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Abstract

Interior Point Methods (IPMs) are iterative algorithms for mathematical optimization 

problems that can be interpreted as path-following procedures. Given a starting 

solution, the iterative scheme generates a sequence of points that converges to the 

optimal solution of the problem. The points specified by the iterative scheme lie on 

the central trajectory. The central trajectory is a smooth analytical curve in the 

interior of the feasible region of the problem. It starts from an interior point and ends 

at the optimal solution of the problem. Primal dual IPMs generate points that lie in 

the neighborhood of the central trajectory. The key ingredient of primal dual IPMs 

is the parameterization of the central trajectory. The duality gap depends linearly on 

the barrier parameter for the points in the central trajectory. In this research, a new 

approach to the parameterization of the central trajectory for primal dual IPMs is 

proposed. A continuous dynamical system that describes the rate of the change of the 

barrier parameter at the central trajectory is considered. Instead of parameterizing 

the central trajectory by the barrier parameter, it is parameterized by the time by 

describing a continuous dynamical system. Specifically, a new update rule based on 

the solution of an ordinary differential equation (ODE) for the barrier parameter

IX



of the primal dual IPMs is presented. The resulting ordinary differential equation 

combined with the first order Karush-Kuhn-Tucker conditions, which are algebraic 

equations, are called differential algebraic equations (DAEs). By solving DAEs, we 

follow approximately the central trajectory of the primal dual IPMs. By doing so, we 

find an optimal solution to the given problem.

The proposed parameterization of the central trajectory for primal dual IPMs is 

investigated both for linear and convex quadratic optimization problems and primal 

dual IPMs are modified by using new parameterization. In addition, convergence, 

implementation, computational complexity and stability issues of the proposed pa

rameterization of the central trajectory are also investigated. Some computational 

results for the proposed parameterization of the central trajectory for linear and con

vex quadratic optimization problems and applications to support vector machines 

(SVMs) for the classification problem are presented.



Chapter 1

Introduction

1.1 Overview

There has been an enormous research on using Interior Point Methods (IPMs) al

gorithms to solve optimization problems since Karmarkar’s [37] study. IPMs are 

iterative algorithms for mathematical optimization problems that can be interpreted 

as trajectory-following procedures. In iterative algorithms, for a given starting solu

tion, the iterative scheme generates a sequence of points that converge to the optimal 

solution of the problem. The points specified by the iterative scheme lie on a smooth 

analytical curve that is called central tra jec tory .  A central trajectory starts from an 

interior point of the feasible region and ends at the optimal solution of the problem.

Primal dual IPMs, are considered the most successful techniques to solve linear 

optimization problems [40, 41]. Specifically, primal dual IPMs generate points that lie 

in the neighborhood of the central trajectory. The duality gap of the primal dual IPMs



depends linearly on the barrier parameter for the points in the central trajectory and 

the convergence of the primal dual IPMs is achieved when the duality gap becomes 

close to zero. Therefore, the updating rule for the barrier parameter becomes so 

critical for the convergence of the primal dual IPMs. In brief, the key ingredient of 

primal dual IPMs is the parameterization of the central trajectory. Currently, the 

central trajectory is parameterized by the barrier parameter.

1.2 Research Objectives

In this research, a new approach to the parameterization of the central trajectory for 

primal dual IPMs is proposed. A continuous dynamical system that describes the rate 

of the change of the barrier parameter of the central trajectory is considered. Instead 

of parameterizing the central trajectory by the barrier parameter, we parameterize it 

by the time and therefore describe it by a continuous dynamical system. Specifically, 

a new update rule based on the solution of an ordinary differential equation (ODE) 

for the barrier parameter of the primal dual IPMs is presented.

First, we transform the given constrained optimization problem into an uncon

strained optimization problem by adding barrier terms, corresponding to the con

straints, with barrier parameters. Then, the unconstrained optimization problem is 

solved by using Newton’s method. Rather than updating the barrier parameter by 

heuristic rules, we determine the developing trajectory of the barrier parameter by 

solving an ordinary differential equation. The resulting ordinary differential equation 

combined with the first order Karush-Kuhn-Tucker conditions, which are algebraic



equations, are called differential algebraic equations (DAEs). By solving DAEs, we 

follow approximately the central trajectory of the primal dual IPMs. By doing so, we 

find an optimal solution to the given problem.

The proposed parameterization of the central trajectory for primal dual IPMs is 

investigated both for linear and convex quadratic optimization problems and primal 

dual IPMs are modified by using new parameterization. In addition, convergence, 

implementation, computational complexity and stability issues of the proposed pa

rameterization of the central trajectory are also investigated.

1.3 Scope of the Dissertation

In Chapter 2 literature reviews of IPMs, DAEs and the central trajectory are given. 

Chapters 3, and 4, provide brief introductions to the primal dual IPMs for linear and 

convex quadratic optimization problems and DAEs respectively. Chapter 5 presents 

the proposed parameterization of the central trajectory of primal dual IPMs and its 

extensions to linear and convex quadratic optimization problems. Chapter C inves

tigates convergence, implementation, computational complexity and stability issues 

of the proposed parameterization of the central trajectory. Chapter 7 reports com

putational results for some test problems. Chapter 8 concludes the dissertation and 

proposes some future research.

Through this dissertation, we use the name opiimization instead of programmiruj. 

In other words, the name mathematical optimization  instead of mathematical pro

gramming or lincMr optimization  (LO) instead of linear programming (LP) arc used.



Tho main reason of using tliis terminology is to prevent the confusion that comes from 

the word ’’programming”. The word ’’programming” generally refers to the activity 

of writing computer programs. In some areas like combinatorial optimization and 

discrete optimization this terminology has already become generally accepted.



Chapter 2

Literature Review

2.1 Interior Point Methods

The methods for solving mathematical optimization problems can be categorized 

into two classes as Interior Point Methods (IPMs) and Exterior Point Methods re

spectively. Since Karinarkar’s [37] revolutionary IPM for linear optimization (LO) 

problems, there has been a significant interest in studying optimization problems by 

using IPMs. Although IPMs have had great attention after Karmarkar’s study in 

1984, they had been introduced to the optimization field in the 1960s. In fact, some 

IPMs for nonlinear optimization problems, like the logarithmic barrier method in 

1968 by Fiacco and McCormick [24], the affine scaling in 1967 by Dikin [19], and 

the analytical centers in 1967 by Huard [35] were studied. Although IPMs are not 

new, they are still under development. Many developments have been made on IPMs. 

These deveIo])ments have resulted in a wide variety of IPMs. Various methods for



LO problems can be divided into the following three categories.

1. Projective methods: They are developed by Karmarkar [37], then studied in 

[2, 26, 61]. They use a potential function to measure the progress of each 

iteration. They have a polynomial-time convergence.

2. Affine scaling methods: They are originally developed by Dikin [19] and sub

sequently rediscovered in [4, 68]. The polynomial-time status of affine scaling 

methods is still not proven, but they work well in practice.

3. Path following methods and primal dual IPMs: They are based on the logarith

mic barrier method. They are introduced by Renegar [56] and extended to the 

primal dual setting by Monteiro and Adler [48], and Kojima et al. [38]. They 

have a polynomial-time convergence.

Primal dual IPMs, also known as path following methods, are the most successful 

ones in practice. They are developed by using the following three general optimization 

methods:

1. Logarithmic barrier method: It is used to deal with inequality constraints.

2. Lagrange method: It is used to solve optimization problems with equality con

straints.

3. Newton’s method: It is used to solve nonlinear systems.

The logarithmic barrier method was originally introduced by Piisch [25] for convex 

optimization problems. Later, Fiacco and McCormick [24] developed the logarithmic



barrier nietiiod for the following general inequality constrained optiniization problems

mill f { x )

subject to gi{x)  > 0 ,  f = (2.1)

The method transforms this problem into an unconstrained optimization problem or 

into a sequence of unconstrained problems by adding a logarithmic term and a barrier 

parameter to the objective function as follows

7ii

mill C{ x , g )  =  f { x )  -  fiY ^ \og(ji{x ) .  (2.2)
i=l

We can see that, problem 2.2 is an unconstrained optimization problem for a given 

/I. C (z,/r) is called logarithmic barrier Junction. Because of the singularity of the 

logarithm at zero, the logarithmic barrier function will prevent the solution from going 

outside of the feasible region. Therefore, the logarithmic barrier method is considered 

as an IPM. The method starts from the interior of the feasible region, moves in a

trajectory that generates a smooth curve in the interior of the feasible region and

ends in the optimal solution. The barrier parameter p is a positive number that 

monotonically decreases at each iteration. As it goes to zero, the objective function 

of the unconstrained optimization problem 2.2 becomes the objective function of the 

constrained problem 2.1 and the optimization problem 2.1 is solved.

The introduction of the new interior point algorithm by Karmarkar led researchers 

to reconsider the application of the logarithmic barrier method for linear and nonlinear 

optimization problems. Kojima et al. [38] and Monteiro and Adler [48] used the 

logarithmic barrier framework to present a new IPM that is named primal dual IPM.



They derive the first order optimality conditions associated with the minimization of 

a logarithmic barrier function, and define near solutions of this parameterized system 

of nonlinear equations. Some researchers like Nash et al. [50] and Breitfeld and 

Shanno [10] have successfully applied the logarithmic barrier method to large-scale 

optimization problems. Tutunji and Trafalis [63, 64, 66] have explored the logarithmic 

barrier methods with special emphasis in supervised neural network training.

Some researchers have proposed modifications on the logarithmic term. Polyak 

[54] proposed the following modified logarithmic barrier function by changing the 

logarithmic term. Specifically,

M{ x ,  fi, A) =  f { x )  -  ^  Ai log [ l  +  ̂ (2.3)
i = i  ^ ^

where A =  (A],..., A,„) is a positive vector of Lagrange multipliers. Tuncel and Todd 

[65] have done some modifications in the logarithmic term in primal dual IPMs. They 

proposed to use the following entropy logarithmic term that has both primal and dual 

information:
n

^ X iS i In (xiSi), (2.4)
i = l

where Xj and Sj are the primal and dual variables respectively. Breitfeld and Shanno 

[9, 11] have also done some modifications on the logarithmic term.

Researchers [38, 48, 59, 43] have used some heuristics on the reduction of the 

barrier parameter /i. Mostly, the barrier parameter /x is reduced by a positive factor 

at each iteration. A vector of barrier parameters by associating a different barrier 

parameter m  to each constraint was presented in [18]. Predictor-corrector algorithm, 

a path following 1PM, alternates between two type of steps; predictor steps, which

8



improve the value of p but which also tend to worsen the centrality measure, and 

corrector steps, which have no effect on the duality measure /x but improve centrality. 

The term predictor-corrector arose because of the analogy with predictor -corrector 

algorithms in ordinary differential equations (ODE). These algorithms follow the so

lution trajectory of an initial value ODE problem by alternating between predictor 

steps which move along a tangent to the trajectory and corrector steps which move 

back toward the trajectory from the predicted point [76]. In this study, we present an 

update rule based on an analytical update of the barrier parameter for the IPMs in 

a deterministic sense. A preliminary investigation and computational results of our 

study are presented in [62].

After great success of the IPMs on large-scale LO problems, many researchers 

have devoted their efforts to developing IPMs for nonlinear optimization problems. 

An extension of Karmarkar’s algorithm and the trust region methods for quadratic op

timization was studied in [78]. An IPM for solving smooth convex programs based on 

Newton’s method was presented in [47]. Since the primal dual IPMs are considered the 

most effective techniques for solving large-scale LO problems, there have been some 

studies applying primal dual IPMs to more general classes of problems. Monteiro and 

Adler [49] have presented a primal dual IPM for convex quadratic optimization prob

lems in [49]. After successful extensions of IPMs to convex and quadratic optimization 

problems, researchers in the IPM field are now trying to extend IPMs to more com

plex problems: as general nonlinear nonconvex optimization problems. The primal 

dual framework has been extended to general nonlinear optimization problems in [20].



In another study [69], an IPM for general nonlinear optimization hcis been described. 

Primal dual techniques for nonlinear optimization and their application to artificial 

neural network training have been studied in [17]. For an authoritative monograph on 

IPMs read the book by Nesterov and Nemirovskii [51]. For more recent developments, 

visit the online website http://www-unix.nics.anl.gov/otc/lnteriorPoint/ maintained 

by Nathan Brixius and Steve Wright at Argonne National Laboratory.

2.2 Central Trajectory

The central trajectory is fundamental to the study of IPMs for LO and has been 

subject of an enormous volume of research. Primal dual IPMs generate points that 

lie in the neighborhood of the central trajectory of the problem. The central trajec

tory of a problem is a smooth analytical curve which starts at the analytical center 

of the feasible region of the problem and moves to the optimal solution of the prob

lem. The behaviour of the central trajectories of 1PM fields was fully investigated in 

[5, 6, 46]. Central trajectories to the optimal set in LO problems are studied in [45]. 

By characterizing the affine scaling trajectories as solutions of certain parameterized 

logarithmic barrier families of problems, the convergence and limiting behavior of the 

affine scaling trajectories under no nondegeneracy assumptions have been analyzed 

and an analysis of the primal dual trajectories was also given in [1]. Using a different 

approach, convergence behavior of central trajectories arising from the logarithmic 

barrier function in LO without nondegeneracy assumption has been investigated in 

[74]. Fang and Puthenpura [21] showed that the moving directions of affine scaling

10

http://www-unix.nics.anl.gov/otc/lnteriorPoint/


methods and primal dual methods are merely the Newton directions along differ

ent central trajectories that lead to the solution of the Karush-Kuhn-Tucker (KKT) 

conditions of the given LO problem. Nunez and Freund [52] showed that certain prop

erties of solutions along the central trajectory of the linear program are inherently 

related to the condition measures. They presented lower and upper bounds on sizes 

of optimal solutions along the central trajectory, and on rates of changes of solutions 

along the central trajectory as either the barrier parameter or the data of the linear 

program is changed.

The primal dual IPM maintains primal and dual feasibility and iterates to reduce 

the duality gap. The duality gap depends linearly on the barrier parameter for the 

points in the central trajectory. The rate of change of the barrier parameter can be 

considered as a continuous dynamical system. Since the pioneering study of Kar

markar, there has been a considerable interest in studying dynamical systems which 

solve LO problems. Faybusovich [22] introduced a class of dynamical systems which 

evolve in the interior of a given solution space, and solved linear, fractional-linear and 

convex optimization problems. He described a parameterization of a given solution 

space by a smooth manifold to get rid of inequality constraints. Then, he showed 

that the solution of the corresponding gradient system converges to a local extremum 

of the initial optimization problem. In another study, [23] he introduced a new class 

of completely integrable Hamiltonian systems that solve LO problems.

More recently primal dual IPMs have been applied successfully in semidefinite op

timization. the book by Wolkowicz, Saigal, and Vanderberghe [75] provides a collec-

11



tion of review papers and a large number of references. For more recent developments 

in semidefinite optimization visit the homepage http://www-user.tu-chemnitz.de/ helm- 

bcrg/semidef.html by Helmberg.

2.3 Differential Algebraic Equations

The description of some physical problems by differential equations involves a non

linear system or algebraic equations, too. A differential equation and a nonlinear 

system form a Differential-Algebraic Equations (DAE) system. The DAE system oc

curs frequently as an initial value problem in modeling electrical networks, the flow of 

incompressible fluids, mechanical systems subject to constraints, robotics, distillation 

process, power systems, and in many other applications [12, 33, 39].

In general, DAE system can be expressed in the following semi-explicit form

^ = x - '  = (2.5)

0 =  g{ x, y , t ) ,

where x{t) and y{t )  are algebraic variables. DAE systems are different from ordinary 

differential equation (ODE) systems. Here the ODE for x(t )  depends on additional 

algebraic variables y{t )  and the solution is forced to satisfy the nonlinear system. In 

the case of a DAE, the algebraic equations help to determine the solution.

In recent years DAEs have attracted much interest - partially because of their 

importance as models for a large class of dynamical processes, e.g. in mechanics, 

robotics, chemical engineering but also because of their intrinsic numerical difficulties.

12
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In many cases DAE system can be solved efficiently by means of standard numerical 

methods for ODE systems. This approach appears to have been introduced by Gear 

[27], and since then it has been used by many researchers [12, 33, 34, 39, 42, 53]. 

Gear and Petzold [28] studied ODE methods for the solution of DAE systems. The 

numerical solutions of DAEs by Runge-Kutta methods were studied by Hairer et 

al. [31]. The numerical solutions of DAEs of index one and higher indices by multi- 

step methods, Runge-Kutta methods, Rosenbrock method and extrapolation methods 

were presented by Hairer and Wanner [32]. Some new algorithms and software for 

sensitivity analysis of DAEs were presented by Maly and Petzold [42]. They showed 

that the proposed algorithms are well suited for large-scale problems. Algorithms 

and relevant software packages that are available for ODEs and DAEs were described 

by Hindmarsh and Petzold [33, 34]. A number of difficulties which can arise when 

numerical methods are used to solve DAE systems have been outlined by Petzold [53]. 

Rheinboldt [58] proved an existence and uniqueness theory for DAEs based on the 

theory of ODEs on a manifold.

Over the last two decades, methods based on ODEs for solving optimization 

problems had some attention in parallel to the developments of IPMs. Brown and 

Bartholomew-Biggs [13] have shown, by means of numerical experiments, that un

constrained optimization techniques based on the solution of the system of ODE can 

compare very favorably with some classical optimization techniques as regard relia

bility, accuracy, and efficiency.

During the last decade, the optimization of systems involving differential-algebraic

13



equations has become an important research area in applications involving chemical 

processing, robotics, structural analysis, and aerospace engineering. DAEs are con

nected to optimization in a t least two ways. On the one hand variational principles 

are used to formulate DAE, e.g. in multibody dynamics or in boundary value prob

lems associated with optimal control problems. On the other hand many relevant 

practical problems, which are modeled by DAE, call for optimization rather than for

ward simulation alone. Xiong et al. [77] presented a differential-algebraic approach 

to linear programming. Gopal and Biegler [30] presented a successive linear program

ming (SLP) approach for the solution of the DAE derivative array equations for the 

initialization problem. Renfro [57] did computational studies in the optimization of 

systems described by DAEs. In another study [15], a novel nonlinear programming 

strategy by using IPMs is developed and applied to the optimization of DAE systems.
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Chapter 3

Primal Dual Interior Point

M ethods

3.1 Linear Optimization Problems

Next we describe briefly the primal dual IPM for the linear optimization (LO) prob

lems. Our description is based in references [43, 44, 48, 76].

Let us consider the primal LO problem P  in standard form

P:  rain f { x )  =  x

subject to (3.1)

Ax  — b

X >  0,

where x G 3Î” is a vector of decision variables, A  G is a coefficient matrix of

15



constraints, c G is a coefficient vector of the objective function f { x ) ,  and b G 3î’" 

is a right liand side (RHS) vector of constraints.

The dual problem D  of the problem F  becomes

D: max g{y) =  y

subject to (3.2)

y +  z  =  c 

2 > 0,

where y  G ïlî'” is a vector of dual variables and z G is a vector of dual slack 

variables.

It is assumed that A has a full row-rank. In other words m  < n and the feasible 

regions of the problems P  and D  are not empty.

To solve either problem P  or D,  we transform it into an unconstrained optimiza

tion problem. First of all, inequality constraints are to be dealt with. Inequality 

constraints of P  and D  can be handled by the logarithmic barrier method by adding 

a logarithmic barrier term to the objective function of P  and D.  Adding a barrier 

term to the objective functions of P  and D  results to the following problems 7^ and 

respectively.

n

' rximin =  c ^ x - / j ^ l n ;
2 = 1

: subject to (3.3)

A x  --- b

y  >  0

1 6



71
max g(ÿ ,z ,/i) = b ^ y - n ' ^ l n z ^

i=\

Dfi : subject, to (3.4)

A'  ̂y  +  z  =  c

/i >  0.

By adding a barrier term, in addition to minimizing an objective function, moving 

away from the boundary of the feasible region is also achieved. The barrier parameter 

/( > 0 is a balance parameter of two conflicting actions of minimizing an objective 

function and moving away from boundary of the feasible region. Some y > 0  can be 

chosen to start and then let it approach to 0 during the iteration process.

After dealing with inequality constraints, equality constraints are to be dealt with. 

Equality constraints of and can be handled by Lagrange’s Method [8]. To solve 

and P/i for a given barrier parameter n > 0, corresponding Lagrangian functions 

can be constructed as follows.

n

Lp {x ,y , y . )  =  (Fx  -  / i ^ l n x j  -  i / [ A x  -  b) (3.5)
{ — ] 

n
L D { x , y , z , f i )  =  b'^y -  f j . ' ^ l n z i  -  x'^{A'^y +  z - c ) .  (3.6)

1=1

Note that y in equation 3.5 and x in equation 3.6 correspond to Lagrangian multipliers 

but they are also dual variables of each problem because of Lagrangian multipliers’ 

interpretation as dual variables.

Now, an unconstrained optimization problem 3.5 or 3.6 has been obtained. To 

find an optimal solution to the unconstrained optimization problem, Karush-Kuhn- 

Tucker (KKT) conditions need to be satisfied. Let e be the column vector of all
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I'.s' and X and Z  be n x n diagonal matrices defined by X =  d i a g { x \ , . . .  ,x„) and

Z  =  d i a g { z i , . . .  ,z„) respectively. Then, the first order KKT necessary conditions for

minimizing Lp{x ,y ,g . )  are given by:

c -  i2 X - ^ e -  A^\j =  0 (3.7)

A x — b = 0.

The first order KKT necessary conditions for maximizing L D {x ,y ,  z,g.) are given by:

A ^ y  +  z =  c 

A x  — b =  0 (3.8)

gZ~^e — x =  0.

In fact, the KKT necessary conditions 3.7 and 3.8 characterizing the optimum of the 

problem P  and D  can be combined and re-formulated as follows.

A x  — 6 =  0 

A ^ y  +  z  — c =  0 (3.9)

X Z e  — ge  =  0 .

In this formulation, the first equation maintains primal feasibility, the second equa

tion maintains dual feasibility and the last equation maintains an approximation to 

complementary slackness condition. Note that g  =  0 corresponds to the ordinary 

complementary slackness condition.

Tfie KKT necessary conditions presented in 3.9 construct a nonlinear system in 

the form of F { x , y , z )  =  0. Newton’s method is one of the most commonly used
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techniques to find a root of a nonlinear system by iteratively approximating the 

system by linear equations. In other words, we need to find x^,y^,and such that

F{x  , y  , z  ) =  0. By using Taylor’s approximation at x =  x , y = y*’, z 

obtain a linear approximation

z^ we

F{x ' + dx,y^ +  dy, z + dz) % f  (x , y , z ')  + J{x , y  , z^){dx ,dy ,dz)  , (3.10)

where ./(x^, y^, z^) is the Jacobian of F {x ^ ,y ^ , z ’̂ ) and dx, dy, dz  are the moving 

direction vectors. Since the left hand side of 3.10 evaluates at a root of F{x,  y, z) =  0, 

we have the following linear system

F { x ^ , 7 / , z )̂ =  -J(x*-',y'',z*)(dx,dy,dz)^ . (3.11)

A solntion of equation 3.11 provides one Newton iteration from x^, y^, z^ to x^^^ = 

x^ +  dx, y^+i = y^ +  dy, ẑ '+  ̂ =  +  dz  with dx, dy, dz moving direction vectors

with a unit step length.

Now, let us focus on the nonlinear system 3.9. The Jacobian of the nonlinear 

system 3.9 is equal to the following matrix

(3.12)

By setting some y > 0, the vectors x^^,y^,z^ that solve the nonlinear system 3.9 are 

obtained by using Newton’s method. Since these vectors are dependent on the choice 

of the barrier parameter y, we get a family of solutions depending on the value of 

y. The central trajectory is defined as the set of all vectors x*(y),y^'(y) and z*’(y).
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A 0 0 dx -  b dp

0 A^ I dy — - A^y^ +  z° -  c = dp

Z 0 X dz pe - dw

satisfying the nonlinear system 3.9. The limits of and z(/x) as /i goes to

zero approach to the solution.

Given >  0, and z° > 0 and /r > 0, the moving direction vectors dx, dy,  and dz  

that move from the current iterate to a new iterate while satisfying the KKT necessary 

conditions are determined by using the following linearized system as defined in 3.11

(3.13)

The solution of the linear system 3.13 with respect to the moving direction vectors 

dx, dy, and dz  can be expressed as follows.

dz  =  d p  — A^dy  (3.14)

dx =  Z'^{duj — X d z ) .

The new points for the next iteration for the P  and D  problems are given as follows:

x  ̂ — +  p a p d x

=  y° +  p a p d y (3.15)

+ p a p d z .

where 0 < p < 1, and a p  and a p  are step sizes for the primal and dual problem 

respectively. Step sizes are chosen to assure that x  and z are positive as follows

a p  =  min < — ■— : V dx{ < 0 , 1 < z <
L (Ixi

a p  — min : V dzi < 0 ,  1 < z < n | . (3.16)
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Convergence of the primal dual IPM has been achieved when the duality gap becomes 

close to zero with the given accuracy e. Specifically,

( F x - b ^ y  =  e. (3.17)

Moreover, there exists a simple relation between the duality gap and the barrier 

parameter, fj,. Specifically,

c X -  h^y =  c^x — [A x Ÿ 'y  =  x^{c — A^y)  =  x^ z  =  ny .  (3.18)

We can see that the duality gap depends linearly on the barrier parameter for the 

points in the central trajectory. As we mentioned before, the barrier parameter y  

starts with some y  >  0 and then we let it approach zero by updating it at each 

iteration. Note that equation 3.18 suggests us the following update procedure for the 

barrier parameter y

(x^Ÿ^
=  cr----------- =  a y  , whereO < cr < 1. (3.19)

This update rule of the barrier parameter y  is mostly used in the primal dual IPM 

studies.

The primal dual IPM continues to iterate by reducing y  as in equation 3.19 and 

computing the new moving direction vectors by using equation 3.14 and new points 

by using equation 3.15 until convergence is achieved. An algorithm for the primal 

dual IPM for LO problems can be stated as follows.
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P rim al D ual IPM  A lgorithm  for LO Problem s

S tep  0 Initialization:

• SET iteration number k =  0, e,p  and a.

• START with an initial solution > 0,y^,z^ >  Ü and >  0.

S te p  1 S to p p in g  C rite ria :

• IF equation 3.17 is satisfied GO TO Step 3.

• ELSE GO TO Step 2.

S tep  2 Iteration:

• COMPUTE moving directions dx^, dy^, dz^, by equation 3.14.

• COMPUTE step sizes a p  and a p ,  by equation 3.16.

• MOVE to the next solution \  using equation 3.15.

• UPDATE the barrier parameter by equation 3.19.

• SET k =  k +  I.

•  GO TO Step 1.

S te p  3 S to p  with the optimal point x*,y*,z*  =  x^,y^,z*.
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3.2 Convex Quadratic Optimization Problems

Next we describe briefly the primal dual IPM for the convex quadratic optimization 

(QO) problems as presented in references [18, 21, 48].

Let us consider the primal QO problem Q P  in its standard form

min f { x )  = X +  Qx  

QP: subject to (3.20)

Ax =  b

X >  0,

where i  € !R" is a vector of decision variables, A  E R™*" is a matrix of constraints, 

Q e jg symmetric positive semi definite coefficient matrix of the quadratic

terms, c E 3Î" is a coefficient vector of the linear terms of the objective function /(x ), 

and b 6 is a right hand side (RHS) vector of constraints.

The dual problem Q D  of the problem Q P  becomes

max g(tj ,x)  = b ' ^ r j -^ x ^ Q x  

QD: subject to (3.21)

-  Qx +  z  — c

z > 0,

where y G is a vector of dual variables and 2  E 3Î" is a vector of dual slack 

variables.

It is considered that A has a full row-rank, m  < n  and the feasible regions of the
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I)roblcins Q P  and Q D  are not empty.

To solve either problem Q P  or QD,  we transform it into an unconstrained opti

mization problem. First of all, inequality constraints will be dealt with as explained 

in Section 3.1 by adding a logarithmic barrier term to the objective function of Q P  

and QD.  Adding a barrier term to the objective functions of Q P  and Q D  results to 

the following problem and QD^  respectively.

min /  (x, /r) =  x -f Qx — In x,
î=i

QPfi, : subject to (3.22)

Ax  =  h

fj, >  0

1 . " 
max g{y ,x ,z , fx)  =  b̂ 'y  - -x'^ Qx  -  fi Zi

1=1

QD^ : subject to (3.23)

y -  Qx +  z  =  c

/i >  0.

Equality constraints of QP̂  ̂ and QD^  can be handled by Lagrange’s Method [8]. 

To solve QPfi and for a given barrier parameter y  > 0, corresponding Lagrangian 

functions can be constructed as follows

1 "
LQp{x,y,y)  = J x  -f - x ^ Q x  -  y ' ^ l n x i  -  i / { A x  -  b), (3.24)

i = l

I  r ,  "

LQi){x,y,z,ii) -  b  ̂y -  - x ^  Qx  -  ^  Inz^ -  (A ''y -  Qx -f 2: -  c). (3.25)
i = ]
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The associated KKT necessary conditions referring to tiie optimization of L q p { x ,  y, /i) 

and LQ p{x ,y , z , fx )  become the following system

A x  — 6 = 0

—Qx  +  A^ y  -j- z  — c = 0 (3.2G)

X Z e  — fie =  0.

The KKT necessary conditions presented in 3.26 is a nonlinear system in the form of 

F{x,  y, z) =  0. The Jacobian of the nonlinear system 3.26 is assumed to be nonsingular 

and it is equal to the following matrix

zl 0 0

- Q  /  . (3.27)

Z 0 A"

By setting some fi >  0,x'^,y^,z'^ that solves the nonlinear system 3.26 will be 

obtained by using Newton’s method. Given and > 0 and fi >  0, moving

direction vectors dx ,d y ,  and dz  that move from the current iterate to a new iterate 

while satisfying the KKT necessary conditions can be found. Moving direction vectors 

dx, dy,  and dz  are determined by the following system of linear equations

(3.28)

The solution of the linear system 3.28 with respect to the moving direction vectors 

dx, dy, and dz  can be expressed as follows

A 0 0 dx Ax^ — b dp

- Q A'^ I dy -  - —Qx^ +  Al̂  i f  z^ -  c = dp

z 0 X dz /^e - dw
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dx — ( Z À. Q)   ̂ — X d p  +  XA^dy)^  (3.29)

dz  =  X~^{du, — Zdx).

The new points for the next iteration for the Q P  and Q D  problems are given as

= x° +  p a p d x  

y’ = !/" +  p a p d y  (3.30)

+  p a p d z ,

where 0 < p < 1, and a p  and a p  are step sizes for the primal and dual problem 

respectively. Step sizes are chosen to assure that x  and z are positive as follows

a p  =  min < — : V dxi < 0 ,  1 < t <  n
{ dxi -  -

a p  =  min : V dzj < 0, 1 < i < ? i| ■ (3.31)

Convergence of the primal dual IPMs for QO problems has also been achieved when 

the duality gap becomes close to zero or the given accuracy e. Specifically,

( F x - I ?  y +  x^Q x  =  £. (3.32)

Again there exists a simple relation between the duality gap and the barrier parameter, 

p  for the QO problems

F X -  y +  x ^ Q x  — F x  -  {Ax F y  +  x'^Qx =  x'^{c — À^y- \-Qx)  =  x ^ z  = np.  (3.33)

We see that the duality gap also depends linearly on the barrier parameter for the 

points in the central trajectory for the QO problems. As we mentioned before, the 

barrier parameter p  starts with some p > 0 and we let it approach zero by updating it
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at each iteration. Note that, equation 3.33 suggests us the following update procedure 

for the barrier parameter p.

(^k\T k
fi =  a ----------- =  a/i whereO < a  < 1. (3.34)

The primal dual IPM for QO problems continues to iterate by reducing /i as in 

equation 3.34 and computing the new moving direction vectors by using equation 3.29 

and new points by using equation 3.30 until convergence is achieved. An algorithm 

for the primal dual IPM for QO problems can be stated as follows.
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Prim ai D ual IPM  A lgorithm  for QO Problem s

Step  0 Initialization:

• SET iteration number /c =  0, /a and cr.

• START with an initial solution >  Q,y^,z^ > 0  and fi  ̂ >  0.

Step  1 Stopping Criteria:

• IF equation 3.32 is satisfied GO TO Step 3.

• ELSE GO TO Step 2.

Step  2 Iteration:

• COMPUTE moving directions dx^,dy^,dz^,  by equation 3.29.

• COMPUTE step sizes a p  and ao-, using equation 3.31.

• MOVE to the next solution by equation 3.30.

• UPDATE the barrier parameter as in equation 3.34.

• SETfc = A: + l.

• GO TO Step 1.

Step  3 Stop with the optimal point x * , y * , z *  =  x^ , y^ , z^ .
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Chapter 4

Differential Algebraic Equations 

(DAEs)

4.1 Introduction to DAEs

Mathematical models of some engineering, physical, and scientific problems frecjuently 

take the following explicit form of a system of ordinary differential equations (ODEs)

^  =  =  (4.1)

where, i  is time and T is a vector of dependent variables or state variables. The initial 

value problein for the equation (4.1) is to find the solution x{t)  that satisfies a given 

initial condition a;(to) =  xq.

In some cases, the model also involves dependent variables whose time derivatives 

do not appear in the equations. In other words, equation (4.1) also involves algebraic 

equations too. The set of equations which is the combination of both differential
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and algebraic equations that defines this model is known as a differential-alyehraic 

equation (DAE) system. The most general DAE system is expressed in the fnlly 

implicit form as

F { x , x ' , t ) = 0 ,  (4.2)

where F is some function. Another way to present a DAE system is to use the 

following semi-explicit form

^ ^ x '  = f { x , y , t )  (4.3)

0 =  g(z, !/,(),

where y  is another vector of dependent variables. Note that y is a variable of the 

defining system of ODE (4.1) but d y / d t  does not appear in the system. The DAE 

systems occurs frequently as an initial value problem in modeling electrical networks, 

the flow of incompressible fluids, mechanical systems subject to constraints, robotics, 

distillation process, power systems, and in many other applications [12, 33, 39].

DAE systems are more general than ODE systems.They include ODE systems as 

a special case, but they also include problems that are quite different from ODEs in 

nature [53]. In the case of a DAE, the algebraic equation helps to determine the so

lution. The differences and similarities between DAEs and ODEs can be summarized 

as follows: an ODE involves integration. On the other hand, a DAE involves both 

integrations and differentiations. Since DAEs involve both integrations and differen

tiations, one may hope that performing analytical differentiations to a given system 

and eliminating as needed will result in an explicit ODE for all unknowns. This turns 

out to be true unless the problem is singular.
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4.2 Index of DAEs

Since a DAE involves both integrations and differentiations, by applying analytical 

differentiations to a given system and eliminating as needed will yield an explicit 

ODE system. A property known as the index plays a key role in the classification 

and behavior of DAEs. Index is defined as the minimum number of times that all 

or part of the DAE system must be differentiated to get a system of ODEs. Let us 

consider the DAE system in equation 4.3. If we differentiate the algebraic equation 

of 4.3 with respect to t, we will get the following:

^  (4.4)

9 x { x , y , t ) ~  +  g y { x , i j , t ) ^  =  - g t { x , y , t ) ,

or equivalently

(J'T
^  (4.5)

=  - 9 t { ^ , y , t )  -  g x { x , y , t ) f { x , y , t ) .

If gy is nonsingular, then equation 4.5 is an implicit ODE and we say that DAE 

in equation 4.3 has index one. If this is not the case, suppose that with algebraic 

manipulation and coordinate changes we can rewrite equation 4.4 in the form of the

algebraic system of equation 4.3 but with different x  and y. Again we differentiate

the algebraic equation. If an implicit ODE results, we say that the original problem 

has index two. If the new system is not an implicit ODE, we repeat the process. The 

number of differentiation steps required in this procedure is known as the index of 

DAE system in 4.3.
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ODE systems in equation 4.1 have index zero. The DAEs in equation 4.3 have 

index one if Qy is nonsingular. In a sense, the index of a DAE system is a measure 

of its degree of singularity. The more singular a DAE system is, the more difficult to 

solve it numerically. Therefore, DAEs of index one are easy to solve.

4.3 Numerical M ethods for DAEs

Semi-explicit DAEs of index one can be treated as ODEs. Let us consider the semi- 

explicit form of a DAE system as in 4.3. In this problem y{t ) can be determined 

for a given x{t )  by solving g { x , y , t )  =  0. With suitable smoothness assumptions and 

an initial yo such that g{xo,yo) =  0, the existence of the inverse of the Jacobian gy 

guarantees that y  can be written as a function of x, namely y{ t )  =  G{x{ t) ) .  Then 

x' =  f { x , G { x ) , t ) ,  where xq is given, is an initial value problem for x{t).  Thus, one 

way to solve index one problems is to apply an integrator to differential equation 

x' =  f { x , y , t )  and every time that it needs to evaluate f { x , y , t )  for a specific x, solve 

algebraic equations g { x , y , t )  =  0 for the corresponding y and then substitute x and y 

in f { x , y , t ) .  Then the resulting DAE system can be solved by using ODE methods.

The idea of using ODE methods for solving DAE systems directly was introduced 

by Gear [27]. The simplest way to solve DAEs of index 1 is to apply first order back 

differentiation formulas or backward Euler’s method. In this method, the derivative 

is approximated by a backward difference of a;(t„_i), and the resulting system 

of nonlinear equations is solved hy x{tn).

Let us consider the general form of a DAE system as in 4.2. Applying the backward
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Euler’s method to this system, we obtain

0 =  (4.G)

where h is the step size. This results in general to a system of nonlinear equations of

x,i at each time step n. In this method the solution is advanced from time to

tn- Higher order techniques such as backward differentiation formulas, Runge-Kutta 

methods, and extrapolation methods are generalizations of this idea [3].

Now, let us consider the backward Euler method applied to the semi-explicit form 

of a DAE system as in 4.3. Specifically,

"""-I  (4.7)fljl

0 =  g{Xniyniin):

where h is the step size. Solving algebraic equations for will result into y„ = 

G{xn-,tn) and substituting into difference equation ( 4.7) yields

hn

which is just the backward Euler approximation of the corresponding ODE.

One of the main advantages in using ODE methods directly for solving DAE 

systems is that ODEs preserve sparsity of the system. As mentioned before DAEs 

can be reduced to an ODE form by differentiating under a non-singularity assumption. 

In this case, we need to invert a matrix that may not result to a sparse matrix while 

the original one is sparse. This approach also tends to remove the natural sparsity 

of the system. The most challenging difficulties for solving DAE systems arise when
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the iiüii-singularity assumption fails. DAE systems that are not of index one can not 

be solved so simply. As we see in the next chapter, while parameterizing the central 

trajectory, we end up with a differential equation and a nonlinear system that form 

a DAE system. Specifically, this DAE system has index one. Therefore, numerical 

methods for DAEs for higher indices were not considered in this dissertation.
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Chapter 5

A N ew  Approach to the

Parameterization of the Central

Trajectory

5.1 Introduction

The primal dual IPM maintains primal feasibility and dual feasibility and iterates to 

reduce the duality gap. The duality gap depends linearly on the barrier parameter 

for the points in the central trajectory. Our objective is to consider a continuous 

dynamical system that describes the rate of change of the barrier parameter. In this 

chapter, we develop a new approach to the parameterization of the central trajectory 

of the primal dual IPM for LO and convex QO problems respectively. First of all, 

given a constrained optimization problem will be transformed into an unconstrained
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optimization problem by adding barrier terms for the constraints with barrier pa

rameters. Then, the unconstrained optimization problem will be solved iteratively 

by using Newton’s method. Rather than updating the barrier parameter by heuris

tic rules, we have determined the developing trajectory of the barrier parameter by 

using an ordinary differential equation. The resulting differential equation combined 

with algebraic equations, that are first order Karush-Kuhn-Tucker (KKT) conditions, 

form a differential algebraic equation (DAE) system. The DAE is used to determine 

the central trajectory of the optimization problem. By doing so, we find an optimal 

solution to the given problem by following the central trajectory.

5.2 Current Param eterization of Central Trajectory

The key ingredient of primal dual IPMs is the parameterization of the central tra

jectory, since primal dual IPMs generate points that lie in the neighborhood of the 

central trajectory. As explained in chapter 3, the duality gap depends linearly on 

the barrier parameter for the points in the central trajectory. Therefore the current 

parameterization of the central trajectory is based on the barrier parameter p. In 

chapter 3, the central trajectory is defined as the set of all vectors a:*’(p),y^'(/i) and 

z*(p), satisfying the KKT conditions. Indeed, the KKT conditions are the necessary 

and sufficient conditions for x(p),y(/x) and z(p), being on the central trajectory. The 

limits of x(/i),y(/i) and z(p), as p goes to zero approach to the optimal solution. 

Since these vectors are dependent on the choice of the barrier parameter p, we get a 

family of solutions depending on the value of /i.
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Ill the rest of the chapter, we present a new approach to the parameterization of 

the central trajectory by considering a continuous dynamical system that describes 

the rate of change of the barrier parameter /i. Hence, we parameterize the central 

trajectory by time, t. As a result, the central trajectory will be defined as the set of all 

vectors and fi{t) satisfying the KKT necessary conditions. As time

increases, will decrease to zero and x{t ) , y{ t ) ,  and z{t ) approach to the optimal 

solution.

5.3 New Parameterization of the Central Trajectory for 

LO Problems

Let us consider the primal LO problem P  in the standard form

F: min f { x )  =  x

subject to (5.1)

Ax =  h

X > 0,

where x G is a vector of decision variables, A  G is a coefficient matrix of

constraints of full rank, c G 3Î" is a coefficient vector of the objective function /(x ) , 

and 6 G is a right hand side (RHS) vector of constraints.

The corresponding is as follows

n

mill /(x , /i) =  x -  In x,
i=l
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P,i : subject to (5.2)

Ax  =  b

X > 0

where /z > 0 is the barrier parameter. The corresponding first order KKT necessary 

conditions are given as follows

b — Ax — 0 

A'^y +  z — c (5.3)

X Z e  — ye  =  0.

The problem can also be defined as follows:

9{y) =  inf -  p ^  Inz; such that Ax =  5, z > o | . (5.4)

Now, we state the following theorem by Bazaraa et al. [7] (Theorem 9.4.3) that will 

be used in our analysis.

Theorem 5.1 Let f  \ BA R, and g : R ”̂ P ’" be continuous functions, and

let X  be a nonempty closed set in P " . Suppose that the set  {x E X  : g[x)  < 0} is 

not empty. Furthermore, suppose that the primal problem to minimize f { x )  subject 

to g{x) < 0 , x E X  has an optimal solution x* with the following property. Given any 

neighborhood N  around x*, there exists an x E X  (1 N  sxich that g{x) < 0 .  Then,

minimum { f  [x] : g{x) < 0 ,z  G X} =  lim 6[y)  =  inf 9{p).
/J-+0+ #i>0

Letting 9{ii) =  /(z ^ )  +  p P (z ,J , where x^ G X  and g(z,J < 0 and B is a barrier

function that is nonnegative and continuous over the region { x  : g{x) <  0}, then the
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limit of any convergent subsequence of {z^} is an optimal solutioii to the primal  

problem and furthermore, p,B{x^f) -V 0 as /i —)• 0"*'.

By using the above theorem, it is stated that the optimal solution to the problem 

P  could be obtained by minimizing 6{p).  In other words,

minimum j s u c h  that ylz =  6, x > o j =  inf 0{p).  (5.5)
J /i> 0

Note that, 5.1 and 5.4 are strictly convex optimization problems because both the 

objective function is strictly convex and the constraints are convex. Consequently, 

for any fixed p ,6 { p )  has a unique minimum. The minimum of 6{p.) will be found 

by using the steepest descent method. Next, we need to consider /r as a function of

parameter t. To find the rate of change of the barrier parameter /r, we have to move

in the direction of the negative gradient of 0(/a). Thus,

ÿ  =  - ^ .  (5.8)
at  dfi

From equation 5.4, 6{p) is differentiable. Now, let us find its derivative with respect 

to (note that x  is a function of fi)

d9jp)  ^  such that =  0. (5.7)
dfi dp  ^  ^  Xi dp dp

If we consider the second equation from KKT necessary conditions 5.3, c^ = y ^ A + z ^ , 

and substitute in 5.7 then we have

such that A ^  =  0. (5.8)
d p  dp  ^  ^  Xi dp dp

We can see that the first and the last terms cancel each other each other by the help
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of tlie third equation of the KKT necessary conditions 5.3. Then we have

^  = (5.9)
i = \

Finally, we can write the rate of change of the barrier parameter /i by using equation 

5.6 as follows

r/11. _!L
(5.10)

i=l

Now, by using equations 5.10 and 5.3, we can determine the central trajectory. 

The differential equation 5.10 and algebraic equation system 5.3 form a system of 

Differential-Algebraic Equations (DAEs) for problem P. The DAE can be written as 

follows:

d y
dt = f i n

Z = 1

A x  — b = 0

A ^y  +  z = c

X Z e  — y e =  0.

(5.11)

To find a solution to the DAE, we need to state the following theorem. 

Theorem 5.2 The D A E  defined by 5.11 has index 1.

P roo f  5 .2  Let us rewrite the DAE in semi-explicit form as in equation 4.3

djj,

(

where =

—  =  f { x , y , z , y , t )

0 =  g { x , y , z , y , t ) ,

\
(5.12)

Ax — b 

A'  ̂y  +  z — c 

Z X e  — y e

. Then by differentiating the algebraic equa-
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tion of 5.12 with respect to t, we get

dx dy dz  dy
dl  " dt dt

(5.13)

where gx =

A Q 0 0

0 1 9y — , 9z  = I , 9ti = 0

Z 0 X —e

With some algebraic manipulation, equation 5.13 becomes

T
f l ' r  H i t  //-V

9 x  9y  9z
dx
dt

A
dt

dz
dt

da
-

(5.14)

The RHS of 5.14 becomes/i(;r, y, 2 , /i, t) because of equation 5.10. Note that,

is equal to J { x , y , z )  as defined in equation 3.12, that is the Jacobian of the nonlinear

system 3.9. Next, we need coordinate changes.

Let V =  { x , y , z )  and ^  ^  ^ ) -  Then equation 5.14 becomes

dv
(5.15)

where f { v , y , , t )  =  — By the assumption in the previous section, the Jacobian 

J{v)  is nonsingular. That guarantees that J{v)  is invertible. Finally, we will have the 

following implicit ODE

dv
dt

(5.16)

By the definition of index as it is given in [12], an implicit ODE resulted after one 

differentiation step. This implies that the DAE defined by 5.11 has index 1. This 

concludes the proof.
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Semi-explicit DAEs of index 1 can be solved by using the techniques for ODEs. 

The algebraic equations in the DAE can be further transformed into differential equa

tions. Differentiating the algebraic equations 5.3 with respect to t, we get

, dx
=  0

= 0 (5.17)

dz d r da
dt

With some algebraic manipulation by using the sparsity of system, the solution to 

equation 5.15 is as follows

-  Z-^XA'\AZ-^XA^')-^a ] Z~^e

(5.18)

dx dfi
dt dt ■

dy
dt dt
dz

-
dt dt

By taking the initial values for x, y, and z which satisfy the algebraic equations of 

the DAE in the interior of the feasible region, and taking a small initial value for p, 

we can solve 5.10 and 5.18.

5.4 A Modified Primal Dual IPM for LO Problems

In this section, we present a primal dual IPM for LO problems that solves the DAE 

in equation 5.11 to determine the central trajectory of the LO problem. By following 

the central trajectory, we have found an optimal solution to the LO problem. Let us 

consider the same problem P  as defined in equation 5.1. To solve the DAE system in

42



equation 5.11, we use the backward Euler’s method for simplicity. In Euler’s method, 

the ODE that is defined in equation 5.10 can be approximated as follows

=  h ^ l n x i ^ ,  (5.19)
i=l

where h is a given step length. By applying Euler’s method for the DAE system in 

equation 5.11, we obtain the following nonlinear system

-  / i ^ ln x j^ ' =  0
2=1

Ax^ —6 =  0

— c =  0

=  0 .

(5.20)

Newton’s method is used to find a solution to this problem. Given > 0,y" and 

> 0 and > 0, moving direction vectors dx, dy, dz,  and dy  that move from the 

current point to a new point while satisfying the DAE system in equation 5.11, are 

determined by using the following linearized system

0 0 0 e dx

Z 0 X - e dy

A 0 0 0 dz

0 /  0 d y

=  Ax° -  6 and djj +  z^~

- h  Ÿ,
1=1

X ^Z °e  -  / e  

A x ^ ~ b

— c

(5.21)

system 5.21 with respect to the moving direction vectors d x , d y ,d z ,  and d y  can be 

found as follows. By addition of the first two equations we have

Zdx  +  X d z  =  /i°e -  X^Z^e  +  /i ^  Inx^^e. (5.22)
2=1
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Let us define d  = — X^Z^e  +  /i ^  From here dx can be expressed as
i = \

follows

da; =  ^ - '( d - A 'd z ) .  (5.23)

From the last equation, we have

dz  =  d o  — A^dy.  (5.24)

Finally, by using the third equation of 5.21, and equations 5.23 and 5.24 we have

dy =  (yfZ-^X A ^)-X A Z-i% dD  +  dp -  AZ-^d), (5.25)

and
n

dy, =  h ' ^ l n x i ^ . (5.26)
i = l

So far, we have computed the moving direction vectors dz, dy, dz and dy  by using 

the current points (z^, y°, z°), and y^. The new points for the next iteration can be 

obtained as follows;

z^ =  z® +  p a p d x

=  y° +  pocody (5.27)

+  p a p d z

y }  =  + d/i,

where 0  < p < 1 , and a p  and a p  are step sizes for the primal and dual problem 

respectively. Step sizes are chosen to assure that z and % are positive or feasible as 

follows

a p  =  min | - ^  : V dz, < 0, 1 < i < n |

44



o d  =  min j  —̂  : V dzi < 0 ,  1 < ï < n |  . (5.28)

Prom given initial solution points (x^, z^), and we have computed the now

points ( i \  z*) and p} such that p} <  p^ by solving the DAE system in 5.11. The

proposed primal dual IPM continues to iterate by reducing p  as explained in equation 

5.19 and computing moving direction vectors d x , d y , d z  and dp  and the new points 

until convergence is achieved. Convergence of the proposed primal dual IPM can be 

achieved like in the traditional primal dual IPMS by making the duality gap to be 

close to zero with a given accuracy e. Specifically we need to satisfy

c^x -  b^y =  e. (5.29)

The modified primal dual IPM is similar to the classical primal dual IPMs. The 

differences are on the barrier parameter update procedure and the moving directions. 

Note that, we are using similar formulas as in the classical primal dual IPM, but the 

directions are different. The reason is that, we have a different parameterization of 

the barrier parameter p  than in the traditional primal dual IPM that was explained 

in Chapter 3. These differences affect the duality gap that is the stopping criteria of 

the primal dual IPM. As a result, we can state that we have a different duality gap 

reduction than the classical approaches. A modified primal dual IPM can be stated 

as follows.
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Proposed Prim al D ual IPM  A lgorithm  for LO Problem s

Step 0 Initialization:

• SET iteration number k =  0, e ,p  and li.

• START with an initial solution >  0,y^,z^ >  0 and >  0.

Step 1 Stopping Criteria:

• IF equation 5.29 is satisfied GO TO Step 3.

• ELSE GO TO Step 2.

Step 2 Iteration:

• COMPUTE moving directions dx^ ̂  dy^, dz^, by using equa

tions 5.23, 5.25, 5.24, and 5.26 respectively.

• COMPUTE step sizes a p  and a p  by using equation 5.28

• MOVE to the next solution x ^ ~ ^ ^ u s i n g  equation 5.27

• UPDATE the barrier parameter using equation 5.19

• SET k — k +  I

• GO TO Step 1.

Step 3 Stop: with the optimal point x*,7j*,z* =  x^ ,y^ ,z ^ .
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5.5 New Parameterization of the Central Trajectory for 

Convex QO Problems

Let, us consider the primal QO problem Q P  in the standard form

mill f { x )  =  c^x + - x7 Q x

QP: subject to (5.30)

Ax =  b

X >  0,

where x  G is a vector of decision variables, A G is a matrix of constraints,

Q g sjjnxn is a symmetric positive semi definite coefficient matrix of the quadratic 

terms and c G is a coefficient vector of the linear terms of the objective function 

/(x ) , and b G ïR'" is a RHS vector of constraints.

Adding a barrier term to the objective function of Q P  results to the following 

problem

1 -  " 
mill /(x ,/x) =  (Fx  + -x^  Qx -  f i ' y '  InX;

QP^ ; subject to (5.31)

A x — b

X > 0,

where /x > 0  is the barrier parameter.

The associated KKT necessary conditions give the following system

Ax  — 6 =  0
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~ Q x  + j4  ̂y  z  —  c  — 0 (5.32)

X Z e  — fie = Ü

The problem QP^i can also be defined as follows:

0{^i) =  inf Qx ~  such that j4x =  6 , x > o |  (5.33)

By a similar approach to the LO case, from the theorem 5.1 by Bazaraa et al. [7]

(Theorem 9.4.3), it is stated that the optimal solution to the problem Q P  could be

obtained by minimizing 0(p). It should be noted that the quadratic problem is strictly 

convex and hence this theorem holds. In other words.

minimum |c ^ x  +  such that >lx =  6 , x > o| = inf (̂/i). (5.34)

Note that, 5.30 and 5.33 are strictly convex optimization problems because both the 

objective function is strictly convex and the constraints are convex. Consequently, 

for any fixed p, 9{y)  has a unique minimum. The minimum of d{y)  will be found by 

using the steepest descent method. Again, we consider /r as a function of a parameter 

t. To find the rate of change of the barrier parameter fj,, we have to move in the 

direction of the negative gradient of 0(p). Thus,

ÿ  =  (5,35)
at  a/i

Prom equation 5.33, 6{y)  is differentiable. Now, let us find its derivative with respect 

to /i.

4 ^  s„c l,tha t =  0 (5.36)
d/i d/i d/i “  ^  Xi d/i d/i
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If we consider tlie second equation from equation 5.32 A +  -  tT Q  and

substitute in 5.36 then we have

such that A ^  =  0. (5.37)
d/% d/j ^  d//

We can see that the first and the last terms cancel each other by the help of the third 

equation of KKT necessary conditions. Then we have

^  =  - f ; i n x . .  (5.38)
S

Finally, we can write the rate of change of the barrier parameter by using equation 

5.35 ^  as follows.

^  =  ^ l n x i  (5.39)

Now, by using equations 5.39 and 5.32, we can determine the central trajectory. The 

differential equation 5.39 and the algebraic equation system 5.32 form a system of 

DAEs for the problem QP. The DAE can be written as follows:

I  = t ' -
2=1

A x - b  =  0 (5.40)

- Q x  +  A^y  -\- z  -  c =  0

X Z e  —fie =  0.

To find a solution to the DAE, we need to state the following theorem.

T h e o r e m  5 .3  The D AE defined by 5-40 has index 1.

P r o o f  5 . 3  It is similar to the proof of theorem 5.2.
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The algebraic equations in the DAE can be further transformed into differential

equations. Differentiating the algebraic equations 5.40 we get

With some algebraic manipulation, the solution to this system is as follows

I  -  E X A ^ \ A E X A ^ ^ ) -^ a ] Ee

(5.42)

dx dp
dt dt
dy rj, ,

dt dt

 ̂= ^i^[Q-QEXÀ^{AEXÀ^)-^A]+À^{AEXÀ^)-^A}Ee,  

where E  =  {Z +  XQ)~^.

By taking the initial values for z, y, and z which satisfy the algebraic equations of 

the DAE, being in the interior of the feasible region, and taking a small initial value 

for p, we can solve 5.39 and 5.42.

5.6 A Modified Primal Dual IPM  for Convex QO Prob

lems

In this section, we present a primal dual IPM for Convex QO problems that solves 

the DAE in equation 5.40 to determine the central trajectory of the LO problem. 

By following the central trajectory, we have found an optimal solution to the LO 

problem. Let us consider the same problem Q P  as defined in equation 5.30. To solve
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the DAE system in equation 5.40, we use the backward Euler’s method for simplicity. 

In Euler’s method, the ODE that is defined in equation 5.10 can be approximated as 

follows
n

=  h ' ^ l n x i ,  (5.43)
i = l

where h is a given step length. By applying Euler’s method for the DAE system in 

equation 5.40, we obtain the following nonlinear system

H" -  n"  ̂ =  0
A: , .k-l  t

2 =  1

Ax^ — 6  =  0

=  0 .

(5.44)

Again, Newton’s method is used to find a solution to this nonlinear system. Given 

>  0,y^ and > 0  and /i° > 0 , moving direction vectors d x , d y , d z ,  and dfi those 

move from the current point to a new point while satisfying the DAE system in 

equation 5.40, are determined by solving the following linearized system in a similar 

way to LO case

0  0  0  e dx —h Y, InXj'^e
2=1

g  0  X  - e dy -  / e

A 0  0  0 dz Ax^ -  6

- Q  A^' I  0 d y - Q x P  +  A^y^ +  — c

(5.45)

Let us define d p  =  Ax^ — 6  and d p  — ~Qx^  +  A ^ — c. Then the solution of 

the linear system 5.45 with respect to the moving direction vectors d x , d y , d z ,  and dy

51



can be found as before for LO case. By adding the first two equations, we have

n
Zdx  +  X d z  =  + h ^  lnx;*^e. (5.40)

Let us define d = -  X^Z^e  +  /i ^  hixj^^e. Then equation 5.46 can be written as
2 = 1

follows

Zdx +  X d z  =  d. (5.47)

By multiplying the last equation of 5.45 by X ,  we have

- X Q d x  + X A ^ d y  +  X d z  = X d o -  (5.48)

Subtracting equation 5.47 from equation 5.48 would result

~ { Z  +  X Q ) d x  + X  A^ dy  =  X d j j  — d. (5.49)

Multiplying equation 5.49 by A { Z  +  X Q ) ~ \  we get

+  % 0 ) " X %  -  c(). (5 50)

Adding the third equation of 5.45 to equation 5.50, we have

A { Z  +  XQ)-^XA^^dy =  A { Z  +  XQ)~^ [ X d p  -  d) +  dp.  (5.51)

Prom here dy  can be expressed as follows:

dy = [A{Z +  X Q ) - ^ X A ^ ) - \ A { Z  d- X Q ) - \ X d o  -  d) +  dp].  (5.52)

By equation 5.49 we further have

dx =  {Z  +  X Q )  ^[X{A^dy — d p )  +  d]. (5.53)
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Also from equation 5.47 we get

=  (5.54)

and
n

(In =  h'Y^lnxi^.  (5.55)
i=l

So far, we have computed the moving direction vectors dx, dy, dz  and dy  by using 

the current points (i°, y^, z^), and /i**. The new points for the next iteration can be 

obtained as follows:

+  papdx

=  y°  +  p a o d y  (5.56)

z  ̂ —  4-  p a p d z

p} — +  dp,

where 0  < p < 1 , and a p  and a p  are step sizes for the primal and dual problem

respectively. Step sizes are chosen to assure that x and z are positive or feasible as

follows

a p  — min ^ < 0 , 1 < * <

a p  =  min : V dz, < 0, 1 < f < n |  . (5.57)

Pi’orn given initial solution points {x^, y^, z°), and p**, we have computed the new 

points ( z \  y \  z^) and p  ̂ such that p* < p° by solving the DAE system in 5.40. The 

proposed primal dual IPM continues to iterate by reducing p as explained in equation 

5.43 and computing moving direction vectors d x , d y ,d z  and dp  and the new points
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until convergence is achieved. Convergence of the the proposed primal dual IPM can 

be achieved like in the traditional primal dual IPMS by making the duality gap to be 

close to zero with a given accuracy e. Specifically, we need to satisfy

c ^ x - b ^ y  =  e. (5.58)

The modified primal dual IPM is similar to the classical primal dual IPMs. The 

differences are on the barrier parameter update procedure and the moving directions. 

Note that, we are using similar formulas as in the classical primal dual IPM, but the 

directions are different. The reason is that, we have a different parameterization of 

the barrier parameter /r than in the classical primal dual IPM that was explained in 

Chapter 3. These differences affect the duality gap that is the stopping criteria of 

the primal dual IPM. As a result, we can state that we have a different duality gap 

reduction than the classical approaches. A modified primal dual IPM can be stated 

as follows.
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P roposed  Prim al D ual IPM  A lgorithm  for QO Problem s

S tep  0 In itia liza tio n :

• SET iteration number k =  0 , e , p  and h.

• START with an initial solution > 0 and >  0.

S tep  1 S topp ing  C rite ria :

• IF equation 5.58 is satisfied GO TO Step 3.

• ELSE GO TO Step 2.

S tep  2 I te ra tio n :

• COMPUTE moving directions dx^, dy^, dz^, dp^ by using equa

tions 5.53, 5.52, 5.54, and 5.55 respectively.

• COMPUTE step sizes a p  and a p  using equation 5.57

• MOVE to the next solution using equation 5.56

• UPDATE the barrier parameter p^ using equation 5.47

• SET k =  k +  1

• GO TO Step 1 .

S tep  3 S top: with the optimal point x*,y*,z*  =  x^,y^,z^.
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Chapter 6

Convergence, Implementation, 

Computational Com plexity and

Stability Details

6.1 Convergence Details

In this section, we study the convergence of the proposed primal dual IPMs by using 

the new parameterization of the central trajectory. Let us consider the following 

primal LO problem P in the standard form and the corresponding dual problem D.

P: min f { x )  =  c^x

subject to (6 .1 )

Ax  = h
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X  >  0,

where i  /I G c G and 6  G K'".

The dual problem D  of problem P  becomes

D: max g{y) = 7j

subject to (6 .2 )

y  +  z  =  c 

z > 0,

where y  G 3Î”‘ and z G 3î".

Our first objective is to show that the sequence of points y^, and generated 

by the proposed primal dual IPM using the new parameterization of the central 

trajectory converges to optimal solution of the problem. Then, second objective is 

to show that the convergence of the new parameterization is faster than original 

parameterization. Before we study the convergence, the following assumptions for 

problem P  and its dual problem D  are necessary.

1. The feasible region S  of problem P  is not empty. Therefore there exists an 

X £ S.

2. The feasible region T  of problem D  is not empty. Therefore there exists an 

(y,z) G T.

3. A  has a full row-rank. Rank{A)  — m  < i i

Now, we begin to study the convergence of the proposed primal dual IPMs by using
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the new parameterization of the central trajectory by explaining some properties of 

the trajectories of the solution. We start with the basic facts.

First, we need to show that x E S  and { y , z )  6  T  determined by the first or

der KKT conditions are continuous functions of /r and t. The corresponding KKT 

conditions can be written as follows;

F i { x , y , z , i i )  =  A x  -  b =  0 

F2 { x , y , z , f i )  =  A'  ̂y  +  z  -  c =  0  

F z { x , y , z , y )  =  X Z e - l i e  = 0

and

F { x , y , z , y )  = { F i { x , y , z , n ) , F 2 { x , y , z , i i ) , F 3 { x , y , z , i i ) f  = 0. (6.3)

In order to show that x, y , and z are continuous functions of /t, the following implicit

function theorem [36] is to be satisfied.

T h e o r e m  6.1 I m p l i c i t  F u n c t i o n  T h e o r e m :  F o r i  — let the func

tions F i { y i , . ..  , y m , x i , . . .  ,Xn) all be defined in a neighborhood of the point : 

{ y i^ , . . .  , y m ^ ,x i^ , . . .  ,Zn^) and have continuous first partial derivatives in this neigh

borhood. For Î =  1 , . . . , m, let the equations F i { y i , . . .  , y m , x i , . . .  ,x,i) =  0 be satisfied 

at Pk and let

a ,
il(y\ ) • • • ) 2/m)

Then, in an appropriate jieighborhood o f { x i ^, . . .  ,x ,/')  there is a unique set of contin

uous functions y\ — f i { x \ , . . .  ,Xn) for  t =  1 , . . .  ,m,  such that y{^ — f i { x \ ^ , . . .  ,x„* )̂
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for  i =  l , . . . , 7n, and Jor all i, F j(/i (.x'l, . . . ,  x„ ) , . . . , /r„(a'i, . . . ,  x,j), x i , . . . ,  x„) = 0  

in that neighborhood.

In order to apply the implicit function theorem, the determinant of the Jacobian 

J { x , y , z )  of the nonlinear system in 6.3 at the given Ç. S, ,z^ E T  is to be 

calculated. Specifically,

Ji i J n  

h i  J22

I ' / i l l  J22 -  h i J n  J12

where

Clearly,

and

Thus

A 0 0
J\ i  =  Zk, J n  =  [0 , % k ] , ■/21 = , J22 -

0 yl'̂ ’ I

J2 1 J 11 J\2 —

J22 -  h l J u  J\2

J22 — J2\J \ \  J\2  =  ^
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and

AA^ 7̂  0.

Note that, A has full row rank by the assumption, hence AÂ^ 7  ̂ 0 and G S,

,,k _fc G T  implies that |Afc| > 0 and \Zk\ >  0- By the implicit function theorem.

since J{x^,y^,z^) 7  ̂ 0 , there are unique set of continuous functions i(p ) , y{fi) and 

z(p) passing through x^ =  x{y^),  y^ =  y{y^)  and — z{y^).

After showing x, y, and z are continuous functions of p, next we need to show that 

X,  y ,  and z are also continuous functions of t .  In the previous chapter we defined the

rate of change for the barrier parameter y, as

d/, A ,

1=1

It is obvious that ^  In X{ is a continuous function of x and, x is continuous function 

of y .  Therefore we conclude that the rate of change for the barrier parameter y  is 

also continuous in t  by using the theorem of existence and uniqueness of solutions 

of nonlinear differentiable equations [36]. Therefore x, y  and z are also continuous 

function of t .  That concludes the work on continuity.

Next, we need to state the following convergence theorem for the proposed primal 

dual IPMs by using the new parameterization of the central trajectory and prove it.

T h e o r e m  6 .2  C o n v e r g e n c e  T h e o r e m  Let x  ̂ G S  and G T  and y^ are

given. Suppose that x { t ) , y { t ) , z { t ) ,  and y{ t )  denote the trajectories of the solutioii of 

the system of equations in 5.10 and 5.18 with given initial solution (rr®, y°, z^,/r°). 

Then, either x{t )  G S, { y ( t ) , z { t ) )  G T  and y{ t )  >  0, or x { t ) , y { t ) ,  and z{t ) correspond
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to the optimal solution to the given problem.

P r o o f  6 .2  We need to show that with the proposed parameterization of the 

central trajectory of the solution is either at the optimal solution or in the feasible 

region. Let us consider the DAE system in 5.11. Since /io > 0 and p,{t) is continuous 

in t, before fi{t) reaches a negative value, it must be p,{t) =  0  at some time t, which 

implies that complementary slackness conditions of KKT conditions are satisfied. In 

other words,

(t)Zj (t) =  0 , j  =  1 , . . . ,  71.

Then, we need to show that x{ t ) , y { t ) ,  and z[ t )  satisfy the primal and dual feasibility 

conditions of the KKT conditions. In order to do this, we need to show the solutions 

of the system of the differential equations 5.17 satisfy the KKT conditions

dx
=  0

dt dt
= 0 (6.4)

dz d ï dfx
Tt^'

Integrating both sides of the first equation, we obtain

’'*-dx
I [  ^ d a  =  0. 
Jo da

It follows from here that

Ax{t)  — Ax(0) =  0.

But

Ax(0 ) =  b.
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Thus,

Ax{ t)  =  b.

We can state that primal feasibility is satisfied. Similarly, we can show that dual 

feasibility is also satisfied as follows

A-^f f d . +  r ^ d a  = ù.
Jo da Jo da

It follows from here that

-  z(0) =  0,

but

A^y{0)  +  z(0) =  c.

Thus,

A^y{t )  +  z[t)  =  c.

That concludes that dual feasibility satisfied.

We see tha t æ(t),ÿ(t), and z{t )  satisfy the KKT conditions. Therefore the optimal

ity conditions for the optimization problem are satisfied. This shows that x{t ) , y{ t ) ,  

and z{t )  correspond to the optimal solution.

Next we need to show that the trajectory is in the feasible region. In other words, 

x{t ) e  S  and {y{ t ) , z { t ) )  G T.  Since Xj{ t)z j{ t )  =  y { t ) ,  and y{ t )  >  0 implies that 

either Xi{t) > 0 and Zi{t) > 0 or Xi{t) <  0 and Zi{t) <  0. As one can see they can 

not be negative. Otherwise, because Xi{t) >  0 and z,(t) > 0, Xi{t), and Zi{t) are
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continuous in t, before Xi{t), and Zi{t) become negative there exist a time f* such tliat 

Xj(t*)zj(t*)  = 0, that implies that we have optimal solution to the given problem P.

Now we consider Xi(t) >  0 and > 0. Previously, we showed that Ax{t)  =  h 

and + z{ t )  =  c. Thus, x{t)  G S  and {y{ t ) , z { t ) )  G T.  This means that the

trajectory is in the sets S  and T  and in the interior of the feasible region. This 

completes the proof.

We can always compute the duality gap and the duality gap is reduced at each 

iteration. As we said before, convergence of the proposed primal dual IPMs by using 

the new parameterization of the central trajectory has been achieved when the duality 

gap becomes zero or close to zero with the given accuracy. Next, we show that 

the proposed primal dual IPMs by using the new parameterization of the central 

trajectory reduces the duality gap at each iteration point and it converges to the 

optimal solution when the duality gap becomes zero or close to zero. In addition to 

this, we show that the convergence rate for the proposed primal dual IPMs by using 

the new parameterization of the central trajectory is faster than classical primal dual 

IPMs. Now, let us s tart to investigate the duality gap for the classical primal dual 

IPMs.

Let assume that at fcth iteration of the algorithm we have primal feasibility, Ax^ = 

b and dual feasibility, +  z^ — c. Let gap{k) corresponds to the current duality
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gap at the kth iteration.

gap{k) =  —

=  {A^iF +  -  {Ax^Ÿ\y^

Let a  be the minimum of the primal and dual step sizes, a  =  m i n { a p , a D ) .  Then as 

we move

gap{k +  I) = +  a d z ) ^  {x^ +  adx)

— ẑ '  ̂x^ +  a{z^'^dx +  dz^ x^) +  a^dz^ dx.

As we remember, primal and dual feasibility imply dz  — - A F d y  and Adx  = 0 so 

dz'  ̂dx =  0. Thus

gap[k  +  1) =  +  a  ]^Z^dxŸ^e T [X ^ d z Ÿ  ej

= gap{k) +  «(Z^'dx +  X^dz)'^e.

Then by using the linearized complementary slackness or Zdx  + X d z  — pe  -  X^Z^e  

from equation 3.13, we get

gap{k  + 1) =  gap{k) +  a {p e  -  X^Z^e)^e

= gap{k)  + a(n/i -  gap[k)].

We see that the duality gap is reduced if gap{k  + 1) < gap{k) as long as

„ < (6.5)
n

For the classical primal dual IPMs, the most commonly used update rule for the 

barrier parameter p  is

< / / ( I  - c t ) , 0  < CT < 1 .
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This is a discrete update rule and it can be extracted to the following continuous 

form.

dfi

Thus,

nit) = e - 'P . (G.Ü)

Next, we investigate the duality gap for the proposed primal dual IPMs by using 

the new parameterization of the central trajectory.

Let us assume that at the kth  iteration of the proposed algorithm, we have primal 

feasibility, Ax^ =  b and dual feasibility, =  c. Let gap{k) corresponds to

the current duality gap at the /cth iteration.

gap{k)  = c^x^ — l)^y^

=  y^ +  z' )̂'^x  ̂ -  (Ax^y^y^

=

Let a  be the minimum of primal and dual step sizes, a  =  m i n { a p , a o ) -  Then as we 

move along the central trajectory

gap{k  +  1 ) = (z* + ad z )^  +  adx)

=  z  X + a[z^'^ dx  + dz^ x^) + a^dz'^dx.

As we remember, primal and dual feasibility imply dz  =  — dy  and Adx  = 0. 

Therefore dz^dx  =  0. Thus

gap{k  +  1 ) =  z&^z* + a  \^{Z^dxy e +  [X^dz)'^e 

= gap{k) + a[Z^dx  +  X ^ d z Y  e.
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Then by using the linearized complementary slackness or Z d x  +  X d z  =  l i e -  X^Z^e +  

n
h Y, h is j e from equation 5.22, we get

i=l

n T
gap{k  + 1 ) =  gap(k) + a { p e  -  X ^ Z  e +  h Y  hiXj^e) e

i— 1
n

=  gap{k) + a (n p  + h Y  h ix ^ e  -  gap{k)).  
i=l

As we see that the duality gap is reduced if gap{k  +  1) <  gap{k) as long as

gap{k) -  h Y  hi I ,0

/i < ------------ -------------- . (6.7)

We see that we have an additional term in 6.7. This term puts a bound to the 

gap reduction. If we compare 6.7 with 6.5, we can conclude that for the proposed 

primal dual IPMs by using the new parameterization of the central trajectory, the 

bound to the gap reduction results into faster convergence to 0  for p  and the duality 

gap. We know that, when p  —-> 0 the duality gap converges to zero. Therefore, we 

can conclude that convergence of the proposed primal dual IPMs by using the new 

parameterization of the central trajectory is faster than classical primal dual IPMs.

6.2 Implementation Details

It is obvious that a good optimization software requires more than just a good op

timization algorithm. Efficiency and stability of the linear algebra, initialization, 

termination, parameter selection are important issues to consider for a  successful 

piece of optimization software. In this section, we describe in detail the steps we took 

to obtain a practical implementation of the proposed primal dual IPMs by using the 

new parameterization of the central trajectory. The most important issue is the linear
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algebra such as the problem of solving a large, sparse linear system at each iteration 

to find moving directions. Other issues that we discuss here include initialization of 

the algorithm, termination criteria, parameter selections. The modified and original 

primal dual IPM algorithms are implemented for both LG and QO problems by using 

MATLAB.

T erm in a tio n  C rite ria : We used the duality gap as stopping criteria since con

vergence has been achieved when the duality gap becomes close to zero with given 

accuracy e. Specifically,

\ \ J x  -  b̂ 'yW =  E .  (6.8)

In itia liz a tio n  of th e  A lgo rithm : One of the basic assumptions for our implemen

tation is that we are given a feasible interior solution. Some initial solution finding 

techniques are explained in [44].

P a ra m e te r  Selection: In the proposed primal dual IPMs by using the new param

eterization of the central trajectory, we have some parameters such as e, p, a, h that 

we need to select before execution, e is the accuracy parameter for the termination 

criteria. In our implementation, we choose e — 0.0001 and p is a parameter 0 < p < 1 

that we used it to define new points as in 5.27 and 5.56. In our implementation, we 

choose p = 0.65 where h is a parameter that defines step length in 5.19 and 5.43. In 

our implementation, we choose h =  0.1. ct is a parameter 0 < a  < 1 that defines the 

reduction rate of p at the original primal dual IPMs as in 3.19. We choose a  =  0.5. 

L in ear A lgebra  Issues: All of the matrices and vectors of our implementation used
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are predefined MATLAB functions. For advanced implementation of the algorithms 

advanced data structures can be considered. For each step of the proposed primal 

dual IPM, the most important task is to solve the system of equations for the new 

moving directions {dx, dy, dz).  This consumes most of the computational tasks. There 

are two major computational tasks. First, we have to form the A Z ~ ^ X , where 

Z~^X\s  a diagonal matrix and changes at each iteration. Second, we must solve the 

following system of equations

+  dy. -  (6.9)

where A Z ~ ^ X À ^  is symmetric and positive definite. Solving the system of equations 

could be done in various ways such as QR factorization, Cholesky factorization or 

preconditioned conjugate gradient. In our implementation MATLAB functions are 

used to deal with this problem.

Next, we discuss the ill-conditioning problem. We first define the condition of a 

matrix and then describe the ill-conditioning associated with proposed algorithm.

The condition of a problem can be defined as a measure that reflects the sensitivity 

of the exact solution to changes in the problem. Let f { x )  denote the exact solution 

of the given problem for variable x. If small changes in x lead to small changes in 

f { x ) ,  the problem is well-conditioned.  However, if small change lead to large ones, 

the problem is i ll-conditioned.  In a similar way, the condition of a matrix can be 

defined as follows [29].

Let A be a non singular matrix and consider the linear system Ax  =  b. Then, 

the exact solution is x =  A~^b. Notice that, the core work at each iteration of our
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proposed primal dual IPM algorithm is similar here. We find the direction vectors by 

solving a linear system at each iteration. The condition of a non singular matrix A 

is defined as

cond(A) =  |lA~‘|l|jAl|.

Note that, I  = A~^A and by using Cauchy-Schwarz inequality we get 1 = ||A"^A|| < 

|1A~^]|||A]|. We conclude with the inequality, cond{A) >  1.

A well-conditioned matrix has a condition number of order unity. An ill-conditioned 

matrix has a condition number much larger than unity. The condition of a matrix 

can be interpreted in terms of the closeness of the matrix to singularity. Informally 

speaking, an ill-conditioned matrix is near singular.

Here, we are interested in for the case where A  is symmetric. More specifically, 

AZ~^X A^  is a symmetric matrix and we update and compute this matrix at each 

iteration. If a given matrix is symmetric, then the condition of a matrix can be defined 

as the ratio between the largest and the smallest eigenvalues as follows

lA.
cond{A) = 7̂nax!

1 A m i n  I

where X^ax is the largest eigenvalue of A  and Amiri is the smallest eigenvalue of A.  

The matrix is ill-conditioned if this ratio is very large. This usually happens when the 

smallest eigenvalues become near zero or when the largest eigenvalue goes to infinity.

Ill-conditioning is often observed during the final stages of a primal dual algorithm, 

when the elements of the diagonal matrix AZ~^XA^'  take on both very large and very 

small values.
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6.3 Computational Com plexity Details

Computational complexity, originating from the interactions between computer sci

ence and optimization, is one of the major research areas that have revolutionized the 

approach for solving optimization problems and for analyzing their inherent difficulty. 

Computation within an iteration is obviously an important factor in the complexity 

of an algorithm. The types of computations within an iteration change little from 

one IPM algorithm to another, so that it is usually the number of iterations that 

distinguishes algorithms.

The number of iterations depends on the stopping criteria. Since, primal dual 

IPMs use the duality gap as a  stopping criterion, the number of iterations is a function 

of the duality gap reduction. In general, the duality gap reduction at each iteration 

depends on the dimension ii in a certain way that can be described as follows:

gap{k) =  = Tifi  ̂ <  e, (G.IO)

where

/  =  / F ( n ) ' :  (6 .1 1 )

and F  is a function that defines the update rule for the barrier parameter. In order 

to find a bound for the number of iterations k for primal dual IPMs, the following 

inequality has to be satisfied

npPF{n)^ <  e. (6.12)

Kojima, Mizuno and Yoshise [38] showed that their primal dual IPM algorithm 

takes no more than 0 { n L )  iterations where L  is the input size for the given problem.
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The best known bound on the number of iterations for an IPM algorithm is 0 { \ / n L )  

as presented by Renegar [56] and Monteiro and Adler [48, 49]. Monteiro and Adler’s 

algorithm is a primal dual IPM where the duality gap reduction is a function of ^/n. 

Other techniques for bounding the number of iterations in path following algorithms 

are studied by Vaidya and Atkinson [67].

In this study, we proposed a modified primal dual IPM algorithm by using a new 

parameterization of the central trajectory. Each iterations of the proposed algorithm 

involves the inversion of a x n matrix which can be done in at most 0{n^)  arithmetic 

operations. Furthermore, one can approximate the matrix to be inverted so that each 

iteration can be executed in the average of arithmetic operations. Since wo

have faster convergence results than the original primal dual IPMs, we can claim that 

the number of iterations of the proposed algorithm will be lower than the original 

primal dual IPMs. In other words, our proposed primal dual IPM algorithm takes 

less than 0 [ n L )  iterations. Finally, our algorithm overall requires less than 0{ii^'^L) 

arithmetic iterations.

6.4 Stability Details

In the proposed primal dual IPM algorithm by using a new parameterization of the 

central trajectory, the rate of change of the barrier parameter p is defined as a con

tinuous dynamical system. In this section, we study the stability of the dynamical 

system and DAE system that resulted while parameterizing the central trajectory. 

Late in the nineteen century, Lyapunov a Russian mathematician, developed an ap
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proach to the stability analysis of dynamical systems. The main and unique feature 

of the approach is that only the form of differential or difference equations needs 

to be known, not their solutions. The method, called Lyapunov's method,  requires 

evaluation of a function the so-called Lyapunov function. Evaluation of this function 

alone allows for the stability of the system to be proven.

Let us consider the autonomous system described with a system of n first-order 

differential equations;

^  =  (6.13)

We assume that the equations have been written so that z* =  0 is an equilibrium point 

that satisfies the system of equations f {x* )  =  0. We formulate a condition for the 

equilibrium x* = 0 to be asymptotically stable. This means that the state vector goes 

to zero as time goes to infinity. A function, E{x),  is said to be a Lyapunov funct ion,  

if there exists an equilibrium state, x*, such that the following three conditions are 

satisfied.

1. E(x)  is continuous with respect to all components of x,

2. E{x)  is positive definite. That is, E{x*) — 0, and E(x)  > 0 for x x*.

3. is negative semi-definite. That is, the function is decreasing with time.

The function E(x)  is not unique, rather many different Lyapunov functions can be 

found for a given system. If at least one function is known that meets all the above 

conditions, the given system is asymptotically stable.
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The dynamical system that resulted while parameterizing the central trajectory 

defined in 5.10 and 5.18 is as follows

I  -  Z ~ ^ X A ^ { A Z - ^ X A ^ ' ) -^ a ] Z~^e
dx _  dfi 
dt dt

dz dz
(6.14)

where

^  =  ^ l n x j .  (6.15)

The stability of our dynamical system can be established by defining a function E(x)  

and proving that E{x)  is a Lyapunov function as follows. Let us consider the problem 

in 5.4

0(/i) = inf |c ^ x  —/i ^  Inxj- such that z li =  z  > 0  j  . (6.16)

Let E{fj,) =  9{fi) — 6 {n*) where fi* minimizes 0(/r), for all /i > 0. Now, we need to 

show that all conditions given above are satisfied by E { y ) .  Note that, 0[n) in 6.16 is 

strictly convex since both the objective function is strictly convex and the constraints 

are convex. Therefore, E{n)  is positive definite. Prom the previous section for the 

convergence results, we know that x , y , z ,  and n are continuous in /r and t. Next we 

need to show that E(f i )  is decreasing in time. Again, we know that the solution points 

z, y, z, and y  to the DAE system in 5.11 with initial points solve the KKT conditions 

for the given problem. Therefore, it follows from equations 5.6 and 5.9 that

d E {y )  _  d e jy )  d y  _  _  \ d 9 { y Y '̂ 
dt  d y  dt dy
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This proves that E{i.i) is a Lyapunov function, which implies that E(n)  decreases 

rnonotonically until a stable state is reached in which case neither the Lyapunov 

function nor the state changes further. Therefore stable points are the minimizers of 

Oin). In other words, stable points are the optimal solutions of the given problem

[79].

Next, we study the stability of the following DAE system described in 5.11.

(in
dt

n
Y^hiXi
j=i

A x  — b = 0

A ^ y  +  z — c

X Z e  — n^ = 0 .

(6.18)

Note that this is an index-1 DAE as proved in Chapter 5. Ascher and Petzold [3] 

presented that if the all of the following conditions are satisfied by the index-1 DAE 

system, then the DAE system is stable. Specifically, for a linear index-1 problem, if

1 . it can be transformed (without differentiations) into a semi-explicit system, and 

from there to an ODE by eliminating the algebraic variables,

2 . the transformations are all suitably well conditioned,

3. the obtained ODE problem is stable,

then the index-1 DAE problem is also stable in the usual sense.

Next we need to show that the DAE system in 6.18 satisfies all of the above 

conditions. It is obvious that the DAE system is in a semi-explicit form as in equation
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4.3. Note that during this formulation, the DAE system resulted in this semi-explieit 

form naturally. Semi-explicit DAE transformed to an ODE are shown in Chapter 5. 

So far, the first condition of the above conditions is satisfied. The resulting ODE 

after this transformation are shown in 5.16 as follows

^  = J - ’(u)/(u,/x,t). (6.19)

Note that the Jacobian that defines the resulting ODE is the same as the Jacobian of 

the primal dual IPMs. By the assumption of nonsingularity of the Jacobian of primal 

dual IPMs, our transformation is well conditioned. That proves that the second 

condition is also satisfied. The resulting ODE is stable as we showed previously in 

this section by defining a Lyapunov function. That concludes that all above conditions 

are satisfied. Therefore we can state that the DAE system described in 6.18 is stable.
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Chapter 7

Computational Results

In this chapter, we report some computational results for the proposed parameteri

zation of the central trajectory for LO and convex QO problems and applications to 

support vector machines (SVMs) for the classification problem. The modified and 

classical primal dual IPM algorithms are implemented for both LO and QO problems 

by using MATLAB and codes are given in Appendix A. Numerical experiments are 

conducted by using some test problems to demonstrate the behavior and performance 

analysis of the new approach to the parameterization of the central trajectory. It

eration numbers for the proposed parameterization are compared with the classical 

parameterization. Note that our purpose here is to show graphically the functional 

and operational characteristics of the proposed trajectory and to illustrate the com

putational aspects of the methodological work, we have chosen some rather simple 

small size text-book examples. Corresponding parameter selections and other imple

mentation issues are presented in Chapter 6 .
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7.1 LO Test Problems

To demonstrate the behavior and performance analysis of both of the trajectories 

the following LO test problems are used. Each problem is solved four times by 

using different initial solutions, same parameters and same stopping criteria by using 

primal dual IPM by the classical parameterization and modified primal dual IPM 

by the proposed parameterization. By doing so, we can make a fair comparison 

for the behavior and performance analysis of both of the trajectories. After solving 

each problem, some experiments are performed to analyze the central trajectory, the 

duality gap reductions and the barrier parameter p reductions. Since our purpose here 

is to show graphically the functional and operational characteristics of the proposed 

trajectory, we choose some rather simple small size examples.

Problem  LOI: We choose the following LO problem presented in [7].

LOI:  min —X] -  3 x2

subject to (7.1)

- x \  + 2 x2 < 6

X i +  X2 <  5

X i , X 2  >  0,

This problem is solved by using the following initial solutions. 

x°' = [ 1 1 5  3]^, =  [0  0 ]^, and =  l /x ° '

x°^ = [1 2 3 2]^’, =  [0 0]^, and =  l/x*^^

x"^ = [2 1 6  2 ]"̂ , = [0  0 ]^, and =  l/x°'^
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Figure 7.1; Central trajectory of problem LOI

=  [3 1.5 7.5 0.5]^, =  [0 0]^, and 2 °'* =

The optimal solution is x* =  [1.3333 3.6667]^, and the corresponding objective value 

is -9.6667. The number of iterations to converge to the optimal solution for these 

initial solutions are given in the Table 7.1. Clearly, the proposed parameterization 

has better solutions over the classical parameterization for this problem. Central 

trajectories of both modified and classical primal dual IPMs for the first initial point 

are shown in Figure 7.1. From that figure, we can see the different trajectories.

The duality gap reductions of both approaches for the first initial point are shown 

are shown in Figure 7.2. We see that the duality gap reductions of the proposed 

trajectory are faster than the classical trajectory. This result is consistent with the 

convergence results in Chapter 6 . The values of both approaches converges to zero
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Duality Gap Reductions
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Figure 7.2: Duality gap reductions of problem LOI

as time increases. This is shown for the first initial point in Figure 7.3. We can see 

that, starting from the initial point /tq decreases to zero rnonotonically and rapidly 

for the proposed trajectory.

P ro b lem  L 0 2 : We choose the following LO problem used in [72].

L0 2 :  min —2xi — 3 .5 x2

subject to

- x i  +  4x2 < 1

2x1 + 3x2 < 3.5

2xi +  X2 < 3

Xi,X2 > 0,

(7.2)
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Rate of Change of Barrier Parameter
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Figure 7.3: of problem LOI

This problem is solved by using the following initial solutions.

= [0.8 0.2 1 1.3 1.2]^, yO' = [0  0 0]^, and =  l/ i» i  

a;02 ^  [0.5 0.3 0.3 1.6 1.7]^, =  [0 0 Of’, and =  l/r°^

= [0.6 0.2 0.8 1.7 1.6]^, y°^ =  [0 0 0]^, and =  l/z°^

= [0.4 0.2 0.6 2.1 2]^, =  [0 0 0]^, and z»'" =  l /x°^

The optimal solution of this problem is x* =  [1 0.5]^, and the corresponding objective 

value is —3.75. The number of iterations to converge to the optimal solution for 

these initial solutions are given in the Table 7.1. Clearly, modified primal dual IPM 

performs equally same over primal dual IPM for this problem for the given initial 

solutions. Central trajectories of both modified and classical primal dual IPMs for 

the first initial point are shown in Figure 7.4. From that figure, one can sec that
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Figure 7.4: Central trajectory of problem L02

both methods follow different trajectories. Although, classical trajectory reaches to 

the optimal solution almost same iteration numbers with the proposed trajectory, it 

can be seen from the duality gap reductions that we have consistent results as in the 

previous problem LOI.

The duality gap reductions of both approaches for the first initial point are shown 

in Figure 7.5. We see that the duality gap reductions of the proposed trajectory are 

faster than the classical one. The values of both approaches for the first initial 

point are shown in Figure 7.6.
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Duality Gap Reductions
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Figure 7.5: Duality gap reductions of problem L02
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Figure 7.6: /z  ̂ of Problem L02
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Problem  L 03: We choose another simple LO problem from [7].

L03:  mill 4x\ — Z3 +  x.\

subject to (7.3)

3:] +  X2 +  X' i+ x.\ = 1

—2 xj +  ‘2x 2 +  Ï 3 “  X4 =  0

X\,X2 ,Xz,Xi  > 0,

This problem is solved by using the following initial solutions.

=  [0.1 0.1 0.4 0.4]^, — [0 0]^, and =  l/x ° '

= [0.25 0.25 0.25 0.25]^, =  [q Q]r  ̂ and =  i/a ;02

= [0.1 0.3 0.1 0.5]^, = [0 0] ’̂, and = 1 / 1 °̂

1 °" = [0.2 0.2 0.3 0.3]^, i / '’ = [0 o r ,  and = 1 / # '

The optimal solution of this problem is i* =  [0 0 0.5 0.5]^, and the corresponding 

objective value is 0. The number of iterations to converge to the optimal solution for 

these initial solutions are given in the Table 7.1. Clearly, modified primal dual IPM 

performs equally same over primal dual IPM for this problem for the given initial 

solutions. The duality gap reductions of both approaches for the first initial point 

are shown in Figure 7.7. We see that the duality gap reductions of the proposed 

trajectory are faster than the classical one. The values of both approaches for the 

first initial point are shown in Figure 7.8.
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Duality Gap Reductions
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Figure 7.7: Duality gap reductions of problem L03
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Problem  L 04: We choose another LO test problem presented in [73].

L 0 4 :  min 2Ax\  +  1 .6 x2 +  4 .2 x3 +  5 .2 x4 +  2.4xs

subject to (7.4)

—4.3xi +  5 .3 x 2 +  1 .6 x3 +  0 .5 x4 — 2 .1 x 5 = 12.5 

7.2xi — 2 .6 x 2 +  2 .4 x3 +  1 .6 x4 +  2 .9 x5 =  7.2 

1.3xi — 1 .2 x 2 +  2 .5 x3 -b 4 .1 x4 — 2 .7 x5 =  6.3

Xi,X2,X3,X4,X5 > 0,

This problem is solved by using the following initial solutions.

X -  [0.1295 2.2951 3.2307 1 1]'-̂ , =  [0 0 0]^, and z»' =  l/x°^

x“2 =  [0.6170 1.9585 3.0832 0.1 0.1]^, =  [ 0 0  0 ]^, and =  l/x°^

x°3 =  [0.7309 2.7750 1.2720 2 1]^, =  [Q 0  Q]T̂  ^nd z°^ =  l/x°^

x°" =  [0.7432 2.2114 2.4591 0.5 0.2]^, =  [0 0 0]^, and z'’'* =  l/x^^

The optimal solution of this problem is x* =  [0.6711 1.9631 3.1133]^, and the cor

responding objective value is 17.8277. The number of iterations to converge to the 

optimal solution for these initial solutions are given in the Table 7.1. Clearly, modified 

primal dual IPM performs equally same over primal dual IPM for this problem for 

the given initial solutions.

P ro b le m  L 0 5  - G lobal R o u tin g  P ro b lem : This problem is a simple global rout

ing problem using a LO formulation presented in [70]. In this problem, we want to 

connect 3 modules by a wire using horizontal and vertical segments. A measure which 

is used to obtain global routings is the minimization of wirelength. Using wirelength
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measure, we have the following LO representation of the global routing problem.

L 0 5 :  min —4 x 1 — Szg — 8 x3 — 4x,i — X5 -  3xg

subject to (7.5)

X i  +  X 2  +  X 3  +  X , 1 < 1

X 5  +  X g < 1

X 1 +  X . J  +  X g < C l

X i  +  X 2  +  X 3  +  X 5 < C 2

X ]  +  X 4  +  X g < C 3

X 3  +  X . )  +  X g < C '4

X 2 < C 5

X l  +  X 3  +  X 4 < C g

X 2 < C "

X i , X 2 , X 3 , X 4 , X 5 , X g > 0 .

This problem is solved by using the following initial solutions.

X°l:= [1 3 2 2 1 3 2 2 1 3 2 2 1 3  2]^, ^0 1 .= [0 0 0 0 0 0 0 0 0]^, and = l/x ° i

X°2 = [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1  1]^, y02.= [0 0 0 0 0 0 0 0 0]^, and ^ 0 2  = l/x02

x«3 = [1 2 3 4 1 1 3 1 1 3 1 4 3 2  1]^, y03.= [0 0 0 0 0 0 0  0  o f , and 0̂3 = l/x°^

x«4 = [ 1 2 1 4 1 1 2 1 4 1 1 2 1 4  i f , y04.= [0 0 0 0 0 0 0  0  o f . and l/x»''

The values Ci are the number of available tracks in each edge. If Ci - 1 for all i, then

the optimal solution of the problem is x* = [0  1 0  0  0  1]^, and the corresponding 

objective value is —6 . The number of iterations to converge to the optimal solution
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for these initial solutions are given in the Table 7.1. Clearly, modified primal dual 

IPM performs equally same over primal dual IPM for this problem for the given initial 

solutions.

Table 7.1: Summary of the computations for LO test problems

7i m PDl MDl PD2 MPD2 PD3 MPD3 PD4 MPD4

LOI 4 2 33 20 14 13 32 20 13 16

L02 5 3 12 13 12 12 12 13 13 13

L03 4 2 11 11 13 16 13 14 12 11

L04 5 3 13 16 14 14 13 15 12 13

L05 15 9 16 14 15 13 16 18 17 13

7.2 Convex QO Test Problems

To demonstrate the behavior and performance analysis of both of the trajectories 

the following convex QO problems are used. Since our purpose here was to show 

graphically the functional and operational characteristics of the proposed trajectory, 

we have chosen some rather simple small size text-book examples. Each problem 

is solved four times by using different initial solutions, same parameters and same 

stopping criteria by using primal dual IPM by the classical parameterization and 

modified primal dual IPM by the proposed parameterization. By doing so, we can 

make a fair comparison for the behavior and performance analysis of the trajectories.
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P ro b le m  Q O l: The following convex QO problem is presented in [55],

QOl:  mill —6 x 1 +  2 xj — 2 x\X 2 + 2 x2

subject to (7.6)

X \ +  X2 < 2 

Xi,X2 > 0,

This problem is solved by using the following initial solutions.

=  [1 0.5 0.5]^ , = [0]̂  , and — 1/x®^

x̂ '̂  =  [0.3 1 0.7]^, = [0]^, and 2 °̂  =

-  [0.486 0.681 0.833]^, -  [Of ,  and =  l/x^s

=  [0.8335 0.2484 0.9181]^, =  [0]^\ and z°^ = 1/x^^

The optimal solution of this problem is X* -  [1.5 0.5]^ and the corresponding objective 

value is —5.5. The number of iterations to converge to the optimal solution for these 

initial solutions are given in the Table 7.2. Clearly, modified primal dual IPM performs 

equally same over primal dual IPM for this problem for the given initial solutions. 

P ro b lem  Q 0 2 : The following convex QO problem is presented in [60].

Q02:  min —4xi -  6 x2 +  2xf +  2 xiX 2 + 2x |

subject to (7.7)

x\  + 2 x 2 < 2

Xi,X2 > 0 ,

This problem is solved by using the following initial solutions.

=  [0.2 0.5 0.8]^, y°’ =  [0]̂  , and z°* =  l /x ° '



= [11 1]^, =  [0]^, and = l/x°^

=  [5 10 1]^, =  [0]^, and =  l/x^^

x*̂ ‘’ =  [12 3]  ̂, =  [0]^, and 2 °"̂  = 1 /x"'

The optimal solution of this problem is x* =  [0.3333 0.8333]^’ and the corresponding 

objective value is —4.1667. The number of iterations to converge to the optimal 

solution for these initial solutions are given in the Table 7.2. Clearly, modified primal 

dual IPM performs equally same over primal dual IPM for this problem for the given 

initial solutions.

P ro b le m  Q 0 3 : We choose another simple QO problem from [7].

QOS: min —2xi — 6 x2 + a; ̂  — 2 x]X2 +  2xg

subject to (7.8)

xi + x'2 < 2

—X] T 2x2 ^  2

X i , . X 2  > 0.

This problem is solved by using the following initial solutions, 

x*̂  ̂ =  [5 O.I 0.5 2]^, =  [0 0]^, and =  1/x^^

=  [ 1 1 1  1 ] ^ ,  y ° 2  _  (Q QjT^ a n d  2^^ =  l/x^'^

= [5 10 1 2]^, y°'̂  =  [0 0]^, and 2 ^̂  =  l/x°^ 

x°'* =  [1 2 3 4]^, y°'* =  [0 0]^, and 2 ®"̂ =  l/x®'’

The optimal solution of this problem is X* =  [0.8 1.2]^ and the corresponding objective 

value is -7 .2 . The number of iterations to converge to the optimal solution for these
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initial solutions are given in the Table 7.2. Clearly, modified primal dual IPM performs 

equally same over primal dual IPM for this problem for the given initial solutions. 

P ro b lem  Q 0 4 : We choose another QO problem from [73].

QO4 : mill \ .bx \  -  X\X2 +  x \xz  -  2 x \ X i - \ - 2 x 2 +  2 x 2 X-i

+ 2 .6 2 :3  +  xjiX .x  +  3x ^  — 6.T1 +  163:2  T  92:3 +  42:4 

subject to (7.9)

2:1 +  2 x 2  +  4 x 3  +  5 x 4  — 12

3x i  -  2 x 2  — 2:3 +  2 x 4  =  8

2 x i  -  3 x 2  +  X3 -  4.T4 =  6

X l , X 2 , X 3 , X 4 > 0,

This problem is solved by using the following initial solutions.

x°^ = [1  6 6 2]^, =  [0 0 0]  ̂, and =  l/x^^

x°2 =  [10 1 10 1]^, =  [0 0 0]^, and =  1/x®^

x^^ =  [6 10 1 2 p , =  [0 0 0]^, and =  l/x°^

x'*'* =  [ 1 2 8  1]^, =  [0 0 0]^, and z^‘̂ — Ijx^^

The optimal solution of this problem is x* = [2.967 0 1.7363 0.4176]^ and the cor

responding objective value is 24.1678. The number of iterations to converge to the

optimal solution for these initial solutions are given in the Table 7.2. Clearly, modified 

primal dual IPM under performs over primal dual IPM for this problem for the given 

initial solutions.
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Table 7.2: Summary of the computations for QO test problems

n 771 PDl MDl PD2 MPD2 PD3 MPD3 PD4 MPD4

QOl 3 1 11 11 12 13 11 12 12 12

Q02 3 1 12 13 10 11 11 13 12 18

Q03 4 2 14 15 12 13 14 16 13 16

Q04 4 3 14 18 16 18 15 20 14 18

7.3 Applications to Support Vector Machines (SVMs) 

for Classification

Support vector machines (SVMs) [71] have recently attracted much attention in opti

mization and learning theory. As a new tool for solving problems in machine learning, 

they are based on quadratic optimization approaches. Since the problem is convex, 

there are no local minima and various optimization algorithms will be able to identify 

the optimal solution. The name support vector is derived from those points in the 

input space which touch (’’support”) the decision function. An overview of SVMs 

can be found in [14]. Learning machines can be implemented in two different ways as 

classification and regression respectively. In classification problems, the output pa

rameter yi is a categorical variable that indicates to which class a given input vector 

Xi belongs to. For classification of linearly nonseparable data, the decision function 

is given by

n

(7.10)
1=1
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whore i /  is a kernel function [14]. The parameters a* define the solution for the 

following quadratic optimization problem.

n n
max Q(a) =  Oj -  0.5 ^  aiajy iUjH{xiXj)

i = l  J , i= l

subject to (7.11)

71

YlviOt i =  0
i = l

ai <  C / n  

a , > 0.

The training data inner product kernel H,  and regularization parameter C

are given.

In this section, the proposed parameterization of the central trajectory is used 

to solve the resulting SVM quadratic optimization problem for the XOR problem. 

The XOR problem for SVMs can be defined as follows; find an optimal separating 

hyperplane that classifies the following data set given in Table 7.3 without error. It

Table 7.3: XOR data

index i Zi y

1 1 1 1

2 1 -1 -1

3 -1 1 -1

4 -1 -1 1

is not possible to solve this problem with a linear decision boundary since the data
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are nonlinear nonseparable. However, a polynomial decision boundary of order 2 can 

separate these data [16]. The inner product kernel for polynomials of order 2 is

H {x ,x ' )  =  [(x.x') + I]^

This expression corresponds to the set of basis functions

(7.12)

z =  (1, \/2xi, \ / 2 x2, \ / 2 x i X2,x \ , x \), (7.13)

where x \ , X 2 correspond to the two inpmt space coordinates. This vector z is a point 

in a six-dimensional feature space. To determine the decision boundary in this space, 

we must solve a convex optimization problem. Depending on the norm we are using 

it can be either LO or convex QO problem.

L in ea r O p tim iza tio n  P ro b lem : We define the XOR problem for SVMs by using 

the LO problems as follows.

min E  Ot +  C* E
i=l t=l

subject to

Vi I Y l  a;,)] + b ]  + Z i  >  1
0=1

(7.14)

ai,Zi >  0.

The inner product kernel is represented as a 4 x 4 matrix H  with elements Hij  

computed by using 7.12 and the given data. Specifically,

9 1 1 1

H  =
1 9  1 1  

1 1 9  1 

1 1 1 9

(7.15)
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By substituting the values of kernel function H{xj ,X i)  and output values from 

Table 7.3, then we can rewrite this problem as follows:

m ill  a i  +  0 2  +  « 3  +  « 4  +  c { z i  +  Z2 +  23 +  ^4) 

subject to (7.16)

- [ 9 a i  — 0 : 2  -  0 : 3  +  « 4  4- 6 ] -  +  1 <  0

[o i -  9 o:2 -  Q3 +  a .i +  6] -  Z2 +  1 <  0

[qi -  « 2  -  9«3 + « 4  +  6] — Z3 + 1 < 0

- [ « 1  -  Q 2  —  0 : 3  +  90 : 4  +  6 ]  —  ^ 4  +  1 <  0

Oi,Zi >  0.

This problem is solved by using primal dual IPM and modified primal dual IPM by 

using the following initial solutions.

rr°i =  [0.08 0.1 0.14 0.15 1 0.7 0.8 0.1 1 1.5 0.6 0.2]^', i / '  = [00 0 O]'-̂ ', and z»' = I/.?:»'

= [1 1 1 1 1 1 1 1 1 1 1 i]T  ̂ y 02 =,[0 0 0 O]'-'’, and =  1/%°^

=  [1 2 3 4 5 6 6 5 4 3 2  1] ’̂, =  [0 0 0 0]^’, and z°^ =  l/z»^

z»" = [1 2 1 0.4 1 3 4 1 0.1 1 3 0.2]^ =  [0 0 0 0]^ and =  l/z°"

The optimal solution to this linear optimization problem for C=10000 is a , =  0.125 

and the corresponding objective value is 0.5. The number of iterations to converge 

to the optimal solution for these initial solutions are given in the Table 7.4. Clearly, 

modified primal dual IPM performs better over primal dual IPM for this problem for 

the given initial solutions.

Q u ad ra tic  O p tim iza tio n  P rob lem : Now, we define the SVM QO for the XOR
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problem for SVM by using QO problem as follows.

mill —a i -  « 2  -  « 3  -  « 4  +  0.5 aia jy i y j H i j
i , j  =  \

subject to (7.17)

ot\ — Oi2 — OL'i -\- a \ =  0

ai > 0 .

The inner product kernel is represented as a 4 x 4 matrix H with elements Hij 

computed as LO case and the corresponding data is same as 7.15. Therefore, objective 

function of the quadratic problem can be written as follows.

min —oi — « 2  — Q3 — « 4  +  0.5 a  I «2  0:3 04

9 - 1 - 1 1 « 1

- 1 9 1 - 1 « 2

- 1 1 9 - 1 0 3

1 - 1 - 1 9 «4

This problem is solved by using primal dual IPM and modified primal dual IPM by 

using the following four initial solutions.

= [1 0.2 5 1]^, ŷ  ̂ =  [0]^, and — \ / tP̂

= [ 1 1 1  1]^, 1/°^ =  [0 ]^, and =  l/x°^

=  [1 2 3 4]^, =  [0]^, and 2 °̂  =  \jx^^

= [2 3 0.2 4]^, =  [0]^, and =  l/æ»''

The optimal solution to this convex quadratic optimization problem for is a , =  0.125 

indicating that all four data points are support vectors and the corresponding objec

tive value is —0.25. Computational results for these initial solutions are given in the
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Table 7.4. The number of iterations to converge to the optimal solution for these ini

tial solutions are given in the Table 7.4. Clearly, modified primal dual IPM performs 

better over primal dual IPM for this problem for the given initial solutions.

Table 7.4: Summary of the computations for SVMs for pattern recognition

n m PD l MDl PD2 MPD2 PD3 MPD3 PD4 MPD4

LO 12 4 47 20 30 20 58 27 74 21

QO 4 1 17 11 12 12 21 12 20 12
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Chapter 8

Summary, Conclusions and

Recommendations

8.1 Summary

111 this work, a new approach to the parameterization of the central trajectory for pri

mal dual IPMs is proposed. A continuous dynamical system that describes the rate 

of change of the barrier parameter of the central trajectory is considered. Instead 

of parameterizing the central trajectory by the barrier parameter, it is parameter

ized by the time. Therefore the central trajectory is described through continuous 

dynamical system. Specifically, a new update rule based on the solution of an ODE 

for the barrier parameter of the primal dual IPMs is presented. The resulting ODE 

combined with the first order Karush-Kuhn-Tucker conditions, which are algebraic 

equations, are called differential algebraic equations (DAEs). By solving DAEs, we
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follow approximately the central trajectory of the primal dual IPMs. By doing so, we 

find an optimal solution to the given problem.

The proposed parameterization of the central trajectory is investigated both for 

LO and convex QO problems. Primal dual IPMs for LO and convex QO problems are 

modified by using the proposed approach to the parameterization of central trajectory. 

We proposed two new primal dual IPM algorithms based on these modifications.

The proposed parameterization of the central trajectory is studied in detail for con

vergence, implementation, computational complexity and stability issues. We proved 

the convergence of the proposed algorithms and showed that they converge faster 

than original primal dual IPMs. Stability of DAEs are also proven that the resulting 

DAEs are stable. Numerical experiments are conducted by using some test problems 

to demonstrate the behavior and performance analysis of the new approach to the 

parameterization of the central trajectory. Computational results are consistent with 

the theoretical results.

8.2 Recommendations for Future Research

In this study, we considered only linear and convex quadratic optimization problems 

for the proposed primal dual IPMs by using the new parameterization of the central 

trajectory. The proposed parameterization of the central trajectory for primal dual 

IPMs can be extended to the general nonlinear optimization problems and positive 

semidefinite optimization.

Since our purpose here was to show graphically the functional and operational
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characteristics of the proposed trajectory, we have chosen some rather simple small 

size text-book examples. Therefore an experimentation with bigger size and real 

world test problems can be performed to get better feeling about the performance of 

the proposed trajectory in large scale setting.

In this study, to solve ODE we use the backward Euler’s method. Different ODE 

solvers like one-step, multi-step, Runge-Kutta, predictor-corrector techniques can be 

be tested to solve the resulting DAE. An investigation for the best ODE solver to solve 

the DAE for mathematical optimization problems may result better performance for 

the algorithms.
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Appendix A

MATLAB Codes

Main Program file named as ’’rnpdlp.m” for modified primal dual IPMs for linear 

optimization problems. It calls some functions that are given after the main program 

file.

c l e a r  s e s s i o n ;  

c l e c i r  a l l ;  

l o i  ;

%lo2;

7.1o3 ;

%lo4;

%lo5;

%xor ;

1=0 ; m0=0.1 ;

w h i l e  a b s ( c ' * x O - b ' * y O ) > 0 . 0 0 0 1
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i = i + l ;

t r a j e c t o r y ( i , l ) = x O ( l ) ; 

t r a j e c t o r y ( i , 2 ) = x 0 ( 2 ) ;

X = d i a g ( x O ) ;

Z = d i a g ( z O ) ; 

tO=b-A*xO;  

u O = c - A ’*yO-zO; 

vO=mO*e-X *Z* e+h *d m(xO ,n) ;

d y = i n v ( A * i n v ( Z ) * X * A ' ) * ( A * i n v ( Z ) * X * u O + t O - A * i n v ( Z ) * v O ) ; 

d z= u O -A ’ * d y ; 

d x = i n v ( Z ) * ( v O - X * d z ) ;

5=1;

t = l ;

s t e p x ( s ) = s ;  

s t e p z ( t ) = t ; 

f o r  j = l : n  

i f  d x ( j )  < 0

s t e p x ( s ) = - x O ( j ) / d x ( j ) ; 

s = s + l ;

en d

i f  d z ( j )  < 0

s t e p z ( t ) = - z O ( j ) / d z ( j ) ;
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t= t+ l ;

en d

end

s p = a l p h a * m i n ( s t e p x ) ; 

s d = a l p h a * r a i n ( s t e p z ) ; 

xO =x O+ sp *dx ; 

yO=yO+ sd *dy ; 

z O = z O + s d * d z ; 

ml=mO +h* dm( xO,n ) ; 

w h i l e  ml < 0 

h = h / 2 ;

m l=m O+h*dm(xO,n) ;

en d  

mO=ml;

tram O( i )= mO ;

e n d

xO

i

c ' *xO

The following function calculates the rate of change of the barrier parameter fj. 

when the main program needs it.

f u n c t i o n  y = d m ( x , n )
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suml=0; 

fo r  i= l ;n

sum l= siun l+ log(x (i));

end

y=suml;

An example of an input file named as ”lo4.m” that contains problem data, initial 

solution and parameter values.

n=5; m=3;

A=[-4.3 5 .3  1.6 0 .5  -2 .1 ;7 .2  -2 .6  2 .4  1.6 2 .9 ;1 .3  -1 .2  2 .5  4.1 - 2 .7 ] ;

b = [1 2 .5 ;7 .2 ;6 .3 ] ;

c= [2 .4  ; 1 .6  ; 4 .2  ; 5 .2  ; 2 .4] ;

%xO=CO.1295 ; 2.2951 ; 3.2307 ; 1 ; 1]; 

y .x0= [0 .617 ;1 .9585;3 .0832;0 .1 ;0 .1 ] ;

%xO=[0.7309 ; 2.775 ; 1.272 ; 2 ; 1]; 

xO=[0 .7 4 3 2 ;2 .2 1 1 4 ;2 .4 5 9 1 ;0 .5 ;0 .2 ] ; 

y 0 = [0 ;0 ;0 ];

zO = [l/x O (l); l/x O (2 ) ; l / x 0 ( 3 ) ; l/x O (4 ) ; l / x 0 ( 5 ) ] ; 

e= [l ; 1 ; 1 ; 1 ; 1] ;

alpha=0.65; sigma=0.5; h=0.1;

Main Program file named as ’’pdlp.m ” for classical primal dual IPMs for linear 

optimization problems.

c le a r  se ss io n ;
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c l e a r  a l l ;

• / . lo i ;

l o 2 ;

*/.lo3;

%lo4;

%lo5 ;

%xor;  

i = 0 ;  

m 0 = 0 . 5  ;

w h i l e  a b s ( c ' * x O - b ' * y O ) >  0 . 0 0 0 1  

i = i + l ;

t r a j e c t o r y ( i , l ) = x O ( l ) ; 

t r a j e c t o r y d , 2 ) = x 0 ( 2 )  ;

X = d i a g ( x 0 ) ;

Z = d i a g ( z O ) ; 

mO =si gm a*( xO' * z O / n ) ; 

pathmO(i )=mO;  

tO=b-A*xO;  

u O = c - A ’ *yO-zO;  

vO=mO*e-X*Z*e;

d y = i n v ( A * i n v ( Z ) * X * A ’ ) * ( A * i n v ( Z ) * X * u O + t O - A * i n v ( Z ) * v O ) ; 

dz=uO“ A ' *dy;
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d x = i n v ( Z ) * ( v O - X * d z ) ;

s = l ;

t = l ;

s t e p x ( s ) = s : 

s t e p z ( t ) = t ; 

f o r  j = l : n

i f  d x ( j )  < 0

s t e p x ( s ) = - x O ( j ) / d x ( j ) ; 

s = s + l ;

end

i f  d z ( j )  < 0

s t e p z ( t ) = - z O ( j ) / d z ( j ) ; 

t = t + l ;

end

end

s p = a l p h a * m i n ( s t e p x ) ; 

s d = a l p h a * m i n ( s t e p z ) ; 

xO=xO+sp*dx;  

yO=yO+sd*dy; 

zO=zO+sd*dz;

en d

xO
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c ' *xO

Main Program file named as ’’mqpo.m” for modified primai dual IP Ms for convex 

quadratic optimization problems.

c l e a r  s e s s i o n ;  

c l e a r  a l l ;

V.qpl ;

*/.qp2 ;

’/.qp3 ; 

qp4;  

y.qxor ;

1= 0 ; 

m0=0.1  ;

w h i l e  a b s ( c ' * x O - b ' * y O + x O ' * Q * x O ) >  0 . 0 0 0 1  

i = i + l ;

X = d i a g ( x O ) ;

Z = d i a g ( z O ) ; 

dP=b-A*xO;  

dD=Q*xO+c-A' * y O - z O ; 

dW=mO*e-X*Z*e+h*dm(xO,n) ;

ZZ=Z+X*Q;

d y = i n v ( A * i n v ( Z Z ) * X * A ' ) * (A * i n v( Z Z )* X * d D + d P - A * in v( Z Z ) * d W ) ;
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d x = i n v ( Z Z ) * (dW-X*dD+X*A’ * d y ) ; 

KK=dW-Z*dx; 

f o r  k k = l : n

d z z ( k k ) = K K ( k k ) / x O ( k k ) ;

e n d

d z = d z z ’ ;

s=l;

t = l ;

s t e p x ( s ) = s ; 

s t e p z ( t ) = t ; 

f o r  j = l : n

i f  d x ( j )  < 0

s t e p x ( s ) = - x O ( j ) / d x ( j )  ; 

s = s + l ;

en d

i f  d z ( j )  < 0

s t e p z ( t ) = - z O ( j ) / d z ( j ) ; 

t = t + l ;

en d

en d

s p = a l p h a * m i n ( s t e p x ) ; 

s d = a l p h a * m i n ( s t e p z ) ;
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xO=xO+sp*dx;  

y O= yO + sd *d y; 

zO =zO+sd*dz;  

ml= mO +h* dm( xO,n ) ; 

w h i l e  ml < 0 

h = h / 2 ;

m l=m O+h*dm (xO,n) ;

end  

mO=ml;

tramO (i )=m O;

e n d

i

xO

c ' * x 0 + 0 . 5 * x 0 ' * Q * x 0

xO'*zO

Main Program file named as ’’qpo.m” for classical primal dual IPMs for convex 

quadratic optimization problems.

c l e a r  s e s s i o n ;  

c l e a r  a l l ;

7.qpl;

qp2;

7.qp3 ;
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%qp4 ; 

q x o r ;  

i = 0 ;

w h i l e  a b s ( c ' * x O - b ' * y O + x O ' * Q * x O ) >  0 . 0 0 0 1  

i = i + l ;

X = d i a g ( x O ) ;

Z = d i a g ( z O ) ; 

mO= sigm a*(x O' * z O / n ) ; 

dP=b-A*xO; 

dD=Q*xO+c-A’ *y O -z O ; 

dW=mO*e-X*Z*e;

ZZ=Z+X*Q;

d y = i n v ( A * i n v ( Z Z ) * X * A ' ) * ( A * in v (Z Z )* X * dD + d P- A *i n v( Z Z) *d W ); 

d x = i n v ( Z Z ) * (dW-X*dD+X*A’ * d y ) ;

KK=dW-Z*dx; 

f o r  k k = l : n

d z z ( k k ) = K K ( k k ) / x O ( k k ) ;

end

d z = d z z ' ;

s = l ;

t = l ;

s t e p x ( s ) = s ;
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s t e p z ( t ) = t ; 

f o r  j = l : n  

i f  d x ( j )  < 0

s t e p x ( s ) = - x O ( j ) / d x ( j ) ; 

s = s + l ;

en d

i f  d z ( j )  < 0

s t e p z ( t ) = - z O ( j ) / d z ( j ) ; 

t = t + l ;

end

end

s p = a l p h a * m i n ( s t e p x ) ; 

s d = a l p h a * r a i n ( s t e p z ) ; 

xO=xO+sp*dx;  

yO=yO+sd*dy; 

z O = zO + sd *d z;

en d

i

xO

c ' * x 0 + 0 . 5 * x 0 ' *q*xO 

xO'*zO
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An example of an input file named as ”qi)4.rn” that contains problem data, initial 

solution and parameter values.

n=4;  m=3;

A = [ l  2 4  5 ; 3  - 2  - 1  2 ; 2  - 3  1 - 4 ] ;  

b = [ 1 2 ; 8 ; 6 ] ;

Q=[3 - 1  1 - 2 ; - l  4  2 0;  1 2 5 l ; - 2  0 1 6 ] ;  

c = [ - 6 ; 1 5 ; 9 ; 4 ] ;

’/ . x O=[ l  ; 5 ; 5 ; 2 ]  ;

• / . x 0 = [ 1 0 ; l ; 1 0 ; l ]  ;

• / . x 0 = [ 5 ; 1 0 ; l ; 2 ]  ; 

x 0 = [ l ; 2 ; 8 ; 1 ] ;  

y 0 = [ 0 ; 0 ; 0 ] ;

z O = [ l / x O ( l ) ; l / x 0 ( 2 ) ; l / x 0 ( 3 ) ; l / x 0 ( 4 ) ]  ; 

e = [ l ; l ; l ; l ; l ] ;

a l p h a = 0 . 6 5 ;  s i g m a = 0 . 5 ;  h = 0 . 1 ;

The following file tracks both of the trajectories of the given problem.

c l e a r  s e s s i o n ;  

c l e a r  a l l ;  

l o 3 ;  

p d l p ;

c l e a r  A X Z a l p h a  b c dx dy  dz  e  h  i  j  m raO n s  sd;

c l e a r  s i g m a  s p  s t e p x  s t e p z  t  tO vO uO xO yO zO d e l t a m O l  ml pmOl;
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l o 3 ;  

m p d l p ; 

dra w3 a;

The following file tracks the duality gap reductions of the given problem.

c l e a r  s e s s i o n ;  

c l e a r  a l l ;  

l o 3 ;  

p d l p ;

c l e a r  A X Z a l p h a  b  c dx  dy  d z  e  h  i  j  m mO n  s  s d  t r a j e c t o r y l ;

c l e e i r  s i g m a  sp  s t e p x  s t e p z  t  tO vO uO xO yO zO d e l t a m O l  ml ;

l o 3 ;

m p d l p ;

d r a w b ;

The following file tracks the rate of change of the barrier parameter of the given 

problem.

c l e a r  s e s s i o n ;  

c l e a r  a l l ;  

l o 3 ;  

p d l p ;

c l e a r  A X Z a l p h a  b c dx dy dz  e h  i  j  m mO n s  s d  t r a j e c t o r y l ;

c l e e i r  s i g m a  sp  s t e p x  s t e p z  t  tO vO uO xO yO zO pmOl ml ;
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l o 3 ;  

m p d l p ; 

d r a w c ;

The following file named as ”draw3a.m” draws a figure that shows the trajectories.

[ x l , x 2 ] = m e s h g r i d ( 0 : 0 . 0 1 : 2 , 0 : 0 . 0 1 : 0 . 5 ) ;

y = - x l + 4 . * x 2 ;

v = [ l ,  1 0 ] ;

c o n t o u r C x l , x 2 , y , v )

g r i d ;

h o l d

y = 2 . * x l + 3 . * x 2 ;  

v = [ 3 . 5  10]  ; 

c o n t o u r ( x l , x 2 , y , v )  

y = 2 . * x l + x 2 ;  

v = [ 3  10]  ;

c o n t o u r C x l , x 2 , y , v )

p l o t ( t r a j e c t o r y l ( : , 1 ) , t r a j e c t o r y l ( : , 2 ) , ' k . : ’ ) 

p l o t ( t r a j e c t o r y 2 ( : , 1 ) , t r a j e c t o r y 2 ( : , 2 ) , ' k + : ' )  

x l a b e l ( ' x l ' , ' F o n t S i z e ' , 1 2 )  

y l a b e l ( ' x 2 ' , ' F o n t S i z e ' , 1 2 )  

t i t l e C ' T r a j e c t o r y ' , ' F o n t S i z e ' , 1 2 )
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T h e  fol lowing file n a m e d  as ” d r a w b . m ” draws a  figure t h a t  sh ow s  the  dua l i ty  gap  

reduct ion .

p l o t f p m O K  : ) ,  ’ r .  : ’ )

g r i d ;

h o l d

p l o t ( p m 0 2 ( : ) , ’ k + : ’ )

x l a b e K ' i t e r a t i o n  n u m b e r ' , ' F o n t S i z e ' , 1 2 )

y l a b e l ( ’ d u a l i t y  g a p ’ , ' F o n t S i z e ' , 1 2 )

t i t l e ( ' D u a l i t y  Gap R e d u c t i o n s ' , ' F o n t S i z e ' , 1 2 )

T h e  fo l lowing  file n a m e d  as ” d raw c .m ” draws  a  figure th at  shows  t he  ra te  o f  change  

o f  barrier parameter .

p l o t ( d e l t a m O l ( : ) , ' r . : ' )

g r i d ;

h o l d

p l o t ( d e l t a m 0 2 ( : ) , ’k + : ' )

x l a b e K ' i t e r a t i o n  n u m b e r ' , ' F o n t S i z e ' , 1 2 )

y l a b e l ( ' b a r r i e r  p a r a m e t e r ' , ' F o n t S i z e ' , 1 2 )

t i t l e C ' R a t e  o f  Change  o f  B a r r i e r  P a r a m e t e r ' , ' F o n t S i z e ' , 1 2 )
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