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ABSTRACT

As a promising tool to characterize residual stresses in engineering structural
components, acoustoelasticity has been the subject of a great deal of research over the
past forty years. Although considerable achievements have been made, most approaches
to ultrasonic stress analysis are limited in their utility due to their reliance on contact
shear wave transducers which preclude the ability of scanning large areas, their inability
to résolve the dependence of stress on dépth, and their difficulties in taking accurate time
delay measurements, resulting from coupling problems and the very srhall acoustoelastic
effect observed for most practical materials. Recently, Drescher-Krasicka conducted a
series of experiments to illustrate how scanning acoustic microscopy can be used to
characterize applied and residual stresses by monitoring the peak amplitudes of the
resultant signals of shear waves produced by mode conversion. In this study, a theoretical
study and numerical simulations are performed to provide a quantitative correlation with
the experiment results so as to lay a theoretical foundation and enhance the understanding
for this new scanning technique. Based on the theory of finite deformations and the
equation of motion, Christoffel equations in the presence of strains are derived. They are
solved with first order perturbation theory to determine the two quasi-shear wave
velocities. The acoustic microscope lens is modeled as launching a strong axisymmetric

longitudinal lobe at oblique incidence. Two shear waves polarized in the directions of the



in-plane principal stress axes will be simultaneously generated by mode conversion at the
water-specimen interface. Due to the constructive-destructive interference between the
signals of the shear waves, the amplitude of the combined signal of the acoustic
microscope turns out to be very sensitive to small changes in acoustic velocity produced
by local stresses. The numerical simulation shows good agreement with the experimental
results for a diametrically loaded disk case.

Another effort in this study is devoted to employing Rayleigh waves with a line-
focused acoustic microscope to characterize the through-thickness residual stress
distribution. Assuming the principal strain directions are known and strains are
polynomially distributed with depth while uniform in the other directions, equations for
the Rayleigh wave velocity change versus the initial static stress are derived with a first
order perturbation approaéh. This information can be used to reconstruct synthetic in-

plane stress distributions from frequency dependent Rayleigh wave velocity data.
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CHAPTERI

INTRODUCTION

1.1 Background Review

In modern industry, NDE (Nondestructive Evaluation) procedures play an
increasingly important role in material processing, product design, the analysis of service
-life expectancy, and the quality control of manufactured products. The objective of
nondéstructive evaluation ﬁ'équently goes beyond the detection of inhomogeneities
because the overall strength of a component depends not only on the presence of an
inhomogeneity and its general nature, but also on its location, size, shape, and orientation
as well as the stress distribution (applied or residual). However, there is still a lack of a
mature technique to characterize residual stresses in a general sense. Conventional X-ray
techniques are only suitable for surface stress analysis. Neutron techniques are not
feasible for in-field tests. Acoustoelasticity, which is essentially based on the relationship
between the stress and the stress induced change in the wave propagation velocity has
been considered one of the most promising tools for residual stress measurements and has

been the subject of a great deal of research over the past forty years.



1.1.1 Acoustoelastic Theory

The earliest treatment of the residual stress problem with acoustoelasticity is
attributed to Hughes and Kelly [1]. Assuming the material in stress-free state to be
isotropic, they developed an analytical solution to the problem of wave propagation in a
stressed solid based on the theory of finite deformations. Their approach resulted in an
eigenvalue problem for the plane wave velocities as a function of second and third order
elastic constants and strains. Toupin and Bernstein [2] and Thurston and Brugger [3]
extended the analyses of Hughes and Kelly to more general cases to determine third order
elastic constants in various crystals and isotropic materials. Their work is considered the
early version of acoustoelasticity theory.

As acoustoelastic techniques developed, it was soon apparent that the assumption
of initially isotropic material was inadequate to describe actual physical situations. Since
the acoustoelastic effect is very small (typically the relative change of plane wave speed
is 10°/MPa in aluminum and 10/MPa in steel), any weak inhomogeneity and anisotropy
in the material, which are usually neglected in the theory of elasticity, could result in
large errors in stress measurements. Thus, since the 1970s, theoretical investigations in
acoustoelasticity have been focused on developing methods to separate texture and stress
induced anisotropy.

In 1973, Iwashimizu and Kubomura [4] developed a plane acoustoelastic method
for slightly orthotropic materials, in which the orthotropy of the second order elastic

constants are considered but the third order elastic constants are assumed to be isotropic.



In 1981, Okada [5] developed a more general plane acoustoelastic approach for slightly
orthotropic materials. By comparing  acoustoelasticity theory with anisotropic
photoelasticity theory, he derived two equations relating the plane stress components and
stress induced wave speed change as well as the acoustic axis rotation. The anisotropy of
the material is characterized by three acoustoelastic constants determined by experiment.
The breakthrough of the theory lies in the fact that the principal directions do not have to
coincide with the texture directions as confines other methods; thus, the method can be
used to solve general plane problems. Three years later, Okada [46] proposed adding a S
parameter, which is essentially the summation of two shear wave velocities, so as fo have
three equations to determine three plane stress components. In his previous theory,
numerical integration such as the shear-difference method had to be employed to solve
for three unknowns with two equations. In 1982, CIark and Mignogna [6] derived the
same results as Okada [5], but from a classical elastodynamic point of view.

Although these acoustoelastic theories were successfully used in the
measurements of plane applied stresses for slightly orthotropic materials, difficulties
remained in their application to residual stress measurements because the acoustoelastic
constants determined by calibration samples may differ from those for the actual testing
medium. Several other methods of separating the effects of texture and stress have been
proposed in the literature.

Arora [7] proposed a scheme of using ultrasonic waves with different frequencies

to solve the separation problem. He argued that the relative change in the wave speed



results from both texture and stress: Based on many experimental results, the texture
effect is frequency dependent while the stress effect is not, thus, with different frequency
shear waves, stress measurements can be accomplished.

A method of oblique incidence of the SH wave was presented by King and
Fortunko [8]. With the assumption that the principal stress directions coincide with the
principal orthotropic texture directions, the relative difference and summation of the two
shear velocities, which are polarized perpendicularly to each other and obliquely incident
at the same angle relative to the normal of the surface, are derived as a function of the
principal stresses, the acoustoelastic constants, and the incident angle. Thus, texture
effects can be separated through measurements with different incident angles.r |

Thompson, et al., [9] proposed a method of measuring the difference in the
velocities of two sheér waves whose directions of propagation and polarization have been
interchanged for a material of orthotropic anisotropy. The velocity difference gives the
principal stress difference independent of the texture anisotropy. Here, the principal stress
directions are also assumed to be parallel to the principal orthotropic texture directions.

Allen and Sayers [10] used a relationship between the longitudinal wave velocity
and the two shear wave velocities, both normalized by the sum of the squares of three
velocities which is a texture independent quantity, to solve the separation problem. With
this method, a uniaxial stress can be derived if the principal directions are aligned with

the principal axes of the orthotropic material.



Another oblique incident technique was studied at the University of Oklahoma. In
support of an initial proposal by Egle and Koshti {11], Sinaie [12] developed a first order
approximate analytical solution for the separation of the texture-induced effect from the
stress induced effect for slightly orthotropic aggregates of cubic crystallites. With the
common assumptions of additivity of texture and stress-induced effects on the ultrasonic
wave velocities, two Vdifferent solution forms were proposed. The first solution form
employs a combination of the linearized eigenvalues for texture parameters and stresses,
and calls for six quasi-shear wave velocity measurements at six different incident angles
in the symmetry planes to solve for the three texture parameters and the three principal
strains. The second solution form represents a more approximate and commonly used
formula and requires six ultrasonic time delay measurements in two symmetry planes at
six different incident angles.

Because residual stresses are generally developed in a body as a result of
inhomogeneous plastic deformation, the theoretical study of acoustoelasticity has recently
been extended to “acoustoplasticity”. Johnson [13] developed an acoustoelastic theory for
elastic-plastic materials. He found that the assumption that the wave velocities depend
only on stress leads to erroneous results for plastic flow. From the theory of elastic-plastic
deformations for finite strains, the velocities of the bulk waves propagating in a principal
direction were derived in terms of the elastic strains, the plastic strain, and the work-
hardening parameters. Based on Prandtl-Reuss plastic flow theory and the isotropic

material assumption, Kobayashi [14] derived an explicit formula for plane harmonic



waves propagating in one of the principal directions. The results turned out to be very
complicated, but the difference of two transverse wave speeds can be simply expressed as
a function of the second and third order material constants, the difference of the principal
plastic strains, and the difference of the principal stresses. Another approach was taken
by Pao [15] who reviewed several theories of acoustoelasticity and acoustoplasticity.
With proper modifications, he proposed a similar formula for anisotropic materials by
including the effects of inherent anisotropy.
1.1.2 Experimental Techniques

The experimental study of acoustoelasticity depended on the development of
appropriate ultrasonic measurement systems. Such a system usually consists of an
excitation source, one or two transducers, a receiver, a display, and a processor. Since the
acoustoelastic effect is very small, acoustoelastic techniques did not become routinely
feasible until the 1960s when new and accurate ultrasonic velocity measurement
techniques were developed. The most extensively used velocity measurement techniques
are “‘sing-around”, pulse-echo overlap, and pulse-superposition techniques. These
techniques can provide sufficient accuracy for the measurement of various materials
under various loading conditions. In comparison with the other key components in the
system, the transducers are the weakest link today. Until recently, almost all
measurements were made with piezoelectric or ferroelectric transducers attached via a
coupling agent onto a specimen. The irreproducibility of the coupling between transducer

and specimen was the major source of difficulties encountered in making acoustoelastic



measurement; thus, this was probably the key factor in severely limiting the utilization of
wave amplitude and waveform measurements.

Another drawback associated with the use of contact transducers is their inability
to be applied in a scan. To overcome these difficulties, an advance was made using
electromagnetic acoustic transducers (EMAT). The non-contacting EMATSs yielded
dramatic improvements over contact transducer in many experiments, and they can be
used for scan purposes. The drawback of this kind of transducers lies in its intrinsically
low signal-to-noise ratio. The developmenf of the water-bath coupled transducer was
another major advance because it overcame the coupling problem and was suitable for
large scale scans. By mode conversion, shear waves could also be generated as desired.

Recently, scanning acoustic microscopy has been used in acoustoelastic
measurements. Some advantages are:

1. possibility one to image and scan a large area

2. coupling is well understood

3. wide frequency range

4. various types of waves can be generated by mode conversion
5. high spatial resolution

As far as the experimental study of acoustoelasticity is concerned, the first major
advance came from the discovery of acoustic birefringence by Bergman and Shahbender
[16] and Benson and Raelson [17] in the late 1950s. Analogous to the changing of the

speed of light in a stressed transparent body under the influence of initial stress, the shear



wave speeds along two principal directions of polarization are slightly different from the
wave speed in an unstressed medium. This phenomenon has was successfully employed,
using shear wave transducers to overcome the difficulty of determining the principal
directions in plane stress measurements [18]. In 1967, Crecraft [19] extensively compared
photoelasticity and acoustoelasticity in a series of tests with different materials and drew
an analogy between acoustoelastic birefringence and photoelastic birefringence. He alsq
defined the problems inherent in making acoustoelasticity measurements in the presence
of material texture, plastic deformations, and residual stresses.

Since then, greater efforts have been devoted to the application and study of
acoustoelasticity in practical situations. Egle and Bray [20] employed both longitudinal
and transverse waves to measure the acoustoelastic constants and third-order elastic
constants for rail steel. The sensitivities of the longitudinal and shear waves in different
wave propagation directions to applied stress were tested and illustrated. This is helpful
when selecting the proper mode and propagation direction to characterize specific stress
states. The accuracy of “sing-around™ and pulse-echo overlap techniques was also studied
and compared. The results showed that the most consistent results were obtained by the
latter technique. The test results also proved to be consistent with the prediction of the
second-order theory of Hughes and Kelly.

After the development of plane acoustoelastic theory for slight orthotropic
materials, many experiments were successfully performed to study the applied stress field

in engineering materials and extend the work to residual stress measurements. Clark [20]



measured acoustic shear wave birefringence and acoustic axis rotation at 66 selected
points around the crack tip of a standard notched fracture aluminum specimen. With
Okada’s theory [5], the shear stress contours were derived and showed very good
agreement with theoretical results.

Fukuoka and his associates are very active in conducting residual stress
measurements. As an example for considering the anisotropy of a material [22], they
studied the residual stresses in a wide-flanged hot rolled beam. Assuming the texture
anisotropy to be constant along'the rolling direction, they meésured the texture anisotropy
at the stress-free end sections and obtained an average value for each rolling line.
Subtracting Vthe texture anisotropy from the total anisotropy, they found the acoustoelastic
birefringence due to residual stresses. For corﬂparison, residual stresses were also
measured by a destructive strain gage method. A comparison of the residual stresses
measured by the two methods showed that the results were in good agreement for the
flanges, but not for the web. This is because that the texture was fairly constant along the
beam for the flange but fluctuated considerably in the web.

An approach for welded residual stress measurements was conducted by Wu and
Jiang [23, 24]. In their study, they employed the general slightly orthotropic plane
acoustoelastic theory and adopted the R parameter proposed by Toda [25]. This approach
was experimentally shown to be insensitive to slightly inhomogeneous texture. Thus, this
approach partially overcame the texture inhomogeneity problem in residual stress

measurements. The acoustoelastic measurements of residual stresses in a seam welded



steel plate showed good agreement with the results derived by a destructive strain gage
method.

As an example of scan technology, Kino [26] used a water-bath coupling
technique to determine the residual stress profiles in an extruded aluminum bar. He
employed longitudinal waves at normal incidence in his measurements. Clearly, this
approach is limited as shear information can not be obtained and will result in error if the
thickness of the specimen is not uniform. In another approach, Blessing, et al., [27] used a
non-contacting electromagnetic transducer (EMAT) to scan an aluminum ring-plug
assembly. A shrink-fit residual stress with known distribution was calculated using
elasticity theory. A comparison of the acoustoelastic stress measurements with the known

theoretical stress distribution showed good agreement.

1.2 The Objective of The Present Work

In this background review, most of the approaches to residual stress measurement
were based on monitoring the changes in sound velocity produced by a stress state and
the assumption of a uniform stress distribution. These techniques were limited in their
utility due to the use of the contact shear transducers (effectively precluding scanning
large areas), the inability to resolve the dependence of residual stresses on depth
(important for surface treatments), the difficulty in making accurate time delay
measurements due to coupling problems, and the very small acoustoelastic effects

observed for most practical materials.

10



Drescher-Krasicka [28, 29] demonstrated how scanning acoustic microscopy may
be used to obtain qualitative images of the residual stress for a variety of materials and
stress states. This was achieved in a novel way through the use of a spherically focused
transducer to launch the waves necessary for complete Vcharacterization of the stress state
in the material. Here, the shear waves were generated by a mode converted obliquely
incident longitudinal wave. It should be noted that two distinct refracted shear waves will
be observed at the water-specimen interface due to the stress induced anisotropy in the
piece. The axisymmetric nature of the source insures that both shear modes will be
simultaneously excited. Drescher-Krasicka exploited this superposition to her advantage
by monitoring the amplitudes (nqt the arrival times) of the superimposed signals. Due to
the constructive-destructive interference between the shear wave signals, the amplitude of
the combined signal turned out to be very sensitive to small changes in acoustic velocity
produced by local residual stresses. In this case, the interference yields a signal reflecting
the difference of the two principal stresses in the biaxial field. One of the major goals of
this research is to conduct theoretical studies and numerical simulations in order to lay a
theoretical foundation and enhance the understanding of this new scanning technique. In
Chapter II, based on the theory of finite deformations and the equations of motion,
Christoffel equations in the presence of stresses are derived. They are then solved with
first-order perturbation theory to determine two quasi-shear wave velocities in Chapter
III. Modeling the acoustic microscope lens launching a strong axisymmetric longitudinal

lobe at oblique incidence and considering the interference of two shear waves polarized in
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the directions of the in-plane principal stress axes, a quantitative comparison between the
simulation and the experimental results is performed for a diametrically compressed
aluminum disk.

Most of the acoustoelastic work bmentioned in the previous review involved bulk
waves. The use of surface waves in this context has been limited. Rayleigh wave
acoustoelasticity was first studied by Hayes and Rivlin [30]. Subsequently, Iwashimizu
and Kobori [31] analyzed Rayleigh wave propagation in a finitely deformed isotropic
elastic material. Martin [32] investigated the relative effects of stress and preferred grain
orientation. Adler [33] measured the residual stress of circumferential welds in pipe.
Recently, Lee, ét al., [34] utilized line-focused acoustic microscopy to determine local
near-surface stresses in an isotropic material. However, since a uniform strain distribution
was assumed, these techniques were not able to evaluate the vériation of the stress
through the thickness of the material. In 1981, Hirao, et al., [35] theoretically and
experimentally studied the dispersion of Rayleigh waves for a plate in pure bending. They
found that the dispersion of a Rayleigh wave is prominent for relatively low frequencies
and diminishes as the frequencies increase.

Another goal in the present study is to employ Rayleigh waves with a line-focused
acoustic microscope to characterize through-thickness in-plane stress distributions.
Assuming that the principal strain directions are known and strains are polynomially

distributed with depth while uniform in the other directions, the formulas for the Rayleigh

12



wave velocity change versus an initial static stress are derived based on the first order

perturbation approach. A detailed study will be presented in Chapter IV.
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CHAPTERII

THEORY OF ACOUSTOELASTICITY

To conduct further theoretical studies and numerical simulations, a basic
understanding of current acoustoelastic theory and a relevant background are essential.
Acoustoelasticity is the interaction of acoustic waves with elastic deformatipns in a solid.
The stress or strain induced change in the propagation wave velocity is generally 1;nown
as the acoustoelastic effect. The foundation of acoustoelasticity is a small disturbance
wave propagating in a predeformed body. In the linear theory of elasticity, the wave
speeds are constant and are not affected by stress or strain states. However, in
acoustoelasticity, nonlinearity must be employed to relate stress and stress induced wave
speed change. The nonlinearity here includes the effects from both the nonlinear
constitutive relations and from large deformations. In Chapters III and IV, we will start
with the Christoffel equations and the governing equations of an infinitesimal wave
propagating in a prestressed body. In order to avoid any ambiguity in understanding these
equations, the following sections of this chapter will serve as a theoretical basis to clarify

the concepts.
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2.1 Wave Motion in a Predeformed Medium

To determine applied or residual stresses in a predeformed body by ultrasonic
techniques, one must distinguish three states of the body: the natural state, the initial
state, and the final state. In the natural state, a body is free from any stress and strain.
Under the action of various loadings, the body is deformed to the initial state, at which an
ultrasonic measurement is performed. The superimposed ultrasonic wave deforms the
body further to the final state. The kinematics and kinetics of the deformations in these
three states are described in the theory by a small motion superimposed on a finitely
deformed body. Three vectors €, X, and x are used to denote the position of a material
point in a body at these three different states, all relative to a common Cartesian frame of
reference. In the natural state, the particle is identified by the coordinates £(E,,5,.5;). In
the initial and final states, the positions of the same particle are described by coordinates
X(X,,X,,X;) and x(x,,X,,X;), respectively, as shown in Fig. 2.1.

In the following study, several assumptions were made:
e The predeformation is static and the body is in equilibrium at the initial state
e The superimposed dynamic motion is very small
e In the natural state, the body is anisotropic
e The material is hyperelastic
e The process of deformation is either isentropic or isothermal

In the following equations, all physical variables in the natural state are indicated

by the superscript o, those in the initial state by i, and those in the final state by £ All

15



Fig. 2.1 Coordinates for a material point at the natural, initial, and final

configurations of a predeformed body.
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incremental variables are written without superscripts. The components of a vector or
tensor in natural coordinates, £, are indicated by Greek subscripts, a., B, ¥,..., those in the

initial coordinates, X, by upper case subscripts, I, J, X,..., and those in the final

coordinates, x, by lower case subscripts i, j, %,....

2.1.1 Deformation, Strain, and Stress
The deformation is characterized by transformations of coordinates. From the
natural state to the initial state, the transformation is static and is defined by
X =X(E15%) (2-1)
From the initial state to the final state, since the disturbance is a dynamic wave,
the transformation becomes
X = X(X;,X5,X3,t) 2-2)
where X and x are two continuous vector functions and the inverse transformations are
assumed to exist.
From the natural state, the displacements to the initial and final states are defined,

respectively, as
v(E)=X-§ (2-3a)

u () =x-§ (2-3b)

From the initial to the final state, the incremental displacement is given by

uE=x-X=u-u (2-4)
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In continuum mechanics theory, the deformation of a material particle is
measured by deformation gradients. Using the polar decomposition theorem, the
deformation gradients can be further decomposed into a rotation tensor multiplied by a
stretch tensor. The Lagrangian strain of the body is defined by the square of the stretch

tensor. In the initial and final states, it can be expressed as

29829 .

Ep= 2( 2, 2, —5;,,) (2-5a)
1{ dx, ox

Jo==| =—=—=L-6 2-

B 2(«9@ %, “”) @30

In the preceding equations, 3,5 is the Kronecker delta and the convention of summation

over repeated indices is applied.

In terms of the displacement gradients, the Lagrangian strain can be expressed as

E! 1(au";’+0"u:9+é!u;0‘,1‘;} (2-62)
af = 5 8
P 2\08 58 88 G,
( / ! 5,0
Sl oul Sul Su
P e M e ] (2-6b)
2\ I, & I8,
The difference of these two strain is defined as the incremental strain E,
E=E/ -F . -7
Substituting equation (2-6) into (2-7) and with the aid of equation (2-4), we obtain
Su, Ouy Gu Su, u, S
Eap'_'l( gL ) (2-8)
2\08, Jdg, g5 05, I I5,
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Here, the high order term (Ju, / 6&, )(Ou; / &, ) is neglected, as the superimposed
disturbance is small.

For the same reason, in the initial coordinates, the incremental Lagrangian strain

can be simplified as
E, =-;—(j;’1 +qu’[ +quK, j;ijze,, 2-9)
where
1( Ou, Ju,
e, = 5(0”_1\’,4-5,-) (2-10)
is the infinitesimal strain.

The state of stress at a material point can be represented by a Cauchy stress tensor
or a Kirchhoff stress tensor. Cauchy stress is the force per unit predeformed area with an
outerward normal N as shown in Fig. 2.1. In the initial state, the Cauchy stress tensor is
denoted by of. This is the stress to be measured by ultrasonic methods. In finite
deformation theory, however, it is more convenient to deal with the second Piola-
Kirchhoff stress tensor, T!, because in terms of a strain energy function, it is the
conjugate stress of the Lagrangian strain tensor. The second Piola-Kirchhoff stress lacks
physical meaning. It represents the stress at the same material point but refers to the
natural configuration. However, based on tensor theory, the Cauchy stress tensor can be

expressed in terms of the second Piola-Kirchhoff stress tensor by
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; _|X[ ox, ox,

oz

(2-11)

After the superposition of ultrasonic waves, the stress in the body is changed to ¢*

in the final state, which can be converted to T', expressed in either initial or natural

coordinates,
-1 -1
ox. ox.
oh =2 iﬁTa{sJa"' TR (2-12)
G| 2, & loX| ax,, ox,
In analogy to Equation (2-7), the incremental stress tensor is defined by
T=T -T (2-13)
or
Ty = TJ{< - o (2-14a)
Ts=Top~Top (2-14b)

2.1.2 Equations of Wave Motion

One of the assumptions, the predeformation is static; therefore, there exists an
equation of equilibrium for the initial state. There will also be an equation of motion for

the final state. These equations can be expressed in terms of each type of stresses defined

in the previous section.
In the literature, most of the equilibrium equations are expressed in terms of the

Cauchy stress. The equations of equilibrium for o, are simply given by
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i
1z

X, =0 (2-15)
From equation (2-3), we have
Ky a,
Z, =0, (65 + 0,@) (2-16)

Substituting equation (2-16) into (2-11), the equilibrium equation in terms of T,

can be derived:
a . . Al
— T, +T;, —=%]=0 (2-17)
aép B Br 557

According to the law of conservation of mass, the densities in the three different

states are related by the following equations:

po=pi\a‘§‘=pfigg (2-183)
. X
LR & el -
p=p 5X| (2-18b)

Then, the equations of motion for the body in the final state yield one of the three

forms:
50'1.{. Fu.
_ 2 2-
&k p &2 ( 19a)
l b2)! . Sut . Fu
= [1;{(+T,{LZY!-]= ; dz’ =p aZJ (2-19b)
K L
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Z
iz [

7/ vi
oaua= oa.ua

a’
T, +T/ Z 2=
8 =P =5

Br afr

(2-19¢)

Subtracting Equation (2-15) from (2-19b) and Equation (2-17) from (2-19c), we

obtain the equations of motion for the incremental stress in the two coordinates systems:

o . - Fu
> Hx+ox a‘XJ 1=p &zJ (2-202)
K L
0 ;o M, Fu,
-O_,E;[Ta,, +Ty, z % =p° e (2-20b)
4

In this derivation, the products 7}, (du, / €X,) and T, (du, / &) were neglected

for small incremental motion.

2.1.3 Constitutive Equations

The third assumption made in this section states that the material is hyperelastic
which means that both initial deformation and final deformation are elastic. Unlike many
engineering materials whose stress state is characterized by an elastic-plastic response,
the stress-strain behavior of hyperelastic materials is described by a strain energy
potential. The strain energy potential relates the stress and strain at a point to a strain
energy density function which is used to characterize the material. In an isentropic or

adiabatic process, a hyperelastic body is conservative and does not depend on the load

path.
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In the initial and final states, the internal energy functiony (E) can be expanded

into a Taylor series about the natural state with zero strain,

i 1 i i 1 i i i
P’w(E )=—2—cap,5Ea,,E,5+—écW,mEap 5B+ (2-21a)

0 Ef _.1 Ef Ef l Ef EfEf
P Y( )—'z’caﬂys apys ¢ CoppoLaplystion ¥ (2-21b)

The second Piola-Kirchhoff stresses in the corresponding two states are given by

, Sw(E’
s =P’ 5/1(5",9) (2-222)
SW(E
T5=p" g(E - ) (2-22b)
ap

The second and third order moduli are obtained by taking a further derivative with respect

to Langrange strain as

Coprs = p°[%;%]° ------ (2-23a)
or

Coprs = p°[%:55—%]° (2-23b)

Capysin =p°[3£3—ﬁ;,’%]° (2-242)
or

Caprsin = p°[£—zg%—aé€,”]° (2-24b)
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Because the derivative orders are interchangable, the symmetric property of the
material constants can be derived. For example:
Coprs = Croap = Cpays =+ (2-25)
Substituting equations (2-23) and (2-24) into (2-22) and neglecting high order
terms, we obtain the constitutive equations for ij or 7;{, as follows:
Tys = CopsErs + CoponErsEm (2-26a)
Té, = caMEj; + cap,&,,E,{sE cf,, (2-26b)
With the aid of equation (2-8), a constitutive equation for the incremental stress,
T, is derived by subtracting T, from T,
Top = CappsEs + Cappsonbrsen

=c. (& +ﬁ> X, & &, (227
= Cops\Op, 55’ ) 54:6 Caprsen 0"55 0')‘;7 -27)

wheree,, is the linear part of £, .

The preceding constitutive equation can be rewritten as

d‘?
where C is the “effective” elastic modulus of the predeformed body,
C + —5“; + —d‘; (2-29)
aps = Capys C, C, &
7% pro é"fp Brocn 0‘>§q
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2.1.4. Governing Equations of Acoustoelasticity
Substituting equation (2-27) into equation (2-20b), we obtain

l cu, T 27 0 o”zua

— [T —2+T—2]=p* —=& (2-30)
&, o T a*
where
Lops = Cops +¢ (2-31)

Py gga:

Equation (2-30) is the governing equation for acoustic waves propagating in an
elastically deformed medium in natural coordinates. The initial stress 7° and the initial
displacement gradient &' / 5 are related by the constitutive equation (2-26), and one of
them can be eliminated from the equation. The T, should be converted to ¢’ as the
latter is the initial stress to be measured by ultrasonic methods. The difference between

T! and o', is neglected for most applications where the predeformation is assumed
small.
Equation (2-30) can also be expressed in the initial coordinates system. According

to the transformation of the incremental second Piola-Kirchhoff tensor,

-1
X| &, &
T, = | L—T1 (2-32)
R
the constitutive equation can be further expressed as
A, Gty 7
T, =80T 5(1 - 55; )+ T, Z +Tp, Z (2-33)
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Substituting equation (2-27) into (2-33) and considering the following equations

Cukt = 0120,50k,015Cags (2-34a)
oy = 0120 10k, 0150 11:OnyCaprsen (2-34b)
we have
Ty =Cux ;"(L (2-35)
K
where

i

_ i i 1
Cure = e A= ey ) + Cramein + Coums X
M

ad at ad
+Cnma EJ—-*'CUML &lg"*'cum’ol% (2-36)
M M M

Substituting Equation (2-35) into Equation (2-20a), we obtain the governing equation for

acoustoelastic waves in initial coordinates as

7 i ou i 52u
= (Cugr + 010k ) K= P L

x x 2 (2-37)
J L

All five assumptions have been used in deriving the governing equation as shown
above; however, it should be noticed that no assumption of uniform initial strains has
ever been invoked. Thus, the governing equation can be applied to solve non-

homogeneously predeformed problems.

2.2 Christoffel Equations for Plane Waves in a Stress Induced Anisotropic Medium
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In elastic wave propagation theory, when a plane wave is launched into an
anisotropic medium, the wave is characterized by Christoffel equations. Solving for the
wave modes and speeds yields an eigenvalue problem. In general, there are three distinct
eigenvalues for the equations, each corresponding to a particular wave mode. There will
be two quasi-transverse wave modes and a quasi-longitudinal wave mode perpendicular
to each other. For isotropic materials, these become two pure shear waves and a pure
longitudinal wave.

In this section, the Christoffel equations for a plane wave propagating in a stress
induced anisotropic medium will be studied. In the following derivation, two more
assumptions are made:

e the strain is uniform in the body
e the medium is isotropic in its natural state
With the uniform strain assumption and the equilibrium equation in the initial

state, the governing equation (2-37) becomes

; Fu ; Fu
(Crge +G1.0K) @(L@K(J =p &zl (2-38)

A harmonic plane wave in the initial coordinate system can be represented by
U, =U,exp[ik(N, X, - Vt)] (2-39)
where k is wave number, N, is wave normal and V is phase velocity.
Substituting equation (2-39) into equation (2-38), we have

(Coe N, N, +0-3L51KN.INL)UK =in2Ul. (2-40)
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Based on the law of conservation of mass, for small deformations, pi can be

converted to /° by

P2 (—ey) = P +ely)” (241)
Substituting the above equation into (2-40) and neglecting the high order term, we

have
(Cu NN, + 058, NN, +Cpg NN, +Cyy N N e )lU = p°V?U, (2-42)
Defining the Christoffel tensor in the presence of stress,
A = CyN,N, + o'.ilLalKNJNL +Cpp N, N, + CIJKLNJNLe;\W (2-43)
equation ( 2-42 ) can be rewritten as
(A = pV?8,)U, =0 (2-44)
and the characteristic equation becomes
[y = V38| =0 (2-45)
Solving the eigenvalue problem, two quasi-shear wave speeds and a quasi-longitudinal
wave speed can be derived. Now the only problem left is to derive the Christoffel tensor

in terms of material constants and strains.

For isotropic materials,
Cime = A004 + 1O Sy + 6. 0)
+(=A+)8,00 + (= + )08y + 8,0, Ve (2-46)

+2(A+ v )€}, 0, +€iud,)
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+2(u + V3)(ej,<5_,,_ +e;L5JK "'egk‘le +e§1_5/1<)
where Aand ¢ are the Lamé constants, and v,,Vv,, and v, are the third order elastic

constants.

For the wave normal, we have

N,-N,=0 ifr+J
{NI-Nj:l f1=J (2-47)
Let 4 =N, &, =N, 4, =N, (2-48)
Then, the components of the Christoffel tensor become
Ay, = (C 8 +Crapts +Cppiat)1+ e, +e5 +635)
+0,,8} + 0,8 + 032
Ayy = (Cyp2i + Copppls + Crpstd Y1 + €, + 5, +35) (249)

+ Ol +0pt +038
A = (G +Cils + G M1+, + ey +235)
+0,,4] + 0yt + 03,3
Ay = Ay = (Ci1pf +Cilh + Cd Y1+ ey ) + 0,88 + 03,65 + 03363
Ay = A3 = (Criill +Cipll + Cply 1 +e4y) + 0387 + Oty +0pts
Ay = Ay = (Coppf +Coppls +Copyy )1 +eyy) + 0,47 + Oty + Oyl
From equation (2-46), it is easy to obtain

Cipy = A+2u+[(A+ V) +(—u+v)lew +4(A+v,)e,
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+8(u+vy)e,

Coopy =A+3u+[(—A+ V) + (=l + W)]leyy +4HA +1,)e,,
+8(u+wvy)e,,

Cipy = A+2u+[(A+ V) +(—u+w)ley +4A +1)ey, (2-50)
+8(u+vy)es;

Ci = H+(—p+Vy)eyy +2(p+Vv;) (e +ey)

Cii =4+ (—u+w)ey +2(u+v)(e, te;;)

Corn = Can

Coyps = U+ (—p+Vy)eyy +2(U+Vy)(ey +655)

G = Cias

Cimz = Cos

Ciiz1 = Ciazp = Cippy = iy, =0

Cizz = Cizz3 = Cyy3y = Cpgp = Cip3 =0

For the first order approach, the constitutive equations for an isotropic material

are simply
Gy = Aeyy +2ue
Oy = Aeyy +2ue,, (2-51)
Oy = Aeyy +2 ey

In acoustoelastic theory, the third order elastic constants are usually expressed in terms of

Murnaghan constants (I, m, n):
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v=2l-2m+n

After algebraic manipulation, we derive,

A, =C[A+2u+(@4A+10u+4m)e,, +(A+2D)e,y]
) 1
+6[u+2uey, —(2,u+—2'n)e33 +(A+2u+m)eyy]
1
+4 [/‘_(2/14‘5”)%2 +2pe, +(A+2u+m)eyy]
Ay, = Ay =6G[A + u+2(A + p)(e,, +ey,)
1
+(—2-y—2m)e33 +2l +m)ey, ]
Ay = Ay =464+ p+2(A+ p)(e, +e55)
1
+(5 H—2m)e,, + (2] +m)e,, ]
1
Ay =} u+2ue, -—(2,u+5n)e33 +(A+2u+m)eyy]
+G[A+2u+ (A1 +10u +4m)e,, + (A +2])ey, ]

; 1
+6u-Qur ey +2uen +(A+2u+mey )

1
Ay = Ay, =64[A4 +,u+(§n——2m)e“
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+2(A + p)(ey, +e33)+ (2L +meyy ]

, 1
Ay =6 [+ 2pey — Quton)en +(A+2u+m)ey]

5 1
+tz‘[,u—(2y+5n)e” +2ue,, +(A+2u+m)ey]

+G[A+2u+(4A+10u+4dm)ey, +(A +2De,y]
This is the Christoffel tensor in the presence of stress or strain. In Chapter III, the
eigenvalue problem will be solved with a first order perturbation approach to obtain two

quasti-shear wave speeds.
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CHAPTER 1
A NEW SCANNING ACOUSTIC MICROSCOPY APPROACH TO

IN-PLANE STRESS ANALYSIS

Acoustic microscopy has been designed and utilized as a tool to study the
microstructure of materials. Since acoustic waves interact directly with the properties of
the material in which they propagate, acoustic microscopy provides a unique capability
for investigating aspects of a material that are not revealed by either light or electron
microscopes. By using acoustic waves at frequencies in the GHz range, it is possible to
obtain images with submicron resolution.

Recently, scanning acoustic microscopy has been applied to the field of
acoustoelasticity. Meek, et al., [36] used a phase measuring acoustic microscope to
measure residual stresses in electronic materials. Narita, et al., [37] studied residual
stresses in ceramics with line focused microscopy. Lee, et at., [34] applied line focus
acoustic microscopy to surface stress measurements in aluminum alloys and
polymethylmethacrylate. These studies, however, were based on the stress induced wave

speed theory. The reason why other ultrasonic wave information such as amplitude and
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wave form is rarely of interest in acoustoelasticity is the fact that these parameters are less
affected by stress and easily influenced by many other factors, thus, are difficult to be
determined experimentally with sufficient precision. As a new approach, Drescher-
Krasicka [28, 29] conducted a series of experiments to characterize in-plane stresses by
monitoring the peak amplitudes of scanning acoustic microscopy signals resulting from
polarized quasi-shear waves. Instead of simply relating the wave amplitude and the stress,
this method took advantage of the interference of the shear wave signals due to stress
induced anisotropy. The experiment turned out to not only overcome the shortcomings of
the amplitude approach mentioned above, but also to convert it into an advantage. The
experimental results showed much higher sensitivity than the conventional wave speed
technique, or more precisély, the time of flight measurement tephnique. In this chapter, a
theoretical base is provided and the information from the previous experimental study
[29] is quantified. A mathematical model is also presented to provide a qualitative and
quantitative comparison between the numerical simulation and the experimental results

for a diametrically compressed aluminum disk.
3.1 First Order Perturbation Approach to Determine Wave Velocities

In Chapter II, the Christoffel equations in the presence of strain or stress were

developed. In explicit format, they are:
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(4 = p°Vymy + Aym, + Aymy =0
Ay, + (Ayy = PV)m, + Ayym, =0 (3-1)
Aymy + Aym, +(Asy —pon m, =0

which yields an eigenvalue problem for the phase velocities.

Sinaie [12] proposed an exact solution approach to solve these equations,
however, numerical problems were encountered in its implementation. Thus, a new
approximation method is employed here. The approach is based on first order
perturbation theory for the wave propagation in anisotropic media as developed originally
by Jech and Psencik [38] for geological media. Since the acoustoelastic effect is relatively
small, the mathematical solutions for the stressed sample can be treated as a first order
perturbation of the isotropic solution. Rewriting the Christoffel equations in tensor

format, we have
(4 - o Vzaik)al(:,") =0 (3-2)
where m = 1,2,3, and o™ corresponds to each of the eigenvectors.

In the perturbed medium, we may write

(A + 04, = P (V™ + AV Y 5, N@)™ +A™) = 0 (3-3)

which yields
(4ix = PV ™28, )™ + (4 = PV ™8, A0y
+(Ad4y =20V AV ™S, )ap™ (34)

+(A, = 2pV{MAV ™S, )Aa™ =0
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However, the first term in this expansion must be identically zero due to equation (3-2).
Also, the final term can be neglected as it is of higher order than the remaining two
expressions. Thus,
(45— PV DAal™ + (A4, = 2pV AV 8 )ad™ =0 (3-5)
o(n)

Multiplying this expression by «;""’, the first term vanishes due to the symmetry of the

Christoffel tensor and equation (3-5) reduces to

A2l af” =2p°VMAV™ = 0 (3-6)
ik k 0

since the eigenvectors are orthonormal. Then,

1
(m) _
AV = 2p° Vo('") B,, (3-7)
where
B, =Ad4,a)"a’” (3-8)

The only difficulty in applying this formula arises from the degeneracy of the
shear modes in the unstressed, isotropic medium as the polarization (eigen) vectors are
arbitrary. It is only known that they are perpendicular to the wave normal and to each
other.

For an incident longitudinal wave in water (let the z direction correspond to the

surface normal), the wave normal for the incident wave in the x-z plane will be given by

sing,

~

L= 0 (39)
cosé@,
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and, upon refraction, for the shear mode

when, via Snell’s law,

(3-10)

(3-11)

Let > =T, which is a good approximation for the case of near isotropy (i.e., small

residual stresses). We can then form an orthonormal triad, for example:

0
e'=|1
0
and
—~cosf,
g?=e>xe'=| 0
sing

Then, the associated shear eigenvectors can be represented by

—a, cosb,
aV =a' +a,e’ = a,,

a,,sin @,

—a,, cosl,
~(2)

o~ ~2 _
a’=a,e +ane’ = a,,

a,, sin @,
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(3-13)
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(3-15)



but, since @ and &@® must be orthogonal,
a,, =a, and a, =-a,, (3-16)
Returning to equation (3-5) for m = 1 and multiplying through by e}, we have
(43 - PV25, YAa, el +(0d, -2V AV DS, ) (a, el +apel)e =0 (3-17)
The first term must be zero as any vector in the &' x&? plane is an acceptable shear
wave eigenvector as the shear eigenvalues degenerate. Since &' &7, we may write the
resulting equation as
B, a,, + B,a, - 2VPAV P p'a,, =0 (3-18)
where
B, =AAd.ele] (3-19)
Similarly, by multiplying equation (3-5) by ¢’ for m = 1 and repeating the process, we
obtain

Exzan + Ezzaxz -2V"AV P pia,, =0 (3-20)

Equation (3-18) and (3-20) have a nontrivial solution for a,, and a,, if

B, - 2V{"AV®p° B,
1 o 4 _ (lx; w o|=0 (3-21)
B, B, -2V AV
Solving for AV yields
1 = 5 . [ o
AVU):W{BH+Bzzi\/(Bn"Blz)--43122} (3-22)
0
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A similar result holds for AV®. Hence, there are two possible shear waves in the stressed
medium, a fast wave V; corresponding to the positive root and a slow wave V,
corresponding to the negative root. Thus, assuming axial symmetry from the spherically
focused source with the bulk of the incident energy concentrated in a hollow cone of
equally distributed rays about a single input incident angle, the longitudinal wave source

will excite two shear waves of equal amplitude in the stressed medium whose velocities

are given by
1 = = = = =3
Vsl = Vso +__O{Bn +Bzz + '\/(Bu - Bzz)z _431-2} (3-233,)
4V p
Vi =Vig+—rriB, + By — (B, — By) —4B2 3-23b
2~ so"'_—a'{ n'*'Bzz ( 1 22) 12} ( -23 )
4Vv0p

Equations (3-23a) and (3-23b) will serve as the fundamental equations to study the
interference between two shear waves differing in phase.
The eigenvectors associated with the shear waves can also be derived from

equations (3-14) to (3-16), (3-18), and (3-20):

If B, =0,

a,,=a, =1 and a, =—-a, =0 (3-24)
thus

@V =¢'" and a¥=¢’ (3-25)
For B, #0,
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— L .
B;z 1 Bu "Bp
a, == (= 3-26a)
! lBl2| _2( [(B“ "Bzz)2 +4Bl-2 1/2) (
B, [ B -B qu2
Blz 1 Bll —Bzv
B ]2 i B+ B (3-26b)
"’ lBlzl L2 (B, — By,)> +4B1"

Substituting equations (3-26a) and (3-26b) into equations (3-14) and (3-15), we obtain the
exact specification of the eigenvectors in the plane perpendicular to the wave normal l~, .
It should be noted that even though the unperturbed medium degenerated, the

eigenvectors derived by the perturbation method are unique and they are controlled by the

Christoffel tensor. Generally, different A4, will result in different eigenvectors.

3.2 Experiment

Scanning acoustic microscopy provides a convenient means to obtain an image of
the residual stress distribution within a material. This can be obtained from monitoring
the interference of shear waves traveling back and forth across the specimen which is
generated by using acoustic microscope in an out-of-focus mode. The schematic diagram
of the acoustic microscope’s operation is shown in Fig. 3.1. An efficient transducer is
excited with a tone burst in order to interrogate the sample of interest. It is also used as
the receiving transducer in order to detect the echo from the surface. The transducer
receives the reflected signal which is rectified and filtered to give a signal proportional to
the amplitude of the returned signal. The )transducer is mechanically scanned in raster

style in order to create a two-dimensional acoustic image. This image is then displayed on
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Fig. 3.1 Schematic diagram of acoustic microscopy.
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a high-resolution color monitor using various pseudo-color and gray-level color schemes.

The scanning acoustic microscope used in the experiment is a broad frequency
imaging system, with the frequency range adjustable from 1 to 150 MHz. The software of
the system provides a single data gate, which has three adjustable parameters. The first is
a gate start which specifies a starting time to monitor the ultrasonic waveform. The
second is the gate length which specifies the amount of time after the gate starts during
which the software will look for the peaks in the waveform. The software searches for the
highest value the wave form attains. The third adjustable parameter of the gate is a
threshold which specifies a percentage of the full screen height of the oscilloscope
waveform. The peak below the threshold will be filtered and the peak values between the
threshold and the 100% full screen height are displayed as a linearly distributed color
value. When scanning the specimen, the software will monitor the change of the
amplitude of the incoming signal and display certain corresponding colors in the pixels.

The specimen was an aluminum alloy (6061-T6) disk which was cut from an
aluminum bar with both sides polished. The material properties are listed in Table 3.1.
The disk thickness was 3 mm and the diameter was 40 mm. The specimen was
diametrically compressed to several different load levels. The loading apparatus is shown
in Fig. 3.2, along with the electronics used for load monitoring.

The geometry for the experiment is illustrated in Fig. 3.3. The sample was placed
in a water tank and the acoustic scanning system was adjusted parallel to the surface of

the specimen. The transducer launched longitudinal waves with 15 MHz of resonant
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Fig. 3.2 Experimental loading facilities.
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frequency. Monitoring the peak amplitudes of the superimposed shear waves, scanning

acoustic microscopy images can be derived.

Table. 3.1 The material properties of aluminum alloy 6061-T6.

Density | Lamé Constants | Third-Order Elastic Constants Shear Wave Speed

(kg/m®) (x10"Pa) (% 10°Pa) ( m/sec)
p A u 1 m n V,
2710 432 | 2.65 -32.1 -41.1 -40.8 3127

3.3 Numerical Simulation

In order to quantify the information from the acoustic images of the distribution of
stress in a diametrically compressed disk, the understanding of such a stress or strain
distribution is essential. For the disk under a concentrated point load, the plane stress
components at any location can be derived from the analytical solution of elasticity [39]
and further used to obtain the principal strains. In practice, however, the load is
distributed over a small area rather than being applied at a point, thus, the assumption of a
point load will result in certain discrepancies which were discussed in a previous study
[49]. Thence, a FEA simulation was performed to provide more accurate results reflecting

the precise load distribution in the experiment.



3.3.1 Finite Element Analysis of a Diametrically Compressed Disk

Here, an aluminum disk under a diametrically applied compression load was
modeled and analyzed with the general FEA software ANSYS 5.3. Since there were
stress concentrations near the loading areas involving plastic deformations, both material
and geometry nonlinearities were considered. A SHELL42 element was selected with
keyoption(3)=3 to simulate a plane stress problem. The element is defined by four nodes
having two degrees of freedom at each node: translations in the nodal x and y directions.
SHELL 42 is commonly used for the 2-D modeling of solid structures with plasticity,
creep, swelling, stress stiffening, large deflection, and large strain capabilities.

The element mesh is shown in Fig. 3.4. Based on the symmetric properties of the
sample and load, only a quarter of the disk was modeled. Symmetric boundary conditions
were applied at X=0 and Y=0. The stress-strain curve was assumed to be bilinear, with a
Young’s modulus of 69.6 GPa, a second tangent slope of 457 MPa, and a yield stress of
240 MPa. The main difficulty in the analysis was the simulation of the loading in the
experiment. Because the loading frame was much stiffer than the specimen, the top and
bottom surfaces of the disk where the loads were applied would be flattened. With this
consideration, a displacement controlled loading strategy was selected with the
displacement load applied in several load steps. In the first load step, the node with the
maximum y coordinate was selected and a displacement down to the y-level of its
adjacent node was applied. In the second load step, these two top most nodes were taken

down to the y-level of the next highest adjacent node. This procedure was continued until
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the load exceeded the maximum load of 1700 N in the test (as determined by checking
the total nodal reaction forces). In this procedure, sufficient loading increments between
the load steps have to be taken so that reaction forces close to the load levels in the
experiment can be found. The loads in the experimental study were 716, 910, 1110, 1310,
1510, and 1700 N, respectively, and the closest load levels in the FEA simulation were

found to be 714, 908, 1114, 1322, 1532, and 1728 N, respectively. Some important stress

results of the analysis are given in Appendix B.
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Fig. 3.4 FEA model for diametrically compressed disk.
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3.3.2 Mathematical Model for Numerical Simulation

As shown in Fig. 3.3, the output of the scanning acoustic microscopy transducer
can be modeled as having two main wave components: (1) a normal incidence pulse and
(2) a strong axisymmetric longitudinal lobe at oblique incidence. The shear pulses
indicated by S in the sample are of principal concern. Due to the presence of stresses in
the medium, at the top of water-specimen interface, two shear waves are generated by the
mode-converted, obliquely incident longitudinal waves. Their velocities will be slightly
different, therefore, resulting in different refracted angles. At the bottom surface of the
specimen, the two shear waves will produce two extra shear waves by mode conversion.
The superimposed amplitudes of the four shear waves will be exploited for stress
analysis. Assuming that the incident longitudinal wave and the two refracted quasi-shear
waves generated at the top water-solid interface have velocities Vi, V,,, and V,,
respectively, and the corresponding directions of propagation are a,, a,, and a,,
according to Snell’s law, we have

sing, sing, sing,

= 3-27
27 (327)
After the waves travel through the specimen, the phase shifts for S, - S, will be
4fd
=— -2
'V, cos (3-282)
47fd
O, = -2
2V, cosa, (3-28b)
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4nfd 4nfd

= +
V,cosa, V,cosa,

D, =9,

The interference of the shear waves at the top of the sample is then given by
y = A, expli(2nft + D,)]+ 4, exp[i(2aft + D,)]
+ A, expli(2aft + ©;)]+ 4, exp[i(2#ft + D,)]
Assuming
A=A =A4,=4,=4
the amplitude of the interfered wave yields

o fd

cosa, V,cosa,

=4 2 M = 72
y=4Acos" ( 2 Yy=4Acos"( )

14

sl

(3-28c)

(3-29)

(3-30)

(3-31)

Thus, the interfered shear wave amplitude calculation can be summarized in the

following four steps:

1) Extract the principal strains at the nodes of interest from the FEA results

2) Determine the Christoffel tensor in the presence of stress or strain

3) Solve for two quasi-shear wave velocities with equations (3-19) and (3-23)

4) Calculate the amplitude of the interfered shear wave from equation (3-31)

The only remaining problem is how to compare the simulation results with the

experimental results quantitatively. There are several obstacles: the incident longitudinal

wave amplitude is unknown, the amplitude change due to mode conversion is unknown,

as are the attenuation in the water and the final signal amplification in the acoustic

microscopy. These factors make it almost impossible to realize a quantitative comparison

48



between simulation and experiment. To overcome these difficulties, a linear calibration
scheme is employed in this study based on the following consideration: (1) the
amplification used in the electronic circuits is usually linear and (2) the attenuations in
water and sample are small because of short wave paths. Specifically, the procedure is as
follows: determine the two unknowns in the linear equation by using the simulation and
experimental results at any two locations of the disk, then use the same linear equation to

amplify the amplitudes for the rest of the simulation results.

3.4 Experimental and Simulation Results

The experimental images of the scanning acoustic microscopy measurements at
six different load levels are shown in Fig. 3.5 through Fig. 3.10. They were provided by
Drescher-Krasicka of NIST. In order to realize a quantitative comparison with the
numerical simulations, the peak amplitude curve along the diametrical loading line is also
shown for each of the loading conditions. The quantitative comparisons between

simulation and experimental results are shown in Fig. 3.11 to Fig. 3.16.
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Fig. 3.5 Scanning acoustic microscopy image of a diametrically compressed
disk (P = 716 N) (Drescher-Krasicka, NIST).
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Fig. 3.6 Scanning acoustic microscopy image of a diametrically compressed
disk (P =910 N) (Drescher-Krasicka, NIST).
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Fig. 3.7 Scanning acoustic microscopy image of a diametrically compressed
disk (P = 1110 N) (Drescher-Krasicka, NIST).
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Fig. 3.8 Scanning acoustic microscopy image of a diametrically compressed
disk (P = 1310 N) (Drescher-Krasicka, NIST).
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Fig. 3.9 Scanning acoustic microscopy image of a diametrically compressed
disk (P = 1510 N) (Drescher-Krasicka, NIST).
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Fig. 3.10 Scanning acoustic microscopy image of a diametrically compressed
disk (P = 1700 N) (Drescher-Krasicka, NIST).
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Fig. 3.11 Quantitative comparison between theoretical and
experimental results (P =716 N).
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Fig. 3.12 Quantitative comparison between theoretical and
experimental results (P =910 N).
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PEAK AMPLITUDE

Fig. 3.13 Quantitative comparison between theoretical and

experimental results (P =1110 N).
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Fig. 3.14 Quantitative comparison between theoretical and
experimental results (P = 1310 N).
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Fig. 3.15 Quantitative comparison between theoretical and
experimental results (P = 1510 N).
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Fig. 3.16 Quantitative comparison between theoretical and
experimental results (P = 1700 N).
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3.5 Discussion

The first question to be addressed in this discussion is the utility of the
perturbation method to solve the problem. As reported in the paper of Jech and Psencik
[38], for extremely anisotropic materials, the perturbation approaéh is less accurate in a
degenerated unperturbed medium. In this study, the refracted quasi-shear wave angles
required to form the Christoffel tensor were set equal by considering only small
differences between the two quasi-shear wave velocities. In order to analyze the errors
introduced by using the first-order perturbation approach, a comparison between the first-
order perturbation solution and a full field solution was conducted. To simplify the

calculation, the analytical elastic solution for a diametrically compressed disk was used:

_ 2P((R=y)x*  (R+y)x’ l)
O == ( B ¥, (3-32a)
_ 2P((R-3)  (R+y) 1]
Oy == ,u( i (3-32b)
2P((R-y)*x (R+y)
axv=——(( W (R+y) y) (3-32c)
: /4 n r
where
rP=x’+R-y)’ and 1} =x*+(R+y)’ (3-33)

Here, R was the radius of the disk, t was its thickness, x and y were the coordinates along
the X and Y axes with their origin located at the center of the disk, and P was the

concentrated load. The principal stresses were obtained according to:
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2 2
% =(zn_+i) s (33_1) ol
Lo 2 2 '

and the corresponding principal strains were calculated by Hooke’s Law.

(3-34)

The principal difficulty encountered in solving the eigenvalue problem for a full

field solution stems from the fact that the direction cosines of the refracted wave cannot

be directly determined from Snell’s law because of the directional dependence of the

wave velocities. To overcome this difficulty, a scheme proposed by Kline [18] was

adopted here. From equation (3-11), one may represent

~

sing, = -Visina,.,, =KV,

For each of the refracted waves
cosg, = (1-sin’ 4,)"? =[1-(KV,,)*1"”

Then, the eigenvalue problem becomes

4, —PoVri 0 4;
0 Ay, - poV,f, 0 =0
4 0 4y - PoVri

where

A, =1-(KV, A +2u+ (@A +10u+4m)e,, + (A +2Dey, ]

+ KV, V= Qut 3 Wl + 2t + (A + 2+ mheyy]

1
Ay =[1-(KV,,) [z +2ue, —(2,u+-£n)e33 +(A+2u+mey,]
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(3-35)

(3-36)

(3-37)

(3-38a)



” 1
+(KV, ) [~ Qutm)ey +2pes; +(A+ 20+ mley,] (3-38b)

1
Ay = [1—(KI’,e)2][;z +2 e, —(2,u+§n)e22 +(A+2u+m)ey,]

+(KV, )2 [A+2u+ (44 +10u+4m)e,; + (A +2De,y ] (3-38¢)

Ay = Ay =[1-(KV,, ) UKV, ) [A+ 1 +2(A + p) e, +e;3)

+ (—;— H—2m)ey, + (21 +m)eyy ] (3-38d)

With a 1700 N compressive load and a 10 degree longitudinal incident angle with
respect to the Z axis, two shear velocities were derived by solving the eigenvalue
problem, utilizing the symbolic software Maple V. These velocities were subsequently
substituted into equation (3-31) to determine the superimposed wave amplitude. The
differences between the perturbation approach and the full field solution are presented in
Fig. 3.17. Obviously, viewing the medium as being slightly perturbed from the isotropic
state, results in errors in the vicinities of the two loading sites. However, if one considers
the fact that these regions are actually in a plastic state while the elastic solutions give
unrealistically high stresses, it is easy to conclude that the perturbation approach still
provides satisfactory accuracy in comparison with the full field solution.

As a part of the verification of the FEA results, a stress comparison between the
FEA solution and an elastic analytical solution along the transverse center line of the disk

was conducted. Along this line, o, was a variant while o, stayed constant according to

elastic theory. They were virtually the principal stresses. Six o, plots at different load
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Figure 3.17 Errors introduced using perturbation theory compared
with full field theory.

levels and one &, plot are presented in Fig. 3.18 to Fig. 3.24. The results show very good
agreement between the FEA and analytical solutions in the center region of the disk.
However, it should be noted that larger stress differences are expected at locations other
than the transverse center line of the disk because of the loading condition.

One of the most important issues to be clarified in this study was the physical
meaning of the peak amplitude of the interfered shear wave signals or, more specifically,

how these signals relate to the residual stress to be measured.
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Since the acoustoelastic effect is small, for small incident angles, one may neglect
the refracted angle difference between the two shear waves. Then, we have 4, = 4, =0

in equation (3-30), hence, the wave amplitude in equation (3-31) becomes

2fd 27fd

V,cosa, V,cosq,

sl

(Dl —(Dz
y=2Acos(———=) =2 Acos(

2 ) (3-35)

This can be further simplified to yield

y= 2Acos[2’-’fd( 1=Y2))224c0 :Wd( 1= Vay (3-36)
s17 2 C 0

where ¥, is the shear wave velocity in the stress-free isotropic material.
For an incident angle close to the normal direction of the disk plane, one may

assume
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¢, =620 and =1 (3-37)

in equation (2-53). Solving the eigenvalue problem, one obtains [1]

2

[ 2 (A+m)ey +Aues; +2 e, -
V =( ) 1+

4 P ] (3-38a)

Po

V;Z =

1
P 1z (A+m)ey +4ue,; +2ue,, —3"en
( ) [1+ ] (3-38b)

Po 2u
where V,; and V,, are the shear wave velocities polarized in the x, and x, principal

directions.

From equation (2-51), one has

1
€ —én =Zl-(o-” —0y) (3-39)

With the aid of equations (3-37) to (3-39), (3-36) yields

27ad V. 1
L S Gt e =)
=2 dcos[fd(=E1 2 “*")(a” —~o)] (3-40)
Define
D= gd(CEEn, 341
LClower (341)

Here, D(G,,- G5,) is on the order of 10” to 107 based on an approximate calculation, thus,

it is small. Then equation (3-40) can be expanded into a Taylor series about zero
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y = A2 - D*(o,, — 05, ) + HOT] (3-42)
and equation (3-42) may be further simplified as
y=C, - G0, —03)’ (3-43)
where C, and C, are constants. |

Hence, it can be concluded that, when the incident angle is small, the information
about the amplitude of the interfered shear wave yields the square of the principal stress
difference. It should be noted that this is a nonlinear relationship instead of a linear
relationship as predicted by Drescher-Krasicka [28].

From Fig. 3.11 to Fig. 3.16, it is seen that, at the stressed area, the wave shows a
decrease in amplitude; in other words, the higher the difference of the prihcipal stresses,
the lower the wave amplitude. This phenomenon can be well understood from equation
(3-43). One point needs to be addressed here: Since the stress induced phase shift is
small, one will not see a harmonic wave format change of the amplitude even with very
large differences in the principal stresses. This will secure the single valued relationship
between the amplitude and the difference in the principal stresses or the maximum in-
plane shear stress. As far as a quantitative comparison is concemed, considering the
experimental error, the correspondence of simulation and experimental results is quite
satisfactory. It is noticed that the experimental results show certain levels of noise in the
images. This may be due to the inhomogeneity of the sample material, unsatisfatory

specimen surface conditions, and other possible sources of error.
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CHAPTER IV
USING RAYLEIGH WAVE DISPERSION TO CHARACTERIZE

IN-PLANE STRESSES

In the past forty years, bulk wave acoustoelasticity has been the subject of a great
deal of research. One of the shortcomings, however, associated with the use of bulk
waves is the resulting inability to detect surface stresses and the variation in stress
through the thickness. In many applications, knowledge of the surface stress and the in-
plane stress distribution in the depth direction are highly desired; thus, Rayleigh wave
acoustoelasticity is suggested. Rayleigh waves travel at the free surface of a solid half
space and the amplitudes decrease rapidly with depth. The depth of penetration into the
solid is approximately one wavelength. In a stress-free isotropic material, the phase
velocity of Rayleigh wave propagation is a constant and independent of wave frequency;
thus, it is not dispersive. When stresses or strains are applied to the material, they cause
(via the acoustoelastic effect) a slight change in the elastic properties. This, in turn, is
responsible for changes in the elastic wave propagation. If an isotropic half space is

subjected to a static, pure homogeneous deformation, it has been shown that the wave
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motion does not differ substantially from that formulated in linear wave theory and there
is no dispersion. However, when the initial deformation has a distribution in the direction
of the depth, the degree of change in the elastic properties also varies with depth. In this
sense, the material subjected to such a deformation is qualitatively similar to that of a
layered or stratified material. In this case, Rayleigh waves are known to be dispersive.
This effect has been studied both theoretically and experimentally by Hirao, et al., [35]
where the dispersion of Rayleigh waves for a plate in pure bending was investigated.
They found dispersion to be pronounced for relatively low frequencies and to diminish as
the frequency increased. In this Chapter, their study will be extended to the case in which
the stress distribution in the depth direction can be expressed as a polynomial series so as
to investigate surface residual stress Vin a more general sense. As scanning acoustic
microscopy is feasible for a broad range of frequencies and can effectively excite
Rayleigh waves in the defocused mode, this technique will be a powerful tool to study

surface residual stress fields.

4.1 Theory

First, let us consider Rayleigh wave propagation on the free surface of a semi-
infinite homogeneous isotropic material which is initially under static deformation. The
coordinate system for the half space is shown in Fig. 4.1. From the governing equation

(2-37) in Chapter II and with the aid of equilibrium equation (2-15), we have:
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Fig. 4.1 Surface wave over a deformed half space.
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é u
—(C Ky+ = - 4-1
o’X,( KL aXL) T K, X, P 5 (4-1)

In the study of this Chapter, several assumptions were made as follows:

e the principal directions are known and aligned with the coordinate axes
e the strain is uniform in the half space other than in the direction X,

e G, =0, as the region of interest is close to the free surface

e Rayleigh waves propagate in a straight line in the X, direction.

With the above assumptions, the Rayleigh wave displacement components have the form

u, = f,(X,) explik(X, - V?)] (4-2a)
u, = fr(X,)explik(X, - V1)] ’ (4-2b)
u; =0 (4-2¢)

Equation (4-2c) represents a conventional treatment since this mode corresponds to the
shear wave in the half space which is not related to the Rayleigh wave. In the preceding
equations, k denotes the wave number, V the phase velocity, f; and f, the amplitudes
which decay with depth.

Substituting equation (4-2) into equation (4-1) leads to

[uv? /V72 — (o, + G+ D(C,, DS

(4-3a)
+i[(Cy, +C15)D + DGy 11, =0

[/‘VZ / VTZ =(0y, + Cap) + D(Cppyy, DS,

(4-3b)
+i[(Cy; + C1)D + DC,y, 1/, =0

where
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v, =\Julp (44)

D=d/d(kX,) (4-5)
We define
Si ==1(Cppp + C12)D + DGy, IF (4-6a)
Lo =V 1VE = (0, + Cuy) + D(Gyy DIF (4-6b)

Substituting equations (4-6) into equations (4-3), equation (4-3a) is automatically
satisfied and equation (4-3b) leads to a fourth order governing differential equation given
by
(uV? 1V} —(0,; + Ciy) + D(Cooy DYV ? 1 Vi = (G + Cpays) + D(Cypp, D)IF
+[(Ciaz + Ci122) D+ DC,, 1(Coyy +Ci10 ) D+ DCy 1, 1IF =0 ( 4-7)
As far as boundary conditions are concerned, in the initial state, the surface tractions T}
are given by
I, =0,l,=0 at X, =0 (4-8)
where /; are the direction cosines of the normal to the surface.
In the final state, the surface tractions become
T, +T; = (o, + o), +15) =0 at X, =0 (4-9)
where o, + o7, and /, +1 are the stress components and direction cosines of the normal
to the surface, respectively. Since the superimposed disturbance wave is very small,
o, and /) are small terms. Neglecting the multipliers of the high order terms, we obtain

T'=ol, +0,l, =0 atX,=0 (4-10)
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It has been shown that [30]

s G,

| —
Oy=-
and

1

Buy  u
R N
N

&y

1
T, T, T O
K K K

y—1

(4-11)

(4-12)

Taking note of the fact that #, and », are not functions of X; and, in the initial state,

0
I, =|-1
0
we have
s
I =—+
XK,
and
L=06=0
Thus, the boundary conditions yield
0y =0
0‘}42 ’ 0
Oy =0, =
11 ﬂ] 12
o, =0
oy, =0
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(4-14)

(4-15)

(4-162)

(4-16b)

(4-16¢)

(4-16d)



on the surface X, = 0. As o, =0 if I # J, the last equation (4-16d) is automatically

satisfied. Equations (4-16b) and (4-16c) are relevant to Rayleigh waves. This leads to

[30]
du,  u,
o”X2+@(,_O (4-17a)
and
u ou
Ciizn 5('17"'(:2222'@722:0 (4-17b)
With the aid of equations (4-2), the boundary conditions ( in term of f; and £, )
can be rewritten as
Df, +if, =0 (4-18a)
iCn /i +Con Df, =0 (4-18b)

Since a general solution which satisfies both the governing equation (4-7) and boundary

condition (4-18) is not readily available, we seek a first order perturbation solution for F.

Let
F=F'+F! (4-19)
where FUis the zeroth order solution when the initial stress is absent and F' is the first

order solution corresponding to a small perturbation from F° because of stress. With the

same scheme, the differential operator in equation (4-7) can be written as

L=L,+I, (4-20)

From equation (2-46), with 8=¢,,,, we have

78



Cin=A+2u+(A=-24+v, +21)0+4(A+2u+ Vv, +2V)e,,
Comm =A+2u+(-A=-2u+ vV, +21)0+4(A +2u+ Vv, +2V,)e,, (4-21)
Ci = U+ (—u+v)0+2(u+v)(e, +ey)

Cin =A+(A+1)0+2(A+v,)(e, +ex)

Define
C,°m =A+u
Clin =(=A-2u+ v, +21,)0+4A+2u+v, +2v)e,,
Coy = A+2u
Coom = (A =24+ v, +2v,)0+ 4 A +2u+ v, +21)e,, (4-22)
Con = H
Chy = (1 +1)0+2(u+v)(e, +e5,)
Clop =4
Clin = (A +1)8+2(A+v,)e, +e5,)
Then
Cin = Chy +Cliyy
Crrzs = Coppp + Coo (4-23)

_ 0 i

Ciaiy = Ciapa + Gy
_ 0 1

Cipn =Cin + Gy

Thus, equation (4-7) yields
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(L, +L)(F°+F')=0
In explicit form, this is
{uVs 1 Vo + 4z = (03 + Gy + Ciyy) + DGy + Gy )P}
x {uVs 1 V5o + 42 = (G + Ciapa + Cayg ) + DU(Conga + Cop)DIHF® + F)
+[(Cpyiz + Chyy + Clhay +Clion )D + D(CLy, +Cyo)]
X[(Chyp +Chypy + CPrpy +Clipa)D + D(CYyp + Ch FC +F') =0
where

AVY,
Vio

z=2

Collecting the zeroth order terms in the above differential equation, we have

L,F°=0
or
Voz 0 0 N2 Vo2 0 0 N21p0
[ﬂl‘,'z’ -G +CD ][/‘V—z = Cipy + Gy D7 JF
T0 70

+(C?212 "‘Cxoxzz)zDzFo =0

Applying equation (4-22) and letting

V.
n o= (l _0_) 172
=0y
VZ
n. = (I _ 0 )1/2
2 KV,

where
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(4-25)

(4-26)

(4-27)

(4-28)

(4-29)

(4-30)



A+2u

K=— (4-31)
equation (4-28) can be simplified to
D*F° —(n} +n?)D*F° +n{niF° =0 (4-32)
The general solution to this fourth order differential equation is
F° =§A,. exp(—nikX2)+§lB,. exp(n,kX,) (4-33)

However, since F should tend to zero as X, tends to infinity, B; must be zero. We then

obtain the zeroth order solution

F°= gA,. exp(—n,kX,) ( 4-34)

Collecting the first order terms in equation (4-25), we obtain

LF'+LF' =0 (4-35)
or
2 4 2 I/OZ V02 V02 1
HHAKD" + D*{(K+1) 7 - 2K]+ (57 - K)o - D}F
VTO VTO VTO

2

Y Chy+ Cha D )pzz 03y + Clyy + ClygD* + DClyg DYF
'*'(/‘Vz i +Cop D7)z — 0y, + Gy + Coppy D + DGy, D)
T0

+ (CIOZIZ + CIOIZ?. )D[(Cll212 + ClIIZZ)D + DCllZIZ ]FO ( 4'36 )

+ [(ClIZl'.’ + C\]122 )D + DCll122 ][(C]o'.’lZ + CIOIZZ)D]FO

2

1 1 2 1 Ve 0 0 N2750
+lz- (o, +C )+ Cpp, D” + DszD][.UV_z =Cppp +Cppy D7IF" =0
T0
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We define

2u
Y
-A+v
r=
Y7,
V2
n=-1+—= (4-37)
Y7,
A+v,
rn=
Y7,
1%
r, =1+-/j—

Substituting equations (4-22) and (4-37) into equation (4-36) and taking into account the

following equation

Gy = A0+ 2pe,, = 0 (4-38)
or
9= ‘i" ey, =ryey (4-39)

after complicated algebraic manipulation, we have
KID* +(n} +n2)D? +nln21F" + {z[n} —n} + K(n? —n2)]
+ LV, +LPe,, + M’ De,, + M'® De,,} F* =0 (4-40)

where

2

14
LY =2Krn’ + 2n,.2[(7°2-
T0

— 4y, —K(1+2r,)—1-2r]
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+2n} (1421, +4r,) +2K(1 +7,)n;

L =nl[r,(n, +2nr,) +4(r; +2r,) + K(ryr, +21,)]

2

0
2
VTO

+n,.2{ [7o(r, +3r,) +4r, +10r, ]+ 2K[1 = ryr, —2r,]

+2[2-ryr —2ryr, 21,1} = Kn; 2 =1y, —21,)—n{ 2 =1y ~ %)

M® =2n[(n} - Kn})r, —(K=1)(r, +1,)]

MP =—n{[r,(r, +2n,) +4(r, +2r,)In? +(r,r, +2r,)(Kn} —n?)

= K1y (ry +21,) +4(r3 +2r)In; +(K = DI(r, +1,)r, +2(r; +7,)1}

Let

R(X,)=[n} —n} +K(n} —n})lz+ Izi':l(Ly’e,, + M Dey)
Then, equation (4-40) becomes
KID* +(n} +nf)D? +n?n2)F' = -R,(X,)F°
Since
[D* +(n? +n3)D? +nini]F'
=(D-n)D+n)D-n,)D+n,)=GD)F'
and

1 1 n, n, n n,
= il - - + ]
G(D) 2mn,(n}-n;)'D-n, D+n, D-n, D+n,

the first order solution is obtained as
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(4-43)

(4-44)
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kX,

) KX 2
F' =h§ A[n,e™: [ Re™ ™™V dt —n ™ [Re™ ™) gy ( 4-46)

@

KX, KX,
_nzenkaz [Re ™™ dt + ne™: [Re "™ gy
0 0
where

h=[2Knn,(n? —n2)]™ (4-47)

Thus, we have the solution

2
F=F'+F'= §| A; exp(n.kX,)
2 kX, kX>
+hY, A [n,e"™ [ Re ™*dt —ne™*: [Re "*)dt (4-48)
i=1 ) ©

kX, X,
—n,e"™: [Re ™™gt 4+ n ™ [Re™ " dt]
0 0
Applying solution F to boundary condition ( 4-18a ), it turns out to be
= Di[(Cyy1; +C122) D+ DCyyp, JF (4-49)

+i[uV* 1VE - (03, +Cyyyy) + D(Cyp, D)IF =0 at X, =0
With the aid of equation (4-23), the above equation becomes
~[(Ciaz + Ci122)D* +DCy 1, D+(Ciyy + i1 )D* 1(Fy + F)
+[uVy IV + 42— Chyy = (03, + Cli) + DCly, D + Cpy, D + Clyy, D*1(Fy + F)
~[DC},,D+DC},,D+D*Cl,, (Fy, + F) =0 at X,=0 (4-50)
Neglecting the second order terms, we have

[-Kn? —(K=2)n? +z-UPe, -UPe,,]F°
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~(K-2)D*F' —Kn2F' +V" De,, +V\?’ De,, -W{" D?e,, —-W® D%,, =0  (4-51)
where
U’ =2+4r, +8r, +2n’r,
UP ==2+(r, +2n)r, +(nr, +2r,)n}
Vi) =2(r, +1,)n (4-52)
V& =ry(r +1,) +2(r +1)n;
W =2r,
W =rr, +2r,
and the bars over the strains and their derivatives indicate values at the free surface
x, =0.
Substituting F into the boundary condition ( 4-18b ), we obtain
Ci1[(Ci12 + Ci122)D+ DC,, IF
+ Copy DLYV? 1V = (0, + Cpypy) + D(Cp,,D)IF =0 (4-53)
Similar to the first boundary condition, the above equation can be expressed as
(Clzz +Clp (Choyy +Clipy) D +(Clypy + Cho YD+ DCL , I(F° + F')
+(Cam +Coa IV 1 Vo + 12 = Clyyy = (0, + Cyyy)
+2DC},,,D+ C},,,D* + C},,D*1D(F, + F,) (4-54)
+(Chp + Copy I=-D(0y, +C},,) + D*CL,,, DI(F, + F,) =0

For the first order approach, equation (4-54) yields
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—n k=) =2) - K*n + Kz + Kn?)F° +[UV e, + U ey,

+V" De,, +V? De,, + W." De,, + WS De,,1F° (4-55)
+[(K-I(K -2)-K*n?]DF' + KD’F' =0
where
USP =2n[K(1+3r,)+(3nr, +2r,)]-2Kr,n}
UP =—n{(—Kn} +n})[r,(r, +2r,) +4(r, +2r,)]
+K[ry(r, —n)+2Q2r +r,)+2]
VP =2[-K(1+2r,)+r,(2Kn} —3K - 2]
VP = (ryr, +2r,)2Kn? + K=2)+K[2 -r,(r, +21,)] (4-56)
W =-2Kryn,
WP = —K(ryr, +2r,)n,

From equation (4-46), the derivative to the first order solution F' yields

) e KX
DF'=hY A[nn,e"™: [ Re gt _pn n e"X: [ R e "+m)ds

] PLirre2 i 17%2 ]

= -] -]

X w,
+nlnze"1kX: {Rie-(n,--m )ldt _ nlnzen:b\’: £Rie-(n;-nz)tdt]
—nkX> —nkX, —n;kX5 —nkX.

2 kX, KXty
= hz Ai [nlnzenlkxz J‘ R‘_e-(m +1a )ldt _ nlnzen-_;b\’: IRie_(”,..mz),dt
i=l - !

+n,n2eka: fR,-e'(""”‘ )tdt _ nlnzenzkxz j‘Rie-(n,-—nz)rdt]
0 0
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For the second order derivative, we have

2 kX, kXA

S 2 ] i - 2 _mkX, - =(n; +n,
D’F' =hY A,[nin,e"™ | Re ™™gt —nnle™*: [R.e gy

i=l © ]

kX, i,
- nlznzenlsz le.e_("’—”l )’dt + nlngenlkx;’ IRie‘(’li-ﬂz)!dt]
0 0
+nmn,Re e mn,R;e ke nn, R,.e""""{2 +nyn, R,.e"""x2

2 KX, ,
2 Xy _ . X _ ’
= KX Almin, et [ Rt pynde s [R e
i=l » :

X, KX
_nlznzekaz IRie_("l_m )ldt + nlnge"zﬂz IRie—(n,-nz)ldt]
0 )
Continuing, the third order derivative becomes

2 KX, kX,

D’F' = hX 4[n}n,e"™ | Re™™*Vdt—nnle™*: [Re ™" dt
Pl 1772 i 1772 i
= €®n ©

kX kX,
+nin,e™™*2 [Re™ ™ dt —p niem¥: [Re "]
0 0
+njn,Re”"™™ —nnRe™*: —~nln,Re ™™ +nn?R.e "™

2 kX, kX,
=hY A,[njne™ | Re ™™ dt —pnie™™ [Re " dr
i=l @ ©

X, kX,
_nisnzenlsz IRie-(n;-m )ldt +nln§enzb\’z le_e—(n,-nz)rdt]
0 0

From the above equations, we obtain
2
-(K-2)D’F' = Kn}F' = X n,h(K - 1) A[(n} +1)I, =2n,n,1,,]
i=1

(K-1(K-2)DF' - K*nlDF' + KD*F'
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where

and

2
=hY Ann,(K-D[2I,, ~(1+n})],]
i=1

I. =

if

O 8

2
N n- ) !
+Izl{—M,.‘ Yoy +[ L +(n; +n, )M

@
0 _ —(m+n,)kX,
E) = E(’ke,,e dx,

Then, the boundary conditions become

+W" D’e,, +W,? D’ey, +h(K ~Dn, {(1 +n{); =2mm, 1, }]Ai =0

and

The preceding equations can be further expressed in matrix form as

where

2 — —
E[-anz —(K=-20} +z+U e, +UP e, +V,\" De,, +V,® De,,

2 —_ —_—
Z (K - 1)K ~2) - Knj + Kn} + Kz, + Ul e, + U3 ey

+Vy; Deyy +Vy Dey, + Wy’ D'eyy + W, D'ey

+h(K -Dnn,[21, _(I+nlz)1i2]}Ai =0

(G, +a;z+b;)4; =0
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i

~(m+n;)kXs 2 2 2 2 ~1
kRe™ "7 dX, =[n] —n] + K(n} —n3)][n; +n;]

}

(4-61)

(4-62)

(4-63)

(4-64)

(4-65)

(4-66)



Gy, ==Knm; —(K-2)m =~(K -1)(n} +1)
G,, =—Kn} — (K -2)n? = -2(K - )n?

G,, ={(K-1)(K-2)-K*n} = Kn?ln, =2(K - D)n,

= —~[(K=1)(K =2)~K?n? —Kn2n, = (K —1)(1+7r)n,
el - l)[I+n,2 n,
4n,2 n, +n2:|
2
1+K_1[1 1+n,
a. = —
12 2K n,(n, +n,)
K-1 1+n?
ay =—-Kn, + [l—n'( n,)]
2n, n, +n,
K-1 1 14n?
az-_, ——an - [ - l ]

K "n+n, 4n,

—rrh, v MmN, N, () 2 (2) 2
b, =U\ e, +Uj’ e, +V}) Dey + V] De,, +W,,’ D e,; + W;;” De,,

+h(K =), [(1+ )P ~2n,n, 1P ]

1 2 1 2 D 2. 2
by, Ul(z)en +Ul(2)e'72 +V1(2)Den '*'Vl(z)Dezz +Wl(2)D €, '*'Wl(z)Dz

+h(K = Dn,[(L+n)) P = 201,12

N 2T DN, DA, 1 2 2 2
by, = Uz(x)en +U2(])e22 +V2(,)De“ +V2(1 )Dezz +Wz(1)D ey +W2(| 'D €y

+h(K-Dnn,[2IF -1 +n})IP]

—_rran, ), M, AN, ) 12 2) N2
by, =Uy e, +Uy’ ey, +Vy,’ De, + V5 De,, + Wy, D’e, + W,y D’e,,

+h(K =Dy [212 — 1 +n2)[2]
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2 —
@ i ! M
Iij) =I§{—Mi”e,,+[Lf)+(n,.+nj)M,. g

The nontrivial solution for 4; requires

G;+a;z+b;|=0 (4-68)
Here, z and b;are of the order of the initial strains and are small in comparison with G ;

thus,z can be determined with the first order perturbation approach.

The zeroth order solution, which represents the stress-free case, requires

Gll Gl2
GZI GZZ

=0 (4-69)

Solving this equation, the Rayleigh wave velocity for an isotropic medium can be

derived. In explicit format, equation (4-68) becomes

G, +a,z+b,;, G, +a,z+b,

= 4.7
G, +a,z+b,, Gy, +a,z+b, 0 (4-70)

Neglecting second order terms and with the aid of the zeroth order equation, we obtain

- Giibyy +Gpby, —Gb,y, = Gyby,

(4-71)
G ay +Gna,, —Ga,, - Gyay,
Then
AV zZV}
—_—=— 4-72
Vo 2V02 ( )

Obviously, a;andG; are functions of the second and third order elastic moduli, and,

thus, are constants. It is b that reflects the acoustoelastic effect.
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If one models the strain distributions through the thickness as an nth order

polynomial, then

e,=a,+a,X, +a,X; +a; X3 +..+a X;

ey, =by +b,X, +b, X7 +b, X2 +..+b X2

and
e—”=a0 a=bo
De,, =a, /k De,, =b,/ k

D’e,, =a, | k? D’e, =b, | k*

From equation (4-63), we have

o «© n g
EJ = [keye™ ™™ dX, = [ k(Xa, X7 ™",
0 0 m=

@ * n
- kXy —(n;+n,)iX,
EP = [keye ™™ dX, = [k(Zh,X)e """ dx,
0 S0 m=0 -

Since

k”l+

[tme®dt =
0
we obtain from equations (4-75) and (4-76)

= am!
EM =Y _—m - __
11 'Eo(znl)m*-lkm

n b m!
E®D =y _—m _—
11 m§0(2nl)m+l km
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L] a,m!
m _ g _ m
ElZ EZl m2=:o(n| +n2 )m+lkm
n b, m!
E® - E® m 4-78
12 2] Eo(nl +n2)m+lkm ( )
ED = i a,m!

m=°(2n2 )m+l km

n b m!
E_(’2) =S —_m
22 mz=0(2n2)m+l km

Thus, the velocity change from the unstressed state may be expressed as
AV IV, =Ba,+fBa, k+Ba, k*+Ba,/ K*+.+Ba, k"

+ oDy + 710, [ k+y,b, 1 K + 130, | K+ 4y, b, | K" (4-79)
where £ and y; are functions of the second and third order elastic constants listed in
Appendix A.

It is noted that the relative change of the velocity of the Rayleigh wave is a
function of the wave numberk . By definition, the Rayleigh wave is dispersive. Thus, by
measuring the relative change of the phase velocity of different frequency Rayleigh

waves, it will be possible to reconstruct a stress field by measuring these relative velocity

changes.

4.2 Numerical Simulation

To further explore the application of Rayleigh wave dispersion to strain

reconstruction, consider a special case:
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0,=05,=0 (4-80)
e, =e,=a+bX, +cX; (4-81)

For a mild steel with the material constants listed in Table 4.1, we have
AV IVy=da+Ablk+Aclk* - (4-82)
A, =-0274 A, =-0214 A, =-255 (4-83)
Rayleigh wave dispersions corresponding to different strain fields are shown in
Fig. 4.2 through Fig. 4.4. Since there are three constants a, b, and ¢ to be determined,
three different frequency Rayleigh waves sh'o.uld' be employed. In this simulation, two
sets of Rayleigh waves for the reconstruction are utilized: a first set of 1, 5, 10 MHz and a

second one of 2, 3, 5 MHz. Reconstruction results are shown in Fig. 4.5 through Fig.

4.10.

Table. 4.1 Material properties of a mild steel.

Density | Lamé Constants | Third-Order Elastic Constants | Rayleigh Wave Speed

(kg/m®) (x10"°Pa) (x10"Pa) ( m/sec)
P A H Vi V2 V3 Vo
7837 10.74 | 8.19 -1.3 -20.0 -20.0 3109

93



Dv/V

0.0000

— 2=0.0007
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-0.0003 T I T l T
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Fig. 4.2 Dispersion of Rayleigh waves for different surface strains.
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-0.00002

~0.00006 —
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Fig. 4.3 Dispersion of Rayleigh waves for different linear

coefficients of strain distribution.
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Fig. 4.4 Dispersion of Rayleigh waves for different quadratic

coefficients of strain distribution.
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Fig. 4.5 Surface strain field reconstruction using Rayleigh

waves of 1, 5, and 10 MHz.
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160.00 — ] Reconstruction result
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Fig. 4.6 Linear strain field reconstruction using Rayleigh waves of 1, 5, and 10 MHz.
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Fig. 4.7 Quadratic strain field reconstruction using Rayleigh waves of 1, 5, and 10 MHz.
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Fig. 4.8 Surface strain field reconstruction using Rayleigh waves of 2, 3, and 5 MHz.
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Microstrain
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0.000 0.002 0.004 0.006 0.008 0.010
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Fig. 4.9 Linear strain field reconstruction using Rayleigh waves of 2, 3, and 5 MHz.
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Fig. 4.10 Quadratic strain field reconstruction using Rayleigh waves of 2, 3, and 5 MHz.
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4.3 Discussion

From equation (4-79), it is found that the extent of the Rayleigh wave dispersion
is determined by the nature of the strain field and the Rayleigh wave frequency. This
means that the details of the changes in the strain field with depth and the proper selection
of the Rayleigh wave frequency will be crucial for this technique. For a uniform strain
case, as a; = b, =0, when i > 0, all the & terms will vanish in equation (4-79); thus, there
will be no dispersion. This conclusion has been verified in Rayleigh wave
acoustoelasticity. It should be noted that the lower the frequency of the Rayleigh waves,
the higher the dispersion. Thus, low frequency Rayleigh waves are preferred for
reconstruction purposes. In many problems, however, the sample thickness limits the
frequencies which can be used. Since the penetration depth for Rayleigh waves is about
equal to their wave length, care must be taken to ensure that the basic assumptions for
surface wave propagation are still met. Generally speaking, there is no absolute half space
in practice. Only if the sample thickness is much larger than the penetration depth can
Rayleigh waves be well defined. The wave length of several different frequency Rayleigh
waves propagating in the mild steel used for the simulation are listed in Table 4.2.

Fig. 4.2 shows the relative change of the Rayleigh wave speeds when the surface
strains are different. The polynomial strain distribution pattern remains the same. The
surface strains were assumed to be 100, 400, and 800 micro strain, respectively. It is seen
that these three curves are almost parallel to each other and follow the same trend.

Dispersion is prominent at low frequencies and diminishes as the frequency goes up. In
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the high frequency range, the curves asymptotically approach a constant level as in the
uniform strain case. This is due to the fact that the penetration depth of the Rayleigh
waves is small; therefore, these waves are virtually insensitive to small changes in
material properties with depth. An observation in Fig. 4.3 is that the relative change of
the Rayleigh wave speed due to dispersion is small in comparison with the surface strain.
If the surface strain difference is 300 micro strain, for example, as in the first two curves,
the relative change of the Rayleigh wave speed will be 0274*300*10° = 0822*107.
However, even when using very low frequency Rayleigh waves, the relative ch;nges of

speed are still less than 0.5* 107 in each of the three cases.

Table 4.2 Wave lengths of Rayleigh waves corresponding to certain frequencies.

Resonant Frequency ( MHz ) Wave Length (mm)
1 3.11
2 1.56
3 1.04
5 0.62
10 0.31
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Fig. 4.3 and Fig. 4.4 reflect Rayleigh wave dispersion when only b (Fig. 4.3) and
c (Fig. 4.4) are different, respectively, in equation (4-81). In Fig. 4.3, dispersion is
obvious for frequencies below 5 MHz. Here, the three curves gradually approach to a
constant after 10 MHz. This actually agrees with the conclusions drawn previously. As
the frequency increases, the relatively change of the Rayleigh wave velocity is only
affected by the strain at the surface, i.e., the coefficient @ in equation (4-81). In Fig. 4.4,
the curves show the same tendency as in Fig. 4.3. However, the threshhold of the
frequency at which dispersion begins to disappear reduces to about 5 MHz. It can be
predicted that, for tﬁe higher order coefficient cases, the threshhold frequencies that
reflect the Rayleigh wave dispersion will become smaller and smaller.

Fig. 4.5 shows the surface strain reconstruction results using Rayleigh waves of 1,
5, and 10 MHz. Since there is no dispersion, the three different measurements give the
same relative changes of the Rayleigh wave speeds, thus, b and ¢ are zero. In Fig. 4.6,
two different linear strain distributions are reconstructed with both quadratic coefficients
set to zero. In Fig. 4.7, three different quadratic strain fields are reconstructed. In Fig. 4.8
to Fig. 4.10, using Rayleigh waves of 2, 3, and 5 MHz, the strain field reconstruction
results are almost identical to those derived by using Rayleigh waves of 1, 5, and 10
MHz. These reconstruction results show satisfactory agreement with the theoretical strain
distributions.

In order to determine the coefficients of the strain field as expressed in nth order

polynomial form in equation (4-79), Rayleigh wave measurements for 2(n+1) different
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frequencies are needed, and one must solve2(n +1) linear equations. Two approaches can
be used: exact or approximate. In order to avoid a singularity in the coefficient matrix,
only one frequency beyond the threshhold frequency can be selected to determine the
surface strain at X, = 0. Fortunately, the frequency range of scanning acoustic microscopy
can be easily adjusted to suit this limitation and the quadratic assumption for strain
distribution is sufficiently accurate for many engineering applications.

Finally, as part of the theoretical study, let us consider equation (4-69) which
represents the stress-free case to deduce the conventional equation for determining the
velocity of the Rayleigh wave in an isotropic material. With the aid of equation (4-67),
equation (4-69) yields

—(+n ) ny(K-1)? +4nn; (K-1)° =0 (4-84)

The equation can be further simplified to

(1+n?)* =4nn, (4-85)
Substituting equations (4-29) to (4-31) into the above equation and taking the square of
both sides, we have

2 2

2-232 _1601- )(1 _# K (4-86)
V2 V,zo A+2u V,Zo
After algebraic manipulation, we obtain
31 +4u V3 A+u
[( )—8( ) ( ,)— (4-87)
v V2 l +2u A+2u V7

or
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Ve o Ve o J3A+4u V7, A+p
—8(=3)¢ +8=——(=2)* -16 =
G2 =8y #8775 S Gy 16575 7 =0 (488)

This is the familiar Rayleigh wave equation from basic elastic theory. It can be shown
that only one of the six roots will meet the requirements for the Rayleigh wave from

which the Rayleigh wave velocity can be derived.

107



CHAPTER V

CONCLUSIONS

In the previous chapters, two different ultrasonic approaches for in-plane stress
analysis were introduced. In contrast to conventional acoustoelastic techniques, which
measure stress-induced wave speed changes, the first approach, introduced in Chapter III
employs a new concept, utilizing amplitude information of the ultrasonic wave to
characterize in-plane stress. The theoretical study shows that the shear wave interference
amplitude yields information about the difference of the principal stresses or, in other
words, the maximum shear stress in the plane stress problem. The second approach,
discussed in Chapter IV, is a surface wave technique based on the fact that an isotropic
medium becomes dispersive for surface waves when subjected to a non-uniform strain or
stress. Thus, different frequency surface waves can be utilized to characterize the stress or
strain. Even though these two approaches fall into different categories in
acoustoelasticity, two common points should be noted: (1) Both of the approaches
employ scanning acoustic microscopy to avoid the coupling problems encountered in

conventional acoustoelastic techniques and both are suitable for scanning purposes.
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(2) First-order perturbation methods are successfully utilized to derive the phase
velocities of shear waves and surface waves, respectively.

As far as the first amplitude approach was concerned, it was experimentally
proven to be more sensitive than the conventional time delay measurement techniques
[29]. However, lack of a sound theoretical base, or more specifically, the explanation of
how the resulting scanning microscopy signal relates to the stress to be measured was
missing. This study provides an analysis of the problem and quantitative comparisons
between the model and experiments. The numerical simulation results are in good
agreement with the scanning acoustic microscopy experimental results after a linear
calibration. In an effort to provide more realistic stress or strain results in the simulation,
a nonlinear FEA study with displacement controlled loading scheme was conducted. For
the first-order perturbation approach to solve the Christoffel equations, this study
followed a well-known procedure that is equivalent to expanding eigenvalues and
eigenvectors into perturbation series due to the perturbation of the corresponding
eigenvalue problem, and keeping the leading terms of these series. However, as the
unperturbed medium was degenerated (the eigenvalues corresponding to the two shear
waves were equal), special care had to be taken to derive the two quasi-shear wave
velocities. It should be noted that although the unperturbed medium was degenerated, the
specification of the polarization vectors was unique. It was controlled by the Christoffel
tensor. This procedure was selected because of its mathematical conciseness and

elegance.
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The theoretical study of the Rayleigh wave dispersion approach was rather
complicated and tedious because inhomogeneous strains in governing equations were
considered. Even with a first-order perturbation approximation, the full expressions of the
solution still appear to be cumbersome. However, formulas for the Rayleigh wave
velocity change induced by nonuniform stress or strain in depthwise direction can be
somewhat simplified after certain acoustoelastic constants are defined. From the Rayleigh
wave dispersion plots, it was concluded that low frequency Rayleigh waves are preferred
for stress reconstruction purposes. Care must be taken, however, to ensure the plate
thickness to be large enough to avoid Rayleigh-Lamb type guided waves from being
evoked. The simulation showed good results in reconstructing synthetic in-plane stress
distributions from frequency dependent Rayleigh velocity data.

Obviously, the study of these two new acoustoelastic approaches remains in a
preliminary stage. In the first approach, to simplify the problem, an axisymmetric
assumption was imposed on the incident longitudinal wave and the two refracted shear
waves had to be assumed of the same amplitude. A detailed algorithm for acoustic
microscopy is also still unknown. All of the unknown factors have to be compensated for
by linear calibration. In the second Rayleigh wave approach, experimental support is still
missing to verify the theoretical predictions. Much more research is needed to mature the

techniques into a practical residual stress measurement tool.
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APPENDIX A

RAYLEIGH WAVE DISPERSION EQUATIONS

If the strains in the thickness direction of a plane stress problem may be expressed
in an nth order polynomial as in equation (4-73), the relative change of the Rayleigh

wave velocities 1s obtained:

AV IV, =Ba, +Ba,/k+Ba, k> +Ba, | E*+.+Ba, k"

+¥obo +7 by [k +y,b, [ K +yiby [ K+ Ay,b, | k" (A-1)
where
B =C S +C,SY +C,8Q +C, S (A-3)
B =CSY +C,SY +C,85) +C,S5) (A-4)
B, =CSY +CS8Y +C,85) +C, S5 (A-5)
B =CSY +C,SY +C,8 +C,SY (A-6)
B, =CSP +C, 8P +C,SP +C,SY (A-7)
7o =CSP +C, 8P +C,SQP +C, S (A-8)
71=CSP + G850 +C85P +C,5 (A-9)
7, =CSP +CS8Y +C,S3F +C, 8 (A-10)
73 =CSP +CSP +C;SP +C, 89 (A-11)
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APPENDIX B

STRESS RESULTS OF FEA SIMULATION

Along the transverse center line of the disk, the stress components fora 716 N
compression load were:

NODE SX SY SZ SXY SYZ SXZ
2 -164.69 -293.05 .00000 4.2739 .00000 .00000
43 -141.11 -287.85 .00000 8.6066 .00000 .00000
44 -82.167 -265.66 .00000 24.109 .00000 .00000
45 -20.373 -222.62 .00000° 27.750 .00000 .00000
46 -5.6094 -179.78 .00000 18.516 .00000 .00000
47 -49097 -14642 .00000 13.630 .00000 .00000
48 17352 -120.54 .00000 9.8830 .00000  .00000
49 27717 -101.08 .00000 7.2719 .00000 .00000
50 3.2762 -86.268 .00000 5.4721 .00000 .00000
51 3.5329 -74.724 .00000 42080 .00000 .00000
52 3.6674 -65.537 .00000 3.3015 .00000 .00000
53 3.7394 -58.082 .00000 2.6363 .00000 .00000
54 3.7784 -51.930 .00000 2.1381 .00000 .00000
55 3.7995 -46.778 .00000 1.7576 .00000  .00000
56 3.8106 -42.410 .00000 14621 .00000 .00000
57 3.8161 -38.667 .00000 1.2292 .00000 .00000
58 3.8185 -35429 .00000 1.0430 .00000 .00000
59 3.8191 -32.605 .00000 .89243 .00000 .00000
60 3.8189 -30.124 .00000 .76965 .00000 .00000
61 3.8182 -27.932 .00000 .66924 .00000 .00000
62 3.8170 -25.985 .00000 .58706 .00000 .00000
63 3.8154 -24250 .00000 .51911 .00000 .00000
64 3.8139 -22.697 .00000 46147 .00000 .00000
65 3.8128 -21.304 .00000 41137 .00000 .00000
66 3.8119 -20.049 .00000 .36720 .00000 .00000
67 3.8113 -18916 .00000 .32799 .00000 .00000
68 3.8107 -17.894 .00000 .29298 .00000 .00000
69 3.8101 -16.969 .00000 .26154 .00000 .00000
70 3.8095 -16.134 .00000 .23313  .00000 .00000
71 3.8089 -15.380 .00000 .20731 .00000 .00000
72 3.8083 -14.702 .00000 .18367 .00000 .00000
73 3.8076 -14.094 .00000 .16188 .00000 .00000
74 3.8069 -13.552 .00000 .14161 .00000 .00000
75 3.8061 -13.072 .00000 .12258 .00000 .00000
76 3.8053 -12.654 .00000 .10451 .00000 .00000
77 3.8044 -12.295 .00000 .08713 .00000 .00000
78 3.8035 -11.996 .00000 .07015 .00000 .00000
79 3.8027 -11.757 .00000 .05325 .00000 .00000
80 3.8019 -11.581 .00000 .03614 .00000 .00000
81 3.8013 -11.472 .00000 .01849 .00000 .00000
42 3.8010 -11.434 .00000 .09249 .00000 .00000
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The stress components for a 910 N compression load were:

NODE SX
2 -170.28
43 -154.82
44 -102.30
45 -35.422
46 -14.423
47 -5.9755
48 -1.6083
49 .80883
50 22177
51 3.0772
52 3.6215
53 3.9774
54 42166
55 43811
56 4.4966
57 4.5792
58 4.6392
59 4.6833
60 4.7164
61 4.7414
62 4.7600
63 4.7739
64 4.7847
65 4.7934
66 4.8004
67 4.8061
68 4.8107
69 4.83142
70 4.8170
71 4.8192
72 4.8207
73 4.8218
74 4.8225
75 4.8228
76 4.8228
77 4.8226
78 4.8221
79 4.8216
80 4.8210
81 4.8204
42 4.8201

SY
-293.73
-289.25
-270.92
-235.28
-198.11
-166.29
-140.15
-119.67
-103.54
-90.638
-80.147
-71.488
-64.242
-58.107
-52.857
-48.323
44376
-40.915
-37.863
-35.155
-32.742
-30.585
-28.651
-26.912
-25.343
-23.925
-22.642
-21.482
-20.433
-19.485
-18.631
-17.865
-17.182
-16.577
-16.049
-15.597
-15.219
-14.917
-14.695
-14.557
-14.510

SZ
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
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SXY
6.1470
7.7561
19.444
23.887
17.614
13.710
10.371
7.8933
6.1016
4.7947
3.8279
3.1001
2.5432
2.1104
1.7693
1.4970
1.2771
1.0977
.95030
.82901
.72923
.64636
57578
51418
45968
41114
.36769
32857
.29314
.26088
23129
20397
17852
.15460
13187
10997
.08856
06724
.04564
.02336
01168

SYZ
.00000
.00000
.00000
.00000
.00000

.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

SXZ
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000



The stress components for a 1110 N compression load were:

NODE SX SY Sz SXY SYzZ SXZ
2 -161.48 -301.83 .00000 2.0002 .00000 .00000
43 -152.97 -299.29 .00000 4.5636 .00000 .00000
44 -142.75 -290.39  .00000 9.0460 .00000 .00000
45 -87.965 -270.41 .00000 18.284 .00000  .00000
46 -23.957 -235.54 .00000 20.596 .00000 .00000
47 -7.8874 -202.73 .00000 15.144 .00000 .00000
48 -1.3279 -175.57 .00000 12.369 .00000 .00000
49 2.0272 -151.30 .00000 9.9463 .00000 .00000
50 3.7824 -131.00 .00000 7.8173 .00000 .00000
51 4.7259 -11448 .00000 6.1857 .00000 .00000
52 52449 -100.96 .00000 4.9396 .00000 .00000
53 5.5381 -89.798 .00000 3.9911 .00000 .00000
54 5.7071 -80.478 .00000 3.2624 .00000 .00000
S5 5.8064 -72.614 .00000 2.6966 .00000 .00000
56 5.8654 -65911 .00000 2.2519 .00000 .00000
57 5.9007 -60.144 .00000 1.8984 .00000 .00000
58 5.9219 -55.142 .00000 1.6142 .00000 .00000
59 5.9345 -50.771 .00000 1.3833 .00000 .00000
60 5.9420 -46.926 .00000 1.1944 00000 .00000
61 59462 -43524 .00000 1.0395 .00000 .00000
62 59480 -40.500 .00000 .91249 .00000 .00000
63 59481 -37.802 .00000 .80732 .00000 .00000
64 59476 -35.388 .00000 .71802 .00000 .00000
65 59471 -33.219 .00000 .64030 .00000 .00000
66 59468 -31.266 .00000 .57172 .00000 .00000
67 5.9464 -29.503 .00000 .51080 .00000 .00000
68 59460 -27.910 .00000 45637 .00000 .00000
69 59455 -26470 .00000 40747 .00000 .00000
70 5.9448 -25.169 .00000 .36327 .00000 .00000
71 59441 -23.995 .00000 .32307 .00000 .00000
72 59432 -22.938 .00000 .28627 .00000 .00000
73 59423 -21.990 .00000 .25232 .00000 .00000
74 5.9412 -21.145 .00000 .22075 .00000 .00000
75 59400 -20.398 .00000 .19110 .00000 .00000
76 59388 -19.745 .00000 .16295 .00000 .00000
77 59374 -19.186 .00000 .13585 .00000 .00000
78 59361 -18.719 .00000 .01093 .00000 .00000
79 5.9348 -18.347 .00000 .08304 .00000 .00000
80 59336 -18.072 .00000 .05636 .00000 .00000
81 59327 -17.902 .00000 .02884 .00000 .00000
42 59321 -17.844 .00000 .01442 .00000 .00000

129



The stress components for a 1310 N compression load were:

NODE SX SY SZ SXY SYZ SXZ
2 -171.64 -302.27 .00000 1.7106 .00000 .00000
43 -163.22 -299.76 .00000 4.6544 .00000 .00000
44 -149.63 -291.54 .00000 8.0105 .00000 .00000
45 -102.94 -27478 .00000 15.399 .00000 .00000
46 -37.525 -24534 .00000 18.092 .00000 .00000
47 -15.668 -21579 .00000 14.321 .00000 .00000
48 -6.8589 -19005 .00000 11.975 .00000 .00000
49 -1.7060 -16648 .00000 9.9454 .00000 .00000
50 13554 -146.12 .00000 8.0267 .00000 .00000
51 3.2368 -129.11 .00000 6.4925 .00000 .00000
52 44281 -11488 .00000 5.2814 .00000 .00000
53 52059 -10292 00000 4.3337 .00000 .00000
54 57273 -92.781 .00000 3.5886 .00000 .00000
55 6.0853 -84.117 .00000 2.9985 .00000 .00000
56 6.3361 -76.653 .00000 2.5270 .00000 .00000
57 65151 -70.174 .00000 2.1467 .00000 .00000
58 6.6449 -64.513 .00000 1.8371 .00000 .00000
59 6.7405 -59.533 .00000 1.5830 .00000 .00000
60 6.8120 -55.130 .00000 1.3731 .00000 .00000
61 6.8658 -51.216 .00000 1.1998 .00000 .00000
62 6.9064 -47.724 00000 1.0568 .00000 .00000
63 6.9370 -44.598 .00000 .93777 .00000 .00000
64 6.9606 -41.792 .00000 .83614 .00000 .00000
65 6.9795 -39.265 .00000 .74727 .00000 .00000
66 6.9947 -36.985 .00000 .66850 .00000 .00000
67 7.0069 -34.923 .00000 .59824 .00000 .00000
68 7.0167 -33.056 .00000 .53527 .00000 .00000
69 7.0244 -31.367 .00000 .47851 .00000 .00000
70 7.0305 -29.839 .00000 .42707 .00000 .00000
71 7.0352 -28.458 .00000 .38018 .00000 .00000
72 7.0388 -27.213 .00000 .33715 .00000 .00000
73 7.0415 -26.097 .00000 .29739 .00000 .00000
74 7.0433 -25.100 .00000 .26034 .00000 .00000
75 70444 -24.219 00000 .22549 .00000 .00000
76 7.0450 -23.449 00000 .19236 .00000 .00000
77 7.0451 -22.788 .00000 .16044 .00000 .00000
78 7.0449 -22.237 00000 .12921 .00000 .00000
79 7.0443 -21.797 .00000 .09812 .00000 .00000
80 7.0436 -21.473 .00000 .06661 .00000 .00000
81 7.0429 -21.272 .00000 .03408 .00000 .00000
42 7.0425 -21.203 .00000 .01705 .00000 .00000
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The stress components for a 1510 N compression load were:

NODE SX SY SZ SXY SYZ SXZ
2 -181.18 -302.11 .00000 1.5236 .00000 .00000
43 -172.53 -299.78 00000 4.5159 .00000 .00000
44 -155.02 -292.50 .00000 6.9338 .00000 .00000
45 -115.85 -278.67 .00000 12353 .00000 .00000
46 -52.826 -255.52 .00000 16.010 .00000 .00000
47 -23.008 -22849 .00000 13.790 .00000 .00000
48 -12.444 -203.26 .00000 11.488 .00000 .00000
49 -5.5568 -180.56 .00000 9.8348 .00000 .00000
50 -1.1863 -160.37 .00000 8.1603 .00000 .00000
51 1.6493 -143.03 .00000 6.7451 .00000 .00000
52 3.5295 -128.21 .00000 5.5850 .00000 .00000
53 4.8052 -115.54 00000 4.6484 .00000 .00000
54 5.6889 -104.65 .00000 3.8938 .00000 .00000
55 63128 -95.234 00000 3.2843 .00000 .00000
56 6.7607 -87.050 .00000 2.7893 .00000 .00000
57 7.0871 -79.892 00000 2.3846 .00000 .00000
58 7.3283 -73.597 .00000 2.0515 .00000 .00000
59 7.5088 -68.033 .00000 1.7755 .00000 .00000
60 7.6456 -63.091 .00000 1.5459 .00000 .00000
61 7.7502 -58.683 .00000 13550 .00000 .00000
62 7.8303 -54.737 .00000 1.1967 .00000 .00000
63 7.8918 -51.195 .00000 1.0642 .00000 .00000
64 7.9400 -48.010 .00000 .95073 .00000 .00000
65 79785 -45.136 .00000 .85108 .00000 .00000
66 8.0095 -42.538 .00000 .76245 .00000 .00000
67 8.0344 -40.185 .00000 .68317 .00000 .00000
68 8.0545 -38.054 .00000 .61190 .00000 .00000
69 8.0705 -36.122 .00000 .54753 .00000 .00000
70 8.0834 -34.372 .00000 48906 .00000 .00000
71 8.0937 -32.791 .00000 43567 .00000 .00000
72 8.1017 -31.365 .00000 .38659 .00000 .00000
73 8.1080 -30.084 .00000 .34118 .00000 .00000
74 8.1128 -28.941 .00000 .29881 .00000 .00000
75 8.1163 -27.929 .00000 .25892 .00000 .00000
76 8.1187 -27.045 .00000 .22094 .00000 .00000
77 8.1202 -26.286 .00000 .18433  .00000 .00000
78 8.1210 -25.652 .00000 .14849  .00000 .00000
79 8.1213 -25.147 00000 .11278 .00000 .00000
80 8.1211 -24.774 00000 .07657 .00000 .00000
81 8.1206 -24.543 .00000 .03918 .00000 .00000
42 8.1202 -24.463 .00000 .01961 .00000 .00000
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The stress components for a 1700 N compression load were:

NODE SX SY Sz SXY SYZ SXZ
2 -189.39 -30146 .00000 1.6353 .00000 .00000
43 -180.25 -29947 .00000 4.0669 .00000 .00000
44 -159.01 -29339 .00000 5.8341 .00000 .00000
45 -128.81 -282.36 .00000 10.218 .00000 .00000
46 -67.373 -263.89 .00000 13.932 .00000 .00000
47 -30.246 -239.61 .00000 13.062 .00000 .00000
48 -18.171 -215.17 .00000 10.898 .00000 .00000
49 -9.5643 -193.57 .00000 9.6211 .00000 .00000
50 -3.8620 -173.75 .00000 8.2280 .00000 .00000
51 -.04899 -156.22 .00000 6.9509 .00000 .00000
52 25391 -140.92 .00000 5.8548 .00000 .00000
53 43266 -127.61 .00000 4.9377 .00000 .00000
54 5.5827 -116.02 .00000 4.1795 .00000 .00000
55 6.4796 -10590 .00000 3.5545 .00000 .00000
56 7.1296 -97.037 .00000 3.0388 .00000 .00000
57 7.6070 -89.233 .00000 2.6119 .00000 .00000
58 7.9621 -82.334 .00000 22570 .00000 .00000
59 82294 -76.209 .00000 1.9604 .00000 .00000
60 8.4328 -70.750 .00000 1.7119 .00000 .00000
61 8.5889 -65.866 .00000 1.5043 .00000 .00000
62 8.7093 -61.483 .00000 13313 .00000 .00000
63 8.8024 -57.542 .00000 1.1861 .00000 .00000
64 8.8755 -53.991 .00000 1.0611 .00000 .00000
65 8.9339 -50.783 .00000 .95112 .00000 .00000
66 8.9808 -47.879 .00000 .85300 .00000 .00000
67 9.0186 -45.246 .00000 .76501 .00000 .00000
68 9.0490 -42.858 .00000 .68576 .00000 .00000
69 9.0736 -40.693 .00000 .61404 .00000 .00000
70 9.0933 -38.731 .00000 .54830 .00000 .00000
71 9.1091 -36.956 .00000 .48914 .00000 .00000
72 9.1217 -35.354 .00000 .43424 .00000 .00000
73 9.1316 -33.915 .00000 .38337 .00000 .00000
74 9.1393 -32.631 .00000 33587 .00000 .00000
75 9.1452 -31.493 00000 .29112 .00000 .00000
76 9.1495 -30.499 .00000 .24848 .00000 .00000
77 9.1525 -29.645 .00000 .20735 .00000 .00000
78 9.1543 -28.933 .00000 .16706 .00000 .00000
79 9.1554 -28.364 .00000 .12690 .00000 .00000
80 9.1557 -27.945 .00000 .08616 .00000 .00000
81 9.1555 -27.684 .00000 .04409 .00000 .00000
42 9.1551 -27.595 .00000 .02207 .00000 .00000
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The coordinates of the listed nodes were as follows:

NODE X Y Z THXY THYZ THZX
2 .12246E-14 20.000 .00000 00 .00 .00
43 .12124E-14 19.800 .00000 .00 .00 .00
44 .11996E-14 19.591  .00000 00 .00 .00
45 .11863E-14 19.374 .00000 .00 .00 .00
46 .11724E-14 19.148 .00000 00 .00 .00
47 .11580E-14 18911 .00000 00 .00 .00
48 .11429E-14 18.666 .00000 .00 .00 .00
49 .11272E-14 18.409 .00000 .00 .00 .00
S0 .11109E-14 18.142 .00000 .00 .00 .00
51 .10938E-14 17.864 .00000 00 .00 .00
52 .10761E-14 17.574 .00000 .00 .00 .00
53 .10576E-14 17.271  .00000 .00 .00 .00
54 .10383E-14 16.956 .00000 .00 .00 .00
55 .10182E-14 16.628 .00000 .00 .00 .00
56 .99720E-15 16.286 .00000 00 .00 .00
57 .97536E-15 15.929 00000 00 .00 .00
58 .95261E-15 15.557 .00000 .00 .00 .00
59 .92889E-15 15.170  .00000 .00 .00 .00
60 .90418E-15 14.766  .00000 00 .00 .00
61 .87842E-15 14.346 .00000 .00 .00 .00
62 .85158E-15 13.907 .00000 00 .00 .00
63 .82361E-15 13.451 .00000 00 .00 .00
64 .79446E-15 12.975 .00000 00 .00 .00
65 .76409E-15 12.478  .00000 .00 .00 .00
66 .73243E-15 11.961  .00000 00 .00 .00
67 .69944E-15 11.423  .00000 .00 .00 .00
68 .66506E-15 10.861 .00000 .00 .00 .00
69 .62923E-15 10.276 .00000 00 .00 .00
70 .59189E-15 9.6663  .00000 .00 .00 .00
71 .55298E-15 9.0308 .00000 00 .00 .00
72 .51242E-15 8.3685 .00000 .00 .00 .00
73 .47016E-15 7.6783  .00000 .00 .00 .00
74 42612E-15 6.9591 .00000 00 .00 .00
75 .38023E-15 6.2096 .00000 .00 .00 .00
76 .33240E-15 54284 .00000 .00 .00 .00
77 .28255E-1S5 4.6144 .00000 .00 .00 .00
78 .23061E-15 3.7661 .00000 .00 .00 .00
79 .17647E-15 2.8820 .00000 .00 .00 .00
80 .12006E-15 1.9607 .00000 .00 .00 .00
81 .61268E-16 1.0006 .00000 .00 .00 .00
42 .00000 .00000  .00000 00 .00 .00
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