in fuzzy logic.

2.4 Recent Developments

It is interesting to note the following comments by Kosko on the earlier

development of fiizzy logic.

Zadeh saw scientists throwing ever more math at problems and trying to think 
and run the business o f science with the black-white reasoning that computers 
and adding machines used. He chose the word “fuzzy” to spit in the eyes o f 
modem science.

The term fuzzy invited the wrath ofscience and received it. It forced the new field  
to grow up with all the problems o f a “boy named Sue. ” The fuzzy movement in 
those days was a small cult and it went underground. It grew and matured 
without the usual support o f subsidized science. That made it stronger.

Fuzzy logic did not come o f age at universities. It came o f age in the commercial 
market and leapfrogged the philosophical objections o f Western Scientists.
(Kosko 1993, p. 20)

As Kosko has clearly stated, the application of fuzzy logic in the commercial 

sector is where it gained most of its fame and subsequently caught the attention of 

most western academics. Over the last decade, fiizzy logic has increasingly been used 

in commercial applications; particularly in control systems which have to deal with 

vague inputs. The current interest in the commercial application of fuzzy logic was 

possibly triggered by two events in the 1980s; one in 1985 and another in 1987. In 

1985, Shoji Miyamoto and Seiji Yasunobu of Hitachi, in their simulations,

The equation for calculating the Centroid is given by:
. [u.u(u)du u = . —

jp(u)du
where u is the centroid, u are values within the domain of the final fuzzy set, and p(u) is the 

membership value for a given u.
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demonstrated that a fuzzy control system is far superior than the conventional control 

system for the Sendai subway in Japan (see Seiji Yasunobu and Shoiji Miyamoto 

1985). Although they ran into problems initially, they had a breakthrough when they 

realized that they should design the controller to anticipate rather than react to events 

as they happen. Their ideas were adopted and fuzzy systems were used to control 

accelerating, braking, and stopping when the line opened in 1987. The 

implementation was a phenomenal success.

Later in the same year (1987), at the second annual International Fuzzy 

Systems Association (IFSA) conference in Tokyo, Takeshi Yamakawa demonstrated 

the use of fuzzy control for a classic control problem—the balancing of an inverted 

pendulum (see Takeshi Yamakawa 1989). This is a very difficult task to accomplish 

with conventional control method but Yamakawa was able to maintain the pendulum 

upright with ease using a fuzzy controller. But that was not all. The most astonishing 

discovery at the conference was certainly the serendipitous demonstration that a fuzzy 

system can continue to function satisfactorily even when it has been degraded 

(McNeill and Freiberger 1993, p. 157). At the conference, a curious observer had 

requested Yamakawa to remove a computer board fit>m his fuzzy control system as an 

attempt to investigate how the system would respond to a degradation of the 

information provided to the controller. The general expectations at that time were that 

the pendulum would drop immediately when the board was removed. However, to 

everyone’s amazement, the pendulum continued to maintain its balance, proving 

forcefully that a fuzzy control system can continue to make decisions even with partial
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information.

Such sensational demonstrations quickly set the stage for a broad-based 

research effort in fuzzy logic. Some examples of how Fuzzy Logic has been applied 

in practice include'* :̂

• Automatic control of dam gates for hydroelectric-powerplants (Tokio Electric 
Power.)
Simplified control of robots (Hirota, Fuji Electric, Toshiba, Omron)
Camera aiming for the telecast of sporting events (Omron)
Substitution of an expert for the assessment of stock exchange activities 
(Yamaichi, Hitachi)
Preventing unwanted temperature fluctuations in air-conditioning systems 
(Mitsubishi, Sharp)
Efficient and stable control of car-engines (Nissan)
Cruise-control for automobiles (Nissan, Subaru)
Improved efficiency and optimized function of industrial control applications 
(Aptronix, Omron, Meiden, Sha, Micom, Mitsubishi, Nisshin-Denki, Oku- 
Electronics)
Positioning of wafer-steppers in the production of semiconductors (Canon) 
Optimized planning of bus time-tables (Toshiba, Nippon-System, Keihan-Express) 
Archiving system for documents (Mitsubishi Elec.)
Prediction system for early recognition of earthquakes (Inst, of Seismology Bureau 
of Metrology, Japan)
Medicine technology: cancer diagnosis (Kawasaki Medical School)
Combination of Fuzzy Logic and Neural Nets (Matsushita)
Recognition of handwritten symbols with pocket computers (Sony)
Recognition of motives in pictures with video cameras (Canon, Minolta) 
Automatic motor-control for vacuum cleaners with recognition of surface 
condition and degree of soiling (Matsushita)
Back light control for camcorders (Sanyo)
Compensation against vibrations in camcorders (Matsushita)
Single button control for washing-machines (Matsushita, Hitatchi)
Recognition of handwriting, objects, voice (CSK, Hitachi, Hosai Univ., Ricoh) 
Flight aid for helicopters (Sugeno)
Simulation for legal proceedings (Meihi Gakuin Univ, Nagoya Univ.) 
Soffware-design for industrial processes (Aptronix, Harima, Ishikawaj ima-OC 
Engineering)

• Controlling of machinery speed and temperature for steel-works (Kawasaki Steel, 
New-Nippon Steel, NKK)

These examples are from Bauer, Nouak, and Winkler 1996, and Kosko 1993, pp. 184-187.
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• Controlling of subway systems in order to improve driving comfort, precision of 
halting and power economy (Hitachi)

• Improved fuel-consumption for automobiles (NOK, Nippon Denki Tools)
• Improved sensitiveness and efficiency for elevator control (Fujitec, Hitachi, 

Toshiba)
• Improved safety for nuclear reactors (Hitachi, Bernard, Nuclear Fuel div.)

This concludes the presentation on fuzzy logic. The remaining of this chapter 

is devoted to discussing genetic algorithms. This next section provides an overview of 

genetic algorithms.

2.5 Genetic Algorithms—An Overview

Genetic Algorithms'*  ̂(GAs) are robust parallel search and optimization 

algorithms that are inspired by Darwin’s notion of the “survival of the fittest” at the 

genetic level. At this (genetic) level, the “survival of the fittest” refers to how the 

“fittest” genes are sought out in nature through a combined processes of selection, 

crossover, and mutation. Since in principle, the search for the “fittest” genes in nature 

is no different from the search for optimal solutions in an optimization problem, we 

could potentially exploit this robust search algorithm of nature for solving very general 

optimization problems. But of course, this is possible only if we could represent our 

tentative solutions (search objects) in an optimization problem in the form of 

chromosome-liked objects suitable for manipulation by artificial selection, crossover 

and mutation operators.

GA is the brainchild of John H. Holland at the University of Michigan (see Holland 1970a, 1970b, 
1970c, and 1975). The initial ideas were first conceived by Holland in the early 1960s. Robust is 
used here to mean efficient and efficacious. We will follow Goldberg’s (1989) footsteps in 
justifying that a GA is indeed efficient and efficacious later. Davis (1991) is a good reference for 
GAs.
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In GAs, this is typically accomplished by transforming the search objects into 

binary strings that mimic the chromosomes. Chromosomes are entities composed of 

genes. If we draw an analogy between a chromosome and a binary string, then the 

genes in the chromosomes are like the binary bits within the binary string. The 

position of a gene in the chromosome is called its locus and the value taken by each 

gene is called its allele. Among other functions, these genes hold crucial hereditary 

information which can affect the development and survival of an organism. The 

genetic makeup of an organism is known as its genotype. Similarly, in a GA, the bits 

in a binary string hold important information which can determine whether the string 

will be selected for reproduction or be discarded. In the case of a GA, the genotype 

refers to the binary structure or representation of the search objects.

There is however another class of properties of an organism which also can 

affect the way an organism adapts and survives as the genotype does. But unlike the 

genotype, this set of properties is not heritable. This is the phenotype, a set of 

properties or behaviors which an organism acquires from its interaction with the 

environment (as it learns to adapt). The parallel of the phenotype in GAs is the actual 

representation of the search objects (i.e., that which the binary representation decode 

into—it could be a set of parameters, solution alternatives, or points in the solution 

space).

In genetics, genotype properties are inherited by future generations through 

iteration after iteration of the combined processes of selection, crossover, and 

mutation. GAs mimic this natural evolutionary process by subjecting a population of
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binary strings to repeated operations which resemble those of selection, crossover and 

mutation. In the selection process, search objects or binary strings (chromosomes) are 

selected for reproduction based on their “fitness”. ‘Titness” in a GA is measured by 

how well the search objects have solved the problem at hand, or simply, by how close 

they approximate the true solution of the problem. Generally, the more ‘fit” ones are 

more likely to be selected for reproduction than the less “fit” ones. Those selected for 

reproduction are subsequently paired off randomly and subjected to crossover. In a 

crossover, each pair of strings are chopped off at a randomly chosen point, and the 

segments firom each parent are then combined to create new offspring. Althou^ no 

new genes are produced, a crossover can potentially create many different 

combinations of truly unique strings. For instance, in human reproduction where 23 

out of the 46 chromosomes fi-om each parent are recombined and passed down to 

offspring, trillions of totally unique combinations can possibly be produced. In other 

words, trillions of truly unique individuals can be created due to crossover alone.

A numerical example here will help to provide a more definitive illustration of 

the effectiveness of a crossover operator. Consider a binary string with 3 bits. The 

entire space that can be spaimed by a 3-bit binary string is: 000,001,010, Oil, 100, 

101, 110, and 111 (the number of possible unique strings is equal to 2", where n is the 

number of bits). This same space could also be spanned by a crossover operator with 

only two linearly independent strings—i.e., two strings with different allele at each 

locus. For instance, consider the pair of strings 000, and 111 in figure 23. Using this 

pair of strings as the parents, figure 23 shows the possible offspring obtainable fi-om
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crossover at different points (the boxes in dark outline in figure 23 enclose the binary 

bits that have been crossed-over).

A, B and C are three unique pairs of offspring obtainable firom crossover at 

different sites. Note that the creation of B requires a two point crossover, unlike that 

of A and C which only requires a single point crossover. It is clear firom this example 

that a crossover operator alone (if we allow for two-point crossover) can indeed create 

a complete set of truly unique strings starting firom only two linearly independent 

strings. In this case, it takes only three unique crossovers to produce a complete set of 

strings which span the entire space. Of course the number of times we need to 

crossover will vary with the length of the string. In general the number of unique 

crossovers needed to generate a complete set of totally unique binary strings starting 

firom just two linearly independent strings, is equivalent to (2"‘'-l) where n is the 

number of bits in the string.

We have just seen that the key condition necessary for the crossover operator 

to span the space is to have a set of linearly independent strings at the start. When this 

condition is not satisfied, the crossover operator can only access a subset of the total 

space, and when this is the case, there is no guarantee that a crossover operator will be 

able to find the optimal string(s) for it(they) may lie outside the spaces which are 

accessible by the crossover operator. Fortunately GAs have more to offer than just 

crossover. The aforementioned constraint can be removed with a mutation operator. 

In a mutation, information held in genes are altered at random. In a binary string, this 

amounts to switching one or more bits in a string firom 0 to 1 or vice versa.
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Continuing with the previous example, if the starting strings had been 000 and 110, a 

mutation operator could step in, and, with some probability, alter either the first string 

to 001 or the second string to 111, and in doing so create a set of unique strings to 

satisfy the above condition. Although this discussion has not been mathematically 

rigorous, it should be intuitively clear that the combined operation of crossover and 

mutation is indeed capable of searching the entire solution space. Therefore there 

should be no doubt as to the effectiveness of a GA as a search algorithm.

In most applications, the population of strings evolved in a GA is rather large 

and therefore will be likely to contain at least two linearly independent strings. Hence, 

mutation operators are not applied fi-equently. The probability for mutation is usually 

set to less than 0.01. Another good reason for keeping the mutation probability low is 

to improve the final convergence behavior. If the mutation probability is set too high, 

the fi-equent perturbation will not allow the strings to settle down at the correct 

solution(s). On the contrary, crossover is applied more frequently, usually with a 

probability of about 0.7 but may be higher if necessary. Frequent crossovers are 

desirable as they ensure that the entire solution space is searched thoroughly for good 

solutions.

However, what we have established so far with the searching ability of the 

combination of crossover and mutation (i.e., the ability to span the entire solution 

space) is merely a basic requirement of any useful search strategy. It is well known 

that any random search strategy is also capable of searching the entire solution space 

with some probability. So the more pragmatic question here is whether a GA is any
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better than a random search strategy. This question relates to the efficiency of a GA 

and will be discussed in details in the next section when we discuss the Schema 

Theorem.

To sum up this section, GAs are search and optimization algorithms based on 

natural genetics. The four key steps in a GA are: 1) encoding of initial trial solutions 

(search objects), 2) fitness evaluation, 3) selection for reproduction, and 4) crossover 

and mutation. In its search for better solutions, a GA repeats the last three of these 

four steps until an adequate solution has been found.

2.6 The Schema Theorem

The Schema theorem was constructed by Holland(1975) to make a statement 

about the efficiency of a GA as an optimization algorithm. This theorem asserts that 

in a GA the genetic makeup of a population of individuals will evolve towards that of 

the fitter individuals at an exponential rate, or in other words, tentative solutions will 

improve at an exponential rate. Goldberg (1989) has presented an excellent discussion 

of the Schema Theorem, and the discussion here will primarily follow his'^. In 

relation to the previous discussion, we will stay with the binary representation, that is, 

we will consider only strings which are constructed over the binary alphabet V = {0,

1}. We further define a schema H taken firom the three-letter alphabet W = {0,1, *}. 

where ‘0’ and ‘ 1’ are the usual binary bits and **’ represents a wildcard, or “a don’t 

care” symbol. Schemata are simply patterns or similarity templates which we can

' See also the original work of Holland (1975). For a quick overview see Mitchell (1995). Vose 
(1991) has a generalization of schema and genetic algorithms.
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generalize from a collection of strings in a population. For example, consider a 

collection of strings 00110,00111,01110, and 01111. A possible schema for this 

population is H = 0*11*. Some other possible schema for the same set of strings are 

0****, and ***1*.

A useful way to characterize a schema is to define its order and defining 

length. The order of a schema H, denoted by 0(H), refers to the number of fixed 

positions present in the template. For the above example of 0*11 *, the order is 3 

(symbolically, we represent it as 0(0*11*)=3). The defining length of a schema H, 

denoted by 0(H), is the number of bits between the first and last specific string 

position. For example, the schema 0*11* has defining length 8 = 3 because the last 

specific position is 4 and the first specific position is 1. When there is only one 

specific bit like in schemata 0**** and ***1*, the defining length 8 is equal to zero.

Having established convenient notations for describing the schemata, we can 

now focus on analyzing the net effect of the reproduction, crossover and mutation 

operators on the dynamics of schemata. Let A(t) represents a population of binary 

strings at time t, and m(H,t) represent m examples of a particular schema H contained 

within A(t) at time t. Since reproduction involves copying strings according to their 

fitness values, if we denote the fimess of the z* string by the probability that the i4h

string will be selected for reproduction is given by p. = f j x f . .  Consequently, after

we have selected a new population of size 7/with replacement from the initial 

population, we should on average have m(H, t+1) = m(H,t) N f  f t
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representatives of the schema H in the new population at time t+1 where / ( / / )  is the 

average fitness of the strings representing schema H at time t. It is instructive to 

rewrite this equation in term of the average fimess of the entire population, / ,  where 

~f- H f j j t i  • With this substitution we obtain:

(2.4) m(H, t+1) = m(H, t)

The effect of the reproduction operator is now obvious. Under reproduction, a 

particular schema grows in direct proportion to the ratio of the average fimess of the 

schema to the average fimess of the population. As a result, schemata with fimess 

values above the population average will be more represented in the next generation, 

while schemata with fimess values below the population average will be less 

represented. Keep in mind that the same phenomenon applies simultaneously to every 

schema H contained in a particular population A. As such, all the schemata in a 

population will grow or decay according to their schema averages under the operation 

of reproduction alone. In summary, above-average schemata grow and below-average 

schemata die off.

Consider now the growth of a particular schema H which remains above the

average fimess by an amount c /  with c is a constant. The difference equation 

describing the growth of this schema would then be:

f  + c f
(2.5) m(H, t+1) = m(H, t) = (1+c) m(H, t)

However, m(H,t) can also be expressed as (l+c)m(H, t-1) so that:
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(2.6a) m(H,t+l) = (l+c)^m(H,t-l)
Repeating this backward substitution until t=0 results in:

(2.6b) m(H,t) = m(H, 0) (1+c)*

We can therefore conclude that reproduction will allocate exponentially increasing 

(decreasing) numbers of trials to above- (below-) average schemata.

However, reproduction alone does not promote exploration of new regions of 

the search space as we have discussed in the previous section. In order to encourage 

exploration of new regions, we need the crossover and mutation operators. To analyze 

the effect of crossover on the dynamics of schemata, we consider a particular string, A, 

of length 1 = 5 and two representative schemata of this string:

A = 0 1 110 

Hi = * 1 * * 0 

H2 =  * * * 1 0

Both schemata Hi and H; are represented in the string A. Assume that string A 

has been chosen for mating and that crossover will take place between position 3 and 

4. The effect of this crossover on our two schemata Hi and H; is illustrated below.

The separator symbol | is used to mark the crossing site.

A = 01 1 |lO

Hi = * 1 * 1 ♦ 0

Hz =  * * *  I l  0

It is obvious that unless string A is crossed-over with another string that is
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identical to itself, the schema Hj will be destroyed because the 1 at position 2 and the 

0 at position 5 will be placed in different offspring. In contrast, schema H; will 

survive because the 1 at position 4 and the 0 at position 5 will be carried intact to a 

single offspring. Despite the fact that this example is rather specific, we can see that 

in general schema is less likely to survive a crossover than schema H; because on 

average the cut point is more likely to fall between the extreme fixed position. We can 

calculate the probability that schema H, will be destroyed as follows. Note that Hj has 

a defining length of 3. If the crossover site is selected uniformly at random among the 

4 available sites, then clearly schema H, is destroyed with probability = 5(Hi)/(/-l)

= 3/4 (or it survives with probability Pg=\-Pj  = 1/4). Likewise, the probability that 

schema H2 will be destroyed is P^ = ô(H2)/(/-l) = 1/4 (and the survival probability is 

3/4). The survival probability for a schema H of length /, is in general given by Pj = 1- 

6(H)/(/-l). However, if crossover is applied at a probability P^, then the total effect on 

the survival probability will be:

(2.7) P, > \ „ s m
‘ e - i

Up till now we have only consider the effect of crossover. There is one more 

operator we have yet to consider. This is the mutation operator. Recalling that a 

mutation operator randomly alters a single bit with probability P„, the survival 

probability of a single allele should be (1-P„). For a particular schema to survive a 

mutation, each of the 0(H) fixed positions within the schema must survive. If we 

multiply the survival probability of each allele by itself 0(H) times, we have the
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survival probability of a schema of order 0(H) given by; P, = (1 -  ■ For

sufficiently small values of P„ the schema survival probability can be approximated 

by P ,= l-0 ( / f ) -P „ .

If we combined the effects of reproduction, crossover and mutation, the 

equation describing the growth dynamics of schemata becomes:

(2.8) m (H,t+l)>m(H,t) \ ^ - P ^ i ^ - 0 { H ) - P „

This equation clearly shows that the growth of a particular schema depends primarily 

on 1) whether the schema is above or below the population average, 2) whether the 

schema has relatively short or long defining length, and 3) how specific the schema is 

(that is, how many fixed bits a schema has) as measured by its order, 0 (H ). In 

general, less specific schemata with above-average fitness values and shorter defining 

lengths will enjoy exponential growth. This important conclusion is called the 

Schema Theorem, or the Fundamental Theorem of Genetic Algorithms'* .̂

At this point, it is worthwhile to remind ourselves that H is only one of the 

many schemata that are processed by a GA simultaneously. In general Holland’s 

implicit parallelism result shows that for a population of N strings, a GA implicitly 

processes on the order of schemata per generation (see Goldberg 1985, and 

Goldberg 1989, p.20 and 40). When we put this in perspective, a population of 100 

strings will enable a GA to process on the order of a million schemata. As the GA

This result has been rigorously proven in theory (see Holland 1970b, 1970c, 1975, and 1987, and 
Bethke 1981).
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processes this vast collection of schemata, short, low order, above-average schemata, 

that represent better solutions, are given exponentially increasing representations in 

subsequent generations. A GA is therefore a very efQcient search algorithm in 

comparison to purely random search strategies.

Putting this result together with our earlier illustration of GAs’ effectiveness, 

we can conclude that GAs are indeed very robust search and optimization algorithms. 

De Jong (1975) has established this point conclusively when he successfully applied 

GAs to the optimization of complicated functions with the following characteristics: 1) 

continuous/discontinuous, 2) convex/nonconvex, 3) unimodal/multimodal, 4) 

Quadratic/nonquadratic, 5) Low-dimensionality/high-dimensionality, and 6) 

Deterministic/stochastic^®.

Finally, these results have also emphasized two important principles to keep in

mind when designing a GA code. These are:

The user should select a coding so that short, low-order schemata are relevant to 
the underlying problem and relatively unrelated to schemata over other fixed 
positions.

The user should select the smallest alphabet that permits a natural expression o f 
the problem. (Goldberg 1989, p.80)

2.7 GA Versus Conventional Optimization and Search Methods

Given that we have asserted that a GA is a robust search and optimization 

strategy, it is natural to question whether a GA is indeed more robust than 

conventional search and optimization methods. Goldberg (1989) argued that

^  See also Grefenstette (1985,1987) for demonstrations of the robustness of GAs.
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conventional optimization and search methods are inferior to GAs because they are 

based on sequential search and they lack a practical and robust guiding mechanism to 

direct the search to regions of the space which are more likely to result in fruitful 

outcomes.

Conventional search and optimization methods in the literature can in general 

be classified as calculus-based, enumerative and random'* .̂ A common theme among 

these conventional methods is the use of a serial approach in their search for the 

optimal solution. In comparison with the parallel search approach of a GA, which can 

process on the order of schemata simultaneously (recall the implicit parallelism 

result), the serial approach is highly inefBcient. Since many practical problems have 

spaces which are simply too large to be searched sequentially, it is not practical in real 

applications to rely on the serial approach. For example, even the highly acclaimed 

enumerative scheme of dynamic programming is known to break down on problems of 

moderate size and complexity'**. In addition, the localized nature of the search in a 

serial approach also implies that it has the tendency to be stuck to local optimum 

rather than the global optimum. Such a problem does not arise in a GA which uses a 

parallel approach in its search for the optimal solution.

The calculus-based method is the only one among the three alternative 

conventional approaches that makes use of a guiding mechanism to direct its search. It

We need to distinguish between a random search strategy and other methods that make use of 
randomness. For instance, a GA uses randomness but is not what we would called a random 
search strategy. That is, although it has some degree of randomness, a GA’s search is not 
directionless.

Bellman (1961) called this the “curse of dimensionality”.
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uses the derivatives of the objective function to guide the search for an optimal 

solution. For instance, in the “hill climbing” method, search is conducted in the 

direction in which the slope is the steepest (could be steepest ascent or descent 

depending on the nature of the problem). But, because it relies on derivatives to direct 

the search, this approach is not suited for working with objective functions whose 

derivatives are ill-defined or too difficult to evaluate. This is not a problem in a GA.

In a GA, no calculation of derivatives is ever needed to direct the search. All that is 

needed in a GA is simply an evaluation of the objective function and the manipulation 

of the tentative solutions using genetic operators, and yet, tentative solutions will 

evolve towards better solutions at an exponential rate as we have illustrated in the last 

section.

Neither the enumerative nor the random algorithms employs a guiding 

mechanism to direct its search towards the best solution. The enumerative algorithm 

systematically evaluates and compare the objective function at every point in the 

search space to determine the optimal solution. The random search algorithm searches 

the entire space at random and continually keep track of the best solution found as they 

proceed. However, without a guiding scheme, time will be wasted in exploring 

unfinitful regions of the search space. Thus these two approaches will not be as 

efficient as a GA.
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2.8 The Elements of a Genetic Algorithm

2.8.1 Encoding o f Initial Trial Solutions
We have mentioned previously that the most common encoding method is to

transform the tentative or trial solutions into binary strings. This transformation is

straightforward for numerical value types of trial solutions and needs no further

elaboration here. However, some concern has been raised regarding the

representational bias in conventional binary representation because the Hamming

distance between adjacent values is not constant^  ̂(Hollstien 1971). Caruana and

Schaffer (1988) have found that large Haimning distances in the standard binary

representation can result in the search process being deceived hence keeping it &om

efficiently locating the global minimum. This problem can be resolved by the use of

Gray coding which may also help to speed up convergence. As an illustration, the list

in Table 1 shows the corresponding relations between Binary-coded integers and

Gray-coded integers, for integers ranging from 0 to 15. Notice that for the Gray-coded

integers, adjacent integers differ by a single bit (i.e. a hamming distance of 1).

In practice. Gray encoding is initially applied to the entire population of strings

(tentative solutions). Decoding (re-encoding) is then carried out systematically at the

step right before (after) fimess evaluation. The algorithm for Gray encoding and

decoding is straightforward. Let A jj represents the bit in the f ’' string, and G,-y

represents a similarly positioned bit for a Gray coded string. The algorithm is as

Hamming distance is used here to refer to the number of bits that separates two binary integers. For 
instance if we compare the strings 0101 and 0111, there is a hamming distance of 1 between them 
because only one bit needs to be flipped to make the two strings identical.
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follows.

(2.9) For Gray encoding'. if Aj j  ^  Â  j_̂ , then G, j = 1, else G, ̂  = 0

For Gray decoding: if G, y = 0, then Af j = Au_^, else Â  j  ^  Â  j_̂

In addition to binary coding, there is an increasing interest in alternative coding 

strategies such as integer and real-valued representations. One argument in favor of 

these alternative coding strategies is they may be more convenient, more efficient or 

more natural than binary coding in representing the problem. For instance, Wright 

(1991) has argued that real-value coding is more efficient as there is no need to 

convert the chromosomes to phenotypes before each function evaluation. There is also 

no loss in precision by representing continuous values as discrete binary or other 

values, and there is greater freedom to use different genetic operators. The use of real­

valued encodings is described in details by Michalewicz (1992) and others in the 

literature on evolution strategies (see for example. Back, Hoffineister, and Schwefel 

1991).

Once a decision is made on the representation, the next step is to generate an 

initial population of individuals (chromosomes or genotypes). Unless there is prior 

knowledge on what the approximate solution should be, the initial population is 

usually generated using a random number generator.

2.8.2 Fitness Evaluation

The fitness of each individual string is related to how well it satisfies the

objective function. Hence a straightforward measure of relative fitness would be to
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compare the raw value of the objective function contributed by each individual. 

However, on those occasions when the objective function is not a convenient or 

suitable measure of fitness, a fitness function constructed fi-om the objective function 

may be used to evaluate the relative fitness of the individuals. A commonly used 

transformation is

(2.10) f ( , , )  = 4 ^
T f M

where N is the population size, Xj is the phenotype value of individual i , and f ix^)  

is the fitness function or objective function. This transformation allows offspring to be 

selected in direct proportion to an individual’s relative fitness. However, this 

transformation is not suited for objective functions with negative values. In such 

instances, instead of using the actual objective function for /(jc, ) in the above 

equation, a linear transformation of the actual objective function may be used (such as, 

af(xf) + b; where a and b are appropriately chosen constants). Another concern that 

may surface is that the range of /(jc, ) may be too wide. When this is the case, highly 

fit individuals in early generations can dominate the reproduction process and may 

cause the algorithm to result in premature convergence to some sub-optimal solution. 

Baker (1985) has suggested overcoming this problem by assigning fitness value 

according to the individuals’ ranking within the population rather than basing the 

fitness on their raw performance. This is accomplished by using an equation similar to 

the following for calculating fitness.
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(2.11) F{x,) = 2 - M A X  + 2 {M A X -\)[^ I^ ^

MAX is typically chosen to be in the interval [1.1,2.0] and is used for controlling the 

selective pressure toward the most fit individuals, x,- is the ranking, or the position in 

the ordered population of individuals. As an illustration of how this transformation 

works, consider two individuals -  the highest ranked and the lowest ranked — in a 

population of N individuals. The variable x,- will be equal to N for the highest ranked 

and be equal to 1 for the lowest ranked. Substituting these values into the equation 

will give us fimess values of MAX and 2- MAX respectively. The difference in 

fimess value between the highest ranked and the lowest ranked individual is therefore 

2MAX - 2. Using a larger value for MAX will expand this difference and hence put 

more selective pressure in the directions of the most fit individuals, while using a 

smaller value for MAX will do the opposite.

2.8.3 Selection for Reproduction
This step controls the number of offspring that each individual will contribute

to the new generation. The idea here is to allow more fit individuals to contribute

more offspring than the less “fit” individuals. This is in essence an artificial version of

Darwin’s game of the “survival of the fittest”. Methods for selecting individuals

usually use some form of a “roulette wheel” mechanism to probabilistically select

individuals based on their fimess. The Basic Roulette Wheel Selection Method and

the Stochastic Universal Sampling method are two commonly used selection

techniques.
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Basic Roulette Wheel Selection

The goal of these selection techniques is to design a mechanism which will 

select individuals for reproduction based on their fitness values. A roulette wheel 

selection method accomplishes this by first dividing a roulette wheel into N sectors 

(where N corresponds to the total number of individuals) and then assigning to each 

individual a sector with an area which is proportionate to its fitness (see illustration in 

figure 24). In Figure 24, we see that individual 5 has the highest level of fitness, as it 

occupies the biggest sector. The circumference of the roulette wheel is set equal to the 

sum of all the individual’s fitness (denoted as Sum). The process of finding an 

individual for mating involves, first, generating a random number in the interval 

[0,5um], and then, selecting the individual whose sector spans that random number. 

This process is repeated until the desired number of individuals have been selected. 

Note that sampling is done with replacement.

Several variations of this basic roulette wheel selection method have emerged 

with the sole purpose of minimizing the spread and the bias in the sampling while 

maintaining or improving the efficiency of the algorithm. Bias is the absolute 

difference between an individual’s actual and expected selection probability. Spread 

is the range in the possible number of trials that an individual may achieve. A 

“minimum spread” is the smallest spread that theoretically permits zero bias. Bias is 

therefore an indicator of accuracy, while the spread is a measure of its consistency.

An efficient single-phase sampling algorithm which has a zero bias and minimum
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spread is the Stochastic Universal Sampling method. This is described next.

StQçhQ̂ tjçJJniyçrsaî̂ mplinzXSUS)

In the basic roulette wheel selection method, the process has to be repeated 

until the desired number of individuals have been selected. In this method, all of the 

individuals are selected in one step. SUS uses N equally spaced pointers, where N is 

the desired number of individuals. At the beginning, the population is shufQed 

randomly and a random number in the interval [0, Smtw/N] is generated, (p. The N 

individuals are then chosen by generating N pointers spaced by 1 (i.e., 9 , <p+l, . . . ,  

(p+N-1), and selecting the individuals whose fitness sectors on the roulette wheel span 

the positions of the pointers.

2.8.4 Crossover and Mutation

The individuals selected in the previous step are then subjected to crossover

and mutation. The purpose of crossover and mutation is twofold -  to improve the

genetic structure of the individuals (or to recover those good genetic materials lost in

the process) and to allow for sufficient diversity in the population genetic structure.

Crossover involves slicing each chromosome into two or more segments then

recombining pieces of different chromosome segments into new chromosomes.

Mutation is simply the alteration of one or more bits (genes) in an individual string

(chromosome).

Crossover

Several crossover schemes are available. The main difference among the
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various schemes is in the number of crossover points each allows (for e.g., single point 

crossover, multi-point crossover (see Spears and De Jong 1991), and uniform 

crossover (see Syswerda 1989)). The simplest form of crossover is tire single-point 

crossover which is shown in figure 25. Multi-point crossover, illustrated in figure 26, 

is a straight forward extension of the single-point crossover. In a uniform crossover, a 

crossover template or mask is used to determine which parent will supply the offspring 

with which bits. The crossover template has the same length as the chromosome 

structure and contains binary bits which are created at random. Bits of ones (zeros) 

mean that genetic material in those positions will be supplied by the first (second) 

parent (see figure 27). Uniform crossover has been said to reduce the bias associated 

with the length of the binary representation used and the particular coding for a given 

parameter set.

These crossover schemes are not appropriate, however, for real-value encoded 

chromosomes because such an operation will not search the relevant real-valued space 

efficiently or, worse yet, invalid values may be produced as a result of the operation. 

Instead of crossover operators, other recombination operators are used for real-value 

encoded chromosomes (such as an intermediate recombination operator, or a linear 

recombination operator). An intermediate recombination operator produces offspring 

according to the following:

(2.12) 0, = P,*a{Pj-P^

where the f  s are the parents, O s are the offsprings, and a  is a scaling factor chosen
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randomly from a uniform distribution over some interval, usually [-0.25, 1.25] (see 

Muhlenbein and Schlierkamp-Voosen 1993). A linear recombination operator is a 

special case of the intermediate recombination operator. The scaling factor, a , is a 

constant for the linear recombination operator, instead of a random value.

Mutation

Mutation is a random process where one allele of a gene is replaced by another 

to produce a new genetic structure. In a binary representation, this involves the 

switching of chosen bit(s) from 1 to 0 or vice versa. In GAs, mutation is applied at 

random with low probability, typically in the range 0.001 and 0.01, and it modifies 

elements in the chromosomes. The role of mutation is often seen as providing a 

guarantee that the probability of searching any given string is always positive and will 

never be zero. Mutation acts as a safety net to recover good genetic material that may 

be lost through the action of selection and crossover. With non-binary representations, 

mutation is achieved by either perturbing the gene values or random selection of new 

values within the allowed range. In general it has been found that for codings more 

complex than binary, high mutation rates can be both desirable and necessary (see 

Tate and Smith 1993, Wright 1991, Janikow and Michalewicz 1991).

As for actually building the new generation, the newly made individuals are 

usually simply inserted into the new population and the process is repeated until the 

new population is of the desired size. More elaborate strategies have been devised in 

which, for instance, an offspring is inserted into the new population only if it is fitter 

than its parents or if it is sufficiently different from the rest of the population (anti-
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crowding). Several replacement strategies have been proposed to maintain genetic 

diversity in order to prevent the GA from converging prematurely (Eshelman and 

Schaffer 1991). Most of these methods depend on a similarity measure between 

individuals. In the next section, we discuss the application of a GA to find the 

minimum of a function.

2.9 A Simple Application of a GA

In this Section, we look at how a GA can be used to solve a simple 

optimization problem. The problem we will consider is the minimization of the 

function / (x) = , where 0 < x < 10. This function is displayed in figure 28. It is

clear that the minimum of this function occurs at x = 0, and /(O) = 0. With such a 

trivial problem as an example, our intention is of course, not to demonstrate the power 

of a GA^°. My purpose here is twofold: 1) to show the structure of a GA computer 

program and to relate it to the discussion in the previous section, and 2) to make sense 

of the GA simulation results from the perspective of the Schema Theorem.

This section is divided into two subsections. The first part discusses the key 

steps in the GA computer program that we have used to solve the above problem—the 

minimization of / (x) = x^. The second part discusses the results fix)m the 

simulation.

Besides, as we have mentioned earlier, more definitive and careful experiments confirming the 
robusmess of GAs have already been conducted by De Jong (1975). There is very httle 
incremental value in carrying out such a demonstration here.
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2.9.1 A GA computer program

We discuss below a simple MATLAB program for solving this minimization

problem. The subroutines in the program are taken &om the Genetic Algorithm

Toolbox for use with MATLAB developed by Chipperfield et al.(1995) at the

University of Sheffield. Rather than going through every step of our GA code^’, we

will focus only on the crucial steps and relate it to the discussion in the previous

section.

Figure 29 shows the result of the GA simulations. It is clear from the plot that 

the crossover and mutation operators are very effective as the GA converges very 

quickly (after about 70 generations, less than 10 seconds running time on a Pentium 

120) to the correct solution.

Explaining The Key Steps In Our GA Program

1. Initialization of population.

Chrom = [ones (NIND, NVAR*PRECI)J
MIND = 20, is the number of individuals in the population 
PRECI = 8, sets the length of each individual string 
NVAR = 1, is the number of variables encoded in each string.

This statement generates a matrix, Chrom, of size 20x8, containing 20

strings of ones. Each string has a length of 8 bits. Note that we have

intentionally set the starting population to a collection of strings of ones,

which is the ftuthest in hamming distance to the correct solution of strings

of zeros, to demonstrate the effectiveness and efficiency of the crossover

The G A code is a simple modification of the SGA code in the toolbox.
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and mutation operators in searching the solution space. We will see in the 

next subsection that the population converges rather quickly to the correct 

solution.

2. Evaluate initial population.

temp = bs2rv(Chrom, FieldD)
ObjV=temp * temp

The first statement uses the routine bslrv to convert the binary strings into 

real-valued decimal numbers and store them as temp (temp is the variable 

denoted as x in the objective fimction). FieldD is the field description. It 

contains information about the variable and provides an option for Gray 

coding. For reasons discussed earlier. Gray coding was used in the 

simulation.

The second statement calculates the value of the objective fimction for each

decoded string (recall that the objective fimction is )

3. Assign fitness-value to entire population 

Fitn V  = ranking(ObjV)

Here fitness is assessed using the routine ranking which ranks the 

individuals and subsequently transforms the relative ranking to fitness 

values using linear ranking with a selective pressure of 2. The parameter 

MAX is set to 2. So the equation for fitness calculation reduces to:

where N is equal to 20, and x,- is the ranking that runsF(x,) = 2 -1
N - \
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from 1 to 20. This implies that the fitness values assigned will follow the 

following sequence (in order of increasing ranking):

[0.1053 0.2105 0.3158 0.4211 0.5263 0.6316 0.7368 0.8421 0.9474 

1.0526 1.1579 1.2632 1.3684 1.4737 1.5789 1.6842 1.7895 1.8947 

2.0000]

Note also that in a situation where subsets of strings are identical, the fitness 

value for each string in each subset of identical strings is determined by the 

average fitness value of the subset. For instance if the strings ranked 1,2, 

and 3 are identical, then the fitness value is : (0.1053+0.2105+0.3158)73. 

Ranking in this routine is designed for minimization of objective functions. 

Hence if we have a maximization problem, we will need to recast the 

problem as a minimization prior to using the ranking routine.

4. Select individuals for breeding

SelCh = select Csus\ Chrom, FitnV, GGAP)

This step uses the routine select to pick out individuals for breeding based 

on the individual’s fitness. The method employed here is the Stochastic 

Uniform Sampling method which was discussed in the previous section.

5. Recombine selected individuals (crossover)

SelCh = recombin Cxovsp*, SelCh, 0.7)

recombin allows for different crossover operations. In our case, we chose 

the 'xovsp', which is the single point crossover. The crossover probability
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is set to 70%. This routine actually uses a lower level routine which 

performs a uniform crossover. With appropriately specified options, it will 

behave like a single point crossover (i.e. the mask will contain a substring of 

zeros next to a substring of ones).

6. Perform mutation on ofifspring 

SelCh = mut (SelChj 0.003)

Mutation changes the bits in the population of strings and the mutation 

probability is set to 0.3% in this case.

7. Evaluate offspring

tempi = bs2rv (SelCh, FieldD)
ObjVSel = tempi * tempi)

This is similar to step 2 above.

8. Reinsert offspring into current population

[Chrom ObjV] =  reins (Chrom,SelCh,l,l,ObJV,ObjVSel) 

reins allows two options for offspring to be reinserted back into the 

population. One option is to allow offspring to replace parents uniformly at 

random. Another option is to allow offspring to replace least fit parents.

Here, the latter option is used. ObjV and ObjVSel contain the fitness values 

of the parents and the offspring respectively.

2.9.2 Simulation Results
Figure 29 shows that the objective function converges veiy quickly to the

correct solution of zero (after about 70 generations which take less than 10 seconds to
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run on a Pentium 120). Table 2-4 show how the population of strings evolve over 

time. The population consists of 20 individual strings, and the crossover and mutation 

probabilities were set to 0.7 and 0.003 respectively. The length of each string, which 

determines the precision of the binary representation, was set to 8 bits, we also used a 

generation gap of 0.9, which mean that new individuals totaling 90% of the population 

are created and reinserted into the population at each generation.

We observed in Section 2.6 that in general, schemata which have fitness values 

above (below) that of the average fitness of the population should grow (decay) 

exponentially. In Table 2, we see that at Generation 10, the more fit strings are those 

which belong to the schema [♦ * ♦ * o * * *] (keep in mind that the purpose is to 

minimize the objective function, so the more fit strings will have lower f(x) values). 

Five generations later, at Generation 15, the entire population has converged to the 

schema [* * * * ( )* * * ]  confirming the prediction of the Schema Theorem. In Table 

3, at Generation 35, note that the more fit schema is the one that has a zero in the last 

position, i.e. [0 0 * * 0 * * 0]. Just as the Schema Theorem predicted the population 

again converges to this schema by Generation 55 . At Generation 55, a new schema 

with better fimess value has been discovered. This schema puts an additional zero in 

the third position. Following the evolution to Generation 60, we see again that the 

population has quickly converged to this new schema. This is the same pattern that we 

see over and over again as we trace the evolution of the population over time. The 

conclusion we can draw firom these observations is exactly what the Schema Theorem 

has predicted, that is, in a genetic algorithm tentative solutions improve at an
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exponential rate.

2.10 A Genetic Fuzzy Classifier System

We have argued earlier in this chapter that fuzzy logic allows us to construct 

much better control systems than we can achieve using conventional mathematical 

control theory. However, the quality of a fuzzy control system, like most rule-based 

systems, ultimately relies on a good set of control rules (among other factors). 

Unfortunately a fuzzy system is not capable of learning these rules on its own. This 

self-leaming ability is not as crucial in applications in which the operating 

environment is fairly stable and does not evolve over time. But for applications to 

situations in which the environment is constantly evolving, for instance, our economy, 

a fiizzy control system with a fixed set of control rules is likely to be less effective.

To overcome this particular limitation of a fuzzy system, various ^proaches 

have been developed. One fimitful approach involves the use of a neural network to 

leam the rules over time. Although this approach has been successful, it has an 

important disadvantage which we have already discussed back in Chapter 1. In a 

neural network, the learning that is taking place happens in a black box and it is not 

transparent to the modeler. For that reason, the modeler will have no intuitive feel as 

to why the control system may behave in the way it has. In light of this criticism, the 

GA approach has been proposed. In a Genetic-Fuzzy classifier system, a GA is used 

to evolve the fuzzy inference rules through a combined process of reproduction, 

crossover and mutation. The advantage of GA over neural network is it affords
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complete transparency to the process which is going on. This transparency allows the

modeler to check on whether the evolution that is taking place or the rules themselves,

is sensible or not, and it in turn provides the modeler an opportunity to take

appropriate actions to correct the model whenever it is necessary.

There are two obvious ways in which a GA can be implemented to evolve the

fuzzy inference rules. One way is to manipulate the antecedents or consequent in each

rule directly. Suppose we have the following two rules (chromosomes):

Rl: I f  the price indicator is high and. the volume indicator is high, then the trade is 
buy.

R2: I f  the price indicator is low and the volume indicator is low. then the trade is 
hold.

Applying crossover can, for instance, result in the formation of the following two 

rules:

RT: I f  the price indicator is high and the volume indicator is low, then the trade is 
buy.

R2': I f  the price indicator is low and the volume indicator is high, then the trade is 
hold.

Notice that the antecedents in bold have been swapped between the two rules. On the

other hand ^plying mutation to a rule, let’s say R l, can give us:

Rl": I f  the price indicator is normal and the volume indicator is high, then the 
trade is buy.

Another possibility is to use a GA to evolve the parameters that define the 

fuzzy sets representing the fiizzy antecedents or consequent. Consider the fiizzy set in 

figure 30. This fuzzy set can be formalized by the following equation:
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(2.13) = g<%<1.0
(1 -a )  (1 -  a)

Since the parameter ‘a’ is just a numerical value, the implementation of a GA to 

evolve this parameter is straight forward. We have a choice of either casting its value 

in binary representation or keeping it in its original real-valued representation. The 

steps involved are similar to what we have described in Section 2.9. The objective 

function will be determined by what this fiizzy set is to be used for.

In practice, to facilitate easy coding, the linguistic fiizzy rules in a genetic- 

fuzzy classifier are usually transformed into bit strings. Consider the fuzzy rule base 

we have constructed in Section 2.3.

Rule 1: I f  the price indicator is high and the volume indicator is high, then the 
trade is buy.

Rule 2: I f  the price indicator is normal then the trade is hold.

Rule 3: I f  the volume indicator is normal, then the trade is hold.

Rule 4: I f  the price indicator is low and the volume indicator is high, then the 
trade is sell.

This set of rules may for instance be represented by the matrix in figure 31.

The numbers in the first two columns represent the states of the antecedents, which are 

the price and volume indicators respectively. The third column captures the state of 

the consequent which is the trading decision. The fourth column gives the weight 

assigned to each rule in the rule base, and the last column specifies the type of logical 

operator in use. Consider the first column. Since the price indicators can have three 

possible outcomes, that is, “low”, “normal”, and “high”, these can be denoted by “1”,
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“2”, and “3” respectively. So a “3” in the first column would mean that the price 

indicator is "high" while a "2" would imply that the price indicator has been normal.

A “0” means that this antecedent is absent fix>m the rule. The same explanation also 

applies to the second column and the third column. In the second column, since the 

volume indicator can only be "normal" or "hi^", we denote these membership 

functions by "1" and "2" respectively. In the third column, "1", "2" and "3" are used to 

denote "sell", "hold" and "buy" respectively. The ‘Is’ in the fourth column means that 

all the rules are given equal weighting. Finally in the last column, a ‘ 1’ stands for the 

"AND' operator and a ‘2’ stands for an "OR’ operator. In the next chapter, we will 

discuss in more depth how we have implemented a genetic-fuzzy classifier system to 

model the learning behavior of artificial economic agents in our model.
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3. MODEL AND EXPERIMENTS

We have argued in Chapter 1 that in order to account for the anomalies and 

empirical puzzles in real financial markets, we must have an accurate model of the 

process that determines how price expectations are formed. In particular, we 

emphasized that such a model must take into consideration the fact that investors will 

rely on their innate abilities to reason inductively and analyze in fuzzy tenns^^. We 

subsequently justified that a genetic-fuzzy classifier system can faithfully capture 

these traits. In this chapter we will discuss in details how we have adapted the genetic- 

fuzzy classifier system to accomplish this goal. To illustrate that our intuition is a 

plausible explanation for market anomalies, we populate an artificial stock market 

with agents who fonn their expectations using the genetic-fuzzy classifier system and 

we investigate the implications of this expectations fonnation mechanism on market 

dynamics^^. The basic firamework of our artificial stock market is bonrowed fi-om a 

typical neoclassical two-asset market.

Section 3.1 will describe the structure of this artificial stock market in more 

details. In Section 3.2, we discuss in depth how we have adapted a genetic-fuzzy 

classifier to model the process that generates price expectations in the market. Section

3.3 will outline the various controlled experiments we have conducted to illustrate that 

our intuition is indeed plausible.

To recap, investors have to rely on inductive reasoning because the ill-defined environment they 
operate in prohibits the use of deductive reasoning. The use of fuzzy notions is necessary because 
it allows investors to efficiently process the immense amount of information that enters the 
market.

Our model is based on the Santa Fe Artificial Stock Market model by Arthur e t al (1996,1997). 
Another work that investigates similar issues is Beltratti and Margarita (1992).
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3.1 The Market Environment

What we have in mind is a neoclassical two-asset market very similar to that of 

Bray (1982) or Grossman and Stiglitz (1980) except for a little twist; we deviate firom 

these traditional models by allowing agents in our model to form their expectations 

inductively using a genetic-fuzzy classifier system in the manner we have outlined in 

Chapter 1.

The only two tradeable assets in the market are a risky stock and a lisk-firee 

bond. We assume that the risk-fi-ee bond is in infinite supply and it pays a constant 

interest rate r. But only N units of the risky stock are available, and each pays a 

dividend of d, , which is driven by an exogenous stochastic process {d,} not known to 

the agents. The dividend process is arbitrary; and in the Santa Fe Institute 

experiments, Arthur et al. (1996,1997) have considered the following AR(1) process^

(3.1) +

where s, is Gaussian, i.i.d., has zero mean, and variance c j  The subscript, t, indexed 

time. We assume that time is discrete and we have an infinite horizon.

There are N  heterogeneous agents in the market. These agents form their 

expectations individually and independent of each other. In other words, they do not 

communicate their buying or selling intentions to each other. Thus, they will quite

^  Besides studying the outcomes under this dividend process, part of our experiments also include 
investigating the consequences of alternative dividend processes on the model's behaviors. 
Specifically, we have investigated the consequences of including a cyclical drift term as well as a 
linear growth drift term in the dividend process. More will be said about these alternative 
processes in Section 3.3.
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likely hold different expectations from each other. Other than the heterogeneity in 

their expectations, these agents are otherwise identical to each other. They all share a 

similar constant absolute risk aversion (CARA) utility function U(W) = -e^(-ÀW). At 

each period, upon observing the information available to them, they will make 

decisions on their desired holdings of each of the two assets to maximize their utilities.

Assuming that agent i 's predictions at time t of the next period’s price and 

dividend are normally distributed with (conditional) mean,£,.^[p,^, + and

variance, af^i^p+d » then agent z’s demand, , for holding shares of the risky asset is

given bŷ :̂

+ 4+1]-AO + r)
(3.2) Xf,, = ----------- - 2 ----------------- ,

^i,t,p+d

where p, is the price of the risky asset at time t, and A is the degree of relative risk 

aversion. Since total demand must equal the total number of shares issued for the 

market to clear.

(3*3) % Xi t = N •
i=\

This last equation closes the model and determines the clearing price, p , , in equation

(3.2).

This optimal demand function is derived from the first order condition of expected utility 
maximization of agents with CARA utility under the condition that the forecasts follow a 
Gaussian distribution (see Grossman 1976 for details). But when the distribution of stock prices is 
non-Gaussian (as we will see in our simulations) the above connection to the maximization of a 
CARA utility function no longer exists, so in these cases we simply take this demand function as 
given.

85



Now let us turn our attention to the tuning of the various events in the model. 

The current dividend, , is announced at the start of time period t , and this is pubhc 

information. Agents then form their expectations of the next period’s price and 

dividend based on this information and other general information on

the state of the market (which includes the historical dividend sequence {. 

dt-\, cfj} and price sequence Pr-l))- Once their price expectations are

established, agents will use equation (3.2) to calculate their desired holdings of the two 

assets. This information is in turn conveyed to a Walrasian auctioneer who then 

declares a price that will clear the market. The sequence is then repeated. One 

final thing to keep in mind is that in the process, agents keep track of the forecasting 

abilities of their genetic-fuzzy classifiers which they have relied upon to generate their 

price expectations. As agents leam about the forecasting abilities of these classifiers, 

those unreliable classifiers will be weeded out to make room for classifiers with new 

and perhaps better rules.

3.2 Modeling the Formation of Expectations

The stmcture of our genetic-fuzzy classifier is based on the design of the 

classifier system originally developed by Holland (see Goldberg 1989, Holland and 

Reitman 1978, or Holland et al. 1989). At the heart of a Holland's classifier system 

are three essential components: a set of conditional action rules, a credit allocation 

system (Holland called this the Bucket Brigade algorithm) and a genetic algorithm 

(GA). The behavior of the system ultimately is determined by its rules. Each mle
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contains a set of conditions and an action or a combination of actions. Its operation is 

straightforward. Whenever the prevailing state in the environment matches all the 

conditions in a rule, the system adopts the actions prescribed in the rule. The function 

of the credit allocation system is to systematically keep track of the relative 

effectiveness of each rule in the classifier. This information is in turn used to guide a 

G A in the invention of new rules and the elimination of ineffective rules. Together 

they make it possible for the system to learn about the environment and adapt to 

innovations in the environment.

The genetic-fuz2y  classifier we have employed to model expectations 

formation is a simple modification of the Holland’s classifier system. We replace the 

conventional rules in Holland's classifier with fuzzy rules to create our genetic-fiizzy 

classifier. These fuzzy rules still use a similar condition-action format as the 

conventional rules, but they differ fi’om the conventional rules in that the conditions 

and actions are now described by fuzzy terms rather than precise terms.

Recall that what we want to get out of the system are price expectations. We 

accomplish this by replacing the "action" part of the rules with a set of forecast 

parameters. These forecast parameters are then substituted in a linear forecasting 

equation to generate the price expectations we are after. The forecast equation we 

have used is:

(3-4) E, ) = a{p, +d,) + b ,

where a and b are the forecast parameters to be obtained from the activated rule, and
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the variables p, and d, are the price and dividend at time, t. Therefore, the format of 

the rules now looks like.

If conditions then forecast parameters.

Here is an example of such a rule.

If {price/fundamental value} is low, then a is low and b is high.

But before a GA can operate on these rules, we must transform them into bits strings. 

We use five bits to specify the conditions in a rule. These five bits represent five 

market descriptors and they include one fundamental factor and four other technical 

factors. We use another two bits to represent the forecast parameters a and b. 

Altogether, we use a string of seven bits to represent each conditional forecast rule^ .̂

3.2.1 Conditions and Forecast Parameters

Specifically, the five market descriptors we have used for the conditional part

of a rule are: p * r / d , pjMA^S), /?/M4(10), /)/M4(100), and piMAÇSWS). The

variables r, p  and d  are the interest rate, price, and dividend respectively. The variable

MA(jC) in the denominator denotes a n-period moving average of prices. We organize

the positions of the five bits so that they refer to the market descriptors in the same

order as above^ .̂ Thus, the first bit reflects the current price in relation to the current

dividend and it indicates whether the stock is above or below the fundamental value at

^  In practice, we have two additional bits to denote the weight of each rule in a Rule Base and the 
logical connective used in the conditions of the rules. The interpretation of these two bits has 
already been discussed in Section 2.10. In our experiment, we have kept the weights the same and 
we have used the logical 'OR operator in all the rules.

In other words, the five bits for the conditional part of a rule would be arranged according to:
[p*r/d p/MA{5) p/MA(10) p/MA{IOO) p/MA{500) ]
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the current price. Clearly this is a “fundamental” bit. The remaining four bits, bits 2- 

5, are “technical” bits which indicate whether a trend in the price is under way. These 

"technical" bits will be ignored if useless and acted upon if the technical-analysis trend 

actually emerges.

To transform these market descriptors into fuzzy sets, we need to set up 

appropriate universe of discoiurse and decide on the number and type of fuzzy sets to 

use for each of these market variables. We set the universe of discourse for each of 

these variables to [0,1]̂ ®. We let the possible states of each market descriptor be 

represented by a set of four membership functions—two trapezoidal and two triangular 

fuzzy sets, and we label them as "low", "moderately low", "moderately high" and 

"high". The shapes and locations of these fuzzy sets along the universe of discourse 

are as illustrated in figure 32. When we represent these fuzzy sets as bits, they are 

coded as "1", "2", "3" and "4" for "low", "moderately low", "moderately high" and 

"high" respectively. A "0" is reserved to record the absence of a fuzzy set. A "0" has 

the same interpretation as the "#" (don't care) symbol used by Arthur et al. (1996, 

1997).

To give an example, if the conditional part of the rule is coded as [0 1 3 0 2], 

this would mean that p^rjd  and p/M4(100) are not present in the conditional part 

of the rule, and that pjMA^S) are "low", pjMA{\0) is "moderately high" and 

p !MA(500) is "moderately low". In other words, this corresponds to a state in which

When we set the universe of discourse to the interval [0,1], we have implicitly multiplied each of the 
market descriptors by 0.5. So if a market descriptor is equal to 0.5, it means that market price is 
exactly equal to the benchmark diat is referred to in the market descriptor.

89



the market price is less than M4(5) but somewhat greater than MA{\0) and is slightly 

less than M4(500). As long as the prevailing state in the market matches the 

conditions for p j M A ( 5 ) p j  MA{\.0) , and p !  A£4(500), the conditional part of the 

rule will be fulfilled and this rule will be activated regardless of what the values for 

p* rjd  and pjMAiyXi) might be (which is why we said that a "0" is like a "don't 

care" symbol).

However, we need to point out that because these market descriptors are 

intrinsically fuzzy, the conditions described by them will be likely to match many 

states in the market. Hence, what really matters is the degree to which each of these 

conditions is fulfilled and not so much whether each condition is indeed matched or 

not matched by the prevailing state.

Now we turn to the modeling of the forecast part of the rule. We allow the 

possible states of each forecast parameter to be represented by five fuzzy sets. The 

fiizzy membership functions used for this purpose are a Z-shaped function, three 

Gaussian functions and a S-curve function. These fuzzy sets are labeled as "low", 

"moderately low", "average", "moderately high", and "high". The universe of 

discourse for parameter, a and b, are set to [0.65,1.25] and [-12,22] respectively^®. 

The shapes and locations of these fuzzy membership functions are as illustrated in 

figures 33 and 34. When we represent these fiizzy sets as bits, we code them as "1", 

"2", "3", "4" and "5" for "low", "moderately low", "average", "moderately high", and

These intervals are chosen so that the HREE (homogeneous rational expectation equilibrium) values 
are centered in these intervals.
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"high" respectively. An example will make this clear. If the forecast part of the rule is 

coded as [2 5], it means that the forecast parameters a is "moderately low" and b is 

"high". Following from the example above, when we put together the conditions and 

the forecast parameters, we will get a complete rule which we would code as: [0 1 3 0 

2 12 5]. In general, we can write it as: [x^yX2 ,x^,x^,x^ where

x,,X2,X3,X4,Xs e {0,1,2,3,4} and y,,y2 € {1,23,4,5}. Although it is not explicit in 

our notation, we have used the ”0R" operators as the logical connectives among the 

conditions. We should therefore interpret the rule as:

"If p*r!d is X, or p/MA(5) is X; or p/MA(lO) is x̂  or 
p IMA(100) is X4 or pjMAiSQO) is Xj, then a is and 6 is y^"

3.2.2 Fuzzy Rule Bases As Market Hypotheses

A genetic-fuzzy classifier contains a set of fuzzy rules that jointly determines

what the price expectations should be for a given state of the market. We call a set of

rules a rule base. Each rule base represents an investor's tentative hypothesis of the

market and it is supposed to stand for a complete and consistent belief. This point

needs further clarification.

Take for instance a fuzzy rule like "If p*rjd is high than a is low and b is

high". This rule by itself does not make much sense as a hypothesis because it does

not specify what the forecast parameters should be for other contingencies, for

example the case where p*rjd  is "low", "moderately low" or "moderately high". We

will need three additional rules to cover these other possible states in order to form a
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complete belief. For this reason, we have designed the rule base so that each rule base 

contains four fuzzy rules. In evolving these rules with a GA, care is also taken to 

ensure that the rules in the same rule base will never be inconsistent with each other^°. 

That is, we cannot have rules that share identical conditions and yet suggest different 

forecast parameters within the same rule base. Figure 35 shows an example of a rule 

base, coded as a set of four bit strings, that is both complete and consistent.

However we do allow each agent in our model to work in parallel with several 

distinct rule bases. To be specific, we have allowed each agent in our model to work 

with three rule bases. The implication of this is that, at any given moment, agents may 

entertain several different market hypotheses in their minds. Hence, it is quite 

possible that each agent may derive several different price expectations at any given 

time. To sort out which of these price expectations to believe, an agent looks at the 

relative forecast accuracies of these rule bases and act on the one that has recently 

proven to be the most accurate. Sub-section 3.2.4 discusses how we measure forecast 

accuracies and calculate the fitness values of rule bases. In the next sub-section, we 

take a look at a simple example to illustrate how the system works.

3.2.3 An Example

To demonstrate how our genetic-fiizzy expectational system works, consider a 

simple fiizzy rule base with the following four rules.

If 0.5* p!MA{5) is low then a is average and b is moderately high.

Nonetheless, fuzzy logic does allow for internal inconsistency if we were to compare it to Boolean 
logic. Recall that we have argued in Chapter 2 that a variable may be a member of both a set and 
its complement.
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If 0.5* p !MA(5) is moderately low then a is moderately high and b is high.

If 0.5* pjMA{S) is high then a is low and b is low.

If 0.5* pjMA(5) is moderately high then a is high and b is high.

Now suppose that the current state in the market is given by ̂ 8 0 ,  d=\0, and

A^(5)=100. This gives us, 0.5 x pjMA{5) =0.4. The response of each rule and the

resultant fiizzy sets for the two forecast parameters, given this state of the market, are

illustrated in Figures 36-41. In particular, pay attention to the responses for the 3”*

and 4'*’ rules. In these cases, the membership value for those fuzzy sets representing

p/MA{5) is zero since 0.4 is outside their domains, consequently the forecast

parameters associated with these rules will also have zero membership values. Thus,

only the 2"“* rule contributes to the resultant fiizzy sets for the forecast parameters a

and b. When we defuzzify these resultant fuzzy sets using the Centroid method, we

obtain 1.1 and 19.6 for the parameters 'a' and 'b' respectively. This is illustrated in

figures 40 and 41. Substituting these forecast parameters into equation (3.4) gives us

the forecast for the next period price and dividend

of; E{p->rd) = \. 1(80 + 10)+ 19.6 = 118.6.

3.2.4 Forecast Accuracies and Fitness Values

Forecast accuracy is measured by the inverse of y. The variable j  .is the

moving average of squared forecast error and is defined as:

(3.5) = (1 -  6)g^yj + 0[(/J,+i + i/,+1 ) -  ̂ ,^ j( A+i + /̂+i ) f  »

where 6 is a weight (a constant), subscript i and j  denote the z* individual and the f '
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rule base, and t indexes the time. In each period, agents refer to j  to decide which 

price expectations to believe and act upon.

The variable is also used for two other purposes. First, it is used as a 

proxy for the forecast variance which is needed to solve equation (3.2). This 

equation tells the agents how many risky shares to hold in each period. Second, it 

contributes to the fitness measure which is defined as:

(3*6)

The parameter p is a constant and s is the specificity. Specificity is the number of bits 

which are set (i.e., not O's) in the conditional part of a rule base. The parameter P is 

introduced to penalize specificity. The purpose is to discourage agents fix>m carrying 

bits that are superfluous or redundant. Thus, the more specific the conditions are in a 

rule base, the lower its fitness will be, keeping other things constant. The net effect of 

this is to ensure that a bit is used only if agents genuinely find it useful in predictions 

and in doing so introduces a weak drift towards the all O's configuration. The fitness 

measure is used to guide the selection of rule bases for ‘crossover’ and ‘mutation’ in 

the GA. A GA creates new rule bases by “mutating” the values in the rule base array, 

or by “crossover”—combining part of one rule base array with the complementary part 

of another^’. In general, the more fit ones will be more likely to reproduce whereas

Note that in our experiment, we do not allow crossover to happen between different agents.
Crossover only takes place among the rule bases held by die same agent. We do this so that we 
can investigate how agents learn by observing only the common information in the market and not 
by exchanging ideas with each other.
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the less fit ones will have higher probability of being eliminated.

3.2.5 Recapitulate

Our model begins with a dividend, d( , annoimced publicly at time period t .

Based on this information and the various moving averages of historical market price, 

agents generate several different price expectations using their genetic-fuzzy 

classifiers. They forecast next period’s price and dividend + df+i\ ) by

using the forecast parameters firom the rule base that has proven to be the most 

accurate recently. With this expectation and its variance, they use equation (3.2) to 

calculate their desired stock holdings. This information is then passed on to a 

Walrasian auctioneer who calculates a price to clear the market. Once the market 

clears, the next period’s price and dividend are revealed and the accuracies of the rule 

bases are updated.

Learning in the model h^pens at two different levels. On the surface, learning 

happens rapidly as agents experiment with different rule bases and over time discover 

which rule bases are accurate and worth acting upon and which should be ignored. At 

a deeper level, learning takes place on a slower time scale as a GA fi"om time to time 

discards unreliable rule bases to make room for new ones throu^ crossover and 

mutation. The new, untested rule bases that are created fi’om time to time will not 

cause disruptions because they will be acted upon only if they prove to be accurate. 

This avoids brittleness and provides what machine-leaming theorists call 

“gracefulness” in the learning process.
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3.3 Experiments

This section describes the controlled experiments we have conducted to 

demonstrate that our intuiton about the roots of market anomalies and empirical 

puzzles in real financial markets is plausible. In these experiments, we kept almost all 

of the model's parameters the same so that comparisons can be made of the market 

outcomes using the model under identical conditions with only controlled changes.

The primary control parameter is the learning frequency.

Learning frequency refers to the frequency at which a GA is invoked in the 

model. When the learning frequency is high, a GA is invoked more frequently and 

agents will revise their rule bases more often. On the contrary, when it is low, a GA is 

invoked less often, so agents will revise their rule bases at a slower pace. Recall that 

agents are not able to use deductive reasoning to shape their price expectations.

Instead, they use inductive reasoning which basically amounts to formulating tentative 

hypotheses and testing these hypotheses again and again in the market. Under such a 

scheme, it is intuitively clear that the learning frequency will play a key role in 

determining the structure of the rule bases and how well the agents are able to 

coordinate their price expectations. When the learning frequency is high, agents will 

be revising their beliefs quite frequently so they will be unlikely to have adequate time 

to fully explore whether their market hypotheses are consistent with those belonging to 

the other agents. At the same time, if agents revise their hypotheses at shorter horizon, 

their hypotheses will also be likely to be based on the transient shorter horizon features 

of the time series of market variables. These factors together make it difficult for
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agents to converge on an equilibrium price expectation even if it is present. In 

contrast, when the learning frequency is low, agents will have more time between 

revising their rule bases to explore their hypotheses. Furthermore, their hypotheses 

will also tend to be based on the longer horizon features in the time series of market 

variables. Consequently, agents are more likely to locate an equilibrium price 

expectation if it is present in the market.

In our core experiments (see description below) we used the dividend process 

given by the AR(1) process we have presented as equation (3.1) in Section 3.1. In 

addition to these core experiments, we have also investigated the impacts of an 

alternative dividend process on market outcomes. We are interested in investigating 

whether agents in our model are able to learn and adapt in an environment that exhibits 

regular patterns. In particular, we looked at an alternative variation of the AR(1) 

dividend process that exhibits cyclical behaviors. This was accomplished by adding a 

cyclical drift term to the AR(1) process. We intentionally set the period of the cycle so 

that only the "slow learning"®  ̂agents will have the opportunity to observe a complete 

cycle of the dividend process between revising their mle bases. The "fast-leaming" 

agents on average will not have the opportunity to observe the complete cycle of the 

dividend process between revising their hypotheses. We then studied the impacts of 

the frequency of learning on market outcomes under this alternative dividend process.

3.3.1 Core Experiments
What we called the core experiments are the controlled experiments that have

The slow (fast) learning agents are those who revise their hypotheses less (more) frequently.
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been conducted by Arthur et al. (1997). We do this so that we will have some 

benchmarks to compare our results. In these experiments, the only parameter that 

changes is the learning frequency. The model's parameters that are common to all 

these experiments are tabulated in Table 5. We conducted two sets of experiments; 

one for a learning frequency, k  = 250, where the agents learn on average once every 

250 time periods and the other for a learning frequency, k  = 1000, where they leam on 

average once every 1000 periods. We will follow Arthur et al. (1997) in referring 

these two cases as "fast learning" and "slow learning". In these experiments, learning 

takes place asynchronously for the agents. In other words, not all the agents in the 

model will update their rule bases simultaneously.

We began with a random initial configuration of rules and we ran each 

experiment for 200,000 periods to allow asymptotic behavior to emerge if it is present. 

Subsequently, starting with the configuration attained at t = 200,000 we ran an 

additional 10,000 periods to collect the data for statistical analysis. We repeat the 

simulations 20 times under different random seeds to collect cross-sectional statistics.

3.3.2 Experiment With An Alternative Dividend Process

We also investigated the impacts on market outcomes of an dividend process

with the following specification;

(3.7) d^=A*  5m(0.0065 -t)-^d +p(d^_.^-l*  5m(0.03 ■t)~d) + s^

The added cyclical drift term will cause the dividend to oscillate with a magnitude of 

+/- 4 from its mean. The period of a complete cycle is about 970 time periods. Thus,
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those agents who are learning at a frequency, *=1000, will on average observe about 

one complete cycle before they revise their beliefs. In contrast, those agents who are 

learning at the higher frequency of k =250, will on average observe only about 1/4 

cycle before they revise their beliefs.
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4. RESULTS

Simulation results from our experiments show that our model is able to 

generate behaviors that bear strong resemblance to many of the anomalies that have 

been observed in real frnancial markets. We discuss these results in the following 

sections. For ease of exposition, we will refer to the high learning frequency 

experiment and low learning frequency experiment as the "fast learning" and "slow 

learning" cases respectively. In addition, we will let REE stands for Rational 

Expectation Equilibrium.

4.1 Statistical Analysis and Times Series Behaviors

This section looks at the behaviors of market variables averaged over the 20

runs.

4.1.1 Asset Price and Return

Figure 42 and 43 present sn^shots of observed price behavior over typical

windows for both experiments. These graphs present the price series over a shortened 

window, so that the visual relation between the market price and the REE price is not 

obscured by the compression necessary when presenting the entire history. These 

graphs seem to suggest that the market price is more volatile than the REE price.

To make a more precise statement, we compute the mean and standard 

deviation for the market price across the 20 runs for both sets of experiments and we 

present this result in the first two rows in Table 6. Judging from the standard 

deviation alone, it is clear that the market price in both sets of our experiments are
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more volatile than the REE price, hence confirming our observation above^^’̂ . We 

also noted that the market price in the fast learning case is more volatile than the 

market price in the slow learning case. The higher volatility in asset price in the 

former case can be attributed to the more frequent revision of rules by agents in this 

set of experiments. Another reason is that the rules in the fast learning case are more 

likely to be based on the transient shorter horizon features in the time series of market 

variables. This then makes it necessary for the agents to employ different rule bases to 

form their expectations at different times. This regular switching in the agents' beliefs 

can give rise to higher volatility because they need time to adapt to the changes. This 

effect is more pronounced in the experiment with the cyclical dividend process. We 

will say more about this below.

The remaining rows in Table 6, except for the last row, looks at the behavior of 

the residual series ( £, ) obtained from regressing the market price and dividend as 

follows.

(4-1) Pm  + = a + b{p, +d,) +

We know that in the homogeneous REE, the residual series should be independent and 

identically distributed as N(0,4), for the dividend process we have used®̂ . This means 

that the theoretical standard deviation for e, should be 2. Furthermore, under a

We estimated the standard deviation of the REE price to be 5.4409.
^  For evidence on volatility of market price and related tests, see Leroy and Porter (1981a, 1981b) and 

Shiller (1981). Shiller (1988) is a discussion of the volatility debate..
Note that ( 7 ^  = (l+ /)^ t7^  = [/)/(l+ r-/))]^ (T j. This result is derived in Appendix A. This

equation will give us a variance of 4 when we substitute into this equation the parameter values 
listed on Table 5.
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gaussian distribution its kurtosis should be zero. We compare these theoretical results 

to those in the third and fifth rows in Table 6. It is apparent fi-om the values in the 

third row that the residual series firom both sets of experiments are more volatile than 

their theoretical counterpart. The fifth row shows that that the residuals ftom the fast 

learning experiment exhibit slightly excess kurtosis. Although this is consistent with 

the fact that real asset returns are leptokurtotic, the magnitude is still smaller than 

those for daily asset returns.

To facilitate comparison with real data, we present summary statistics for 

Disney, Exxon, IBM and Intel in Table 7.^ These results were computed firom daily 

data over the last five and a half years, firom January 1993 to June 1998. It is obvious 

fi*om the third row in Table 7 that the magnitude of excess kurtosis is much larger in 

these data.

The sixth row in Table 6 looks at the autocorrelation in the residuals. This 

value will tell us if there are any linear structure remaining in the residuals. Our result 

shows that there is little autocorrelation remaining. This corresponds to the low 

autocorrelations for actual stock returns presented in the fourth row of Table 7.

Several authors have shown that security returns exhibit conditional time- 

varying variability (for instance, Engle 1982, Bollerslev 1986, Bollerslev, Chou and 

Kroner 1992, Glosten, Jaganathan, and Runkle 1994, Nelson 1991). We therefore test 

for ARCH dependence in the residuals in row 7 and 8 on Table 6. We test for this in 

two different ways. In row 7, we investigate the first order autocorrelation in squared

** There stocks were selected to present the results for a variety of the major industries in the economy.
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residuals. IiirowS, we perform the ARCH LM test proposed by Engle (1982). Both 

of these tests reveal that there are ARCH dependence in the residuals. However, the 

effect is more pronounced for the fast learning case. In this case, all of the 20 runs 

rejected the null hypothesis of "no ARCH" at the 95% confidence level in our ARCH 

LM tests. In the slow learning case, only 15% of the runs rejected the null. The first 

order autocorrelation of the squared residuals is a little larger than the slow learning 

case, and it is barely significant at the 95% confidence level.

The last row in Table 6 compares the mean excess return for the fast learning 

and slow learning experiments.^’ The mean excess return is higher for the fast 

learning case with a value of 3.15% as compared with 2.71% in the slow learning case. 

There is therefore an increase in the equity premium in the fast learning case. Both 

these values are higher than the estimated value for the REE case which is 2.52%.

4.1.2 Trading Volume

Figure 44 and 45 show snapshots of observed trading volume over a typical

window for both the fast learning and slow learning cases. Clearly, trading volume is 

not zero. As a matter of fact, we find that the volume of trades, on occasions, can be 

as high as 40% of tire total number of shares available in the market̂ ®. But on 

average, for the fast learning case, the volume traded is about 2.53% of the total 

number of shares available in the market. In the slower learning case, the average

Excess Return is calculated as P,) _  ̂  .
P, ^

^  In the experiments, we have placed an upper bound on the number of shares that can be traded at 10 
shares per period, which represents 40% of the number of shares available in the market.
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volume traded is 0.1637 shares which is about one fourth the value of the fast learning 

case. The summary statistics for volume are presented in Table 8.

Figure 46 and 47 plot the volume autocorrelations for both the fast learning 

and slow learning experiments. In these two plots, the broken lines are one standard 

deviation away from the continuous line which is the mean. These plots shows that 

the trading volume is autocorrelated. This result lines up well with the positive 

autocorrelations usually found in time series of the volume traded for common 

stocks®̂ . To compare, we plot the volume autocorrelations for Disney, Exxon, IBM 

and Intel in figure 48. The features in these two plots are strikingly similar.

Figure 49,50 and 51 look at the cross correlation between volume traded and 

volatility. In figure 49 and 50, the cross correlation is between volume traded and 

squared residuals. In figure 51, which shows the results for actual stocks, we take the 

squared returns to be the volatility and we compute the cross correlation between it 

and the volume traded. We find that volume traded is contemporaneously correlated 

with volatility for both the fast and slow learning cases but the results is stronger for 

the former. Again, these results are strikingly similar to those for actual securities 

presented in figure 51.

4.1.3 Market Efficiency

Figure 52 plots a snapshot of the difference between the REE price and the

market price over a typical window. This plot displays periods in which the market 

appears to be rather efficient and the market price tracks the REE price quite well. But

^  See Karpov (1987).
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this is intersperse with sporadic wild fluctuations where the market price would break 

away from the REE price and do something different for a short period of time. This 

is most apparent in the fast learning case. This result implies that the market moves in 

and out of various states of efGciency. The figure also shows that the market price has 

a tendency to return near to the REE price. Such behaviors are common in real 

financial markets.

4.1.4 Dividend Process with Cyclical Drift Term
The dividend process we look at oscillates with a magnitude that is equal to

40% its long run mean value. We have intentionally set the period of the oscillatory 

term such that only the slow learning agents have the opportunity to observe the 

complete cycle between revising their rules. Figure 53 displays the behavior of the 

dividend process. The shaded regions in figure 53 and the next few figures mark the 

periods for the oscillations. The duration of each period is about 970 time periods.

Our results in general reveal that the learning mechanism used by the agents is 

quite robust. Agents are able to track the REE price quite well despite the large 

oscillatory disturbances’”. Figure 58 plots the difference between the REE price and 

the market price. It is clear that the slow learning agents perform better than the fast 

learning agents in tracking the REE price. This is also evident in figures 56 and 57

™ Under the alternative dividend process, the conventional Rational Expectations Equilibrium (REE) 
will not make sense because conventional REE is a static concept Nonetheless, it is intuitively 
clear that a dynamic equilibrium can exist This will be an equilibrium in which every agents 
correctly forecast the ups and downs in the market at each point in time. Our results seem to 
suggest that this is what the agents are trying to achieve. We should also point out that our 
calculation of the REE price is still based on the parameters derive under the previous conditions. 
For ease of exposition, we will continue to refer to it as the REE price although we recognize that 
it does not make sense to talk about a REE.
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which show close up the time series behaviors of the market price relative to the REE 

price.

When there are persistent oscillatory features in the time series for market price 

and dividend, agents must employ rule bases that are sensitive to such periodic 

fluctuations. Agents will most likely have to rely on several different rule bases in 

order to keep up with the periodic fluctuations. For instance, agents may hold rule 

bases for the up hill phase, the down hill phase and the turning point phase of the 

cycle. Figure 54 and 55 display snapshots of the time series behaviors of the forecast 

parameters ‘a ’ and ‘6’. The oscillatory behaviors in these time series suggest that the 

agents systematically rotate the rule bases they have used to form their forecast in 

order to keep up with the periodic changes in the market.

Figure 59 plots the time series of volume traded. It is interesting to note that 

trading are clustered near the turning point phases of the cycle. This makes sense 

because the turning points are where the market price makes the most drastic change 

during its course. The trading volume in the fast learning case is higher than that for 

the slow learning case. This is expected because those agents who revise their rule 

bases frequently tend to focus on the short horizon features in the time series and 

therefore will be likely to construct expectations that tend to over-estimate the 

movements of market price, especially at the turning point.

4.2 Long Run Behaviors

This section focuses on the behaviors of some variables over the 200,000 time
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periods. Figures 60 and 61 show the percentage of bits set for the two sets of 

experiments. The percentage of bits set refer to the non-zero bits averaged over all the 

rule bases held by the agents in each period. In the case of the fundamental bits set, 

we consider only the bits in the first position, and we calculate the firaction of the non­

zero fundamental bits over all the available fundamental bits. In a similar fashion, we 

compute the firaction of technical bits set by taking into consideration only the second, 

third, fourth and fifth bits in each rule base. Figures 60 and 61 portray the behaviors 

for the fundamental bits set and the technical bits set respectively. The results show 

that these bits did not converge to zeros even after a relatively long time. This 

indicates that there is strong persistence in the use of both fundamental and technical 

information despite the fact that the market price seems to track the REE price quite 

well (this is evident in figures 62 and 6 S /\  Keep in mind that these information 

should have been irrelevant if the agents were in a Homogeneous REE.

Figures 62 and 63 portray the convergence behaviors of the average of each of 

the forecast parameters—'a' and 'b\ in each period. It is clear that the mean values of 

the parameters approach quite close to the theoretical HREE values of 9.5 and 4.5 for 

'a' and 'b' respectively.

” See Brock, Lakonishok and LeBaron (1992), Sweeney (1986, 1988) and Taylor and Allen (1992) for 
evidence on technical trading. For evidence on the predictive value of Price-Dividend ratio see 
Campbell and Shiller (1988a, 1988b). For predictability in the market in general, see Campbell, 
Lo and MacKinlay (1997). See also the related works of Cutler eL al (1989,1991), Fama and 
French (1988), Fama (1991) and Lo and Mackinlay (1988).
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5. SUMMARY AND CONCLUSIONS

This dissertation argues that the so called market anomalies can be explained 

by allowing agents in the model to form their expectations in a manner akin to how 

investors would form their expectations in real life. In particular, because the 

enviromnent that investors operate in is ill-defined, they will have to rely on their 

innate abilities to analyze in fuzzy terms and reason inductively. We showed that 

these traits can be faithfully captured by a genetic-fuzzy classifier system. We 

subsequently asserted that we should be able to account for some of the documented 

anomalies and empirical puzzles by allowing agents in our model to form their price 

expectations using a genetic-fuzzy classifier. The model we have constructed was 

indeed capable of replicating some of the anomalies and stylized time series behaviors 

we have seen in real financial markets.

Although we did not intentionally try to calibrate our market to fit real data, we 

are pleased that some of the results quantitatively came out to be relatively closed to 

those in real financial data. We are referring to the results for volume autocorrelations 

and volume and volatility cross-correlations. However, there are other aspects of our 

results that are not entirely satisfactory. In particular, we find the kurtosis in the 

returns series to be too low. We have some idea on how to improve on this aspect of 

the model. We suspect that it is partly related to how we have set up the fuzzy sets for 

the conditional part of a rule. During our simulations we have observed that the 

market indicators tend to vary between the value of 0.4 and 0.6. The location of our
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fuzzy membership functions along the universe of discourse are not particular 

sensitive to changes within the range of 0.4 and 0.6. We can improve the sensitivity 

by adding more membership functions within tiiis range, while at the same time 

making those existing membership functions operating within this range to be 

narrower.

Nevertheless, this alone might not be sufficient to generate the rather large 

kurtosis we see in real data. We think it will be helpful to introduce some means for 

agents to coordinate their price expectations directly. In a separate paper, Scott and I 

(see Linn and Tay 1998) have proposed such a model. We develop a model of 

investor behavior based on endogenous influence through interaction. In that model, 

the individual trader’s choice of which way to trade depends upon the level of 

uncertainty present in the market, the extent of agreement on the direction of trade 

reflected in the choices of other traders, and on the extent of price persistence at the 

time of the decision. We feel that combining the present model with a model like the 

one we have just described will probably give us the best chance at explaining the 

huge kurtosis we see in real financial markets. But we are not motivated merely by the 

end results. The approach we have suggested is also grounded on the behavior we 

typically see in real markets. That is, investors do not act alone, they do communicate 

with each other, and to some extent their communication will influence their trading 

behaviors.

So far, we have only focused on the time series behaviors of a few market 

variables. As a whole, our model can also account for several anomalies in real
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market qualitatively. First, our model can give rise to rather active trading. Second, 

our model seems to support the views of both academician and market traders. 

Academic theorists in general view the market as rational and efficient. But market 

traders typically see the market as psychological and imperfectly efficient. In our 

model, we find that the market moves in and out of various states of efficiency. This 

is obvious in figure 52. Furthermore, we find that by slowing down the speed of 

learning, the market can jqjproach the efGciency of a REE. Third, we find evidence of 

ARCH effects in the returns, low autocorrelation in returns, and persistent technical 

trading behaviors. All in all, we were able to account for several features in the real 

markets and our results are consistent with what Arthur et al. have found.
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TABLE 1

Relations between Gray and Binary representation

Binary

0000

0001

0011

0010

0110

0111

0101

0100

1100

mi 1101

1111

1110

1010

1011

1001

1000
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TABLE 2

Evolution of the population of strings over time

Generation 5 Generation 10 Generation 15
f(x) f(x) f(x)

1 1 1 1 1 1 1 1 6.7 1 1 1 1 1 1 1 1 6.7 1 1 1 1 0 1 1 1 6.5
1 1 1 1 1 1 1 1 6.7 1 1 1 1 1 1 1 1 6.7 1 1 1 1 0 1 1 1 6.5
1 1 1 1 1 1 1 1 6.7 1 1 1 1 1 1 1 1 6.7 1 1 1 1 0 1 1 1 6.5
1 1 1 1 1 1 1 1 6.7 1 1 1 1 1 1 1 1 6.7 1 1 1 1 0 1 1 1 6.5
1 1 1 1 1 1 1 1 6.7 1 1 1 1 1 1 1 1 6.7 1 1 1 1 0 1 1 1 6.5
1 1 1 1 1 1 1 1 6.7 1 1 1 1 1 1 1 1 6.7 1 1 1 1 0 1 1 1 6.5
1 1 1 1 1 1 1 1 6.7 1 1 1 1 1 1 1 1 6.7 1 1 1 1 0 1 1 1 6.5
1 1 1 1 1 1 1 1 6.7 1 1 1 1 1 1 1 1 6.7 1 1 1 1 0 1 1 1 6.5
1 1 1 1 1 1 1 1 6.7 1 1 1 1 1 1 1 1 6.7 1 1 1 1 0 1 1 1 6.5
1 1 1 1 1 1 1 1 6.7 1 1 1 1 1 1 1 1 6.7 1 1 1 1 0 1 1 1 6.5
1 1 1 1 1 1 1 1 6.7 1 1 1 1 1 1 1 1 6.7 1 1 1 1 0 1 1 1 6.5
1 1 1 1 1 1 1 1 6.7 1 1 1 1 1 1 1 6.5 1 1 1 1 0 1 1 1 6.5
1 1 1 1 1 1 1 1 6.7 1 1 1 1 1 1 1 1 6.7 1 1 1 1 0 1 1 1 6.5
1 1 1 1 1 1 1 1 6.7 1 1 1 1 1 1 1 6.5 1 1 1 1 0 1 1 1 6.5
1 1 1 1 1 1 1 1 6.7 1 1 1 1 1 1 1 1 6.7 1 1 1 1 0 1 1 1 6.5
1 1 1 1 1 1 1 1 6.7 1 1 1 1 1 1 1 6.5 1 1 1 1 0 1 1 1 6.5
1 1 1 1 1 1 1 1 6.7 1 1 1 1 1 1 1 1 6.7 1 1 1 1 0 1 1 1 6.5
1 1 1 1 1 1 1 1 6.7 1 1 1 1 1 1 1 1 6.7 1 1 1 1 0 1 1 1 6.5
1 1 1 1 1 1 1 1 6.7 1 1 1 1 0 1 1 1 6.5 I 1 1 1 0 1 1 1 6.5
1 1 1 1 1 1 1 1 6.7 1 1 1 1 1 1 1 1 6.7 1 1 1 1 0 1 1 1 6.5
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TABLE 3

Evolution of the population of strings over time

Generation 25 Generation 35 Generation 55
f(x) m Kx

0 1 I 1 0 1 1 I 3.5 0 0 1 1 0 I 1 0 1.4 0 0 1 1 0 1 1 0 1?4
0 1 1 1 0 1 1 1 3.5 0 0 1 1 0 1 1 1 1.5 0 0 1 1 0 1 1 0 1.4
0 1 1 1 0 1 1 0 3.6 0 0 1 1 0 1 1 1 1.5 0 0 1 1 0 1 1 0 1.4
0 1 1 1 0 1 1 1 3.5 0 0 1 1 0 1 1 1 1.5 0 0 1 1 0 1 1 0 1.4
0 1 1 1 0 1 1 1 3.5 0 0 1 1 0 1 1 1 1.5 0 0 1 1 0 1 1 0 1.4
0 1 1 1 0 1 1 1 3.5 0 0 1 1 0 1 1 1 1.5 0 0 0 1 0 1 1 0 1.1
0 1 1 1 0 I 1 I 3.5 0 0 1 1 0 1 1 0 1.4 0 0 1 1 0 1 I 0 1.4
0 1 1 1 0 1 1 1 3.5 0 0 1 1 0 1 1 0 1.4 0 0 1 1 0 1 1 0 1.4
0 1 1 1 0 1 1 1 3.5 0 0 1 1 0 1 1 1 1.5 0 0 1 1 0 1 1 0 1.4
0 1 1 1 0 1 1 1 3.5 0 0 1 1 0 1 1 0 1.4 0 0 1 1 0 1 1 0 1.4
1 1 1 1 0 1 1 1 6.5 0 0 1 1 0 1 1 1 1.5 0 0 1 1 0 1 1 0 1.4
0 1 1 1 0 1 1 0 3.6 0 0 1 1 0 1 1 1 1.5 0 0 1 1 0 1 1 0 1.4
1 1 1 1 0 1 1 1 6.5 0 0 1 1 0 1 1 1 1.5 0 0 1 1 0 1 1 0 1.4
0 1 1 1 0 1 1 1 3.5 0 0 1 1 0 1 1 0 1.4 0 0 1 1 0 1 1 0 1.4
0 1 1 1 0 1 1 1 3.5 0 0 1 1 0 1 1 0 1.4 0 0 1 1 0 1 1 0 1.4
0 1 1 1 0 0 1 1 3.5 0 0 1 1 0 1 1 0 1.4 0 0 1 1 0 1 1 0 1.4
0 1 1 1 0 1 1 0 3.6 0 0 1 1 0 1 1 1 1.5 0 0 1 1 0 1 1 0 1.4
0 I 1 I 0 1 1 1 3.5 0 0 1 1 0 I 1 1 1.5 0 0 1 1 0 1 1 0 1.4
0 1 1 1 0 1 1 0 3.6 0 0 1 1 0 1 1 1 1.5 0 0 1 1 0 1 1 0 1.4
0 1 1 1 0 1 1 1 3.5 0 0 1 1 0 1 1 0 1.4 0 0 1 1 0 1 1 0 1.4
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TABLE 4

Evolution of the population of strings over time

Generation 60 Generation 70 Generation 80
m f(x) f(x)

0 1 0 1 0 1 1 0 3.9 0 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0.0
0 0 0 1 0 1 1 0 1.1 0 0 0 0 0 0 1 1 0.08 0 0 0 0 0 0 0 0 0.0
0 0 0 1 0 1 1 0 1.1 0 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0.0
0 0 0 1 0 1 1 0 1.1 0 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0.0
0 0 0 1 0 1 1 0 1.1 0 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0.0
0 0 0 1 0 1 1 0 1.1 0 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 1 0 0.1
0 0 0 1 0 1 1 0 1.1 0 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0.0
0 0 0 1 0 1 1 0 1.1 0 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0.0
0 0 0 1 0 1 1 0 1.1 0 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0.0
0 0 0 1 0 1 1 0 1.1 0 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0.0
0 0 0 0 0 0 1 0 0.1 0 0 0 0 0 0 1 1 0.08 0 0 0 0 0 0 0 0 0.0
0 0 0 1 0 1 1 0 1.1 0 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0.0
0 0 0 1 0 1 1 0 1.1 0 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0.0
0 0 0 1 0 1 1 0 1.1 0 0 0 0 0 0 1 0 0.1 0 0 0 0 0 0 0 0 0.0
0 0 0 1 0 1 1 0 1.1 0 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0.0
0 0 0 1 0 1 1 0 1.1 0 0 0 0 0 0 1 1 0.08 0 0 0 0 0 0 0 0 0.0
0 0 0 1 0 0 1 0 1.1 0 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0.0
0 0 0 1 0 1 1 0 1.1 0 0 0 0 0 0 1 1 0.08 0 0 0 0 0 0 0 0 0.0
0 0 0 1 0 1 1 0 1.1 0 0 0 0 0 0 1 0 0.1 0 0 0 0 0 0 0 0 0.0
0 0 0 1 0 1 1 0 1.1 0 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0.0
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TABLE 5

Common Parameter Values in the Experiments

Mean Dividend (<f ineq. (3.1)) 10

Autoregressive Parameter (p ineq. (3.1)) 0.95

Variance {a] in eq. (3.1)) 0.0743

Interest Rate (r) 0.1

Risk Aversion Parameter (X ineq. (3.2)) 0.5

Weight(0 ineq.(3.5)) 1/75

Cost of specificity (P in eq. (3.6)) 0.004

Number of Bits for Market Descriptors 5

Number of Bits for Forecast Parameters 2

Crossover Probability 0.1

Mutation Probability^ 0.9

Number of Agents (also Number of Shares) 25

Number of Rule Bases per Agent 3

Number of Fuzzy Rules per Rule Base 4

' This is the probability that an agent will have one of his rule bases subjected to mutation. When a 
particular rule base is selected for mutation, the probability that each bit is mutated is 0.03, and the 
probability that a bit will be transformed from O's to non-O’s or vice versa is 0.5.
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TABLE 6

Summary Statistics of Market Price and Residuals

Variables Fast Learning 
Experiment

Slow Learning 
Experiment

REE
(Theoretical)

Price (P^

Mean(P) 75.6795 78.8940 80.000

Std. Dev.(<Tp) 5.9420 5.7674 5.528

Residual (^ ,)
Standard Deviation 2.0950

(0.0107)
2.0160

(0.02080)
2.0

Excess Kurtosis 0.0839
(0.0849)

0.0563
(0.04232)

0.0

Pxie,) 0.1097
(0.0867)

0.0555
(0.01612)

0.0

A (^f) 0.0387**
(0.01382)

-0.0120
(0.00730)

0.0

ARCH LM(1)‘ 18.1886***
[1.00]

1.9471
[0.15]

Mean Excess 
Retum^

3.154%
(0.2527)

2.710%
(0.0336)

2.5%

The numbers in parenthesis are the standard errors.
The numbers in square bracket are the percentage of the number of tests that reject the 
null hypothesis of "no ARCH".

'The number for the ARCH LM(1) tests are the mean ofthe -statistics for the 20 
runs.
2tExcess Retum is calculated as

P,
denotes significance at the 2% confidence level. 

" denotes significance at the 1% confidence level.
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TABLE 7

Summary Statistics of Returns 

for Disney, Exxon, IBM, and Intel

Variables Disney Exxon IBM Intel

Retum (R,)
Mean 0.00085 0.00067 0.00130 0.00100

Standard Deviation 0.01548 0.01221 0.01930 0.02296

Excess Kurtosis 2.8444 1.9933 5.2202 3.4910

M R ,) -0.031
(0.244)

-O.lOl’"
(0.000)

-0.019
(0.492)

0.033
(0.227)

MR f ) 0.045"
(0.097)

0.110‘“
(0.000)

0.073"""
(0.007)

0.069 "  
(0.011)

ARCH LM(1) 2.7949"
(0.095)

64.9086"""
(0.000)

7.3189"""
(0.007)

7.8167"""
(0.005)

The numbers given in parenthesis are the p-values. 
denotes significance at the 10% confidence level, 

denotes significance at the 1% confidence level.
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TABLE 8

Summary Statistics of Trading Volume

Variables Fast Learning 
Experiment

Slow Learning 
Experiment

Mean 0.6326
(0.0775)

0.1637
(0.0409)

Maximum 10 6.206

Minimum 0.01497 0.0
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' SOLUTION FOR A LINEAR HOMOGENEOUS RATIONAL 

EXPECTATIO N S  E Q U E IB M U M

Recall that the dividend process and the demand are given by;.

d, =d + p(d,_^-d) + s,

_ Pu [A+1 + ̂ ,*1 ] “  /?/ (1 + ̂ )Xij -  7-^
^U,p*d

Now to solve for a homogeneous linear rational expectations equilibrium, we 

conjecture that price is a linear function of the dividend, that is,

p ,= fd ,+ e .

This allows us to write the conditional expectation and conditional variance of

Eu ip 1*1 + ̂ ,+1 ] = 4., [(1 + f)d,^x + e] = E,, [(1 + f ) (d  + p (d , -d )  + ) + e]
= (1 + f ) (d  + p(d, - d ) )  + e

y^^u iP.*\ + [(1 + +e\ = Var,, [(1 + f){d  + p ( d , - d )  + ) + e]
< d  = y^r j( l  + f )s]  = (l + /rc7^

In equilibrium, each agent must hold the same number of shares (since all the agents 

are equally risk averse). Given that the total number of shares is equal to the total 

number of agents, each agent must hold only one share at all times when they are in 

equilibrium. This allows us to set the demand equation to one. We can then substitute 

into the demand equation the above expression for the one-period ahead forecast to 

get.
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, {\ + f ) { d  + p (d ,-d ) )  + e-{fd,+e){\-¥r)

Since the LHS is a constant, there must not be any dependence on time on the RHS, so 

terms containing J, must vanish. This leads us to

(l + / ) p - ( l  + r ) /  = 0

f  = — ^
(1 + r -p )

To solve for 'e\ we substitute /back into the demand equation and set it to 1 to get

 ̂ d { f^ \ ) { \ - p ) - r < 7 ^ J
r

Now to obtain the relationship between the forecast parameters 'a' and 'b' in our model 

and these HREE parameters, we write the one-period ahead optimal forecast for price 

and dividend as:

^  iPt*\ + ̂ ,+1 ) = P iP t + ̂ / ) + 0 -  P)[(l + /X  + e]

Comparing this equation to £(/?,+, + (f,*, ) = a{p, +</,)-(- b , it is obvious that

a — p

6 = (1-/))[(!+ /W  + g]
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iMBeHSBÀASBî asA>sâ̂ 3.tfb .d8h& âStob̂ A. aaHBAsStfB̂ & illlfl\llii iBHHb'BliBWffrMldbhllili iSMtâ &bâa&âMBÆbdb &^S' mm# mMUPU, #K #M0* UI#M0O## # ,
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AhAaBBHBiSsjAAB̂ f” AABidsS A&mgaA ABASA) #Aba& SŜAi^WawBw m m sP m ^ @M% W  Wm Wmm fM w m i Wmm w m  Wm
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M 0#W UIÿw#A#W M mm Éo*#m##M hk#h«y#unM #om #0dM m m *rmÉ«#%

M W « W # M m # p 0 M Ê c u W ^ a p p m o p W # # * m o m # * w # # h o m * # & #

wm m m ^ n n  wBMMKy w b b  vnm m m m  n p ^ ^ %  m m  w

MmmHAmWoâ.*# CW M M itdm #p0##A #pag#& #m «0«#«ud&



M d w W W W W # m d « m W a p p w « A # W « c m m M #  A ##m #§w  

a m # w  m d % # a m # m # m # k  m N # g r O W  W »0M  in#ii# #D 

m im M M W ow m ## W m pom d^  #» & # Ww# m  w # m % # W  #  g lm  #m #
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