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ABSTRACT

One of the most effective tools for observing the atmosphere at fine scales is the 
Doppler radar. In recent years, considerable research has been directed toward using 
radar data as a component of numerical prediction model initialization, especially at the 
meso- and storm-scales. In Korea, where locally heavy rainfall events cause tremendous 
damage and loss of life each year, radar data could be expected to have a significant 
positive impact on numerical forecast quality. The first step toward testing this 
hypothesis has been undertaken in the present study, the purpose of which is to assess the 
impact of WSR-88D radar data assimilation in the numerical forecast of a deadly heavy 
rainfall event in Korea.

We use the CAPS Advanced Regional Prediction System (ARPS), in combination 
with WSR-88D Level II data gathered by the US Air Force radar in Pyoungtaek, Korea, 
to generate a series of multi-resolution forecasts. One-way grid nesting is employed, 
with a horizontal resolution of 27-km for the coarse outer grid, 9-km for the middle grid, 
and 3-km for the inner fine grid. Incremental analysis updating (lAU) is employed to 
assimilate radar reflectivity and velocity data on the finest resolution grid, with variations 
made to the length of the assimilation window, the number of assimilation cycles, the 
time of model initialization, and various model parameters such as boundary condition 
update times.

A total of twenty six forecasts, two at 27-km, six at 9-km, and eighteen at 3-km 
resolution, were conducted. Quantitative verification is made against available 
observations, including accumulated rainfall estimates from the WSR-88D calibrated 
against surface gauge observations using software from Vieux and Associates, Inc. Our 
results suggest that radar data assimilation leads to significant improvements in forecast 
quality as measure by threat, equitable threat, and other quantitative and qualitative 
measures, though position errors in the maximum observed precipitation persist. It was 
clear that an experiment using three data inserts within a one-hour period, as compared 
to three inserts over a three hour period, produced the most skillful forecast. lAU is 
shown to be a viable mechanism for radar data assimilation, particularly in its ability to 
remove incorrectly-forecasted convection. We found that the positive impact o f  radar 
data fo r  this particular event, using a grid spacing o f  3 km, is approximately 3 to 4 hours 
process presented a limitation as forecast time increased. The structure and physical 
impact of the increments were examined for the rapid data assimilation case as well. The 
potential temperature, water substance, and vertical motion were incorporated well into 
the model forecast when employing radar data assimilation using lAU. This also led to a 
positive feedback mechanism in the convective system.

xvii



Chapter 1 

Introduction and Motivation

Heavy rainfall forecasting has long been one of the most scientifically challenging 

and societally important problems for meteorologists owing to the fact that associated 

flooding can produce significant human suffering and economic loss. For this reason, 

considerable attention has been given to this topic (e.g., Droegemeier et al. 2000). 

Indeed, during the past two decades in particular, numerous numerical simulation and 

observational studies have attempted to better understand the mechanisms associated with 

heavy rainfall as a means for improving its numerical prediction (references and a more 

detailed discussion are provided in Chapter 2).

It has long been recognized that the success of numerical weather prediction 

depends upon adequate representation of relevant physical processes, the use of suitable 

numerical solution techniques, and the quality of model initial and boundary conditions 

(e.g., Chamey et al. 1969; Anthes 1977; Gal-Chen 1978; Fox-Rabinovitz 1996; Rogers et 

al. 2000). With regard to the latter, Aonashi (1993), among others, showed that a poor 

initial condition can lead to large spin-up error, i.e., even though precipitation may be 

present at the initial time, the model prediction may not produce precipitation for several 

hours. This, as well as position error, is especially critical for precipitation prediction. In 

order to improve the initial condition of numerical models, considerable attention has 

been given to improving data assimilation techniques, to using new sources of remotely 

sensed data such as satellite data (e.g. Krishnamutri et al. 1991; Puri and Davidson 1992; 

Kasahara et al. 1994), radar data (e.g., Wang and W arner 1988; Takano and Segami



1993; Crook 1994; Rogers et al. 2000), and profiler data (e.g. Crook and Sun 2002), and 

to using increasingly fine grid spacings -  even down to the scale of individual convective 

elements (e.g., Birchfield 1960; Hemler et al. 1991; Belair et al. 1994; Warner and Hsu 

2000).

In this regard, one of the most powerful tools for remotely sensing the atmosphere 

at fine scales is the Doppler radar. For example, the W SR-88D (NEXRAD) radar 

network (Next Generation W eather Surveillance Radar-1988 Doppler; e.g., Klazura and 

Imy 1993) was intended initially to improve severe weather warnings. However, it soon 

was recognized that radial wind and hydrometeor reflectivity data had the potential to 

greatly improve the prediction of mesoscale and stormscale weather (e.g., Lilly 1990; 

Droegemeier 1997). [We use the term stormscale to indicate flows that are highly non­

hydrostatic and occur on temporal scales of one to a few hours. It may be viewed as 

synonymous with the meso-y scale.]

Since the study of Brewster et al. (1995) for making real-time forecasts with a 

simple, direct use o f radial velocity data, the Center for the Analysis and Prediction of 

Storms (CAPS) at the University of Oklahoma has had many ongoing efforts for using 

NEXRAD data in stormscale numerical forecasting. For example, techniques for 

retrieving all three components of wind given time series observations of radial velocity 

and reflectivity have been developed by CAPS scientists (Shapiro et al. 1995; Zhang and 

Gal-Chen 1996; Gao et al., 2001) and applied to actual storm cases (e.g., Weygandt et al., 

2002a,b). A new 3-D variational single-Doppler velocity retrieval (SDVR) method using 

reflectivity and anelastic mass continuity equations as weak constraints also has been 

developed (Gao et al. 1999).



The encouraging results obtained by CAPS and others (Sun 1994; Sun and Crook 

1994, 1997, 2001) are particularly important in light of the intense weather systems that 

occur frequently in southeast Asia. It is well known, for example, that heavy rainfall is 

the most hazardous and costly event among all kinds of weather disasters over the Korean 

Peninsula (National Disaster Prevention and Countermeasures Headquarters (NDPCH) 

1999). Compared to other natural disasters, as shown in Table 1.1, the loss of life and 

property damage associated with heavy rainfall average 46% and 59%, respectively, each 

year, even though the frequency of heavy rainfall is only 35%. On average, annual heavy 

rainfall event causes about 343 million U.S. dollars in property damage and the loss of 

213 lives. According to the Korea Meteorological Administration (KMA), a heavy 

rainfall event is defined as an observed rainfall amount greater than 100 mm for a single 

day at a given location, or greater than 150 mm for two consecutive days for at least one 

surface station. Table 1.2 shows the damage associated with ten recent major floods due 

only to heavy rainfall, excluding typhoons, in Korea.

Heavy rainfall occurs frequently over the Korean Peninsula during the summer 

season, especially in association with the Changma (East Asian summer monsoon). Lee 

et al. (1998) showed that three synoptic patterns typically are responsible for this yearly 

event. The first is associated with mesoscale convective systems (MCS) influenced by 

upper level troughs along the Changma front from late June through late July. Another is 

related to MCSs associated with an unstable air mass within the North Pacific subtropical 

high from middle August through early September, after the Changma season, and the 

third is associated with the influence of typhoons.



In light of the fact that Korea suffers significant loss from flooding nearly every 

year, considerable effort has been devoted to studying heavy rainfall forecasting, 

especially via numerical simulation. Whereas many studies have been performed 

successfully (e.g., Lee and Wee 1997), it is difficult to produce operational heavy rainfall 

forecasts because the size and lifetime of the most intense convective elements within 

MCSs, i.e., elements that produce extremely heavy rainfall locally, are relatively small 

and short-lived. Additionally, the complex topography in Korea makes heavy rainfall 

prediction an even greater challenge. An accurate hydrological forecasting as well as 

improved a meteorological forecasting should be considered in attempting to reduce 

severe damage caused by heavy rainfall, including the use of radar-based precipitation 

estimates. However, it is clear that a sophisticated stormscale numerical model, run at 

high resolution (1-2 km) with as much detail as possible in the initial conditions, likely 

will be needed to successfully predict heavy rainfall in Korea, and thus hopefully reduce 

the current loss of life and property.

Despite the importance of radar data for use in warning and numerical 

simulations, there remains to date no effort to include analyzed radar data in the data 

assimilation cycle of operational numerical weather prediction models in Korea. There 

are a number of reasons for this, including various limitations in the quality of KMA 

radar data and the lack of suitable data assimilation techniques. The first step in bringing 

Korean radar data into a numerical model for heavy rainfall forecasting has been 

undertaken within this study. The purpose is to assess the impact of NEXRAD data in 

the numerical forecast of a highly convective, localized heavy rainfall event in Korea, 

and to evaluate for small scale flows a relatively new data assimilation technique -



Table 1.1 Summary o f  natural disaster damage by cause in Korea (annual average)
(From NDPCH, 2001).

Heavy Rain Typhoon Others
Frequency (%) 35 32 32

Death and 
Missing (person)

213 (46 %) 125 (27 %) 79 (17 %)

Property Loss 
(million US $)

343 (59 %) 163 (28 %) 76 (13 %)

Table 1.2 The damage conditions o f  the ten major floods by heavy rainfall until 2000 in
Korea. (From NDPCH, 2001).

Case Date Property 
loss 

(million 
US $)

Death & 
missing 
(person)

Max rainfall 
amount for a 

day (mm/day)

Major 
damaged area

1 July 31 -  
August 18, 

1998

959 324 407.5 in Boeun Whole nation

2 September 9 
-1 2 , 1990

562 179 330.8 in 
Daegwan- 

ryoung

Central area

3 July 21 -23 , 
1987

386 167 517.6 in Buyo Central area

4 July 26 - 28, 
1996

383 29 268.0 in 
Cheolwon

Central area

5 July 25 - 27, 
1989

331 178 335.6 in 
Kwangju

Southern area

6 August 31 -  
September 4, 

1984

192 189 314.2 in Sokcho Central area

7 July 2 1 - 2 3 ,  
1980

187 180 302.6 in Boeun Central area

8 August 19 - 
20, 1972

171 301 313.6 in Suwon Central area

9 July 18 -20, 
1925

151 517 Central area

10 August 19 -  
20,1991

116 70 308.5 in 
Chunchon

Central area



increment analysis updating - that originally was developed for large-scale flows. Stated 

more formally, we hypothesize that the assimilation of WSR-88D data into a high- 

resolution model will improve the prediction of a localized heavy rainfall event.

A 3-D atmospheric model, the Advanced Regional Prediction System (ARPS), in 

combination with NEXRAD Level II data gathered by the US Air Force Base in 

Pyoungtaek, Korea, is applied to the Chorwon-Yonchon heavy rainfall event (case 4 in 

Table 1.2). Details of data assimilation methods, including a brief history of data 

assimilation research and theory, and brief review of the previous studies of heavy 

rainfall events in Korea, are presented in Chapter 2. Chapter 3 provides a more detailed 

description of the Chorwon-Yonchon heavy rainfall event, while Chapter 4 details the 

numerical model and experiment design. The results of 27-km and 9-km resolution 

experiments are presented in Chapter 5, while Chapter 6 presents the results of 3-km 

resolution experiments, including qualitative verification against radar and other available 

data. Chapter 7 introduces the quantitative verification for the results of 3-km resolution 

experiments. Finally, Chapter 8 summarizes the results of this study and proposes future 

work.



Chapter 2 

Literature Review

2.1 Basic Concepts and a Brief History of Data Assimilation

Numerical weather prediction (NWP) may be regarded as an initial-boundary 

value problem, the unique solution to which depends upon accurate specification of 

initial and boundary conditions as well as factors such as model grid spacing and 

appropriate representations of dynamical and physical processes (e.g., Harms et al. 1992; 

Holton 1992; Rogers et al. 2000). An important component of NWP is data assimilation, 

or the process by which observations are combined with previous forecasts and other 

information to yield a unified, consistent description of the atmosphere, for use as a 

model initial condition.

Chamey et al. (1969) put forth the basic concept of data assimilation by showing 

that satellite observations of the mass field could, through use of geostrophic or balance 

approximation, be used to infer the wind field and thus provide a complete set of initial 

conditions for a simple forecast model. This merging of objective analysis of new 

observational data simultaneously with the integration of a NWP model typically is 

regarded as four-dimensional data assimilation (FDDA) (e.g., Morel 1981). Even though 

two-dimensional (e.g., Rutherford 1973) and three- dimensional (e.g.. Flattery 1970) 

frameworks in space can be used for data assimilation, FDDA is most often regarded as 

including the time dimension, usually in a sequential manner.



In general, it has been recognized that data assimilation has two, three, or four 

components. Holton (1992) classified data assimilation into two components, namely, 

objective analysis and data initialization. A three-component framework includes 

analysis, initialization, and the associated forecast (e.g. Bengtsson 1975; 1985; National 

Research Council 1991). Daley (1991) argued for a more detailed classification that 

includes quality control (e.g. Gandin 1988, Lorenc and Hammon 1988), objective 

analysis, initialization (e.g. Bourke and McGregor 1983; Lynch 1985; Satomura 1988), 

and the short forecast needed to prepare the background field for the next cycle (though 

not the entire forecast itself). Harms et al. (1992) also included quality control, objective 

analysis, and initialization as the parts of data assimilation.

Data assimilation in NW P has grown considerably since its inception some 30 

years ago, and according to Daley (1997), the start of atmospheric data assimilation 

resulted from the development of subjective analysis procedures for producing hand- 

drawn weather maps. Although there exist generally two frameworks for data 

assimilation (e.g., Ide et al. 1997; Talagrand 1997; Sun 2002) — sequential (e.g. Cohn 

1997; Ghil 1997) and variational (e.g., Derber 1989; Courtier 1997; Le Dimet et al. 

1997), another classification is suggested by historical evolution. If we regard subjective 

analysis as the first attempt at atmospheric data assimilation, then the evolution of data 

assimilation research can be traced from subjective analysis to advanced methods.

The first attempt at objective data assimilation was objective analysis (e.g. 

Cressman 1959; Gandin 1963; Barnes 1964; Eddy 1967; Kruger 1969; Daley 1991) and 

optimum interpolation (01), the latter of which is a statistical approach that minimizes 

analysis error variance and provides the estimated values of atmospheric states



statistically by a weighted least squares fit to observations and a background field (e.g. 

Gandin 1963; Rutherford 1973; McPherson et al. 1979; Lorenc 1981; Daley 1991; 

Parrish and Derber 1992). An important aspect of 01 is its use of linear multivariate 

relations between different meteorological variables, or a so-called multivariate algorithm 

(e.g. Rutherford 1973; Bergman 1979; Lorenc 1981; National Research Council, 1991). 

Even though 01 has contributed significantly to the development of operational NWP, it 

sometimes suffers from considerable error owing to the use of only linear relations 

among model variables.

For example, model variables that are related via non-linear processes, such as 

satellite radiances and temperature, should be transformed to linearly-related variables 

before 01 processing (e.g. Durand 1985; National Research Council, 1991; Chao and 

Chang , 1992; Courtier 1997). During the period over which objective analysis and 01 

were being developed and applied, Sasaki introduced a number of variational techniques 

(e.g. Sasaki 1969; 1970; Sasaki and McGinley 1980) following the seminal paper of 

Sasaki (1958). We note that his prominent studies of variational methods form the basis 

o f today’s advanced data assimilation methods such as 3D-VAR and 4D-VAR.

The next approach to data assimilation, which involves a time component, was 

data insertion. Research involving this strategy, which can be divided into intermittent 

data assimilation and continuous data assimilation, started in the mid-1970s (e.g., Bourke 

et al. 1985). Intermittent data assimilation is the analysis-forecast technique involving 

periodic re-analysis (Harms et al. 1992). It has been used by many operational 

meteorological centers, such as the European Centre for Medium Range W eather 

Forecasts (ECMWF, e.g. Bengtsson et al. 1982), the National Meteorological Center



(NMC, e.g. Kistler and Parrish 1982), the Japan Meteorological Agency (IMA, e.g. 

Kanamitusu et al. 1983), and the Australia National Meteorological Research Center 

(ANMRC, e.g. Bourke et al. 1982).

The process of continuous data assimilation by gradual insertion, commonly 

referred to dynamic relaxation or nudging, is one in which “the observed data are 

repeatedly inserted at each time step of the forward integration, using the relaxation 

technique for injection o f data (Hoke and Anthes 1976)” (e.g. Lorenc 1976; Lyne et al. 

1982). The Geophysical Fluid Dynamics Laboratory (GFDL, Stem and Ploshay 1983) 

and United Kingdom Meteorological Office (UKMO, Bell 1983) used this scheme as the 

basis for data assimilation (Bourke et al. 1985). It is important to note, as reported by 

Bourke et al. (1985), that continuous data assimilation is usually multivariate when all 

dynamic variables are analyzed simultaneously.

More recently, data assimilation approaches involving variational methods or 

optimal control theory have been developed and are being used operationally (e.g., 

Anderson et al. 1998). They can, from a basic point of view, be divided into three genre 

(Schlatter et al. 1998): three-dimensional variational methods (3D-VAR), four­

dimensional variational methods (4D-VAR), and Kalman Filtering (KF). Both KF and 

3D-VAR/4D-VAR seek to minimize, over a given time interval, the distance in phase 

space between a system trajectory, constrained by model dynamics, and existing data 

(Ghil and Malanotte-Rizzoli, 1991). Since Sasaki (1969) showed that data assimilation 

can easily incorporate dynamical constraints via the use of variational approaches, 

numerous applications o f this concept have taken place, including the pioneering study 

by Lewis (1972), in which the thermal wind and hydrostatic equations were used as

10



constraints. This study led to numerous others, including work by Derber (1985) in the 

context of the so-called adjoint method (Harms et al. 1992).

Historically, Kalman filtering has seen somewhat less use since the early studies 

by Kalman (1960), Kalman and Bucy (1961), Jones (1965), Petersen (1973), Ghil et al. 

(1979), and Bucy and Joseph (1987), though is becoming more popular as computing 

capabilities increase. A more detailed and scientific description of 3D-VAR, 4D-VAR, 

and Kalman Filtering, along with nudging, will be presented in the next section.

The study of data assimilation began with simple, somewhat idealized simulations 

and then progressed to the use of more physically complete models with real data (e.g., 

Kasahara 1972; McPherson 1975). With regard to data, assimilation research has 

developed from using conventional synoptic data to various sources of remotely sensed 

data such as satellite data (e.g., Krishnamutri et al. 1991; Puri and Davidson 1992; 

Kasahara et al. 1994) and radar data in mesoscale models (e.g., Wang and Warner 1988; 

Takano and Segami 1993; Aonashi 1993).

2.2 Data Assimilation Methods

2.2.1 01 (Optimum Interpolation) Analvsis

Optimum (or Optimal) Interpolation (01) is a minimum variance analysis method 

that seeks to minimize the mean square error between the analyses and observations 

using the statistical covariance of observation errors and errors in the background field 

(also known as the ‘first guess’) (Bourke et al. 1985; Daley 1991). 01 has a fundamental 

hypothesis that only a few observations for each model variable are important to be

11



determined the analysis increments (Bouttier and Courtier 2001). Bourke et al. (1985) 

listed four factors which must be considered in 01:

(1) the spatial distribution of observations related to each other and to grid points;

(2) the characteristics of the error associated with different observing systems;

(3) through the first guess field and the forecast error covariance function, the available 

information obtained from earlier data, and;

(4) the quasi-geostrophic and hydrostatic relations among variables.

The mathematical concept of 01 can be expressed via the following interpolation 

equations, which are presented by Bouttier and Courtier (2001) and Schlatter et al. 

(1998X

Let

Xa = Xb + K(yo -  H(Xb)), (2.1)

K  = B H ^(H B H ^+ R )', (2.2)

where

Xa is the best (optimal) analysis vector 

Xb is the background vector (first guess)

K is the weight matrix of the analysis 

yo is the observation vector

H is an observation operator (forward operator: this operator transforms the 

backround into the form of the observations)

B is the covariance matrix of the background errors 

R is the covariance matrix of the observation errors

12



Note that ( and ( )'* represent the transpose and inverse of a matrix or vector, 

respectively. The 01 seeks to obtain an algebraic simplification of the computation of the 

weight matrix K  in Eq. 2.1 and 2.2. In 01, as shown in Eq. 2.1 and 2.2, the analysis 

increments (Xa-Xb) are equal to K times the background departure (yo-H(Xb)). To obtain 

K  (Bouttier and Courtier 2001), we need

(1) the covariance of the background errors between the model variable x and the model 

state interpolated at the observation points (BH^),

(2) the sub-matrices o f the background and observation error covariance formed by the 

restrictions of HBH^ and the covariance matrix of the observation errors, R, to the 

selected observations,

(3) to invert the positive definite matrix formed by the restriction of (H B H + R ) to the 

selected observations, and

(4) to multiply (HBH^+R) ' by BH^

Bouttier and Courtier (2001) presented a detailed explanation regarding the roles 

of the background error covariance B and the selection of observations in 01. According 

to their review, 01 should have the covariance matrix of the background error B as a 

model that can be applied to pairs of model and observed variables and the pairs of 

observed variables. They also noted that B usually depends upon the scheme used for the 

empirical autocorrelation function, e.g., Gaussian or Besssel, along with any assumed 

balances, such as hydrostatic balance. For the selection of observations in 01, they note 

that all observations having a significant weight (a significant background error 

covariance BH  ) should be selected. However, only the observations near the model grid 

points can be selected since the background error covariances are presumed to be small
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over large distances. In light of computational costs, this limited selection of 

observations at each time can be economical.

Fig. 2.1 depicts a common example of data selection in 01. This strategy, or so- 

called ‘pointwise selection’, assumes that each analysis point (xi, x?) strongly depends on 

the observations located in a small nearby vicinity. Thus, the analysis field can be 

intermittent, not continuous, in space since the observations used for the analysis at two 

neighboring points, x l and x2, are usually different.

Though 01 is relatively simple and economical, it has the drawback that 

numerous errors can occur in the analysis fields since different sets of observations are 

used in different parts of the model state. Further, it is very hard to see consistency 

between small and large scales of the analysis (Lorenc 1981; Bouttier and Courtier 2001).

2.2.2 Insertion Methods

2.2.2.1 Intennittent Data Assimilation

One of the most valuable yet simple data assimilation techniques developed in the 

mid 1980s is the so-called intermittent strategy, which is one general category, along with 

continuous assimilation, in the general context of insertion assimilation methods. In 

intermittent assimilation, all observational data within a time interval (window) are used 

at a single time to correct the forecast made from the previous analysis (Bengtsson 1975; 

Bourke et al. 1985; Ghil and Malanotte-Rizzoli 1991). According to Bourke et al. 

(1985), “the intermittent method of assimilation ignores the asynoptic error associated
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with grouping the data into time block of forecasting period and relies entirely on the 

prediction model capability to coordinate the data in the time domain.”

  .

" X "  \CS) \

( 5 )

"  ........

Fig. 2.1 Pointwise selection as a strategy o f  01 data selection, where x l  and x2 are 
analysis points (From Bouttier and Courtier 2001).
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Fig. 2.2 shows an example of intermittent data assimilation. Operational forecasts 

typically are started at main observational (synoptic) times, OOUTC and 12UTC. Each 3- 

hr analysis is made from new observations, which provide corrections to the background 

forecasts. This process leads to a relatively smooth transition from one forecast to 

another, and also introduces less noise owing to the changes to the model values imposed 

by the analysis (Carr 2000). The forecast should be updated new data at each analysis 

time, and then combined and blended with them (Ghil and M alanotte-Rizzoli 1991). As 

shown in Fig. 2.2 and mentioned by Carr (2000), the 3-hr error for the background field 

at 12UTC, obtained from the analysis at 09UTC, should be less than the error associated 

with a 12-hr forecast from the OOUTC analysis

2 .2 .22  Continuous Data Assimilation (Newtonian Relaxation or Nudging)

One of the simplest and most widely used techniques of continuous data 

assimilation is Newtonian relaxation, or more simply “nudging”, which is a method of 

dynamic relaxation (e.g. Haltiner and Williams 1980; Bao and Errico 1997; Kalnay 

1998). Since Kistler (1974) first applied nudging in his M.S. thesis, many researchers 

have used this method as a data assimilation tool in the U.S. (e.g. Hoke and Anthes 1976; 

Ramamurthy and Carr 1987, 1988; W ang and Warner 1988; W ang 2001), in Europe (e.g. 

Davies and Turner 1977; Lorenc et al. 1991), in Japan (e.g. Kanamitusu et al. 1983), and 

in Australia (Bourke et al., 1982).

In nudging, model variables from one or more of the prognostic equations are 

nudged gradually toward observations, or a gridded analysis, via forcing terms that are 

added to the equations and calculated at each time step during model integration (Haltiner
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and Williams 1980; Schlatter 1988; Seaman 1990). Thus, the main objectives of nudging 

are to harmonize data and model and to minimize the noise generated by gravity waves.

Haltiner and Williams (1980) summarize briefly the process of nudging in three 

steps. The first step involves specifying the initial condition during a pre-forecast period 

T  at time to -T , where to is the starting time of the new forecast. The second step involves 

performing the pre-forecast or assimilation integration from (to -  T) to to by including 

extra terms in the model equations to force the variables during the preforecast toward the 

observations. In the last step, the actual forecast is generated from the initial time, to, 

after dropping the forcing or nudging terms.

To illustrate the specifics of the nudging method, let a  be any prognostic variable 

of the model, with its governing equation written as (largely following the descriptions of 

Haltiner and Williams 1980; Schlatter 1988)

= F + G{(x,î)E{câ — oc), (2.3)
at

where the term on the left hand side of this equation represents the local tendency, F is 

the model forcing, and the final term on the right hand side of the equation is the nudging 

term. G (a,t) is a non-negative nudging coefficient, e is the analysis weight factor with a 

value < 1, and a° is the best estimated grid point value from observations. Schlatter 

(1988) notes that the nudging term depends upon time since it forces the model every 

time step. He also explains that the nudging term should be large enough to affect the 

model solution, though not so large that it overwhelms other terms in the equations. 

Considering the horizontal equation of motion, for example, the nudging term may be 

larger than the vertical advection term, as large as the horizontal advection term, and 

smaller than pressure gradient term or Coriolis terms.
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To better understand the nudging process (largely following the descriptions of 

Haltiner and Williams 1980), equation 2.3 can be simplified under the assumption that F 

is zero, G is constant, and e is unity. This yields

^  = G (a ° -o r) ,o r
df , (2 4 )

a = a^e-°'+Ge- '̂

where Oq is the value of a  at t = 0, the beginning of the pre-forecast period. In order to 

obtain a more simplified solution to equation 2.4, first assume that is a constant toward 

which a  is nudged. Then, the solution of equation 2.4 is

a  = a° +{aQ -a°)e~°' (2.5)

Note that a  approaches exponentially the grid value, a°, obtained from observation as 

time evolves. If we now assume that the observations vary linearly with time, i.e. 

a°=Oo'’+at, then the solution becomes

a  = 6%° + (6̂ 0 -  ag)g-°' -  (a / G)(l -  g-"" ) (2.6)

The second term on the right hand side means that the existing initial error difference is 

damped to zero as time passes. However, the last term is damped to (-a/G), not to zero. 

In other words, a  can at most approach a°, the observational 1 y-determined value, only to 

within the constant a/G, the ratio of the change rate of with time to the nudging 

coefficient.

Hoke and Anthes (1976) studied the relationship between the nudging coefficient 

and the damping of waves. They did not impose geostrophic balance and considered that 

all of the variables were unknown. They obtained interesting results for strong (G = 10'^ 

sec ’) and moderate (G = 10 '’ sec'') nudging coefficients for either winds or geopotential
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using a typical midlatitude value of Coriolis force and a horizontal length of 10  ̂ m, 

corresponding to an internal gravity wave mode. Stationary and oscillating waves of both 

long wave or short wavelengths were taken into account, and winds were divided into 

rotational and divergent components. Table 2.1 shows the summary of their results.

Seaman (1990) depicted, in schematic form, the nudging technique (Fig. 2.3). As 

shown in this figure, pre-calculated analyses are interpolated in time and applied at each 

time step during integration period, say from OOOOUTC to 12000UTC, for the 

assimilating model. The pre-calculated analyses are also prepared over a limited area, 

with asynoptic observed data between the complete analyses at OOOOUTC and 1200UTC.

Although nudging lacks a solid theoretical foundation compared to advanced 

methods of data assimilation, it continues to be used and has a number of advantages 

(Schlatter 1988):

(1) relatively economical

(2) balance can be maintained in the model

(3) asynoptic data (e.g., radar data) as well as synoptic data can be incorporated at the 

appropriate time

(4) it is easy to accommodate physical processes in the model.

2.2.3 Advanced Data Assimilation

As mentioned in section 2.1, more advanced techniques exist for data 

assimilation. A three -dim ensional variational (3D-VAR) method is not technically an 

assimilation process in itself. However, we are now introducing the 3D-VAR method as 

a more advanced technique for the data assimilation since the dynamic constraints in 3D- 

VAR can make the analysis more compatible with a specific model or scale of motion
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and the 3D-VAR method has been largely used as an important tool of data assimilation 

techniques. Following Schlatter et al. (1998), Bouttier and Courtier (2001), and Sun 

(2002), we mainly describe the basic aspects of three-dimensional variational (3D-VAR) 

assimilation since other advanced methods, such as four dimensional variational (4D- 

VAR) assimilation and Kalman Filtering (KF), can be considered extensions of 3D-VAR.

Table 2.1 Summary o f  the relationship between nudgmg strength and damping (From
Hoke and Anthes 1976)

Stationary wave Oscillating wave

long short long short

Strong 
Nudging 

(0=10'^ sec "

total
wind

poor
damping

damped
well

damped
well

damped
well

rotational
wind

damped
well

damped
well

poor
damping

poor
damping

geopoten­
tial

damped
well

poor
damping

poor
damping

damped
well

Moderate
Nudging

(G = 10 '^sec ')

total
wind

poor
damping

damped
well

damped
well

damped
well

rotational
wind

poor
damping

damped
well

damped
well

damped
well

geopoten­
tial

damped
well

poor
damping

poor
damping

damped
well
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Fig. 2.2 A n example o f  the process o f  intennittent data assimilation (From Carr 2000)
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Fig. 2.3 Schematic representation o f  Newtonian relaxation data assimilation via 
analysis-nudging technique (From Seaman 1990)
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2.2.3.1 3D-VAR

3D-VAR has been used in stomn-scale data assimilation (e.g., Gao et al. 1999a 

1999b) and also applied to the large scale atmosphere (e.g., Andersson et al. 1998). It is 

especially popular at many operational weather centers even though emphasis for the 

future is on 4D-VAR and KF. Several assumptions are made in applying 3D-VAR; 1) 

unbiased analysis and observations, 2) normally distributed errors, and 3) no correlation 

between the errors in the observations and the errors in the forecast and the dynamical 

constraints. With these assumptions, which are not always valid, the key attribute of 3D- 

VAR is to avoid calculating the analysis weight matrix K  directly via minimizing a cost 

function J. This cost function is a measure of the total distance of the analysis from the 

prior information whose sources are weighted by the inverses of their associated error 

covariances (Schlatter et al. 1998; Bouttier and Courtier 2001). The cost function can be 

defined as

J(x) = 1/2 {(x-Xb)'^B-'(x-Xb) + (yo-H(x))'^R-'(yo-H(x)) + C(x)"'D ''C(x)}, (2.7)

where x is the analysis vector, C is a set of constraints, D is the error covarinace 

associated with the constraints, and other notation is same as in Eq. 2.1 and 2.2 of section

2.2.1. Equation 2.7 also may be written as

J = Jb + Jo + Jci (2.8)

where Jb, Jo, and Jc are referred to as the background term, the observation term, and the 

constraint term, respectively. Following Schlatter et al. (1998), these terms are explained 

in detail below.
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a. The background term

The background term is a measure of the fit between the analysis and the 

background. The background error covariances B can be regarded as the associated error 

statistics for the optimal estimation. Thus, if a significant change occurs in the 

background state, the error covariances B have to be modified to reflect the associated 

changes in statistical properties. Note that the quality of the analysis strongly depends on 

the weighting implied by the background error covariance B. However, the use of 

background error covarinace B cannot be a good approximation in mesoscale situations 

whose states usually change rapidly (Schlatter et al. 1998).

b. The obser\>ation term

The observation term represents a measure of the fit between the analysis and the 

observations. The observation operator (forward operator) H propagates the model 

variables to the observed variables, like the relationship between u, v, w and the radial 

velocity obtained from radar observations (Sun 2002). The relative weighting of 

observations in reference to other observations, the background, and the constraints is 

determined by the covariance matrix of the observation errors (including 

representativeness errors) R. The representativeness error is a significant component of 

this matrix. In general, R is defined empirically and assumed to be diagonal, even though 

this assumption is invalid when correlated errors are present.

c. The constraint term

This constraint term represents a measure of the fit to constraints, which can 

consist of dynamical constraints, physical constraints, or the constraints imposed by
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statistical relationships among variables. Similar to the covariance matrix of observation 

error R, the error covariance matrix associated with the constraints D determines the 

relative weighting of a specific constraint with respect to the other constraints and with 

the respect to the background and the observations.

3D-VAR is the iterative attempt to minimize the cost function J  in Eq. 2.7 by 

using nonlinear minimization. The minimization algorithms require the computation of 

the gradient of J , which is given by

V J(x) = B-'(x-Xb) -  H'^R-'(yo-H(x)) + C'^D-'C(x) (2.9)

The minimization process ceases when the norm of this gradient ||VJ(x)|| decreases by a 

predefined amount. Figure 2.4 depicts a schematic o f the geometry of minimization. In 

this figure, the cost function is parabolic, and the minimum is located at the best analysis 

Xa. The control variable, or analysis x, is moving to areas where the cost function is a 

minimum (Bouttier and Courtier 2001).

Courtier et al. (1998) discussed the merits and shortcomings of 3D-VAR and 

noted that it has two main advantages. One is its conceptual simplicity and the other is 

the ease of using complex observation operators, including even those which are weakly 

non-linear. However, 3D-VAR requires specific model design for obtaining the matrix of 

background errors B that can properly define background covariances for all pairs of 

model variables.

Overall, 3D-VAR can be summarized as having the following three properties; (1) 

iteratively minimizing the cost function defined at a single time, (2) the numerical model 

is not used in the analysis, and (3) the covariance matrix of the background errors B is 

modeled using simple functions and does not vary with time.
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Fig. 2.4 A schematic representation o f  the variational cost function minimization (From  
Bouttier and Courtier 2001).
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2.2.3.2 4D-VAR

4D-VAR can be regarded as an extension or generalization of 3D-VAR. In it, 

observations are distributed within a time window (t, or 0</<n) and the analysis is 

performed over the same time interval. Thus, similar to the cost function in 3D-VAR, 

that in 4D-VAR is given by

J(x) = (x -x J ^ B ''(x -x J  + J ]  (y, -H(x,))^R-'(y, -H (x,)) + J , , (2.10)
/=0

where the subscript / means the i-lh time step. Figure 2.5 shows an example of 4D-VAR, 

in which the assimilation of the most recent observations is performed at every time 

interval within the assimilation window, using a segment of the previous forecasts as a 

background. This performance repeats updating the initial model trajectory to get 

subsequent forecast (Bouttier and Courtier 2001).

According to W eygandt et al. (2002a), the advantages of 4D-VAR are use of the 

full model equations as constraints, simultaneous use of all observations in their original 

form, the possibility of retrieving unobserved fields, and ease of finding optimal values 

for model parameters. They also pointed out four difficulties of 4D-VAR. First, it is 

difficult to obtain a unique solution owing to the strong nonlinearity of the problem. 

Second, the construction of accurate tangent linear and adjoint models is made difficult 

by the many nondifferentiable switches (on and off) found in moist physical 

parameterizations (Xu 1996). Third, the use of full-model equations as a strong 

constraint leads to the neglect of model errors. The final difficulty is the high cost of 

computation for minimizing the cost function. Compared to 3D-VAR, overall, 4D-VAR 

has the following characteristics; (1) the cost function in 4D-VAR is defined for a
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specific time window, (2) the numerical model is used as a strong constraint in the 

analysis to link the model states at different times, (3) and 4D-VAR can work under the 

assumption that the forecast model used in the assimilation is perfect.

2.2.3.3 Kalman Filtering

Kalman Filtering (KF) is a key tool of estimation theory and has become 

increasingly popular in recent years as many scientists (e.g. Todling and Cohn 1994; 

Houtekamer and Mitchell 1998; Anderson 2001) have applied it to meteorological 

problems based on the general theory of Kalman (1960) and Jazwinski (1970).

The analysis equations used in KF are same as those in least-squares analysis 

method, except for differences in notation. The background error covariance B, the 

analysis error covariance A, and the background state Xb in least square analysis theorem 

are respectively replaced by Pf, and Xf in the analysis equations of KF to show that the 

background is now a forecast (Talagrand 1997; Bouttier and Courtier 2001). Schlatter et 

al. (1998) summarized the characters of KF as follows:

"The background error covariance B is estimated by using the model 

equations to extrapolate forward in time the analysis error covariance while 

including a model error covariance term. The major differences from 4D- 

VAR are that the model is assumed to be imperfect, and, since the algorithm is 

sequential, theoretically the analysis interval can extend arbitrarily far back in 

time. These differences should give KF an advantage over variational 

approaches in meteorological data assimilation. However, application of the 

complete KF in this context is very difficult because of the huge
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computational demand for prediction of the covariance matrix, inadequately 

defined forecast error covariances, and nonlinear effects of the dynamics and 

physics in the assimilation system. It is very possible that eventually the 

computationally feasible analysis technique will be a hybrid of the 4D-VAR 

and KF techniques. The extrapolation of error covariance forward in time in 

KF is extremely important. If no data are incorporated, the prediction of the 

error covariance is a measure of model forecast skill. Likewise, with the 

inclusion of the data, the error covarinace provides a measure of the amplitude 

and structure of the expected error in the analysis and can be used in 

initializing ensemble predictions."

A

t tn tuneL

assimilation window

Fig. 2.5 An example o f  4D-VAR assimilation in a numerical forecasting system (From
Bouttier and Courtier 2001).
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2.3. Previous Studies of Heavy Rainfall Forecasting

During the past 20 years, numerous studies have been conducted in an effort to 

improve the forecasting of heavy precipitation, principally because of the significant 

human suffering and economic loss associated with such events (as discussed in Chapter 

1). The methodologies used can be divided into two principal categories: the

development and application of conceptual models using observational data, and the use 

of numerical simulation models applied to both real and idealized settings. Although in 

recent years the latter has become the preferred or dominant strategy, we feel it is useful 

to treat the two separate methodologies separately in the context of discussing previous 

research.

2.3.1. Conceptual Models and Observation-Based Phvsical Analysis

The development of conceptual models, based upon detailed physical analyses of 

observed events, is a traditional and very effective methodology for improving our 

understanding of heavy rainfall events and thus their prediction. The basic strategy 

involves identifying common synoptic and mesoscale features and understanding their 

origin and morphology. Maddox et al. (1979) developed four classifications for heavy 

rainfall triggers based upon to climatological differences in events: synoptic event, meso- 

high event, frontal event, and western event. This conceptual model includes various 

meteorological features and parameters such as surface and upper-air patterns, mid-level 

wind patterns, thunderstorm outflow boundary dynamics, surface dew point structure, 

and so on -  all of which are very useful for understanding the synoptic and smaller scale 

conditions associated with heavy rainfall events.
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To forecast heavy rainfall with this conceptual model, forecasters can use the 

following important facts: (1) an advanced short wave trough at mid-levels often helps to 

trigger and focus thunderstorm activity; (2) the storm area is often located very near the 

large scale ridge in troposphere and occurs in normally benign surface pressure patterns; 

and (3) many intense rainfall systems occur during nighttime.

Maddox (1980) also developed a conceptual model related to mesoscale 

convective complexes (MCCs). According to his study, many heavy rainfall events are 

directly caused by intensive MCCs. After he classified MCCs by size, initiation, and 

duration, he found that MCCs exhibit two significant features in the context of heavy 

rainfall forecasting. The first is that MCCs often produce considerable heavy rainfall, the 

moisture fluxes from which can be processed by other mesoscale systems; and second, 

most warm season rainfall in the U.S. can be explained by MCCs.

Other conceptual models have focused on jet streaks (e.g. Ucellini and Kocin 

1987). Ucellini and Kocin (1987) showed that wide spread areas of excessive 

precipitation often are located between two je t streaks, in the left-front quadrant of the 

exit region of the southern je t and in the right -rea r quadrant of the northern jet. 

Although this conceptual model is not without problems, it is useful for determining the 

position of potentially heavy rainfall or snowfall.

Another important conceptual model is the so-called conveyer belt, which 

provides an integrated view of linkages between the upper-air flow patterns and frontal 

movement and development (e.g. Kreitzberg and Brown 1970; Carlson 1980; Browning 

and Monk 1982; Browning 1986). The conveyor belt conceptualizes moving streams of 

air that are vertically thin but very wide, as shown schematically in Figure 2.6. The
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warm conveyor belt (WCB) rises from SE to NE and produces cloudiness in the middle 

and upper layers of the atmosphere. It is located in front of the frontal cloud band, which 

is under the influence of an upper-level stream from behind. This juxtaposition leads to a 

high probability that the relative stream from behind will overrun the warm conveyor belt 

at upper levels, producing static instability and development of convective cells 

(Browning, 1986).

Along with the development of conceptual models, improved analysis 

technologies have led to the development of new composite charts for forecast heavy 

rainfall forecasting. Maddox (1979) developed a series of sophisticated gridded 

composites of meteorological fields by overlaying important features and parameters 

from the significant level analyses onto an appropriate basic chart. Owing to the results 

of his study, forecasters can more readily identify features associated with heavy rainfall 

that might otherwise be overlooked through the use of conventional synoptic charts. For 

example, warm air advection, which occurs in a region of conditional instability, can be 

easily identified using M addox’s methodology.

Another valuable tool in heavy rainfall forecasting is the meteorological satellite 

(e.g. Weiss and Smith 1987; Thial et al. 1993). Thiao et al. (1993) determined that heavy 

rainfall events have a strong linkage with water vapor plumes. He showed that water 

vapor satellite imagery is useful in identifying such plumes and their associated jets. 

Satellite data also can aid the interpretation not only of large-scale features but also 

synoptic and mesoscale systems, such as thunderstorm outflow boundaries.
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Fig. 2.6 The schematic diagram o f  conveyer belts. WCB and CCB stand fo r  warm 
conveyer belt and cold conveyer belt. And, shaed area depicts the precipitation 

region (From online lecture note o f  University o f  East Anglia 2002).
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Radar data also are utilized extensively for heavy rainfall forecasting, one of the 

most important advantages being that radar provides aerial estimates of rainfall, whereas 

surface gauges provide only spotty point observations (e.g. Manion and Klazura 1993; 

Klazura et al. 1999) and satellites often are blocked from viewing the region below cloud 

top. Small-scale heavy rainfall may occur between surface gauges, thus precluding 

detection without radar. Operationally, radar may be used simply to track individual 

storm cells and synoptic systems and alert forecasters to a developing heavy rainfall 

situation (e.g. Changnon and Vogel 1981). In addition, mesoscale convective systems 

(MCSs) also may be tracked with the data obtained from the WSR-88D (e.g. Houze et al. 

1989; Hilgendorf and Johnson 1998).

Surface observations also are extremely useful to operational forecasters in heavy 

rainfall situations. Additionally, surface rain gauge networks provide ground truth for 

radar-based estimates and are used to verify flood forecasts and warnings (e.g. Brandes et 

al. 1999; Klazura et al. 1999). Fixed surface mesonets, along with mobile mesonets, also 

provide detailed information for heavy rainfall forecasting, including information related 

to the location of surface outflow boundaries, mesohighs and lows, and frontal 

boundaries (e.g. Brock et al. 1995; Straka et al. 1996).

2.3.2. Studies Based on Numerical Simulation Models

Arguably the most frequently used tool for understanding heavy rainfall is the 

numerical model. Despite the sophistication o f numerical models and the power of 

computers on which they are run, accurate quantitative precipitation forecasts (QPFs) of 

heavy rainfall using either experimental numerical simulation or operational prediction

34



models continue to challenge the scientific community. According to Olson et al. (1995), 

who studied the impact of using numerical models to predict heavy rainfall, the 48-hour 

National W eather Service (NWS) QPFs have improved steadily since the introduction of 

the Limited-area Fine Mesh (LFM) model. However, the 24-hr QPFs have improved at a 

slower rate than 48-hour QPFs because models continue to be unable to capture sub­

synoptic and mesoscale features. The Nested Grid Model (NOM) still provides excellent 

guidance for heavy rainfall forecasting since National Meteorological Center (NMC) 

began to operate it in 1985 (Hoke et al. 1989; Junker and Hoke 1990). The NOM rarely 

misses heavy rainfall events, though of course cannot capture the heavy amounts that 

tend to occur locally and cause the greatest loss of life and disruption of commerce.

Numerical models contain many deficiencies that inhibit their exclusive use 

(Junker and Hoke 1990; Dunn 1991), with the amplitude error for heavy rainfall 

forecasting being more serious in case of small scale events because of inadequate model 

resolution. To overcome this limitation, many of the problems associated with large- 

scale models -  such as coarse terrain and physics parameterizations -  are being 

addressed by new non-hydrostatic mesoscale and storm-scale models which can 

explicitly resolve most small-scale features.

Continued improvements in computer power have paved the way for continued 

improvements in the physics and resolution of meso- and storm-scale models, especially 

in the context of heavy rainfall forecasting. Zhang and Fritsch (1986) performed a 

numerical simulation of the meso-P scale structure associated with the 1977 Johnstown 

heavy rainfall event using a modified version of the Pennsylvania State 

University/National Center for Atmospheric Research (PSU/NCAR) mesoscale model
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(PSU/NCAR numerical model originally developed by Anthes and Warner in 1978). The 

principal features of this model are as follows: (1) three-dimensional hydrostatic; (2) two 

way interactive nested-grid procedure with a 75 km coarse grid mesh (CGS) and 25 km 

fine grid mesh (FGM); (3) Anthes and Kuo convective parameterization (Anthes and 

Keyser 1979) for CGM and Fritsch and Chappell (1980) convective parameterization, 

along with convective adjustment, for the FGM.

Zhang and Fritsch demonstrated the possibility that the heavy rainfall event 

associated with the meso-P scale structure of a convective system could be forecasted 

with useful skill for periods up to 18 hours. Using the same numerical model, they also 

studied the relation between the warm core vortex and evolution of MCCs and MCSs, 

both of which are strongly related to producing heavy rainfall. The results of this study 

indicate that the model’s ability to re-create the timing and location of resolvable-scale 

condensation is equally important as the convective parameterization in the successful 

prediction of mesoscale convective system evolution. These two studies by Zhang and 

Fritsch have served as valuable guidelines in the development of subsequent studies 

regarding mesoscale numerical simulation of heavy rainfall events.

Recently, another approach has been introduced for making heavy rainfall 

forecasts based upon numerical model output combined with the latest observations (e.g. 

Xia and Chen 1999) -  the so-called model output dynamics (MOD). In MOD, any real 

time numerical model output is combined with the latest observed rainfall data (without 

using historical data) to produce heavy rainfall forecasts. Xia and Chen (1999) compared 

the MOD results with a dynamical prediction from the limited area forecast (LAF) model 

in China, which has coarse horizontal resolution (1.875° in both x and y). The results of
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this study show significant improvements associated with MOD for heavy rainfall 

forecasting in the summer season, compared to the results obtained by the LAF model, 

even though MOD depends to a considerable extent on observational data coverage 

(MOD is worse in data poor regions) and cannot account for topographical influences 

(the importance of which is discussed below). Although MOD is not a numerical 

simulation method, it involves the use of numerical model output and may become a 

useful tool for heavy rainfall forecasts considering the positive results noted above.

It has long been recognized that orography can play a profound role in generating 

heavy precipitation (e.g. Mahrer and Pielke 1977; Benjamin and Carlson 1984; Bougeault 

and Lacarrere 1989; Romero et al. 1997). Chang and Yoshizaki (1991) conducted a 

numerical simulation study to examine if an MCS, which produced heavy rainfall over 

Okinawa (which has elongated mountains ranging in altitudes of 100 m to 500 m) during 

the Changma (East Asian monsoon) season, is related to orographic forcing. A two- 

dimensional compressible model developed by Yoshizaki and Ogura (1988) was 

employed for the simulation experiments, and warm rain processes for cloud physics in 

the model were used, along with grid stretching in both directions. By varying the terrain 

height in the model, they were able to study the response of the MCS. They found 

remarkable orographic effects as follows: (1) forced lifting on the upwind side of the 

mountain and the suppression of outflow spreading in the lee resulted in a steady 

configuration for the MCS; and (2) in the simulation with lower terrain heights, the MCS 

moved faster in the upwind direction when cold-air overflowed the mountain crest.

Another interesting numerical study regarding the effects of topography in heavy 

rainfall was conducted by Buzzi et al. (1998). As the part of Mesoscale Alpine
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Programme (MAP; Binder et al. 1996), they simulated a severe heavy rainfall event that 

occurred in northwestern Italy from 3 to 6 November 1994. Ultimately, they sought to 

improve the capability of heavy rainfall forecasts in areas of complex orography (NW 

Italy is in the southwestern Alps region). In this area, according to Tibaldi et al. (1990), 

steep and complex topography, and the sea that acts the source of moisture and heat, 

usually affect the production of heavy rainfall. Buzzi et al. used a hydrostatic mesoscale 

model (BOLAM) with about 30 km horizontal resolution. To examine orographic 

effects, they varied the terrain height, and also turned on or off latent heat and surface 

sensible heat fluxes. The numerical simulations exhibited strong feedback mechanisms 

in the presence of considerable moisture having relatively high air temperature and steep 

orographic forcing. They also found that strong orographic ascent is associated with a 

prefrontal moist low-level jet. Romero et al. (1998) also performed mesoscale model 

simulation in the same region and found similar results. Overall, it is clear that 

orography can have a profound influence on the creation of heavy precipitation, and that 

the accurate representation of terrain in a model is critical for capturing this influence (as 

also noted in a recent study by Mass et al. 2002 for numerical experiments conducted 

over the Pacific Northwest of the United States).

Compared to the previous research described in this section regarding heavy 

rainfall simulations or predictions made using numerical models, the present study has 

several important and distinguishing features. First of all, we employ a non-hydrostatic 

framework with relatively fine grid spacing (3 km). Second, we utilize fine-scale radar 

data (as well as other observations) via a dynamic assimilation procedure in an effort to 

capture the small-scale structures responsible for producing locally heavy rainfall — both
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in terms of providing the correct structures to the model and eliminating those in the 

background field which are not correct. Third, we quantitatively evaluate the quality of 

these forecasts against both surface gauge observations and radar-based precipitation 

estimates. Finally, we have chosen a case for which orographic forcing is believed to be 

relatively weak, and thus for which fine-scale observations are expected to have a 

significant impact.
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Chapter 3 

The Chorwon-Yonchon Heavy Rainfall Event

A heavy rainfall event occurred over the middle part of the Korean peninsula 

(hereafter KP; we are careful to distinguish between the entire geographic region of 

Korea and only South Korea) from 26 to 28 July 1996. During this period, the total 

rainfall accumulation exceeded 650 mm in many regions, including the Chorwon- 

Yonchon area. According to the National Disaster Prevention and Countermeasures 

Headquarters (NDPCH 2001) in Korea, the associated storm claimed 29 lives, and 

property damage exceeded 380 million US dollars. A special report (KMA 1996) 

recounts that several mesoscale and synoptic features contributed to the flooding, 

including: the northwest boundary of a stationary North Pacific high (NP high) located in 

the central part of the KP; the boundary between two air masses having different 

characteristics (one is the Okhotsk mP, which was responsible for heavy rainfall in the 

central part of the KP, and the other is the North Pacific mT, which prevented rain from 

occurring in the southern part of the KP); a continuous strong moisture flux into the 

middle part of the KP; and the passage of two upper-air troughs over the KP.

3.1 Synoptic-Scale Aspects

Figure 3.1 shows surface weather charts in 12-hour intervals from OOOOUTC on 

the 26^ to 1200UTC on the 27'’’ of July 1996. The NP high extended to the southern part
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Fig. 3.1 Surface weather charts at (a) OOOOUTC July 26, (b) 1200UTC July 26, (c) 
OOOOUTC July 27, and (d) 1200UTC July 27.
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Fig. 3.1 (continued)
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of the KP and a weak low was located northeast of the border between North Korea and 

Russia (Fig. 3.1 (a)). A cold front associated with the latter extended to the middle part 

of the KP and to near the Kuril Islands via Sakhalin Island at OOOOUTC July 26 (Fig. 3.1 

(a)). This arrangement produced significant moisture advection into the central part of 

the KP. Typhoon Gloria, located near Taiwan at OOOOUTC and 1200UTC on July 26, 

also played an important role in the heavy rainfall event considered here by providing a 

strong moisture flux into south central Korea in conjunction with strong southwesterly 

winds. By I200UTC on July 26, the weak low noted above had moved to the east (Fig.

3.1 (b)), and the cold front over the central part of the KP had moved slightly to the north 

and had changed its orientation from southwest-northeast to almost directly west-east. 

The southwesterly flow associated with Typhoon Gloria still provided a strong moisture 

flux into the middle part of the Korean peninsula at this time, even though the typhoon 

had weakened by virtue of moving inland over the southeast part of China.

At OOOOUTC on July 27, the center of the low previously located northeast of the 

North Korea-Russia border was located over Hokkaido (Fig. 3.1(c)), and the cold front 

over the KP had moved slightly to the north compared to the previous position at 

I200UTC on July 26. The NP high extended to the southern part of the KP, thereby 

accelerating the flow of moisture northward. This moisture resulted in heavy rainfall 

over the central part of the KP from 2000UTC on July 26 to 0300UTC on July 27. As 

shown in figure 3.1 (d), the KP was dominated by the influence of the NP high after the 

low and cold front moved to the east by 1200UTC on July 27.

Figures 3.2 and 3.2 depict the 850hPa and 500hPa weather charts, respectively, in 

the same format as in Fig. 3.1. At 850hPa, southwesterly flow was present over the
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central part of the KP and high relative humidity was present over southeast China and 

the middle and northern regions of the KP. The northern region of China north of 40° 

was much drier. A strong thermal trough existed in the region of heavy rainfall in central 

Korea at OOOOUTC and 1200UTC on July 26 (Fig. 3.2 (a) and (b)). In this region, the 

isotherms were nearly perpendicular to the wind direction, indicative of low-level warm 

air advection that aided in the production of heavy rain. At OOOOUTC on July 27 (Fig.

3.2 (c)), a ridge was located over the Manchuria region. As it weakened by 1200UTC on 

July 27, the wind speed over northern Korea was reduced. The 500hPa weather charts 

(Fig. 3.3) show that southwesterly flow and northwesterly flow merged west of the KP, 

and this merged flow (now westerly) continued eastward over the rest of Korea. The 

5880gpm height line, which indicates the boundary of the NP high at 500hPa, remained 

over the southern region of the KP during the entire time period.

Considering the 5820gpm (or 5850gpm) height line, a trough was developing over 

the middle and north part of the Korean peninsula at OOOOUTC and 1200UTC on July 26 

(Fig. 3.3 (a) and (b)). According to quasi-geostrophic theory, the maximum positive 

differential vertical vorticity advection would occur to the east of the trough axis, or the 

middle northwest region of the KP in this case. It is clear that the heavy rainfall region 

coincides well with this maximum, along with the region of strong geopotential height 

gradient (the central part of the KP between 5820gpm and 5880gpm in Fig. 3.3 (b)). The 

trough maintained its configuration through OOOOUTC on July 27(Fig. 3.3 (c)). At 

I200UTC on July 27 (Fig. 3.3 (d)), the trough had weakened and the geopotential height 

had increased over the middle and northern region (including the heavy rainfall region) of 

the KP. This weakening marked the initial demise of the heavy rainfall event.

44



(a)

(b)
f lU n S B S  KMA
2 6 1 2 U ^ C  JUL 1 9 9 6
HEIGHr(cp,Ti),T£t1P(C) WET fl9EP( T-T3<;C )

Fig. 3.2 850hPa weather charts at (a)OOOOUTC July 26, (b)1200UTC July 26, 
(c)OOOOUTC July 27, and (d)1200UTC July 27.
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Fig. 3.2 (continued)
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Fig. 3.3 SOOhPa weather charts at (a)OOOOUTC July 26, (b)1200UTC July 26, (c) 
OOOOUTC July 27, and (d)1200UTC July 27.
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850hPa and 200hPa streamlines at 12-hour intervals are depicted in Figures 3.4 

and 3.5, respectively. Two features clearly contributing to the heavy rainfall are a strong 

upper level je t (Fig. 3.5) that extends from the northern part of China to the central part of 

the KP via the Shantung peninsula, and a low level je t (Fig. 3.4), which induces strong 

moisture flux into the central part of the KP from the west region of the East China Sea at 

the same time. Many studies have been undertaken regarding the interaction of upper 

and low level jets and precipitation (e.g. Uccellini and Kocin 1987). According to the 

previous results, the je t streak is associated with the front and traveling cyclonic 

(baroclinie) systems. There usually exists an upper level trough (ridge) near the exit 

region of the southeastward (northeastward) upper je t streak. This leads to a region of 

convergence west of trough axis (in the southeast exit region of the je t streak) and a 

region of divergence east of the trough axis. As shown in Fig. 3.5, a strong upper level 

jet existed west of the Shantung peninsula, which led to divergence over the Yellow Sea 

that played an important role in the production of heavy rainfall in the central part of the 

KP. Although it is difficult to match quantitatively the precipitation region with the jet 

analysis, the upper level je t is well-placed with respect to the heavy rainfall region in a 

qualitative sense.

Figure 3.6 shows GMS-5 IR images at 6-hour intervals from OOOOUTC on the 

26th to 1800UTC on the 27th of July 1996. A long cloud band was present from the 

Mongolian region to the Kuril Islands in an east-west orientation from OOOOUTC to 

1800UTC on July 26 (Fig. 3.6 (a)-(d)), associated with high clouds over the Shantung 

peninsula and the northeast part of the KP (the arrows in Fig. 3.6 (a)-(d) indicate these 

high clouds). According to Bluestein (1993), a band of cirrus clouds typically occurs in
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Fig. 3.4 850hPa streamline and isotach at (a) OOOOUTC July 26, (b) 1200ÜTC July 26, 
(c) OOOOUTC July 27, and (d) 1200UTC July 27.
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association with the subtropical jet, and the cirrus is subsequently transported 

downstream by it. The position of this long cloud band, associated with high clouds, is 

very consistent with the position of the upper level jet. Bluestein (1993) also explained 

that “the sharp poleward edge of the cirrus owes its existence to deformation and a 

horizontal moisture gradient.” . Such a configuration is depicted in Fig. 3.7. As shown in 

Fig. 3.6 (b), the dashed area indicates dry subsiding air from northwest and moist 

ascending air from southwest. This confluence region can produce severe storms, as 

occurred in the present case.

The orientation of cloud band located over the KP remained relatively constant 

during the entire time period. Within the long cloud band, several smaller cloud bands 

developed over the Mongolian region, the Gulf of Phohi, and the KP from OOOOUTC on 

July 27 onward (the three arrows in Fig. 3.6 (e) indicate these cloud bands). Two cloud 

bands over the Gulf of Phohi and the KP started to move southward and were well 

developed by 0600UTC (the two arrows in Fig. 3.6 (f) indicate these two cloud bands). 

These cloud bands started to dissipate at 1800UTC (Fig. 3.6 (h)).

3.2 Sub-Synoptic Scale Aspects

The most severe local flooding occurred in the Chorwon (38.15N, 127.32E)- 

Yonchon (38.U N , 126.92E) region, and thus the storm is appropriately named the 

Chorwon-Yonchon heavy rainfall event. Figure 3.8 shows the time series of hourly 

rainfall (mm) and accumulated rainfall (mm) for the flood event at the Chorwon 

Meteorological Station, which was the only official weather station in the heavy rainfall 

region. It should be noted that the heavy rainfall was most concentrated over the
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Fig. 3.6 GMS-5 IR images at (a) OOOOUTC July 26, (b) 0600UTC, (c) 1200UTC, (d) 
1800UTC, (e) OOOOUTC July 27, (f) 0600UTC, (g) 1200UTC, and (h) 1800UTC.
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Fig. 3 .6  (Continued).
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a. Hourly Rainfall at Chorwon (06UTC July 26 to 03UTC July 27)
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Fig. 3.8 Observed hourly rainfall (mm) recorded from  06 UTC July 26 to 03 UTC July 
27 (a) and observed accumulated rainfall recorded from  16 UTC July 26 to 03 UTC

July 27 (b) at Chorwon.
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Chorwon region from 1900UTC on July 26 to OlOOUTC on July 27. Future forecasting 

work in this study will be focused on this heavy rainfall time period. In this subsection, 

sub-synoptic scale analyses will be presented to denote this local heavy rainfall event by 

examining Q-vector divergence fields and observed radar reflectivity.

3.2.1 Q-vector Analvsis

The omega equation, used to calculate vertical motion, can be rewritten in a 

proportionality form using the Q-vector: to «: V • Q, (See below for a discussion of the 

validity of this expression.) where to is a vertical velocity (dp/dt). The Q-vector defined 

as

Q = —  
op

(3.1)

where R is the gas constant for dry air (287.04 J kg ' K '), a  is the static-stability 

parameter (m^ s'^ kPa'^), and Vg is the geostrophic wind vector. The proportionality form 

shows that Q-vector divergence is a good indicator of vertical motion. Namely, upward 

vertical motion (lifting) occurs in regions of Q-vector convergence, while downward 

motion (sinking) exists in regions of Q-vector divergence (Djuric, 1994). Although the 

analysis of Q-vector divergence is useful for determining vertical motion, other factors 

not considered in the Q-vector formulations preclude an exact correspondence between 

Q-vector divergence and to. Although the quasi-geostrophic approximation enables us to 

isolate simple physical processes through the elimination of meteorologically 

insignificant wave motion, such as high frequency inertial gravity waves, the real
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atmosphere is not exactly quasi-geostrophic so that a more accurate representation is 

needed for numerical weather prediction (Bluestein 1992). Thus, the Q-vector 

divergence field only approximates the real to field and the Q-vector divergence 

(convergence) is not exactly correlated with sinking (rising) motion. In this section, Q- 

vector divergence (convergence) is used only for qualitative evaluation of wave-type 

structures to examine if the Q-vector divergence (convergence) can be roughly correlated 

with rainfall regions.

To estimate the vertical motion field in the heavy rainfall region, Q-vector 

divergence fields at 850hPa were examined from OOOOUTC on July 26 to 1200UTC on 

July 27 at 12-hour intervals (Fig. 3.9). The region over the Yellow Sea and the KP, 

including the heavy rainfall region (central part of the KP) was dominated by Q-vector 

convergence at OOOOUTC on July 27. This fact indicates that lifting of warm air at 

850hPa occurred, underneath relatively cool air at higher levels, during this time period. 

This led to more unstable conditions that contributed to the production of heavy rain. 

Over the heavy rainfall region, the values of Q-vector convergence were approximately - 

6.0 X ICr'G kPa/m^s at OOOOUTC on July 26, -2.0 x ICf'* kPa/m^s at 1200UTC on July 26, 

-5.0 X ICr'^ kPa/m^s at OOOOUTC July 27, and almost zero at 1200UTC on July 27. 

Compared to these values, the rising motion over the heavy rainfall region decreased 

slightly by 1200UTC on July 26 (Fig. 3.9b) increased again by OOOOUTC on July 27 (Fig. 

3.9c), and finally almost disappeared at 1200UTC (Fig. 3.9d). At OOOUTC on July 27 

(Fig. 3.12c), in particular, the contours of Q-vector convergence over the Yellow Sea to 

the east of the KP tilted southwest to northeast. This shape can lead to frontogenesis over 

the central part o f the KP, with Q-vectors pointing toward the region o f warm air (not
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Fig. 3.9 850hPa Q-Vector divergence at (a) OOOOUTC July 26, (b) 1200UTC, (c) 
OOOOUTC July 27, and (d) 1200UTC (kPa/m^s, positive value means divergence).
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850hPa Q-Vector Div. for OOUTC July 27
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Fig. 3.9 (Continued).
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shown here). As a result of the increased Q-vector convergence and frontogenesis at 

OOOOUTC on July 27, the greatest rainfall over the central part of the KP could be 

expected just before and after OOOOUTC on July 27. This expectation coincides with the 

observed hourly rainfall at Chorwon (Fig. 3.8a). Overall, we find that the Q-vector 

divergence field offers only an approximate indication of the region of heavy rainfall.

3.2.2 Radar Images

WSR-88D Doppler radar coverage radii are 460 km and 230 km for maximum 

reflectivity and Doppler velocity, respectively. Because the heavy rainfall region, 

including the Chorwon-Yonchon area, is within 150 km of the RKSG radar site 

(Pyoungtaek, Korea), it is reasonable to use radar data as a tool for sub-synoptic analysis.

Figure 3.10 shows the observed hourly radar reflectivity (horizontal reflectivity at 

the lowest elevation angle, 0.48°) from the RKSG WSR-88D radar from 1500UTC on 

July 26 to 0300UTC on July 27 (as shown in Fig. 3.8, the greatest hourly rainfall at 

Chorwon occurred during this time period). The filled circle and the filled rectangle on 

each figure indicate Chorwon and Yonchon, respectively.

Although clouds had continually moved over the Korean peninsula from the 

Yellow Sea, as shown in the satellite images (Fig. 3.6), it is difficult to find any strong 

convective clouds upstream of the KP, except at 0600UTC on July 27 (Fig. 3.6f). 

Instead, the strong storms developed after the clouds from the Yellow Sea had moved 

inland over the KP. This can be confirmed by the radar images, which show that higher 

values of reflectivity (exceeding 41 dBZ, with the colors of very light green, yellow and 

red) were found in the central and eastern part of the KP, but not in the west coastal

65



region during the entire time period. Considering only satellite images, giant convective 

clouds seemed to cover the central part of the KP. As shown in these radar images, 

however, convective activity occurred in a very small area and high-level cirrus and 

stratus clouds covered the other regions.

During the entire time period, reflectivity values less than 33 dBZ (with the colors 

of dark green and blue) covered the central part of the KP, with scattered strong echoes 

exceeding 41 dBZ representing the strongest convection at that time. At I900UTC on 

July 26 (Fig. 3.10e), the scattered strong echoes started to merge. At 2000UTC on July 

26 (Fig. 3.10f), a large region of high reflectivity developed over the northern part of the 

Chorwon region and maintained its shape through 2200UTC on July 26 with a slight 

movement to the south. From 1900UTC on July 26 (Fig. 3.10e). high reflectivity (41 

dBZ, with the color of very light green) was present over the Chorwon region, and the 

echo continued to evolve through 2200UTC on July 26 (41-45 dBZ at 2000UTC (Fig. 

3.100, 45-49 dBZ at 21 OOUTC (Fig. 3.10g), 49-53 dBZ at 2200UTC (Fig. 3.10h)). 

These developing echoes over the Chorwon region are consistent with the observed 

hourly rainfall at the Chorwon station (Fig. 3.8); 18.7 mm -2000U TC to 2100UTC, 23.0 

mm -21 OOUTC to 2200UTC, and 32.9 mm -2200U TC to 2300UTC (the greatest hourly 

rainfall time). At 2300UTC on July 26 (Fig. 3.10(i)), the high reflectivity over the 

Chorwon region had almost disappeared and a new storm, which appeared first at 

2200UTC (Fig. 3.10 (h)), developed very rapidly (exceeding 53 dbZ, with the color of 

light orange). This new storm had not changed its position by 0200UTC on July 27 (Fig. 

3.10 (1)), and started to decay by 0300UTC on July 27 (Fig. 3.10 (m)).

66



Considering all of the radar images, the heavy rainfall event was highly local and 

strong storms developed locally and moved very little. Orographic effects can be inferred 

as one of reasons for this heavy behavior, as Chorwon is located at the west of Taeback 

Mountains.
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Chapter 4

Numerical Model and Experiment Design

4.1 The Numerical Model: Advanced Regional Prediction System (ARPS)

The Advanced Regional Prediction System (ARPS), including the ARPS Data 

Assimilation System (ADAS), was developed at the Center for Analysis and Prediction 

of Storms (CAPS) at the University of Oklahoma. Xue et al. (2000, 2001) denote the 

features and advantages of the ARPS as follows:

"The ARPS was designed from the beginning to serve as an effective tool 

for basic and applied research and as a system suitable for explicit 

prediction of convective storms as well as weather systems at other scales.

The ARPS includes its own data ingest, quality control and objective 

analysis packages, a data assimilation system which includes single Doppler 

velocity and thermodynamic retrieval algorithms, the numerical prediction 

component, and a self-contained post-processing, diagnostic and verification 

package. The numerical prediction component of the ARPS is a three- 

dimensional, nonhydrostatic compressible model formulated in generalized 

terrain-following coordinates. The ARPS also includes state-of-the-art 

physics parameterization schemes that are important for explicit prediction 

of convective storms as well as the prediction of flows at larger scales."

The ARPS User's Guide Version 4.0 (Xue et al. 1995) provides a detailed 

description of the formulation, physics parameterizations, computational implementation,
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and numerical solution methods for the ARPS. Significant improvements have been 

made to the ARPS system since the ARPS Version 4.0 was officially announced in the 

mid-90s. Xue et al. (2000; 2001) describe the more recent improvements for the ARPS 

system. Overall, the key features employed in the ARPS are as follows: (1) 

nonhydrostatic compressible dynamics, (2) comprehensive physics packages including 

cloud microphysics parameterization, cumulus parameterization, non-local PEL 

parameterization, and the inclusion of snow cover and refinement of the current land 

surface-vegetation model; and (3) a complete data ingest and analysis system capable of 

dealing with various observational data sources, including Doppler radar data and 

satellite data. The simulations described in this study were made using ARPS Version 

4.5.1.

4.2 ARPS Data Assimilation System (ADAS)

A separate software package, the ARPS Data Assimilation System (ADAS), is 

used for initializing the ARPS. ADAS contains sophisticated data quality control 

procedures and is used to interpolate observed data onto the ARPS grid (Brewster, 1996) 

using a successive correction scheme (Bratseth 1986) applied to the grid relative winds (u 

and v), pressure, potential temperature and specific humidity. Other meteorological 

variables are analyzed using straightforward modification. Largely following Brewster 

(1999), this section describes briefly the cloud analysis scheme and associated treatment 

of radar data in ADAS -  both of which are crucial elements of the present study.
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Figure 4.1 depicts schematically the treatment of radar data in ADAS. In the first 

step, all raw radar data (here referring to the Level II or base radial velocity and

reflectivity data received from the radar, without any further quality control) are

remapped onto the ARPS grid and then averaged. NIDS or Level III data could be 

accommodated, though with a loss of accuracy owing to value quantization; thus, only 

Level II data are used in the present study. Next, the remapped data are read and

precipitation terminal velocity is removed, after which the radial velocity data are

converted to increments of u and v wind components. These u and v increments are 

created by subtracting the observed radial wind at each grid, , from the dot product of

the analysis wind and the radar azimuth angle, ([) at the same point.

The equations used to impute the velocity correction assigned in a direction 

parallel to the azimuth angle are given by

= cos^[v,^ -  (sin y) + cos ̂ (x , y )], (4.1)

v' (x, y,(p) = sin -  (sin ^(% , y) + c o s ^ (x ,  y ) ] , (4.2)

where v, is the horizontal wind in the radial direction determined from the observed v, .

For practical computation of remapping work in ADAS, the former is defined as the 

radial wind and the slope of ray path with respect to curved earth

v , . = v „ ( | ) - ' ,  (4 3 )

where s is the surface range (distance along the earth’s surface), r is the slant range

ds
(distance along radar radial). —  is obtained from the local slope o f radar beam using

or
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f r o m  t h e  r a d i a l  v e l o c i t y

Fig. 4.1 Algorithm fo r  the treatment o f  radar data in ADAS
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\3 ry
+ = 1, where h is the height of above the antenna height of the beam and

^  is the local slope of the radar ray path with respect to the curved Earth, determined 
or

from the 4/3rds Earth approximation.

4.2.1 ADAS Cloud Analvsis

ADAS contains a module for cloud analysis using cloud cover and height from 

surface observations, as well as radar and satellite data (Zhang et al., 1998; Zhang 1999). 

This module was derived and modified from the complex cloud analysis of the Local 

Analysis and Prediction System (LAPS, Albers et al., 1996). In the ADAS cloud 

analysis, users can select a variety of options to determine which observed variables from 

the cloud analysis contribute to the final output file (Brewster, 1999). Further, the results 

obtained from this ADAS analysis are used as the base for a moisture and diabatic 

initialization as well as the initialization of the ARPS condensate fields. The following 

description of the ADAS cloud analysis largely follows the Zhang (1999) study.

Figure 4.2 shows a schematic diagram of the ADAS cloud analysis used in this 

study. It consists of three parts; (1) 3-D cloud distribution analysis including VCF 

(Volumetric Cloud Fraction) analysis, (2) cloud water (qc and qi) content analysis, and (3) 

precipitation content analysis. In the ADAS 3-D cloud distribution analysis, the 

background VCF field is obtained from the ADAS relative humidity (RH) analysis. An 

empirical relationship is employed for this process (following Zhang, 1999).

VCF =
l . O - R H „ ,

75

(4.4)



ADAS cloud analysis

GTS(sfc)
cover

cloud water 3-D cloud precipitation
(qc,qi) content distribution content

ADAS 3-D 
analysis fields

thermal
adjustment

moisture
adjustment

ARPS

Fig. 4.2 Schematic diagram o f  the ADAS cloud analysis used in this study (shaded area 
indicates the ADAS cloud analysis scheme).
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Fig. 4.3 Schematic diagram o f  the AD AS volumetric cloud fraction analysis used in this
Study (modified from  Zhang 1999).
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volumetric 

cloud fraction 
analysis

ADAS 3-D 
tem perature 

analysis

radar
reflectivity

glaciation

precipitation w ash out

dry entrainment reduction

adiabatic liquid water 
content (ALWC)
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Fig. 4.4 Schematic diagram o f the AD AS cloud water (q^ and qd content analysis used in
this study (modified from  Zhang 1999).
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where RH is the relative humidity, RHth is the threshold of RH, and b is an empirical 

constant set to 2 in the present study. Clouds with VCF = 1 .0  are inserted in the radar 

echo region above the lowest cloud base if the reflectivity exceeds a threshold. In this 

study, cloud base is the lifting condensation level obtained from the ADAS temperature 

analysis because no sounding data are used. The radar threshold to insert radar 

reflectivity in this study is 25 dBZ for points below 2,000 m AGL and 20 dBZ for points 

above 2,000 m AGL. Figure 4.3 depicts the VCF analysis process.

In the second step of VCF analysis, cloud water (qc and qi) content (liquid and 

frozen) analysis is analyzed (Fig. 4.4). The cloud water (qc and qi) for the regions where 

the cloud fraction is over the given threshold are computed following Zhang’s (1999) 

method which is based on Smith-Feddes model (Albers et al. 1996). The adiabatic liquid 

water content (ALWC) is introduced in this analysis defined as

(4.5)

where k is the vertical grid index and qvs is the saturation specific humidity. An 

assumption of moist ascent from cloud base to cloud top is employed to estimate the 

ALWC. When temperatures are warmer than -10°C, the ALWC is parameterized as all 

liquid water, while the ALWC is parameterized as all ice for temperatures colder than - 

30°C.

In the third component, or precipitation content analysis, the precipitate starts as 

snow and rain when the wet bulb temperature at the echo top is below 0°C and over 0°C, 

respectively. The precipitates are obtained from radar reflectivities directly. The 

following empirical relation is used for computing rain water (Kessler 1969)

Z = 1.73xl0\yO gj'", (4.6)
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where Z is the reflectivity factor in mmVm^, p is the air density in kg/m^, and qr is the 

rain water mixing ratio. Another empirical relation (Rogers and Yau 1989) for 

computing snow is defined as

Z = 3 .8 x lO " ( /^ ,) ” , (4.7)

where qs is the snow mixing ratio.

4.2.2 Diabatic and Moisture Initialization/Adjustment

The role of diabatic initialization is to force vertical motion and associated 

divergence in a manner consistent with processes responsible for creating observed 

precipitation. The moisture initialization process seeks to provide sources for cloud 

condensation, and to maintain vertical circulations produced by diabatic initialization 

(Zhang 1999). In the present study, we use the Zhang (1999) diabatic and moisture 

initialization scheme. In it, a thermal adjustment is introduced to compensate the 

negative buoyancy produced by the cloud and precipitation analyses. Although the 

thermal adjustment can produce appropriate vertical circulations in the cloud and rain 

regions, these circulations cannot be maintained if continued condensation is not 

produced in a saturated updraft. Thus, the moisture adjustment process is also needed to 

retain consistent cloud condensation. The moisture adjustment used in this study imposes 

minimum RH values in the diagnosed cloudy region, after which the qv field is adjusted 

following the Zhang’s scheme.

The following buoyancy-preserving formulation is employed for the thermal and 

moisture adjustments;
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{ à q l + à q j  àql
(4.8)

(1 + ÿ J  (g + g j

where A0' is the temperature perturbation increment, Aqv' is the specific humidity 

perturbation increment, Aq%, is total water increment, and s = 0.622. We also note in the 

present study that thermal adjustment is employed in advance o f the moisture adjustment 

to ensure the pre-specified minimum RH in clouds.

An advanced latent heating adjustment in ADAS (not used in the present study) 

can also be employed owing to the relationship between the thermal field and latent 

heating by cloud condensation (Zhang 1999; Brewster 2002). The simple latent heating 

adjustment is defined as

A(9' = PgL̂  + àq^)l{Cpïï),
R ic ’ (4.9)

;r = (p /P o )" ''^ ''

where Pe is a weighting factor between 0 and 1 that is applied to avoid excessive 

temperatures, Lv is the latent heat of vaporization for water, p is pressure, Aqc is the cloud 

water increment and Aqi is the cloud ice increment in kg/kg, Cp is the specific heat of air 

at constant pressure, p is pressure, po is 1000 hPa, and Rd is the gas constant for dry air. 

This simple latent heating adjustment will be considered in the future work.

4.2.3 Correlation Ranges Used for the Observations in ADAS

In ADAS, it is important to use correlation range values in the horizontal and 

vertical dimensions consistent with the spacing of observations used. When the 

correlation range is smaller than the average spacing of the observations, coarse data can 

be omitted, preventing the generation of spurious bullseyes around isolated stations
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(Brewster, 1998). Furthermore, the impact of any observation may be affected by the 

correlation ranges.

Table 4.1 shows correlation ranges and observations used in the 3 km radar data 

assimilation experiments. In this table, R and R% indicate the horizontal vertical 

correlation range, respectively. The SYNOP data are used in only the first iteration with 

the 10 km horizontal range and 300 m vertical range. The AWS data are denser and thus 

are used in the second iteration. Radar data, which are the finest scale observations used, 

relatively confined, with 6 km horizontal range and up to 80 m in vertical range. Via 

iterations according to correlation ranges, the AWS and SYNOP data are damped quickly 

to produce small scale increments and thus these data will have the smaller impact than 

radar data in 3 km experiments.

Table 4.1 The correlation ranges associated with observations fo r  ADAS with 3 Jan dx in
the case o f  radar data assimilation.

Pass R  (km ) Rz (m) AWS SYNOP SH IP BUOY R a d a r U/A

1 10 300 yes yes yes no no no

2 10 200 yes no no no no no

3 6 100 no no no no yes no

4 6 100 no no no no yes no

5 6 80 no no no no yes no

81



4.3 Domain Setup and Computer Resources

Three domains are applied using one-way grid nesting. The number of points in 

each domain are 99x103x37, 115x139x37, and 144x187x37 for 27-km, 9-km, and 3-km 

horizontal resolutions, respectively. Following conventional procedures to avoid vertical 

imbalances among the nested grids, we used same number of vertical levels and same 

vertical grid spacing (400 m) in all domains. However, we used smaller vertical 

minimum grid spacing (20 m) in 3 km domain than that in 27 km and 9 km domains (50 

m) since the finer terrain is employed in 3 km domain. Table 4.2 presents the 

configurations of domain and grid, including the values of latitude and longitude for the 

center of domain at each horizontal resolution. Figures 4.5 and Figure 4.6a,b show the 

terrain used in this study for the 27-km, 9-km, and 3-km grids, respectively. As shown in 

Figure 4.6b, Chorwon is located approximately 250 m MSL and a mountain of altitude 

-700  m height is positioned just to the east.

All simulations were performed on the Cray-J90 computer at the University of 

Oklahoma. However, the conversion of NEXRAD data to ADAS format was conducted 

on a Sun SPARC workstation.
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Fig. 4.5. The analysis and prediction domains and the terrain fo r  the 27-km grid.

Table 4.2 The configurations o f  domain and grid.

Horizontal Resolution Grid Center of Domain
27 km 99 X 103 X 37 34.0N, 122.5N
9 km 115 X 1 3 9 x 3 7 36.0N, 126.0E
3 km 144 X 187 x 3 7 37.5N, 127.3E
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Fig. 4.6 Terrain used in (a) 9-km and (b) 3-km horizontal resolutions experiments, 
respectively. The filled  circle and the filled  rectangle indicate the positions o f  

Chorwon and Yonchon respectively.
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4.4 NEXRAD (WSR-88D) Radar Data

Data from the WSR-88D radar (commonly referred to as NEXRAD) at the US 

Air Force Base in Pyoungtaek (RKSG) were used in this study. Table 4.3 presents a brief 

summary of the Pyoungtaek WSR-88D specifications. In general, two types of WSR- 

88D data are available for scientific use: Level II (also called “base”) data and Level III 

data. Only Level II data are employed in this study because Level III data contain only 

the lowest four elevation scans, with the radial velocity and reflectivity values quantized 

in intervals of approximately 5 units. In contrast, WSR-88D Level II data include 

reflectivity, mean radial velocity and spectrum width at the full spatial and temporal 

resolution of the WSR-88D processor. Base reflectivity is a measure of the echo (return) 

intensity of targets (clouds, water droplets, dust, etc.) in the atmosphere. Mean radial 

velocity is a measure of the radial component of the velocity within the sampling area. 

The NEXRAD data were converted to ADAS format by means of the ARPS utility, 

88d2ARPS, which remaps the raw radial coordinate NEXRAD data onto an ARPS 

Cartesian grid, and averages the data within each grid volume as a means of data 

thinning. Appendix A provides details of this process.
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Table 4.3. WSR-88D specification summary (from Kim 2000 and NCDC Radar Data
Inventories homepage, 2001).

Location
Pyungtaek (RKSG): 36.9558N, 127.021 IE  

Elevation: 52ft (15.9m)

Coverage
Doppler: 124nm (230km)

Maximum: 248nm (460km)

Wavelength 10cm S-Band

Power Operational: 750kW, Maximum: IMW

Antenna Radius: 28ft (8.5m), Rotate 360°

Radome Radius: 39ft (11.8m)

Beam Width 1°

Scan Strategy

Volume Coverage Pattern 11 (Severe Mode): 

14 elevations in 5 minutes

Volume Coverage Pattern 21 (Precipitation Mode): 

9 elevations in 6 minutes

Volume Coverage Pattern 31/32 (Clear Air Mode): 

5 elevations in 10 minutes

Data Range
Wind: -64kts (inbound) -  64kts (outbound)

Reflectivity: 0 ~ 75dBZ
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4.5 Experiment Design

One way nesting is employed for all experiments using a horizontal resolution of 

27-km for the coarse outer grid, 9-km for the middle grid, and 3-km for the inner fine 

grid. The 26 different experiments may be classified into four principal categories: (1) 

with and without radar data, (2) different background fields for the outer grid; (3) 

combinations of radial velocity and reflectivity; (4) different data assimilation strategies 

applied to radar data. Table 4.4 presents a summary of these experiments, with more 

detail provided in the following sub-sections.

Figure 4.7 presents a schematic representation of the 27-km and 9-km resolution 

experiments. Initial and lateral boundary conditions for the 27-km grid ARPS forecast 

were provided by the KMA 40-km, 18-hour operational Regional Data Assimilation and 

Prediction System (RDAPS) forecast initialized at 12UTC July 25, 1996. Although we 

would have preferred to use an analysis for the background field, none was available at 

the time during which we wished to initialize the ARPS (i.e., prior to the beginning of the 

heavy rainfall event). The 27-km ARPS control forecast, known as experiment 27R, is 

integrated for 21 hours (from 0600 UTC on 26 July until 0300 UTC on 27 July) using 

GTS (surface), AWS (KMA Mesonet), satellite (both IR and VIS) data at the initial time. 

At 27 km resolution, a numerical model is not capable of resolving convective 

circulations, and the area covered by the one radar is very small compared to the forecast 

domain. Thus, no attempt was made to utilize radar data in this case.
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Table 4.4 Summary o f  A ll Experiments

Name Horizontal
Resolution

Initial Data Convective
Paramet.

Special Features

27R 27 km GTS, AWS 
satellite

Kain-
Fritsch

first guess field; RDAPS 18- 
hr forecast initialized at 
12UTC July 25 (27 km old
f.gA)

27R_n same as 27R 
at OOUTC Ju

but for new first guess filed (RDAPS 6-hr forecast initialized 
y 26 (27 km new f.g.f.))

09RNR 9 km GTS, AWS 
satellite

Kain-
Fritsch

27km old f.g.f.

09RNR_n same as 09R MR but for 27 km new f.g.f.
09RYR 9 km GTS, AWS

satellite
radar

Kain-
Fritsch

09RYR n same as 09RYR but for 27 km new f.g.f.
09RAR 9 km GTS, AWS

Satellite
radar

Kain-
Fritsch

radar data assimilation: 
3 times and 10 min. data 
assimilation window

09RAR_n same as 09RAR but for 27 km new f.g.f.
03RNR 3 km GTS, AWS none
03RNR n same as 03R MR but for 27 km new f.g.f.
03RYR 3 km GTS, AWS 

radar
none using both of radial velocity 

and reflectivity
03RYR_n same as 03RYR but for 27 km new f.g.f.
03RYR_ref same as 03RYR but for using only reflectivity in radar data
03RYR ref n same as 03RYR_ref but for 27 km new f.g.
03ROR 3 km radar none only radar data (both of radial 

velocity and reflectivity) for 
initial data

03ROR_n same as 03ROR but for 27 km new f.g.f.
03ROR_ref same as 03ROR but for using only reflectivity in radar data
03ROR_ref_n same as 03ROR_ref but for 27 km new f.g.
03RAR 3 km GTS, AWS none radar data assimilation;

3 times and 10 min. (50-00 
period) data assimilation 
window

03RAR_ii same as 03RAR but for 27 km new f.g.f.
03RAR_lt same as 03RAR but for only 1 time data assimilation
03RAR_lh_rap same as 03RAR but for 3 times data assimi ation during 1 hour
03RAR_initrad 3 km GTS, AWS 

radar
none same as 03RAR but for 

adding radar data at initial 
filed

03RAR_ceiitl0 same as 03RAR but for lOmin (55-05 period) in data assimilation window
03RAR cents same as 03RAR but for 5min (58-03 period) data assim. window
03RAR_cent20 same as 03RAR but for 20min (50-10 period) data assim. window
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The 9-km control run, which utilizes no radar data, is known as 09RNR (NR = no 

radar), and was initialized using the 9-hour 27R forecast as a first guess field. 

Experiment 09RNR was integrated for 12 hours from 1500 UTC on July 26 to 0300 

UTC on July 27. As mentioned earlier, this 12-hour time interval was chosen to coincide 

with the observed rainfall event. GTS and AWS surface observations were used in 

ADAS for experiment 09RNR. Experiment 09RYR is similar to 09RNR, though with the 

use of radar data at the initial time only to aid in the specification of the moisture and 

latent heating/temperature fields.

In order to investigate the impact of using more than a single volume scan of 

radar data as a means for capturing small-scale structures, we perform another 

experiment, known as 09RAR, that is similar to 09RYR but with the exception that radar 

data are assimilated at hourly intervals from 1500 UTC to 1800 UTC, July 26 using 

incremental analysis updating. The first guess field for this run is the same as that for 

09RYR, in contrast to the 9-hour forecast from 27R, which was employed in 09RNR.

Figure 4.8 presents a schematic for the 3-km resolution forecasts. As shown in 

this figure, the methodology for 03RNR, 03RYR, and 03RAR is identical to that for 

09RNR, 09RYR, and 09RAR, respectively. As described in Chapter 6, numerous 

variations are applied to this 3-km methodology, including changes to the data 

assimilation window, frequency of data inputs, and background fields used. The 

description of specific design deferred to Chapter 6.
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Fig. 4.7 Experiment design fo r  contrai 27-km and 9-km resolution forecasts.
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Fig.4.8 Experiment design fo r  3-km resolution forecasts.

91



4 .6  The Data Assimilation Procedure: Incremental Analysis Updating (lAU)

Incremental analysis updating (lAU), which can be described as belonging to the 

family of nudging techniques, is designed to gradually incorporate analysis increments 

(i.e., the analysis minus the background field) into a numerical model as constant 

forcings in prognostic equations over an assimilation period centered on a given analysis 

time (Bloom et al. 1996; see Figure 4.9). Via linear analysis. Bloom et al. showed that 

lAU has the advantage of serving as a low-pass time filter. They also found that lAU has 

a particular effect on the response of the model where analysis increments exist, and that 

it leaves the model state unaffected where data are not available to be assimilated.

4.6.1 The Scheme and Linear Analvsis of lAU

Following Bloom et al. (1996), we present in this section an analysis of the 

response functions associated with the assimilation of increments into a linear model. A 

general linear system of the dynamics of an assimilation system can be written

f  = (4.3)
or = « 0  at t = 0,

where t is time, a  is a state vector of the atmosphere, and A is a time-independent linear 

operator representing the dynamics of the system. F(t) is a state-independent forcing 

term which represents only data forcing  since we focus on the short term impact of the 

strategy used for assimilating data. Thus, the concern of the linear analysis of lAU is to 

show “the issue of how the assimilation system reacts to the manner in which analyzed 

data are introduced to that system (Bloom 2003).”
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For mathematical simplicity, let A be an operator which contains a complete set 

of eigenvectors and eigenvalues denoted by

AUj=ÀjUj ,  7  = 1,••••,00, (4.4)

where Uj is the jth eigenvector and jth complex eigenvalue A,j = /coj + o]; toj is the jth mode 

frequency and aj is the jth mode growth-decay rate. The general solution of Eq. 4.3 is

a{t)  = e^‘a ,  + . (4.5)

The relationship between the analysis state %  and the background state %  is given by

+ (4.6)

where AOa is the analysis increment. Now consider the lAU interval t  (with x = 2t), 

within which the background state can be written

(4.7)

In this equation, we assume that the model forecast in Eq. 4.3 produces the background 

state from an initial state cto valid at t = 0. Further, we do not consider the data forcing  in 

the background state given that the forcing term in Eq. 4.3 is restricted to represent solely 

the influence of data on the assimilation process. This means that the background is 

calculated without the influence o f  data. Bloom (2003) denoted a little more detailed 

explanation of this situation; “we are simply defining the evolution of the background 

state, which has no data forcing: this is simply the time evolution of the linear system in 

the absence of data.”
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In order to compare the performance of the lAU system with an integration of the 

general linear system (Eq. 4.3) initialized at t = t/2  with the analysis state %  as given in 

equation 4.6, an analysis increment AOa is employed. This process can approximately be 

regarded as intermittent assimilation. For the solution, a specific forcing which is 

proportional to 0(t -  t/2), where 5 indicates Dirac delta function, is introduced in equation 

4.5. Thus, the intermittent solution (t) is given by

= e^'a^  (4.8)

where t > x/2 since 6(t -  x/2) = 0 in 0 < t < x/2 according to the Dirac delta rule.

The framework for examining (t), cto, and AOa is provided by using the 

eigenvectors/eigenvalues (Eq. 4.4) of the general linear system (Eq. 4.3) as follows:

Of"" ( 0 = 2

a,
(4.9)

0
J

where bj, and dj are scalar multiplies for (t), Oo, and Acta, respectively. With 

these frameworks, and replacing A by Àj_ equation 4.8 can be written in mode space as:

a ‘j ^  (r) = (bj + ) (4.10)

W hen we consider a constant forcing in the lAU procedure, it can be rewritten as

F (0  = ^ ^ A ût̂ , | '=  J[g(Oûf^ (4.11)

where g(t) is a scalar function in which additional analysis increments can be specified in 

a patchy and sparse manner in time. If we use the forcing of equation 4.11, along with 

the framework of equation 4.10 and the initial state Oo at t = 0, the solution of an lAU 

mode in space can be written
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I f  A, (4.12)
r U j , t )  = — ! e ‘ g{s)ds  

8 *

In general, the response function R in a data assimilation state determines whether 

a wave is amplifying or damping. If |R| > I or |R| < I, the wave is amplifying or 

damping, respectively (Haltiner and Williams 1980). In the study of Bloom et al. (1996), 

the response functions were employed to compare the effects of different assimilation 

strategies. For example, they first obtained a response function (R'*^) comparing to the 

solutions of intermittent assimilation and I AU. Second, they examined another response 

function (R'^) for intermittent assimilation and nudging (dynamic relaxation). Finally, 

they compared R'^^ with R”̂ to find a difference between lAU and nudging method. In

the following discussion of each response function, we follow the description of Bloom et

al. (1996) without modification.

Compared to the intermittent solution (Eq. 4.10) and lAU solution (Eq. 4.12) 

employing t = t  (we used this LAU interval in the present study), the bj term from the 

initial state in intermittent assimilation is exactly same as that in lAU. This means that 

the analysis increment is the only contributor to assimilation in lAU. By forming the 

ratio of the dj terms from equations 4.10 and 4.12, the R'^^ is given by

. (4.13)
e '

When g(t) = constant =1, y(Xj,t) in equation 4.12 and equation 4,13 produce

=  (4.14)
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, s inh^(o ',.r/2 ) + sin^(û;,.r/2)
P i = ---------— — r ---------— ,— - ,  (4.15)

{ a j T / l Ÿ  +{cOjT I 2 Ÿ

(7j tan{û)jT/2)-cüj tanh(cr^T/2) 

a j  tanh(<7yT/2) + X2lx \ { û ) j T ! 2 )

tan(^y)=  -4-. , 1  (4.16)

where p j and 0j are the jth  amplitude and phase shift of the complex response function, 

respectively, co is mode frequency, and o  is growth-decay rate. Bloom et al. (1996) also 

explained the characteristics of equations 4.14 to 4.16. The signs of the mode frequency 

(0  and growth-decay rate o  have nothing to do with the amplitude o f the response 

function. The growing disturbances with an e-folding time 1/a will be removed in nearly 

the same amount of time as the decaying disturbances with the same e-folding time for a 

given frequency.

One of the most interesting characteristics of this response function is that the 

product of the disturbance complex frequency À, and the lAU interval x, can only affect 

the response function. Figure 4.10a shows the result of Bloom et al. (1996) for the lAU 

response function amplitude p using three values of the growth-decay rate a. Figure 

4.10b depicts the phase shift 6 of response function for lAU forcing. They interpreted the 

result as follows;

“These linear analysis results indicate that the lAU procedure should 

behave like a low-pass filter with a cutoff period around one day. Such a 

behavior would remove fast (e.g. gravity waves) atmosphere motions 

while having little effect on synoptic-scale and low-frequency atmospheric 

disturbances. This behavior has the practical result that high-frequency 

phenomena generated internally by the model (e.g. diurnal cycle, tides) are
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not affected by lAU integration; only those high-frequency states excited 

by imbalances in the analysis increments are affected by the lAU 

procedure. In the results of the phase shift 0, there is no shift for forced 

disturbances having periods longer than the lAU period (6 h in this 

figure). Although the phase behavior does depend on the sign of a, the- 

long period behavior of the phase response for both decay and growth 

converge to the neutral limit. For strong instabilities having e-folding 

timescales less than 6 h, the phase shift introduced by lA U  is very small.”

4.6.2 Differenced between lAU and Nudging

Although lA U can be regarded as belonging to the family of nudging techniques, 

there exist important differences between lAU and classic Newtonian nudging (N). In 

order to examine these differences, we derive the solution and response functions 

associated with nudging following the work of Bloom et al. (1996).

A general nudging procedure may be written as

^  = A a - G f j { a - a „ )  + G i ^ D \ a - a J ,  (4.17)

where G n and Go are the scalar constants (not relaxation coefficients) controlling the 

strength of Newtonian relaxation and diffusion, respectively, and D2 is a diffusion-like 

operator. This equation can be rewritten as

^  = A a + G ^ a „ - G ^ D \ = A a + F ^ + F ^ ,
at  , (4.18)

A = A — G/^ + GpD^
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where À is the modified dynamical operator and F n and F d are the forcing terms for 

Newtonian relaxation and diffusion, respectively, which include both background state 

and the analysis increments. Other variables and notations are same as those used in the 

lAU process. Following the analysis methodology shown for lAU, we obtain the 

following general solution of equation 4.18 for nudging

a^{ t )  = (F^ + ¥ ^ ) d s . (4.19)

For mathematical simplicity, as in lAU, we assume that the eigenvetors of À are the same 

as the eigenvectors of A, but with shifted eigenvalues

Au j = X.\x^, Xj = Xj -  G j , (4.20)

where Gj is a relaxation coefficient (= On + GdKj"; here Kj is a scale-selective parameter 

formally equivalent to a horizontal wave number.) As in the lAU procedure, we obtain 

the following nudging solution, Oj^, the analysis increment response function for the 

nudging procedure, and the background response function for the nudging

procedure, R b^:

or; (T) = [1 + . (4.21)

. (4.22)
XjT / 2

(4.23)

/ly r /2

Although the response functions for the nudging procedure are very similar to those for 

lAU (cf. 4.14-4.16), the relaxation time scale in the nudging procedure is more important 

for damping overall amplitude and shifting the eigenvalues to larger growth-decay rates
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compared to lAU. Consequently, the lAU scheme adds the analysis increments to the 

model as a state-independent forcing term to perform the actual filtering only on the 

response to the analysis increments, whereas the entire model state is relaxed toward an 

analysis in the nudging technique (Bloom et al. 1996).

The study of Bloom et al. (1996) was focused on the macro-scale forecasting in a 

GCM model. They used a 6 hr lAU interval using synoptic data and an analysis with a 6 

hr interval. However, the lAU procedure employed in our present study is for storm 

scale forecast using dense radar data with an lAU interval of 10 minutes. Although there 

exists scale differences in time and space between the study of Bloom et al. (1996) and 

our present study, one may ask whether difficult exists in applying Bloom’s lAU method 

to storm-scale weather.

As mentioned previously for lAU, the product of the disturbance frequency, À, 

and the lAU interval, x, can only affect the response function. This fact leads to the 

important result that the lAU interval, and the frequency of observation used for analysis, 

should appropriately be combined. In light of this, the 10 minute lAU interval using 

radar data with a 5 minute update frequency is reasonable. For small scales, lAU acts as 

a low-pass filter to reduce the amplitude of relatively high frequency disturbances.

4.6.3 lAU in ADAS

The ADAS assimilation scheme is designed to gradually apply the ADAS-determined 

analysis increments over a specified time span during the execution of the ARPS model 

(Brewster, 2001). Modifications have been made to both the ADAS software and the
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ARPS model to enable this capability. The assimilation procedure in ADAS creates a file 

containing increments that are applied during the model's large time-step, after the other 

large-time-step forces have been applied. Although the term 'nudging' is used in many 

places, the method is similar to that described by Bloom et al. (1996) and is more 

accurately referred to as incremental analysis updating (lAU). For 09RAR and 03RAR 

experiments ADAS was run at 1500 UTC and lAU was not used at that time. Then 

increments were calculated at 15:50 using the 1600 UTC data and the ARPS forecast 

initialized at 1500 UTC. The increments were introduced in a window from 15:50 to 

16:00. Similarly, data at 1700 and 1800 UTC were assimilated during the period 16:50 to 

17:00 and 17:50 to 18:00 UTC, respectively.

4.7 ARPS Parameters for Radar Data Assimilation

Table 4.5 shows selected ARPS parameters for the 3-km grid spacing radar data 

assimilation experiment (03RAR), while Tables 4.6 and 4.7 present the same information 

for the 27-km and 9-km horizontal grid spacing cases, respectively. Because almost all 

physics options in ARPS were employed for this study, proper choices for parameter 

values are important. Consequently, many experiments were conducted using various 

parameter values and physics options, including warm rain versus ice physics and 

different cumulus parameterizations. Four options for microphysics are included in 

ARPS: 1) no microphysics processes (warm (liquid) saturation adjustment), 2) Kessler 

warm rain microphysics, 3) Tao ice microphysics, and 4) Schultz NEM ice microphysics.
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ARPS has also four options for convective cumulus parameterization: 1) no convective 

parameterization, 2) Kuo parameterization scheme, 3) Kuo parameterization scheme 

using Kessler warm rain microphysics, and 4) Kain-Fritsch cumulus parameterization 

scheme. After several tests, the Tao ice parameterization was chosen for the 3-km 

experiments without any convective parameterization - a choice that is consistent with 

recent studies (e.g., Belair and Mailhot 2001). The Tao ice parameterization is used in 

both the 27-km and 9-km resolution forecasts for grid-scale precipitation as it includes 

three categories of frozen precipitation in the form of cloud ice, snow, and hail/graupel 

(Lin et al. 1983; Tao and Simpson 1993).

In general, the Kain-Fritsch cumulus parameterization scheme is well known as an 

effective convective parameterization scheme for middle latitudes when using grid 

spacings of 25 - 40 km. For the 27-km and 9-km resolution forecasts, the Kain-Fritsch 

scheme is applied, though at 9-km resolution, its use is questionable.

In order to obtain the proper time step sizes, the small time step was first 

calculated and the large time step size obtained as a multiple. When solving the vertical 

momentum and pressure equations implicitly in the vertical (Vimplct = T in ARPS code), 

the constraint for small time step size is

where cs is the maximum sound speed and x and y are the x and y grid spacings (m), 

respectively. For our fine grid experiments, x = y = 3000 m and we let cs = 340 m/s. 

This results in a constraint of dtsml 6.2 sec. Via experiments with dtsml values of 6 s 

(dtbig 12 s), 5 s (10 s), 4 s (8 s), 4 s (about 70 % of calculated dtsml value), we chose to 

use 8 s for large time step size and 4 s for the small step for the 3 km resolution forecasts.
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Table 4.5 Selected ARPS param eters fo r  3-km horizontal resolution.

Parameter Name Value
Horizontal grid spacing dx,dy 3 km
Number of vertical levels nz 37
Mean vertical grid spacing dz 400. m
Minimum vertical spacing dzmin 20. m
Vertical stretching option strhopt 2=tanh profile of dz
Large time step dtbig 8. s
Small time step dtsml 4. s
Boundary data interval tintvebd 3600. s
Boundary relaxation zone ngbrz 5.0 dx
Boundary relax wgt halfwidth brlxhw 2.3 dx
Momentum advection madvopt 2=4“̂  order horiz 

& 2"'* order vert
Scalar advection sadvopt 2=4'” order horiz 

& 2"‘* order vert
Hgt to begin Rayleigh damping zbrdmp 12 km
Turbulent mixing tmixopt 4=1.5 TKE mixing
Isotropic turbulence trbisotp O=anisotropic (dx »  dz)
Vertical mixing tmixvert l=vertical components only
Horiz Computational Mixing cmix4th 1=4'” order horiz on
Horiz mixing coefficient cfcm4h 1.0 X W
Microphysics mphyopt 2=Tao-Lin Ice
Convective Parameterization cnvctopt O=off (no convective 

parameterization)
Radiation Option radopt 2=full radiation 

parameterization
Longwave Radiation Scheme rlwopt l=accurate method
Surface physics sfcphy 4=stability dependent drag
Flux distribution depth dtqflxdis 200. m
Surface physics time step dtsfc 60. s
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Table 4.6 Selected ARPS param eters fo r  27-km horizontal resolution.

Parameter Name Value
Horizontal grid spacing dx,dy 27 km
Number of vertical levels nz 37
Mean vertical grid spacing dz 400. m
M inimum vertical spacing dzmin 50. m
Vertical stretching option strhopt 2=tanh profile of dz
Large time step dtbig 24. s
Small time step dtsml 24. s
Boundary data interval tintvebd 3600. s
Boundary relaxation zone ngbrz 5.0 dx
Boundary relax wgt halfwidth brlxhw 2.3 dx
Momentum advection madvopt 2=4“’ order horiz 

& 2"“ order vert
Scalar advection sadvopt 2=4’“ order horiz 

& 2"“ order vert
Hgt to begin Rayleigh damping zbrdmp 12 km
Turbulent mixing tmixopt 4=1.5 TKE mixing
Isotropic turbulence trbisotp O=anisotropic (dx »  dz)
Vertical mixing tmixvert 1= vertical components only
Horiz Computational Mixing cmix4th 1=4’“ order horiz on
Horiz mixing coefficient cfcm4h 1.0 X 10^
Microphysics mphyopt 2=Tao-Lin Ice
Convective Parameterization cnvctopt 3=Kain-Fritsch

parameterization
Radiation Option radopt 2=full radiation 

parameterization
Longwave Radiation Scheme rlwopt l=accurate method
Surface physics sfcphy 4=stability dependent drag
Flux distribution depth dtqflxdis 200. m
Surface physics time step dtsfc 60. s
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Table 4 .7  Selected ARPS param eters fo r  9-km horizontal resolution.

Parameter Name Value
Horizontal grid spacing dx,dy 27 km
Number of vertical levels nz 37
Mean vertical grid spacing dz 400. m
Minimum vertical spacing dzmin 50. m
Vertical stretching option strhopt 2=tanh profile of dz
Large time step dtbig 18. s
Small time step dtsml 18. s
Boundary data interval tintvebd 3600. s
Boundary relaxation zone ngbrz 5.0 dx
Boundary relax wgt halfwidth brlxhw 2.3 dx
Momentum advection madvopt 2=4*'’ order horiz 

& 2"*' order vert
Scalar advection sadvopt 2=4^ order horiz 

& 2"*' order vert
Hgt to begin Rayleigh damping zbrdmp 12 km
Turbulent mixing tmixopt 4=1.5 TKE mixing
Isotropic turbulence trbisotp O=anisotropic (dx »  dz)
Vertical mixing tmixvert l=vertical components only
Horiz Computational Mixing cmix4th 1=4“’ order horiz on
Horiz mixing coefficient cfcm4h 1.0 X 10"*
Microphysics mphyopt 2=Tao-Lin Ice
Convective Parameterization cnvctopt 3=Kain-Fritsch

parameterization
Radiation Option radopt 2=full radiation 

parameterization
Longwave Radiation Scheme rlwopt l=accurate method
Surface physics sfcphy 4=stability dependent drag
Flux distribution depth dtqflxdis 200. m
Surface physics time step dtsfc 60. s
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Chapter 5. 

Results of 27-km and 9-km Resolution Experiments

We discuss in this chapter results from simulations made using grid spacings of 

27 and 9 km, the latter as a one-way grid nested within the former. Given that the focus 

of this research is storm-scale prediction at grid spacings of a few kilometers, our 

analysis of the 9 and 27 km grid spacing experiments is necessarily limited, with 

particular emphasis on the former providing the background and boundary condition 

information for the 3 km experiments.

5.1 Overview of the 27-km Grid Spacing Experiments

As shown in Fig. 4.4 and table 4.3, two experiments at 27-km grid spacing have 

conducted in this study. Experiment 27R is the 27-km ARPS control forecast advanced 

21 hours (from 0600 UTC on July 26 to 0300 UTC on July 27) using as a starting point 

the 18-hour RDAPS forecast initialized at 12 UTC on July 25 (hereafter referred to as the 

“old” first guess field). Although one would prefer to use an analysis as the starting point 

for forecasts, as well as for boundary conditions, in a research setting, we were forced to 

use a forecast for both owing to the lack of an operational analysis at 18 UTC, the starting 

time for our forecasts that was based upon the evolution of the chosen heavy rainfall 

event. The other experiment, 27R_n, is identical to 27R except for using a newer version 

of the RDAPS model from a 6-hour forecast initialized at OOUTC on July 26. This 

particular forecast, which was not available operationally but was produced quite
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recently, utilizes an enhanced version of the KMA RDAPS model. Hereafter we refer to 

this starting point as the “new” first guess field.

5.1.1 Difference Between the Two First Guess Fields

It has long been recognized that the first guess field is of critical importance to 

forecasting the phase and intensity of mesoscale events (e.g. Janish and Weiss, 1996) as 

well as of global scale weather phenomena (e. g. Derber et al. 1998). To examine the 

differences between the two first guess fields described above, we show in figure 5.1 the 

two analyses (red arrows) compared to the observed surface wind field (black arrows) at 

the starting time of experiments 27R and 27R_n, i.e., at 06 UTC on July 26. In the case 

of the old first guess field, large differences between the RDAPS forecast and 

observations, while a significant improvement is evidenced when using the new version 

of RDAPS (Fig. 5.1b). For example, the predominant flow in the latter is southwesterly, 

similar to observations, while the old first guess field indicates southeasterly winds on the 

middle western side of the KP. The next step is to determine whether the new first guess 

field has a positive effect on the forecast.

5.1.2 21-hour Total Rainfall Forecast from the 27-km Grid Spacing Experiments

The accumulated rainfall over the 21-hour period ending 03UTC July 27 from 

experiment 27R is shown in Fig. 5.2 for both first guess fields. The maximum rainfall 

using the old first guess field is approximately 70 mm (Fig. 5.2a) and is located in the far 

northwestern part of the Chorwon-Yonchon region. According to the observed rainfall at
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Chorwon, the total rainfall for this time period is 228.3 mm. Thus, the predicted 

maximum rainfall amount is approximately 35% of the observed value. However, the 

predicted rainfall using the new first guess field (Fig. 5.2b) shows substantial 

improvement, with a peak value of 110 mm, or about 50 % of the observed amount. 

Furthermore, the forecast using new the first guess field depicts Typhoon Gloria near 

Taiwan, while the forecast using the old first guess completely misses this feature.

From this and other analyses not shown, the new first guess field leads to 

improvements in the 27 km grid spacing forecast, though with considerable deviation 

from the observations. This mismatch is a result of a number of factors, including the 

coarse resolution of the 27R simulation. Specifically, cumulus parameterization schemes 

are unable to capture the intense precipitating structure of such localized heavy rainfall 

events, though they do a reasonably good job in many cases of predicting the location 

(e.g., Benoit and Mailhot, 2001).

5.1.3 Svnoptic Comparison

Although the precipitation prediction using the new first guess field shows the 

substantial improvement, we need to verify how the results of 27 km compares with 

observations in the light of synoptic aspects. Figure 5.3 shows predicted 850 hPa 

synoptic charts at 0000 UTC July 26 for using old first guess filed (Fig.5.3a) and using 

new first guess field (Fig. 5.3b). In observation (Fig. 3.2c), we find that 1500 gpm height 

line is on the central Korea. The 18 C isotherm is on the central Korea and is tilted to the 

direction of southeast to northwest with a strong thermal trough. By comparing 

observation (Fig. 3.2c) with the predictions (Fig. 5.3a and b), the prediction using the
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new first guess field is much closer to observation than the prediction using the old first 

guess field. Over the central Korea, the prediction using the new first guess field (Fig. 

5.3b) depicts 1500 gpm height and 18 C, while the prediction using the old first guess 

field (Fig. 5.3a) displays 1480 gpm and 17 C. Further, the isotherm over the central part 

of Korea is also tilted as observation did. Both of them do not show the enough moisture 

filed as in observation. Considering wind field, however, we find clear reason why the 

prediction using the new first guess field produced more precipitation than that using the 

old first guess field. In Fig. 5.3b, it well displays the wind which induces moisture flux 

into the central part of the KP from the west region of the East China Sea. As shown in 

Fig. 5.3a, the prediction using the old first guess filed does not depict the wind field 

which can induce moisture flux. Overall, it is very clear that the improved first guess 

field led to substantial improvement for the prediction on 27 km resolution.

5.2 Overview of the 9-km Grid Spacing Experiments

Six experiments were conducted at 9-km grid spacing, the detailed construction of 

which was provided in Chapter 4. All forecasts were of 12 hour duration from 1500 UTC 

on July 26 to 0300 UTC on July 27 (Fig. 4.4). As noted earlier, 9-hour forecasts from 

both 27-km experiments (27R and 27R_n) were employed for the 9 km first guess fields.

5.2.1 Results Using the Old First Guess Field

Figure 5.4 shows the 12-hour accumulated rainfall for each 9-km grid spacing 

experiment. The ‘C ’, ‘Y’, and ‘m ’ in each image depict, respectively, the location of
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Fig. 5.3 Forecasted 850 hPa height, temperature, wind field, and reflectivity at 0000 
UTC July 27 fo r  (a) 27R and (b) 27R_n.
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Chorwon, Yonchon, and the actual maximum rainfall position estimated from NEXRAD 

Level II data (see Chapter 7 for details regarding radar data processing). Experiment 

09RNR (Fig. 5.4a), which does not utilize any radar data, began with 27R background 

information, but was able to spin-up precipitation at an accelerated pace compared to 

experiment 27R. This shows the importance of increased resolution for the prediction of 

intense weather events (e.g., Bélair and Mailhot, 2001; Mass et al., 2001). The maximum 

predicted rainfall is approximately 130 mm, nearly double that from experiment 27R. In 

addition, the location of the maximum is improved over that predicted in 27R, though 

still is located to the west of the observed maximum ( ‘m ’).

Increasingly slightly the level of complexity and presumable accuracy, experiment 

09RYR had the benefit of radar data in the initial analysis. Figure 5.4b shows the 12- 

hour accumulated rainfall, and compared 09RNR (Fig. 5.4a), the maximum is 

approximately I45mm, or approximately 30% of the observed maximum (according to 

the estimated rainfall from NEXRAD data, the maximum amount for the 12 hr forecast 

period is approximately 518 mm at ‘m ’). Although the forecasted position of the 

maximum also is located west of the observed maximum, it is slightly closer than in 

experiment 09RNR. Many factors can affect on the correct positioning of heavy rainfall, 

including initial conditions and model physics. This simple experiment indicates that the 

use of radar data shows promise in improving the prediction of significant weather 

events, principally in the context of diabatic initialization (i.e., when the model grid 

spacing is too coarse to resolve explicitly convective-scale features but is sufficiently fine 

to benefit from improved specification of latent heating from radar data).
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For comparison, Figure 5.4c shows the total accumulated rainfall from experiment 

09RAR experiment, which is identical to 09RYR but with radar data assimilated rather 

than used only in the initial analysis. The maximum predicted rainfall over the KP is 

approximately 120 mm, or about 23% of the observed value. The position and maximum 

amount disagree more with observations than in 09RYR, which is a bit surprising. 

Although experiment 09RAR is more costly in terms of computer resources and is unable 

to improve upon 09RYR, it does exhibit more detailed structure in the rainfall pattern.

The above results, though obviously limited to a single case and a specific experiment 

design philosophy, indicate that radar data potentially can add value to a forecast, though 

cannot necessarily correct phase or amplitude errors (perhaps requiring phase-correcting 

data assimilation, e.g., Brewster 2003). However, the assimilation of radar data at 9 km 

grid spacing, at least for this case and in the manner applied, does not appear to improve 

the results significantly. Note, however, that in applying lAU at 9 km grid spacing, we 

have not utilized Doppler winds or wind retrieval algorithms. Further, 9-km grid spacing 

is still quite coarse for representing the type of deep and intense convection present in 

this heavy rainfall event.

5.2.2 Results Using the New First Guess Field

Fig. 5.5a, b, and c depict results from experiments 09RNR_n, 09RYR_n, and 

09RAR_n, respectively, which are identical to the experiments described above but using 

results from the 27 km experiment initialized with the new background field.

In all cases, the predicted total rainfall is considerably larger than when using the old 

first guess field.
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Fig. 5.4 12-hour accumulated rainfall fo r  (a) 09RNR, (b) 09RYR, and (c) 09RAR 
forecasts. ( 'C': Chorwon position, ‘Y ’: Yonchon position, 'm': observed maximum

position)
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Fig. 5.5 12-hour accumulated rainfall fo r  (a) 09RNR_n, (b) 09R YR ji, (c) 09RAR_n 
forecasts. ('C': Chorwon position, ‘Y ’: Yonchon position, ‘m ’: observed maximum

position)
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specifically, the predicted maximum rainfall amounts over the KP are 300 mm for 

09RNR_n, 320 mm for 09RYR_n, and 260 mm for 09RAR_n -  a considerable 

improvement over the runs discussed above. However, these results also show that 

rainfall is increasing not only locally, but throughout the entire domain, with no 

improvement in the location of the maximum. Indeed, as noted above, the new first 

guess field is considerably moister, thus producing increased precipitation rates and 

accumulated rainfall throughout the forecast period. As in the experiments using the old 

first guess field, radar data assimilation does not appear to improve the forecast. 

Considered qualitatively, these results at 9-km grid spacing suggest that the improved 

first guess field from the 27 km run has a positive effect at 9 km, though at the expense of 

increased biases. Note that we make no quantitative precipitation comparisons here 

because, as noted earlier, our focus is on the 3 km grid spacing experiments.

5.2.3 Grid-Scale Precipitation and Parameterized Convection Precipitation

The precipitation predicted by numerical weather models consists of grid-scale 

(resolvable) precipitation and parameterized sub-grid scale convective precipitation. In 

the 27 km experiment, precipitation produced by the cumulus convection scheme (not 

shown) is much larger than that produced by the explicit grid-scale cloud microphysics 

scheme -  a result consistent with other studies (e.g., Bélair and Mailhot, 2001). Indeed, 

between approximately 15 and 5 km grid spacing, no clear scale separation exists for 

convective clouds, i.e., they cannot be resolved explicitly, and closure assumptions 

regarding their representation as sub-grid scale phenomena are not applicable (Molinari, 

1993). As noted in section 4.7, a horizontal grid spacing of 9 km thus is ambiguous with
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regard to cumulus parameterization, for example our Kain-Fritsch scheme (designed for 

grid spacings of approximately 25 km), though we use it on the 9 km grid per 

conventional wisdom (e.g., Bélair and Mailhot, 2001).

In this section we evaluate the partitioning of accumulated rainfall in a 

representative 9 km grid forecast between grid-scale precipitation and parameterized 

convection. Figure 5.6 shows the 12-hour accumulated rainfall for (a) the grid-scale 

precipitation and (b) parameterized cumulus, with panel (c) showing the sum for 

experiment 09RYR. The heaviest precipitation is produced by the grid-scale 

microphysics scheme, though cumulus convection contributes to broader and somewhat 

weaker precipitation. This reinforces the points made by Molinari (1993) and is similar 

to the study of Bélair and Mailhot (2001), which showed that intense precipitation is 

better represented by grid-scale cloud physics at a horizontal grid spacing of 6 km.
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Fig. 5.6 12-hour accumulated rainfall fo r  (a) grid-scale precipitation, (b) cumulus 
convection precipitation, and (c) grid-scale plus cumulus convection precipitation in

09RYR experiment.
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Chapter 6. 

3-km Resolution Experiments

Although this study utilized numerical predictions at three different grid spacings, 

our principal goal is to evaluate the impact of NEXRAD data on forecasts at the highest 

resolution, or 3 km spacing. We describe in chapter the methodology behind the design 

these experiments and present a variety of analyses to assess the effectiveness of and 

physical response of the model to radar data assimilation.

6.1 Methodology of the 3-km Resolution Experiments

As mentioned in section 4.5, 18 experiments were performed using 3 km 

horizontal grid spacing. For ease of reference, they may be classified into four principal 

categories: (1) use of a different background field to initialize the outermost (27 km) grid; 

(2) experiments with and without radar data (03RNR, 03RYR, and 03ROR); (3) 

differences in radar data used, i.e., radial velocity only, reflectivity only, and both; and (4) 

use of different data assimilation strategies, e.g., length of assimilation interval, number 

of data sets assimilated. We describe below the results of experiments in the latter two 

categories given that the former two were discussed in section 4.5.

6.1.1 Assessing the Relative Value of Reflectivity and Radial Velocity
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In general, both radial velocity and reflectivity data may be assimilated into a 

numerical model. Use of the former alone is expected to be less effective than using 

either reflectivity alone, or using both reflectivity and radial velocity, because of the 

absence of diabatic forcing, even though information about the horizontal wind field is 

known to be more important than the vertical wind field (Nascimento, 2003). In an effort 

to understand the tradeoffs, we conducted comparative experiments in which only one of 

the Doppler moments was used as well as both. The extension ‘_ re f  in the name of the 

experiment (See table 4.3) means that only reflectivity information was assimilated.

6.1.2 Assessing Different Data Assimilation Strategies

To assess the impact of various assimilation strategies applied to NEXRAD data 

for the Chorwon-Yonchon heavy rainfall event, we start with a simple scenario in which 

assimilation is performed during the following three time windows: 15:50-16:00 UTC, 

16:50-17:00, and 17:50-18:00 UTC (03RAR, Fig. 6.1a). Only a single volume scan of 

radar data, collected during the interval closest to the start of the assimilation window, is 

used for each period, i.e., data collected from 15:51-15:56 UTC, 16:51-16:56 UTC, and 

17:51-17:56 UTC. Note that no radar data are used at the initial time (1500 UTC). We 

regard 03RAR as the control experiment and first wish to assess whether the chosen 10- 

minute assimilation window, with three hourly insertions of radar data, has any 

meaningful impact for a model run at 3 km grid spacing for 9 hours. We are particularly 

interested in the time period during which the radar data has a discernable and hopefully 

positive impact.
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Building upon experiment 03RAR, six additional assimilation strategies are used, 

as shown in Figures 6.1 and 6.2. In experiment 03RAR_initrad, radar data are used at the 

initial time (1500 UTC). Only a single insertion of radar data is used in experiment 

03R A R _lt to determine whether one or three assimilation cycles has the greatest impact. 

An experiment using rapidly updated assimilation cycle (03RAR_lh_rap) was performed 

to determine if a more continuous assimilation (three times within an hour) strategy 

provides any improvement, or causes the model to respond differently in terms of its 

adjustment to increments. W e will focus in detail on 03RA R_lh_rap in the next chapter.

The final set of experiments focuses on the impact o f the length of the data 

assimilation window. Lengths of 5 minutes, 10 minutes, and 20 minutes are employed 

(Figure 6.2), corresponding to assimilation windows of 15:58-16:03 UTC, 1658-17:03 

UTC, and 17:58-18:03 UTC for experiment ‘03RAR_cent5’ and 15:50-16:10 UTC, 

16:50-17:10 UTC, and 17:50-18:10 UTC for experiment ‘03RAR_cent20’. Experiment 

‘03R A R _centl0’ is similar to 03RAR_initrad in that it uses data at the initial time and the 

same window length of 10 minutes; however, ‘03RA R_centl0’ also uses different data 

assimilation windows: 15:55-1605 UTC (as opposed to 15:50-16:00 UTC in

03RAR_initrad), 16:55-17:05 UTC (as opposed to 16:50-17:00 UTC in 03RAR_initrad), 

and 17:55-18:05 UTC (as opposed to 17:50-18:00 UTC in 03RAR_initrad). By 

comparing the results of 03RA R_centl0 with those of 03RAR_initrad, we can determine 

whether any differences exist solely due to changes in the placement of the data 

assimilation window.
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Fig. 6.1 Experiment design fo r  different data assimilation strategies; (a) 03RAR, (b) 
03RAR_initrad, (c) 03RAR_It, and (d) 03RAR_Ih_rap. Each thick arrow indicates 
the radar data assimilation and the numbers in parentheses mean the data time. For 
example, AW S(1500) and radar(1551-1556) mean AWIS data at 1500 UTC and one 
volume scan radar data fo r  5 minutes from  1551 UTC to 1556 UTC, respectively.
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Fig. 6.1 (Continued)
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Fig. 6.2 Same as Fig. 6.1 but fo r  (a) 03RAR_centl0, (b) 03RAR_cent5, and (c)
03RAR centlO.
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6.2 Results of 3-km Resolution Experiments

In an effort to verify, in the most quantitative manner possible, the results from 

our 3 km grid spacing forecasts in the four experiment categories described in the 

previous section, we compare forecasted precipitation accumulation against estimates of 

the same quantity obtained from the WSR-88D radar at Pyoungtaek, the latter provided 

courtesy of Vieux and Associates, Inc and shown in Figure 6.3 for the 6-hr and 12-hr 

accumulations. Prior to discussing in the next chapter how these estimates were 

computed, along with detailed precipitation skill scores, we present here more qualitative 

comparisons between the model accumulated rainfall and observations.

6.2.1 Use of Different Background Fields to Initialize the Outermost Grid

As mentioned previously, all 27 km grid spacing simulations made for this study 

utilized for a background field output from the KMA forecasting system that was 

operational at the time of the heavy rainfall event. A new first guess field, based upon a 

more recent version of the model, was noted to be much more moist. We felt compelled 

to test this new background field, even though it appeared to be of lesser quality than the 

original one when compared against observations. Surprisingly, it led to improvements 

in the 27-km grid spacing forecast and to a positive impact on the 9-km grid spacing 

forecast, though at the expense of increased biases. That is, the moister environment 

produced greater amounts of precipitation everywhere, increasing the skill score because 

of an increase in the bias. The question is whether a positive impact can be shown in the 

finest grid spacing forecast using this new first guess field.
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Fig. 6.3 Observed accumulated rainfall estimated from  NEXRAD Level II data (a) 6 
hour accumulated rainfall fo r  1500-2100 UTC and (b) 12 hour accumulated 
rainfall, 15-03UTC. Star, asterisk, fd le d  triangle, and fd led  circle mean the 

positions o f  Pyoungtaek radar, Chowon, Yonchon, and observed maximum rainfall.
respectively.
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Fig. 6.4 Predicted accumulated rainfall fo r  12 hr valid at 0300 UTC July 21 fo r  (a) 
03RNR, (a )  03RNR_n, (b) 03RAR, and (b ’) 03RAR_n experiments. Left panels are 
the results using o ld first guess fie ld  and right panels are the results using new firs t  

guess field, ‘c ‘y  and ‘m ’ mean the positions o f  Chorwon, Yonchon, and the 
position o f  observed maximum rainfall, respectively.
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For this purpose we examined the predicted rainfall using the old background 

field and the new background field. Figure 6.4 shows the forecasted 12-hr accumulated 

rainfall for experiments 03RNR and 03RAR, along with 03RNR_n and 03RAR_n. The 

left panels depict the result using the old first guess field while the right panels show the 

result using the new first guess field. It is clear that the predicted accumulated rainfall 

using the new first guess field is considerably larger than when using the old first guess 

field over almost the entire KP. The 9-km results for assessing this same impact (Fig. 5.3) 

were similar and in fact slightly better. However, the 3-km results do not show a positive 

impact, but rather a substantial negative one. Note in particular the nearly uniform light 

rainfall over most of the domain, in addition to the especially intense amounts off the 

west coast.

The predicted maximum rainfall for 03RNR and 03RNR_n experiments is 49 % 

(257 mm to 518 mm) and 102 % (527 mm to 518 mm) of the observed maximum, 

respectively. The results of 03RAR and 03RAR_n, namely, 47 % (245 mm to 518 mm) 

and 99 % (516 mm to 518 mm), are similar to those of 03RNR and 03RNR_n. The much 

more accurate maximum rainfall (102 % and 99 %) using the new first guess field can be 

regarded as a significant improvement. However, it is clear that these results cannot 

support use of the new first guess field for the following reasons: (1) the predicted 

accumulated rainfall increased not only locally, but throughout the entire domain; (2) the 

predicted maximum rainfall for 6-hr and 9-hr (figures not shown) do not exhibit any 

improvement; for example, the predicted rainfall for 6-hr in 03RAR_n is 163 % (462 mm 

to 284 mm) o f the observed maximum, while 03RAR is 87 % (245 mm to 284 mm); (3) 

the distances between the locations of maximum forecasted and observed rainfall position.
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The ‘m ’ in Fig. 6.4 shows the location of maximum observed rainfall. Also 

shown are the positions of the maximum forecasted rainfall for all experiments. The 

distances between the two for 03RNR and 03RAR are 56 km and 51 km, respectively, 

while those of 03RNR_n and 03RAR_n are 77 km and 74 km, respectively. The greatest 

error occurs when using the new first guess field to initialize 27-km grid spacing 

experiment. Consequently, it is very difficult to support using the “improved” 

background field to initialize the outermost grid. In other experiments, such as 03RYR_n, 

03ROR_n, 03RNR_n and 03RAR_n described in this sub section, the results (not shown) 

are very similar. Thus, all of our experiments are made using the operationally-available 

RDAPS forecast to initialize the 27 km grid spacing ARPS forecast.

6.2.2 Relative Impact of Reflectivitv and Radial Velocitv

Radial velocity, or the velocity component directed parallel to the radar beam, and 

reflectivity are the major observational data available from Doppler radars. Both are used 

for assimilation into numerical models, though retrieval techniques often must be used to 

obtain other necessary information (Sun et al. 1991, Shapiro et al. 1995; Sun and Crook 

1997). Coordinate transformations of radial velocity, sampled in spherical coordinates, 

often must be made for compatibility with a numerical model’s coordinate system and 

sometimes poses additional difficulty (Sun et al. 1994). Considering the potential impact, 

via the use of reflectivity, of diabatic heating on model initialization (section 6.1.1), it is 

valuable for us to assess the relative importance of radial velocity and reflectivity on the 

accuracy of forecasts in the present study.
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In what follows, experiments using both radial velocity and reflectivity data, i.e., 

03RYR, 03ROR, 03RAR, 03RYR_n, 03ROR_n, and 03RAR_n, are compared against 

their counterparts that employed only reflectivity, i.e., 03RYR_ref, 03ROR_ref, 

03RAR_ref, 03RYR_ref_n, 03ROR_ref_n, and 03RAR_ref_n. Figure 6.5 shows the 

forecasted 12-hr accumulated rainfall for 03RYR and 03ROR, along with 03RYR_ref 

and 03ROR_ref. The left panels show results using both radial velocity and reflectivity, 

while the right panels show results using reflectivity alone. Little difference is evident in 

the overall pattern, and the predicted maximum rainfall amounts for 03RYR and 

03RYR_ref are 50 % (259 mm to 518 mm) and 47 % (245 mm to 518 mm) of the 

observed maximum rainfall, respectively. The results of 03ROR and 03ROR_ref show 

predicted maximum rainfall amounts of 49 % (251 mm to 518 mm) and 49 % (254 mm to 

518 mm), respectively, and therefore also show little change.

The distances between the locations of maximum forecasted and maximum 

observed rainfall are similar to the above, i.e., 50 km and 56 km in 03RYR and 03ROR, 

respectively, and in 03RYR_ref and 03ROR_ref, 52 km and 59 km. Although the results 

using both radial velocity and reflectivity are slightly better than using reflectivity alone, 

the differences are not viewed as significant in light of the many processes associated 

with a storm-scale forecast (in Chapter 7, we will examine the behavior of the increments 

in an attempt to explain this behavior).

In other experiments, e.g., 03RAR_ref, 03RYR_ref_n, 03ROR_ref_n, and 

03RAR_ref_n, the results (not shown here) are essentially the same. Consequently, both 

radial velocity and reflectivity are employed in the different data assimilation strategies
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Fig. 6.5 Predicted accumulated rainfall fo r  12 hr valid at 0300 UTC July 27 fo r  (a) 
03RYR, (a ’)  03RYR_ref (b) 03ROR, and (b )  03ROR_ref experiments. Left panels 
are the results using both reflectivity and radial velocity and right panels are the 
results using reflectivity alone, 'c ‘y  and 'm ' mean the positions o f  Chorwon, 

Yonchon, and the position o f  observed maximum rainfall, respectively.
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Fig. 6.6 Predicted accumulated rainfall fo r  6 hr valid at 2100 UTC July 26 fo r  (a) 
03RNR, (b) 03RYR, (c) 03ROR, and (d) 03RAR experiments, c '. 'y and ‘m ’ mean 
the positions o f  Chorwon, Yonchon, and the position o f  observed maximum rainfall,

respectively.
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Fig. 6.7 Predicted accumulated rainfall fo r  12 hr valid at 0300 UTC July 27 fo r  (a) 
03RNR, (b) 03RYR, (c) 03ROR, and (d) 03RAR experiments. 'c \ ‘y ’, and ‘m ’ mean 
the positions o f  Chorwon, Yonchon, and the position o f  obseiwed maximum rainfall,

respectively.
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that follow. The more detailed description about the relationship between radial velocity 

and reflectivity will be explained in the quantitative verification (Chapter 7).

6.2.3 Experiments with and without Radar Data

In this section, we focus on the results of experiments made with and without 

radar data. To explain these results qualitatively, we first compare the predicted 

accumulated rainfall with observations. Figures 6.6 and 6.7 show the former over 6 

hours valid at 2100 UTC July 26, and over 12 hours valid at 0300 UTC July 27, for 

experiments 03RNR, 03RYR, 03ROR, and 03RAR. In these figures, ‘c ’, ‘y’, and ‘m ’ 

refer to the positions of Chorwon, Yonchon, and the maximum observed rainfall. At 6 

hours (Fig. 6.6), the position of the observed maximum is located north of Chorwon 

(marked ‘c ’), while at 12 hours (Fig. 6.7), it is located southeast of Yonchon (marked ‘y’).

Qualitatively, there exists no clear difference at 6 hours among the results of these 

experiments with regard to the shape and location of the predicted maximum rainfall, 

except that 03RAR (Fig. 6.6d) shows an increased bias and more detailed structure. 

Compared to the observed accumulated rainfall (fig. 6.3a), the shapes of predicted 

rainfall have a more east-west orientation and are less localized in their maximum values. 

The observed rainfall shows a clear boundary between the rain region and the no rain 

region about 40 km south of Chorwon and Yonchon. However, the predicted results 

show the boundary significantly further south. The 12-hr accumulated rainfall is similar 

to that at 6 hours, with 03RAR (Fig. 6.7d) relatively closer to the observations than the 

other experiments when considering the boundary between the rain region and the no rain 

region.
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For a more detailed verification, we use the predicted maximum rainfall amounts 

and the distances between the locations of the maximum forecasted and observed rainfall 

in all experiments (hereafter DIS). The accumulated rainfall and the DIS for 6-hr, 9-hr, 

and 12-hr are shown in Table 6.1. These results also do not show clear differences 

among the experiments. The DIS in 03RAR for the 6-hr forecast is 93 km, while for the 

others it ranges from 96 km to 106 km. In 03RAR, the DIS is slightly better. However, 

the DIS differences between 03RAR and other experiments occur over only one to four 

grid points. The predicted maximum rainfall at 6-hr is much better than that at other 

times. The ratios of the predicted maximum to observed rainfall (hereafter RAT) for 6-hr 

are 87 % to 91 %, while the ranges for 9-hr and 12-hr are 56 % to 58 % and 47 % to 50 %, 

respectively. W hat is the reason for this large difference?

Figure 6.8 shows the time evolution of observed and predicted accumulated 

rainfall from 1600 UTC July 26 (I-h r forecast) to 0300 UTC July 27 (12-hr forecast). 

The observed rainfall increased rapidly throughout the entire period, while the predicted 

rainfall for all experiments increases only until 1900 UTC (4-hr forecast). It appears that 

the numerical model in this study, regardless of the details o f the individual simulations, 

produces most of the precipitation within the first 4 hours. Thus, it is very difficult to 

determine which experiment is best. Is it then impossible to assess the differences in 

experiments with and without the use of radar data, and to predict longer than 4 hours?

It is very difficult to compare the forecasted results to observations using only the 

maximum rainfall amount and its position simply because the forecasted rainfall from a 

numerical model usually has large error in both amplitude and phase, especially when
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Table 6.1 Predicted and observed maximum rainfall and the distances between the 
locations o f  maximum forecasted and observed rainfall position fo r  the experiments with

or without radar data.

03RNR 03RYR I 0 3 R O R 03RAR
6-hr

(1500-
2100
UTC)

Obs. Max.(mm) 284
Fcst. Max. (mm) 257 259 249 245

Fcst./Obs. (%) 90 91 88 87
Distance (km) 96 96 106 93

9-hr
(1500-
0000
UTC)

Obs. Max.(mm) 441
Fcst. Max. (mm) 257 259 249 245

Fcst./Obs. (%) 58 59 56 56
Distance (km) 56 50 J 56 51

12-hr
(1500-
0300
UTC)

Obs. Max.(mm) 518
Fcst. Max. (mm) 257 259 251 245

Fcst./Obs. (%) 49 50 48 47
Distance (km) 56 50 56 51

Observed and Predicted Accumulated Maximum rainfall (1600 - 0300 UTC)

600 1

• 03RNR 
“ 03RYR 
“ 03RAR 
-  Observation

500

E 400 •

300 -

o  2 0 0  - -

100  -

Forecasting Time (hour)

Fig. 6.8 Time evolution o f observed and predicted accumulated maximum rainfall from  
1600 UTC (I hour) July 26 to 0300 UTC (12 hour) July 27 fo r  observation (dashed line 

with filled  rectangles), 03RNR (dotted line with filled  circles), 03RYR (solid line with 
open circle), and 03RAR (solid line with filled  triangles) experiments.
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Fig. 6.9 Observed and predicted radar reflectivity at 1900 UTC July 26 (4-hr forecast, I 
hour after finishing data assimilation fo r  03RAR experiment), (a) is observed horizontal 

reflectivity at lowest elevation angle (0.48'), (b) and (c) are the predicted horizontal 
reflectivity at 1.1 km height from  sea level fo r  03RNR and 03RAR experiments,

respectively.
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Fig. 6.10 The reflectivity difference between forecasted and observed reflectivity 
(forecast -  observation) fo r  03RNR (upper panels, a, d, andg), 03RYR (middlepanels, b, 
e, and h), and 03RAR (lower panels, c ,f, and i) experiments at 2100 UTC (leftpanels o f  
firs t page, a, b, and c), 0000 UTC (right panels o f  first page, d, e, andfi, and 0300 UTC 

(g, h, and i in second page). Red and blue color means over predicted and under
predicted reflectivity, respectively.
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Fig. 6.10 (Continued)
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considering fine scales. As the next step toward assessing the quality of our experiments 

compared with observations, we compare observed and predicted radar reflectivity.

Figure 6.9 shows observed and predicted radar reflectivity at 1900 UTC on July 

26. This time is 4 hours after the start of the simulation (1500 UTC), and 1 hour after the 

end of the data assimilation period in 03RAR. The observed reflectivity used (Fig. 6.9a) 

is the horizontal reflectivity at the lowest elevation angle (0.48°). The predicted 

reflectivity image is for the horizontal reflectivity at a height of 1.1 km above sea level. 

The latter is used to avoid errors in the difference between observed and predicted 

reflectivity by considering the distance between the Pyoungtaek radar site and the 

Chorwon and Yonchon region where the heavy rainfall occurred -  about 135 km, at 

which the height of the radar beam is approximately 1.1 km MSL.

As shown in Figure 6.9, the results of experiment 03RAR are much better than 

those of 03RNR. The former depicts well the line of echoes in the observed reflectivity 

(see the arrows in Fig. 6.9a and 6.9c), while 03RNR shows only rough outlines and does 

not exhibit a linear structure. This is of course only one demonstration of the effect of 

radar data assimilation. Although the results are disappointing when considering the 

maximum rainfall amount and location, we do find a positive impact of radar data 

assimilation considering only the predicted and observed reflectivity. To confirm this 

and to better understand why, we compute the reflectivity difference fields (forecast 

minus observations, hereafter RD).

Figure 6.10 shows the RDs for 03RNR, 03RYR, and 03RAR at 2100 UTC on 

July 26 (6 hours after starting the simulations or 3 hours after finishing data assimilation), 

at 0000 UTC (9 hours after starting the simulations or 6 hours after finishing data

142



assimilation), and at 0300 UTC July 27 (12 hours after starting the simulations or 9 hours 

after finishing data assimilation). Red and blue colors represent over-forecasted and 

under-forecasted region, respectively, while white areas represent perfect agreement 

between observations and forecast. We focus on two points for this evaluation using the 

RD.

First, we seek to document and understand differences among the experiments 

and second, we wish to understand how the impact of radar data diminishes as the 

forecast proceeds. Focusing on Fig. 6.10a, b, and c at 2100 UTC July 26, 03RAR shows 

a much improved forecast compared to the other cases across the entire domain. The 

result at 0000 UTC on July 27 (Fig. 6.10d, e, and f) is similar to that at 2100 UTC, 

although the improvements in 03RAR are somewhat less. At 0300 UTC on July 27, the 

results of 03RAR (Fig. 6.10i) continue to be superior to the other experiments (Fig. 6.10g 

and h). For example, reflectivity is over-forecasted over the southeast part of the domain 

in 03RNR and 03RYR (Fig. 6.10g and h), and this problem is reduced greatly in 03RAR, 

though the latter produced stronger reflectivity over the southwest part of the domain (on 

the west sea and coast area).

Overall, three main findings are evident from this evaluation of difference fields. 

First, 03RYR provides no obvious benefits compared to 03RNR. Second, radar data 

assimilation shows a positive impact on the forecast compared to no radar data 

assimilation. Finally, we note that the effect o f  radar data assimilation diminishes with 

time throughout the forecast, perhaps for about 3 hours. This result is, however, 

questionable because the above analysis is purely qualitative. We will use quantitative 

verification in the next chapter to confirm the impact of radar data assimilation.
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6.2.4 The Results Using Different Data Assimilation Strategies

Six additional assimilation strategies, representing extensions or modifications of 

03RAR, are used to assess the impact of radar data on the prediction o f the Chorwon- 

Yongchon heavy rainfall event. Figures 6.11 and 6.12 show the same information as 

Figures 6.6 and 6.7, except for the six additional data assimilation strategies described 

earlier, and Tables 6.2 and 6.3 show the accumulated rainfall amounts and the DISs for 6- 

hr, 9-hr, and 12-hr in comparison with observed values.

Experiment 03RAR_initrad uses radar data at the initial time (which was note the 

case in 03RAR) owing to the fact that storms present in the initial conditions can affect 

the subsequent location and amount of precipitation. The results of the 03RAR_initrad 

(Figs. 6.11b and 6.12b) are very similar to those o f 03RAR (Figs. 6.11a and 6.12a), 

especially for 12-hr accumulated rainfall. A difference is, however, noted in the 6-hr 

accumulated rainfall (Fig. 6.11b), where heavy rainfall is predicted north of the observed 

position in 03RAR_initrad and not in 03RAR. The RATs of 03RAR_initrad for all 

forecasting times are slightly better than those of 03RAR, with a 2 % margin of 

difference (Table 6.2). There is no major difference in DIS between these two 

experiments (Table 6.2). Considering these results, we find only a slight (probably not 

meaningfully significant) positive impact for radar data assimilation when using radar 

data at the initial time.

Building in complexity, the next experiment assesses the number of new data 

updates within the assimilation cycle. Experiment 03R A R _lt uses only a single insertion 

of radar data within one hour while the 03RAR uses three assimilation cycles during
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Fig. 6.11 Predicted accumulated rainfall fo r  6 hr valid at 2100 UTC July 26 fo r  (a) 
03RAR, (b) 02RARJnitrad, (c) 03RAR_lt, (d) 03RAR-lh_rap, (e) assi_cent5, (f) 

assijcentlO, and (g) assi_cent20 experiments, 'c \ 'y and 'm ’ mean the positions 
o f  Chorwon, Yonchon, and the position o f  observed maximum rainfall, respectively.
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Fig. 6.11 (Continued)

146



(a) 03RAR (b) 03RAR initrad
O3fi0ZSat27 Jul 1996 M 9200.0s [1200:00)

Tod Banhl (nini. rf̂ded)

0300Z Sat27  Jul 1996 M 3200.0 s (1200:00)

fzœ o

ToW fland l (mm. M(M707Mb«-206.

(c) 03R A R  It
G300Z2at27 Jul 1996 M 3200.0s (1200:00)

gZffiC

(d) 0 3 R A R 1  h rap

T od Hand! (ram. Mn^CDMae-Zia.

0300ZSal27 Jul 1996 W3200.0s (1200:00)

gzmo

T od Rantal (mm. dmde<(

Fig. 6.12 Predicted accumulated rainfall fo r  12 hr valid at 0300 UTC Jidy 27 fo r  (a) 
03RAR, (b) 03RAR_initrad, (c) 03RAR_lt, (d) 03RAR-lh_rap, (e) assi_cent5, (/) 

assijoentlO, and (g) assi_cent20 experiments, 'c \ ‘y  and ‘m ’ mean the positions 
o f  Chorwon. Yonchon, and the position o f  observed maximum rainfall, respectively.
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Fig. 6.12 (Continued)
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three hours. Compared to 03RAR (Fig.6.11a and 6.12a), 03R A R _lt shows less bias for 

both the 6-hr and 12-hr forecasts. The RATs of 03R A R _lt are 82 %, 53 %, and 45 % for 

6-hr, 9-hr, and 12-hr forecast, while those of 03RAR are 87 %, 56 %, and 47 %, 

respectively. The DISs of 03R A R _lt are also a bit (about one grid point) worse than 

those of 03RAR (Table 6.2). Although the differences between 03RA R_lt and 03RAR 

are not considerable, the use of three assimilation cycles of radar data appears to be more 

effective than using only a single insertion. Again, a more quantitative evaluation will be 

made in the next chapter.

To assess the effect of more rapid assimilation of observations, experiment 

03RA R_lh_rap was performed. It uses three assimilation cycles during one hour, while 

03RAR assimilates data once every hour for three hours. The singular feature of the 

former is the change in position of the maximum rainfall amount in the 12-hr forecast. In 

03RA R_lhr_rap, it is far to the north of the observed maximum ( ‘m ’ in Fig. 6.12d) as 

opposed to the west of the maximum in the 6-hr forecast (Fig. 6.1 Id). Other experiments, 

i.e., 03RAR, 03RAR_initrad, and 03RA R_lt, kept the maximum rainfall position west of 

‘m ’ regardless of forecasting time. Although the RATs of 03RAR_lhr_rap are worse 

than for the other experiments, the DISs (89 km and 44 km in 6-hr and 9-hr forecast, 

respectively) are better (Table 6.3), and the uncommon features are too ambiguous to 

assess any improvement.

Figure 6.13 shows the RDs of 03RAR and 03RA R_lh_rap at 2100 UTC on July 

26 (6 hours after starting simulation or 3 hours after finishing data assimilation), at 0000 

UTC (9 hours after starting simulation or 6 hours after finishing data assimilation), and at
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0300 on UTC July 27 (12 hours after starting simulation or 9 hours after finishing data 

assimilation). This figure has the same configuration as Fig. 6.10. The RD of 

03RAR_lh_rap is superior to that of 03RAR at 2100 UTC, although this result doesn’t 

hold at 0000 UTC and 0300 UTC. Recalling the RD evaluation of the previous section, 

03RAR exhibited the best results overall. Because the results of 03RAR_lh_rap are 

better than 03RAR at 2100 UTC (6 hours after starting simulation or 3 hours after 

finishing data assimilation), this more continuous assimilation strategy can be regarded 

as the best method fo r  short range forecasts about 3 hour duration. More specific 

discussion of the quantitative verification of 03RAR_lh_rap is deferred to the next 

chapter.

To examine the impact of the length of the data assimilation window on forecast 

quality, we use value of 5, 10, and 20 minutes. Crook (1994) conducted numerical 

simulations of gust fronts to determine the sensitivity to the length of the data 

assimilation window and also performed other sensitivity tests using window lengths of 5, 

10, 15, and 20 minutes. He showed that the normalized root mean square error (RMSE) 

increases as the window length increases. Specifically, he found that the RMSE 

increased smoothly from 20 % for a 5 minute assimilation window to 34 % for a 20 

minute assimilation window. He presumed that this increase resulted from the 

assumption of linearity, which becomes less valid as length of data assimilation window 

increases. Figures 6.11e,f,g and 6.12e,f,g, indicate no substantial difference among our 

three results with regard the shape of accumulated rainfall except that the experiment 

with the longest data assimilation window shows more detailed structure at 0300 UTC 

July 27(12 hours after starting simulation or 9 hours after finishing data assimilation. Fig.
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6.12e, f, and g). At 0300 UTC, the maximum rainfall positions for these three 

experiments are also far north of the observed maximum, as in 03RAR_lh_rap. 

Comparing RATs and DISs among these experiments, our results are found to differ from 

those of Crook. Experiment 03RAR_assi20, using the longest data assimilation window, 

shows the most improvement. The RATs of 03RAR_assi20 are better than those of other 

two experiments (03RAR_cent5 and 03RAR_centl0). For DIS, experiment 

03RAR_assi20 is slightly better than the others for the 6-hr forecast. Consequently, the 

strategy using a longer data assimilation window does not appear to be worse than the 

strategies using a shorter assimilation window and may even be better, even for a short 

range forecast. As discussed in the next chapter, the explanation may lie in the time 

required for the model to adjust to new data in comparison to the time scale of the events 

being predicted.

As the final step for assessing different data assimilation strategies, we compare 

03RAR_initrad with 03RAR_centI0 to determine whether any differences exist due to 

changes in the placement in time of the data assimilation window. However, there exist 

two other related differences: the volume scan of radar data used and different

background fields. As shown in Figs. 6.1 and 6.2, there exists a five minute interval 

between the radar volume scans used in 03RAR_initrad and 03RAR_centI0. 

03RAR_initrad uses the volume scan collected from 1551 to 1556 UTC, while 

03RAR_centI0 uses that from 1556 to 1601 UTC. For the lAU assimilation method used 

in this study, a background field is necessary for creating an analysis increment. At the 

first data assimilation time the background of 03RAR_initrad uses the 50-minute forecast

151



from 1500 UTC to 1550 UTC, while that of 03RAR_centl0 uses the 55-minute forecast 

from 1500 UTC to 1555 UTC.

W ith regard to the RATs, 03RAR_initrad shows 89 %, 58 %, and 49 % for 6-hr, 9- 

hr, and 12-hr forecasts, respectively. These values are higher, especially for the 6-hr 

forecast, than those of 03RA R_centl0, which are 77 %, 50 %, and 46 %. The results of 

DISs are similar to the results of RATs. It is interesting that differences exist between 

these two experiments, though they are not deemed significant.

The increment used in this study is the difference between the analysis and 

background. Thus, any improvement depends upon the quality of the background and the 

observations. At this time, we cannot easily determine which of the above experiments is 

“best.” Generally, the shorter the forecast the smaller the error. Thus, we might assume 

that the background of 03RAR_initrad from the 50 minute forecast is better than that of 

03RA R_centl0 from the 55 minute forecast. Therefore, the improved results of the 

03RAR_initrad could be associated only with the background field. A more quantitative 

analysis is presented in the next chapter.
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Table 6.2 Predicted and observed maximum rainfall and the distances between the 
locations o f  maximum forecasted and observed rainfall position fo r  different data 

assimilation strategies, especially fo r  03RAR_initrad, 03RAR_lt, and 03RAR_lh_rap
experiments.

03AR 03RAR_initrad 03RA R_lt 03RAR_lh_rap
6-hr

(1500-
2100
UTC)

Obs. Max.(mm) 284
Fcst. Max. (mm) 245 253 236 229
Fcst./Obs. (%) 87 89 82 81
Distance (km) 93 95 95 89

9-hr
(1500-
0000
UTC)

Obs. Max.(mm) 441
Fcst. Max. (mm) 245 256 236 229
Fcst./Obs. (%) 56 58 53 52
Distance (km) 51 52 54 44

12-hr
(1500-
0300
UTC)

Obs. Max.(mm) 518
Fcst. Max. (mm) 245 256 236 244
Fcst./Obs. (%) 47 49 45 47
Distance (km) 51 52 54 60

Table 6.3 Predicted and observed maximum rainfall and the distances between the 
locations o f  maximum forecasted and observed rainfall position fo r  the experiments o f  

different length o f  data assimilation window.

03RAR_cent5 03RAR centlO 03RAR cent20
6-hr

(1500-
2100
UTC)

Obs. Max.(mm) 284
Fcst. Max. (mm) 220 219 248
Fcst./Obs. (%) 77 77 87
Distance (km) 116 113 110

9-hr
(1500-
0000
UTC)

Obs. Max.(mm) 441
Fcst. Max. (mm) 220 219 248
Fcst./Obs. (%) 50 50 56
Distance (km) 72 71 69

12-hr
(1500-
0300
UTC)

Obs. Max.(mm) 518
Fcst. Max. (mm) 262 237 265
Fcst./Obs. (%) 50 46 51
Distance (km) 66 66 67
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Fig. 6.13 The reflectivity difference between forecasted and observed reflectivity 
(forecast -  observation) fo r  03RAR (leftpanels, a, b, and c) and 03RAR_lh_rap (right 

panels, d, e, andf)) experiments at 2100 UTC (upper panels, a and d), 0000 UTC (middle 
panels, b and e), and 0300 UTC (lower panels, c andf). Red and blue colors mean over 

predicted and under predicted reflectivity, respectively.
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Chapter 7 

Quantitative Verification of 3-km Grid Spacing Experiments

7.1 Methodology

We use conventional verification scores in this study for quantitative verification 

of forecasts at 3 km grid spacing. Although these traditional verification scores have 

been successfully employed to verify forecasts on larger scales, Carr et al. (1996) showed 

that they may not render useful information for small scale forecasts, e.g., of convection 

by a nonhydrostatic model, due to differences of spatial resolution between observations 

and the model. Thus, they suggested non-traditional measures such as sounding 

verification for the quantitative verification of non-hydrostatic model forecasts of 

convective phenomena. However, as discussed below, use of these scores in the present 

case remains valid despite the fine grid spacing used. We thus briefly describe their 

formulation and application.

7.1.1 Bias Score

The bias score B quantifies the tendency of a model to over- or under-predict an 

area of a given amount of precipitation. In terms o f precipitation area, it is defined as

5  = —  , (7.1)
oa

while in terms o f stations (points) it can be defined as
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Table 7.1 Contingency 2 x 2  table fo r  calculating Bias, Threat, and Equitable Threat
scores.

O BSERV ATION S
Yes No

FO R EC A STS Yes H FA
(Absolute Frequency (Absolute Frequency

of Hits) of False Alarms)
No M CN

(Absolute Frequency (Absolute Frequency
of Misses) of Correct Nulls)
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!;== , (7.2)

where fa is the forecast area, oa is the observed area, F is the number of stations (points) 

forecast, and O is the number of stations (points) observing the amount. From a practical 

standpoint, we use a contingency table (Table 7.1) to obtain verification scores such as 

Bias, Threat, and Equitable threat. By comparing observed precipitation estimated from 

the radar data at each point (detailed explanation in the next section) with the predicted 

precipitation at each grid point, the scores are calculated following the contingency table.

As described in Wilkes (1995) and other standard texts, the contingency table 

utilizes the following nomenclature. Positive (Yes) forecasts that are matched with 

positive (Yes) observations are true-positives, or hits (H), while those matched with 

negative (No) observations are false-positives, or false alarms (FA). Negative (No) 

forecasts that are matched with ‘Yes’ observations are false-negatives, or misses (M), 

while those matched with ‘N o’ observations are true-negatives, or correct nulls (CN). 

Therefore we define a computationally practical B using the above four frequencies in 

Table 7.1 as

If the value of B is greater than unity, this indicates over-forecasting based upon a 

specified threshold.

7.1.2 Threat Score

The threat score TS is a measure of the skill in predicting an area of precipitation 

amount over any given threshold. It is defined as
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T S =  ^ ---------, (7.4)
{fa  + o a -c fa )

or

where cfa is the correctly forecasted area bounded by a given precipitation amount, fa, 

oa, F, and O are same as in the definition of Bias score, and C is the number of stations 

(grid points) correctly forecast to receive a threshold amount of precipitation. As in the 

calculation of B, we need a computationally practical definition of TS as well. The 

alternative form is

T S =    , (7.6)
(H  + M  + FA)

where H, M, and FA are same as in section 7.1.1. TS has values ranging from 0 to 1. If 

TS is unity, it indicates a perfect forecast, while a zero value of TS indicates no skill.

7.1.3 Equitable Threat Score

The Equitable threat score (ETS) is similar to TS, but also accounts for forecasts 

that verify by chance. In that regard, the ETS measures ‘the correctly forecasted area to 

exceed a given threshold’ divided by ‘observed area plus the incorrectly forecasted area 

to exceed a given threshold’. The area that would be correctly forecasted by random 

chance is subtracted from these areas. It is defined as
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where E and T  are the correctly forecasted area by random chance and the total number 

of grid points in the verification domain, respectively. Other notation is the same as in B 

and TS. As in B and TS, we use an alternative definition of ETS for practical 

computation, defined as

E T S =  , h r  = —  ^  ^ ^  , (7.8)
H  + M  + F A -H R  H + M  + FA + CN

where all variables are the same as in B and TS. ETS has values ranging from to

unity, where the latter indicates a perfect forecast, 0 indicates no skill (accuracy

equivalent to that from random forecasts), and negative numbers mean accuracy less than

that from random forecasts. The ETS values are usually lower than those of the TS.

7.1.4 Mean Absolute Eiror

One scalar measure of forecast accuracy is the mean absolute error (MAE), 

defined as (Wilkes 1995)

= (7,9)
^  1=1

where N is the total number of points considered in the calculation and f, and o; are 

forecast and verification fields, respectively. The MAE is the average of the values of the 

differences between forecast and observations. If the MAE is zero, it means a perfect 

forecast, while a large value of the M AE means an increasing discrepancy between 

observations and forecast.

7.1.5 Root Mean Square Error
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Another scalar measure of forecast accuracy is the mean squared error (MSB). 

The MSB is very similar to MAB except for a fact that the errors are squared rather than 

the absolute value function in MAB. Wilkes (1995) explained that MSB can be more 

sensitive to large errors than MAB because the MSB is computed by squaring errors of 

the forecast. The MSB is usually used as its square root, or the root mean square error 

(RMSE), which has the benefit that it preserves the units of the forecast variables so that 

it can be interpreted more easily as a typical error magnitude (Wilkes 1995). The RMSB 

is defined by

RMSE = (7.10)

where N is the total number of points considered in the calculation, and f, and Oj are 

forecast and verification fields, respectively.

7.2 Quantitative Precipitation Estimation from WSR-88D Level II Data

7.2.1 The Limitations of Observed Surface Rain Gauge Data

To evaluate forecasted precipitation by numerical prediction using conventional 

verification scores such as B, TS, and BTS, the observed values should be converted to 

values on the grid having the same spatial scale and variance (e.g., Tustison et al. 2003). 

As noted by Carr et al. (1996), however, the resolution difference between the 

observations and the forecast, when using fine grid spacing in models, may not produce 

reliable results. Such is the case here.
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A ccum ulated Precipitation  
from  15UTC 2 6  to 03UTC 27 JUL 1996
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Fig. 7.1 Observed accumulated rainfall fo r  12-hr from  1500 UTC July 26 to 0300 UTC 
July 2 7 made by the data o f  surface rain gauge at official statios and AIVS o f  KMA.
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Figure 7.1 shows the observed accumulated rainfall for 12 hours valid at 0300 

UTC on July 27 produced by precipitation data from surface rain gauges operated by the 

KMA. A two-pass Barnes scheme was employed by the KMA in creating this image, 

and unfortunately, a great deal of fine-scale detail has been lost, making this information 

of limited value for comparison against our model results. Thus, another more 

appropriate source of estimated precipitation is needed, for which we turn to WSR-88D 

Level 11 data and apply a commercial software package developed by Vieux and 

Associates, Inc.

7.2.2 Estimation of Surface Accumulated Precipitation From WSR-88D Level II Data

To provide a rigorous comparison between surface accumulated precipitation 

estimated from observations and that predicted by the ARPS model, we employ a 

commercial software package, known as Rain Vieux (Version 1.0; hereafter RVl.O), 

developed by Vieux and Associates, Inc. It creates calibrated (against surface gauges) 

hourly surface precipitation estimates from WSR-88D Level II data. Although RVl.O is 

proprietary and cannot be described in detail, it employs a modification of the mean field 

bias (MFB) method described by Wilson and Brandes (1979). The MFB takes the sum of 

surface precipitation (rainfall) captured by a set of gauges and dividing by the sum of the 

sampled radar pixels over the same gauges. In other words, the MFB is the ratio of the 

true area-averaged rainfall obtained from surface rain gauges to the corresponding radar 

rainfall (Smith and Krajewski 1991). This ratio serves as calibration for the radar data. 

For example, an MFB of 1.5 can be interpreted as a 33% underestimation of accumulated 

precipitation by the radar (Jean Vieux, personal communication, 2003).
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Wilson and Brandes (1979) discussed three parameters used to quantify MFB: (1) 

average difference (AD), (2) calibrated average difference (CAD), and (3) relative 

dispersion (RD). All three of these parameters are expressed as an absolute percentage 

about the mean. AD expresses the uncertainty between the non-adjusted radar estimate 

and the gauge-based estimate, whereas CAD expresses the uncertainty due to random 

errors once the bias (systematic error) is removed. For example, a calibrated average 

difference of 10% means that the gauges are ±5% about the mean. Gauges are a point 

measurement and radar is an area-averaged measurement, so complete agreement would 

not be expected. The CAD also may be interpreted as describing the closeness of the 

gauges to calibrated radar estimates. A CAD lower than the AD indicates improvement 

in the adjusted radar estimate. RD expresses the scatter distribution of the radar/gauge 

(RG) pairs to a one-to-one relationship. As the relative dispersion decreases, the scatter 

of the RG pairs tightens and vice versa. It should be noted that it is possible to obtain a 

relatively low CAD with a relatively high RD when the scatter of the radar/gauge (RG) 

pairs balance each other out. These three parameters are mathematically defined as 

(Wilson and Brandes 1979)

^  G. - R ,

AD  = \ m % x —
N

(7.11)

CAD = 100% X —

G, - (G /R )R ,

G,

N
(7.12)

RD = 1 0 0 % x 3 E f f i ,  (7.13)
G IR
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Table 7.2 The statistics o f  parameters fo r  radar data calibration used in the present 
study and used in the study o f  Wilson and Brandes (1979).

Number of 
gauges

MFB AD (%) CAD (%) RD (%)

Present
study

7 1.10 30.6 30.4 42.3

Wilson and 
Brandes

223 1.04 63 24 30

1000

100

O J

0.01

RadgRcfipctivîty (JB2)

Fig. 7.2 An example o f  the relationship between rainfall rate and radar reflectivity (from
Short et al. 1990).
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where N is the number of gauges, and a[G/R] means the standard deviation of the ratio of 

surface gauge rainfall to radar rainfall.

For the heavy rainfall event studied here, 72 surface rain gauges were utilized for 

calibration, 55 of which were removed because their gauge or radar storm total was less 

than 2.54 mm (0.10 inches), thus leaving 17 gauges. Next, inspection of the gauge 

locations compared to obvious radar blockages and tilt discontinuities led to the removal 

of eight more gauges leaving, nine gauges for outlier identification. Of the nine 

remaining gauges, two were identified as outliers and thus were discarded. The seven 

remaining gauges were used fo r  calibration o f  the radar.

Table 7.2 shows statistics of parameters used in this study (the calculation for 

these statistics was conducted by Jean Vieux and Eddie Koehler of Vieux and Associates 

Inc.) and those used in the study of Wilson and Brandes (1979). Comparatively, the 

present study has a few weak points. For example, the CAD is a little bit lower than the 

AD, which means there exists only a slight improvement in the adjusted radar estimate. 

Considering the RD value of 42.3 %, the scatter of the RG pairs in the present heavy 

rainfall event is considerable. Furthermore, we note that after removal of the bias, the 

CAD of 30.4% indicates an error of about ±15% in the radar rainfall estimates. This 

leads to significantly erroneous estimates in the high reflectivity region considering the 

relationship between radar reflectivity and rainfall rate.

Figure 7.2 shows an example of the relationship between radar reflectivity and 

rainfall rate as determined by Short et al (1990). They obtained this result using 

observational raindrop size distribution data in Darwin, Australia. When considering a 

15% error at around 50 dBZ, the difference in rainfall rate is at least 50 mm/h, while it is
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less than 1 mm/h at 20 dBZ. W e note that the results in the present study, which use 

estimated rainfall from W SR-88D level II data, must be interpreted carefully in light of 

the logarithmic relationship between rainfall rate and reflectivity.

A total of 113 AWS gauges were analyzed as well, but were not used for 

calibration due to large inconsistencies between gauge and radar estimates (note that 

AWS data are known to be of questionable quality).

W e now describe briefly how RVl.O estimates precipitation from NEXRAD 

Level II data (Jean Vieux, personal communication, 2003). First, NEXRAD reflectivity 

values at the lowest elevation angle (approximately 0.5 degrees) in native spherical 

coordinates are com pared to surface rain values for calibration. Once the calibration 

correction has been applied to the radar data, they are interpolated from the spherical 

coordinate system to the 3 km spacing ARPS Cartesian grid, which accounts for factors 

such as the Lambert conformai map projection. Each volume scan of data is processed in 

this manner, and the accumulated precipitation at any particular time is obtained by 

summing the incremental rainfall amounts from previous successive volume scans and 

multiplying by the elapsed time. Any rainfall potentially affected by ground clutter is 

excluded through the calibration procedure.

The tropical convective Z-R relationship, developed by Rosenfeld et al. (1993), is 

used to relate reflectivity to rainfall rate: Z = 250R' \  where Z is reflectivity factor 

(mmVm^, dBZ = 10 log(Z)) and R is rainfall rate (mm/h), with 0 to 65 dBZ thresholds in 

RVl.O. Although the Marsh all-Palmer Z-R relationship (Marshall et al. 1955), denoted 

by Z = 200R ‘^, and the default WSR-88D convective Z-R relationship (NOAA 1990), 

denoted by Z=300R’ '*, are commonly used for rainfall estimation, we employ the tropical
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convective Z-R relationship in this study owing to the fact that the Chorwon-Yonchon 

heavy rainfall case occurred during the summer monsoon season and was decidedly 

tropical in behavior.

Consequently, the rainfall amount for each grid, which is same as the ARPS grid 

with 3 km X 3 km resolution, is produced using RVl.O. Figure 7.3 displays the ARPS 

grid and the coverage area of the NEXRAD radar at Pyoungtaek. For computing 

verification scores, the predicted precipitation is compared to the observed precipitation 

at each grid. A comparison of Figure 6.3 in the previous chapter with Fig. 7.1 shows 

significant differences, with notably more detail evident in the radar-based rainfall 

estimates, as one would expect. The local maxima from these estimates agree quite well 

with the location of surface-based heavy rainfall, as we demonstrate below.

7.2.3 Validation of Estimation of Surface Accumulated Precipitation From RV 1.0

To validate the accuracy of rainfall estimates from NEXRAD Level II data, we 

compare them with surface rain gauge observations at four surface stations: Chorwon 

(38.15N, 127.32E), Chunchon (37.90N, 127.73E), Seoul (37.57N, 126.97E), and 

Kanghwa (37.70N, 126.45E). Figure 7.4 shows the ratio of gauge measured total rainfall 

to NEXRAD estimated total rainfall for this time period (G/R). This ratio is greater than 

unity if the radar underestimates and is less than unity in case of overestimation. As 

shown in this figure, the G/R ratios range from 0.74 to 2.75. According to Klazura et al. 

(1999), the estimated rainfall from NEXRAD has a large range of G/R (0.36 to 3.92). 

Compared to the results of Klazura et al., our G/R ratio is reasonable and the pattern of 

estimated rainfall at every hour is similar to that of the surface rain gauges.
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Fig. 7.3 Domain and grid o f3-km  horizontal resolution and NEXRAD range. Each 
small rectangles means the grid with 3 km x  3km, while large rectangles including each 
small rectangles displays the domain o f  the experiment on 3 km horizontal resolution. 
Small circles and star indicate Chorwon position and NEXRAD position in Pyungtaek,

respectively.
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Fig. 7.4 Gauge-measured hourly rainfall at a weather station versus NEXRAD- 
estimated hourly rainfall at a grid which includes the station point from  1000 UTC July 
26 to 0900UTC July 27 m (a) Chorwon, (b) Chunchon, (c) Seoul, and (d) Kangwha (G/R 

value means the ratio o f  gauge measured total rainfall to NEXRAD estimated total
rainfall fo r  this time period).
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Fig. 7.4 (Continued).
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Fig. 7.5 Schematic fo r  blockage problem (a) radar and topography and (b) the result o f
blockage problem.
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Fig. 7.6 Verification domain (large rectangles) and erroneous area which is removed fo r  
the verification (small rectangles in the center o f  verification domain)..
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However, this validation work suffers from two principal limitations. The first is 

that estimated rainfall produced by RVl.O cannot be well matched with the station values 

since the estimated value represents a 9 km^ (3 km x 3 km) area, while the station value is 

a point value. The other limitation is that the estimated rainfall from radar data is already 

correlated to the rain gauge data through calibration work using RVl.O mentioned in the 

previous section. Thus, this correlation naturally renders a more positive relationship. 

With this in mind, the radar estimated rainfall amount is, in an overall sense, larger than 

for the surface gauges, and thus we assume that the NEXRAD estimates are appropriate 

for verification.

7.2.4 Radar Beam Blockage

Owing to terrain effects, the Pyoungtaek radar beam suffers from blockage at 

certain azimuths, particularly toward the north. Fig. 7.5 demonstrates this blockage by 

the Gwanak mountain located about 60 km from the Pyoungtaek radar site with a height 

of 632 m. This blockage led to obviously erroneous rainfall estimates (Fig. 7.5b). By 

simple geometry, if terrain exceeds 500 m in height 60 km from the radar site, the radar 

beam at the lowest elevation angle will be blocked. To deal with this problem, we 

discarded the erroneous estimates by dividing the verification domain into two areas -  

one on the east and one on the west -  separated by a gap containing bad data. The 

rectangular region (12 km (4 grids) x 207 km (69 grids)) at the center of entire 

verification domain (large rectangular region in Fig. 7.6, 195 km (65 grids) x 207 km (69 

grids) thus is not used in our verification work.

173



7.3 Quantitative Verification of 3 km Grid Spacing Forecast

7.3.1 Impact of Radar Data Assimilation

In the previous chapter, we showed qualitatively that radar data assimilation 

appears to have a positive impact on the 3 km grid spacing forecasts. In this chapter, we 

use quantitative verification measures to determine how experiment 03RAR compares to 

others in which radar data were or were not used, e.g., 03RNR, 03RYR, and 03RYR_ref. 

In addition, we investigate whether the effects of radar data assimilation are limited to a 

certain forecast time period.

For quantitative verification, we employ conventional statistical scores such as B, 

TS, and ETS, as described earlier. They are computed using various thresholds over 

three different time periods: 3-hr (1800 UTC to 2100 UTC July 26), 6-hr (1800 UTC 

July 26 to 0000 UTC July 27), and 9-hr (1800 UTC to 0300 UTC July 27). Although the 

3 km simulations are initialized at 1500 UTC on July 26, we use 1800 UTC as the 

starting point for examining accumulated rainfall. Because data assimilation concludes at 

1800 UTC on July 26, the actual forecast starts from that time. The scores for the other 

experiments are also computed during the above time periods in order to compare with 

those of 03RAR.

Multiple thresholds are usually employed in precipitation verification to provide 

increasingly stringent tests of the forecast model. In general, higher thresholds produce 

verification scores having lower skill. Thresholds used for the 3-hr accumulation period 

range from 2.5 mm to 20 mm, and those for the 6-hr and 9-hr periods range from 2.5 mm
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to 50 mm. The higher extreme value for the latter accounts for the possibility of heavier 

accumulations over these longer time periods.

Figure 7.6 shows bias scores for experiments 03RAR, 03RYR, 03RYR_ref, and 

03RNR over all three time periods. A significant finding is that 03RAR exhibits the best 

overall skill, i.e., a score close to unity, for all verification periods (Fig. 7.7a-c), although 

it shows some bias, with values near 1.2 for low thresholds (2.5 mm and 5 mm), in the 3- 

hr period (Fig. 7.7a). This suggests that 03RAR provides a good representation of the 

forecasted rainfall over the entire verification domain. Although radar data assimilation 

shows a positive impact it is difficult to determine the time window over which this 

impact exists.

In our earlier qualitative verification procedure (section 6.2.2), the differences 

arising from the use of both radial velocity and reflectivity versus reflectivity only were 

not significant (only slight improvement in 03RYR compared to 03RYR_ref). However, 

Fig. 7.7 shows that the difference between 03RYR and 03YR_ref is notably significant. 

The effect is greater for the shorter precipitation accumulation windows (compare 3-hr 

and 6-hr accumulations in Fig. 7.7a-b with those for 9-hr in Fig. 7.7c), as would be 

expected. This suggests that radial velocity data have a positive impact on the forecasts, 

presumably by reinforcing the humidity and latent heating adjustments associated with 

assimilation of radar reflectivity, especially at early times, although radial velocity is 

limited in its subsequent effect upon the horizontal wind field, as discussed further below.

Figures 7.8 and 7.9 show the TS and the ETS for the above four experiments. 

The results are similar in a relative since given that ETS differs from TS only in that the 

former includes the effects of a hit by chance. Considering these scores, the effect of
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radar data assimilation is perhaps even more significant than suggested from the bias 

scores. Because the TS provides a measure of how accurately the location of 

precipitation is forecasted for a given threshold, it demonstrates that radar data 

assimilation improves the forecasted rainfall location more than the forecasted rainfall 

amount. The other results are also consistent with the results of the bias scores. For 

example, 03RNR (Figs. 7.8 and 7.9) has the worst scores, while 03RYR is better than 

03RYR_ref. Although the TS and the ETS of 03RAR are better than for the other 

experiments across all accumulated precipitation periods, the scores for the first 3-hr 

period (Figs. 7.8a and 7.9a) are higher for both of the higher thresholds (15 mm and 20 

mm), while the scores for the 6-hr and 9-hr periods (Figs. 7.8b-c and 7.9b-c) converge to 

those of the other experiments at higher thresholds. That the scores maintain relatively 

higher values for higher thresholds is important because we are more interested in 

accurately forecasting heavy rainfall. Therefore, we can tentatively conclude that radar 

data assimilation indeed has a quantitatively verifiable positive impact, and that this 

impact is greatest during the first few hours of the forecasts.

We conducted another quantitative verification to confirm the positive impact of 

radar data assimilation. Similar to the method o f Carr et al. (1996), simulated sounding 

data were examined for each experiment and key instability indices compared against 

those of actual soundings taken at Osan (RKSO, 47122, 37. U N , 127.03E) at 00 UTC on 

July 27.

Table 7.3 displays these instability indices for each experiment as well as the 

observed values. Although discrepancies exist, these results are encouraging and suggest 

a positive impact of radar data assimilation at 3-km resolution. For example, comparing
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Fig. 7.7 Bias scores fo r  accumulated rainfall forecast; (a) 3-hr accumulated rainfall 
from  1800 UTC to 2100 UTC July 26, (b) 6-hr accumulated from  1800 UTC July 26 to 
0000 UTC July 27, and (c) 9-hr accumulated rainfall from  1800 UTC July 26 to 0300 
UTC July 27. Thick dashed line with asterisk, solid line with filled  triangles, solid line 

with filled  diamonds, and solid line with filled  rectangles indicate 03RAR, 03RYR, 
03RYR_ref, and 03RNR, respectively. And, the ts in x-axis stands fo r  threshold. Namely,

ts2.5 means the threshold with 2.5 mm.

177



(c ) Bias S co re  (9 hr (18-03UTC) A ccu m u lated  Rainfall)

2  0.8ou(/>
(A
.2
m

03RN R 03RYR

0.4 03RA R

0.2

0.0
ts2.5 ts5 ts10 ts15 ts20 ts25 ts30 Is 40 ls50

T h resh o ld  (m m )

Fig. 7.7 (Cofitinued)
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Fig. 7.8 Same as in Fig. 7.7 except fo r  threat scores (TS).
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(c ) Threat Score (9 hr ('B-03LTTC) Accumulated Rainfall)
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Fig. 7.8 (Continued).
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Fig. 7.9 Same as in Fig. 7.7 except fo r  equitable threat score (ETS).
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(c ) Equitable Threat Score (9 hr(1B-03in'C) Accumulated Rainfall)
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Table 7.3 Instability indices fo r  each experiment and observation at Osan, 00 UTC
July 27.

CAPE
(J/kg)

L I(C ) SI KI SR Helicity 
(m^/s^)

03RNR 306 -0.7 -1.7 37 170.0
03RYR 401 -1.1 -1.5 38 156.2
03RAR 633 -1.8 -3.6 36 67.4

03RAR_lh_rap 1812 -4.1 -4.2 38 106
Observation 1102 -4.4 -4.1 36 63.1

•CAPE: Convective Available Potential Energy.
The larger value, the more severe weather (if CAPE > 1000, high possibility of 
severe thunderstorm)

• LI: Lifted Index.
The less value, the more unstable.

• SI: Showalter Index.
The less value, the more unstable

• KI: K Index.
The larger value, the more unstable, (over 30 is associated with severe 
thunderstorm)

• SR Helicity: Storm-Relative Helicity.
Potential for updraft rotation if convection occurs. The larger value, the more 
severe weather.
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03RAR with 03RNR and 03RYR (03RAR_lh_rap will be described in the next section), 

the CAPE, lifted index, and Showalter index of 03RAR are closest to observations and 

clearly suggest the potential for severe weather. The storm-relative helicity and K-index 

of 03RAR are also close to observations, even though their values tend to indicate stable 

weather. In summary, these results provide evidence for the positive impact of radar data 

assimilation on the 3-km grid spacing run.

To confirm that 03RAR is better the other experiments and also has a forecast 

time limitation with regard to the impact of radar data assimilation, we examine the 

behavior o f the domain-maximum updraft. It is well known that strong updrafts are 

related to heavy precipitation, and it is assumed that experiments using radar data 

assimilation will produce stronger and sustained updrafts, which in a qualitative sense 

would be in agreement with observations (though no direct computation of vertical 

velocity from observations was attempted).

Figure 7.10 shows the time evolution of the domain-wide maximum updraft for 

the aforementioned 3-km simulations. As expected, 03RAR produces stronger maxima 

during the first 3 hours (1800 UTC to 2100 UTC) after radar data assimilation, though at 

later times the velocity tends to be smaller than in the other experiments. The long-term 

average vertical motion of about 12 m/s is weak compared to the expected intensity of the 

convection, and is a factor of 3 or more weaker than would be expected from simple 

parcel theory. However, a grid spacing of 3 km is barely sufficient to capture such 

intensity, and if any grid cell had an updraft of even 25 m/s, the associated energy over a 

9 km square region would be quite large. Thus, we view these results as generally
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Fig. 7.10 Time evolution o f  domain maximum updraft from  1500 UTC July 26 to 0300 
UTC July 27 {12 hours) fo r  03RNR (dashed line with open diamonds), 03RYR (solid line 

with fd led  diamonds), and 03RAR (thick solid line with open rectangles).
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reasonable in the context of model resolution, though cannot say with certainty that the 

higher values of vertical motion associated with 03RAR are superior to the other cases.

7.3.2 Use of Different Data Assimilation Strategies

In this section we assess the impact of different data assimilation strategies on 

quantitative forecast skill and attempt to confirm whether frequent assimilation of data 

leads to notable improvements in skill. A total of seven experiments employing different 

data assimilation strategies are evaluated: 03RAR, 03RAR_initrad, 03RAR_lt, 

03RAR_lh_rap, 03RAR_cent5, 03RAR_centl0, and 03RAR_cent20. The verification 

methods used are the same as in the previous section.

Figure 7.11 shows bias scores for these seven experiments. Experiment 

03R A R _lt (Fig. 7.11), using only a single insertion of radar data, performs the worst, 

whereas 03RAR_cent5 (Fig. 7.11), using the shortest data assimilation window, is 

slightly better. A more continuous assimilation strategy, 03RAR_lh_rap (Fig. 7.11), 

shows more bias, with values near 1.2 for high precipitation thresholds (15 mm and 20 

mm) for the 3-hr accumulation period (Fig 7.11a). However, there exists no difference 

between this experiment and the others for the 6-hr and 9-hr accumulation time periods 

(Figs. 7.11b-c). This suggests that 03RAR_lh_rap produces more rainfall in the early 

periods of the forecast.

It is difficult to find meaningful differences between experiments 03RAR and 

03RAR_initrad (Fig 7.11) in the context of using radar data at the model initialization 

time. It is also difficult to find differences between 03RA R_centl0 and 03RAR_cent20 

(Fig. 7.11) in order to assess the impact o f the length of the data assimilation window.
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Similarly, comparing experiments 03RAR_initrad and 03RA R_centl0 (Fig. 7.11), which 

deal with the placement of the data assimilation window, the differences in bias scores 

are relatively small. It should be noted that these results are valid for a single case study 

and thus may not be broadly applicable.

Figures 7.12 and 7.13 show the TS and the ETS for the different data assimilation 

strategies noted above. We see very clearly that 03R A R _lhjrap  has substantially higher 

skill fo r  all thresholds during the 3-hr accumulation period. This is a very encouraging 

result as it strongly suggests that a more continuous data assimilation strategy is optimal, 

which agrees with intuition. It also confirms that the impact of radar data is confined to 

the first few hours of the forecast, i.e., because 03RA R_lh_rap shows substantial 

improvement only during the 3-hr accumulation period.

As was true for the bias scores, 03R A R _lt has the worst TS and ET (Figs. 7.12 

and 7.13). Comparing 03RAR with 03RAR_initrad to assess the impact of using radar 

data at the initial time, we find only a slight positive impact for 03RAR_initrad. This 

result is consistent that from our qualitative examination in section 6.2.4. Unlike the bias 

scores, 03RAR_cent20 is slightly better than 03RA R_centl0 concerning the length of 

data assimilation window, and 03RAR_initrad is also slightly better than 03RA R_centl0 

(assessing the change of displacement of radar data assimilation). These results are also 

consistent with the qualitative assessment made in section 6.2.4. Therefore, we surmise 

that, for this case, a data assimilation window of 20 minutes is slightly better than 5 or 10 

minutes. Considering the differences between 03RAR_initrad and 03RA R_centl0, radar 

data assimilation can be quite sensitive to a change in the position of the data assimilation 

window or the selection of a particular volume scan.
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The major results from the above quantitative verification are that radar data 

assimilation yields a positive impact upon our 3-km grid spacing forecasts, and that more 

continuous assimilation using a rapid update cycle (03RAR_lh_rap) produces the best 

results. The instability indices shown in Table 7.3 also confirm this. All indices of 

03RAR_lh_rap are close to the observations and they clearly demonstrate the potential of 

severe weather. We note that the skill scores are quite good because lAU  is killing 

incorrect convection -  not building correct convection. We now examine the MAE of 

the reflectivity difference in order to confirm whether 03RA R_lh_rap is a better method 

and to better document the finite time duration for which radar data yields a benefit.

Figure 7.14 shows the MAE of the principal 3-km grid spacing experiments. The 

MAE of 03RA R_lh_rap is smaller than that of the other experiments. Specifically, 

during the three assimilation periods, 1710 - 1720 UTC, 1730 - 1740 UTC, and 1750 - 

1800 UTC, the MAE decreases rapidly in response to the incremental insertion of 

observations. It is also clear that after one lAU  and before the next the M AE grows 

rapidly. Obviously we know that forecast errors grow with the time, but the behavior in 

this figure may indicate limitations in the model itse lf i.e., improper formulation o f  

surface drag that is creating spurious convection along the coast, etc. I f  the model is 

more perfect, after one lAU  and before the next the M AE may not grow rapidly than 

current results. Experiment 03RAR also shows the effect of data assimilation between 

1750 and 1800 UTC. Comparing 03RA R_lh_rap with 03RAR, the former does not 

show improved results until the start of the second assimilation period at 1730 UTC, after 

which the effect of data assimilation appears to be maximized. From this time onward, 

03RA R_lh_rap preserves the positive impact until the end of the simulation at 0300 UTC
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Fig. 7.11 Bias scores fo r  accumulated rainfall forecast; (a) 3-hr accumulated rainfall 
from  1800 UTC to 2100 UTC July 26, (b) 6-hr accumulated from  1800 UTC July 26 to 
0000 UTC July 27, and(c) 9-hr accumulated rainfall from  1800 UTC July 26 to 0300 

UTC July 27. Thick dashed line with asterisk, solid line with filled  rectangles, thick solid 
line with fd le d  circles, dashed line with filled  triangles, dashed line with filled  diamonds, 

solid line with open diamonds, and solid line with filled  diamonds indicate 03RAR, 
03RAR_lt, 03RAR_lh_rap, 03RAR_initrad, 03RAR_centl0, 03RAR_cent5, and 
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Fig. 7.11 (Continued).
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Fig. 7.12 Same as in Fig. 7.11 except fo r  threat scores (TS).
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Fig. 7.12 (Continued).
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Equitable Threat Score (3 hr (18-21 UTC) Accumulated Rainfall)
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Fig. 7.13 Same as in Fig. 7.11 except fo r  equitable threat scores (ETS).
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Mean Absolute Error for Post. Refl. vs. Obs. Refl.
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Fig. 7.14 Mean Absolute Error from  the forecasted and observed radar reflectivity fo r  
03RAR_lh_rap (heavy solid line with filled  circles), 03RAR (dashed line with filled  

rectangles), 03RYR (solid line with filled  triangles), and 03RNR (dashed line with open 
circles). U1600 means 1600 UTC and others are same as this.
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July 27. Although the superior performance of 03RAR_lh_rap continues until the end of 

the simulation, the trend shows some time dependence. The MAE increases rapidly from 

2200 UTC, similar to the trend in 03RAR.

Considering these results, it is clear that there exists a finite time during which 

radar data assimilation exerts a positive impact upon the forecast -  nominally 3 or 

perhaps 4 hours. This is consistent with the previous results and begs the following 

question; what is the mechanism by which 03RAR_lh_rap yields such improvements? 

This experiment applied lAU three times, each over a 10-minute period, within an hour. 

Therefore, the next assimilation cycle begins before the adjustments produced by the 

previous cycle disappear. In contrast, the one-hour period between data insertions in 

03RAR is too long to preserve adjustments from one assimilation period to the next. In 

summary, it is clear that 03RAR_lh_rap provides the best results from both qualitative 

and quantitative perspectives, and we therefore focus on a detailed analysis of this 

experiment in the next section.

7.4 Analysis of lAU for Experiment 03RAR_lh_rap

From both quantitative and qualitative verification of our results, we have 

determined that a more continuous assimilation strategy (03RAR_lh_rap) is superior to 

the other strategies described previously. In this section, we attempt to quantify the effect 

of incremental analysis updating (lAU) upon the corresponding prediction. We will 

examine reflectivity differences and the analysis errors of the wind and temperature fields.
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7.4.1 Forecasted and Observed Radar Reflectivity

Figure 7.15 displays the reflectivity difference, or RD (forecasted reflectivity 

minus observed reflectivity), both before lAU (left panels) and after lAU (right panels). 

The RD’s decrease rapidly after lAU for all data assimilation periods, and in particular, 

the erroneous convection over the western sea and coastal areas is correctly eliminated. 

However, the under-forecasted regions in the north do not show any significant change in 

RD. This is most likely a result of the fact that, at longer distances, the radar beam is at 

higher elevations; consequently, changes induced by the radar data will be confined to 

higher levels, where their impact would be expected to be smaller.

During the first lAU (Fig. 7.15a and b), from 1710 to 1720 UTC, the RD 

improves significantly. However, this improved RD is degraded during the next 

forecasting period, from 1720 to 1730 UTC (Fig. 7.15c), as the storms re-intensify. 

Although the forecast produces a worse RD (Fig. 7.15c), it is still better than the first RD 

(Fig. 7.15a). This suggests that the adjustment effectuated by radar data assimilation, and 

the assimilation of other quantities as made possible by the ADAS cloud analysis, is 

beneficial. Subsequent lAU/forecast cycles further improve the RD (Fig 7.15, right 

column).

Figure 7.16 shows the distributions of forecasted and observed reflectivity before 

(1730 UTC, Fig. 7.16a) and after the second lAU (1740 UTC, Fig. 7.16b). Although the 

absolute correlation is not very high, the correlation is significantly improved after the 

lAU. The correlation between forecasted and observed reflectivity for each forecasting 

time are shown in Fig. 7.17. This result is consistent with the MAE (Fig. 7.14), with the 

correlation decreasing until the first lAU begins at 1710 UTC, then rapidly increasing

197



thereafter through all three cycles. Similar to the trend in MAE (Fig. 7.14), the 

correlation increases to its maximum value of 25.4% after the second lA U (1740 UTC).

Once the lAUs are completed, the correlation again decreases. After 2200 UTC 

(4 hours after data assimilation), the correlation decreases very rapidly, reaching almost 0 

% during the last 3 hours (0100, 0200, and 0300 UTC). Once again, the absolute values 

of the correlation are low overall. However, they do show a substantial positive impact 

of radar data assimilation. These results are quite similar to those of section 6.2.4 (see 

Fig. 6.13) in that the effect of radar data assimilation in the more continuous assimilation 

strategy diminishes with time throughout the forecast (for approximately 3 or 4 hours).

7.4.2 Analvsis Error

In this section, we examine the analysis error (observation minus objective 

analysis values interpolated to observing stations) to determine the quantitative effect of 

radar data assimilation in experiment 03RAR_lh_rap. W ind and temperature fields at 20 

stations (Table 7.4) are employed, and the analysis before lAU is compared with that 

after lA U  for all lAU periods. The closest observed data at each station are used for the 

analysis. For example, observations collected “at” 1700 UTC are applied for the 

comparison at 1710 UTC and 1720 UTC, while observations at 1800 UTC are used for 

other times. Because 1700 UTC is not a regular time for observations, only AWS surface 

data are used.

The temperature analysis error, shown in Fig. 7.18, shows a substantial decrease 

from prior to data insertion (1710 UTC) to just after lAU (1720 UTC) (Fig. 7.18a). At 

1710 UTC, the analysis errors are greater than 3° K at most stations. These large errors
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(a) Fcst. Refl. vs. Obs. Refl. at 1730 (03RAR_1h_rap)
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Fig, 7,16 Forecasted reflectivity from  03RAR__lh_rap versus observed reflectivity at (a) 
before 2"" lAU, 1730 UTC and (b) after 2''^ I AU, 1740 UTC July 26.
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Table 7.4 AWS and official observation stations used in the analysis error. A and S 
stand fo r  AW S station and official surface station, respectively

Stn. No. Latitude(N) Longitude(E)
A400 37.51 127.05
A401 37.48 127.02
A402 37.55 127.15
A404 37.55 126.85
A407 37.62 127.09
A409 37.58 127.09
A410 37.49 126.92
A411 37.54 126.93
A412 37.57 126.95
A508 37.57 127.97
A523 37.90 128.83
A526 37.37 128.42
A706 35.30 126.97
A708 35.13 126.80
A713 34.98 127.58
S090 38.25 128.56
SlOO 37.68 128.76
S105 37.75 128.90
S106 37.50 129.13
S130 36.98 129.41

201



Correlation between Fcst. Refl. and Obs. Refl. for 03RAR_1ti_rap
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Fig. 7.17 Time evolution o f the correlation between forecasted reflectivity by 
03RA R_Ihjrap and observed reflectivity.
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Fig. 7.18 Temperature analysis error at (a) the firs t lAU  period (1710 UTC and 1720 
UTC), (b) the second lA U period  (1730 to 1740 UTC), and (c) the third lA U period (1750

to 1800).
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(c)
Analysis Error at 1750 and 1800 (temp.)
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Fig. 7.18 (Continued).
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(a)
Analysis Error a t 1710 and  1720 (u-v vector)
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Fig. 7.19 Same as in Fig. 7.18 except fo r  u-v vector.
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(c )
A nalysis Error a t 1750 and 1800 (u-v vector)
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Fig. 7.19 (Continued).
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rapidly decrease after the first lAU. The analysis errors at 1720 UTC are less than 1° K 

at most stations, and the results for the other lAU periods are consistent with those of the 

first. However, the analysis error difference (before and after the lAU) for the second 

and third lAU periods (Fig. 7.18b and c) is smaller, as it should be, given that the forecast 

following each lAU starts with an analysis more accurate than the preceding time. In 

other words, the analysis errors should decrease with each subsequent data insertion as 

the model is driven toward the observations.

As shown in the Fig. 7.18b, the analysis error at 1730 UTC is less than that at 

1710 UTC. When we compare the analysis error difference between 1710 UTC and 1730 

UTC with the analysis error difference between 1730 UTC and 1750 UTC, the former is 

better than the latter. This result suggests that the effect of radar data assimilation is 

decreasing as the number of assimilation cycles is increasing. Therefore, more data 

assimilation cycles may not always produce better results, and therefore it is important to 

find the optimal number of insertions.

The analysis error results for the wind vector magnitude (Fig. 7.19) are similar to 

those for the temperature field. However, the outcome of the third lAU period (Fig. 

7.19c) is inconsistent because improvement, and in fact some degradation, occurs after 

the lAU. Because only radial wind information is being inserted into the analysis, the 

gradual wind adjustment owing to radar data assimilation probably diminishes in 

comparison to that associated with other variables, principally those related directly to 

thermodynamic effects.

As shown in Figures 7.18 and 7.19, several stations such as A523, S090, SlOO, 

S105, S106, and S103 show unacceptable results. To examine the cause of these errors.
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Fig. 7.21 Observations (red arrows and red characters) at 1800 UTC and ADAS  
analysis at 1700 UTC. 523 and 526 indicate the number o f  A WS stations and S  stands 

for the official surface station (a:wind, b:air temperature).

209



Fig. 7.21 shows the analysis at 1750 UTC, and the observations of horizontal wind and 

temperature, at 1800 UTC, along with the locations of these stations. Area B in Fig. 7.20 

indicates the domain of Fig. 7.21. Figure 7.21 confirms the existence of large differences 

between observations and the analysis. One common characteristic is that all stations 

exhibiting significant error are near the coast, with high terrain to their west. We assume 

that these observations are not in error because they passed the quality control process in 

the ADAS scheme. The observed winds (Fig, 7.21a) are weaker and more variable than 

in the analysis. This behavior might result from a sea-1 and breeze circulation or from 

mountain waves induced by the complex terrain. However, the numerical model does not 

seem to capture this detailed structure in its prediction.

In summary, we can state with quantitative certainty that radar data assimilated at 

reasonably rapid intervals has a positive impact on the forecast of the Chorwon-Yonchon 

heavy rainfall event. In the next section, we examine how the increments used in radar 

data assimilation affect the forecast.

7.4.3 Origin of Erroneous Coastal Convection

We discuss there the origin of erroneous convection predicted consistently by all 

forecasts, especially those using 3 and 9 km grid spacing, over the western sea and 

coastal areas. For example. Figure 7.22 shows surface horizontal reflectivity and surface 

wind vectors at 1500 UTC on (a) July 26 and (b) 1700 UTC in experiment 

03RAR_lh_rap. Although the analysis at 1500 UTC (Fig. 7.22a) shows no reflectivity in 

this region, the model forecast clearly produces intense spurious convection in the area of 

the western sea and coastal regions at 1700 UTC (Fig. 7.22b).
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Although no definitive reason exists for this spurious convection, one important 

characteristic is that it occurs along the coastal region as thus likely results, at least in part, 

from the rapid frictional slowing of southerly wind as it passes from the sea onto land 

over the western part of the KP (Fig. 7.22). Thus, the frictionally-induced convergence 

occurs in the region joining moist, warm tropical air over the water and relatively dry and 

cold continental air over the land. In experiment 03RAR_lh_rap, we employed AWS 

data and GTS surface data at the initial time, along with the 09RYR analysis as the first 

guess field, in an attempt to correct any mis-specified structure of the environment. It 

appears, however, that the environment is sufficiently unstable for any such correction to 

have a significant impact. It also appears that the assimilation of radar data into such an 

environment is effective only locally, i.e., the assimilation process is unable to overcome 

the potentially erroneous background state on a broad scale, and is effective locally only 

after repeated insertions.

We also examined soundings over land and sea near the coastal area at 1800 UTC 

July 26 (Fig. 7.23) in an effort to determine the degree of disagreement between the 

model and observations in the relatively undisturbed environment, and the propensity of 

land-sea contrasts to explain the spurious convection in the light of frictionally-induced 

convergence forcing. The annotations T  and ‘s ’ in Fig. 7.20 indicate the position of the 

model land and sea soundings, respectively, and it is clear that significant differences 

exist between the soundings on land and at sea. The latter (Fig. 7.23b) clearly is more 

unstable, with a CAPE of 15I0J/kg. In contrast, the CAPE over land at this time is zero. 

The surface wind over the sea is also stronger (about 8 m/s) than that over the land (about
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212



1800 UTC July 26 (03RAR_lh_rap at LND)
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Fig. 7.23 Skew-T plo t o f  sounding over a land position (a) and a sea position (b) near 
coastal are (Fig. 7.19 displays the exact land position and the sea position).
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1800 UTC July 26 (Observation at Osan)
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4 m/s). One factor contributing to the spurious convection along the coastal region in the 

model is an overestimate by the model o f  instability upstream over the sea.

Verifying this conjecture requires a comparison of model and observed soundings 

at the same location. Unfortunately, the only location for doing so is at Osan, which is 

located southeast of the spurious convection (Fig. 7.20). Nonetheless, such a comparison 

in the relatively undisturbed environment should prove useful for determining whether 

the model is accurately representing the physics of the flow (which of course depends 

upon the quality of the background field provided by the operational KMA model). 

Figure 7.24a shows the 1800 UTC sounding from Osan, with the model counterpart from 

experiment 03RA R_lh_rap shown in Figure 7.24b. Interestingly, the model environment 

is more stable than observations, with a CAPE of 545 J/kg compared to the observed 

value of 1741 J/kg. Note, however, that the model profile is significantly moister 

between 700 and 500 mb, and that it contains a strong surface-based capping inversion.

Although the above results are not conclusive, they do suggest that the spurious 

convection along the western part of the KP -  which was evident in all 9 and 3 km grid 

spacing experiments -  resulted from strong frictional convergence in the presence of a 

conditionally unstable environment. That this convection was present in all high 

resolution runs suggests that the flow from the sea to the land was too large 

(unfortunately, no verifying observations exist), and that the environment in the vicinity 

of the convection may have been too unstable, though such was not the case further 

inland at Osan.
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7.5 Structure and Effect of Increments on Experiment 03RAR_lh_rap

When using lAU, it is important to understand the structure of the increments and 

the manner in which they physically impact the model solution during and after their 

application. W e again focus on experiment 03RA R_lh_rap because of its superior 

qualitative and quantitative forecast performance, and examine 1) the increment between 

the analysis and the background field before lAU (the increment introduced into radar 

data assimilation, hereafter “the increments”) and 2) the difference between the forecast 

after lAU and the background before lAU (hereafter “D”). Figure 7.25 illustrates the 

schematic of this increment examination. We examine these quantities for seven 

meteorological variables; potential temperature (0, deg K), cloud water mixing ratio (qc, g 

kg ' ), rain water mixing ratio (qr, g kg '), specific humidity (qv, g kg ' ), and the three 

wind components u (m s '), v (m s '), and w (m s '). The increments and D ’s are 

examined for all lA U periods and are plotted on x-z cross sections along the line segment 

a_b in region A of Figure 7.20. The latter covers the location where spurious convection 

develops vigorously in 03RAR_lh_rap. Figures 7.26 through 7.35 depict selected cross 

sections of the increments and the D ’s.

Focusing first on the 0 fields (Figs. 7.26 and 7.27), first lAU increments (Fig. 

7.26a) show negative values over nearly the entire domain (i.e., colder temperatures are 

being assimilated into the model), with a range from -1.7 K to 0.5 K. The increment 

difference between the maximum and minimum, hereafter “IR”, has a magnitude of 2.2 K 

(Fig. 7.26a). The first increments for 0 were gradually introduced via lAU during 10 

minutes (from 1710 UTC to 1720), producing the D shown in Fig. 7.26b, i.e., the
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Fig. 7.25 Schematic illustration o f  examination o f analysis increments fo r
03RAR_lh_rap.
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difference between the forecast at the end of the lAU and the starting background. 

Ideally, these fields should be reasonably close, though will not be identical because they 

are valid at different times. Positive D ’s are evident in the lower parts of the domain, 

especially in the boxed region of Fig. 7.26b. The difference between maximum and 

minimum magnitude (hereafter “DR”) is 8.7 K (4.6 K at maximum minus -4.1 K at 

minimum). In a later section, we will use the ratio of DR to IR to evaluate how much an 

increment affects the next forecast through the lAU period.

The positive 9 produced by the model during the first lAU is driven toward 

negative values at the start of the second lAU (1730 UTC, Fig. 7.27a). The D after the 

second lAU (Fig. 7.27b) once again shows positive values, similar to the first lAU 

though with a somewhat reduced magnitude. The results for the third lAU are similar 

and not shown. In a convective system, the temperature and other fields respond 

mutually (Nascimento, 2002). Because the relationships among them are linked in a 

complex manner, we need to compare 0 with other fields such as cloud water (qc), rainfall 

water ( q j  and vertical velocity (w).

In Figure 7.28a, positive increments of qc are evident over nearly the entire 

domain at 1710 UTC. Because these increments are the difference between the ADAS 

analysis and the background, positive increments denote cloud water that was provided 

by the analysis. In general, conventional data such as surface observations do not provide 

condensate fields such as cloud water (Xue et al. 1998). Therefore, the ultimate source of 

this positive increments of qc is radar data. When these increments are applied over the 

first 10 minute lAU interval(I7I0 to 1720 UTC), they produce strongly positive D of qc 

in the region x =45 km and z = 6 km (Fig. 7.28b). At this time, the DR of qc, with a
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magnitude of 3.40 g kg ' (2.11 g kg ' at maximum minus -1.29 g kg ' at minimum), is 

higher than the IR of with a magnitude of 2.94 g kg ' (2.19 g kg ' at maximum minus 

-0.75 g kg ' at minimum). This suggests that the increments amplified te qc during the 

lAU  period. For the second (Fig. 7.29a and b) and third periods (not shown), the results 

are similar. The increments of qv (not shown) also show positive values in the lower 

levels. The other analysis values for the qv are similar to those of qc.

Next, we consider rainwater (q j. As shown in Fig. 7.30a, the increments of qr 

show negative values at 1710 UTC, meaning that the analysis does not contain as much 

rain water as present in the background field (indicating that the model overforecasted 

convection, as indicated earlier). Although the increments are entirely negative, 

relatively large amount of qr are produced at x = 65 km and z = 4 km through the first 

lAU period from 1710 to 1720 UTC (Fig. 7.30b). Despite the reduction in rainfall from 

lAU, the model quickly tends to re-generate convection in the affected regions. The 

increments of qr are again adjusted negatively at the start of second lAU period (1730 

UTC, Fig. 7.31a), and this increment is introduced into the third cycle. The net result is a 

reduction in precipitation in the region of spurious convection, as hoped for, though lAU 

alone, as currently applied, does only a marginal job. The reasons for this behavior are 

discussed below.

Figure 7.32a shows the increments of w at 1710 UTC. The value of IR is 

relatively small at 9.7 m s ''. Through the first lAU period using these increments, w 

increases in absolute magnitude, producing clear updraft and downdraft regions (Fig. 

7.32b). Relatively strong updrafts are evident at x = 47 km, z = 5 km, at x = 65 km, z =

3.5 km, and at x = 75 km, z = 6 km. These regions will be evaluated with other variables

221



( a )

Increment: 
Anal. -  Back, 
at 1710

qc (g /k g , CONTOUR)

(b)

Difference: 
1720 -1710

17: lOZ Fri 26 Ju l 1998 T=0.0 s (0 :0 0 :0 0 )
X-Z PLANE AT Y=310.5 KM

13.0

12.0

11.0

10.0

I 7.0

6.0

6.0

4.0

3.0

2.0

0.0
0.0 50.0 100.0 150.0

(Jon)

M IN»-.7540 MAX«=2.190 lnc=0.6000

17:20Z F ri 26 Ju l 1996 T =8400.0 s (2 :2 0 :0 0 )
X -Z PLANE AT Y=310.5 KM

13.0

12.0

11.0

10.0

I
5.0

4.0

3.0

2.0

1.0

0.0
0.0 50.0 100.0 150.0

(km)

qc <g/kg, CONTOUR) M IN--1.230 MAX=2.10a Lnc»0.5000

Fig. 7.28 The increments o f  the qc between the analysis and the background (analysis -
background) at 1710 UTC (a) and the difference o f  the qc between the forecast a t 1720

UTC and the background at 1710 UTC (b). The box in (b) will be used fo r  zooming work.
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Fig. 7.30 The increments o f  the qr between the analysis and the background (analysis -
background) at 1710 UTC (a) and the difference o f  the qr between the forecast at 1720

UTC and the background at 1710 UTC (b). The box in (b) will be used fo r  zooming work.
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UTC and the background at 1730 UTC (b).
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background) at 1730 UTC (a) and the difference o f  the w between the forecast at 1740
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Fig. 7.34 The increments o f  the u between the analysis and the background (analysis -
background) at 1710 UTC (a) and the difference o f  the u between the forecast at 1720

UTC and the background at 1710 UTC (b). The box in (b) w ill be used fo r  zooming work.
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Fig. 7.36 The difference o f  (a) w, (b) qr, (c) pt, (d) qc, and (e) u between the forecast at 
1720 UTC and the background at 1710 UTC.
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Fig. 7.36 (Continued)
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Fig. 7.37 Time evolution o f the domain maximum qr and w in the 03RAR_lhjrap. Each 
data assimilation period indicates the periods o f  130 min. (1710 UTC) to 140 min. (1720 
UTC), 150 min. (1730 UTC) to 160 min. (1740 UTC), and 170 min. (1750 UTC) to 180 

min., (1800 UTC) indicate the first, second, and third data assimilation period, 
respectively. Two different units o f  Y axis are used in this figure: ‘g /kg ’fo r  qr and ‘m /s’

fo rw .
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later. The updraft and downdraft in this DR are distributed in narrow bands such that 

they can produce rain in a very localized manner.

The increment of w at the start of second lAU period (1730 UTC) is shown in Fig. 

7.33a and is distributed through higher levels. When this increment is introduced into the 

next lAU cycle, it produces a large DR. For future comparison with the other variables, 

we especially note the maximum updraft region at x = 80 km and z = 5.5 km during the 

second lAU period from 1730 to 1740 UTC (Fig. 7.33b).

The horizontal wind fields (u and v) appear quite erratic. The D R ’s during both 

the first and second periods (Figs. 7.34b and 7.35b) show complicated shapes although 

the increments are not variable (simple shape) and are small in magnitude (Figs. 7.34b 

and 7.35b). The v fields are similar to the u fields (not shown). We find one consistent 

feature among variables, namely, a convergence region at x = 75 km and z = 4 km during 

the second lAU period (1740 to 1750 UTC, Fig. 7.35b). Such a feature at low levels 

should be accompanied by upward motion at higher levels. The w field (Fig. 7.33b) 

shows upward motion associated with this convergence, and it agrees quite well with pt 

(Fig. 7.27b), qr (Fig. 7.31b) and qc (Fig. 7.29b), although qc is phase shifted to the west (x 

= 55 km, while the others are near x = 7 5  km). This phase difference is not surprising, as 

the cloud water condenses, produces rain, then falls downward while being advected 

horizontally by the local winds. (This phase shift will be discussed in more detail below).

Diabatic initialization (i.e., initialization which includes the adjustment of thermal 

fields) is necessary for producing spatially and temporally accurate precipitation forecasts 

(Zhang 1999). From this point of view, we wish to investigate how the increments for 

each variable behave and adjust interactively during the lAU. For example, negative
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buoyancy produced by initialized cloud water and rain water in the precipitation region 

can be compensated by upward motion that develops convection. Therefore, we next 

examine the mutual interactions among the thermal fields.

To provide a more detailed examination of the mutual behavior among model 

variables, we show in Figure 7.36 zoomed-in sections of the differences between the 

forecast at 1720 UTC and the background at 1710 UTC of pt (Fig. 7.26b), qc (Fig.7.28b), 

qr (Fig. 7.30b), w (Fig. 7.32b), and u (Fig.7.34b. Comparing w, qr, and pt (Fig. 7.36a, b, 

and c, respectively), there exists significant consistency among these fields (see maxima 

indicated by arrows). The relationship between w and qr is more highly correlated than 

the relationship between pt and other variables. The domain-maximum qr and w from 

1640 UTC to 1805UTC, including the three data assimilation periods, is shown in Fig. 

7.37. The two fields have a very similar pattern and they also clearly display the impact 

of data assimilation. Why do the above three fields produced by the increments have the 

highest consistency?

This behavior can be explained by a positive feedback mechanism of convective 

systems (Bluestein 1993). First, heating (A0 > 0) exists at upper levels, and upward 

motion (w > 0) accompanied by convergence at low levels is produced by it. This 

upward motion draws moist air from low levels and the moisture continually condenses 

(Aqr > 0). This condensation produces latent heating, which functions as a temperature 

source at upper levels. The variables mentioned above match well, keeping this positive 

feedback mechanism operating.

The region of maximum qc (Fig. 7.36d) is located in the western and upper parts 

of the domain. It shows a phase shift, in contrast to the above three variables. The

235



maximum of this field (located at x = 47 km and z = 5.8 km) and the w field (7.36a) show 

a region of strong updrafts located at z = 4.7 km height. This cloud water rises in the 

upward motion, condenses, and forms rain water, thereby helping to develop convection 

despite the phase shift. According to this process, the rain water maximum in the center 

of the domain (Fig. 7.36b) was probably produced by two mechanisms: one is directly by 

the upward motion, the other is from cloud water, although it is not located near the rain

water region.

Upward motion is usually accompanied by convergence at another level. 

However, the u field does not show such consistency. As shown in Fig. 7.36e, the u field 

does not agree with the other fields except in one convergence region and in one 

divergence region (see the arrows in Fig. 7.36e). The problem is worse at higher levels. 

Although it is difficult to evaluate the increment effect exactly, the wind field looks 

worse than the others. As mentioned earlier, we can examine DR/IR. If this ratio is 

greater than 1, the forecast varies more than the increments (and vice versa). In other 

words, a larger value of DR/IR is more sensitive and can make the error larger. Figure 

7.38a shows the DR/IR ratio for seven variables. High values for u and v are seen. The 

ratio for the v field during the third lAU period is greater than 10. This indicates that 

small incorrect increments for the horizontal winds can result in large errors for the 

forecast.

A previous result (section 7.4.2) showed that the effects of radar data assimilation 

are decreasing as the number of assimilation cycles is increasing. To verify this result, 

we examine the ratio of DR’s for the second and third LAU periods to the range value 

(maximum minus minimum) of the difference between the forecast after the lAU and the
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background before the lAU for first lAU period. For example, if the DR at the second 

lAU period (DR2) is larger than the DR at first lAU period (D Rl), the ratio DR2/DR1 > 

1, meaning that the variation of a variable during the second lAU period is larger than 

that during the first lAU period. Figure 7.38b shows these ratios. In the second lAU 

period, the ratio for almost all variables are less than one, while the ratio increases for the 

third lAU period. Considering this observation and the previous results of section 7.4.2, 

the number of assimilation cycles should be carefully considered. More is not always 

better.

In summary, pt, qr, qc, qv, and w incorporate well into the model forecast when 

employing radar data assimilation using increments. They contribute to the positive 

feedback mechanism of the convective system. However, the horizontal wind fields 

obtained from only radar data have problems to be employed enough in the radar data 

assimilation process since the radial velocity has a serious limitation not to produce full 

vector field of winds. W e also note that rain field is compact while the other fields such 

as 0 and wind fields have global structure. This different structure between rain field and 

the other fields is because rain field directly comes from radar data while the other fields 

pass through ADAS scheme.

7.6 Summary

Quantitative verifications were conducted to confirm if the radar data assimilation

has an advantage compared to the other experiments. For the quantitative verification,

we used conventional verification scores such as B, TS, and ETS. The estimated
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precipitation produced by RVl.O was compared to predicted precipitation for computing 

verification scores. Using the observed precipitation produced by RVl.O, we found a 

blockage problem due to terrain effects. We therefore discarded the erroneous area 

produced by this blockage problem in the verification domain.

We computed B, TS, and ETS by various thresholds in order to determine 

whether radar data assimilation can positively affect the forecast and to find if each 

experiment has specific features. The major results are as follows:

1. The radar data assimilation shows clear improvement for precipitation forecast 

quantitatively.

2. The radar data assimilation improves the forecasted rainfall location more than the 

forecasted rainfall amount, as shown from the B and the TS.

3. The radial velocity data can positively affect the forecast, though the effect is not great, 

especially at early forecast times.

4. The radar data assimilation appears to have a time limitation of approximately 3 hours 

in its positive impact on the forecast.

5. The 03RA R_lt experiment, using only a single insertion radar data, is the worst one 

of the different radar data assimilation strategies.

6. A data assimilation window length of 20 minutes (03RAR_cent20) is slightly more 

appropriate than 5 minutes and 10 minutes (5 minutes is the worst).

7. A more continuous data assimilation strategy (03RAR_lh_rap) shows the best results, 

and presents a forecasting time limitation o f about 3 hours.
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8. The radar data assimilation can be sensitive to a change in the position of the data 

assimilation window or the selection of a particular volume scan, as shown from 

03RAR_initrad and 03RAR_centl0.

9. The radar data assimilation using radar data at the initial time (03RAR_initrad) is 

slightly better than 03RAR.

Through the evaluation of the verification scores, we strongly confirmed that the 

03RA R_lh_rap is the best method. We attempted to quantify the effect, of the data 

assimilation upon the corresponding prediction in the results of 03RAR_lh_rap. The RD 

(forecasted reflectivity minus observed reflectivity) and analysis error (observation minus 

analysis) for wind fields and temperature at 20 stations were employed for quantification. 

We compared the RD and the analysis error before the lA U with those after the lAU. 

From this, we confirmed that the radar data assimilation effect can last fo r  3 or 4 hours. 

In addition, we found that the effect of radar data assimilation decreased as the number of 

assimilation cycles increased. The last important finding was a basic limitation in 

introducing horizontal wind from radial velocities. Thus, the gradual wind adjustment 

from the radar data assimilation was probably not enough (or appropriate) when 

compared with the adjustment of other variables such as temperature.

We also attempted to know the effects of the increments used in the I AU. The 

increments for seven variables such as pt, qc, qr, qv, u, v, and w, were examined. 

Consequently, we found that the increments of thermodynamic variables and vertical 

wind are introduced well into the lAU process and that the increments of these variables 

contribute to the positive feedback mechanism in a storm. W e also confirmed that the 

increment of horizontal wind fields has limited utility in the radar data assimilation
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process since the source of the horizontal wind fields is the radial velocity from radar 

data.

241



Chapter 8.

Summary, Conclusions, and Future Work

8.1 Summary

In order to improve the initial conditions for numerical models, considerable 

attention has been given to improving data assimilation techniques and using new sources 

of remotely sensed data. One of the most powerful tools for remote sensing of the 

atmosphere at fine scales is Doppler radar. Despite the importance of radar data for use 

in warning and numerical simulations, little effort has been made to include analyzed 

radar data in the data assimilation cycle of the operational numerical weather prediction 

models of Korea. The firs t step in bringing Korean radar data into a numerical model 

fo r  the forecasting o f heavy rainfall has been undertaken in this study. Our purpose is to 

assess the impact o f NEXRAD Doppler radar data in the numerical forecast o f a highly 

convective, localized heavy rainfall event in Korea, the so-called "Chorwon-Yonchon 

event", and to evaluate a relatively new data assimilation technique fo r  small scale flows, 

increment analysis updating (lAU). We hypothesize that the assimilation of WSR-88D 

data into a model operated with relatively fine horizontal grid spacing (3 km) will 

improve the prediction of the convective event noted above. In this study the complete 

Advanced Regional Prediction System (ARPS) developed by the Center for Analysis and 

Prediction of Storms at the University of Oklahoma, in combination with NEXRAD 

Level II data gathered by the US Air Force in Pyungtaek, Korea, is applied to the 

Chorwon-Yonchon heavy rainfall event.
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The Chorwon-Yonchon heavy rainfall event occurred over the middle part of the 

Korean peninsula during 26-28 July 1996, with total rainfall accumulations exceeding 

650 mm in many regions. Four main synoptic features contributed to this event: (1) the 

presence of the northwest boundary of a stationary north Pacific front, located in the 

central part of the Korean peninsula, (2) the presence of a boundary between two air 

masses, the Okhotsk maritime Pacific and north Pacific maritime tropical masses, (3) the 

presence of a continuous strong moisture flux into the middle part of the Korean 

peninsula, and (4) the passage of two upper-level short-wave troughs over the Korean 

peninsula.

The heavy rainfall was not directly associated with the Changma (East Asian 

summer monsoon) front and was highly localized, with strong storms developing locally 

and moving very little. Orographic effects can be inferred as one of the causes of this 

heavy rainfall event. The Q-vector field at 850 hPa showed Q-vector convergence and 

frontogenesis in the region of heaviest rainfall.

For our experiments, one-way grid nesting was employed with a horizontal grid 

spacing of 27 km for the coarse outer grid (99 x 103 x 37 points), 9 km for the middle 

grid (115 x l 39 X 37 points), and 3 km for the inner fine grid (144 x 187 x 37 points). A 

total of 26 experiments served to test the effect of model resolution, the impact of radar 

data, and the difference between a cold start and data assimilation methodologies. Initial 

and lateral boundary conditions for the 27-km grid ARPS forecast were provided by the 

Korea Meteorological Administration 40 km, 18-hour and 6-hour operational Regional 

Data Assimilation and Prediction System (RDAPS) forecasts.
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Incremental analysis updating (lAU), a type of nudging technique, is designed to 

gradually incorporate analysis increments into a model integration by using the 

increments as constant forcings in the prognostic equations during an assimilation period 

centered on the analysis time (Bloom et al. 1996). IAU has the advantage of serving as a 

low-pass time filter, having a particular effect upon the response of the model where 

analysis increments exist; it leaves the model state unaffected where no data is available 

to assimilate. The lAU scheme adds the analysis increments to the model as a state- 

independent forcing term, performing the actual filtering only in response to the analysis 

increments. This is in contrast to classic nudging, where the entire model state is relaxed 

toward an analysis.

Two experiments at 27 km grid spacing, 27R and 27R_n, were conducted. 

Experiment 27R was the 27 km ARPS forecast integrated for 21 hours using the 18-hour 

RDAPS forecast as a starting point (the “old first guess field”). 27R_n was identical to 

27R except for the use of a newer version of the RDAPS model from a 6-hour forecast 

(the “new first guess field”). Comparing the predicted total rainfall over the 2 1-hr period 

for both first guess fields, that obtained using the new firs t guess fie ld  showed substantial 

improvement.

Six experiments of 12-hour duration were conducted at a grid spacing of 9 km, 

using the 9 hour forecasts from both 27 km experiments as first guess fields. Experiment 

09RNR was utilized with no radar data. Experiment 09RYR was similar to 09RNR, but 

with the use of radar data only at the initial time to aid in the specification of the moisture 

and temperature fields via diabatic initialization using the ARPS Data Assimilation 

System (ADAS). Experiment 09RAR was identical to 09RYR, but with radar data
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assimilated over a period of 3 hours rather than used only in the initial analysis. 

Comparing predicted total rainfall amounts, 09RNR was better than 27R. This indicated 

that increasing resolution results in an improved forecast over 12 hours, as shown in other 

studies (e.g., Benoit and Mailhot 2001; Mass et al. 2001). Comparing 09RNR with 

09RYR, the latter was more accurate in terms of total maximum rainfall owing to the 

benefit of radar data in the initial analysis. However, the forecasted position of the 

rainfall maximum in did not show any significant improvement. Although 03RAR was 

computationally more costly, the location and maximum value of the peak rainfall did not 

improve relative to 09RYR.

W hen using the new first guess field, the predicted total rainfall was considerably 

greater, and its area larger, than when using the old first guess field. As in the results 

using the old first guess field, the impact of radar data assimilation was nominal.

A total of 18 experiments were conducted at 3 km grid spacing in order to 

evaluate the impact of NEXRAD data on high-resolution forecasts in four principal 

categories. The results were evaluated both qualitatively and quantitatively. For

verification (especially quantitative), we used precipitation estimates derived from 

NEXRAD Level II data using a commercial software package developed by Vieux and 

Associates.

Qualitative verification showed that the new first guess field did not lead to any 

improvements at 3 km grid spacing, although the predicted maximum rainfall amounts 

were close to those observed. The predicted rainfall exhibited a greater positive bias over 

the entire domain than in the 9 km grid spacing simulation. Quantitative verification 

demonstrated that the use o f both radial velocity and reflectivity led to a discernible
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improvement compared to the use of reflectivity only, especially early during the forecast. 

This suggests that radial velocity can exert a positive impact upon the forecast despite the 

fact that it represents only one component of the full three-dimensional wind field.

Comparing experiments with and without the use of radar data, the radar data 

assimilation case (03RAR) was the most skillful, while 03RYR and 03RNR followed in 

that order. This suggests that radar data can potentially add value to a forecast.

Six additional experiments were employed to assess four data assimilation 

strategies: (1) use of radar data only at the initial time, (2) variation in the rate at which 

data are assimilated; (3) variation in the length of the data assimilation window; and (4) 

the use of different placements in time of the data assimilation. For the first case, we 

found that there exists only a slight difference when radar data are or are not used at the 

initial time. A data assimilation window of length 20 minutes was slightly better than 5 or 

10 minutes, with 5 minutes being clearly the worst. This is in contrast to the results of 

Crook (1994). For the fourth set of experiments, we found that radar data assimilation 

can be quite sensitive to a change in the position of the data assimilation window or the 

selection of a particular volume scan. Overall, it was clear that an experiment using 

three data inserts within a one-hour period, as compared to three inserts over a three 

hour period, produced the most skillful forecast.

By examining the mean absolute error and difference fields for the most skillful 

case noted above, we confirmed that the positive impact of radar data for this particular 

event, using a grid spacing of 3 km, is approximately 3 to 4 hours process presented a 

limitation as forecast time increased.
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The structure and physical impact of the increments were examined for the rapid 

data assimilation case as well. The potential temperature, water substance, and vertical 

motion were incorporated well into the model forecast when employing radar data 

assimilation using lAU. This also led to a positive feedback mechanism in the 

convective system.

8.2 Concluding Remarks and Future Work

Although this study shows that Doppler radar data assimilated into a cloud- 

resolving forecast model, using incremental analysis updating, has a significant positive 

impact, a number of limitations exist, some of which limit the generalization of these 

results.

1. The best forecast produced in this study still exhibited considerable error 

in the position and maximum amount of total rainfall.

2. The lack of availability of conventional data, and the use of 3 km model 

grid spacing, likely contributed to these results, as well as the use of lAU in a rather 

conventional manner. With regard to the latter, changes in the weighting of the 

increments over time, and phase-correcting assimilation, may have proved beneficial.

3. Although the precipitation estimated from NEXRAD Doppler radar was in 

reasonable agreement with surface gauges, its overall quality remains questionable given 

that it was calibrated using only seven surface stations.
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It is important to recognize that the forecasting improvement brought about by 

Doppler radar data assimilation, and measured by objective skill scores, is due mostly to 

a reduction in falsely-prediction convection rather than the creation o f  correct convective 

structures in the region where they actually were observed.

Finally, and perhaps most importantly, no Doppler wind retrieval was applied in 

this study, i.e., only the radial velocities were used rather than the radial velocities 

combined with estimates of the polar and azimuthal wind components. Because many 

studies have shown that the 3D wind field can be retrieved with reasonable accuracy from 

Doppler radar data (e.g., Shapiro et al., 1995; Weygandt et al., 2002a,b; Gao et al. 2001), 

we would expect that the use of such complete fields, coupled with thermodynamic and 

microphysical retrieval using model grid spacings of I km, might lead to significant 

improvements for the present case.
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APPENDIX A Using the ARPS WSR-88D Data Remapper

A .l Introduction

Because this study involves the assimilation of WSR-88D Doppler radar 

data, which is important for others to reproduce our results, we report here the steps 

involved in incorporating radar data into ADAS. This description is based upon 

internal documentation at CAPS (Brewster, 2001)

One of the ARPS programs, 88d2arps, reads data from WSR-88D archive 

Level U tapes, from disk files, or from the REDDS live circular buffer (a device used to 

collect Level E data in real time but no longer in service). All data located within each 

ARPS grid volume are averaged to produce the remapped fields. One output file is 

produced for each radar data “volume scan.” Data returned are averaged reflectivity 

factor (dBZ), radial velocity (ms'O, spectrum width (m s'l), and local Nyquist velocity. 

In the averaging process, the data within each grid volume are checked to ensure that 

they lie within the same Nyquist interval, but they are not unfolded. Unfolding is 

performed within ADAS. Minimal quality control is performed by checking the 

variance of the data and the data coverage in each grid volume. High variance 

averages and grid volumes containing sparse relative coverage are discarded. 

Statistics on the coverage and variance discard rate are reported for each volume scan 

in standard output.

The ARPS grid used for remapping is established through the regular ARPS 

input file (e.g., arps.input). The namelist variables dealing with grid spacing, grid
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location, and terrain and map projection are used to establish the grid just as if an 

ARPS forecast were to be run. The remaining namelist variable blocks are not used. 

Some controls are determined through environment variables; see instructions for 

running 88d2arps.

A.2 Main Files and Link to Library

The radar re-mapper is contained in several source code files (C and Fortran) 

that are distributed with the official CAPS source code in the directory:

./src/88d2arps

The main driver source is 88d2arps.c. The directory also contains files needed for 

building the executable and a short script for setting the necessary environment 

variables.

The makearps utility will automatically link to certain I/O libraries that have 

been installed on the CAPS IBM cluster and some Sun workstations in CAPS. One 

often needs to install the zlib.a library, which is used for uncompressing radar files. If 

this library is not available, source may be downloaded for free. Information about 

this can be found on the web at URL http://www.info-zip.org/pub/infozip/zlib/

A 3 Building the Executable

The 88d2arps executables can be built using the makearps command. The 

executable file is built using the UNIX make utility.
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Users outside of CAPS will need to change the directory references for the 

liba2io.a and libtpio.a libraries in makearps. The source code for the libraries can be 

obtained by anonymous ftp:

ftp ftp.caps.ou.edu 
login anonymous 
password: your email 
binary
cd pub/users/kbrews/archive-2
get a2io.tar
get tpio.tar
get radarinfo.dat
get setREMAPenv

Untar and run make in the separate directories to build the a2io and tpio libraries. a2io 

and tpio are from the National Severe Storms Laboratory. They were written and tested 

for Sun, IBM and HP Unix workstations. Use on other platforms may require changes 

that we are not able to support.

After these libraries have been built, one must check the locations for the 

libraries specified in the makearps csh script to see that they match the actual locations. 

Also be sure the zlib is specified (-Iz) as this was not needed for earlier ARPS releases. 

The makearps script libarary statements should read something like: 

case 88d2arps_a2:

set LIBS = '/usrl/local/a2io/liba2tp.a /usr 1 /Iocal/tpio/1 ibtpio.a -Iz' 

breaksw
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The file r a d a r i n f o . d a t  contains the location information for each WSR- 

88D radar. It is a text file, so additional radars can be added via editing, should that be 

necessary. The file setREMAPenv is a csh script for setting environment variables.

a) To build an executable for reading WSR-88D Archive-II tape or disk file:

1) Edit dims.inc to set the desired nx, ny, nz dimensions 

(not needed for the ARPS version 5.0 code -  in that version nx, ny, nz 

are set in the input file and memory is dynamically allocated)

2) Make the executable, for example

makearps -d 88d2arps_a2
b) To build an executable for reading from the RIDDS circular buffer:

1) Edit dims.inc to set the desired nx, ny, nz dimensions

2) Make the executable using makearps and the usual options, for example:

makearps -d 88d2arps_rt

Users outside of NSSL will need to change the references to the a2rt, nexrad 

and nssl libraries. The source code for the nexrad and nssl libraries can be obtained from 

the National Severe Storms Laboratory.

A.4 Running the Program

a) To run 88d2arps to read WSR-88D Archive-II data tape or disk file:

1) Edit an ARPS input file (e.g., a r p s 4 0 . i n p u t ,  to specify desired grid 

parameters, including the terrain file (if desired). A map projection option other 

than “zero” must be selected.
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2) Edit the environment script file, setREMAPenv, to set the proper radar name, 

and rep user and destination directory. The setenv commands for rep are optional 

and if they are set to a blank value, they will cause the program to skip over this 

feature.

setREMAPenv lines:

setenv RADARNAME KTLX [4-character name of radar] 

setenv REMAP_DIR . /  [destination directory for output files] 

setenv REMAP_USER user [optional user name for rep command, used

to copy output to remote system 

..leave blank to disable rep action]

setenv REMAP_REMOTE stratus

[optional: destination machine for rep command] 

setenv REMAP_DEST /scratch/stratus/user 

[optional: destination directory for rep] 

setenv REMAP_COMPRESS gzip

[optional: desired compression utility for output files: 

gzip, compress or nothing]

3) Set the environment variables

source setREMAPenv

4) Be sure you have the file “radarinfo.dat” in the directory of execution.

5) Insert tape in drive (in the following, drive named /dev/rmt2 is used as an 

example). The tape drive name used MUST be non-rewinding on close.

6) Advance tape to desired file on tape. Each volume scan (5-10 minutes of data) 

constitutes a file on the tape. The program processes all files it encounters, so to
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save time you need to skip the files you do not wish to process. You may use the 

mt command.

mt -f /dev/rmt2.1 fsf 100

7) Run the program

88d2arps_a2 -f /dev/rmt2.1 < arps40.input

8) Stop the program. The program will run until the end of tape is reached, so use 

control-C to stop it. The program may also be stopped, and later restarted, if you 

find you need to reposition the tape to a different file.

<ctrl>C

b) To run 88d2arps to read from an Archive-II data file on disk

1) Edit ARPS input file to specify desired grid parameters

2) Edit the script, setREMAPenv, to set the proper radar name, and rep user and 

destination directory, if desired. See instructions for reading taped data for 

guidance.

3) Set the environment variables

source setREMAPenv

4) Run the program

88d2arps_a2 -diskf /directory/filename < arps40.input
c) To run 88d2arps to read from the RIDDS circular buffer

1) Edit ARPS input file to specify desired grid parameters

2) Edit the script, setREMAPenv, to set the proper radar name, and rep user and 

destination directory. See instructions for reading taped data for guidance.

3) Set the environment variables

source setREMAPenv
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4) Run the program

88d2arps_rt < arps40.input

5) Stop the program. The program will run indefinitely, so use control-C to stop it. 

The program may also be stopped, and later restarted, if you find you need to reset 

the environment variables, change the grid, etc.

<ctrl>C

A.5 Reading and Plotting the Output

The data may be read into an application program using the subroutine 

RDRADCOL, which is contained in the file rdradcol.f. The data are stored and read- 

in as columns of non-missing data which are identified by their latitude and longitude. 

See the RDRADCOL source code for details.

A small program to examine the output of 88d2arps is provided and requires 

NCAR Graphics libraries. The commands needed to create plots follow.

1) Create the program pltradcol.

ncargf77 -o pltradcol pltradcol.f maprojSd.f pltmap.f timelibld.f

2) Run pltradcol, it will prompt for filename.

pltradcol

3) examine the gmeta file

idt gmeta

Parameters in the source code in pltradcol.f may be modified to change which data are 

plotted.
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