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SyaMBOLS

a wt or a constant
A Area
b Constant depending on radar beam shape, or a general constant

B;,By,Br Incident, transmitted, and reflected magnetic field vector amplitude

o] Radar tilt angle

;"’l Refractivity structure constant

c Speed of electromagnetic waves
c(t) Viscous damping coefficient

D, Antenna diameter

D, Structure function

E;.Er.Er Incident, transmitted, and reflected electric field vector amplitude

€ Turbulent eddy dissipation rate

€ Permitivity constant

f Coriolis parameter; f=2Qsin¢

i) Spectral density function

¢ Latitude, or radar beam width angle, or radar azimuth angle
G Antenna gain

g Gravitational acceleration at sea level

h Radar pulse length

J Cost function or electric current
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K Turbulent kinematic viscosity or wave number or spatial wave number

|K|* An Optical material property

k Absorption coefficient

k Unit vector in z-direction

I, L Lengths or length scales

L Loss factor

A Radar wavelength

1 Molecular viscosity

1o Permeability constant

n Index of refraction or an integer

N Index of refraction in N-units = (n-1)*108
v Molecular kinematic viscosity

w electromagnetic wave frequency

Q Earth’s rotation rate = 7.292X107°rad/s
P (-Wind shear angle) or a phase angle

© 90-¢ (for ¢p=azimuth)

po, P, P, p  Respectively: background density, density, mean density, and perturbation

density

Po,P,p,p’ Respectively: hydrostatic pressure, pressure, mean pressure, and perturbation

pressure
P Radar power
Rr Range to radar probe volume center



AS

UV,W
u,v,w

u' vw'

Ug,Va
Ug,Vg
\%

Vr

Ratio of incident to reflected electromagnetic energy, “reflectivity” in electro-

dynamics

Rainfall rate

Richardson number

Amplitude of the Poynting vector (energy flux vector)

A layer thickness

Standard deviation or backscatter cross-section

Variance

time or a time scale

Absolute temperature

Potential temperature or an angle

Viscous stress or a characteristic time

Stress tensor component (stress in direction y on plane normal to x)
Total x,y,z wind components. V is also used for speed, V=||
Mean x,y,z wind components

Perturbation wind components

Wind vector

Ageostrophic wind components

Geostrophic wind components

Volume

Radial velocity measured with radar

x,y,z or X,Y,Z Cartesian coordinates (x is East-West, y is North-South, Z is up-down)

X



dBZ

Reflectivity factor
Radar reflectivity

Z measured in decibels

Xi



ABSTRACT

This dissertation describes a project to elucidate the turbulent and momentum struc-
ture of the Great Plains Low-Level Jet (LLJ), primarily by the use of Doppler radar.
Simple theoretical and numerical models of the LLJ are developed which are extensions of
the Blackadar inertial oscillation theory. The results of this research are generally consis-
tent with this theory. Turbulence is central to this theory and the core of this research is
measurements of turbulence and wind speeds in actual LLJs, in addition to simple models.

The use of clear-air Doppler radar data appropriate for LLJ study, requires an under-
standing of the nature of the clear-air echo. It is important to avoid migrating birds as
targets as they are a large potential source of velocity bias. For this reason, considerable
attention is given to the source of clear-air echo, and a couple cases are analyzed with
high-resolution radars. This work strongly implies that the clear-air echo for the cases
considered was primarily insects. This contrasts with much recent work (reviewed here)
supporting the theory that migrating birds are a major source of clear-air echo.

Using radar data believed to be mostly free from migrating bird contamination, this
works describes and develops data reduction and quality control techniques so that high-
quality profiles and time-height cross-sections can be routinely obtained. These techniques
include dealiasing, minimizing the impact of ground clutter bias, obtaining a measure of
large scale turbulence from a VAD, and using spectral width information to extract both
a measure of small-scale turbulence as well as wind shear.

The principle original components of this research are:

1. Simple theoretical analysis and modeling of LLJ dynamics. This includes the exten-
sion of Blackadar’s 0-dimensional LLJ model to include turbulence; the development
of a detailed conceptual description of the LLJ oscillation; and the development of
the concept of resonance of the LLJ, with modeling studies showing a resonance

effect.

2. Analysis of the source of clear-air radar echo using high-resolution radars. Data from

high-resolution radars in two cases of nocturnal clear-air radar echo implied that the

xii



source of echo was insects for both cases.

. Development of a technique for extracting wind shear and turbulence information
from radar spectrum width data with VAD analysis. This technique is successfully

demonstrated.

4. Obtaining high vertical and temporal resolution profiles and time-height cross-sections

of velocity, turbulence, and wind shear of the LLJ using Doppler radar. Time-height
cross-sections of momentum and turbulence were obtained from NEXRAD radars in
the Great Plains for 4 cases which span the warm season. The results tend to confirin

the Blackadar theory.

. Analyzing VAD-derived wind profiles for ground clutter contamination. Ground
clutter was found to be a problem at both low and high tilts. This work revealed an

optimum tilt angle for VAD work of 1.5° when using NEXRAD radars.

xiii



Chapter 1

Introduction

1.1 Project History

I began this study as an investigation of turbulence in the LLJ (low-level jet). One
night I was flying a small airplane from Ada to Norman, Oklahoma. While descending to
land at Max Westheimer Field in Norman, I noticed that the plane’s ground speed was
much higher than expected and that I was off course to the North. I quickly realized I was
in the LLJ and corrected the plane’s course. I also noticed that the air I was flying in was
very smooth; it had not a trace of aerodynamic turbulence and the only clue that T was in
the jet was the rapid and unexpected movement past objects on the ground. I was curious
more than anything about what made the flow so smooth, rather than turbulent as one
might have expected from a free, fluid jet. Upon embarking on this research project, the
Cimarron Doppler radar was made available to me so that I could make measurements
on the LLJ with the radar collecting clear-air data. The question as to what causes the
radiation to be back-scattered in clear air gained in importance throughout the project,
and understanding and analyzing radar data became a large component of this dissertation.
This is because the temporal and spatial patterns of clear-air return are difficult to explain.
One explanation involves the presence of migratory birds. If migratory birds were the main
cause of my data, then the data would be far less useful then if the cause of the data was
insects or refractive index gradients. A lot of data was acquired with various radars in an

attempt to determine the cause of the nocturnal clear-air return. This issue should not be



regarded as firmly settled by this research, but I hope I have shed some light on it.

The Appendix to this dissertation began as a subsection of Ch. 3 covering a simple
derivation to determine the best tilt angle to use for VAD work. It gradually grew in size as
anomalies and errors in the daga were tracked down and explained. It eventually became
a substantial piece of work by itself. It is presented as a self-contained document, though
the concepts explored are closely related to other issues in clear-air radar work explored in

Ch. 3.

1.2 Motivation for this Work

The possibility that the LLJ might be laminar is an interesting one. This is because
free fluid jets are ordinarily turbulent, even for small Reynold’s numbers (see, for exam-
ple, Tennckes and Lumley, 1972, pp. 127-133). With the very large length scales (and,
therefore Reynold’s numbers) in atmospheric flows, turbulence is the most common state.
Stratification provides one mechanism for suppressing turbulence; however, the LLJ gen-
crates considerable wind shear, so it is not clear if static stability is sufficient to account
for a possible reduction or elimination of turbulence in the LLJ. For the LLJ, the extent
of turbulence has important implications for theories about it. With the Blackadar (1957)
theory, a large reduction or elimination of turbulence in the nocturnal phase is necessary
while other theories do not requiring a specific turbulent behavior. Only scattered and
inconsistent observations of turbulence in the LLJ have been reported in the literature.
To verify or refute the Blackadar theory, much better measurements are necessary than
have been heretofore reported. This research is an attempt to find out the extent to which
turbulence is suppressed in the LLJ and the basic cause of this suppression. Essentially,
it is an attempt to verify the Blackadar theory. This will help to clarify the relative im-
portance of different physical mechanisms proposed to account for the LLJ. This is being
addressed by using Doppler radar to obtain high-resolution (in both time and space) veloc-
ity and turbulence measurements combined with some numerical and theoretical modeling.
Radar measurements can provide a detailed picture of the actual momentum and turbu-

lent structure and time-history of the jet, while modeling provides a means of guiding the



acquisition, reduction and analysis of data.

Numerical and analytic modeling inevitably has limitations due to the truncation of
physics, numerical approximations, or possible coding errors. However, modeling provides
the means to explore and test the implications of theories. The physical parameters and
boundary and initial conditions can be varied to test theoretical predictions untestable by
other means. Nearly complete fields of physical variables are also available, something not
attainable with measurements. Measurements have limitations due to the limited temporal
and spatial extent they are available, the limited number of variables that can be measured,
and possible instrument failures. However, measurements, properly criticized, provide the

ultimate ground truth for any models, numerical or theoretical.



Chapter 2

Theory and Modeling of the LLJ

I think that the Root of the Wind is Water-
It would not sound so deep
Were it a Firmamental Product-
Airs no Oceans keep-
Mediterranean intonations-
To a Current’s Ear-
There is a maritime conviction
In the atmosphere-
-Dickinson, ¢. 1874

2.1 Literature Review of the Great Plains LLJ

2.1.1 The Low-Level Jet

The broadest definition of a low-level jet (LLJ) is simply any lower-tropospheric max-
imum in the vertical profile of the horizontal winds. A LLJ can occur under favorable
synoptic conditions anywhere in the world. Of practical interest is their impact on the
transport of moisture. Of theoretical interest is the large amount of vertical wind shear
associated with them and the observation that they are typically supergeostrophic by a
large (>50%) amount. A large number of specific geographic locations all over the world
have been identified as especially favorable for LLJ development (Stensrud, 1996). Among
these locations is the Great Plains region of the United States, in which one of the most

significant LLJs, in terms of its impact on precipitation and severe weather, occurs. The



Great Plains LLJ has consequently been studied more than any other and it is the principal
focus of this research as well.

In the climatology study of Bonner (1968), both southerly and northerly LLJs were
cataloged; but there were far more cases of southerly jets than northerly jets. For the
southerly jets in Bonner’s study, it was found that they tended to have a wind maximum
near 800 meters above ground level; that strong jets were primarily a nighttime feature;
that they occurred with greatest frequency during the spring and summer; that the states
of greatest activity include: Texas, Oklahoma, Kansas, Nebraska, lowa, Missouri, and
Arkansas; and that favorable synoptic conditions for LLJ formation are those which have
a strong west to east pressure gradient across the Great Plains and an uninterrupted flow
of air from the Gulf of Mexico. A more recent study by Whiteman (1997) has shown that
50% of LLJ maxima actually occur below 500m. Whiteman also found that the temporal
wind maximum typically occurs around 0200 LST (local standard time). The low altitude
and timing of the jet maximum means that routine observing systems such as wind profilers
and rawinsondes will poorly sample LLJs in the Great Plains, since the first gate above the
ground for the operational wind profiler network is at 500 meters and routine rawinsondes
are taken near 0600 and 1800 LST. In the climatological analysis of Bluestein and Banacos
(2002), a mean LLJ was found in the northwest quadrant of surface cyclones, but not in
other quadrants of cyclones and anticyclones.

The low altitude and southerly flow of the LLJ make it a key element in the return-flow
cycle of air from the Gulf of Mexico ( a typically event for the November through April
season). In this cycle, northerly flow advects dry, typically cool continental air out over the
Gulf of Mexico where it is modified by surface processes and gains moisture. To complete
the return-flow cycle, this modified air then advects northward back onto the continent by
way of low-level winds. The LLJ is a principal mechanism by which this moist and unstable
air from the Gulf is advected northward into the United States where it ultimately becomes
precipitation. Higgins et al. (1997) in an analysis based on the assimilated data sets of
NCEP/NCAR and NASA/DAO found that low-level flow of moisture from the Gulf of

Mexico at night is increased by 48% from mean values when a LLJ is present. Indeed,



Arritt et al. (1997) showed that the widespread Great Plains flooding event of 1993 was
associated with a prolonged period of strong LLJs.

In addition to being a powerful means of moisture transport, the LLJ can also promote
convection by inducing uplifting from convergence along the nose of the jet (Zhong et
al., 1996) which can combine with divergence aloft from an upper-level jet (Beebe and
Bates, 1955). The strong nocturnal phase of the jet is widely believed to be particularly
important in promoting nighttime convection. The LLJ has been linked to the occurrence
and intensity of mesoscale convective systems and appears to be an essential ingredient in
the environment that produces mesoscale convective complexes. This is due presumably
to the enhancement of both warm advection and the advection of moist, unstable air
(Maddox, 1983). Such complexes produce a large portion of the warm season rainfall over
the United States.

Further, the presence of a LLJ, especially when combined with an upper-level jet, pro-
vides a veering of winds with height that is favorable for the development of severe weather
and tornadoes (Uccellini, 1979). Helicity values from operational models are strongly en-
hanced by nocturnal LLJs, which leads to the issuance of tornado watches instead of
thunderstorm watches. Research hasn’t been reported which backs-up the association be-
tween nocturnal enhancement of helicity by a LLJ and the occurrence of tornadoes, but

at least some forecasters believe it to be reasonable.

2.1.2 The Blackadar Theory

A number of theories have been proposed to account for LLJ dynamics. Probably the
most important theory is due to Blackadar (1957). This theory accounts for both the daily
oscillation in jet intensity and for the significantly supergeostrophic velocities observed
during the nocturnal phase. Even when another theoretical mechanism is believed to he
important in a particular case, the Blackadar idea is still often invoked to fully account
for the observations. Numerous modeling studies (e.g., Djuri¢, 1981; Beyrich and Klose,
1988; Fast and McCorcle, 1990; Savijarvi, 1991; and Zhong et al., 1996) have supported

the importance of the Blackadar mechanism. The observations of Parish et al. (1988)



also strongly support the Blackadar mechanism. Blackadar explains the cycle of the LLJ
as an inertial oscillation that relies on the retardation to subgeostrophic speeds of lower
tropospheric air due to vertical, turbulent mixing with the heated surface during the day.
Once surface heating ceases near nightfall, the layer of air in contact with the ground
undergoes radiative cooling, becomes statically stable, and decouples from the layer of air
above which becomes nearly frictionless and turbulence free and accelerates due to the
synoptic pressure gradient. The effect of the Coriolis force on this accelerating, frictionless
air stream is to cause an inertial oscillation with supergeostrophic speeds being reached
after several hours. Some of the analysis and results of the Blackadar are repeated in Secs.
2.2.2 and 2.3.

The inertial oscillation caused by the Coriolis force has long been known to oceanog-
raphers (e.g., Sverdrup, 1942, pp. 431-442) who observe rotating ocean currents and who

use the same mathematically used later by Blackadar to analyze it.

2.1.3 Other Theories and Modeling of the LLJ

Theories other than the Blackadar theory have been proposed to account in whole or
part for the LLJ. One mechanism analyzed by Holton (1967) describes the nature of the
LLJ as a response to the diurnal heating and cooling of sloping terrain, which results in a
periodic variation in thermal wind and a consequent surface geostrophic wind oscillation.
This mechanism makes no appeal to variations in turbulent mixing and has the advantage
of explaining why the LLJ tends to be located over the (gently sloped) Great Plains, which
the Blackadar theory does not address. However, Holton realized there were discrepancies
between his results and observations which he thought were likely due to time and height
variation in turbulence as in the Blackadar mechanism. Holton’s analysis also includes
the Coriolis force as an essential ingredient which rotates the fluctuating east-west wind
component into the north-south direction, creating a southerly LLJ. In a two-dimensional
modeling study, McNider and Pielke (1981) supported the view that both the Blackadar
mechanism and the impact of differential heating of sloping terrain are of importance to

LLJ dynamics, though they found that the terrain effect was actually dominant. This



study is important in that it is the only one which found effects of terrain to be dominant.
In direct contrast, Savijarvi (1991), who also used a two-dimensional model, found that
terrain had very little impact. In a sensitivity study, Savijarvi removed the terrain in the
model and found only a 15% decrease in maximum jet amplitude.

Wexler (1961) applied the boundary current concept that accounts for the Gulf Stream
in the Atlantic Ocean as an explanation for the preponderance of LLJs east of the Rocky
Mountains. Holton (1967), however, suggested that scale analysis does not support a close
analogy between ocean boundary currents and the LLJ. Anderson (1976), on the other
hand, showed that a model based on the boundary current idea worked well in simulating
an African LLJ.

Finally, Uccellini and Johnson (1979) presented a theory for the dynamical coupling
of upper-level and low-level jets, with the LLJ forming in response to mass adjustment
and isallobaric forcing. Their analysis covered the interaction of upper jet streaks and
lower-level jets in general, though they specifically looked at a case study for a developing
ageostrophic LLJ over the Ohio to Kentucky area during the day (May 10-11, 1973, a severe
weather outbreak case). Their analysis indicated that this jet became supergeostrophic in
response to the upper jet streak by about 20%.

Terrain, horizontal variation in surface heating, the general synoptic situation, the
Coriolis force and temporal and vertical variations in turbulence all are potential contrib-
utors to LLJ dynamics. It is likely that the proposed mechanisms vary in importance with
different cases and with different geographic regions in which LLJs occur. It is also likely
that several mechanisms, if not all of them, make simultaneous contributions to what ul-
timately results as a supergeostrophic, nocturnal jet, and this is indeed what most of the

modeling studies cited above have found.

2.1.4 Turbulence and the LLJ

In the Blackadar theory of the LLJ, boundary layer turbulence is crucial to the forma-
tion of supergeostrophic winds and to the diurnal cycle in general. During the daytime, the

vertical mixing in the convective planetary boundary layer prevents the jet from developing



as momentum is mixed down to the surface and lost. Without this daytime frictional force,
there can be no nocturnal oscillation since, theoretically, the amplitude of the oscillation is
related to the amount the jet is retarded during the day. The stronger the daytime mixing,
the greater the jet exceeds geostrophic speeds at night. However, the extent of turbulence
at night is important in the Blackadar theory too. As recognized by Blackadar (1957), his
model is only valid where there is insignificant nocturnal mixing. He hypothesized that the
LLJ rides above a layer of statically stable, but still somewhat turbulent air {due to vertical
wind shear). In the Blackadar theory, the LLJ itself must quickly become turbulence-free
after nightfall, otherwise turbulent dissipation will rob the jet of inertia and diffuse away
the wind shear. Since the core of the LLJ has only marginal static stability, the spread of
turbulence from the vertically sheared winds above and below is a significant possibility
which, if it occurred, would weaken the importance of the Blackadar model. Fluids with
free shear layers in general and free jets in particular are almost always highly turbulent
(e.g., Tennekes and Lumley, 1972), so it is not all obvious that the LLJ ought to be laminar.

Free jets tend to be turbulent due to the lack of nearby boundaries to stabilize the flow.
Atmospheric flows have vertical stratifications of buoyancy which can enhance or suppress
hydrodynamic instability (and consequent turbulence) by affecting vertical motions. A
non-dimensional parameter called the “gradient Richardson number” or Ri, balances the
effect of shear and stratification. It can be defined as (Turner, 1973, p. 12):

g2
Ri = —29Z,

()

where p is the air density and du/0Z is the magnitude of the vertical wind shear. Ri

O

®

R

thus represents the ratio of buoyant to shear forces. As defined, small values of Ri are
more likely to be turbulent. Theoretical considerations and experiments imply a critical
Ri of 0.25, below which turbulence is expected (i.e., low is hydrodynamically unstable for
Ri<.25). Mabhrt et al. (1979) reported measurements from the Wangara experiment and
from experiments in Colorado and Nebraska of the nocturnal atmospheric boundary layer.
They produced averaged profiles of wind speed and Ri for cases with weak LLJs and found

strong maxima in Ri (of the order of 1 to 2) in the jet cores while being less than .25 below



the jet core in the shear layer. This is reasonable because the center of the jet itself has
little wind shear and is typically located in an inversion.

Some data have been published about nocturnal turbulence in the LLJ. Kaimal and
[zumi (1965) obtained turbulence measurements for a nocturnal LLJ from an instrumented
tall tower in Texas. Their data shows turbulence developing at the level of maximum
shear just above the inversion and below the jet maximum. This turbulence then spread
throughout the jet and lasted for several hours. During this time, the jet continued to
develop and did not appear to be altered by the turbulence, even though, according to
the Blackadar theory, it should have been. Since only one jet was reported in this study,
it is not clear how typical this behavior is. Parish et al. (1988) reported turbulence
measurements from an airborne sensor in another LLJ case. They also found a substantial
increase in turbulence at about 0230 LST which involved most of the jet below the jet
peak and which did not appear to hinder the development of the jet. These researchers
attributed this increase in turbulence to vertical shear. It is particularly interesting that
while Parish et al. documented a several orders of magnitude decrease in turbulence from
daytime values in the region above the jet, the half of the jet below 940 mb became
almost as turbulent at 0230 LT as it was during during the day. Their measurements
are also curious in that while the amount of vertical shear was about the same in the
upper jet half as the lower, the upper jet half had insignificant turbulence even though
the static stability was less there. In contrast, Lenschow et al. (1988), reported aircraft
measurements for two LLJs which showed very little turbulence in the jet core. In addition,
Frisch et al. (1992) reported turbulence measurements in an LLJ obtained with Doppler
radar. They found that turbulence (measured as the variance in the vertical velocity)
diminished by an order of magnitude at all levels at night relative to daytime values, with
some increase in turbulence late at night in the shear layer below the jet core. However,
recent preliminary measurements using aircraft penetrations on two jets reported by Clark
and McDermott (1997) indicated that the level of turbulence in the two jets differed by an
order of magnitude, with the more highly sheared jet having more turbulence; and that, for

the more intense case, the turbulence could be as important to dynamical forcing as other
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terms in the momentum equation. It appears from these measurements that turbulence
may be more important in some LLJs than others. If a threshold of vertical shear (or
some other parameter) exists above which turbulence is triggered, then the impact would
be highly non-linear. In any case, not enough measurements or analyses are available to

clearly define the role of turbulence in the LLJ.

2.2 Development of Governing Equations and Turbulence Pa-

rameters

2.2.1 Basic Equations

Using the Boussinesq approximations (namely V- @ ~ 0 and H—;% ~ 1, with p a
deviation density from a constant background density, pp) and ignoring molecular viscosity,

the general equations of motion are (e.g. Arya, 1988, p. 123) for wind vector @ =(U,V,W):
V-7 =0 (2.1)

Which expresses mass conservation, and:

aUu 1 OP
w =T T he
dv 1 P
@ = Uy
dw p 10P
—_— = —g— - — 2.2
dt gpo po 0z (22)

Which express Newton's second law. The parameter fis the Coriolis parameter and g is the
gravitational constant. For these equations, P and p are deviations from the hydrostatic
background values, Py and pg. The background states is generally a function of z.

To arrive at equations for mean momentum in the presence of turbulence, we apply

Reynolds averaging. We use the decomposition:

!
u+u

U

V o= v+
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W = w+uw
P = p+yp

p = p+yp (2.3)
where g, p, u, v, w are averages and o', p’ , v’ , v/ | w' are deviations from the average
(which have time averages equal to zero). Strictly speaking, these are ensemble averages
over a large number of independent but nominally identical flow realizations. However,
if the flow is statistically stationary for some time interval, At (i.c., %’%% << 1), then
time averages can be used. The interchangeability of ensemnble and dynamical averages is
known as the ergodic hypothesis.

Using the decomposition (2.3) in (2.2), averaging the equations, applying rules for

averages, and using V - ? = 0, gives the following for ‘f}{ :

@_@+W - @+( + /)a_“_,_( +U/)a_“+(w+ I)?ff

dt i dt | or TWTWg TWT UGy P
ou' ‘ N N o’
+§+(u+u)a$+(v+v)ay+(w+w)az

_ o, 0w W) | B[00 o
- @ oz By 0z 9z oy T oz
_odu s O 0 [, ?_,]
= dt+a$uu +6yuv +azwu wWV-u =0

with similar expressions for %‘t: and %‘i. Equating with the average of (2.2) gives equations

for the average wind acceleration components:
du 1 dp —
dt po 0 Oz oy 0z
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dv , ldp 00— 045 05—

= - et Ay o I ey S R Y SN

dt fu po Oy Oz dy U T Y

dw p 10 00— 00— 0——

oo gL Y- L - L 2.1
dt g{)() po Oz e dy W sz « (24)

stress, similar mathematically to molecular viscous stress, 7 . Shear stress due to viscosity,
from the constitutive relation for a Newtonian fluid with constant kinematic viscosity, v,

is:

Try ( ou v )
—_ =y — + -—
p dy Oz

We can hypothesize a constant turbulent kinematic viscosity (or eddy viscosity), K, as first
done by Boussinesq in 1877, and model:
— Ou Ov
—-u'v = K (~— + —)
dy Oz
N fOu  Ow
—-vw' = K ( + )

a_z oz
—-ww = 2K (%)
- = 2K (g%)

€.

Physically, the correlation terms, for example 5 (w'w’) , are expected to be non-zero and
to transport momentum in a manner somewhat analogous to molecular perturbations
(Tennekes and Lumley, 1972, pp 34-50). A fluid perturbation moving at w' up or down
will acquire u’ if % is non-zero, as w' transports x-momentum upward or downward. This
transported x-momentum creates some u'. If a mixing parcel is being moved by w' for a
characteristic time, t, then an estimate of the parcel’s change in u is:

Ou

Au' = —w'ta (2.5)

which suggests a correlation will exist in observed v’ and w’ for a flow with shear. Equiv-
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alently, w't can be replaced by a characteristic length scale, 1, analogous to the mean-free-
path of molecular motions. This also, once again, suggests modeling turbulence by analogy
with molecular viscosity which transports momentum by the same correlation mechanism.

If (2.5) were exactly true, with u'~ Au' :

0 arlant — () ”?2 du
az(uw) = 0z( taz)
_ 0 T@u 0 ,_/d“
(')z(w t@z) Oz(“laz)

Which suggests modeling K in terms of characteristic velocity, time, and length scales as:

. 2
Koxw?t=uw'l= n

Expressing K in terms of any two of the three characteristic scales w’, 1, and t; is again
analogous to requiring any two of the three physical properties of pressure, temperature,
and density in order to determine molecular viscosity. From the standpoint of making
measurements of turbulence (as in Ch. 4), the velocity scale, w’, is the easiest to measure
directly and may be the only one available (by way of measurements of the turbulent
kinetic energy). Since K is what matters in the equations of motion, w' is not by itself
sufficient to characterize the effect of the turbulence. Either a length or time scale are
additionally needed. However, in the mixing layer theory of Prandtl (1925), it is assumed

that the velocity scale can be related to the length scale and the mean shear:
w' =1V (2.6)

Where 7 =(u,v,w) and | is known as the mixing length. This assumption does not follow
by analogy with molecular viscosity where it would be invalid because the characteristic
velocity perturbation of molecules is related to the temperature and is completely unrelated
to the butk shear. If this assumption is made for turbulence where one can argue that

turbulent velocities are related to the shear, then K can be estimated in terms of a single
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characteristic scale as:

wrz

Ko ——
*vE

(2.7)

which is entirely in terns of quantities that can be directly measured with a Doppler radar.
This equation will be used for deducing K from radar data in Sec. 4.7 4.

The assumption of (2.6) is probably reasonably good during nighttime conditions when
the turbulence is generated mostly by shear. In this case, w' ~ [ % However, during
daytime conditions, turbulence is generated largely by buovancy. In this case, velocity
perturbations are caused in large part by buoyancy and not shear, so that (2.6) and (2.7)
would not be expected to be valid as w' would be due to both buoyancy and the existing
shear that was being mixed . Even during nighttime conditions, regions of stable stratifi-
cation could make (2.6) invalid due to suppression of vertical motion from positive static
stability. However, the error is certainly less than an order of magnitude, and possibly
within a factor of 2. Nonetheless, K values calculated by applying (2.7) should be viewed
with some skepticism.

There are many theoretical short comings of the turbulent viscosity and mixing length
concepts due to differences between molecular and eddy dynamics. For example, in simple
plane Poiseuille flow, the laminar solution is a parabolic profile. The solution using a
uniform turbulent viscosity is also a parabolic profile using a constant K, while the problem
is unsolvable using (2.7); but observations of turbulent and laminar Poiseuille flow reveal
that while the laminar solution is correct, actual turbulent profiles are quite different,
having a much flatter profile in the core of the flow. Mixing length theory can be made
to work in the case of Poiseuille only if the mixing length can be empirically related to
distance from the solid boundary (for example, White, 1974, p. 469-70). The concepts of
eddy viscosity and mixing length are at least dimensionally correct and are prevalent due

to the lack of superior alternatives.

2.2.2 f-Plane Analysis of LLJ Dynamics

The purpose of this section is primarily to provide a description of how energy can build-

up in the LLJ due to the action of turbulence, a phenomena suggested by the Blackadar
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(1957) theory. This is at first glance paradoxical as turbulence ordinarily subtracts energy
from systems.
For a non-convective (w=:0) and approximately horizontally homogeneous boundary

layer of air: (2.4) reduce to f-plane equations (which assumes f has no latitudinal variation):

du 1dp  0——
il fo PR P (2.8)
I 1o —_
(:l; = —fu- /To()_z - av’w’ (2.9)
0 = —ﬁg 1% ,i'w’w’
p- polz Oz
With the turbulent viscosity model, these become:
wo_ 1% 0o
dt poOr 0z Oz
dv 1dp 8 _ov
— = —frv—-——= - = K— 2.
dt fo po Oy 0z 0z (210)
D 1 0p 0, Jdw
pog po 0z [Bz 0z )

We note that the vertical equation reduces to the hydrostatic relation. Also:

—u' —v'
K= K(Z, t) = Tom T T o
0z 9z

For geostrophic balance with no turbulence, du _ dv _() and the geostrophic wind is:
& ! dt dt g p

1 op 1 dp
T pef0r T ol By 21D

For analyzing the LLJ, it is convenient to restate (2.8) and (2.9) in terms of the geostrophic

and ageostrophic wind components:

U= Ug + Uy V=0 + Uy
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’. . R . fu, dv, ,
With an approximately constant pressure gradient, (_dTL = —¢ =0and (2.8) and (2.9) =

du, _ ( ——

prali fue Oz(u w')

dv o —

Tta = —fu, - Ez(v’w’) (2.12)

Ignoring any variation in the geostrophic wind, allows these equations to only represent
the Blackadar inertial oscillation theory of the LLJ and, in particular, can not capture
the Holton theory involving heating and cooling of terrain (which impact the geostrophic
wind through the hydrostatic pressure gradient fluctuation). A constant geostrophic wind
essentially implies a balance between the ageostrophic wind and the acceleration of the

ageostrophic wind. Blackadar (1957) originally solved these for no turbulence, getting:

Uy = Uqpcos(ft) + veosin(ft) (2.13)

Mg = —ugpsin(ft) + veocos(ft)

Where u49 and vgp are initial values. The amplitude of the solution wind is:

\/ug +v2 = \/“(210 + v2, = const.

The angle of the ageostrophic wind, 6, can be found from tan(6) = v, /u, and is found using
(2.13) and trigonometric reduction to be 8 = 6y — ft (where tan(fy) = vao/uqo ) implying
clockwise rotation. (2.13) describes the classic inertial oscillation from the Coriolis force
in which the ageostrophic wind vector perpetually rotates around a circle with a constant
amplitude. See Fig. 2.1 for a hodograph of this oscillation.

The total kinetic energy per unit mass, KE is:

1 1
KE = 5(@ + @) - (@ + 7)) = 5(u* +°)

To get an equation for KE, we multiply (2.8) by u and (2.9) by v and add:

1 du? u Op
2dt2



(Upy)

6=6, -1t

, (yvy)

Figure 2.1: Diagram of hodograph of inertial oscillation. Figure shows fixed geostrophic
wind vector (ug,v,) and ageostrophic wind vector (u,,v,) which rotates clockwise.

18



59 = —fuv~ %_1/ - ’U—ZI)’(U’
d wdp v op J —— 0 ——
= —(KE) = ———— - — = —u—u"w — v —v'u' 2.14
dt( ) 00z pody (0 o uw —v (')zv w ( )

The Coriolis terms drop out, as they should since the Coriolis force acts perpendicular to
motion and, hence, does no work. However, the Coriolis force does ultimately affect KE as
it affects u and v, which are involved in (2.14). Neglecting the turbulence terms (as might
be appropriate under nocturnal conditions), and expressing the pressure gradient in terms

of the geostrophic wind, (2.14) =

d uwdp v Op
“(KF)= —— 22 _ 2% _ Uy — U 2.15
dt (KE) po Or  po Oy flug = uvy) (2.15)
1
= -9 (2.16)
Po
. - B . e dKE)
If the flow is geostrophic, u=u, and v=v, and == =0

In terms of geostrophic and ageostrophic winds:

- +

7

p—

+, Ty # KE,+ KE,  (2.17)

&
&

1
KE = (i + ) - (& + 7}

[N R
(SN

where KE, ::%u_g -7y and KE, :%175 . 173 . In the case of a constant geostrophic wind and

no turbulence, we know that only the term %, - @, oscillates (e.g., Fig. 2.1), so:

KE = KE, + KE 4 + oscillation (2.18)

Since the time average of the oscillating term is 0:

KE =KE, + KE, (2.19)

As we wish to consider the situation of a constant geostrophic wind, changes in KFE will
be related only to changes in K F,. It is therefore useful to examine the equation for KE,,
from (2.12):

d

— _ 9 alant 2 Dl
dt(KE'a) = uaaz(uw ) Vo (v'w’) (2.20)
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It is clear that only turbulence cnn alter KE,. KE, is the KE that would be measured in a
reference frame moving at U(J’ . For 175 = const., this inertial frame of reference is as valid
as any for describing energetics and is simpler for this situation as the constant energy
from the geostrophic wind does not appear. (2.20) is valid even if U,j # const, though the
geostrophic reference frame is no longer inertial, and interpretation of KE, would be more
complicated.

To facilitate further analysis, an attempt will be made to model the turbulent trans-

port/diffusion terms by viscous damping terms:

%W:c(t)u = ~%K% (2.21)
%ch(t)v = ——'dd_zK%

Where c(t) is some positive definite function of time. Doing this makes the 1-D equations
(2.8) and (2.9) 0-D, by eliminating the z-dependence. This is justifiable physically as one
way to model turbulent stress in a bulk expression is as a damping coefficient proportional
to speed (i.e., viscous damping). Damping proportional to speed is a crude, but poten-
tially effective, way to model turbulent dissipation. In numerical fluid dynamical methods,
viscous damping is used (where it is known as “Rayleigh damping”) in some areas of the
model domain to dampen unwanted flow. Mathematically, this can be partially justified

by considering the turbulent viscosity term:

Ju(z,t)
AR = (2.22)
If K is replaced by a layer average, (2.22) =
T Tuet) (2.23)
022 '

If u can be expanded in z approximately as a cosine function of wave number 1 with an

arbitrary, but separable, temporal dependence function, f(t), as:
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u(z,t) = cos(lz) f(t)

then
g.g = —lsin(lz)f(t)
% = =Leos(l2)f(t) = —1*u(z, 1)
and
2 i = _0% % = PR(t)u(z 1) = c(t)u

The use of a frictional term proportional to wind speed and in the opposite direction was
first done by Guldberg and Mohn in 1876 (reviewed by Kutzbach, 1979, p. 101-110).
Viscous damping of the surface layer is sometimes referred to as the “Guldberg-Mohn
hypothesis” (Lewis, 1997).

The question arises as to the usage of the ground-relative 7 in (2.21), since w'w' is
independent of the choice of inertial reference frame while @ is reference frame dependent.
¥ is appropriate here, instead of, say, @ or 17,5 , because it is the velocity relative to the
ground that gives rise to turbulence. In other words, when % is zero, there will be no
turbulence, which (2.21) correctly models.

With (2.21), (2.20) becomes:

{
a(—;(KEa) = —ugcu —veev = —c(iy - W)
= (@ (@ + ) = ~cCKE, + 7T}

= -2¢KE, - ci, - @ (2.24)

In (2.24), the term -2cKE, is always negative and the term c @, - ifj, can be positive or

negative. (2.12) becomes:

d;ta = fu, —cu (2.25)
% = —fu, —cv (2.26)
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(2.25) and (2.26) are zero-dimensional and describe the behavior of an air parcel subject
to the Coriolis force, a constant pressure gradient (which does not appear, having been
removed with the geostrophic wind), and turbulent dainping. There are no spatial gradients
to the velocity components. Pressure, of course, has a spatial gradient, but this gradient
is a constant in the equations, and since pressure is not solved for, there are no relevant
spatial gradients.

To understand how the inertial oscillation arises as the result of friction, we consider
a situation initially in geostrophic balance, @, = 0. By (2.24), {%(KEa) =(). However, by

(2.25) and (2.26):

du, ’

pralial

dvg

—Evf— = —cvy (2.27)

(2.27) show the transport of momentum from the ground to the air parcel due to friction at
the ground. This occurs since, in this reference frame, the ground is moving by an amount
of -izj).

After a short time, At,

Uq = —CugAt vy = —cugAt (2.28)
but ¥ =~ ) (2.29)

so from (2.24), KE, then develops according to:

d

2 2
EKE'Q = c uyugAt + cvgvg At

= (- a) At

And KE, will be created initially due to the action of turbulence making the flow ageostrophic.
The second term in (2.24), -c&Z - @, can be positive or negative depending on the
orientation of @ relative to u_,j , while the first term, -2cKE, is always negative, and,

therefore, always subtracts energy. It is clearly only the second term that can add energy
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to the system. For this to happen, we need:
Uy -y <0 with 4 -, = T |@)| cosd

which occurs when the angle between %, and Ug’ , 0, is:

90° < 6 < 270° (2.30)
For KE, to grow, we also must have, from (2.24):
(2KE, + @ - y) <0

or

~g - Uy > g - (2.31)

or

~ 1B @] cost > @ or [@}] < - [@}] cost

This gives a maximum possible amplitude to the ageostrophic wind. In order for (2.31) to

be satisfied, we must have |@| <|ug| or |, =|Tgl, and | @], =21T.

According to the inertial oscillation theory, c(t) is large during the day giving rise to

;. After sunset, c(t) is much smaller. If it is zero at night, then from (2.24):

d
E(KEH) =0

and from (2.25) and (2.26):

du, f dv,
a %

= ~fu,

And the ageostrophic wind vector rotates according to (2.13), and total KE will increase

by way of the oscillating term in (2.18). KE, will increase during the day only if % 175 <0
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and |#g] < — |@)] cosh.

If the turbulent damping, ¢, is large, then one might suspect a steady-state solution
might exist despite that fact that (2.8) and (2.9) are known to have oscillating solutions
(such as the inertial oscillation). This is because, with sufficient damping, the Coriolis
force should be overwhelmed and 4, ought to approach -, (which is constant) according
to (2.25) and (2.26) with ¢/f large. Seeking a steady-state solution to (2.25) and (2.26),

we start with:

clug +ug) = fo,

C('Ua + 'Uy) = —f“a

Solving these for v, and v, gives:

9
—c [
7'5—11.9 -~ —f-’U(J
Uqg = ————-——1 =
+ i
2
¢ c”,
T'ILg - Tgl)g
Vg = ———F5—

1+§§

The squared amplitude and direction, 8, of the ageostrophic wind are then:

2 4 .2
. . Uy + v
Ui + vzzz = -2 zg
1+ L
and
C
v Ug — FV
tan(f) = — = —Z——i (2.32)
e —fug = v
For ¢/f large, these equations imply that 4, = —iu}. For c=f, || = ‘%Wg’l with iz

at a 135° angle from . However, these results would only be reasonable for large c/f.

During daytime conditions of intense surface heating, they might have some validity, but
their value here is mostly conceptual, allowing the understanding of what happens during
daytime conditions in a zeroth order sense.

The developments in this section lead to the following conceptual picture of the LLJ

oscillation and how energy can build-up in it due to the action of turbulence:
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1. If you begin at point A of the hodograph of Figure 2.2 with an air parcel in geostrophic
balance (&, = 0) at some time during the day, this parcel will initially acquire
ageostrophic wind A}, = —cAtw, due to turbulent transport with the ground, ac-
cording to (2.27). The Coriolis force and the pressure gradient do not act initially,
as the flow is in approximate geostrophic balance. KE, increases while KE, is con-
stant. However, Total KE decreases due to the negative sign of the oscillating term
in (2.18). This obviously must be the case as damping subtracts energy from the sys-
ten, and it is the only force active initially. In the reference frame of the geostrophic
wind, KE (=KE,) increases due to the action of turbulence as the ground is moving

at -HZ and some of this momentum is transferred to the air. In the ground-relative

reference frame, KE decreases due to turbulence.

2. After some time, significant ageostrophic wind develops and the ageostrophic wind
vector will tend to rotate clockwise due to the constant pressure gradient. Turbulence
will continue to increase KE, only if the amplitude of the ageostrophic wind is less
than the geostrophic wind and if the angle, 6, between the geostrophic wind and
the ageostrophic wind is between 90° and 270° (visually, if @ points to the left of
the 90° - 270° line indicated in Fig. 2.2). Total KE is decreased by the action of
turbulence and can oscillate due to the pressure gradient, following (2.14). Following
(2.20), KE, can increase or decrease from turbulence, depending on the direction
and amplitude of @;. @, rotates clockwise due to the Coriolis force, but this does

not affect KE,.

3. At sunset, &, is possibly at point B in Fig. 2.2. The angle between & and u at
B depends to some extent on the ratio ¢/f (possibly similar to [2.32]). The greater
the turbulence during the day, the closer %, would be to -z'[; and the more rapidly it

would get there.

4. After sunset, ¢, the measure of turbulence, is conceived to be nearly eliminated as the
boundary layer stabilizes from radiative cooling at the Earth’s surface. Consequently,
, only rotates at night, according to (2.13), by an amount that depends on f (and

consequently on latitude), ending at point C at sunrise. KE, is constant while KE
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oscillates due to the action of the prevailing pressure gradient (and indirectly the
Coriolis force). When 6==0, the peak in KE is reached and equals (from (2.17)) KE,
+3KE,.

5. After sunrise, the cycle repeats with turbulence again affecting the wind, in addition
to the Coriolis force. How @}, develops on the second day depends on where point C
in Fig. 2.2is. If Cis to the right of the 90°-270° line, then KE, will initially decrease
due to turbulent damping. However, if 7z, begins at point C’ instead, then turbulence
could immediately increase KE,. This means that certain combinations of c¢(t) and
f can be more effective in creating inertial oscillations and LLJs. The possibility of
resonance, in which the periodicity of ¢(t) and the value of f are matched so that the

amplitude of KE, increases on subsequent days is explored in the following section.

When turbulence is creating KE,, it is reducing total KE, as would be expected from
a source of diffusion. Total KE eventually increases, however, because of the action of
the Coriolis force which, when turbulence is weak, rotates the ageostrophic wind vector.
The rotation of this wind vector towards the direction of the geostrophic wind cause the
geostrophic and ageostrophic wind vectors to add constructively, and results in an increase
in KE.

More precise solutions with varying functions for c(t) are explored in the next section.

2.3 Zero-Dimensional Modeling

In Blackadar’s 1957 paper, he formulated a simple 0-D model of the LLJ which illus-
trated the basic physics of the inertial oscillation. The equations of motion for a Lagrangian
parcel subject only to horizontal motion, the Coriolis force, a pressure gradient, and friction

reduce to [2.10}:

du 1dp 0 _ Ou
?ﬁ'— fv—;Ea—T—'a—ngz- (233)
du 1dp 0, 0v
5 = Ju- P (2.34)
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Figure 2.2: Hodograph diagram of history of ageostrophic wind under f-plane conditions
with a constant pressure gradient and daytime turbulence, beginning during the day
at geostrophic conditions (point A), passing through daytime subgeostrophic conditions
(point B), and rotating during the night through supergeostrophic conditions to point C
or C', which may or may not be supergeostrophic.
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If the turbulence term is dropped from these equations, then they describe the motion
of a particle subject only to a pressure gradient and the Coriolis force. If the pressure
gradient is constant in space and time, then this is a 0-dimensional system (that is, v and
v vary temporally, but not in space). The solution is straight forward and was shown by

Blackadar (1957) to be:

Uy = Ugpcos(f1) + vagsin(ft), Vg = Va0¢08(ft) — ugpsin(ft)

Where 1, and v, are the ageostrophic components of the wind and ugg and vug are the
initial ageostrophic values. This describes a circular oscillation of the motion vector in
hodograph space which goes on indefinitely in the absence of friction. The amplitude of
the ageostrophic amplitude is exactly equal to the magnitude of the initial ageostrophic
wind. If the flow is initially in geostrophic balance, then there is no oscillation. This
ageostrophic oscillation with a frequency equal to the Coriolis parameter, f, neatly shows
the inertial oscillation of the Blackadar theory with the supergeostrophic amplitude at
night equal to the (initial) subgeostrophic amplitude during the day.

We also obtain this solution using a Runge-Kutta integration of (2.33) and (2.34),
shown in Fig. 2.3 for a latitude of 30° and in Fig. 2.4 for a latitude of 50°, both for an
initial ageostrophic wind of u=0 and v=0 m/s and for a pressure gradient corresponding
to a geostrophic wind of uy= 0 and v,=10 m/s (i.e., the winds are initially subgeostrophic
by 10 m/s). Runge-Kutta integration is used later for alterations of these equations which
are more difficult to integrate, here it merely provides a check that the code is working
correctly. These figures illustrate that the frequency of the oscillation depends on the
latitude.

Integration of (2.33) and (2.34) becomes nontrivial when turbulence (K) is included
(Martin and Shapiro, 1999). In order to keep the equations 0-dimensional, it is necessary to
replace the Laplacian with a viscous damping term (that is, damping which is proportional
to wind speed). Here, we will take a proportionality coefficient c(t)=r(1+coswt), where r
is a constant:

— = —fu— == —c(th (2.35)
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Figure 2.3: Inertial oscillation at 30°N latitude for no friction.
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Figure 2.4: As Fig. 2.3 at 50°N latitude.
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du_ py o L%y, (2.30)

The coctlicient r in the viscous damping is unknown, but could in principle be found by
comparison with multi-dimensional models. This depends on surface physics and turbu-
lence in the PBL. Damping plays a complex role in these equations. If the flow is initially
geostrophic, then with no damping, the flow will remain geostrophic; while very large
damping will damp-out the inertial oscillation and any possibility of resonance. An inter-
mediate level of damping is necessary for resonance of the inertial oscillation to manifest
itself. A valuc of r is chosen here such that a LLJ forms with a supergeostrophic amplitude
similar to that typically observed (i.e., a wind speed 40% above the geostrophic value).

An exact solution of (2.33) and (2.34) is available due to Shapiro (personal communi-

cation):
t t , : ,
v = (vpcosft— uosinft)e_fo emdr A/ sinf(t—t )eff' e(r)dr gy
0
= Jo etr)d t o= [ erydr
u = (vosinft+ ugcosft)e Jo T ~A/ cosf(t — t)e™ J¢ €T gy
0
10 i)
where A = the constant pressure gradient force = ____p’ and 2P = 0
p Oy o0z

Using the exact solution produced results identical to the Runge-Kutta integration to
within round-off error.

Equations (2.35) and (2.36) are integrated for a constant geostrophic pressure gradient
corresponding to winds of uy=0 and v,=10 m/s as in Figs. 2.3 and 2.4. However, now
we start from geostrophic balance and let the model friction generate the subgeostrophic
flow. The results at 30 and 50 degrees latitude are shown in Figs. 2.5 and 2.6.

While the amplitude in Fig. 2.5 at 30°N latitude grows with each day reaching a
supergeostrophic amplitude 40% above the geostrophic in 3 days, the amplitude at 50°N
latitude shown in Fig. 2.6 doesn’t grow and remains very close to the geostrophic value.
This shows a very clear resonance effect. Since the Coriolis parameter (and the frequency
of natural oscillation, f, is: 2Qsin(¢$) where ¢ is latitude, and the frequency of diurnal

forcing is © (i.e., 27 radians per day), resonance is expected when these two frequencies
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Figure 2.5: Inertial oscillation from 0-D model with friction at latitude 30°N.
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Figure 2.6: As Fig. 2.5 at 50°N latitude.

are the same, which occurs when:

Q= 2Qsin(p) or ¢ = 30°

With initial conditions that are ageostrophic, the evolution would be different, depending
on whether the ageostrophic amplitude was in phase or out of phase with the forcing,
though it is expected that the final amplitude of the oscillation, after a sufficient number

of days, would be the same.
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2.3.1 Resonance in 0-D model

The possibility of resonance was first suggested by Buajitti and Blackadar (1957),
but has not been analyzed since and Buajitti and Blackadar did not believe it would be
significant due to viscous damping. Actually, viscous damping is essential to the creation
of the inertial oscillation and to resonance. If the Blackadar theory of the LLJ as an inertial
oscillation is correct, the jet decouples from the boundary layer at night and damping at
night will be minimal, while damping during the day is necessary to drive the oscillation.

By running the 0-D model over a range of latitudes, a resonance plot can be created,
Fig. 2.7, in which the amplitude of the oscillation after a period of time (in this case 11
days) is plotted as a function of latitude. The damping coefficient is the same as Fig. 2.5,
but the solution is integrated out to 11 days and the peak-to-peak amplitude of the last
cycle is analyzed at each latitude. Fig. 2.8 was generated in the same way as Fig. 2.7
except the damping function was chosen to be a square wave instead of cosine wave. This
more abrupt transition in forcing appears to lead to a stronger resonance peak, which is
at 30 degrees in both cases, as expected theoretically. These plots suggest that resonance
will be a possibly significant factor at latitudes of 25 to 40 degrees north or south. By
reducing the damping, the resonance peak becomes more sharply defined, as shown in Fig.
2.9 where the damping coefficient was selected to be 1/3 that of Fig. 2.8. As damping is
reduced, the oscillation takes longer to establish itself due to weaker forcing of the inertial
oscillation, but the amplitude of the oscillation after a long time is more sharply defined
near the theoretical maximum as the reduced damping allows more energy to accumulate

in the oscillator.

2.4 One-Dimensional Modeling

As a next step towards modeling the LLJ, we now take an advanced 3-D mesoscale
model (the Advanced Regional Prediction System, ARPS) with a complete suite of surface
physical, radiative, and turbulent parameterizations and run it in a 1-D mode that retains
all variables as a function of height (but does not allow horizontal variations). Fig. 2.10

shows the winds at 300m when all sources of friction and mixing in the model have been
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Figure 2.7: Resonance curve with cosine damping.
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Figure 2.8: Resonance curve with square-wave damping.
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Figure 2.9: As Fig. 2.8, but with 1/3 of the damping.

turned-off, and run from the same initial conditions as Fig. 2.3. Here, with no sources of
friction, the model behaves just as the 0-D model did in Fig. 2.3. This generally confirms
that the model is functioning correctly.

All the appropriate physical parameterizations are then turned-on and started from the
same initial condition of geostrophic balance as in Figs. 2.5 and 2.6. Figs. 2.11 and 2.12
show the results at 30 and 50 degrees latitude respectively. The 1-D model runs are quite
similar to the 0-D model runs. The difference between Figs. 2.5 and 2.6 (0-D) and Figs.
2.11 and 2.12 is that the oscillation in the 0-D model depends on an assumed damping
function while the oscillation for the 1-D runs depends on complex radiative, surface, and

turbulent transfer parameterizations.

2.4.1 1-D Model Sensitivities

Mesoscale models inevitably come with a wide selection of different physical parame-
terizations that can be selected by the user for each physical process. By experimenting
with some of these selections, we have found, not too surprisingly, that the LLJ is strongly
dependent on which parameterization is chosen. Figs. 2.13 and 2.14 show results with
model conditions identical to those of Fig. 2.11 (1-D at 30°N latitude) except for the

selection of turbulence model. In Fig. 2.11, a turbulent kinetic energy formulation of
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Figure 2.10: 1-D mesoscale model with no friction at 30°N latitude.
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Figure 2.13: As Fig. 2.11 but with Smagorinsky turbulence.

turbulence following a scheme of Moeng and Wyngaard (1986) is used, while for Fig. 2.13,
a Smagorinsky (1963) parameterization is used, and in Fig. 2.14, a turbulent kinetic en-
ergy formulation of Sun and Chang (1986) is used. The Sun and Chang and Smagorinsky
turbulence models produced a much weaker jet than the Moeng and Wyngaard, showing
very little evidence of a resonance effect. The Smagorinsky turbulence model (the simplest
parameterization of turbulence used here) produced a particular weak jet with only slightly

supergeostrophic winds.
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Figure 2.14: As Fig. 2.11 but with Sun & Chang turbulence.
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Chapter 3

Clear-Air Radar Data

What I can not create, I do not understand — Richard Feynman

3.1 Scope of Clear-Air Work

It is the purpose of this chapter to provide a general review and discussion of radars
and of clear-air radar data, and to analyze and come to some conclusions about the nature
of clear-air radar signals. In later chapters, clear-air radar data will be used to deduce
momentum and turbulence profiles of LLJs. A basic initial goal of this project was to
acquire and analyze data of the LLJ using Doppler radar. The most relevant conditions
from a standpoint of both LLJ dynamics and radar data analysis are conditions free of rain,
which will generally be clear-air conditions for the radar. For NEXRAD and Cimarron
radars, clouds that do not have precipitation usually have very low reflectivity, often too
low to measure, so clear-air conditions can be cloudy, but not rainy. It is, thus, necessary to
understand from basic principles what the nature of the clear-air signal is. This topic has
been the subject of some controversy and confusion over the years. It is a large and complex
subject, with hundreds of references extending back to the beginnings of radar. Knowledge
from numerous diverse fields is drawn upon in studying clear-air return, including the fields

of electromagnetics, fluid mechanics, meteorology, ornithology, and entomology.
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Figure 3.1: NSSL’s Cimarron Radar, looking NNW.

3.2 Radars Used for This Study

Altogether, data from 6 radars in 5 different raw data formats are included in this
dissertation. The most important of these is the Cimarron Doppler Radar (Figure 3.1)
maintained by the National Severe Storms Laboratory as a research radar. It is located
just south of Page airport, about 15 miles west of Oklahoma City with an elevation of 413
meters.

Table 3.1 shows the parameters for the Cimarron Doppler Radar and some of the
same information for NEXRAD radars (Zahrai and Zrni¢ 1993; and Crum and Alberty,
1993), the Doppler on Wheels radar (DOW3, Wurman, 1997, 2001), and the University
of Massachusetts 3 mm mobile radar (UMASS, Bluestein and Pazmany, 2000); all radars
which were used as part of this work. Cimarron has better spatial resolution than the
NEXRAD radars, due to the larger antenna. However, it is less sensitive (due to lower
power) and suffers more from noise. Its advantages are its higher spatial resolution, its
dual-polarization capabilities, and the fact that it can be used by researchers in any desired
mode (i.e., the user can specify the scan strategy, single or dual-polarization, number of
samples, etc.). It’s disadvantages are its non-standard data format, frequent maintenance
problems, and a lack of a display console to monitor data collection (now fixed). On
balance, the Cimarron Doppler radar has been invaluable for this study.

Data are collected remotely at the NSSL offices in Norman onto 8 mm tapes, which
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are then read using software which has been recently translated by NSSL to run on a
Sun workstation (Cimarron and another similar radar [now decommissioned] in Norman
were developed in the 1970’s). The software supplied by NSSL reads and decodes the raw
data one radial at a time (a radial is the data received from one set of sent and received
pulses with the radar at a certain azimuth and elevation angle) into speed, reflectivity,
spectrum width, and polarization fields. All subsequent analysis and display software for
these data used for this study were developed as part of this study. One radial of data
contains 768 gates 150m apart in radial direction. Each gate contains one byte of data for
speed, reflectivity, and spectrum width. When in dual-polarization mode, 3 more ficlds
are stored: differential reflectivity, differential phase, and correlation coefficient. In dual-
polarization mode, twice as many radar pulses are needed to produce one radial of data,
with pulses alternating between horizontal and vertical polarization. With 32 bytes of
housekeeping information, this means each radial has 2336 bytes of information in single-
polarization mode and 4640 bytes in dual-polarization mode. The number of samples
(transmitted pulses in single-polarization mode and half the number of pulses in dual-
polarization mode) used to determined values for a radial is selectable by the operator.
If a small number of samples is chosen, radials are output more frequently, but they are
noisier. 128 samples was generally used here. With a PRT (pulse repetition time, Table
4.1) of 768 us, this will give a radial every .098 seconds in single polarization mode and
data will accumulate at the rate of 86 Mbytes per hour (for either mode) and a standard
5 Gbyte 8 mm tape will hold about 58 hours of data.

The data digitization resolution is 1 m/s in speed, .25 m/s in spectrum width, and
approximately 1 dBZ in reflectivity. Reflectivity values are obtained from a look-up table of
calibration values based on raw-returned power corrected for range. Values for azimuth and
elevation are directly measured at the radar and stored with the housekeeping information
for each radial with a resolution of .1 degree. The Zulu time of each radial is also stored

in the housekeeping information to a resolution of 1 second.
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Parameter l Cimarron l DOW3 UMASS NEXRAD
Frequency 2735 MHz 9380 MHz 95040 MHz 2700-3000 MHz
Wavelength 10.97 cm 3.198 cm .3157 cm 10.0-11.1 c¢cm
Beam Width 0.9° .95° .18° .95°(3dB)
Peak Power 500 kW 250 kW 1.2 kW 750 kW
Antenna gain 46 dB 46 dB 60 dB 46 dB
Antenna diameter 10 m 2.44 m 1.2 m 8.0 m
Pulse Width 1 ps (300m) | .075-2s(23m-600m) | .2 us (60m) 1.57 us and 4.7 us
can be varied (471 m and 1410 m)
Receiver noise level -110 dBm -112 dBm -112 dBm -112 dBm
Matched filter bandwidth (6 dB) | 0.85 MHz NA NA NA
System losses 11.7 dB NA NA NA
Cross-polar isolation 20 dB NA NA NA
Maximum sidelobe level -22 dB NA NA -27 dB
Gate spacing 150 m 12m-600m 15 m 250 m for velocity 1 km for reflectivity
Velocity resolution 1 m/s NA NA .bm/s
Nyquist Varies Varies Varies Varies
Reflectivity resolution 1 dBZ NA NA .5 dBZ




3.2.1 Radar Display Software (RADDISP.F)

For this project, a FORTRAN90/77 program (RADDISP.F) was written to read radar
data in raw form from different formats and to display it as gray-scale, half-tone images. It
was very useful to have such software available as variants of it were used for analysis of the
data in extracting VAD information and velocity profiles. The use of custom-built software
also enforces a discipline of knowing the details of the raw format of the data being used,
and affords the opportunity to attempt to achieve a display of the best possible resolution
and quality.

A gray-scale display, rather than color, was chosen for a couple reasons. First, from a
practical standpoint, black and white images on a laser printer are faster, more convenient,
and cheaper to obtain. They are also cheaper to reproduce. Second, from a scientific
standpoint, the use of a gray-scale with the darkness proportional to magnitude of the
variable being displayed gives a more accurate visual impression of the spatial gradient of
the variable shown. The selection of a color table is often an arbitrary assignment of colors
to specific variable levels.

A color display for the field of velocity, however, is competitive with black and white
because color is a positive/negative quantity. If one color is chose for positive velocities
and one for negative (red and blue are common, for example), then shades of these two
colors (rather than the single grey color) work well for displaying this field. Still, superior
contrast interpretation is achieved using a single color. For example, a mesocyclone is
identified in color-coded radar velocity data as an area of red in close proximity to an area
of blue. This signature stands-out if one is trained to look for it. In a gray-scale image,
a mesocyclone would show as an area of white near and area of black. White/black is a
sharper contrast than red/blue and stands-out more clearly. With a single color, spatial
gradients in velocity are linearly mapped to the display, rather than arbitrarily with a color
table mapping. The software used in this research has been carefully optimized so that the
best possible resolution hard-copy images result. However, recent experience with human
viewers of black and white radar images suggests that the usage of color makes it easier

for people to read precise values of the presented variable from images, though gradient
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information would still be poorly represented.

One problem with displaying velocity on a gray scale is the need to avoid confusing
velocity data with missing data. It is most convenient and intuitive to display a region
with no valid data as simply white. For velocity displays, the minimum velocity to be
shown will be displayed as the lightest shade of gray, not white. This insures that any data
to be displayed will show as some level of grey, and will not be confused with no data.

RADDISP.F reads in radar data one radial at a time and maps it to a rectangular
array. The rectangular array stores the image to be displayed as pixel values. If radar
pixels that are large in size are to be displayed, each datum is mapped to the necessary
number of display pixels in range and azimuth. After the image is formed, it is passed to
a subroutine which converts it into a halftone Postscript image. To do this, each display
pixel is mapped to a 4 by 4 array of dots, which gives a possible 16 different shades of gray
to display. For half toning (which works much better than dithering), a single rectangular
dot is formed in the 4 by 4 array for a particular pixel value. The size of the rectangular
dot scales with the pixel value.

Standard laser printers now are capable of 600 dots per inch (dpi) resolution. With 4
by 4 array pixels, this translates to 150 image pixels per inch. A version of RADDISP.F
which uses 8 by 8 dot arrays to achieve 64 different shades of gray was also developed, but
is most appropriate for 1200 dpi printers.

The features of RADDISP.F are:

1. Creates Postscript output with 16 shades of gray.

2. Reads Universal Format (DOW3 data converted with the NCAR SOLO program).
3. Reads raw Cimarron format.

4. Reads raw UMASS radar format.

5. Reads NEXRAD level II format.

6. Will display sector scans, RHI, PPI, PPI scaled with height rings, and time-height

SCans.

43



7. Has a crude de-aliaser as an option. This de-aliaser works by taking a user speci-
fied environmental wind vector, and using it as a reference wind against which the
radial velocity datum closest to the radar is compared and checked for aliasing (and
potentially dealiased). This de-aliased radial velocity is then used as the reference
velocity for checking (and de-aliasing) the radial velocity at the next gate out from
the radar. The radial velocity at cach subsequent gate is checked using the already

processed radial velocity at the previous gate as the reference.

8. Will display fields of velocity, reflectivity, spectral width, raw power, and polarization

parameters.
9. Displays range-rings and radial lines speckled so they can be seen through the data.
10. Can display an arbitrary magnification of the data.

11. Annotates each image with 3 lines of identifying text.

3.2.2 Examples of Cimarron Clear-Air data

Figure 3.2 is an example of a clear-air reflectivity PPl scan (plan position indicator
scan), in this case with a tilt of 2 degrees obtained on March 17, 1999 at about 730 Z
(1:30 am local time). This image displays one complete scan of reflectivity, which took
about 1 minute to acquire in this case. Data values in the range of -25 to 20 dBZ are
mapped linearly into a gray-scale, half-tone postscript image with 16 shades of gray. Data
are plotted in this figure in a non-traditional manner using height above the ground as the
radial variable, rather than range from the radar. For analyzing wind profiles, it is much
more convenient to plot radar data in terms of height above the ground than in terms of
horizontal distance. In Fig. 3.2, range rings are plotted every 250 meters above the ground.
The total depth is about 2.5 km. The total horizontal range is then 2.5 km / sin(2°) = 72
km. Data for which the signal strength falls below the noise level are rejected, with the
reflectivity being set equal to -999 dBZ (which will appear as white areas in Fig. 3.2).

A few points are worth noting about Fig. 3.2. First of all, the maximum reflectivity is

about 25 dBZ, surprisingly high for clear-air. There is also a graininess to the reflectivity
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Elev min,max 2.00 2.00 Assumed data range: -20. 25.@ 3 gsp: S.
DATE: 31799 Times: 73150 73249 GMT RADS: 446 1640
CIM HGT dbZ HRINGS: 0.25km RAYS: 20.deg MAG 1.9

Figure 3.2: Reflectivity PPI scan at 2° of tilt from Cimarron radar, under nocturnal clear-
air conditions, 03/17/99 , 730Z. Range rings are drawn every 250 m in height above the
ground. Total horizontal range (the 10th range circle) is 72 km. Reflectivity range is from
-20 dBZ (white) to 25 dBZ (black).
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pattern; a strong variation in reflectivity over very small distances. As will be discussed in
Sec. 3.8, this granulation implies that the radar targets are isolated point targets. There
is a thick annulus of strong reflectivity within the central third of the image, which has
weak reflectivity within it and a rapid drop to much lower reflectivity outside it. There is
also a dark central disk of reflectivity which is partly due to ground clutter.

Figure 3.3 shows the velocity determined from the Doppler shift of the reflectivity
shown in Fig. 3.2. In this figure, lighter shades are velocities towards the radar and darker
shades are velocities away from the radar. This image shows a well defined LLJ from
the southwest, with an amplitude over 35 m/s. Some aliasing is apparent as some black
areas appear within the white inbound velocity region; and some white within the black.
Medium gray shading near the center of the image is caused by ground clutter.

Figure 3.4 shows the spectral variance plot of the velocities of the same radar scan.
The modulation of velocity variance with azimuth in a manner similar to the velocity is

due to wind shear, as will be discussed in section 4.3.

3.3 Radar Equations and Calibration

Calibration generally involves comparing the output of a measuring instrument (such
as a radar) with a known standard input. For Doppler radar, the velocity is determined
theoretically from the known physics. Aslong as the speed of light is known and an accurate
time base is available for determining the Doppler shift frequency, radars do not need
calibration for velocity. They do, however, need calibration for reflectivity. Reflectivity
values are determined from the power detected at the antenna from targets back scattering
radar energy. This power depends, among other things, on the precise power output of
the transmitter, losses in the wave guides, and the efficiency of the antenna. These losses
can not be known accurately enough theoretically and calibration must be done if accurate
reflectivity values are to be obtained. For the purposes of this study, precise reflectivity
values are needed in order to draw conclusions about the nature of the targets (birds versus
insccts versus index of refraction gradients).

What is commonly called “the weather radar equation” takes various forms, but gen-
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Elev min,max 2.00 2.00 Assumed data range: -35. 35.@ 4 fgp: 3.

DATE: 31799 Times: 73150 73249 GMT RADS: 446 164
CIM HGT VEL, m/s HRINGS: 0.25km RAYS: 20.deg MAG 1.9

Figure 3.3: Velocity scan of a LLJ from Cimarron radar
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Elev min,max 2.00 2.00 Assumed datarange: 0. 8.@ 1 gsp: 5.
DATE: 31799 Times: 73150 73249 GMT RADS: 446 1640
CiM HGT SPEC, m/s HRINGS: 0.25km RAYS: 20.deg MAG 1.9

Figure 3.4: Spectral variance data (square of spectral width) for a LLJ from Cimarron
radar.
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erally relates the received power to numerous radar and target parameters. For a single
target near the center of the radar beam for a system using the same antenna for trans-
mitting and receiving, it is (Probert-Jones, 1962; Doviak & Zrnic, 1984, p. 21-58; Battan,
1973, p. 29-33):

242
-no,
where:
P, = average received power
P, = transmitted power in pulse
G = antenna gain
A = radar wavelength
L = loss factor
r = range to center of probe volume
o = backscatter cross section of target

The loss factor, L, includes the effects of wave guide losses, antenna inefficiencies, beam
attenuation, receiver bandwith limitations, and any other factors not explicitly included.

For an antenna that is a circular paraboloid, the gain, G, is approximately:

G=— (3.2)

The beam width, 6, for common meteorological radars is approximately (Doviak and Zrnic,

1984, p. 26):

Where D, is the antenna diameter.

The backscatter cross section, o, is the cross-sectional area a non-absorbing isotropic
scatterer would have which reflects the same amount of energy as the target. o can be
much smaller than the actual physical size of the target if the target is a poor scatterer.

These equations depend upon the targets being in the far-field of the radar beam.
The radar beam changes shape with distance away from the antenna, r, due to diffraction

effects. The beam exits the radar antenna with a diameter equal to the radar antenna
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Figure 3.5: Diagram of radar beam.

diameter. At a distance of about 2D2/), it becomes the idealized conical shape usually
assumed. For a NEXRAD radar or for Cimarron, this distance is about 2 km. At distances
less than this, the beam is wider than that assumed by the radar equation and less power is
received from such targets than would be expected by (3.1), (see Fig. 3.5). If radar targets
need to be considered which are closer than 2D2/), then one way to apply the far field
equations approximately is by assuming the beam has a width equal to the radar antenna
diameter out to a distance of D,/6. This allows the replacement of r in radar equations
by D,/6 for r<D,/6.

For a population of targets, the contribution from each target to the averaged received
power simply add together, after accounting for their phases, (Doviak & Zrnic, 1984, pp.
48-49), and the radar equation is expressed in terms of total back scatter cross section per
unit volume times the volume illuminated. The illuminated volume is the volume of space
returning echoes to the radar at a particular time, and it depends on the beam width,
6, and the pulse length, h, the two-way transmission characteristics (i.e., the illuminated
volume is the intersection of the transmitted and reflected cones of energy), and a factor
to account for the Gaussian beam shape. The probe volume is approximately: 7r(1'9/2)2g—‘.
The factor h/2 occurs rather than h because at the time that signals arrive at the antenna
from a distance r, signals from locations from r4h/4 are simultaneously arriving, but

signals outside r+h/4 have yet to arrive or have already passed. The probe volume is half
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of the pulse width. The resulting equation (e.g., Battan, 1973, p. 32) is:

P.G?)\?0°hL Y06

- 3.3
T 1024(In2)7w%r? Vol (33)
where:
0 = round angular beam width
h = pulse length
2—‘:77—' =summation of backscatter cross section from all i targets in

illuminated volume divided by a unit volume
Since radars are designed to see water drops, which are typically small relative to
the radar wavelength, it is often assumed that the Rayleigh approximation applies to the

scatterers. This approximation is:
n® 2 6
UR(Ly = S\T [I(l D (34)

where K is a function of the index of refraction and absorption of water, and D is the drop
diameter. For mathematical convenience, the complex index of refraction, m, is defined as:
m=n-ik where n is the ordinary index of refraction and k is the absorption coefficient. K
is then defined as K==(m?2-1)/(m?+2) For water at microwave wavelengths, |K|* is about
.93 (see Table 3.2) . The limits of validity of the Rayleigh scattering approximation will

be addressed in Sec 3.5. The reflectivity factor, Z, is defined as

S DS 2 Y ORay
Z — 1 1 — , 1 .
Vol 70 |K|2 Vol (3:5)

The reflectivity factor, Z, is distinguished in the literature from the reflectivity, n, which

is defined as:

_ Zi a;
=Vl

The illumination volume, Vol, for a narrow beam is:

7r26%h

Vol =
ol 5

51



In common parlance, the reflectivity factor converted to decibels, dBZ, is often referred
to as simply "reflectivity”. Radar output is typically processed with Rayleigh scattering
from spherical water drops (3.4) assumed. Received power is translated through the above
equations, into Z values. When the targets are not small spherical drops of water, reported
Z values are effective values. A combination of (3.3), (3.4), and (3.5) yields:

_ PG*0°Lhn® |K|?
T 1024(In2)r2 )2

(3.6)

When it is believed that the target is a single scatterer in the probe volume, rather than
a distribution of Rayleigh scatters, the radar cross-section of the target can be recovered
from the reported Z value by equating (3.6) with (3.1), provided the single scatter is near

the beam axis, yielding:

78 |K[? r20%h r20%h
= 7 =80.6——2Z 3.7
16(In2)\1 Z =806 M (37)
which also vields the total radar cross-section in the illuminated volume.

With (3.2) in (3.6), the radar equation becomes:

P,Lha" |K|?
P = 3.8
T 1024(In2)r2 2202 (38)
Converting to conventional units and substituting in constants, (3.8) becomes:
Lh
P, = 1299x10-16 DEh # (3.9)

r2)\292

Where:
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P, and P; are in Watts

h is in meters

r is in kilometers
A is in centimeters
0 is in degrees

Z is in mm® /m?3

L is a dimensionless loss factor < 1
Since the power received can span several orders of magnitude, decibels are usually

used for recorded power levels. It is standard to used dBm for power measurements, which

is decibels of power relative to 1 mW:

P
dBm = IOlogF with Py = .001 Watts
0

Converting (3.9) to dBm gives:

P
P.(dBm) = —128.9 + 10log5-2t% + dBZ — 20logr — system losses (3.10)

Where dBZ is 10logZ, a logarithmic measure of reflectivity. The negative of the first two
terms on the RHS of (3.10) is often called the “radar constant”, or RC. If the pulse length

of the radar can be changed (as in a DOW radar), then the RC changes. In terms of dBZ:
dBZ = dBm + RC + 20logr + losses (3.11)

Accurate calibration determines the system losses, and can account to some extent for

inaccuracies in the assumptions inherent in the radar equation.

3.3.1 Calibration Error Effect on Z-R Relationships

The need for accurate radar calibration is, perhaps, under-appreciated. Because of
the logarithmic nature of reflectivity, estimates of rainfall rates made with radar are very

sensitive to the precision of the reflectivity measurement. Consider the Z-R relation of Joss
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and Waldvogel (1970):
Z =aR’ (3.12)

where Z is reflectivity in mm®

m~3 and R is rainfall rate in mm/hr. For Joss and Waldvogel
(1970), a=300 and b=1.5; other Z-R relations have this form with a and b taking on
different values (Doviak and Zrnic, 1984, p. 201). To find the approximate error in R due

to an error in dBZ, we first use the definition dBZ=10logZ and solve 3.12 for R giving:

=1 dBZ

R=a7% 1070

From basic error analysis, the absolute error in R, R, is found from:

_ OR) 9 -1 4z
OR = médBZ = OTB_E(G 5 10706 )ddbZ

Where ddBZ is the absolute error in the measurement of dBZ. This gives the fractional

error in R of;

0R  Inl0

R N
Or, with the value of b of 1.5:

0R

Every 1 dBZ error in calibration leads to a 15% error in rainfall rate. NEXRADs are
intended to be calibrated to within 1 dBZ, leading to a significant inherent error in rainfall
rate estimation. The inaccuracy of the admittedly crude Z-R relationship and any error in
calibration lead to significant reductions in accuracy. Reports of large underestimates in
NEXRAD-determined rainfall totals (e.g., Fo and Crawford, 1999, found a 28% underesti-
mate when compared with Oklahoma mesonet rain gauges) could be due partly to simple

calibration errors, though large errors in rain gauge estimates of rainfall are also a problem.

3.3.2 Calibration of NEXRAD, DOW3, Cimarron, and UMASS

NEXRAD radars record data in level II format, the rawest format generally available,

to a digitization of .5 dBZ. These radars are calibrated to within 1 dBZ by using internal
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reference signals. This is done by a radio-frequency pulse being injected into the receiver
every volume scan. Such calibration checks do not account for some kinds of system
degradation (such as antenna gain loss over time), and it is possible that some NEXRADs
may not be in accurate calibration. Indeed, those studying radar rainfall estimation point
to calibration error as a significant potential source of error (Anagnostou et al., 2001). It
is not possible to know the magnitude of possible unaccounted for system losses, but such
errors would be losses, not gains, in signal strength. If a NEXRAD were out of calibration,
it would likely be underestimating reflectivity values. Absent knowledge of such equipment
problems, the precision of NEXRAD reflectivity is assumed to be 1 dBZ.

DOWS3 has not been calibrated by reference signals or by reference targets. It is possi-
ble to calculate what the calibration should be using the formulas above (e.g., 3.10) based
on known radar characteristics and then adding a pessimistic 5 dB for system losses (Wur-
man, personal communication). Such an estimate would then be good to £ 3 dB, though
this would also miss certain equipment problems similar to the problems with NEXRAD
calibration. For example, mis-aligned wave-guide connections or a malfunctioning trans-
mitter with fluctuating power levels could lead to grossly erroneous calibration. However,
consistency of radar operation (e.g., that radar echoes of certain phenomena are similar
to those expected by the radar operator) lead to some confidence that the calibrations are
not too far off.

Cimarron radar is similar to NEXRAD in that it is calibrated by reference signals. In
recent years (Zrnic, personal communication) the transmitter has had significant power
fluctuations as much as 10 dB, leading to inaccurate calibration.

The UMASS radar was calibrated by using a reference target (a corner reflector) after
the completion of the 2001 data collection season (Pazmany, personal communication).
The calibration was found to quite accurate to within 1 dB and stable at that time.

A theoretical calibration for DOW3 to £ 3 dB and the system stated calibration for
NEXRAD to £ 1 dB are probably accurate most of the time and most studies using radar
reflectivity values simply assume their radars are in calibration, though we should realize

the possibility exists for significant calibration error. Ideally, radars should be calibrated
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by reference target both before and after an experiment. In practice, this is almost never

done.

3.4 Review of The Nature and Origin of the Clear-Air Radar

Return

The hypothesis that nocturnal clear-air return is due to migrating birds makes this an
important topic to cover here, since, if true, it would make radar profiling of LLJs highly
inaccurate as birds have air speeds of 10 to 20 m/s. That this might be the case is suggested
by the quality control of NOAA’s wind profiler network which routinely flags nocturnal
LLJ data as being contaminated by birds, and by radar ornithologists (e.g., Eastwood,
1967, Gauthreaux and Belser, 1998) who imply that clear-air ’angel’ echoes are almost
always birds. Recent studies by meteorologist (e.g., Zrnic and Ryzhkov, 1998; Jungbluth
et al., 1995; and O’Bannon, 1995) support the existence of bird contamination of S-band
radars; while Wilson et al. (1994) support the more traditional view that angel echoes are
mostly insects. Insects are probably acceptable tracers of air motion, except in situations
where they are all migrating in the same direction, since their uncorrelated motions would
only be expected to add a few meters per seconds to the spectrum width.

Almost all clear-air echos are believed to be caused by either insects, index of refraction
gradients (modified by turbulence), or birds. Other things which are known to occasion-
ally cause radar return are particulates in the form of smoke from fires or fireworks and
interference from other radio equipment or the sun. In order for particulates as small as
dust particles to give a measurable signal, enough needs to be present to give a visible
cloud (such as in fireworks). Individual insects, on the other hand, are easily detected by
modern meteorological radars. The large body of research available (much of it more than
30 years old) combined with the need to study the habits of birds and insects makes this
a daunting subject. Some reviews are available about the topic (e.g., Hardy and Katz,
1969; Battan, 1973, Ch. 12; Gossard and Strauch, 1983; Doviak and Zrni¢ 1984, Ch. 11;
Vaughn, 1985, and Hardy and Gage, 1990).

In the following sections, some of the variety and characteristics of clear-air radar
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echoes which have been observed (both day and night) are listed and the three possible
explanations for nocturnal clear-air return are discussed. Reference is made to some of the

data presented later in this report as illustrations of clear-air return.

3.4.1 Characteristics of Clear-Air Radar Echoes

This section lists some characteristics of clear-air return; all of which have been observed
as part of this research by either viewing NEXRAD radars from across the country, using
the Cimarron radar, or in the literature. However, some of these observations have not
been well-documented in the literature, despite the considerable literature on the topic of
clear-air return.

Clear-air return can occur as isolated (dot) targets or as layers or volumes filled with
reflectivity. Isolated clear-air targets have been referred to as “ghosts”, “phantoms”, or,
most commonly, “angels”. The term “angel” is used in the literature to refer to clear-air
echoes in general, including volumetric, layer, and point echoes.

Clear-air reflectivity has a very pronounced daily cycle. Typically, it is weak during the
day and confined to the lowest kilometer or less. There is a very definite dip in reflectivity
and height of return at sunset, followed by a rapid (1 hour) increase in reflectivity and
height of return (to 2 or 3 km). At any time of the year, reflectivity values often reach
surprisingly strong values. Nocturnal return can reach 25 dBZ in exceptional cases and
is commonly 10 dBZ or more, values comparable to those of light rain. Nocturnal return
gradually decreases towards the end of the night followed by a rapid dip at sunrise, which
is followed by a modest, but rapid increase to the daytime level. This cycle is summarized
by the data in Fig. 3.6 which shows average reflectivity below 2 km versus time and
height for one night in May. The local minima in reflectivity at sunrise and sunset are
quite interesting features which were seen on all nights examined as part of this research
in which appreciable clear-air return is received by a radar. Hardy and Glover (1966)
suggested that this cycle could be due to insects of one species leaving the atmosphere at
sunset while another one enters it at night. Whatever the cause, there is some distinct

change from daytime to nighttime scattering mechanism. There are no fixed rules obeyed
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Figure 3.6: Plot of average reflectivity below 2 km versus time for a nocturnal LLJ case.
Sunset is near 2Z and sunrise is near 11Z. Data is from the Cimarron radar from May 31,
1999.
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by clear-air reflectivity all the time and on some occasions, the clear-air reflectivity is as
strong or stronger during the day than at night. Strong clear-air reflectivity during the
day does appear to be correlated with strong nocturnal return.

Clear-air reflectivity is usually very weak over large bodies of water. This effect is
so marked that often details of a coastline can be discerned by looking at the pattern of
the clear-air return. It is common for the Melbourne NEXRAD in Florida to show 10
to 20 dBZ of reflectivity over land at night and none over adjacent coastal waters and
Lake Okeechobee. Small islands can sometimes be seen as isolated spots of reflectivity.
Sometimes, though, reflectivity is just as strong over water as over land. The frequency of
strong reflectivity over water is not known.

There is a pronounced seasonal variation in clear-air return with return generally being
stronger in the warm season. In the Great Plains, late spring seems to have the strongest
clear-air return at night. Day-to-day values can fluctuate considerably; however with
reflectivity magnitudes differing by 20 dBZ from one day to the next.

There are strong day-to-day regional fluctuations. On one night, for example, the clear-
air return could be strong over the Gulf Coast states and weak everywhere else while on
the next night it might be strong over states in the upper Midwest and weak along the
Gulf Coast and everywhere else. Clear-air return tends to be weak at locations west of the
rockies year round.

Clear-air return is sensitive to synoptic boundaries. Typically, clear-air return is strong
at night in the spring south of a cold front and weak north of it. Boundaries generated
from outflow from storms can sometimes be seen to be co-located with gradients in clear-
air return for presumably similar reasons (whatever they are); however, clear-air return at
night is sometimes strong everywhere, including entirely around an MCS up to the edge
of where there is strong reflectivity from water drops. Thin lines of clear-air reflectivity
are common in the Great Plains region. For reasons which have never been clucidated,
they tend to best defined (thinest and sharpest) in the late afternoon, though they can be
present at any time of the day or night. Nocturnal thin lines are most often seen associated

with thunderstorm outflow. Daytime thin lines are more common, and so numerous that



is not always clear what they are related to. Fronts, drylines, outflow boundaries, and
convergence lines are all candidates for the cause of a thin line on NEXRAD radar.

Clear-air reflectivity is often granular in presentation. Fig. 3.2 shows a wide area
of reflectivity consisting of a large number of discrete spots. The granularity is different
between daytime and nighttime return (Browning & Atlas, 1966), with nighttime return
having larger grains. This granulation is strong evidence for large particulates, possibly in
the form of insects or birds, being the source. This hypothesis is explored by high-resolution
radars in this report in Sec. (3.8).

Rings and lines of clear-air reflectivity are also often seen. Thin lines on radar appear
to be associated with a variety of wave phenomena and boundaries including: fronts,
drylines, gust fronts, and sea breeze fronts. The source of echos for such lines has been
attributed to insects accumulating at meteorological boundaries (Wilson et al., 1994);
however, boundaries are also typically locations of potentially large and sharp index of
refraction gradients. Apparent convective rolls are commonly seen during the day with
the clear-air reflectivity showing a pattern of parallel lines. Expanding rings of clear-air
return are also seen at certain times of the year in the morning. Elder (1957) first noticed
these and suggested that they might be due to a sort of shear-gravity wave. However,
it is now recognized that these expanding rings are almost certainly due to birds leaving
nesting sites (Battan, 1973, p. 258-9, Eastwood, 1967, p. 165-181, Gauthreaux and Belser,
1998). These rings occur reliably from the same central geographic point every morning
over known nesting sites of birds, and birds can be observed leaving these sites in the
early morning hours. In Oklahoma, such rings are seen and have been identified with
various species of egrets, a relatively large bird (Bider, personal communication). Personal
observations of bird rings in Central Oklahoma have revealed the birds to fly in small
isolated groups of 2 to 10 birds. At sunset, expanding rings of reflectivity are also seen
in some locations and have been identified with bats leaving roosting sites. Rings of
reflectivity 1 to 3 km in diameter which do not expand are also sometimes seen; sometimes
numerous such echos are seen covering a considerable horizontal area. These are believed

to be the result of convective cells or thermals in the lower atmosphere (Doviak and Zrni¢,
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1984, p. 417).

Layers of clear-air return are also often seen, especially with the longer wave-length
radars. These are often co-located in altitude with inversions (Lane and Meadows, 1963;
and Friend, 1940). Sometimes these layers are seen to form Kelvin-Helmholtz rolls which
subsequently break into turbulence.

PPI scans (plan-position indicator scans, horizontal displays of data in polar coordi-
nates of range and azimuth) of reflectivity during both day and night (but more often at
night) sometimes show quite marked bilateral symmetry in which reflectivity is strongest
in two directions 180 degrees apart. An example is given in Fig. 3.30. The bilateral
symmetry also extends to polarization variables (Zrni¢, 1999). This symmetry was noted
by Schaefer (1976) who attributed it to insects being aligned in the same direction. It
was noted by Gauthreaux and Belser (1998) who attributed it to migrating birds all being
aligned. An insect or bird explanation for this bilateral symmetry stems from the larger
radar cross-section from biological targets when viewed broadside, as opposed to head- or

tail-on.

3.4.2 Birds as The Cause of Clear-Air Return

Ornithologists began studying birds with radar as early as 1945. Eastwood (1967) gives
an excellent review of the early history of radar ornithology. Eastwood accepts that birds
are the cause of most point-target angel echoes. He states (p. 88), “Radar studies made
by a number of observers both prior and subsequent to this work have left little room
for doubt that birds and angels may be substantially equated.” In terms of biasing radar
wind profiles, it is mostly when birds are all moving in the same direction that they are a
problem, which, of course, would be expected to be the case during migration.

Ornithology and the study of bird migration is a fascinating and rich subject (e.g.,
Berthold, 1993). For meteorological purposes, however, generalizations about bird behav-
ior should probably not be made. Birds exhibit a wide variety of behavior even within
a single species, and there are thousands of species. Generally speaking, even though or-

nithologists are able to make some broad statements about bird behavior, they also cite
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many exceptions. For example, Lowery and Newman (1966), who studied migration pat-
terns on four specific nights, revealed a great variety of behavior of birds relative to fronts,
prevailing winds, and day to day; with birds sometimes flying with the wind, sometimes
against it, and sometimes flying in opposite directions in nearby geographic regions. Me-
teorologists should probably just accept that it is possible for birds to be migrating at
anytime of the day or night, on any day of the year, with any relationship to the weather,
and in any direction. And any patterns that exist can change from year to year. The Date
Guide to the Occurrences of Birds in Oklahoma (Grzybowski et al., 1992) lists 441 species
of birds which frequent Oklahoma, the majority of which migrate from place to place at
varying times throughout the year.

Birds tend to be most active (i.e. flying for whatever purpose) at sunrise and sunset.
Migratory birds, which must move long distances, often travel at night, sometimes in flocks,
but also individually (Bider and Schnell, personal communication). It may be possible that
birds traveling north could deliberately take advantage of the LLJ by flying in it; however,
it is not clear by what means they might discern the existence of a jet or what level it is
best to fly at. Since the habits of some migratory birds are synchronized with the nocturnal
boundary layer, it can be difficult to tell if changes in clear-air reflectivity between night
and day are due to differences in bird numbers or differences in boundary layer dynamics.
Bird behavior is species-dependent, with many species migrating during day light hours. A
great deal of detailed information about birds has been learned by ornithologists; however,
reasons for every detail of bird behavior (such as the precise advantage of migrating at
night versus day) are not known with any certainty, though speculation is abundant. For
example, it is speculated that one of the reasons some species migrate at night is to avoid
being spotted by predators. Another reason considered is that during daylight hours,
birds are busy feeding, and some fly at night so as to avoid conflicting with this activity.
Another theory is the need to use the stars for navigation. There are probably more
unproven theories about how birds navigate than any other ornithological topic.

Bird behavior is driven almost entirely by instinct. A remarkable example of this is

given by studies of European Blackcaps (Berthold, 1993, p. 146). Blackcaps from the
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western part of central Europe migrate towards the southwest, while those from eastern
Europe migrate towards the southeast. Hybrid Blackcaps that result from cross-breeding
western and eastern European birds, exhibit instinctive southerly orientation. The means
by which birds determine direction is a subject of debate in ornithology, with some fasci-
nating theories (Able, 1999) that are well beyond the scope of this work.

Birds should certainly be detected by weather radars when present, though it is not
obvious if they fly at a high enough altitude and in large enough numbers to really be
a serious source of contamination. Most birds spend their lives less than 100 m above
the surface. NOAA’s Environmental Technology Laboratory (ETL) considers this to be
a significant problem and radar wind profiler data at night at low levels during certain
months of the year are routinely flagged by them (under certain criteria) as “bad” based
on the assumption that the data are due to birds (van de Kamp et al., 1997, Miller, 1997,
Wilczak et al., 1995). This is particularly unfortunate since wind profiler measurements
of the LLJ in the spring time are almost always rejected by ETL.

The strongest evidence in support of the bird theory are observations from balloon
soundings simultaneous with radar derived wind profiles which show radar derived winds
significantly different from those derived from balloons. These differences appear to occur
only at night and during seasons when birds are expected to migrate. O’Bannon (1995) and
Gauthreaux et al. (1998b) report on this discrepancy with NEXRAD VAD wind profiles
and Wilczak et al. (1995) report on this problem with long wavelength wind profilers.
These differences can be as large as 15 m/s, with the difference wind vector consistent in
direction and amplitude with what would be expected if the radar was tracking migrating
birds. Jain et al. (1993) examined this problem by comparing Cimarron VADs with CLASS
soundings for a LLJ in May. They found radar winds higher than the balloon sounding
by about 4 m/s. They considered birds as a possible explanation, but doubted it because
of the horizontal uniformity of reflectivity over a wide area. Instead, they blamed the
discrepancy on the long sampling time of the CLASS system. The CLASS balloons use
sampling times (operator selectable) from 30 seconds to 2 minutes. In 2 minutes a typical

balloons will have risen 300 meters. This coarse vertical resolution is significantly poorer
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than what the radar is capable of and means the balloon may miss recording the actual
peak speeds in a jet. Their data indicated that the research-grade CLASS soundings did
a very poor job of sampling the LLJ.

Observations of differences between VADs and rawinsondes in a manner consistent
with errors due to migrating birds is very strong evidence in favor of birds being the
source of nocturnal clear-air return during at least some LLJs. Strong nocturnal clear-
air return occurs on almost every night there is an LLJ, and the identification of some
bird contamination on some occasions suggests that all radar data for LLJs could be
contaminated by birds. However, a number of observations suggest that this is not the

case:

e Nocturnal return has a substantial areal coverage and is most often very homogeneous
(over length scales larger than the granularity pattern of a few kilometers), with fairly
constant reflectivity levels over an area many states in size. Nocturnal return is also
commonly strong throughout a depth of 2 to 3 km. The vertical profile of this
reflectivity is highly variable, varying from sometimes fairly constant levels up to 2
km, to sometimes thin vertical layers of high reflectivity. In order for birds to be
the source of this reflectivity, they must occur in large numbers evenly distributed

through the breadth of a wide area and in varying ways in the vertical.

e Bird rings (expanding rings of reflectivity in the morning which are unequivocally
due to birds leaving nesting sites) have reflectivities of 5 to 15 dBZ (Gauthreaux
and Belser, 1998), comparable to nocturnal reflectivity values. Bird rings are caused
by a fairly dense concentration of birds. In order for the strong nocturnal return
to be due to birds, this necessary concentration of birds would have to exist over a
large volume of space, and would require a very large number of birds. One bird in a
radar probe volume can account for 10 dBZ of echo (O’Bannon, 1995). Using a radar
probe volume equal to a 100 meter cube, one bird per probe volume over the state of
Oklahoma through a depth of 3 km would require a half billion birds. It is not clear,
though, how closely spaced the birds would need to be. One bird per 500 meter cube

would only require 4 million birds. However, spacing that wide would tend to imply
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a more intermittent radar signal at short ranges (where the probe volume is smaller)
which is not observed. Gossard and Strauch (1983, p. 174) by counting the number
of individual echoes with a 1.5 meter resolution FM-CW radar used at night in July
in Nebraska, determined there were about 1 echo per 12 meter cube through a depth
of about .5 km. They assumed the echoes were caused by insects. This density would
imply about 46 billion members over the state the size of Oklahoma, which would

certainly preclude birds.

The observation that nocturnal return is typically extremely weak over water can
perhaps be explained by a reluctance on the part of birds to fly over water. However,
Gauthreaux and Belser (1998) show images of clear-air reflectivity at night along the
gulf coast in southerly flow (their Fig. 2). Typical of nocturnal return, the images
show very weak reflectivity over the Gulf and strong reflectivity over land. In order
for this reflectivity to be due to birds, the coastal area must be a source of migrating
birds all night, as the radar indicates a southerly (rather than parallel to shoreline)
direction. This would tend to violate the continuity equation for birds. Observations
of NEXRADs along the Gulf of Mexico coast at night often show a more marked
boundary in reflectivity over land and water than that shown by Gauthreaux and
Belser. Sometimes the reflectivity extends a little ways out over the Gulf, in which
case the birds must somehow be materializing over water (or that they fly at low

levels over the ocean and gain altitude over land).

The observation of bilateral symmetry in PPI displays of reflectivity at night has
been cited (Gauthreaux, 1998) in support of the bird hypothesis, as it is reasonable
to expect the reflectivity of a complex reflector like a bird to differ depending on
the azimuth angle. However, this is really rather strong evidence against the bird
hypothesis because this bilateral symmetry is rarely seen at night. If the reflectivity

is really caused by migrating birds, the bilateral pattern ought to occur all the time.

The time-height cross sections of the LLJ obtained with radar in Figs. 4.23-4.26 are
also inconsistent with a bird explanation because the measured speeds increase too

slowly. Sunset is at near 2Z in the figures and the reflectivity rises to strong values
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within an hour. If this increase in reflectivity was caused by birds taking off for a
nights migration, then there ought to be an abrupt increase in speed of 10 to 20 m/s
coincident with the reflectivity increase . Instead, the speed gradually increases from
6 to 10 m/s at .5 km within the hour after sunset. It takes 3 hours after sunset for

the speed to increase by 10 m/s.

It is difficult to obtain observations of the numbers and altitudes of birds flying at night,
and reports of the actual presence of birds during times when radar winds appear to be in
error have not been reported. Mueller (1983) is an exception. He had an optical telescope
slaved to a tracking radar with a high intensity light. This permitted visual observation
of the scattering object if it was a bird. Still, Mueller could only verify the identity of one
echo. A standard method of counting birds at night is to observe moon crossings of birds
through a telescope, from which traffic rates can be extrapolated. Gauthreaux (1998) has
correlated such bird crossings with NEXRAD reflectivity levels. There is, however, a great
deal of scatter in this correlation. Also, bird moon crossings do not give any information
on the altitude of the birds.

Ornithologists have used meteorological radars extensively in studying birds. Some
of the bird behaviors invoked by meteorologists to explain nocturnal clear-air return may
have been learned by ornithologists using radar without confirmation by other means. To
avoid erroneous reasoning, only facts about bird behavior learned without radar should
be used in support of the theory that radar return is caused by birds. For example, if
the fact that birds sometimes migrate at 12 000 feet has been learned by ornithologists
by studying radar data without confirmation by other observing methods, then this fact
should not be used to support the theory that radar echoes at 12 000 feet are caused by
birds. The same is true for facts about insect behavior used to support arguments that

clear-air return could be due to insects.

3.4.3 Insects as The Cause of Clear-Air Return

Similar to radar ornithology, radar entomology has existed from practically the begin-

ning of radar. As early as 1949, Crawford (1949) identified insects as the cause of most,
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if not nearly all, angel echoes. He came to this conclusion on the basis of the difficulty of
artificially creating refractive index inhomogeneities strong enough to be sensed by radar,
and on visual observations of insects coinciding strikingly with radar observations. Riley
(1989) provides a review of radar entomology, and Drake and Farrow (1988) and Burt and
Pedgley (1997) review issues of insect migration versus meteorology. Most insects stay
close to the surface when under self-directed flight, presumably to stay in the layer of air
near the surface where ambient winds are weakest (Srygley and Oliveira, 2001). Insects
which fly at altitude migrate primarily with the ambient winds, which are typically much
faster than insect self-propelled air speeds. As long as insects are not aligned, they pose
little threat to radar wind measurement accuracy. However, insect alignment, believed to
occur by entomologists, could add an erroneous 5 m/s to radar-determined winds. Align-
ment of insects was identified by Riley (1975) in which a bilateral pattern of symmetry
in the PPI display of radar echoes was believed to be caused by insect alignment and the
higher radar cross-section for insects when observed broadside. Comparison of a pilot bal-
loon and radar tracks indicated that the targets were moving against the wind with an air
speed of about 5 m/s. The means by which widely separated insects align themselves in
the atmosphere are not known with certainty. A target source similar to insects is balloon
spiders (Suter, 1999). In the case of balloon spiders, the long threads of silk used by the
spiders to suspend themselves in the atmosphere are potentially good reflectors of radar
energy.

The LLJ has been cited by several entomologists (Drake, 1984, 1985, Wallin and Loo-
nan, 1971; Berry and Taylor, 1968) as directly assisting insects in migration. Drake (1984,
1985) studied moths migrating in a nocturnal LLJ in Australia. He also observed with a
3.2 cm radar (common among entomologists) bilateral symmetry of PPI reflectivity scans,
presumably due to insect alignment. Drake also observed the radar echoes concentrating
into thin layers aloft at an inversion. Drake also noted the rapid increase in reflectivity
at dusk, which he attributed to a mass take-off of large insects. Aerial trapping with a
kite-borne net confirmed the presence of moths up to an altitude of 220 m. Of course, the

confirmation of insects does not prove that most of the radar signal was due to insects,
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since birds may have been present as well. However, Drake reported radar echoes with
a radar cross-section of about 1 cm? | typical for large insects. This, combined with the
large number of echoes and the trapping of some insects, convinced Drake that most of
his echoes were insects. The migration of aphids, a very tiny insect, appears to be greatly
aided by the LLJ. Wallin and Loonan (1971) found aphids appearing in Iowa after LLJ
episodes advecting air from Kansas, Oklahoma, and Texas, where aphid populations were
high. They found that LLJs were a predictor of the timing of aphids and infestation from
a plant virus they carried. By using airborne traps, Berry and Taylor (1968) confirmed
the presence of aphids to an altitude of 610 m at night in Kansas. The concentration of
aphids did not depend on the presence of a LLJ for the cases they had data for. They also
found that the concentration at night was about one third that during the day.
Influential studies conducted at Wallops Island in the mid 1960’s compared the clear-air
reflectivity patterns obtained simultaneously with radars of different wavelengths (3 cm,
11 cm, and 71 cm; Hardy and Katz, 1969). These experiments showed a wavelength de-
pendence of the strength of echo for different kinds of clear-air return. These experiments
showed that dot echoes in the lower troposphere decreased in reflectivity at longer wave-
lengths. This is what is expected for scattering from objects smaller than the wavelength
of the radar. Such Rayleigh scattering has an inverse dependence on the fourth power
of wavelength. This supported the view that the scatters were small objects, probably
insects. Thin layer echoes, on the other hand, were stronger at the longer wavelengths.
This dependence was shown to be quantitatively consistent with scattering from index
of refraction gradients caused by turbulence which has an inverse dependence on the 1/3
power of wavelength. As a result of these experiments, dot echoes are firmly believed to
be due to insects or birds, even if they are concentrated into thin layers several thousand
meters aloft. More recent work with multiple wavelength radars by Wilson et al. (1994)
came to the same conclusion that most daytime clear-air return is due to insects. Gossard
(1990) shows high resolution radar images of dot echoes mostly above an inversion, mostly
below an inversion, on both sides of an inversion, and in thin layers 50 meters thick; all of

which are identified as insects.
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Kropfli (1986) using 3.22 and .86 cm radars in the convective boundary layer (CBL)
during the day, deduced that the clear-air reflectivity he routinely sensed in Colorado was
primarily due to passive scatters such as seeds, insects, and particulates carried aloft by
vertical motions. He noted agreement of VAD winds to within .2 m/s with a tall tower
anemometer located nearby. He also noted that the typical clear-air reflectivities of -15
to 5 dBZ (for 3.22 ¢cm radar) were much larger than the -50 dBZ that they would expect
if the return was due to index of refraction gradients. This, along with the absence of a
maximum in reflectivity near the inversion height, ruled out the index of refraction source
of reflectivity.

Sometimes strong clear-air reflectivity events are noticed at the same time as unusual
numbers of air-borne insects. For example, Hardy and Katz (1969) report on Benard-like
cells seen in clear-air during the day with unusually high reflectivity at the same time as
an abnormal number of airborne ants were observed.

A problem with the Wallops Island studies and similar ones is that they were con-
ducted on day-time data, while this research is mostly concerned with nighttime data.
Daytime and nighttime clear-air return are distinctly different. This was shown by Zrni¢
and Ryzhkov (1998) in terms of polarimetric parameters. They compared clear-air return
in the daytime (which they assumed was due to insects) with that at night (which they
assumed was due to birds). The daytime return had higher differential reflectivity (Zpg
values) and lower differential phase than the nighttime return. Zrni¢ and Ryzhkov had no
way to confirm positively that the source of the echoes was zoological.

Perhaps the biggest problem with the insect theory for nocturnal return is the difficulty
in explaining the daily cycle of reflectivity. In order to explain the time history of reflec-
tivity seen in Fig. 3.6 (which shows a brief dip at sunset and sunrise and a rapid increase
after sunset in height and strength of reflectivity), insects (of perhaps a certain species)
must fall out of the sky at sunset shortly before some other insects (of perhaps a different
species) take flight, some of which propel themselves upward to several kilometers in an
hour. These nocturnal flying insects must stay aloft for the entire night. This scenario of

different species of insects to account for the transition from daytime to nighttime char-
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acteristics of clear-air data was suggested by Hardy and Glover (1966). Schaefer (1976)
describes the pattern seen in Fig. 3.6 and interpreted it as an “impressive” evening take-off
of insects (locusts and moths). This identical scenario was described by O’Bannon (1995)
as an “explosion” of areal coverage and strength of signal at sunset. He believed it to be

due to migrating birds.

3.4.4 Index of Refraction Gradients as The Cause of Clear-Air Return

The question of what causes the backscattered radiation that radars receive from ap-
parently clear skies has been around for almost as long as radars themselves and reflections
off of index of refraction gradients was the first explanation offered for them. As early as
1939, Friend (1939, based on work begun in 1935), using a vertically pointing radar op-
erating at wavelength of 125 m with an A-scan display, had found that strong reflectivity
layers in the lower troposphere (at 1 to 2 km) were related to temperature inversions (de-
duced from aircraft soundings and, later, radio soundings, Friend, 1940). He attributed
the echos to reflections off gradients in the dielectric constant of the propagating medium;
more commonly and equivalently referred to in meteorology as gradients in the index of
refraction of the air. Friend also found that he could detect turbulence specifically (as
verified by aircraft flight) by the fluctuations in the echos.

That refraction of electro-magnetic energy is significant in the atmosphere is obvious to
anyone who has ever observed star twinkle. Refraction in air is essentially non-dispersive at
radio wavelengths, so the index of refraction is not a significant function of radar frequency.
The index of refraction of the air relative to a vacuum at radio wavelengths is a function
most strongly of moisture and, to a lesser extent, of temperature, according to the following

approximate formula (Doviak and Zrni¢, 1984, Eqn. 2.19):
N = (77.6/T)(P + 4810¢/T) (3.13)

Where N is the refractivity in “N-units” (refractivity is the refractive index minus one
times 10°%), P is pressure in millibars, T is temperature in Kelvin, and e is the water vapor

pressure in millibars. Atlas (1960) gives the following formula for changes in N under
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average summer conditions:

AN = -14AT +4.2Ae

If clear-air return can be related to index of refraction gradients, then clear-air radar studies
have the potential of providing thermodynamic information, as suggested by Gossard et
al. (1999).

Calculations of the index of refraction gradients necessary to account for the observed
reflectivities indicated that the necessary gradients were on the order of 20 N-units per
centimeter—an extremely high value (Battan, 1973, p.255). Doubts about whether such
large gradients could actually exist led to the acceptance of the theory of turbulent Bragg
scattering (discussed in detail in Sec. 3.7). In this theory, turbulent flow mixes fluid
across some gradient in the index of refraction. This mixing creates a field of refractivity
perturbations which leads to a much larger reflectivity than a simple gradient. Calcu-
lations made with this theory assume homogeneous, isotropic turbulence and make use
of Kolmogorov scaling. Despite all the assumptions, very good agreement was obtained
by several researchers between predicted reflectivities and those observed with radars of
various wavelengths (Kropfli et al., 1968). This success has led to the belief that the prob-
lem of accounting for the reflectivity seen in elevated layers has been conclusively solved.
Turbulent Bragg scatter is widely accepted as a major source of clear-air return. However,
Gage (1990) reviews research with long wavelength radars which suggests that specular
(mirror-like) reflections from strong refractivity gradients may be partly responsible for
echoes seen with vertically pointing radars.

A couple classic images of layer echoes supposedly caused by turbulent Bragg scatter
actually suggests that reflections can sometimes be the mechanism. Figure 3.7 shows
a plot from Lane and Meadows (1963) of reflectivity from a vertically pointing radar
with a wavelength of 10 cm (on the left) and measurements made with an aircraft-born
refractometer of the index of refraction profile (in N-units) made at the same time (on the
right). This figure shows a thin line of reflectivity at the exact same altitude (1.4 km) as a
sharp gradient in the index of refraction. Lane and Meadows indicate that the maximum

gradient was about 10 N-units per meter. It is not clear if this gradient is sufficient to
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Figure 3.7: Simultaneous radar and refractivity soundings from Lane and Meadows (1963).

account for reflection at a wavelength of 10 cmn, but it could still be an underestimate of the
actual nearly discontinuous value due to instrumentation limitations. It is very difficult
to measure gradients over distances of a few meters with flying aircraft. According to
the Bragg scatter theory, this layer of reflectivity must be turbulent in order to generate
index of refraction inhomogeneities at half the wavelength of the radar (5 cm in this case).
However, the presence of a sharp gradient in thermodynamic properties implies that the
flow is definitely not turbulent at this location. The main effect of turbulence is diffusion
and smoothing of properties. The existence of a sharp gradient over a distance of a few
meters would appear to exclude turbulence at scales greater than a meter. Furthermore,
the constant height and thickness of the layer implies that if it was a turbulent layer, the
outer scale of eddy size would have to be significantly less than the constant thickness
(about 100 meters according to Fig. 3.7). It is much easier to accept that the gradient in
index of refraction at this location was much stronger than the instrument was capable of
measuring and that what is being seen is actually a specular reflection of radar energy.
Another well-know image reproduced in Figure 3.8 show a layer of reflectivity wrapping-
up into Kelvin-Helmholtz (K-H) waves. The radar used was an ultra high resolution FM-
CW radar with a range resolution of 1 meter, operating at a wavelength of 10 cm. The use

of such a high resolution instrument has revealed a layer of reflectivity as thin as 1 meter.
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The radar was pointed vertically and shows structures passing over it. The K-H wave
itself is a laminar structure, though it may subsequently break into turbulence. While a
pilot flying through a region with K-H waves would experience buffeting of the aircraft
and report the experience as “turbulence”, it is not turbulence in the more clinical fluid
mechanical sense of having a continuous cascade of energy form long to short length scales.
In order for the Bragg scatter mechanism to be responsible for the reflectivity in this case,
this laminar structure must have a turbulent substructure where there is reflectivity with
an outer scale of 1 meter. In addition, the reflectivity of the layer varies as the slope of
the layer with vertical segments showing the least reflectivity. This is exactly what would
be expected from specular reflections, but not from homogeneous turbulence in which the
orientation of the layer shouldn’t matter. Finally, broken K-H waves appear at the end of
the time-height display, with a greatly diminished reflectivity. This is also exactly what
would be expected from the reflection mechanism as turbulent diffusion smooths-out the
large index of refraction gradient, but the exact opposite of what would be expected from
Bragg scattering since with Bragg scattering, we might expect an increase in scattering
with an increase in turbulence. Hardy and Gage (1990) also recognized the problems raised
by these measurements for the Bragg scatter mechanism. This reasoning and these figures
suggests that measurable reflection of radar energy from index of refraction gradients might
occur in the atmosphere. It is not too difficult to accept that, in the absence of turbulence,
rather sharp gradients in refractive index can occur and that measurements have simply
been too coarse to reveal them.

Pilots also often report very thin layers in the atmosphere which noticeably reflect or
scatter light. Such were reported by Friend (1940). Optical scattering seems unlikely to
be due to the Bragg mechanism as the wavelengths of visible light are too short (around
1 pm), and are probably below the size of any turbulent eddies.

Using gradients in the index of refraction to explain the nocturnal return over the entire
depth of the lower troposphere by either reflection or scattering is problematic, however,
because of the granulation of the return. Return is obtained from what appears to be a

large number of small reflectors or scatterers through a depth of up to several kilometers.
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Figure 3.8: Wave features seen with vertically pointing high-resolution FM-CW radar.
Horizontal axis is time in minutes. From Gossard and Richter (1970).

To explain this with the reflection mechanism, the existence of areas of sharp gradients
distributed throughout space must somehow be explained. It is perhaps possible that sharp
vertical gradients form in the stable nocturnal boundary layer which are subsequently
gently mixed by flow perturbation, localized convection, or turbulence. However, such a
scenario has not been observed in thermodynamic data.

Atlas (1960) directly compared radar echos (from 1.25 cm radar) with sharp gradients
in refractivity. Atlas observed sharp gradients in refractivity horizontally along sea breeze
fronts and vertically in an inversion, exactly co-located with clear-air return. He specifically
was able to exclude birds as a source of echo by having an observer watch the location of the
probe volume for birds, and by the fact that the echos were much weaker than birds would
have produced. He also ruled out insects as the source of echo due to the lack of a theory
explaining how insects could concentrate into thin reflectivity layers aloft, the difficulty
in explaining other characteristics of the reflectivity with insect behavior, and due to the
excellent agreement between reflectivity and index of refraction gradients. Atlas stated
that the evidence in favor of an index of refraction explanation was “overwhelming”. This
was despite the fact that his observed gradients in refractivity were not large enough to
account for measurable echo by reflection. But Atlas accepted that his refractometer would
not have been capable of measuring the necessary sharp gradients had they existed. Atlas
also applied a theory he devised (Atlas, 1960b) in which curvature of surfaces of refractivity

gradient partially focus energy back to the radar, giving echos for much weaker refractivity
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gradients. This theory has now been abandoned by Atlas and others (Hardy and Gage,
1990).

3.4.5 Summary on the Cause of Nocturnal Clear-Air Return

The general conclusion on the cause of clear-air return as promulgated by various re-
views of the topic is that dot echos are due to isolated insects or birds and that diffuse
layers or regions of clear-air eccho are caused by the turbulent Bragg scatter mechanism,
with significant specular reflections rarely if ever happening (except possibly at long wave-
lengths) due to the excessively large gradients in the index of refraction needed to account
for observed reflectivities. Regions of volume-filling, non-granular, clear-air echo could be
caused by insects or birds if the density of targets is sufficient to fill every radar volume.
Bragg scatter is also expected to be quite weak at the 3 to 11 cm wavelength bands com-
mon in surveillance radars, leaving birds or insects to account for strong clear-air return
typical at night.

Historically, refractive index gradients were first suspected, but insects were eventually
identified as by far the most common source of clear-air dot echoes. More recently, migrat-
ing birds have been identified as an important source of nocturnal return which seriously
biases wind measurements made with radars. This was first noted in long-wavelength wind
profilers, followed the identification of the problem in NEXRAD radars.

Ornithologist and entomologist both use radar to study their creatures. A basic diffi-
culty is the problem of identifying the species being studied. This is a basic problem for
meteorologists trying to use clear-air data as well, since they need to know that birds are
not biasing velocities. A method to distinguish bird targets from insects is desired, but elu-
sive. Birds can be distinguished if an estimate of the airspeed of the targets can be made.
This is often not possible. This leaves ambiguity to many ornithological, entomological,
and meteorological studies using clear-air data. It is possible that ornithologists some-
times accidentally study insects while entomologists may sometimes accidentally study
birds. It is interesting that Atlas titled his 1960 article “Possible Key to the Dilemma of

Meteorological 'Angel’ Echoes”. 40 years later it remains a dilemma.
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This has been and still is a controversial Issue. Atlas (1959) stated, “The evidence indi-
cating that the sea-breeze echoes are due to atmospheric inhomogeneities is overwhelming;
the evidence against birds, insects, or other particulate matter being the echo source is
similarly impressive.” Wilson et al. (1994) stated: “Results...have strongly suggested that
the boundary layer clear-air return is generally from insects.” Jungbluth (1995) stated
“This experiment has revealed conclusively that contamination of the wind profiler data
by biological targets does indeed exist”. Wilczak et al. (1995) stated, “It has been shown

that 915- and 404-MHz wind profiler data are frequently contaminated by migrating birds.”

3.5 Mie Scatter Calculations

Eqn. (3.4) above explicitly assumes that rain drops are Rayleigh scatters, i.e., scatters
that are much smaller than the wavelength of the radar. For DOW radars, the wavelength
is about 3 cin and for the Cimarron and NEXRAD radars, the wavelength is about 10
cm. It will be shown here that the Rayleigh approximation for back scatter cross-section
is accurate to 5% for drop radii, r, less than approximately .02X\. For a NEXRAD and
a DOW, this approximation is, then, good for drop radii less than 2 mm and 0.6 mm,
respectively. Rain drops vary in size from 100 p to several millimeters, with a typical
size of 1 mm. For insects and birds, which are typically much larger than rain drops, the
Rayleigh approximation is not valid at the common meteorological radar wavelengths. In
this case, Mie scatter calculations, which can give the correct radar cross section for any
object at any radar wavelength should be done.

The equations for scattering from spherical objects were derived first by Mie in 1908 and
have been studied in great detail by others since, (e.g., Wiscombe, 1980). The equation for

the radar backscatter cross-section from spherical particles in the Mie theory is (Wiscombe,

1979):

2
A2 | &
Omie = Z; Z(“l)n(zn + 1)(a, — by) (3.14)
n=1

Where a, and by, are the Mie coefficients which can be expressed as functions of Spherical

Bessel and Riccati-Bessel functions of order n. These functions are in turn functions of the
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radar wavelength and radar l n | k [ |K|* I

10 cm, NEXRAD, Cimarron | 8.88 | .63 | .928
3.21 cm, DOW 8.14 | 2.00 | .9275
3.19 mm, UMASS 3.41 | 2.02 | .828

Table 3.2: Coefficients for the complex index of refraction of water at 20° from Gunn and
East (1954) and Lhermitte (1990); and the resulting values of |K|* for use in (3.4).

complex index of refraction, the size of the sphere, and the wavelength of the radiation.
This equation is generally applicable to the entire electromagnetic spectrum. It is exact
for N— oo. For practical calculations, N is of the order of the sphere’s circumference
divided by the wavelength. Computer codes for doing the lengthy and tedious Mie scatter
calculations are widely available. This work uses a code obtained from NASA/Goddard
and described in Wiscombe (1979, 1980).

The input to the Mie scattering algorithm is the radar wavelength, drop radius, and
the complex index of refraction. The complex index of refraction, m=n-ik (which includes
the normal index of refraction, n, and the absorption coefficient, k) depends on the radar
wavelength and temperature. Values for this study for water were taken from Gunn and
East (1954) for 20°C for 10 cm and 3.21 cm wavelengths, and Lhermitte (1990) for 3.2 mm
wavelength, as shown in Table 3.2. These wavelengths are very close to those of radars
used for this study and the index of refraction is not a strong function of wavelength at
microwave wavelengths.

Resulting radar cross sections from the Mie scatter calculations for a range of drop size
and for 3 radar wavelengths are shown in Fig. 3.9. On this figure, are plotted for reference
the letters 'R’, 'T’, and "B’ at a location corresponding to the approximate equivalent water
sphere sizes for rain drops, insects, and birds (Vaughn, 1985). Also plotted in Fig. 3.9
are three parallel solid lines which are the Rayleigh scatter value, and another solid line
crossing the three parallel lines with is the so-called “optical limit” line. This line is the
line for which the radar cross-section equals the drop cross-section. For large drop radii,
the radar cross-section from Mie calculations are a little below the optical limit due to
absorption of energy.

The percent error in the Rayleigh assumption is shown in Fig. 3.10. From this figure, it
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Figure 3.9: Radar cross-section in cm? as a function of water sphere radius at 20° C. for 3
mm, 3 cm, and 10 cm radars; from Mie scatter calculations. Three parallel solid lines are
the Rayleigh scatter approximation. Solid line crossing the three parallel lines is the line
for which the radar cross-section equals the actual spherical cross-section. The letters 'R’,
'T", and 'B’ are plotted at the approximate equivalent water sphere sizes for rain drops,
insects, and birds, respectively.
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is clear that the error in calculated cross-sections are less than 5% for approximately r<.02
A for 3 to 10 centimeter wavelengths and r<.06 X for a wavelength of 3 mm. Backscatters
are good to 25% for r<.04 A at centimeter wavelengths and for r<.15 A at the 3 mm
wavelength. These limits are consistent with Gunn and East (1954), who did similar
calculations.

Radars are configured to give dBZ values for a distribution of Rayleigh scatters, whether
the actual targets are such scatters or not. Fig. 3.11 indicates the equivalent reflectivity
that a radar would report if a single Mie-scattering water sphere were in the radar beam at
a distance of 2 km. This was calculated by solving for Z in (3.7). For the more common case
of a distribution of targets, Fig. 3.12 shows the equivalent reflectivity that the three radars
would report if there were 5 targets per 20 m cube, all of the same radius. This would
constitute a very light shower for small drops. The curves for Fig. 3.12 were calculated

from (3.5). For this figure, the curves for all three radars overlap for small radii, as they
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Figure 3.11: Equivalent reflectivity, dBZ, for single water spheres at 3 radar wavelengths.
Radar parameters from Table 3.1 were used for NEXRAD, DOW, and UMASS radars,
with a range of 2 km and |K|* =.93. A pulse width of 24 meters was used for DOW3, and
1410 m for NEXRAD.
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Figure 3.12: Equivalent reflectivity, dBZ, for a distribution of 5 water spheres per 20 m
cube.
should since the Rayleigh approximation and dBZ estimates are accurate for small radii
drops.

From these calculations, it is clear that birds and insects may be difficult to distinguish
on the basis of back-scatter cross-section or reflectivity alone. While birds are almost
always larger than insects, reported values for radar cross-section (Vaughn, 1985; Riley,
2

1985) of birds and insects show considerable overlap, with insects ranging from 10~3 cm

to 10 cm? and birds ranging from 10~! ¢cm? to 103 em?.

3.6 Theory of Radar Reflections from Refractivity Gradients

and Discontinuities (Fresnel Reflection)

In this section, a theoretical development from first principles is given for predicting
the amount of energy reflected from changes in the index of refraction of the propagating

medium. This section covers mirror-like or specular reflections from planar discontinuities
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Figure 3.13: Conceptual diagram for electromagnetic planar wave reflection/transmission,
at the interface between two media of different refractive indicies.

and gradients in the index of refraction. From electro-magnetics theory, the first principles
are Maxwell’s equations, which include Faraday’s and Ampere’s Laws.

For a single reflection of a plane wave propagating from a medium with refractive
index n; across a discontinuity in n into a medium of index of refraction ny, we refer to
Fig. 3.13. With a propagation speed of ¢, wavelength of A and a frequency of w, E; and
1_3? are the incident electric and magnetic fields, respectively, oscillating in the x-y plane
(i.e., pointing in a direction transverse to the direction of propagation) and propagating in

the z-direction:

E‘-I) = E;(z, t) with amplitude Ercos(kz — wt)

and
E; = E}(z, t) with amplitude Brcos(kz — wt) (3.15)
2m
here k = —
where 5

E’-Z and B_>R are the reflected electric and magnetic fields and E;« and E-; are the transmitted
fields. F}, FT, E};, and E;, E;, ,—873 are all in phase at the interface. The direction of the
electric and magnetic field vectors is perpendicular to the direction of propagation, z.
By Faraday’s Law:
0B

VX§=—5? (3.16)

82



and from [3.15], (ﬁ = ~w§tan(kz-wt) and VXE = kEXﬁtan(kz-wt) with & the unit

vector in the z-direction.

:‘B‘:%’ixﬁ

By definition, the index of refraction is

Cvacuo kc
nE ——— = -
Cdielectric w

=B = —AXB (3.17)

[3.17] requires that 1771) and B—; are in phase, which was assumed in [3.15].

By Ampere’s Law:
fﬁ’-cﬁ’:/uoeo— d71‘+/#07 i (3.18)

For no currents present, 7 =0and using a rectangular prism with faces parallel to the

interface, d(? dZA =0 on the faces of the prism parallel to the interface as Eis Ltod4.

By symmetry, ? -dA over the faces perpendicular to the interface vanishes.
= ?fﬁ-d_z’:o (3.19)

Taking this integral around a rectangular circuit surrounding the interface with two sides
parallel to the interface gives:

B;+ Br = Br (3.20)

Similarly, Faraday’s law in integral form gives

§Bat - [L dﬁ A (3.21)
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with B parallel to the interface, f; % .d4 =0 and § E-dT =0 implies:

E;+ Ep=Ep (3.22)
By [3.17}:
B = ZE
¢
Br = —EER (Egin oppositedirectionof Ey)
c
Br = ZEBp
¢
and [3.20] becomes:
n1E1 - nlER = ‘anT (323)

Eliminating Ep from {3.22 and [3.23] gives:

Lr  m-np (3.24)
E; n1+ng

[3.24] is know as “the Fresnel equation for normal incidence”.

The energy flux vector is the Poynting vector, ? :
9-L1ExB (3.25)
Ho

With E and B mutually perpendicular:

9= LEBk
1o
and by [3.17
§= -
Clo

The ratio of incident to reflected energy, R, is the square of [3.24], called the “reflectivity”

in electrodynamics (not to be confused with reflectivity in radar meteorology, which is the
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Figure 3.14: Conceptual diagram for electromagnetic energy reflection from an index of
refraction gradient

back scatter cross-section per unit volume):

R (B)' = (s32) 520

In air, n= 1 (typically 1.0002 in the lower troposphere) so for a discontinuous change in n

of An , [3.26] is:

R= (%ﬁ)z (3.27)

So far, this development has followed that found in standard texts on classical electrody-
namics (e.g., Jackson, 1962). We now use these results to calculate the energy reflected
from a gradient. Similar derivations have appeared in technical reports by Swingle (1950)
and Bauer (1956). The book by Brekovskikh (1960) also covers this topic in some detail
for various forms of layered media for the reflection of acoustic and electro-magnetic waves
(the former being of interest to seismologists). We divide the gradient into a series of
differential steps of spatial size Az and diffraction change An. Fig. 3.14 illustrates the
situation, where L is the radar pulse width. The electric field received at the antenna, ET\;
, will be the sum of all the differential wave reflections that reach the receiver at one time.
These waves will generally have different phases depending on z, the point at which the

reflection occurred. With ‘E’j‘ = Ecos(wt) and using [3.27}:

|E j_ L/z—E1cos(wt+¢) (3.28)
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¢ is the phase of the differential reflection relative to E—; at z=0. [3.28] neglects secondary
reflections and attenuation, which are good approximations if An is small (it is typically
~ 107" ) and R in [3.27] and [3.26] is small. The summation is over L/2 instead of L
because reflected energy from only 1/2 the pulse width is received by the antenna at one
time. To see this, consider that if the receiver is gated to measure energy reflected from
the back of the pulse at z=0 at t=tg. All energy reflected at later times as the pulse
propagates in the z-direction will arrive after tg and will not add to E_A; . However, some
energy reflected from the pulse at earlier times and at distances z>-0 will arrive at the
same time. Since the outbound pulse travels at the same speed as inbound reflections,
reflections from locations z< % will arrive at the same time as those from z=0.

With An :Z—'Z‘Az for a constant refractive index gradient, and ¢ = 4% [3.28] becomes

[Bwi(o)] = 22 Z—:%EE,cos(wt + 4%)
as Az = 0 1
{E_A}(t)| = j—:%l ? cos(wt + %r—z-)dz (3.29)
With some manipulations:
o] - 252 [t 2]
= Z—ng/\‘El [sm(wz‘ + 2—7;2) ~ sm(wt)]
or
’ t)‘ = ————E;(szn(wt)cos(27:\L) + cos(wt)sin(—%)\—L) — sin(wt))
This is equivalent to:
‘_) )l = %%E’; 2 — 2cos(¥) sin(wt + )
where 1 is a phase angle: s
)= 22
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EM(ti' is then sinusoidal in time with an amplitude, E;:

dn A / 27L
E[u = ‘(58_7['E1 2~ 2C()S(T)

The reflectivity is then:

R= <%‘11)2 - (‘;—:%)2 (2- 2cos(¥)) (3.30)

[3.30] contains a cosine term, the value of which depends on the gate width L. Radars

determine received power by averaging typically around 100 pulses. Typical pulses are

about 300 m in length and typical wavelengths are about 10 ¢m, or 1/3000 of a pulse

length. It is therefore not expected that L of the transmitted radiation will be exactly

the same (to within a fraction of A) in each pulse (variation in L laterally across the pulse
27 L

would have the same effect), so == will be an essentially random phase and the radar will
detect the average of [3.30] over L which is:
2 2

A similar result was derived by Swingle (1950) and Bauer (1956). A form of the Swingle
equation, equivalent to one half of (3.31), was used by many researchers in the 1950’s (e.g.,
Atlas, 1960b), which leads to a factor of 2 underestimation in the reflectivity of refractive
index gradients.

If L was exactly the same in each pulse used to obtain the average power, then R could
vary by a factor of 0 to 2 from (3.31). Comparing [3.31] and [3.27], we note that a radar
will effectively see a refractive index gradient as if all the n-change through a distance

5 \}\iw was concentrated into a discontinuity. The actual size of the pulse width, L, does

not matter. For this reason, longer wavelength radars are expected to more easily detect
refractive index gradients.
If the entire refractive index gradient occurs in a thin layer with a thickness, As , less

than L/2, then the integration of [3.29] is carried out over As instead of L/2, and [3.30]
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becomes:

(d" A (3.32)

——)2 (2 — 2cos(

4w s L
dz 87 2

) for Bs <

In this case, we need to keep the cosine term as the actual layer thickness will approach .

The total change in n across this thin gradient is An = % As or 92 = 2% _ For a given
dz dz Os

An, we can examine what happens as As — 0 and the gradient becomes a discontinuity.

For small As :

1—cos

drhs 1 (47rA3>2
AT 20

and [3.32] =

R (@iy (4ms>2 3 (An)2
~ \As 8 A ) N2

which recovers the discontinuity formula [3.27].
If the entire n-gradient within the probe volume of length L/2 had been concentrated

into a single discontinuity, then, by (3.27) the reflectivity would be:

_ z 2

This is (%)2 times the value of R for a constant gradient from (3.31). For a NEXRAD L
of 250 m and A of 10 cm, the gradient reflectivity is one fifteen millionth of that from the
same n change in a discontinuity (or 70 dB weaker). This enormous decline in reflectivity
is due to the destructive interference of the energy reflected across the gradient, energy
which is mostly not in phase. Clearly, if refractivity gradients can be sharp, with significant
changes occurring over a distance of a radar wavelength, then the reflectivity can be orders
of magnitude stronger then for gradual gradients. Because of instrumentation limitations,
it is difficult to measure gradients of refractivity in the atmosphere at scales much less
than a meter, consequently it is not known precisely how sharp gradients typically are. It
is commonly assumed that discontinuities sufficient for strong reflections do not normally
occur.

To determine the effective reflectivity factor, Z,, a radar would detect if it was observing

a discontinuity or gradient in n, we first find the reflectivity, n, the backscatter cross section
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per unit volume. For a single discontinuity, the backscatter cross section for a reflection is
' i - i . s implies n— AL _ 2R
RA,, where A, is the cross sectional area at the probe volume. This implies n= e =T

Using (3.5) we then find Z, for a gradient in n:

A2 dn A S AS /dn\?
Ze= ——s—(2(——)?x22X107° - [ = .
€ 7r5|K|2L( (d287r) 0 L <dz> (3.33)
and for a discontinuity in n of An:
Mo An,
= K (7) (3.34)

Strictly speaking, this derivation is for radiation reflected from planes perpendicular to
the radar beam. Layers of refractive index perturbations occurring at other angles would
reflect energy specularly at this angle and not be seen by the radar. However, undulations
in the surface might be expected to give back-scattering through a wide range of incidence
angle.

Using these equations, we can revisit the thin reflectivity layer of Lane and Meadows
(1963) shown in Fig. 3.7. The radar display is an analog representation of signal power.
The refractivity sounding shows a near discontinuity in n of 30 N-units, or .00003. By
(3.34) this would give a reflectivity of 19 dBZ for the 10 cm Lane and Meadows radar.
Other parameters of the radar are: P;=500,000 W; L=30 m; beam width=3.6° (antenna
gain of 34 dB); a noise level of -91 dBm (for a signal to noise ratio of 1); a detection
threshold of -104 dBm; and a range to the layer echo of 1.3 km. Using these values and
assuming system losses of about 5 dB, we can apply (3.10) to calculate the expected signal
strength:

dBm =dBZ —94.4

This discontinuity would therefore give a signal of -75.4 dBm, which is 29 dB above the
detection threshold for a signal-to-noise ratio of 16 dB. If the observed refractivity change
was concentrated into a discontinuity, then it would have been easily detected by the

Lane and Meadows radar. If instead of a discontinuity, the refractivity change occurred
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gradually across a gradient, then we apply (3.33) with (3.10) yielding:

dBm = ZOlog(El—T—l) - 36
dz
With a detection threshold of -104 dBm, this would mean that the gradient would have to

be at least 30 N-units in 8 cm, or that the refractivity change would need to be concentrated

into a layer at most 8 cm deep.

3.7 Bragg Scatter

The scattering of radar energy from inhomogeneities in the index of refraction of air
generated by the action of turbulence on a mean gradient in refractivity, is currently
commonly referred to as “Bragg scatter”. It is referred to in the meteorological literature by
various other terms, including: Refractive index turbulence (RIT) and turbulence scatter.
The term “Bragg scatter” was borrowed from the physics of X-ray diffraction from crystals,
wherein the Bragg condition must be met. As will be discussed later in this section,
the selection of the term “Bragg” to describe this kind of scattering is confusing as the
phenomenon has little in common with X-ray diffraction. However, the term has become
fairly common in recent years and an attempt to change it will not be made here.

Fairly complete reviews of Bragg scatter (each from different perspectives and with
differing notation) are available from Tatarski (1961), Gossard and Strauch (1983), and
Doviak and Zrnic (1984). Tatarski gives the best discussion in terms of the underlying
physical arguments, though it is necessary to read most of the book in order to follow the
notation. Many aspects of Tatarski (1961) are closely followed by Doviak and Zrnic (1984)
and Gossard and Strauch (1983)

The Bragg scatter theory has its origin in high energy physics where Bragg’s law (or
the Bragg condition) is used to predict the conditions under which diffracted X-ray beams
from a crystal are possible. The term “Bragg scatter” does not appear in high energy

physics, with the term “diffraction” being selected instead for the phenomenon of interest.
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3.7.1 The Bragg Condition and X-Ray Diffraction

Readable discussions of this topic can be found in most second year general physics
texts (e.g., Tipler, 1978).

X-rays were discovered in 1895 by Wilhelin Roentgen (for which he won the first Nobel
Prize granted in physics in 1901). By 1899, H. Haga and C. H. Wind had estimated the
wavelength of X-rays to be of the order of 1 Angstrom by observing a slight broadening
(presumably diffraction) of X-rays after passing through slits a few thousandths of a mil-
limeter wide. Precise measurement of the wavelength of X-rays were elusive because of the
difficulty in constructing diffraction gratings with a spacing small enough for significant
diffraction to occur. In 1912, Max von Laue realized that the estimated spacing of the
atoms in a regular crystal lattice was about the same as the estimated wavelength of X-rays,
and therefore, that crystals could act as a three-dimensional diffraction grating for X-rays.
Experiments by Laue demonstrated X-ray diffraction from crystals and confirmed theories
of both the wave nature of X-rays and the regular structure of crystals. Laue received the
Nobel prize for discovering X-ray diffraction in 1914. Methods to quantitatively analyze
X-ray diffraction were devised by W. H. Bragg and W. L. Bragg (father and son), work
for which they received the Nobel prize in 1915 (W. L. Bragg was the youngest recipient
of a Physics Nobel). X-ray diffraction is still a principle tool used by crystallographers.

In X-ray diffraction studies, a collimated beam of X-rays are passed through a crys-
talline material (in modern work, this is usually a fine powder, but classically, it was a
single crystal), and a pattern of diffraction spots will be exposed on a photographic plate
behind the crystal. By classical diffraction, each atom in the crystal can be thought of
as acting as a spherical radiation source. The diffracted energy pattern is the sum of the
radiation from each atomic source. When all these waves interfere constructively, a spot
(or image of the radiation source) appears. Constructive interference occurs because there
are certain characteristic spacings of the atoms in the crystal. If the atoms were randomly
arranged, only a diffuse and weak pattern of radiation would result. The Braggs realized
that the characteristic beam diffraction angles of X-rays were related to the spacing be-

tween planes in which the atoms in the crystal lie. Fig. 3.15 is a simple diagram of an
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Figure 3.15: X-ray wave front a-b reflecting from a family of planes in a crystal with
reflected wave front c-d.

incoming wave front being reflected from a family of planes in a crystal. The incoming
wave front is at a-b and the reflected front is at c-d. The reflected wave front energy will
be the result of constructive interference only if the path difference between the two fronts

is an integral number of wavelengths. This leads to the Bragg condition:
2dsing = mA (3.35)

Where d is an interplanar spacing, € is the angle the beam makes with the plane (and the
diffracted beam angle), and m is an integer. For even simple crystals, numerous planes
exist and deducing the crystal structure from diffraction information is a complex problem.
Early X-ray experiments also had “unclean” radiation with multiple wavelengths. The
Braggs first had to measure the wavelengths of their radiation by using crystals of known
geometry (NaCl); they could then measure interplanar spacings (d) of other crystals using
the then known wavelengths of their radiation, and finally they could deduce the previously
unknown crystal structure.

It is instructive that modern X-ray crystallography uses fine powders rather than single

crystals. Since planes of atoms only reflect energy specularly, only planes which have
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certain orientations with respect to the incoming radiation (values of  which satisfy (3.35)
) will give rise to constructive interference and diffraction spots. By using a powder of
crystals, all possible angles are present simultaneously, and all the possible diffraction

angles are obtained without having to rotate a crystal.

3.7.2 The Bragg Condition in Radiation Scatter from Turbulent Air

In the Bragg scatter theory, turbulent mixing of a mean refractive index gradient leads
to local perturbations in the refractive index. By applying the Bragg condition, only
turbulent eddies about the size of half the radar wavelength ultimately contribute to the
received signal. This results in an expression for the backscatter energy from such eddies
as a function of the amount of turbulence, the mean refractive index gradient, and the
radar wavelength.

The development of this theory was driven in significant part by the need to explain
beyond the horizon propagation of radio waves (e.g., the exceptional long range of short
wave radios). For such long range propagation, it was eventually deduced that radio
waves were scattered in the forward direction from the ionosphere by turbulence-induced
fluctuations in the electron density. The same theory was applied to scattering in forward
and backward directions of radio waves in the troposphere, with fluctuations in refractive
index replacing fluctuations in electron density. Booker and Gordon (1950), Gallet (1955)
and Villars and Weisskopf (1955) identified turbulent mixing as the primary mechanism for
such scattering, however, the quantitative theories they proposed were later replaced by a
statistical theory using Obukov/Kolmogorov scaling. This application was accomplished
by Silverman (1956), who derived equivalent forms for the equations still used today.
Silverman points to Krasilnikoff (1949) and Batchelor (1955) as earlier, similar work which
he discovered after finishing his 1956 paper. While Silverman (in 1956) arrived at the form
of the theory still used today, the book by Tatarski (1961, translated by Silverman) is often
cited as a basic reference.

There are three main steps of physical/mathematical reasoning which lead to a simple

expression for radar back scatter: Obukov/Kolmogorov scaling to give an expression for
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the spectral density function of index of refraction gradients, the solution of Maxwell’s
equations so as to obtain energy emission from radar targets in terms of perturbations
in index of refraction, and the derivation of an integral to give the total scattered energy
as a function of this spectral density function. The Bragg condition does not need to be
explicitly invoked. The purpose of the rest of this section is not to redevelop the theory
stated in Tatarski (1961), but to provide the basic physical and mathematical reasoning
behind the resulting expression for reflectivity. The complete derivation is lengthy and
involves various subtle mathematical manipulations and has been reviewed by Tatarski
(1961) and Doviak and Zrnic (1984).

The development in Tatarski (1961) follows the scaling arguments of Obukov (1949) and
Yaglom (1949), treating refractive index as a passive additive scaler. Obukov and Yaglom
base their development on the classic scaling arguments of Kolmogorov. It is generally
assumed that the turbulence is homogeneous, isotropic and statistically steady in some
local region, and that the fluid is incompressible. These scaling arguments lead to the
following expression for the spectral density function of refractive index inhomogeneities

(Tatarski, p. 48):

- L83 ;‘:22”(71'/3) CZK~1/3 ~ 03301C2K ~*V/3 ~ 033C2K '/ (3.36)

@, (K)

where:

®,(K) = spectral density function of the refractive index perturbations
K= spatial wave number in any spherical direction =4n /), for a spatial wave length
A

C,Ql = the refractivity structure parameter

C2 is defined in connection with the structure function for refractive index, n, Dy, :

Dy(r) = [n(r1) — n(r +r1)]?

94



Where r is a spherical distance relative to the location of r;. D,, the autocorrelation
of refractive index inhomogeneities, is a representation of the intensity of the turbulent

fluctuations in n. Kolmogorov scaling arguments lead to:

Where C2 is:
. 4 ,
C2 = I3 (Vn)? (3.37)

With L, being an outer scale of the turbulence. Doviak and Zrnic (1984, Ch. 11) derive a
more complex formula for C2 as a function of thermodynamic variables, wind shear, and
eddy dissipation. The spectral density function, ®,(K), is the Fourier transform of Dy (r),
leading to (3.36). D,(r) is therefore the inverse Fourier transform of ®,(K). (3.36) is, of
course, only valid for wave numbers in the inertial sub-range of turbulence.

The expression for backscatter cross-section per unit volume, 7, in terms of a field of
refractivity perturbations, derived by a perturbation analysis of Maxwell’s equations is,
after integrating over the probe volume, V, Tatarski (1961, p. 65-66):

2 - .
V=S | [ s

Where:

0s =half the angle between transmitting and receiving directions.

k = radar wavelength =4n/\

For backscatter, 8;=m/2.
Since An(r1)An(ry) is just the structure function, Dy, this is recast with D,, replaced by

its Fourier integral, and with p =|7{ — 73:

64m? ~iKp ~ik2psin(0s)
=3y | [ [ @atkeearce dvidv; (3.39)



—ip(K=2ksin(0)) " This integral will tend

This integral can be rearranged to contain the term e
towards zero except for K=2ksin(fy); since, similar to the analysis for Fourier coefficients,
for K+#2ksin(6;), the integrated function has positive and negative regions which tend to

cancel. This implies:

As = ———— or A\; = — for backscatter

2

(3.39) can be interpreted as a Fourler integral in which the Fourier component of the
structure function at K=2ksin(f;) results. This can also be seen as being equivalent to the
Bragg condition (3.35) for m=1. Tatarski (1961) appears to have been the first to identify
the condition as the same as the Bragg condition. Earlier workers simply carried-out the
integrations without such a physical interpretation. Despite the fact that the integration
does select that part of the refractive index inhomogeneities with a length scale of half
the radar wavelength, there is a significant difference between this situation and X-ray
diffraction from crystals. In the latter case, interference spots occur because of certain
characteristic spacings in crystal, while in the former, no such spots occur as there is no
uniform organization to the turbulent eddy structure. If the refractivity perturbations oc-
curred randomly, the spectral component of this random field would still have a component
near A/2 that would be responsible for the scattered energy. Indeed, this result is similar
to the integration producing a formula for reflections from index of refraction gradients,
which also has a dependence on radar wavelength (Sec. 3.6). While the Bragg condition
in relation to radar scatter from turbulent air was first identified by Tatarski (1961), the
generalization to the term “Bragg scatter” appeared first in print (apparently) in Gossard
et al. (1982).

After substituting (3.36) into (3.39) and executing the integrations, the resulting ex-

pression for 7 in backscatter is (Tatarski, 1961):

2

n= ?k4q)n(k)
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substituting (3.36) into this =

n=0.38C2\"1/3 (3.40)
To convert this to effective reflectivity factor, Z., from (3.5):

/\4
wIKP

e =

= Z.=.0013C2\1/3 (3.41)

Direct experimental verification of (3.40) was carried out by Kropfli et al. (1968). They
towed a refractometer of the Birnbaum type suspended from a helicopter on an inbound
radial. Simultaneously, a 10 cm radar tracked the helicopter and measured the reflectivity
ahead of it. By this means, simultaneous measurements were made of 7 and C2. They
effectively found that (3.40) fit the data, with considerable scatter, to within a factor of 2
on two clear-air days. This has been considered exceptionally good agreement, considering
all the assumptions that went into the theory. Indeed, on one of these two days, organized
convective cells were seen in the radar imagery. Flows of this nature are dominated by
buoyancy and the assumption of isotropic turbulence is probably a poor one, yet the theory
of Bragg scattered seemed to work reasonably well anyway.

We again revisit the layer echo seen by Lane and Meadows (1963) shown in Fig. 3.7
in order to calculate the expected signal strength that might occur due to Bragg scatter.
The level of turbulence is not known directly, nor is the wind shear or buoyancy profile.
However, the thin layer implies a discontinuity in fluid properties over a vertical distance
of at most a few meters. This implies that the outer turbulence scale is on the order of a
few meters. If turbulence is present, as we are assuming for Bragg scatter, then there is
mixing of the two fluid regions across this distance, and the mean gradient in refractivity

is then approximately Vn| =4z, Combining (3.37) and (3.41):
L,

Z, = .0013L; %3 (An)2\11/3
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With An=.00003, L,=3 m, and A=.1 m, this gives a reflectivity of 21 dBZ,, some 31 dB
above the detection threshold at a range of 1.3 km for this particular radar. This result is
very close to that found for a reflection from a discontinuity (19 dBZ) in Sec. (3.6), with a
discontinuity in the refractivity assumed rather than turbulence. This is not too surprising
since the turbulence acts on the existing refractivity gradient and mixes the perturbations
throughout the mixing zone, rather than having them in one place as in a lamina. The
magnitude of the perturbations in refractivity is similar for both cases. The advantages
of the turbulence theory are that energy is reflected in all directions rather than as mirror
reflections, and that large changes in refractivity over distances of only a few centimeters
are not required. However, the advantage of the reflection theory is that thin layers of

turbulence need not exist.

3.7.3 The Bragg Condition in RASS

An application of the Bragg scatter idea which, unlike turbulent-related scattering,
is analogous to the scattering of X-rays from crystals is RASS. RASS (Radio Acoustic
Sounding Systems) are acoustic systems for determining ternperature profiles which are
used in conjunction with a radar wind profiler. In RASS, a radio diffraction grating is
created in the atmosphere by using sound waves (Kropfli, 1990). Vertically propagating
(and audible) acoustic waves are generated at a frequency such that the strongest radar
return scattered from the density anomalies of the evenly-spaced, longitudinal acoustic
waves is received. This occurs at the Bragg condition for backscatter, 2d=mA with m=1
selected. The wavelength of the sound waves, d here, is then known. With the known
generated sound frequency, the speed of the sound can then be found. From the speed of
sound, the temperature is easily determined. By range gating, a temperature profile can

be obtained.

3.7.4 Discussion and Criticism of Bragg Scatter Theory

Bragg scatter theory has been widely used and verified in the last 40 years in such

diverse areas as astronomic seeing conditions, short-wave radio propagation, star twinkle,
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and clear-air returns in meteorology. However, despite the success of its application, there
are many sometimes questionable assumptions that go into the theory which we should be
aware of.

The assumption of locally homogeneous turbulence is particularly suspect in atmo-
spheric flows, which are often dominated by buoyancy.

The expression for the scattered electric field in terms of perturbations in the refractive
index (3.38) is not always physically realistic. Strictly speaking, this equation is only true
for an isolated, infinitesimal perturbation. In the absence of small-scale turbulence, this
expression could be incorrect. For example, if a region of air of the size of the radar probe
volume happened to be of uniform n, different by some perturbed amount from the regional
average, then Bragg scatter would predict significant scatter while in reality there would
be none. For Bragg scatter equations to be accurate, the region around each infinitesimal
perturbation must be representative of the average, and this situation may not always be
the case.

It should be recognized in Bragg scatter that some process is needed in order to main-
tain the refractivity gradient; otherwise, the action of turbulence would diffuse away any
gradients. These processes for thin layers are presumably subsidence and radiation. An
increase in turbulence would not necessarily give an increase in Bragg scatter, since in-
creasing turbulence could reduce the mean gradients in refractivity.

It should also be realized that, while the Bragg scatter result derived here is only valid
for cases where half the radar wavelength lies within the inertial subrange of the turbulence,
scattering at some level should still occur even when that condition is not met. Indeed,
scattering could be significantly stronger for cases of gentle turbulence as the reduction
of small scale mixing would lead to less diffusion and stronger refractivity perturbations.
Equations for Bragg scatter for turbulence of large inner scale have never been developed.

Usage of the term “Bragg” is unfortunate as it can lead to a mis-interpretation of the
physics. Diffraction spots as in X-ray diffraction do not occur in Bragg scatter (with the
exception of RASS). Instead, for turbulent applications, the integral leading to the total

energy scattered depends inherently on the radar wavelength. This is true regardless of
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the spectral structure of the refractivity inhomogeneities and is related to the destructive
interference of most of the wave energy emitted over a spatial volume. The mathematics
is similar to radar reflections from simple gradients in refractivity (Sec. 3.6) which have
no eddy structure. Turbulent eddies do not act like a diffraction grating.

With regard to scatter from thin layers such as those seen in Figs. 3.7 and 3.8, the
application of Bragg scatter theory seems questionable. Bragg scatter for these cases
would require exceptionally thin layers of turbulence (less than a few meters) which seem
unrealizable physically. Of these thin-layer echoes, Atlas (1969) stated, “It would therefore
appear that we have the first striking evidence of the existence of an unusual refractivity
spectrum in which all the perturbations are in sub-meter scale eddies.” I would instead
suggest the possibility that these data imply that thin layers such as these are not turbulent
at all, but that reflections are adequate to explain them. If the existence of very sharp
gradients can be accepted, it is easier to hypothesize such gradients than the unusual
combination of physical circumstances that would give rise to thin layers of persistent
turbulence in the atmosphere, which have never been explained nor definitively observed.
Since such layers tend to be stable layers, they will not be turbulent unless sufficient vertical
shear exists. If sufficient shear exists, it would be expected that large scale turbulence would
result, as is usually observed ( for example lock-exchange flows, or the breaking of K-H
waves into turbulence seen in Fig. 3.8). It is not sensible to claim that the scattered energy
from such thin layers results from turbulence. This reluctance to accept the existence of
layers of turbulence with an outer scale less than a meter was also expressed by Hardy and
Gage (1990, p. 137). Nonetheless, scattering from deeper layers probably is adequately

explained by Bragg scatter.

3.8 Clear-Air Radar Studies

This section analyzes and discusses data acquired on two nights and one day with dif-
ferent radars specifically to study the nature of the nocturnal clear-air radar echo. Because
all the different scattering mechanisms have different dependencies on radar wavelength

(see Table 3.3), important information can be obtained about the nature of the scatterers
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| Mechanism Ze, m° n, m~!
Z 7
Reflections from grads. 2.2X107° (%) ’)l—s %(% %
i ; A 2 1 2
Reflections from discons. 27r5“\,‘_h(An) s (An)
Bragg scatter 0013C2\I173 0.38C2\"1/3
[ 12
Rayleigh scatter const.:zvﬁ 2 ﬂ/\—{}'— D¢V i
Mie scatter Fig. 3.12, from Ray. to ;’I%g ‘7,"" Fig. 3.9 from Ray. to Z"L
- ; 5 51K T2 Yy 6
Ray. with one target DFA/IV =%4 . K ps v = 7’/\8 . o
. . l - b “
Mie with one target B to TR %:wsmgﬁg%m to mr? |V =2

Table 3.3: Collection of reflectivity formulas. R is radar range, r and D are radius and
diameter of targets, V is resolution volume.

if different wavelength radars happen to be available to probe the same air at the same
time. Two such studies were done as described in this section.

The known mechanisms inciude: Bragg scatter, reflections, Rayleigh scattering, and
Mie scattering. Table 3.3 collects some of the equations together for effective reflectivity
factor, Z, and reflectivity, n, gathered from the developments in this chapter. For isolated
point targets, there is a volumetric effect. Since a point target has a fixed backscatter
cross-section, the backscatter cross-section per unit volume (n) will decline as the radar
resolution volume increases. For determining Mie cross-sections, Fig. 3.9 needs to be
consulted to get o, reflectivity or Z. values depend on specific radar parameters and can
be found by applying (3.5). It is important to pay careful attention to unit conversion
factors when doing such calculations.

It is important to note the wavelength dependence indicated in this table. In terms of Z,
values, if the radar targets are tiny Rayleigh scatters, then the reflectivity is independent of
the radar used. If the targets are refractivity inhomogeneities causing Bragg scatter, then
there is a A!1/3 dependence. For large Mie scatters, the dependence varies, but approaches
A* for very large objects. From a practical standpoint, a A* dependence will be difficult to
discern from a A''/3 dependence, so it will probably not be useful to try to discriminate
bird scatter from Bragg scatter by using multiple wavelengths, since birds tend to be very
large Mie scatters for most meteorological radars (Fig. 3.9).

There is also a volumetric effect. Since Z. is only meaningful for a volumetric distri-
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bution of targets, if a single point target is being sensed, the reported reflectivity of it will

depend on the resolution volume.

3.8.1 Analysis of a Clear-Air Density Current Measured by DOW3

Some light is thrown on clear-air signals by some data acquired using DOW3 of a
density current (thunderstorm outflow). Fig. 3.16 is a reflectivity scan in RHI mode
(Range-Height Indicator) of a density current obtained on June 1, 2000 in a wheat field
in southwest Kansas. The spatial resolution was high for these data, with a gate spacing
of 49 m. This was a clear-air situation with active convection some distance away. Figs.
3.17 and 3.18 are the velocity and spectral width data for the same RHI. The data are
contaminated by some ground clutter and by second trip echo. This second trip echo is
from the distant thunderstorm and is indicated quite well in the spectral width RHI of Fig.
3.18, showing as a horizontal band of high spectral width. The velocity data also show
significant aliasing in Fig. 3.17, with a Nyquist of only 17 m/s. The data could be easily
dealiased and filtered to remove ground clutter and second trip data; however, that is not
necessary for the purpose of this section which simple aims to analyze the reflectivity in
some sections of the current.

Of interest in Fig. 3.16 are the two point echoes at a range of about 4 km and an
elevation of 20°, which are probably birds. A box has been drawn around these echoes in
the data. Similar point echoes are seen in a layer about 3 km above the ground. These
echoes have higher reflectivity than surrounding reflectors and by examining Fig. 3.17, it
is seen that they have a significantly different Doppler shift than surrounding material.
By examining the data closely it is found that the two strong echoes are both 15 dBZ in
reflectivity, and the surrounding air is -17 dBZ. The radial velocity of one of the two echoes
is -13 m/s and the other is -8 m/s, which compares with +6 m/s for the surrounding air.
This is a difference of 16 m/s, a reasonable air speed for a bird. This difference cannot
be accounted for by aliasing since aliasing causes errors of twice the Nyquist, or 34 m/s in
this case. The most reasonable explanation for these echoes are that they are birds flying

against the wind. By Fig. 3.9, a typical bird would have a radar cross-section at 3 cm of

102



AZM min,max 220.84 221.14 Assumed data range: -25. 10.@ 2 9gsgace 49,

DATE: 6 1100 Times: 23 437 23 443 G RADS: 2468
DOW3  RHIdbZ RINGS : 0.50km RAYS: 20.deg MAG 2.0

5200

Figure 3.16: DOW3 RHI for reflectivity of a thunderstorm outflow. DBZ, values range
from -25 dBZ (white) to 10 dBZ (black). Range rings are drawn every 500 m and radials
are drawn every 20°. Box is drawn around two high reflectivity point targets of interest.
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nge: -16. 8.@ 2 gspace 49.
RADS: 24685 %5200

RINGS : 0.50km RAYS: 20.deg MAG 2.0

AZM min,max 220.84 221.14 Assumed datara
DATE: 6 1100 Times: 23 437 23 443 G
RHI VEL, m/s

DOW3

Figure 3.17: As Fig. 3.16 but for radial velocity. Range of radial velocities displayed is

from -16 m/s (very light gray) to 8 m/s (black).
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AZM min,max 220.84 221.14 Assumed datarange: 0. 10.@ 1 gspace 49.
DATE: 6 1100 Times: 23 437 23 443 G RADS: 24689 25200
DOW3  RHISPEC,m/s RINGS: 0.50km RAYS: 20.deg MAG 2.0

Figure 3.18: As Fig. 3.16, but for spectral width. Range of values displayed is from 0 m/s
(white) to 10 m/s (black).
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T1=30c¢

TD1=28¢
el=37.8 mb
01=1.000413 A

T2=15¢
TD2=14¢
-6dBZ
€2=16mb

010 10 dBZ n2=1.000345 < FLOW Lo=1000 m

o Lo=[00m

Figure 3.19: Diagram of density current. Thermodynamic properties of temperature, T,
dewpoint, TD, water vapor pressure, e, and refractive index, n, are listed at station #1
ahead of the current and station #2 behind the current. Local values of radar reflectivity
in dBZ are plotted at a few locations. Lo is the local mixing depth within the current.
Based on Fig. 3.16.

-17dBZ

about 10 cm? and by (3.7) a reflectivity of 15 dBZ at a range of 4 km with this 3 cmn radar
and a 49 m gate spacing. There is a, however, lot of scatter in radar cross-section data for
birds. Vaughn (1985) collects data from numerous studies which have a range of 40 dB
in radar cross-section for bird echoes. For a single species of bird, cross-sections can vary
by 15 dB depending on the orientation of the bird relative to the radar beam (Vaughn,
1985), so a 15 dBZ echo is generally consistent with a bird explanation. Insects have been
reported with radar cross-sections as large as birds. Therefore, the airspeed of the targets
alone implies that they are birds. The layer of point targets 3 km above the surface are
probably also birds since they are strong reflectors and have a variable Doppler shift.

Of greater interest is the source of reflectivity of the density current itself and the
nearby air. DOWS3 has received a signal strength sufficient to measure velocities in the
entire layer of the atmosphere below about 2 km, with reflectivities of about -17 dBZ
outside the density current and 0 to 10 dBZ inside it. The noise level for DOW3 would
permit the detection of signals as weak as -24 dBZ at 4 km. Fig. 3.19 is a diagram of the
situation with some local reflectivities and hypothetical thermodynamic properties plotted.
Data from Vaughn (1985) and Riley (1985) (consistent with Fig. 3.9), which both collect
the results of numerous studies on the radar cross-section of birds and insects, combined
with the application of (3.7) implies that at a range of 4 km, and with this 49 m gate
spacing, DOW3 might expect the dBZ, levels and radar cross sections listed in Table 3.4
for birds and insects, if only one was present as a point target in a resolution volume.

This encompasses objects from the tiniest insects to the largest birds. For multiple targets
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[ TARGET

I dBZ, for DOW3, 49 m gate, 4 km range |

o, cm?® for 3 cm radar

Birds -5 to 35 dBZe, with 18 dBZ, typical | 10~! to 10° with 20 typical
Insects -25 to 15 dBZ, with 5 dBZ, typical 10~° to 10 with 1 typical
Mosquito -25 dBZ, 1073
Sand piper 18 dBZ, 20
Robin (Eastwood, 1967) 18 dBZ, 20
Locust 15 dBZ, 10
Moth 5 dBZ, 1
Butterfly -5 dBZ, 101

Table 3.4: Radar cross section and dBZ values for 3 ¢m radar for some insect and bird
targets. From Eastwood (1967), Riley (1985) and Vaughn (1985 ).

within a resolution volume, the received power would be the sum of that for the individual
scatterers, and dBZ values would increase by 10 times the log of the sum. Doubling the
power Increases dBZ, by 3 dB, and 10 identical targets in a resolution volume would
increase the dBZ. level by 10 dB, for example. Birds and insects cross-sections overlap so
it is often not possible to definitively identify an echo as bird or insect on the basis of the
radar cross-section alone, though very weak echoes are probably insects and strong ones
may identified as probably birds.

It is possible to explain all of the reflectivity in the density current in terms of insects,
since small enough insects exist to give the -17 dBZ reflectivity observed ahead of the
current, and large enough ones exists to give the -10 to 10 dBZ reflectivity observed inside
the current. Birds are probably not a significant source of reflectivity overall. The -17
dBZ ahead of the current is too weak to be caused by even the smallest birds, and even
most birds would be expected to give rise to reflectivities greater than those seen inside
the current. However, since the reflectivity is highest near the head of the current, some
mechanism for concentrating insects in this region would need to exist in order for insects
to explain the observations. That the current head is also a zone of convergence and
vertical motion might help to explain a concentration of insects in this region, though
this is not clear as the flow is still practically incompressible. Insects would need to move
or be moved in a coordinated manner against the air flow in order to concentrate in one
location. Though an insect source could be from insects being blown off the ground by

the gusty winds. Wilson et al. (1994) explain the hypothetical concentration of insects
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along convergence lines as being caused by insects actively flying downward to resist being
carried upward to colder heights, or in free fall from immobilization caused by cold. Drake
and Farrow (1988) discuss this issue and conclude that ground concentrations can be high
only if the convergence zone moves slowly.

It is also possible to interpret the observed reflectivities in terms of Bragg scatter.
To do this, an estimate of C2 is required so that (3.41) can be used. Recall that C2 is

estimated from scaling arguments to be (3.37):

C2 = [3(Vn)?

Il

For a density current, it is reasonable to expect L, to be the depth of the current. For
the gradient in n, thermodynamic properties are required so that (3.13) can be used to
determine n from N=(n-1)X10%. We do not have synoptic data for this particular case,
however typical values for a thunderstorm outflow are plotted in Fig. 3.19 at station #1
ahead of the current and station #2 within the current. From these values, the vapor

pressure is found from Teten’s formula:

es = 6.112exp < 176774 )

Ty +243.5

for e; in mb and dewpoint, Ty, in degrees C. Assuming 1013 mb of atmospheric pressure,
the total difference in index of refraction gradient between the two regions of air = (n;
-n2)=(1.000413-1.000345)=6.8X1075. Since the turbulence in the current is generally mix-

ing air from outside the current with that inside the current, it is perhaps reasonable to

2 2
assume that (vn) :(%ﬂ) . It then follows from 3.37:
0
C? = L723(An)? (3.42)

Substituting this into (3.41):

mmb

m3

Z ) = 1.3X10P°L;23(An)2A11/3 (3.43)
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with An an index of refraction difference between two fluid areas being mixed through a
depth L,. Using (3.42) and (3.43) with a An of 6.8X10~> and the 3.198 cm wavelength of
DOW3 gives the following

Location C2, m™?%3 | dBZ,

within current, L, = 1000 m | 5X10~!! -7

near head, L, = 100 m 2 X10-10 0

These values are remarkably close to the observed -6 dBZ, within the current and 0 to 10
dBZ. near the head. Furthermore, the increase in reflectivity near the head can be ex-
plained in terms of Bragg scatter rather simply as being do to the decreased mixing depth.
The head is precisely the region with the greatest gradient in thermodynamic properties,
and, therefore, also the largest refractive index perturbations caused by turbulence. These
results are in excellent agreement with Bragg scatter theory and support the theory that
the radar signal could be caused by Bragg scatter. For the air ahead of the current, the
reflectivity of -17 dBZ equates to a C2 of 5X10'2 m~?%/3.

Values of C2 high enough to account for the reflectivity reported here of about 10~°
to 1072 m~2%/3 are relatively high compared to those reported in the literature (e.g.,
Doviak and Zrnic, 1984, p. 386). Common C2 values are 1075 m~2/3 with 1013 m~2/3
considered strong. However, Knight and Miller (1998) reported reflectivities in 3 cm radar
measurements from Bragg scatter of thermals and developing cumuli as high as -10 to 0
dBZ, which correspond to C2 values as high as 1071 m~2/3. The wavelength dependence
of the signals they observed tended to confirm the Bragg scatter explanation. Gossard
(1990) provides a discussion of C2 values needed to account for thin lines in radars and
concludes (p. 510) that C2 >10"'? are reasonable in density currents, but C2 values
sufficient to account for 10 dBZ, of reflectivity in a 5 c¢m radar (C?l =5X10"10m~2/3 )
are most likely caused by insects. Wilson et al. (1994) analyzed various clear-air echoes
with multiple wavelength radars and and examined differential reflectivity values with
polarization radar. They concluded that 0 dBZ, echoes of a thin-line sea-breeze front seen

by a 3 cm radar and most other cases of clear-air reflectivity seen in the boundary layer
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were almost certainly caused by insects since the difference between the reflectivity at 3
cm and 10 cm was only 7 dB (versus an expected 19 dB for Bragg scatter). However, they
did admit that a thin line they observed with only one radar (5 cm wavelength) which had
reflectivity of 0 dBZ, could have been caused by Bragg scatter.

The Bragg scatter explanation is supported by the theoretical expectation of C2 values
as high as 10710 m~%/3, by the remarkable agreement between the calculated reflectivities
and the observations, and by the explanation that variations in the mixing depth cause
the higher reflectivity in the head region. The small value for L, is the critical element
which gives rise to high C2 values. In small scale phenomena, such as a density current,
there is rapid short range mixing of air of very different composition. It should be expected
that unusually high refractivity fluctuations (which C2 is a measure of) would occur in
such situations. The possibility of small insects, or a combination of insects and Bragg
scatter, as the cause of the observed signals, cannot be conclusively ruled-out, however, as
a distribution of very small insects could account for the observed reflectivity. The biggest
problem with an insect explanation is the difficulty in explaining the concentration of
insects in the head region, for which an explanation has not been confirmed, and the need
for a high enough concentration of insects in order to account for a spatially continuous
signal. However, Drake (1984) notes that entomologists frequently observe concentrations

of insects at the head of density currents.

3.8.2 Volumetric Radar Echo Seen by DOW3 and NEXRAD at Good-
land, Kansas, May 30, 2000

On May 30, 2000, DOW3 was co-located with the KGLD NEXRAD at the Goodland,
Kansas Weather Service Office at approximately 6Z (midnight). Moderately strong clear-
air return was seen by KGLD and DOW3 in the lowest 2 km of the atmosphere, as is
typical at that time of year. Data were collected for analysis in an attempt to discern
the source of echo. Data from two other radars, the UMASS 3 mm radar (also co-located
with KGLD) and the McCook, Nebraska 74 cm wind profiler (85 miles away) were also

examined. Unfortunately, the UMASS radar was not operating properly at this time and
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the data were not usable for comparison. Also, the McCook Wind profiler data could not
be used. In addition to having no data below 500 m, the reflectivity calibration of this wind
profiler (as others of its type) could not be obtained accurately enough for a meaningful
comparison,

DOW3 was parked within 100 m of KGLD, just south of the tower, between 5§ and
7 Z May 30, 2000. At this time, a squall line had passed off to the north and was far
enough away that KGLD was put into clear-air mode about at about 6Z. A strong LLJ
had developed with winds to 32 m/s (according to KGLD) with strong clear air reflectivity
of 10 dBZ (in KGLD). Analysis of the wind profile obtained with this data set and ground
clutter contamination problems are discussed in the Appendix.

Fig. 3.20 is the PPI scan for reflectivity from KGLD for a tilt of 2.5° at 5:56Z, while Fig.
3.21 is the corresponding PPI from DOW3 obtained within one minute of Fig. 3.20. These
figures are plotted with height range rings drawn every 200 meters above the surface. The
usage of height rings is different from conventional displays in which the rings are usually
the horizontal range from the radar. This is done to facilitate analysis of the vertical profile
of reflectivity. It is more useful to know how far above the ground the echo is than how far
away it is in range. Figs. 3.20 and 3.21 are scans obtained at the same 2.5° tilt for both
radars at the same time and plotted on the same scale. The polarization of both radars
is also the same (horizontal). The only difference is in the gray scale selected. Because
DOWS3 had reflectivity about 15 dBZ lower than KGLD, it was necessary to plot on a gray
scale 15 dBZ below that of KGLD. Other differences are due to peculiarities of the radars.
DOWS3 shows some beam blockage to the north (top of figure), probably from the NWS
office and KGLD tower. The radial resolution of DOW3 was also superior, with a 137 m
gate spacing in this case, versus 1000 m for KGLD. This translates into a finer resolution.
Also, while the angular beam size is the same for both radars at .95°, DOW3 was obtaining
radials every .2° versus every degree for KGLD. This over-sampling in azimuth adds to the
appearance of higher resolution for the DOW3 data.

That DOW3 reported reflectivity factor significantly weaker than that of KGLD is an

important clue to the nature of the echo. This rules-out Rayleigh scatterers as the source of
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Elev min,max 242 2.50 Assumed datarange: -15. 15.@ 2 gsp: 61.
DATE: 530 O Times: 55549 55717 GMT RADS: 1470 1834
KGLD  HGT dbZ HRINGS: 0.20km RAYS: 20.deg MAG10.5

Figure 3.20: PPI scan for KGLD for clear-air return on 5/30/00 at 6Z. Gate spacing was
1 km. Gray scale range is from -15 dBZ (white) to 15 dBZ (black). Rings are height rings
drawn every 200 m above the ground. The total horizontal range is about 45 km.
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Elev min,max 2.47 2.50 Assumed data range: -30. 0.@ 2 5gsé{) 6.
DATE: 530100 Times: 55536 55559 GMT RADS: 5447 7427
DOW3  HGT dbZ HRINGS: 0.20km RAYS: 20.deg MAG 0.9

Figure 3.21: PPI scan for DOWS3 for clear-air return at 5/30/00 at 6Z. Gate spacing was
137 m. Gray scale range is from -30 dBZ (white) to 0 dBZ (black). Rings are height rings
drawn every 200 m above the ground. The total horizontal range is about 45 km.
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echo, as these would not show such a dependence on wavelength (Table 3.3). From Table
3.3, it is easily found that the difference in dBZ, that two different wavelength radars

would be expected to have if Bragg scatter were the cause would be:

11 A
AdBZ, = Tologm/\—; (3.44)

and the difference for point targets would vary from 0 to:

AdBZe = 4010{]10 él
A2

Given the 10.0 cm wavelength of KGLD and the 3.198 cm wavelength of DOW3, these
equations give:

For Bragg Scatter : AdBZ, = 18

and
For Mie Scatter : AdBZ, =0 (very small insects) to 20 (large birds)

To analyze the difference for this case, a box is drawn to the southwest of the radars
in Figs. 3.20 and 3.21. The reflectivity is averaged over this box for comparison. This
location is about 1.1 km above the surface (a range of 25 km) and both radars are sampling
approximately the same air at approximately the same time. For DOW3, the signal is not
continuous and the average is taken only counting those data above the noise level, It
is found that DOW3 had an average reflectivity factor within the box of -14 dBZ, while
KGLD had -3 dBZe. Given the 1 dB and 3 dB calibration uncertainties for KGLD and

DOW3 respectively, this gives:
AdBZ, observed = 11 £ 4dB

This value is not consistent with a Bragg scatter or large bird explanation, unless other
unaccounted for errors can make-up another 3 dB. It is consistent with insects of large

enough size, or possibly small birds and is similar to the 7 dB difference between X and
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S-band radars found by Wilson et al. (1994) for similar volume-filling echo. The indicated
radar cross section at a range of 25 km for -3 dBZ, for NEXRAD and -14 dBZ, for DOW3,
from (3.7), are .98 cm? and 1.4 cm?, respectively. The lower NEXRAD value can possibly
be attributed to the differing cross-section measured at 10 cm wavelength for some targets
(Fig. 3.9) or calibration error. If the DOW3 signals were due to individual targets, then a
1.4 cm? is consistent with an typical insect cross-sections, but is low for most birds.

To look at the source of echo further, Fig. 3.22 is a reflectivity PPI scan of higher
resolution DOW3 data acquired at a 10° tilt about 10 minutes after Fig. 3.21. These data
are of the highest possible resolution attainable with DOW3, with a gate spacing of 12 m.
Fig. 3.23 is the corresponding velocity PPI scan (de-aliased). Fig. 3.22 only shows the
lowest 500 m of air to a range of 3 km. The numerous point targets evident in this figure
implies either an insect or bird explanation. The reflectivity factor of the point targets is
about 5 to 12 dBZ, at a range of 2 km. This corresponds to a radar cross section of from
.06 to .32 cm?, which corresponds with typical insects, but is low for birds (Table 3.4). The
increase in dBZ, for a smaller resolution volume is fairly conclusive in indicating that the
targets are dispersed point targets. A volumetric target such as Bragg scattering, would
present as the same reflectivity, regardless of resolution volume, as reflectivity measures
cross-section per unit volume. The cross section found at this location is about 6 dB below
that found at a range of 25 km for 2.5° of tilt and a 137 m gate, discussed above. This is
possibly due to the presence of smaller insects at the lower elevation.

The targets are widely distributed enough such that only about one is present in the
larger resolution volume at a time. We also note that the velocity scan of Fig. 3.23,
after ignoring all the ground clutter and missing data, has smooth velocity (i.e., the point
targets are not evident in the velocity information), implying that the point targets are all
moving at about the same speed, which further supports an insect over bird explanation
as the variance in bird movement is, at least potentially, much higher than that of insects,
which would tend to be passive tracers.

That the source of echo was a distribution of point targets might also have been deduced

from lower resolution data of Fig. 3.21. This figure has a granularity to it implying that

115



Elev min,max 9.97 10.02 Assumed data range: -20. 10.@ 2 gsp: 2.
DATE: 530100 Times: 6 757 6 821 GMT RADS: 470 1461
DOW3  HGT dbZ HRINGS: 0.05km RAYS: 20.deg MAG 1.2

Figure 3.22: PPI reflectivity scan from DOW3 with a 12 m gate spacing, obtained at 6:08
Z,5/30/00 at a 10 degree elevation. Dark arcs and lines are ground clutter. Reflectivity
gray scale is from -20 dBZ (white) to 10 dBZ (black). Range rings are drawn every 50 m
in elevation. Total horizontal range is 3 km.
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Elev min,max 9.97 10.02 Assumed data range: -40. 40.@ 5 gsp: 2.
DATE: 530100 Times: 6 757 6 821 GMT RADS: 475 1461
DOW3  HGT VEL,m/s HRINGS: 0.05km RAYS: 20.deg MAG 1.2

Figure 3.23: As Fig. 3.22, but for radial velocity. Velocity range is from -40 m/s (light
gray) to 40 m/s (black). Substantial medium gray shading is from ground clutter.
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the target density is insuflicient to fili every resolution volume with at least one target.
The KGLD PPI of Fig. 3.20 is spatially continuous, and the the target density is sufficient
to fill almost every resolution volume for this much larger 1 km gate spacing. NEXRADs
can have granular imagery, too, if the density of scatterers is low enough. This is more
likely to be seen in the higher resolution (250 m gate) velocity data. Since Bragg scatter is
expected to be volume filling at a length scale less than the radar wavelength, it is always
expected to give a spatially continuous signal. Granularity is an excellent indication of
point targets such as birds or insects. However, a spatially continuous signal does not rule
out bird or insects scatterers, as the density of such targets can be quite high.

An RHI scan at the same location as Fig. 3.22 and the same high-resolution 12 m
gate spacing at a time about 20 minutes earlier, is shown in Fig. 3.24 for reflectivity and
3.25 for velocity. Here it is seen that the point targets extend up to 2 km in elevation,
though they are most numerous below 1 km. Fig. 3.24 also indicates a nearly continuous
signal in the shallow layer 200 m above the surface. Point targets are still obvious in this
layer, but they are surrounded by much weaker, though detectable, signal. The velocity
of the point targets in this layer and the surrounding air is the same, as indicated by Fig.
3.25. The reflectivity at a range of 2.5 km of the weak echo in the layer is about -12 dBZ,.

This corresponds to a radar cross-section of 2X10~3 cm?

, consistent with only very small
insects. Possibly this layer of air has a very high population of very small insects, or this
weak reflectivity could be due to Bragg scatter, since a layer of air near the ground at
night might have a strong refractivity gradient caused by radiational cooling.

If birds were present, they must have been few in number since none of the point targets
seen in Fig. 3.22 indicate a radar cross section much greater than .2 cm?.

The number density of point targets in Fig. 3.22 can be estimated and it is instructive
to compare this estimate with ornithological bird migration censuses. To estimate the

number density, we count the number of targets over a large sector of Fig. 3.22 and divide

by the volume of spaced sensed by this sector. To obtain the volume of a sector, the
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AZM min,max 180.02 180.02 Assumed datarange: -20. 10.@ 2 gspace 12.
DATE: 530100 Times: 548 8 54818 G RADS: 582 1003
DOW3  RHI dbZ RINGS : 0.20km RAYS: 20.deg MAG 1.0

Figure 3.24: Reflectivity RHI scan from DOW3 at Goodland, KS at about 5:48 Z, 5/30/00.
Range rings are drawn every 200 m in range. Gray scale is from -20 dBZ (white) to 10
dBZ (gray). Arc echos near radar are from ground clutter.
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AZM min,max 180.02 180.02 Assumed data range: -22. 22.@ 3 gspace 12.
DATE: 530100 Times: 548 8 54818 G RADS: 582 1003
DOW3  RHIVEL,m/s RINGS: 0.20km RAYS: 20.deg MAG 1.0

Figure 3.25: As Fig. 3.24, but for radial velocity, not de-aliased.
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differential volume in spherical coordinates is integrated over a sector:

d+AP[2 pAO pr4Ar
Vol. = / / / r20cospdrdfds
o—A¢/2 JO r

Where r is the radial distance, 6 is the azimuthal direction and ¢ is the elevation angle.
This integration yields the formula:
Af A .
Vol.of sector = T[Zcosg{)sinT(p][(r + Ar)? — 73] (3.45)
Which is correct so long as |¢p £ A¢/2| < 7/2. For radar, A¢ is typically small, so 2Sin%Q
~ A¢. Converting to degrees, [3.45] simplifies to:

ABAS
3602

Volumeof sector = §W2COS¢[(’I‘ + Ar)? =9

Where r is the inner range of the sector, Ar is the range length of the sector, Af is the
angular width of the sector in degrees, and A¢ is the beam width in degrees. This leads
to an estimate of about 5.0X107® birds per cubic meter, if the targets were thought to be
birds, or an average bird spacing of about 60 meters. To put this number in perspective, if
this concentration was the case for all the air below 1 km for the entire state of Kansas, it
would imply almost 1 billion birds flying overhead that evening in Kansas. This estimate
can also be made from the lower resolution NEXRAD data by simply integrating the
total radar cross section seen by the radar over space and dividing by the expected radar
cross section. This is much less precise than counting individual point targets in a high-
resolution radar since the cross section of birds and insects is highly species dependent,
varying by many orders of magnitude, and it is not generally known a priori which are
present. Also, for this case, a higher target density occurs near the ground where ground
clutter contamination and filtering alter reflectivity values.

Bird density during migration is measured in terms of the number of birds crossing
per mile (1610 m) of front per hour, and is referred to in the ornithological literature as
“migration traffic rate (MTR)” or “flight density”, (Lowery and Newman, 1966). Given

the 5.0 X107® targets per m3 scen in these data, and the average 25 m/s ground speed of
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the wind profile below 1 km (Appendix A), the calculated MTR is 7.3X10° birds per 1610
m per hour. In a study utilizing 265 observing stations across the country, Lowery and
Newman (1966) measured MTR throughout the country {with the help of 1391 observers)
on 4 nights in October of 1952. Bird counts were accomplished by watching the moon
through a telescope and applying complex formulas to arrive at MTR values. Lowery and
Newman (1966) note various problems with this technique. Their data reduction task was
so complex, it took over a decade to accomplish. They found typical migration rates of
about 3700, with 4500 being “heavy”. This is a factor of 160 less than the traffic rate seen
here. Gauthreaux (1998) reports MTR values obtained by moon-watching along the U.S.
Gulf Coast, an area which can have particularly intense migratory traffic. The maximum
MTR value he reported was about 200 000 (on one occasion, more typical values were
20 000), still 1/3 that observed with these data. Such high MTR values would not be
expected to exist over a very wide area for a long time.

The combination of radar cross-section consistent with insects and low for birds, and
the number density of scatters vastly exceeding what would be expected from migratory

birds, strongly argues against birds being a significant source of radar signal in this case.

3.8.3 UMASS and NEXRAD Clear Air Study, Norman OK, May 19,
2001

To further study the source of clear-air echoes, radar data were acquired on the night
of May 19, 2001 at about 4Z at the Max Westheimer Airport in Norman, Oklahoma under
clear air conditions. The mobile 3 mm wavelength radar of the University of Massachusetts
(UMASS radar, Bluestein and Pazmany, 2000) was used. This radar has exceptional spatial
resolution with a beam width of .18° degrees and a pulse length of 60 m. Oversampling in
the radial direction is accomplished with a gate spacing of 15 m. Other parameters for this
radar are listed in Table 3.1. This night was chosen because strong clear-air reflectivity
had been seen at night in NEXRAD radars in the area on previous nights. At the same
time, what seemed subjectively to be unusually large numbers of small, brown moths were

observed congregating around street lamps and other surface light sources.
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3 mm is an unusual wavelength for meteorological applications and use of this radar
presents some special problems. One is that the near-field of the radar extends out to 900
m. As the radar is designed with an intended range of less than 10 km, many of the radar
targets will be in the near-field. This problem is dealt with by replacing r, the range in
standard far-field radar equations, with D/, where 8 is the .18° beam width, as discussed
in Sec. 3.3. Another problem is attenuation. 3 mm radars suffer significant atmospheric
attenuation due to absorption by Oxygen (Blake, 1970). As the amount of Oxygen in the
atmosphere varies with altitude, the amount of attenuation along a radar radial depends
on the tilt of the radial. However, for short ranges, the atmosphere is homogeneous enough
to use a single attenuation rate. At 3 mm, two-way attenuation near the earth’s surface
is about .7 dB/km (Blake, 1970, Fig. 42). This amount is added to reflectivity values to
correct for attenuation.

There was no nearby precipitation on this night or the previous day. Fig. 3.26 shows
a PPI display of reflectivity at a tilt of 1.5° obtained from KTLX. KTLX is the closest
NEXRAD to the location of UMASS, about 25 km away. Fig. 3.27 shows the corresponding
PPI for radial velocity.

Fig. 3.26 Indicates a very high reflectivity for clear air, to 25 dBZ in many areas and
at least 5 dBZ everywhere below about 2.2 km. This is much stronger than the echo seen
in Goodland, KS, discussed in the previous section. The velocity scan shows no evidence
of ground clutter contamination, and also has a spatially continuous signal, implying a
high target concentration. The velocities are fairly weak, about 6 m/s below 1 km, and
reaching 12 m/s at 3 km of elevation. A wind profile derived by VAD analysis of the data
in Fig. 3.27 is shown in Fig. 3.28. This high reflectivity suggests the possibility of birds,
but the UMASS data to be discussed next strongly argues that it is again insects.

Fig. 3.29 is a time height display of reflectivity obtained by UMASS within 5 minutes of
the data of Fig. 3.26. The UMASS radar was parked and the antenna pointed vertically.
2414 radials were obtained in 195 seconds. Fig. 3.29 shows a total depth of 3 km and
many targets passing through the beam. Targets are seen below about 2.6 km, in good

agreement with the depth of echo seen by KTLX in Fig. 3.26. It should be noted that
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Elev min,max 1.41 1.67 Assumed datarange: 0. 25.@ 2 gsp: 25.
DATE: 519 1 Times: 35521 35634 GMT RADS: 738 1103
KTLX  HGT dbZ HRINGS: 0.25km RAYS: 20.deg MAG 4.1

Figure 3.26: PPI of reflectivity from KTLX. Near 4Z, 5/19/2001, at a tilt of 1.5°. Range
rings are drawn every .25 km of height above the ground. Total horizontal range is 95 km.
Reflectivity scale is from 0 dBZ (white) to 25 dBZ (black).
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Elev min,max 141 1.45 Assumed data range: -15. 15.@ 2 gsp: 6.
DATE: 519 1 Times: 35636 35755 GMT RADS: 1105 1470
KTLX  HGT VEL,m/s HRINGS: 0.25km RAYS: 20.deg MAG 2.3

Figure 3.27: As Fig. 3.26, but for radial velocity. Scale is from -15 m/s (light gray) to 15
m/s (black).
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KTLX RADS: 1105 1470
DATE: 519 1 Times: 35636 = 35755 GMT u=Uamp
Elev minmax 1.41 1.45 Nyquist: 26.10 m/s

4.0

35

3.0 |

25

20

Zkm

1.5

1.0 -

0.5 |-

| | | ! U, m/s
8.0 10.0 12.0 14.0

0.0 l
0.0 20

Figure 3.28: Wind profile derived by VAD analysis of Fig. 3.27.

the radar beam is much wider at upper levels, so that if the time-height display shows
about the same target density at all levels below 2.2 km, this would imply a lower density
of targets aloft. It is also instructive to note that fewer targets are seen in the layer near
1 km altitude in Fig. 3.29 than are seen at other levels. This is most likely due to the
weaker winds at this level causing individual insects to spend more time in the radar beam
as they drift by, and agrees well with the weak winds in the wind profile at this level seen
in Fig. 3.28. The targets in this layer are about the same reflectivity as other layers.
Radar cross-sections for the strongest echoes around 1 ki elevation (-16 dBZ.) are about
.2 cm?, calculated from (3.7). The strongest targets around 2 km appear to be larger (-15
dBZ.) with a cross section of about .5 cm?. There are no echoes at any level indicating a
cross-section larger than 1 cm?. This small cross-section is consistent with insects, though
the species can not be identified. Estimating the target density is straight-forward. The
number of targets in the radar beam below 2.2 km is counted by computer for each radial,

and this number is divided by the beam volume through a depth of 2.2 km. This count
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Figure 3.29: Time-height display for reflectivity from UMASS radar at Norman, OK, May
19, 2001 near 4Z. Vertical lines are drawn every 10 seconds and horizontal lines are drawn
every 200 m. Total depth displayed is 3 km and total time is 195 s. Reflectivity scale is
from -30 dBZ (white) to -15 dBZ (black).

127



gives about an average of 2.7 targets in the beamn at any given time, implying a target
density of 1.0X10™* per m3. This is twenty times that seen at Goodland. This number
density times a radar cross section of .1 cm? implies by (3.5) a KTLX reflectivity of about
25 dBZ,, in reasonable agreement with that observed.

Near 2 km in elevation, UMASS recorded reflectivities of about -15 dBZ,., while KTLX
values averaged about 10 dBZ.. This is a difference of 25 dB. The expected difference
from Bragg scatter or from birds (3.44) would be 61 dB. This further supports the insect
explanation for these echoes. The very high target density and radar cross-section typical

of insects, again argue strongly that the targets are mostly, if not entirely, insects.

3.8.4 Summary of Clear-Air Studies

Due to a combination of low radar cross-section and the large number density of targets,
the two studies of nocturnal clear-air return conducted here both came to the conclusion
that the targets were almost certainly insects, with not a single bird being clearly identified.
The difference in reflectivity between the two different radar wavelengths for each study
was much smaller than that expected for birds, which further supports this conclusion.
This is in agreement with the recent results of Wilson et al. (1994), and older conclusions
from entomologists and radar meteorologists that insects are the most common cause of
clear-air echoes. The current emphasis on bird-contamination of nocturnal radar wind
measurements (Wilczak et al., 1995; Gauthreaux et al., 1998b) may be misplaced. Clearly,
such contamination does occur, but the incidence must be low as detailed studies come to
the conclusion that insects are the cause. It is possible that some geographic locations such
as the U.S. Gulf coast could have a larger problem with bird contamination than others
due a higher rate of bird migration.

The usage of high-resolution radars was extremely useful. High resolution permits the
resolving of the individual radar targets and the estimation of their number density. This
leads to the firm conclusion that the targets were insects. This also leads to the ruling
out of Bragg scatter as the cause of echo as this would be expected to give a spatially

continuous reflectivity measurement. However, some continuous weak-reflectivity echo
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was seen below 200 m at Goodland and in the density current. The reflectivity seen in
the density current is in close agreement with that theoretically calculated from Bragg
scatter equations, with an assumption of a shallow mixing depth. It is possible that some
of the weak reflectivity seen in these studies was, in fact, due to Bragg scatter. This
is an interesting possibility, especially for the density current. If the reflectivity is due
to Bragg scatter, then this information could be used in a data assimilation strategy to
retrieve thermodynamic information, due to the dependence of refractivity perturbations
on thermodynamics.

It is possible to construct a theory to explain the nocturnal reflectivity entirely in terms
of refractivity. Such a theory has never been proposed, but one will be outlined here. At
night fall, the turbulence in the atmosphere rapidly declines, and radiative cooling of the
surface and atmosphere commences. This decline in turbulence leads to an increase in
the inner scale of the turbulence, but the outer scale, which is related to the boundary
layer depth, could be unaffected. The decline in turbulence would be expected to lead to
a potentially large increase in the refractivity gradient. This could lead to much stronger
refractivity perturbations from the residual, large-scale turbulence. These perturbations
could be large in size with isolated areas of poorly mixed fluid which could look like point
targets. Bragg scatter equations would not apply as they assume the existence of small-
scale turbulence. This scenario would account for the rapid increase of reflectivity at
sunset. However, the insect explanation is much simpler and is in agreement with most
data, and is, in all likelihood, the correct explanation for most cases of nocturnal clear-air
return.

It is, of course, possible that Bragg scatter, insects, reflections, and birds may all be

present at one time. Which would make bird and insect radar studies particularly difficult.

3.9 Discrimination of Birds and Insects as Radar Targets

Discriminating between birds and insects as the dominant cause of clear-air return
is a critical and unresolved issue. Birds on some occasions have been shown to almost

certainly significantly bias radar wind estimates, while insects have not been shown to bias
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such measurements. This is probably because of the significantly higher air speed of birds
over insects, and because of the alignment of birds in a single direction due to migratory
behavior. If radar targets with an air speed are not systematically aligned, then they would
not alter mean wind estimates. The preponderance of evidence implies that most often the
return is caused by insects, but clearly sometimes birds are present and sometimes they
seriously bias wind estimates. Insects are typically believed to be acceptable tracers of air
motion, though it may be possible in some cases of large, energetic insects, for insects to
also bias wind estimates.

It is clear that knowledge of bird behavior is of little help in this discrimination. Birds
can migrate any time of the day or night, in any direction, against the wind, with the
wind, ahead of and behind fronts, and on any day of the year. There are certain patterns
of bird behavior, but there are numerous exceptions as well.

One valuable tool for discrimination is the radar cross-section of birds and insects
(Vaughn, 1985). Birds can be ruled out in some cases simply if the reflectivity level is
too low. How low is easily predicted based on a minimum expected radar cross-section for
birds. Vaughn (1985) combines various studies of birds and insects and finds a range of
cross-section of from .1 to 1000 cm? for birds. However, most of the birds are between 1
and 100 cm? and most insects are below 10 cm?. From Eastwood (1967) passerine birds
(the most common nocturnal migrants) have cross-sections of 10 to 30 cm?. It might,
therefore, be reasonable to use 10 cm? as a bird threshold. With a minimum cross section
of 10 cm? in (3.5) for the parameters of a NEXRAD radar, and with one target assumed

to be in the beam at a time, the reflectivity must be at least:

dBZ, = 93.6 — 20logyor (for r inm) (3.46)

in order for moderate sized birds to be a possibility. This is alternately recast in terms of

height above the ground for a tilt of 1.5° :

dBZ, = 62.0 — 20log1oH
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Where H is the height above the ground. For example, 1 km above the ground requires
at least 2 dBZ, of reflectivity. If the reflectivity exceeds this level, then birds may or may
not be present. As shown here, insects in high concentrations can give rise to reflectivities
sufficient to explain any observed reflectivity level. Also, it is worth citing Eastwood
(1967) who reported that ornithologists have realized that migrants usually migrate in
small groups of several birds, so expected radar cross-sections should be several dB above
that expected for a single bird.

If the reflectivity and/or velocity in a PPI display is spatially granular, then this implies
a density of targets below the density of resolution volumes. In such cases, it would be
expected that each resolution volume would have only a few targets present at one time. In
this case, reflectivities above (3.46) would confirm the presence of birds, as insects would
be too weak to cause the signal. This technique can be used to confirm the presence
of birds in Fig. 1 of Gauthreaux and Belser (1998). In some situations, it might also be
possible to exclude birds on the grounds that the number density needed to cause a spatially
continuous signal is excessive. Granularity of echo, of course, is resolution dependent. The
high-resolution radars used in this work had no trouble resolving the targets of even very
high density.

For cases of spatially continuous and strong reflectivity, ambiguity remains. One pos-
sibility for discrimination is to use the symmetry of the PPI echo. The radar cross-section
of a bird is 15 dB weaker when scanned head or tail on, than when it is scanned broadside.
This phenomenon is also true for insects (Vaughn, 1985); however, it might be anticipated
that insects do not align them themselves, or at least do so rarely. Alignment is not nec-
essary for insect migration, as migrating insects typically simply use prevailing winds. If
insect air speed is small relative to the ground-relative wind, then insect alignment would
not be a big improvement in migration efficiency. If migratory birds were present all point-
ing their bodies in the same direction (which is the only situation in which their presence
would add to the mean velocity), then the radar should indicate much lower reflectivities
when scanning in the direction of their alignment. A possible example of this phenomenon

is shown in Fig. 3.30, which shows a bilaterally symmetric PPI reflectivity factor. The cor-
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responding velocity PPI scan is shown in Fig. 3.31. The only known explanation for such
an echo pattern is that the radar targets have some alignment. It seems reasonable that
the existence of such a bilateral symmetry could be used to confirm the presence of birds.
However, even though it would seem that such a symmetry should always be present when
migrating birds were present, it is not known how reliable this indication really is. Such
bilateral symmetry is actually rarely seen at night, and is much more common during the
day, when migrating birds are thought to be much less common. Fig. 3.30 was obtained
in the late morning, for example. The almost universal absence of a bilaterally symmetric
echo during nocturnal strong clear-air events is evidence that birds are rarely, if ever, the
cause of such reflectivity.

Another possibility is the use of polarization information, as explored by Zrnic and
Ryzhkov (1998), and Mueller (1983). Zrnic and Ryzhkov found what they believe to be
a characteristic signature of differential reflectivity, Zpg, and phase, §, which is markedly
different for birds and insects. Their technique is a potentially very valuable tool for
confirming birds, especially, as they state, since the polarization parameters do not depend
on target concentration. It would work just as well for an isolated target as a high density
of them. However they only analyzed one case of presumed birds and one of presumed
insects. One of the parameters of interest was differential reflectivity, Zpg. Zrnic and
Ryzhkov found Zpg higher for presumed insects than for presumed birds. Mueller (1983)
found the opposite for the two cases he analyzed. Also, polarization radars are rare and
the use of such a discriminator will not be available to the national NEXRAD radar for
many years, if ever.

Another possibility for discriminating birds from insect scatters is to use the height of
echo above the ground. Strong reflectivity through a deep layer, say 4 km, might indicate
the presence of birds as it might be expected that it would be difficult for insects to reach

such elevations.
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Elev min,max 3.25 3.38 Assumed datarange: 0. 25.@ 2 gsp: 58.
DATE: 815 1 Times: 153 9 15 341 GMT RADS: 1840 2205
KTLX  HGT dbZ HRINGS: 0.30km RAYS: 20.deg MAG 5.3

Figure 3.30: PPI reflectivity scan from KTLX at 15Z on 8/15/01 with a tilt angle of 3.3°.
Reflectivity range is from 0 dBZ (white) to 25 dBZ (black).
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Elev min,max 3.25 3.38 Assumed data range: -20. 20.@ 3 gsp: 15.
DATE: 815 1 Times: 153 9 15 341 GMT RADS: 1840 2205
KTLX HGT VEL, m/s HRINGS: 0.30km RAYS: 20.deg MAG 4.5

Figure 3.31: Velocity scan corresponding to Fig. 3.30.
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Chapter 4

Using Radar Data to Measure LLJ
Turbulence

For I have dreamt of bloody turbulence, and this whole night
hath nothing been but shapes and forms of slaughter.
—-Andromache, Troilus and Cressida, Act V Scene 3

4.1 Dealiasing VAD Data

The minimum pulse repetition time (PRT) of the Cimarron radar is 768.0 us (see Table
4.1). The maximum speed that can be measured without aliasing, Va2, at this PRT is

35.7 m/s, according to
A

Vmez =+ 50

Vmaz for NEXRAD radars is about 26 m/s for common scan modes. Since LLJs can have
speeds of over 50 m/s, aliasing needs to be dealt with. In this case, the aliasing problem
is not too severe as we do not expect more than one fold in velocity. The actual velocity
detected from the sampled Doppler shift is either the value determined from the Doppler

equation, Vindicated, OF any one of an infinite number of aliases separated by 2V, ,4.:

V = Vindicated + 2nViaz
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PRT, us | RANGE, km ] Vmax, m/s

768.0 115.2 35.7
921.6 138.2 29.7
1075.2 161.2 25.5
1228.8 184.3 22.3

Table 4.1: Available PRTs, maximum range, and maximum speed without aliasing for
Cimarron Doppler Radar

where n is a positive or negative integer. Speeds up to 3V 4z (=107 m/s) will be contained
within the first three aliases (n=0 or 1) and any LLJ is unlikely to exceed this level, so
we only need to decide which of these three speed aliases is the correct one. The general
way to dealias data (e.g., Doviak and Zrni¢, p. 141) is to compare the indicated velocity
and all the possible aliases with what one approximately believes the velocity to be. The
velocity closest to this approximate velocity is then chosen. Typically, the approximate
velocity is obtained by a proximity sounding or by Doppler data of a nearby or analogous
region which is not believed to be aliased.

Figure 4.1 shows a VAD (a Velocity-Azimuth Display) which has not been dealiased.
Near the minimum and maximum of the data, some points appear to be in error (aliased)
by 2Vner. Moving these points by 2V, up or down would bring them very close to the
best fit curve and the other data points, thus dealiasing the data. To accomplish this by
automatic algorithm, we proceed with the following iterative scheme, which was developed

as part of this research:

1. We find a point in the data in azimuth that we believe is not aliased. The data (e.g.,
of Fig. 4.1) are scanned in azimuth to find the first point at which the average of 3
successive data points of speed is less than 4 m/s (2 m/s for DOW and NEXRAD
data). These 3 points are also checked to see if adjacent values differ by more than
20 m/s. If they do, then one of the points is probably aliased, and the points are not
used as a starting point. As aliasing is a problem near the peaks in speed, speeds
near zero are not likely to be aliased, so we have a point at which we are confident
the data are not aliased, as long as the actual speeds are below about 2V,,,,. If

speeds greater than about 2V,,,, were present, then this method will fail as some
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Figure 4.1: VAD plot with some aliased data. V’s are data, circles (solid line) is best fit

sine wave.
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near zero velocities will be aliases. As we proceed through the data in azimuth from
this point, the speeds increase or decrease. If aliasing occurs, then it first shows up

as a discontinuous jump in speed between adjacent azimuthal points.

F\D

Proceeding in azimuth through the data from the starting point, an azimuthal run-
ning average of 5 data points of speed is calculated and the next point in azimuth
is compared with it. We consider this velocity value and the first two aliases (V
+2Vnez) This next point is replaced by whichever of these three velocities is closest
to the running average. Essentially, the running average in azimuth for data which is
assumed to not be aliased is used as an approximate value for comparison to dealias
speeds nearby in azimuth. This dealiasing is not done if the point being tested and
the running average are more than 25 degrees apart in azimuth, i.e., when the data

are too widely spaced.

3. After all the data in the VAD have been dealiased by this first pass through the data,

the best fit sine wave is then calculated.

4. This best fit is then used as the approximate velocity for comparison to dealias the
data in a second pass. The data are again looped through and the speeds and first
aliases are compared with the best fit speeds from step 3. The alias is selected
which is closest to the best fit value. This second pass is done because the data are
sometimes fairly noisy and the first pass of steps 1-2 occasionally selects the wrong
alias. Points which are incorrectly dealiased in step 2 are undealiased back to correct

values in step 4.

5. The best fit sine wave is then recalculated. In principle, we could iterate again using
this improved best fit to go back and again check for aliasing; but step 4 changes few
points in practice, and two passes through the data checking for aliases, once using

the noisy data and once using the smooth fit, appears to be sufficient.

Fig 4.2 shows the results of applying this algorithm to the data of Fig. 4.1. This algorithm
uses the data near zero speed as a starting point first guess for dealiasing adjacent points in

azimuth. The algorithm should work up to the point where high speeds are aliased to close
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VAD: v=data o0=CG fit

Cimarron radar Date: 3 17 99

start,end times: 73153 73252 GMT
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Figure 4.2: VAD data of Fig. 4.1 after dealiasing.

to zero meters per second, since these points then might incorrectly be chosen as unaliased
starting points. Consequently, the algorithm may have problems if speeds greater than

about 2V 0z (770 m/s) were actually present.

4.2 Measurement of turbulence with Doppler radar

Typical measures of turbulence are the variances in the velocity components, 02 =

u'?, 02 = 2,02 = w'? where the velocity perturbations are ', v', w'; and the covariances
of the velocity perturbations, u'v/, u'w', v'w', where the overbars refer to time averages.

. - - v, . ’ I , -
Another measure of turbulence is the turbulent intensities, u/..,, /U, Vpms/Vs Wrps/w, Which
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involves the root-mean-square velocity perturbations. There is also the turbulent eddy
dissipation rate, e. Three techniques to obtain these variables from clear air Doppler radar
data have been described in the literature. These methods differ in the length scales of

turbulence they are sensitive to. These methods are:

1. Using the Doppler spectrum width, for variances in space based on turbulent
length scales smaller than the size of the radar probe volume. (Gossard, 1990).
This involves isolating that portion of the spectrum width due to turbulence

from that due to other causes.

2. Using the variance of the velocity measurement in azimuth about the VAD
wind (Wilson, 1970; Lhermitte, 1968; and Frisch, 1992), for variances based
on turbulent length scales larger than the probe volume but smaller than the

diameter of the scan circle.

3. Using the variance in time of an ensemble of VAD determined wind values
(Kropfli, 1986), for variances based on all turbulent length scales larger than the
probe volume size (up to a length scale limited by the ensemble time multiplied

by the mean wind speed).

The first two of these will uses spatial variances, while the third uses temporal variances.
The difference between spatial and temporal variances will be small provided the speed the
probe is scanned through the wind field is large relative to the mean wind speed. This is
known as Taylor’s hypothesis (Tennekes and Lumley, 1972, p. 253). For spectrum width,
the sensed radial wind variance is based on a spatial weighted average of the velocity
perturbations within the probe volume. These perturbations are sensed simultaneously,
implying an infinite scan speed. In a typical VAD scan used here, a scan is acquired in 2
minutes over a circumference of about 20 km. This gives a scan speed of over 150 m/s,
compared with LLJ winds of 40 m/s.

For this work, we have applied the first two of these methods, as discussed in the next

two sections.
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4.3 Deducing Turbulence from Spectrum Width Information

This section describes a technique that is somewhat different from methods published
previously. Previous attempts at using spectral width to deduce clear-air turbulence (re-
viewed by Gossard, 1990) have either neglected the effect of wind shear, or accounted for
the effect of wind shear by using measured wind profiles. However, the method discussed
here attempts to take advantage of the modulation in amplitude of the spectrum width
in azimuth as seen, for example, in Fig. 3.4. The spectrum width is defined to be the
standard deviation of the velocity spectrum about the mean, o,, and has a modulation
in amplitude with azimuth similar to velocity, but with two maxima 180 degrees apart
instead of a maximum and a minimum 180 degrees apart. Fig. 3.4 actually plots variance,
or 2. It will now be shown that this modulation is due primarily to vertical wind shear
alone, subject to certain assumptions, and that spectrum width information alone can be
used to extract both wind shear and turbulence.

Spectrum width information reflects broadening of the velocity spectrum from a variety
of sources that are generally additive in terms of variance, or spectrum width squared,
namely: turbulence, mean velocity gradients within the probe volume, antenna motion
and signal properties, noise, and particulates and precipitation (and possible large objects
like birds). To show how these are additive, consider first the variance in the radial velocity

spectrum due to wind shear, o2 . By definition
1 i )
= =)
N =1

where V. is deviation from the mean radial velocity of the ith measurement within the
probe volume, and N is the number of velocity measurements considered by the radar
system (e.g., the 128 samples typically used for Cimarron). If we now consider the addition
of a random turbulent velocity component to V;., T, we have:

N

N
1
; (Vi +T)? NZ(W?+2V,',.T,~+7}2)

i=1
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1Y, 1 & 1 Y
=— i N "+ =Y 17 .
N;VT,JFN;W,! Z+Ni§=:1fl (4.1)

Since T is a random variable uncorrelated with V}, the second summation on the right of

(4.1) is zero leaving:

2 _ 2 2
0, =05 + 0}

Similar arguments (essentially assuming the sources of spectral broadening are all uncorre-
lated) can be made for other sources of spectral broadening and Doviak and Zrni¢ (1984)

Egn. 5.99 states:

02 =024+02 405 +0? (4.2)

Where o2, the velocity spectrum width squared, is the sum respectively of variances from
shear, antenna motion (02) , droplet fall speeds (03) , and turbulence. System noise

could also be included for completeness. For the clear-air data considered in this study,

2

< is also small.

we can neglect broadening from variance in droplet fall speeds, 02. o
Of these sources of spectral broadening, it will be shown here that vertical wind shear
is the only one sensitive to radar azimuth (assuming horizontally homogeneous flow and
isotropic turbulence). The assumption of isotropic turbulence is perhaps reasonable as the
spectrum width is sensitive to turbulence length scales smaller than the size scale of the
radar probe volume (based on pulse widths, this is at least 150 m for Cimarron and 250 M
for a NEXRAD, though this depends also on range), and small scales of turbulence tend
to be more isotropic than large scales. The method of getting the turbulent intensity of
scales larger than the probe volume using the variance of the VAD itself, where we allow
non-isotropy of turbulence, is discussed in Section 4.4.

To understand how o? relates to the turbulent velocity components, we consider a
purely turbulent wind field (no shear) within the probe volume. If vertical motions are

negligible (true for small tilt angles), then the projection of the horizontal components of

the velocity perturbation onto the radar radial at azimuthal angle ¢ gives:

V) = u'sing + v'cos¢
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Figure 4.3: Diagram for radar sensing of wind shear within a probe volume. A shows shear
vector relative to wind at the bottom and top of the resolution volume. B shows projection
of winds onto radar beam direction. C shows error in analysis (see text) due to hodograph
curvature.

and

N N
1 .
o2 = —]%[— Z(u’sind) + v'cosp)? = v Z u?sin¢ + v'%cos’P + 2u'v'singcosp  (4.3)
i=1

i=1

If the turbulence is isotropic, u’ and v’ are uncorrelated and the last term in (4.3) vanishes,
leaving:

o? = olsin’p + olcos’o

This has an azimuthal variation; however, isotropy also implies that o, = oy, so:

0} =0k =2 (4.4)

Next, to determine the variance due to wind shear, we first assume that there is no
mean vertical wind, which for this clear-air study should be a pretty good assumption.
Then, for any given tilt angle, we can project the horizontal wind vectors onto the plane
of the radar tilt and consider what happens to these projected winds as azimuth varies.
Vertical wind shear results in a range of velocities being present within the resolution
volume of the radar of depth AZ. As shown in Fig. 4.3a, these velocities range from U’T to

=
U, with total shear vector:

— dU
T, =T, - = Az



If the probe volume is small, then the radial velocity components of (_J_l> and (7; will be
similar (as drawn in Fig. 4.3a) and ﬁ: will be small. The radar beam, at azimuth angle
¢, will see the projection of all the winds onto the radar radial. Using the convention of

Fig. 4.3b, the spread in radial velocities, AU,, will be
AU, = Uscos(a — ¢) — Ujcos(a + 6 — ¢)

— = . .
where Uy = ‘Ul\, U, = lUQl’ 6 is the angle between the wind vectors in the probe volume
and « is the azimuthal angle of the wind vector U;. Using trigonometric identities (addition

formula for cosines and the law of cosines), we find that this is equivalent to:
AU, = Ugcos(p + ¥)

U,

where U, = and

Uysina — Uysin(a + 6)

— pm=l
¥ = tan (Ulcos(a + 8) — Uscosa

) = constant

That is, the range of velocities seen by the radar is a cosine function of azimuth with
an amplitude equal to the amplitude of the shear vector through the depth of the probe
volume. As can be seen in Fig. 4.3b, when the radar azimuth is perpendicular to the shear
vector (when ¢ = 7 — 1), both (7{ and (—J—; will have the same projection onto the radar
radial and AU, will be zero, whereas when the radar azimuth is in the same direction as
the shear vector (when ¢ = —1), the projections of all the mean winds in the probe volume
has an amplitude equal to the shear vector. Spectrum width is always a positive quantity,
so it is related to the absolute value of AU,. The spectrum width due to wind shear, oy,

is then equal to an azimuthally varying quantity

05(¢) = b|Uscos(¢ + )| (4.5)

where the constant b (of order 1) is needed to convert from AU, to standard deviation.

The value for b could be calculated from considering the radar beam as a Gaussian shape to
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weight the velocities and obtain the spectrum width as a function of wind shear. However,
the Cimarron radar beam is not perfectly Gaussian, and it might be better to obtain b
empirically. In any case, what we originally sought to obtain here is turbulence and not
wind shear, though it is possible that wind shear obtained from spectrum width could be
more precise than that obtained from differentiating the wind profile determined by VAD
analysis, as numerical differentiation is inherently noisy.

Equation 4.5 describes a rectified cosine wave. Retaining only the terms due to wind

shear and turbulence in (4.2):

a;z = 0‘3 + Ut2 = b2U3(;()S2(¢ + 1/1) + 0’? (46)

By trigonometric identity, this is also equal to:

bRU2
2

2772
)+ b—2U—Sco.92(¢ + )

ol(¢) = (oF +

In other words, the azimuthal display of spectral variance of the radial wind component
consists of a cosine wave of frequency 2¢ entirely due to wind shear, plus a constant, part of
which is due to turbulence and part of which is due to wind shear. In principle, this could
also be done without the assumption of isotropic turbulence, in which case, (4.6) would
include azimuthally varying terms for the different turbulence variances and covariances.
This straight-forward analysis is very useful in interpreting data such as Fig. 3.4, but it
has some implicit assumptions which are not always met exactly in practice. In particular,
as Fig. 4.3c indicates, if the mean wind vectors within AZ follow a curved hodograph
rather than all falling along a straight line, then the minimum variance will not be zero
and the constant ¢ will have a component due to hodograph curvature. The magnitude of
this error would be about UsinA# and should be small as long as AZ is small. Also, this
approach would not be valid if there are significant deviations from horizontal homogeneity
in either the turbulence or mean winds. The cases selected for analysis later in this report
appear to be horizontally homogeneous as evidenced by (for example) velocity azimuth

display not deviating systematically from a sine wave.
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spectral variance/azimuth display w=data 0=CG fit
Cimarron radar Date: 3 17 99

start,end times: 73153 73252 GMT

k= 130 elev=2.00 r=19.80km 2z= 0.69 km
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Figure 4.4: Azimuthal display of spectral variance after application of 11 point smoother.
Solid line is best fit for (4.6).

What we are interested in determining is the level of turbulence. To determine o7 from
data such as Fig. 3.4, we proceed in a similar way as we do to determine the mean wind
profile, except here we are fitting the azimuthal function (4.6) instead of a sinusoid. Figure
4.4 shows an azimuthal display of spectral variance and the best fit to (4.6). Spectrum
width measurements have more noise than velocity and to improve the appearance of Fig.
4.4, the data are first passed through an 11 point smoother (which uses a moving average).
One possible reason for noisy spectrum width data is that the probe volume size may be
small relative to the length scales of the turbulent fluctuations. Despite the noise, Fig. 4.4
does show that the derived function (4.6) is at least qualitatively in agreement with the

behavior of the data.
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4.4 Deducing Turbulence from the Variance in the VAD

In contrast with Sec. 4.3, which attempts to deduce turbulence by using the spectrum
width information and separating it into wind shear and turbulence, previous authors
(e.g., Frisch et al., 1992) have used the variance of the wind in azimuth about the best fit

function. In this technique the wind is separated into mean and fluctuating components:

U = u+d
V = v+
W = wt+w

Where u,v,w are the mean velocity components, u’, v, w' are the turbulent perturbations,
and U,V,W are the total wind components. The perturbations are generally a function of
space and time, u’ = u/(t,x,y, 2), or from the standpoint of the radar at a certain elevation
angle and range, they are functions of time and azimuth, v’ = u/(t, ¢). The measured radial

wind component sensed by the radar is:
Ve = (u + u')singcosf + (v + v')cospeosf + (w + w')sinf

Where  is the elevation angle and ¢ is the azimuth angle. The mean values, u,v, and
w (and therefore V;,(¢) which = usingcosf + vcos¢pcosf3 + wsinf3), are known from the
best-fit analysis of the VAD. This average wind vector is obtained by the least-squares fit
of the data to a function around an azimuth circle (over a short period of time) and is a
spatial average velocity. The variance of the data about the mean wind in azimuth over

an azimuth range from 0 to ¢’ is:

var(Vr) = % / V.~ V)de (4.7)

/

= };/ (u'sindcosf + v'cospeosB + w'sinf)?de
¢' Jo
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1 ¢ ,
= g / [(u2sin?¢ + v"%cos®p + 2u'v' sinpcosd)cos?® B
0
+w'?sin?B + 2w'u' sindsinfcosp + 2w'v' cospsinfcosSlde (4.8)

We now take time averages of both sides of (4.8). If this averaging is done over a short
enough period of time such that var(V,) is constant in time but a long enough period of
time for the turbulent length scales to be measured by the variances of u', v', w' to be

sensed, (4.8) becomes:
1 ¥ e, e, . 2
var(Vr) = -(})—,/ [(u2sin“g + v'2cos°p + 2u'v' singcosg)cos” 3
0

+wsin’B + 2wl singsinfcosp + 2wV cospsinfBeosf)dp (4.9)

This equation can be integrated analytically under the assumption that the turbulence
is horizontally homogeneous so that the time averaged quantities are not dependent on
azimuth angle, ¢. The method devised by Wilson (1970) involves evaluating (4.9) by
integration over four quadrants of the scan circle. These partial integrals can then be
combined to produce the separate covariances and variances. However, if a single integral
over 2w is taken, all the covariance terms drop out. With ¢'=2x, (4.9) yields:

var(V,) = = (u? + v?)cos?B + w?sin?p (4.10)

D[ =

If the turbulence is isotropic, v’ = v’ = w’ and var(V;)=constant (i.e., no elevation depen-

dence). For small elevation angles (the usual case), (4.10) reduces to:

p—

var(V;) = =(u2 + v2) = horizontal TKE = u”? = ¢2 if isotropic (4.11)
2 u

Where TKE is the turbulent kinetic energy. Since TKE=4(u"2+v2+w'), var(V,)=2TKE.,
Var(V,) is essentially the same variable obtained by the spectral width method, except
that the spectral width method is sensitive to TKE at scales below that of the radar probe
volume while the variance of the VAD method is sensitive to TKE at scales larger than the

probe volume and smaller than the VAD scan circle. Since most of the turbulent energy
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is in the larger scales, TKE in (4.11) should be larger than that in (4.4). The total TKE
would be the sum of these two.

It should also be realized that certain non-turbulent structures could be present in the
boundary layer that would increase the variance in the VAD. For example, laminar bound-
ary layer convective or shear rolls would be expected to increase the indicated turbulence,

without necessarily being turbulent.

4.5 Best Fit Methodology for VAD Winds and Turbulence

The method used to determine the best fit sine wave through data such as Fig. 4.2 is
now discussed. A conjugate gradient routine that minimizes a cost function formulated as a
sum of the squared error is used. There are more efficient ways to get the VAD winds than
using a conjugate gradient routine, which involves going through the data multiple times
to iterate on minimizing a cost function as well as calculating derivatives. For example,
Lhermitte (1968) simply gets the first Fourier coefficients, requiring two passes through
the data. Fast Fourier transforms would make this method extremely fast. However, using
a cost function approach makes it very easy to modify the routine to fit functions more
complicated than a sine wave and the conjugate gradient method is still very fast. This
method would also allow the incorporation of auxiliary data and constraints. The conjugate
gradient routine used here was adapted from Numerical Recipes (Press et al., 1986, Sec.

10.6). For determining a VAD wind, the cost function, J, is:
J= Z(V’ — Ucosp — Vsing)? (4.12)

where V; is the radial velocity component sensed directly by the radar, U and V are the
best fit wind components, ¢ =(90°-azimuth), and the summation is taken over all the data.
The data consist of pairs of V, and ¢. That is, J is just the sum over all the data points
in a scan of the squared error between the measured radial velocity and the best-fit radial

velocity. The derivatives of (4.12) with respect to U and V are needed by the conjugate
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log(cost function) for VAD fit
for J=(Vr- Ucos - Vsiny*2
start= 0.0 0.0 end= 106 30.9

V, m/s

Figure 4.5: Plot of the natural log of the cost function for (4.12) for data of Figure 4.2.
S marks the starting point used for the conjugate gradient method and E marks the final
minimum found.

gradient routine and are easily calculated as:

_Z_LJ] = Y =2(V; — Ucosyp — Vsing)cosp
_g_; = Z =2(V; = Ucosyp — Vsinp)sing

A contour plot of J for the data of Fig. 4.2 is shown as Fig. 4.5. The log of the cost
function is plotted as this enhances the number of contours near the optimum. This figure
shows that the conjugate gradient routine seems to be working well, with the optimum
value marked as “E” in the figure occurring at the visual minimum of the function. It also
shows that the cost function is well behaved, so we do not expect problems from multiple
minima. In fact, since (4.12) is quadratic in U and V, and since %%J and %ivl are both

positive definite, there can only be a unique minimum.

The cost function for determining the turbulence from the azimuthally varying spectral



log(cost function) for spectrum variance fit

for J=(W- a -bcosr2(azm+c) 2

start== 0.50 0.50 0.00 end= 1.69 3.97 1.17
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Figure 4.6: Cost function plot (log(J)) for (4.13) using data for Fig. 4.4 with U2 = 3.97.
S indicates starting point and E the ending point for the minimization routine.

variance is, from (4.6):
J=> (W2 -0} —b*Ulcos*(¢p + 9))> (4.13)

Where W is the radar-measured spectrum width, o,. The data consist of pairs of W and

¢. The derivatives are:

oJ
aJ
m = Z —2Gcos? (¢ + )
g_i = Z 2GH?U2sin(2¢ + 2¢)

Where G = W2 0?7 —b*U2cos?(¢+1) . As there are 3 constants to be determined, the cost
function is three-dimensional. Figure 4.6 plots the cost function in the plane where b2U? =

3.97 (the computed optimum for the data of Fig. 4.4). This cost function shows symmetry
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with two identical minima spaced 180° apart. This is to be expected from the periodicity
of (4.13), which gives two possible solutions for 1 since cos®(¢ + ) =cos?(¢ + 1+180).
Which one of these two solutions the minimization routine finds is determined by the
starting point for the iteration (the first guess of the determined parameters), indicated
by “S” in Fig. 4.6. This means there will be a 180° ambiguity to the wind shear direction
determined with this method.

There is another problem with minimizing the cost function, (4.13). There is a pair of

solutions (one real and one spurious) associated with the identity:

2n+1

a + bcos®0 = (a + b) — beos? (0 + 5

m)

or more simply:
2n+1

cos®0 =1 — cos®(6 + 3

)

for n an integer. This identity means that sometimes the conjugate-gradient routine could
potentially find the solution in which the variable b2U? is reported as a negative number
(namely -b2U?2) and in which the term o7 is replaced by (07 +b*U2). Both these solutions
produce identical fits to the data, but with dramatically different values for the sought
variables. Since the square of the shear term cannot physically be negative, this negative
shear solution is spurious. Experiments have shown that this spurious solution occurs
often enough to be a concern, despite judicious choices of first guess values. This has been
dealt with by checking the sign of the returned value for b2U2. If it is negative, b2U? is
replaced by its absolute value, the returned value for the turbulence term is replaced by

(02)reptaced = (07 ) returnea — b2U2, and the angle 1 is shifted by g

4.6 LLJ Profiles

LS

Profiles are now produced of azimuthal average reflectivity, wind, and turbulence pa-
rameters in LLJs. This is generally done by considering a single radar scan at a certain
elevation angle (which takes one or two minutes to obtain, depending on scan rate). Reflec-

tivity is averaged around the circle of the scan at each range gate to produce the average
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reflectivity; and best fit analysis are made for the VAD winds and turbulence for each
range gate as well.

A problem with determining azimuthal average reflectivity is that data are not obtained
at every radial. As the radar can only measure reflectivities down to about -25 dBZ, aver-
aging together all the reflectivities that were measured above this threshold will produce a
high bias as reflectivities below this are not included in the average. Averaging only good
data points is incapable of returning an average below the detection threshold. This bias
can be quite severe in areas where few good data points are obtained. At scan rates with
the Cimarron radar, 600 radials are potentially available per scan to be averaged together.
At ranges with weak reflectivity, fewer than 100 good data points may be obtained with 500
or more radials having reflectivities too weak to measure. This bias gets larger with range
because the reflectivity needed to be detectable increases with distance from the radar. To
reduce this problem, missing data are assigned a value just below the minimum detectable
value. This is the largest value the missing data could have had and will still over-estimate
the average, but not by nearly as much as ignoring the missing data completely. It should
be possible to fit a normal distribution function to the good data points and to deduce
the average by the midpoint of the fitted distribution curve. However, the complexity of
doing this has not been faced here, and fitting a normal distribution function would be
problematic if the data are not normally distributed.

Figure 4.7 shows profiles of azimuthally averaged reflectivity and VAD determined wind
speed and direction based on data in the scans shown in Figs. 3.3 and 3.2. In this case,
velocities were obtained up to about 3 km while the reflectivity profile was obtained up to 4
km. This difference is caused by the different filtering used in rejecting data for azimuthal
analysis. For reflectivity, data are rejected which fall below the system noise level and for
which the amplitude of the velocity is less than 1 m/s. This is done to eliminate ground
clutter, which has no Doppler shift. For velocity, data are also rejected when the velocity
amplitude is less than 1 m/s. It has also been found that velocity data is highly noisy for
low reflectivities, and a narrower band of reflectivity values lying between -20 to 50 dBZ

are allowed. The 50 dBZ filter is employed since any reflectivities greater than this are
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Cimarron radar VAD analysis. DATE: 31799 d=Udir
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Figure 4.7: Profile of wind speed, direction, and reflectivity for a LLJ from azimuthal
analysis of Cimarron radar data. The z's are plotted for reflectivity, u’s for wind speed,
and d’s for wind direction. Data was taken during the night at 7:30 Z, March 17, 1999.

certainly ground clutter. Also, VAD analyses are not performed if there are less than 20
acceptable points in the VAD.

Fig. 4.7 shows a very well defined LLJ with a peak amplitude near 33 m/s at near 700
meters above the ground. This figure also shows a local minimum in reflectivity at about
300 meters in the lower shear layer of the LLJ, and a local maximum at about 600 meters,
near the jet core. The hodograph for these data is shown in Figure 4.8. Fig. 4.8B shows
the hodograph after the data have been smoothed with a 41 point moving average.

Figure 4.9shows smoothed profiles of wind speed and turbulence. Variances from both
methods of deducing turbulence are shown. The two turbulence profiles agree remarkably
well qualitatively with regard to the shapes of the profiles, with both having a marked
maximum in the lower shear layer and a marked minimum near the jet core. However,
the TKE values from the spectral width method have been multiplied by 10 for plotting

in Fig. 4.9. This implies that the small scale turbulence measured with this method is an
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Figure 4.8: Hodograph for wind profile of Fig. 4.7. A is unsmoothed and B is smoothed.
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order of magnitude less than the large scale turbulence measured by VAD variance. This
may be reasonable as the length scales sensed by the two methods differ by two orders of
magnitude.

It is also worth noting how highly correlated the turbulence profiles are with the vertical
wind shear, with the peak in turbulence occurring in the vertical center of the lower shear
layer. This becomes more apparent when we convert the turbulent variances (with units of
%’;—) into a quantity having the same units as shear, by taking the square root and dividing
by the altitude, Z. This is perhaps a reasonable scaling since at greater heights, the radar
probe volume is at a greater distance from the radar and is consequently larger, and
the VAD circles are larger; with both these things proportional to Z. So the turbulence
measures are sensitive to large length scales at larger altitudes, and might be expected
to scale with Z. This scaling is done in Figure 4.10 where we also plot the wind shear
calculated from the wind profile.The shear is calculated as a centered difference of the
smoothed wind vectors at each vertical triplet of points. Shear calculated in this way is
very noisy; consequently, the shear profile is passed through the smoother as well. The
shear profile shows that most of the shear is concentrated in the lower shear layer of the
jet below 700 meters. Based on the profile of wind speed, one would expect a zero point
in shear at the jet peak and an increase in the upper shear layer between 900 and 1500
meters. However, the directional shear is actually strong in the jet core and decreases with
height, accounting for the flat shear profile in and above the jet center. Fig. 4.10 shows
that most of the scaled turbulence is in the lower shear layer, strongly correlated with the

magnitude of the shear.

4.7 LLJ Time-Height Sections

For multiple scans of radar acquired over a long period of time, time-height cross
sections can be constructed showing how the profiles of azimuthally averaged quantities

evolve over time. Four cases will be considered here using data from the NEXRAD network:

1. May 6-7, 2002, KFWS (Fort Worth, Texas)
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SMOOTHED speed and turbulence profile

number of points in smoother: 21

t = 10*spec. turb

Cimarron radar VAD analysis. DATE: 3 17 99 e = VAD turb
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Figure 4.9: Profiles of wind speed and turbulence obtained with Cimarron radar for a LLJ.
Plotted u’s are LLJ speed. Plotted e’s arc the variance in the VAD wind as a measure
of TKE. Plotted t’s are TKE values obtained from separating spectral width data into
turbulence and wind shear. The t values have been multiplied by 10. Profiles have been

smoothed with a 21 point moving average.
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Figure 4.10: Profiles of wind speed, shear, and turbulent standard deviations scaled by
height.
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2. June 1-2, 2002, KVNX (Enid, Oklahoma)
3. July 15-16, 2000, KFWS (Fort Worth Texas)

4. August 14-15, 2002, KTLX (Twin Lakes, Oklahoma, near Oklahoma City)

These cases are one each month for the warm season. For each case, about 24 hours of
data are processed. The data were acquired from the archives of the National Climatic
Data Center (NCDC). The recent implementation of internet access to the NEXRAD radar
archive at NCDC has made it possible to acquire these data in an efficient manner. Data
gaps are common in the archive and it is necessary to search through a considerable quan-
tity of data to find good quality data sets covering the phenomenon of interest. Without
rapid access to much of the archive, searching it for usable data would have taken too much
time. Once analysis and graphical software has been developed, the time to acquire a data
set, check its quality, and produce analytic plots is about an hour. Archived NEXRAD
data are superior in quality to the Cimarron radar, at least in terms of signal to noise
ratio and ground-clutter suppression. For this reason, and because of the ease of acquir-
ing archived NEXRAD data, NEXRAD date are used instead of Cimarron data for these
analyses.

The criteria used to identify cases for analysis are:

1. No precipitation closer than 100 km from the radar during the 24 hour period.

2. The data at night do not have a bilaterally symmetric signature (as in Fig. 3.30).

This criterion reduces the probability that the signal is caused by migrating birds.
3. Southerly flow was indicated throughout the period in surface observations.

4. Only data from the 1.5° tilt are used.

The last item follows from Appendix A (q.v.) in which the 1.5° tilt was found to be the
best for minimizing the effects of ground clutter.
Most of the time the radars for all of these cases were in clear-air mode. This scan

mode gives a volume scan every 10 minutes and, consequently, a wind profile every 10
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minutes. Occasionally, a radar will be in precipitation mode. When that happens, scans
are obtained every 5 minutes. The data quality is about the same for both scan modes,
though the clear-air mode uses more pulses per radial and is a little less noisy. Generally,
sufficient signal strength is present in the lower levels of the atmosphere in these cases for
high-quality analyses from radars in precipitation or clear-air modes.

Because noisy contours are difficult to interpret, a nine point smoother was applied
to much of the data. The smoother is applied multiple times replacing each value in the
array by the average of itself and the eight surrounding points. The number of times the
smoother is applied is indicated at the top of each figure, and is chosen subjectively so as
to achieve a compromise between eliminating too much information and eliminating noise.
As is inherent in this smoother, values near the borders of the data are smoothed less
than those in the interior, consequently, the contours near the edges of some of the plots
presented are still noisy.

To meet the criteria that the reflectivity PPI plots not have a bilateral symmetry, PPI
plots are produced at various times for visual examination, especially near the middle of
the night (6Z). Reflectivity PPI plots near 6Z are given for each case in Figs. 4.11-4.14,
corresponding radial velocity plots are also given in Figs. 4.15-4.18. For these NEXRAD
data, velocity range gates are every 250 meters and reflectivity range gates are every 1
km. For a 1.5° tilt, these gates result in a reflectivity measurement every 26 m in the
vertical and a velocity measurement every 6.5 m. Fig. 4.13 does show some signs of
azimuthal bisymmetry which may imply some alignment of the radar targets and increases
the likelihood of birds being present. However, this is not a strong bilateral signature and
it is restricted to a layer above 2 km. The LLJ measurements are probably not affected by

this potential biasing problem above 2 km.

4.7.1 Reflectivity Time-Height Sections

The first Time-height cross-sections presented are for azimuthally averaged reflectivity.
These plots are Figs. 4.19-4.22 for the May, June, July, and August cases respectively.

Reflectivity is the least noisy field considered and the fields were not smoothed for these
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Elev min,max 1.54 1.71 Assumed data range: -10. 30.@ 3 gslp: 28.
DATE: 57 2 Times: 6 644 6 757 GMT RADS: 738 1103
KFWS  HGT dbZ HRINGS: 0.40km RAYS: 20.deg MAG 2.7

Figure 4.11: PPI of reflectivity near 6 Z on May 7, 2002 at 1.5° tilt from the KFWS
NEXRAD radar. Range rings are plotted every 400 meters above the ground. For gray-

scale range, minimum displayed reflectivity (white) is -10 dBZ and maximum (black) is 30
dBZ.
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KVNX  HGT dbZ HRINGS: 0.40km RAYS: 20.deg MAG 2.4

Figure 4.12: PPI of reflectivity near 6 Z on June 2, 2002 at 1.5° tilt from the KVNX
NEXRAD radar. Range rings are plotted every 400 meters above the ground. For gray-
scale range, minimum displayed reflectivity (white) is -10 dBZ and maximum (black) is 30

dBZ.
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Elev minmax 1.54 1.67 Assumed data range: -10. 30.@ 3 gsp: 27.
DATE: 716 0 Times: 6 21 6 314 GMT RADS: 773 1p138
KFWS  HGT dbZ HRINGS: 0.40km RAYS: 20.deg MAG 2.6

Figure 4.13: PPI of reflectivity near 6 Z on July 16, 2000 at 1.5° tilt from the KFWS
NEXRAD radar. Range rings are plotted every 400 meters above the ground. For gray-

scale range, minimum displayed reflectivity (white) is -10 dBZ and maximum (black) is 30
dBZ.
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Elev min,max 1.41 1.49 Assumed datarange: -10. 30.@ 3 gs?: 26.
DATE: 815 2 Times: 6 951 611 4 T RADS: 738 1103
KTLX  HGT dbZ HRINGS: 0.40km RAYS: 20.deg MAG 2.3

Figure 4.14: PPI of reflectivity near 6 Z on August 15, 2002 at 1.5° tilt from the KTLX
NEXRAD radar. Range rings are plotted every 400 meters above the ground. For gray-
scale range, minimum displayed reflectivity (white) is -10 dBZ and maximum (black) is 30
dBZ.
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Elev minmax 1.54 1.58 Assumed data range: -20. 20.@ 3 5gs&x 7.
DATE: 57 2 Times: 6 758 6 918 GMT RADS: 110 470

KFWS  HGT VEL, m/s HRINGS: 0.40km RAYS: 20.deg MAG 1.5

Figure 4.15: PPI of radial velocity near 6 Z on May 7, 2002 at 1.5° tilt from the KFWS
NEXRAD radar. Range rings are plotted every 400 meters above the ground. For gray-
scale range, minimum displayed velocity (very light gray) is -20 m/s and maximum (black)

is 20 m/s.
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Elev min,max 149 1.54 Assumed data range: -20. 20.@ 3 gsp1:4 7.

DATE: 6 2 2 Times: 6 851 61010 T RADS: 110 71
KVNX  HGT VEL, m/s HRINGS: 0.40km RAYS: 20.deg MAG 1.5

Figure 4.16: PPI of radial velocity near 6 Z on June 2, 2002 at 1.5° tilt from the KVNX
NEXRAD radar. Range rings are plotted every 400 meters above the ground. For gray-
scale range, minimum displayed velocity (very light gray) is -20 m/s and maximum (black)
is 20 m/s.

166



1
'
’
'
'
)
'
)
)
!

Elev minmax 1.54 1.58 Assumed data range: -20. 20.@ 3 gsp: 7.
DATE: 716 0 Times: 6 316 6 435 T RADS: 1140 1505
KFWS HGT VEL, m/s HRINGS: 0.40km RAYS: 20.deg MAG 1.5

Figure 4.17: PPI of radial velocity near 6 Z on July 16, 2000 at 1.5° tilt from the KFWS
NEXRAD radar. Range rings are plotted every 400 meters above the ground. For gray-
scale range, minimum displayed velocity (very light gray) is -20 m/s and maximum (black)
is 20 m/s.
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Elev minmax 145 1.49 Assumed data range: -20. 20.@ 3 gsp: 6.
DATE: 815 2 Times: 611 5 61225 GMT RADS: 1105 1470
KTLX  HGT VEL,m/s HRINGS: 0.40km RAYS: 20.deg MAG 1.5

Figure 4.18: PPI of radial velocity near 6 Z on August 15, 2002 at 1.5° tilt from the
KTLX NEXRAD radar. Range rings are plotted every 400 meters above the ground. For
gray-scale range, minimum displayed velocity (very light gray) is -20 m/s and maximum
(black) is 20 m/s.
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plots. The Time scale is hours from the beginning of the scanning period, at about 16
UTC. Sunrise is at about 9 hours from the start and sunset is about 19 hours from the
start. Vertical lines are drawn at the sunrise and sunset times. Precise values for sunset
and sunrise times accurate to one minute (obtained from the NOAA Air Resources Lab

calculator) in UTC and hours from the start are given in the following table:

FI;ATE/STATION LAT./LON. START | SUNSET | SUNRISE
UTC | UTC/hrs | UTC/hrs

020506/KFWS | 32 34N / 97 18W | 16:04 | 1:14/9.17 | 11:37/19.55

020601/KVNX | 36 44N / 98 08W | 16:05 | 1:46/9.68 | 11:15/19.17

000715/KFWS | 32 34N / 97 18W | 16:04 | 1:38/9.57 | 11:33/19.48

020814/KTLX | 35 20N / 97 17W | 16:26 | 1:19/8.88 | 11:49/19.38

Sunrise and sunset are also indicated directly in the data in some of the plots by short-
duration spikes in reflectivity near the top of the domain near 9 and 19 hours from the
start, particularly apparent in Fig. 4.19. These are caused by the radar dish being pointed
directly at the sun during a scan when the sun elevation above the horizon equals the
antenna’s tilt, 1.5°. The sun is not a strong source of reflectivity, but it can add signifi-
cantly to the reflectivity when the reflectivity is otherwise weak, as it often is far above
the ground. For NEXRAD data, sun measurements rarely affect velocity measurements
as such data are interpreted by the NEXRAD quality control as second-trip echo, and are
filtered out of the velocity fields.

All four cases show a rapid change in reflectivity at sunrise and sunset, with a short-
duration minimum occurring at sunset and sunrise. The reflectivity transitions from usu-
ally relatively weak daytime values, through a short-duration minimum at sunset, to a
rapid increase after sunset. Within an hour and a half of sunset, the reflectivity profile, up
to heights of 4 km, has reached its strongest level. This level decreases gradually through
the night in Figs. 4.20 and 4.22 and remains fairly constant in Figs. 4.19 and 4.21. At
sunrise there is another rapid transition through a minimum at sunrise to typically weaker

daytime values, though the change is not as rapid as at sunset. This phenomenon is not
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Figure 4.19: Time-height contour plot of reflectivity through a depth of 4 km and for 24
hours from KFWS radar, May 6-7, 2002. 1.5° tilt. Data begins at 16:04Z May 6. Sunrise
and sunset times are marked.
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TIME-Z contours of REFLECTIVITY, dBZ
9-point smoother applied Otimes CINT= 2.000000
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Figure 4.20: Time-height contour plot of reflectivity through a depth of 4 km and for 24
hours from KVNX radar, June 1-2, 2002. 1.5° tilt. Data begins at 16:05Z June 1.
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Figure 4.21: Time-height contour plot of reflectivity through a depth of 4 km and for 24
hours from KFWS radar, July 15-16, 2000. 1.5° tilt. Data begins at 16:04Z July 15.
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TIME-Z contours of REFLECTIVITY, dBZ
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Figure 4.22: Time-height contour plot of reflectivity through a depth of 4 km and for 24
hours from KTLX radar, August 14-15, 2002. 1.5° tilt. Data begins at 16:26Z August 14.
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completely understood and was discussed somewhat in Sec. 3.4.1. A possible reason for
this phenomenon is that the daytime and nighttime reflectivities are caused by different
mechanisms which must switch over at sunrise and sunset, providing a brief period when
neither mechanism operates. For example, the daytime reflectivity may be caused by in-
sects carried aloft by vertical mixing. At sunset, vertical motions cease and the insects
return to low levels, causing a rapid reduction in reflectivity. At night, there could be a
different species of insects, as suggested by Hardy and Glover (1966), which flies at night.

A similar theory could be formed for bird species, of course.

4.7.2 Wind Time-Height Sections

Time-height cross-sections of wind speed are given in Figs. 4.23-4.26 for the May, June,
July, and August cases, respectively. Each case shows a well-defined LLJ with the peak
wind speeds occurring below 1.5 km at about 18 hours after the 16Z start, just before
sunrise. The LLJ begins in each case with an increase in wind speed at low levels just after
sunset. Wind speed in the jet continues to increase through the night. Winds in the LLJ
layer begin to decrease after sunrise.

The peak wind speeds are about 30 m/s for the May case, about 25 m/s for the June
case, about 20 m/s for the July case, and about 15 m/s for the August case. The decline in
strength of LLJ with month corresponds with the trend towards weaker synoptic systems
with weaker synoptic pressure gradients as the warm season progresses. The strongest
systems occur in early Spring, and the weakest in mid-Summer. The May and June cases
also show an increase in height of the LLJ speed peak as the night progresses. This is quite
probably due to the deepening of the nocturnal boundary-layer as the night progresses,
though it is interesting that this phenomenon does not occur in the July and August cases.
This may be due to the weaker shear leading to less turbulent entrainment from the shear
layer for these cases.

An interesting feature of the velocity plots is an increase in wind speed at and above the
LLJ near sunrise. This feature is most apparent in the May case, Fig. 4.23. This is feature

is not caused by the radar receiving radiation from the sun when the sun shines directly
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TIME-Z contours of WIND SPEED, m/s
9-point smoother applied 1 times CINT= 2.000000

KFWS ELEV=1.55 DATE=2002 56 Start=16 531

4.0

3.5

3.0

2.5

20

Z, km

1.5
1.0

0.5

g
20 f
%

=

0.0
00 20 40 6.0 80 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0
Hours from start

Figure 4.23: Time-height contour plot of wind speed through a depth of 4 km and for 24
hours from KFWS radar, May 6-7, 2002. 1.5° tilt. Data begins at 16:04Z May 6.
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TIME-Z contours of WIND SPEED, m/s
9-point smoother applied 1 times CINT= 2.000000
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Figure 4.24: Time-height contour plot of wind speed through a depth of 4 km and for 24
hours from KVNX radar, June 1-2, 2002. 1.5° tilt. Data begins at 16:05Z June 1.
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TIME-Z contours of WIND SPEED, m/s
9-point smoother applied 1times CINT= 2.000000

KFWS ELEV=1.55 DATE=2000 715 Start=16 537
e

4.0

SE
3.5

3.0

25

2.0

Z, km

1.5

1.0

0.5

0.0t - - —
00 20 40 60 80 100 120 140 160 18.0 200 22.0 24.0

Hours from start

Figure 4.25: Time-height contour plot of wind speed through a depth of 4 km and for 24
hours from KTLX radar, July 15-16, 2000. 1.5° tilt. Data begins at 16:05Z July 15.
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TIME-Z contours of WIND SPEED, m/s
9-point smoother applied 1times CINT= 2.000000
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Figure 4.26: Time-height contour plot of wind speed through a depth of 4 km and for 24
hours from KTLX radar, August 14-15, 2002. 1.5° tilt. Data begins at 16:26Z August 14.
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into the antenna. Such data are filtered-out as the NEXRAD quality-control algorithm
treats them as second-trip echo. Also, time-height contours with the volume scans showing
the reflectivity signature of the sun not included, did not show any significant difference.
It is not clear what causes this abrupt feature. It is possibly an artifact of unknown origin
(such as a greater preponderance of birds near sunset). It appears to be real, however, and
could be due to vertical mixing.

Another time history view is obtained by calculating the average wind components in
the lower 1 km as a function of time. Figs. 4.27-4.30 plot these average wind components
for the 4 cases. These can be compared with the idealized 1-D modeling results from
Sec. 2.4 (Figs. 2.11-2.14). The measured time behavior of the LLJ is close to the quasi-
sinusoidal behavior seen in the 1-D modeling results. The geostrophic wind (and, hence,
the synoptic pressure gradient) could be estimated from these figures as the winds at the
time average values for u and v.

Valuable comparable results were obtained by Crawford et al. (1973) who used WKY
tall tower measurements to measure wind in the lowest 500 m. They produced annual
average wind profiles and time-height sections and saw similar behavior; they particularly

noted the rapid change in the wind profiles at sunrise and sunset.

4.7.3 Wind Shear Time-Height Sections

Wind shear is calculated from the u and v component time-height fields. Since cal-
culating wind shear involves differentiation, it tends to be a very noisy calculation. Con-
sequently, the u and v fields are first smoothed using the 9-point smoother 10 times in
succession. The u and v component wind shears (%’2—:, %) are then calculated by centered
differences. The amplitude of the shear vector is then calculated and the results contoured.
Figs. 4.31-4.34 present the calculated wind shear amplitudes for the May, June, July, and
August cases, respectively. Because this is the amplitude of the wind shear vector, the
values are sometimes different than what might be inferred from the wind speed plots in

Figs. 4.23-4.26 as the total shear includes the effects of directional shear as well as speed

shear.
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Time Series of u and v, ave. below 1 km
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Figure 4.27: Time series of u and v wind components averaged through a depth of 1 km
from KFWS radar, May 6-7, 2002. 1.5° tilt. Data begins at 16:04Z May 6.

180



Time Series of u and v, ave. below 1 km
KVNX ELEV=1.51 DATE=2002 61 Start=1675
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Figure 4.28: Time series of u and v wind components averaged through a depth of 1 km
from KVNX radar, June 1-2, 2002. 1.5° tilt. Data begins at 16:07Z June 1.
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Time Series of u and v, ave. below 1 km
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Figure 4.29: Time series of u and v wind components averaged through a depth of 1 km
from KFWS radar, July 15-16, 2009. 1.5° tilt. Data begins at 16:05Z May 6.
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Time Series of u and v, ave. below 1 km
KTLX ELEV=1.47 DATE=2002 814 Start=162717
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Figure 4.30: Time series of u and v wind components averaged through a depth of 1 km
from KFWS radar, August 14-15, 2002. 1.5° tilt. Data begins at 16:27Z August 14.
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TIME-Z contours of WIND SHEAR MAG., (m/s)/km
9-point smoother applied 10 times CINT= 5.000000
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Figure 4.31: Time-height contour plot of wind shear magnitude through a depth of 4 km
and for 24 hours from KFWS radar, May 6-7, 2002. 1.5° tilt. Data begins at 16:04Z May
6.
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TIME-Z contours of WIND SHEAR MAG., (m/s)/km
9-point smoother applied 10 times CINT= 5.000000
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Figure 4.32: Time-height contour plot of wind shear magnitude through a depth of 4 km
and for 24 hours from KVNX radar, June 1-2, 2002. 1.5° tilt. Data begins at 16:05Z June
1.
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TIME-Z contours of WIND SHEAR MAG., (m/s)/km
9-point smoother applied 10 times CINT= 5.000000
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Figure 4.33: Time-height contour plot of wind shear magnitude through a depth of 4 km
and for 24 hours from KTLX radar, July 15-16, 2000. 1.5° tilt. Data begins at 16:05Z
July 15.
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TIME-Z contours of WIND SHEAR MAG., (m/s)/km
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Figure 4.34: Time-height contour plot of wind shear magnitude through a depth of 4 km
and for 24 hours from KTLX radar, August 14-15, 2002. 1.5° tilt. Data begins at 16:26Z
August 14.

187



These shear plots show that most of the shear is confined to a lower shear layer below
about 500 m. The layer above the core of the jet (the layer of maximum wind speed)
shows relatively modest shear. Also, the core of the jet itself, while it does correspond
with regions of relatively weak shear, does not correspond to a pronounced minimum in
wind shear. The layer below the core, however, does show shear that is much stronger than
at any other time or place. This shear layer develops almost immediately after sunset, but
remains for 4 to 5 hours after sunrise. Similar to the increase in height of the LLJ core
noted in Figs. 4.23 and 4.24, the depth of the shear layer increases throughout the night
for the May and June cases of Figs. 4.31 and 4.32.

4.7.4 Turbulence Time-Height Sections

The variance (RMS error) in the VAD winds is related to the TKE by (4.11). Time-
height sections of TKE calculated as %—(VAD RMS error) for the four cases are presented
in Figs. 4.35-4.38 for the May, June, July, and August cases, respectively. The variance
field is somewhat noisy and it was smoothed by applying the 9-point smoother 5 times in
succession for these plots.

The May and June cases actually show an increase in turbulence (as measured by TKE)
in the region of the LLJ in the shear layer and in the core at night over the daytime values
whereas the July and August cases show the more anticipated behavior of a decrease in
TKE at night co-located with the LLJ. The increase in TKE at night for any case was not
expected since it was anticipated that turbulence would almost always decrease at night
as the boundary layer stabilized. Despite the May and June measurements, turbulence is
almost certainly higher during the day due to strong vertical mixing. However, if these
measurements are correct, then horizontal velocity perturbations measured by radar are
larger at night in some cases. A possible reason for this difference between the measure-
ments and expected behavior is that the turbulence may not have been isotropic. The VAD
is only sensitive to perturbations in the u and v velocity components. If w’ was larger than
u’ and v’ then the variance in the VAD would underestimate the TKE. This might well

be the case during the day, as the turbulence is largely the result of strong vertical mixing
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Figure 4.35: Time-height contour plot of TKE through a depth of 4 km and for 24 hours
from KFWS radar, May 6-7, 2002. 1.5° tilt. Data begins at 16:04Z May 6.
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Figure 4.36: Time-height contour plot of TKE through a depth of 4 km and for 24 hours
from KVNX radar, June 1-2, 2002. 1.5° tilt. Data begins at 16:05Z June 1.
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Figure 4.37: Time-height contour plot of TKE through a depth of 4 km and for 24 hours
from KTLX radar, July 15-16, 2000. 1.5° tilt. Data begins at 16:05Z July 15.
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TIME-Z contours of TKE, (m/s)*2
9-point smoother applied 5times CINT= 2.000000
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Figure 4.38: Time-height contour plot of TKE through a depth of 4 km and for 24 hours
from KTLX radar, August 14-15, 2002. 1.5° tilt. Data begins at 16:26Z August 14.
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eddies driven by buoyancy. At night, the turbulence is driven more by vertical wind shear,
giving relatively larger u’ and v’ values.

However, TKE is not necessarily the best and most meaningful measure of turbulence.
The TKE needs to be compared to the strength of the flow in some way, since a specific
amount of TKE is more dynamically significant in a weak flow than a strong one. The
turbulent viscosity, K, is more significant from a dynamical standpoint than TKE, and,

from (2.7) it can be related to the ratio of TKE to wind shear:

w' _ VADRMSerror
O( |[V®|  wind shear magnitude

K (4.14)

Where the isotropy assumption, TKE:%WIQ, is used. K can then be seen to be proportional
to the strength of turbulence relative to the wind shear (though K is dimensional). As
discussed in Sec. 2.2.1, (4.14) is not entirely valid during daytime conditions, though it

might be able to provide some indication of the level of turbulent viscosity. The non-

dimensional turbulent intensity, w',ms/|®%|=v'VAD RMS error/(wind speed), might also
be considered; however, the strength of the TKE relative to the ground-relative mean-wind
is not necessarily meaningful as this is a reference frame-dependent quantity. Time-height
cross-sections for K (assuming the proportionality constant to be unity in (4.14)) calculated
from the radar data according to (4.14) are presented in Figs. 4.39-4.42; however, what
is contoured is 1/K rather than K. This is because the RMS error is a positive definite
quantity which always has at least some amplitude due to noise, while the wind shear
magnitude is often nearly zero in many areas of the time-height domain, especially in the
daytime. Dividing a variable by a number which is sometimes nearly zero leads to an
extreme amount of noise in the result. For these 1/K plots, increasing values signify a
decrease in turbulence.

To make useful plots involving K rather than 1/K, the average K below 1 km is calcu-
lated as a function of time for each case and plotted in Figs. 4.43-4.46 for the 4 cases. The
drop in K at sunset is evident in these plots. Also, The K values during the day get strong
with each month, while the K values at night are about the same in each month. As each

successive month is climatically warmer, this is reasonable as more thermal turbulence
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TIME-Z contours of 1/K, s/(m*km)
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Figure 4.39: Time-height contour plot of 1/K through a depth of 4 km and for 24 hours
from KFWS radar, May 6-7, 2002. 1.5° tilt. Data begins at 16:04Z May 6.
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TIME-Z contours of 1/K, s/(m*km)
9-point smoother applied 10 times CINT= 1.000000
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Figure 4.40: Time-height contour plot of 1/K through a depth of 4 km and for 24 hours
from KVNX radar, June 1-2, 2002. 1.5° tilt. Data begins at 16:05Z June 1.
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Figure 4.41: Time-height contour plot of 1/K through a depth of 4 km and for 24 hours
from KTLX radar, July 15-16, 2000. 1.5° tilt. Data begins at 16:05Z July 15.
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TIME-Z contours of 1/K, s/(m*km)
9-point smoother applied 10 times CINT= 1.000000
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Figure 4.42: Time-height contour plot of 1/K through a depth of 4 km and for 24 hours
from KTLX radar, August 14-15, 2002. 1.5° tilt. Data begins at 16:26Z August 14.
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Time-series of K, ave. below 1 km
KFWS ELEV=1.55 DATE=2002 56 Start=16 531
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Figure 4.43: Time series of K averaged through a depth of 1 km from KFWS radar, May
6-7, 2002. 1.5° tilt. Data begins at 16:04Z May 6.

ought to be present during the day in warmer months. This leads to a larger contrast
between daytime and nighttime conditions under warmer daytime conditions.

For all four cases considered, the turbulent viscosity decreases substantially after sunset
in the shear layer below the LLJ core and to a lesser extent in the jet core. This agrees
with the expectation of a decline in turbulence in the boundary after dark. Similar to the
LLJ wind speed and shear, the low turbulence in the LLJ persists for 3 to 5 hours after
sunrise.

An interesting feature of three of the cases (May, June, and August) is that the mini-
mum turbulence (maximum in 1/K) occurs shortly after sunset very close to the ground.
Also, for these three cases, another turbulence minimum occurs near the ground after
sunrise. This is possibly due to the way the boundary layer transitions from daytime to

nighttime regimes. The after-sunset turbulent minimum may be occurring after the day-
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Time-series of K, ave. below 1 km
KVNX ELEV=1.51 DATE=2002 61 Start=1675
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Figure 4.44: Time series of K averaged through a depth of 1 km from KVNX radar, June
1-2, 2002. 1.5° tilt. Data begins at 16:07Z June 1.
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Time-series of K, ave. below 1 km
KFWS ELEV=1.55 DATE=2000 715 Start=16 537
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Figure 4.45: Time series of K averaged through a depth of 1 km from KFWS radar, July
15-16, 2009. 1.5° tilt. Data begins at 16:05Z May 6.
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Time-series of K, ave. below 1 km
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Figure 4.46: Time series K averaged through a depth of 1 km from KFWS radar, August
14-15, 2002. 1.5° tilt. Data begins at 16:27Z August 14.
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time, buoyancy-driven turbulence has dissipated and before the nighttime, shear-driven
turbulence has had time to develop. Similarly, the morning minimum in turbulence could
exist due to the decline in nighttime, shear-driven turbulence prior to the development of

substantial daytime, buoyancy-driven turbulence.

4.7.5 Discussion of Time-Height Sections

Lhermitte (1966), Frisch et al. (1992), Jain et al. (1993), and Browning and Atlas
(1966) have also obtained time-height cross-sections of velocity from radar data. Each
author presents a single time-height cross-section of one LLJ. Browning and Atlas did
calculate turbulence profiles, but only for two hours after sunset and only at seven vertical
levels. Jain et al. presented a time-height section of reflectivity, and showed the much
higher reflectivity at night that has been noted as typical here. Browning and Atlas
calculated a time-height plot of the number concentration of angels (related to average
reflectivity) and for the few hours of data they obtained, their plot is very similar to the
time near sunset in Figs. 4.19-4.22. Lhermitte’s measurements of velocity are similar in
character to those presented here, with a gradually rising and mostly nocturnal LLJ; while
those of Jain et al. and Frisch et al. do not have this rising feature.

It is interesting that the wind shear and the LLJ wind speed remains for 3 to 5 hours
after sunrise, while the reflectivity drops quickly right at sunrise. Also, the reflectivity
in all the cases increases abruptly at sunset while the profiles of wind speed, shear, and
turbulence change more gradually. The source of the velocity measurements in all cases,
day or night, is almost certainly either birds or insects (Ch. 3), though it could be different
species at different times. So while most of the radar scatters in the atmosphere quickly
leave the atmosphere at sunrise for whatever reason and by whatever means, enough remain
for radar measurements after sunrise and the LLJ still exists and is still measured. The
rapid drop in reflectivity at sunrise and increase at sunset appears to be due to the behavior
of biological scatterers responding to the sun and not meteorological factors which evolve
more slowly.

That the wind speed for all four cases shows a gradual increase after sunset and a
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gradual decrease after sunrise, while the reflectivity changes rapidly within an hour at
both sunrise and sunset, does not confirm the anomalous nocturnal winds attributed to
birds seen with wind profiles (Wilczak et al., 1995; O’Bannon, 1995). Clearly the reported
sudden 10 to 15 m/s increase in measured wind speeds due to the injection of birds into the
atmosphere are not being seen here. What is seen is a gradual evolution of wind speed that
is not closely correlated with reflectivity change. If birds are causing the signal for these
cases, then they must be present both day and night, and not just at night. As serious
biasing of radar winds due to the motion of biological scatters has not been reported in
the literature as a problem during the day, it is reasonably likely that these four cases do
not suffer from contamination from birds.

These results are generally consistent with the turbulence budget measurements in the
lowest 2 km of the boundary layer during daytime (convective boundary layer) conditions
obtain by Lenschow et al. (1980) and at night (stable boundary layer) by Lenschow et al.
(1988). Lenschow’s 1988 data show that under nocturnal conditions the TKE budget is
dominated by shear production and viscous dissipation with some loss in TKE due to the
buoyancy term. In the convective boundary layer, Lenschow’s 1980 data show that the
TKE budget is mostly a balance between buoyant production and viscous dissipation with
a small contribution to TKE from shear. Direct radar measurement of the buoyancy term
in the TKE budget is not possible due to the lack of temperature information. However, the
measurements reported here do show an increase in shear at night which is probably related
to shear production of turbulence at night, and a reduction in turbulence (as measured by
K) at sunset which is probably related to the elimination of buoyant production.

Despite the highest shear being in the lowest few hundred meters above the ground
at night, the turbulence as measured by K is actually a minimum there. However, TKE
values are higher in the shear layer so turbulence is probably being produced there. While
TKE is higher in the shear layer, it’s dynamical importance (as measured by K) is less.

Buoyant suppression of turbulence is the likely reason the LLJ behaves substantially
differently from free fluid jets in constant density flow (Tennekes and Lumley, 1974, pp.

127-133). Turbulence in such jets forms at the shear layer around the jet core and rapidly
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spreads across the entire jet by entrainment. Jets of this nature tend to be uniformly
and highly turbulent. The LLJ by contrast is not highly turbulent. While turbulence is
probably generated in the shear layer below the jet core, it appears to be suppressed and
does not spread by entrainment. The reason for this is probably the effect of thermal
stratification, but this can not be definitely confirmed with these data.

The results tend to confirm the Blackadar (1957) theory. Blackadar originally hypoth-
esized that the core of the LLJ would be mostly turbulence-free due to the static stability
of the nocturnal boundary layer, while the layer of shear below it would still be somewhat
turbulent due to the shear production of turbulence. These data show that, while TKE
is higher in the shear layer, there is a strong reduction in K in the shear layer at night,
implying that turbulent suppression, probably from thermal stratification, is responsible
for the existence of this shear layer, and; therefore, the LLJ.

These data can be used to verify a prediction of the inertial oscillation (Blackadar)
theory. A prediction of this theory is that the supergeostrophic amplitude at night increases
as the daytime turbulence increases. To try to verify this, the amplitude of the geostrophic
wind is calculated as the 24 hour time average of the mean winds below 1 km shown in
Figs. 4.27-4.30. This assumes that the mean of these winds does represent the geostrophic
wind. This is itself a prediction of the inertial oscillation theory which may not be entirely
true. The amplitude of the ageostrophic wind is then calculated as the time average of the
difference between the mean wind below 1 km and the geostrophic wind. The daytime K
value is obtained as the mean of the daytime peak in K sine in Figs. 4.43-4.46. Table 4.2
lists the results. The last column shows the stronger ageostrophic wind speed relative to
the geostrophic wind speed for the warmer months. This correlates well with the higher
turbulence (K values) in the July and August. The correlation is not perfect as the
turbulence in June is less than that in May for unknown reasons.

These data can not verify the resonance hypothesis discussed and exhibited in the
modeling work of Ch. 2. This hypothesis is difficult to verify because of a lack of long
time history information. Such information is difficult to obtain because several days in

succession with nocturnal jets, no precipitation, stable synoptic conditions, and continuous
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_
Month | Daytime K, m?/s | |gj], m/s | |aa|, m/s lu:%
Ug

May 900 17.9 4.1 23

June 825 15.2 4.4 .29

July 1250 84 68 | 81

Aug. 1900 5.6 4.9 87

Table 4.2: Tabular comparison of turbulence (K) and ageostrophic wind speed relative to
geostrophic wind speed for the four LLJ cases considered.

radar data are difficult to find.
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Chapter 5

Concluding Remarks

This research has shown that Doppler radar data can be used to accurately measure
turbulence and wind profiles in the Great Plains LLJ. To achieve this, considerable atten-
tion to quality-control was paid. Quality control is important for minimizing the effect of
ground clutter contamination, and for avoiding measurements of migrating birds.

To address the issue of ground clutter contamination, Appendix A was presented in
which it was found that tilt angles for NEXRADs of about 1.5° are optimal for minimiz-
ing ground clutter. This tilt appears to work well in terms of producing accurate VAD
winds, with lower and higher tilts having sometimes significant contamination from ground
clutter. The problem of ground clutter at high tilt angles has perhaps been hitherto under-
appreciated.

To address the issue of contamination from migrating birds, Ch. 3 was presented in
which the known possible mechanisms of clear-air radar scatter are reviewed and applied
to data obtained with high-resolution radars. These data, along with some of the past
and recent literature, supports the position that migratory bird contamination is not a
major problem for nocturnal clear-air work in the Great Plains. There is some recent
literature which strongly supports the position that migratory birds are a major problem
for nocturnal clear-air data from meteorological radars. While it is probable that this
problem has been over-emphasized by some, it is no doubt still a problem with some

radars in some locations. Because radar measurements are used in operational forecast

206



models, and because of the perceived great value in broadening the assimilation of such
information into models, should the data be accurate; the problem of quality-controlling
radar data with respect to birds is probably more deserving of more attention than any
other topic touched upon in this research.

There is a remarkable symmetry in the daily behavior of birds, insects, and refractivity
of the atmosphere. This symmetry makes it particularly difficult to distinguish between
them as possible sources of radar signals. Virtually any aspect of clear-air return could be
explained in terms of biota or refractivity. Loss of signal at sunset could be due to insects
or birds leaving the atmosphere; or it could be due to a reduction in convective mixing from
surface heating affecting the refractivity. An increase in signal at night could be caused
by the take-off of migratory birds or insects, or by an increase in refractivity gradients
caused by stable stratification of the boundary layer due to nocturnal surface cooling. For
typical scanning radar wavelengths, the wavelength dependence of scattering is virtually
the same for birds as it is for Bragg (refractivity) scatter. Routinely discriminating birds
from insects, in particular, will probably require ingenuity, as no simple solutions have
suggested themselves.

Having dealt with quality-control issues, what are believed to be accurate time-height
profiles of wind and turbulence were produced for four cases spanning the warm season.
The most innovative aspect of the data reduction involved the separation of spectral width
information into wind shear and turbulence measures. Using this technique provides a
measure of small-scale turbulence not obtainable otherwise, and a measure of wind shear
which is less noisy than differentiating a profile obtained by conventional VAD. However,
most of the energy of turbulence is in the large scales, and wind shear can be obtained
with sufficient accuracy by conventional VAD, so it is not clear if the complexity of this
method is worth the effort.

The time-height profiles obtained were quite interesting and illustrate what is possible
with operational NEXRAD data. High time and space resolution information of wind
and turbulence were obtained throughout the boundary layer down to within 100 m of

the surface and at all times of the day and night. The profiles obtained here are broadly
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consistent with the Blackadar theory and with the low-dimensional modeling results of
Ch. 2. A key finding is that turbulence, as measured by K, always declines at night in the
region of high shear at the lower boundary of the LLJ. This tends to support the Blackadar
theory which relies upon this effect. It is also interesting that TKE measures do not always
decline at night in this layer, but are always less in the jet core than in the shear layer. It
is the TKE that might be sensed as aerodynamic turbulence by an aircraft flying in the jet.
The jet core is fairly smooth in an absolute sense, even though turbulence is suppressed
more in the shear layer.

Wihile the observations of the relation between turbulence and the LLJ tend to support
the Blackadar theory, the observation of oscillating wind by itself can not be used to dis-
tinguish between the inertial oscillation theory (Blackadar) and the heating and cooling of
terrain theory (Holton, 1967), as both these theories produce oscillating, super-geostrophic
LLJs. While the Blackadar theory depends entirely on the diurnal cycle of boundary layer
turbulence, turbulence is assumed constant in the Holton theory, which relies on sloping
terrain. It is possible that turbulence suppression in the LLJ may occur without being a
critical factor in the dynamics.

The resonance concept explored in Ch. 2 was not demonstrated in the data. In fact,
had such an effect been present, it would not have been seen in these data as only 24
hours of data were reduced for each case, and resonance requires multiple days of stable
conditions to manifest itself. The difficulty in finding cases with a long enough duration
of stable conditions for resonance to appear, suggests that this effect, while plausible, may
rarely be manifested in practice.

It is interesting to consider differences between the Great Plains LLJ and a free in-
compressible jet that one might be familiar with from engineering studies. The LLJ shows
substantial shear only in the layer near the ground while incompressible jets have high
shear completely surrounding the jet core. Also, in the LLJ, the turbulence produced in
the shear layer near the ground does not entrain the jet core, which remains smooth (in
terms of TKE) most of the night. This contrasts with incompressible jets where turbulence

spreads completely across the jet by entrainment. Both of these differences are due, with
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little doubt, to the suppression of turbulence by the stable stratification of the layer of air
below the core of the LLJ. This stratification both reduces the intensity and impact of any
turbulence generated in the shear layer and keeps the turbulence confined to this layer.
The suppression of turbulence in the shear layer allows a high level of shear to develop,

and, consequently, leads to a strong LLJ.
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Chapter 6

Suggestions for Further Research

1. Expanding rings of radar echo in the morning are, with little doubt, caused by
birds. It is also known unequivocally the direction the birds are aligned in these
rings (radially outward). This suggests it would be useful to directly compare the
radar signatures of expanding ring echoes with nocturnal return to see if the two
are consistent. Rings echoes could also be used for calibrating dual-polarization

measurements of birds.

2. Dual-polarization research radars could be used to explore if the polarization infor-

mation can routinely discriminate between birds and insects.

3. As this research suffered from not having temperature profile information, either
high-temporal and vertical-spatial profiles could be obtained by physical soundings,

or modeling studies could be done using accurate mesoscale models.

4. One large source of error for measuring rain fall with radar is radar calibration (see
Sec. 3.3.1). A re-calibration survey of the entire NEXRAD network ought to be
done to reduce this source of error. An elegant way to do this is by intercomparison.
Starting with one radar in the network, the calibration of adjacent radars can be
checked by examining regions of echo-containing space seen by both radars. It would
not be difficult to compile a large volume of suitable data for intercomparing two

radars with overlapping scan regions. By such intercomparing, the calibration of the
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entire network can be checked (and adjusted) by going from radar to radar doing
intercomparisons. Re-calibration can also be done with archived data so that the
health of the network over time can be assessed. An automated system can be
developed whereby this intercomparison and calibration consistency check could be

done as a routine part of operating the system.

. The geostrophic wind can be theoretically estimated from time series of the u and v
wind components such as those in Sec. 4.7.2. These geostrophic values could then be
compared with values inferred from synoptic analyses (such as the NCEP reanalysis)

as a check on the inertial oscillation theory.

. A Climatology of LLJ time-height structure could be constructed by using all avail-
able NEXRAD radar to produce monthly composites. Perhaps 3-4 days of data could
be retrieved per month at a single NEXRAD site over 10 years for a warm season
month for compositing. The climatological time-height structure of the LLJ would

then be available as a function of month.

. Higher resolution and more powerful radars than are currently available ought to
be developed. Modern improvements in electronics, data management and display
and real-time computer processing mean that, with sufficient funding, meteorological
radars with resolution and sensitivity at least an order of magnitude superior to any
so far constructed could be built. Cryogenically cooled receivers to reduce noise, large
phased array antennas to reduce beam width and side lobe energy, arrays of receiv-
ing transducers for imaging, FM-CW techniques, antenna arrays, synthetic aperture
techniques for airborne or ground-mobile units, and the usage of shorter wave lengths
are all avenues that should be pursued for the next generation of research radars.
Dual-Doppler measurements of 1 meter resolution of a tornadic supercell are tech-
nically feasible. Radars used in meteorology historically are, by some metrics, much
more powerful than those used currently. The Wallops Island 10.7 cm radar built in
the 1960s (still extant, but used mostly for tracking missile tests) was arguably the
most powerful weather radar ever built with 3 MW of power and an 18.4 m diam-

eter antenna (which compares with .75 MW and 8.5 m diameter for a NEXRAD).
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Research radars ought to be significantly more powerful than operational ones.

. A theory does not exist for turbulent radiation scatter for inhomogeneous conditions,
such as density stratification and for conditions in which the inner scale of turbulence
is large relative to the radar wavelength. It would be of some value to derive such a

theory.
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Appendix A

Impact of Radar Tilt and Ground
Clutter on Wind Measurements in

Clear Air

A.1 Abstract

The VAD technique is a common method of measuring the wind vector from Doppler
radar in clear-air conditions. It is very accurate if the assumption of horizontal homogenc-
ity is valid, if the data is uncontaminated by non-meteorological targets such as birds or
ground clutter, and if there is not significant anomalous propagation. Under the horizontal-
homogeneity assumption, a vertical profile of the horizontal wind can be obtained from a
single radar sector scan. The vertical resolution of such a profile depends on the radar ele-
vation (or tilt) angle. An optimum tilt angle at which the best possible vertical resolution
is obtained exists theoretically and is derived in this work. This optimum tilt angle is a
compromise between the effects of beam divergence and range gate spacing. For typical
S-band radar parameters, this optimum tilt angle is found to be about 10 degrees. How-
ever, wind analyses at this tilt angle are not accurate in practice because of ground clutter
contamination, and sub-optimal angles need to be used.

Ground clutter contamination in clear-air work is a larger problem than it is in precipi-
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tation work as the meteorological signal is much weaker (typically 30 dBZ weaker than rain)
while the ground signal is the same strength. It is therefore more difficult to discriminate
between the meteorological signal in the main radar beam lobe from ground clutter in side
lobes. Furthermore, while the first side lobe in a pencil beam radar is typically 30 dBZ
weaker than the main lobe, subsequent side lobes only gradually decrease in strength. The
result of this is that if any ground clutter is measured from a side lobe, ground clutter can
potentially be sensed in any of the side lobes at virtually any tilt angle. For wind profiling in
the boundary layer, the impact of ground clutter contamination is greater as the tilt angle
is increased since gates closer to the radar need to be used. This is contrary to intuitive
expectations.

From experience with 4 radars (KGLD NEXRAD, DOW3, SPOL, and CINMARRON).
this research suggests that a fairly narrow range of tilt angles from 1 to 2 degrees is generally

acceptable for wind profiling of the boundary layer in clear-air conditions.

A.2 Introduction

The effective vertical resolution that can be achieved in a VAD-determined wind profile
depends on the radar elevation (tilt) angle. For example, if the radar has a 100 meter gate
spacing at a tilt of .5°, then the VAD technique can give a wind vector measurement at
every gate, which is every 100 sin(.5°)= .9 m in the vertical. This resolution is deceptive
since the beam width in the vertical is generally larger than .9 m. For a beam width of 1°,
the beam width in the vertical at a .5° tilt angle at a range corresponding to 500 m above
the surface, would be (Eqn. A.2 below) 2X500tan(.5°)cot(.5°) =1000 m.

The optimal tilt angle for maximizing the effective vertical resolution of a VAD-determined
wind profile is achieved as a compromise between these two effects: the gate spacing effect,
and the beam width effect. This compromise needs to be further modified to account for the
practical problem of ground clutter, a problem which, as will be shown here, gets worse as
the elevation angle is increased, contrary to intuitive expectations. It is the purpose of this

appendix to analyze in some detail this issue from a theorctical and practical viewpoint.
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A.3 Theory

By using the VAD technique, the vertical resolution of the wind profile, AZ, obtained
with a radar scanning in azimuth at a fixed tilt angle is a function of the radar tilt angle,
B, for two reasons with an opposite dependence on . We wish to determine the tilt angle
which makes AZ as small as possible.

First, as B is increased, the vertical spacing between data points in the profile, AZgye,

increases as the sine of 2 according to

AZ_{/M(‘ = ARSHLﬁ (‘\1)

Where AR is the spacing between range gates, as shown in Fig. A.1. Strictly speaking,
the vertical resolution would be determined by both the gate spacing and the pulse length
(whichever was longest); however; these two things are usually closely matched by radar
design. The pulse length is selected so as to be twice the gate spacing in most radars, as
the receiver simultaneously receives energy reflected from half of the pulse length. From
(A.1), arbitrarily fine vertical resolution would appear to be obtainable by using a small /3.
However, this is not the case for several reasons. One is the impact of ground clutter and
beam distortion at low elevation angles (discussed later in this appendix). Another is the
that the horizontally-homogencous assumption for standard VAD work is more likely to be
violated if low elevation angles are used as circles of larger radius arc needed.

A more fundamental reason (A.1) does not give the actual vertical resolution is that
at low tilt angles a specific height above the ground is reached only at large range, and at
large ranges, the divergence of the beam degrades the vertical resolution. Consequently, the
vertical resolution at some height decreases as  decreases, which gives a AZ due to beam

broadening, AZpeam. For a beam width angle of ¢ (see Fig. A.1),

AZpeam = 2Rtan(=)cosf3

N

where R is the range to a certain gate. At a fixed height above the ground, Z, R = Z/sinp,
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Figure A.1: Diagram for radar resolution

S0
27 m'n%(:os/i

B Zyeam = )
heam 5271./3

= ‘)Zm'n,%/)cotﬂ (A.2)

Since the beam actually has a Gaussian shape to it, (A.2) is an upper limit.

The best actual or effective vertical resolution will be, approximately, the largest of these
two AZs, AZgate, 0r AZpegm. Using the Cimarron beam width of 0.9°, and AR of 150m,
we plot AZggre and AZyeq,, for several low-level Z values in Fig. A.2

The optimum tilt angle, 3, for purposes of best (minimum) vertical resolution occurs

at the intersection of the two curves plotted in Fig. A.2, where:

AZyate = AZI)nam

or
2Ztanf§cos/30,,t

ARsinSy —
Pope S Bopt

Which can be written:
. 27
coszﬁom + ——tan?cosﬁom -1=0

AR 2

This is a quadratic in cosfyp, since fyp is a positive angle, we use the positive root from

224



resolution as a function of tilt angle
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Figure A.2: Vertical resolution versus tilt angle, AZ g (solid line) and AZy.,, (numbered
curves for different elevations). The theoretical vertical resolution at a particular tilt angle
and vertical location is the larger of the value obtained from AZgq or AZpeqy,, which is the
intersection of a numbered curve and the solid curve.
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optimum tilt angle as a function of Z
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Figure A.3: Optimum tilt angle for best vertical resolution as a function of height above
ground using the two methods described in the text. x’s indicate first method, based on
(A.3) and o’s indicate second method, based on (A.6). Plots are for a beam width, ¢, of .9°
and a gate spacing, AR, of 150 m.

the quadratic equation, yielding:

a1 -Z, ¢ A )
— L Ztant 4 tan2 < 4 :
Pops = 08 [ARan \/(AR)‘Zt(m 2 L (4.3)

Bopt is a function of the height above the ground, Z, as shown in Figure A.3. Siuce ¢ is
typical small (usually a degree or less), (A.3), to a good approximation, is equivalent to:
- Z
Bopt = cos ! [1 - éA—(/;?} (A4)

For a AR of 250 m, this approximation is good for approximately Z < 3 km. .
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An alternate and more accurate way to arrive at the optimal tilt angle is to consider the
radar probe volume drawn in Figure A.4. If we wish to consider AZ as the distance between

the top and bottom points of the probe volumne indicated in Fig. A4, then

AR, .~ ¢ AR, . ¢
AZ =(R+ —2—).sz71,(/)’ + 5) - (R - -2—).51,12,( - 5)
which after some simplification becomes:
. ¢ : 4 -
AZ = 2Rcosﬁsul§ + A[{.S'J.?),/i(:().‘;; (A.D)

We note that (A.5) reduces approximately to (A.1) or (A.2) as / becomes large or small,
respectively. Using R=7/sinf3 and setting %—3;}4 = 0 (for constant Z), results in the following

relation for Bop:

IS , 2Z ¢
Eszn,Z/j’(,p,,szn/}O,,t = A—Rtan§ (A.0)
Which is equivalent to the cubic equation:
) 2Z
co.s"*ﬂo,,t ~ €0SPopt + A—Rtang =0 (A7)

This equation is most easily solved by iteration for 3o,. The results (plotted as circles
in Fig. A.3) are very similar to those from (A.3) (plotted as x’s), differing by at most
6% for Z<1 km. The method leading to (A.7) is more accurate than that leading to (A.3)
because both the beam and width and gate spacing techniques are simnultaneously taken into
account rather than considering a compromise between the two effects considered separately.
However, (A.3) is simpler, has a better intuitive basis, and is almost as accurate.

Since it is not convenient to use a different radar tilt angle for every layer of the wind
profile desired (a profile of 20 points would take 20 scans, which at 2 minutes per scan
would give us a profile only every 40 minutes, during which time the profile may have been
changing), some decision needs to be made as to the level in which the best resolution is
desired. The elevation of the LLJ that requires the best resolution is the lower shear layer

where the wind profile most rapidly changes with height. This is typically from the surface
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Figure A.4: Radar probe volume schematic for determining AZ.

Radar Beam, Gate, Bopt Bopt AZ from (A.1)
Width, ° | Spacing, m | from (A4, A.3) ° | from (A.7),° | and (A.7), m
Cimarron .90 150 9.28, 9.25 9.38 24.4
NEXRAD .95 250 7.38, 7.37 7.43 32.3
DOW3 .93 137 9.87, 9.84 9.99 23.8
DOW3 .93 12 33.8,32.3 42.7 8.1
SPOL 91 149 9.36, 9.33 9.46 24.5

Table A.1: Optimal tilt angle and resulting vertical resolution at a level 250 m above the
surface, for 5 radar configurations.

to 500 m. If we decide to put the best resolution at 250 m, Fig. A.3 then suggests that a
tilt angle of about 10 degrees would be desirable for purposes of vertical resolution of that
layer when using the Cimarron radar, and Fig. A.2 shows that the vertical resolution would
be about 25 m. Table A.1 shows the calculated optimal tilt angles and resulting vertical
resolution for 4 radar configurations of interest.

Using a relatively high tilt angle of 10 degrees (relative, for example, to the standard
NEXRAD tilts of 0.5, 1.5, 2.5, and 3.5 degrees) has other advantages in addition to improving
the vertical resolution. High tilts greatly reduce problems from beam refraction through

index of refraction gradients (anomalous propagation), and obtains the VAD wind profile
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over a much smaller scan radius so the VAD assumption of horizontal homogeneity is more

likely to be valid.

A.4 VAD-Determined Wind Profiles as a Function of Radar

Elevation Angle

As will be shown in this section, the theoretical results obtained in Section A.3 need
substantial modification to deal with the severe practical problem of ground clutter. For
this section, wind profiles obtained by the VAD technique using the KGLD NEXRAD radar
and DOW radar located in Goodland, KS will be shown, though these results are typical of
other locations.

At Goodland Kansas on the night of May 30, 2000, a Doppler on Wheels radar (DOW3)
was co-located with the KGLD NEXRAD, and radar scans appropriate for doing VAD
analysis were obtained at approximately 6 Z. The low-level jet at this time had an amplitude
of about 30 m/s. Since the Nyquist speed for KGLD was 26 m/s and for DOW3 was 16 m/s,
significant aliasing of the velocity occurred. All the data were de-aliased using a technique
described in Sec. 4.1. The methodology for the VAD analysis is described in Sec. 4.5 and
the radar scan display software is described in Sec. 3.2.1. In addition, radar data with
a spectral width more than 7 m/s were rejected as it was found that such data are often
ground clutter contaminated. Also, the data were corrected for the Earth’s curvature by
assuming an Earth radius of 4/3 of the actual radius (Battan, 1959, p.24).

Figure A.5 displays VAD-determined profiles of wind speed as a function of radar tilt
angle and radar. Each profile has a reference profile plotted on it which was the wind
profile obtained by KGLD at 1.5° tilt. The best fit wind vector from the VAD analysis
has been divided by the cosine of the elevation angle to account for the tilt effect on the
sensed radial velocity. The top row (A, B, C, and D) are profiles from KGLD at clevation
angles .5°, 4.5°, 8.5°, and 20°, respectively, with each speed measurement plotted as a '’
and the reference profile plotted as dots. The bottom row (E, F, G, and H) are profiles
from DOW3 at approximately the same tilt angles: .5°, 4.5°, 8.5°, and 20°; with the same

1.5° KGLD reference profile. The KGLD radar was in precipitation mode at the time using
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Figure A.5: Wind speed profiles near 6Z at Goodland, Kansas on 5/30/00 versus radar and
elevation. A, B, C, and D are profiles from KGLD NEXRAD at .5, 4.5, 8.5, and 20° of tilt.
E, F, G, and H arc profiles from DOW3 at .5, 4.5, 8.5, and 20° degrecs of tilt. Each profile
has the same reference profile plotted with it as dots. The reference profile was the 1.5° tilt
KGLD profile.

Volume Coverage Pattern 11 (VCP 11). The data required from KGLD for Fig. A.5 was
obtained from 5:46 Z to 5:50 Z, and the data from DOW3 was obtained from 5:55 Z to 5:59
Z. Consequently, there is a small 10 minute time difference between the KGLD and DOW3
wind profiles. Also, KGLD had a gate spacing of 250 m and DOW3 had a gate spacing of
137 m, giving the theoretically best tilt angles from Table A.1 of 7° and 10° respectively. If
we tentatively consider the reference profile to be accurate, then Fig. A.5 shows a problem
at 0.5° tilt for both radars (Figs. A.5 A and E). The profiles have a sharper peak near .4
km in Z and significantly under estimate the wind speed near there. The DOW3 profile at
.5° only reaches about .4 km in height since only 300 gates of information were collected,
and at 0.5° elevation, the beam does not reach above this level above the ground by the
last gate collected. We also note that the .5° tilt profiles have more points in the vertical.
These tilts have better resolution according to (A.1), but are really oversamnpling the profile
and smoothing it according to (A.2). At 4.5° tilt, KGLD exhibits good agreement with the
reference profile above .6 km, but significant underestimation below .6 ki (Fig. A.5 B).
At higher tilts, the KGLD profile deteriorates further with significant underestimation of

the wind speed and an increasingly noisy profile (Figs. A.5 C and D). DOW3 also exhibits
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a deterioration of the wind profile as the tilt angle is increased, though to a more limited
extent (Figs. A.5 F, G, and H).

Ideally, with a horizontally homogeneous wind field, the wind profiles determined by
VAD analysis would be independent of the elevation angle used, with the ouly difference
being the number of points in the vertical where independent measurements were obtained,
and the effective resolution of those measurements. It was expected, considering the results
from Sec. A.3, that a radar tilt angle of about 10° would be best, but this is not the case.
The reason the tilt angle affects the wind profile in unanticipated ways can be appreciated
by considering the PPI velocity scans of the same data used to extract the wind profiles
shown in Fig. A.5. Fig. A.6 shows PPI velocity scans for the KGLD radar and Fig. A.7
shows the corresponding scans from DOW3. Figs. A.6 and A.7 are plotted on the same
scales with the same gray scale table. The figures are directly comparable with the only
difference being the radar employed. Also, these figures use height above the ground as the
radial distance, rather than distance along the beam (i.c., the range rings drawn are scaled
to height above the ground, with a ring drawn every 200m above the ground). This makes
the comparison of the PPI velocity plots with the derived profiles of Fig. A.5 much casier,
and also makes it easier to compare PPI plots at different tilts.

These figures display data only where the received radar signal was above the noise
level (and for KGLD, where second trip contamination has not been detected). The shape
of the displayed data is ordinarily expected to be circular if the situation is horizontally
homogeneous with an even distribution of scatterers (probably insects for this case). This
circular pattern is plainly evident at the higher tilt angles (Fig. A.6 upper right and lower
left; and Fig. A.7 lower left and lower right). However, at .5° tilt (Fig. A.6 upper left for
KGLD), a non-circular pattern is seen. One probable reason for this distortion is that the
beam has been bent by vertical gradients in the index of refraction. This problem is more
severe the shallower the tilt angle is (Battan 1973, p. 17-28). Small horizontal gradients
in the index of refraction can result in horizontally inhomogeneous beam propagation and
non-circular signal patterns at low tilt angles, such as the one seen in Fig. A.6 upper left.

Since the index of refraction profile is a thermodynamic property, it is not know what it
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Figure A.6: PPI Velocity scans from KGLD corresponding to profiles obtained in Fig.A.5A,
B, C, and D for KGLD. Upper left is for .5° of tilt, upper right is for 4.5°, lower left is for
8.5°, and lower right is for 20° . Rings are drawn every .20 km in height above the ground.
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Figure A.7: PPI velocity scans from DOW3 corresponding to profiles shown in Fig. A5 E,
F, G, and H. Upper left is for .5° of tilt, upper right is for 4.5°, lower left is for 8.5°, and
lower right is for 20° . Rings are drawn every .20 km above the ground.
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was from radar data alone. Knowledge of the index of refraction gradient in the vertical
and horizontal sufficient for correcting this problem by beam tracing could only be obtained
from numerous thermodynamic soundings around the radar.

The problem with the wind profiles of Fig. A.5 in which the profiles degrade at higher
tilt angles can also be explained by examining the PPI velocity scans of Figs. A.6 and
A.7. On these plots, can be seen evidence of ground clutter contaminating the winds, a
problem which gets worse at higher tilt angles. Since the ground has no velocity, ground
clutter directly shows as zero velocity (mediumn gray in these PPI scans). Ground clutter
contamination is obvious in the plots as spots of a few gray pixels in the middle of the high
speed regions (black or white). The spiral pattern of missing data (white) in the upper right
panel of Fig. A.6 is caused by the clutter filter employed by the KGLD radar. One clutter
filter strategy is to remove data with low velocity, presuming it to be due to ground clutter.
NEXRADs have a variety of complex clutter filter algorithms available which are sclectable
by the operator. The clutter filter information is not saved in the level II data format, so it
is not possible to discern what clutter filter algorithin was used for these particular data, or
any level IT data. NEXRAD clutter filter algorithms involve the usage of a known ground
clutter map and attempts to correct reflectivity values. Data of zero velocity were not used
in the VAD analysis done here, it was filtcred-out because of the possibility that it might
be due to ground clutter. Indeed, the algorithm used here rejects all data less than or equal
to 1 m/s, so data from pixels in Figs. A.6 and A.7 which are obvious ground clutter were
not used in determining the wind profiles in Fig. A.5. However, ground clutter can affect
the determination of velocity by more subtle means. Radars determine the velocity from a
number of pulses which are combined to produce a velocity spectrum, the center of which is
output as the radial velocity. Ground clutter affects the spectrum by adding a peak near 0
velocity. For strong ground echoes, most of the signal is ground clutter, and a zero velocity
measurement results. However, if the ground clutter is weak enough, its velocity (0) can be
weighted with the air velocity producing a velocity measurement which is biased low. An
erroneous low measurement of the velocity caused by ground clutter contamination is the

most likely explanation for the poor wind profiles at higher radar tilt angles seen in Fig.
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Figure A.8: VAD at a range 400 m above the ground from KGLD radar. LEFT: 1.5° tilt.
RIGHT: 8.5° tilt. The v’s are the raw (dealiased) radial velocity data, and the solid curve
is the best-fit solution.

A.5. This is further supported by Fig. A.8 which shows the data used in the VAD analyses
for the vertical location in the wind profile 400 mn above the surface, at 1.5° and 8.5° tilts by
KGLD, along with the best fit solution curves for the wind. The 8.5° VAD has numerons
low speed data below the solution curve which the 1.5° VAD does not have. These low-speed
data are very likely erroncous in value due to ground-clutter contamination of the velocity
spectrum. Even if these low velocity points could somechow by filtered-out, the envelope of
good data still has a smaller amplitude at 8.5° than at 1.5°, and it may well be that most
of the data points in the 8.5° VAD have had their velocity spectra contaminated to some
extent. A sample of reflectivity PPI scans from KGLD and DOW3 arc shown in Figure A.9.
Both these reflectivity scans are plotted on identical spatial scales and use the same grey-
scale table to display reflectivity intensity. They correspond to the 8.5° velocity PPI scans
in Figs. A.6 and A.7. The better spatial resolution of DOW3 relative to KGLD is apparent
(137 m gate spacing versus 1 000 m). Also, DOW3 has measured reflectivity in the same air
as KGLD. This is because DOW3 has a 3 ¢ wavelength, versus 10 ¢ for NEXRAD. The
scattering targets in this case were most probably insects (for reasons discussed in Sec. 3.9)
and 10 c¢m radars are more sensitive to targets of this size than 3 cm. Little ground clutter

is obvious in Fig. A.9. KGLD, of course, has been ground clutter-filtered, but DOW3 has
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Figure A.9: Reflectivity scans from KGLD (left) and DOW3 (right)

not. Many locations with obvious ground clutter in the velocity scan in the lower left of
Fig. A.7 do not correspond to high reflectivities in the dBZ scan of Fig. A.9. Nonetheless,
ground clutter contamination is still present, even if the reflectivity of the ground is to weak
to stand out in the reflectivity display. Ground clutter is a larger problemn for clear-air radar
data such as these, due to the very weak clear-air reflectivity (relative to precipitation).
Even very weak signals from side lobes can contaminate the signal, if the signal is weak to
begin with.

Why ground clutter gets worse at higher tilt angles (which is the reverse of expectations,
since it was intuitively expected that ground clutter would be a larger problem when the
beam was closer to the ground) can be answered by referring to the RHI scan of Fig. A.10.
For this scan, DOW3 was operated at the maximum possible resolution setting of 12 m gates
in the same location and at about the same time the PPI scans for doing VAD work were
obtained. The point targets evident in the reflectivity scan are believed to be insects and
account for most of the received signal and exist up to about 2 km. Ground clutter is also
apparent in the reflectivity and velocity scans, especially between .8 and 1.6 km of range

from the radar. Clutter appears as arcs of high reflectivity and as arcs of zero radial speed.
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Figure A.10: LEFT: RHI reflectivity scan from DOW radar at Goodland, Kansas on 5/30/00
at 5:48 GMT. The radar was point along azimuth 180° (due south). Range rings are 2[))
meters apart. Radials are drawn every 20 degrees. Significant ground clutter is scen at a
range of .8 km to 1.6 km at all tilt angles. RIGHT: RHI velocity scan at the same timne.
Ground clutter appears as a medium gray (zero velocity).

Fig. A.11 shows a map of the area with the radar location indicated. An open field
existed to the south of the site (180° azimuth) of about a kilometer in length. Beyond this
was a network of streets. The ground clutter indicated in Fig. A.10 begins in range (about
.8 km) at about the same distance as the street network indicated in Fig. A.11. Bevond
about 1.6 km, the side lobes of the radar are apparently screened-out and the problem is
greatly reduced. Also, note in the reflectivity scan in Fig. A.10 that the side lobe structure
can be inferred from the modulation in signal strength at individual gates. For example, at
a range of about 1.2 km, the reflectivity modulates in elevation through about 17 maxima in
40 degrees of elevation. Each maxinmm corresponds with a particular side lobe intersecting
a ground target. In fact, one method of determining a beamn power plot is to scan a point
target of know reflectivity.

Ground clutter is generally a problem for this site and radar at all tilt angles for any
gates less than about 1.6 kin from the radar. When a low tilt angle is used for VAD work,

most of the gates used for determining the wind profile will be beyond this distance, and
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Figure A.11: Road map around the KGLD NEXRAD radar site. Star marks site of the
DOW and KGLD radars at 920 Armory Road, Goodland, KS; co-located with the National
Weather Service Office. North is toward the top of the figure.
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the problem of ground clutter is limited to the lowest levels of the profile. At higher tilt
angles, more radar gates that need to be used to measure the low-level winds will be in the
ground clutter, and systematically underestimated and noisy winds result. Stated another
way, gates closer to the radar ueed to be used at higher tilt angles; and gates closer to the
radar are more likely to be contaminated by ground clutter, regardless of tilt angle.

Assuming that ground clutter contamination falls within a hemisphere centered around
the radar of some radius, Rojuer, @ radar tilt angle can be chosen such that wind measure-
ments above a certain minimum height, Z,,;;, will be made outside this circle. Approximately,
this tilt angle is Buutger

Betutter = f»(”?f_l(imﬂ—) (A.8)

clutter

If we desire accurate winds above 200 m and (as Fig. A.10 suggests) ground clutter is
limited to 1.6 km from the radar, then (A.8) gives a maximum tilt to use of 7°. However,
the problem of ground clutter is worse for KGLD than DOW3. This is possibly because
DOWS3 has a smaller probe volume, or (more likely) because the antenna for KGLD is atop
a tower while DOW3 was near the ground. The screening-out eftfect of side lobes by the
surface does not occur for elevated antennas. Figs. A.5 B and C show degraded wind profiles
from KGLD below approximately .7 and 1.4 km for 4.5° and 8.5° tilts. Using these values
in (A.8), to solve for Rejutter gives Reuter consistently of about 9 km for both tilts. For this
Retutter, and a Zpni, of 200 m, (A.8) gives a maximum tilt of about 1.3° to avoid problems
from ground clutter. This is consistent with the KGLD wind profile at 1.5° tilt being used
as the reference profile in Fig. A.5.

To show that this is a general problem for clear-air VAD work, we present some results
from two other radars, SPOL and Cimarron. Fig. A.12 shows wind profiles derived from
the deployable S-band Dual Polarization Radar (SPOL) operated by NCAR. Plotted are the
0.5°, 4.5°, 8.5, and 10.5° profiles with the 2.5° profile plotted as dots on cach for reference
(the 1.5° tilt was not available). These data were obtained with SPOL deployed near Idalia,
Colorado near noon (18:40 Z) on July 14, 2000 under clear-air conditions. This radar was
sited deliberately in a shallow depression in the terrain in an attempt to minimize ground

clutter by way of the screening of side lobes. Nonetheless, these profiles show unmistakable

239



5 » e -
Eﬁ?} T Pt mae e a2
s D44 080" Tocas

Py e

2. km

Figure A.12: Daytime VAD wind profiles fromm SPOL radar on 7/14/00 for tilt angles of
0.5°, 4.5°, 8.5°, and 10.5°. Wind profiles are plotted as "w's and cach has a reference profile
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Figure A.13: VAD wind profiles from Cimarron radar near 7 Z ou 6/16/00. Plotted dots
are the profile obtained at 2° of tilt.

degradation of the wind profiles obtained, due to ground clutter contamination. For Figs.
A.12 B, C, and D, respectively, significant noise in the profiles and under estimation of the
winds (relative to the plotted 2.5° reference profile) are obvious below .55 kimn, 1.0 km, and
1.2 km. From (A.8), this leads to a consistent Reyper 0f about 7 km.

Fig. A.13 shows VAD-derived wind profiles for a LLJ obtained with the Cimarron radar
with similar problems. Presented are profiles obtained from tilt angles 4.0°, 8.0°, 10.0°,
and 16.0° respectively in Figs. A.13 A, B, C, D. Each figure has the 2.0° profile plotted as
the reference profile. The degradation of the wind profile at higher tilt angles in Fig. A.13
implies an Repygrer of about 7.5 km.Fig. A.14 shows an RHI scan from Cimarron (from a
different date). The range rings are drawn every 2 kin and the medium gray shade indicating
ground clutter is evident at all tilt angles out to about 8 km in range from the radar. An
arc of ground clutter is also present at a range of about 14 km. This is consistent with an

Retutter of about 7.5 km found using (A.8) and Fig. A.13.
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Figure A.14: RHI scan from Cimarron radar at azimuth 180° obtained at about 7 Z on April
28, 1999. Range rings arc drawn every 2 km and radial lines are drawn every 20 degrees.
Figure indicates southerly velocity component in boundary layer about 2 km deep (light and
dark shades) and ground clutter (medium gray shade).
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A.5 Summary and Conclusions

This appendix derives theoretically the best radar tilt angle, 3,,,. to use for maximizing
the vertical resolution of VAD-derived wind profiles. This angle is a compromise between
gate spacing and beam width effects. Theoretically, we found this value to be given implicitly
by:

b

3 22 (
€O Bopr = COSPopt + —A—ﬁt(mE =)

or approximately and explicitly by:

Z
Bopt = cos ™! [1 - QA]?(/)]

Where Z is the height above the ground, AR is the gate spacing, and ¢ is the beam angular
width. This gives a best tilt angle for typical radar configurations of 7 to 10 degrees and a
best obtainable vertical resolution of 20 to 30 meters. However, the sclection of tilt angle
needs to be subject to an over-riding maximum determined by the amount of ground clutter

contamination. This leads to the need to have:

Zmin )

B < tan™(

Lclutter

where Z,,;n 1s the level above which winds are desired and Rejyer 18 the distance from the
radar that ground clutter is a problem. Ground clutter is a larger problem for clear-air radar
data than for radar data of precipitation targets because the clear-air signal is much weaker,
which allows the contamination of the data by ground targets in the radar side lobes. Also,
tilt angles below a degree or so should be avoided because of the intersection of the main
beam lobe with the ground causes a great deal of ground clutter contamination. So we also
need:

g>1°
The resulting vertical resolution is the maximum of cither:
AZgate = ARsing
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or:

AZpeain = 2Ztan(§/)(:ot/ﬁ

The main limiting factor was found empirically to be Reppter. It is shown that, for
VAD work with clear-air data, the problem of ground clutter gets worse as the tilt angle
is increased. This is because, for higher tilt angles, data closer to the radar must be used
to obtain a VAD at a particular height above the ground. Ground clutter contaminates
velocity measurements at all tilt angles by way of beam side lobes and tends to be restricted
to ranges less than Rejyper from the radar. Since the amount of ground clutter depends
on the radar and the radar site, Reuger Will generally be site specific. For KGLD, it was
found that the 1.5° tilt produced the most accurate wind profiles, even though, by (A.2) the
vertical resolution at Z-=250 m is ouly about 150 m, rather than the 32 m which could have
been obtained at a tilt angle of 7° had clutter not been a problem. With carcful radar siting,
or possibly more sophisticated ground-clutter filtering, higher tilt angles could be used. with

a consequent increase in vertical resolution.
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