INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality $6^{\prime \prime} \times 9^{\prime \prime}$ black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

A Bell \& Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

NOTE TO USERS

The original manuscript received by UMI contains pages with indistinct and/or slanted print. Pages were microfilmed as received.

This reproduction is the best copy available

UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE

NITROSYL AND NITROSO COMPLEXES OF GROUP 8 METALLOPORPHYRINS

A Dissertation
SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the degree of Doctor of Philosophy

UMI Microform 9839784
Copyright 1998, by UMI Company. All rights reserved.
This microform edition is protected against unauthorized copying under Title 17, United States Code.

UMI

300 North Zeeb Road Ann Arbor, MI 48103
© Copyright by LI CHEN 1998 All Rights Reserved.

NITROSYL AND NITROSO COMPLEXES OF GROUP 8 METALLOPORPHYRINS

A Dissertation APPROVED FOR THE DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY

BY

Acknowledgments

First. I would like to express my deepest gratitude to my mentor. Dr. George B. Richter-Addo for his guidance. support. encouragement throughout my graduate studies. I would also like to thank Drs. G. Atkinson. L. L. Lobban. K. M. Nicholas. R. W. Taylor, and R. A. Wheeler for serving as my advisory committee members. Their guidance has helped me survive the graduate studies along the way. Special thanks to Drs. Masood Khan. Victor Young. Jr. (at the University of Minnesota). and Douglas Powell (at the University of Wisconsin. Madison) for X-ray studies.

I would like to give my thanks to all my coworkers present and past in Dr. RichterAddo's group: Lin Cheng. Heesun Chung. Jesse and Shelia Fox. Shelly Hodge. Jonghyuk Lee. Aaron Nichols. Li-Sheng Wang. Geun-Bae Yi. I would also like to thank other fellow Inorganic Division graduate students: Susan Alguindigue. Sam Asirvatham. John Lilly, Danny McGuire. and Kris Wise.

I also deeply appreciate the teaching assistantship offered by the Department of Chemistry and Biochemistry at the University of Oklahoma. and the research assistantship funded by the National Institutes of Health (NIH) and National Science Foundation (NSF).

Finally. I wish to thank my parents, parents-in-law, sister. brother. brother-in-law. sister-in-law and my niece for their support. love, and for taking care of my daughter when I was away from her. I wish to dedicate this dissertation to my husband Hengguo Ma and my lovely daughter Chuchu for their love. support. understanding and sacrifice to help me through and make this work possible.

Table of Contents

Page
List of Tables vii
List of Figures ix
Reproduction Permission xii
Abstract xiii
Chapter 1 Nitrosylation of Osmium Porphyrins withThionitrites and Alkyl Nitrites
Introduction 1
Experimental Section 6
Results and Discussion

* Addition of RSNO to (OEP)Os(CO). 15
* Addition of RONO to (por)Os(CO). 17
* Addition of RSNO and RONO to [(OEP)Os]2. 28
* Further Investigation of the Reaction Pathway for RSNO Addition. 28
* Reaction of RSNO with an Os ${ }^{\text {III }}$ Porphyrin 36
Conclusion 50
References and Notes 51
Chapter 2 Nitrosamine and Nitrosoarene Complexes of Metalloporphyrins
Introduction 58
Experimental Section 63
Results and Discussion
* Synthesis and Characterization of Nitrosamine Complexes of Iron and Osmium Porphyrins. 76
* Extension of the $\eta^{1}-\mathrm{O}$ Nitrosamine BindingFeature to the Preparation of the First TransitionMetal $\eta^{i}-\mathrm{O}$ Bound Nitrosoarene Complexes.91
* The $\eta^{1}-\mathrm{N}$ Binding of Nitrosoarenes to Osil Porphyrins. 105
Conclusion 133
References and Notes 134
Chapter 3 Synthesis and Characterization of Osmium NitronvPorphyrins Containing Organo. Chloro and μ-OxoLigands. and Extension to the First OrganoosmiumThionitrosyl Porphyrin
Introduction $1+1$
Experimental Section $1+4$
Results and Discussion
* Synthesis and Characterization of Organoosmium Nitrosyl Porphyrin Complexes. 149
* Synthesis and Characterization of Osmium Nitrosyl Porphyrin Chloro and μ-Oxo Dimer Complexes. 153
* Synthesis and Characterization of Osmium Thionitrosyl Porphyrin Chloro and Methyl Complexes. 158
Conclusion 167
References and .Votes 168

List of Tables

Fage
Table 1.1 Bond Lengths (Ả) for (OEP)OsiNO) $\mathrm{O}-n-\mathrm{C}_{4} \mathrm{H}_{4}$) 23
Table 1.2 Bond Angles $1^{=}$) for (OEP)Os. $\mathrm{NO}\left(\mathrm{O}-n-\mathrm{C}_{4} \mathrm{H}_{4}\right)$ 24
Table 1.3 Structural Parameters (in A and ${ }^{\circ}$) for Osmium Nitrosyl Complexes 26
Table 1.t Structurally Characterized Monometallic Osmium Porphyrins with O - and S - Donor Ligands 27
Table 1.5 Bond Lengths (\dot{A}) for (OEP)Os(SPh) 34
Table 1.6 Bond Angles (${ }^{\circ}$) for (OEP)Os(SPh) ? $3+$
Table 1.7 Bond Lengths (A) for (OEP)OsiNO) $\left(\mathrm{O}_{2} \mathrm{PF}_{2}\right)$ $+0$
Table $1.8 \quad$ Bond Angles $(\%)$ for (OEP) $\mathrm{Os}(\mathrm{NO})\left(\mathrm{O}_{2} \mathrm{PF}_{2}\right)$ $+1$
Table 1.9 Metric Parameters (in A and ${ }^{\circ}$) for Transition Metal $\eta^{\prime}-\mathrm{OP}\left(=\mathrm{O} \mathrm{F}_{2}\right.$ Complexes $t+$
Table 1.10 Bond Lengths (A) for (OEP)Os(NS) ($\mathrm{O}_{2} \mathrm{PF}_{2}$) $+7$
Table 1.11 Bond Angles $\left({ }^{\circ}\right)$ for (OEP)Os(NS$)\left(\mathrm{O}_{2} \mathrm{PF}_{2}\right)$ $+8$
Table 2.1 Selected Bond Lengths (A) for (TTP)Osi(CO)(Et 2 N.NO) 84
Table 2.2 Selected Bond Angles (${ }^{\circ}$) for (TTP)Os(CO)(Et 2 NNO) 85
Table 2.3 Os-N(por) Bond Lengths (\dot{A}) for Osil Porphyrin Complexes 87
Table 2.4 Structural Parameters (in A and ${ }^{\circ}$) for (por)Osil $(\mathrm{COM}(\mathrm{L})$ complexes 88
Table 2.5 Spin States for (por)Felli Complexes 93
Table 2.6 Selected Bond Lengths (A) for [(TPP)Fe(ONC $\mathbf{C l}_{4} \mathrm{H}_{4} \mathrm{NEt212]+}$ 100
Table 2.7 Selected Bond Angles $\left(^{\circ}\right.$) for $\left[(\mathrm{TPP}) \mathrm{Fe}\left(\mathrm{ONC}_{6} \mathrm{H}_{4} \times \mathrm{Nt}_{2}\right)_{2}\right]^{-}$ 101
 102
Table 2.9 Selected Bond Angles (${ }^{\circ}$) for $\left[(T P P) M n\left(\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{NEt}_{2}\right)_{2}\right]^{+}$ 103
Table 2.10 Selected Bond Lengths (\dot{A}) for (TTP)Os($\mathrm{Ph} \mathbf{N O}$) 2 114
Table 2.11 Selected Bond Angles (${ }^{\circ}$) for (TTP)Os(PhNO) 2 115
Table 2.12 Selected Bond Lengths (A) for (TTP)OsiCOMPh.VO) 116
Table 2.13 Selected Bond Angles (${ }^{\circ}$) for (TTP)Os(CO॥PhNO) 117
Table 2.14 Selected Bond Lengths (A) for (TPP)Os(Ph.iO), 118
Table 2.15 Selected Bond Angles (${ }^{\circ}$) for (TPP)Os(PhNO) 2 119
Table 2.16 Selected Bond Lengths (À) for (TMP)OsiPhNO): 121
Table 2.17 Selected Bond Angles (${ }^{\circ}$) for (TMP)Os(PhNO) 122
Table 2.18 Selected Bond Lengths (A) for (OEP)Os $(o-t o l N O)_{2}$ $12+$
Table 2.19 Selected Bond Angles (${ }^{\circ}$) for (OEP)Osto-tolNO) 2 125
Table 3.1 Selected Spectral Data for (OEP)Os(NE)X (E = O. S) and Relared Compounds 152
Table 3.2 Selected Bond Lengths (\AA) for $[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})]_{2}(\mu-\mathrm{O})$ 156
Table 3.3 Selected Bond Angles $(=)$ for $[(\operatorname{OEP}) \operatorname{Os}(\mathrm{NO})]_{2}(\mu-\mathrm{O})$ 156
Table 3.4 Structural Parameters (in A and ${ }^{\text {a }}$) for Group 8 Oxo-Bridged Dimers 157
Table 3.5 Selected Bond Lengths (A) for (OEP)Os(NS)Cl 160
Table 3.6 Selected Bond Angles (${ }^{\circ}$) for (OEP)Os(NS)Cl 160
Table 3.7 Selected Structural Data for Osmium and Ruthenium Thionitrosyl Complexes 162
Table 3.8 Selected Bond Lengths (Ả) for (OEP)Os(NS) (Me) 165
Table 3.9 Selected Bond Angles (${ }^{\circ}$) for (OEP)Os(NS)(Me) 166

List of Figures

Page

Figure 1.1 Molecular structure of (OEP)Ru(NO)(SR) (SR = N-acetyl-L-cysteine methyl ester).

Figure 1.2 Molecular structure of (TTP)Osi(NO)(S-i-C5 H_{11}). +
Figure 1.3 IR spectrum of the reaction solution $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ containing the starting (OEP)Os(CO) ($v_{\mathrm{CO}}=1883 \mathrm{~cm}^{-1}$). intermediate (OEP)Os(CO) (SPh) ($v_{\mathrm{CO}}=1957 \mathrm{~cm}^{-1}$). and the final $(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})(\mathrm{SPh})$ product ($v_{\text {vo }}=1766 \mathrm{~cm}^{-1}$).

Figure 1.t IR monitoring (in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) of the reaction of (TTP)Os(CO) ($v_{\mathrm{CO}}=1898 \mathrm{~cm}^{-1}$. spectrum a) with isoamyl nitrite to give (TTP)Os(NO) (O-i-C $\left.\mathrm{C}_{5} \mathrm{H}_{11}\right)\left(u_{\mathrm{NO}}=1766 \mathrm{~cm}^{-1}\right.$. spectrum c). spectrum b: after addition of isoamyl nitrite. showing the intermediate (TTP)OsiCO)(O-i-C $\left.\mathrm{C}_{5} \mathrm{H}_{1}\right)\left(v_{\mathrm{CO}}=1968 \mathrm{~cm}^{-1}\right.$, and the product (TTP)Os(NO) $\left(\mathrm{O}-i-\mathrm{C}_{5} \mathrm{H}_{11}\right)$.

Figure 1.5 (a) Molecular structure of (OEP)Os(NO)(O-n-C+ C_{4}).
(b) View along the $\mathrm{O}(2)-\mathrm{Os}(1)$ bond showing the orientation of the axial $n-\mathrm{C}_{4} \mathrm{H}_{9}$ alkoxide ligand relative to the porphyrin core. (c) Ball and stick structure showing the labeling of the atoms.

Figure 1.6 (a) Molecular structure of (OEP)Os(SPh)2. (b) View of the thiolate orientation relative to the porphyrin core. with the view along the $\mathrm{S}(1)$-Osi 1) bond.33

Figure 1.7 [R spectrum of the reaction (10 min) of $\left[(\mathrm{OEP}) \mathrm{Os}^{I I t}\right]_{2}\left(\mathrm{PF}_{6}\right)_{2}$ with isoamyl thionitrite in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.37

Figure 1.8 (a) Molecular structure of $(\mathrm{OEP}) \mathrm{Os}\left(\mathrm{NO}_{)}\right)\left(\mathrm{O}_{2} \mathrm{PF}_{2}\right)$.
(b) View of the $\mathrm{O}_{2} \mathrm{PF}_{2}$ ligand relative to the porphyrin core. with the view along the $\mathrm{O}(2)-\mathrm{Os}(1)$ bond.39

Figure 1.9 (a) Molecular structure of (OEP) $\mathrm{Os}(\mathrm{NS})\left(\mathrm{O}_{2} \mathrm{PF}_{2}\right)$.
(b) View of the $\mathrm{O}_{2} \mathrm{PF}_{2}$ ligand relative to the porphyrin core. with the view along the $\mathrm{O}(1)-\mathrm{Os}(1)$ bond.$+6$

Figure 2.1 Proposed interactions of nitrosamines with the heme site of cytochrome P450.59

Figure 2.2 Possible redox intermediates between amphetamine 1 and its corresponding nitro compound 5 .

Figure 2.3 Coordination modes of C-nitroso ligands to monometallic centers.

Figure 2.4 [R spectra of $\left[(T T P) \mathrm{Fe}\left(\mathrm{Et}_{2} \mathrm{NNO}_{2}\right)_{2}\right]\left(\mathrm{SbF}_{6}\right)$ (top) and
77

Figure 2.5 IR spectra (KBr) of [(TTP)Fe(Et $\left.\left.\mathrm{NNO}_{2}\right)_{2}\right]\left(\mathrm{SbF}_{6}\right)$ (top) and proposed [(TTP)Fe(:NO)(Et2NNO)]((%5Cmathrm%7BSbF%7D_%7B6%7D)) (bottom).

Figure 2.6 IR spectra (KBr) of (TTP)Os(CO) (top) and (TTP)OsiCO)(Et2NNO) (bottom).

Figure 2.7 (a) Molecular structure of (TTP)Os(CO$)\left(\mathrm{Et}_{2} \mathrm{~N} \mathrm{NO}\right.$).
(b) View along the $\mathrm{O}(2)$-Os(11 bond showing the nitrosamine orientation relative to the porphyrin core.
(c) Ball and stick structure showing the atom labelings.83

Figure $2.8 \quad$ IR spectra (KBr) of (OEP)Os(CO) (top) and (OEP)OsiCO) (Et 2 NNO) (bottom).89

Figure $2.9 \quad$ LV-vis spectra of the Fe ${ }^{I I I}$ bis-nitrosoarene complexes in $\mathrm{C}_{6} \mathrm{H}_{6}$. $9+$
Figure $2.10 \quad$ (a) Molecular structure of $\left[(\mathrm{TPP}) \mathrm{Fe}\left(\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{NEt}_{2}\right)_{2}\right]^{+}$.
(b) Disorder of the ligands.

Figure 2.11 (a) Molecular structure of $\left[(T P P) \mathrm{Mn}\left(\mathrm{ONC}_{6} \mathrm{H}_{+} \mathrm{NEt}_{2}\right)_{2}\right]^{+}$. (b) View of ligand orientations relative to the porphyrin core. with the view along the $\mathrm{O}(1)-\mathrm{Mn}(1)$ bond (two orientations due to the disorder of the ligands).

Figure 2.12 IR spectra (KBr) showing the U_{CO} s for (TTP)Os(CO) (top. $1916 \mathrm{~cm}^{-1}$) and (TTP)Os(CO)(PhNO) (bottom. $1972 \mathrm{~cm}^{-1}$).
$\begin{array}{lll}\text { Figure 2.13 Molecular structure of }(T T P) O s(P h N O) & 109\end{array}$
Figure 2.14 Molecular structure of (TTP)Os(CO)(PhNO). 110
Figure 2.15 Molecular structure of (TPP)Os(PhNO)2. 111
Figure 2.16 Molecular structure of (TMP)Os(PhNO)2. 112
Figure 2.17 (a) Molecular structure (OEP)Osto-tolNO)2. (b) View along the $\mathrm{N}(3)-\mathrm{Os}(1)$ bond showing the orientation of the axial o-tolNO ligand relative to the porphyrin core (two positions due to the disorder of the o-tolNO ligand).

Figure 2.18 Structural data for (TTP)Os(PhNO): selected bond lengths and bond angles are shown on the left. Also shown are the $\mathrm{O}-\mathrm{N}-\mathrm{Os}-\mathrm{N}(1)$ torsion angles on the right: the solid line represents the nitroso group of the PhNO ligand above the plane and the dashed line represents the equivalent nitroso group below the plane.

Figure 2.19 Structural data for (TTP)Os(CO)(PhNO): selected bond lengths and bond angles are shown on the left. Also shown is the $\mathrm{O}-\mathrm{N}-\mathrm{Os}-\mathrm{N}(2 \mathrm{~A})$ torsion angle on the right.

Figure 2.20 Structural data for (TPP)Ost $\mathrm{Ph} . \mathrm{CO}$) 2 : selected bond lengths and bond angles are shown on the left. Also shown are the $\mathrm{O}-\mathrm{N}-\mathrm{Os}-\mathrm{N}(2)$ torsion angles on the right: the solid line represents the nitroso group of the PhNO ligand above the plane and the dashed line represents the equivalent nitroso group below the plane.

Figure 2.21 Structural data for (TMP)Ost(PhNO) 2: selected bond lengths and bond angles are shown on the left. Also shown are the $\mathrm{O}-\mathrm{N}-\mathrm{Os}-\mathrm{N}(3)$ torsion angles on the right: the solid line represents the nitroso group of the PhNO ligand above the plane and the dashed line represents the equivalent nitroso group below the plane.

Figure 3.1 (a) Molecular structure of $\left[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})_{2}(\mu-\mathrm{O})\right.$. (b) View from the bottom of the molecule.155

Figure 3.2 Molecular structure of (OEP)Os(NS)(Cl) (only one
of the disordered $\mathrm{NS} / \mathrm{Cl}$ orientations is shown). 159

Figure 3.3 Molecular structure of (OEP)Osi NS)(Me) (only one of the disordered $\mathrm{NS} / \mathrm{Me}$ orientations is shown).$16+$

Reproduction Permission

Portions of this dissertation have been reported in the following published or submitted papers:
(1) "Nitrosylation of Octaethylporphyrin Osmium Complexes with Alkyl Nitrites and Thionitrites: Molecular Structures of Three Osmium Porphyrin Derivatives" Chen. L.: Khan. M. A.: Richter-Addo. G. B. Inorg. Chem. 1998. 37. 533-540.

Reprinted in part with permission from Inorganic Chemistry. Copyright 1998 American Chemical Society.
(2) "Activation of Thionitrites and Isoamyl Nitrite by Group 8 Metalloporphyrins and the Subsequent Generation of Nitrosyl Thiolates and Alkoxides of Ruthenium and Osmium Porphyrins" Yi. G.-B.: Chen. L.: Khan, M. A.: Richter-Addo, G. B. Inorg. Chem. 1997. 36. 3876-3885.

Reprinted in part with permission from Inorganic Chemistry. Copyright 1997 American Chemical Society.
(3) "Nitrosoarene Complexes of Manganese Porphyrins" Fox. S. J. (S.): Chen. L.: Khan. M. A.: Richter-Addo. G. B. Inorg. Chem. 1997. 36. 6465-6467.

Reprinted in part with permission from Inorganic Chemistry. Copyright 1997 American Chemical Society.
(t) "The first structural studies of nitrosoarene binding to iron-(II) and -(III) porphyrins" Wang. L.-S.: Chen. L.: Khan. M. A.: Richter-Addo. G. B. Chem. Commun. 1996. 323-324.

Reproduced by Permission of The Royal Society of Chemistry.
(5) "Synthesis. Characterization. and Molecular Structures of DiethyInitrosamine Metalloporphyrin Complexes of Iron. Ruthenium and Osmium" Chen. L.: Yi. G.-B.: Wang. L.-S.: Dharmawardana. U. R.: Dart. A. C.: Khan. M. A.: Richter-Addo. G. B. Submitted to Inorg. Chem. February 9. 1998.

Reprinted in part with permission from Inorganic Chemistry. submitted for publication. Unpublished work copyright 1998 American Chemical Society.
(6) "Synthesis and Characterization of Osmium Nitrosyl Porphyrins Containing Organo. Halogeno and μ-Oxo Ligands. and Extensions to the first Organometallic Thionitrosyl Porphyrin" Cheng, L.; Chen. L.: Chung. H.-S.: Khan. M. A.: RichterAddo. G. B. Submitted to Organometallics March 16. 1998.

Reprinted in part with permission from Organometallics. submitted for publication. Unpublished work copyright 1998 American Chemical Society.

Abstract

Chapter 1 of this dissertation describes the formal trans addition of thionitrites (RSNO) and alkyl nitrites (RONO) to Os" porphyrins. and the investigation of the reaction pathway of the thionitrite additions to Os" porphyrins. The extension of the thionitrite reaction chemistry with a (OEP)Os ${ }^{\text {III }}$ complex is also described $(O E P=2.3$. 7.8.12.13.17.18-octaethylporphyrinato dianion). The reactions of (OEP)OsiCO) with isoamyl thiontrite and phenyl thionitrite give the trans addition products (OEP)Os(NO)(S-i-C5 H_{11}) and (OEP)Os(NO)(SPh). respectively. The related reactions of (por)Os(CO) 1 por $=$ OEP. TTP: TTP $=5.10$. 15. 20-tetra-ptolylporphyrinato dianion) with alkyl nitrites give the corresponding nitrosyl alkoxides (por)Os(NO)(OR). The reaction of isoamyl thionitrite and isoamyl nitrite with the non-carbonyl-containing [(OEP)Os]z also give the trans addition products. Interestingly. the reaction of $\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NSPh}$ with $[(\mathrm{OEP}) \mathrm{Os}]_{2}$ gives the (OEP) $\mathrm{Os}(\mathrm{SPh})$ 2 product with loss of the arylazo fragments. The reaction of the cationic $\left[(O E P) O_{2}\right]_{2}\left(P_{6}\right)=$ reagent with isoamyl thionitrite gives the nitrosylated product. [(OEP)Osi $\mathcal{N O})]\left(\mathrm{PF}_{6}\right)$. which undergoes anion hydrolysis to give the isolable difluorophosphate (OEP) $\mathrm{Os}(\mathrm{NO})\left(\mathrm{O}_{2} \mathrm{PF}_{2}\right)$ derivative. The analogous (OEP) $\mathrm{Os}(\mathrm{NS})\left(\mathrm{O}_{2} \mathrm{PF}_{2}\right)$ compound is prepared via the anion hydrolysis of $[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NS})]\left(\mathrm{PF}_{h}\right)$. The solid-state structures, (OEP)Os(NS) $\left(\mathrm{O}_{2} \mathrm{PF}_{2}\right)$ have been determined by X-ray crystallography.

Chapter 2 of this dissertation describes the adduct formation of nitrosamine and nitrosoarene compounds to $\mathrm{Fe}^{I I I}$ and $\mathrm{Os}^{\text {II }}$ porphyrins. The reaction of $\left[(T T P) F e(T H F)_{2}\right]\left(\mathrm{SbF}_{6}\right)$ with $\mathrm{Et}_{2} \mathrm{NNO}$ generates the [(TTP)Fer $\left.\mathrm{E}_{2} \mathrm{NNO}_{2}\right)_{2} \mathrm{SbF}_{6}$, complex in 70% yield. Reaction of [(TTP)Fe($\left.\mathrm{Et}_{2} \mathrm{NNO}_{2}\right)_{2}\left(\mathrm{SbF}_{6}\right)$ with NO gas in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ results in the displacement of one of the $\mathrm{Et}_{2} \mathrm{NNO}$ ligands to give the thermally unstable $\left[(T T P) \mathrm{Fe}(\mathrm{NO})\left(\mathrm{Et}_{2} \mathrm{NNO}\right)\right]\left(\mathrm{SbF}_{6}\right)$ complex. The $(\mathrm{TTP}) \mathrm{Os}(\mathrm{CO})\left(\mathrm{Et}_{2} \mathrm{NNO}\right)$ and

(OEP) $\mathrm{Os}(\mathrm{CO})\left(\mathrm{Et}_{2} \mathrm{NNO}\right)$ complexes are prepared in 74° and $66^{\circ} \mathrm{c}$ yelds. respectisely. by Et_NNO addition to the precursor (por)Ost CO) compounds in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The nitrosyl $\left[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})\left(\mathrm{Et}_{2} \mathrm{NNO}\right)\right]\left(\mathrm{BF}_{4}\right)$ derivative is obtained in quantitative yield by the reaction of (OEP)Os(CO) $\mathrm{Et}_{2} \mathrm{NNO}^{2}$) with NOBF_{4}. The solid-state structure of (TTP)Os(CO)(Et_NNO) has been determined by single-crystal X-ray diffraction. The Et 2 NNO ligand displays an $\eta^{1}-\mathrm{O}$ binding mode in (TTP)Os(CO)(Et ${ }_{2} \mathrm{NNO}$). The $\eta^{1}-\mathrm{O}$ binding mode has been extended to the binding of nitrosoarene ligands to $\mathrm{Fe}^{\mathrm{III}}$ as well as $\mathrm{Mn}^{\text {III }}$ porphyrins. The reactions of [(por)Fe(THF) ${ }_{2}\left(\mathrm{SbF}_{6}\right)$ (por $=$ TPP. TTP: TPP $=5.10 .15 .20$-tetraphenylporphyrinato dianion) with para-dialkylamino substituted nitrosoarenes $\mathrm{R}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NO}(\mathrm{R}=$ Me. Et) result in the formation of bis-adducts [(por)Fer $\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{NR}_{2}$) 2] $\left(\mathrm{SbF}_{6}\right)$ in $55-83 \%$ yields. The $\mathrm{R}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NO}$ ligands are weakly coordinated to the Felll center, as indicated by the facile substitution of $\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NO}$ by THF. The solid-state structures of [(TPP)Fe($\left.\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{NEt}_{2}\right)_{2}$]$\left(\mathrm{SbF}_{6}\right)$ and $\left[(\mathrm{TPP}) \mathrm{Mn}\left(\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{NEt}_{2}\right)_{2}\right]\left(\mathrm{SbF}_{6}\right)$ have been determined by X-ray crystallography. The $\mathrm{Et}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NO}$ ligand displays an $\eta^{\prime}-\mathrm{O}$ binding mode in both complexes. The (por)Osil bis-nitrosoarene complexes are prepared via the reaction of (por)Os(CO) (por $=$ TTP. TPP. TMP. OEP: TMP $=5.10 .15 .20$-tetramesitylporphyrinato dianion) with excess PhNO or o-tolNO at high temperature. The room temperature reaction of (TTP)Os(CO) with less than two equivalents of PhNO gives a mixture of (TTP)Os(PhNO) $\mathbf{2}_{2}$ and (TTP)Os(CO)(PhNO) in a $3: 1$ ratio. The solid-state structures of (TTP)Os(PhNO) 2. (TTP)Os(CO)(PhNO). (TPP)Osi(PhNO) 2. (TMP)Os(PhNO) $)_{2}$ and (OEP)Os(o-tolNO) $)_{2}$ have also been determined by single-crystal X-ray diffraction. The nitrosoarene ligands PhNO and o-tolNO display an $\eta^{1}-\mathrm{N}$ binding mode in all five (por)Os ${ }^{1 l}$ nitrosoarene complexes.

Chapter 3 of this dissertation describes the synthesis and characterization of osmium nitrosyl porphyrins containing organo. chloro and μ-oxo ligands and the extensions of the synthetic methodology to the preparation of the first organoosmium
thionitrosyl porphyrin. The reactions of $[($ por $) \mathrm{Os}(\mathrm{NO})]\left(\mathrm{PF}_{6}\right)!$ por $=$ TTP. OEP $)$ with Grignard reagents generate the $($ por $) \mathrm{Osi} \mathrm{NO}) \mathrm{R}$ (por $=\mathrm{TTP} . \mathrm{R}=\mathrm{Me}$: por $=\mathrm{OEP} \cdot \mathrm{R}=$ Me. i - Pr) complexes in $30-4 \%$ vields. The related reaction of $[(\mathrm{OEP}) \mathrm{OsiNO})$ ($\left.\mathrm{PF}_{n}\right)$ with excess EtMgCl generates a 2: I mixture of (OEP)Os(NO)(Et) and (OEP)OstEt) in $39 c_{c}$ vield. The (OEP)Osi NO$) \mathrm{Cl}$ and the μ-oxo [(OEP)OsiNO)] $(\mu$-O) dimer are prepared by the reaction of (OEP)Os(CO) with CINO. The solid-state structure of $[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})]_{2}(\mu-\mathrm{O})$ has been determined by X-ray crystallography. The reaction of (OEP) $\mathrm{Os}(\mathrm{CO} \text {) with (} \mathrm{NSCl})_{3}$ in refluxing THF generates (OEP) Os(NS$) \mathrm{Cl}$ in 49% yield. A 3:2 mixture of (OEP)Os(NS)(Me) and (OEP)Os(Me)2 is obtained from the reaction of (OEP)Os(NS)Cl with excess MeMgBr. The solid-state structures of (OEP)Os(NS)Cl and (OEP)Os(NS)(Me) have also been determined by X-ray crystallography.

Chapter 1. Nitrosylation of Osmium Porphyrins with Thionitrites and Alkyl Nitrites

Introduction

Nitric oxide (NO) chemistry and biochemistry received a surge of renewed interest about a decade ago when it was proposed that the radical species referred to as endothelium-derived relaxing factor (EDRF) was NO.I It is now known that .NO activates the enzyme guanylyl cyclase (GC) by binding to its heme moiety.? Also. the biosynthesis of NO involves the heme-containing NO synthase. ${ }^{3}$ Thus. it has been established that the heme group is vital in NO biochemistry and pharmacology both in NO consumption (by GC) and production (by NO synthase).

Thionitrites (RSNO) are a class of compounds containing the S-nitroso functional group. and their pharmacological properties are linked to the chemistry and biochemistry of NO. ${ }^{+-8}$ Important questions have been raised over the last few years on the true identity of EDRF. While it is generally accepted that EDRF is NO. there are a few published reports showing that some thionitrites possess EDRF-like properties in a manner independent of NO. ${ }^{9-13}$ Protein thiols may be nitrosated under physiological conditions to produce S-nitroso derivatives. ${ }^{1+}$ The reported role of thionitrites (RSNO) as NO-storage and NO-carrier entities in vivo is also intriguing. Hemoglobin is also reported to be an NO-carrier by using its cysteine groups on the protein to form RSNO groups. ${ }^{15}$ Furthermore, the ability of nitrosomethane to bind directly to the heme of GC has also prompted the suggestion that RSNO may actually be able to bind directly to the heme site in GC. ${ }^{16}$ It has also been suggested that one of the possible pathways for the NO-activation of GC is by its binding to an as-yet unidentified nonheme site followed by transfer of the NO group to the heme iron. ${ }^{17}$

Recent investigations into RSNO stability revealed that the presence of trace Cu^{2+} (even in distilled water) plays an important role in RSNO decomposition catalysis
by Cu- ${ }^{18}$ Thus. remnval of trace metal ions (e.g.. by EDTA addition) has heen found to markedly enhance RSNO stability. This finding thus ratises the question of the role of iron and copper metal ions in RS.NO pharmacology. ${ }^{19}$

The possibility of a direct interaction of RSNO with heme led us to insestigate the chemical reactions of RSNO with synthetic metalloporphyrins of the group 8 metals. Our laboratory has demonstrated that organic nitroso compounds such as nitrosamines (N-nitroso). 20 Cupferron (N-nitroso). 21 nitrosoarenes (C-nitroso). $=2$ thionitrites (S-nitroso) and alkyl nitrites (O-nitroso $)^{23}$ interact with heme models to result in either simple adduct formation or activation of the organic nitroso groups to give metal nitrosyls.

Of particular interest was a recent report from our laboratory that thionitrites and isoamyl nitrite add to the group 8 metalloporphyrins via a formal trans addition process to give nitrosyl thiolates and alkoxides. respectively. 23 For example, the reaction of (OEP)Ru(CO) (OEP =2, 3.7.8.12.13.17.18-octaethylporphyrinato dianion) with I equiv of solid S-nitroso- N-acetyl-L-cysteine methyl ester produced the trans addition product (OEP)Ru(NO)(S-NACysMe)(eq 1.1).

```
\((\mathrm{OEP}) \mathrm{Ru}(\mathrm{CO})+\mathrm{RSNO} \longrightarrow(\mathrm{OEP}) \mathrm{Ru}(\mathrm{NO}(\mathrm{SR})+\mathrm{CO}\) (1.1)
```

$$
\mathrm{SR}=S-\mathrm{NACysMe}(N-\text { acetyl-L-cysteine methyl ester })
$$

The molecular structure of the product was determined by single-crystal X-ray diffraction and reveals that the NO and SR ligands are indeed located trans to each other (Figure 1.1).

Other trans addition products such as (OEP)Ru(NO) $\left.\mathrm{SCH}_{2} \mathrm{CF}_{3}\right)^{2}$? ${ }^{\text {in }}$ and (TTP)Ru(NO)(O-i-C5 $\left.\mathrm{H}_{11}\right)^{23 \mathrm{~h}}(\mathrm{TTP}=5.10 .15 .20$-tetra-p-tolylporphyrinato dianion) are obtained via the reaction of (por)Ru(CO) (por $=$ OEP or TTP) with the corresponding $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{SNO}$ and isoamyl nitrite reagents, respectively.

Figure 1.1. Molecular structure of (OEP)Ru(NO)(SR)

$$
\left(\mathrm{SR}=N \text {-acetyl-L-cysteine methyl ester). } \mathrm{I}_{1}\right.
$$

It has also been demonstrated that (TTP)Os(CO) reacts with isoamyl thionitrite to give the trans addition product (TTP)Os(NO) $\left(\mathrm{S}-i-\mathrm{C}_{5} \mathrm{H}_{11}\right)$ (eq 1.2).こ. 6

$$
(\mathrm{TTP}) \mathrm{Os}(\mathrm{CO})+i-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{SNO} \longrightarrow(\mathrm{TTP}) \mathrm{Os}(\mathrm{NO})\left(\mathrm{S}-i-\mathrm{C}_{5} \mathrm{H}_{11}\right)+\mathrm{CO}(1.2)
$$

The identity of the product was also confirmed by single-crystal X-ray diffraction (Figure 1.2).

Figure 1.2. Molecular structure of (TTP)Os(NO)(S-i-C5 H_{11}). $2=36$

Unlike the reactions with $R u^{I I}$ and $\mathrm{Os}^{\text {II }}$. however. the reaction of $(\mathrm{TPP}) \mathrm{Fe}^{\mathrm{II}}(\mathrm{THF})_{2}(\mathrm{TPP}=5.10 .15 .20$-tetraphenylporphyrinato dianion) with S -nitroso- N-acetyl-L-cysteine methyl ester generates the known five-coordinate (TPP)Fe(NO) complex (eq 1.3).
(TPP)Fe(THF) $\mathbf{I}_{2}+$ RSNO \longrightarrow (TPP)Fe(NO) + other products

$$
\mathrm{SR}=\mathrm{S}-\mathrm{NACysMe}(\mathrm{~N} \text {-acetyl-L-cysteine methyl ester) (1.3) }
$$

NO is known to form adducts with NO synthase and cytochrome P450 although some of these NO adducts are known to decompose to form the fivecoordinate (por)Fe(NO) derivatives. Therefore, it is conceivable that. in this reaction. the trans addition product (TPP)Fer(NO)(SR) forms first. which then decomposes to give the (TPP)Fe(NO) complex.

Although a number of ruthenium porphyrin nitrosyls are now known. 20b.23-26 only four osmium porphyrin nitrosyls were reported prior to our initial studies. namely
 nitrosyl porphyrins being available only for (TTP)Os(NO$)\left(\mathrm{S}-i-\mathrm{C}_{5} \mathrm{H}_{11}\right) .236$ This chapter focuses on the extension of the reaction chemistry involving osmium porphyrins with thionitrites and alkyl nitrites. This work also provides new chemical insight on the mode of interaction of RSNO and RONO ligands with osmium porphyrins.

Experimental Section

All reactions were performed under an atmosphere of prepurified nitrogen using standard Schlenk techniques and/or in an Innovative Technology Labmaster 100 Dry Box unless stated otherwise. Solvents were distilled from appropriate drying agents under nitrogen just prior to use: $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{CaH}_{2}\right)$, benzene (.va), hexane (Na /benzophenone/tetraglyme) and THF ($\mathrm{Na} /$ benzophenone).

Chemicals. (TTP)Os(CO).$^{28}(\mathrm{OEP}) \mathrm{Os}(\mathrm{CO})^{28}$ and $[(\mathrm{OEP}) \mathrm{Os}]_{2}{ }^{29 a}$ were prepared by literature methods. The known $[(\mathrm{OEP}) \mathrm{Os}]_{2}\left(\mathrm{PF}_{6}\right)_{2}{ }^{29 \mathrm{~b}}$ was prepared by AgPF_{6} oxidation of $[(\mathrm{OEP}) \mathrm{Os}]_{2}$. Isoamyl nitrite ($i-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{ONO} .97 \%$). isoamyl thiol (mercaptan. i - $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{SH} .97 \%$). n-butyl nitrite (95%). thiophenol (97%). AgPF_{6} (98%) and NOPF_{6} (96%) were purchased from Aldrich Chemical Co. Chloroform-d (99.8%) was obtained from Cambridge Isotope Laboratories. subjected to three freeze-pump-thaw cycles, and stored over Linde $4 \AA$ A molecular sieves. Elemental analyses were performed by Atlantic Microlab. Norcross. GA. Nitric oxide (98\%. Matheson Gas) was passed through KOH pellets and a cold trap (Dry Ice/acetone. $-78{ }^{\circ} \mathrm{C}$) to remove higher nitrogen oxides.

Instrumentation. Infrared spectra were recorded on a Bio-Rad FT-155 FTIR spectrometer. 'H NMR spectra were obtained on a Varian XL-300 spectrometer and the signals were referenced to the residual signal of the solvent employed. All chemical shifts are in ppm. All coupling constants are in Hz . The ${ }^{31} \mathrm{P}$ NMR spectrum was recorded on a Varian 400 MHz spectrometer. and the signals were referenced to external $\mathrm{H}_{3} \mathrm{PO}_{+}(\delta$ at 0 ppm$)$. The ${ }^{19} \mathrm{~F}$ NMR spectrum was also recorded on the same 400 MHz instrument. and the signals were referenced to external trifluoroacetic acid (δ at -79.45 ppm). FAB mass spectra were obtained on a VG-ZAB-E mass spectrometer. UV-vis spectra were recorded on a Hewlett-Packard HP8453 Diode Array instrument.

Preparation of Thionitrites. The preparations of thionitrites ($i-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{SNO}$ and PhSNO) follow established routes from their precursor thiols. ${ }^{30}$ The following
example is representative: Isoamyl mercaptan $\left(0.418 \mathrm{~g} .+.011\right.$ mmol in acetic acid I^{2} mL) was treated with an aqueous solution (1 mL) of $\mathrm{NaNO}=(0.277 \mathrm{~g} .4 .015 \mathrm{mmol}$, at 0) ${ }^{2} \mathrm{C}$. The solution turned deep red immediately. The red product was rapidly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}$) after 2 min of stirring. The organic laver was separated and washed with aqueous . NaHCO ; solution. The organic laver was separated again and dried over MgSO_{4} to give $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of isoamyl thionitrite. The preparation of PhSNO was performed at low temperature ($-8^{\circ} \mathrm{C}$). since this thionitrite decomposes at room temperature in solution.

Preparation of (OEP)Os(NO)(O-n-C49). To a $\mathrm{CH}_{\mathbf{2}} \mathrm{Cl}_{\mathbf{2}}(20 \mathrm{~mL}$) solution of (OEP)Os(CO) (0.075 g. 0.100 mmol) was added excess n-butyl nitrite 10.4 mL .3 mmol . The color of the solution changed from pink red to bright red immediately. The mixture was left to stir for 40 min . The mixture was taken to dryness and the residue was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was allowed to evaporate under inert atmosphere to generate a crystalline solid residue. The resulting crystals were washed with hexane to remove a green-colored component. and the remaining solid was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane (1:2) and filtered over a neutral alumina column in air. The column was washed with more of the solvent mixture, and then with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ until the washings were colorless. The filtrate was taken to dryness in vacuo. and the residue was dried in vacuo for 5 h to give (OEP)Os(NOッO-n$\left.\mathrm{C}_{4} \mathrm{H}_{9}\right) \cdot 1.4 \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.055 \mathrm{~g}, 0.058 \mathrm{mmol}$. 58% vield . Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{53} \mathrm{O}_{2} \mathrm{~N}_{5} \mathrm{Os}_{1} \cdot 1.4 \mathrm{CH}_{2} \mathrm{Cl}_{2}:$ C. $52.62: \mathrm{H} .5 .95: \mathrm{N} .7 .41: \mathrm{Cl}$. 10.50. Found: C. 52.32; H. 5.83: N. 7.56: Cl. 10.60. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): v_{\mathrm{NO}}=1757$. IR $(\mathrm{KBr}$. $\left.\mathrm{cm}^{-1}\right): u_{\mathrm{NO}}=1743 \mathrm{~s}:$ also 2962 w .2931 w .2868 w .1790 w .1467 m .1451 m .1372 m. $1316 \mathrm{w}, 1274 \mathrm{~m} .1263 \mathrm{~m} .1230 \mathrm{w} .1155 \mathrm{~m} .1111 \mathrm{w} .1077 \mathrm{w} .1056 \mathrm{~m} .1021 \mathrm{~m}$. 993 m .963 m .860 w .843 m .764 w .746 s .718 w .705 w .596 m br. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 10.32\left(\mathrm{~s}, 4 \mathrm{H}\right.$. meso-H of OEP). $5.27\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .4 .16$ (q. $J=8.16 \mathrm{H}$. $\mathrm{CH}_{3} \mathrm{CH}_{2}$ of OEP). $2.00\left(\mathrm{t} . J=8.24 \mathrm{H} . \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$ of OEP). $-0.55(\mathrm{t} . J=7.3 \mathrm{H}$.
$\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) .-1.53\left(\mathrm{~m}(\mathrm{qt}) . J=7 / 8.2 \mathrm{H} . \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) .-2.73 \mathrm{t} . J=$ 7. $2 \mathrm{H} . \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$). -3.04 (m (tt). $J=8 / 7.2 \mathrm{H} . \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$). Lowresolution mass spectrum (FAB): m/z 827 [(OEP)Os(NO) $\left.\left(\mathrm{OC}_{4} \mathrm{H}_{y}\right)\right]^{+}\left(17 \mathrm{c}_{\mathrm{c}}\right) .75+$ $[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})]^{+}(100 \%) .724[(\mathrm{OEP}) \mathrm{Os}]^{-}(19 \%)$. LV-vis spectrum $\left(\lambda\left(\varepsilon . \mathrm{mM}^{-1} \mathrm{~cm}^{-}\right.\right.$ 1). $1.31 \times 10^{-5} \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): 342 (40).+18 (91). 533 (17). 567 (26) nm.

A suitable crystal for structure determination was grown by slow evaporation of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the compound.

Preparation of (TTP)Os(NO)(O-i-C5 $\left.\mathbf{H}_{11}\right) . \mathrm{ACH}_{2} \mathrm{Cl}_{2}$ solution (10 mL) of (TTP)Os(CO) (0.065 g. 0.073 mmol$)$ was reacted with $i-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{ONO}(0.20 \mathrm{~mL} .1 .+$ $\mathrm{mmol})$. The solution was gently heated and left to stir for 15 min . The color of the solution did not change very much (from red to purplish red). All the solvent was then removed in vacuo. The residue was redissolved in toluene (2 mL). Hexane (5 mL) was then added, and the resultant mixture was kept overnight at $-20^{\circ} \mathrm{C}$. The supernatant solution was discarded, and the purple crystalline solid was washed with hexane ($3 \times 5 \mathrm{~mL}$) and dried in vacuo for 3 h to give (TTP)Os(NO)(O-i-C5 $\left.\mathrm{H}_{11}\right)(0.041$ g. 0.042 mmol. 57% yield). Anal. Calcd for $\mathrm{C}_{53} \mathrm{H}_{47} \mathrm{O}_{2} \mathrm{~N}_{5} \mathrm{Os}_{1}$: C. $65.21: \mathrm{H} .4 .85$: N. 7.17. Found: C. 65.15; H. 4.93: N. 7.13. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): u_{\mathrm{NO}}=1766$. IR $\left(\mathrm{KBr} . \mathrm{cm}^{-1}\right): v_{\mathrm{NO}}=1770 \mathrm{~s}:$ also 3024 w .2947 w .2918 w .2865 w .1806 w .1528 w. $1512 \mathrm{w} .1494 \mathrm{w} .1455 \mathrm{w}, 1365 \mathrm{w}, 1351 \mathrm{~m} .1306 \mathrm{w} .121+\mathrm{m} .1183 \mathrm{~m} .1110 \mathrm{w} .1075$ m. 1018 s. 978 w. 848 w, 798 s, 719 m. 644 m. 599 w. 594 w. 523 m. 'H NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 8.93(\mathrm{~s}, 8 \mathrm{H}$, pyr-H of TTP). 8.12 (app t (overlapping d`s). $8 \mathrm{H} . \%-\mathrm{H}$ of TTP), 7.56 (m (overlapping d's), $8 \mathrm{H}, m-\mathrm{H}$ of TTP). 2.70 (s. 12H. CH 3 of TTP). -0.61 (d. $\left.J=7,6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) .-1.07\left(\mathrm{~m} .1 \mathrm{H} .\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$. $-2.27\left(\mathrm{t}, J=7.2 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) .-2.82$ (dt (app q). $J=7 / 7.2 \mathrm{H}$. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{O}$). Low-resolution mass spectrum (FAB): $m / \approx 977$ $\left[(T T P) O s(N O)\left(O-i-C_{5} \mathrm{H}_{11}\right)\right]^{+}(24 \%) .890[(T T P) O s(N O)]^{+}(100 \%), 860[(T T P) O s]^{+}$
(34\%). UV-vis spectrum ($\dot{\lambda}\left(\varepsilon . \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right) .3 .85 \times 10^{-6} \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 3171371$. +37 (277). 551 (36). 588 (13) nm.

Preparation of (OEP)Os(NO)(O-i-C5 $\left.\mathbf{H}_{11}\right)$. Method I. To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{~mL})$ solution of (OEP)Os(CO) 0.080 g .0 .107 mmol) was added excess isoamy nitrite $(0.20 \mathrm{~mL} .1 .5 \mathrm{mmol})$. The color of the solution changed from pink red to bright red immediately. The solution was stirred for another 30 min . The mixture was taken to dryness in vacuo. and the product was redissolved in a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane (1:2) mixture and filtered through a neutral alumina column in air. The column was washed with more of the solvent mixture until the washings were colorless. The filtrate was taken to dryness in vacuo. and the product obtained was dried in vacuo for 5 h to give (OEP)Os(NO)(O-i-C5H!1 $\cdot 0.85 \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.050 \mathrm{~g} .0 .055 \mathrm{mmol} .51 \%$ yield). Anal. Calcd for $\mathrm{C}_{4} \mathrm{H}_{55} \mathrm{O}_{2} \mathrm{~N}_{5} \mathrm{O}_{5} \cdot 0.85 \mathrm{CH}_{2} \mathrm{Cl}_{2}:$ C. 55.10: H. 6.26: N. 7.68: Cl. 6.61 . Found: C. 54.86: H. 6.23: N. 7.74: Cl. 6.98. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): v_{\mathrm{NO}}=1756$. IR $\left(\mathrm{KBr} . \mathrm{cm}^{-1}\right): u_{\mathrm{NO}}=1747 \mathrm{~s}:$ also 2962 w. 2928 w .2864 w .2020 w .1954 w .1794 w. 1685 w. 1560 w. 1508 w. 1465 sbr. 1372 m. 1316 w. 1272 m. 1230 w. 1200 w. 1153 s. 1111 s. 1077 s. 1056 s. 1020 s. 993 m. $962 \mathrm{~m} .856 \mathrm{w} .842 \mathrm{~m} .74+\mathrm{s} .738 \mathrm{~s}$. $717 \mathrm{~m} .704 \mathrm{w} .642 \mathrm{w} .589 \mathrm{~m} .{ }^{\mathrm{I}} \mathrm{H}$ NMR (CDCl: δ): 10.31 (s. +H. meso-H of OEP). 5.27 (s. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). 4.15 (q. $J=8.16 \mathrm{H} . \mathrm{CH}_{3} \mathrm{CH}_{2}$ of OEP). $1.99 \mathrm{t} . J=8.24 \mathrm{H}$. $\mathrm{CH}_{3} \mathrm{CH}_{2}$ of OEP). $-0.70\left(\mathrm{~d}, J=7.6 \mathrm{H} .\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) .-1.19(\mathrm{~m} .1 \mathrm{H}$. $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right),-2.72\left(\mathrm{t} . J=8.2 \mathrm{H} .\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{3} \mathrm{O}\right) .-3.27$ (dt (app q). $\left.J=7 / 8.2 \mathrm{H} .\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$. Low-resolution mass spectrum (FAB): $m /=8+1$ $\left[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})\left(\mathrm{O}-i-\mathrm{C}_{5} \mathrm{H}_{11}\right)\right]^{+}(16 \%) .754[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})]^{+}(100 \%) .72+[(\mathrm{OEP}) \mathrm{Os}]^{+}$ (19%) . UV-vis spectrum $\left(\lambda\left(\varepsilon . \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right) .1 .29 \times 10^{-5} \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3+1(+1)$. +18 (102). 533 (19). 567 (30) nm.

Method II. To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ solution of $[(\mathrm{OEP}) \mathrm{Os}]_{2}(0.030 \mathrm{~g} .0 .021$ $\mathrm{mmol})$ was added excess isoamyl nitrite $(0.10 \mathrm{~mL} .0 .75 \mathrm{mmol})$. The color of the solution changed from brown to bright red immediately. The mixture was left to stir
for another 3 h . The mixture was taken to dryness. and the residue was redisolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane ($1: 2$) and filtered over a neutral alumina column in arr. The column was washed with more of the solvent mixture until the washings were colorless. The filtrate was taken to dryness in vacuo. and the residue was dried in vacuo for 3 h to

Preparation of (OEP)Os(NO)(S-i-C $\left.\mathbf{C}_{\mathbf{3}} \mathbf{H}_{11}\right)$. Method I. To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{~mL})$ solution of (OEP)OsiCO) (0.080 g. 0.107 mmol) was added excess isoamyl thionitrite (ca. 1 mmol). The color of the solution changed gradually from pink red to bright red over a period of 1 h . The mixture was left to stir for another +h . The mixture was taken to dryness. and the residue was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane (1:2) and filtered over a neutral alumina column in air. The column was washed with more of the solvent mixture until the washings were colorless. The filtrate was taken to dryness in vacuo. and the residue was dried in vacuo for 5 h to give (OEP)OsiNO)(S-i$\left.\mathrm{C}_{5} \mathrm{H}_{1}\right)^{1} \cdot 0.3 \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(0.031 \mathrm{~g} .0 .035 \mathrm{mmol} .33^{c} / \mathrm{c}\right.$ yield). Anal. Calcd for $\mathrm{C}_{41} \mathrm{H}_{55} \mathrm{O}_{1} \mathrm{~S}_{1} \mathrm{~N}_{5} \mathrm{Os}_{1} \cdot 0.3 \mathrm{CH}_{2} \mathrm{Cl}_{2}:$ C. 56.26: H. 6.36: N. 7.94: Cl. 2.41: S. 3.64. Found: C. 56.12: H. 6.39: N. 7.80: Cl. 2.58: S. 3.55. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot \mathrm{~cm}^{-1}: \mathrm{U}_{\mathrm{NO}}=\right.$ 1757. IR (KBr. cm^{-1}): $v_{\mathrm{NO}}=1751 \mathrm{~s}:$ also $2964 \mathrm{w} .2932 \mathrm{w} .2870 \mathrm{w} .1+67 \mathrm{~m} .1+50$ m. 1373 w. 1316 w. 1271 m. 1229 w. 1154 m .1110 w. 1057 m .1020 m .993 m. $962 \mathrm{~m} .843 \mathrm{~m} .746 \mathrm{~m} .729 \mathrm{~m} .717 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR (CDCl:. δ): $10.29 \mathrm{~s} .+\mathrm{H}$. meso-H of OEP). 5.28 ($\mathrm{s} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$) , 4.14 (q br. $16 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}$ of OEP). 1.99 (t. $J=8.2+\mathrm{H}$. $\mathrm{CH}_{3} \mathrm{CH}_{2}$ of OEP). -0.35 (d. $\left.J=6.6 \mathrm{H} .\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right) .-0.43(\mathrm{~m} .1 \mathrm{H}$. $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right) .-1.92$ (dt (app q). $J=6 / 8$. $\left.2 \mathrm{H} .\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right) .-3.26$ (t. $\left.J=8.2 \mathrm{H} .\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)$. Low-resolution mass spectrum (F.AB): m/= 827 $\left[(\mathrm{OEP}) \mathrm{Os}\left(\mathrm{S}-i-\mathrm{C}_{5} \mathrm{H}_{11}\right)\right]^{+}\left(7 \sigma_{c}\right), 754[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})]^{+}\left(96^{\circ} \mathrm{c}\right)$. $72+[(\mathrm{OEP}) \mathrm{Os}]^{+}\left(28^{\circ} \mathrm{c}\right)$. UV-vis spectrum $\left(\hat{\lambda}\left(\varepsilon, \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right) .1 .18 \times 10^{-5} \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 35+(69) .+4$ (38). $551(15), 58+(11) \mathrm{nm}$.

Method II. To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ solution of (OEP)O心1: $(0.030 \mathrm{~g} .0 .021$ mmol) was added excess isoamyl thionitrite (ca .0 .7 mmol). The color of the solution changed from brown to bright red immediately. The mixture was left to stir for another 5 h . The mixture was taken to dryness. and the residue was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane (1:2) and filtered over a neutral alumina column in air. The column was washed with more of the solvent mixture until the washings were colorless. The filtrate was taken to dryness in vacuo. and the residue was dried in vacuo for 3 h to give (OEP) Os(NO) $\left(\mathrm{S}-i-\mathrm{C}_{5} \mathrm{H}_{11}\right)$ in $33^{\circ} \mathrm{c}$ isolated yield.

Preparation of (OEP)Os(NO)(SPh). To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, solution of (OEP)Os(CO) (0.064 g .0 .085 mmol) was added excess freshly prepared $\mathrm{PhS} . \mathrm{NO}$ (ca. 3 mmol). and the reaction was left to stir for 90 min . The color of the solution changed from pink red to bright red immediately. The mixture was taken to dryness in vacuo. The residue was redissolved in benzene and purified by chromatography using a neutral alumina column under nitrogen with benzene as first eluent. The green elute was discarded. A red fraction was then eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. All the solvent was removed from this elute. and the resulting solid was dried in vacuo for 5 h to give (OEP) Os(NO) $(\mathrm{SPh}) \cdot 0.65 \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.035 \mathrm{~g} .0 .038 \mathrm{mmol} .45 \%$ yield). Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{49} \mathrm{~N}_{5} \mathrm{O}_{1} \mathrm{~S}_{1} \mathrm{Os}_{1} \cdot 0.65 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \quad$ C. $55.84:$ H. $5.53: \mathrm{N} .7 .63:$ Cl. $5.02:$ S. 3. 49 . Found: C. 56.49: H. 5.69: N. 7.64: Cl. 5.39: S. 3.47. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): v_{\mathrm{NO}}=$ 1766. IR $\left(\mathrm{KBr} . \mathrm{cm}^{-1}\right): v_{\mathrm{No}}=1749 \mathrm{~s}:$ also $2966 \mathrm{w} .2932 \mathrm{w} .2870 \mathrm{w} .1578 \mathrm{w} .1+70$ m. $1451 \mathrm{~m} .1375 \mathrm{w} .1315 \mathrm{w}, 1265 \mathrm{~m} .1230 \mathrm{vw}, 1154 \mathrm{~m} .1111 \mathrm{w} .1057 \mathrm{~m} .1021 \mathrm{~m}$. 994 m .963 m .867 vw .843 m .740 m .702 w .689 w .1 H NMR ($\left.\mathrm{CDCl}_{3} .8\right): 10.20$ (s. 4 H. meso-H of OEP). $6.25(\mathrm{t}, J=7.1 \mathrm{H} . p-\mathrm{H}$ of SPh $) .5 .84(\mathrm{t}, J=7.2 \mathrm{H}, \mathrm{m}-\mathrm{H}$ of SPh). 5.28 ($\mathrm{s} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$) 4.12 (q. $J=8.16 \mathrm{H} . \mathrm{CH}_{3} \mathrm{CH}_{2}$ of OEP). 2.82 (d. $J=7.2 \mathrm{H}$. o-H of SPh). 1.99 (t. $J=8.24 \mathrm{H} . \mathrm{CH}_{3} \mathrm{CH}_{2}$ of OEP). Low-resolution mass spectrum $(\mathrm{FAB}): m /=863[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})(\mathrm{SPh})]^{+}(5 \%) .833[(\mathrm{OEP}) \mathrm{Os}(\mathrm{SPh})]^{+}\left(23 \sigma_{c}\right) .75+$
$[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})]^{+}(100 \%) .724$ [(OEP)Os]+(23\%$)$. LV-vis spectrum in $1 \varepsilon . \mathrm{m} . \mathrm{M}$ cm^{-1}). $1.40 \times 10^{-5} \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): 363 (58). 451 (25). 555 (12). 589 (8) nm.

Preparation of $(\mathbf{O E P}) \mathbf{O s}(\mathbf{S P h})_{2} .{ }^{31}$ To a $\mathrm{CH}_{2} \mathrm{Cl}_{2} 120 \mathrm{~mL}$) solution of $[(\mathrm{OEP}) \mathrm{Os}]_{2}(0.040 \mathrm{~g} .0 .028 \mathrm{mmol})$ was added $\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NSPh}: 2(0.030 \mathrm{~g} .0 .116$ mmol). Effervescence (a white smoke) was seen right after mixing the reagents. The color of the solution changed from brown to purple over a 1 h period. The mixture was left to stir for ancther 1 h . All the solvent was then removed. the residue was redissolved in a benzene/hexane mixture (1:5). and the product was purified by neutral alumina column chromatography in air. Elution with hexane and then benzene/hexane (1:5) produced a yellow band which was discarded. Further elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane (1:3) produced a purple band. which was collected. The solvent was removed from the purple solution. and the product was dried in vacuo for 5 h to give the known $(\mathrm{OEP}) \mathrm{Os}(\mathrm{SPh}) \mathbf{2}^{31}(0.022 \mathrm{~g} .0 .023 \mathrm{mmol} .+1 \%$ yield) which was identified by ${ }^{1} \mathrm{H}$ NMR spectroscopy and by X-ray crystallography. IR ($\mathrm{KBr} . \mathrm{cm}^{-1}$): 2964 w . 2931 w. 2865 w. 1725 w. 1576 w. 1536 w. 1470 m .1447 m .1436 w .1372 w .1316 w. $1266 \mathrm{~m} .1226 \mathrm{w} .1149 \mathrm{~m} .1111 \mathrm{w} .108+\mathrm{w} .1056 \mathrm{~m} .1020 \mathrm{s} 992 \mathrm{~m} .961 \mathrm{~m} .92+$. w. 865 w. 842 m .740 s. 719 w. 700 w. 686 m.

A suitable crystal for structure determination was obtained by slow evaporation of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /toluene solution of the compound at room temperature under inert atmosphere.

Reaction of $[(O E P) O s]_{2}\left(P_{6}\right)_{2}$ with Isoamyl Thionitrite. To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ solution of $[(\mathrm{OEP}) \mathrm{Os}]_{2}\left(\mathrm{PF}_{6}\right)_{2}(0.040 \mathrm{~g} .0 .023 \mathrm{mmol})$ was added excess isoamyl thionitrite (ca. 1.5 mmol). The color of the solution changed from brown to red. A solution IR spectrum of the reaction mixture after 10 min revealed the quantitative conversion of $[(\mathrm{OEP}) \mathrm{Os}]_{2}\left(\mathrm{PF}_{6}\right)_{2}$ to $[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})]\left(\mathrm{PF}_{6}\right)$. indicated by the presence of a new band at $1829 \mathrm{~cm}^{-1}$ assigned to U and a band at $847 \mathrm{~cm}^{-1}$ assigned to $U_{P_{6}}$. The reaction mixture was stirred for an additional 20 min . and the mixture was
taken to dryness. An IR spectrum of the residue (as a KBr pellet) at this stage showed the presence of noticeable bands at 1816 and $1787 \mathrm{~cm}^{-1}$ and also at $840 \mathrm{~cm}^{-1}$. Exposure of the solid to air for 30 h resulted in the formation of only one $u_{\text {no }}$ band at $1808 \mathrm{~cm}^{-1}$. The peak at $840 \mathrm{~cm}^{-1}$ assigned to UPF, also disappeared. Crystallization by slow solvent evaporation of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the solid gives (OEP)Os(NO)($\mathrm{O}_{2} \mathrm{PF}_{2}$). which was identified by single-crystal X-ray crystallographic analysis (A suitable crystal of (OEP) $\mathrm{Os}(\mathrm{NO})\left(\mathrm{O}_{2} \mathrm{PF}_{2}\right.$) for structure determination was grown from a saturated solution of $\left[(\mathrm{OEP}) \mathrm{Os}_{2}\left(\mathrm{PF}_{6}\right)_{2}\right.$ and isoamyl thionitrite in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ left under nitrogen for 25 days. followed by slow evaporation of the solution in a dry box for 2 days.).

Alternate Preparation of (OEP)Os(NO)($\mathbf{O}_{\mathbf{2}} \mathrm{PF}_{\mathbf{2}}$). (OEP)OsiCO) (0.060 g .0 .080 mmol) and $\mathrm{NOPF}_{6}(0.015 \mathrm{~g} .96 \%, 0.082 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. A solution IR spectrum of the reaction mixture showed the disappearance of the starting (OEP) $\mathrm{Os}(\mathrm{CO})\left(v_{\mathrm{CO}}=1883 \mathrm{~cm}^{-1}\right)$ and the formation of $\left[(\right.$ OEP $)$ Os($\left.\left.\mathrm{NO}^{2}\right)\right] \mathrm{PF}_{6}\left(v_{\mathrm{NO}}=1833 \mathrm{~cm}^{-1}: U_{\mathrm{PF}_{n}}=8+8 \mathrm{~cm}^{-1}\right)$. The mixture was left to stir for 40 min and exposed to air for 3 days. The mixture was then filtered through a neutral alumina column in air with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. All the solvent was removed from the filtrate thus obtained. and the resulting solid was dried in vacuo overnight to give $(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})\left(\mathrm{O}_{2} \mathrm{PF}_{2}\right)(0.019 \mathrm{~g} .0 .022 \mathrm{mmol} .28 \%$ yield $)$. A sample for elemental analyses was obtained from crystallization of a $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane solution by slow evaporation of the solvent mixture at room temperature and drying the crystalline solid in vacuo for 5 h . Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{44} \mathrm{O}_{3} \mathrm{P}_{1} \mathrm{~F}_{2} \mathrm{~N}_{5} \mathrm{O}_{1} \cdot 0.2$ hexane: C. 51.29 : H. 5.41: N. 8.04. Found: C. 51.58: H. 5.41: N. 7.92. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} . \mathrm{cm}^{-1}\right): v_{\text {No }}=$ 1820. IR $\left(\mathrm{KBr}^{-1} \mathrm{~cm}^{-1}\right): v_{\mathrm{NO}}=1808 \mathrm{~s}$: also $2969 \mathrm{w} .2932 \mathrm{w} .2872 \mathrm{w}, 1+64 \mathrm{w}, 1+5 \mathrm{l}$ w. 1383 w. $137+\mathrm{w} .1324$ s. $1275 \mathrm{w} .1260 \mathrm{w} .1229 \mathrm{w}, 1156 \mathrm{~m} .1116 \mathrm{~m} .1105 \mathrm{~m}$. $1058 \mathrm{~m} .1022 \mathrm{~m} .996 \mathrm{~m} .964 \mathrm{~m} .887 \mathrm{~m} .856 \mathrm{~m} .847 \mathrm{~m} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3} . \delta\right): 10.47$ (s .4 H, meso-H of OEP), $4.20\left(\mathrm{q}, J=8.16 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$ of OEP). $2.01(\mathrm{t}, J=8.24 \mathrm{H}$.
$\mathrm{CH}_{3} \mathrm{CH}_{2}$ of OEP). 1.25 (hexane). ${ }^{3} \mathrm{P}$ NMR $\left./ \mathrm{CDCl}_{3} .400 \mathrm{MHz} . \delta\right):-27.85\left(\mathrm{t} . J_{\mathrm{P} . \mathrm{F}}=\right.$ 985). ${ }^{19} \mathrm{~F}$ NMR ($\mathrm{CDCl}_{3 .} .400 \mathrm{MHz} . \delta$: -89.49 (d. $J_{\text {P-F }}=985$). Low-resolution maw spectrum (FAB): m/s $855\left[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})\left(\mathrm{O}_{2} \mathrm{PF}_{2}\right)\right]^{+}(11 \%) .75+[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})]^{-}$ (13%). LV-vis spectrum $\left(\lambda\left(\varepsilon . \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right) .1 .66 \times 10^{-5} \mathrm{M}\right.$ in benzene $): 3+7(+2)$. $37+(+4) .+21(62) .539(1+1) .575(2+1) \mathrm{nm}$.

The analogous compound (OEP) $\mathrm{Os}(\mathrm{NS})\left(\mathrm{O}_{2} \mathrm{PF}_{2}\right.$) was prepared via the following route: ${ }^{3}$ To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ solution of (OEP) $\mathrm{Os}(\mathrm{NS}) \mathrm{Cl}(0.040 \mathrm{~g} .0 .050$ mmol) was added $\mathrm{H}_{2} \mathrm{O}$ (I. $4 \mu \mathrm{~L} .0 .078 \mathrm{mmol}$) and $\mathrm{AgPF}_{6}(0.013 \mathrm{~g} .0 .051 \mathrm{mmol}$). The mixture was left to stir under nitrogen for 48 h . and the solution was filtered under nitrogen and dried in vacuo for 3 h to give (OEP) $\mathrm{Os}(\mathrm{NS})\left(\mathrm{O}_{2} \mathrm{PF}_{2}\right)(0.043 \mathrm{~g} .0 .048$ mmol. 98% yield).

The identity of the product is confirmed by a single-crystal X-ray crystallographic analysis. A suitable crystal for structure determination was obtained by slow evaporation of a saturated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution under nitrogen for 4 days.

Results and Discussion

In this chapter. we will provide spectroscopic and chemical evidence to vupport the process outlined in Scheme 1.1. We propose that RS.NO compounds add to Osil porphyrins via an initial S-binding of RS.NO. followed by homolytic S-.NO bond cleavage and subsequent displacement of CO by .NO. We propose a similar reaction pathway for RONO compounds as well.

Scheme 1.1

The first part of this Results and Discussion section deals with RSNO additions to the (OEP)Os(CO) compound (RONO additions will also be included). Trans additions of RSNO and RONO to the non-carbonyl-containing [(OEP)Os)] dimer will also be discussed. This will be followed by additional successful reactions that shed chemical insight on the general reaction pathway outlined in Scheme 1.1. Finally, the reaction of isoamyl thionitrite with a cationic (OEP)Os ${ }^{\text {III }}$ complex will be discussed.

Addition of RSNO to ($\mathbf{O E P}$)Os(CO). The reaction of (OEP)Os(CO) with isoamyl thionitrite in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature gives. after workup. the (OEP) $\mathrm{Os}(\mathrm{NO})\left(\mathrm{S}-i-\mathrm{C}_{5} \mathrm{H}_{11}\right)$ trans addition product in 33% non-optimized yield (eq 1.4).

$$
(\mathrm{OEP}) \mathrm{Os}(\mathrm{CO})+i-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{SNO} \longrightarrow(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})\left(\mathrm{S}-i-\mathrm{C}_{5} \mathrm{H}_{11}\right)+\mathrm{CO} \quad(1 .+1
$$

This red nitrosyl thiolate product is moderately air-stable, howing no vigns of decomposition in air (as judged by 'H NMR and IR spectroscopyl for at least 5 h in solution and several days in the solid state. This nitrosy thiolate is freely soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ but only slightly soluble in hexane. The ${ }^{1} \mathrm{H}$ NMR spectrum of (OEP)Os(NO)(S-i-Csin H_{11}) in $\mathrm{CDCl}_{\text {s }}$ shows sharp peaks for the OEP macrocycle and the thiolate ligand. consistent with the diamagnetic nature of this formally $d^{h} \mathrm{O} \mathrm{S}^{I I}$ complex. The IR spectrum of the complex (as a KBr pellet) shows a band at $1751 \mathrm{~cm}^{-1}$ assigned to $u_{\text {wo }}$. This value of $U_{\text {wo }}$ is consistent with this $\{\mathrm{Os}(\mathrm{NO})\}^{6}$ complex having a linear Os-:NO linkage according to the Enemark-Feltham notation. ${ }^{i t}$ The CV-vis spectrum of the complex in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ reveals four bands at $35+(69) .+4$ (38). 551 (15) and $58+(11) \mathrm{nm}$. corresponding to a hypso/hyper metalloporphyrin. 5

The related reaction of (OEP) $\mathrm{Os}\left(\mathrm{CO}\right.$) with PhSNO in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ generates the (OEP)Os(NO)(SPh) thiophenolate product in 45% isolated yield. This dark-red product has similar solubility properties as the (OEP)Os(NO)($\mathrm{S}-i-\mathrm{C}_{5} \mathrm{H}_{41}$) analog. In contrast to (OEP) $\mathrm{Os}(\mathrm{NO})\left(\mathrm{S}-i-\mathrm{C}_{5} \mathrm{H}_{11}\right)$. however. this nitrosyl thiophenolate complex is air-sensitive. The sharp peaks in the 'H NMR spectrum of (OEP)Os(NO)(SPh) is also consistent with its diamagnetic nature. Only one triplet and one quartet for the ethyl groups of the OEP macrocycle were observed, irdicating a fast rotation of the ethyl groups (of OEP) on the ${ }^{1} \mathrm{H}$ NMR timescale at room temperature. The FAB mass spectrum shows the formation of the parent ion [(OEP)Os(NO)(SPh)] ${ }^{+}$and the $[(\mathrm{OEP}) \mathrm{Os}(\mathrm{SPh})]^{+}$and $[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})]^{+}$fragments. The $v_{\text {vo }}$ of $1766 \mathrm{~cm}^{-1}$ of (OEP) $\mathrm{Os}(\mathrm{NO})(\mathrm{SPh})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is $9 \mathrm{~cm}^{-1}$ higher than that of the related alkyl thiolate (OEP)Os(NO)(S-i-C5 $\left.\mathrm{H}_{11}\right)$, although the $v_{\text {No }}$ s of both nitrosyl thiolates as. KBr pellets are identical. The LV -vis spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is similar to that of (OEP)Os(NO) S - $i-$ $\mathrm{C}_{5} \mathrm{H}_{11}$) and also corresponds to a hypsomyper type of metalloporphyrin. ${ }^{5}$

IR monitoring of the reaction of PhSNO with (OEP) Osi CO) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ reveals that in addition to the $v_{C O}$ band of starting (OEP)Os(CO) at $1883 \mathrm{~cm}^{-1}$ and the $v_{\text {vo }}$ band of the thiophenolate (OEP) $\mathrm{Os}(\mathrm{NO})\left(\mathrm{SPh}\right.$) product at $1766 \mathrm{~cm}^{-1}$. a new higher band at $1957 \mathrm{~cm}^{-1}$ is observed. This new band is attributed (consistent with earlier similar results $)^{23 \mathrm{~b}}$ to an intermediate carbonyl $\mathrm{Os}^{\mathrm{III}}$ complex (OEP)Os(CO)(SPh)(Figure 1.3). In time. only the product band remains. The higher $v_{\text {CO }}$ for the tentatively assigned (OEP) Os(CO)(SPh) relative to that of the starting (OEP)Os(CO) compound is consistent with the increased oxidation state of Osill in the (OEP)Os ${ }^{[l l}(\mathrm{CO})(\mathrm{SPh})$ intermediate relative to Os^{11} in (OEP) $\mathrm{Os}(\mathrm{CO}$), resulting in less backbonding to carbonyl. Additional support for the Os ${ }^{\text {Il }}$ formulation comes from a recent report by Gross who isolated authentic (TMP)Os(CO)(Br) (TMP $=5.10,15.20-$ tetramesitylporphyrinato anion) which has a v_{CO} of $1933 \mathrm{~cm}^{-1}$. higher than that of the parent (TMP)Os(CO) at $1920 \mathrm{~cm}^{-1} .36$

Addition of RONO to (por)Os(CO). Interestingly. the RSNO addition reaction can be extended to include the related RONO compounds. Thus. the reaction of (OEP)OsiCO) with isoamyl nitrite in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature gives (OEP)Os(NO)(O-i-C5 H_{11}) in 51% isolated yield (eq 1.5). This red nitrosyl alkoxide

$$
(\mathrm{OEP}) \mathrm{Os}(\mathrm{CO})+i-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{ONO} \longrightarrow(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})\left(\mathrm{O}-i-\mathrm{C}_{5} \mathrm{H}_{11}\right)+\mathrm{CO} \quad(1.5)
$$

product is moderately air-stable, showing no signs of decomposition for at least 8 h in solution and several days in the solid state. This compound has similar solubility properties as its thiolate analog described earlier. The $u_{\text {vo of }} 1747 \mathrm{~cm}^{-1}$ (as a KBr pellet) is only $+\mathrm{cm}^{-1}$ lower than that of the thiolate analog. although their $u_{v_{0}}{ }^{\circ}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution are identical.

$.20-$

Figure 1.3. IR spectrum of the reaction solution $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ containing the starting (OEP)Os(CO) ($v_{\mathrm{CO}}=1883 \mathrm{~cm}^{-1}$), intermediate (OEP) $\mathrm{Os}(\mathrm{CO})(\mathrm{SPh})$ $\left(v_{\mathrm{CO}}=1957 \mathrm{~cm}^{-1}\right)$, and the final $(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})(\mathrm{SPh})$ product $\left(u_{\mathrm{xO}}=1766\right.$ cm^{-1}).

The TTP analog. (TTP)Osi NO) $\left(\mathrm{O}-i-\mathrm{C}_{5} \mathrm{H}_{11}\right)$. is prepared in $57{ }^{\circ} \mathrm{r}$ isolated yield by the reaction of (TTP)OsiCO) with isoamyl nitrite. This red product has smilar solubility and stability properties as its OEP analog. The LV-vis spectrum of the complex in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gives four bands at 317 (37). +37 (277). $551(36)$ and $588(13)$ nm. also corresponding to a hypso/hyper type of metalloporphyrin. ${ }^{55}$ The vo for the product (as a KBr pellet. $1770 \mathrm{~cm}^{-1}$) is higher than that of the OEP analog $\left(1747 \mathrm{~cm}^{-1}\right.$). This is consistent with the TTP macrocycle acting as a better π acceptor than the OEP macrocycle. resulting in less backbonding to the NO ligand for (TTP)OsiNOrO-i$\mathrm{C}_{3} \mathrm{H}_{11}$) when compared with its OEP analog.

An intermediate for the reaction of (TTP)OstCO) ($v_{C O}=\left(898 \mathrm{~cm}^{-1}\right)$ with isoamyl nitrite in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is observed to form when the reaction is monitored by IR spectroscopy (Figure 1.4). A new band appears in the IR spectrum at $1968 \mathrm{~cm}^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and is tentatively assigned as the v_{CO} of the (TTP)Os(CO)(O-i-C5 $\left.\mathrm{H}_{11}\right)$ intermediate complex. A third band at $1766 \mathrm{~cm}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ is assigned as the uno for the (TTP)Os(NO)(O-i-C $5_{11} \mathrm{H}_{11}$ product. In time. the $u_{\text {co }}$ bands for both the intermediate and the starting material disappeared. and only the v_{0} band of the product remained.

We have found that other alkyl nitrites also add to (OEP)OsiCO). For example. the $(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})\left(\mathrm{O}-n-\mathrm{C}_{4} \mathrm{H}_{9}\right)$ compound was prepared in $58 \sigma_{c}$ isolated yield by the reaction of (OEP)Os(CO) with n-butyl nitrite. The IR spectrum of the complex (as a KBr pellet) shows a band at $1743 \mathrm{~cm}^{-1}$ assigned to $v_{\text {vo }}$. This value is similar to those of (OEP)Os(NO)(OMe) $)^{27 b}\left(1745 \mathrm{~cm}^{-1}\right)$ and (OEP)OsiNO)(O-i-C5 $\left.\mathrm{H}_{11}\right)\left(1747 \mathrm{~cm}^{-1}\right)$ and is indicative of the complex possessing a linear $\mathrm{Os}-\mathrm{NO}$ linkage. Not surprisingly. the LV-vis spectra of the complexes (OEP)Os(NO) (O-n-C $\mathrm{C}_{4} \mathrm{H}_{4}$) and (OEP)Os(NO)(O-$i-\mathrm{C}_{5} \mathrm{H}_{11}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ are almost identical to that of previously reported (OEP)Os(NO)(OMe).26.27
(a)
(b)
(c)

2100	2000	1900	1800
		Wavenumber $(\mathrm{cm}-1)$	1700

Figure 1.4. [R monitoring (in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) of the reaction of (TTP)Os(CO) ($v_{\mathrm{CO}}=1898 \mathrm{~cm}^{-1}$. spectrum a) with isoamyl nitrite to give (TTP)Os(NO) $\left(\mathrm{O}-i-\mathrm{C}_{5} \mathrm{H}_{11}\right)\left(u_{\mathrm{No}}=1766 \mathrm{~cm}^{-1}\right.$. spectrum c$)$. spectrum b: after addition of isoamyl nitrite, showing the intermediate (TTP)Os(CO) $\left(\mathrm{O}-i-\mathrm{C}_{5} \mathrm{H}_{!1}\right)\left(v_{\mathrm{CO}}=\right.$ $1968 \mathrm{~cm}^{-1}$) and the product (TTP)Os(NO)(O-i-C5 H_{11}).

The linearity of the Os-NO linkage in (OEP)Oss:NOMO-n-C $\mathrm{C}_{4} \mathrm{H}_{9}$) was contirmed by a single-crystal X-ray crystallographic analysis of a suitable crystal of the compound (grown by slow evaporation of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the complex at room temperature under nitrogen). The molecular structure of the compound is shown in Figure 1.5. The bond lengths and bond angles are listed in Tables 1.1 and 1.2. The $N O$ group and the $\mathrm{O}-n-\mathrm{C}_{4} \mathrm{H}_{9}$ group are trans to each other. with an $\mathrm{N}(5)-\mathrm{Os}(1)-\mathrm{O}(2)$ bond angle of 176.5(3) ${ }^{\circ}$. The butoxide $\mathrm{C}(37)$ nearly eclipses a porphyrin nitrogen. with an $\mathrm{V}(2)-$ $\mathrm{Os}(1)-\mathrm{O}(2)-\mathrm{C}(37)$ torsion angle of 18.4°. The $\mathrm{Os}-\mathrm{N}(\mathrm{O})$ and $\mathrm{N}-\mathrm{O}$ bond lengths of 1.833(8) and $1.173(11) A$ are comparable with those of other structurally characterized osmium nitrosyl complexes (Table 1.3). The $\mathrm{Os}-\mathrm{N}-\mathrm{O}$ linkage is linear. with a bond angle of $172.8(8)^{\circ}$. The average Os-N(por) bond length of $2.056 \dot{A}$ is within the range for other structurally characterized osmium porphyrin complexes containing axial $O-$ and S-donor ligands (Table 1.4). The axial Os-O distance of $1.877(7) \dot{A}$ appears short ${ }^{54}$ relative to the $1.909(4)-2.200(7)$ A previously observed for Os alkoxides: ${ }^{55}$ however. it is longer than that observed for $\mathrm{Os}=\mathrm{O}$ bonds in osmium porphyrins (Table 1.4, bottom). The $\mathrm{Os}-\mathrm{O}-\mathrm{C}$ alkoxide bond angle of $\mathrm{i} 30.8(9)=$ falls within the 123.1(2)-133.8(8) ${ }^{2}$ range seen for other Os alkoxides. ${ }^{55}$

Figure 1.5. (a) Molecular structure of (OEP)Os(NO)(O-n-C+49). (b) View along the $\mathrm{O}(2)-\mathrm{Os}(1)$ bond showing the orientation of the axial $n-\mathrm{C}_{4} \mathrm{H}_{9}$ alkoxide ligand relative to the porphyrin core. (c) Ball and stick structure showing the labeling of the atoms.

Table 1.1. Bond Lengths (A) for (OEP) $\mathrm{Os}(\mathrm{NO})\left(\mathrm{O}-\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{4}\right)$

$\mathrm{Os}(1)-\mathrm{N}(5)$	$1.833(8)$	Osill-Or2)	1.877171
Os(1)-: $\mathrm{N}(1)$	$1.98619)$	Os($11-\mathrm{N}(3)$	$2.051(7)$
Os(1)-N(2)	$2.078(8)$	Os(l)-: $\mathrm{N}(4)$	$2.109(8)$
N(5)-O(1)	$1.173111)$	$\mathrm{O}(2)-\mathrm{C}(37)$	1.26(2)
$\mathrm{N}(1)-\mathrm{C}(1)$	1.372(12)	N(1)-C(t)	1.435(12)
$\mathrm{N}(2)-\mathrm{C}(6)$	1.371(11)	$\mathrm{N}(2)-\mathrm{C}(9)$	1.398(12)
$\mathrm{C}(1)-\mathrm{C}(20)$	1.397(9)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.435(12)
C(2)-C(3)	1.3612)	$\mathrm{C}(2)-\mathrm{C}(21)$	1.467(1+)
$\mathrm{C}(3)-\mathrm{C}(23)$	$1 .+7+1+$)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.49(2)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.367(13)	$\mathrm{C}^{(5)-C(6)}$	1.394(12)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.470(12)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.328 (13)
C(7)-C(25)	1.469(12)	$\mathrm{C}(8)-\mathrm{C}(27)$	1. $+7+(1+1)$
$\mathrm{C}(8)-\mathrm{C}(9)$	1.496(12)	$\mathrm{C}(9)-\mathrm{C}(10)$	1.366 (13)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.404(9)	$\mathrm{C}(21)-\mathrm{C}(22)$	$1.509(1+)$
$\mathrm{C}(23)-\mathrm{C}(24)$	1.524(14)	$\mathrm{C}(25)-\mathrm{Cl} 26)$	1.53(2)
$\mathrm{C}(27)-\mathrm{C}(28)$	1.545(14)	$\mathrm{N}(3)-\mathrm{C}(1+)$	$1.356(12)$
$\mathrm{N}(3)-\mathrm{C}(11)$	1.357(12)	$\mathrm{N}(4)-\mathrm{C}(19)$	1.300(12)
$\mathrm{N}(4)-\mathrm{C}(16)$	1.374(11)	$\mathrm{C}(11)-\mathrm{C}(12)$	1. $+45(12)$
$\mathrm{C}(12)-\mathrm{C}(13)$	1.414(13)	$\mathrm{C}(12)-\mathrm{C}(29)$	1.490(13)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.387(14)	$\mathrm{C}(13)-\mathrm{C}(31)$	1.523(13)
$\mathrm{C}(1+)-\mathrm{C}(15)$	1.424(13)	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.319(13)$
$\mathrm{C}(16)-\mathrm{C}(17)$	1.45+(13)	$\mathrm{C}(17)-\mathrm{C}(18)$	$1.33+131$
$\mathrm{C}(17)-\mathrm{C}(33)$	$1.555(12)$	$\mathrm{C}(18)-\mathrm{C}(19)$	1.448(11)
$\mathrm{C}(18)-\mathrm{C}(35)$	1.532(12)	$\mathrm{C}(19)-\mathrm{C}(20)$	1.380(13)
$\mathrm{C}(29)-\mathrm{C}(30)$	$1.523(14)$	$\mathrm{C}(31)-\mathrm{C}(32)$	$1.537(1+)$

$\mathrm{C}(33)-\mathrm{C}(34)$	$1.49(2)$	$\mathrm{C}(35)-\mathrm{C}(36)$	$1.526(1+1$
$\mathrm{C}(41)-\mathrm{Cl}(1)$	$1.67(2)$	$\mathrm{C}(41)-\mathrm{Cl}(2)$	$1.7112)$
$\mathrm{C}(37)-\mathrm{C}(38)$	$1.51(2)$	$\mathrm{C}(38)-\mathrm{C}(39)$	$1.4812)$
$\mathrm{C}(39)-\mathrm{C}(+0)$	$1 .+212)$		

Table 1.2. Bond Angles $(=)$ for (OEP)Osi NO$)\left(\mathrm{O}-\mathrm{n}_{\mathrm{C}}-\mathrm{C}_{4} \mathrm{H}_{9}\right)$

$\mathrm{O}(1)-\mathrm{N}(5)-\mathrm{Os}(1)$	172.818)	$\mathrm{C}(37)-\mathrm{O}(2)-\mathrm{Os}(1)$	130.8(9)
$\mathrm{N}(5)-\mathrm{Os}(1)-\mathrm{O}(2)$	$176.513)$	N(5)-Os(1)-N(1)	92.9(3)
$\mathrm{O}(2)-\mathrm{Os}(1)-\mathrm{N}(1)$	$90.3(3)$	V(5)-Os(1)-N(3)	87.5(3)
$\mathrm{O}(2)-\mathrm{Os}(1)-\mathrm{N}(3)$	89.3031	V(1)-Os(1)-N(3)	179.612)
$\mathrm{N}(5)-\mathrm{Os}(1)-\mathrm{N}(2)$	87.+(3)	$\mathrm{O}(2)-\mathrm{Os}(1)-\mathrm{N}(2)$	91.1(2)
$\mathrm{N}(1)-\mathrm{Os}(1)-\mathrm{N}(2)$	90.4(3)	N(3)-Os(1)-N(2)	89.6(2)
$\mathrm{N}(5)-\mathrm{Os}(1)-\mathrm{N}(4)$	$9+6$ (2)	$\mathrm{O}(2)-\mathrm{Os}(1)-\mathrm{N}(t)$	86.8(3)
$\mathrm{N}(1)-\mathrm{Os}(1)-\mathrm{N}(4)$	90.5(3)	$\cdots(3)-O s(1)-N(t)$	89.6(3)
$\mathrm{N}(2)-\mathrm{Os}(1)-\mathrm{N}(+)$	177.7(2)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(+)$	110.4(8)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Os}(1)$	125.6(6)	$\mathrm{C}(+)-\mathrm{N}(1)-\mathrm{Os}(1)$	$123.816)$
$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(9)$	104.6(7)	$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{Os}(1)$	128.4(6)
$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{Os}(1)$	126.8(6)	$\mathrm{V}(1)-\mathrm{C}(1)-\mathrm{C}(20)$	125.3171
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	107.7(7)	$\mathrm{C}(20)-\mathrm{C}(1)-\mathrm{C}(2)$	127.0(7)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	109.5(8)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(21)$	126.7(9)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(21)$	123.8(8)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}$ (23)	131.610)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	108.3(9)	$\mathrm{C}(23)-\mathrm{C}(3)-\mathrm{C}(4)$	120.1(10)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{N}(1)$	128.8(9)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	127.0(8)
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	104.1(8)	$C(+)-C(5)-C(6)$	125.8(8)
$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	122.8(8)	. $\mathrm{V}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	$112.3(7)$
$C(5)-C(6)-C(7)$	124.9(8)	$C(8)-C(7)-C(25)$	126.2(8)

$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	106.1(8)	C(25)-C(7)-C16)	127.7181
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(27)$	128.2(8)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	107.7(8)
$\mathrm{C}(27)-\mathrm{C}(8)-\mathrm{C}(9)$	$124.0(8)$	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{N}(2)$	$123.918)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	126.9191	\therefore (2)-C(9)-C(8)	109.217)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	126.5181	C(2)-C(2)	113.7191
$\mathrm{C}(3)-\mathrm{C}(23)-\mathrm{C}(2+)$	115.7181	$\mathrm{C}(7)-\mathrm{C}(25)-\mathrm{C}(26)$	113.4101
C(8)-C(27)-C(28)	110.3(9)	$\mathrm{C}(14)-\mathrm{N}(3)-\mathrm{C}(11)$	108.918)
$\mathrm{C}(1+)-\mathrm{N}(3)-\mathrm{Os}(1)$	125.7(6)	$\mathrm{C}(11)-\mathrm{N}(3)-\mathrm{Os}(1)$	$125.316)$
$\mathrm{C}(19)-\mathrm{N}(+)-\mathrm{C}(16)$	108.3(8)	$\mathrm{C}(19)-\mathrm{N}(+)-\mathrm{Os}(1)$	126.1161
$\mathrm{C}(16)-\mathrm{N}(\mathrm{t})$-Os(1)	125.6 (6)	V(3)-C(11)-C(10)	127.7(7)
. V (3)-C(11)-C(12)	108.4(8)	$\mathrm{C}(10-\mathrm{C}(11)-\mathrm{C}(12)$	123.818)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	105.3(8)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(29)$	131.018)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(29)$	123.618)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	$107.3(8)$
$\mathrm{C}(1+)-\mathrm{C}(13)-\mathrm{C}(31)$	$126.1(8)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(31)$	126.6(8)
. $\mathrm{N}(3)-\mathrm{C}(1+)-\mathrm{C}(13)$	110.018)	Ni3)-C(1+)-C(15)	125.1191
$C(13)-C(1+)-C(15)$	124.7(9)	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(1+)$	129.3181
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{N}(+)$	124.6(8)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	128.4 81
$\mathrm{N}(+)-\mathrm{C}(16)-\mathrm{C}(17)$	107.0(8)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(161$	108.1(8)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(33)$	127.5(9)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(33)$	12+.4(8)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	105.2(8)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(35)$	127.318)
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(35)$	127.4(8)	$\cdots(+)-C(19)-\mathrm{C}(20)$	12+.518)
$\mathrm{N}(4)-\mathrm{C}(19)-\mathrm{C}(18)$	111.4(8)	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	12+.18)
C(19)-C(20)-C(1)	127.9(8)	$\mathrm{C}(12)-\mathrm{C}(29)-\mathrm{C}(30)$	110.9(9)
$\mathrm{C}(13)-\mathrm{C}(31)-\mathrm{C}(32)$	113.6181	$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{C}(17)$	111.8181
$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{C}(18)$	110.7(8)	$\mathrm{Cl}(1)-\mathrm{C}(+1)-\mathrm{Cl}(2)$	121.0011)
$\mathrm{O}(2)-\mathrm{C}(37)-\mathrm{C}(38)$	118.1(14)	$\mathrm{C}(39)-\mathrm{C}(38)-\mathrm{C}(37)$	$104(2)$
$\mathrm{C}(40)-\mathrm{C}(39)-\mathrm{C}(38)$	124(2)		

Table 1.3. Structural Parameters (in \dot{A} and ") for Osmium Nitrosyl Complexes"

compound	coord no.	$\mathrm{M}-\mathrm{NiO}$	N-O	$\mathrm{M}-\mathrm{N}-\mathrm{O}$
(OEP)Os(NO)(O-n-Bu) ${ }^{\text {b }}$	6	$1.833(8)$	$1.173(11)$	172.8181
(OEP)Os($\mathrm{NO}_{\text {(}}\left(\mathrm{O}_{2} \mathrm{PF}_{2}\right)^{\text {b }}$	6	$1.711(6)$	1.179(8)	174.3161
[(OEP)Os(NO$\left.)_{2}\right]_{2}(\mu-\mathrm{Ok}$	6	$1.778(11)$	1.1+3(13)	180.0
(TTP)Os(NO)($\left.\mathrm{S}-i-\mathrm{C}_{5} \mathrm{H}_{11}\right)^{\text {²b }}$	6	$2.041(7)$	$1.086(10)$	172.0(9)
$\left[\left(\eta^{5} \mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Os}\left(\mathrm{NO}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}{ }^{37}$	6	1.747(11)	1.17(2)	179.8151
OsiNO)($\left.\eta^{2}-\mathrm{O} .0-\mathrm{ON}=\mathrm{C}(\mathrm{O}) \mathrm{CF}_{3}\right)$ -	6	1.726171	1.209(9)	176.116
$\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}{ }^{3}$				
Os(NO) $(\mathrm{Cl})_{2}\left(\mathrm{CF}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}{ }^{39}$	6	1.741(9)	$1.175(12)$	180.0
trans-[Os(NO) $($ tpy $\left.)(\mathrm{Cl})_{2}\right]\left(\mathrm{BF}_{+}\right)^{+0}$	6	$1.704(1+)$	1.188(19)	176.6(10)
$\mathrm{Os}(\mathrm{NO})(\mathrm{Cl})_{2}\left(\eta^{1}-\mathrm{CH}=\mathrm{C}=\mathrm{CPh}_{2}\right)\left(\mathrm{P}^{\prime} \mathrm{Pr}_{3}\right)_{2}+1$	6	$1.733(6)$	$1.106(8)$	174.4(5)
$\left[(\mathrm{DMSO})_{2} \mathrm{H}\right]\left[\mathrm{Os}(\mathrm{NO})(\mathrm{DMSO})(\mathrm{Cl})_{4}{ }^{+2 \mathrm{a}}\right.$	6	$1.717(8)$	1.16(1)	179.2(8)
$\mathrm{Cs}\left\{\right.$ mer $\left[\mathrm{Os}(\mathrm{NO}) \mathrm{Cl}_{3}(\mathrm{acac})\right\}^{+2 \mathrm{~h}}$	6	1.729(9)	1.1611)	177111
OsiNO) $\left\{\eta^{2}-\mathrm{C} . \mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right.$	6	1.706(9)	1.179	$17+.7$
$\left.\mathrm{S}(\mathrm{O}) \mathrm{NSO}_{2} \mathrm{tol}\right)(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)_{2}{ }^{+3 \mathrm{a}}$				
$\mathrm{Os}(\mathrm{NO})\left(=\mathrm{CH}_{2}\right)(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)_{2}{ }^{+3 \mathrm{~b}}$	5	1.93(1) ${ }^{\text {d }}$	$0.915 . i$	(55.4(2)
$\mathrm{Os}(\mathrm{NO}) \mathrm{Br}_{3}\left(\mathrm{Et}_{2} \mathrm{~S}\right)\left(\mathrm{Et}_{2} \mathrm{SO}\right)^{+4}$	6	1.712(22)	$1.148131)$	17+.3129)
$\mathrm{Os}(\mathrm{NO}) \mathrm{Cl}_{2}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OMe}\right)\left(\mathrm{PPhEt}_{2}\right)_{2}{ }^{+4}$	6	1.837(10)	$1.098(1+)$	177.318)
$\left[\mathrm{MePPh}_{3}\right]\left[\mathrm{Os}(\mathrm{NO})(\mathrm{Cl})_{4}\right]^{+5}$	5	$1.89(2)$	$0.9013)$	17712)
$\left[\mathrm{Os}(\mathrm{NO})_{2}(\mathrm{OH})\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(\mathrm{PF}_{6}\right)^{+6}$	5	1.63(1)	1.2+(2)	17811)
		1.86(1) ${ }^{\text {d }}$	1.1712) ${ }^{4}$	13+(1)

"All of these complexes appear to contain Os". with the exception of $\left[(\mathrm{DMSO})_{2} \mathrm{H}\right]\left[\mathrm{Os}(\mathrm{NO})(\mathrm{DMSO})\left(\mathrm{Cl}_{4}\right]\right.$ which contains $\mathrm{Os}^{\text {III }} .{ }^{h}$ this work. ' chapter 3.

```
d bent NO.
```

Table 1.4. Structurally Characterized Monometallic Osmium Porphyrins with O - and S - Donor Ligands ${ }^{17}$

compound	oxid. state	$\mathrm{Os}-\mathrm{N}_{\mathrm{p}}(\mathrm{A})$	$O s-X(A)$ (axial)	Os-X-Y $=1$
nitrosyl				
(OEP) $\mathrm{Os}(\mathrm{NO})(\mathrm{O}-n-\mathrm{Bu})^{\text {a }}$	II	1.986(9). 2.078(8)	$1.877(7)$	130.8191
		2.05117). 2.109(8)		
(OEP)Os($\mathrm{NO}_{\text {(}}\left(\mathrm{O}_{2} \mathrm{PF}_{2}\right)^{a}$	II	2.060(6). 2.053(5)	$2.046(5)$	138.7(3)
		2.065(6). 2.067(6)		
(TTP)OsiNO) ${ }^{\text {S- }-i-1}$	II	2.035(5). $2.074(8)$	$2.209(3)$	111.815)
$\mathrm{C}_{5} \mathrm{H}_{(1)}{ }^{2} \mathrm{Sb}$		2.076(9). $2.049(6)$		
non-nitrosyl				
(OEP) Os($\left.\mathrm{OPPh}_{3}\right)_{2}{ }^{48}$	II	2.031(8). 2.027 (8)	$2.036(7)$	154.2(5)
(OEP)Os(PMS) $2^{\text {b. }}$ +4	II	2.057(5). $2.044(5)$	$2.352(2)$	110.3(3)
				110.4(3)
[(OEP)Os(PMS $\left.)_{2}\right]$ -	III	$2.047(4) .2 .044(4)$	2.38212)	$109.9+1201$
$\left(\mathrm{PF}_{6}\right)^{\text {b. }}$ +9				109.811211
(OEP)Os(SPh)2a	IV	2.047(4). $2.050(4)$	2.295111	$110.912)$
(TTP)Os($\left.\mathrm{SC}_{6} \mathrm{~F}_{4} \mathrm{H}\right)_{2}{ }^{50}$	IV	2.041(6). 2.057(6)	$2.294(3)$	107.8(3)
(TPP)Os(OR) 2^{51}	IV			
$\mathrm{R}=\mathrm{Et}$		2.046(5). 2.038(5)	$1.915(t)$	$128.2(5)$
$\mathrm{R}=i-\mathrm{Pr}$		2.042(3). 2.040(3)	$1.909(4)$	$127.013)$
$\mathrm{R}=\mathrm{Ph}$		2.042(3). 2.038(2)	1.938(2)	127.5(2)
$(\mathrm{OEP}) \mathrm{Os}(\mathrm{O}) 2^{52}$	VI	$2.052(6)$	$1.7+5(5)$	
(TTP)Os(O)2 2^{53}	VI	2.065(4). $2.067(4)$	1.743(3)	

Addition of RSNO and RONO to [(OEP)Os) $]_{2}$. The non-carbonylcontaining [(OEP)Os] $]_{2}$ was employed as a reagent in the isoamyl thionitrite and isoamyl nitrite addition reactions in order to determine whether the presence of the carbonyl ligand in (OEP)OstCO) is needed for the activation of the RSNO and RONO compounds. Interestingly. the same formal trans addition products are also obtained from the reactions of [(OEP)Os] with isoamyl thionitrite (eq 1.6) and isoamyl nitrite (eq 1.7). Importantly. the success of eqs 1.6 and 1.7 implies that the presence of the

$$
\begin{aligned}
& {[(\mathrm{OEP}) \mathrm{Os}]_{2}+2 i-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{SNO} \longrightarrow 2(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})\left(\mathrm{S}-i-\mathrm{C}_{5} \mathrm{H}_{11}\right) \quad(1.6)} \\
& {[(\mathrm{OEP}) \mathrm{Os}]_{2}+2 i-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{ONO} \longrightarrow 2(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})\left(\mathrm{O}-i-\mathrm{C}_{5} \mathrm{H}_{11}\right)}
\end{aligned}
$$

carbonyl ligand (e.g.. in eqs 1.4 and 1.5) is not required for the activation of the RSNO and RONO compounds towards formal trans addition across the metal center.

Further Investigation of the Reaction Pathway for RSNO Addition. We propose that alkyl nitrites and thionitrites react with Os" porphyrins via O.S-coordination of the RONO/RSNO groups (e.g. Scheme I.l), followed by homolytic cleavage of the RO-NO or RS-NO bonds. In this pathway. rapid diffusion of the stable NO radical to the metal site (intra- and/or intermolecularly) results in a substitution of CO to give the final nitrosyl alkoxide and thiolate products.

This reaction pathway is supported by the IR spectral observations of (i) the reaction of $\left.(\mathrm{OEP}) \mathrm{Os}_{(\mathrm{CO}}\right)\left(v_{\mathrm{CO}}=1883 \mathrm{~cm}^{-1}\right.$. in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ with PhSNO to give $(\mathrm{OEP}) \mathrm{Os}^{\mathrm{III}}(\mathrm{CO})(\mathrm{SPh})\left(v_{\mathrm{CO}}=1957 \mathrm{~cm}^{-1}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. followed by the replacement of CO by NO to give the final (OEP)Os(NO)(SPh) product ($U_{\mathrm{NO}}=1766 \mathrm{~cm}^{-1}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). and (ii) the reaction of (TTP)Os(CO) ($v_{\mathrm{CO}}=1898 \mathrm{~cm}^{-1}$. in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ with isoamyl nitrite to first generate the $(\mathrm{TTP}) \mathrm{Os}^{\mathrm{III}}(\mathrm{CO})(\mathrm{OR})$ intermediate $\left(U_{\mathrm{CO}}=1968 \mathrm{~cm}^{-1} . \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
followed by the replacement of CO by NO to give the final (TTP)Ost NOHOR) product $\left(u_{\mathrm{NO}}=1766 \mathrm{~cm}^{-1} . \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

We continue to explore the reaction pathway for RSNO addition to metalloporphyrins. In particular. the well-used concept of the "element displacement principle ${ }^{-56}$ was invoked to investigate the nature of RSNO additions to Os ${ }^{I I}$ porphyrins. PhSNO is valence isoelectronic with compounds of the form $\mathrm{PhSN}=\mathrm{NA}$ (phenyl arylazo sulfides). $\because \because .57$ where a simple formal replacement of the O atom in PhSNO with the valence isoelectronic NAr group will generate the "equivalent" phenyl arylazo sulfide. This concept has been utilized successfully in metal-nitrosyl (M-NO)

thionitrite
arylazo sulfide
and metal-arylazo ($\mathrm{M}-\mathrm{N}_{2} \mathrm{Ar}$) comparisons. ${ }^{58}$ For example, both nitrosyl and arylazo groups can act as one- or three-electron donors in their transition metal complexes. Furthermore, the structural and electronic properties of metal-arylazo complexes are also similar to their nitrosyl analogs.

For the purpose of examining the sequence of reactions described in Scheme 1.I. the valence isoelectronic $\mathrm{PhSN}=\mathrm{NC}_{6} \mathrm{H}_{4}\left(p-\mathrm{NO}_{2}\right)$ compound was employed in place of PhSNO. and the outcomes of these two reactions are compared (Scheme 1.2). It is conceivable that the success of the proposed Scheme 1.1 depends on the known stability of the NO radical. enabling it to diffuse rapidly to displace the bound carbonyl from the osmium center. Since the $\cdot \mathrm{N}_{2} \mathrm{Ar}$ radical is generally not stable. ${ }^{59}$ it would not be expected to survive the reaction conditions to displace CO (Scheme 1.2. bottom) to form the (OEP)Ost $\left.\mathrm{N}_{2} \mathrm{Ar}\right)(\mathrm{SPh})$ addition product. ${ }^{60}$ If this is so. then any observed band in the carbonyl region of the IR spectrum should be due to v_{CO} and not $v_{\text {no. }}$ since there is no NO present in the reaction mixture when the phenyl arylazo sulfide is used.

Indeed. IR monitoring of the reaction of (OEP) $\mathrm{Os}(\mathrm{CO})$ with $\mathrm{PhSN}=. \mathrm{CC}_{6} \mathrm{H}_{4}\left(p-\cdots \mathrm{O}_{-1}\right.$ reveals the formation of the band at $1957 \mathrm{~cm}^{-1}$ assigned to the intermediate carbon! (OEP)Os(CO)rSPh) complex (Scheme 1.2 . bottom). We have not been able to isolate this thermally unstable intermediate. However. reaction of this intermediate with .NO gas $(2$ min) gives a $1: 1$ mixture of (OEP)Os(NO)(SPh) and the known (OEP)Os(NO) $\mathbf{2}^{27 h}$ (by IR spectroscopy). This latter compound forms from the reaction of NO with unreacted (OEP)Os(CO) $)^{27 \mathrm{~h}}$ and (OEP)Os(NO)(SPh). In time. the intensity of the IR band for the dinitrosyl compound increases while the intensity of the IR band for the (OEP)Os(NOrSPh) compound decreases.

To further confirm the similarity of S-binding of PhSNO and $\mathrm{PhS} \mathrm{N}=\mathrm{NA}$ to give the ($O E P$) $O s(C O)(S R)$ thiolate intermediate, the non-carbonyl-containing [(OEP)Osl2 dimer was employed instead of (OEP)Os(CO), with the intention of incorporating two S-bound ligands on opposite sides of the Os center. Remarkably. the reaction of $[(\mathrm{OEP}) \mathrm{Os}]_{2}$ with + equiv of $\mathrm{PhSN}=\mathrm{NAr}$ (i.e.. 2 equiv per Os center) gives the known compound (OEP)Os(SPh) 2 in $+1 c_{c}$ isolated vield. ${ }^{3}$ I presumably via a bis-adduct intermediate which undergoes homolytic cleavage of the $\mathrm{S}-\mathrm{N}$ bonds to give the known bis-thiolate species ${ }^{31}$ (Scheme 1.3). Importantly. the success of the reaction in Scheme 1.3 provides further chemical evidence for the S-binding of RSNO to Osil porphyrins.

A suitable crystal of the moderately air-stable bis-thiolate Os ${ }^{I V}$ porphyrin complex was successfully obtained by slow evaporation of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /toluene solution of the compound for a single-crystal X-ray crystallographic analysis. The molecular structure of the complex is shown in Figure 1.6. The bond lengths and bond angles are listed in Tables 1.5 and 1.6.

Scheme 1.2

Scheme 1.3

Figure 1.6. (a) Molecular structure of (OEP)Os(SPh)2. (b) View of the thiolate orientation relative to the porphyrin core, with the view along the $\mathrm{S}(1)-\mathrm{Os}(1)$ bond.

Table 1.5. Bond Lengths (\dot{A}) for (OEP)OsiSPh)

Os(1)- $\mathrm{N}(1)$	2.047 (t)	Os(l)-N(1)A	$2.047(4)$
Os($11-\mathrm{N}(2)$	$2.050(t)$	Osill-N(2)A	$2.050(+)$
Os(l)-S(1)	$2.2952(12)$	Osill-Silla	$2.2953(12)$
S(1)-C(19)	1.782(5)	V(1)-C(t)	$1.370(6)$
N(1)-C(1)	1.389(6)	$\mathrm{N}(2)-\mathrm{C}(9)$	1.379(5)
. $\mathrm{N}(2)-\mathrm{C}(6)$	$1.381(6)$	C(l)-C(10)A	$1.373(7)$
$C(1)-C(2)$	1.4+5(6)	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.361(7)$
$\mathrm{C}(2)-\mathrm{C}(11)$	1.501(7)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.460(6)
$\mathrm{C}(3)-\mathrm{C}(13)$	1.49+(7)	$C(4)-C(5)$	$1.388(6)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.388(6)$	$\mathrm{C}(6)-\mathrm{C}(7)$	1.4+4(7)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.368(7)	$\mathrm{C}(7)-\mathrm{C}(15)$	$1.511(7)$
$\mathrm{C}(8)-\mathrm{C}(9)$	1.4+46(7)	$\mathrm{C}(8)-\mathrm{C}(17)$	$1.500(6)$
$\mathrm{C}(9)-\mathrm{C}(10)$	1.388(7)	C(10)-C(1)A	1.373(7)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.50+(8)	$\mathrm{C}(13)-\mathrm{C}(1+)$	1.485 (8)
$\mathrm{C}(15)-\mathrm{C}(16)$	1.507(7)	C(17)-C(18)	1.515(8)
C(19)-C(24)	1.371(9)	$\mathrm{C}(19)-\mathrm{C}(20)$	$1.39+(7)$
$\mathrm{C}(20)-\mathrm{C}(21)$	1.394(8)	$\mathrm{C}(21)-\mathrm{C}(22)$	1.36+(10)
$\mathrm{C}(22)-\mathrm{C}(23)$	1.387(10)	$\mathrm{C}(23)-\mathrm{C}(2+)$	1.377(10)

Table 1.6. Bond Angles (${ }^{\circ}$) for (OEP)Os(SPh) 2

$\mathrm{N}(1) \mathrm{A}-\mathrm{Os}(1)-\mathrm{N}(1)$	180.0	$\mathrm{~N}(1) \mathrm{A}-\mathrm{Os}(1)-\mathrm{N}(2) \mathrm{A}$	$90 .+12)$
$\mathrm{N}(1)-\mathrm{Os}(1)-\mathrm{N}(2) \mathrm{A}$	$89.6(2)$	$\mathrm{N}(1) \mathrm{A}-\mathrm{Os}(1)-\mathrm{N}(2)$	$89.6(2)$
$\mathrm{N}(1)-\mathrm{Os}(1)-\mathrm{N}(2)$	$90.4(2)$	$\mathrm{N}(2) \mathrm{A}-\mathrm{Os}(1)-\mathrm{N}(2)$	$179.99812)$
$\mathrm{N}(1) \mathrm{A}-\mathrm{Os}(1)-\mathrm{S}(1)$	$86.88(11)$	$\mathrm{N}(1)-\mathrm{Os}(1)-\mathrm{S}(1)$	$93.12(11)$

N(2)A-Os(1)-S(1)	90.711111	. i 2-Osill-Sill	89.291111
$\mathrm{N}(1) \mathrm{A}-\mathrm{Os}(1)-\mathrm{S}(1) \mathrm{A}$	93.12111)	Vill-Os(l)-S llat	86.88111
$\mathrm{N}(2) \mathrm{A}-\mathrm{Os}(1)-\mathrm{S}(1) \mathrm{A}$	89.291111	Vi2)-Os(l)-Silla	90.711111
S(1)-Os(1)-S(1)A	180.0	C(19)-S(1)-Os(1)	110.912)
$\mathrm{C}(+)-\mathrm{N}(1)-\mathrm{C}(1)$	$106.81+1$	C(4)-.iv(l)-Osil)	$126.43)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Os}(1)$	$126.813)$	$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{C}(6)$	107.2(4)
$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{Os}(1)$	126.713)	$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{Os}(1)$	126.1131
$\mathrm{C}(10) \mathrm{A}-\mathrm{C}(1)-\mathrm{N}(1)$	124.4(4)	$\mathrm{C}(10) \mathrm{A}-\mathrm{C}(1)-\mathrm{C}(2)$	$126.2(t)$
N(1)-C(i)-C(2)	109.4(4)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	107.3(4)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(11)$	127.9(t)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(11)$	$124.7(t)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(+)$	106.9(t)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(13)$	128.514)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(13)$	12t.5(t)	. V 11 -C(4)-C(5)	$12+.6(t)$
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	$109.5(4)$	$\mathrm{C}(5)-\mathrm{C}(+)-\mathrm{C}(3)$	125.8(t)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$128.2(4)$. V (2)-C(6)-C(5)	124.3(4)
$\cdots(2)-\mathrm{C}(6)-\mathrm{C}(7)$	109.11+)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$126.5(t)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	107.3(t)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(15)$	127.7(t)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(15)$	125.0(4)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	107.1(4)
C(7)-C(8)-C(17)	128.0(5)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(17)$	$124.7(+)$
$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(10)$	124.6(4)	. N (2)-C(9)-C(8)	109.2(t)
$C(10)-C(9)-C(8)$	126.1(4)	C(1)A-C(10)-C(9)	127.9(4)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(2)$	112.6(4)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(3)$	112.9(4)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(7)$	115.2(4)	$\mathrm{C}(8)-\mathrm{C}(17)-\mathrm{C} 18)$	110.91+
$\mathrm{C}(24)-\mathrm{C}(19)-\mathrm{C}(20)$	118.7(5)	$\mathrm{C}(24)-\mathrm{C}(19)-\mathrm{S}(1)$	$121.31+1$
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{S}(1)$	119.8(t)	C(21)-C(20)-C(19)	119.4161
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	120.7(6)	C(21)-C(22)-C(23)	120.2161
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	118.8(7)	$\mathrm{C}(19)-\mathrm{C}(24)-\mathrm{C}(23)$	122.1(6)

The thiolate ligands nearly eclipse diagonal porphyrin nitrogens. with an Nil-Os(1)-S(1)-C(19) torsion angle of $1+2^{c}$. The average $\mathrm{Os}-\mathrm{N}$ (por) bond length of $2.048 \AA$ is within the range for osmium porphyrins containing O / S-donor ligands (Table 1.4). The Os-S distance of $2.295(1) \mathrm{A}$ in this formally $\mathrm{Os}{ }^{(1)}$ complex is identical to that of the other porphyrin Os^{I+} thiolate complex (TTP)OsiSC ${ }_{6} \mathrm{~F}_{4} \mathrm{H}$): (2.294(3) A). but is shorter than those of the Os ${ }^{[1}$ (OEP)Os(PMS):(PMS = pentamethylene sulfide $\left.\left(\mathrm{CH}_{2}\right)_{5} \mathrm{~S}\right)$ and $\mathrm{Os}^{\text {III }}$ [(OEP) $\mathrm{Os}\left(\mathrm{PMS}_{2}\right)_{2}\left(\mathrm{PF}_{6}\right)$ complexes. The Os-S-C thiolate angle is $110.9(2)^{\circ}$ and is within the range found for other osmium ary 1
 essentially similar to that of the related (TTP)Os($\mathrm{SC}_{6} \mathrm{~F}_{4} \mathrm{H}$) 2 reported by Collman and synthesized by the reaction of (TTP)OsiO) 2 with thiol. 50

Reaction of RSNO with an Os ${ }^{\text {III }}$ Porphyrin. We were only able to isolate a nitrosyl complex (with no thiolate or thiol ligands) when isoamyl thionitrite was reacted with a cationic (OEP)Os ${ }^{\text {III }}$ complex. although isoamyl thionitrite adds trans to Os ${ }^{\text {II }}$ porphyrins to give isolable nitrosyl thiolate products as described earlier. The reaction of the known $\left[(\mathrm{OEP}) \mathrm{Os}^{\mathrm{III}}\right]_{2}\left(\mathrm{PF}_{6}\right)_{2}$ complex with isoamyl thionitrite in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ resulted in the observation (by $[R$ spectroscopy. Figure 1.7) of the $[($ OEP $) O \mathrm{Os}(\mathrm{NO})]\left(\mathrm{PF}_{6}\right)$ intermediate $\left(U_{\mathrm{NO}}=1829 \mathrm{~cm}^{-1} \cdot U_{\mathrm{PF}_{n}}=8+7 \mathrm{~cm}^{-1}\right)$, which subsequently underwent anion hydrolysis by adventitious moisture upon attempted crystallization to give the isolable difluorophosphate (OEP) $\mathrm{Os}(\mathrm{NO})\left(\mathrm{O}_{2} \mathrm{PF}_{2}\right.$) derivative (Scheme 1.4). Our attempts to isolate [(OEP)Os(NO)](PF $)$ have so far not been successful.

Scheme 1.4

$$
\begin{aligned}
& {[(\mathrm{OEP}) \mathrm{Os}]_{2}\left(\mathrm{PF}_{6}\right)_{2}+i-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{SNO} \longrightarrow } 2[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})]\left(\mathrm{PF}_{6}\right) \\
& \xrightarrow[\mathrm{air}]{\longrightarrow} 2(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})\left(\mathrm{O}_{2} \mathrm{PF}_{2}\right)
\end{aligned}
$$

Figure 1.7. IR spectrum of the reaction $(10 \mathrm{~min})$ of $\left[(\mathrm{OEP}) \mathrm{Os}^{\mathrm{III}}\right]_{2}\left(\mathrm{PF}_{6}\right)_{2}$ with isoamyl thionitrite in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

The hydrolysis of the PF_{6} anion is a common feature in coordination chemistry 64.65 and is known to occur even for the AgPF_{6} salt (which was used to prepare the $\left[(\mathrm{OEP}) \mathrm{Os}^{\mathrm{III}}\right]_{2}\left(\mathrm{PF}_{6}\right)_{2}$ reagent $) .{ }^{33}$ We also synthesized $[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})]\left(\mathrm{PF}_{6}\right)$ independently by reacting (OEP) $\mathrm{Os}\left(\mathrm{CO}\right.$) with $\mathrm{NOPF}_{6} .{ }^{63}$ Exposure of this product in solution to air also transforms it to (OEP) $\mathrm{Os}(\mathrm{NO})\left(\mathrm{O}_{2} \mathrm{PF}_{2}\right)$. In this study, neither the AgPF_{6} nor the $\left[(\mathrm{OEP}) \mathrm{Os}^{\mathrm{III}}\right]_{2}\left(\mathrm{PF}_{6}\right)_{2}$ starting compound contained the difluorophosphate group (by IR spectroscopy).

Not surprisingly, the red (OEP) $\mathrm{Os}\left(\mathrm{NO}_{2}\right)\left(\mathrm{O}_{2} \mathrm{PF}_{2}\right.$) product is air-stable. The u_{No} of $1808 \mathrm{~cm}^{-1}(\mathrm{KBr})$ is higher than those displayed by the related osmium nitrosyl alkoxide or thiolate complexes. The IR spectrum also contains bands attributable to a monodentate difluorophosphate group ($U_{\mathrm{PF}_{2}}=887\left(v_{\mathrm{as}}\right)$ and $856\left(v_{\mathrm{s}}\right) \mathrm{cm}^{-1}: U_{\mathrm{PO}_{2}}=$ $1324 \mathrm{~cm}^{-1}$). ${ }^{66.67}$ A porphyrin band at $1156 \mathrm{~cm}^{-1}$ probably obscures the expected v_{5} $\left(\mathrm{PO}_{2}\right)$ band of the $\mathrm{O}_{2} \mathrm{PF}_{2}$ anion. ${ }^{66}$ The locations of these bands are similar to those for other monodentate difluorophosphate groups in structurally characterized iridium ${ }^{64}$ and palladium ${ }^{33}$ and other η^{1}-difluorophosphate complexes. ${ }^{68}$ The FAB mass spectrum shows the presence of the parent ion $\left[(O E P) O s(N O)\left(O_{2} P_{2}\right)\right]^{+}$and the $[(\text { OEP }) O s(N O)]^{+}$fragment. The ${ }^{31} \mathrm{P}$ NMR (-27.85 ppm . triplet) and ${ }^{14} \mathrm{~F}$. NMR spectra (-89.49 ppm. doublet) are also similar to those of other monodentate difluorophosphate compounds. The $J_{\text {P-F }}$ coupling constant of 985 Hz is within the range commonly found for difluorophosphoric acid and its salts. ${ }^{33.69}$ The CV-vis spectrum of (OEP) $\mathrm{Os}(\mathrm{NO})\left(\mathrm{O}_{2} \mathrm{PF}_{2}\right)$ in benzene gives five bands at $3+7(42) .374(4+1) .421(62)$. 539 (14) and 575 (24) nm. Not surprisingly, the UV-vis spectrum of $(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})\left(\mathrm{O}_{2} \mathrm{PF}_{2}\right)$ is similar to that of (OEP)Os(NO)(OClO$\left.)_{3}\right) .{ }^{77 a}$

The molecular structure of $(\mathrm{OEP}) \mathrm{Os}\left(\mathrm{NO}_{2}\right)\left(\mathrm{O}_{2} \mathrm{PF}_{2}\right)$ is shown in Figure 1.8. The bond lengths and angles are listed in Tables 1.7 and 1.8. The $\mathrm{Os}-\mathrm{N}-\mathrm{O}$ bond is essentially linear with a bond angle of $174.3(6)^{\circ}$. The NO group and $\mathrm{O}_{2} \mathrm{PF}_{2}$ group are trans to each other with an $\mathrm{N}(5)-\mathrm{Os}-\mathrm{O}(2)$ bond angle of $178.4(3)^{\circ}$. The P atom of the

Figure 1.8. (a) Molecular structure of (OEP) Os(NO) $\left(\mathrm{O}_{2} \mathrm{PF}_{2}\right)$. (b) View of the $\mathrm{O}_{2} \mathrm{PF}_{2}$ ligand relative to the porphyrin core, with the view along the $\mathrm{O}(2)-$ $\mathrm{Os}(1)$ bond.

Table 1.7. Bond Lengths (A) for (OEP)Osi $\mathrm{NO}_{(}\left(\mathrm{O}_{2} \mathrm{PF}_{2}\right)$

Os(1)-N(5)	1.711(6)	Os(1)-O(2)	$2.0+6(5)$
Os(1)- $\mathrm{N}(2)$	2.053151	Os(1)-vil)	$2.060(6)$
Os($11-\mathrm{N}(3)$	$2.065(6)$	Os(1)-N(t)	$2.067(6)$
$\mathrm{P}(1)-\mathrm{O}(3)$	1.45+(7)	$\mathrm{P}(1)-\mathrm{O}(2)$	1.477(5)
P(1)-F(1)	$1.511(6)$	$\mathrm{P}(1)-\mathrm{F}(2)$	$1.531(5)$
$\mathrm{O}(1)-\mathrm{V}(5)$	1.179(8)	Nil 1 -C(+)	1.367(9)
N(i)-C(1)	1.371(9)	$\cdots(2)-C(6)$	$1.375(8)$
N(2)-C(9)	1.376(8)	N(3)-C(14)	1.370 (9)
$\mathrm{N}(3)-\mathrm{C}(11)$	1.375 (9)	$\cdots(4)-C(16)$	$1.37219)$
N (4)-C(19)	1.374(9)	$\mathrm{C}(1)-\mathrm{C}(20)$	$1.377(11)$
$\mathrm{C}(1)-\mathrm{C}(2)$	1.465(10)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.3+4(11)
$\mathrm{C}(2)-\mathrm{C}(21)$	1.5211111	$\mathrm{C}(3)-\mathrm{C}(+)$	1. +46 (10)
$\mathrm{C}(3)-\mathrm{C}(23)$	1.502 (10)	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.378(10)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.383(10)$	C(6)-C(7)	1.4+6(9)
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.355(10)$	$\mathrm{C}(7)-\mathrm{C}(25)$	$1.496(9)$
$\mathrm{C}(8)-\mathrm{C}(9)$	1.439(9)	$\mathrm{C}(8)-\mathrm{C}(27)$	1.497(9)
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.374(10)$	$\mathrm{C}(10)-\mathrm{C}(11)$	1.394(10)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.439 (10)	$\mathrm{C}(12)-\mathrm{C}(13)$	1.365 (10)
$\mathrm{C}(12)-\mathrm{C}(29)$	1.505(9)	$\mathrm{C}(13)-\mathrm{C}(1+)$	$1.450(9)$
$\mathrm{C}(13)-\mathrm{C}(31)$	1.491(10)	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.40+(9)$
$\mathrm{C}(15)-\mathrm{C}(16)$	1.390(10)	$\mathrm{C}(16)-\mathrm{C}(17)$	1.453(9)
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.368(11)$	$\mathrm{C}(17)-\mathrm{C}(33)$	1.489(11)
$\mathrm{C}(18)-\mathrm{C}(19)$	1.450(10)	$\mathrm{C}(18)-\mathrm{C}(35)$	1.512(10)
$\mathrm{C}(19)-\mathrm{C}(20)$	1.381(11)	$\mathrm{C}(21)-\mathrm{C}(22)$	1.502(13)
$\mathrm{C}(23)-\mathrm{C}(24)$	1.507(11)	$\mathrm{C}(25)-\mathrm{C}(26)$	$1.510(10)$

$\mathrm{C}(27)-\mathrm{C}(28)$	$1.518(11)$	$\mathrm{C}(29)-\mathrm{C}(30)$	1.5521131
$\mathrm{C}(311-\mathrm{C}(32)$	$1.490(11)$	$\mathrm{C}(33)-\mathrm{C}(3+1$	1.512111
$\mathrm{C}(351-\mathrm{C}(36)$	$1.47111+1$		

Table 1.8. Bond Angles $\left.i^{(}\right)$for (OEP)Os. $\mathrm{VO}_{1} \mathrm{O}_{2} \mathrm{PF}_{2}$)

O(1)-N(5)-Os(1)	174.3(6)	$\mathrm{V}(5)-\mathrm{Os}(1)-\mathrm{Or} 2)$	178.431
$\mathrm{O}(3)-\mathrm{P}(1)-\mathrm{O}(2)$	118.4(t)	$\mathrm{O}(3)-\mathrm{P}(1)-\mathrm{F}(1)$	111.2(+1
$\mathrm{O}(2)-\mathrm{P}(1)-\mathrm{F}(1)$	108.2(3)	$\mathrm{O}(3)-\mathrm{P}(1)-\mathrm{F}_{(2)}$	108.3(4)
$\mathrm{O}(2)-\mathrm{P}(1)-\mathrm{F}(2)$	108.2(3)	$F(1)-P(1)-F(2)$	101.114)
$\mathrm{P}(1)-\mathrm{O}(2)-\mathrm{Os}(1)$	138.7(3)	N(5)-Os($11-\mathrm{N}(2)$	$9+.0131$
$\mathrm{O}(2)-\mathrm{Os}(1)-\mathrm{N}(2)$	84.8(2)	N(5)-Os(1)- $\mathrm{N}(1)$	94.3131
$\mathrm{O}(2)-\mathrm{Os}(1)-\mathrm{N}(1)$	8+.7(2)	N(2)-Os($11-\mathrm{N}(1)$	89.9(2)
$\mathrm{N}(5)-\mathrm{Os}(1)-\mathrm{N}(3)$	$9+.2(3)$	$\mathrm{O}(2)$-Os($11-\mathrm{N}(3)$	86.8(2)
$\mathrm{N}(2)-\mathrm{Os}(1)-\mathrm{N}(3)$	89.812)	$\cdots(1)-O s(1)-N(3)$	171.+(2)
N(5)-Os(1)-N(t)	9+.73)	O(2)-Ost (1-. $\mathrm{N}(\mathrm{t})$	$86.512)$
$\mathrm{N}(2)-\mathrm{Os}(1)-\mathrm{N}(+)$	171.3(2)		89.712)
$\mathrm{N}(3)-\mathrm{Os}(1)-\mathrm{N}(t)$	89.3(2)	$\mathrm{C}(+1-\mathrm{Nil})-\mathrm{Cil}$	$108.516)$
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{Os}(1)$	125.8(5)	C(l)-N(l)-Ostl)	125.7151
$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(9)$	107.3(5)	C(6)-N(2)-Osil)	126.0(t)
$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{Os}(1)$	126.5(4)	C(1+)-Ni3)-C, 111	107.2161
$\mathrm{C}(14)-\mathrm{N}(3)-\mathrm{Os}(1)$	127.1(4)	$\mathrm{C}(11)-\mathrm{N}(3)$-Oss 11$)$	125.6(t)
$\mathrm{C}(16)-\mathrm{N}(4)-\mathrm{C}(19)$	108.0(6)	$\mathrm{C}(16)-\mathrm{N}(+1)-\mathrm{Os} 11)$	126.1151
$\mathrm{C}(19)-\mathrm{N}(4)-\mathrm{Os}(1)$	125.9(5)	$\cdots(1)-C(1)-C(20)$	$125.9(7)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	107.4(6)	$\mathrm{C}(20)-\mathrm{C}(1)-\mathrm{C}(2)$	126.7(7)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	108.0(6)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(2) 11$	127.4(7)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(21)$	12+.6(7)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(+)$	107.1(6)

$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(23)$	129.0(7)	$\mathrm{C}(+)-\mathrm{C}(3)-\mathrm{C}(23)$	123.8171
. $\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	$125.3(6)$. V (1 - $-\mathrm{C}(+)-\mathrm{C}(3)$	109.0661
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	125.7(7)	$\mathrm{C}(+)-\mathrm{C}(5)-\mathrm{C}(6)$	$127.817)$
$N(2)-C(6)-C(5)$	124.7(6)	N C 2)-C(6)-C(7)	109.116)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	126.2(6)	C(8)-C(7)-C(6)	106.9161
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(25)$	$128.6(6)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(25)$	$12+.5161$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	107.8(6)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(27)$	128.3161
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(27)$	124.0(6)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{N}(2)$	124.516)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	126.6(6)	$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(8)$	108.916)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	128.0(6)	N(3)-C(11)-C(10)	125.0161
$\mathrm{N}(3)-\mathrm{C}(11)-\mathrm{C}(12)$	109.1(6)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	126.0161
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	107.9(6)	C (13)-C(12)-C(29)	127.2(7)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(29)$	124.9(7)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(1+)$	106.016)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(31)$	128.1(6)	$\mathrm{C}(1+1) \mathrm{C}(13)-\mathrm{C}(31)$	$125.7(7)$
$\mathrm{N}(3)-\mathrm{C}(14)-\mathrm{C}(15)$	124.5(6)	V V (3)-C(1+)-C(13)	109.8(6)
$\mathrm{C}(15)-\mathrm{C}(1+)-\mathrm{C}(13)$	125.7(6)	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(1+)$	126.7161
$N(4)-C(16)-C(15)$	125.8(6)	Ni+1-C(16)-C(17)	109.2(6)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	125.0(7)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	106.617)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(33)$	127.9(7)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(33)$	125.5171
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	107.5(6)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(35)$	127.9(7)
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(35)$	124.7(7)	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{Ci}(t)$	$125.3(7)$
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	126.0(7)	N(t)-C(19)-C(18)	108.7(6)
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(1)$	127.2(7)	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C} 2)$	111.6181
$\mathrm{C}(3)-\mathrm{C}(23)-\mathrm{C}(24)$	113.5(7)	$\mathrm{C}(7)-\mathrm{C}(25)-\mathrm{C}(26)$	113.2161
$\mathrm{C}(8)-\mathrm{C}(27)-\mathrm{C}(28)$	114.1(6)	$\mathrm{C}(12)-\mathrm{C}(29)-\mathrm{C}(30)$	112.9(7)
$\mathrm{C}(13)-\mathrm{C}(31)-\mathrm{C}(32)$	114.3(7)	$\mathrm{C}(17)-\mathrm{C}(33)-\mathrm{C}(3+)$	$113.217)$
$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{C}(18)$	115.2(8)		

$\mathrm{O}_{2} \mathrm{PF}_{2}$ group essentially eclipses a porphyrin nitrogen. with an $\mathrm{N}(+1-\mathrm{Os} 11-\mathrm{O}(2)-\mathrm{P}(1)$ torsion angle of 10.3°. The average Os-N(por) bond length of 2.061 A is within the range observed for other (OEP)Os" complexes (see Table 2.3). The Os atom is displaced by $0.16 \dot{A}$ from the four-nitrogen porphyrin plane towards the NO ligand. and the $\mathrm{Os}-\mathrm{O}$ (difluorophosphate) bond length of $2.046(5) \mathrm{A}$ is longer than that of (OEP)Os(NO) (O-n-C4 C_{4}) described earlier. but is similar to the $\mathrm{Os}-\mathrm{O}$ bond lengths of (OEP)Os(OPPhシ) $(2.036(7)$ À) , and is shorter than the Os-O bond length of (TTP)Os(CO)(Et2NNO) (2.200(7) A. chapter 2). It is also longer than the observed axial $\mathrm{Os}-\mathrm{O}$ bond lengths for the structurally characterized $\mathrm{Os}^{\text {IV }}$ porphyrin alkoxides (1.909(4)-1.938(2) \dot{A}) or $\mathrm{Os}^{\mathrm{VI}}$ porphyrin dioxo derivatives ($1.745(5) \dot{A}$) (Table 1.4. bottom). The $\mathrm{Os}-\mathrm{N}(\mathrm{O})$ bond length of 1.711 (6) \dot{A} is shorter than those of (OEP)Os(NO)(O-n-C4 $\left.\mathrm{H}_{4}\right)(1.833(8) \mathrm{A})$ and (TTP)Os(NO)(S-i-C5 $\left.\mathrm{C}_{11}\right)(2.0+1(7) \mathrm{A})$. However. it is within the range of $1.63(1)-1.89(2) A$ found for other Os ${ }^{\text {II }}$ linear nitrosyl complexes (Table 1.3). The $\mathrm{N}-\mathrm{O}$ bond length of $1.179(8) \dot{A}$ is similar to those of other structurally characterized osmium nitrosyl complexes. The $\mathrm{P}-\mathrm{O}(2)$ bond length of $1.477(5) \dot{A}$ is longer than the $\mathrm{P}-\mathrm{O}(3)$ bond length of $1.45+17 \mathrm{~A}$. corresponding to the double bond character between the $\mathrm{O}(3)$ and P atoms. The $\mathrm{O}-\mathrm{P}-$ O bond angle of $118.4(4)^{\circ}$ is larger than the F-P-F angle of $101.1(4)^{\circ}$. and this observation is typical for transition metal difluorophosphate complexes (Table 1.9).

Importantly, although the difluorophosphate anion forms complexes with other transition metals. ${ }^{33.64 .65 .70 .71}$ main group metals. ${ }^{72-75}$ the ammonium cation. ${ }^{76}$ and even the nitrosonium cation. ${ }^{77}$ to the best of our knowledge. this is the first reported example of a metalloporphyrin difluorophosphate derivative.

Table 1.9. Metric Parameters (in À and ${ }^{\circ}$) for Transition Metal $\eta^{1}-\mathrm{OP}(=\mathrm{O}) \mathrm{F}_{2}$ Complexes

	$\begin{aligned} & (\mathrm{OEP}) \mathrm{Os}(\mathrm{NO}) \\ & \left(\mathrm{O}_{2} \mathrm{PF}_{2}\right)^{4} \end{aligned}$	$\operatorname{Ir}\left(\mathrm{O}_{2} \mathrm{PF}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ $(\mathrm{H})(\mathrm{Cl}) \mathrm{CO})^{b}$	$\begin{aligned} & \mathrm{Pd}\left(\mathrm{O}_{2} \mathrm{PF}_{2}\right)\left(\eta^{3}-2-\mathrm{MeC}_{:} \mathrm{H}_{+}\right) \\ & \left(\mathrm{PCy}_{3}\right)^{\mathrm{c} \cdot d} \end{aligned}$
M-O	2.046151	$2.201(8)$	$2.314(6)[2.126(5)]$
O-P	1.477(5)	1.456(7)	1.471(5) [1.455(5)]
P-F	1.511(6).	1.499(10).	
	$1.531(5)$	$1.529(12)$	
$\mathrm{P}=0$	1.454(7)	1.421(8)	1.468(8) [1.441(8)]
M-O-P	138.7(3)	127.0(t)	125.4(3) [124.7(3)]
$\mathrm{O}-\mathrm{P}=\mathrm{O}$	118.4(4)	$122.1(6)$	$123.3(t)$ [$122.1(t)$]
F-P-F	101.1(4)	95.4(7)	97.2(5) [96.0(t)]
O-P-F	108.2(3)	108.3(t).	
		107.4(5)	
$\mathrm{O}=\mathrm{P}-\mathrm{F}$	111.2(4)	112.1(5).	
	108.3(4)	108.3(6)	

${ }^{a}$ This work. ${ }^{b}$ reference 64. c reference 33. ${ }^{d}$ There are two independent molecules present. The data in brackets are for the second molecule.

We have also prepared the analogous thionitrosyl (OEP)Ow.NS॥O-PF: compound via the hydrolysis of $[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NS})]\left(\mathrm{PF}_{6}\right)$ under nitrogen. A suitable crystal for structure determination was grown by slow evaporation of a saturated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the compound under nitrogen. The molecular structure of (OEP)Os(NS)($\mathrm{O}_{2} \mathrm{PF}_{2}$) is shown in Figure 1.9. The bond angles and bond lengths are listed in Tables 1.10 and 1.11. To the best of our knowledge, there are only three (por)Os(NS)-containing compounds that have been structurally characterized. namely. (OEP)Os(NS)(Cl) (chapter 3). (OEP)Os(NS)(Me) (chapter 3) and now (OEP) Os(NS) $\left(\mathrm{O}_{2} \mathrm{PF}_{2}\right)$. Linfortunately. due to the nature of disorder of the axial NS and $\mathrm{O}_{2} \mathrm{PF}_{2}$ ligands and the inherent limited accuracy of the axial bond lengths and bond angles. a meaningful comparison of bond lengths and bond angles with (OEP) $\mathrm{Os}\left(\mathrm{NO}^{(}\right)\left(\mathrm{O}_{2} \mathrm{PF}_{2}\right)$ is not possible. Nevertheless. the structure clearly indicates the NS coordination to osmium center and the $\eta^{1}-\mathrm{O}$ binding of the diflurophosphate ligand. The .NS group and the $\mathrm{O}_{2} \mathrm{PF}_{2}$ group are trans to each other with an $\mathrm{O}(1)-$ Os($11-\mathrm{N}(5)$ bond angle of $163.9(5)^{\circ}$. The $\mathrm{Os}-\mathrm{N}-\mathrm{S}$ bond is linear with a bond angle of $170.9(7)^{2}$. As before, the average $\mathrm{Os}-\mathcal{N}$ (por) bond length of 2.041 A is comparable to other (por)Os ${ }^{\text {II }}$ complexes containing O - and S-donor ligands (Table (.t).

Figure 1.9. (a) Molecular structure of (OEP)Os($\left.\mathrm{NS}_{(}\right) \mathrm{O}_{2} \mathrm{PF}_{2}$). (b) View of the $\mathrm{O}_{2} \mathrm{PF}_{2}$ ligand relative to the porphyrin core, with the view along the $\mathrm{O}(1)-$ Os(1) bond.

Table 1.10. Bond Lengths (\dot{A}) for (OEP) $\mathrm{Os}(\mathrm{NS})\left(\mathrm{O}_{2} \mathrm{PF}_{2}\right.$)

$\mathrm{Os}(1)-\mathrm{O}(1)$	$1.877(9)$	Os(1)-N(5)	1.96018)
Os(1)-: $\mathrm{N}(\mathrm{t})$	$2.001(10)$	Os(1)-N(1)	2.028181
Os(1)-N(3)	$2.03+(10)$	Os(1)-N(2)	$2.100(9)$
$\mathrm{S}(1)-\mathrm{N}(5)$	1.520(9)	$\mathrm{P}(1)-\mathrm{O}(2)$	$1 .+2121$
$\mathrm{P}(1)-\mathrm{F}(2)$	1.463(13)	$\mathrm{P}(1)-\mathrm{F}(1)$	1.507(11)
$\mathrm{P}(1)-\mathrm{O}(1)$	1.521(12)	$\mathrm{N}(1)-\mathrm{C}(1)$	1.377(14)
$\mathrm{N}(1)-\mathrm{C}(\mathrm{t})$	1.412(13)	$\mathrm{C}(1)-\mathrm{C}(20)$	1.38(2)
$\mathrm{C}(1)-\mathrm{C}(2)$	1. +43 (13)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.37(2)
$\mathrm{C}(2)-\mathrm{C}(21)$	1.51(2)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.4512)
$\mathrm{C}(3)-\mathrm{C}(23)$	$1.501(1+1)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.403(1+)$
$\mathrm{C}(5)-\mathrm{C}(6)$	1.391(14)	N (2)-C(9)	1.395(13)
$\mathrm{N}(2)-\mathrm{C}(6)$	$1.406(12)$	$\mathrm{C}(6)-\mathrm{C}(7)$	1.4+(2)
C(7)-C(8)	1.370 (1+)	$\mathrm{C}(7)-\mathrm{C}(25)$	1.526(1+)
$\mathrm{C}(8)-\mathrm{C}(9)$	1. $+1+2$ (13)	$\mathrm{C}(8)-\mathrm{C}(27)$	$1.502(1+1)$
C(9)-C(10)	$1.376(12)$	C(10)-C(11)	1.396(13)
$\mathrm{N}(3)-\mathrm{C}(1+)$	1.392 (13)	N(3)-C(11)	$1.393(13)$
$\mathrm{C}(11)-\mathrm{C}(12)$	1.445(13)	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.38(2)$
$\mathrm{C}(12)-\mathrm{C}(29)$	1.50(2)	$\mathrm{C}(13)-\mathrm{C}(1+)$	1.431(13)
$\mathrm{C}(13)-\mathrm{C}(31)$	1.51(2)	$\mathrm{C}(1+)-\mathrm{C}(15)$	1.3+2(1+)
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.361(14)$	$\mathrm{N}(4)-\mathrm{C}(19)$	1.36+1+1
$\mathrm{N}(4)-\mathrm{C}(16)$	$1.387(13)$	$\mathrm{C}(16)-\mathrm{C}(17)$	1.440(13)
$\mathrm{C}(17)-\mathrm{C}(18)$	1.377(13)	$\mathrm{C}(17)-\mathrm{C}(33)$	$1.518(14)$
$\mathrm{C}(18)-\mathrm{C}(19)$	$1.454(13)$	$\mathrm{C}(18)-\mathrm{C}(35)$	1.49(2)
C(19)-C(20)	$1.369(14)$	$\mathrm{C}(21)-\mathrm{C}(22)$	1.53(2)
C(23)-C(24)	$1.528(1+)$	$\mathrm{C}(25)-\mathrm{C}(26)$	1.51(2)

$\mathrm{C}(27)-\mathrm{C}(28)$	$1.521(14)$	$\mathrm{C}(29)-\mathrm{C}(30)$	$1.5+12)$
$\mathrm{C}(31)-\mathrm{C}(32)$	$1.53(2)$	$\mathrm{C}(33)-\mathrm{C}(34)$	$1.532(1+1$
$\mathrm{C}(35)-\mathrm{C}(36)$	$1.52(2)$		

Table 1.11. Bond Angles (${ }^{(0)}$) for (OEP)Os(NS)($\mathrm{O}_{2} \mathrm{PF}_{2}$)

$\mathrm{S}(1)-\mathrm{N}(5)-\mathrm{Os}(1)$	170.9(7)	$\mathrm{P}(1)-\mathrm{O}(1)-\mathrm{Os}(1)$	$131.618)$
$\mathrm{O}(2)-\mathrm{P}(1)-\mathrm{F}(2)$	114.9(9)	$\mathrm{O}(2)-\mathrm{P}(1)-\mathrm{F}(1)$	111.6(9)
$\mathrm{F}(2)-\mathrm{P}(1)-\mathrm{F}(1)$	102.4(8)	$\mathrm{O}(2)-\mathrm{P}(1)-\mathrm{O}(1)$	118.0(8)
$\mathrm{F}(2)-\mathrm{P}(1)-\mathrm{O}(1)$	103.5(7)	$\mathrm{F}(1)-\mathrm{P}(1)-\mathrm{O}(1)$	104.7(7)
$\mathrm{O}(1)-\mathrm{Os}(1)-\mathrm{N}(5)$	163.9(5)	$\mathrm{O}(1)-\mathrm{Os}(1)-\mathrm{N}(\mathrm{t})$	95.5(5)
$\mathrm{N}(5)-\mathrm{Os}(1)-\mathrm{N}(4)$	95.6(4)	$\mathrm{O}(1)-\mathrm{Os}(1)-\mathrm{N}(1)$	95.4(4)
$\mathrm{N}(5)-\mathrm{Os}(1)-\mathrm{N}(1)$	95.7(t)	$\mathrm{N}(4)-\mathrm{Os}(1)-\mathrm{N}(1)$	92.0(4)
$\mathrm{O}(1)-\mathrm{Os}(1)-\mathrm{N}(3)$	80.7(5)	$\mathrm{N}(5)-\mathrm{Os}(1)-\mathrm{N}(3)$	87.9(4)
$\mathrm{N}(4)-\mathrm{Os}(1)-\mathrm{N}(3)$	89.4(5)	$\mathrm{N}(1)-\mathrm{Os}(1)-\mathrm{N}(3)$	176.0(4)
$\mathrm{O}(1)-\mathrm{Os}(1)-\mathrm{N}(2)$	84.2(4)	$\cdots(5)-\mathrm{Os}(1)-\mathrm{N}(2)$	$83.9(+)$
$\mathrm{N}(4)-\mathrm{Os}(1)-\mathrm{N}(2)$	176.3(4)	$\mathrm{N}(1)-\mathrm{Os}(1)-\mathrm{N}(2)$	91.7(t)
$\mathrm{N}(3)-\mathrm{Os}(1)-\mathrm{N}(2)$	86.9(4)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(+)$	106.9(8)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Os}(1)$	126.2(7)	$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{Os}(1)$	$126.3(7)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(20)$	120.8(12)	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	110.1(8)
$\mathrm{C}(20)-\mathrm{C}(1)-\mathrm{C}(2)$	129.1(12)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	106.54 81
$C(3)-C(2)-C(21)$	128.6(11)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(21)$	124.9(11)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	108.3(8)	$C(2)-C(3)-C(23)$	$130.9(12)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(23)$	120.7(12)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{N}(1)$	121.1(12)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	131.2(12)	$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	107.7(8)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	134.7(14)	$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{C}(6)$	104.7(8)
$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{Os}(1)$	128.3(7)	$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{Os}(1)$	125.7(7)

$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(2)$	119.8(11)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	130.3111
$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	109.5(8)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	107.618;
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(25)$	$139.5112)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(25)$	112.9(11)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	106.618)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(27)$	126.0) (10)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(27)$	$127.3(10)$	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{N}(2)$	123.610)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	125.11111	$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(8)$	110.6(8)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	125.7(12)	$\mathrm{C}(14)-\mathrm{N}(3)-\mathrm{C}(11)$	106.2(8)
$\mathrm{C}(1+)-\mathrm{N}(3)-\mathrm{Os}(1)$	124.5(8)	$\mathrm{C}(11)-\mathrm{N}(3)-\mathrm{Os}(1)$	128.3(8)
N(3)-C(1)-C(10)	125.6(10)	N(3)-C(11)-C(12)	109.1(8)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	125.0(10)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	107.3(8)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(29)$	128.7(12)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(29)$	$12+0(12)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(1+)$	107.0(8)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(31)$	123.9(13)
$\mathrm{C}(1+)-\mathrm{C}(13)-\mathrm{C}(31)$	129.0(13)	$\mathrm{C}(15)-\mathrm{C}(1+)-\mathrm{N}(3)$	128.7(11)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	121.6(11)	N(3)-C(14)-C(13)	109.7(8)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	123.5(13)	$\mathrm{C}(19)-\mathrm{N}(4)-\mathrm{C}(16)$	107.6(9)
$\mathrm{C}(19)-\mathrm{N}(4)-\mathrm{Os}(1)$	125.1(8)	$\mathrm{C}(16)-\mathrm{N}(4)-\mathrm{Os}(1)$	126.9(8)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{Ni}(+)$	126.7(11)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$12+.510$
$\mathrm{N}(4)-\mathrm{C}(16)-\mathrm{C}(17)$	108.5(8)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	107.7(7)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(33)$	116.8(11)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(33)$	$135 .+111$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	106.2(8)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(35)$	129.6(11)
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(35)$	124.3(11)	$\mathrm{N}(4)-\mathrm{C}(19)-\mathrm{C}(20)$	123.1(12
$\mathrm{N}(4)-\mathrm{C}(19)-\mathrm{C}(18)$	109.5(8)	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	126.3112
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(1)$	132(2)	$\mathrm{C}(2)-\mathrm{C}(21)-\mathrm{C}(22)$	114.9(13)
$\mathrm{C}(3)-\mathrm{C}(23)-\mathrm{C}(2+)$	116.5(11)	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(7)$	119.1(11)
$\mathrm{C}(8)-\mathrm{C}(27)-\mathrm{C}(28)$	113.8(11)	$\mathrm{C}(12)-\mathrm{C}(29)-\mathrm{C}(30)$	109(2)
$\mathrm{C}(13)-\mathrm{C}(31)-\mathrm{C}(32)$	107.0(1+)	$\mathrm{C}(17)-\mathrm{C}(33)-\mathrm{C}(34)$	108.5(11)
$\mathrm{C}(18)-\mathrm{C}(35)-\mathrm{C}(36)$	109.3(13)		

Conclusion

In summary, we have provided new chemical insight into the reactions of thionitrites and alkyl nitrites with osmium porphyrins. By using the valence isoelectronic phenyl arylazo sulfide in place of PhSNO . we have been able to isolate and characterize the bis-thiolate adduct with the loss of the arylazo fragments. thereby giving more spectroscopic and chemical evidence that RSNO binds through the sulfur atom to the Os ${ }^{\text {II }}$ porphyrin center. Whereas nitrosyl thiolates and alkoxides are produced in the reactions of thionitrites and alkyl nitrites with Os ${ }^{\text {II }}$ porphyrins, only the osmium nitrosyl difluorophosphate complex is isolated in the case of a Os ${ }^{\text {III }}$ porphyrin. This work also adds to the sparse structural data currently available for osmium nitrosyl porphyrins: prior to this work. only one other osmium nitrosyl porphyrin (reported from our laboratory ${ }^{2}{ }^{36}$, had been structurally characterized.

References and Notes

(1) (a) Moncada, S.: Palmer. R. M. J.: Higgs. E. A. Pharmacol. Rev. 1991. +3. 109. (b) Ignarro. L. J. Annu. Rev. Pharmacol. Toxicol. 1990. 30.535.
(2) (a) Deinum. G.: Stone. J. R.: Babcock. G. T.: Marletta. M. A. Biochemistry 1996. 35. 1540. (b) Stone. J. R.: Marletta. M. A. Biochemistry 1994. 33. 5636. (c) Yu. A. E.: Hu. S.: Spiro. T. G.: Burstyn. J. N. J. Am. Chem. Soc. 1994. 116. +117. (d) Craven. P. A.: DeRubertis. F. R. Biochem. Biophys. Acta 1983. 7+5. 310 . (e) Craven. P. A.: DeRubertis. F. R. J. Biol. Chem. 1978. $253.8+33$.
(3) (a) Marletta. M. A. J. Biol. Chem. 1993. 268. 12231. (b) Crane. B. R.: Arvai. A. S.: Gachhui. R.: Wu. C.: Ghosh. D. K.: Getzoff. E. D: Stuehr. D. J.: Tainer. J. A. Science 1997, $278 .+25$.
(4) Williams. D. L. H. Chem. Commun. 1996. 1085.
(5) Butler, A. R.: Flitney. F. W.: Williams. D. L. H. Trends Pharmacol. Sci. 1995. 16. 18.
(6) Upchurch. G. R.. Jr.: Welch. G. N.: Loscalzo. J. Adr. Pharmacol. 1995. 34. 343.
(7) Stamler, J. S. In Current Topics in Microbiology and Immunology: Koprowski. H.: Maeda. H.. Eds.: Springer-Verlag: Berlin. 1995: Vol. 196. p 19.
(8) Stamler. J. S. Cell 1994, 78, 931.
(9) Mathews, W. R.: Kerr. S. W. J. Pharmacol. Exp. Ther. 1993. 267. 1529.
(10) Kerr, S. W.: Buchanan. L. V.: Bunting. S.: Mathews, W. R. J. Pharmacol. Exp. Ther. 1992. 263. 285.
(11) Myers. P. R.: Minor, R. L.. Jr.: Guerra. R.. Jr.: Bates. J. N.: Harrison. D. G. Nature 1990. 345. 161.
(12) (a) Kowaluk. E. A.: Fung, H.-L J. Pharmacol. Exp. Ther. 1990. 255. 1256.
(b) Gaston. B.: Reilly, J.: Drazen, J. M.: Fackler. J.: Ramdev. P.: Arnelle. D.:

Mullins. M. E.: Sugarbaker. D. J.: Chee. C.: Singel. D. J.: Loscalzo. J.: Stamler, J. S. Proc. Natl. Acad. Sci. U.S.A. 1993. 90. 10957.

Bannenberg. G.: Xue. J.: Engman. L.: Cotgreave. I.: Moldéus. P.: Ryrfeldt. A. J. Pharmacol. Exp. Ther. 1995. 272, 1238.
(a) Simon. D. I.: Mullins. M. E.: Jia. L.: Gaston. B.: Singel. D. J.: Stamler. J. S. Proc. Natl. Acad. Sci. U.S.A. 1996. 93. 4736. (b) Keshive. M.: Singh. S.: Wishnok. J. S.: Tannenbaum. S. R.: Deen. W. M. Chem. Res. Toxicol. 1996. 9. 988. (c) Park. J.-W. Biochem. Biophys. Res. Commun. 1988. I52. 916. (d) Stamler. J. S.: Simon. D. I.: Osborne. J. A.: Mullins. M. E.: Jaraki. O.: Michel, T.: Singel. D. J.: Loscalzo. J. Proc. Natl. Acad. Sci. U.S.A. 1992. 89. 444. (e) Stamler. J. S.: Simon. D. I.: Jaraki. O.: Osborne. J. A.: Francis. S.: Mullins. M.: Singel. D.: Loscalzo. J. Proc. Natl. Acad. Sci. U.S.A. 1992. 89. 8087.
(a) Jia. L.: Bonaventura. C.: Bonaventura. J.: Stamler. J. S. Nature 1996. 380. 221. (b) Gow, A. J.: Stamler, J. S. Nature 1998. 391. 169.

Stone. J. R.: Marletta. M. A. Biochemistry 1995. 34. 16397.
Stone, J. R.: Marletta. M. A. Biochemistry 1996. 35. 1093.
McAninly, J.: Williams, D. L. H.: Askew. S. C.: Butler, A. R.: Russell. C. J. Chem. Soc., Chem. Commun. 1993. 1758.
(a) Dicks, A. P.; Swift, H. R.: Williams. D. L. H.: Butler, A. R.: Al-Sa'doni. H. H.; Cox, B. G. J. Chem. Soc., Perkin Trans. 2 1996. 481. (b) Dicks. A. P.: Williams, D. L. H. Chem. Biol. 1996. 3. 655. (c) Askew. S. C.: Barnett. D. J.; McAninly, J.: Williams, D. L. H. J. Chem. Soc.. Perkin Trans. 21995. 741. (d) Gordge, M. P.: Meyer, D. J.: Hothersall. J.: Neild. G. H.: Payne. N. N.: Noronha-Dutra. A. Brit. J. Pharmacol. 1995. Il4. 1083. (e) Williams. D. L. H. Transition Met. Chem. (London) 1996, 21. 189.
(a) Yi, G.-B.: Khan. M. A.: Richter-Addo. G. B. J. Am. Chem. Soc. 1995. 117. 7850. (b) Yi. G.-B.: Khan. M. A.: Richter-Addo. G. B. Inorg. Chem. 1996. 35. 3453. (c) Chen. L.: Yi. G.-B.: Wang. L.-S.: Dharmawardana. L' R.: Dart. A. C.: Khan. M. A.: Richter-Addo. G. B. Inorg. Chem. Submitted. Yi. G.-B.: Khan, M. A.: Richter-Addo. G. B. Inorg. Chem. 1995. 34. 5703. (a) Wang. L.-S.: Chen. L.: Khan. M. A.: Richter-Addo. G. B. Chem. Commun. 1996. 323. (b) Fox. S. J. S.: Chen, L.: Khan. M. A.: Richter-Addo. G. B. Inorg. Chem. 1997. 36. 6465. (c) We have successfully extended N-binding of nitrosoarenes to osmium porphyrins (chapter 2).
(a) Yi. G.-B.: Khan. M. A.: Richter-Addo, G. B. Chem. Commun. 1996. 2045. (b) Yi. G.-B.: Chen. L.: Khan. M. A.: Richter-Addo. G. B. Inorg. Chem. 1997. 36. 3876.
(a) Miranda. K. M.: Bu. X.: Lorkovic. I.: Ford. P. C. Inorg. Chem. 1997, 36. 4838. (b) Kadish. K. M.: Adamian. V. A.: Van Caemelbecke, E.: Tan. Z.: Tagliatesta. P.: Bianco. P.: Boschi. T.: Yi. G.-B.: Khan. M. A.: Richter-Addo. G. B. Inorg. Chem. 1996. 35. 1343. (c) Bohle. D. S.: Goodson. P. A.: Smith. B. D. Polyhedron 1996, 15. 3147. (d) Bohle. D. S.: Hung. C.-H.: Powell. A. K.: Smith, B. D.; Wocadlo. S. Inorg. Chem. 1997. 36. 1992. (e) Srivastava, T. S.: Hoffman, L.: Tsutsui. M. J. Am. Chem. Soc. 1972, 94. 1385.
(a) Hodge, S. J.: Wang, L.-S.: Khan. M. A.: Young. V. G.. Jr.: Richter-Addo. G. B. Chem. Commun. 1996. 2283. (b) Massoudipour. M.: Pandey. K. K. Inorg. Chim. Acta 1989. 160. 115.
Antipas. A.: Buchler. J. W.: Gouterman. M.: Smith. P. D. J. Am. Chem. Soc. 1978, 100.3015.
(a) Antipas. A.: Buchler. J. W.: Gouterman, M.: Smith. P. D. J. Am. Chem. Soc. 1980. 102. 198. (b) Buchler. J. W.: Smith. P. D. Chem. Ber. 1976. I1)9. 1465.
(28) Che. C.-M.: Poon. C.-K.: Chung. W.-C.: Gray. H. B. Inorg. Chem. 1985. It. 1277.
(29) (a) Collman. J. P.: Barnes. C. E.: Woo. L. K. Proc. Natl. Acad. Sci. L'SA 1983. 80. 7684. (b) Collman. J. P.: Prodolliet. J. W.: Leidner, C. R. J. Am. Chem. Soc. 1986. 108. 2916.
(30) Bonnett. R.: Nicolaidou. P. J. Chem. Soc., Perkin Trans. / 1979. 1969.
(31) Che. C.-M.: Leung. W.-H.: Chung. W.-C. Inorg. Chem. 1990. 29. 1841.
(32) Sakla. A. B.: Masoud. N. K.: Sawiris. Z.: Ebaid. W. S. Helv. Chim. Acta 1974. 57. 481.
(33) Fernández-Galán. R.: Manzano, B. R.: Otero, A.: Lanfranchi. M.: Pellinghelli, M. A. Inorg. Chem. 1994. 33. 2309.
(34) Feltham. R. D.: Enemark. J. H. Topics Stereochem. 1981. 12, 155.
(35) Buchler. J. W.: Kokisch. W.: Smith. P. D. Struct. Bonding 1978. 34. 79.
(36) Gross. Z.: Mahammed, A. Inorg. Chem. 1996. 35. 7260.
(37) Bruce, M. I.: Tomkins, B.: Wong. F. S.: Skelton. B. W.: White. A. H. J. Chem. Soc., Dalton Trans. 1982, 687.
(38) Boyar. E. B.: Dobson, A.: Robinson, S. D.: Haymore, B. L.: Huffman. J. C. J. Chem. Soc., Dalton Trans. 1985. 621.
(39) Clark, G. R.: Greene, T. R.: Roper, W. R. Aust. J. Chem. 1986. 39. 1315.
(40) Williams, D. S.: Meyer. T. J.: White, P. S. J. Am. Chem. Soc. 1995. ll7. 823.
(41) Werner. H.: Flügel. R.: Windmüller. B.: Michenfelder. A.: Wolf. J. Organometallics 1995, 14, 612.
(42)
(a) Rudnitskaya. O. V.: Buslaeva. T. M.: Stash. A. I.: Kisın. A. V. Russ. J. Coord. Chem. 1995. 21, 136. (b) Ooyama. D.: Nagao. N.: Nagao. H.: Sugimoto. Y.: Howell. F. S.: Mukaida. M. Inorg. Chim. Acta 1997. 26/. 45.
(a) Herberhold. M.: Hill. A. F.: Clark. G. R.: Rickard. C. E. F.: Roper. W. R.: Wright. A. H. Organometallics 1989. 8. 2483. (b) Hill. A. F.: Roper. W. R.: Waters. J. M.: Wright. A. H. J. Am. Chem. Soc. 1983. 105. 5939.
(44) Fergussion. J. E.: Robinson. W. T.: Coll. R. K. Inorg. Chim. Acta 1991. I81. 37.
(45) Czeska. B.: Dehnicke. K.: Fenske. D. Z. Naturforsch. B. 1983. 38. 1031.
(46) Clark. G. R.: Waters. J. M.: Whittle. K. R. J. Chem. Soc.. Dalton Trans. 1975. 463.
(47) Other structurally characterized osmium porphyrins: (a) (OEP)Os $\left(\mathrm{PPh}_{3}\right)_{2}$: reference 48. (b) (OEPMe2)Os(CO)(py): Buchler. J. W.: Lay. K. L.: Smith. P. D.: Scheidt. W. R.: Rupprecht. G. A.: Kenny, J. E. J. Organomet. Chem. 1976. 110 . 109. (c) (TTP)Os(4-pic) 2: Djukic. J.-P.: Young. V. G.. Jr.: Woo. L. K. Organometallics 1994. 13. 3995. (d) (TTP)Os(Cl)2: Smieja. J. A.: Omberg, K. M.: Busuego, L. N.: Breneman. G. L. Polyhedron 1994. 13. 339. (e) (TTP)Os($\left.\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2}$: Leung. W.-H.: Hun. T. S. M.: Wong. K.-Y.: Wong. W.-T. J. Chem. Soc., Dalton Trans. 1994, 2713. (f) (TTP)Os $\left(p-\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}$: Smieja. J. A.: Omberg, K. M. Inorg. Chem. 1994. 33. 614. (g) Woo. L. K.: Smith, D. A.: Young, V. G.. Jr. Organometallics 1991. 10. 3977.
(48) Che, C.-M.: Lai. T.-F.: Chung. W.-C.: Schaefer, W. P.: Gray. H. B. Inorg. Chem. 1987. 26. 3907.
(49) Scheidt, W. R.: Nasri. H. Inorg. Chem. 1995. 34. 2190. Collman. J. P.; Bohle. D. S.: Powell. A. K. Inorg. Chem. 1993. 32, 4004. Che. C.-M.: Huang. J.-S.: Li. Z.-Y.: Poon, C.-K.: Tong. W.-F.: Lai. T.-F.: Cheng. M.-C.: Wang, C.-C.: Wang, Y. Inorg. Chem. 1992. 31.5220.
(52) Nasri. H.: Scheidt. W. R. Acta Cristallogr. 1990. C+6. 1096.
(53) Che. C.-M.: Chung. W.-C.: Lai. T.-F. Inorg. Chem. 1988. 27. 2801.
154) The short Os-O contact should be treated with caution due to the limited accuracy of this bond length.
(55) Structurally characterized Os alkoxides: (a) Cheng. W.-K.: Wong. K.-Y.: Tong. W.-F.: Lai. T.-F.: Che. C.-M. J. Chem. Soc.. Dalton Trans. 1992. 91. (b) Masuda. H.: Taga. T.: Osaki. K.: Sugimoto. H.: Mori. M. Bull. Chem. Soc. Jpn. 1984. 57. 2345. (c) Hinckley. C. C.: Ali. I. A.: Robinson. P. D. Acta Crystallogr. 1990. C46.697. (d) reference 44. (e) reference 51.

Suehiro. T.: Masuda. S.: Nakausa. R.: Taguchi. M.: Mori. A.: Koike. A.: Date. M. Bull. Chem. Soc. Jpn. 1987. 60. 3321.
(60) Aryldiazonium adducts of metalloporphyrins are known: Farrell. N.: Neves. A. A. Inorg. Chim. Acta 1981. 54. L53.
(61) (a) Che. C.-M.: Cheng, W.-K.; Mak. T. C. W. Inorg. Chem. 1986. 25. 703.
(b) Cruz-Garritz, D.: Gelover, S.: Torrens. H.: Leal. J.: Richards. R. L. J. Chem. Soc., Dalton Trans. 1988. 2393. (c) Cruz-Garritz. D.: Sosa. P.: Torrens. H.: Hills. A.: Hughes. D. L.: Richards. R. L. J. Chem. Soc.. Dalton Trans. 1989. 419. (d) Hills. A.: Hughes. D. L.: Richards. R. L.: Arroyo. M.: Cruz-Garritz. D.: Torrens, H. J. Chem. Soc., Dalton Trans. 1991. 1281. (e) Arroyo. M.: Chamizo. J. A.: Hughes, D. L.: Richards, R. L.: Roman. P.: Sosa. P.: Torrens. H. J. Chem. Soc., Dalton Trans. 1994. 1819.
(62) Lynch. W. E.: Lintvedt. R. L.: Shui. X. Q. Inorg. Chem. 1991. 30.1014.
(63) The reaction of $(O E P) R u(C O)$ with NOBF_{4} also generates $[(\mathrm{OEP}) \mathrm{Ru}, \mathcal{N O}) \mid \mathrm{BF}_{4}$. which is converted to $\left[(\mathrm{OEP}) \mathrm{Ru}\left(\mathrm{NO}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{BF}_{4}$ in air. O oh
(64) Bauer. H.: Nagel. U.: Beck. W. J. Organomet. Chem. 1985. 290. 219
(65) Bruno. G.: Schiavo. S. L.: Piraino. P.: Faraone. F. Organometallics 1985. 4. 1098.
(66) Bühler. K.: Bues. W. Z. Anorg. Allg. Chem. 1961. 308. 62.
(67) Schmutzler. R. In Advances In Fluorine Chemistr:: Stacey. M.: Tatlow. J. C.: Sharpe. A. G., eds: Butterworths: London. 1965. Vol. 5. p 252.
(68) The $\mathrm{Cp}_{2} \mathrm{Rh}_{2}(\mu-\mathrm{CO})(\mu-\mathrm{dppm})\left(\mu-\mathrm{AgO}_{2} \mathrm{PF}_{2}\right)$ complex contains disordered O and F atoms in the $\mathrm{O}_{2} \mathrm{PF}_{2}$ group. ${ }^{65}$
(69) Schmutzler. R. In Advances In Fluorine Chemistry: Stacey, M.: Tatlow. J. C.: Sharpe. A. G.. eds: Butterworths: London. 1965. Vol. 5. p 262.
(70) Begley. M. J.: Dove. M. F. A.: Hibbert. R. C.: Logan. N.: Nunn. M.: Sowerby. D. B. J. Chem. Soc.. Dalton Trans. 1985. 2433.
(71) Legzdins. P.: Oxley. J. C. Inorg. Chem. 1984. 23. 1053.
(72) Powell. J.: Horvath. M. J.: Lough. A. J. Chem. Soc.. Dalton Trans. 1996. 1669.
(73) Granier, P. W.: Durand, J.: Cot. L.: Galigné. J. L. Acta Crystallogr. 1975. B31. 2506.
(74) Tan, T. H.: Dalziel, J. R.; Yeats, P. A.: Sams, J. R.: Thompson. R. C.: Aubke. F. Can. J. Chem. 1972, 50, 1843.
(75) Thompson. R. C.: Reed, W. Inorg. Nucl. Chem. Lett. 1969. 5. 581.
(76) Harrison. R. W.: Trotter. J. J. Chem. Soc. A 1969. 1783.
(77) Babaeva. V. P.: Rosolovskii. V. Y. Russ. J. Inorg. Chem. 1971. 16 (4). 471.

Chapter 2. Nitrosamine and Nitrosoarene Complexes of Metalloporphyrins

Introduction

Nitrosamines ($\mathrm{R}_{2} \mathrm{NN}=\mathrm{O}$) belong to the family of N-nitroso compounds. and they are generally considered to be carcinogenic. ${ }^{1.7}$ They are metabolized by cytochrome P450. and final metabolized products may result from initial hydroxylation or denitrosation of the nitrosamine. ${ }^{y-10}$ Two types of interactions of nitrosamines with cytochrome P450 have been proposed (Figure 2.1). The first is the interaction of the nitrosamine with the substrate pocket (Type I) prior to the enzyme-catalyzed oxidation. ${ }^{8.9}$ and the second is the direct interaction of the nitrosamine with the iron center of the heme (Type II) in the enzyme. ${ }^{8.11}$ This variable binding of nitrosamines to the heme pocket of cytochrome P450 contributes to the rather complex metabolic pathways of nitrosamine activation.

Although nitrosamines are known to form complexes with some metals. 12-19 the nature of nitrosamine binding to heme or heme models had not been reported prior to our study. Interestingly, it has been documented that V hydroxyethylprotoporphyrin IX forms in the livers of mice after diethylnitrosamine treatment. although the mechanism of such formation remains unclear. ${ }^{(0)}$ Some iron nitrosyl porphyrins also nitrosate secondary amines to form nitrosamines. ${ }^{21.22}$ Our research group is interested in investigating the coordination chemistry of nitrosamines with heme models, since nitrosamine interactions with cytochrome P450 lead to activation and/or denitrosation of the nitrosamine. Specifically. we were interested in (i) preparing discrete adducts of nitrosamines with heme models, and (ii) determining the nature of nitrosamine binding to the metal center in such heme models.

Prior to our work. only a handful of structurally characterized nitrosamine metal complexes were reported. The structure of $\left(\mathrm{Me}_{2} \mathrm{NNO}\right)\left(\mathrm{SbCl}_{5}\right)^{12}$ was reported very

Type I

AND

Type II

Figure 2.1. Proposed interactions of nitrosamine with the heme site of cytochrome P450.
recently, and it shows an $\eta^{1}-\mathrm{O}$ binding mode of the nitrosamine ligand. while in transition metal $\left(\mathrm{Me}_{2} \mathrm{NNO}\right) \mathrm{CuCl}_{2}{ }^{15}$ and $\left(\left(\mathrm{CH}_{2}\right)_{5} \mathrm{NNO}^{2}\right)_{C u C l}^{2}$ complexes. ${ }^{12}$ both $O-$ binding and N-binding of the nitrosamines are present. Structures of palladium and platinum complexes with cyclometallated C. N-bound nitrosamines are also known. ${ }^{3}$

Our research group recently reported the synthesis and X-ray crystallographic characterization of the first isolable nitrosamine metalloporphyrin complex $\left[(\mathrm{TPP}) \mathrm{Fe}\left(\mathrm{Et}_{2} \mathrm{NNO}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)(\mathrm{TPP}=5.10,15.20$-tetraphenylporphyrinato dianion). $2+3 . c$ The X-ray crystal structure of the complex reveals that the two Et 2 NNO ligands are $\eta^{1}-\mathrm{O}$ bound to the iron center. The $\eta^{1}-\mathrm{O}$ binding mode of nitrosamines was successfully extended to Ru ${ }^{1 I}$ porphyrins. ${ }^{24 b . c}$ In this chapter. we will show the successful extension of the coordination chemistry of $\mathrm{Et}_{2} \mathrm{NNO}$ to other $\mathrm{Fe}^{\mathrm{II}}$ and $\mathrm{Os}^{\mathrm{II}}$ porphyrin complexes.

Nitrosoalkanes and nitrosoarenes (C-nitroso compounds. $\mathrm{RNO} / \mathrm{ArNO}$) are known to bind to heme-containing biomolecules such as hemoglobin (Hb) , myoglobin (Mb). cytochrome P450 and guanylyl cyclase.25-27 Nitrosobenzene (PhNO) binding to Hb has long been associated with PhNO_{2} poisoning. ${ }^{28}$ It has also been proposed that nitrosoalkane monomers bind to cytochrome P450 during the oxidative metabolism of amphetamine, phenylalkylamines and N-hydroxyamphetamine or during the reduction of nitroamphetamine ${ }^{29.30}$ (Figure 2.2). Furthermore. primary and secondary aliphatic nitro compounds react with Hb, Mb and cytochrome P 450 under reducing conditions to
 similarities of the C-nitroso compounds (RNO) to dioxygen $\left(\mathrm{O}_{2}\right)$: the low-lying π^{*} orbitals of dioxygen and C-nitroso compounds can easily accept electron density via metal-ligand backbonding. 32

There are three binding modes of C-nitroso ligands that have been established in mononuclear metal complexes (Figure 2.3).33 All three binding modes have been

1
2
3
5
$\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}$

4

Figure 2.2 Possible redox intermediates between amphetamine 1 and its corresponding nitro compound 5.29

$\eta^{1}-\mathbf{N}$

$\eta^{1}-\mathbf{O}$

$$
\eta^{2}-\mathbf{O}, \mathbf{N}
$$

Figure 2.3. Coordination modes of C-nitroso ligands to monometallic centers.
confirmed by single-crystal X-ray crystallographic studies. The majority of metalRNO complexes display $\eta^{1}-\mathrm{N}$ binding of the C-nitroso ligands to the metal centers. Examples of $\eta^{1}-\mathrm{N}$ binding include $\mathrm{W}(\mathrm{CO})_{5}\left({ }^{(\mathrm{BuNO}}\right)\left(d^{6}\right) .3+\mathrm{RhCl}(\operatorname{cod}) 12-\mathrm{Me}+-$ $\left.\mathrm{Me}{ }_{2} \mathrm{NC}_{6} \mathrm{H}_{3} \mathrm{NO}\right)\left(d^{8}\right)^{35} \mathrm{PdCl}_{2}(\mathrm{PhNO})=\left(d^{8}\right)^{36} \mathrm{PtCl}_{2}(\mathrm{BuNO})_{2}\left(d^{8}\right)^{37}$ and $\left[\mathrm{CoCl}_{2}(\mathrm{NODMA})_{2}\right]\left(d^{7}\right)^{38}($ NODMA $=N . N$-dimethyl-4-nitrosoaniline $)$. Although there is ample precedent for the existence of nitrosoalkane and nitrosoarene complexes of hemes. there were only a handful of synthetic metalloporphyrin complexes containing C-nitroso compounds as ligands. The structurally characterized nitrosoalkane complex (TPP)Fe($(\operatorname{PrNO})\left({ }^{(} \mathrm{PrNH}_{2}\right)$ displays the $\eta^{\prime}-\mathrm{N}$ binding of the nitrosoalkane ligand to the formal $\mathrm{Fe}^{I I} d^{6}$ center. ${ }^{32}$ Our research group recently reported ${ }^{39}$ that the structurally characterized (TPP)Fe(PhNO) $)_{2}$ complex also displays the $\eta^{1}-\mathrm{N}$ binding of the two nitrosobenzene ligands to the formal $\mathrm{Fe}^{11} d^{6}$ metalloporphyrin center. James et al ${ }^{40}$ have shown (by IR and NMR spectroscopy) that nitrosobenzene binds via its N atom to related formal $\mathrm{Ru}^{\mathrm{II}} d^{6}$ porphyrins. Some transition metal coordination (non-porphyrin) complexes containing bidentate C-nitroso ligands have also been reported. ${ }^{+1}$

Surprisingly, the $\eta^{i}-\mathrm{O}$ binding mode of C-nitroso monomers to monometallic complexes was only shown (by X-ray diffraction studies) in two metal complexes. namely. $\mathrm{SnCl}_{2} \mathrm{Me}_{2}(\mathrm{NODMA})_{2}{ }^{42 \mathrm{a}}$ and $\mathrm{ZnCl}_{2}(\mathrm{NODMA})_{2}{ }^{+2 \mathrm{~b}}$ with both metals having a formal d^{10} electronic configuration. The dimeric C-nitroso ligands also act as bidentate O-donors to various metals, such as $\mathrm{Fe} . \mathrm{Ti} . \mathrm{Pb}$ and $\mathrm{Sn} .{ }^{+3}$ Based on structural data available, it was proposed that such an η^{1-O} binding of C-nitroso monomers was indeed restricted to d^{10} metals. ${ }^{33}$ We have since utilized our results with $\eta^{1}-0$ nitrosamine binding (to group 8 metalloporphyrins) to design appropriate reactions to prepare targeted $\eta^{1}-\mathrm{O}$ nitrosoarene complexes of iron and manganese porphyrins. ${ }^{39.4}$ We have also extended the $\eta^{1}-\mathrm{N}$ nitrosoarene binding to several $\mathrm{Os}^{I I}$ porphyrins. Prior to our work. only one other Os-RNO complex had been reported in the literature. ${ }^{55}$

Experimental Section

All reactions were performed under an atmosphere of prepurified nitrogen (Airgas. Inc.) using standard Schlenk techniques and/or in an Innovative Technology Labmaster 100 Dry Box unless stated otherwise. Solvents were distilled from appropriate drying agents under nitrogen just prior to use: $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{CaH}_{2}\right)$. THF (Na /benzophenone) , hexane (Na /benzophenone/tetraglyme). benzene (Na). and toluene (Na).

Chemicals. N-nitrosodiethylamine ($\mathrm{Et}_{2} \mathrm{NNO} .>99 G_{c}$) was purchased from Fluka. The compounds NOBF_{4}, diethylamine (98%) sodium nitrite (97%). AgSbF_{6} (98%). PhNO (97%) , o-tolNO (97%), N. N-dimethyl- + -nitrosoaniline ($\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NO} .97 \%$) and $N . N$-diethyl-4-nitrosoaniline ($\mathrm{Et}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NO} .97 \%$) were purchased from Aldrich Chemical Co. [${ }^{18} \mathrm{O}$]water was purchased from Isotec. Anhydrous HCl gas was obtained from Matheson Gas Co . The (por) FeCl compounds (por $=\operatorname{TPP}, \mathrm{TTP}: \operatorname{TTP}=5.10 .15 .20$-tetra-p-tolylporphyrinato dianion) were prepared by following the reported procedures. ${ }^{+6.47}$ The (por)Os(CO) ${ }^{+8}$ compounds were prepared by literature methods (por $=$ TPP. TTP. OEP. $\mathrm{TMP}^{49}:$ OEP $=2.3 .7 .8$. 12. 13. 17. 18-octaethylporphyrinato dianion. $\operatorname{TMP}=5.10 .15 .20-$ tetramesitylporphyrinato dianion). Chloroform- $d\left(99.8 \%\right.$) methylene- d_{2} chloride (99.9%) , benzene- $d_{6}(99.6 \%)$ and toluene- $d_{8}(99.6 \%)$ were obtained from Cambridge Isotope Laboratories, subjected to three freeze-pump-thaw cycles, and stored over Linde $4 \AA$ molecular sieves. Elemental analyses were performed by Atlantic Microlab. Norcross, GA. Nitric oxide (98%. Matheson Gas) was passed through KOH pellets and a cold trap (Dry Ice/acetone, $-78^{\circ} \mathrm{C}$) to remove higher nitrogen oxides.

Instrumentation. Infrared spectra were recorded on a Bio-Rad FT-155 FTIR spectrometer. 'H NMR spectra were obtained on a Varian XL-300 spectrometer and the signals were referenced to the residual signal of the solvent employed. All chemical shifts are in ppm. All coupling constants are in Hz . FAB mass spectra were
obtained on a VG-ZAB-E mass spectrometer. LV-vis spectra were recorded on a Hewlett-Packard HP8453 Diode Array instrument. Solution magnetic susceptibilities were measured using the Evan ${ }^{5}$ NMR method in $\mathrm{C}_{6} \mathrm{D}_{6}$ at room temperature. ${ }^{50}$

N-Nitroso (Nitrosamine) Complexes

Synthesis of $\left[{ }^{18} \mathbf{O}\right] E t_{2} \mathbf{N N O}$. This procedure is a slight modification of a published procedure for the preparation of the analogous $\mathrm{Me}_{2} \mathrm{NN}^{18} \mathrm{O} .51$ Sodium nitrite $(0.154 \mathrm{~g})$ was dissolved in $\left[{ }^{18} \mathrm{O}\right]$ water (1 g) and the mixture was deaerated by repeated freeze-pump-thaw cycles. The sample was placed under nitrogen and immersed in an ice bath. Anhydrous HCl gas was passed through the mixture for several minutes until the weight increase was ca. 0.2 g and a yellow precipitate was observed to form. The sample was left to stir for an additional 7 h . Cold diethylamine (0.35 g . ice bath) was then added. and the mixture was stirred overnight under nitrogen. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. and the extract was dried over anhydrous MgSO_{4} to remove any remaining [${ }^{18} \mathrm{O}$]water. The solution was filtered into another container. and the solvent was removed by passage of nitrogen gas through the solution. Low-resolution mass spectrum (EI): $m /=104\left[\mathrm{Et}_{2} \mathrm{NN}^{18} \mathrm{O}\right]^{+}(100 \%) .102$ $\left[\mathrm{Et}_{2} \mathrm{NNO}\right]+(14 \%)$.

Preparation of $\left[(T T P) F e(T H F)_{2}\right]\left(\mathbf{S b F}_{6}\right)$. To a THF (20 mL) solution of (TTP) $\mathrm{FeCl}(0.31 \mathrm{~g}, 0.41 \mathrm{mmol})$ was added $\mathrm{AgSbF}_{6}(98 \%, 0.15 \mathrm{~g} .0 .43 \mathrm{mmol})$. The mixture was heated to gently reflux for 30 min , and the color of the reaction mixture turned from brown to red. The solution was filtered to another reaction container. The volume of the solution was reduced to ca .15 mL and hexane (45 mL) was added. The mixture was stored at $-20^{\circ} \mathrm{C}$ overnight. The supernatant was discarded. and the black purple solid was dried in vacuo for 2 h to give [(TTP)Fe(THF) $\mathbf{2}_{2}$ (SbF_{6}) (0.42 g .0 .38 mmol. 93%). Anal. Calcd for $\mathrm{C}_{56} \mathrm{H}_{52} \mathrm{O}_{2} \mathrm{~N}_{4} \mathrm{FeSbF}_{6}$: C, 60.89: H. 4.74: .N. 5.07.

Found: C. 59.91: H. 4.63: N, 5.33. IR $\left(\mathrm{KBr} . \mathrm{cm}^{-1}\right): v_{\mathrm{SbF}_{6}}{ }^{52}=657 \mathrm{vs}$: also 3025 w .

2972 w. 292 । w. 2870 w. 1508 w. 1488 w. 1457 w. 1405 w. 1338 w. 1201 m. 1183 m. 1109 w. 1067 m. 1028 w. 1002 s. 917 w. 861 w. 847 m. 799 s. 746 w. TIt m. $567 \mathrm{w} .522 \mathrm{~m} . \mu_{\mathrm{eff}}=5.7$.

Preparation of [(TTP)Fe(Et2NNO) $]\left(\mathrm{SbF}_{6}\right)$. To a stirred $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (10 mL) of [(TTP)Fe(THF) $)_{2}\left(\mathrm{SbF}_{6}\right)(0.100 \mathrm{~g} .0 .090 \mathrm{mmol})$ was added excess $E t_{2} N N O(0.5 \mathrm{~mL} . \mathrm{ca} .5 \mathrm{mmol})$. The solution was left to stir for 30 min . Hexane 120 $\mathrm{mL})$ was then added. The product mixture was stored at -22 ${ }^{\circ} \mathrm{C}$ overnight. Precipitation of the solid was enhanced by mixing of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane solution. and the supernatant solution was discarded. The solid product remaining was washed with hexane ($3 \times 10 \mathrm{~mL}$) and dried in vacuo for 10 min to give analytically pure [(TTP)Fe(Et_NNO) $\left.{ }_{2}\right]\left(\mathrm{SbF}_{6}\right)$ as dark purple crystalline solid $0.073 \mathrm{~g}, 0.063 \mathrm{mmol}$. 70% yield). Anal. Calcd for $\mathrm{C}_{56} \mathrm{H}_{56} \mathrm{O}_{2} \mathrm{~N}_{8} \mathrm{FeSbF}_{6}$: C. 57.75: H. 4.85: N. 9.62 . Found: C. 57.73: H. 4.87: N. 9.57. $I R\left(\mathrm{KBr} . \mathrm{cm}^{-1}\right): v_{\mathrm{NO}}=1271 \mathrm{~m} . v_{\mathrm{Ni}}=1256 \mathrm{~m}:$ $v_{\mathrm{SbF}_{\mathrm{s}}}=657 \mathrm{~s}$: also 3025 w .2986 w .2943 w .2921 w .1511 w .1476 w .1451 w . 1379 w. 1331 w. 1200 w. 1182 w. 1128 w. 1108 w. 1098 w. 1073 w. 1004 s. 953 w. 849 w. 843 w. 805 s. 724 m. 680 w. 595 w. 567 w. 527 w. 517 w. 426 w. Lowresolution mass spectrum $(\mathrm{FAB}): m /=724[(\mathrm{TTP}) \mathrm{Fe}]^{+}\left(100^{c} \mathrm{c}\right) .103\left[\mathrm{Et} \mathrm{I}_{2} \mathrm{NAO}+\mathrm{H}\right]^{+}$ $(+\%)$. Low-resolution mass spectrum (70 eV EI): m/: $102\left[\mathrm{Et}_{2} \mathrm{NNO}\right]^{+}(100 \%), \mu_{\mathrm{eff}}=$ 6.0. LV-vis spectrum ($\lambda\left(\varepsilon, \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right.$). $9.46 \times 10^{-6} \mathrm{M}$ in $\left.\mathrm{C}_{6} \mathrm{H}_{6}\right):+15(66) .516$ (7). 572 (3). 613 (2) nm.
$\left[(T T P) F e\left(\mathbf{E t}_{\mathbf{2}} \mathbf{N}^{15} \mathbf{N O}\right)_{2}\right]\left(\mathbf{S b F}_{6}\right)$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): v_{15} \mathrm{~V}_{0}=1263 . v_{15} \mathrm{~N}=$ 1248.

Attempted Preparation of [(TTP)Fe(NO)(Et $\left.\left.\mathbf{N}_{2} \mathbf{N O}\right)\right]\left(\mathbf{S b F}_{6}\right)$. .NO (g)

 was bubbled through a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ solution of $\left[(\mathrm{TTP}) \mathrm{Fe}\left(\mathrm{Et}_{2} \mathrm{NNO}\right)\right.$) $\left(\mathrm{SbF}_{6}\right)$ $(0.056 \mathrm{~g}, 0.048 \mathrm{mmol})$. The color of the solution turned from purple red to red. All the solvent was then removed to result in a red powdery solid. IR ($\mathrm{KBr} . \mathrm{cm}^{-1}$): $\mathrm{Et}_{2} \mathrm{NNO}: U_{\mathrm{NO}} \mathrm{AN}=1263 \mathrm{~m}$ nitrosyl: $U_{\mathrm{NO}}=1922 \mathrm{~m} .1903 \mathrm{~m}: U_{\mathrm{ShF}_{\mathrm{n}}}=658 \mathrm{~s}$. Nosatisfactory elemental analysis was obtained. The compound is thermally unstable. similar to the TPP analog. - tc

Preparation of (TTP)Os($\mathbf{C O})\left(\mathrm{Et}_{2} \mathbf{N} \mathbf{N O}\right)$. To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ solution of (TTP)OsiCO) 10.035 g .0 .039 mmol) was added excess Et_NNO (0.2 mL. ca. 2 mmol). The solution was gently heated and left to stir for 20 min . No substantial color change was observed. The product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and hexane 12 mL) at $-20^{\circ} \mathrm{C}$ overnight. The supernatant was discarded. The black purple crystalline solid was washed with hexane ($3 \times 10 \mathrm{~mL}$) and dried in vacuo for 2 h to give (TTP)Os(CO) (Et2NNO) 0.5 hexane ($0.030 \mathrm{~g} .0 .029 \mathrm{mmol} .74 \%$ yield). Anal. Calcd for $\mathrm{C}_{5} 3 \mathrm{H}_{46} \mathrm{O}_{2} \mathrm{~N}_{6} \mathrm{O}_{1} 0.5 \mathrm{C}_{6} \mathrm{H}_{14}:$ C. 65.16: H. 5.17: N. 8.14. Found: C. 65.13: H. 5.20: N. 8.53. IR $\left(\mathrm{KBr} . \mathrm{cm}^{-1}\right): v_{\mathrm{NO}}=1292 \mathrm{~m} . v_{\mathrm{Ni}}=1251 \mathrm{w}: v_{\mathrm{CO}}=1902$ s $\left(\right.$ compare: $U_{C O}$ for $\left.(T T P) O s(C O)=1916\right)$: also $3021 \mathrm{w}, 2955 \mathrm{w}, 2920 \mathrm{w}, 2870 \mathrm{w}$. 1799 w. 1609 w. 1571 w. 1531 m .1513 w. 1454 w. 1437 w. 1412 w. 1380 w. 1352 m. 1307 w. 1208 w. 1180 m. 1118 w. 1107 w. 1069 m. 1011 s. 953 w. 798 s. 71 t m. 675 w. $64+$ w. 596 w. 561 w. $525 \mathrm{~m} .453 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3} . \mathrm{ca} .20^{\circ} \mathrm{C} . \delta\right):$ $8.50\left(\mathrm{~s} .8 \mathrm{H}\right.$. p.r-H of TTP). $8.11 \mathrm{~d} . J=8 .+\mathrm{H} . o-\mathrm{H}$ of TTP). 7.86 (d. $J=8 .+\mathrm{H} . o^{\prime}-$ H of TTP). $7.50(\mathrm{~d}, J=8,4 \mathrm{H}, m-\mathrm{H}$ of TTP $) .7 .44$ (d. $J=8.4 \mathrm{H} . m^{\prime}-\mathrm{H}$ of TTP). 2.65 (s. 12 $\mathrm{H}, \mathrm{CH}_{3}$ of TTP). 1.25 (b. $\mathrm{C}_{6} \mathrm{H}_{1+}$). 0.86 (t. $\mathrm{C}_{6} \mathrm{H}_{1+}$). .io apparent $\mathrm{CH}_{3} \mathrm{CH}_{2}$ peaks from $\mathrm{Et}_{2} \mathrm{NNO}$ were observed at room temperature. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2} .-10^{\circ} \mathrm{C}\right.$. $\delta): 8.56\left(\mathrm{~s} .8 \mathrm{H} . \mathrm{p} y \mathrm{r}-\mathrm{H}\right.$ of TTP), $8.14\left(\mathrm{~d} . J=7 .+\mathrm{H} . o-\mathrm{H}\right.$ of TTP). $7.87\left(\mathrm{~d} . J=7 . o^{\circ}-\right.$ H of TTP), 7.57 (d. $J=7 . m-H$ of TTP). $7.51\left(\mathrm{~d}, J=7 . m^{\prime}-\mathrm{H}\right.$ of TTP), $2.68(\mathrm{~s} .12 \mathrm{H}$. CH_{3} of TTP). 2.19 (q. $J=7.2 \mathrm{H} .\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{NNO}$). 1.27 (b. hexane). 1.03 (q. $J=7$. 2H. $\left.\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{NNO}\right) .0 .88$ (t. hexane). $0.057\left(\mathrm{t} . J=7.3 \mathrm{H} .\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{NNO}\right)$. $-1.26\left(\mathrm{t} . J=7.3 \mathrm{H} .\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{NiNO}\right)$. Low-resolution mass spectrum (FAB): $\mathrm{m} /=$ $888[(\mathrm{TTP}) \mathrm{Os}(\mathrm{CO})]^{+}(47 \%) .860[(\mathrm{TTP}) \mathrm{Os}]^{+}(56 \%)$. Low-resolution mass spectrum (70 eV EI): $m /=102$ [Et2NNO] ${ }^{+}(100 \%)$. UV-vis spectrum $\left(\lambda\left(\varepsilon . \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right) .3 .5+\mathrm{x}\right.$ $10^{-6} \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): 312 (36). 408 (323). 519 (25). 582 (12) nm.

A suitable crystal for structure determination was grown by recrystallization of the compound from a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane mixture at $-20^{\circ} \mathrm{C}$.
(TTP)Os(CO)(Et $\left.\mathbf{N}^{15} \mathbf{N O}\right)$. IR (KBr. $\left.\mathrm{cm}^{-1}\right): v_{1} \mathrm{~V}_{\mathrm{V}}=1275, v_{1} \mathrm{~N}=$ 1246.

Preparation of $(\mathrm{OEP}) \mathrm{Os}(\mathbf{C O})\left(\mathrm{Et}_{\mathbf{2}} \mathbf{N N O}\right)$. This product was prepared in 66% yield in a manner analogous to the TTP derivative described above. Anal. Calcd for $\mathrm{C}_{41} \mathrm{H}_{54} \mathrm{O}_{2} \mathrm{~N}_{6} \mathrm{Os}_{1}:$ C. 57.72: H. 6.38: N. 9.85. Found: C. 57.61: H. 6.40: N. 8.59. IR $\left(\mathrm{KBr} . \mathrm{cm}^{-1}\right): v_{\mathrm{NO}}=1294 \mathrm{w} . v_{\mathrm{Ni}}=1208 \mathrm{w}: v_{\mathrm{CO}}=1883 \mathrm{~s}$ (compare: v_{CO} for (OEP) Os $(\mathrm{CO})=1894)$: also 2962 w .2933 w .2870 w .1585 w .1544 w .1537 w . 1488 w .1464 s .1453 s .1374 m .1354 w .1336 w .1315 w .1273 m .123 l m. 1220 m. 1149 m .1111 w .1056 s .1018 s .992 m .958 s .859 w .842 m .826 w .744 s .712 m. $707 \mathrm{~m} .685 \mathrm{w} .654 \mathrm{w} .600 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} . \mathrm{ca} .2{ }^{\circ} \mathrm{C} . \delta\right): 9.68(\mathrm{~s} .4 \mathrm{H}$. meso-H of OEP). $3.93\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$ of OEP). $1.85\left(\mathrm{t} . J=8.24 \mathrm{H} . \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$ of OEP). No apparent $\mathrm{CH}_{3} \mathrm{CH}_{2}$ peaks from $\mathrm{Et}_{2} \mathrm{NNO}$ were observed at room temperature. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-10^{\circ} \mathrm{C} . \delta\right): 9.76(\mathrm{~s} .4 \mathrm{H}$. meso-H of OEP). $3.98(\mathrm{~m} .16 \mathrm{H}$. $\mathrm{CH}_{3} \mathrm{CH}_{2}$ of OEP). 1.85 (t. J $=8.24 \mathrm{H} . \mathrm{CH}_{3} \mathrm{CH} 2$ of OEP). 1.85 (q. 2 H . $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{NNO}$. overlapping with $\mathrm{CH}_{3} \mathrm{CH}_{2}$ of OEP). 0.68 (q. $J=7.2 \mathrm{H}$. $\left.\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{NNO}\right),-0.11\left(\mathrm{t}, J=7,3 \mathrm{H},\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{NNO}\right) .-1.69(\mathrm{t} . J=7.3 \mathrm{H}$. $\left.\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{NNO}\right)$. Low-resolution mass spectrum (FAB): m/-752 [(OEP)Os(CO)] ${ }^{+}$ $(18 \%) .724[(\mathrm{OEP}) \mathrm{Os}]^{+}(12 \%), 102\left[\mathrm{Et}_{2} \mathrm{NNO}\right]^{+}(1 \%)$. Low-resolution mass spectrum $(70 \mathrm{eV} \mathrm{EI}): m / \approx 102$ [$\left.\mathrm{Et}_{2} \mathrm{NNO}\right]^{+}(100 \%)$. LV-vis spectrum $\left(\lambda\left(\varepsilon . \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right), 5.28 \mathrm{x}\right.$ $10^{-6} \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): 370 (sh, 60). 389 (218). 507 (13). 539 (18) nm.
(OEP)Os(CO)(Et $\left.\mathbf{N}^{15} \mathbf{N O}\right)$. IR (KBr. $\left.\mathrm{cm}^{-1}\right): v_{i s} \mathrm{NO}_{\mathrm{O}}=1256 . \mathrm{v}_{15 \mathrm{~N}}=$ 1203.

Preparation of $\left[(\mathbf{O E P}) O s\left(\mathrm{NO}^{\prime}\right)\left(\mathrm{Et}_{2} \mathrm{NNO}^{2}\right)\right]\left(\mathrm{BF}_{4}\right)$. To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $(\mathrm{OEP}) \mathrm{Os}(\mathrm{CO})\left(\mathrm{Et}_{2} \mathrm{NNO}\right)(0.114 \mathrm{~g} .0 .134 \mathrm{mmol})$ was added $\mathrm{NOBF}_{+}(0.016$ g. 0.137 mmol). The color of the solution turned from dark red to bright red. The
solution was left to stir for 30 min . All the solvent was then removed. 'H NMR spectrum indicates the quantitative nature of the reaction to form $\left[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})\left(\mathrm{Et}_{2} \mathrm{NNO}\right)\right]\left(\mathrm{BF}_{4}\right)$. Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{54} \mathrm{O}_{2} \mathrm{~N}_{-} \mathrm{O}_{1} \mathrm{~B}_{1} \mathrm{~F}_{4}: \mathrm{C} .51 .01$: H. 5.78: N. 10.41. $1 \mathrm{C}_{40} \mathrm{H}_{54} \mathrm{O}_{2} \mathrm{~N}_{7} \mathrm{Os}_{1} \mathrm{~B}_{1} \mathrm{~F}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$: C. 50.05: H. 5.88: N. 10.21.1 Found: C. 49.75: H. 5.75: N. 9.45. IR $\left(\mathrm{KBr} . \mathrm{cm}^{-1}\right): \mathrm{Et}_{2} \mathrm{NNO}: u_{\text {NO }}=12+1 \mathrm{~m} . u_{\mathrm{N}}$ $=1198 \mathrm{~m}$: nitrosyl: $u_{\mathfrak{Y O}}=1800 \mathrm{~s}$: also $2969 \mathrm{w} .2935 \mathrm{w} .287+\mathrm{w} .1501 \mathrm{w}, 1+69 \mathrm{~m}$. 1455 m .1435 m .1375 w .1317 w .1272 m .1155 m .1111 m .1056 s .1021 m .996 m. $965 \mathrm{~m} .851 \mathrm{~m} .832 \mathrm{w} .749 \mathrm{~m} .732 \mathrm{w} .716 \mathrm{~m} .68+\mathrm{m} .625 \mathrm{w} .520 \mathrm{w} . \mathrm{I}^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} . \delta\right): 10.51$ ($\mathrm{s}, 4 \mathrm{H}$. meso-H of OEP). 4.22 (q. $J=8.16 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}$ of OEP). 1.99 (t. $J=8.24 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}$ of OEP). 1.99 ($2 \mathrm{H} .\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{NNO}$. overlapping with $\mathrm{CH}_{3} \mathrm{CH}_{2}$ of OEP). 0.58 (q. $\left.J=7.2 \mathrm{H} .\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{NNO}\right) .-0.52(\mathrm{t} . J=7.3 \mathrm{H}$. $\left.\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{NNO}\right) .-2.01\left(\mathrm{t} . J=7.3 \mathrm{H} .\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{NNO}\right)$. Low-resolution mass spectrum (FAB): $m / \approx 856\left[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})\left(\mathrm{Et}_{2} \mathrm{NNO}\right)\right]^{+}(6 \%) .754[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})]^{+}$ $131 \%) .72+[(\mathrm{OEP}) \mathrm{Os}]^{+}(5 \%) .102\left[\mathrm{Et}_{2} \mathrm{NNO}^{+}(1 \%)\right.$. Low-resolution mass spectrum (70 eVEI): $m /=102\left[\mathrm{Et}_{2} \mathrm{NNO}\right]^{+}(100 \%)$. LV-vis spectrum $\left(\lambda\left(\varepsilon . \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right), 1.26 \mathrm{x}\right.$ $10^{-5} \mathrm{M}$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 348(45) .370(51) .418(40) .542(11) .579(17) \mathrm{nm}$.

C-Nitroso Complexes

[(TPP)Fe($\left.\left.\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{Me}_{2}\right)_{2}\right]\left(\mathrm{SbF}_{6}\right)$ was first prepared by Dr. Li-Sheng Wang of our research group at the time. ${ }^{39}$ IR $\left(\mathrm{KBr} . \mathrm{cm}^{-1}\right): v_{\mathrm{VO}}=1364 \mathrm{~m} . v_{\mathrm{C} . \mathrm{N}}=1336 \mathrm{~m}: v_{\mathrm{SFF}_{n}}$ $=657$ vs. $\mu_{\mathrm{eff}}=6.1$.

Preparation of $\left[(T P P) F e\left(O^{15} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NME}_{2}\right)_{2}\right]\left(\mathrm{SbF}_{6}\right)$. [(TPP)Fe$\left.(\mathrm{THF})_{2}\right]\left(\mathrm{SbF}_{6}\right) \cdot \mathrm{THF}^{39}(0.030 \mathrm{~g}, 0.027 \mathrm{mmol})$ and $\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}{ }^{15} \mathrm{NO}(0.01+\mathrm{g} .0 .093$ mmol $)^{53}$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The reaction mixture was left to stir for 30 \min. All the solvent was then removed, the residual solid was washed with hexane (2 $\times 5 \mathrm{~mL})$ and dried in vacuo for 2 h . $\mathrm{IR}\left(\mathrm{KBr} . \mathrm{cm}^{-1}\right): v_{15}=1359 . v_{\mathrm{C}} \times \mathrm{N}=1323$:
$v_{\text {SbF }_{5}}=657$ vs. LiV-vis spectrum ($\lambda\left(\varepsilon . \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right.$). $8.71 \times 10^{-6} \mathrm{M}$ in $\left.\mathrm{C}_{6} \mathrm{H}_{6}\right):+13$ (116). 508 (9). 569 (6). 610 (3). 659 (2) nm.

Preparation of $\left[(\mathrm{TPP}) \mathrm{Fe}\left(\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{NEt}_{2}\right)_{2}\right]\left(\mathrm{SbF}_{6}\right) \cdot \mathbf{0 . 3}^{\mathbf{3}} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ solution of [(TPP)Fer(THF) $)_{2}\left(\mathrm{SbF}_{6}\right) \cdot$ THF (0.10 g .0 .089 mmol$)$ was added excess $\mathrm{Et}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NO}(0.075 \mathrm{~g} .0 .42 \mathrm{mmol})$. No substantial color change was observed. The solution was stirred for 30 min and the volume of the solution was reduced to ca. 8 mL . Hexane (10 mL) was added and the mixture was stored at $-20^{\circ} \mathrm{C}$ overnight. The supernatant was discarded. and the purple crystalline solid was washed with hexane (2 $\times 5 \mathrm{~mL}$) and dried in vacuo for +h to give [(TPP) $\left.\mathrm{Fe}\left(\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{NEt}_{2}\right)_{2}\right]\left(\mathrm{SbF}_{6}\right) \cdot 0.3 \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.095 \mathrm{~g} .0 .074 \mathrm{mmol} .83 \%)$. Anal. Calcd for $\mathrm{C}_{64} \mathrm{H}_{56} \mathrm{O}_{2} \mathrm{~N}_{8} \mathrm{FeSbF}_{6} \cdot \mathrm{O}_{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C. 60.04 : H. 4.44: N. 8.71: Cl. 1.65. Found: C. 60.02: H. 4.54: N. 8.76: Cl. 1.61. IR (KBr. $\left.\mathrm{cm}^{-1}\right)$: $U_{\mathrm{SbF}_{5}}=656 \mathrm{~s}$: also $3052 \mathrm{vw} .2981 \mathrm{vw} .2935 \mathrm{vw} .1614 \mathrm{~s} .1602 \mathrm{~s} .1575 \mathrm{sh}, 1548 \mathrm{~m} .148 \mathrm{l}$ w. 1441 w . $1419 \mathrm{~m} .1381 \mathrm{w} .1370 \mathrm{w} .1330 \mathrm{~s} .1304 \mathrm{~m} .1281 \mathrm{w} .1269 \mathrm{w} .1201 \mathrm{~s}, 1190 \mathrm{~s} .1167$ w. 1149 s .1121 m .1073 m .1005 m .996 m .835 m .797 s .759 m .752 m .737 m. $715 \mathrm{~m} .703 \mathrm{~s} .632 \mathrm{~m} .606 \mathrm{~m} .566 \mathrm{~m} .497 \mathrm{w} .+32 \mathrm{w}$. Low-resolution mass spectrum (FAB): $m=668[(\mathrm{TPP}) \mathrm{Fe}]^{+} 100 \%, 179\left[\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{NEt}_{2}+\mathrm{H}\right]^{+} 86 \% . \mu_{\mathrm{eff}}=6.0$. LV vis spectrum $\left(\lambda\left(\varepsilon . \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right), 7.30 \times 10^{-6} \mathrm{M}\right.$ in $\left.\mathrm{C}_{6} \mathrm{H}_{6}\right):+13(173) .512(16) \mathrm{nm}$.
[(TPP) $\mathrm{Fe}\left(\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{NEt}_{2}\right)_{2}$] $\left(\mathrm{SbF}_{6}\right) \cdot 0.3 \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.100 \mathrm{~g})$ was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to make a saturated solution which was kept at $-20^{\circ} \mathrm{C}$ for 5 days. After some dark purple crystals came out. the mother solution was transferred to another schlenk tube and kept at $-20^{\circ} \mathrm{C}$ for 3 more days. A crystal coming out from the mother solution was used for structure determination.

A suitable crystal of the $\mathrm{Mn}^{\mathrm{III}}$ analog [(TPP) $\mathrm{Mn}_{\left.\left(\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{NEt}_{2}\right) 2\right]\left(\mathrm{SbF}_{6}\right) \text { for }}$ structure determination was obtained from a $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane solution at $-20^{\circ} \mathrm{C}$.

Preparation of $\left[(T T P) F e\left(\mathrm{ONC}_{6} \mathbf{H}_{4} \times \mathrm{Me}_{2}\right)_{2}\right]\left(\mathrm{SbF}_{6}\right)$. The $\left[\left(\mathrm{TTP} / \mathrm{Fe}^{-}-\right.\right.$ $\left.\left(\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)_{2}\right]\left(\mathrm{SbF}_{6}\right)$ complex was prepared by similar procedures for [(TPP)Fe$\left.\left.\left(\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{NEt}\right)_{2}\right)_{2}\right)\left(\mathrm{SbF}_{6}\right) \cdot 0.3 \mathrm{CH}_{2} \mathrm{C}!2$ in $59 c_{6}$ vield. Anal. Calcd for $\mathrm{C}_{64} \mathrm{H}_{56} \mathrm{O}_{2} \mathrm{~N}_{8} \mathrm{FeSbF}_{6}:$ C. 60.97: H. 4.48: N. 8.89. Found: C. 60.87: H. +.65: N. 8.67. IR (KBr. $\left.\mathrm{cm}^{-1}\right): v_{\mathrm{NO}}=1363 \mathrm{~m} . v_{\mathrm{CN}}=1334 \mathrm{~m}: v_{\mathrm{ShF}_{\mathrm{n}}}=657 \mathrm{vs}:$ also 1605 m . 1445 w. 1398 m .1303 m .1203 w .1182 w .1151 m .1120 m .1001 m .839 m .801 s. 724 s .632 s .605 m 568 m .521 m . Low-resolution mass spectrum (FAB): m/:724 $[(T T P) F e]+(100 \%) \cdot 151\left[\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NO}+\mathrm{H}\right]+(4 \%) . \mu_{\text {eff }}=4.8$. UV-vis spectrum $\left(\lambda\left(\varepsilon . \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right) .7 .94 \times 10^{-6} \mathrm{M}\right.$ in $\left.\mathrm{C}_{6} \mathrm{H}_{6}\right): 322(24) .413(109) .572(6) .613(3) \mathrm{nm}$.

Preparation of $\left[(T T P) F e\left(\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{NEt}_{2}\right)_{2}\right]\left(\mathrm{SbF}_{6}\right) \cdot \mathbf{0 . 5} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The [(TTP)Fe($\left.\mathrm{ONC}_{6} \mathrm{H}_{\downarrow} \mathrm{NEt}_{2}\right)_{2}$] $\left(\mathrm{SbF}_{6}\right) \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ complex was prepared by similar procedures in 55% yield. Anal. Calcd for $\mathrm{C}_{68} \mathrm{H}_{64} \mathrm{O}_{2} \mathrm{~N}_{8} \mathrm{FeSbF}_{6} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{C} .60 .53$: H. 4.82: N. 8.24: Cl. 2.61. Found: C. 60.53: H. 4.85: N. 8.24: Cl. 2.62. IR (KBr. $\left.\mathrm{cm}^{-1}\right): v_{\mathrm{SbF}_{\mathrm{h}}}=659 \mathrm{vs}:$ also $1615 \mathrm{~m} .1602 \mathrm{~m} .1548 \mathrm{w}, 1472 \mathrm{w}, 1447 \mathrm{w} .1422 \mathrm{w}$. 1381 w. 1329 m .1303 m .1202 m .1190 w .1150 m .1123 w .1074 w. 1002 m .839 m .826 w .802 s .738 w .724 w .707 s .629 s .607 m .568 m .520 m .496 m .427 m. Low-resolution mass spectrum (FAB): $\mathrm{m} / \mathrm{s} 72+[(\mathrm{TTP}) \mathrm{Fe}]^{+}$(100\%). 179 $\left[\mathrm{Et}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NO}+\mathrm{H}\right]^{+}(33 \%) . \mu_{\text {eff }}=5.0$. UV-vis spectrum ($\lambda\left(\varepsilon . \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right) .6 .08 \times$ $10^{-6} \mathrm{M}$ in $\mathrm{C}_{6} \mathrm{H}_{6}$): 415 (127), 511 (12), 611(3) nm.

Reaction of $\left[(\mathrm{TPP}) \mathrm{Fe}\left(\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)_{2}\right]\left(\mathrm{SbF}_{6}\right)$ with THF. The [(TPP)Fe($\left.\left.\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)_{2}\right]\left(\mathrm{SbF}_{6}\right)$ compound (0.021 g .0 .017 mmol) was dissolved in THF (10 mL) and left to stir for 1 h . Hexane (15 mL) was added. and the mixture was kept at $-20^{\circ} \mathrm{C}$ overnight. The supernatant was filtered off. and the purple crystalline solid was dried in vacuo for 15 min to give [(TPP)Fe•(THF) ${ }_{2}$ ($\left.\mathrm{SbF}_{6}\right) \cdot \mathrm{THF}$ by IR spectroscopy ($0.01+\mathrm{g} .0 .012 \mathrm{mmol} .71 \%$ yield).

Preparation of (TTP)Os(PhNO) $)_{2}$. Two methods were employed: Method I. To a toluene (20 mL) solution of (TTP)Os(CO) $0.040 \mathrm{~g} .0 .0+5 \mathrm{mmol}$ was added excess PhNO (0.011 g. 0.10 mmol$)$. The solution was heated to reflux for 30 min whereby the color of the solution changed from orange-red to brown the reaction takes 5-6 h at room temperature). The volume of the solution was reduced to ca. 2 mL . The product was precipitated out by adding hexane (4 mL) to the solution and keeping the mixture at ca. $-20^{\circ} \mathrm{C}$ overnight. The supernatant was discarded. and the purple-brown crystalline solid was dried in vacuo for 3 h to give (TTP)Osi(PhNO), ($0.030 \mathrm{~g} .0 .028 \mathrm{mmol} .62 \%$ yield). Anal. Calcd for $\mathrm{C}_{60} \mathrm{H}_{46} \mathrm{O}_{2} \mathrm{~N}_{6} \mathrm{Os}_{1}$: C. 67.15: H. 4.32: N. 7.83. Found: C. 67.69: H. 4.78: N. 7.39. IR $\left(\mathrm{KBr} . \mathrm{cm}^{-1}\right): v_{\mathrm{No}}=1291 \mathrm{~s}$ also 3022 vw. 2917 vw. 1570 w. 1527 w. 1512 w. 1496 w. 1451 w. 1350 w. 1312 s. 1212 w. 1180 m .1150 vw .1107 w .1071 w .1014 s .868 m .831 w .797 s .766 m. 730 vw. 717 m. 691 m. 670 w. 662 w. 632 w. 524 m. 'H NMR (CDCl:. $\delta 1: 8.48$ (s. $8 \mathrm{H} . p y r-\mathrm{H}$ of TTP). 7.96 (d. $J=8.8 \mathrm{H} . o-\mathrm{H}$ of TTP). 7.50 (d. $J=8.8 \mathrm{H} . m-\mathrm{H}$ of TTP). $6.40(\mathrm{t} . J=8.2 \mathrm{H} . p-\mathrm{H}$ of PhNO). 5.92 (t. $J=8 .+\mathrm{H} . m-\mathrm{H}$ of PhNO). 2.67 (s. $12 \mathrm{H} . \mathrm{CH}_{3}$ of TTP). 2. 43 (d. $J=8.4 \mathrm{H} .0-\mathrm{H}$ of PhNO). Low-resolution mass spectrum (FAB): 967 [(TTP)Os(PhNO)] ${ }^{+}(1+\%) .860[(T T P) O s]^{+}(2+\%) .107$ $[\mathrm{PhNO}]^{+}(21 \%)$. UV-vis spectrum $\left(\lambda\left(\varepsilon . \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right) .8 .40 \times 10^{-6} \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 31+$ (29). 408 (136). 655 (6) nm.

A suitable crystal of (TTP)Os(PhNO) $)_{2}$ for structure determination was grown from a toluene/hexane mixture at ca. $-20^{\circ} \mathrm{C}$.

Method II. To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ solution of (TTP)OsiCO) (0.047 g. 0.053 mmol) was added PhNO (0.007 g .0 .065 mmol). The color of the solution changed from orange-red to a dirty dark brown. The mixture was left to stir for 20 min . and the volume of the solution was reduced to ca. 2 mL . The product mixture was precipitated out by adding hexane $(+\mathrm{mL})$ to the solution and keeping the mixture at $\mathrm{ca} .-20^{\circ} \mathrm{C}$ overnight. The supernatant was discarded. and the solid was dried in vacuo for 3 h to
give a mixture of (TTP)Os(PhNO) 2 (major) and (TTP)Os(CO) (PhNO) (minor) in a $3: 1$ ratio. The IR spectrum of the mixture (as a KBr pellet) contained a band at $1972 \mathrm{~cm}^{-1}$ attributed to U_{CO} of (TTP)Os(CO)(PhNO). Low-resolution mass spectrum (FAB) of mixture: $m / \approx 967[(T T P) O s(P h N O)]^{+}(22 c c) .888[(T T P) O s(C O)]^{+}(1+c) .860$ $[(T T P) O s]^{+}(40 \%) .107[\mathrm{PhNO}]^{+}(41 \%)$. Further reaction of this product mixture with PhNO in refluxing toluene produces (TTP)Os(PhNO) $)_{2}$ exclusively (0.023 g .0 .021 mmol. 40% overall yield).

A suitable crystal of (TTP)Os(CO)(PhNO) for structure determination was adventitiously grown from a reaction mixture of (TTP)Os(CO) and crude $\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NO}(97 \%)$ which had been kept at $-20^{\circ} \mathrm{C}$ for 30 days.

Preparation of $(\mathbf{T P P}) \mathrm{Os}(\mathrm{PhNO})_{2}$. An analogous procedure to Method I above was used to synthesize (TPP)Os(PhNO)_. No satisfactory elemental analysis was obtained in this case. IR of mixture $\left(\mathrm{KBr} . \mathrm{cm}^{-1}\right): v_{\mathrm{NO}}=1295 \mathrm{~s}$: also 3054 vw . 3022 vw. 1597 w. 1575 w. 1530 w. 1506 w. 1489 w. 1478 w. 1450 sh. 1441 m. 1350 m .1311 s .1209 w .1177 m .1156 w .1071 m .1015 s .1000 m .920 w .871 m. 832 w. 795 m .767 m .752 s .735 w .715 w .701 s .695 s .666 m .636 w .527 w. Low-resolution mass spectrum (FAB): $\mathrm{m} / \mathrm{s} 911[(\mathrm{TPP}) O s(\mathrm{PhNO})]^{+}(11 \mathrm{c}) .804$ $[(\mathrm{TPP}) \mathrm{Os}]^{+}(19 \%), 107\left[\mathrm{PhNO}^{+}(52 \%)\right.$.

Although an analytically pure bulk sample was not obtained. a suitable crystal for structure determination was grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane at $-20^{\circ} \mathrm{C}$.

Preparation of (TMP)Os(PhNO)2. To a toluene (20 mL) solution of (TMP)Os(CO) ($0.058 \mathrm{~g}, 0.058 \mathrm{mmol})$ was added excess PhNO 0.020 g. 0.19 mmol). The mixture was heated to reflux for 25 min . The color of the solution turned from light red to light brown. All the solvent was then removed in vacuo. The product was filtered through a neutral alumina column in air with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. The brown filtrate was taken to dryness, and the product was dried in vacuo for 5 h to give (TMP)Os(PhNO) $2(0.052 \mathrm{~g}, 0.044 \mathrm{mmol}, 76 \%$ yield). Anal. Calcd for
$\mathrm{C}_{68} \mathrm{H}_{62} \mathrm{O}_{2} \mathrm{~N}_{6} \mathrm{Os}_{1}:$ C. 68.90 : H. 5.27: N. 7.09 . Found: C. $68.39:$ H. $5.50:$ N. 6.75. IR (KBr. cm^{-1}): $u_{\text {vo }}=1276 \mathrm{~s}:$ also 2917 vw .2850 vw .1610 vw .1586 vw .1525 vw. 1478 w. 1452 w. 1436 m. 1380 w. 1344 w. 1324 w. 1310 w. 1206 w. 1181 w. $1155 \mathrm{w} .1063 \mathrm{~m} .1015 \mathrm{~s} .919 \mathrm{~m} .868 \mathrm{~m} .853 \mathrm{w} .833 \mathrm{~m} .797 \mathrm{~m} .765 \mathrm{w} .730 \mathrm{s}$.720 s. 686 m .67 l w. $64+\mathrm{w} .635 \mathrm{w} .56 \mathrm{l}$ w. ${ }^{1} \mathrm{H}$ NMR (CDCl $\left.3 . \delta\right): 8.26$ (s. $8 \mathrm{H} . \mathrm{p} . \mathrm{r}-\mathrm{H}$ of TMP). $7.20(\mathrm{~s} .8 \mathrm{H} . m-\mathrm{H}$ of TMP). $6.29(\mathrm{t} . J=8.2 \mathrm{H} . p-\mathrm{H}$ of PhNO$) .5 .81 \mathrm{t} . J=8$. $4 \mathrm{H} . m$-H of PhNO). 2.79 (d. $J=8.4 \mathrm{H} . \mathrm{o}-\mathrm{H}$ of PhNO). 2.56 (s. 12H. $p-\mathrm{CH}:$ of TMP). 1.86 (s. $24 \mathrm{H} . o-\mathrm{CH}_{3}$ of TMP). Low-resolution mass spectrum (FAB): m / s $1080[(\mathrm{TMP}) \mathrm{Os}(\mathrm{PhNO})+\mathrm{H}]^{+}(3 \%) .972[(\mathrm{TMP}) \mathrm{Os}]^{+}(4 \%) . \mathrm{UV}$-vis spectrum $(\lambda(\varepsilon$. $\left.\mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right) .3 .72 \times 10^{-6} \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): 315 (42). 408 (163). 658 (10) nm.

A suitable crystal for structure determination was grown by slow solvent evaporation under inert atmosphere.

Preparation of $(\mathbf{O E P}) \mathrm{Os}(\mathrm{PhNO})_{2}$. (OEP)Os(PhNO$)_{2}$ was prepared by similar procedures as for (TMP)Os(PhNO$)_{2}$ in 45% isolated yield. Anal. Calcd for $\mathrm{C}_{48} \mathrm{H}_{54} \mathrm{O}_{2} \mathrm{~N}_{6} \mathrm{Os}_{1}:$ C. 61.52: H. 5.81: N. 8.97. Found: C. 61.35: H. 5.87: N. 8.92. IR $\left(\mathrm{KBr} . \mathrm{cm}^{-1}\right): v_{\mathrm{NO}}=1286 \mathrm{~s}:$ also $296+\mathrm{w} .2932 \mathrm{w} .286+\mathrm{w} .1588 \mathrm{w} .1468 \mathrm{w} .1+51$ w. 1447 w. 1378 w br. 1304 m .1231 w .1177 w .1152 m .1112 w .1057 m .1019 m. 993 m .960 m .870 w .840 w .766 m .747 w .738 w .718 w .689 m .670 w .666 w. $657 \mathrm{w} .625 \mathrm{w} .{ }^{\mathrm{h}} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \delta\right): 9.93(\mathrm{~s}, 4 \mathrm{H}$, meso-H of OEP), $6.18(\mathrm{t} . J=8$. $2 \mathrm{H} . p-\mathrm{H}$ of PhNO). 5.68 ($\mathrm{t}, J=8.4 \mathrm{H}, m-\mathrm{H}$ of PhNO). 3.99 (q. $J=8.16 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}$ of OEP), $1.99(\mathrm{~d} . J=8,4 \mathrm{H}, o-\mathrm{H}$ of PhNO$) . \mathrm{I} .83\left(\mathrm{t} . J=8.2+\mathrm{H} . \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$ of OEP). Low-resolution mass spectrum (FAB): $m /=938\left[(\mathrm{OEP}) \mathrm{Os}(\mathrm{PhNO})_{2}\right]^{+}(3 \%) .831$ $[(\mathrm{OEP}) \mathrm{Os}(\mathrm{PhNO})]^{+}(22 \%), 724[(\mathrm{OEP}) \mathrm{Os}]^{+}(56 \%) .107[\mathrm{PhNO}]^{+}(20 \%) .[\mathrm{V}-\mathrm{vis}$ spectrum ($\lambda\left(\varepsilon . \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right) .5 .93 \times 10^{-6} \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): 328 (sh. +1). 377 (12+). 498 (26). 658 (9) nm.

Preparation of (OEP)Os(o-tolNO) 2. (OEP)Os(o-tolNO $)_{2}$ was prepared by similar procedures as for (OEP)Os(PhNO$)_{2}$ and (TMP$\left.)_{\mathrm{Os}(\mathrm{Ph} N O}\right)_{2}$ in $+99_{c}$ isolated yield. Anal. Calcd for $\mathrm{C}_{50} \mathrm{H}_{58} \mathrm{O}_{2} \mathrm{~N}_{6} \mathrm{Os}_{1}$: C. 62.22: H. 6.06: N. 8.71. Found: C. 62.30: H. 6.06: N. 8.62. [R (KBr. cm^{-1}): $v_{\mathrm{N} O}=1290 \mathrm{~s}:$ also 2963 w .2931 w .2868 w. 1480 w. $1468 \mathrm{w} .1+6+\mathrm{w} .1477 \mathrm{~m} .1379 \mathrm{w} .1317 \mathrm{~m} .127+\mathrm{s} .1231 \mathrm{w} .1152 \mathrm{~m}$. 1111 w. 1056 m. 1018 m .992 m .959 m .886 m .868 w. 859 w. 839 m .749 s. 738 w. 718 m. 706 w. $66+$ w. 648 w. 626 w. ${ }^{1} H$ NMR (toluene- $d_{s} . \delta$): 10.02 (s. +H. meso-H of OEP). 5.81 (app t. $J=7 / 8.2 \mathrm{H} . p-\mathrm{H}$ of o-tolNO). 5.45 (app t. $J=8 / 8.2 \mathrm{H}$. $m-\mathrm{H}$ of o-tolNO). 5.31 (d. $J=7.2 \mathrm{H} . m^{\prime}-\mathrm{H}$ of $o-\mathrm{tolNO}$). 3.91 (q. $J=7.16 \mathrm{H}$. $\mathrm{CH}_{3} \mathrm{CH}_{2}$ of OEP). 1.82 (t. $J=7.24 \mathrm{H} . \mathrm{CH}_{3} \mathrm{CH}_{2}$ of OEP). 1.51 (d. $J=8.2 \mathrm{H}$. o-H of o-tolNO), -1.26 (s. $6 \mathrm{H} . \mathrm{CH}_{3}$ of o-tolNO). ${ }^{\mathrm{I}} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3} . \delta$): 9.91 (s. 4 H . mesoH of OEP). $5.99(\operatorname{app} \mathrm{t} . J=7 / 8,2 \mathrm{H} . p$-H of o-tolNO) $5.49(\mathrm{app} \mathrm{t} . J=7 / 8 .+\mathrm{H}, m-\mathrm{H}$ of o-tolNO). 3.99 (q. $J=8.16 \mathrm{H} . \mathrm{CH}_{3} \mathrm{CH}_{2}$ of OEP). 1.82 (t. $J=8.2+\mathrm{H} . \mathrm{CH}_{3} \mathrm{CH}_{2}$ of OEP). 1.19 (d. $J=8.2 \mathrm{H} . o-\mathrm{H}$ of o-tolNO). $-1.46(\mathrm{~s} .6 \mathrm{H} . \mathrm{CH} ;$ of o-tolNO). Lowresolution mass spectrum (FAB): $m / s 8+5[(\mathrm{OEP}) \mathrm{Os}(o-t o l N O)]^{+}(3 \% \mathrm{c}$. 72t $[(\mathrm{OEP}) \mathrm{Os}]^{+}(49 \% \mathrm{c}) .121$ [0 -tolNO] ${ }^{+}\left(6^{c} / \mathrm{c}\right)$. [VV-vis spectrum $\left(\lambda\left(\varepsilon . \mathrm{mMM}^{-1} \mathrm{~cm}^{-1}\right), 1.62\right.$ $\times 10^{-5} \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): 322 (sh, 28). 383 (76). 499 (18) nm.

A suitable crystal of (OEP)Os(o-tolNO) 2 for X-ray structure determination was grown by slow evaporation of the toluene- d_{8} mixture of the reaction of (OEP)Os(PhNO$)_{2}$ with excess o-tolNO (NMR tube reaction).

NMR Monitoring of the Substitution Reaction of
 (OEP)Os(PhNO)2 $(0.005 \mathrm{~g})$ was added six equivalents of o-tol NO . ${ }^{1} \mathrm{H}$ NMR spectrum was taken after 30 min at room temperature. The spectrum only indicated the presence of $(\mathrm{OEP}) \mathrm{Os}(\mathrm{PhNO})_{2}$ and free o-tolNO ligand peaks. The mixture was then heated. 'H NMR spectra were taken at the certain times and temperatures listed below. The peak at -1.26 is for the $o-\mathrm{Me}$ of the o-tolNO in $(\mathrm{OEP}) \mathrm{Os}(o-t o l \mathrm{NO})_{2}$, the peak at
-1.15 is presumed for the $o-\mathrm{Me}$ of the $o-$ tolNO in (OEP)Osto-tolNOM $\mathrm{Ph} . \mathrm{NO}$). The compounds' ratios from ${ }^{1} \mathrm{H}$ NMR integration's for the two singlet peaks at -1.15 and -1.26 are also listed below.

temperature and time	(OEP)Os(o-tolNO)	(OEP)Osto-tol. ${ }^{\text {a }}$
	(PhNO)	

$50^{\circ} \mathrm{C} .10 \mathrm{~min}$ 1
0.73
$50^{\circ} \mathrm{C} .20 \mathrm{~min} \quad 1 \quad 1.27$
$50^{\circ} \mathrm{C} .20 \mathrm{~min}$ then $75^{\circ} \mathrm{C} .15 \mathrm{~min} \quad 1.35$
$50^{\circ} \mathrm{C} .20 \mathrm{~min}$ then $75^{\circ} \mathrm{C} .25 \mathrm{~min} \quad 1.28$
$50^{\circ} \mathrm{C} .20 \mathrm{~min}$ then $75^{\circ} \mathrm{C} .55 \mathrm{~min} \quad 1 \quad 1.33$
$50^{\circ} \mathrm{C} .20 \mathrm{~min}$ then $75^{\circ} \mathrm{C} .7 \mathrm{~h} \quad 1.31$

Results and Discussion

Synthesis and Characterization of Nitrosamine Complexes of Iron and Osmium Porphyrins. Our research group recently reported the preparation and
 (THF$\left.)_{2}\right]\left(\mathrm{SbF}_{6}\right)$ with excess $\mathrm{Et}_{2} . \mathrm{N} . \mathrm{NO}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ generates the bis-nitrosamine [(TTP)Fe(Et $\left.\mathrm{NNNO}_{2}\right]\left(\mathrm{SbF}_{6}\right)$ complex in 70% isolated yield req 2.1). The purple

$$
\begin{aligned}
& {\left[(\mathrm{TTP}) \mathrm{Fe}\left(\mathrm{THF}_{2}\right]\left(\mathrm{SbF}_{6}\right)+\mathrm{xs} . \mathrm{Et}_{2} \mathrm{NNO} \longrightarrow\left[(\mathrm{TTP}) \mathrm{Fe}\left(\mathrm{Et}_{2}: \mathrm{ViNO}_{2}\right]\left(\mathrm{SbF}_{6}\right)\right.\right.} \\
&+2 \mathrm{THF}
\end{aligned}
$$

product is moderately air-stable in solid state but is air-sensitive in solution. The product is freely soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. moderately soluble in benzene but is only slightly soluble in hexane. The IR spectrum (as a KBr pellet) shows two new bands at 1271 cm^{-1} and $1256 \mathrm{~cm}^{-1}$ which are assigned as $v_{v o}$ and u_{x} for the coordinated EtsNO. respectively. These two bands shift to $1263 \mathrm{~cm}^{-1}$ and $1248 \mathrm{~cm}^{-1}$ when $\mathrm{Et}_{2} \cdot \mathrm{~N}^{-15} \mathrm{NO}$ is used in the reaction (Figure 2.4). The strong band at $657 \mathrm{~cm}^{-1}$ is assigned as the $u_{\text {SbF, }}$
 $1270 \mathrm{~cm}^{-1}$) complex, the $v_{N O}$ and $v_{N: N}$ of [(TTP)Fe(Et.NNO) $\left.{ }_{2}\right]\left(\mathrm{SbF}_{6}\right)$ are distinguishable in the IR spectrum. The FAB mass spectrum shows peaks for [(TTP)Fe] ${ }^{+}$and $\left[\mathrm{Et}_{2} \mathrm{NNO}+\mathrm{H}\right]^{+}$. The complementary EI mass spectrum reveals the presence of the $\mathrm{Et}_{2} \mathrm{NNO}$ ligand. The μ_{eff} of 6.0 in $\mathrm{C}_{6} \mathrm{D}_{6}$ solution indicates a d d^{5} highspin state of the formal Fe ${ }^{\text {III }}$ center. The UV -vis spectrum in $\mathrm{C}_{6} \mathrm{H}_{6}$ gives a strong Soret band at 415 nm .

Figure 2.4. [R spectra of $\left[(T T P) F e\left(E t_{2} \mathrm{NNO}_{2}\right)_{2}\right]\left(\mathrm{SbF}_{6}\right)$ (top) and $\left[(T T P) F e\left(\mathrm{Et}_{2} \mathrm{~N}^{15} \mathrm{NO}\right)_{2}\right]\left(\mathrm{SbF}_{6}\right)$ (bottom).

The complexed EtsNNO can be represented by a resonance hyhrid having a significant contribution from structure \mathbf{B} as indicated by the $\mathcal{N}-\mathcal{N}$ bond length of 1.2×2

\dot{A} and the $\mathrm{N}-\mathrm{O}$ bond length of 1.272 A in the [(TPP)FelEt2NOH/2](ClO()\) complex. ${ }^{-}$a.c. A similar contribution from the dipolar structure $\mathbf{B}(\mathrm{R}=$. Me) is noted in the low temperature X -ray structure of $\mathrm{Me} \mathrm{N}_{2} \mathrm{NO} .{ }^{5}+$

Attempts were made to investigate the nature of nitrosamine binding to the related (por)Fell metal centers. In particular. complexes with the form of $\left[(\text { por }) \mathrm{Fe}(\mathrm{NO})\left(\mathrm{Et}_{2} . \mathrm{NNO}\right)\right]^{+}($por $=$TPP²ti. TTP) were prepared. The linear .NO ligand (regarded formally as NO^{+}) would then generate the required formal Fe^{11} center. The reaction of $\left.\left[(T T P) \mathrm{Fe}_{\left(\mathrm{Et}_{2}\right.} \mathrm{NNO}\right)_{2}\right]\left(\mathrm{SbF}_{n}\right)$ with NO gas in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ result. in the formation of a proposed nitrosyl nitrosamine [(TTP)Fe(NO$\left.)\left(\mathrm{Et}_{2} . \mathrm{NO}\right)\right]\left(\mathrm{SbF}_{6}\right)$ complex based on its IR spectrum (as a KBr pellet. Figure 2.5). The u_{0} and u_{n} bands (1271 cm^{-1} and $1256 \mathrm{~cm}^{-1}$) converged to a broad band at $1263 \mathrm{~cm}^{-1}$ with a decreased intensity. The similarity of the v vond value in the nitrosy nitrosamine [(TTP)Fe(NO)(Et $\left.\left.{ }_{2} \mathrm{NNO}\right)\right]\left(\mathrm{SbF}_{6}\right)$ complex to the $v_{\text {wo }}$ and v_{2} v values of the precursor bis-nitrosamine [(TTP) $\left.\mathrm{Fe}\left(\mathrm{Et}_{2} \mathrm{NNO}\right)\right]\left(\mathrm{SbF}_{6}\right)$ complex in the coordinated nitrosamine region suggests that the $\eta^{1}-\mathrm{O}$ binding mode of the nitrosamine is not altered for the $\left[(\right.$ por $\left.\left.) \mathrm{Fe}^{\mathrm{Il}_{(}} \mathrm{NO}\right)\left(\mathrm{Et}_{2} \mathrm{NNO}\right)\right]^{+}$complexes. Two new bands appear at higher wavenumbers $1922 \mathrm{~cm}^{-1}$ and $1903 \mathrm{~cm}^{-1}$ with comparable intensity. The new bands are assigned as the vo of the nitrosyl ligand. and the presence of two bands might be due

Figure 2.5. IR spectra (KBr) of [(TTP)Fe(Et2NO)] ESFF_{6}) (top) and proposed [(TTP)Fe(NO)(Et_NNO)]((%5Cmathrm%7BSbF%7D_%7B6%7D)) (bottom).
to the presence of different conformations of the complex in the solid tate. ${ }^{55}$ Attempts to grow crystals for an X-ray structural analysis have not been successful due to the thermal instability of the compound (it loses the axial .VO ligand).

The instabilities of the $\left[(\right.$ por $\left.\left.) \mathrm{Fe}^{\mathrm{ll}} . \mathrm{NO}\right)(\mathrm{Et} 2 . \mathrm{NNO})\right]^{+}$complexes prompted us to prepare the analogous (por)Rull and (por)Os ${ }^{l t}$ complexes. in an attempt to generate more thermally stable (and possibly isolable) complexes. Geun-Bae Yi of our research group had successfully extended the nitrosamine coordination chemistry to ruthenium porphyrins. ${ }^{-+b}$ We were interested in the further extension of the nitrosamine binding to osmium porphyrins. Prior to our work. no osmium nitrosamine complexes were known. 56 -is

The reaction of (TTP)Os(CO) with excess $\mathrm{Et}_{2} \mathrm{NNO}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gives. after workup. (TTP)Os(CO)(Et ${ }_{2} \mathrm{NNO}$) in 74% isolated yield (eq 2.2). The product is

$$
(\mathrm{TTP}) \mathrm{Os}(\mathrm{CO})+\mathrm{xs} . \mathrm{Et}_{2} \mathrm{NNO} \longrightarrow(\mathrm{TTP}) \mathrm{Os}(\mathrm{CO})\left(\mathrm{Et}_{2} \mathrm{NNO}^{2}\right) \quad(2.21
$$

moderately air-stable. showing no signs of decomposition after several days in solid state and several hours in solution. The product is freely soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and benzene but is only slightly soluble in hexane. ${ }^{1} \mathrm{H}$ NMR in CDCl ; shows the presence of sharp peaks for TTP macrocycle. consistent with the diamagnetic nature of the compound. The ethyl peaks of $\mathrm{Et}_{2} \mathrm{NNO}$ are not observed at room temperature. However. a ${ }^{1} \mathrm{H}$ NMR spectrum of the complex in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-10^{\circ} \mathrm{C}$ gives the expected sharp peaks for the TTP macrocycle. two triplets for the methyl groups of Et $2 . \mathrm{NO}$ and two quartets for the methylene groups of $\mathrm{Et}_{2} \mathrm{NNO}$. The methyl peaks of $\mathrm{Et} \mathrm{I}_{2} \mathrm{NO}$ are upfield with respect to the methylene peaks of Et ${ }_{2}$ NNO. The IR spectrum (as a KBr pellet. Figure 2.6. bottom) shows two new bands at $1292 \mathrm{~cm}^{-1}$ and $1251 \mathrm{~cm}^{-1}$ which are assigned as the $v_{n o}$ and v_{Ni} for the coordinated $\mathrm{Et}_{2} \mathrm{NNO}$ ligand. The use of

Figure 2.6. IR spectra (KBr) of (TTP)Os(CO) (top) and (TTP)Os(CO)(Et2NNO) (bottom).
$\mathrm{Et}_{2} \mathrm{~N}^{15} \mathrm{NO}$ in the reaction shifts these bands to 1275 and $1246 \mathrm{~cm}^{-1}$. The larger Δv (i.e. $\left|v_{N O}-v_{N X}\right|$) in the Os^{11} nitrosamine complexes compared to the smaller Δv for [(TTP) $\mathrm{Fe}_{\left(\mathrm{Et}_{2} \mathrm{NNO}_{2}\right]\left(\mathrm{SbF}_{6}\right) \text { suggests a decreased contribution of the dipolar resonance }}$ structure \mathbf{B} isee page 78) of the coordinated nitrosamine in the osmium complexes. The IR spectrum (as a KBr pellet) also shows a strong band at $1902 \mathrm{~cm}^{-1}$ which is assigned to $u_{\text {CO }}$. This value is lower than that of the starting (TTP)OsiCO) complex $11916 \mathrm{~cm}^{-1}$). consistent with Eta:NO acting as a σ-donor to strengthen the backbonding from the $\mathrm{O} s^{11}$ center to the π^{*} orbitals of the carbonyl ligand. thus decreasing the $v_{\text {Co }}$ value. The FAB mass spectrum of (TTP)OstCOnEt.N.NO) indicates the presence of the $[(T T P) O s i(C O)+H]^{+}$and $[(T T P) O s+H]^{+}$fragments. The EI mass spectrum shows the presence of Et 2 NNO ligand. The $\mathrm{L} V$-vis spectrum of the complex in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gives four bands at 312 (36). 408 (323). 519 (25) and 582 (12) nm . The solid-state structure of the compound was determined by an X-ray crystallographic study (Figure 2.7). Selected bond lengths and bond angles are listed in Tables 2.1 and 2.2.

As is observed in Figure 2.7. the nitrosamine ligand is bound to the Os^{11} center in an η^{1-O} fashion. The axial $\mathrm{Os}-\mathrm{O}$ (nitrosamine) distance of $2.200(7)$ A is identical to
 nitrosamine $\mathrm{O}-\mathrm{N}$ and $\mathrm{N}-\mathrm{N}$ bond lengths are $1.2+1(13)$ and $1.29+11+1 \mathrm{~A}$. respectively. and the nitrosamine $\mathrm{O}-\mathrm{N}-\mathrm{N}$ bond angle is $113.3(12)^{=}$. These data are similar to those found in (OEP)Ru(CO)(Et2NNO). ${ }^{2+4}$ The nitrosamine functionality in (TTP)Os(CO)(Et2NNO) is essentially planar, with $\mathrm{O}(2)-\mathrm{N}(5)-\mathrm{N}(6)-\mathrm{C}(52)$ and $\mathrm{O}(2)-$ $\mathrm{N}(5)-\mathrm{N}(6)-\mathrm{C}(50)$ torsion angles of 6.4 and 179.6°. respectively. The nitrosamine ligand nearly eclipses a porphyrin nitrogen. with an $\mathrm{N}(+1-\mathrm{Osi}(1-\mathrm{O}(2)-\mathrm{N}(5)$ torsion angle of -20.2° (Figure 2.7b). The average $\mathrm{Os}-\mathrm{N}(\mathrm{por})$ bond length in (TTP)Os(CO)(Et 2 NNO) is $2.055 \AA$. and lies within the 2.029-2.067 A range observed for other reported Os" porphyrins (Table 2.3).

Figure 2.7. (a) Molecular structure of (TTP)Os(CO)Et2.NO). (b) View along the $\mathrm{O}(2)-\mathrm{Os}(1)$ bond showing the nitrosamine orientation relative to the porphyrin core.
(c) Ball and stick structure showing the atom labelings.

Table 2.1. Selected Bond Lengths (A) for (TTP)OsiCO\|Et_․NO,

Os($11-\mathrm{C}(49)$	$1.818(11)$	Os(1)-N(2)	$2.0+4(7)$
Oss (1-N(1)	$2.052(7)$	Ost (1-.V(3)	2.057171
Osil $1-\mathrm{Ni}+1$	$2.068(7)$	Os(1)-Or2)	2.200171
O(1)-C(49)	1.140(12)	$\mathrm{O}(2)-\mathrm{N}(5)$	1.2+1131
Ni51-Ni6)	$1.29+(1+1)$. i (6)-C152)	1.43(2)
N(6)-C(50)	1.47(2)	$\mathrm{C}(50)-\mathrm{C}(51)$	1. $+1(2)$
$\mathrm{C}(52)-\mathrm{C}(53)$	1.47(3)	V(1)-C(t)	$1.37210)$
N(1)-C(1)	1.375(10)	$\mathrm{C}(1)-\mathrm{C}(20)$	1.4612)
C(1)-C(2)	1.432(12)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.355(12)
$\mathrm{C}(3)-\mathrm{C}(+)$	1.457(11)	$\mathrm{C}(4)-\mathrm{C}(5)$	1.395(12)
$C(5)-C(6)$	1.382(12)	N(2)-C(9)	1.368(10)
$\cdots(2)-\mathrm{C}(6)$	1.381(10)	$\mathrm{C} 161-\mathrm{C}(7)$	$1.450(11)$
C(7)-C(8)	1.356112)	C(8)-C(9)	$1 .+42111$
C(9)-C(10)	1.42(12)	C(10)-C(11)	1.405121
V(3)-C(11)	1.373(10)	$\cdots(3)-C(1+)$	$1.3801(0)$
$\mathrm{C}(11)-\mathrm{C}(12)$	1.457(11)	$\mathrm{C}(12)-\mathrm{C}(13)$	1.3+3121
$\mathrm{C}(13)-\mathrm{C}(1+)$	1.433(11)	$\mathrm{C}(1+)-\mathrm{C}(15)$	1. +04112$)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.398(13)$	$\mathrm{N}(4)-\mathrm{C}(19)$	1.365101
$\mathrm{N}(4)-\mathrm{C}(16)$	1.380(10)	$\mathrm{C}(16)-\mathrm{C}(17)$	1.4+9(11)
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.36+13)$	$\mathrm{C}(18)-\mathrm{C}(19)$	1.455111
$\mathrm{C}(19)-\mathrm{C}(20)$	1.392(13)		

Table 2.2. Selected Bond Angles (F) for (TTP)OsiCOnEt $\mathrm{N}_{2} \mathrm{NO}$)

O(1)-C(49)-Os(1)	177.9(10)	N(5)-O(2)-Os(1)	115.067
$\mathrm{O}(2)-\mathrm{N}(5)-\mathrm{N}(6)$	113.3 (12)	$\cdots(5)-\mathrm{N}(6)-\mathrm{C}(52)$	121.5131
$\mathrm{N}(5)-\mathrm{N}(6)-\mathrm{C}(50)$	$11+2(1+)$	$C_{1521-: ~}^{\text {(}}$ (6)-C(50)	$123.911+1$
$\mathrm{C}(51)-\mathrm{C}(50)-\mathrm{N}(6)$	114(2)	N(6)-C(52)-C(53)	120(2)
$\mathrm{C}(49)$-Os($11-\mathrm{O}(2)$	174.6i+)	$\mathrm{C}(49)-\mathrm{Os}(1)-\mathrm{N}(2)$	$93.4(4)$
$\mathrm{C}(49)-\mathrm{Os}(1)-\mathrm{N}(1)$	92.9(4)	$\mathrm{C}(49)$-Os($11-\mathrm{N}(3)$	9+.t(+1
$\mathrm{C}(+9)-\mathrm{Os}(1)-\mathrm{N}(4)$	94.1(4)	N(2)-Os(1)-N(1)	$89.913)$
$\mathrm{N}(1)-\mathrm{Os}(1)-\mathrm{N}(3)$	172.8(3)	V(2)-Os(1)-N(3)	89.5(3)
$\mathrm{N}(2)-\mathrm{Os}(1)-\mathrm{N}(+)$	172.5(3)	Nill-Os(l)-N(4)	89.7 (3)
$\mathrm{N}(3)-\mathrm{Os}(1)-\mathrm{N}(4)$	$89.9(3)$	$\mathrm{N}(2)$ Osil 1 -O(2)	$83.3(3)$
$\mathrm{N}(1)-\mathrm{Os}(1)-\mathrm{O}(2)$	83.0(3)	$\mathrm{N}(3) \mathrm{Os}(1)-\mathrm{O}(2)$	$89.8(3)$
$\mathrm{N}(4)$-Os(1 -O(2)	89.3(3)	$\mathrm{C}(\mathrm{t})-\mathrm{N}(1)-\mathrm{C}(1)$	107.1(7)
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{Oss}(1)$	$126.315)$	C(1)-Nil)-Os(1)	126.7 1 1
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(20)$	125.2(8)	Nill-C(1)-C(2)	$109.2(7)$
$\mathrm{C}(20)-\mathrm{C}(1)-\mathrm{C}(2)$	125.7(8)	C(3)-C(2)-C(1)	108.3171
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	106.1(7)	$\therefore(1)-C(t)-C(5)$	125.2181
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	109.4(7)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	125.4(8)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	127.0(9)	$C(9)-N(2)-C(6)$	106.2(7)
$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{Os}(1)$	127.1(6)	$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{Os}(1)$	$126.7(5)$
$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	124.8(8)	$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	$109.7(7)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	125.5(8)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	$106.7(7)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	107.2(7)	$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(10)$	126.1181
$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(8)$	110.2(7)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	123.6(8)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	123.518)	$\mathrm{C}(11)-\mathrm{N}(3)-\mathrm{C}(1+)$	106.8(7)
$\mathrm{C}(11)-\mathrm{N}(3)-\mathrm{Os}(1)$	$125.8(6)$	$\mathrm{C}(1+1)-\mathrm{N}(3)-\mathrm{Os}(1)$	$127.2(5)$

$\mathrm{N}(3)-\mathrm{C}(11)-\mathrm{C}(10)$	127.018)	$\mathrm{N}(3)-\mathrm{C}(11)-\mathrm{C} 12)$	$108 .+171$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	12+.618)	C(13)-C(12)-C(1)	107.817
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(1+)$	107.0(7)	Vi(3)-C(1+)-C(15)	124.1(8)
$\cdots(3)-\mathrm{C}(1+)-\mathrm{C}(13)$	109.8171	C(15)-C(1+)-C(13)	126.1181
C(16)-C(15)-C(1+)	127.219)	$\mathrm{C}(19)-\mathrm{N}(+)-\mathrm{C}(16)$	107.9(7)
$\mathrm{C}(19)-\mathrm{N}(+)-\mathrm{Oss} 1)$	126.2161	$\mathrm{C}(16)-\mathrm{N}(4)$-Os(1)	125.9161
$\mathrm{N}(4)-\mathrm{C}(16)-\mathrm{C}(15)$	$125.5(8)$	$. \mathrm{V}(4)-\mathrm{C}(16)-\mathrm{C}(17)$	108.8(7)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	125.7(8)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	107.1(7)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	107.117)	$. \mathrm{V}(4)-\mathrm{C}(19)-\mathrm{C}(20)$	126.118)
. $\mathrm{Ni}+$)-C(19)-C(18)	109.0171	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	124.9(8)
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{Cl} 11$	125.718)		

Table 2.3. Os-N(por) Bond Lengths (\dot{A}) for Os ${ }^{l l}$ Porphyrin Complexes

compounds	$\mathrm{Os}-\mathrm{S}_{\mathrm{p}}$	$O s-._{p}$ (aw)
(TTP)Os(CO)(PhNO) ${ }^{\text {a }}$	2.073(7). 2.082161	2.078
(TTP)Os(PhNO$)_{2}{ }^{\text {a }}$	2.053(9). 2.050(9).2.058(9). 2.107(9)	2.067
$(\mathrm{TPP}) \mathrm{Os}(\mathrm{PhNO}){ }_{2}{ }^{\text {a }}$	2.053(3).2.057(3).2.052(3).2.067(3)	2.057
(TMP)Os(PhNO)ご	2.037(10). 2.055(9). 2.059(9). 2.058(9)	2.052
$(\mathrm{TTP}) \mathrm{Os}(\mathrm{CO})\left(\mathrm{Et}_{2} \mathrm{NNO}\right)^{\text {a }}$	2.052(7). 2.044(7). 2.057(7). 2.068(7)	2.055
(TTP)Os(NO)(S-i-C5 $\left.\mathrm{C}_{1 i}\right)^{59}$	2.035(5). 2.074(8). 2.076(9). 2.049(6)	2.058
$(\mathrm{TPP}) \mathrm{Os}\left(\mathrm{PPh}_{3}\right)_{2} 2^{60}$		
molecule A	2.037(t). $2.047(t)$	2.042
molecule B	2.045(t). $2.045(4)$	2.045
(TTP)Os(t-pic) 2^{61}	2.03+(3)	2.034
(OEP)Os(o-tolNO) ${ }_{2}{ }^{\text {a }}$	$2.051(5) .2 .068(5)$	2.060
(OEP)Os(NO)($\left.\mathrm{O}-\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}\right)^{62}$	1.986(9). 2.078(8). 2.051(7).2.109(8)	2.056
(OEP)Os(NO)($\left.\mathrm{O}_{2} \mathrm{PF}_{2}\right)^{62}$	2.060(6). 2.053(5).2.065(6). 2.067(6)	2.061
$(\mathrm{OEP}) \mathrm{Os}\left(\mathrm{OPPh}_{3}\right)_{2}{ }^{60}$	2.031(8). 2.027(8)	2.029
(OEP)Os(PMS) ${ }_{2}{ }^{63}$	2.057(5). 2.044(5)	2.050
(OEP) $\mathrm{Os}\left(\mathrm{NS}\right.$) $\left(\mathrm{O}_{2} \mathrm{PF}_{2}\right)^{64}$	1.986(9). 2.078(8). $2.051(7) .2 .109(8)$	2.056
$[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})]_{2}(\mu-\mathrm{O})^{65}$	$2.066(5)$	2.066
$(\mathrm{OEP}) \mathrm{Os}(\mathrm{NS})(\mathrm{Cl})^{65}$	2.050(7). 2.072(6). 2.075(9). 2.063(5)	2.065
(OEP)Os(NS)(Me$)^{65}$	2.056(7). 2.057(7)	2.056
$\left(\mathrm{OEPMe}_{2}\right) \mathrm{Os}(\mathrm{CO})(\mathrm{py})^{66}$	2.069(3). 2.065 (3)	2.067

" this chapter

Selected bond lengths and bond angles for (por)OsiCO)-containing structure are listed in Table 2.t. The $\mathrm{Os}-\mathrm{ClO}$) bond length of 1.8181111 t for (TTP)Os(CO)(Et2.NO) is similar to that of (OEPMe_)OsiCO)(py), but is shorter than that of (TTP)OsiCOr $\mathrm{Ph} . \mathcal{O}$) (see later) with a π-acceptor as trans ligand. The $\mathrm{O}-\mathrm{C}-\mathrm{O}$ bond is virtually linear with a bond angle of $177.9(10)^{\circ}$. The related phthalocyanine $(\mathrm{Pc}) \mathrm{Os}(\mathrm{CO})(\mathrm{py}$) complex also has similar $\mathrm{Os}-\mathrm{CO}$ dimensions $(\mathrm{Os}-\mathrm{C}=1.83 \mathrm{l}) \mathrm{A} . \mathrm{C}-\mathrm{O}$ $=1.17(1)$ A. $\mathrm{Os}-\mathrm{C}-\mathrm{O}=17711)^{\mathrm{h}^{\circ}}$

Table 2.4. Structural Parameters (in A and ") for (por)Os" ${ }^{\prime \prime}$ COML) complexes

compounds	$\mathrm{Os}-\mathrm{C}(\mathrm{O})$	$\mathrm{C}-\mathrm{O}$	$\mathrm{Os}-\mathrm{C}-\mathrm{O}$	ref
(TTP)Os(CO)(PhNO)	$1.93(2)$	$1.1+4(5)$	$175(4)$	this chapter
(TTP)Os(COMEt2NO)	$1.818(11)$	$1.140(12)$	$177.9(10)$	this chapter
(OEPMe2)OsiCO$)(\mathrm{P}=1)$	$1.828(5)$	$1.151(7)$	$178.9(14)$	66

The related reaction of (OEP)OsiCO) with excess Et. CNO results in the formation of (OEP)Os(CO)(Et2NNO) in 66% isolated vield. The reaction is quantitative as determined by ${ }^{1} H$ NMR spectroscopy. This red purple product has similar solubility and stability properties as its TTP analog. Also. tand similar to the TTP analog). no coordinated $E t_{2} \mathrm{NNO}$ peaks are observed in the ${ }^{1} \mathrm{H}$. IMR spectrum at room temperature for (OEP)Os(CO)(Et $\mathbf{N}_{2} \mathrm{NO}$), and the coordinated Ets.NO peaks are only observed at low temperature. The methylene and methyl peaks of the coordinated $E t_{2} \mathrm{NNO}$ in (OEP)Os(CO)(Et2 NNO) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ are more upfield with respect to free Et $2_{2} \mathrm{NO}$ than those in (TTP)Os(CO) Et 2 NNO). This suggests that the (OEP)OsiCO) fragment has stronger effect on the coordinated $\mathrm{Et}_{2} \mathrm{NNO}$ than does the (TTP)OsiCO) fragment. Its IR spectrum (as a KBr pellet. Figure 2.8) shows two new bands at 1294

Figure 2.8. IR spectra (KBr) of $(\mathrm{OEP}) \mathrm{Os}(\mathrm{CO})$ (top) and (OEP)Os(CO)(Et-NNO) (bottom).
cm^{-1} and $1208 \mathrm{~cm}^{-1}$ which were assigned as the $u_{\text {wo }}$ and u_{N} for the coordinated $\mathrm{Et}_{2} \mathrm{NNO}$ ligand. The assignment was further confirmed by the use of $\mathrm{Et}_{-}{ }^{15 \mathrm{NO}} \mathrm{NO}_{1}:(\searrow 0$ $=1256 \mathrm{~cm}^{-1}$ and $v_{15}+1=1203 \mathrm{~cm}^{-1}$). The IR spectrum (as a KBr pellet) also gives a strong band at $1883 \mathrm{~cm}^{-1}$ which is assigned as U_{CO}. This value is lower than that of the TTP analog. consistent with the greater π-acidity of the TTP macrocycle compared with the OEP macrocycle. The $v_{\text {co }}$ value is $28 \mathrm{~cm}^{-1}$ lower than that of (OEP)Ru(CO)(Et $\left.{ }_{2} \mathrm{NNO}\right)$. ${ }^{2}$ h.c consistent with the greater π-backbonding capacity of $\mathrm{Os} \rightarrow \mathrm{CO}$ than $\mathrm{Ru} \rightarrow \mathrm{CO}$. The σ-donor ability of the $\mathrm{Et}_{2} \mathrm{NNO}$ ligand is also indicated in the small decrease in $v_{\text {CO }}$ for (OEP)OsiCO)(Et ${ }_{2} \mathrm{NNO}$) with respect to the starting (OEP)Os(CO) complex ($1894 \mathrm{~cm}^{-1}$). The LV-vis spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ also gives four bands (370 sh (60). 389 (218). 507 (13). 539 (18) nm). The LV-vis spectra of both (TTP)Os(CO)(Et2. NNO) and (OEP)Ost $E t_{2} \mathrm{NNO}_{2}$) belong to the hypsomyper type. ${ }^{68}$

The nitrosylation of (OEP)Os(CO)(Et2NNO) results in the replacement of the carbonyl ligand by the isoelectronic NO^{+}ligand in quantitative yield to give $\left[(\mathrm{OEP}) \operatorname{Os}(\mathrm{NO})\left(\mathrm{Et}_{2} \mathrm{NNO}\right)\right]\left(\mathrm{BF}_{4}\right)($ eq 2.3). This red solid has similar solubility and

$(\mathrm{OEP}) \mathrm{Os}(\mathrm{CO})\left(\mathrm{Et}_{2} \mathrm{NNO}\right)+\mathrm{NOBF}_{4} \longrightarrow\left[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})\left(\mathrm{Et}_{2} \mathrm{NNO}_{2}\right)\left(\mathrm{BF}_{4}\right)+\mathrm{CO}\right.$

stability properties as the red purple carbonyl analog. The coordinated EtsNO peaks in $\left[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})\left(\mathrm{Et}_{2} \mathrm{NNO}\right)\right]\left(\mathrm{BF}_{4}\right)$. however. are observed in the ${ }^{1} \mathrm{H}$. NMR spectrum in CDCl_{3} at room temperature. The magnitude of $\delta_{\text {mess }}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum of a (OEP)Os complex is a good indicator for the cis-influence of axial ligands on the OEP macrocycle. ${ }^{68}$ The $\delta_{\text {meso }}$ for (OEP)Os(CO)(Et $\mathrm{E}_{2} \mathrm{NNO}$) in CDCl_{s} is upfield with respect to that for $\left[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})\left(\mathrm{Et}_{2} \mathrm{NNO}\right)\right]\left(\mathrm{BF}_{4}\right)$. indicating a difference in the cis-influence of the axial $\mathrm{CO} / \mathrm{Et}_{2} \mathrm{NNO}$ and $\mathrm{NO}^{+} / \mathrm{Et}_{2} \mathrm{NNO}$ pairs on the OEP macrocycle due to a change in π-backbonding from $\mathrm{Os}^{\text {II }} \rightarrow \mathrm{OEP}$. Generally. CO is a weaker π-acceptor than
$\mathrm{NO}^{+} .{ }^{69}$ making more electron density available at the Os ${ }^{11}$ center for π-backhonding to OEP macrocycle in the case of (OEP) $\mathrm{Os}(\mathrm{CO})\left(\mathrm{Et}_{2} \mathrm{NNO}\right)$. The IR spectrum of $\left[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})\left(\mathrm{Et}_{2} \mathrm{NNO}\right)\right]^{+}$(as a KBr pellet) shows two new bands at $12+1 \mathrm{~cm}^{-1}$ and $1198 \mathrm{~cm}^{-1}$ which are assigned as the $v_{\text {wo }}$ and $u_{n i}$ for the coordinated Et-N.NO ligand. The strong band at $1800 \mathrm{~cm}^{-1}$ is assigned as the $v_{\text {No }}$ of the nitrosyl ligand. The lower nitrosyl v No for $\left[(O E P) O s(N O)\left(E t_{2} N N O\right)\right]^{+}$than that for $\left[(\mathrm{OEP}) \mathrm{Ru}(\mathrm{NO})\left(E t_{2} \mathrm{NNO}\right)\right]^{+} .2+\mathrm{c}$ is also consistent with the greater π-backbonding capacity of Os $\rightarrow \mathrm{NO}$. The UV-vis spectrum of the [(OEP)Os(NO)(Et2NNO)](BF $\left.\mathrm{BF}_{4}\right)$ complex is similar to those of $(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})\left(\mathrm{O}_{2} \mathrm{PF}_{2}\right)^{63}$ and $(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})\left(\mathrm{OClO}_{3}\right){ }^{70}$

Extension of the $\eta^{1}-O$ Nitrosamine Binding Feature to the Preparation of the First Transition Metal $\eta^{1}-\mathrm{O}$ Bound Nitrosoarene Complexes. The ferrous (TPP)Fe(PhNO) displays an η^{1-N} binding mode. and was obtained previously via the reaction of (TPP)Fe ${ }^{\text {Il }}$ with excess PhNO. ${ }^{39}$ The attempts to obtain the ferric analog $\left[(\mathrm{TPP}) \mathrm{Fe}^{I I I}(\mathrm{PhNO})_{2}\right]^{+}$were not successful. However. as has been mentioned earlier. the dipolar structure of nitrosamines might play a significant role in stabilizing the $\eta^{1}-\mathrm{O}$ binding of $\mathrm{Et}_{2} \mathrm{~N} . \mathrm{NO}$ to the cationic Felll porphyrin in the $\left[(\text { por }) \mathrm{Fe}\left(\mathrm{Et}_{2} \mathrm{NNO}\right)_{2}\right]^{+}$complexes. We reasoned that the correct choice of nitrosoarene ligands (e.g.. with similar dipolar resonance structures) might enable the stabilization of an $\eta^{1}-\mathrm{O}$ binding to a (por) $\mathrm{Fe}^{\text {III }}$ cation.

Gratifyingly, the use of the para-dialkylamino substituted nitrosoarenes $\left(\mathrm{R}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NO}, \mathrm{R}=\mathrm{Me}, \mathrm{Et}\right)$ resulted in the formation of the desired η^{1} nitroso- O bound ferric compounds as shown in eq 2.4. Thus, the reactions of the paradialkylamino substituted nitrosoarenes $(\mathrm{R}=\mathrm{Me}$. Et$)$ with the $\left[(\operatorname{por}) \mathrm{Fe}(\mathrm{THF})_{2}\right]^{+}$cations

$$
\begin{aligned}
{\left[(\text { por }) \mathrm{Fe}(\mathrm{THF})_{2}\right]^{+}+\text {xs. } \mathrm{R}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NO} \longrightarrow \longrightarrow } & {\left.\left[(\text { por }) \mathrm{Fe}_{1} \mathrm{ONC}_{6} \mathrm{H}_{4} \cdot \mathrm{VR}_{2}\right)_{2}\right]^{+}+2 \mathrm{THF} } \\
& \text { por }=\text { TPP. TTP: } \mathrm{R}=\mathrm{Me} . \mathrm{Et}
\end{aligned}
$$

in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ generate the bis-nitrosoarene complexes [(por) $\left.\mathrm{Fe}\left(\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{NR}_{2}\right)_{2}\right]+$ in $55-$ 83% isolated yields. The [1TPP)Fe($\left.\left.\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{Me}_{2}\right)_{2}\right]\left(\mathrm{SbF}_{6}\right)$ complex was first synthesized by Dr. Li-Sheng Wang (of our research group at the time). ${ }^{\mathbf{3} 9}$ All the compounds are freely soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. moderately soluble in benzene but are only slightly soluble in hexane. The excess organic nitrosoarene compounds are freely soluble in hexane and can be easily removed by washing the products with hexane. The purple crystalline products are moderately air-stable ir the solid state but are airsensitive in solution. The assignment of the IR $v_{\text {NO }}$ and v_{C}. bands of these Feill nitrosoarene complexes is ambiguous. The bands at $1366 \mathrm{~cm}^{-1}$ and $1338 \mathrm{~cm}^{-1}$ for the free $\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NO}$ shift to 1361 and $1334 \mathrm{~cm}^{-1}$ for the ${ }^{15} \mathrm{~N}$ labeled $\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}{ }^{15} \mathrm{NO}$. The bands at 1366 and $1338 \mathrm{~cm}^{-1}$ were assigned as $v_{\text {vo }}$ and $v_{\mathrm{C} .}$. respectively, for the free ligand. ${ }^{71}$ Upon coordination of the $\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NO}$ ligand to the (por) Fe III center. the changes in $v_{\text {NO }}$ and v_{CN} are negligible $1 v_{\mathrm{NO}}=1364 \mathrm{~cm}^{-1} . v_{\mathrm{CN}}=1336 \mathrm{~cm}^{-1}$ for TPP: $v_{N O}=1363 \mathrm{~cm}^{-1} \cdot v_{\mathrm{C}, \mathrm{N}}=1334 \mathrm{~cm}^{-1}$ for TTP). Such a small frequency change upon coordination of the $\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NO}$ ligand is not uncommon. ${ }^{71}$ The assignments of the $v_{\text {No }}$ and $v_{\text {CN }}$ bands are confirmed by the use of $\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{+}{ }^{15} \mathrm{NO}$. The $v_{\text {vo }}$ and v_{CN} bands for the para-diethylamino substituted nitrosoarene (por) $\mathrm{Fe}^{I I I}$ complexes cannot be assigned unambiguously due to the complexity of the IR spectra. In general. IR spectroscopy is not a useful tool in the assignment of $\mathrm{R}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NO}$ coordination.33.71.72 The IR spectra (as a KBr pellet) give very strong bands at ca. $657 \mathrm{~cm}^{-1}$. which are assigned as the uncoordinated $U_{\mathrm{SbF}_{6}}$ bands.

The two $\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NO}$ ligands in [(TPP)Fe($\left.\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{Me}_{2}\right)_{2}$]((%5Cmathrm%7BSbF%7D_%7B6%7D)) are weakly coordinated and are easily substituted by THF to give the bis-solvated complex.

Magnetic Susceptibility. According to Walker. ${ }^{-:}$Reed and Scheidt. ${ }^{-\quad}$: there are four possible spin states for a d^{5} Felll porphyrin complex (Table 2.5).

Table 2.5. Spin States for (por) Fe $^{\text {III }}$ Complexes

d orbitals	H.S. $(S=5 / 2)$	admixed I.S. $(S=3 / 2.5 / 2)$	I.S. $(S=3 / 2)$	L.S. $(S=1 / 2)$
$x^{2}-y^{2}$	\uparrow	$\stackrel{\text { A }}{ }$	-	-
z^{2}	\uparrow	\uparrow	\uparrow	-
$x z, y z$	$\uparrow \uparrow$	$\uparrow \uparrow$	$\uparrow \uparrow$	$\uparrow \uparrow$
$x y$	\uparrow	fi	\uparrow	中

Magnetic susceptibility measurements by the ${ }^{1} \mathrm{H}$ NMR Evan s^{50} method gives $\mu_{\text {etif }}$ of 6.1 and 6.0. respectively. for the [(TPP)Fe($\left.\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)_{2}$] $\left(\mathrm{SbF}_{6}\right)$ and [(TPP)Fer $\left.\left.\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{NEt}_{2}\right)_{2}\right]\left(\mathrm{SbF}_{6}\right)$ complexes. These $\mu_{\text {eff }}$ values indicate the presence of 5 unpaired electrons. corresponding to a d^{5} high-spin state of the metal center.
 [(TTP)Fe($\left.\left.\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{NEt}_{2}\right)_{2}\right]\left(\mathrm{SbF}_{6}\right)$ are 4.8 and 5.0. respectively. corresponding to the values expected for an admixed spin state ($S=3 / 2.5 / 2$). Walker ${ }^{i 3}$ has also pointed out that. for para-substituted $[(\mathrm{T}(p-\mathrm{X}) \mathrm{P}) \mathrm{Fe}(\mathrm{OClO}:)]$ derivatives. electron donating substituents on the porphyrin phenyl rings favor the $S=3 / 2$ ground state. For the $\left[(T T P) \mathrm{Fe}\left(\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)_{2}\right]\left(\mathrm{SbF}_{6}\right)$ and $\left[(\mathrm{TTP}) \mathrm{Fe}\left(\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{NE}_{2}\right)_{2}\right]\left(\mathrm{SbF}_{6}\right)$ complexes. the p-Me substituent on the porphyrin phenyl rings has greater electron donating ability than the H atom (in the TPP case). and this appears to cause these complexes to have the admixed spin state of $S=3 / 2.5 / 2$. whereas the tetraphenylporphyrinato analogs have pure $S=5 / 2$ spin state.

The L'V-vis spectra of the (por)Fe ${ }^{\text {III }}$ nitrosoarene complexes all give very strong Soret bands at ca. 413 nm in $\mathrm{C}_{6} \mathrm{H}_{6}$ (Figure 2.9). Not surprisingly, all the $\mathrm{Fe}^{I I I}$ bis-nitrosoarene complexes display virtually the same purple color in solution.

Figure 2.9. LV-vis spectra of the $\mathrm{Fe}^{\mathrm{III}}$ bis-nitrosoarene complexes in $\mathrm{C}_{6} \mathrm{H}_{6}$.

Contrary to the earlier proposal ${ }^{33}$ that the $\eta^{1}-\mathrm{O}$ binding mode of C-nitroso ligands was restricted to d^{10} para-dialkylamino substituted nitrosoarene complexes. the X-ray structure of [(TPP) $\left.\mathrm{Fe}\left(\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{NEt} \mathrm{N}_{2}\right)_{2}\right]\left(\mathrm{SbF}_{6}\right)$ reveals a distinct η^{\prime} nitroso-O binding of the $\mathrm{Et}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NO}$ ligands to the cationic $\mathrm{Fe}^{\text {lll }}$ center (Figure 2.10). Importantly. this was the first time that the sole η^{\prime} nitroso-O binding of C-nitroso ligands was ever observed in non- $d^{(1)}$ transition metal complexes. ${ }^{39}$ In the cation. the phenyl rings and the $\mathrm{N}(3)$ atoms of the $\mathrm{Et}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NO}$ ligand are disordered at two sites. Selected bond lengths and bond angles are listed in Tables 2.6 and 2.7. The $\mathrm{Et}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NO}$ moiety is essentially planar with the $\mathrm{O}(1)-\mathrm{N}(3 \mathrm{Y})-\mathrm{C}(1 \mathrm{Y})-\mathrm{C}(2 \mathrm{Y})$ and $\mathrm{O}(1)-\mathrm{N}(3 Z)-\mathrm{C}(1 \mathrm{Z})-\mathrm{C}(2 \mathrm{Z})$ torsion angles of 176.8° and 8.2°. respectively. and the amido nitrogen $\mathrm{N}\left(\mathrm{t}^{2}\right)$ is also essentially planar with the sum of angles around it being ca. 360°. The average $\mathrm{Fe}-\mathrm{N}$ (por) bond length of $2.008(3) \dot{\AA}$ is lower than that normally associated with a six-coordinated high-spin Fellit center (2.045(8) A) but is higher than that for a six-coordinated intermediate spin state Felll center (1.99513) A). ${ }^{7+a}$ The axial $\mathrm{Fe}-\mathrm{O}$ distance of $1.950(3) \mathrm{A}$ is shorter than those of other sixcoordinated porphyrin Fe ${ }^{I I I} d^{5}$ complexes containing O -donor ligands. ${ }^{75-x}=$ It is also shorter than those of $\left[(\mathrm{TPP}) \mathrm{Fe}\left(\mathrm{Et}_{2} \mathrm{NNO}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)^{-2 \mathrm{tacc}}$ and $\left[(\mathrm{TPP}) \mathrm{Fe}(\mathrm{THF})_{2}\right]\left(\mathrm{ClO}_{4}\right)^{2+4}$. which are also six-coordinated high-spin d^{5} Felll complexes reported by our research group. The origin of this unusual shortening is unclear, and we are hesitant to overinterpret the accuracy of the bond lengths and angles in this highly disordered nitroso fragment. The bond lengths of $\mathrm{O}(1)-\mathrm{N}(3 \mathrm{Y})(1.157(6) \mathrm{A})$ and $\mathrm{N}(3 \mathrm{Y})-\mathrm{C}(1 \mathrm{Y})$ (1.323(11)A) are both shorter than those previously reported for the free ligand which was also disordered. ${ }^{83}$ The bond length of $\mathcal{N}(+)-C(+Y)(1.35(3)$ A) appears essentially unaffected by the coordination of the ligands. Due to the nature of the disorder in the cation. caution must be taken when interpreting specific bond lengths and angles in $\left[(\mathrm{TPP}) \mathrm{Fe}\left(\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{NEt}_{2}\right)_{2}\right]^{+}$.

The dipolar resonance structure of the para-dialkylamino substituted nitrosoarene appears to play a role in the stabilization of the η^{i} nitroso-O binding to the cationic Fe ${ }^{\text {III }}$ porphyrin. The planarity around the amido. $\mathcal{A t o m}$ in the complex is consistent with this view. To complement our studies on iron porphyrins. we were interested in determining whether indeed. such an $\eta^{1}-\mathrm{O}$ binding mode could be expanded to include metals whose configurations were those other than d^{10} or d^{j} Together with Shelia Jean (Schultze) Fox (of our research group at the time). I was able to successfully obtain a suitable crystal of the air sensitive Mn ${ }^{\text {III }}$ analog [(TPP) $\left.\mathrm{Mn}\left(\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{NEt}_{2}\right)_{2}\right]\left(\mathrm{SbF}_{6}\right)^{+\dagger}$ for a single-crystal X-ray crystallographic analysis.

The X-ray structure of the cation of [(TPP)Mn($\left.\left.\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{NEt}_{2}\right)_{2}\right]\left(\mathrm{SbF}_{6}\right)^{+4}$ is shown in Figure 2.11. Selected bond lengths and bond angles are listed in Tables 2.8 and 2.9. The structure is almost identical to that of $\left[(\mathrm{TPP}) \mathrm{Fe}\left(\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{NEt}_{2}\right)_{2}\right]\left(\mathrm{SbF}_{6}\right)$. This structure also clearly shows the η^{l} nitroso-O binding of the two $\mathrm{Et}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NO}$ ligands. The $(\mathrm{O}) \mathrm{NC}_{6} \mathrm{H}_{4}$ fragment of the nitrosoarene ligand is also disordered over two positions. The disordered nitroso groups are essentially staggered or eclipsed with respect to the porphyrin nitrogen atoms (Figure 2.11b). with the $\mathrm{N}(3)-\mathrm{O}(1)-\mathrm{Mn}(11-$ $\mathrm{N}(1)$ torsion angles being 47° (for $\mathrm{N}(3 \mathrm{Y})$) and 98° (for $\mathrm{N}(3 \mathrm{Z})$). The $\mathrm{O}(11-\mathrm{N}(3 \mathrm{Y})-$ $\mathrm{C}(1 \mathrm{Y})-\mathrm{C}(2 \mathrm{Y}) . \mathrm{O}(1)-\mathrm{N}(3 \mathrm{Z})-\mathrm{C}(1 \mathrm{Z})-\mathrm{C}(2 \mathrm{Z}) . \mathrm{C}(25)-\mathrm{N}(+1)-\mathrm{C}(+\mathrm{Y})-\mathrm{C}(3 \mathrm{Y})$. and $\mathrm{C}(25)-$ $\mathrm{N}(4)-\mathrm{C}(4 \mathrm{Z})-\mathrm{C}(3 \mathrm{Z})$ torsion angles are 175.23°. $4.22^{\circ} .172 .69^{\circ}$ and 173.66°. respectively, and the sum of the angles around amido N atom is ca. 360°. indicating the essential planarity of the $\mathrm{Et}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NO}$ moiety.

The nitroso $\mathrm{O}-\mathrm{N}$ bond length (av 1.083 A) is unusually short for a coordinated C-nitroso compound, and is significantly shorter than the reported value of $1.27(1) A$ for the free ligand (which was also disordered). ${ }^{83}$ or the reported values for the related d^{10} complexes of dimethell derivative (1.218(4) A for $\mathrm{SnCl}_{2} \mathrm{Me}_{2}\left(p-\mathrm{ONC}_{6} \mathrm{H}_{4} \times \mathrm{NMe}_{2}\right)_{2} \mathbf{H}^{+2}$ $1.305 \AA$ for $\left.\mathrm{ZnCl}_{2}\left(p-\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)_{2}{ }^{+3}\right)$. and is shorter than that for the analogous

Fe ${ }^{\text {Il }}$ complex (av 1.110 A). The shortening of the $\mathrm{O}-\mathrm{N}$ bond length is also obsersed in 3.5-di-tert-butyl-4-nitrosopyrazole. ${ }^{8+}$ The structure of this organic compound is also disordered on two sites. Its $\mathrm{N}-\mathrm{O}$ bond lengths are $1.053(10) \mathrm{A}$ and 1.0481111 A respectively. The authors ${ }^{*+}$ argue that the reason for the abnormal shortening of the... O bond length in $3.5-$ di-tert-butyl-t-nitrosopyrazole may be associated with the considerable twist of the nitroso group out of the pyrazole ring plane. In our cases. the $\mathrm{O}(1)-\mathrm{N}(3 \mathrm{Y})-\mathrm{C}(1 \mathrm{Y})-\mathrm{C}(6 \mathrm{Y})$ torsion angle is 176.57° for [(TPP)Fe(ONCの $\mathrm{H}_{4} \cdot \mathrm{NEtュ12]-}$ $\left(S b F_{6}\right)$ and the $O(1)-N(3 Y)-C(1 Y)-C(2 Y)$ torsion angle is $175.23^{=}$for [(TPP) $\mathrm{Mn}\left(\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{NEt}_{2}\right)_{2}$] $\left(\mathrm{SbF}_{6}\right)$. indicating that the $\mathrm{N}-\mathrm{O}$ groups are essentially coplanar with the phenyl plane in both cases. Again. since there is a high disorder in the [(TPP)Mn($\left.\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{NEt}_{2}\right)$ 2] $\left.\mathrm{SbF}_{6}\right)$ structure. it is uncertain whether the unusual shortening of the $\mathrm{N}-\mathrm{O}$ bond length is a real effect or due to the nature of the disorder in the cation. The (OIN-C bond length of 1.36 A is. however. comparable to the reported values for the free ligand $(1.38(1) A) .^{x:}$ or the d^{10} complexes containing the dimethyl derivative (1.398(6) A for $\left.\mathrm{SnCl}_{2} \mathrm{Me}_{2}!p-\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)_{2} \mathbf{4}^{+2} 1.342 \dot{A}$ for $\mathrm{ZnCl}_{2}(p-$ $\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{NMC}_{2} \mathrm{~N}^{+3}$)

The axial Mn-O distance of $2.211(+) A$ is long. and may be compared with the axial $\mathrm{Mn}-\mathrm{O}$ distances in related $\mathrm{Mn}^{\mathrm{III}}$ complexes of the form [(TPP) $\left.\mathrm{Mn}(\mathrm{L})_{2}\right]\left(\mathrm{ClO}_{+}\right)(\mathrm{L}$ $=\mathrm{DMF}(2.217(4) \mathrm{A}) . \mathrm{MeOH}$ (2.252(2) and 2.270(2) A). 2.6-lutidine-N-oxide (2.263(4) and 2.264(4) A)). ${ }^{85}$ It is longer than the axial $\mathrm{Mn}-\mathrm{O}$ distances in the $\left\{[(\mathrm{TPP}) \mathrm{Mn}]_{2}(\mu-\mathrm{OH})\right\}\left(\mathrm{ClO}_{4}\right)$ complex. ${ }^{* 6}$ The average $\mathrm{Mn}-\mathrm{N}($ por) bond length of $2.016 \hat{\AA}$ is within the range normally expected for six-coordinate Mn ${ }^{111}$ porphyrins. ${ }^{85.87}$ The long axial $\mathrm{Mn}-\mathrm{O}$ bond lengths relative to $\mathrm{Mn}-\mathrm{N}$ (por) for [(TPP) $\mathrm{Mn}\left(\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{NEt}_{2}\right)_{2}$] $\left(\mathrm{SbF}_{6}\right)$ are consistent with a ietragonal elongation expected for a singly occupied antibonding d_{2} = orbital in the high-spin Mn ${ }^{\text {III }}$ center. ${ }^{.5-8.8 x}$
(b)
(a)

Figure 2.10. (a) Molecular structure of [(TPP)Fe($\left.\left.\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{NEt}_{2}\right)_{2}\right]^{+}$.
(b) Disorder of the ligands.
(a)
(b)

Figure 2.11. (a) Molecular structure of $\left[(\mathrm{TPP}) \mathrm{Mn}\left(\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{NEt}_{2}\right)_{2}\right]^{-}$. (b) View of ligand orientations relative to the porphyrin core, with the view along the $O(1)-\operatorname{Mn}(1)$ bond (two orientations due to the disorder of the ligands).

Table 2.6. Selected Bond Lengths (A) for [(TPP)Fe(ONC $\left.\left.n_{n} H_{+} \backslash E E_{2}\right)\right]^{+}$

Fe(1)-O(1)	1.950(3)	Fe-Oilla	1.950131
Fe(1)-N(2)A	$2.006(3)$	Fe(l)-.i(2)	2.006131
$\mathrm{Fe}(1)-\mathrm{N}(1)$	$2.010(3)$	Ferll-NillA	2.010031
$\mathrm{O}(1)-\mathrm{N}(3 \mathrm{Z})$	1.062(8)	$\mathrm{O}(1)-\mathrm{N}(3 \mathrm{Y})$	1.157161
N(3Y)-C(IY)	1.323(11)	C(1Y)-C(6Y)	1.426114)
$\mathrm{C}(1 \mathrm{Y})-\mathrm{C}(2 \mathrm{Y})$	$1.451(11)$	$\mathrm{C}(+\mathrm{Y})-\mathrm{N}(+1$	1.3512)
$\mathrm{C}(2 \mathrm{Y})-\mathrm{C}(3 \mathrm{Y})$	1.380(13)	$\mathrm{C}(3 \mathrm{Y})-\mathrm{C}(4 \mathrm{Y})$	1.+612)
$\mathrm{C}(+\mathrm{Y})-\mathrm{C}(5 \mathrm{Y})$	1.45(2)	C(5Y)-C(6Y)	1.331(13)
N(3Z)-C(1Z)	1.413(13)	$C(1 Z)-C(2 Z)$	$1.3512)$
$\mathrm{C}(1 \mathrm{Z})-\mathrm{C}(6 \mathrm{Z})$	1.392(1+1	$\mathrm{C}(2 \mathrm{Z})-\mathrm{C}(13 \mathrm{Z})$	1.49(2)
$\mathrm{C}(3 \mathrm{Z})-\mathrm{C}(4 \mathrm{Z})$	1.43(2)	$\mathrm{C}(+\mathrm{Z})-\mathrm{N}(\mathrm{t})$	1.38(2)
$\mathrm{C}(4 \mathrm{Z})-\mathrm{C}(5 \mathrm{Z})$	1.46(2)	C15Z)-C(6Z)	1.3+12)
$N(t)-\mathrm{C}(31)$	1.450(6)	$\mathrm{N}(+)-\mathrm{C}(29)$	1.649(12)
C(29)-C(30)	$1.365111)$	C(311-C(32)	1.502161
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.375(4)$	$\cdots 11-C(t)$	$1.3811+1$
$\mathrm{N}(2)-\mathrm{C}(6)$	$1.373(4)$	N(2)-C(9)	1.376(4)
$\mathrm{C}(1)-\mathrm{C}(10)$	1.380(5)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.4+2(5)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.341 (5)	$\mathrm{C}(3)-\mathrm{C}(+)$	1.43615)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.390 (5)	C(5)-C(6)	1.39+(5)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.446(5)	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.351(5)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.431(5)$	C(9)-C(10)A	1.396151
$C(10)-C(9) A$	$1.396(5)$		

Table 2.7. Selected Bond Angles $\left.1^{\circ}\right)$ for ($\left.(\mathrm{TPP}) \mathrm{Fe}\left(\mathrm{ONC} \mathrm{C}_{7} \mathrm{H}_{4}, \mathrm{NEt}_{2}\right)_{2}\right]^{+}$

$\mathrm{O}(1)-\mathrm{Fe}(1)-\mathrm{O}(1) \mathrm{A}$	180.000 (1)		91.221121
$\mathrm{O}(1) \mathrm{A}-\mathrm{Fe}(1)-\mathrm{N}(2) \mathrm{A}$	88.78(12)	$\mathrm{O}(1)-\mathrm{Fe}(1)-\mathrm{N}(2)$	88.78112
$\mathrm{O}(1) \mathrm{A}-\mathrm{Fe}(1)-\mathrm{N}$ (2)	91.22(12)	O(l)-Fe(1)-N(1)	$86.3712)$
$\mathrm{O}(1) \mathrm{A}-\mathrm{Fe}(1)-\mathrm{N}(1)$	93.63111	$\mathrm{O}(1)-\mathrm{Fe}(1)-\mathrm{N}(1) \mathrm{A}$	93.63 (12)
O(1)A-Fe(l)-N(l)A	86.37(11)	$\mathrm{N}(2) \mathrm{A}-\mathrm{Fe}(1)-\mathrm{N}(2)$	180.0
N(2)A-Fe(l)-N(1)	$90.45111)$	N(2)-Fe($11-\mathrm{N}(1)$	$89.55(11)$
N(2)A-Fe(l)-N(l)A	$89.55111)$	N(2)-Fe(l)-N(1)A	90.45111)
N(1)-Fe(l)-N(1)A	$180.000(1)$	$\mathrm{O}(1)-\mathrm{N}(3 \mathrm{Y})-\mathrm{C}(1 \mathrm{Y})$	118.7(7)
$\mathrm{N}(3 \mathrm{Y}) \mathrm{O}(1)-\mathrm{Fe}(1)$	127.7(3)	$\mathrm{C}(+\mathrm{Y})-\mathrm{N}(4)-\mathrm{C} 31$	134.5(7)
$\mathrm{C}(4 \mathrm{Y})-\mathrm{N}(4)-\mathrm{C}(29)$	109.5(8)	$\mathrm{C}(31)-\mathrm{N}(\mathrm{f})-\mathrm{C}(29)$	116.0(4)
$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{N}(4)$	97.718)	$\cdots(+)-C(31)-C(32)$	$111.11+1$
$\mathrm{Ni}(3 \mathrm{Y})-\mathrm{C}(1 \mathrm{Y})-\mathrm{C}(6 \mathrm{Y})$	128.8(9)	$\mathrm{N}(3 \mathrm{Y})-\mathrm{C}(1 \mathrm{Y})-\mathrm{C}(2 \mathrm{Y})$	114.3(9)
C(6Y)-C(1Y)-C(2Y)	116.9(9)	$\mathrm{C}(3 \mathrm{Y})-\mathrm{C}(2 \mathrm{Y})-\mathrm{C}(1 \mathrm{Y})$	123.5181
$\mathrm{C}(2 \mathrm{Y})-\mathrm{C}(3 \mathrm{Y})-\mathrm{C}(+\mathrm{Y})$	117.1(11)	$\mathrm{C}(5 \mathrm{Y})-\mathrm{C}(+\mathrm{Y})-\mathrm{C}(3 \mathrm{Y})$	119(2)
$\mathrm{N}(4)-\mathrm{C}(4 \mathrm{Y})-\mathrm{C}(5 \mathrm{Y})$	114.2(11)	N(4)-C(4Y)-C(3 Y)	127.01131
$\mathrm{C}(6 \mathrm{Y})-\mathrm{C}(5 \mathrm{Y})-\mathrm{C}(4 \mathrm{Y})$	122.3(11)	C(5Y)-C(6Y)-C(1Y)	121.4(8)
$\mathrm{O}(1)-\mathrm{N}(3 \mathrm{Z})-\mathrm{C})(\mathrm{Z})$	121.8(9)	$\mathrm{N}(3 \mathrm{Z}) \mathrm{O}(1)$-Fel 1)	133.5(5)
$\mathrm{C}(+\mathrm{Z})-\mathrm{N}(4)-\mathrm{C}(31)$	112.3(9)	$\mathrm{C}(+\mathrm{Z})-\mathrm{N}(+)-\mathrm{C}(29)$	130.9(9)
$\mathrm{C}(6 \mathrm{Z})-\mathrm{C}(1 \mathrm{Z})-\mathrm{N}(3 \mathrm{Z})$	$112.5111)$	C(2Z)-C(1Z)-:V13Z)	121.8(13)
C(2Z)-C(1Z)-C(6Z)	125.6(13)	$\mathrm{C}(1 \mathrm{Z})-\mathrm{C}(2 \mathrm{Z})-\mathrm{C}(3 \mathrm{Z})$	119.0(13)
$\mathrm{C}(4 \mathrm{Z})-\mathrm{C}(3 Z)-\mathrm{C}(2 \mathrm{Z})$	114.8(14)	$N(4)-C(4 Z)-C(3 Z)$	11+.1(13)
$\mathrm{N}(4)-\mathrm{C}(+\mathrm{Z})-\mathrm{C}(5 \mathrm{Z})$	124.5(14)	$\mathrm{C}(3 \mathrm{Z})-\mathrm{C}(+\mathrm{Z})-\mathrm{C}(5 \mathrm{Z})$	121(2)
$\mathrm{C}(6 \mathrm{Z})-\mathrm{C}(5 \mathrm{Z})-\mathrm{C}(4 \mathrm{Z})$	120.8(13)	$\mathrm{C}(5 \mathrm{Z})-\mathrm{C}(6 \mathrm{Z})-\mathrm{C}(1 \mathrm{Z})$	118.3(12)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(+)$	106.1(3)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Fe}(1)$	126.1(2)
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{Fe}(1)$	127.3(2)	$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(9)$	106.0(3)

$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{Fe}(1)$	$127.2(2)$	$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{Fe}(1)$	$126.812)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(10)$	$126.8(3)$	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$109.4(3)$
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)$	$123.6(3)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$107 .+13)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$107.4(3)$	$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	$125.613)$
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	$109.6(3)$	$\mathrm{C}(5)-\mathrm{C}(+1)-\mathrm{C}(3)$	$12+.8(3)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$123.7(3)$	$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	$126.2(3)$
$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	$109.8(3)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$12+.0(3)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	$106.7(3)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$107 .+13)$
$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(10) \mathrm{A}$	$125.8(3)$	$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(8)$	$110.1(3)$
$\mathrm{C}(10) \mathrm{A}-\mathrm{C}(9)-\mathrm{C}(8)$	$12+1(3)$	$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9) \mathrm{A}$	$12+.1(3)$

Table 2.8. Selected Bond Lengths (A) for $\left[(\mathrm{TPP}) \mathrm{Mn}\left(\mathrm{ONC}_{6} \mathrm{H}_{4} \mathrm{NEt}_{2}\right)_{2}\right]^{+}$

$\mathrm{Mn}(1)-\mathrm{N}(2)$	$2.015(t)$	$\mathrm{Mn}(1)-\mathrm{N}(2) \mathrm{A}$	$2.015(+)$
$\mathrm{Mn}(1)-\mathrm{N}(1)$	2.017131	Mn(1)-N(1)A	2.017131
Mn(1)-O(l)A	$2.211(4)$	Mn(1)-O(1)	$2.2111+1$
$\mathrm{O}(1)-\mathrm{N}(3 \mathrm{Y})$	$1.057(10)$	O(1)-N(3Z)	1.109(8)
$N(+)-C(+Y)$	$1.391(14)$	$\mathrm{N}(+1)-\mathrm{C}(+\mathrm{Z})$	1.3521131
$\mathrm{N}(4)-\mathrm{C}(23)$	1.473(9)	$\mathrm{N}(+1)-\mathrm{C}(25)$	1.535(12)
$\mathrm{C}(23)-\mathrm{C}(24)$	1.492(9)	$\mathrm{C}(25)-\mathrm{C}(26)$	1.4261131
$\mathrm{N}(3 \mathrm{Y})-\mathrm{C}(1 \mathrm{Y})$	1.36(2)	$\mathrm{C}(1 \mathrm{Y})-\mathrm{C}(6 \mathrm{Y})$	1.3912)
$\mathrm{C}(1 \mathrm{Y})-\mathrm{C}(2 \mathrm{Y})$	$1.409(1+)$	$\mathrm{C}(2 \mathrm{Y})-\mathrm{C}(3 \mathrm{Y})$	$1.35(2)$
$\mathrm{C}(3 \mathrm{Y})-\mathrm{C}(4 \mathrm{Y})$	1.41(2)	$\mathrm{C}(4 \mathrm{Y})-\mathrm{C}(5 \mathrm{Y})$	1.42(2)
$\mathrm{C}(5 \mathrm{Y})-\mathrm{C}(6 \mathrm{Y})$	$1.38(2)$	$\mathrm{N}(3 \mathrm{Z})-\mathrm{C}(1 \mathrm{Z})$	1.356(13)
$\mathrm{C}(1 \mathrm{Z})-\mathrm{C}(2 \mathrm{Z})$	$1.409(1+)$	C(IZ)-C(6Z)	$1 .+13(1+)$
$\mathrm{C}(2 \mathrm{Z})-\mathrm{C}(3 \mathrm{Z})$	1.353(13)	C(3Z)-C(+Z)	1. $+1(2)$
$\mathrm{C}(+\mathrm{Z})-\mathrm{C}(5 \mathrm{Z})$	1.42(2)	$\mathrm{C}(5 \mathrm{Z})-\mathrm{C}(6 \mathrm{Z})$	$1.350(1+1$

$\mathrm{N}(1)-\mathrm{C}(+)$	1.363161	Nill-Cil)	1.380161
N(2)-C(6)	1.377161	Ni2)-C(9)	1.378161
C(1)-C(10)A	1.40+161	C(1)-C(2)	1.427(6)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.338171	C. $31-\mathrm{Cl}+1$	1. +4516)
$\mathrm{C}(+)-\mathrm{C}(5)$	1.38716,	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.391(6)$
C(6)-C17)	1.421471	C(7)-C(8)	$1.3+9171$
$\mathrm{C}(8)-\mathrm{C}(9)$	1.+29171	$\mathrm{C}(9)-\mathrm{C}(10)$	1.379(6)
$\mathrm{C}(10)-\mathrm{C}(1) \mathrm{A}$	1. $+0+161$		

Table 2.9. Selected Bond Angles $\mathbf{1 *}^{*}$ for [(TPP)Mn(ONC6 $\left.\left.\mathrm{H}_{4} \mathrm{NEt}_{2}\right)_{2}\right]^{+}$

N(3Y)-O(l)-Mn(1)	$133+17)$	$\mathrm{N}(3 \mathrm{Z}) \mathrm{O}(1)-\mathrm{Mn}(1)$	$126.2(5)$
N(2)-Mn(1)-N(2) ${ }^{\text {a }}$	180.0	. i (2)-Mn(1)-. $\mathrm{C}(1)$	$90.37(1+1$
N(2)A-Mn(1)-N(1)	89.6311)	N(2)-Mn(1)-N(1)A	89.63(1+)
. V (2) $\mathrm{A}-\mathrm{Mn}(1)-\mathrm{V}(1) \mathrm{A}$	90.37(1+)		180.0
N(2)-Mn(1)-O(1)A	87.612)		92.+(2)
. V (1)-Mn(1)-O(1)A	95.7(2)	N(l)A-Mn(1)-OMA	$8+312)$
N(2)-Mn(1)-O(1)	92.4(2)	N(2)A-Mn(1)-O(1)	87.6121
$\mathrm{N}(1)-\mathrm{Mn}(1)-\mathrm{O}(1)$	84.3(2)	N(l)A-Mn(1)-O(1)	95.712)
$\mathrm{O}(1) \mathrm{A}-\mathrm{Mn}(1)-\mathrm{O}(1)$	180.0	$\mathrm{C}(+\mathrm{Z})-\mathrm{N}(+)-\mathrm{C}(23)$	132.2(9)
$\mathrm{C}(4 \mathrm{Y})-\mathrm{N}(4)-\mathrm{C}(23)$	108.6(10)	$\mathrm{C}(+\mathrm{Z})-\mathrm{N}(+)-\mathrm{C}(25)$	$111.019)$
$\mathrm{C}(4 \mathrm{Y})-\mathrm{N}(4)-\mathrm{C}(25)$	$13+.5101$	$\mathrm{C}(23)-\mathrm{N}(+1)-\mathrm{C}(25)$	116.716)
$\mathrm{N}(4)-\mathrm{C}(23)-\mathrm{C}(24)$	$112.617)$	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(+)$	$10+.5(9)$
$\mathrm{O}(1)-\mathrm{N}(3 Z)-\mathrm{C}(1 Z)$	122.0(9)	. V (3Z)-C(1Z)-C(2Z)	126.6(12)
$\mathrm{N}(3 \mathrm{Z})-\mathrm{C}(1 \mathrm{Z})-\mathrm{C}(6 \mathrm{Z})$	115.9111	C(2Z)-C(IZ)-C(6Z)	117.5(10)
$\mathrm{C}(3 \mathrm{Z})-\mathrm{C}(2 \mathrm{Z})-\mathrm{C}(1 Z)$	121.2(10)	$\mathrm{C}(2 \mathrm{Z})-\mathrm{C}(3 \mathrm{Z})-\mathrm{C}(+\mathrm{Z})$	121.81111
$N(+)-C(+Z)-C(3 Z)$	$115.912)$	$. \mathrm{i}(+)-\mathrm{C}(+\mathrm{Z})-\mathrm{C}(5 \mathrm{Z})$	127.01121

$\mathrm{C}(3 \mathrm{Z})-\mathrm{C}(+\mathrm{Z})-\mathrm{C}(5 \mathrm{Z})$	116.81101	$C(6 Z)-C(5 Z)-C(+Z)$	121.51111
C(5Z)-C(6Z)-C(1Z)	121.0(10)	O(l)-N(3 Y $-\mathrm{Cl} 1 \mathrm{Y})$	121.9121
$\therefore \mathrm{N} 3 \mathrm{Y})-\mathrm{C}(1 \mathrm{Y})-\mathrm{C}(6 \mathrm{Y})$	125.9(1+)	$\cdots(3 Y)-C(1 Y)-C 12 Y) ~$	$11+8131$
C(6Y)-C(iY)-Cl2Y)	119.4121	C(3Y)-CizY)-C11Y)	120.01121
C(2Y)-C(3Y)-C(+Y)	122.71121	$\therefore 1+1-\mathrm{C}(+\mathrm{Y})-\mathrm{C}(3 \mathrm{Y})$	$129.111+1$
N(t)-C(+Y -CC(5Y)	$11+8(1+1$	C(3Y)-C(4Y)-C15Y)	115.91121
C(6Y)-C(5Y)-Cl+Y)	121.51131	C(5Y)-C(6Y)-CliY)	119.81131
$\mathrm{C}(+)-\mathrm{N}(1)-\mathrm{C}(1)$	106.6(t)	$\mathrm{C}(+)-\mathrm{N}(1)-\mathrm{Mnc} 1)$	125.9131
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Mn}(1)$	$127.0(3)$	$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(9)$	106.2(4)
$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{Mn}(1)$	126.6(3)	$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{Mn}(1)$	127.2131
Nil)-C(l)-C(10)A	$125.51+1$	A (1)-C(1)-C12)	109.11+1
C(10)A-C(1)-CI2)	$125.4(4)$	C(3)-C(2)-C(1)	108.014
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(+)$	107.0(t)	$\cdots(1)-C(4)-C(5)$	127.2(t)
$\mathrm{N}(1)-\mathrm{C}(+)-\mathrm{C}(3)$	$109.3(t)$	$\mathrm{C}(5)-\mathrm{C}(+)-\mathrm{C}(3)$	$123.3(t)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	124.164	. i (2)-C(6)-C(5)	125.8(4)
N(2)-C(6)-C(7)	109.7(t)	C(5)-C(6)-C(7)	$12+.5(t)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	107.3(4)	C(7)-C(8)-C(9)	$107.51+1$
N(2)-C(9)-C(10)	126.1(4)	\therefore (2)-C(9)-C(8)	$109.21+1$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	124.7(4)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(1) \mathrm{A}$	$12+.3(4)$

The observation of the η^{\prime} nitroso-O binding of the para-dialkylamino substituted nitrosoarene to the formal d^{4} Mn ${ }^{11 I}$ center is interesting. This η^{1} nitroso-O binding to a d^{4} metal center is thus only the second example of such a binding to nond^{10} transition metal centers. and suggests that this binding mode may indeed be more accessible than was previously thought.

The η^{1-N} Binding of Nitrosoarenes to Os ${ }^{I I}$ Porphyrins. Our laboratory previously reported the structurally characterized complex (TPP)Fe(PhNO) with $\eta^{1}-\mathrm{N}$ binding nitrosobenzene ligand. ${ }^{59}$ James also reported the synthesis and spectroscopic characterization of (OEP)Ru(PhNO) $)^{+}{ }^{+0}$ However. no monometallic osmium porphyrin complexes with C-nitroso compounds as ligands was reported prior to our work. Hence, we were interested in extending the $\eta^{1}-\mathrm{V}$ binding chemistry of nitrosoarenes to Os ${ }^{11}$ porphyrins.

The formation and reactions of (por)Os ${ }^{\prime \prime}$ nitrosoarene complexes are summarized in Scheme 2.1. These are the first monomeric osmium C-nitroso complexes to be reported. The most important feature of this type of compounds is that the $\eta^{1}-\mathrm{N}$ bound nitrosoarene ligands act as π acceptors in the complexes and their spectroscopic and structural properties are consistent with this notion. The (por)Os" bis-nitrosobenzene complexes are prepared by the reaction of (por)OsiCO) with excess PhNO in toluene at refluxing temperature. Unlike (OEP)Ru(PhNO) ${ }_{2}{ }^{+10}$ which undergoes substitution reaction by pyridine to give (OEP)Ru(Ph.VO)(py) quantitatively at room temperature within 10 min . no substitution of the $\mathrm{Ph} . \mathrm{VO}$ ligand by pyridine was observed for $(\mathrm{OEP}) \mathrm{Os}(\mathrm{PhNO})_{2}$ at room temperature for several hours. This result indicates that the PhNO ligand in (OEP)Os(PhNO) is not ds labile as in (OEP)Ru(PhNO) 2. The reaction of (OEP)Os(PhNO), with excess o-tolNO was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy in toluene- d_{8}. The ${ }^{1} \mathrm{H}$ NMR spectrum indicated that no substitution of PhNO occurred at room temperature over a 30 min period. However. after the reaction mixture was heated (Scheme 2.1. bottom). substitution

Scheme 2.1

occurred to give a mixture of (OEP)Os(PhNO)(o-tolNO). (OEPIOsto-tolNO: and some unreacted (OEP)Os(PhNO) 2. The ratio of (OEP)Osto-tolNO) to (OEP)Oヶ(PhNO) (o-tolNO) increases with temperature and time until the reaction reaches an equilibrium (no further change in ratio).

All the bis-nitrosoarene Os ${ }^{\text {II }}$ porphyrin complexes are air-table. showing no signs of decomposition after several months in the solid state. They are all freely soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and benzene but are rather insoluble in hexane. The ${ }^{1} \mathrm{H}$ NMR spectra of the analytically pure bis-nitrosoarene complexes consist of sharp peaks for both the ligands and the porphyrin macrocycles. consistent with the diamagnetic nature of the complexes. The two bis-nitrosoarene ligands are equivalent in solution as indicated by the ${ }^{1} \mathrm{H}$ NMR spectra of the complexes in CDCl_{3}.

The reaction of (TTP)OsıCO) with less than two equivalents of PhNO at room temperature gives the mixture of (TTP)Os(CO)(PhNO) and (TTP)Os(PhNO) in $1: 3$ ratio (Scheme 2.1. top). The v_{CO} changes from $1916 \mathrm{~cm}^{-1}$ for the starting material (TTP)Os(CO) to $1972 \mathrm{~cm}^{-1}$ for (TTP)OsiCO)(PhNO) (Figure 2.12). The shift to the higher energy for (TTP)Os(CO)(PhNO) is consistent with PhNO acting as a π acceptor ligand towards the (TTP)Os(CO) fragment. withdrawing electron density from the $\mathrm{Os}^{\mathrm{II}}$ center. thus making less electron density available for $\mathrm{Os}^{\mathrm{II}} \rightarrow \mathrm{CO}$ backdonation. thereby raising the $v_{C O}$. Further reaction of (TTP)Os(COMPhNO) with excess PhNO in refluxing toluene produces the (TTP)Os $(\mathrm{PhNO})_{2}$ derivative exclusively but in $+0 c_{c}$ overall yield from (TTP)Os(CO)).

The molecular structures of the (por)Osil nitrosoarene complexes inamely.
 (OEP)Os(o-tolNO) 2) are shown in Figures 2.13-2.17. Selected bond lengths and bond angles are listed in Tables 2.10-2.19.

Figure 2.12. [R spectra (KBr) showing the $v_{\mathrm{CO}} \stackrel{\circ}{ }$ for (TTP)Os(CO) (top. $1916 \mathrm{~cm}^{-1}$) and (TTP)Os(CO)(PhNO) (bottom. $1972 \mathrm{~cm}^{-1}$).

Figure 2.13. Molecular structure of $(\mathrm{TTP}) \mathrm{Os}(\mathrm{PhNO})_{2}$.

Figure 2.14. Molecular structure of (TTP)Os(CO)(PhNO).

Figure 2.15. Molecular structure of $(\mathrm{TPP}) \mathrm{Os}\left(\mathrm{Ph} \mathrm{NO}_{2}\right)$.

Figure 2.16. Molecular structure of $(\mathrm{TMP}) \mathrm{Os}(\mathrm{Ph} N O)_{2}$.

Figure 2.17. (a) Molecular structure (OEP)Os $(o-t o l N)_{2}$. (b) View along the $\mathrm{N}(3)-\mathrm{Os}(1)$ bond showing the orientation of the axial o-tolNO ligand relative to the porphyrin core (two positions due to the disorder of the o-tol NO ligands).

Table 2.10. Selected Bond Lengths (A) for (TTP)Os(Ph.VO):

Os($11-\mathrm{N}(6)$	$1.931113)$	Os(1)-N(5)	1.99+(9)
$\mathrm{Os}(1)-\mathrm{N}(2)$	2.050(9)	Os(1)- $\mathrm{V}(1)$	$2.053(9)$
Os(1)-ivi 3)	$2.058(9)$	Oss(1-.V(4)	2.107191
$\cdots(5)-\mathrm{O}(1)$	$1.278(12)$	$\mathrm{N}(6)-\mathrm{O}(2)$	1.298(13)
V V (5)-C(49)	$1 .+3(2)$	N(6)-C(55)	1.475 (1+)
$\mathrm{C}(49)-\mathrm{C}(50)$	1.40(2)	$\mathrm{C}(50)-\mathrm{C}(51)$	1.39(2)
$\mathrm{C}(51)-\mathrm{C}(52)$	$1.43(2)$	$\mathrm{C}(52)-\mathrm{C}(53)$	$1.38(2)$
$\mathrm{C}(53)-\mathrm{C}(54)$	$1.37(2)$	$\mathrm{C}(49)-\mathrm{C}(5+)$	1.39(2)
$\mathrm{C}(55)-\mathrm{C}(56)$	1.3612)	$\mathrm{C}(55)-\mathrm{C}(60)$	$1.37(2)$
$\mathrm{C}(56)-\mathrm{C}(57)$	$1.38(2)$	$\mathrm{C}(57)-\mathrm{C}(58)$	1.36(2)
$\mathrm{C}(58)-\mathrm{C}(59)$	1.37(2)	$\mathrm{C}(59)-\mathrm{C}(60)$	1.37(2)
$\mathrm{N}(1)-\mathrm{C}(1)$	1.355(13)	$\cdots(1)-C(4)$	1.388(14)
N(2)-C(6)	$1.38211+1$	N(2)-C(9)	$1 .+281+$
V $(3)-\mathrm{C}(1+1)$	1.367(13)	N(3)-C(11)	$1.39111+$
Niti-C(19)	$1.328(1+)$	$\cdots(+)-C(16)$	$1.366(1+)$
C(1)-C(20)	$1.38(2)$	$\mathrm{C}(1)-\mathrm{C}(2)$	1.47(2)
C(2)-C(3)	1.35(2)	C(3)-C(+1	(1. + + 2)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.39(2)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.402 21
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.43(2)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.3812)$
$\mathrm{C}(8)-\mathrm{C}(9)$	1.40(2)	$\mathrm{C}(9)-\mathrm{C}(10)$	1.38121
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.39(2)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1 .+3(2)$
$\mathrm{C}(12)-\mathrm{C}(13)$	1.34(2)	$\mathrm{C}(13)-\mathrm{C}(1+)$	1.45(2)
$\mathrm{C}(1+)-\mathrm{C}(15)$	$1.38(2)$	$\mathrm{C}(15)-\mathrm{C}(16)$	1.38(2)
$\mathrm{C}(16)-\mathrm{C}(17)$	1.45(2)	$\mathrm{C}(17)-\mathrm{C}(18)$	1.37(2)
$\mathrm{C}(18)-\mathrm{C}(19)$	1.49(2)	$\mathrm{C}(19)-\mathrm{C}(20)$	1.42(2)

Table 2.11. Selected Bond Angles $\left({ }^{\circ}\right)$ for (TTP)Os(PhNO):

$\mathrm{O}(1)-\mathrm{N}(5)-\mathrm{C}(49)$	$113.2(10)$	O(1)-N(5)-Os(1)	121.6181
$\mathrm{C}(49)-\mathrm{Ni} 5)-\mathrm{Os}(1)$	123.7181	$\mathrm{O}(2)-\mathrm{N}(6)-\mathrm{C}(55)$	109.31111
$\mathrm{O}(2)-\mathrm{is} 61-\mathrm{Os}(1)$	122.3(8)	$\mathrm{C}(55)-\mathrm{N}(6)-\mathrm{Os}(1)$	127.3(8)
V(6)-Os(1)-N(5)	169.54t	N(6)-Os(l)-N(2)	91.3(t)
N(5)-Os(1)-. $\mathrm{V}^{(2)}$	97.3(t)	N(6)-Os(1)-N(1)	85.0(4)
$\mathrm{N}(5)-\mathrm{Os}(1)-\mathrm{N}(1)$	89.0(t)	$\cdots(2)-\mathrm{Os}(1)-\mathrm{N}(1)$	$90 .+(3)$
$\mathrm{N}(6)-\mathrm{Os}(1)-\mathrm{N}(3)$	96.7(t)	. $\mathrm{N}(5)-\mathrm{Os}(1)-\mathrm{N}(3)$	89.3(t)
$\mathrm{N}(2)-\mathrm{Os}(1)-\mathrm{N}(3)$	89.613)	. $\mathrm{N}(1)-\mathrm{Os}(1)-\mathrm{N}(3)$	178.+(t)
N(6)-Os(1)-N(t)	91.3(+)	N(5)-Os(1)-N(t)	80.0(+)
$\mathrm{N}(2)-\mathrm{Os}(1)-\mathrm{N}(4)$	177.31+1	N(1)-Os(1)-N(t)	89.1(4)
$\mathrm{N}(3)-\mathrm{Os}(1)-\mathrm{N}(\mathrm{t})$	90.8(t)	$\mathrm{C}(54)-\mathrm{C}(49)-\mathrm{C}(50)$	$120.3(13)$
$\mathrm{C}(54)-\mathrm{C}(49)-\mathrm{N}(5)$	121.9(12)	$\mathrm{C}(50)-\mathrm{C}(49)-\mathrm{N}(5)$	117.8(11)
$\mathrm{C}(51)-\mathrm{C}(50)-\mathrm{C}(49)$	117.9(13)	$\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{C}(52)$	121(2)
$\mathrm{C}(53)-\mathrm{C}(52)-\mathrm{C}(51)$	120(2)	$\mathrm{C}(5+)-\mathrm{C}(53)-\mathrm{C}(52)$	119(2)
C(53)-C(54)-C(49)	121.9(13)	C(56)-C(55)-C(60)	120.9111)
$\mathrm{C}(56)-\mathrm{C}(55)-\mathrm{N}(6)$	119.4(10)	$\mathrm{C}(60)-\mathrm{C}(55)-\mathrm{N}(6)$	119.7(11)
$\mathrm{C}(55)-\mathrm{C}(56)-\mathrm{C}(57)$	118.8(12)	$\mathrm{C}(58)-\mathrm{C}(57)-\mathrm{C}(56)$	121.1131
$\mathrm{C}(57)-\mathrm{C}(58)-\mathrm{C}(59)$	119.4(12)	$\mathrm{C}(58)-\mathrm{C}(59)-\mathrm{C}(60)$	120.1(12)
$\mathrm{C}(55)-\mathrm{C}(60)-\mathrm{C}(59)$	119.6(12)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(+)$	107.6(9)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Os}(1)$	126.6(8)	$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{Osil})$	125.7(7)
$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(9)$	106.7(9)	$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{Os}(1)$	126.618)
$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{Os}(1)$	126.4(7)	$\mathrm{C}(1+1-\mathrm{N}(3)-\mathrm{C}(11)$	108.6(9)
$\mathrm{C}(1+1) \mathrm{N}(3)-\mathrm{Os}(1)$	125.0(7)	$\mathrm{C}(11)-\mathrm{N}(3)-\mathrm{Os}(1)$	126.2(7)
$\mathrm{C}(19)-\mathrm{N}(4)-\mathrm{C}(16)$	$112.2(9)$	$\mathrm{C}(19)-\mathrm{N}(4)-\mathrm{Os}(1)$	12+.6(7)
$\mathrm{C}(16)-\mathrm{N}(t)-\mathrm{Os}(1)$	123.1(8)	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(20)$	127.7(11)

N(1)-C(1)-C(2)	108.8(10)	$\mathrm{C}(20)-\mathrm{C}(1)-\mathrm{C}(2)$	123.51101
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	107.0(11)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(+)$	107.4111
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{N}(1)$	125.4(10)	$\mathrm{C}(5)-\mathrm{C}(+1)-\mathrm{C}(3)$	$125.5(10)$
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	109.1(9)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	127.3110
N(2)-C(6)-C(5)	124.61101	$\cdots(2)-\mathrm{C}(6)-\mathrm{C}(7)$	108.9111
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	126.51101	$\mathrm{C}(8)-\mathrm{Cl} 71-\mathrm{C}(6)$	107.+111
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	108.3 (10)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	126.7.111
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{N}(2)$	12+.7(10)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{N}(2)$	108.4(10)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$126.2(11)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(3)$	126.2110
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	126.81111	V(3)-C(11)-C(12)	107.019)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	109.2111)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	107.410
$\mathrm{N}(3)-\mathrm{C}(1+)-\mathrm{C}(15)$	$126.5111)$	$\cdots(3)-C(14)-C(13)$	107.9(9)
$\mathrm{C}(15)-\mathrm{C}(1+)-\mathrm{C}(13)$	125.4(10)	$C(1+)-C(15)-C(16)$	126.8(10)
$\mathrm{N}(4)-\mathrm{C}(16)-\mathrm{C}(15)$	127.2(10)	$\cdots(4)-C(16)-C(17)$	$106.2(10$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	126.4(10)	C(18)-C(17)-C(16)	108.6110
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	105.8(10)	\therefore 人1-C(19)-C(20)	128.6/10
$\mathrm{N}(4)-\mathrm{C}(19)-\mathrm{C}(18)$	107.1(9)	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	$12+2110$
$\mathrm{C}(11-\mathrm{C}(20)-\mathrm{C}(19)$	123.2(10)		

Table 2.12. Selected Bond Lengths (\dot{A}) for (TTP)Ost $\mathrm{CO}(\mathrm{Ph}$ NO)

Os(1)-C(25)	$1.93(2)$	$O s(1)-\mathrm{C}(25) \mathrm{A}$	$1.93(2)$
$\mathrm{Os}(1)-\mathrm{N}(1)$	$2.073(7)$	$\mathrm{Os}(1)-\mathrm{N}(1) \mathrm{A}$	$2.073(7)$
$\mathrm{Os}(1)-\mathrm{N}(2)$	$2.082(6)$	$\mathrm{Os}(1)-\mathrm{N}(2) \mathrm{A}$	$2.082(6)$
$\mathrm{Os}(1)-\mathrm{N}(5) \mathrm{A}$	$2.18(2)$	$\mathrm{Os}(1)-\mathrm{N}(5)$	$2.18(2)$
$\mathrm{N}(5)-\mathrm{O}(2)$	$1.26(2)$	$\mathrm{C}(25)-\mathrm{O}(1)$	$1.14+15)$
$\mathrm{N}(5)-\mathrm{C}(26)$	$1.39(3)$	$\mathrm{C}(26)-\mathrm{C}(27)$	$1.31(3)$

C(26)-C(31)	$1 .+1(4)$	C(27)-C(28)	1.42131
C(28)-C(29)	1. $4+(3)$	C(29)-C(30)	1.30) +1
$\mathrm{C}(30)-\mathrm{C}(31)$	1.32(+1	V(1)-C(t)	1.375111
N(1)-C(1)	1.3821111	$\cdots(2)-C(9)$	1.360, 12)
N(2)-Ci6)	1.3901121	C(1)-C(10)A	1.+18(13)
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.455(1+1$	$\mathrm{C}(2)-\mathrm{C}(3)$	1.38121
$\mathrm{C}(3)-\mathrm{C}(4)$	1.4+9(1+)	$\mathrm{C}(4)-\mathrm{C}(5)$	1.421114
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.385(1+)$	$\mathrm{C}(6)-\mathrm{C}(7)$	1.45+(13)
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.3+(2)$	C(8)-C(9)	1.4+113)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.407(1+)	$\mathrm{C} 10)-\mathrm{C}(11 . \mathrm{A}$	1.41813)

Table 2.13. Selected Bond Angles $\left.{ }^{(}\right)$for (TTP)OsiCO)(Ph.VO)

C(25)-Os(1)-C(25)A	179.999(3)	O(1)-C(25)-Os(1)	175(4)
$\mathrm{O}(2)-\mathrm{N}(5)-\mathrm{Os}(1)$	113(2)	$\mathrm{O}(2)-\mathrm{V}(5)-\mathrm{Cl} 26)$	120(2)
$\mathrm{C}(26)-\mathrm{N}(5)-\mathrm{Os}(1)$	122.1(12)	C(25)-Os(1)-N(1)	89.1(1+)
C(25)A-Os($11-\mathrm{N}(1)$	90.9(14)	C1251-Osill-illit	$90.9(1+1)$
C(25)A-Os(1)-N(1)A	89.1(14)	\therefore (1)-Oss $11-\mathrm{C}(1) \mathrm{A}$	180.0
$\mathrm{C}(25)-\mathrm{Os}(1)-\mathrm{N}(2)$	91(2)	C(25)A-Os(1)-, 스)	$89(2)$
N(1)-Os(1)-N(2)	90.4(3)	N(1)A-Os($11-\mathrm{N}$ (2)	$89.613)$
$\mathrm{C}(25)-\mathrm{Os}(1)-\mathrm{N}(2) \mathrm{A}$	89(2)	C(25)A-Os 1 --Nに.A	91(2)
$\mathrm{N}(1)-\mathrm{Os}(1)-\mathrm{N}(2) \mathrm{A}$	89.6(3)	N(1)A-Os(1)-N(2)A	$90.43)$
N(2)-Os(1)-N(2)A	$179.998(1)$	Nill-Os(1)-M M (1)	95.5181
N(1)A-Os(1)-N(5)A	84.5(9)	$\mathrm{N}(2)-\mathrm{Os}(1)-\mathrm{N} 5$ (${ }^{\text {a }}$	$8+.719)$
N(2)A-Os(1)-N(5)A	95.3(9)	V(1)-Os(1)-.N(5)	$8+.5191$
N(1)A-Os(1)- $\mathrm{N}(5)$	$95.5(8)$	N(2)-Os(1)-N(5)	95.3 (9)
$\mathrm{N}(2) \mathrm{A}-\mathrm{Os}(1)-\mathrm{N}(5)$	84.7(9)	N(5)A-Os(1)-Ni5)	$179.999(2)$

$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(1)$	108.1(7)	C(t)-V(l)-Osil)	125.7161
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Os}(1)$	$126.1(6)$	$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{C}(6)$	107.8171
$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{Os}(1)$	127.0(6)	C(6)-N(2)-Ost 11	125.2161
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(10) \mathrm{A}$	125.9(8)	Vil-C11-C12)	108.7(8)
$\mathrm{C}(10) \mathrm{A}-\mathrm{C}(1)-\mathrm{C}(2)$	$125 .+(9)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	106.8(9)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(+)$	107.3(9)	N(1)-C(t)-C(5)	126.119)
$\mathrm{N}(1)-\mathrm{C}(+)-\mathrm{C}(3)$	109.018)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	$12+.919)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	126.0(9)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(2)$	$126.618)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	125.9(9)	. N (2)-C(6)-C(7)	107.518)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	108.0181	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	107.3(8)
$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(10)$	125.7(8)	. $\mathrm{i}(2)-\mathrm{C}(9)-\mathrm{C}(8)$	109.4(8)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	12+.9(9)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(1) \mathrm{A}$	$125.7(8)$
$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{C}(31)$	118(2)	$\mathrm{C}(27)-\mathrm{Cl} 26)-\mathrm{N}(5)$	124(2)
$\mathrm{C}(31)-\mathrm{C}(26)-\mathrm{N}(5)$	118(2)	$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	125(2)
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$	$115(2)$	$C(30)-C(29)-C(28)$	117(3)
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$	128(3)	$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(26)$	118(3)

Table 2.14. Selected Bond Lengths (A) for (TPP)Os(PhNO)

$O s(1)-\mathrm{N}(5)$	$1.961(3)$	$\mathrm{Os}(1)-\mathrm{V}(6)$	$1.971(3)$
$\mathrm{Os}(1)-\mathrm{N}(1)$	$2.053(3)$	$\mathrm{Os}(1)-\mathrm{N}(3)$	$2.052(3)$
$\mathrm{Os}(1)-\mathrm{N}(2)$	$2.057(3)$	$\mathrm{Os}(1)-\mathrm{N}(4)$	$2.067(3)$
$\mathrm{O}(1)-\mathrm{N}(5)$	$1.249(4)$	$\mathrm{O}(2)-\mathrm{N}(6)$	$1.25915)$
$\mathrm{N}(5)-\mathrm{C}(45)$	$1.469(5)$	$\mathrm{N}(6)-\mathrm{C}(51)$	$1.45815)$
$\mathrm{C}(45)-\mathrm{C}(50)$	$1.369(7)$	$\mathrm{C}(45)-\mathrm{C}(46)$	$1.38317)$
$\mathrm{C}(46)-\mathrm{C}(47)$	$1.378(8)$	$\mathrm{C}(47)-\mathrm{C}(48)$	$1.37710)$
$\mathrm{C}(48)-\mathrm{C}(49)$	$1.360(11)$	$\mathrm{C}(49)-\mathrm{C}(50)$	$1.39118)$
$\mathrm{C}(51)-\mathrm{C}(56)$	$1.374(6)$	$\mathrm{C}(51)-\mathrm{C}(52)$	$1.392(6)$

$\mathrm{C}(52)-\mathrm{C}(53)$	$1.379(7)$	C(53)-C(54)	1.387(8)
$\mathrm{C}(54)-\mathrm{C}(55)$	$1.377(8)$	$\mathrm{C}(55)-\mathrm{C}(56)$	1.382171
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.372(5)$	N(1)-C(t)	1.376151
$\mathrm{N}(2)-\mathrm{C}(9)$	$1.366(5)$	$\therefore(2)-C(6)$	$1.366(5)$
$\mathrm{N}(3)-\mathrm{C}(1+)$	$1.369(5)$. $\mathrm{N}(3)-\mathrm{C}(11)$	1.376151
$\cdots(1)-\mathrm{C}(19)$	1.375151	$\cdots(4)-\mathrm{C}(16)$	1.376151
$\mathrm{C}(1)-\mathrm{C}(20)$	$1.39616)$	$\mathrm{C}(1)-\mathrm{C}(2)$	1. $+4+(6)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.363(6)$	$\mathrm{C}(3)-\mathrm{C}(+)$	1. $+12(6)$
$C(4)-C(5)$	1.390(5)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.399(6)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.4+2(6)	C(7)-C(8)	$1.361(6)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.454(6)$	$\mathrm{C}(9)-\mathrm{C}(10)$	1.400(6)
C(10)-C(11)	$1.391(6)$	$\mathrm{C}(111-\mathrm{C}(12)$	1. +43 (6)
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.359(6)$	$\mathrm{C}(13)-\mathrm{C}(14)$	1.453(6)
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.401(6)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.388(6)$
$\mathrm{C}(16)-\mathrm{Cl} 17)$	$1 .+42(6)$	$\mathrm{C}(17)-\mathrm{C}(18)$	1.356(7)
$\mathrm{C}(18)-\mathrm{C}(19)$	1.440(6)	$\mathrm{C}(19)-\mathrm{C}(20)$	1.396(6)

Table 2.15. Selected Bond Angles (${ }^{\circ}$) for (TPP)Os(PhNO)

$\mathrm{N}(5)-\mathrm{Os}(1)-\mathrm{N}(6)$	$174.59(14)$	$\mathrm{O}(1)-\mathrm{N}(5)-\mathrm{Os}(1)$	$125.4(3)$
$\mathrm{O}(1)-\mathrm{N}(5)-\mathrm{C}(45)$	$112.4(3)$	$\mathrm{C}(45)-\mathrm{N}(5)-\mathrm{Os}(1)$	$122.0(3)$
$\mathrm{O}(2)-\mathrm{N}(6)-\mathrm{Os}(1)$	$124.1(3)$	$\mathrm{O}(2)-\mathrm{N}(6)-\mathrm{C}(511$	$113.1(3)$
$\mathrm{C}(51)-\mathrm{N}(6)-\mathrm{Os}(1)$	$122.2(3)$	$\mathrm{N}(5)-\mathrm{Os}(1)-\mathrm{N}(1)$	$89.33(1+1)$
$\mathrm{N}(6)-\mathrm{Os}(1)-\mathrm{N}(1)$	$89.93(1+)$	$\mathrm{N}(5)-\mathrm{Os}(1)-\mathrm{N}(3)$	$91.25(1+1)$
$\mathrm{N}(6)-\mathrm{Os}(1)-\mathrm{N}(3)$	$89.52(14)$	$\mathrm{N}(1)-\mathrm{Os}(1)-\mathrm{N}(3)$	$179.3+113)$
$\mathrm{N}(5)-\mathrm{Os}(1)-\mathrm{N}(2)$	$88.06(13)$	$\mathrm{N}(6)-\mathrm{Os}(1)-\mathrm{N}(2)$	$86.58(1+1)$
$\mathrm{N}(1)-\mathrm{Os}(1)-\mathrm{N}(2)$	$89.75(14)$	$\mathrm{N}(3)-\mathrm{Os}(1)-\mathrm{N}(2)$	$90.58(1+1)$
$\mathrm{N}(5)-\mathrm{Os}(1)-\mathrm{N}(4)$	$91.69(13)$	$\mathrm{N}(6)-\mathrm{Os}(1)-\mathrm{N}(4)$	$93.67(1+1)$

$\mathrm{N}(1)-\mathrm{Os}(1)-\mathrm{N}(\mathrm{t})$	90.10(13)	N(2)-Os(1)-N(t)	179.71113
$\mathrm{N}(3)-\mathrm{Os}(1)-\mathrm{N}(4)$	89.57(14)	$\mathrm{C}(50)-\mathrm{C}(+5)-\mathrm{C}(+6)$	121.1651
$\mathrm{C}(50)-\mathrm{C}(45)-\mathrm{N}(5)$	119.8(t)	$\mathrm{C}(46)-\mathrm{C}(+5)-\mathrm{N}(5)$	119.114
$\mathrm{C}(+5)-\mathrm{C}(+6)-\mathrm{C}(+7)$	$119.2(6)$	$\mathrm{C}(+8)-\mathrm{C}(+7)-\mathrm{C}(+6)$	119.6161
$\mathrm{C}(+9)-\mathrm{C}(+8)-\mathrm{C}(+7)$	121.2(6)	$\mathrm{C}(48)-\mathrm{C}(+9)-\mathrm{C}(50)$	119.7161
$\mathrm{C}(+5)-\mathrm{C}(50)-\mathrm{C}(49)$	$119.3(6)$	C(56)-C(51)-C(52)	$121.21+1$
$\mathrm{C}(56)-\mathrm{C}(51)-\mathrm{N}(6)$	119.5(t)	$\mathrm{C}(52)-\mathrm{C}(51)-\mathrm{N}(6)$	119.3i+)
$\mathrm{C}(53)-\mathrm{C}(52)-\mathrm{C}(51)$	118.9(5)	$\mathrm{C}(52)-\mathrm{C}(53)-\mathrm{C}(54)$	$120.5(5)$
$\mathrm{C}(55)-\mathrm{C}(54)-\mathrm{C}(53)$	119.6(5)	$\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{C}(56)$	120.8(5)
$\mathrm{C}(51)-\mathrm{C}(56)-\mathrm{C}(55)$	119.1(5)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(+)$	108.1(3)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Os}(1)$	126.0(3)	$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{Os}(1)$	$125.8(3)$
$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{C}(6)$	108.0(3)	$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{Os}(1)$	$125.513)$
$\mathrm{C}(6)-\mathrm{N}(2)$-Os(1)	126.5(3)	$\mathrm{C}(14)-\mathrm{N}(3)-\mathrm{C}(11)$	108.1(3)
$\mathrm{C}(1+1)-\mathrm{N}(3)-\mathrm{Os}(1)$	126.4(3)	$\mathrm{C}(111-\mathrm{N}(3)-\mathrm{Os}(1)$	125.5(3)
$\mathrm{C}(19)-\mathrm{N}(4)-\mathrm{C}(16)$	108.3(3)	$\mathrm{C}(19)-\mathrm{N}(4)-\mathrm{Os}(1)$	125.6(3)
$\mathrm{C}(16)-\mathrm{N}(4)-\mathrm{Os}(1)$	126.1(3)	. $\mathrm{i}(1)-\mathrm{C}(1)-\mathrm{C}(20)$	126.4(4)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	109.0(4)	$\mathrm{C}(20)-\mathrm{C}(1)-\mathrm{Cl} 2)$	$12+.51+1$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	106.7(4)	C(2)-C(3)-C(4)	108.01 +1
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	126.4(4)	$\mathrm{N}(1)-\mathrm{C}(+)-\mathrm{C}(3)$	$108.2(3)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	125.4(4)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$125.3(t)$
$N(2)-C(6)-C(5)$	125.9(4)	. $\mathrm{V}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	108.91+)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	125.2(4)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	107.71+1
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	106.4(4)	$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(10)$	126.2(+)
$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(8)$	109.0(4)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	12+.71+1
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	$125.8(4)$	N(3)-C(11)-C(10)	126.1(4)
$\mathrm{N}(3)-\mathrm{C}(11)-\mathrm{C}(12)$	108.7(t)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	125.2(t)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	107.5(4)	$C(12)-C(13)-C(1+1$	107.2(4)

. N (3)-C(14)-C(15)	$126.5(t)$		108.6031
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	124.8(4)	C(16)-C15)-Cllt)	125.04t
N(4)-C(16)-C(15)	126.4(4)	Niti-C(16)-C117)	108.01 +1
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$125.6(+)$	C(18)-C17)-C16)	$107.91+$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	107.4(t)	$\therefore \mathrm{A}+1-\mathrm{C}(19)-\mathrm{Cl} 20)$	126.2(t)
$\mathrm{N}(4)$-C(19)-C(18)	108.tit)	$\mathrm{C} 120)-\mathrm{C}(19)-\mathrm{C}(18)$	$125.31+$
$\mathrm{C}(1)-\mathrm{C}(20)-\mathrm{C}(19)$	125.4(t)		

Table 2.16. Selected Bond Lengths (A) for (TMP)Os(PhNO)

Os(1)-N(6)	1.979191	Os(1)-N(5)	2.049(12)
$\mathrm{O}(1)-\mathrm{N}(5)$	1.31(2)	$\mathrm{O}(2)-\mathrm{N}(6)$	1.252(12)
Os(1)-N(2)	$2.037(10)$	Os(1)-iv(l)	$2.055(9)$
Os(1)-N(4)	$2.058(9)$	Os(1)-N(3)	$2.059(9)$
N(5)-C(57)	1.40(2)	Vi(6)-C(63)	1.45(2)
C(57)-C(58)	1.39(2)	C(57)-C162)	1.4613)
$\mathrm{C}(58)-\mathrm{C}(59)$	1.30(2)	C(59)-C(60)	1.49(3)
$\mathrm{C}(60)-\mathrm{C}(61)$	1.46 (3)	C(61)-C(62)	1.5331
$\mathrm{C}(63)-\mathrm{C}(64)$	1.39(2)	C(63)-Ci68)	1.4012)
$\mathrm{C}(64)-\mathrm{C}(65)$	1.37(2)	$\mathrm{C}(65)-\mathrm{C}(66)$	1.36121
$\mathrm{C}(66)-\mathrm{C}(67)$	1.38(2)	C(67)-C(68)	1.3912)
$\mathrm{N}(1)-\mathrm{C}(4)$	1.373 (1+)	. $\mathrm{i}(1)-\mathrm{C}(1)$	1.40211+1
$\mathrm{N}(2)-\mathrm{C}(9)$	1.398(1+)	$\mathrm{N}(2)-\mathrm{C}(6)$	$1.40311+1$
$\mathrm{N}(3)-\mathrm{C}(14)$	1.402(1+)	V(3)-C(1)	$1.4051+1$
$\mathrm{N}(\mathrm{t})$-C(19)	$1.381(1+1)$	$\mathrm{N}(+)$-Cll 6)	$1.39111+1$
$\mathrm{C}(1)-\mathrm{C}(20)$	1. $+1(2)$	$\mathrm{C}(1)-\mathrm{C}(2)$	1.47(2)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.32(2)	$\mathrm{C}(3)-\mathrm{C}(+)$	1.4512)

$\mathrm{C}(+1-\mathrm{C}(5)$	1.42(2)	C(5)-C(6)	1.45121
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.45(2)$	C(7)-C18)	1.37121
$\mathrm{C}(8)-\mathrm{C}(9)$	1.42(2)	$\mathrm{C}(9)-\mathrm{C}(10)$	$1 .+3811+1$
$\mathrm{C}(10)-\mathrm{C}(11)$	1.39 (2)	C(11)-C(12)	$1 .+4(2)$
$\mathrm{C}(12)-\mathrm{C}(13)$	1.37(2)	$\mathrm{C}(13)-\mathrm{C}(1+)$	1.4512)
$\mathrm{C}(1+)-\mathrm{C}(15)$	$1.3912)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1 .+3121$
$\mathrm{C}(16)-\mathrm{C}(17)$	1.47(2)	$\mathrm{C}(17)-\mathrm{C}(18)$	1.32(2)
$\mathrm{C}(18)-\mathrm{C}(19)$	1.46(2)	$\mathrm{C}(19)-\mathrm{C}(20)$	1. +3 (2)

Table 2.17. Selected Bond Angles $1=$) for (T.MP)Os($\mathrm{Ph} N \mathrm{NO}$)

O(1)-N(5)-Osth	116.5(9)	$\mathrm{O}(1)-\mathrm{N}(5)-\mathrm{C}(57)$	110.412)
C(57)-N(5)-Os(1)	$131.8111)$	$\mathrm{O}(2)-\mathrm{N}(6)-\mathrm{Os}(1)$	121.5(8)
$\mathrm{O}(2)-\mathrm{V}(6)-\mathrm{C}(63)$	112.5(9)	$\mathrm{C}(63)-\mathrm{N}(6)-\mathrm{Os}(1)$	125.9(8)
$\mathrm{N}(6)-\mathrm{Os}(1)-\mathrm{N}(2)$	87.71+1	. V (6)-Os(1)-N(5)	171.015)
$\mathrm{N}(2)-\mathrm{Os}(1)-\mathrm{N}(5)$	$86 .+1+1$	Vif)-Os($11-\mathrm{Ni}(1)$	87.6(+)
$\mathrm{N}(2)-\mathrm{Os}(1)-\mathrm{N}(1)$	90.0(3)	V(5)-Os(1)-Nil)	99.1151
. $\mathrm{V}(6)-\mathrm{Os}(1)-\mathrm{V}(\mathrm{t})$	93.7(4)	$. .2(2)-O s(1)-N(4)$	178.61+1
$\mathrm{N}(5)-\mathrm{Os}(1)-\mathrm{N}(t)$	92.4(4)	Nill-Os(l)-Nitl	89.7131
$\mathrm{N}(6)-\mathrm{Os}(1)-\mathrm{N}(3)$	91.0(4)	$\mathrm{N}(2)-\mathrm{Os}(1)-\mathrm{N}(3)$	90.4(3)
$\mathrm{N}(5)-\mathrm{Os}(1)-\mathrm{N}(3)$	82.3(4)	. V (1)-Os(1)-N(3)	178.61+1
$\mathrm{N}(4)-\mathrm{Os}(1)-\mathrm{N}(3)$	89.9(3)	C(58)-C(57)-.Ni5)	12512)
$\mathrm{C}(58)-\mathrm{C}(57)-\mathrm{C}(62)$	$12+(2)$	$\mathrm{V}(5)-\mathrm{C}(57)-\mathrm{C} 62)$	11112)
C(59)-C(58)-C(57)	124(2)	$\mathrm{C}(58)-\mathrm{C}(59)-\mathrm{C}(60)$	118121
C(61)-C(60)-C(59)	$123(3)$	$\mathrm{C}(60)-\mathrm{C}(61)-\mathrm{C}(62)$	115(3)
C(57)-C(62)-C(61)	$115(2)$	$\mathrm{C}(64)-\mathrm{C}(63)-\mathrm{C}(68)$	$118.5(1+)$
$\mathrm{C}(64)-\mathrm{C}(63)-\mathrm{N}(6)$	121.6(12)	$\mathrm{C}(68)-\mathrm{C}(63)-\mathrm{N}(6)$	$119.9(13)$

C(65)-C(64)-C(63)	118.8114	$\mathrm{C}(66)-\mathrm{C}(65)-\mathrm{C}(6+)$	12512)
$\mathrm{C}(65)-\mathrm{C}(66)-\mathrm{C}(67)$	115(2)	$\mathrm{C}(66)-\mathrm{C}(67)-\mathrm{C}(68)$	12321
C(67)-C(68)-C(63)	119(2)	$\mathrm{C}(+)-\mathrm{N}(1)-\mathrm{Cl}(1)$	106.1101
$\mathrm{Cl}+$ - $\mathrm{N}(1)-\mathrm{Os}(1)$	(27.+18)	C(1)-N(1)-Os(1)	126.4 181
C 19 - N (2)-Ost1)	127.3171	$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{C}(6)$	105.1191
$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{Os}(1)$	127.117)	$\mathrm{C}(1+)-\mathrm{N}(3)-\mathrm{C}(11)$	$107.4(9)$
$\mathrm{C}(1+)-\mathrm{N}(3)-\mathrm{Os}(1)$	126.2171	C(1)--N(3)-Os(1)	126.1(7)
$\mathrm{C}(19)-\mathrm{N}(+)-\mathrm{C}(16)$	106.5(9)	$\mathrm{C}(19)-\mathrm{N}(+)-\mathrm{Os}(1)$	126.6(7)
$\mathrm{C}(16)-\mathrm{N}(+)-\mathrm{Os}(1)$	126.6(8)	N(1)-C(1)-C(20)	126.0(11)
N(1)-C(1)-C(2)	108.1(10)	$\mathrm{C}(20)-\mathrm{C}(1)-\mathrm{C}(2)$	125.81111
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	107.8(12)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	107.9(12)
$\cdots(1)-C(4)-C(5)$	125.81111	N(1)-C(4)-C(3)	110.0(11)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	124.1111	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$124.3111)$
$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	$12+.510)$	N(2)-C(6)-C(7)	109.8(10)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$125.5(10)$	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	106.+(10)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	108.3 (10)	, C (2)-C(9)-C(8)	110.1(9)
Vi(2)-C(9)-C(10)	124.610)	C(8)-C(9)-C(10)	125.21111
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	125.4(11)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(3)$	126.11101
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	125.9(10)	N(3)-C(11)-C(12)	107.9(9)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	109.0(10)	C(12)-C(13)-C(1+)	106.9(10)
$\mathrm{C}(15)-\mathrm{C}(1+)-\mathrm{N}(3)$	126.5(10)	$\mathrm{C}(15)-\mathrm{C}(1+1)-\mathrm{C}(13)$	$12+88101$
$\mathrm{N}(3)-\mathrm{C}(14)-\mathrm{C}(13)$	108.7(10)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	12+.5101
$\mathrm{N}(4)-\mathrm{C}(16)-\mathrm{C}(15)$	125.7(11)	$N(4)-\mathrm{C}(16)-\mathrm{C}(17)$	108.7101
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	125.7(11)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	107.7111
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	107.8(11)	$\cdots(1)-C(19)-C(20)$	$126.410)$
$\mathrm{N}(4)-\mathrm{C}(19)-\mathrm{C}(18)$	109.0(9)	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	$12+.5111)$
$\mathrm{C}(1)-\mathrm{C}(20)-\mathrm{C}(19)$	123.7(11)		

Table 2.18. Selected Bond Lengths (A) for (OEP)Os($(1$-tolNO):

Os($11-\mathrm{N}(3 \mathrm{~A})$	$1.985(10)$	Oss $11-\mathrm{Ni} 3 \mathrm{~A} / \mathrm{A}$	1.9851101
Os(1)-N(3)	2.0121111	Osill-Ni3)A	2.012111
Os(l)-Nil)	2.051151	Osill-Nilla	2.051151
Os(1)-N(2)	$2.068(5)$	Os(1)-N(2)A	2.068151
N(3)-O(1)	1.2731131	\therefore V $3 \lambda)-O(1 A)$	1.219(12)
N(3)-C(19)	$1.481(1+)$	$\cdots(3 A)-C(19 A)$	$1 .+411+1$
$\mathrm{C}(19)-\mathrm{Cl} 20)$	1.380(1+)	C(19)-C(24)	1.385(13)
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.40+(1+)$	C(20)-C(25)	1.52131
C(2) $\mathrm{Cl}^{(22)}$	1.402)	C(22)-C(23)	1.39(2)
C(23)-C(2+)	1.420(1+)	C(19A)-C(20A)	$1.373(1+)$
C(19A)-C(2+A)	1.374(1+1)	C (20A)-C(21A)	1.42(2)
$C(21 A)-C(22 A)$	1.40(2)	$C(22 A)-C(23 A)$	1.39(2)
C(23A)-C(2+A)	1.412)	$C(2+A)-C(25 A)$	1.53(2)
V V (1)-C(1)	1.383(7)	Sill-C(t)	$1.38+(8)$
N(2)-C(6)	1.375(9)	$\therefore 2)-C(9)$	1.385181
C(1)-C(10)A	1.355(9)	C(1)-C(2)	1.460(9)
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.356(10)$	$\mathrm{C}(3)-\mathrm{C}(+)$	1.465 (9)
$\mathrm{C}(+)-\mathrm{C}(5)$	1.376(9)	C(5)-C16)	1.391401
$\mathrm{C}(6)-\mathrm{C}(7)$	1.438(9)	C(7)-C(8)	1.362101
$\mathrm{C}(8)-\mathrm{C}(9)$	$1 .+43$ (10)	$\mathrm{C}(9)-\mathrm{C}(10)$	1.389(10)
$\mathrm{C}(10)-\mathrm{C}(1) \mathrm{A}$	1.355(9)		

Table 2.19. Selected Bond Angles $:^{2}$) for (OEP)Os(o-tol.VO):

$\mathrm{O}(1)-\mathrm{N}(3)-\mathrm{C}(19)$	108.8191	O(1--Vi(3)-Oss 11	$12+.5181$
C(19)-N(3)-Osti)	125.1181	$O(1 . A)-N(3 A)-C(19 . A)$	116.91101
	125.119)	$\mathrm{C}(19 \mathrm{~A})-\mathrm{V}(3, \mathrm{~A})-\mathrm{Os}(1)$	$117 .+181$
V(3A)-Os(1)-Vi3.A)A	180.0	\therefore. 3)-Os(1)-N(3)A	180.0
V(3A)-Os(l)-iv(l)	$9+.3$ (3)	N(3A)A-Os(1)-̇il)	85.73)
N(3)-Os(1)-Vil)	$80.7(4)$		$99.3(4)$
. $\mathrm{N}(3 \mathrm{~A})-\mathrm{Os}(1)-\mathrm{Ni}(1 / \mathrm{A}$	85.73)	N(3A)A-Os(1)-N(1)A	$9+33(3)$
N(3)-Oss 1)-N(1)A	$99.3(4)$. C (3)A-Os(1)- Ni 11 A	$80.7(4)$
Nill-Os(l)-Nilla	180.0	V(3A)-Os(1)-V(2)A	93.21+1
N(3A)A-Ostl-.VI2)	$86.81+1$. V (3)-Os(1)-N12)A	91.7131
N(3)A-Os(1)-.Vı)A	88.3131	. $\mathrm{i}(1)-\mathrm{Os}(1)-\mathrm{N}(2) \mathrm{A}$	90.2(2)
N(1)A-Os(1)-N®)A	89.8(2)	. C 3 A$)$-Os(1)-N(2)	86.8(t)
N(3A)A-Os(1)-N(2)	$93.2(4)$	$\cdots(3)-\mathrm{Os}(1)-\mathrm{N}(2)$	88.3 (3)
V(3)A-Os(1)- $\mathrm{N}(2)$	91.713)	N(l)-Osill-N(2)	$89.8(2)$
V(1)A-Os(1)-N(2)	90.2(2)		180.0
C(20)-C(19)-C(24)	121.2(10)	C(20)-C(19)-N(3)	121.719)
$\mathrm{C}(2+1) \mathrm{C}(19)-\mathrm{N}(3)$	117.1(9)	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}$ 21)	119.81101
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(25)$	124.5(13)	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(25)$	115.7131
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	$119.4(11)$	C(23)-C(22)-C(21)	121.21121
C(22)-C(23)-C(24)	118.5 (10)	C(19)-C(2+)-C123)	119.8110)
C(20A)-C(19A)-C(2+	A) $122.5(111)$	$\mathrm{C}(20 \mathrm{~A})-\mathrm{C}(19 . \mathrm{A})-\mathrm{N}(3 . \mathrm{A}$	(121.81010
C(2+A)-C(19A)-Ni3A	A) $115.6(10)$	$C(19 A)-C(20 A)-C(21$.	A) $119 .+111$
$\mathrm{C}(22 \mathrm{~A})-\mathrm{C}(21 \mathrm{~A})-\mathrm{C}(20$	A) 118.1(12)	C(23A)-C(22A)-Ci21.	A) 121.61131
$\mathrm{C}(22 \mathrm{~A})-\mathrm{C}(23 \mathrm{~A})-\mathrm{C}(2+$	A) $118.7(12)$	C(19A)-C(2+A)-C(23A)	A) $119.3(111$
C(19A)-C(24A)-C(25	A) $126.4(13)$	$C(23 A)-C(2+A)-C(25$.	A) 113.9 (13

$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(4)$	$107.9(5)$	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Os}(1)$	$125.7(+1)$
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{Os}(1)$	$126.2(4)$	$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(9)$	$108.7(5)$
$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{Os}(1)$	$126.5(4)$	$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{O}(1)$	$12+.8(5)$
$\mathrm{C}(10) \mathrm{A}-\mathrm{C}(1)-\mathrm{N}(1)$	$126.3(6)$	$\mathrm{C}(10)-\mathrm{A}-\mathrm{C}(1)-\mathrm{C}(2)$	$125.316)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$108.3(5)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(11$	$108.115)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$107.0(6)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{N}(1)$	$124.9(6)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	$126.3(6)$	$\mathrm{N}(11-\mathrm{C}(4)-\mathrm{C}(3)$	$108.7(5)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$128.3(6)$	$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	$12+.1(6)$
$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	$108.3(6)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$127.6(6)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	$107.5(6)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$108.0(6)$
$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(10)$	$126.0(6)$	$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(8)$	$107.4(6)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	$126.6(6)$	$\mathrm{C}(1)-\mathrm{A}-\mathrm{C}(10)-\mathrm{C}(9)$	$126.9(6)$

The average $\mathrm{Os}-\mathrm{N}($ por $)$ bond length of 2.078 A for (TTP)OsiCO॥Ph.iO) appears longer than that for other Oss ${ }^{I I}$ tetraphenylporphyrin derivatives, Table 2.3. The $\mathrm{Os}-\mathrm{C}(\mathrm{O})$ bond length of $1.93(2)$ A is longer than those for (TTP)Os(CO)(Et2NNO) and (OEPMe2)Os(CO)(py) (Table 2.4). consistent with PhNO acting as a π acid to decrease the extent of backbonding from Os ${ }^{\text {II }}$ center to the trans: carbonyl ligand. making $\mathrm{Os}-\mathrm{C}(\mathrm{O})$ bond weaker and longer. The $\mathrm{Os}-\mathrm{C}-\mathrm{O}$ bond is virtually linear. The $\mathrm{Os}-\mathrm{N}_{\mathrm{ax}}$ distance for (TTP)OsiCO)(PhNO) of 2.I8(2) A is longer than the average $\mathrm{Os}-\mathrm{N}_{\mathrm{ax}}$ distance in (TTP)Os(PhNO) $(1.962 \dot{A})$, consistent with the carbonyl ligand acting as a better π acceptor than the PhNO ligand. causing less π backbonding from Os ${ }^{11}$ to trans PhNO. and resulting in a weaker and lenger trans OsN bond.

The average $\mathrm{Os}-\mathrm{N}(\mathrm{por})$ distances for all the (por)Osil bis-nitrosoarene complexes are within the range observed for other (por)Os ${ }^{\text {II }}$ complexes (Table 2.3). The Os- N_{ax} distances are essentially the same for all four (por)Osil bis-nitrosoarene complexes. The sum of the bond angles around the V atoms of the PhNO ligands in all five structures are ca. 360°. indicating the planarity around the nitroso N atoms.

The $\mathrm{O}-\mathrm{N}-\mathrm{Os}-\mathrm{N}($ por $)$ torsion angles (α_{1} and α_{2}) for the (por) $\mathrm{O}{ }^{11}$ nitrosoarene complexes are shown in Figures 2.18-2.21. Scheidt and coworkers ${ }^{x 9}$ studied the ligand orientation in the $\left[\left(\mathrm{T}_{\text {piv }} \mathrm{PP}\right) \mathrm{Fe}\left(\mathrm{NO}_{2}\right)(\mathrm{NO})\right]^{-}$complex with trans π accepting axial ligands. The conclusion they reached was that "If both axial ligands were to exhibit strong π-accepting behavior, it is to be expected that two axial ligands should be found in planes orthogonal to each other. so as to maximize the $M \rightarrow L \pi$-bonding." In the case of the (por)Os ${ }^{I I}$ bis-nitrosobenzene complexes. the sum of the indicated torsion angles $\left(\alpha_{1}+\alpha_{2}\right)$ is close to 90°. and suggests that the coordinated trans $\mathrm{Ph} . \mathrm{CO}$ ligands are essentially orthogonal to each other in all three (poriOss ${ }^{11}$ bis-nitrosobenzene complexes $\left(86.7^{\circ}\right.$ for TTP. 81.5° for TPP and 93.6° for TMP). This suggests that they are positioned in such a manner as to maximize the π interactions between the HOMO
of the formal d^{6} (por)Osil core (namely d_{xz} and d_{yz}) and the empty π^{*} orbitals of the PhNO ligands. The sterically demanding TMP was used to see if the sum of the indicated torsion angles ($\alpha_{1}+\alpha_{2}$) could be forced to be smaller, but the results show that there is no significant effect.

(TTP)Os(PhNO) ${ }_{2}$

Figure 2.18. Structural data for (TTP)Os(PhNO) $)_{2}$: selected bond lengths and bond angles are shown on the left. Also shown are the $\mathrm{O}-\mathrm{N}-\mathrm{Os}-\mathrm{N}(1)$ torsion angles on the right: the solid line represents the nitroso group of the PhNO ligand above the plane and the dashed line represents the equivalent nitroso group below the plane.

(TTP)Os(CO)(PhNO)

Figure 2.19. Structural data for (TTP)Os(CO)(Ph.VO): selected bond lengths and bond angles are shown on the left. Also shown is the $\mathrm{O}-\mathrm{N}-\mathrm{Os}-\mathrm{N}(2 \mathrm{~A})$ torsion angle on the right.

(TPP)Os(PhNO) ${ }_{2}$

Figure 2.20. Structural data for (TPP)Os(PhNO) 2: selected bond lengths and bond angles are shown on the left. Also shown are the $\mathrm{O}-\mathrm{N}-\mathrm{Os}-\mathrm{N}(2)$ torsion angles on the right: the solid line represents the nitroso group of the PhNO ligand above the plane and the dashed line represents the equivalent nitroso group below the plane.

(TMP)Os(PhNO) ${ }_{2}$

Figure 2.21. Structural data for (TMP)Os(PhNO$)_{2}$: selected bond lengths and bond angles are shown on the left. Also shown are the $\mathrm{O}-\mathrm{N}-\mathrm{Os}-\mathrm{N}(3)$ torsion angles on the right: the solid line represents the nitroso group of the PhNO ligand above the plane and the dashed line represents the equivalent nitroso group below the plane.

Conclusion

This study shows the extension of the $\eta^{l}-\mathrm{O}$ binding of the diethylnitrosamine ligand to $\mathrm{Fe}{ }^{\text {III }} d^{5}$ and $\mathrm{Os}{ }^{\text {II }} d^{6}$ porphyrins. This study also provides the first examples of $\eta^{1}-\mathrm{O}$ binding of the specially designed C-nitroso ligands to non- d^{10} transition metals. It has been shown that the binding mode of the C-nitroso ligands is determined by the nature of the metal center as well as the nature of the ligands. The resonance structures of the nitrosamine and the C-nitroso ligands might play a very important role in the $\eta^{1}-\mathrm{O}$ binding. The first examples of nitrosoarene binding to (por)Oss in an $\eta^{1}-$ N binding mode have been synthesized and structurally characterized. Prior to this study. only a few (por)Os" structures were published. This work provides six (por)Os ${ }^{\text {II }}$ structures. which will make good structural comparisons for future work. Most importantly. the Et 2 NNO ligand exhibits weak σ-donating character in the (por)Os ${ }^{11}$ nitrosamine complexes whereas the PhNO ligand acts as a strong π-acceptor in the (por)Os ${ }^{1 I}$ nitrosobenzene complexes. The two trans PhNO ligands are oriented orthogonal to each other to maximize the $\mathrm{M} \rightarrow \mathrm{L} \pi$ backbonding. The effects of PhNO acting as a π acceptor and $E t_{2} N N O$ as a weak σ donor are also well represented by the increase of $v_{\text {co }}$ for (TTP)Os(CO)(PhNO) and decrease of $v_{\text {co }}$ for (TTP)Os(CO)(Et2NNO) with respect to (TTP)OsiCO).

References and Notes

(1) Preussman. R.: Stewart. B. W. In Chemical Carcinogens: Ind ad.: C. E. Searle. Ed.: American Chemical Society: Washington. D.C.. 1984: Vol. 2: pp 6+3-828.
(2) Vitrosamines: Toxicology and Microhiology: Hill. M. J., Ed.: VCH Ellis Horwood Lid.: Chichester (England). 1988.

Lijinsky. W. Chemistry and Biology of V -Nitroso Compounds: Cambridge University Press: Cambridge. U. K. 1992.
(t) Cadogan. J. I. G. Acc. Chem. Res. 1971. +. 186.

Fridman. A. L.: Mukhametshin. F. M.: Novikov. S. S. Russ. Chem. Rev: (Engl. Trans.) 1971. 40. 34.
(6) Safety Evaluation of Nitrosatable Drugs and Chemicals: Gibson. G. G.: Ioannides. C.. Ed.: Taylor and Francis Ltd.: London. 1981.
(7) Saavedra. J. E. Org. Prep. Proced. Int. 1987. 19. 83.
(8) Ioannides. C.: Gibson. G. G. In Safetr Evaluation of Vitrosatable Drugs and Chemicals; G. G. Gibson and C. Ioannides. Ed.: Taylor and Francis: London. 1981: pp 257-278.
(9) Guttenplan. J. B. Mutation Research 1987. 186. 81.
(10) Nitrosamines and Related N-Vitroso Compounds. Chemistry and Biochemistry: Loeppky, R. N.: Michejda. C. J.. Ed.: American Chemical Society: Washington. D.C.. 1994: Vol. 553.
(11) Appel. K. E.: Ruf, H. H.: Mahr. B.: Schwarz. M.: Rickart. R.: Kunz. W. Chem.-Biol. Interac. 1979. 28. 17.
(12) Schmidpeter. A.: Nöth. H. Inorg. Chim. Acta 1998. 269. 7.
(13) Asaji. T.: Sakai. H.: Nakamura. D. Inorg. Chem. 1983. 22. 202.
(14) Schmidpeter. A. Chem. Ber. 1963. 96.3275.
(a) Klement. Li.: Schmidpeter. A. Angew: Chem. Int. Ed. Engl. 1968. -. tio. (b) Klement. L. Acta Cristallogr. 1969. B25. 2+60.

Bonnett. R.: Charalambides. A. A.: Martin. R. A. J. Chem. Soc.. Perkin Trans. / 1978. 974.

Bonnett. R.: Charalambides. A. A.: Martin. R. A.: Sales. K. D.: Fitzsimmons, B. W. J. Chem. Soc:. Chem. Communn. 1975. 884.
(a) Albinati. A.: Affolter. S.: Pregosin. P. S. J. Organomet. Chem. 1990. 395. 231. (b) Constable. A. G.: McDonald. W. S.: Shaw. B. L. J. Chem. Soc.. Dalton Trans. 1980. 2282.
(a) Yi. G.-B.: Khan. M. A.: Richter-Addo. G. B. J. Am. Chem. Soc. 1995. 117. 7850. (b) Yi. G.-B.: Khan. M. A.: Richter-Addo. G. B. Inory. Chem. 1996. 35. 3453. (c) Chen. L.: Yi. G.-B.: Wang. L.-S.: Dharmawardana. L. R.: Dart. A. C.: Khan. M. A.: Richter-Addo. G. B. Inorg. Chem. Submitted. (a) Hirota. K.: Itano. H. A. J. Biol. Chem. 1978. 253. 3477. (b) Gibson. Q. H. Biochem. J. 1960.77.519. and references therein.
(a) Mansuy. D.: Rouer. E.: Bacot. C.: Gans. P.: Chottard. J. C.: Lerouz. J. P. Biochem. Pharmacol. 1978. 27. 1229. (b) Mansuy. D.: Chotard. J. C.: Chottard. G. Eur. J. Biochem. 1977. 76. 617.

Stone. J. R.: Marletta. M. A. Biochemistry 1995. 34. 16397.
Murayama. M. J. Bio. Chem. 1960. 235. 1024.
Mansuy. D.: Beaune. P.: Chottard. J. C.. Bartoli. J. F.: Gans. P. Biochem. Pharmacol. 1976. 25. 609.
(30) Jonsson, J.: Lindeke, B.: Acta Pharm. Suecica 1976. 13. 313.
(31) Mansuy, D.: Gans. P.: Chottard. J. C.: Bartoli. J. F. Eur. J. Biochem. 1977. 76. 607.
(32) Mansuy. D.: Battioni, P.: Chottard. J.-C.: Riche. C.: Chiaroni. A. J. Am. Chem. Soc. 1983, 105. +55.
(33) Cameron. M.: Gowenlock. B. G.: Vasapollo. G. Chem. Soc. Rev. 1990. 19. 355.
(34) Pilato. R. S.: McGettigan. C.: Geoffroy, G. L. Organometallics 1990. 9. 312.
(35) Matsubayashi. G.-E.: Tanaka. T. J. Chem. Soc. Dalton Trans. 1990. 437.
(36) Little. R. G.: Doedens. R. J. Inorg. Chem. 1973. 12. 537.
(37) Mansuy. D.: Drême. M.: Chottard. J. C.: Guilhem. J. J. Organomet. Chem. 1978. 16 I. 207.
(38) Sams. D. B.: Doedens. R. J. Inorg. Chem. 1979. /8. 153.
(39) Wang. L.-S.: Chen. L.: Khan. M. A.: Richter-Addo. G. B. Chem. Commun. 1996. 323.
(40) Crotti. C.: Sishta. C.: Pacheco. A.: James. B. R. Inorg. Chim. Acta 1988. 141. 13 .
(+1) (a) Liebeskind, L. S.; Sharpless, K. B.: Wilson. R. D.. Ibers. J. A. J. Am. Chem. Soc. 1978 100, 7061. (b) Skoog. S. J.: Campbell. J. P.: Gladfeiter. W. L. Organometallics 1994, 13, 4137.
(42) (a) Matsubayashi, G.-E.: Nakatsu. K. Inorg. Chim. Acta 1982. 64. L163. (b) Hu, S.: Thompson. D. M.: Ikekwere, P. O.: Barton, R. J.: Johnson. K. E.: Robertson. B. E. Inorg. Chem. 1989. 28. 4552.
(43) Srivastava. R. S.; Khan. M. A.: Nicholas, K. M. J. Am. Chem. Soc. 1996. 118,3311, and references therein.
(44) Fox. S. J. S.: Chen. L.: Khan. M. A.: Richter-Addo. G. B. Inorg. Chem. 1997. 36. 6465.
(45) Ang, H. G.: Kwik. W. L.: Ong. K. K. J Fluo. Chem. 1993. $60 .+3$.
(46) Adler, A. D.: Longo. F. R.: Finarelli. J. D.: Goldmacher. J.: Assour. J.: Korsakoff. L. J. Org. Chem. 1967. 32. +76.
(+7) Fleischer. E. B.: Palmer. J. M.: Srivastava. T. S.: Chatterjee. A. J. Am. Chem. Soc. 1971.93. 3162.
(48) Che. C.-M.: Poon. C.-K.: Chung. W.-C.: Gray, H. B. Inorg. Chem. 1985. 24. 1277.
(49) (a) Lindsey, J. S.: Wagner. R. W. J. Org. Chem. 1989. 54. 828. (b) Safo. M. K.: Gupta. G. P.: Walker. F. A.: Scheidt. W. R.: J. Am. Chem. Soc. 1991. / /3. 5497.
(50) Grant. D. H. J. Chem. Ed. 1995. 72, 39. and references therein.
(51) Keefer. L. K.: Hrabie. J. A.: Hilton. B. D.: Wilbur. D. J. Am. Chem. Soc. 1988. IIO. 7459.
(52) Nakamoto. K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. 4th Ed.: Wiley-Interscience: New York. 1986: ppl47-150.
(53) Bennett. G. M.: Bell. E. V. Org. Synth. Colle. 1943. 2. 223.
(54) Krebs. B.: Mandt. J. Chem. Ber. 1975. 108. 1130.
(55) Richter-Addo. G. B.: Legzdins. P. Metal Nitrosvls: Oxford University Press: New York. 1992. p64-65, and references therein.
(56) An earlier formulation of osmium nitrosamine complexes formed by oxidation of coordinated ammonia in the presence of secondary amines (ref 57) has been questioned by the same authors (ref 58).
(57) Stershic. M. T.: Keefer. L. K.: Sullivan. B. P.: Meyer. T. J. J. Am. Chem. Soc. 1988. $110,6884$.
(58) Coia, G. M.: White. P. S.: Meyer, T. J.: Wink. D. A.: Keefer, L. K.: Davis. W. M. J. Am. Chem. Soc. 1994, Il6. 3649.
(59) Yi. G.-B.: Chen, L.: Khan. M. A.: Richter-Addo. G. B. Inorg. Chem. 1997. 36. 3876.
(60) Che. C.-M.: Lai. T.-F.: Chung, W.-C.: Schaefer. W. P.: Gray. H. B. Inorg. Chem. 1987. 26. 3907.
(61) Djukic. J.-P.: Young. V. G.. Jr.: Woo. L. K. Organometallics 1994. 13. 3995.
(62) Chen. L.: Khan. M. A.: Richter-Addo. G. B. Inorg. Chem. 1998. 37. 533.
(63) Scheidt. W. R.: Nasri. H. Inorg. Chem. 1995. 34, 2190.
(64) Chapter 1.
(65) chapter 3.
(66) Buchler. J. W.: Lay, K. L.: Smith. P. D.: Scheidt. W. R.: Rupprecht. G. A.: Kenny. J. E. J. Organomet. Chem. 1976. IIO. 109.
(67) Omiya. S.: Tsutsui. M.: Meyer. E. F.. Jr.: Bernal. I.: Cullen. D. L. Inorg. Chem. 1980. 19. 134.
(68) Buchler, J. W.: Kokisch. W.: Smith. P. D. Struct. Bonding 1978. 34. 79.
(69) Richter-Addo. G. B.: Legzdins, P. Metal Nitrosyls: Oxford University Press: New York. 1992. pl9 and references therein.
(70) Antipas. A.: Buchler, J. W.: Gouterman. M.: Smith. P. D. J. Am. Chem. Soc. 1980. 102. 198.
(71) Cameron. M.: Gowenlock, B. G.: Vasapollo, G. Polyhedron. 1994. 13. 1371 and references therein.
(72) Cameron. M.: Gowenlock. B. G.: Vasapollo. G. J. Organomet. Chem. 1989. 378. 493.
(73) Walker. F. A.: Simonis U. In Encyclopedia of Inorganic Chemistr:: R. B. King. Ed.: John Wiley and Sons: Chichester. 1994: Vol. 4: pl 1785.
(74) (a) Scheidt. W. R.: Reed. C. A. Chem. Rev: 1981. 8/. 543. (b) Reed. C. A.: Mashiko. T.: Bentley, S. P.: Kastner. M. E.: Scheidt. W. R.: Spartalian. K: Lang. G. J. Am. Chem. Soc. 1979. 101. 2948.

Serr. B. R.: Headford. C. E. L.: Anderson. O. P.: Elliot. C. M.: Spartalian. K.: Fainzilberg. V. E.: Hatfield, W. E.: Rohrs, B. R.: Eaton. S. S.: Eaton. G. R. Inorg. Chem. 1992. 3/. 5450.
(a) Gans. P.: Buisson. G.: Duée, E.: Regnard, J.-R.: Marchon, J.-C. J. Chem. Soc. Chem. Commun. 1979. 393. (b) Scheidt. W. R.: Geiger. D. K.: Lee. Y. J.: Gans. P.: Marchon. J.-C. Inorg. Chem. 1992, 31. 2660.
(77) Scheidt. W. R.: Lee, Y. J.: Hatano. K. J. Am. Chem. Soc. 1984. 106. 3191.
(78) Scheidt. W. R.: Cohen. I. A.: Kastner. M. E. Biochemistry 1979. 18. 3546.
(79) Mashiko. T.: Kastner. M. E.: Spartalian. K.: Scheidt. W. R.: Reed. C. A. J. Am. Chem. Soc. 1978. I00. 6354.
(80) Senge. M. O. Acta Crystallogr. 1996. C52, 302.
(81) Einstein. F. W. B.: Willis. A. C. Inorg. Chem. 1978. 17. 3040.
(82) Kellett. P. J.: Pawlik. M. J.: Taylor. L. F.: Thompson. R. G.: Levstik. M. A.: Anderson. O. P.: Strauss. S. H. Inorg. Chem. 1989. 28. +40.
(83) Talberg. H. J. Acta Chem. Scand. A 1977. 31. 7+3.
(84) Fletcher, D. A.: Gowenlock. B. G.: Orrell. K. G.: Sik. V.: Hibbs. D. E.: Hursthouse. M. B.; Malik. K. M. A. J. Chem. Soc., Perkin Trans. 21997. 721.
(a) Hill. C. L.: Williamson. M. M. Inorg. Chem. 1985. 24. 2836. (b) Hatano. K.: Anzai. K.: Iitaka. Y. Bull. Chem. Soc. Jpn. 1983. 56. +22. (c) Hill. C. L.: Williamson. M. M. Inorg. Chem. 1985. 2t. 3024.
(86) Cheng. B.: Fries. P. H.: Marchon. J.-C.: Scheidt. W. R. Inorg. Chem. 1996. 35. 1024 and references therein.

Scheidt. W. R. Acc. Chem. Res. 1977. IO. 339.
 toluene, ε in units of $\mathrm{mM}^{-1} \mathrm{~cm}^{-1}$) shows peaks at 392 (126). 13 (106. sh). +80 (56). 570 (15) and $603(11) \mathrm{nm}$. The spectrum is almost identical to the spectrum of $\left[(T P P) \mathrm{Mn}(\mathrm{DMF}) \mathrm{I}_{2} \mathrm{ClO}_{ \pm}{ }^{85}\right.$ which has been fully characterized as a d^{4} high-spin system.
(89) Scheidt. W. R.: Chipman. D. M. J. Am. Chem. Soc. 1986. 108. 1163.

Chapter 3. Synthesis and Characterization of Osmium Nitrosyl
 Porphyrins Containing Organo, Chloro and μ-Oxo Ligands, and Extension to the First Organoosmium Thionitrosyl Porphyrin

Introduction

Interest in the study of organometallic porphyrin complexes containing a direct M-R interaction results from the detection and/or postulation of organometallic species in the natural and model chemistry of coenzyme B_{12}. cytochrome P450. and other heme-containing biomolecules. ${ }^{1-+}$ In this regard. many Co model systems for coenzyme B_{12} have been synthesized and studied. ${ }^{5-9}$

There are three types of organometallic porphyrins containing a direct $\mathrm{M}-\mathrm{R}$ interaction (Chart 1). Organometallic porphyrins of Type A comprise those with metal-carbon(alkyl/aryl) single or multiple bonds. Dialkyl(aryl) complexes of the form (por) $M(R)_{2}$ have also been structurally characterized, and the $\sigma-R$ ligands may either be located cis to each other (e.g.. as in $\left.(\mathrm{OEP}) \mathrm{Zr}(\mathrm{Me})_{2}\right)^{10.11}$ or located trans to each other (e.g.. as in (TTP)Os($\left.\left.\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2}\right)(\mathrm{OEP}=2.3$. 7. 8. 12. 13. 17. 18octaethylporphyrinato dianion. $\operatorname{TTP}=5.10 .15 .20$-tetra-p-tolylporphyrinato dianion). ${ }^{12.13}$ Organometallic porphyrins of Type \mathbf{B} include those with η^{-}alkene/alkyne or other π-bonded groups such as cyclopentadienyl or indenyl ligands. ${ }^{\text {1.15-18 }}$ Type \mathbf{C} complexes contain $\mu-$ N.M units in which the bridging alkyl (or carbene, vinyl, etc.) group maintains direct contact with the metal center. ${ }^{1.2 .19 .20}$

The reported organometallic chemistry of group 8 metalloporphyrins has so far been focused on those of iron ${ }^{21-25}$ and ruthenium. ${ }^{15.17 .20 .26 \cdot 36}$ Surprisingly. only a handful of organoosmium porphyrins have been reported to date. ${ }^{12.17 .31 .36 .37}$ Interestingly. some (por) $\mathrm{Fe}(\mathrm{R}$) complexes (of Type A) react with NO gas to form nitrosyl adducts (eq 3.1). ${ }^{39.40}$

Chart 1

A
B

C

$$
\begin{aligned}
&(\operatorname{por}) \mathrm{Fe}(\mathrm{R})+\mathrm{NO} \longrightarrow\text { (por)Fe(NO)R } \quad \text { (eq } 3.1) \\
& \text { por }=\text { OEP. TPP: } \mathrm{R}=\text { alkyl. aryl }
\end{aligned}
$$

In some cases. the known (por) $\mathrm{Fe}(\mathrm{NO}$) complexes are produced. Our research group recently reported the synthesis and characterization of analogous Ru complexes (Type A) via the reaction of the (TTP)RuiNO)Cl precursors with Grignard reagents req 3.2) ${ }^{31}$

$$
\begin{array}{r}
(\mathrm{TTP}) \mathrm{Ru}(\mathrm{NO}) \mathrm{Cl}+\mathrm{RMgX} \longrightarrow \\
\mathrm{R}=\mathrm{Me}, p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}
\end{array}
$$

The solid-state structure of (TTP)Ru(NO)(p-C64 $\left.\mathrm{C}_{4} \mathrm{~F}\right)$ was also reported. Attempts were made to extend the reaction outlined in eq 3.2 to osmium porphyrins. but the desired organoosmium products were only obtained in very low ($<5 \%$) yields. Earlier work in our laboratory by Shelly Hodge revealed that the sequential reaction of (TTP)Os(CO) with NOPF_{6}, then ($p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}$) MgBr produced a compound formulated as (TTP)Os(NO) $\left(p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}\right)$. We have since extended this finding to prepare isolable quantities of the desired (por)Os(NO)R($R=$ alkyl) complexes (Type A). The successful extension to the synthesis and structural characterization of osmium thionitrosyl porphyrins is also covered in this chapter.

Experimental Section

All reactions were performed under an atmosphere of prepurified nitrogen using standard Schlenk techniques and/or in an Innovative Technology Labmaster 100 Dry Box unless stated otherwise. All column chromatography was performed under nitrogen. Solvents were distilled from appropriate drying agents under nitrogen just prior to use: $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{CaH}_{2}\right)$. THF ($\mathrm{Na} /$ benzophenone). hexane ($\mathrm{N} a /$ benzophenone/tetraglyme). and benzene (Na). Solutions for spectral studies were prepared under nitrogen and the spectra were recorded immediately.

Chemicals. (TTP)OsiCO) and (OEP)Os(CO) were prepared by literature methods. ${ }^{+2}$ (NSCl) , was prepared by the literature method. ${ }^{+3}$ The labeled (${ }^{15} \mathrm{NSCl}$: analog was prepared similarly using ${ }^{15} \mathrm{NH}_{4} \mathrm{Cl}$ (Isotec). Nitrosyl chloride (ClNO) was prepared by the literature method. ${ }^{+4}$ NOPF $_{6}(96 \%$) and all Grignard reagents used were purchased from Aldrich Chemical Co. Chloroform- $d(99.8 \%)$ and benzene- d_{6} (99.6\%) were obtained from Cambridge Isotope Laboratories. subjected to three freeze-pump-thaw cycles and stored over Linde +A molecular sieves. Elemental analyses were performed by Atlantic Microlab. Norcross. GA.

Instrumentation. Infrared spectra were recorded on a Bio-Rad FT-155 FTIR spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were obtained either on a Varian XL-300 spectrometer or a Varian 400 MHz spectrometer and the signals (in ppm) were referenced to the residual signals of the solvents employed. All couplings are in Hz . FAB mass spectra were obtained on a VG-ZAB-E mass spectrometer. L'V-vis spectra were recorded on a Hewlett Packard Model 8+52A diode array instrument.

Preparation of $(\mathbf{O E P}) \mathrm{Os}(\mathbf{N O})(\mathbf{M e})$. To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ solution of (OEP) $\mathrm{Os}(\mathrm{CO})(0.060 \mathrm{~g} .0 .08 \mathrm{mmol})$ was added $\mathrm{NOPF}_{6}\left(96^{\circ} \mathrm{c} .0 .015 \mathrm{~g} .0 .082 \mathrm{mmol}\right)$. The color of the solution changed from pink to dark red. The mixture was left to stir for 30 min . and all the solvent was removed. The solid was redissolved in THF (20 mL) and excess $\mathrm{Me} \mathrm{MgBr}(0.7 \mathrm{mmol})$ was added. No substantial color change was
observed. The solvent was removed immediately after the addition of Me.MgBr. and the residue was purified by filtration on a silica gel column with benzene as eluent. All the solvent was removed from the eluent. and the red solid was dried in vacuo for 5 h to give (OEP)Os(NOMMe) (0.027 g. $0.035 \mathrm{mmol} .+4 \mathrm{C}_{\mathrm{c}}$ overall yield). IR ($\mathrm{CH}_{2} \mathrm{Cl} \mathrm{Cl}_{2}$. $\left.\mathrm{cm}^{-1}\right): u_{\mathrm{NO}}=1721$. IR $\left(\mathrm{KBr} . \mathrm{cm}^{-1}\right): v_{\mathrm{NO}}=1732 \mathrm{~s}$: also 2966 w .2933 w .2869 w . 1684 w. $1467 \mathrm{~m} .1+46 \mathrm{~m} .1372$ w. 1317 w .1272 m .1227 w .1151 m .1111 w .1057 $\mathrm{m} .1020 \mathrm{~s} .994 \mathrm{~m} .964 \mathrm{~m} .838 \mathrm{~m} .802 \mathrm{w} .745 \mathrm{~m} .713 \mathrm{~m} .518 \mathrm{w} .{ }^{\prime} \mathrm{H}$.NMR ICDCl_{3}. $\delta): 10.21$ (s. 4 H. meso-H of OEP). 4.12 (q. $J=8.16 \mathrm{H} . \mathrm{CH}_{3} \mathrm{CH}_{2}$ of OEP). 1.97 (t. J $=8,24 \mathrm{H} . \mathrm{CH}_{3} \mathrm{CH}_{2}$ of OEP). $-8.10\left(\mathrm{~s} .3 \mathrm{H} . \mathrm{CH}_{3}\right.$ of Me$)$. Low-resolution mass spectrum (FAB): $m /=770[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})(\mathrm{Me})+\mathrm{H}]+(4 \% \mathrm{c}) .739\left[(\mathrm{OEP}) \mathrm{Os}(\mathrm{CH}:)^{-}\right.$ (12\%). LV-vis spectrum ($\lambda\left(\varepsilon . \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right) .7 .81 \times 10^{-6} \mathrm{M}$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 351$ (67). $+45(+7) .552(15) .58+(8) \mathrm{nm}$.

Preparation of (TTP)Os(NO)(Me). The (TTP)Os(NO)(Me) complex was prepared similarly in 35% overall yield from the sequential reaction of (TTP)Os(CO) with NOPF $_{6}$, then with excess Me MgCl as described above. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot \mathrm{~cm}^{-1}\right): v_{\mathrm{NO}}=1729$. IR $\left(\mathrm{KBr} . \mathrm{cm}^{-1}\right): v_{\mathrm{vo}}=1732 \mathrm{~m}$: also 1716 m .1610 w . 1574 w. 1529 w. 1512 w. 1496 w. 1446 w. 1351 m. 1306 w. 1212 w. 1179 m .1105 w. 1069 m .1016 s .796 s .718 m .525 m .1 H NMR (CDCls. δ): 8.87 (s. $8 \mathrm{H} . \mathrm{prr}$ - H of TTP). 8.15 (d. $J=7.4 \mathrm{H} . o-\mathrm{H}$ of TTP). 8.06 (d. $J=8.4 \mathrm{H} . \mathrm{o}^{\prime}-\mathrm{H}$ of TTP). 7.55 (app t. $J=7 / 8.8 \mathrm{H} . \mathrm{m}$-H of TTP). 2.70 ($\mathrm{s} .12 \mathrm{H} . \mathrm{CH}_{3}$ of TTP). $-7.35 \mathrm{~s} .3 \mathrm{H} . \mathrm{CH}$: of Me). UV-vis spectrum ($\lambda\left(\varepsilon, \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right.$). $1.4+\times 10^{-5} . \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): $3+5$ (sh. +4). $361(46), 408(45) .454(91) .573$ (13). 616 (12) nm.

Preparation of (OEP)Os(NO)(i-Pr). (OEP)Os(NO)(i-Pr) was prepared similarly by the use of excess $i-\mathrm{PrMgCl}$ in 30% overall yield. The sample for elemental analysis was prepared by solvent evaporation of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the compound and drying the residue in vacuo for two days. Anal. Calcd for $\mathrm{C}_{39} \mathrm{H}_{51}, \mathrm{~N}_{5} \mathrm{O}_{1} \mathrm{O}_{51}$. $0.35 \mathrm{CH}_{2} \mathrm{Cl}_{2}:$ C. $57.23:$ H. $6.31:$ N. $8.48: \mathrm{Cl} .3 .01$. Found: C. $57.34: \mathrm{H} .6 .57:$ N.
7.73: Cl. 2.83. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): v_{\text {NO }}=1703$. IR $\left(\mathrm{KBr} . \mathrm{cm}^{-1}\right): v_{\mathrm{NO}}=1715$: also 2965 w. 2928 w. 2868 w. 1700 m .1684 w. $1609 \mathrm{~m} .153+\mathrm{w} .1+64 \mathrm{~m} .1+46 \mathrm{~m} .1372$ m. $1316 \mathrm{w} .1273 \mathrm{~s} .1218 \mathrm{~m} .1151 \mathrm{~s} .1110 \mathrm{w} .1056 \mathrm{~m} .1019 \mathrm{s} 994 m .962 s .839 m.$. $803 \mathrm{~m} .74 \mathrm{~m} .713 \mathrm{~m} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 10.21$ (s. 4 H. meso-H of OEP). 5.28 (s. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). 4.12 (q. $J=8.16 \mathrm{H} . \mathrm{CH}_{3} \mathrm{CH}_{2}$ of OEP). $1.96\left(\mathrm{t} . J=8.24 \mathrm{H} . \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$ of OEP). -4.63 (d. $J=7.6 \mathrm{H} .\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$ of $\left.i-\mathrm{Pr}\right) .-7.12$ (septet. $J=7.1 \mathrm{H} .\left(\mathrm{CH}_{:}\right)_{2} \mathrm{CH}$ of $i-\mathrm{Pr})$. Low-resolution mass spectrum (FAB): $m / \approx 798[(\mathrm{OEP}) \mathrm{Oss} \mathrm{NO})(i-\mathrm{Pr})+\mathrm{H}]^{+}$ $16 \%) .767[(\mathrm{OEP}) \mathrm{Os}(i-\mathrm{Pr})]^{+}(9 \%) .754[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})]^{+}(27 \%) . \operatorname{LV}-\mathrm{vis}$ spectrum 1λ ($\varepsilon . \mathrm{mM}^{-1} \mathrm{~cm}^{-1}$). $1.68 \times 10^{-5} \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): 359 (62). 446 (34). 552 (13). 582 (8) nm.

Preparation of a Mixture of (OEP)Os(NO)(Et) and (OEP)Os(Et)2. A 2:1 mixture of (OEP) $\mathrm{Os}(\mathrm{NO})(\mathrm{Et})$ and (OEP) $\mathrm{Os}(\mathrm{Et})_{2}$ was produced similarly (using excess EtMgCl$)$ in 39% overall yield. $\left[\mathrm{R}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot \mathrm{~cm}^{-1}\right): v_{\text {NO }}=1710\right.$. IR (KBr . $\left.\mathrm{cm}^{-1}\right): v_{\text {NO }}=1716 \mathrm{~m} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3} . \delta\right)$ for (OEP)Os(NO)(Et):10.21(s.4H. meso-H of OEP). 4.12 (q. $J=8.16 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}$ of OEP). $1.96(\mathrm{t} . J=8.2+\mathrm{H}$. $\mathrm{CH}_{3} \mathrm{CH}_{2}$ of OEP),-4.62 (t. $J=8.3 \mathrm{H} . \mathrm{CH}_{3} \mathrm{CH}_{2}$ of $\mathrm{Et} .-7.4+$ (q. $J=8.2 \mathrm{H}$. $\mathrm{CH}_{3} \mathrm{CH}_{2}$ of Et). Data for (OEP)Os(Et$)_{2}: 9.23(\mathrm{~s} .+\mathrm{H}$. meso $)$ H of OEP$) .3 .67$ (q. $J=$ 8. $16 \mathrm{H} . \mathrm{CH}_{3} \mathrm{CH}_{2}$ of OEP). $1.73\left(\mathrm{t}, J=8.2+\mathrm{H} . \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$ of OEP) -0.72 (4. $J=7$. $4 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}$ of Et$),-4.77\left(\mathrm{t}, J=7,6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$ of Et$)$.

Preparation of $(O E P) O s(N O) C l$ and $[(O E P) O s(N O)]_{2}(\mu-O)$. To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ solution of (OEP)Os(CO) (0.060 g. 0.080 mmol) was added $\mathrm{Cl} . \mathrm{NO}$ (0.081 mmol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) dropwise at room temperature. The reaction mixture was left to stir for 15 min . The color of the solution turned from pink red to bright red. The reaction mixture was transferred to the top of an alumina column and filtered using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. The filtrate was collected and taken to dryness, and the red residue was dried in vacuo for 2 h to give (OEP) $\mathrm{Os}(\mathrm{NO}) \mathrm{Cl}(0.031 \mathrm{~g} .0 .039 \mathrm{mmol} .49 \%$ yield). The alumina column was then washed with THF. and a resulting second filtrate was collected. The solvent was removed. and the red residue was recrystallized from
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (by slow solvent evaporation under nitrogen) to give $[(\mathrm{OEP}) \mathrm{Osi} . \mathrm{OO})_{2}(\mu-\mathrm{O})$ (0.029 g. $0.019 \mathrm{mmol} .48 \%$ yield based on Os).
(OEP)Os(NO)Cl and [iOEP)Os(NO) $\mathrm{I}_{2}(\mu-\mathrm{O})$ were also isolated and characterized independently from the reaction of crude (OEP)Os(NOM PF_{6}) with excess RMgCl by Dr. Lin Cheng of our research group. ${ }^{15 a}$
(OEP)Os(NO)Cl. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} . \mathrm{cm}^{-1}\right): v_{\mathrm{NO}}=1799$. IR (KBr. $\left.\mathrm{cm}^{-1}\right): v_{\mathrm{NO}}$ $=1788 \mathrm{~s} .{ }^{1} \mathrm{H}$ NMR (CDCl $\left.3 . \delta\right): 10.41(\mathrm{~s} .4 \mathrm{H}$. meso -H of OEP). $4.16(\mathrm{~m} .16 \mathrm{H}$. $\mathrm{CH}_{3} \mathrm{CH}_{2}$ of OEP). 2.02 (t. $\mathrm{J}=8.24 \mathrm{H} . \mathrm{CH}_{3} \mathrm{CH}_{2}$ of OEP).
$[(\text { OEP }) O s(\mathbf{N O})]_{2}(\mu-\mathrm{O}) . \quad$ IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot \mathrm{~cm}^{-1}\right): v_{\mathrm{NO}}=1770$. IR $\left(\mathrm{KBr} . \mathrm{cm}^{-1}\right):$ $U_{\text {No }}=1760 \mathrm{~s} .{ }^{1} \mathrm{H}$ NMR (CDCl.$\left.\delta\right): 10.35(\mathrm{~s} .+\mathrm{H}$. meso-H of OEP). $4.15(\mathrm{~m} .16 \mathrm{H}$. $\mathrm{CH}_{3} \mathrm{CH}_{2}$ of OEP). $2.00\left(\mathrm{t} . J=8.24 \mathrm{H} . \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$ of OEP).

Preparation of (OEP)Os(NS)Cl. To a THF (25 mL) solution of (OEP)Os(CO) (0.060 g. 0.080 mmol$)$ was added excess $(\mathrm{NSCl})_{3}(0.01+\mathrm{g} .0 .057$ mmol). The mixture was heated to reflux for 30 min . The color of the solution changed from red to brown, then to green. The solvent was removed in vacuo. and the resulting green solid was purified by chromatography through neutral alumina with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. The green fraction was collected. and all the solvent was removed. The resulting green solid was further purified by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane at $-20^{\circ} \mathrm{C}$ to give $(\mathrm{OEP}) \mathrm{Os}(\mathrm{NS})(\mathrm{Cl}) \cdot 0.9 \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(0.03+\mathrm{g} .0 .039 \mathrm{mmol} .49^{\circ} \mathrm{c}\right.$ yield $)$. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{4+} \mathrm{N}_{5} \mathrm{Cl}_{1} \mathrm{~S}_{1} \mathrm{Os}_{1} \cdot 0.9 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C. $50.31: \mathrm{H} .5 .24: \mathrm{N} .7 .95: \mathrm{Cl}$. 11.27: S. 3.64. Found: C. 49.54: H. 5.13: N. 7.75: Cl. 10.84: S. 3.71. IR 1 KBr . $\left.\mathrm{cm}^{-1}\right): v_{\mathrm{NS}}=1270 \mathrm{~s}:$ also $2967 \mathrm{w} .2930 \mathrm{w} .2869 \mathrm{w} .1470 \mathrm{~m} .144 \mathrm{~m} .1372 \mathrm{w}, 1362$ w. $1317 \mathrm{w}, 1226 \mathrm{w} .1152 \mathrm{~s} .1111 \mathrm{~m} .1054 \mathrm{~m} .1020 \mathrm{~s}, 99+\mathrm{m} .963 \mathrm{~m} .839 \mathrm{~m} .74+\mathrm{s}$. $714 \mathrm{~m} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6} . \delta\right): 10.65\left(\mathrm{~s} .4 \mathrm{H}\right.$. meso-H of OEP). 4.26 (s. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). +.00 (q. $J=8.16 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}$ of OEP). $1.90\left(\mathrm{t} . J=8.24 \mathrm{H} . \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$ of OEP). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 10.49(\mathrm{~s}, 4 \mathrm{H}$, meso -H$) .5 .28\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .4 .20(\mathrm{q}, J=8.16 \mathrm{H}$. $\mathrm{CH}_{3} \mathrm{CH}_{2}$ of OEP). $2.03\left(\mathrm{t} . J=8.24 \mathrm{H} . \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$ of OEP). Low-resolution mass
spectrum (FAB): $\left.m / \approx 805[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NS}) \mathrm{Cl}]^{+}(58 \%) .770[(\mathrm{OEP}) \mathrm{Osi} \mathrm{NS})\right]^{+}\left(53 \%^{5}\right)$. UV-vis spectrum ($\lambda\left(\varepsilon, \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right.$). $1.24 \times 10^{-5} \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): 362 (75). 385 (sh. 63). 605 (6) nm.

A suitable crystal for structure determination was grown by slow evaporation of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the compound in a dry box.
(OEP)Os($\left.{ }^{15} \mathrm{NS}\right) \mathrm{Cl}$. This compound was prepared (using (${ }^{15} \mathrm{NSCl}$); by similar procedures as for the unlabeled analog. IR $\left(\mathrm{KBr} . \mathrm{cm}^{-1}\right): v_{15} \mathrm{vs}=1231 \mathrm{~s}$.

Preparation of a Mixture of (OEP)Os(NS)(Me) and (OEP)Os(Me)2. To a THF (25 mL . heat to dissolve) solution of (OEP) $\mathrm{Os}(\mathrm{NS}) \mathrm{Cl} \cdot 0.9 \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.032 \mathrm{~g} .0 .036 \mathrm{mmol})$ was added excess $\mathrm{MeMgBr}(0.28$ mmol). The color of the solution changed from green to red brown. All the solvent was removed immediately after the addition of MeMgBr was complete, and the residue was purified by chromatography through silica gel with benzene as eluent . A red brown fraction was collected. all the solvent was removed in vacuo, and the red brown solid was dried in vacuo for 3 h to give a mixture of (OEP)Os(NS)(Me) (ca. 59%) and (OEP)Os(Me) $2(\mathrm{ca} .+1 \%)\left(0.013 \mathrm{~g} .0 .017 \mathrm{mmol} .47 \%\right.$ overall yield). IR ($\mathrm{KBr} . \mathrm{cm}^{-1}$): $v_{\mathrm{NS}}=1194 \mathrm{~m} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} . \delta\right)$ data for (OEP)Os(NS)(Me): $10.30(\mathrm{~s} .4 \mathrm{H}$. meso-H of OEP), $4.14\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$ of OEP). 1.97 (t. $J=8.24 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}$ of OEP), -7.88 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ of Me). Data for (OEP)Os(Me) 2 : 9.34 (s. 4 H. meso-H of OEP). 3.70 (q. $16 \mathrm{H}, J=8, \mathrm{CH}_{3} \mathrm{CH}_{2}$ of OEP). 1.75 (t. $J=8.24 \mathrm{H} . \mathrm{CH}_{3} \mathrm{CH}_{2}$ of OEP). -1.16 ($\mathrm{s} .6 \mathrm{H} . \mathrm{CH}_{3}$ of Me).

A suitable crystal of $(\mathrm{OEPOs}(\mathrm{NS})(\mathrm{Me})$ for structure determination was grown by slow evaporation of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the above mixture under nitrogen.
(OEP)Os($\left.{ }^{15} \mathbf{N S}\right)(\mathbf{M e})$. This compound was prepared similarly as the unlabeled analog. $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): v_{15} \mathrm{vS}=1163$.

Results and Discussion

Synthesis and Characterization of Organoosmium Nitrosyl
Porphyrin Complexes. Reactions of (por)Os(CO) (por =OEP. TTP) with NOPF_{6} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ generate the [(por)OsinO)]((%5Cmathrm%7BPF%7D_%7B6%7D)) compounds. Some of the (por)Os(NO$)\left(\mathrm{PF}_{6}\right)$ compounds undergo fluorine extraction from the PF_{6} anion unit to give (por)Os(NO)(F). ${ }^{+5}$ In any event, the reactions of crude $[($ por $) \mathrm{Os}(\mathrm{NO})]\left(\mathrm{PF}_{6}\right)$ with excess Grignard reagents (RMgX) at room temperature result in the formation of (por) $\operatorname{Os}(\mathrm{NO}) \mathrm{R}(\mathrm{R}=\mathrm{Me}$ for TTP: $\mathrm{R}=\mathrm{Me} . i-\mathrm{Pr}$ for OEP) in low to moderate overall yield (from 30% to 4%). ${ }^{+6}$ The related reaction of (OEP)Os(NO)($\left(\mathrm{PF}_{6}\right)$ with excess EtMgCl generates an isolable 2:1 mixture of (OEP) $\mathrm{Os}(\mathrm{NO})(\mathrm{Et})$ and $(\mathrm{OEP}) \mathrm{Os}(\mathrm{Et})_{2}$ in 39% yield. In general. the reaction conditions are very critical in obtaining pure samples of the (por)Os(NO)R compounds. The use of excess RMgX is necessary. since the reactions of crude (por) $\mathrm{Os}(\mathrm{NO})\left(\mathrm{PF}_{6}\right.$) with one equivalent of RMgX are very slow. and a shorter reaction time (with excess Grignard reagent) favors the formation of (por)Os(NO)R. whereas a longer reaction time (with or without excess Grignard reagent) results in the decomposition of the nitrosyl alkyl product and the formation of the following by-products: (por)Os(NO)X(X=halide). (por)Os(R) and the μ-oxo $[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})]_{2}(\mu-\mathrm{O})$ dimer (Scheme 3.1). This partly explains the low yield we experienced in the synthesis of the organoosmium(II) nitrosyl porphyrin complexes. Dr. Lin Cheng of our research group has since performed some follow-up work and has succeeded in isolating these four products in low to moderate yields. ${ }^{+51}$ Interestingly, the same μ-oxo $[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})]_{2}(\mu-\mathrm{O})$ dimer is generated from the reaction of (OEP)Os(CO) with one equivalent of ClNO (see later).

The (TTP)Os(NO)(Me) complex is green. However. all the (OEP)Os(NO)R complexes are red. All these organoosmium nitrosyl complexes are moderately air stable in solid state. They are all freely soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and benzene but are only slightly soluble in hexane. These compounds are generally characterized by ${ }^{1} \mathrm{H}$ NMR.

Scheme 3.1

IR. UV-vis spectroscopy, and by mass spectrometry. The (OEP)OsiNOMi-Pr) compound has also been characterized by elemental analysis. 'H NMR spectra of these (por) $\mathrm{Os}(\mathrm{NO}) \mathrm{R}$ complexes in CDCl_{3} show the expected sharp peaks for the porphyrin macrocycles and the alkyl groups. consistent with the diamagnetic nature of the products. The $v_{\text {vo }} s$ of the products are lower than the $u_{\text {vo }} s$ of the corresponding osmium nitrosyl alkoxide and thiolate porphyrin complexes (chapter 1). The LV-vis spectra of (OEP)Os(NO)(Me) and (OEP)Os(NO)(i-Pr) are quite similar and are also similar to those of other (OEP)Os(NO)R complexes. ${ }^{45 a}$ The IR $v_{N O}$ s and ${ }^{1} \mathrm{H}$ NMR $\delta_{\text {meso }}$ and $\delta_{\text {axial }}$ data are listed in Table 3.1.

The greater π-accepting ability of the TTP macrocycle relative to the OEP macrocycle is reflected in (i) the higher v_{NO} (in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. due to less backbonding from $\mathrm{Os}^{\mathrm{II}}$ to NO ligand) for (TTP)Os(NO)(Me) compared with (OEP)Os(NO)(Me), and (ii) a resulting downfield shift of the $\delta_{\text {Me }}$ for (TTP)Os(NO)(Me) (-7.35 ppm) relative to that of $(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})(\mathrm{Me})(-8.10 \mathrm{ppm})$.

Buchler has demonstrated that the $\delta_{\text {meso }}$'s in the 'H NMR spectra of (OEP)Os complexes can be used to measure the relative extent of metal \rightarrow OEP backbonding. ${ }^{+\$}$ In general. a stronger metal \rightarrow OEP backbonding will result in an uptield shift of $\delta_{\text {mesto }}$. The extent of Os \rightarrow OEP backbonding is also determined. to some extent, by the electron donating/withdrawing properties of the axial ligands in (OEP)Os-containing complexes.

The $u_{\text {NO }} s$ of the (OEP)Os(NO)R complexes in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution follow the trend: (OEP)Os(NO)(i-Pr) (1703 cm-1) < (OEP)Os.NO) Et) $\left(1710 \mathrm{~cm}^{-1}\right)<$ (OEP)Os(NO)(Me) $\left(1721 \mathrm{~cm}^{-1}\right)$, consistent with the increase in electron donating ability of the R groups. The insignificant changes in $\delta_{\text {meso }}$ in the ${ }^{1} \mathrm{H}$ NMR spectra of these compounds reflect the fact that the push-pull effect of the $\mathrm{NO} /$ alkyl pair leaves the electron density at the Os center in these (OEP)Os(NO)R complexes essentially unchanged. Thus, changing the alkyl group in the (OEP)Os(NO)R complexes from Me

Table 3.1. Selected Spectral Data for (OEP)Os(NE)X (E=O.S) and Related Compounds

compound	${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{2} . \mathrm{ppm}\right)$		IR (cm^{-1})	
	$\delta_{\text {meso }}$	$\delta_{\text {axial }}$	$v_{\text {NO. }} \mathrm{CH}_{2} \mathrm{Cl}_{2}$	urs. KBr
(TTP)Os(NO)(Me)	8.87	-7.35 $\left(\mathrm{CH}_{3}\right)$	1729	
	(pyr-H)			
(OEP) Os(NO)(Me)	10.21	-8.10(CH_{3})	1721	
(OEP)Os(NO)(Et)	10.21	$-7 .+4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$	1710	
		$-4.62\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$		
(OEP)Os(NO)(i-Pr)	10.21	-7.12($\mathrm{CH}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right)}$	1703	--
		$-4.63\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$		
(OEP)Os(NO)Cl	10.41	--	1799	
$\left[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})_{2}(\mu-\mathrm{O})\right.$	10.35		1770	
(OEP) Os(NS) Cl	10.49	--	--	1270 (1231 ${ }^{\text {k }}$
(OEP)Os(NS)(Me)	10.30	-7.88($\left.\mathrm{CH}_{3}\right)$	--	1194 (1163) ${ }^{\text {c }}$
(OEP)Os(Me)2	9.34	-1.16(CH_{3})	--	--
$(\mathrm{OEP}) \mathrm{Os}(\mathrm{Et})_{2}$	9.23	$+.77\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.	--	--
		-0.72 ($\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$		

a 15 N -labeled data are in brackets.
to Et to $i-\mathrm{Pr}$ results in a transmission of the electron-density change completely to the trans NO ligand, shifting $v_{\text {NO }}$ to lower wavenumbers, but not affecting $\delta_{\text {mex, }}$ to any significant extent.

Both the $\delta_{\text {meso }}$ peaks in (OEP)Os(NO)(Me) and (OEP)Os(NO)(Et) are shifted dramatically downfield relative to these of the non-nitrosyl (OEP)Os(Me) $2\left(\Delta \delta_{\text {mess }}=\right.$ $0.87 \mathrm{ppm})$ and $(\mathrm{OEP}) \mathrm{Os}(\mathrm{Et})_{2}\left(\Delta \delta_{\text {meso }}=0.98 \mathrm{ppm}\right)$. This is consistent with the NO ligand acting as a strong π-acid to withdraw electron density from the Os ${ }^{I l}$ center. resulting in less backbonding from Os ${ }^{I I} \rightarrow$ OEP. causing the downfield shift of the $\delta_{\text {meso }}$'s for $(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})(\mathrm{Me})$ and (OEP)Os(NO)(Et). The $\delta_{\text {meso }}$ for $(\mathrm{OEP}) \mathrm{Os}(\mathrm{Et})_{2}$ is 0.12 ppm upfield relative to that of (OEP) $\mathrm{Os}(\mathrm{Me})_{2}$, consistent with the Et group acting as a better σ-donor relative to the Me group. causing stronger $\mathrm{Os} \rightarrow \mathrm{OEP}$ backbonding.

Synthesis and Characterization of Osmium Nitrosyl Porphyrin Chloro and μ-Oxo Dimer Complexes. The reaction of (OEP)Os(CO) with one equivalent of CINO generates (OEP)Os(NO)Cl in 49% yield. To the best of our knowledge, the (OEP)Os(NO)Cl has not been reported previously in the literature. although the (OEP)Os(NO)F complex has been known for over 20 years. ${ }^{49.50}$ The (OEP)Os(NO)Cl complex is air-stable, showing no signs of decomposition in solution in air overnight. IR spectrum of (OEP)Os(NO) Cl in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ shows a band at 1799 cm^{-1} which is assigned as the $u_{\text {NO }}$ of the complex. This $v_{\text {NO }}$ value is higher than those of the (OEP)Os(NO)R complexes described earlier (1703-1729 cm^{-1}). The $\delta_{\text {meso }}$ value in the ${ }^{1} \mathrm{H}$ NMR spectrum of (OEP)Os(NO) Cl in CDCl_{3} is downfield with respect to those of the (OEP)Os(NO)R complexes (10.21 ppm . Table 3.1).

Surprisingly. a second product from the reaction of (OEP) $\mathrm{Os}(\mathrm{CO}$) with CINO is the μ-oxo $[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})]_{2}(\mu-\mathrm{O})$ dimer which is obtained in 48% yield. This same μ oxo dimer can also be obtained in smaller yields via the reaction of crude $[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})]\left(\mathrm{PF}_{6}\right)$ with Grignard reagents. ${ }^{+5 \mathrm{sa}}$ IR spectrum of $[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})]_{2}(\mu-$ O) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ shows a peak at $1770 \mathrm{~cm}^{-1}$ which is assigned as $u_{\text {no }}$. This $v_{\text {No }}$ value is
lower than that of $(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO}) \mathrm{Cl}\left(1799 \mathrm{~cm}^{-1}\right)$, but is much higher than those of the (OEP)Os(NO)R complexes (1703-1729 cm^{-1}). It is slightly higher than those of (OEP)Os(NO) (O-n-C+ $\left.\mathrm{C}_{9}\right)\left(1757 \mathrm{~cm}^{-1}\right)$ and (OEP)Os(NO)(O-i-C5 $\left.\mathrm{H}_{11}\right)\left(1756 \mathrm{~cm}^{-1}\right)$. but is lower than those of (OEP)Oss NO$)\left(\mathrm{O}_{2} \mathrm{PF}_{2}\right)\left(1820 \mathrm{~cm}^{-1}\right)$. all of which contain axial O-bound ligands trans to NO (chapter 1). The $\delta_{\text {meso }}$ peak is at 10.35 ppm . which is in-between those of (OEP)Os(NO)Cl ($10 .+1 \mathrm{ppm}$) and the (OEP)OsiNO)R complexes (10.21 ppm . Table 3.1).

The identity of $[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})]_{2}(\mu-\mathrm{O})$ was confirmed by single-crystal X-ray diffraction. The molecular structure of $[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})]_{2}(\mu-\mathrm{O})$ is shown in Figure 3.1. To the best of our knowledge. this is the first reported example of a nitrosyl porphyrin μ-oxo dimer of any metal. Selected bond lengths and bond angles are listed in Tables 3.2 and 3.3. The $\mathrm{Os}-\mathrm{N}($ por) bond length of $2.066(5) \mathrm{A}$ is within the range found for other structurally characterized (OEP)Osil ${ }^{\text {II }}$ complexes (Table 2.3). The Os-NO linkage is linear. The $\mathrm{Os}-\mathrm{N}(\mathrm{O})(1.778(11) \dot{A})$ and the $\mathrm{N}-\mathrm{O}(1.143(13) \dot{A})$ bond lengths for $[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})]_{2}(\mu-\mathrm{O})$ are typical for osmium nitrosyl complexes with linear Os-NO linkage (Table 1.3). The $\mathrm{Os}-(\mu-\mathrm{O})-\mathrm{Os}$ linkage is also linear. similar to other group 8 oxo-bridged dimers. The $\mathrm{Os}-(\mu-\mathrm{O})$ bond length, however. is longer than those for the structurally characterized $\mathrm{Ru}^{\mathrm{IV}}$ and $\mathrm{Os}^{\mathrm{IV}}$ porphyrin μ-oxo dimer complexes (Table 3.4).

The porphyrin core is domed, and the Os atom is displaced 0.23 A from the $2+$ atom mean plane towards the axial nitrosyl ligand (Figure 3.1a). This observation is remarkable, since a common feature of porphyrin μ-oxo dimers is the displacement of the metal towards the μ-oxo ligand. ${ }^{66}$ For example, the Os atom is displaced $0.07 . \dot{A}$ from the 24 -atom porphyrin core towards the μ-oxo ligand in the only other structurally characterized osmium porphyrin μ-oxo complex, namely $\left.\left[(\mathrm{OEP}) \mathrm{OstOCH}_{3}\right)\right]_{2}(\mu-$ O). 51.65 The two porphyrin rings of $[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})]_{2}(\mu-\mathrm{O})$ display a twist angle of 22.5° with respect to each other (Figure 3.1b).

Figure 3.1. (a) Molecular structure of $[(O E P) O s(N O)]_{2}(\mu-O)$. (b) View from the bottom of the molecule.

Table 3.2. Selected Bond Lengths (A) for [(OEP)Os(NO) $l_{2}(\mu-\mathrm{O})$

Os(1)-N(2)	$1.778(11)$	$O(1)-\mathrm{N}(2)$	$1.1+3(13)$
Os(1)-O(2)	$2.0945(5)$	$\mathrm{O}(2)-\mathrm{Os}(2)$	$2.09+5(5)$
Os(1)-N(1)	$2.066(51$	$\mathrm{Os}(1)-\mathrm{N}(1) \mathrm{A}$	$2.066(5)$
Os(1)-N(1)B	$2.066(5)$	$\mathrm{Os}(1)-\mathrm{N}(1) \mathrm{C}$	$2.066(5)$
$\mathrm{N}(1)-\mathrm{C}(4)$	$1.346(8)$	$\mathrm{N}(1)-\mathrm{C}(1)$	$1.382(8)$
$\mathrm{C}(1)-\mathrm{C}(5) \mathrm{B}$	$1.372(10)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.456(9)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.3+2(10)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.454(10)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.409(9)$	$\mathrm{C}(5)-\mathrm{C}(1) \mathrm{C}$	$1.372(10)$

Table 3.3. Selected Bond Angles $(=)$ for $[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})]_{2}(\mu-\mathrm{O})$

$\mathrm{O}(1)-\mathrm{N}(2)-\mathrm{Os}(1)$	$180.000(1)$	$\mathrm{Os}(1)-\mathrm{O}(2)-\mathrm{Os}(2)$	180.0
$\mathrm{~N}(2)-\mathrm{Os}(1)-\mathrm{O}(2)$	180.0	$\mathrm{~N}(1)-\mathrm{Os}(1)-\mathrm{O}(2)$	$85.8(2)$
$\mathrm{N}(1) \mathrm{A}-\mathrm{Os}(1)-\mathrm{O}(2)$	$85.8(2)$	$\mathrm{N}(1) \mathrm{B}-\mathrm{Os}(1)-\mathrm{O}(2)$	$85.8(2)$
$\mathrm{N}(1) \mathrm{C}-\mathrm{Os}(1)-\mathrm{O}(2)$	$85.8(2)$	$\mathrm{N}(2)-\mathrm{Os}(1)-\mathrm{N}(11$	$94.2(2)$
$\mathrm{N}(2)-\mathrm{Os}(1)-\mathrm{N}(1) \mathrm{A}$	$94.2(2)$	$\mathrm{N}(2)-\mathrm{Os}(1)-\mathrm{N}(1) \mathrm{B}$	$94.2(2)$
$\mathrm{N}(2)-\mathrm{Os}(1)-\mathrm{N}(1) \mathrm{C}$	$94.2(2)$	$\mathrm{N}(1) \mathrm{A}-\mathrm{Os}(1)-\mathrm{N}(1) \mathrm{B}$	$89.70(2)$
$\mathrm{N}(1) \mathrm{A}-\mathrm{Os}(1)-\mathrm{N}(1) \mathrm{C}$	$89.70(2)$	$\mathrm{N}(1) \mathrm{B}-\mathrm{Os}(1)-\mathrm{N}(1) \mathrm{C}$	$171.6(3)$
$\mathrm{N}(1) \mathrm{A}-\mathrm{Os}(1)-\mathrm{N}(1)$	$171.6(3)$	$\mathrm{N}(1) \mathrm{B}-\mathrm{Os}(1)-\mathrm{N}(1)$	$89.70(2)$
$\mathrm{N}(1) \mathrm{C}-\mathrm{Os}(1)-\mathrm{N}(1)$	$89.69(2)$	$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(11$	$107.9(6)$
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{Os}(1)$	$126.1(4)$	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Os}(1)$	$126.0(4)$
$\mathrm{C}(5) \mathrm{B}-\mathrm{C}(1)-\mathrm{N}(1)$	$125.2(6)$	$\mathrm{C}(5) \mathrm{B}-\mathrm{C}(1)-\mathrm{C}(2)$	$126.5(6)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$108.2(6)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$107.2(6)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$107.3(6)$	$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	$125.9(6)$
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	$109.4(6)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	$12+.6(6)$
$\mathrm{C}(1) \mathrm{C}-\mathrm{C}(5)-\mathrm{C}(4)$	$126.9(6)$		

Table 3.4. Structural Parameters (in \dot{A} and ${ }^{=}$) for Group 8 Oxo-Bridged Dimers

compound	$\mathrm{M}-(\mu-\mathrm{O})$	M-O-M	reference
$[(1 \mathrm{OEP}) \mathrm{Fe}]_{2}(\mu-\mathrm{O})$ triclinic	$1.758(3)$	172.212)	51
	1.754 (3)		
monoclinic	$1.748(4)$	176.21(23)	
	$1.762(t)$		
[(TPP) $\left.{ }^{\text {Pe }}\right]_{2}(\mu-\mathrm{O})$	$1.759(1)$	176.1	52
$[(T)$	$1.743(3)$	180.0	53
$\left[(\mathrm{OEP})\left(\mathrm{NO}_{2}\right)_{2} \mathrm{Fe}\right]_{2}(\mu-\mathrm{O})$	1.763(4)	167.9(3)	54
	$1.751(4)$		
$\left[\left(\mathrm{T}\left(\mathrm{F}_{5}\right) \mathrm{PP}\right) \mathrm{Fe}\right]_{2}(\mu-\mathrm{O})$	$1.775(1)$	178.4(5)	55
[($\left.\left.\mathrm{Me}_{2} \mathrm{OEP}\right) \mathrm{Fe}\right]_{2}(\mu-\mathrm{O})$	1.752(1)	178.5 6)	56
$\left[(T P C) \mathrm{Fe}_{2}(\mu-\mathrm{O})^{a}\right.$	1.747(5)	180.0	57
	$1.763(5)$		
$\left[\left(\mathrm{T}\left(o-\mathrm{F}_{2}\right) \mathrm{PP}\right) \mathrm{Fe}\right]_{2}(\mu-\mathrm{O})$	$1.760(2)$	178.5(8)	58
$[(\mathrm{FF}) \mathrm{Fe}]_{2}(\mu-\mathrm{O})^{b}$	$1.800(6)$	161.1(4)	59
	$1.77+(6)$		
$[(\mathrm{TMPyP}) \mathrm{Fe}]_{2}(\mu-\mathrm{O}) \cdot\left(\mathrm{ClO}_{4}\right)_{8}$	1.750(2)	175.1(7)	60
$\left[\left(\mathrm{N}-\mathrm{CH}_{3} \mathrm{TPP}\right) \mathrm{Fe}-\mathrm{O}-\mathrm{Fe}(\mathrm{TPP})\right]_{\mathrm{ClO}}^{4}$	$1.740(4)$	165.4(3)	61
	$1.767(4)-$ TPP		
Ruthenium			
$[(\mathrm{OEP}) \mathrm{Ru}(\mathrm{OH})]_{2}(\mu-\mathrm{O})$	1.847(13)	180.0	62
$[(\mathrm{OEP}) \mathrm{Ru}(\mathrm{Cl})]_{2}(\mu-\mathrm{O})$	1.793(2)	180.0	63
$\left[(\mathrm{TPP}) \mathrm{Ru}\left(p-\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\right]_{2}(\mu-\mathrm{O})$	1.787(11)	177.8171	64
	$1.791(11)$		
Osmium			
$\left[(\mathrm{OEP}) \mathrm{Os}\left(\mathrm{OCH}_{3}\right)\right]_{2}(\mu-\mathrm{O})$	$1.807(3)$	177.4(17)	65
	[1.809(3)] ${ }^{\text {c }}$	$[179.5(11)]^{\circ}$	
$[(\mathrm{OEP}) \mathrm{Os}(\mathrm{NO})]_{2}(\mu-\mathrm{O})$	2.0945 (5)	180.0	this work

Synthesis and Characterization of Osmium Thionitrosyl Porphyrin

 Chloro and Methyl Complexes. Shelly Hodge of our research group prepared the related (TTP)Os(NS)Cl complex. ${ }^{+5 \mathrm{~b}}$ The related (TTP)Ru(NS)Cl has also been reported. 67 and the (TPP)Fe(NS) compound has been claimed. ${ }^{+1}$ To the best of our knowledge, no thionitrosyl organoosmium porphyrin complexes has been reported.The reaction of $(\mathrm{OEP}) \mathrm{Os}(\mathrm{CO})$ with excess $(\mathrm{NSCl})_{3}$ in refluxing THF gives. after workup, (OEP)Os(NS)Cl in 49% isolated yield. The green product is moderately air-stable and can be handled in air in solution for short periods. The product is fairly soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. moderately soluble in THF. poorly soluble in benzene and only slightly soluble in hexane. The ${ }^{1} \mathrm{H}$ NMR spectra of (OEP)Os(NS)Cl in both $\mathrm{C}_{6} \mathrm{D}_{6}$ and CDCl_{3} give the expected sharp peaks for the OEP macrocycle, indicating the diamagnetic nature of this Os ${ }^{\text {II }}$ complex. The $\delta_{\text {meso }}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum of (OEP)Os(NS)Cl in CDCl_{3} is at 10.49 ppm . which is downfield from that of (OEP) $\mathrm{Os}(\mathrm{NO}) \mathrm{Cl}$ at 10.41 ppm . The IR spectrum (as a KBr pellet) shows a strong band at $1270 \mathrm{~cm}^{-1}$ which is assigned as u_{vs} of the product. This value is within the 1065-1390 cm^{-1} range observed for other thionitrosyl compounds with linear MetalNS linkages. ${ }^{68}$ This assigned v_{NS} band shifts to $1231 \mathrm{~cm}^{-1}$ when ($\left.{ }^{15} \mathrm{NSCl}\right)_{3}$ is employed in the reaction. confirming the assignment of the band. The FAB mass spectrum shows the presence of the parent ion [(OEP)Os(NS)CI]+. further confirming the identity of the product. The UV-vis spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gives three bands at 362 (75), 385 (sh, 63), 605 (6) nm. The identity of the product is also confirmed by a single-crystal X-ray crystallographic analysis. The molecular structure of (OEP)Os(NS)Cl is shown in Figure 3.2. Selected bond lengths and bond angles are listed in Tables 3.5 and 3.6.

Figure 3.2. Molecular structure of (OEP)Os(NS)(Cl) (only one of the disordered $\mathrm{NS} / \mathrm{Cl}$ orientations is shown).

Table 3.5. Selected Bond Lengths (A) for (OEP $1 O$ si.VS $) \mathrm{Cl}$

$\mathrm{Cl}(1)-\mathrm{Os}(1)$	$2.329(3)$	Os(1)-: N (5)	1.8321131
Cl(1)-Os(1)	$2.327(4)$	Os(1)-N(5)	1.83+113)
N(5)-S(1)	1.501(12)	Nisi-Sili	1.502(12)
Osi (1)-N(1)	$2.050(7)$	Os(1)-N(2)	2.072161
Os(1)-N(t)	$2.063(5)$	$\mathrm{Os}(1)-\mathrm{N}(3)$	$2.07519)$
N(1)-C(1)	$1.37+111)$	$\cdots(1)-C(t)$	1.396101
$\mathrm{C}(1)-\mathrm{C}(20)$	$1.372111)$	C(1)-C(2)	1.481111)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.353(10)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.463(10)
$\mathrm{C}(+)-\mathrm{C}(5)$	1.394(10)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.405(10)
. N (2)-C(9)	1.36+(9)	V(2)-C(6)	$1.36619)$
$\mathrm{C}(6)-\mathrm{C}(7)$	1.413(9)	C(7)-C(8)	1.377(11)
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.45+(10)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.39610)$
C(10)-C(11)	$1.35+(12)$	$\mathrm{N}(3)-\mathrm{C}(14)$	$1.352(11)$
$\mathrm{N}(3)-\mathrm{C}(11)$	1.404(12)	C(11)-C(12)	$1 .+43(13)$
$\mathrm{C}(12)-\mathrm{C}(13)$	1.376(10)	C(13)-C(1+)	1.461/10)
$\mathrm{C}(1+)-\mathrm{C}(15)$	1.383(10)	C(15)-C(16)	$1.400(11)$
$\mathrm{N}(4)-\mathrm{C}(16)$	1.337(9)	. $\mathrm{i}(\mathrm{t})$-C(19)	1.378191

Table 3.6. Selected Bond Angles $\left(^{\circ}\right.$) for (OEP) $\mathrm{Os}(\mathrm{NS}) \mathrm{Cl}$

$\mathrm{S}(1)-\mathrm{N}(5)-\mathrm{Os}(1)$	$174.5(14)$	$\mathrm{S}\left(1^{\prime}\right)-\mathrm{N}\left(5^{\prime}\right)-\mathrm{Os}(1)$	$174(2)$
$\mathrm{N}(5)-\mathrm{Os}(1)-\mathrm{Cl}(1)$	$177.7(7)$	$\left.\mathrm{N}\left(5^{\prime}\right)-\mathrm{Os}(1)-\mathrm{Cl1}\right)$	$176.4(10)$
$\mathrm{N}(5)-\mathrm{Os}(1)-\mathrm{N}(1)$	$92.1(6)$	$\mathrm{N}\left(5^{\prime}\right)-\mathrm{Os}(1)-\mathrm{N}(1)$	$84.2(12)$
$\mathrm{N}(5)-\mathrm{Os}(1)-\mathrm{N}(2)$	$91.6(7)$	$\mathrm{N}\left(5^{\prime}\right)-\mathrm{Os}(1)-\mathrm{N}(2)$	$88(2)$
$\mathrm{N}(5)-\mathrm{Os}(1)-\mathrm{N}(3)$	$91.6(7)$	$\mathrm{N}\left(5^{\prime}\right)-\mathrm{Os}(1)-\mathrm{N}(3)$	$92.1(11)$
$\mathrm{N}(5)-\mathrm{Os}(1)-\mathrm{N}(4)$	$92.1(7)$	$\mathrm{N}\left(5^{\prime}\right)-\mathrm{Os}(1)-\mathrm{N}(4)$	$88(2)$

$\mathrm{N}(1)-\mathrm{Os}(1)-\mathrm{Cl}(1)$	89.7(3)	N(1)-Os(1)-Cl(1)	92.4.7)
$\mathrm{N}(2)-\mathrm{Os}(1)-\mathrm{Cl}(1)$	90.0(2)	$\mathrm{N}(2)$-Os(l)-Clil)	$90.4(8)$
$\mathrm{N}(3)-\mathrm{Os}(1)-\mathrm{Cl}(1)$	86.7(2)	$\mathrm{N}(3)$-Os(1)-Clil	91.217)
$\mathrm{N}(\mathrm{t})$-Os(1)-Cl(1)	$86.4(2)$	N(t)-Os(l)-Cl(1)	93.3(8)
$\mathrm{N}(1)-\mathrm{Os}(1)-\mathrm{N}(4)$	89.8(2)	N(1)-Os(1)-N(2)	90.2(3)
$\mathrm{N}(1)-\mathrm{Os}(1)-\mathrm{N}(3)$	176.3(4)	$\mathrm{N}(4)-\mathrm{Os}(1)-\mathrm{N}(2)$	176.4(2)
$\mathrm{N}(4)-\mathrm{Os}(1)-\mathrm{N}(3)$	89.6(3)	$\mathrm{N}(2)-\mathrm{Os}(1)-\mathrm{N}(3)$	90.2(3)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(4)$	107.7(7)	$\mathrm{C}(1)-\mathrm{V}(1)-\mathrm{Os}(1)$	127.0(6)
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{Os}(1)$	$125.3(5)$	$\mathrm{C}(20)-\mathrm{C}(1)-\mathrm{N}(1)$	124.7(8)
$\mathrm{C}(20)-\mathrm{C}(1)-\mathrm{C}(2)$	126.7(8)	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	108.6(7)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	107.5161	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	107.4(6)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{N}(1)$	126.0(7)	$C(5)-C(4)-C(3)$	$125.2(6)$
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	108.9(6)	$C(4)-C(5)-C(6)$	126.9(7)
$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{C}(6)$	107.6(6)	$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{Os}(1)$	125.3(5)
$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{Os}(1)$	$126.9(5)$	$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	124.5(6)
$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	$110.2(6)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	125.3(7)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	107.2(6)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$106.3(6)$
$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(10)$	125.9(6)	N(2)-C(9)-C(8)	108.7(6)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	125.4(6)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	128.2(8)
$\mathrm{C}(14)-\mathrm{N}(3)-\mathrm{C}(11)$	109.3(8)	$\mathrm{C}(1+)-\mathrm{N}(3)-\mathrm{Os}(1)$	$125.516)$
$\mathrm{C}(11)-\mathrm{N}(3)-\mathrm{Os}(1)$	125.1(7)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(3)$	125.210
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	128.3(9)	$\mathrm{N}(3)-\mathrm{C}(11)-\mathrm{C}(12)$	106.5(8)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	109.1(7)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(1+)$	105.9(6)
$\mathrm{N}(3)-\mathrm{C}(14)-\mathrm{C}(15)$	126.1(7)	$\mathrm{N}(3)-\mathrm{C}(14)-\mathrm{C}(13)$	109.1(6)
$\mathrm{C}(16)-\mathrm{N}(4)-\mathrm{C}(19)$	108.5(6)	$\mathrm{C}(16)-\mathrm{N}(4)-\mathrm{Os}(1)$	126.4(5)
$\mathrm{C}(19)-\mathrm{N}(4)-\mathrm{Os}(1)$	125.1(5)	$\mathrm{N}(4)-\mathrm{C}(16)-\mathrm{C}(15)$	125.8(6)
$\mathrm{N}(4)-\mathrm{C}(16)-\mathrm{C}(17)$	109.5(7)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	124.7(6)
$\mathrm{N}(4)-\mathrm{C}(19)-\mathrm{C}(20)$	126.0(6)	$\mathrm{N}(4)-\mathrm{C}(19)-\mathrm{C}(18)$	108.6(6)

Table 3.7. Selected Structural Data for Osmium and Ruthenium Thionitrosy Complexes

Compound	$\mathrm{M}-\mathrm{N}\left(\dot{A}^{\text {a }}\right.$)	N-S (A)	M-N-S $\left({ }^{\circ}\right)$	ref
Osmium				
(OEP)Os(NS) Cl	1.832(13)	1.501(12)	174.5(14)	this work
	1.834(13)	$1.502(12)$	174(2)	
(OEP)Os(NS)(Me)	1.999(8)	$1.433(13)$	163.0(8)	this work
$(\mathrm{OEP}) \mathrm{Os}\left(\mathrm{NS}_{3}\right)\left(\mathrm{O}_{2} \mathrm{PF}_{2}\right)$	1.960(8)	1.520(9)	170.9(7)	chapter 1
$\mathrm{Os}(\mathrm{NS}) \mathrm{Cl}_{3}\left(\mathrm{PPh}_{3}\right)_{2}$	1.779(9)	$1.503(10)$	180.0(1)	69
$\left(\mathrm{PPh}_{4}\right)\left[\mathrm{Os}(\mathrm{NS}) \mathrm{Cl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	$1.731(4)$	$1.514(5)$	174.9(3)	70
$\left(\mathrm{AsPh}_{4}\right)\left[\mathrm{Os}(\mathrm{NS})(\mathrm{NSCl}) \mathrm{Cl}_{4}\right]^{a}$	1.828(8)	1.46(1)	169.1(5)	71
Ruthenium				
$\left(\mathrm{PPh}_{4}\right)\left[\mathrm{Ru}(\mathrm{NS}) \mathrm{Cl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	1.729(4)	$1.504(4)$	170.9(3)	72
$\left(\mathrm{PPh}_{4}\right)_{2}\left[\mathrm{Ru}(\mathrm{NS}) \mathrm{Cl}_{4}\right]_{2}$	$1.752(6)$	$1.466(7)$	177.3(5)	73
$\cdot 4 \mathrm{CH}_{2} \mathrm{Cl}_{2}$				
$\left(\mathrm{PPh}_{4}\right)\left[\left\{\mathrm{Ru}(\mathrm{NS}) \mathrm{Br}_{4}\right\}_{2}\right.$	1.69(3)	$1.51(3)$	17512)	74
$\left.\left(\mu-\mathrm{N}_{2} \mathrm{~S}_{2}\right)\right] \cdot 4 \mathrm{CH}_{2} \mathrm{X}_{2}{ }^{b}$				
(TTP) Ru(NS) $\mathrm{Cl}^{\text {c }}$	1.768(4)	1.489(5)	169.1(3)	67
	[1.85(3)]	[1.47(3)]	[170(3)]	

${ }^{a}$ The Cl atom of NSCl is disordered over the NS and NSCl ligands. ${ }^{b}$ Contains $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{CH}_{2} \mathrm{Br}_{2}$ molecules (i.e., $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$). © Two independent molecules.

Data for the second (disordered) molecule are in brackets.

The average $\mathrm{Os}-\mathrm{N}($ por $)$ bond length is $2.065 \AA$. and falls within the range observed for other structurally characterized (OEP)Os ${ }^{I I}$ complexes (Table 2.3). The NS and Cl fragments are disordered. The $\mathrm{Os}-\mathrm{N}(\mathrm{S})$ and (Os) $\mathrm{N}-\mathrm{S}$ bond lengths of 1.83 (1) and $1.50(1) A$ are comparable with those of other structurally characterized Os NS complexes (Table 3.7). The $\mathrm{Os}-\mathrm{N}-\mathrm{S}$ linkage is linear, as indicated by an $\mathrm{Os}-\mathrm{N}-\mathrm{S}$ bond angle of 174°.

Reaction of (OEP)Os(NS)Cl with excess MeMgBr results in the formation of an air-sensitive $3: 2$ mixture of (OEP)Os(NS)(Me) and (OEP)Os(Me) $)_{2}$ in 47% yield. As with the nitrosyl derivatives. formation of (OEP)Os(NS)(Me) is favored over (OEP)Os(Me) $)_{2}$ with a shorter reaction time by employing excess Grignard reagent. This reaction is very slow at room temperature even with excess Grignard reagent. The ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture clearly indicates the presence of the expected peaks for the two diamagnetic compounds. The IR spectrum (as a KBr pellet) of the mixture shows a medium band at $1194 \mathrm{~cm}^{-1}$ which is assigned as the U_{Ns} of $(\mathrm{OEP}) \mathrm{Os}(\mathrm{NS})(\mathrm{Me})$. The mixture of (OEP) Os $\left({ }^{15} \mathrm{NS}\right)(\mathrm{Me})$ and (OEP)Os(Me) $)_{2}$ was prepared similarly by employing (OEP)Os($\left.{ }^{15} \mathrm{NS}\right) \mathrm{Cl}$. The IR band at $1194 \mathrm{~cm}^{-1}$ shifts to $1163 \mathrm{~cm}^{-1}$. confirming the assignment of the $v_{\text {ws }}$ band for (OEP$) \mathrm{Os}(\mathrm{NS})(\mathrm{Me})$. The $\delta_{\text {meso }}$ peak in the ${ }^{1} \mathrm{H}$ NMR spectrum of (OEP)Os(NS)(Me) (10.30 ppm) in CDCl_{3} is shifted downfield from that of its nitrosyl analog (OEP)Os(NO)(Me) (10.21 ppm). Similar to the nitrosyl analogs, the v_{NS} is higher for (OEP)Os(NS)Cl and its $\delta_{\text {meso }}$ peak is shifted downfield compared to (OEP)Os(NS)(Me) (Table 3.1). The $\delta_{\text {mesw }}$ peak of $(\mathrm{OEP}) \mathrm{Os}(\mathrm{NS})(\mathrm{Me})$ is also dramatically shifted downfield ($\Delta \delta_{\text {meso }}=0.96 \mathrm{ppm}$) relative to that of $(\mathrm{OEP}) \mathrm{Os}(\mathrm{Me})_{2}$. Similarly, the lower electron density at the Os center of the (OEP) Os(NS)(Me) complex is caused by the π-acid character of the NS ligand. The lower electron density at the Os center of (OEP)Os(NS)(Me) in turn causes less Os ${ }^{I I} \rightarrow$ OEP backbonding, resulting in the downfield shift of $\delta_{\text {meso }}$. Attempts at generating other (OEP) $\mathrm{Os}(\mathrm{NS}) \mathrm{R}$ complexes have so far not been successful.

The molecular structure of (OEP)Os(NS)(Me) is shown in Figure 3.3. Selected bond lengths and bond angles are listed in Tables 3.8 and 3.9. The most important feature is the confirmation of the identity of the trans methyl and thionitrosyl ligands. The axial methyl and NS groups are disordered. Because of the nature of disorder of the axial ligands. a meaningful comparison of bond lengths and bond angles involving these axial groups is not possible. The Os-N(por) bond lengths of 2.056(7) and 2.055 (7) A are. however, within the range observed for other structurally characterized (OEP)Os ${ }^{\text {II }}$ complexes (Table 2.3).

Figure 3.3. Molecular structure of (OEP)Os(NS)(Me) (only one of the disordered NS/Me orientations is shown).

Table 3.8. Selected Bond Lengths (A) for (OEP)Os(NS) (.Me)

Os(1)-C(37)A	$1.999(8)$	$O s(1)-\mathrm{N}(3)$	$1.999(8)$
$\mathrm{N}(3)-\mathrm{S}(1)$	$1.433(13)$	$\mathrm{Os}(1)-\mathrm{N}(2)$	$2.055(7)$
Os(1)-N(2)A	$2.055(7)$	$O s(1)-\mathrm{N}(1)$	$2.056(7)$
Os(1)-N(1)A	$2.056(7)$	$\mathrm{N}(1)-\mathrm{C}(1)$	$1.372(11)$
$\mathrm{N}(1)-\mathrm{C}(4)$	$1.382(11)$	$\mathrm{N}(2)-\mathrm{C}(9)$	$1.367(12)$
$\mathrm{N}(2)-\mathrm{C}(6)$	$1.377111)$	$\mathrm{C}(1)-\mathrm{C}(10) \mathrm{A}$	$1.385(13)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.4+6(12)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.375(13)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.450(12)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.389(13)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.388(13)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.455(12)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.379(13)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.450(12)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.400(13)$	$\mathrm{C}(10)-\mathrm{C}(1) \mathrm{A}$	$1.385(13)$

Table 3.9. Selected Bond Angles ($\%$ for (OEP)Osi.NS r.Me)

$\mathrm{S}(1)-\mathrm{N}(3)-\mathrm{Os}(1)$	163.0(8)	C(37)A-Os(1)-iv3)	180.0
$\mathrm{C}(37) \mathrm{A}-\mathrm{Os}(1)-\mathrm{N}(2)$	89.613)	C(371A-Os(1 -Vil 1)	88.5131
$\mathrm{C}(37) \mathrm{A}-\mathrm{Os}(1)-\mathrm{N}(1) \mathrm{A}$	91.5(3)	$\mathrm{C}(37) \mathrm{A}-\mathrm{Os}(1)-\mathrm{N}(2) \mathrm{A}$	90.4 31
$\mathrm{N}(3)-\mathrm{Os}(1)-\mathrm{N}(1)$	$91.513)$	$\mathrm{N}(3)-\mathrm{Os}(1)-\mathrm{V}(1) \mathrm{A}$	88.5131
$\mathrm{N}(3)-\mathrm{Os}(1)-\mathrm{N}(2)$	90.4(3)	$\mathrm{N}(3)-\mathrm{Os}(1)-\mathrm{V}(2) \mathrm{A}$	89.613)
$\mathrm{N}(2)-\mathrm{Os}(1)-\mathrm{N}(2) \mathrm{A}$	180.0	$\mathrm{N}(2)-\mathrm{Os}(1)-\mathrm{N}(1) \mathrm{A}$	89.6131
$\mathrm{N}(2) \mathrm{A}-\mathrm{Os}(1)-\mathrm{N}(1) \mathrm{A}$	90.4(3)	$\mathrm{N}(2)-\mathrm{Os}(1)-\mathrm{N}(1)$	90.4(3)
$\mathrm{N}(2) \mathrm{A}-\mathrm{Os}(1)-\mathrm{N}(1)$	89.6(3)	$\mathrm{N}(1) \mathrm{A}-\mathrm{Os}(1)-\mathrm{N}(1)$	180.0
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(4)$	107.+(7)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Os}(1)$	126.6161
$\mathrm{C}(+)-\mathrm{N}(1)-\mathrm{Os}(1)$	126.0(6)	$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{C}(6)$	$107.3(7)$
$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{Os}(1)$	126.6(6)	$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{Os}(1)$	126.0161
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(10) \mathrm{A}$	125.1(8)	N(1)-C(1)-C(2)	109.2(8)
$\mathrm{C}(10) \mathrm{A}-\mathrm{C}(1)-\mathrm{C}(2)$	125.7(8)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	107.5181
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	106.4(8)	$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	124.9(8)
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	109.4(8)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	125.6181
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	127.7(8)	$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	125.1181
$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	109.3(8)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	125.6(8)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	106.7(8)	C(7)-C(8)-C(9)	$106.517)$
$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(10)$	125.1(8)	$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(8)$	110.018)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	124.9(8)	$\mathrm{C}(1) \mathrm{A}-\mathrm{C}(10)-\mathrm{C}(9)$	126.8(8)

Conclusion

This study describes the synthesis and characterization of (i) novel osmium nitrosyl organo. chloro. μ-oxo porphyrin complexes. (ii) an osmium thionitrosyl chloro porphyrin complex. and (iii) the first organoosmium thionitrosyl porphyrin complex. In the (OEP)Os(NO)R complexes. changing the alkyl group from Me to Et to $i-\mathrm{Pr}$ appears to result in a transmission of the electron-density change almost completely to the trans NO ligand. The strong π-accepting properties of the NO and NS ligands result in less backbonding from Os \rightarrow OEP in the (OEP)OS(NO)R and (OEP)Os(NS)(Me) complexes compared to the corresponding (OEP)Os(R)2 complexes. This study also provides the solid-state structure of the first reported example of a nitrosyl porphyrin μ-oxo dimer. namely [(OEP)Os(NO) $I_{2}(\mu$-O). and the first structures of osmium thionitrosyl porphyrins. namely (OEP)Os(NS)CI and (OEP)Os(NS)(Me).

References and Notes

(1) Brothers. P. J.: Collman. J. P. Acc. Chem. Res. 1986. i9. 2()9.
(2) Setsune. J.-I.: Dolphin. D. Can. J. Chem. 1987. 65. +59.
(3) Mansuy. D. Pure Appl. Chem. 1987. 59. 759.
(t) Kräutler. B. In Encyclopedia of Inorganic Chemistr: R. B. King. Ed.: John Wiley and Sons: Chichester. 1994: Vol. 2: pp 697-712.
(5) Brown. K.: Cheng. S.: Zou. X.: Zubkowski. J. D.: Valente. E. J.: Knapton. L.: Marques. H. M. Inorg. Chem. 1997. 36. 3666.
(6) Gridnev. A. A.: Ittel. S. D.: Fryd. M.: Wayland. B. B. Organometallics 1996. 15. 222.
(7) Summers. J. S.: Petersen. J. L.: Stolzenberg. A. M. J. Am. Chem. Soc. 1994. 1/6. 7189.
(8) Kadish. K. M.: Han. B. C.: Endo. A. Inorg. Chem. 1991. 30. +502.
(9) Chopra. M.: Hun. T. S. M.: Leung. W.-H.: Yu. N.-T. Inorg. Chem. 1995. 34. 5973.
(10) Brand. H.: Arnold. J. Organometallics 1993. 12. 3655
(11) Brand. H.: Arnold. J. Coord. Chem. Rev. 1995. 140. 137.
(12) Leung. W.-H.: Hun. T. S. M.: Wong. K.-Y.: Wong. W.-T. J. Chem. Sro.. Dalton Trans. 1994, 2713.
(13) A cis alkyl-hydroxyl complex has been recently proposed as an altenate intermediate in the cytochrome $\mathrm{P}+50$ rebound mechanism. ${ }^{14}$
(14) Collman. J. P.: Chien. A. S.: Eberspacher. T. A.: Brauman. J. I. J. Am. Chem. Soc. 1998. I20, +25.
(15) Collman. J. P.: Brothers. P. J.: McElwee-White. L.: Rose. E.: Wright. L. J. J. Am. Chem. Soc. 1985. 107. 4570.
(16) Bartley. D. W.: Kodadek. T. J. Am. Chem. Soc. 1993. //5. 1656.
(17) Collman. J. P.: Brothers. P. J.: McElwee-White. L.: Rose. E. J. Am. Chem. Soc. 1985. 107.6110.
(18) Arnold. J.: Hoffman. C. G.: Dawson. D. Y.: Hollander. F. J. Organometallics 1993. $12.36+5$.
(19) Setsune. J.-I.: Saito. Y.: Ishimary. Y.: Ikeda. M.: Kitao. T. Bull. Chem. Soc: Jpn. 1992.65. 639.
(20) Seyler. J. W.: Safford. L. K.: Fanwick. P. E.: Leidner. C. R. Inorg. Chem. 1992. 31. 1545.
(21) Guilard. R.: Lecomte. C.: Kadish. K. M. Struct. Bond. 1987. 64. 205.
(22) Arafa. I. M.: Shin. K.: Goff. H. M. J. Am. Chem. Soc. 1988. 1/0. 5228.
(23) Li. Z.: Goff. H. M. Inorg. Chem. 1992. 3/. $15+7$.
(24) Song. B.: Goff. H. M. Inorg. Chim. Acta 1994. 226. 231.
(25) Kadish. K. M.: Tabard. A.: Lee. W.: Liu. Y. H.: Ratti. C.: Guilard. R. Inorg. Chem. 1991. 30.15+2.
(26) Seyler. J. W.: Leidner. C. R. Inorg. Chem. 1990. 29. 3636.
(27) Seyler. J. W.: Leidner. C. R. J. Chem. Soc.. Chem. Commun. 1989. 1794.
(28) Alexander. C. S.: Rettig. S. J.: James. B. R. Organometallics 1994. 13. 2542.
(29) Collman. J. P.: McElwee-White. L.: Brothers, P. J.: Rose. E. J. Ant. Chem. Soc. 1986. 108. 1332.
(30) Collman. J. P.: Rose, E.: Venburg. G. D. J. Chem. Soc.. Chem. Commen. 1994. 11.
(31) Hodge, S. J.: Wang, L.-S.: Khan. M. A.: Young. V. G.: Richter-Addo. G. B. Chem. Commun. 1996. 2283.
(32) Ke. M.: Rettig. S. J.: James. B. R.: Dolphin. D. J. Chem. Soc.. Chem. Commun. 1987. 1110.
(33) Sishta. C.: Ke. M.: James. B. R.: Dolphin. D. J. Chem. Soc.. Chem. Commun. 1986. 787.
(34) Ke. M.: Sishta. C.: James. B. R.: Dolphin. D.: Sparapany. J. W.: Ibers. J. A. Inorg. Chem. 1991. 30. 4766.

Seyler. J. W.: Fanwick. P. E.: Leidner. C. R. Inorg. Chem. 1992. 3/. 3699.
(36) Collman. J. P.: Ha. Y.: Wagenknecht. P. S.: Lopez. M.-A.: Guilard. R. J. Am. Chem. Soc. 1993. $1 / 5.9080$.
(37) The organometallic chemistry of Ru and Os complexes with η^{\prime}-carbon ligands has been reviewed. ${ }^{*}$
(38) Hill. A. F. In Comprehensive Organometallic Chemistry II. A Review of the Literature 1982-1994: Ist ed.: E. W. Abel: F. G. A. Stone and G. Wilkinson. Ed.: Pergamon: Exeter. L.K.. 1995: Vol. 7: pp 299-140.
(39) Guilard. R.: Lagrange. G.: Tabard. A.: Lançon. D.: Kadish. K. M. Inore. Chem. 1985. 24. $36+9$.
(40) The (TPP)Fe(NO)($\mathrm{C}_{5} \mathrm{H}_{5}$) complex has been claimed. ${ }^{41}$ although its $U_{\text {vo }}$ of $1705 \mathrm{~cm}^{-1}$ is very close to that of the known (TPP)Fe(NO).
(+1) Massoudipour. M.: Tewari. S. K.: Pandey. K. K. Polvhedron 1989. 8. 1+47.
142) Che. C.-M.: Poon. C.-K.: Chung. W.-C.: Gray. H. B. Inorg. Chem. 1985. 24. 1277.
(+3) Jolly. W. L.: Maguire. K. D. Inorg. Syinth. 1967. 9. 102.
(44) Pass, G.: Sutcliffe. H. Practical Inorganic Chemistry: Preparations. Reactions and Instrumental Methods; Chapman and Hall: London. U'. K.. 1968.
(45) (a) Cheng. L.; Chen, L.: Chung. H.-S.: Young. V. G.. Jr.: Khan. M. A.: Richter-Addo, G. B. Submitted to Organometallics. (b) Shelly Hodge. Ph.D. dissertation.
(46) The reaction of RMgX with osmium- and other metallo-porphyrin cations to produce organometallic derivatives has some precedent. ${ }^{30} .17$
(47) Ogoshi. H.: Sugimoto. H.: Yoshida. Z.-i.: Kobayashi. H.: Sakai, H.: Maeda. Y. J. Organomet. Chem. 1982, 234. 185.
(48) Buchler, J. W.; Kokisch, W.: Smith, P. D. Struct. Bonding 1978, 34, 79.
(49) Buchler, J.; Smith, P. D. Chem. Ber. 1976, 109. 1465.
(50) Antipas, A.: Buchler. J. W.: Gouterman, M.: Smith, P. D. J. Am. Chem. Soc. 1980, 102, 198.
(51) Chen. B.: Hobbs. J. D.; Debrunner. P. G.: Erlebacher, J.: Shelnutt. J. A.: Scheidt. W. R. Inorg. Chem. 1995. 34. 102.
(52) Swepston, P. N.: Ibers. J. A. Acta Cryst. 1985, C41, 671.
(53) Jiao, X.-D.: Huang, J.-W.: Ji, L.-N.: Luo, B.-S.: Chen, L.-R. J. Inorg. Biochem. 1997, 65, 229.
(54) Schaefer, W. P.: Ellis. P. E.: Lyons. J. E.: Shaikh. S. N. Acta Crvst. 1995. C51, 2252.
(55) Gold. A.: Jayaraj, K.: Doppelt, P.; Fischer, J.: Weiss, R. Inorg. Chim. Acta 1988. 150. 177.
(56) Lay, K.-L.; Buchler, J. W.: Kenny, J. E.; Scheidt. W. R. Inorg. Chim. Acta 1986, $123,91$.
(57) Strauss, S. H.: Pawlik, M. J.: Skowyra, J.: Kennedy, J. R.: Anderson. O. P.: Spartalian. K.: Dye, J. L. Inorg. Chem. 1987, 26. 724.
(58) Karlin, K. D.; Nanthakumar, A.: Fox, S.; Murthy, N. N.: Ravi, N.: Huynh. B. H.: Orosz. R. D.: Day. E. P. J. Am. Chem. Soc. 1994, Il6. 4753.
(59) Landrum, J. T.: Grimmett, D.; Haller, K. J.: Scheidt, W. R.; Reed. C. A. J. Am. Chem. Soc. 1981, 103, 2640.
(60) Ivanca, M. A.: Lappin, A. G.: Scheidt, W. R. Inorg. Chem. 1991, 30, 711.
(61) Bartczak, T. J.; Latos-Grazynski, L.: Wyslouch, A. Inorg. Chim. Acta 1990. 171, 205.
(62) Masuda, H.; Taga, T.; Osaki, K.; Sugimoto, H.; Mori, M.: Ogoshi, H. J. Am. Chem. Soc. 1981, 103, 2199. Bats. J. W.: Pandey. K. K.: Roesky. H. W. J. Chem. Soc.. Dalton Trans. 1984. 2081.
(73) Willing. W.: Müller, U.: Demant. U.: Dehnicke. K. Z. Vaturforsch. 1986. 4lb. 560.
(74) Demant. U.: Willing, W.: Müller, U': Dehnicke. K. Z. Anorg. Allg. Chem. 1986. 532.175.

