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ABSTRACT

An on-line experim ental study  o f the m elt spinning and m elt blow ing 
polym er fiber forming processes w as perform ed. During m elt spinning, the 
fiber properties m easured included fiber diameter, tem perature, velocity, 
birefiringence, density, and crystallinity. In order to determ ine the fiber 
density, a novel technique using the continuity equation, in  conjunction w ith 
the m easured diam eter and polym er mass flowrate, w as developed. 
Heretofore, the fiber density has never been measured on-line during  fiber 
form ing processes. The fiber crystallinity was dien determ ined from  die 
m easured d en si^  using a m ixing rule. The measurements m ade during  die 
m elt blow ing process included fiber diam eter and tem perature. The on-line 
m easurem ents during m elt blow ing w ere compared w ith the U yttendaele- 
Shambaugh m athem atical m odel for m elt blowing.

Also developed w as a m athem atical m odel for die m elt blow ing process. 
This m odel is a 3-dimensional, logical extenacm of the 2-dimensional Rao- 
Sham baugh model for m elt blow ing. The utility of this m odel lies in  the 
sim ulation of m elt blow ing from  die slo t m elt blowing dies (e.g., an  Exxon die). 
The useful inform ation predicted from  the model includes fiber diam eter, 
tem perature, threadline stress, and  fiber m otion.

The on-line m easurem ents du ring  the m elt spinning process w ere used 
to quantitatively evaluate die effect of molecular orientation (caused due to 
threadline stress) on the crystallization rate of polymers.

XIX



ON-LINE MEASUREMENT AND MATHEMATICAL 

MODELING OF FIBER PROPERTIES DURING THE MELT 

SPINNING AND MELT BLOWING PROCESSES

CHAPTERl

INTRODUCTION

1.1 NONW OVENS

N onwovens, as Üie nam e indicates, are unw oven textile assem blies that 

are slow ly replacing the use of traditional w oven/knitted  hibrics in  household 

and industrial applications (Narayanan et al., 1994). N onw ovens are defined 

by  INDA, Association of the Nonwovens Fabrics Industry (1976), as "sheet or 

w eb structures m ade by bonding an d /o r interlocking fibers, yam s, or filam ents 

by  m echanical, therm al, chemical, o r solvent m eans".



The applications of nonw ovens in  everyday life include fabric softener 

sheets, tea bags, baby diapers, hygiene products, household w ipes, insulation 

linings in  w inter w ear, upholstery, carpet backings, car covers, autom otive 

textiles, com puter diskette linings, cigarette filters, envelopes, and m any m ore. 

La industrial applications, Üie nonwovens are used extensively in  protective 

garm ents (e g., D uPont's Tyvek^), gloves, industrial filters, m edical apparels 

(e.g., D uPont's Sontara*^), roof linings, geo-textiles, battery linings, industrial 

wipes, industrial packagings (e g., D uPont's Typar*^ and Xavan^), insulations, 

aircraft in terio r and structures (e g., D uPont's Kevlar<  ̂ and NomexR), and in 

autom otive tires (e g., D uPont's Dacron^ and Kevlatf).

Because of the econom ic advantage of nonwovens over the conventional 

w oven/knitted  structure, new er applications are ccmtinuously being developed 

for nonw ovens. fit 1994, fiie w orldw ide nonw oven consum ption am ounted to 

about 1.82 billion kilogram s. In  1999, tihe consum ption is expected to reach a 

figure o f 2.55 billion kilogram s, a t an  annual grow th rate of about 7% (N a|our, 

1996). C urrently, only about 15% of the w orld 's population account for m ore 

than 85% of the nonw oven products sold (Najour, 1995); die grow di of 

nonw ovens is expected to be even m ore rapid in  die 21** century w ith  the 

broader penetration of developing m arkets.

Tw o of the im portant processes for m anufacturing fibers for nonw ovens 

are m elt spinning and m elt blow ing. The m anufiicture of nonw ovens via m elt



spinning consists of a two step process. The first step involves the m anufacture 

of continuous filam ents (Ludew ig, 1971). In  the second step, these filam ents 

are converted to a fibrous w eb; d ie w eb is subsequendy bonded (via therm al 

bonding, chemical bonding, needle punching, stitch bonding, or a com bination 

of these) to form  a cloth-like nonw oven w eb. Some of the common processes 

used for converting continuous filam ents to fibrous webs (the second step of 

the two-step process) are spunbonding, w et-laid, air-laid, and slit film  

processes. M elt blow ing, on die odier hand, is a one-step process which 

involves the conversion of a  therm oplastic polym er to nonwoven web in  a 

single step.

1.1.1 M elt S p inn ing

The m elt spinning process consists of a  continuous injection of a m olten 

polym er at a constant tem perature, and  a constant m ass flowrate, into a 

spinneret capillary. The polym er stream  coming out of die capillary is 

collected onto a take-up device; see Figure 1.1. The velocity difierence betw een 

die polym er a t die sp inneret exit and  d ie take-up device rapidly attenuates the 

polym er stream  from  the capillary diam eter (typically 250 - 600 pm) to a final 

fiber diam eter that is determ ined b y  d ie speed of the take-up device and the 

polym er m ass flow rate. In  com m ercial applications, the take-up speeds range



from  500 to 6000 m /m in. The polym er stream  gets solidified and transformed 

into a filam ent as a result of cooling encountered along the spinning path, i.e., 

betw een the spiim eret exit and die take-up. A n excellent review of the melt 

spinning process is given by Ziabicki (1976), and Ziabicki and Kawai (1985).

The fibers manufoctured via m elt spinning are classified as (a) 

unoriented, (b) partially oriented, and (c) fully oriented, based on the take-up 

speed. The unoriented yam s are produced a t a w indup speed of 500 to 1500 

m /m in , partially oriented at 2500 to 3500 m /m in , and fully oriented at 4500 to 

6000 m /m in .

In spite of die vast commercial im portance of die m elt spinning process, 

d ie relationship between the process param eters and  the final fiber properties is 

still no t com pletely understood and is a  subject of constant scientific curiosity. 

Researchers have used two different approaches to study die m elt spinning 

process: (a) experim ental m easurem ents, and (b) m athem atical modeling. A 

detailed literature review of die experim ental techniques used by past 

researchers, for the measurement of fiber properties is included in  chapters 2 

and  3.

H istorically, the pioneering w ork on  m elt spinning mathematical 

m odeling w as done by Ziabicki and K edzierska (1960; 1961), Ziabicki (1961), 

Kase and M atsuo (1965), and Matovich and Pearson (1969). These researchers 

developed die basic momentum, continuity, and  energy balances for the



spinning threadline; they assum ed a Newtonian theology. Fisher and Denn 

(1976) extended ttie previous w ork to include polym ers w ith  a pow er law 

viscosi^. Gagon and D enn (1981) developed a m elt spinning model, 

applicable to  viscoelastic fltiids, w ith the inclusion o f convective heat transfer 

and air d rag  effects. The earlier models have neglected die effect of polymer 

crystallization occurring along the threadline. More recent m odels by 

Papanastasiou e t al. (1987), Schultz (1987), Lu and Spruiell (1987), Zieminski 

(1986), Smidi and Roberts (1994), Patel et al. (1991), M ishra e t al. (1993), and 

Bhuvanesh and G upta (1995) have included the effect of threadline 

crystallization in  m elt spinning. A  recent m odel by  Chung and Iyer (1992) 

included d ie effects o f the radiative heat transfer in  the energy balance of a PET 

threadline.

in  the present w ork, an  esqierimental approach has been applied to help 

develop an  understanding of the relationship betw een process param eters and 

ffnal fiber properties in  die m elt spinning process. E)q)erimental techniques 

w ere developed for the on-line determ ination of fiber diam eter, tem perature, 

velocity, birefringence, density, and fiber crystallinity. H eretofore, the fiber 

density has never been m easured on-line. The fiber density w as determ ined by 

m aking a novel used  of the continuity equation. The continuity equation was 

used, in  conjunction w ith  die m easured fiber diam eter, velocity, and polymer 

m ass flow rate, to  yield  fiber density a t any point along die threadline.



In chapter 2, the on-line experim ental m easurem ents m ade using 

polypropylene are presented. In chapter 3, the sim ilar on-line m easurem ents 

using polyethylene terephüialate are presented.

1.1.2 M elt B low ing

M elt blow ing is an im portant, one-step process for converting polym ers 

into nonw oven webs. M elt blow ing consists of a continuous extrusion of 

m olten polym er through a  sm all diam eter capillary (typically 250 - 600 |im ). 

The m olten polym er stream  exiting this capillary is h it by a h igh  velocity hot 

air je t em anating from  the region surrounding the capillary; see Figure 1.2. 

The air je t applies a  forw arding force on the polym er stream . This force 

rapidly attenuates the polym er stream  from  die initial capillary diam eter to a 

final fiber diam eter w hich can be as low  as 0.1 - 0.5 pm.

Even though the schematic in  Figure 1.2 shows only one polym er 

capillary, an  actucd m elt blow ing die consists of closely spaced array of such 

capillaries. The fiber com ing out of these capillaries is laid dow n on a m oving 

porous conveyor belt w hich is located about 1.0 - 1.5 m  below  the die. The 

laid-dow n fiber form s an  alm ost coherent fibrous web ow ing to  the random  

nature of fiber laydow n and interlocking of fibers com ing ou t of different 

spinning holes. The basis w eight of web (weight per un it area of the web) is



controlled by adjusting the polym er flow rate per spinning hole and the speed 

of the conveyor belt.

The invention of m elt blow ing process is accredited to V. A. W ente 

(1954,1956) at the N aval Research Laboratory in  1950's. W ente's w ork w as in  

response to the need for extrem ely fine fibers for filters on aircraft used for 

m onitoring radiation fiom  U.S. and R ussian nuclear tests (M ansfield, 1979). 

However, the com m ercialization of the m elt blow ing process d id  no t occur 

until the 1970% w hen Exxon Corporation, after extensive research, m ade the 

process econom ically viable. M ost manufi&cturers of melt-blown products use 

Exxon technology (Shambaugh, 1988).

M elt blow ing process produces extrem ely fine fibers fliat are very 

diffîcult to  produce by the conventional spinning m ethods. As described by 

Sham baugh (1988), in  order to produce fiber of com parable diam eter (0.1 - 0.5 

pm) via the conventional m elt spinning route (for the same polym er flow rate 

per spinning hole), the w ind-up speed w ould  have to be in excess of 30,000 

m /m in . No m echanical w inder is fast enough to take-up the fiber a t th is speed. 

M oreover, under some conditions, the diam eter of melt-blown fibers can be 

sm aller than the w avelength of visible ligh t (0.4 - 0.7 mm); fibers of fliis 

fineness are nearly  invisible to the naked eye or even to a conventional optical 

microscope. The applications of m elt-blow n fibers take advantage of the 

extrem e fineness of these fibers. The nonw oven webs produced by m elt



blow ing make excellent filters, have h igh  insulating value, have high cover per 

u n it w eight, and have high surhice area per u n it w eight (Shambaugh, 1988).

One drawback of m elt-blown fibers is the low  individual filam ent 

strength. Because of this, m elt blow n w ebs are often used along w ith a backing 

support of webs made by another processes. For example, an SMS 

(spunbonded - m elt blow n - spunbonded) sheet, w hich is used for m aking 

protective apparel, is a m elt blow n w eb sandw iched between two ^u n b o n d ed  

webs. Spunbonded fibers are thicker and stronger than m elt blow n fibers 

(M ark e t al., 1987). If m elt blow n fibers could be m ade stronger, then the fibers 

could be m uch more broadly used.

Because of die commercial im portance of m elt blowing, and in an  

attem pt to overcome this problem  (low  filam ent strength), m elt blowing has 

been a subject of constant scientific interest. As w ith melt spinning, die tw o 

parallel approaches followed by  researchers are the (a) experim ental 

m easurem ents, and (b) m adiem atical m odeling. Chapter 4 gives a detailed 

literature review  of experim ental m easurem ents m ade by other researchers, 

and chapter 5 describes the m athem atical m odeling efforts.

In the present study, experim ental on-line techniques were developed to 

m easure fiber diam eter and tem perature during  the melt blowing process. 

Heretofore, fiber tem perature has never been m easured on-line during m elt 

blowing. The experimentally determ ined fiber diam eters and tem peratures



w ere com pared against a mathematical m odel for m elt blow ing. Chapter 4 

presents these results.

As an  attem pt to help improve the theoretical understanding of the m elt 

blow ing process, a generalized, 3-dim ensional, m athem atical m odel w as 

developed. This m odel forms a logical extension of die 2-dimensional 

m adiem atical m odel developed by Rao and Sham baugh (1993), and the m odel 

considers fiber m otion in  a 3-dimensional space. This m odel and  the results 

p redicted  by it are presented in chapter 5.

1 .1 3  O riented C rystallization D uring F iber Form ing Processes

M olecular orientation, caused due to threadline stress, has been known 

to considerably enhance the crystallization rate of polym ers during  the fiber 

form ing processes. The quantitative aspects of this enhancem ent are not 

com pletely understood. The problem  has been faced continuously by 

researchers attem pting to develop m athem atical m odels of these processes. A 

detailed  literature review  is included in  chapter 6.

In  this study, a technique w as developed to quantitatively evaluate the 

enhancem ent of crystallization rate by orientation during the m elt spinning 

process. This technique makes use of the on-line m easurem ents m ade during 

m elt spinning. The technique and results are presented in chapter 6.
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CHAPTER2

ON-LINE DETERMINATION OF DENSITY AND  

CRYSTALLINITY DURING MELT SPINNING

(This chapter was published as Ae journal article: Bansal, V.; Shaxnbau^ R. L. On-line 
Determination of Densi^ and Ctyshdlinity During Melt firm ing. Polymer Engineering and 
Science, 1996,36(22), 2785-2798.)

ABSTRACT

The densi^ and crystaHini^ of pdÿprc^lene fiber were measured on the mooing 
titreadline during Ae melt spinning process. Heretofore, ttueadline densities have never 
been measured online. These doisity measurements were acoorry fished by taking 
paralld, on-line measurements of fiber diameter, fiber velocity, pofymer mass flow rate, 
fiber temperature, artd fiber birefiir^enoe. Under certain qfinning conditions, a distinct 
rise in density occurs along ttie ttueadfine. This rise in densi^ corresponds well wifii file 
rise in cxystaUinity  ̂as measured by biréfringence.

2.1 INTRODUCTION

M elt spinning is the most common way of converting thermoplastic 

polymers into useful fiber forms. Because of the commercial importance of melt 

spinning, fiie process has been of great scientific interest Figure 2.1 shows a
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schematic of the melt spinning process. To obtain a better understanding of the 

process, researchers have taken both on-line and off-line measurements of structure 

development during m elt spinning. For example, Katayama, Amano, and 

Nakamura (1968) obtained on-line profiles for diameter, temperature, and 

bireficingence for polyediylene, polypropylene, and poly-l-butene. Ishizuka and 

f^>yama (1985) reported off-line x-ray measurements on quick-frozen threadlines 

of polypropylene. Matsui (1985), Lu and Spruiell (1987), and others (Zieminski; 

1986, Spruiell and White; 1975, Dees and Spruiell; 1974) measured on-line profiles 

for diameter, temperature, and birefiringenoe for a  variety^ of experimental 

conditions.

This work involves an onrline technique for measurement of density^ on a 

moving polypropylene threadline. Apparently, die m ost similar previous attem pt 

at measuring fiireadline density was an off-line scheme first developed by Kase 

and Matsuo (1965). These researchers measured the density profiles in  die melt 

spinning of a copolymer of 90% poly(ediylene terephthalate) and 10% 

poly(ediylene isophdialate). Their procedure involved the trapping and cutting of 

portions of a running threadline w ith a double-knife cutter. The density 

measurements were dien perform ed off-line on these trapped filaments.

In our work the on-line density w as determined w idi the use of the continuity 

equation

p(T,Xc) = m  /  Av (1)
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where p = fiber density

T = fiber tem perature 

Xc= fiber aystallin ity  

m  = polymer m ass flowrate 

A = cross-sectional area of fiber 

V = fiber velocity

Except for m, all these param eters vary along the threadline. The m , which equals 

die mass rate exiting the spinneret, is constant along die dueadline.

2.2 EXPERIMENTAL EQUIPM ENT AND DETAILS

The experiments w ere carried out w ith a single hole spinneret The 

spinneret capillary had an inside diam eter of 0.407 mm and a  length of 2.97 mm. 

The polymer was melted and pressurized w ith a Brabender extruder. The 

extruder barrel had a 19.0 mm  (0.75 in.) diameter and a 381 m m  (15 in) length. The 

single-flight extruder screw had a  19.0 mm  (0.75 in) pitch and a flight depth that 

decreased uniformly firom 3.81 m m  (0.150 in) at the feed end to 127 m m  (0.050 in) 

a t the discharge end. After exiting die extruder, the polymer w as fed to a modified 

Zenith pum p which in turn  fed die spinneret assembly. Refer to Tyagi and 

Shambaugh (1995) for details on the polymer feed equipm ent The spiimeret
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tem perature (polymer exit temperature) w as 225 ° C  for all experiments.

Figure 2.1 shows a diagram of the spinning equipm ent For take-up speeds of 

1500 m /m in  or less, a 152 cm (6 inch) diam eter mechanical w indup roll w as used. 

For speeds up to 5300 m /m in, an air-powered venturi draw  device was used. A 

m etal guide ring was used to stabilize the fiber iq>stream of the take-up roll (or 

venturi). A t appropriate times during fiie experiments, various pieces of 

equipm ent were mounted adjacent to the threadline to measure fiber properties 

along file threadline. As an example, H gure 1 shows an infrared camera. Other 

equipm ent items fiiat were m ounted along the threadline include (a) a high speed 

flash photography system, (b) a laser Doppler velodm eter, and (c) a birefringence 

microscope.

The polymer used was 75 MFR (m elt flow rate) Fina polypropylene wifii 

Mw=122,500.

2L2.1 M easurem ent of "A"

The fiber cross-sectional area "A" w as determ ined by measuring the fiber 

diam eter "d" along the threadline. W ith file assumption that the fiber is round, 

fiien A = mdV4. The fiber diam eter w as measured via high speed flash 

photography. The camera used w as a Canon AE-1 SLR wifii a Tokina 90 mm 

m acro lens. A Sunpak Auto 622 flash provided fiie illumination, and Kodak
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TMAX film (ASA 400) was used. The camera and flash were mounted on a 

traverse system that permitted measurements at m any positions along the 

threadline.

To provide an accurate reference standard, a fine w ire of known diam eter (211 

microns) w as photographed simultaneously w ith die spinline. The fiber diam eter 

was m easured by viewing the negatives under a Nikon microscope w ith a 

micrometer eyepiece.

2^ .2  M easurem ent of 'V

On-line v e lo d ^  measurements were made w ith a one-dimensional, 

frequency shift, fiber optic LDV system. T5I Incorporated (St Paul, MN) 

constructed die bulk of diis system. A backscatter probe was used; diis probe had 

a w orking distance of 60 mm. The laser w as a 15 mW He-Ne laser, and a Bragg 

cell provided frecjuency shifting for m easuring flow reversals. The fiber optic 

probe w as mounted on a Velmex 3-D traverse system diat perm itted x,y and z 

motions in  0.01 mm increments. Further details of the laser ecpiipment and 

technicpies are given in W u and Siam baugh (1992).

2.23 M easurem ent of "m”

The mass flowrate was determined by collecting and weighing a cpiantiy of
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fiber over a several m inute tim e interval.

2.2.4 M easurem ent of "T"

On-line fiber tem perature profiles were measured w ith an Infram etrics 

model 600 infrared camera equipped w ith a 3X closeup lens. The field of view  

(FOV) of ttie lens w as 8.25 cm by  5.70 cm a t a working distance of 55 cm. Except at 

target positions near the spinneret (where the heat from the spinneret w as a 

problem), the tem perature m easurem ents were quite reproducible, and the 

tem perature accuracy was ±2% .

The infrared camera works by  m easuring the radiation em itted by  an  object 

and correlating this energy to ttie object's temperature via the Stefon-Boltzmann 

law  (Halliday and Resnick, 1978). To use the Stefan-Boltzmann law , knowledge of 

the emittance of the object ("target emittance") is required. In our studies the 

emittance of the fiber was found by  a simple calibration experiment. A  fine, 

exposed junction tiiermocouple probe was placed directly below and w ithin 0.5 cm 

of ttie spinneret as the polym er w as being extruded (no w indup or venturi device 

w as used for ttiis test). The hot polym er contacted the thermocouple, and w ithin 1 

second the ttiermocouple readout reached a peak temperature; the tem perature 

readout then fell off. The therm ocouple temperature was correlated w ith  the 

tem perature of the polym er m easured by the infirared camera system. A target
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em ittance of 0.62 w as determ ined via this procedure.

M easuring the tem perature of small objects is complicated by limitations in 

the spatial resolution of die infrared camera. Because our fibers w ere small relative 

to die field of view of the cam era lens, spatial resolution w as considered. The 

apparent tem perature of the fiber as recorded by the cam era can be corrected w ith 

die following form ula (M odel 600L Operator's M anual, 1989):

T a p p a m it — (S R F )T o b je e t + (1 "  > ^ m ‘') T i io ounding  (2)

w here

Tappannt -  apparent tem perature of die fiber as recorded by  die camera

Tobjcct = actual tem perature of die fiber

Twnoumdmg = am bient tem perature

SRF = slit response factor (a function of slit w idth)

A  curve called a slit response function (SRF) w as provided by die m anufacturer 

(M odel 600L O perator's M anual, 1989) of our camera. This curve gives SRF as a 

function of die slit w idth angle, w here

slit w id th  Z  (radians) = —  P)lens - fiber distance

The fiber diam eters used in  equation 3 w ere determ ined, as discussed previously, 

by  high speed photography.
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2^.5  M easurem ent of "Xc"

The on-line ay sta llin i^  of 6 e  fiber w as estimated via birefringence 

m easurem ents. The fiber birefringence w as m easured with a Nikon polarizing 

microscope equipped w ith a compensator. Two compensators were used: a Leitz 

first-order red  plate w as used for low retardations, and a quartz wedge w as used 

for higher retardations. The color of die fiber as it appeared titro u ^  tiie polarizing 

microscope w as compared w ith a standard in terference chart (Phillips, 1971) and 

die value of retardation w as read frcnn dus ch a rt The birefringence w as then 

determ ined by die sim ple formula

retardationbirefrm gence = — -----------  (4)
diam eter

The microscope w as m ounted sideways o n  a traversing system; a small metal 

guide kept the fiber in  die microscope's field  of view. Lu and Spruiell (1987) 

describe a  technique of tiiis type.

The crystallinity is related to die m easured birefringence via die Stein equation 

(1956)

At = XcAc + (1-X c)A . (5)

where
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At = total (measured) birefringence 

Xc = crystallini^ fraction 

Ac = birefingence of die crystalline region 

Ac — birefringence of the am orphous region

The Ac and A. terms in  eq. 5 are related to intrinsic birefringence constants 

via die relations (1965)

A c =  fcAc** (6 )

and

Ac = (7)

where

fc -  crystalline orientation fector 

Ac° = intrinsic crystalline birehm gence 

& = amorphous orientation factor 

Ac° = intrinsic am orphous birefringence

In their study of polyediylene, Stein and Norris (1956) m ade die observation 

that the crystalline contribution to birefringence varies in approxim ately the same 

w ay as does the total (measured) birehingence and accounts for about tw o-thirds 

of die to ta l Samuels (1965) show ed sim ilar results for polypropylene. Thus, die 

XcAc term  in eq. 5 increases proportionately to increases in  At.
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For polypropylene m elt spinning, Shimizu e t al. (1985) determ ined that fc 

varied less d ian  10% for w indup speeds between 2000 and 6000 m /m in . Since 

is a constant, tiien, from  eq. 6, ^  is nearly constant for spinning speeds of 2000- 

6000 m /m in . So, Xc is the only significant variable in the XcAe term  in  eq. 5 (for 

spinning speeds of 2000-6000 m /m in), and changes in  At are proportional to 

changes in  Xc The speed range of 2000-6000 m /m in  covers the bulk  of the runs in 

fills study.

23 RESULTS A N D  DISCUSSION

M easurem ents of fiber diameter, fiber velocity, fiber tem perature, and fiber 

birefringence w ere m ade at take-up speeds of 500 to 5300 m /m in  and a t polymer 

throughputs of 0.400,1.00 and 2.00 g/m in.

2.3.1 R esu lts fo r Low Polym er T hroughput

For a  polym er throughput of 0.400 g /m in . Figure 2.2 shows fiber diameter 

as a function of position below the spinneret Results for takeup speeds of 500-4500 

m /m in  are show n. A t 4500 m /m in, fiie fiber reaches its final diam eter at about 

x=25 cm, and  fiie diam eter is constant beyond this p o in t However, as takeup 

speed goes dow n, fiie final fiber diameter is reached later (at higher x) along the 

threadline.
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Figure 2 3  shows fiber velocity as a function, of takeup speed. For the 4500 

m /m in  takeup speed, a constant final velocity is reached at about x—25 cm; the 

final velocity is reached a t higgler x  for low er takeup speeds. As expected, a 

constant fiber velocity correlates w ith  a  constant fiber diam eter (compare Fig. 2 3  

wifii Hg. 22).

Figure 2.4 shows fiber tem perature as a function of takeup speed. The 

results for fiie different fiber speeds are alm ost coincident. M odels for fiber 

spinning have predicted fiiis behavior; see Uyttendaele and Sham baugh (1990). 

The higher spinning speeds produce finer diameters. These finer diam eters cool a t 

a  faster rate. However, fiiis m ore rapid cooling rate is balanced by fiie fact fiiat 

fiiese finer fibers are exposed to the am bient air for less tim e (i.e., a t higher 

spinning speeds it takes less tim e for a fiber elem ent to go fiom  the spinneret to a 

given position along the fiireadline).

As described in fiie Introduction, the continuity equation can be used to 

calculate the fiber density if the polym er fiiroughput and the fiber diam eter and 

velocity are known. Figure 2 3  shows fiie results of this calculation for a polym er 

fiirouglq)ut of 0.400 g/m in. For takeup speeds of 500-3500 m /m in , the density 

profiles are pretty  much the same. However, a t the 4000 m /m in  speed, fiie density 

is higgler for x>50 a n . An even m ore striking difference occurs at 4500 m /m in : fiie 

density profile is distinctly higher for x>25 a n .

Since density is a function of tem perature (and crystallinity), plotting
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threadline density as a function of tem perature is desirable. Figure 2.6 is a 

crossplot of Figures 2.4 and 23. Figure 2.6 clearly show s A at the higher takeup 

speeds (4000 and 4500 m /m in) produce higher densities A an  die lower speeds. 

The solid curve on  Fig. 2.6 is die d en si^  of polypropylene as given by Newman 

(1960). In  N ew m an's work, the specific volum e (density) o f polypropylene was 

determ ined after allowing several days for die sam ple to reach die desired 

tem perature. Thus, die polypropylene had time to crystallize; Newm an m easured 

final crystallinity levels of about 75%. O n Hg. 2.6, the densities resulting fiom  

higher takeup speeds (4000 and 4500 m /m in) approxim ate d ie density determined 

by Newman. Hence, the fiber spun at h iÿ i^  takeup speeds was probably 

crystalline, a conclusion supported by birefiingence m easurem ents (see the 

foUowmg discussion of Fig. 27).

Figure 2.7 shows birefiingence as a function of fiber speed. For die 

500m /m in ta k e i^  speed, die birefringence increases very litde for x>60 cm. Also, 

die birefiingence never rises beyond 0.015. The data for die 1500-3500 m /m in  

speeds show amilar behavior, except diat the final birefiingence increases as 

ta k e i^  speed increases. Much larger rises in  birefiingence are exhibited a t takeup 

speeds of 4000 an d  4500 m /m in. At these speeds, the birefiingence reaches 0.029 

and 0.031, respectively. These birefiingence values are sim ilar to die values found 

by Shimizu e t aL (1985) for polypropylene spinning. They m easured a maximum 

birefiingence of 0.022 for as spun fibers and 0.027 for annealed fibers.

26



H giire 2.7 corroborates w hat was found in  the previous graphs: something 

definitive is happening at spinning speeds of 4000 and 4500 m /m in . Also, the x- 

positions a t w hich fiiese changes occur com pare w ell fix>m graph-to-graph. Since 

high birefrmgence is related to h i ^  crystaU ini^, then the d e n â ^  changes shown 

in  H gure 2.6 are likely due to stress-induced crystallizatian along the threadline.

23 .2  R esults fo r M edium  Polym er T h roughpu t

H gure 2 8  shows the diameter profile a lo r^  the fiireadline for a polymer 

fiirou^ipu t of 1.00 g /m in . Results for spinning speeds of 500-5300 m /m in  are 

given. The 5300 m /m in  speed was the h i^ ie st speed possible wifii fiie equipm ent 

and ru n  conditians (4500 m /m m  was the h i^ ie s t possible speed a t a fiiro u ^ p u t of 

0.400 g /m in —fiie fiireadline was too fine and w eak at higher spinning speeds).

A t the h i t le r  spinning speeds the fiber diam eter appears to plateau. For 

example, for 5300 m /m in, not much change appears after x=50 cm. A t fiie lower 

spinning speeds, a plateau value has apparently not been reached at the final x 

value.

Figure 2 9  shows fiie v e lo d ^  profile for a polym er fiiroughput of 1.00 g/m in .

Velocity plateaus are apparent for spm ning speeds of 5300 and 4500 m /m in  — a 

result fiiat com pares well wifii the diam eter plateaus of Hg. 28 . For lower 

spinning speeds, the velodh'^ does not plateau. This fact also compares w ith the

27



diam eter results on Fig. 2.8.

Figure 2.10 shows Ae fiber tem perature as a function of position along fiie 

threadline. As is the case wifii fiie lower polymer fiiro u ^ p u t (Bg. 2.4), fiiere is 

little difference in  tem perature when fiie w in d t^  speed is increased. However, as 

a com parison of Fig. 2.10 w ith Hg. 2.4 shows, fiie tem perature at any position along 

the threadline is higgler for the h iÿ ier throughput. Thicker filam ents cool more 

slowly.

Fiber densf^r is plotted against threadline position in Fig. 2.11. Unlike the 

situation w ifii a  low er polymer throughput (Hg. 25), fiiere is no rap id  inoease m 

density for either fiie 4000 or 4500 m /m in  speeds. However, a t 5300 m /m in , the 

highest speed, fiiere is a rapid increase in  density'. As was suggested previously, 

fiiis rapid increase is undoubtedly due to crystallization. Also observe that, at any 

position along fiie threadline, fiie density of file uncrystallized (spun a t lower 

w indup speed) polym er is higher for fiie lower polymer fiiroughput rate (compare 

Fig. 2.11 w ifii Fig. 25). This is as it m ust be: fiie cooler filament is denser.

H g. 2.12 shows fiber density as a function of fiber tem perature. This form of 

p lo t shows that, for fiie uncrystallized polymer, fiiere is no difierence between fiie 

data of Hg. 2.12 and fiie data of Fig. 2.6. If the plateau (crystallized polymer) 

densities of Hgs. 2.6 and 212 are compared, fiie effect of tem perature on 

crystallized fiber density can be estimated. As ecpected, the plateau density is 

low est for fiie 530Qm/min takeup speed on Hg. 2 1 2
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Fig. 2-13 corroborates the results of previous graphs: by x=60 a n ,

crystallization has occurred along the threadline spun  at 5300 m /m in- Also, the 

fiber spun at 4500 m /xnin  show s a rapid rise in  birefiingence at large x values. In 

Fig. 2.13 die final (plateau) birefimgence value is 0.029, which corroborates die 

plateau birefiin gence values show n in  H g 2.7.

2.33 R esults fo r Large Polym er T hroughput

Experiments w ere ru n  for a large polymer throughput of 2.00 g /m in. For 

diis dirouglaput, H g. 2.14 show s fiber diameter as a  function of position for w indup 

speeds of 500-5300 m /m in . The fiber attenuation is much less rapid than a lower 

polymer throughputs. Even for die 5300 m /m in  speed, no diam eter plateau is 

reached (compare R gs. 2 2  and 28). This lack of a plateau is m irrored in Fig. 215, 

which shows the conesponding fiber v e lo d ^  as a function of position.

Fig. 216 show s die fiber temperature as a function of position. There is a b it 

more data scatter d ian diere is on either Hg. 2 4  or Fig. 210. However, d iœ  is still 

no distinguishable difference in  die fiber tem perature profiles at di^erent w indup 

speeds. Because thicker filaments cool more slowly, die tem perature profile is 

higher in Hg. 216  than  the profile in eidier Fig. 2 4  o r Fig. 210.

Hg. 217  ^ low s die fiber densi^  as a function of position. The lack of any 

sudden jum ps in  any of the density values im plies that crystallization is not
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occurring a t any w indup speed. As ©cpected, the density at any position is low er 

dian the (uncrystallized) density a t the same position at a lower polym er 

diroughput: see Figs. 2 5  and 2.11.

A  p lo t o f fiber d en si^  versus fiber tem perature is given in Hg. 2.18. These 

data corroborate die trends ed iib ited  by  the uncrystallized fiber in Rgs. 2.6 and 

2.12.

Finally, Rg. 2.19 shows the bire fringence of fibers spun at a 200 g /m in  

polym er d iro u ^ p u t There is som e rise in bireficingence along the threadline, 

particularly for die higher spinning speeds. However, the level of birefringence 

indicative of a crystallized dvreadline (-0.030) is never reached; compare R gs. 2.7 

and 2.13.

23 .4  E rror A nalysis

Table 21  shows die m axim um  standard deviations in die diameter, veloci^ , 

tem perature and birefringence for a polym er diroughput of 1.00 g /m in . (Results 

for 0.400 and 200 g /m in  are essentially the same). A t every measuring po in t along 

die threadline the experimental measurem ents were repeated four times. These 

m easurem ents w ere used to find a m ean and a standard deviation a t each 

m easuring point. The m aximum standard deviation found along ead i profile is 

listed in  Table 21 . The x-position a t w hich die maximum occurred is also listed.

30



The last column in Table 2.1 lists die maximum standard deviation in the 

density. Since diis d en si^  was calculated horn eq. 1, die standard deviation was 

determ ined w idi a  propagation of error analysis. Because none of the measured 

variables have large standard deviations, the standard deviation in the calculated 

d en si^  is quite sm all — a  fortunate result

23.5  C om m ents on  F iber D iam eters

There are several ways available to determ ine die final (windup) fiber 

diam eter in  our experiments. These ways are as follows:

(1) The fiber diam eter can be determined from die last (nearest to the takeup) 

hi^t-speed photograph.

(2) The fiber diam eter can be calculated by using die last velocity measurement 

taken w idi the laser Doppler velodmeter. The continu!^ equation is used for diis 

calculation.

(3) The fiber diam eter can be calculated firom die w indup speed (determined 

w ith a digital stroboscope) and the continui^ equatioru

(4) The fiber diam eter can be measured directly fiom  the collected fiber.

For die 0.400 g /m in  polymer throughput. Table 2.2 lists the fiber diameters 

calculated fixim these various techniques. A  room  tem perature density of 0.895 

g/cm^ w as assum ed for use in  die continuity equatioru Observe that the diameters
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are all very close: A e different experimental techniques produced comparable 

results.

2.4 CONCLUSIONS

A n onrline technique for m easuring foe density of a m oving threadline has 

been developed. A t high spinning speeds and low throughput/hole, the fiber 

d e n s i^  increases to high values indicative of crystallization.
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2.5 NOM ENCLATURE

A -  cxoss-sectional a iea  of fiber, cm^ 

fa = am orphous orientation, factor 

fc = crystalline orientation factor

/= distance firom the spinneret to the guide ring (see Hg. 1), cm 

m  = polym er m ass throughput, g /m in

p = distance from  tiie guide ring to the w indup or venturi device (see Fig. 1), cm 

SRF = slit response factor (see eq. 2)

T = fiber tem perature, ®C

Tappawnt = apparent tem perature of fiber (see eq. 2), °C 

TobiKt = actual tem perature of fiber (see eq. 2), °C 

Tamounding = am bient tem perature (see eq. 2), °C 

V = fiber velocity, m /s  

Xc = fiber crystallinity

X = position cdong tiie fiber (x=0 at the spinneret), cm 

Greek Letters

Aa = birefringence of the am orphous region 

Ac -  birefringence of the crystalline region 

At = total (m easured) birefringence 

Aa° = intrinsic am orphous birefiingence
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Ac” = intrinsic crystalline bireficingence 

p = fiber density, g/cm ?
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ta k e -u p
v e lo c i ty
(m/min)

m ax. s t d .  
d e v . i n  
d ia m e te r  
(%)

mêuc. s t d .  
d e v . in  
v e lo c i ty  
(%)

max. s t d .  
d e v . in  
tem p.
(%)

m ax. s t d .  
d e v . i n  
b i r e f r i . 
(%)

m a x .s td . 1 
d e v . in  I 
d e n s i ty  (%) 1

500 1 . 4 ( 8 2 . 5 ) 0 . 4 ( 7 4 . 5 ) 5 . 1 ( 7 1 . 0 ) 4 . 6 ( 8 5 . 0 ) 1 . 9 ( 7 1 . 0 )  1

1500 1 . 5 ( 8 2 . 5 ) 0 . 4 ( 7 7 . 5 ) 5 . 6 ( 7 5 . 0 ) 4 . 1 ( 8 1 . 3 ) 2 . 7 ( 7 5 . 0 )  1

2500 1 . 6 ( 7 7 . 5 ) 0 . 5 ( 8 3 . 5 ) 5 . 9 ( 7 9 . 0 ) 3 . 8 ( 6 9 . 0 ) 2 . 6 ( 7 5 . 0 )  1

3000 1 . 5 ( 8 5 . 0 ) 0 . 4 ( 7 4 . 5 ) 6 . 4 ( 7 9 . 0 ) 5 . 7 ( 8 1 . 3 ) 3 . 2 ( 7 5 . 0 )

3500 1 . 9 ( 8 7 . 5 ) 0 . 6 ( 8 0 . 5 ) 6 . 8 ( 7 5 . 0 ) 5 . 3 ( 1 0 0 . 3 ) 2 . 8 ( 7 5 . 0 )  1

4000 1 . 9 ( 8 2 . 5 ) 0 . 5 ( 8 0 . 5 ) 6 . 3 ( 7 9 . 0 ) 6 . 1 ( 1 0 8 . 0 ) 2 . 9 ( 7 9 . 0 )  1

4500 2 . 3 ( 8 2 . 5 ) 0 . 7 ( 9 8 . 5 ) 7 . 4 ( 7 9 . 0 ) 5 . 2 ( 8 5 . 0 ) 2 . 5 ( 7 9 . 0 )  j
5300 2 . 0 ( 8 0 . 0 ) 1 . 0 ( 8 9 . 5 ) 7 . 1 ( 7 1 . 0 ) 6 . 4 ( 8 8 . 9 ) 3 . 4 ( 7 5 . 0 )  1

Table 2 .1  The m aximum standard deviation in the profiles of the diam eter, 
velocity, tem perature, birefringence, and density*. The num bers in  parenthesis are 
die distances in  cm  from  the spinneret a t which these maximums occur. For diis 
table, the polym er throughput was l.OOg/min, and the standard deviaticm of diis 
throughput w as 2.1%.
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ta k e -u p
s p e e d

(m /m in)

d ia m e te r  1 
(m ic r o n s  )

d ia m e te r  2 
(m ic r o n s )

d ia m e te r  3 
(m ic r o n s )

d ia m e t e r  4 
(m ic r o n s  )

500 3 4 . 2 3 3 . 7 3 4 . 3 3 3 . 9

1500 1 9 . 7 1 9 . 5 2 0 . 0 1 9 . 6

2500 1 5 . 2 1 5 . 1 1 5 . 4 -

3000 1 4 . 0 1 3 . 8 1 4 . 1 -

3500 1 2 . 9 1 2 . 8 1 2 . 9 -

4000 1 2 . 0 1 1 . 9 1 2 . 0 -

4500 1 1 . 3 1 1 . 2 1 1 . 2 -

Table 2 .2  Com parison of 6 e  final fiber diam eters determ ined by four d i^eren t
methods. The polym er d u o u ^ ip u t w as 0.400g/min. The four diameter 
techniques w ere as follows:

(1) Diam eter 1 w as determ ined fix>m die lowest (x=873cm) high speed 
photograph of die threadline.

(2) Diam eter 2 w as determ ined hom  an LD V measurement of fiber velocity a t a 
position 3 cm above die take-up p o in t A fiber density of 0.895g/cm^ w as 
assumed.

(3) Diam eter 3 w as determ ined fiom  ofi-line examination of die collected fibers.
(4) Diam eter 4 w as determ ined fiom  tachometer (stroboscopic) m easurem ent of 

the speed of die w indup roll. A fiber d en si^  of 0.895g/cm3 w as assumed.

38



Molten Polymer
i

Infrared
Camera

Guide Ring T

Take-up
Roll

Figure 2.1  The melt spinning apparatus w ith  an infrared camera. A mechanical
take-up roll was used for spinning speeds of 500 and 1500 m /m in . For higher 
spinning speeds, die roll w as replaced w idi a venturi draw -dow n device (not 
show n in  figu re). W idi die mechanical roll, t  = 132 cm and p  = 203 cm. W ith the 
venturi device,/=  120 cm and p  = 10.4 cm.
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CHAPTERS

ON-LINE DENSITY AND  CRYSTALLINITY OF 

POLYETHYLENE TEREPHTHALATE DURING MELT

SPINNING

(This chapter has been submitted to a journal as: Bansal, V.; Shambaugh, R. L. On
line Density and Crystallinity of Polyethylene Terephthalate During Melt Spinning. 
Polymer Engineering and Science.)

ABSTRACT

The density and crystallinity of polyester fiber were measured on the moving 
threadline during the melt spinning process. The densi^ was calculated by 
applying the continui^ equation at points along the length of the threadline. 
Expâimental inputs to the equation included parallel, on-line measurements 
of fiber diameter, fiber velocity, polymer mass fiowrate, fiber temperature, and 
fiber birefringence. When spinning speeds exceeded 4500 m /m in, a distinct 
rise in density occurred along the threadline. This rise corresponded with the 
rise in birefringence.

3.1 INTRODUCTION

M elt spinning is a com mercially im portant w ay of form ing fibers from  

therm oplastic polym ers. As sum m arized by  Ludew ig (1971), polyester fibers
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inanuhictured via m elt spinning find extensive use in  [a] apparel textiles and 

household cloth (e.g., outer wear, sports w ear, protective clothing, sewing 

thread, and household linen), [b] dom estic textiles (e g., curtains, draperies, 

pillows, and upholstery), and [c] industrial textiles (e.g., sails, sheets, sacks, 

bags, filters, hoses, conveyer belts, ropes, nets, and insulating materials). 

Consequently, ttie developm ent of fiber structure during  m elt spinning has 

been a subject of great scientific interest. See Z iabidd  (1976) and Ziabicki and 

Kawai (1985) for sum m aries of past work.

In a recent paper (Bansal and Shambaugh, 1996), an on-line technique 

for the déterm ination of density and crystallinity during  the m elt spinning of 

polypropylene w as presented. In the present w ork, this technique has been 

applied to PET (polyethylene terephthalate).

Prior to  Bansal and Sham baugh's w ork, an  ofi-line scheme was 

developed by  Kase and Matsuo (1965) for m easuring Üueadline density and 

crystallinity. These researchers m easured the density profiles in the m elt 

spinning of a copolym er of 90% polyethylene terephthalate and 10% 

polyethylene isophthalate. Their procedure involved the trapping and cutting 

of portions of running fiireadline w ith a double-knife cutter. The density 

m easurem ents w ere then perform ed off-line on  these trapped filaments. In a 

m odification of this procedure, Vassilatos e t al. (1985) trapped PET filam ents 

w ith two m etallic blocks tha t were cooled to -170 ®C.
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In our w ork, the on-line density was determ ined w ith the use of the 

continuity equation

(1)

w here

p = fiber density 

T = fiber tem perature 

Xc = fiber crystallinity 

m  = polym er m ass fiowrate 

A = cross-sectional area of fiber 

V = fiber velocity

Except for polym er mass fiowrate m, all these param eters vary along fiie 

threadline. The polym er m ass fiowrate m  is constant along fiie threadline.

3.2 EXPERIMENTAL EQUIPMENT AND DETAILS

The experim ents were carried out w ith a  single hole spinneret. The 

spinneret capillary had  an inside diameter of 0.407 m m  and a length of 4.30 

mm. The polym er w as m elted and pressurized w ith  a Brabender extruder. 

Refer to Bansal and  Shambaugh (1996) for details on the extruder and Tyagi 

and S h am b au ^  (1995) for details on fiie polym er feed equipm ent. The 

spinneret tem perature w as 310 **0 for all the experim ents.
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Figure 3.1 show s a diagram  of the spinning equipm ent. For a take-up 

speed of 1500 m /m in , a 15.2 cm (6 inch) diam eter mechanical w indup roll was 

used. For speeds of 2500-5900 m /m in , an «dr-powered venturi d raw  device 

was used. A m etal gu ide ring  w as used to stabilize the fiber upstream  of the 

take-up roll (or the venturi). A t appropriate times during the experim ents, 

various pieces of equipm ent w ere m ounted adjacent to the threadline to 

measure fiber properties along the threadline. As an exam ple. Figure 3.1 

shows an infrared cam era. O ther equipm ent items that w ere m ounted along 

the threadline included (a) a  h igh speed flash photography system , (b) a  laser 

Doppler velodm eter, and  (c) a birefringence (polarizing) microscope.

The polym er used  w as D uPont Dacron^ polyethylene terephthalate w idi 

a h ti of 18,000, an  in trinsic viscosity of 0.64 (Frankfort and lüiox, 1979; 1980), 

and 0.37% by w eight TiQz. For all the experiments, the polym er resin was 

dried in a vacuum  oven a t 90 **C for 28 hours and subsequently stored in  a silica 

gel desiccator to  prevent hydrolysis on melting. Since füilb and Izard  (1949, 

part 2) determ ined th a t Üie m inim um  tem perature for crystallization of 

polyethylene terephthalate is betw een 95.4 “C and 993 ®C, dry ing  a t 90 ®C 

avoided crystallization.

Detailed descriptions of the e)q>erimental techniques used for 

measurem ent of the cross-sectional area A, fiber velocity v, m ass fiow rate m , 

fiber tem perature T, fiber birefiingence, and fiber crystallinity Xc are included
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in  Bansal and Sham baugh (1996). t i  summ ary, (a) the cross-sectional area A 

w as determ ined from Üie on-line m easurem ent of fiber diam eter via h igh  speed 

flash photography, (b) the fiber velocity v  w as m easured w ith  the aid of laser 

D oppler velodm etry (LDV), (c) the mass fiowrate m  w as m easured by 

collecting and w eighing the polym er exiting the capillary for a know n tim e, (d) 

the fiber tem perature T  w as m easured w ith an infirared cam era, (e) the fiber 

birefringence w as m easured w ith  a  polarizing microscope, and (f) the fiber 

crystallinity Xc w as estim ated from  the experim entally determ ined fiber 

density using a m ixing rule.

An additional param eter m easured in  the ecperim ents w ifii PET w as fiie 

stress at take-up. The take-up force w as m easured using a Check-line^ DTM 

digital tensiometer m ade by  Electrom atic Equipm ent Co., Inc., N ew  York. The 

take-up stress w as fiien calculated by  dividing this force by  the fiber cross- 

sectional area determ ined from  the off-line m easurem ents o f the fiber diam eter.

3 3  RESULTS AND D ISCU SSIO N

M easurements of fiber diam eter, fiber velocity, fiber tem perature, fiber 

birefiingence, and take-up stress w ere m ade at take-up speeds of 1500 to 5900 

m /m in  and at polym er fiuroughputs of 0.800, 1.50 and 3.00 g /m in . Table 3.1
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lists the experim ental conditions studied and the corresponding off-line fiber 

birefringences and fiber diameters.

33 .1  R esults fo r Low Polymer T hroughput

Figure 3 3  shows fiber diam eter as a function of fiie distance from  the 

spirm eret for a polym er fiiroughput of 0.800 g /m in . Results for take-up speeds 

of 1500-5900 m /m in  are shown. A t larger x, file diam eter profiles reach final 

"plateau" values. For the 5900 m /m in  speed, the diam eter profile is distinctly 

different from  the profiles at the other speeds. This high speed profile is 

sim ilar to  the profile for 4500 m /m in  for positions up to about x = 60 cm. A t 

this point, a secondary drop in  the diam eter starts. This secondary drop is 

indicative of "necking" in fiie fiireadline. A  plateau in  the diam eter profile 

begins a t about x = 80 cm. A sim ilar secondary drop in  fiie fiber diam eter for 

PET m elt spinning w as reported by Vassilatos e t al. (1985). They observed a 

secondary drop in  fiber diam eter at a distance of 90 cm from the spinneret a t a 

take-up speed of 5947 m /m in. A t a take-up speed of 5490 m /m in , they 

reported a secondary drop (in this case the secondary drop w as less visible 

than for the higher take-up speed) occurring a t a distance of 70 cm firom fiie 

spinneret.
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Figure 3.3 shows the fiber velocity as a function of take-up speed. Up to 

4500 m /m in , a higher speed results in the velocity plateauing closer to the 

spinneret. At the take-up speed of 5900 m /m in , die velocity profile is sim ilar 

to die profile a t 4500 m /m in  w hen x <60 cm. However, a t x = 60 cm there is a 

sharp rise in  the fiber v e lo d ^  corresponding to the "necking" of diam eter 

profile in  Figure 3.2. The velocity reaches a p lateau  around x = 80 cm.

The em issivi^ of the fiber was found to be 0.69 according to the 

calibration technique developed by Bansal and Sham baugh (1996). Figure 3.4 

show s the fiber tem perature profile as a function of position a t various take-up 

speeds. Fiber tem perature appears to be alm ost independent of the take-up 

speed. As pointed ou t by Bansal and Sham baugh (1996), the m odels for fiber 

spinning have predicted this behavior; see U yttendaele and Sham baugh (1990). 

The higher g in n in g  speeds produce finer diam eters, and these finer diam eters 

cool at a fiister rate. However, this more rap id  cooling rate is balanced by the 

tect d ia t these finer fibers are e>q>osed to the am bient air for less tim e (i.e., at 

higher spinning speeds it takes less time for a fiber elem ent to go hom  die 

spinneret to a given position along the threadline).

For Figure 3.4, the standard deviation (spread) of die tem perature data is 

about 9 for any position along the dueadline. This is about the same as that 

observed for polypropylene spun under sim ilar conditions (Bansal and 

Sham baugh, 1996).
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As described earlier, the continuity equation can be used to  calculate the 

fiber density from equation 1 if the polym er throughput, fiber velocity, and 

fiber diam eter are know n. Figure 3.5 shows a plot of density profiles 

calculated w ith equation 1. There is little difference in  d e n s i^  profiles a t take- 

up speeds of 1500, 2500, 3500, and 4500 m /m in . At 5900 m /m in , a  definite 

sharp jum p in  the density is seen at about x = 60 cm. Ziabicki (1976) reported 

that, because of the very low  kinetic crystallizability of PET, the  fibers 

produced at all spinning conditions - except above a critical take-up speed - are 

alm ost com pletely am orphous. H e determ ined this critical take-up speed to be 

around 2600 m /m in . H euvel and H uism an (1985), however, reported th a t 4500 

m /m in  is the critical take-up speed a t which higher crystallinities begin. The 

results of these previous research groups are quite sim ilar to our results.

Figure 3.6 is a  crossplot of Figures 3.4 and 3.5. This crossplot show s 

density versus tem perature a t different spinning speeds. The tw o solid  lines 

shown on the graph represent the density versus tem perature data for PET 

reported by Kolb and Izard (1949, parts 1 and 2). These researchers used 

dilatom etry w ith silicon oil to m easure the fiber densities at different 

tem peratures. Their technique involved weighing a polym er p lug  in a vacuum  

and in  silicon oil a t different tem peratures. They then used the buoyancy force 

equation to accurately determ ine the density. They reported tw o sets of
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density versus tem perature values; one se t is for am orphous PET, and the other 

set is for crystalline polym er.

W ith the m ixing rule of Shim izu e t al. (1985 a), the crystallinity level of 

die upper solid line in  Figure 3.6 can be determ ined. This mixing rule is

w here

p(T) = experim entally m easured density  a t any poin t along the 

Üireadline

ph(T) = density o f totally am orphous polym er

Pb(T) = d e n s i^  of totally crystalline polym er 

For Pi and pb at 20 ®C, H otter e t al. (1991) suggest using p i = 1.335 g/cm ^ and  p t 

= 1.455 g/cm^. Since Kolb and Izard  found that p  = 1.385 g/cm ^ for their 

"crystalline" polyester a t 20 then, from  equation 2, Xc = 42% for Kolb and 

Izard 's crystalline polyester. Thus die crystalline line in  Figure 3.6 corresponds 

to  a crystallinity level of 42%.

A t all the take-up speeds our density^ points lie between the am orphous 

and crystalline lines of Kolb and Izard. A t take-up speeds of 4500 m /m in  and 

below , density data  obtained in  the present study lie close to the am orphous 

line. This is indicative of a low  degree o f crystallinity. However, a t the take-up 

speed of 5900 m /m in , die density rises to  a value close to the 42% crystallinity
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line. The polym er crystallization rate is a function of tem perature and stress 

(Ziabicki, 1976). Since the tem perature history a t all take-up speeds is about 

tiie same (see Figure 3.4), the crystallization occurring a t 5900 m /m in is 

undoubtedly stress-induced (a higher take-up speed produces a higher 

threadline stress).

The mixing rule (equation 2) can be m odified to give the crystallinity 

corresponding to our m easurem ents of fiber density. Let P42%(T) be the density 

as a function of tem perature for the 42% crystalline polym er (i.e., the top solid

line in Figure 3.6). Then

r
Xc = P42%(T)-P.(T)J , P c(T )-p .(T ) J ^

The second factor on the rig^ t side equals 0.42. Hence, equation 3 can be 

sim plified to read

r P(T)-PaCr) 1
Xc = (0.42) 100% (4)

^ P 4 2 % (T )— P a ( T ) ^

W itii equation 4 and w itii Kolb and Izard 's data for P4Z%(T) and Pa(T), 

die crystallinity levels corresponding to die fiber densities in  Figure 3.6 were 

calculated. Figure 3.7 shows the results of diese calculations. A clear jump in 

percent crystallinity can be seen a t the h ip e s t take-up speed of 5900 m /m in. 

At 5900 m /m in , the crystallinity level reaches a  value of 31%. Commercially 

available Dacron^ polyestmr fibers m ade by D uPont have a  sim ilar crystallinity
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level of 38% (Nonwovens Industry Staff, 1997). Kawaguchi (1985) reported a 

PET crystallinity of 40% for fibers produced by high speed fiber spinning at 

6000 m /m in ; they reported a crystallinity of 33% for fibers produced by  the 

conventional two-step process. The typical tw o-step process they describe 

involves first spinning at a low er take-up speed of about 2500 m /m in  and then 

doing an  off-line draw ing of the fibers in  a post spinning step.

Figure 3.8 shows the fiber birefringence profiles a t different spinning 

speeds. A t higher spinning speeds, higher final fiber birefiingences are 

obtained. This is expected because the take-up stress increases in  the 

threadline at higher speeds. A t 5900 m /m in , a sharp jum p in  the birefringence 

starts around 62 cm, and a  plateau of birefringence is reached a t about 95 cm.

O ur work corroborates the w ork of Vassilatos e t al. (1985). They found 

that, for polyester spinning, the final birefringence rose from  0.04 to 0.16 as the 

spinning speed was increased firom 4000 to 6000 m /m in . M atsui (1985) 

m easured the birefringence as a function of position below  the spinneret 

during  polyester spinning. H e found that, at 6000 m /m in , the birefringence 

rose from  near zero to a plateau value of 0.11 at about x  = 110 cm. This 

behavior is quite sim ilar to our results. Off-line birefringence values can also 

be com pared to the on-line m easurem ents. Table 3.2 lists some off-line 

m easurem ents on some commercially available polyester fibers. These 

m easurem ents were taken w iüi die same polarizing m icroscope d iat w as used
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for the on-line birefringence m easurem ents. Also shown in  Table 3.2 are the 

birefringence values th a t Kawaguchi (1985) determ ined for PET produced from  

both (a) a high speed (6000 m /m in), one-step process, and (b) a  conventional 

two-step process.

33.2 R esults fo r M edium  Polym er T hroughput

Figure 3.9 show s a p lo t of fiber diam eter profiles a t vzurious take-up 

speeds and for a polym er m ass throughput of 1.50 g /m in . A t larger x, the 

diam eter profiles reach final "plateau" values. A t 5900 m /m in , the fiber 

diam eter profile is sim ilar to  fiiat a t 4500 m /m in . However, a t about x  = 65 cm, 

the diam eter drops som ew hat low er for the 5900 m /m in  speed. This behavior 

parallels w hat happened a t a  polym er mass throughput of 0.800 g /m in ; see 

Figure 3.2.

Figure 3.10 show s fiie fiber velocities as a function of x for a range of 

take-up speeds. A t the 5900 m /m in  take-up speed, the velocity profile is 

sim ilar to th a t a t 4500 m /m in . A t x  s  65 cm, how ever, a  sharp jum p in  velocity 

is seen, and the velocity reaches a  plateau at about x = 85 cm. This jum p in the 

fiber velocity a t 5900 m /m in  parallels the decrease in  diam eter that w as 

exhibited in  Figure 3.9.
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Figure 3.11 show s the fiber tem perature profiles a t d ifferent take-up 

speeds. As w ith  the low er polym er throughput of 0.800 g /m in  (see Figure 3.4), 

the fiber tem perature profiles are alm ost independent of die take-up speed. 

However, as a com parison o f Figure 3.11 w ith Figure 3.4 show s, the 

tem perature a t any position  along die threadline is higher for the higher 

throughput. Thicker filam ents cool m ore slowly.

Figure 3.12 show s a p lo t of density profiles calculated w idi the 

continuity^ equation. A t the take-up speeds of 1500, 2500, 3500, and 4500 

m /m in , the density  profiles are nearly coincident A t 5900 m /m in , a 

digression firom the od ier data  occurs w hen the density increases sharply  a t x = 

65 cm. Since the tem perature profiles are alm ost independent of take-up speed, 

such a jum p is undoubted ly  due to  crystallization in  the dueadline.

Figure 3.13 show s a crossplot of density versus tem perature a t difierent 

take-up speeds. The g raph  also show s the density versus tem perature data for 

PET reported by  Kolb and  Izard  (1949, parts 1 and 2). The data exhibit a trend 

sim ilar in  behavior to  d ia t show n a t the lower polym er d u o u ^ p u t of 0.800 

g /m in  (see Figure 3.6). A t the take-up speeds of 1500, 2500, 3500, and 4500 

m /m in , the density values lie dose  to die am orphous line. This beliavior is 

indicative of a low  degree of crystallinity. However, a t d ie take-up speed of 

5900 m /m in , the density  rises to  a value dose to the 42% crystallinity line.
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Figure 3.14 shows the fiber crystallinity profiles corresponding to the 

data in  Figure 3.13. The crystallinity values were calculated w ith  equation 4. 

As w ith  the 0.800 g /m in  polym er throughput, a clear jum p in  percent 

crystallinity can be seen at the take-up speed of 5900 m /m in . The crystallinity 

rises to  a  value of 33% for the 5900 m /m in  speed.

Figure 3.15 shows the birefringence profiles for different take-up speeds. 

A t 5900 m /m in , a sharp jum p in  birefiingence is seen a t x = 68 cm, and the 

birefringence reaches a plateau a t x  s  83 cm. The plateau value of birefringence 

is about 0.12, a value com parable to  the highest birefringence reached for 0.800 

g /m in  a t the same take-up speed (com pare Figure 3.8).

3 3 3  R esults for H igh Polym er T hroughpu t

Figure 3.16 shows fiie fiber diam eter profiles for a polym er throughput 

of 3.00 g /m in  at the take-up speeds of 1500 to 5900 m /m in . The fiber 

attenuation is much less rapid  fiian  a t low er polymer throughputs. Even at the 

5900 m /m in  speed, no diam eter p lateau  is reached (compare Figures 3.2 and 

3.9). Also, unlike the results a t 0.800 and 1.50 g /m in , fiiere is no apparent 

diam eter "necking" that takes place a t the 5900 m /m in  speed.

The lack of diam eter p lateaus is m irrored in Figure 3.17 w hich show s a 

p lo t of fiber velocity profiles a t various take-up speeds. It does appear.
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how ever, that, a t the take-up speed of 5900 m /m in , a plateau is just beginning 

to form  at about x = 95 cm.

Figure 3.18 shows the tem perature profiles a t different take-up speeds. 

As w ith  the low er polymer throughputs, fiiere does not seem to be any strong 

dependency of fiber tem perature on  take-up speed. However, the 

tem peratures a t any point along the duead line are  a  little higher than in  the 

case of low er polym er throughputs (0.800 and 1.50 g /m in). Since thicker 

filam ents lose heat more slowly, there is a  slow er rate of cooling for a  higher 

polym er throughput. A sim ilar behavior w as seen in  the case of polypropylene 

(Bansal and Shambaugh, 1996).

Figure 3.19 shows the fiber density^ profile. The lack of sharp jum ps at 

all take-up speeds indicates d iat no appreciable crystallization occurred, even 

a t d ie highest take-up speed.

As w idi die previous two polym er throughputs, a crossplot of density 

versus tem perature was made; see F igure 3.20. Even for the h ip e s t take-up 

speed, the density versus tem perature data  lie close to the am orphous line of 

Kolb and Izard.

Figure 3.21 shows the fiber crystallinity profiles d iat were calculated 

w id i equation 4. Unlike die results a t low er polym er flowrates, no jum ps in 

percent crystallinity level were seen a t any  of d ie take-up speeds. The average 

crystallinity w as about 15% for all w indup  speeds.
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Figure 3.22 shows the fiber birefringence profiles for various take-up 

speeds. As w ith  density, no sharp jum ps can be seen, and a  plateau of 

birefiingence is no t reached for any of the take-up speeds stud ied . There is 

som e rise in  birefringence along the threadline, particu larly  for die higher 

spinning speeds. How ever, the level of birefringence indicative of a 

crystallized threadline is never reached.

33.4 T ake-up S tress

Figure 3.23 show s a  p lo t of take-up stress as a function of take-up speed 

for the three d ifieren t polym er diroughputs of 0.800 g /m in , 1.50 g /m in , and

3.00 g /m in . U p to die take-up speed of 4500 m /m in , there is litde difference in 

the take-up stresses of the three polym er throughputs. H ow ever, a t die take-up 

speed of 5900 m /m in , the stresses at all polym er flow rates rise significandy. In 

addition, the stress for die 0.800 g /m in  fiow rate is substantially  higher than the 

stresses a t d ie low er flowrates. This is also apparent in  the birefringence 

profiles (Figures 3.8, 3.15, and 3.22) which show that a  h i ^ e r  birefringence is 

obtained for low er polym er throughputs at a given take-up speed. The m elt 

blow ing m athem atical m odel of Rao and Sham baugh (1993) predicts just such a 

result for threadline stresses. [Melt blowing is a polym er fiber process w hich is 

sim ilar in  principle to m elt spinning. A high velocity gas jet, instead of a take-
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up roll, provides the attenuating force in m elt blow ing (U yttendaele and 

Sham baugh, 1990).] A t a polypropylene polym er throughput of 0.25 g /m in , 

the stress predicted by  Rao and  Sham baugh for m elt blow ing is 5.7 x 10* Pa; a t

1.0 g /m in , the predicted stress is 1.2 x 10* Pa. For PET m elt spinning, Shimizu 

e t al. (1985 b) reported a sim ilar result from a m athem atical m odel. A t a 

polym er th ro u ^ p u t of 1.95 g /m in , they predicted a stress of 3.0 x 10* Pa; a t 

5.50 g /m in , they predicted a  stress o f 1.0 x 10® Pa.

George (1985) used a m odel to predict that the threadline stress in  PET 

m elt spinning ranges hrom 0.8 x 10^ Pa to 1.8 x 10  ̂Pa a t take-up speeds ranging 

from  3000 to 6000 m /m in . O ur m easured threadline stresses in  Figure 3.23 are 

com parable to those reported  by  George.

3.4 CONCLUSIONS

The do isity  of polyeüiylene terephthalate has been m easured on-line 

during  the m elt spinning process. The experim entally determ ined fiber 

densities w ere used to  calculate fiber crystallinities from  a m ixing rule. A t low 

polym er throughputs and  h igh  take-up speeds, evidence of crystallization was 

seen in  tfte threadline. The crystallization w as apparent in  bodi the m easured 

d e n s i^  profiles and the birefringence profiles.
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The results of this on-line e^erim en ta l study of fiber structure 

developm ent during  m elt spinning can be used to help optim ize the process 

conditions required for com mercial production of fibers w ith die desired final 

properties. For exam ple, the crystallinity versus tem perature profiles can be 

used to determ ine the location of cold quench jets that w ill result in  m aximum 

fiber crystallinity.
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3.5 NOMENCLATURE 

A  = Cioss-sectional area of fiber, m^.

e = Distance firom the spinneret to the guide ring  (see Fig. 1), cm. 

m  = Polym er m ass fiowrate, g /m in .

p  = Distance firom the guide ring to  die w indup o r venturi device (see Fig. 1), 

cm.

T = Fiber tem perature, “C.

V = Fiber velocity, m /sec.

Xc = Fiber crystallinity, %.

X = Position along the threadline (x = 0 at the spinneret), cm.

Greek Letters

p  = fiber density, g/cm^.

am orphous polym er density, g/cm^.

Pb= crystalline polym er density, g/cm3.

P42% = density for a 42% crystalline polym er
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Table 3 .1  Experimental conditions, off-line birefringence values, and off
line diam eters

Polymer throughput = 0.800 g/min

Take-up speed (m/min) off-line birefringence off-line 
diameter (um)

1500 0.009 22.5
2500 0.021 17.4
3500 0.032 14.7
4500 0.052 12.8
5900 0.125 11.2

Polymer throughput = 1.50 g/min

Take-up speed (m/min) off-line birefringence off-line 
diameter (um)

1500 0.008 30.8
2500 0.018 23.8
3500 0.028 20.1
4500 0.042 17.7
5900 0.123 15.3

Polymer throughput = 3.00 g/min

Take-up speed (m/min) off-line birefringence off-line 
diameter (um)

1500 0.005 43.5
2500 0.014 33.6
3500 0.022 28.4
4500 0.028 25.0
5900 0.082 21.7
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Table 3 .2  Off-Une m easurem ents of birefringences of som e commercially 
available polyester fibers

Fiber manufacturer birefringence
(a) Dacron” partially oriented yam (POY): DuPont 0.038

first step of the two-step process
(b) Terylene" polyester fit>er from shirting ICI 0.089

fabric
(c) Fiber from polyester roping unknown 0.091
(d) Dacron” “Microfiber” from trouser fabric DuPont 0.114

made of Dupont Micromattique”
(e) PET fibers produced by high speed - 0.105-0.115spinning at 6000 m/min
(f) PET fibers produced by a two-step - 0.150process

* measurements by Kawaguchi (1985)
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Molten Polymer

Infrared
Camera

Guide Ring

Take-up
Roll

Figure 3 .1  The m elt spinning apparatus w ith an infrared camera. A mechanical 
take-up roll w as used for a spinning speed of 1500 m /m in. For h itte r  spinning 
speeds, die roll was replaced with a venturi draw -dow n device (not shown in 
Figure). W ith die mechanical roll, t  = 132 cm and p  = 203 cm. W idi the venturi 
device, i  -1 2 0  cm and p = 10.4 cm.
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Figure 3 .6  The fiber density’ as a function of fiber tem perature (a crossplot of 
Figures 3.4 and 3 ^ . Also shown is the density versus tem perature data for PET 
obtained by Kbib and Izard (1949, parts 1 and 2).
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Figure 3.13 The fiber densi^  as a function of fiber temperature (a crossplot of 
Figures 3.11 and 3.12). Also shown on the plot is die density versus temperature 
data for PET obtained by Kolb and Izard (1949, parts 1 and 2).
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CHAPTER4

ON-LINE DETERMINATION OF DIAMETER AND  

TEMPERATURE DURING MELT BLOWING OF POLYMER

FIBERS

(This chapter has been submitted to a journal as: Bansal, V.; Shambaugh, R. L. On
line Determination of Diameter and Temperature During Melt Blowmg of Polymer 
Fibers. Ind. Eng. Chem. Res.)

ABSTRACT

An on-line experimental technique was developed for die measurement of 
fiber diameter and temperature during the melt blowing process. The 
experimentally determined diameters and temperatures were compared with a 
mathematical model for melt blowing.

4.1 INTRODUCTION

M elt blow ing is an  im portant process for m anufacturing nonwoven 

w ebs, and its share in  the nonw ovens m arket is increasing every year. In 1994, 

m elt blow ing w as used to produce about 93 million kilogram s of nonwoven
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webs w orldw ide, and the production figure in 1999 should rise to 134 m illion 

kilograms (Najour, 1996). These figures correspond to an annual grow th rate 

of about 7.5% for m elt blow ing; the grow th for the entire nonwovens industry 

is projected to be slightly low er (7% /year) for the same period (Najour, 1996). 

Melt-blown fibers m a te  &ccellent filters, have high insulating value, have high 

cover per un it w eight, and have h igh  surface area per unit w eight (Shambaugh, 

1988). Figure 4.1 show s a schem atic of the m elt blowing process, ^uunbaugh 

(1988) gives a detailed description of the process.

One draw back of m elt blow n fibers is the low individual filam ent 

strength. Because of this, m elt blow n webs are often used along w ith  a backing 

support of w ebs m ade b y  another processes. For exam ple, an SMS 

(spunbonded - m elt blow n - spunbonded) sheet, which is used for m aking 

protective apparel, is a m elt blow n w eb sandwiched between tw o spunbonded 

webs. Spunbonded fibers are usually thicker and stronger than  m elt blow n 

fibers (Mark e t al., 1987).

If m elt blow n fibers could be m ade stronger, then the fibers could be 

m uch more broadly used. A n initial step in achieving this goal is the study of 

the process of fiber structure developm ent in  m elt blowing. Several previous 

researchers have m ade on-line m easurem ents on the fiber threadline during 

m elt blowing. U yttendaele and Shambaugh (1990) reported on-line 

m easurem ents of fiber diam eters using high speed flash photography. W u and
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Sham baugh (1992) m ade on-line m easurem ents of fiber velocity com ponents 

using laser Doppler velodm etiy (LDV). Chhabra and Sham baugh (1996) 

m easured the frequency and the am plitude of the fiber vibrations using strobe 

photography and laser D oppler velodm etry.

This paper describes on-line experim ental m easurem ents of fiber 

diam eter and tem perature profiles a t various operating conditions. H eretofore, 

fiber tem peratures have never been  m easured on-line during m elt blow ing. 

The objective of tfie present study  w as to gain insight into die process of fiber 

attenuation and cooling.

4.2 EXPERIMENTAL EQUIPM ENT AND DETAILS

The experim ents w ere carried  ou t w ith  a single hole slot die. The die 

capillary had  an inside diam eter o f 0.407 mm and a length of 2.97 m m . The 

tw o air slots in  die die w ere 0.65 m m  w ide and 74.6 mm long. The d ie w as the 

sam e as that described recently by  Chhabra and Shambaugh (1996). The 

polym er w as m elted and pressurized w ith a Brabender extruder. Refer to 

Bansal and Shambaugh (1996) for details on die extruder and Tyagi and 

Sham baugh (1995) for details on the  polym er feed equipm ent. The polym er 

used  w as 75 MFR (melt flow rate) Fina polypropylene w ith an  M*, of 122,500 

and  polydispersity of 4.
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4JL1 M easurem ent of Fiber D iam eter

The fiber diam eter was m easured v ia h igh  speed flash photography. 

The cam era used  w as a Canon AE-1 SLR w ifli a  Tokina 90 mm m acro lens. A 

Sunpak A uto 622 flash provided the illum ination, and Kodak Tmax film  (ISO 

400) w as used. The camera and flash w ere m ounted on a traverse system  that 

perm itted m easurem ents over a range of positions along die threadline. Bansal 

and Sham baugh (1996) used an alm ost identical technique for on-line diam eter 

m easurem ents in  m elt spinning . As tiiey  describe, using this technique to 

m easure fiber diam eter gives a fiber standard  deviation of about 1.4 - 2.0 % in 

m elt spinning.

In  applying the photographic technique to m elt blowing, a  further 

source of erro r is introduced due to  fiber m otion transverse to the threadline 

axis. These m otions are not a severe problem  in  m elt spinning because the 

fiber flueadline position in  m elt spinning is very controlled and free of large 

am plitude vibrations. However, in  m elt blow ing diere are gross m otions of the 

fiber in  directions transverse to the m ain  direction of fiber m otion (the m ain 

direction is d ie y  direction in Figure 4.1). These transverse motions tend  to b lur 

a  flash picture of the filam ent d ie fiber appears larger dian its true diam eter. 

The am ount o f b lur can be determ ined by  com paring the flash duration  w ith 

the transverse m otion of the filam ent The Sunpak system 's flash duration  w as
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5 X 10-5 g (Sunpak, 1987). To determ ine the sidew ays velocity of the fiber, LDV 

(laser D oppler velodm etry) measurem ents w ere m ade of transverse fiber 

velodties using  the LDV technique developed by  W u and  Shambaugh (1990). 

For the range o f operating conditions used in  ou r experim ents, the maximum 

transverse fiber velod ty  w as about 0.1 m /s . Hence, over the tim e of flash 

duration  d ie fiber can move a maximum of about 5 ^m . Thus, for a true fiber 

diam eter of 45 pm , the m easured diam eter (from  the photograph) could 

possibly be as m uch as 11% high. H ow ever, in  m easuring the fiber from a 

photograph, d ie b lurred edges of die fiber are often n o t included in  the 

m easurem ent.

O fr-line m easurem ents of fibers (i.e., sans blur) w ere com pared w ith  on

line m easurem ents: see Table 4.1. These com parisons show ed that die on-line 

m easurem ents w ere typiodly about 4 - 5% high. These errors are only about 

one-half the possible error from die b lu r. For all our photographic 

m easuronents, d ie diam eter w as the average of six different m easurem ents at 

each position.

4.2.2 M easurem ent o f Fiber Tem perature

O n-line fiber tem peratures w ere m easured w ith  an  Infram etrics m odel 

600 infrared  cam era equipped w ith  a 3X close-up lens. The field of view  (FOV)
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of the lens w as 8 ^  by  5.70 cm  a t a working distance of 55 cm. See Bansal and 

Shambaugh (1996) for a detailed description of how  to meeisure fiber 

tem perature w ifii th is infrared camera, h i applying this technique to m elt 

blowing, the standard  deviation in  tem perature m easurem ents w as found to be 

about 4 *C for m easurem ents close to the die (y < 3 cm) and about 6  °C for 

measurements aw ay 6 om  the die (y > 3 cm). The reported fiber tanperatu res 

are an average of six  different measurements at a particular position.

43  EXPERIMENTAL RESULTS

43.1 Param eters S tud ied

M elt blow ing has four im portant process variables: (a) air velocity at the 

die exit (v.xue)/ (b) a ir tem perature a t the die exit (T .^ ), (c) polym er mass 

flowrate (m), and (d) polym er tem perature at the die exit (Tmw). The effects of 

these four variables on the fiber diam eter and tem perature profiles w ere 

studied. In  studying die effect of one variable, the rem aining three variables 

were kept constant a t their base values. These base values w ere v , ^  = 25.7 

m /s, Taxiie = 300 ®C, m  = 0.36 g /m in , and Twi* = 350 °C. Table 4.2 lists the 

process conditions studied.
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43.2  Effect of A ir V elocity

The V a^ was varied betw een 17.1 m /s  and 54.9 m /s ; these velocities 

correspond to a gas flow of 52 to  167 standard liters per m inute. Figure 4.2 

shows the m easured diam eter profiles a t various values of V a^. In all the 

cases, the m ost rapid  drop in  the diam eter was seen w ithin the first 1.5 cm of 

the die. After y  = 1.5 cm, there is a  slow ing of the rate at w hich diam eter 

reduces, and in all cases the final diam eter of die fiber appears to be reached 

by about y  = 6  cm. A higher air velocity results in  a foster attenuation and a 

low er final fiber diam eter. The effect of air velocity on die fiber diam eter can 

be considered to be composed of tw o countering effects. A higher air velocity 

attenuates the fiber m ore since die air exerts higher forw arding drag force on 

the fiber. However, a higher air velocity also cools the fiber foster and, hoice, 

die attenuation process is slow ed. From  the eiqierimental diam eter profiles of 

Figure 4 3 , it can be concluded th a t the d rag  force is the dom inating effect for y 

< 6  cm. The standard deviations of the diam eter m easurem ents w ere about ± 8  

fun for y  ^  3 cm and about ± 2  |im  for y  > 3  cm.

Figure 4.3 shows die fiber tem perature profiles for different air 

velocities a t the die exit. In all die cases the fiber tem perature fidls sharply 

until about y = 2 cm is reached. Between y  = 2 cm and y  = 4 cm, the fiber 

tem perature changes m ore slowly. Finally, for all air velocities a  plateau of 

fiber tem perature occurs for about y  > 4 cm. A sim ilar plateauing of the fiber
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tem perature - a plateauing corresponding to polym er crystallization - was 

predicted m athem atically by Z ioninski (1986) for the m elt spinning of 

polypropylene. As discussed in  the A ir Field section below, the plateauing can 

also be related to the air tem perature.

As Figure 4.3 shows, w hen the air velocity is increased from  17.1 to 42.9 

m /s , the profiles become lower. However, increasing the air velocity from  42.9 

m /s  to 54.9 m /s  does not cause any further dow nw ard shift in  the profiles. 

The low ering in  fiber profiles can be explained by  observing that, since a 

higher air velodty^ produces a  finer diam eter (see Figure 4.2), then the 

threadline cools m ore rapidly. A  countering effect is that finer filam ents are 

exposed to die air for less tim e (since the fibers have higher velocities). 

A pparently, the countering effect is of nearly  equal m agnitude for 42.9 m /s  £ 

v^die ^  54.9 m /s . Stress-induced crystallization m ay also play a  role in  keeping 

the profiles a t constant tem perature: if crystallization occurs a t high stresses, 

then the heat of fusion w ould help keep the fiber profiles constant.

4.33 EHect o f A ir Tem perature

The air tem perature a t die die exit w as varied from  300 °C to 330 °C. 

Figure 4.4 show s the fiber diam eter profiles for three d ifierent air 

tem peratures. The data show that an  increase in  air tem perature causes an
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increase in  the attenuation rate of the tiber and produces a tiner filam ent. This 

resu lt can be explained by observing that the cooling rate of the fiber is slowed 

for higher T. xk (see Figure 4.5). Hence, there are h i^ e r  fiber tem peratures 

along the threadline, and the polym er v iscosi^  along tiie threadline is 

reduced. A low er viscosity results in a higher fiber attenuation.

Figure 4.5 shows the fiber tem perature profiles for different values of air 

tem peratures. A  higher air tem perature results in  higher fiber tem perature 

along the threadline. This is expected since, a t a higher air tem perature, there 

is a  reduced driving force for heat transfer fiiom fiber to  air.

4.3.4 Effect of Polym er M ass Flowrate

The fiber diam eter profiles are show n in  Figure 4.6 for w hen the 

polym er mass flow rate w as varied between 0.22 g /m in  and 0.36 g /m in . A 

higfier polym er m ass flow rate results in  a slow er attenuation of fiber and 

thicker final fibers. This result is analogous to w hat occurs in m elt spinning 

w hen the polym er throughput is increased w hile all other param eters are kept 

constant. For exam ple, Bansal and Shambaugh (1996) reported that, for 

polypropylene m elt spinning, the fiber diam eter increased from  about 15 pm  to 

27 ^m  w hen the polym er flowrate w as increased from  0.4 g /m in  to 1.0 g /m in
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at a take-up speed of 2500 m /m in. (The continuity equation can be used to 

calculate the final fiber diameter.)

Figure 4.7 shows the fiber tem perature profiles determ ined w ith  the 

infrared cam era system . The polym er mass flowrate was found to have alm ost 

no effect on the cooling rate of fibers in  the range of mass flow rates studied. A 

higher m ass flow rate results in fiber w ith higher heat capacity (a higher 

m  • Cp Gb ). Thus, the fiber has more therm al inertia. However, an  increased

m ass flow rate also results in thiclœr fibers (see Figure 4.6) w hich lose heat 

^ s te r  because of an  increased surface area for heat transfer. A pparently, these 

tw o effects are of sim ilar m agnitude in  the range of mass fiowrates studied.

43 .5  Effect o f Polym er Tem perature

The polym er tem perature a t the d ie exit w as varied betw een 325 °C and 

350 °C. Figure 4.8 shows the effect of polym er tem perature on the fiber 

d iam eter profiles. Increasing the polym er tem perature results in  a  slightly 

low er final fiber diam eter. This is die expected result: a h i ^ e r  fiber 

tem perature gives a lower polym er viscosity which in tu rn  gives a greater fiber 

attenuation.

Figure 4.9 shows the fiber tem perature profiles corresponding to die 

diam eters in  Figure 4.8. The results are as expected: a higher polym er
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tem perature at the die exit results in  a slightly higher tem perature at any point 

along the threadline.

4.4 DISCUSSION

4.4.1 A ir Field

H arpham  and Sham baugh (1996; 1997) give em pirical correlations for 

air velocity and tem perature profiles for the die used in the present study. 

They showed fiiat the air velocity and tem perature profiles are a function of (a) 

the distance y  firom die die, and (b) the distance from  the centerline of the air 

jet. Figure 4.10 shows a typical com parison between an experim entally 

determ ined fiber tem perature profile (case 10 in  Table 4.2) and a centerline air 

tem perature profile (obtained from  the H arpham  and Shambaugh correlations 

for the same conditions). As m easured by  H arpham  and Shambaugh, the air 

tem perature for 0 ^y < 0 .5 cm  is essentially constant; for y  > 0.5 cm , the air 

tem perature drops exponentially. As Figure 4.10 illustrates, bodi the air 

tem perature and the fiber tem perature decrease for y  > 0.5 cm. H ow ever, the 

fiber tem perature does no t reach lower tem peratures as quickly as die air 

tem perature. Am bient air entrainm ent (see H arpham  and Sham baugh, 1997) 

causes the m ore rapid drop o f the air tem perature. A t about y = 4 cm, the fiber
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tem perature curve appears to reach a plateau. This plateau could possibly be 

caused by fiber crystallization.

4.4.2 F iber A ttenuation

Figure 4.11 shows a typical com parison between the fiber diam eter 

profile and the centerline air velocity profile (from  H arpham  and Shambaugh) 

for the sam e conditions as used in  Figure 4.10. M ost of the fiber attenuation 

(more than 96% of the total drop in  fiber diam eter) occurs w ifiiin 1.5 cm from  

the die. In contrast to the fiber diam eter, the centerline air velocity only decays 

by 44% w ifiün the first 1.5 cm from  the die. This indicates that the fiber has 

stopped attenuating even w hen the air continues to  exert a positive d rag  force 

on the fiber; see U yttendaele and Sham baugh (1990).

The explanation lies in  the fiber tem perature. The fiber tem perature 

drops to a value close to the m elting po in t of polym er (FP) w ithin the first 1.5 

cm fiom  the die. Thus, fiie d rag  force exerted b y  the air a t y = 1.5 cm  is not 

sufficient to cause a  further attenuation of the solidified polymer.

Finer fibers could be produced if the fiber could be m aintained a t a high 

enough tem perature. Increased polym er exit tem perature (Twie) w ould raise 

the fiber tem perature profiles. H ow ever, higher Twie causes increased polym er
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degradation (see Kelley and Shambaugh, 1997). O ther ways of keeping a high 

tem perature profile include

(a) using a higher air tem perature at the die exit

(b) directing ho t secondary air jets (at a tem perature higher than the 

m elting point of polymer) on the fiber after it exits the capillary; a 

good location of these jets m ight be a t a  distance of less than 1.5 cm 

from  the die

(c) optim izing the die design, (e.g., angle of the air jets) to slow the 

centerline air tem perature decay

(d) conducting m elt blowing in  an enclosed cham ber containing heated 

air

4.4.3 C om parison w ith  M athem atical M odel

The pioneering w ork on m elt blow ing m athem atical m odeling w as done 

by  U yttendaele and Shambaugh (1990). They obtained steady state solutions 

for m om entum , continuity, and energy equations along the fiber threadline. 

Their m odel can predict the profiles for fiber diam eter, velocity, tem perature, 

and rheological stress. However, their m odel does not take into account the 

transverse fiber vibrations. Rao and Sham baugh (1993) extended the 

U yttendaele and Shambaugh model to account for vibrations and stability
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during the m elt blow ing process. These added com plexities increased the 

com putational tim e trem endously. On an  IBM RISC/6000 com puter system, 

the U yttendaele and Shambaugh m odel takes about 1 m inute to converge, 

while the Rao and Shambaugh model takes about 10 hours.

For our w ork, the experimental diam eter and tem perature profiles were 

compared w ith  both (a) the Uyttendaele and Sham baugh m odel, and (b) the 

Rao and Shambaugh m odel. Because m oderate gas velocities w ere used in our 

experim ents, both m odels gave essentially the sam e diam eter and tem perature 

profiles. This is the etpected result; as described by  Rao and Shambaugh, both 

m odels gave the same result when fiber vibrations w ere sm all (i.e., a t lower 

gas velocities). Because the Uyttendaele and Sham baugh m odel is so much 

easier to com pute, die Uyttendaele and Sham baugh m odel w as chosen for 

com parison w ith  our experimental data. Refer to U yttendaele and Shambaugh 

(1990) for details regarding the equations, boundary conditions, and the 

solution procedure used.

U yttendaele and Shambaugh (1990) determ ined that a Newtonian 

m odel w orked as w ell as a more complex rheological m odel for the m elt 

blow ing process. Hence, a Newtonian m odel w as also used in  our modeling. 

For input to the m odel, Üie zero shear rate viscosity of 75 MFR polypropylene 

(Cooper, 1987) is
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T|o =0.00128exp (1)lTf+273^

where Tr is fiber tem perature (°C) a t any point along the fiber threadline and t|o 

is in  Pa s .

Recently, K e ll^  and  Shambaugh (1997) studied the m olecular w eight 

degradation occurring w ithin  die m elt blow ing equipm ent (extruder, the 

coimecting spool piece, die sp in  pack, and the die) and after the polym er exits 

the capillary. They found d ia t the molecular w eight degradation is appreciable 

and its efiect on the polym er v iscosi^ cannot be neglected. The m ode of 

molecular w eight degradation w as found by them  to be (a) m ainly therm al 

between the extruder and  the die, and (b) m ainly oxidative after the polym er 

exits the capillary. For our experim ental conditions, average values for the 

molecular w eight (Mw) a t the die e d t and at the fiber collection poin t w ere 

obtained from  the d ata  reported by Kelley and Shambaugh (1997). They 

reported a m olecular w e i^ t  of 1 2 1 ,0 0 0  at the die exit and 1 0 0 ,0 0 0  a t the final 

collection point. H ence, the average molecular w eight of polym er du ring  the 

attenuation process w as about 110,500. The m olecular w eight of the starting 

resin was determ ined by  Kelly and Shambaugh to be 165,000. The viscosity 

equation (equation 1 ) w as corrected for use along the threadline by assum ing 

Üiat viscosity is proportional to the 3.5 power of the molecular w eight (Lu and
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Spruiell, 1987). Hence, the zero shear rate viscosity along the threadline w as 

assum ed to be described by  d ie relation.

no =0.000315exp^ ^ ^ ^ ^ j  (2)

In the Uyttendaele and  Sham baugh (1990) m odel, the air velocity and 

tem perature profiles appear as boundary conditions. For die slot die used in  

the present study, the appropriate air velocity and tem perature profiles 

reported by  H arpham  and Sham baugh (1996; 1997) w ere incorporated in to  the 

m odel. For the air velocity, the correlations used were:

0.624=L47[Y(h)]"” “ * (3)

w here v . is the air velocity a t a distance y  from  die die and h  is a characteristic 

d ie dim ension defined by  H arpham  and Shambaugh (1997). The value of this 

characteristic die dim ension h  is 3.32 m m  for our die. The p_ is the air density  

a t am bient conditions and po is the air density a t position y  (po is a function of 

tem perature).

For the tem perature profiles, the correlation used w as

|2 -= i^ 0 [Y (h )]“®“ ® (5)
®jo
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w here 0o is the excess tem perature above am bient (in “Q  at a position y. The 

6jo is the excess tem perature above am bient a t the die exit (in °C), and Y(h) has 

been defined in  equation 4.

The drag  coefficient Cf used in  the m odel w as found horn the relation

Cf=P(Rfirf)'“ (6)

w here Reni is the air Reynolds num ber defined by

R e ^ = ^  (7)

w here

V td  =  V* -  V f (8 )

d  = fiber diam eter

and

v« = kinem atic viscosity of air 

M ajum dar and Sham baugh (1990) found ffiat P = 0.78 and n  = 0.61 are 

appropriate values for use in equation 6 . These values were used in  our 

calculations.

A value for h, the heat transfer coefficient, can be calculated from  the 

following Kase and M atsuo (1965) relation:

N u = 0 .4 2 0 (R e^)°-^  (9)
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w here N u is the N usselt num ber at a position y  (based on fiber diam eter), and 

Rerei has been defined in  equation 7.

If the above correlations (equations 2 - 9 )  are used in  Uyttendaele and 

Sham baugh model, the predicted diam eter profile is quite close to the 

experim ental values: see Figure 4.12. The predicted fiber tem peratures can 

also be compared w ith  the m easured fiber tem peratures; see Figure 4.13. 

Heretofore, such a tem perature com parison could not be m ade because 

m easured fiber tem peratures (for m elt blowing) w ere no t available. As the 

dotted line prediction on  Figure 4.13 illustrates, die predicted tem perature 

profile is well above the experim ental values.

Since the correlation of equation 9 is the only correlation diat w as no t 

developed specifically for our m elt blow ing conditions, equation 9 w as 

m odified to allow die m odel to better predict the fiber tem peratures. An 

em pirical relation of the following form  w as fit to  die tem perature data of all 

the cases in  Table 4.2:

Nu=c(Rert)®-“  (10)

A  best fit value of c -  4.14 was determ ined for equation 10. W ith diis 

modification, the fiber tem peratures fit the data as shown in Figure 4.13 and 

4.14 for, respectively, cases 2 and 10 in Table 4.2 (predictions for the other cases 

are similar). The predictions tend to be high for low  values of y and low for
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high values of y. Nonetheless, the predictions are m uch im proved com pared 

to the tem peratures predicted w idi equation 9. Furtherm ore, using equation 10 

does no t adversely effect the prediction of fiber disuneter: com pare the solid 

line profile in  Figure 4.12 w ith  the dotted line profile. Figure 4.15 show s fiie 

diam eter profile prediction (using equation 1 0 ) for case 1 0 ; the predicted 

profile follows the data quite w ell. The com parison for the rem aining ten  cases 

is sim ilar to that for cases 2 and 10. As can be seen in  Figures 4.12 and 4.15, the 

com parison betw een m odel (with equation 1 0 ) and experim ental data is 

excellent, especially for the final fiber diam eter. In  tiie initial p a rt of Üie 

threadline, the m odel tends to underpredict the fiber diam eter.

M ajum dar and Sham baugh (1990) m odified ttie M atsui (1976) relation 

[Cf = 0.37(Re«i)^-*i] to produce equation 6  [Cf = 0.78(Rewi)‘°*^]. O ur 

m odification of a heat transfer correlation (the m odification of equation 9 to 

produce equation 10) parallels M ajumdar and Shaxnbaugh's m odification of a 

m om entum  transfer correlation. A possible reason for fiie need to m odify both 

the d rag  coefficient and fiie N usselt num ber correlation is the vibration of the 

filam ent (M ajumdar and Shambaugh, 1990; Shimizu e t al., 1983; C hen et al., 

1983).
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4.4.4 Final F iber D iam eter

Table 4.1 lists the final fiber diam eters obtained b y  three separate 

m ethods. Diam eter <|>i is the diam eter obtained from die photographs a t the 

last point of m easurem ent, i.e., a t y  = 7.0 cm. D iam eter <j»2 is the diam eter 

obtained by off-line m easurem ents of die fiber collected a t a  distance of 2 0 .0  cm 

from  the die. An optical m icroscope (Nikon Labophot 2) w as used to m easure 

the diam eters of collected fibers. D iam eter <|>3 is the fiber diam eter predicted 

from  the model (w ith equation 10) for y  = 7.0 cm. As can be seen in  Table 4.1, 

all three of these diam eters com pare well.

4.5 CONCLUSIONS

£}q>enmental techniques for die on-line m easurem ent of the fiber 

diam eter and the fiber tem perature w ere developed and successfully tested  for 

m elt blowing of polypropylene.

Most of die fiber attenuation, m ore than  96% in  som e cases, w as found 

to occur w ithin 1.5 cm  from  the die. A  plateauing of fiber tem perature, 

perhaps indicative of polym er crystallization, w as observed in  the 

experim entally obtained tem perature profiles. This p lateau  w as found to start 

around y = 4 cm under d ie experim ental conditions studied.
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Based on our experim ental study, fine diam eter fibers can be produced 

(one of the objectives of m elt blowing) by slow ing die rate of cooling of fibers. 

A few m ethods w hich can achieve fiiis have been  suggested by the authors. 

The common m ethod used to produce finer filam ents is the use of higher air 

velocities. However, higher air velocities resu lt in  increased production costs 

for air com pression and air heating.

The experim entally-obtained fiber diam eter and tem perature values 

w ere com pared w ith  profiles predicted w ith the U yttendaele and Shambaugh 

(1990) mathem atical m odel for m elt blow ing. The heat transfer coefficient 

correlations reported by Kase and M atsuo (1965) for m elt spinning were found 

to be inadequate for m elt blowing. The Kase and M atsuo correlation w as 

m odified by changing die leading coefficient to fit die experim ental 

tem perature profiles. W ith this correction, the com parisons between 

experim ental and m odel-predicted diam eter an d  tem perature profiles w ere 

found to be very good.
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4.6 NOMENCLATURE 

Cf = drag coefficient

C p^ = specific heat of polym er, J /  (kg • °C) 

d  = fiber diam eter at a  position y, ̂ m

h  — a characteristic die dimension defined by  H arpham  and Shambaugh (1997). 
For our die, h  = 3.32 mm

m  = polym er m ass flow rate a t the die exit (sam e as polym er mass flow rate at 
any point along the threadline), g /m in

n  = exponent in  the M atsui (1976) correlation for d rag  force

N u = N usselt num ber at a position y  (based on fiber diam eter)

Reiei = Reynolds num ber based on fiber diam eter

Taxiie -  air tem perature a t the die exit,

Tf = fiber tem perature a t any point along the threadline, XI

Tfxiie = polym er tem perature a t the die exit, °C

Vfcdie = air velocity a t flie die exit, m /s

V , = air velocity a t a position y, m /s

Vf = fiber velocity a t a  position y, m /s

Vid = relative diflerence between air and fiber velocity* a t a position y, m /s  

X = transverse distance fiom  the m ain fiber axis (see Figure 4.1), cm 

y  = vertical distance from  the die (see Figure 4.1), cm
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1/2  

A po j

Greek Symbols

p = leading coefficient in  the M atsui (1976) correlation for d rag  force

T[o — zero shear rate viscosity. Pa • s

Va = kinem atic viscosity of air a t a position y , cm ^/s

6jo = excess air tem perature above am bient a t die exit [i.e., Ojo = Ta/Ue - (am bient 
air tem perature)], "C

60 = excess air tem perature above am bient at a position y, °C

p_ = air density  a t am bient conditions, kg/m ^

Po = air density a t a position y , kg/m ^

= e)^>erimentally m easured fiber diam eter a t the low est po in t m easured (y =
7.0 cm), pm

<|>2 = off-line m easurem ent on collected fiber (coUected a t y  = 2 0 .0  cm ), pm  

4*3 = fiber diam eter predicted from the m odel (at y  = 7.0 cm), pm
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Table 4 .1  Final fîber diam eters from  three different m ethods

C ase <l>i (urn) *2(wm) (um)
1 82.0 77.3 82.1
2 64.2 61.7 63.3
3 54.5 52.6 51.2
4 45.5 44.1 43.2
5 34.5 32.9 37.6
6 30.0 27.0 35.8
7 71.7 69.6 68.1
8 68.3 65.8 65.2
9 62.5 62.1 61.1
10 60.0 57.6 59.0
11 44.7 45.1 47.7
12 53.5 49.3 54.9

^  *  experimentally measured fiber diameter at the lowest point measured (y «  7.0 cm) 
*2 «  ofMine measurement on collected fiber (collected a ty  = 20.0  cm)
4a «  fiber diameter predicted from the model (at y = 7.0 cm)
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Figure 4 .1  The schematic of m elt blowing process from a single hole slot die. 
The y direction corresponds to the main axis of fiber motion, w hile the x 
direction represents the transverse direction.
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CHAPTERS

A GENERALIZED, 3-DIMENSIONAL MATHEMATICAL 

MODEL FOR THE MELT BLOWING PROCESS

ABSTRACT

A 3-dimensional, unsteady state madiematical model for the melt blowing 
process was developed. The useful information predicted by die model includes fiber 
diameter, temperature, tfareadline stress, and amplitude of fiber vibrations. This 
model takes into account fiber vibrations in all directions, and the model is 
particularly valuable for simulating melt blowing from slot dies (e g., an Exxon die).

5.1 INTRODUCTION

M elt blow ing is an im portant one-step process for the production of 

nonw oven w ebs. The nonwoven webs find application in products like high 

perform ance industrial filters, therm al insulators, absorbent m edia (used in 

baby diapers, etc.), and medical garm ents. Figure 5.1 shows a schematic 

diagram  of the m elt blow ing process. The process consists of continuous 

injection of m olten polym er into a region of high gas velocity. The forw arding
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drag  force acting on the fiber (due to the velocity difference betw een the two 

phases) rapidly attenuates fhe fiber fiom approxim ately 500 m icron diam eter at 

the d ie exit dow n to final fiber diameter that can be as low  as 0.1 micron. The 

prim ary difierence betw een m elt blowing and conventional m elt spinning is 

the source of attenuating force. In conventional m elt spinning the attenuating 

force is provided by  ttie draw dow n roll w here as in  m elt blow ing the 

aerodynam ic drag force exerted on the fiber by  high velocity air jet acts as the 

attenuating force.

The interest in  developm ent of a m athem atical m odel for the m elt 

blow ing process dates back to 1990. U yttendaele and Sham baugh (1990) 

developed a m athem atical m odel for the m elt blow ing process by obtaining a 

steady state solution for the equation of m om entum , continuity, and energy. 

This m odel w as a 1-dim ensional model in the sense th a t it considered fiber 

m otion only in  y-direction (see Figure 5.1). Rao and Sham baugh (1993) 

developed an unsteady state m odel and included die vibrations of the fiber. 

This w as a 2-dim ensional m odel because it allow ed the fiber m otion in  V  and 

‘Y  directions (see Figure 5.1). The present m odel is a generalized form  of Rao 

and Shambaugh (1993) m odel and is being called a 3-dim ensional m odel 

because it allows for the fiber motion in all three directions, nam ely 'x ', 'w ', 

and  ‘Y  (see Figure 5.1).
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A 3-dimensioncd m athem atical m odel becomes particularly  useful w hen 

w e are trying to m odel m elt blow ing hrom a non-symmetric die, for exam ple a 

slo t (Exxon) die.

5J1 MODEL FORM ULATION

The m odel consists of tim e dependent continuity, m om entum , and 

energy equations w ritten  for Üie fiber spinline. As has been described by Rao 

and Shambaugh (1993), d ie space below the die exit is d iv ided in to  a series of 

control volum es (CV) th rough  the use of planes draw n perpendicular to the y- 

axis (see Figure 5.1). Each CV contains an elem ent of the fiber; the m ass of each 

elem ent is assum ed to b e  centered in  a 'l>ead" located a t the center of the fiber 

elem ent. Because of th e  m otion of the fiber die fiber can be oriented in  any 

direction w ithin each CV; in  tiie x, and w  directions, each CV is as large as is 

necessary to encom pass d ie fiber element. The planes betw een adjacent control 

volum es are control surfaces (CS). An arbitrary CV and  the fiber elem ent 

w ithin this CV are identifies by  die subscript "i". The upper and  low er control 

surfaces of this CV are identified by the subscripts '*V' and '1+Al" respectively. 

A t any tim e t, the fiber elem ent "i" has co-ordinates (x£,W{ y^) and velocity

v ,j  - (v  w4 ) • Figure 5.2 shows an arbitrary fiber elem ent w ithin 

d ie control volum e and  the forces acting on it.
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The following assum ptions have been m ade in developing the 

m athem atical model:

(1) The equations for m om entum , m ass, and energy conservation have 

been averaged over the fiber cross-section, i.e. the velocity and 

tem perature gradients in  the radial direction w ithin the fiber have been 

assum ed to be zero.

(2) The m odel holds good at locations beyond tiie die sw ell; a m elt 

blow n fiber, like a conventional m elt spun fiber, exhibits a d ie sw ell near 

the die exit. The position y  = 0 (see Figure 5.1) corresponds to the point 

of m aximum die sw ell

(3) The continuity, m om entum , and energy equations have been w ritten 

for the fiber spinline only. The surrounding gas conditions (veloci^  and 

tem perature) are entered as given function o f spatial position.

(4) The fiber does n o t offer any resistance to bending

(5) The fluid forces on  each elem ent of fiber is assum ed to be the sam e as 

those acting on an  elem ent of long, straight cylinder of sam e diam eter 

and inclination.

(6) The fiber tension is dependent only on the polym er velocity gradient 

along the fiber axis. The fiber axis points in  the 'z ' direction. The 

orientation of 'z ' direction for any fiber elem ent depends on tim e.
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‘a ’ is the angle between the projection of fiber axis on the x-y plane and the 'y ' 

axis. ‘5’ is the angle betw een the fiber axis and the 'w ' axis.

(7) The kinetic energy and  surface energy term s have been neglected in the 

energy balance. Both these contributions have been shown to be negligible by 

Shambaugh (1988).

5^.1 Continuity Equation

The continuity equation in  difference form  for an elem ent "i" can be 

w ritten as:

- ( p f +(  (1)

w here pf is the fiber density, A  is  the fiber cross-sectional area at the control 

surfoce, mi is the m ass of the elem ent, and t  is the time.

5.2.2 M omentum Equation

The external forces acting on a fiber elem ent are die gravitational force 

in  die vertically dow nw ard direction, the aerodynamic force, and  the 

rheological forces (see F igure 5.2). The aerodynam ic force vector acting on die 

elem ent can be resolved in to  a couple of lift (Fux and Fl.w) and a drag (Fd) force
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w ith  respect to the stationary (x-w-y) co-ordinate system . There are rheological 

forces at the upper CS (Fd*o, %. i and Frheo. w, i) and a t the low er CS (FrfMo. «, i*m and 

Fitwo. w. i+ai). The x m omentum balance for an  arbitrary elem ent "i" in  difference 

form  is:

( ^ , x  ^rheopcj ^rheo^,l+A l)|j ~

Ami AVf̂ ^

(2)
At

The w  m om entum  balance equation is:

(^L ,w  ^iheo,wA ^iheo,w4+Al)j. “  ^  (^ f,w

^f,w 4 At
(3)

The y  m om entum  balance equation is:

(n tig y + F ij-F ,h e o ,y 4  + ^heo ,y4+ A l|. P f“̂ ) |. J  +  f,y

(4)

5.23 Energy Equation

In di^erence form  the energy balance for the fiber elem ent is:
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-  {pfT ,^[(T fV f.yA | -  (T fV f,yA |^^ j |^  + [cpj(^T|
Am ATc

■I
2 (oosa)(sin5)

(5)

w here Cp̂  is the fiber heat capacity, Tr is the fiber tem perature, T. is the air 

tem perature, and h  is the convective heat transfer coefficient.

5^.4 The set o f O DE's (Ordinary D itferential Equations)

In  the lim it as At ^  0 , equations 1-5 can be w ritten  as:

dm
d t (6)

dv

- V f «  ^ - [ ( p f ' 'f .y A V f ^ ) | ,^ ^  -(p ,v ,,yA V fp<)|J 

"** (^ ,x  ” ^rheo,xJ ■*'̂ rfieo.x,l+al)jj
d t m. (7)

dv f.W4
d t

-  V f .w j [ (  P f ' ' J . y A v t , „ | , ^ ^  -  (  P f V f , y A V f , „ |

( ^ , w  “ ^ i h e o , w 4  "*■ ^ r h e o , w , l + A l  ) ( .

m. (8)
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dv f,yj

dm
^ -[( - {  p,Vf „A V f.y |

( ™ 8 y  ^ t h e o , y 4  ^ r f i e o , y , l + A l  )j.

1 y

dt m,- (9)

dTu

dm ;•CpuTfi - 5 p - [ ( p f V f ,y A C p ^ T f |^ ^ - ( p f V f ,y A C p ^ T f ) |^

|h ,,É l± d u M

dt W iC p^j)
(10)

Two additional di& erential equations are provided from  die following 
relations:

(11)

d t
(12)

Equation 6-12 are algebraic in nature in  space (x-w-y) dom ain and 

differential in  tim e (t) dom ain. The conventional solution techniques for 

ordinary differential equations (ODE's) can be applied to  solve the equations 

w idi t  as die prim ary independent variable and y  as die secondary independent 

variable. The dependent variables are m ass (mO, tem perature (T^), transverse
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velocity in the x direction transverse velocity in  w direction

velocity in y direction die transverse position in x direction (xf )̂, and the

transverse position in  w  direction (wy) of the mass in  CV. There are seven 

unknowns and seven equations. These equations are solved sim ultaneously for 

each CV and, since the fiber elem ents in  each CV are all connected, we 

progressively solve the equations for all the CV's at a given m om ent in  time. 

We, moreover, require initial conditions (IC's) for the dependent variables 

along the length of the fiber. Also, boundary conditions (BC s) are required a t 

die start and the end of the fiber length.

In order to proceed w ith  the solution of equations 6-12, one also needs 

expressions for the fiber cross-sectional areas a t the control surfaces (Ai and 

Ai+Ai), the aerodynam ic force com ponents (Fux Fuw and Fo), the rheological 

force components (Fd**o, i , F*eo, %, wi / F*mo, w, i , Fdwo, w, i+ai > Fai*©, y. i / Fiheo, y. ) 

and  the convective heat transfer coefficient (h).

5.2.5 Fiber cross-sectional areas a t the control surfaces

The ellipsoidal shape of fiber cross-sections at the upper and low er CS's 

leads to die following appropriate relations for A n and Ai. ̂ ai.

A jj  -% 4cos(aij)sin (5 i,i) (13)
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The 5j,i is the angle at the upper CS betw een fiber axis (the z direction) 

and the w  axis; the 5i,i+Ai is sim ilarly defined for the low er CS (the 5s is the 

average of these tw o angles). The a,-. i is the angle at the upper CS betw een the 

projection of the fiber on x-y plane and y  axis; a,-, is sim ilarly defined for the 

low er CS.

W e need to know fiber diam eter for use in  equations 13, and 14 (and in 

aerodynam ic force calculation). M oreover, fiber diam eter is a im portant result 

to know. To determ ine fiber diam eter, the fiber elem ent is approxim ated as the 

frustum  of a cone. The m ass mi of Üie polym er in  the elem ent can th o i be 

defined as:

A l(d^4+ d ,jd ,j .â ,+ d ^ j . i i )
 12cos(a,)sin(S,)-------

Equation 23 is used to determ ine the fiber diam eter profile at a 

particular time. We begin w ith the top elem ent of the threadline w here di is 

know n. The bottom  diam eter du^i can then be determ ined, since m i is known. 

The procedure is repeated for each successive elem ent un til the entire diam eter 

profile has been determ ined.
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5.2.6 A erodynam ic Force

The fiber elem ent m ay assum e varying orientations w itii respect to the y 

axis as a resu lt of die transverse (x, and w) motions of die fiber. M atsui (1976) 

and  M ajum dar and  S h am b au ^  (1991) developed em pirical correlations for the 

firiction coefficient in  parallel flow at the ziir-filament interface. Ju and 

Sham baugh (1993) extended the w ork to a filam ent a t an  oblique angle to flow 

by  separating  the force into parallel and norm al com ponents.

The aerodynam ic forces acting on a fiber elem ent in  3 dim ensions can be 

expressed by  one parallel force and two norm al (cross-flow) forces. For a m elt 

b low ing system  w ith  transverse fiber motion, the appropriate definition for the 

parallel d rag  force is:

Fpar Pa (Va,e£f,par Ÿ" ( ^ f L f  ) (24)

The Lf is die length of the fiber elem ent The Cf is the skin coefficient 

w hich is defined by a m odified form of the M atsui (1976) relation as

Cf =p^ReDp) The appropriate definition of Reo,p in  our system is

Reop —L ̂  For m elt blow ing system P = 0.78 and n  = 0.61 were
Pa

reported  by  M ajum dar and Sham baugh (1991).
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The normal (cross-flow) forces can be given by:

(25)

IVj2 =C on2 (dfl-f) (26)

The ci»n and  cdmz are the d rag  coefficients which w ere correlated by Ju
-0.4399

and Sham baugh (1993) as =6.958(Reg^^ j and

«ON2=®-®5®(*'®ONî )
- 0.4399

The Reynolds num bers (ReoNi and ReoNz) are based on the appropriate 

norm al com ponent of the air; for our system the appropriate definition for

Reynolds num ber is Re =
PaV a^J41 P . v

The

aerodynam ic force correlations and the Reynolds num bers given above employ 

the parallel and norm al com ponents of die eflective air velocity w ith respect to 

the fiber. If the flber w ere stationary the effective air velocity (va,eff ) w ould be 

same as die actual air velocity (7a )• h i the m elt blowing system , however, the 

effective air velocity as seen by fiber is diflerent than the actual air velocity.
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The unit vector (p a r along the fiber (z) axis and the unit norm al

vectors and F^ 2  directed outw ard fiom  the fiber surface are, respectively, 

given by:

^ {sin(ô) sin(a) i + sin(6) cos(a) j + cos(5) w }

^Jsin .^  (5)sin^ (a )+ sin^ (Ô)cos^ (a)+cos^ (6)  ̂ ^

|sin(5)sm (a—̂ )i+sin (6)cos(a  -  y )  j +cos(0) w |
=  I ■ - -       - - - (28)

Jsin^ (6)sin^ (a -  —)+sin^ (ô)cos^(a——)+cos^ (S)

|s in (0 — sin(a) i +sin(5—y )  cos(a) j + cos(5 -  y )  w |

* ^ 2 =  I I t  _ _ (29)
2 '

I s in ^  ( 8 — 5)sin^ (ct)+sin^ (5—%) cos^ (a)+cos^ (6—

w here i , ] ,  and k are un it vectors in  x, y, and w  directions respectively.

The air and polym er velocity vectors m ay be w ritten as:

Va =  V a,x 1 + V ^ ,y  ) W  (30)

V f,i = V f,x ,i 1 +V f^y i ) + V f,w ,i ^  (31)
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V a.eg  = (v a .x  - V f ,x , i ) l+ ( v a ,y  - V f , y , i ) j + ( v a , „  - (32)

The norm al gff^2 ) and parallel (va,eff,par) com ponents of the

effective a ir velocity w ith respect to the fiber (z) axis are given by:

V a,e£f,N l “ (v a ,e ff (33)

Va,e£f - ( ^ a ,e f f  ' (34)

^ a ,e ff,p a r ~  ('^a^eff * ̂ p ar ) ̂ p ar (35)

The m agnitude of the velocity from  equations 33,34, and 35 can be used 

in  equations 24, 25, and 26 to calculate the m agnitude of the parallel (Fp.r) and 

norm al (Fm and Fn2) com ponents of the aerodynam ic force, respectively. The 

directions of these force components are described by die un it vectors

A A A
Fpar ,a n d F {^2 respectively. Since die quantities calculated from  equations

17, and  18 are always positive, d ie sign of Fpw , Fm , and Fm m ust be 

determ ined from  the signs of the relative velocity com ponents. Specifically:

Ip a r ” ^par ^p ar ^ a ,e f f ,p a r^ ^  (36)
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Ipar~^par( ^par) ^a,eff,par^® (37)

% 1  =1^41 ^ 1  f o r  V a,eff,N l > 0  (38)

fo r  V a,e£f,N l< 0  (39)

^ 2  = ^ 2  ^ 2  f o r  V a,eff,N 2> 0  (40)

IW 2=FlSr2(“ ^ 2 )  f o r  V a,e£f,N 2<0 (41)

The total vector aerodynam ic force Ft is given by:

5.2.7 H eat T ransfer C orrelation

A ndrew s (1959) and Kase and Matsuo (1965) gave the following 

correlation for N usselt num ber w hen the air flow is perpendicular to the fiber 

(i.e. there is a cross-flow).
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^ ^ V = 9 0 °  =0-76R e°*^® e£f (43)

T>_ P a |^ a ,e £ f|^ f,i
^ e f f  = ---------    (44)

M’a

hdf
The Nusselt num ber is defined as N u = -— , w here h  is the convective

ka

heat transfer coefficient and  k . is the Üiermal conductivity of the air.

However in m elt blow ing system  the fiber is usually oblique to the 

efiéctive air velocity. The angle y  betw een the fiber axis and the effective air 

velocity is given by:

y , c o s - . r g p ” -^».-.£ ^ (45)
|p p ar||v a ,eff| _

W here Fpar the vector parallel to ffie fiber axis (equation 27) and Va.eff is the

effective air velocity vector (equation 32).

Nforgan (1975) gives a comprehensive sum m ary of research on heat 

transfer from fine cylinders oblique to the air stream. W ith a  least square fit of 

the experim ental data from  M ueller (1942) and Cham pagne et al (1967), the 

following correlation can be w ritten to predict the N usselt num ber for flow 

oblique to a fiber.
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N u --------   0.849

N u .. „_o
=0.590sin "= ^  (V )+ 0.400 (46)

> = 90°

Equation 46 com bined w iü i equation 44 can be used to calculate the heat 

transfer coefficient l i '  in  our system .

5.2.8 Rheological Forces

The axial rheological stress is given by the following equation (described 

by Uyttendaele and Shambaugh):

F r h e o = « [ ^ ] ( T “ - t " )

For a N ew tonian fluid. M iddlem an (1977) defines t** and %= as

(47)

(48)

w here the z direction is along the fiber axis and r  direction is the radial 

direction (perpendicular to d ie z direction). Complex viscoelastic constitutive
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equations m ay be used in place of equations 48, and 49 bu t as found by 

U yttendaele and Shambaugh (1990) a  N ew tonian model often predicts 

behavior alm ost as well as a viscoelastic m odel.

From  problem  geom etry and from  equations 47-49, the x, y, and w  

com ponents o f the axial rheological stress can be w ritten as:

^rheo,x,i,l
i/1

(50)

^rheo,y ,i,l
dV f 2  ^

-~ 3 ii£  -^ ^ sin (0)cos(a)J
i/I

(51)

^rheo,w ,i,l

\

i/1
(52)

These equations are w ritten  for the  control surface 1 a t the top of the 

control volum e. Similar equations can be w ritten  for the bottom  surface.

A t the upper control surface the gradient of the velocity along the fiber axis can 

be approxim ated as:

dz J
i/l

(''M-i J .t-îjri2 .co s(a ij) s in (8 u ) (53)
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A sim ple relation applies to the low er control surfece. The velocity 

along th e fiber axis is given by the following relation:

V f ,z ,i= (V f ,i-F p a r )  (54)

SJ1.9 A ir Velodty^ and Tem perature C orrelations

For the slot die used in the present study , the appropriate air velocity 

and tem perature profiles reported by H arpham  and  Sham baugh (1996; 1997) 

w ere incorporated into the model. As m easured by  H arpham  and Shambaugh, 

the air v e lo d ^  and tem perature for O ^y ̂ 0 .5cm  are essentially constant; for y

> 0.5 cm , the air velocity and tem perature drops sharply. For the air velocity, 

the correlations used were:

Vao - „ v\-0.624= 1 .4 7 -(y (h )P “ * (55)

y(fi)
v P a o  J

(56)

w here v«o is die air velocity a t a distance y  from  the die. The h  is a 

characteristic d ie dim ension defined by H arpham  and Sham bauÿi (1997). The
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value of this characteristic die dimension h  is 3.32 m m  for our die. Pa« is the 

air density a t am bient conditions and pao is die a ir density a t position y (a 

function of tem perature).

For the tem perature profiles, the correlations used were:

= L 20(y (h ))'® ‘'® (57)
8,0

w here 6o is die excess tem perature above am bient (in °C) a t a position y. 6|o is 

the excess tem perature above ambient at the die exit (in *’C). y(h) has been 

defined in  equation (56).

5 ^ 1 0  B oundary C onditions

The upper boundary conditions for the m odel are sim ilar to those used 

by  U yttendaele and Shambaugh (1990). The fiber velocity and tem perature are 

know n a t the die exit and are used as boundary conditions at the start of the 

threadline. The rheological force (F*#,) a t the die is guessed, and an iterative 

procedure determ ines the correct value for this force. However, unlike the 

situation in  U yttendaele and Shambaugh's work, the Fdim is tim e dependent 

and  m ust be determ ined as a function of time.

In  the lower section of the threadline U yttendaele and Shambaugh 

assum ed th a t the threadline had a "freeze point" w here fiber attenuation
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ceased. This w as m odified by Rao and Shambaugh to a new  "stop point" 

criterion. In this "stop po in t" criterion the computation w ere carried out in  the 

'y ' direction till fiie po in t a t w hich tfie fiber velocity becam e equal to the 

surrounding gas velocity. I t w as found by Rao and Sham baugh that the results 

obtained by Üieir "stop point" criterion duplicated those obtained by 

Uyttendaele and  Sham baugh under sim ilar conditions. The sam e "stop point" 

criterion has been used in  A e present model. For a description of this criterion 

refer to Rao and Sham baugh (1993).

5.2.11 M odel C om putations

An single-hole slo t m elt blow ing die was assum ed for our studies. The 

m odel was used w ith  p = 0.78, Ay = 2 mm, and dri y»o = 533.4 ^im. The tw o air 

slots in Üie die w ere 0.65 m m  w ide and 74.6 mm long. The polym er used w as 

75 MFR. 3860X Pina polypropylene which has a Mw=122,500 and

11=1.13x10“  ̂e x p ^ ^ ^ - j Pa. For experim ental details about the m elt blow ing

process using a slo t die refer to Tyagi and Shambaugh (1995).

The m odel w as solved num erically on an  IBM RISC/6000. Initial 

conditions for each fiber elem ent included (a) position, (b) velocity, (c) 

diam eter, and (d) tem perature. The sim ulation w as carried ou t for a real tim e 

of 5 seconds. Each sim ulation of 5 seconds took a com puter tim e of
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approximately 12 hours. A  real tim e of 5 seconds was found to be optim um  as 

the results did no t change on  carrying the sim ulation beyond 5 seconds.

53  RESULTS AND DISCUSSIONS

The useful inform ation predicted by  the m odel includes, profiles for 

fiber dieuneter, tem perature, rheological stress, and the cone size of fiber 

vibration as a function of distance from  the die. Since this is a 3-dim ensional 

model, the fiber vibrations have com ponent in  both x and w  direction. Hence 

two difierent cone sizes of fiber vibration have been defined: one along the x- 

direction and another along the w -direction. The x-direction is the one 

perpendicular to  d ie  slots and  w -direction is parallel to the slots. The x- 

direction cone size is calculated b y  taking the difierence of the m axim um  and 

m inimum values of x-position reached during die 5 second sim ulation. The w- 

direction cone size is calculated sim ilarly by taking the difference of the 

maximum and m inim um  values of w -position reached during  the 5 second 

sim ulation. The cone size of vibratim i is of interest because of the following 

two applications: (a) it helps in  die prediction of fiber laydow n pattern  on the 

web and die web properties, and  (b) design of m ulti-hole dies: know ledge of 

the vibration cone size of the fiber helps in  deciding the optim um  spacing of 

holes in  a  m ulti-hole die.
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M elt blow ing has four im portant process variables: (a) air velocity at the die 

exit (Vagiie), (b) air tem perature at the die ©dt (T ,^ ) , (c) polym er m ass flowrate (m), 

and (d) polym er tem perature at the die exit (Tp^). The effect of all the above 

stated variables on  the fiber diam eter and tem perature profiles w as studied. In 

studying the effect of one variable, the rem aining three variables w ere kept 

constant at fiieir base values. These base values w ere v .^  = 110 m /s , T « ^  = 300 °C, 

m = 0.36 g /m in , and Twie = 350 “C  In  the following four sections die effect of these 

param eters on the profiles for fiber diam eter, tem perature, rheological stress, and 

cone size of vibration is shown.

53.1 Effect o f A ir V elocity a t the D ie Exit

The m odel w as run  for three different air velocities at the d ie exit of 95 

m /s , 110 m /s , and 125 m /s .

Figure 5.3 show s the fiber diam eter profiles as a function of air velocities 

a t the die exit. A  higher air velocity results in  faster attenuation of fiber and a 

thinner final fiber. This is an  expected result. A higher air velocity results in  

an increase drag force on the filam ent (see equation 24) w hich in  tu rn  causes a 

greater attenuation o f fiber.

Figure 5.4 show s the effect of air velocity a t the die exit on  die fiber 

tem perature profiles. A cusp in  fiber tem perature profiles at about y  = 0.5 cm
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is because of air tem perature being assum ed constant (equal to die die exit 

value) for y  < 0.5 cm; for y > 0.5 cm, the H arpham  and Shambaugh correlations 

w ere used. A ir veloci^  was found to have a relatively weak effect on the fiber 

tem perature. An increase in  air velocity a t the d ie exit results in a slightly 

foster rate of cooling of the fiber. A higher a ir v e lo d ^  results in  an increeised 

heat transfer coefficient (see equations 43 and 44), w hich in  tu rn  results in  faster 

cooling.

Figure 5.5 shows the rheological stress profiles as a function of air 

velocity. A higher air velodty^ results in  higher rheological stress. Also the 

po in t of maxim um  stress moves closer to the die for higher air velocity at the 

d ie exit.

Figures 5.6 shows the profiles for cone size of fiber vibration in the x 

direction. A  higher air velocity results in  a greater am plitude of fiber 

vibrations. This can be looked a t in  term s of fiber diam eters. A higher air 

velocity results in  finer fibers (see Figure 5.3). These finer fibers have a low er 

m ass per u n it length and hence a low er inertia to vibrations.

Figure 5.7 shows the profiles for cone size of fiber vibration in  the w - 

direction. O n com paring Figures 5.6 and 5.7, it is apparent that the vibration 

am plitude in  the w-direction is low er than in  x-direction, especially for the 125 

m /s  air velocity. The w-direction is parallel to the air slots, whereas the x-
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direction is perpendicular to the air slots. As w ith x-direction cone size, a 

higher air v eloci^  results in  a greater am plitude of fiber vibrations.

53.2 Etfect of A ir Tem perature a t the Die Exit

The m odel w as run  for three different air tem peratures a t the d ie exit of 

300 °C, 325 °C, and 350 *C.

Figure 5.8 show s the fiber diam eter profiles as a function of air 

tem peratures a t the die exit. A higher air tem perature at the d ie exit results in  a 

slightly lower final fiber diam eter. A higher air tem perature a t the d ie exit 

slows dow n the rate of cooling of fiber which results in  a  low er polym er 

viscosity. Due to a low er polym er viscosity a greater attenuation of fiber is 

seen.

Figure 5.9 show s the effect of air tem perature at the d ie exit on  the fiber 

tem perature profile. A higher air tem perature a t the die exit results in  a slower 

rate of cooling of fiber. The filam ent tem peratures at any po in t along the 

threadline are higher for h i^ e r  air tem perature.

Figure 5.10 show s die rheological stress profiles as a  function of air 

tem perature. A  higher air tem perature a t the die exit results in  a low er stress. 

A higher air tem perature results in  a higher filam ent tem peratures along the
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threadline (see Figure 5.9). These higher filam ent tem perature result in  low er 

polym er v iscosi^  and hence low er rheological stress.

Figures 5.11 and 5.12 show  die profiles for the x-direction and w - 

direction cone sizes of fiber vibration respectively. A higher air tem perature 

results in a  higher cone size of vibration in  bod i x and w  direction.

5 3 3  E tf ect o f Polym er M ass Flow rate a t th e  D ie Exit

The m odel w as run for three d iâeren t polym er mass flowrates of 0.25, 

0.36, and 050 g /m in .

Figure 5.13 shows die fiber diam eter profiles for die three d ifferen t 

polym er m ass flowrates. The results are as expected. A higher polym er 

throughput results in  a thicker final fiber diam eter and a slow er ra te  of 

attenuation.

Figure 5.14 shows the fiber tem perature profiles as a function of polym er 

throughput. A  higher polym er throughput results in a slow er rate of cooling. 

This effect is expected because a higher polym er diroughput results in  a h igher 

heat capacity (m x Cp/ ) of the fiber and hence a  slow er rate of cooling.

Figure 5.15 shows the effect of polym er flowrate on the fiber rheological 

stress profiles. A lower polym er throughput results in higher rheological
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stress. Also the maxima of rheological stress profiles shifts closer to the die for 

low er polym er throughputs.

Figure 5.16 and 5.17 show the profiles for cone sizes in x-direction and 

w -direction respectively for the three different polym er flowrates. An increase 

in  polym er throughput results in a sm aller am plitude of fiber vibration in both 

X and w  directions.

53.4 Effect o f Polym er Tem perature a t the D ie Exit

The m odel w as run  for three different polym er tem peratures at die die 

exit of 335*^, 350 and 365 °C.

Figure 5.18 show s fiber diam eter profiles fo r die three difierent polym er 

tem peratures a t the die exit. A higher polym er tem perature a t the die exit 

results in  a faster rate of attenuation and a d iinner final fiber. This is expected 

because of die effect of tem perature on polym er viscosity. A higher 

tem perature results in  lower polymer viscosity an d  hence a greater attenuation 

of fiber for th e  sam e air velocity.

Figure 5.19 show s the fiber tem perature profiles as a function of polym er 

tem perature a t die d ie exit. A higher polym er tem perature a t the die exit w as 

found to resu lt in  a higher filam ent tem perature a t any point along the 

threadline.
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Figure 520 show s the effect of polym er tem perature a t the die exit on 

the rheological stress profile. A higher polym er tem perature a t the die exit 

results in  a lower rheological stress. Also the poin t a t w hich the maximum 

stress is reached moves closer to the d ie for higher polym er tem peratures at the 

die exit.

Figures 521 and 5.22 show the cone size of fiber vibration in  x-direction 

and w-direction respectively. A higher polym er tem perature a t the die exit 

results in  a higher am plitude of fiber vibration in boffi x and  w  directions.

5.4 CONCLUSIONS

A 3-dim ensional mathem atical m odel has been developed to sim ulate 

the m elt blow ing process. The useful inform ation obtainable from  the model 

includes the profiles for fiber diam eter, tem perature, rheological stress, and the 

cone size of vibration.

The m odel can assist in  developm ent and optim ization of the melt 

blowing process by  enabling the user to quickly try  ou t any change first on the 

m odel before doing it on the actual process.

176



5.4 NOMENCLATURE

Cdni/ Com2  = drag  force coefficients based on the drag force perpendicular to 
the filam ent

Cf = fiiction factor for parallel flow of fluid along the filam ent surface

Cp^ = fiber heat capacity, J/(K gX )

dAjsr = outer diam eter of annular die orifice, mm

df = diam eter of filam ent, ^im

do = m edian diam eter of filam ents used in  the correlation of Ju an d  Sham baugh 
(1993); do *  78 jun

fpar= un it vector along the z axis (parallel to  the fiber)

f^ i and f^ 2  = tin it vectors norm al to z axis and perpendicular to  each other 

Fd = aerodynam ic force on foe filam ent in  the y  direction (see Fig. 5.2), N

F%̂  and F^w = aerodynam ic forces on foe filam ent in  foe x direction and w  
direction respectively (see Fig. 5.2), N

Fni and Fxz = drag forces norm al to  the m ajor axis (z direction) of foe fiber, N  

Fp« = drag  force parallel to  foe m ajor axis (z direction) of foe fiber, N  

Frheo = rheological force, N  

Ft = total force on foe fiber, N  

h  = convective heat transfer coefficient, W/(m^.K)

h  = a characteristic d ie dim ension defined by H arpham  and Sham baugh (1997). 
Its value is 3.32 m m  for ou r die

k, = therm al conductivity of air, W /(m JQ
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1 = y value at upper control surfoce of the control volume 

1+Al = y value a t low er control surface o f tiie control volum e 

Lf = length of an elem ent of the  filam ent, m  

m  = fiber m ass

m = polym er mass flow rate, g /m in

N u = N usselt num ber for h ea t transfer betw een the air and th e  fiber 

Q = polym er flow  rate fiirough the die, cm ^/m in

RecMi and Rcdnz -  Reynolds num ber based on filam ent diam eter and  die 
com ponents of air velocity perpendicular to the filam ent axis

r = radial direction inside th e  fiber (perpendicular the z direction)

Reop = Reynolds num ber based on filam ent diam eter and the com ponent of air 
velocity parallel to  foe filam ent axis

Reeff = Reynolds num ber defined by equation 44

Ta = air tem perature, ®C

Taxwe = air tem perature a t d ie (y = 0), ®C

Tf = filam ent tem perature, ®C

Tfxiie = filam ent tem perature a t die (y = 0), °C

Va = free stream  air velocity, m /s

V a^ = Vjo = air velocity a t foe die (y = 0), m /s

Vf = fiber velocity, m /s

Vâ ffjMi and V a^jo = com ponents of effective air velocity w hich are norm al to 
foe filam ent axis, m /s
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Va .̂par = coniponcnt of effective air velocity which is parallel to the filam ent 
axis, m /s

Vo = maximum air v elo ci^  a t a  fixed y, m /s  

Vjo = Vmxiie = air velocity a t the d ie (y = 0), m /s

v ,^  = effective, o r relative, velocity of air w ith respect to the fiber, m /s

X and w  = horizontal coordinates such ffiat w, x and y form  an  orthogonal 
coordinate system; see Figure 5 2

xi/z = air velocity half-w idth, m m

ti/2 = air tem perature half-w idth, m m

y = vertical coordinate; see Figure 5 2

z  = coordinate position along ffie fiber axis; see Figure 5 2

Greek Letters

a  = angle between the projection of fiber axis on die x-y plane and  the y  axis 

5 = angle between the fiber axis and  the w  axis 

P = leading coefficient in  the M atsui (1976) correlation 

Tif = fiber viscosity, Fa^

T)o = zero shear viscosity, P a3

6jo = excess air tem perature above am bient at die exit, °C

6o = excess air tem perature above am bient along the center line (the y  axis),

Ha = air viscosity, P a^

Va = kinemetic air viscosity, m ^/s
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pa = air density, k g /

Pao = air density along the center line dow nstream  from  the nozzle, kg/m ^ 

Pao. = air density a t ambient conditions, kg/m ^

T = extra stress. Pa 

V = angle betw een fiber axis and

Subscripts 

a = air 

die = die 

eff = em otive 

f = fiber

i = fiber elem ent i and control volum e i 

N  = norm al 

par = parallel 

rheo = rheological

Superscripts

z  = coordinate position along the fiber axis
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Figure 5 .1  A schematic diagram  of the m elt blow ing process.
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Figure 5 .4  The fiber tem perature profiles a t difiérent air velocities.

1 8 6



8 E + 4
Polymer:

O 6 E + 4

enen0)
en

"ôü
en_o
oeu

4 E + 4

2 E + 4  -

OE+0

d ^ =  53 3 .0  um 
m  =  0 .3 6  g /m in  

Tf.dk- 350°C
To.dk=300°C

''o.dîe=125 m /s 

'^a,dîe=’ ^° 
''o.die=35 m /s

y (cm)

Figure 5 .5  The fiber rheological stress profiles as a function of air velocity.
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Figure 5 .10 The fiber rheological stress profiles a t different a ir tem peratures.
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CHAPTER6

ORIENTATION ENHANCED CRYSTALLIZATION OF 

POLYMERS: AN EXPERIMENTAL STUDY DURING MELT

SPINNING

ABSTRACT

A quantitative ev alu atiw  of the effect of am orphous orientation on ttie 
crystallization rate of polym ers w as m ade. The stu d y  is based on  die on-line 
m easurem ents m ade during  the m elt spinning process.

6.1 INTRODUCTION

Molecular orientation has long been know n to enhance the 

crystallization rate of polym ers considerably. Flory (1947) show ed diat die 

equilibrium  m elting tem perature of cross-linked rubbers increased w idi an 

increase of deform ation ratio X. H e proposed d ia t th is increase in  equilibrium  

m elting tem perature w as due to the reduction of entropy associated w ith  

draw ing of rubber sam ple. A n increase in  equilibrium  m elting tem perature 

enhances die crystallization rate a t a given tem perature due to increased super

cooling. Since Flory, several researchers have given d iderent m adiem atical
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relationships between equilibrium  m elting tem perature and deform ation ratio 

X for rubbers. Z iabidd (1976) gives an excellent review  of these theories. 

Q ualitatively, however, the general consensus is that an  increase in 

deform ation ratio increases the equilibrium  m elting tem perature.

Similar increase in  crystallization rate w iü i increasing molecular 

orientation have been show n for o& a: com m ercially im portant polymers as 

w ell by various autfiors including G upta and A uyeung (1989), Engler and 

C arr (1979), Lu and Spruiell (1987), Spruiell and W hite (1975), Goritz and Kiss 

(1986), Alfonso e t al (1978), W aisak (1981), and Sm ith and Steward (1974). 

Fung and Carr (1973), and Kitao e t al (1973) discuss die differences in 

m orphology of polym ers crystallized w ith and w ithout am orphous orientation.

Z iabidd (1976) gives expression for crystallization rate constant (K) of 

quiescent (no orientation) polym er as:

•expj^—K(T)=Kmax e x p |-4  I n z / ^ (1)

W here: T = tem perature

K(T) = crystallization rate constant

Kmax, Tomx, and D are characteristics o f a polym er.

U nder the effect of stress (resulting in  orientation), equation (1) gets m odified 

(2üabidd, 1976) as follows:
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K (T ,4 ) = K ^ e x p — 4 In2  ----  ha2 'fa^+ a3 (2)

fa (am orphous orientation factor) is defined as:

f , = ^  (3)

W here; An. = am orphous birefringence (a m easure of am orphous orientation) 

Aa° -  intrinsic am orphous birefringence ( characteristic of a polym er) 

ai, az/ a s ... = constants 

Z iabidd (1976) suggests confining the consideration to quadratic term s to get

• e x p j ^ —K ( T , f a ) = K m a x  e x p l-4 1 n 2 -  ̂ -t-A fa^ (4)

The effect of m olecular orientation is induded in  f« (am orphous orientation 

factor) tiirough An. (am orphous birefringence) w hich is directly  related to 

m olecular orientation in  the am orphous phase.

The problem  in  using equation (4) lies w ith  the factor A. h i spite of 

oriented crystallization being an im portant research area the inform ation about 

A is very scarce. A pparently, the only researchers w ho presen t data which 

makes a direct com putation of A possible are Alfonso e t a l (1978), W aisak 

(1981), and Smith and Steward (1974). These research groups used PET as the 

polym er and their data on A is applicable for a very lim ited range of f«
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(am orphous orientation factor). M oreover, there is inconsistency betw een these 

researchers as well for the same polym er PET (more about results from  these 

authors is discussed in  a  later section).

The unavailability of inform ation about A m akes the task  of 

quantitatively predicting tiie effect of m olecular orientation on the polym er 

crystallization rate im possible. M any commercially im portant m anufacturing 

processes (e.g. m elt spinning, m elt blow ing, etc.) involve polym er solidification 

under stress. The inaccurate know ledge of crystallization rate constants under 

these circumstances m ake tiie m athem atical models for these processes of 

lim ited use, especially since various rheological and therm ophysical properties 

are a function of polym er crystallinify. The objective of the p resen t s tu d y  is to 

experim entally obtain values for A.

6.2 EXPERIMENTAL DETAILS

Bansal and Sham baug^ (1996) presented results for on-line 

m easurem ents during the m elt spinning process. The study presented  profiles 

(as a function of distance from  the spinneret) for fiber diam eter, tem perature, 

velocity, birefringence, and density. Figure 6.1 shows the experim ental set-up 

of m elt spinning used. Fiber diam eter w as m easured using h igh  speed  flash 

photography, tem perature using infirared video camera, velocity u sing  laser
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Doppler velodm etry (LDV), and birefringence using  polarizing microscope. 

The density at any poin t along the threadline w as then com puted using the 

continuity equation as:

(5)

W here p = fiber density

T = fiber tem perature 

Xc = fiber aysta llin ity  

m  = polym er m ass throughput

A = fiber cross-sectional area (related to  fiber diam eter)

V = fiber velocity

Except for m , all these param eters vary along the threadline. The m , w hich 

equals the m ass rate exiting die spinneret, is constant along die threadline.

The polym er used w as polypropylene. In  d ie present study a technique 

for calculation of A, using die on-line m easurem ents reported by Bansal and  

Sham baugh (1996), has been developed.

6 3  PROCEDURE FOR CALCULATION O F 'A '

Bhuvanesh and G upta (1995) gave expression for crystallization rate of 

polym ers based on A vram i's theory as follows:
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^ = n K ( T ,f . ) X c ,_ -
(n -l)/n

In
V •^C.ooy

(6)

Where: ,» = m axim um  observed crystallinity

n  = Avram i index 

t  = tim e

K(T,fa) = crystallization rate constant (as a  function of T and f.) 

Xc = fiber crystallinity 

On integrating this expression w e get

Xc =Xc^« -^1—exp^ X,Yg (7 )

W here Kavg is die tim e averaged value of crystallization rate constant K(T, f.) 

between tim e 0 and t.

In m elt spinning the complete threadline can be divided into N  elements 

(identified by 'V) of equal length; see Figure 6JZ. X& gives the position of every 

element as distance from  die spiim eret. The spinneret is taken as i=0.

The time taken by  fiber to  travel hom  (i-1)* elem ent to  i*  elem ent is given as:

Ati =
Xj -X j-i (8)
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W here Vi and Vn are fiber velocities at i**» and (i+ l)‘*' elem ent (measured 

experim entally).

Equation (7) w hen applied to m elt spinning becomes

Xc,N =Xc,w j l - e x p ( - K a v g  X I (9)

W here: Xcn = fiber crystallinity a t the N * elem ent

tN -  tim e taken by fiber to travel fix>m spinneret to the N*** elem ent 

= tim e averaged value of K betw een spinneret and N ^elem ent 

(i.e. betw een t=0 and t=tx)

The tim e taken by fiber to travel from spinneret to  N * elem ent is given by

N
(10)

i=l

The fiber crystallinity a t any elem ent i is given by  the m ixing ru le of Shimizu et 

al. (1985):

X A-PaCTj) ,11)
■ pc(T .)-A (T ,)

W here p,- and T{ are fiber density and tem perature at the i^  elem ent (m easured 

experim entally). p«(Ti) and pc(Ti) are the am orphous and  crystalline density of 

polym er at tem perature T|. These values are know n quantities and are 

reported in literature (see Table 6.1).
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Hence by know ing tN and Xcjm the equation (9) can be used to determ ine 

the value of K.vg^.

This value of KavgK corresponds to a history of changing tem perature 

and am orphous orientaticm factor between tim e 0 and W. H ow ever, this 

problem  can be solved by  taking KavgN (which is tim e averaged value of K 

between t=0 and t=W) to correspond to a tim e averaged value of fiber 

tem perature and am orphous orientation factor between t=0 and  t=tN.

6.3.1 Tim e averaged value o f fiber tem perature and  am orphous o rien ta tion  
factor

The tim e averaged value of fiber temperature(TavsN) betw een t=0 and 

t=tisr can be given as:

W here dh is given b y  equation (8) and tN is given by  equation (10).

Stein (1956) gave the follow ing equation correlating the total m easured 

birefringence of a  fiber to d ie contributions m ade by crystalline and am orphous 

parts.

dr=X c fc 4 ° + ( l- X c )  4. V  (13)
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Where: At = total m easured birefringence of fiber

Xc = fiber crystallin ity  

fc = crystalline orien tation  factor 

Ac° = intrinsic crystalline birefringence 

fa = am orphous orientation fiictor 

Aa° = intrinsic am orphous birefiingence 

O ut of these fc Ac", and  A." are characteristics of a given polym er and are 

reported in literature (see Table 6.1).

Equation (13) can be rearranged and  applied to our situation as:

W here the subscript i indicate the  value a t position i along the threadline.

At.,- (total birefringence a t position i) is know n from  e)q>erimental 

m easurements. Xci is given b y  equation (11). Using equation (14) the f.^ a t any 

i can be determ ined.

The tim e averaged value of am orphous orientation factor (^v g ^) 

between t=0 and t= tx can th en  be given as:

(15)
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As w ith  the tem perature tim e averaging, dti is given by equation (8) and tx by 

equation (10).

U sing the procedure described above w e get a value of K.V&N corresponding to 

& Tav^N ând fâ vĝ >

63 .2  C alculation o f *Af

The param eter A can then  be determ ined by using equation (4).

A = (16)
(^a,avg.N)

W here Kouk, Tma» and D are characteristics of a given polym er and are reported 

in  literature (see Table 6.1).

Using this procedure w e get a value of A, T.vgK/ and fajivg^ for every 

experim ental 'ru n '. One ru n ' com prises of experim ental profiles m easurem ent 

of fiber diam eter, tem perature, velocity, birefringence, and density for a given 

polym er m ass flowrate and take-up speed.

6 3 3  In itia l conditions a t the sp iim eret
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The value of f»i and Xci a t i=0 (spinneret) w ere considered zero 

(assum ing no birefringence or crystallinity as the polym er comes out of the 

spinneret). T .at i=0 (spinneret) was set equal to the spinneret tem perature (225 

®C).

63.4 Param eters

A  sum m ary of values of param eters used, and their source, is given in 

Table 6.1.

The m easured values of birefringence, diam eter, tem perature, and 

velocity are know n between x=0 cm and x=80 cm  (from the spinneret). Some of 

these values are know n even beyond 80 cm b u t all four (needed for our 

com putation) are known only in  this range.

Hence for our computations:

Xo = 0 cm  

xn = 80 cm

W here x, represents the distance of e lem ait T  from  the spinneret.

Each elem ent was chosen to be 4 cm long. Reducing elem ent size to 

sm aller lengths d id n 't have much efrect on the calculated value of A, T.v&N or

fwYgN'
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6.4 RESULTS AND DISCUSSION

6.4.1 'A ' reported  b y  o ther researchers

Figure 6.3 show s the values of A calculated indirectly from  the w orks of 

Smith and S tew ard (1974), and Alfonso e t al (1978). These authors report half- 

tim es of crystallization (ti/z) a t vzuious conditions of tem perature (T) and 

am orphous orientation factor (f«) for PET. The crystallization rate constants (K) 

w ere calculated using  die following relationship betw een K and h/z:

K = ^  (17)
n/2

The calculated values of K w ere then used in  conjunction w ith  the 

reported crystallization tem perature (T) and am orphous orientation factor (L) 

in equation (4) to  get corresponding values for A.

The p lo t show s A  as a function of f« a t various tem peratures. A lfonso et 

al report data  a t tem peratures ranging betw een 95 and 115 "C. Sm idi and 

Steward repo rt data  for a tem perature of 120 °C. Im m ediately, the discrepancy 

betw een these authors (as m entioned in  the Introduction section) becomes 

clear. The values of A from  Smith and Steward are considerably higher d ian  

those from  A lfonso e t al for low er range of f«. Even diough A is know n to 

increase w ith  an  increase in tem perature, it is unlikely that it w ill increase so 

m uch w ith an  increase of 5"C (120"C for Smith and Steward as opposed to 115
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°C for Alfonso e t al); especially w hen Alfonso et al does not report th a t m uch of 

an increase in  A  betw een 95 "C and 115 ®C.

O ne of the reasons for discrepancy m ay lie in  the e)Ç)erimental technique 

used by  the authors. In  both diese articles the authors use an off-line technique 

w hich essentially involves crystallizing a length of PET fiber of know n 

am orphous orientation (f.) a t a know n tem perature for certain am ount of tim e. 

The tim e of crystallization is controlled b y  quenching the fiber after the desired  

tim e. The half-tim e of crystallization (ti/2) is fiten calculated from  die m easured 

crystallinity a t the end of die process and the tim e of crystallization. The 

problem  w ith  this approach is Üiat d ie oriented crystallization is an  extrem ely 

rap id  phenom enon. Sm ith and Stew ard report that even for m oderate 

am orphous orientation (An# =  0.080) and  tem perature (T = 120 °C), the half-tim e 

of crystallization was found to be less than  0.01 seconds (as opposed to several 

m inutes for unoriented PET). No com monly used quenching techniques can 

accurately quench die fiber fost enough to control the crystallization tim e to 

such sm all value. Hence d ie reliability of such technique may vary from  author 

to author (depending on accuracy of control over tim e of crystallization) and  

also from  m easurem ent to m easurem ent w idiin the same w ork (higher the 

orientation, the lower w ould be the half-tim e and hence m ore sensitive to 

errors in  m easured tim e o f crystallization).
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Apparently, w hile an off-line technique m ay w ork well for unoriented 

crystallization, in order to make accurate quantitative study of oriented 

crystallization on-line m easurem ents on a high-speed continuous process 

involving oriented crystallization have to be m ade.

6.4.2 Experim ental R esults

Table 6.2 shows the experim ental results obtained for a polym er 

flowrate of 0.400 g /m in . The take-up speeds studied are in  the range of 500 - 

4500 m /m in .

The values listed in  Table 6.2 are of tim e averaged fiber tem perature 

(TavgK)/ tim e averaged am orphous orientation factor (f«^vgN)/ time averaged rate 

constant (Kmv&N)/ and the corresponding value of A  for each of the experim ental 

'runs'.

Tavgj4 w as found to have a very w eak dependence on take-up speed for a 

given m ass throughput. Models for fiber spinning have predicted this behavior; 

see Uyttendaele and Shambaugh (1990). The higher spmning speeds produce finer 

diameters. These finer diameters cool a t a faster rate. However, this more rapid 

cooling rate is balanced by the fact that these finer fibers are exposed to the 

ambient air for less time (i e., at higher spinning speeds it takes less time for a fiber 

element to go from die qiinneret to a given position along die direadline).
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The take-up speed was found to have a very strong effect on the 

am orphous orientation w hich w as found to increase from about 0.11 to

about 0 .^ , on increasing the take-up speed from  500 to 4500 m /m in . This is an 

expected result; increasing the take-up speed results in  increased threadline 

stress, w hich in  tu rn  results in a greater orientation.

As expected, K«v^ was found to increase considerably on increasing the 

take-up speed. The crystallization rate constant increased from about 1.7 to 

about 58.4 on increasing the take-up speed 6om  500 to 4500 m /m in. Also 

show n in  the Table 6.2 is the value of Ko corresponding to each take-up speed. 

Ko is the crystallization rate constant calculated using  the tem perature (Tavgĵ ) 

alone and the Ziabicki's crystallization rate es^ression (equation 1). On any 

take-up speed the experim entally obtained crystallization rate constant BCav  ̂

w as found to be considerable higher than Ko. The largest difference between 

experim entally determ ined rate constant and  Ko w as found for the take-up 

speed of 4500 m /m in . This indicates a strong dependence of crystallization 

kinetics on  the am orphous orientation.

The crystallization rate constant Kmvgfj, in  conjunction w ith TavgjM and 

fa.avgN w as used in  equation (16) to obtain die value of A for every take-up 

speed. O ur results show  a sim ilar behavior of A as that reported by Smith and 

Stew ard (1974) and Alfonso e t al (1978) - i.e. a decrease in  the value of A w ith 

an  increase in  fa. Figure 6.4 shows a p lo t of A  as a function of fa (horn the data
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show n in  Table 6^). The decrease of A w ith  increasing fa is, how ever, in direct 

contrast w ith  the equation (4) given by Z iabidd (1976). Equation (4) assumes A 

to be independent of fa. This indicates that it is n o t possible to reject higher 

o rder term s in  equation (2) to get equation (4) even for sm all values of fa.

H ow ever, since experim entally obtaining values of higher order

constants (aa, a^  as, ........... ) in equation (2) can be extrem ely difficult, an

alternate form  of equation (4) in w hich A  is assum ed to be of a  form  A(fa) can 

be used. This equation can be used for an em pirical calculation of the rate 

constant K  as a function of T and f«.

Since A has been found to decrease w ith an  increase in  f«, it is d ear on 

com paring equation (4) and equation (2) that som e or all of the higher order 

constants (as, a*, a s , ) in  equation (2) m ust be negative.

6.5 CONCLUSIONS

A  quantitative technique for determ ination o f A (param eter required for 

calculating the effect of m olecular orientation on crystallization rate) based on 

on-line experim ental m easuronents during m elt spinning has been developed 

and  successfully applied for polypropylene.

A  w as found to decrease w ith increasing am orphous orientation factor

(f.).
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Since A  w as found to decrease w ith increasing f„ it is not possible to 

neglect the higher order term s in  equation (2) to get equation (4) as suggested 

by Z iabidd (1976). Instead, the original equation (2) w iüi the higher order 

term s m ust be used for d ie purpose of theoretical understanding of oriented 

crystallization. M oreover, it w as found by that some or all o f the higher order 

constants (as, a4, a s , ) in  equation (2) m ust be negative.

H ow ever, since experim entally obtaining values of higher order

constants (as, a#, as, ............) in  equation (2) can be extrem ely difficult, an

alternate form  of equation (4) in  w hich A is assumed to be of a form  A(&) is 

suggested. This equation can be used for an em pirical calculation of the rate 

constant K as a function o f T and f«.
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6.6 NOMENCLATURE

X q.o» = maximum observed crystallinity, %

A = constant in the Z iabidd (1976)'s crystallization rate equation 4 

A = fiber cross-sectional area, m^

D = half-w idth of die K(T) curve (characteristic of the polymer), ®C 

fa = am orphous orientation fiictor 

fc = crystalline orientation foctor 

K = crystallization rate constant, sec^

Kmax = constant in Z iabidd (1976)'s crystallization rate equation 1, sec^ 

m  = polym er mass throughput, g /m in  

n  = Avram i index 

T = tem perature, “C 

t  = tim e, sec

ti /2  = half-tim e of crystallization, sec

ti=  tim e taken by a fiber elem ent to  travel from spinneret to i* elem ent, sec

Tmax = tem perature at w hich crystallization rate is maximum (characteristic of 
the polym er), °C

V = fiber velocity, m /s

X = vertical distance from  the spinneret, cm

Xc = fiber crystallinity, %
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Greek Symbols

An. = am orphous birefringence

Am* = intrinsic am orphous birefringence (characteristic of the polymer) 

Ac* = intrinsic crystalline birehingence (characteristic of the polymer) 

At = to tal m easured birehringence of fiber 

p = fiber density, g/cm ^

Subscript

i s  value a t the elem ent i 

avg = average value 

a  s  am orphous 

c = crystalline
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Table 6 .1  Param eters used in  com putations for polypropylene

Parameter Value Source
Ktnax (sec ) 0.55 Ziabicki (1976)

T„«C*C) 65 Ziabicki (1976)
D("C) 60 Ziabicki (1976)

fc 0.87 Zieminski (1986)
V 0.0331 Bhuvanesh and Gupta (1995)
A.® 0.0468 Bhuvanesh and Gupta (1995)
n 1.0 Katayama and Yoon (1985)

Xc^oo 0.75 Frank (1968)
p a  (g/C C ) -5.5711x10"* T + 0.8683 

(Tin"C)
Frank (1968)

p75%(g/cc) -3.5806x10"*T + 0.9228 
(Tin"C)

Frank (1968)
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Table 6 .2  Calculated values of A ' for polypropylene

P olym er m a ss  flowrate =  0 .400  g/m in.

take-up speed 
(m/min)

(°C) •Wi(sec^* Ko(sec*’) A

500 146.77 0.1488 1.7427 0.4653 59.6
1500 147.85 0.1900 3.3639 0.4632 54.9
2500 148.29 0.2132 6.7753 0.4624 59.0
3000 148.51 0.2421 8.1691 0.4619 49.0
3500 149.13 0.2637 13.1936 0.4608 48.2
4000 149.00 0.3654 28.0557 0.4610 30.8
4500 142.28 0.4878 58.4107 0.4737 20.2

* crystallization rate constant as a function of temperature (evaluated using equation 1 and the
Taoĝ )
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Molten Polymer

Infrared
Camera

Guide Ring

Take-up
Roll

Figure 6.1 The m elt spinning apparatus w ith an inhared camera. A mechanical 
take-up roll was used for a spinning speed of 1500 m /m in . For higher spinning 
speeds, die roll was replaced w ith a venturi draw-down device (not shown in 
Figure). With die mechanical roll, e = 132 cm and p  = 20.3 cm. W ith the venturi 
device, i =120 cm and p = 10.4 cm.
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fiber
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Figure 6 .2  A section of the m elt spinning direadline showing the co-ordinate 
system used.
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Figure 6 .3  Literature reported values of 'A ' as a function of amorphous 
orientation for PET.
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Figure 6 .4  Experimentally determ ined 'A ' as a function of am orphous 
orientation for polypropylene.
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APPENDICES

APPENDIX A

COMPUTER PROGRAM FOR 3-D MATHEMATICAL 
MODELING OF MELT BLOWING

(Since the present 3-d m athem atical m odel is an  extension of the 2-d m odel 
developed by  Rao (1992), m ost of ttie below -given program  is similar to that 
reported by  Rao. The appropriate equations to extend the 2-d model to 3-d 
m odel have been incorporated a t various places in  the Rao s program ; see 
Chapter 5 for details of die m odified equations. Refer to Rao (1992) to get a 
detailed description and flow chart of various subroutines used in  this 
program )

Rao, R.S. S tab ili^  Analysis of the A ^ t  Blowing Process. M.S. Thesis, The 
U n iversi^  of Oklahom a, 1992.

GLOSSARY OF VARIABLES

A rrays

a constant for Runge-Kutta-GUl m ethod of solution for
system  of difierential equations 

A1 area o f cross section of a control surface
alpha angular orientation of a control volume as measured from

die ’Ÿ  axis a t die sta rt of a tim e interval 
alphai instantaneous angular orientation of a control volum e as

m easured firom the 'y ' axis
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alphai angular orientation of fiber as m easured from the 'y ' axis at
a control surface

alpm ax maximum angular orientation, of a control volum e as
m easured from the y  axis betw een two specified time 
instances

alpm in minimum angular orientation of a control volum e as
m easured from the "y’ axis betw een two specified time 
instants

b  constant for Runge-Kutta-Gill m ethod of solution for
system  of differential equations 

c constant for Runge-Kutta-Gill m etiiod of solution for
system  of differential equations 

delta angular orientation of a control volum e as m easured horn
tiie 'w 'ax is  at the start of a tim e interval 

deltai instantaneous angular orientation of a control volum e as
m easured from the W  axis 

deltal angular orientation of fiber as m easured from the 'w ' axis
at a  control surface 

deltm ax maximum angular orientation of a control volum e as
m easured from tiie 'w ' axis betw een two specified time 
instances

deltm in minimum angular orientation of a control volum e as
m easured from the 'w" axis betw een two specified time 
instants

derm  effective time derivative of the  control volume m ass for a
tim e increment

derT effective tim e derivative of the control volume tem perature
for a  time increment 

dervw  effective time derivative o f the control volum e 'w '
transverse velocity for a tim e increm ent 

dervx elective time derivative o f the control volum e V
transverse velocity for a tim e increm ent 

dervy effective time derivative of the control volume vertical
velocity for a time increm ent 

dfi fiber diam eter at the center of a control volume 'V at the
begirming of a time increm ent 

d i fiber diam eter at the center o f a  control volume T
d l fiber diam eter a t a control surface
dm idt interm ediate time derivative o f the control volume m ass
dT idt interm ediate time derivative of the control volum e

tem perature
dvfdz gradient of fiber velocity along the fiber axis
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dvfdzl gradient of fiber velocity along the fiber axis (at the control
surface)

dvw idt interm ediate tim e derivative of the control volum e 'W
transverse velocity 

dvxidt interm ediate tim e derivative of the control volum e V
transverse velocity 

dvyidt interm ediate time derivative of the control volum e vertical
velocity

dw id t interm ediate time derivative of the control volum e 'W
transverse position 

dxid t interm ediate tim e derivative of the control volum e V
transverse position 

Frehol rheological force a t a control surface
Frehowl ‘W  com ponent of Frheol
Frehoxl V  com ponent of Frheol
fireqcum frequency of vibration at any distance below die nozzle as

calculated from  time=0 to the present 
fi%qlns frequency of vibration as calculated betw een tw o specified

tim e instants
Frheo rheological force at a control surface a t the start of a  tim e

interval
Frheoyl 'y ' com ponent of Frheol
FrhMax maximum rheological force a t a  control surface betw een

tw o specified tim e instants 
Frhm in m inim um  rheological force a t a control surface betw een

tw o specified tim e instants 
IfCum num ber of times a control volum e crosses w=0 plane
Ifreqcum num ber of times a control volume crosses x=0 p lane
Ifreqlns num ber of tim es a control volum e crosses x=0 plane

betw een two specified time instants 
mfi mass of a control volume, T  a t the beginning o f a time

increm ent
m i m ass of a control volume T
Srehol rheological stress at a control surface
SrhMax maximum rheological stress at a  control surface betw een

tw o specified tim e instants 
SrhM in m inim um  rheological stress at a  control surface betw een

tw o specified tim e instants 
tam ax centerline air tem perature
Tfi fiber tem perature at the center of a control volum e T  a t the

beginning of a tim e increment
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TfiMax

TfiMin

Ti
T1
vaymax
vfwi

vfwiMax

vfwiM in

v6d

v£)dMax

vfxiMin

vfyi

vfyiMax

vfyiM in

visfibl
vwi

vwl
vxi

vxl
vyi

vyl
vzi

vzl

wfi

m axim um  tem perature of a control volume betw een two 
specified tim e instants
m inim um  tem perature of a control volume betw een two 
specified tim e instants
fiber tem perature a t the center of a control volum e 'i' 
fiber tem perature a t a control surface 
centerline air velocity
'w* transverse velocity a t the center of mass in  a control 
volum e T  a t the beginning of a tim e increm ent 
m axim um  'w ' transverse velocity of a control volum e 
betw een tw o specified tim e instants
m inim um  'w ' transverse velocity of the mass in  a control 
volum e betw een tw o specified tim e instants 
'x ' transverse velocity at the center of mass in  a control 
volum e T  a t the beginning of a tim e increment 
m axim um  'x ' transverse velocity of a control volum e 
betw een tw o specified tim e instants
m inim um  'x ' transverse velocity of the mass in  a control 
volum e betw een tw o specified tim e instants 
vertical velocity a t the center of mass in a control volum e T  
a t tire beginning of a  tim e increment
m axim um  vertical velocity of the mass in a control volum e 
betw een tw o specified tim e instants
m inim um  vertical velocity of the mass in a control volum e
betw een tw o specified tim e instants
zero shear rate fiber viscosity a t a control surface
'w ' transverse velocity of the center of mass in  a control
volum e T
'vsr' transverse fiber velocity at a control surface
'x ' transverse velocity of the center of mass in  a control
volum e 'i '
'x ' transverse fiber velocity at a control surface
vertical velodty^ of the center of mass in a control volum e
T
vertical fiber velocity a t a control surface
v e lo c i^  of the mass in  a control volume along the fiber axis
a t th a t position
com ponent of fiber velocity along the fiber axis a t a control 
surface
'w ' transverse displacem ent of the center of m ass in  a 
control volum e T  at the beginning of a tim e increm ent
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wfiMax m axim um  'w ' transverse position of the mass in a control
volum e betw een two specified tim e instants 

wfîM in m inim um  'w ' transverse position of the mass in a control
volum e betw een tw o specified tim e instants 

w i ‘W  transverse displacem ent of the center of mass in  a
control volum e T

xh 'x ' transverse displacem ent of die center of m ass in  a
control volum e T  a t the beginning of a tim e increm ent 

xfiMax m axim um  'x ' transverse position of the mass in  a control
volum e betw een tw o specified tim e instants 

xfiMin m inim um  'x ' transverse position of the mass in a control
volum e betw een tw o spedfied tim e instants 

xi x ' transverse displacem ent o f the center of mass in  a
control volum e T

Integer

I counter for a  control volum e
If indicator for direction of d rag  force on the fiber (= +1 for

+ve force and  =1 for -ve force)
Iter num ber of iterations
Itermax num ber of iterations indicated on screen after ever Iterm ax

iterations
Iterl num ber of iterations (reset to zero when Ite rl equals

Iterm ax)
Nfirz num ber of elem ents in  die fiozen fiber
N i num ber of elem ents above the super elem ent

Real

Angle
Cdn
cf

initial angle of fiber displacem ent (from y axis) 
norm al d rag  force coefficient 
skin friction coefficient
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check

coeHl

c o e ^
coe£B
cpfîb
d
delta
denfîb
dfo
dref
d t
dy

dyfrz

dzi
Eternity
FDi
FU
FNi
Fniw
FNix
FNiy
FPARi
FPARiw
FPARix
FPARiy
6
hi
kair
L8b
m erit

Pi

PMFR
Re
ReaD

test to track the crossover of a control volume over x=0 
p kne
first coefficient of the quadratic equation to calculate the
diam eter a t the low er control surface of a control volum e
second coefficient of ffie quadratic equation
third coefficient of the quadratic equation
specific heat of polym er
a characteristic dim ension of d ie
initial angle of fiber displacem ent (firom w  axis)
density of polym er
fiber diam eter at the capillary exit
reference diam eter in  Ju 's d rag  force correlation
tim e increm ent
step size in  'Y  direction in  ffie attenuating section of the 
polym er
s t ^  size in  y  direction in  the frozen section of the 
polym er
length of the control volum e betw een its control surface 
tim e till which calculations are done 
drag force 
lift force
norm al drag force (see chapter 5)
"W  com ponent of IN i
V  com ponent of FNi 
'Ÿ  com ponent of FNi
force parallel to die control volum e 
'w ' com ponent of FPARi
V  com ponent of FPARi 
y  com ponent of FPARi 
acceleration due to gravity 
heat transfer coefficient 
therm al conductivity of air
lengdi of attenuating section o f fiber
mass of a cone w ith a base diam eter equal to the diam eter
of the upper control surface of a control volum e and a
height equal to the length of the control volume
a constant (circumference o f a  circle divided by its
diam eter in Euclidean geom etry)
polym er mass fiow rate
Reynolds num ber based on vaefi (used to calculate hi) 
Reynolds num ber based on vaN  (used to calculate Cdn)
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ReD Reynolds num ber based on VaPAR (used to calculate
parallel drag)

Root the correct solution of the quadratic equation
Slope initial slope of fiber displacem ent (angle from the y axis)
t  tim e
taO air tem perature a t nozzle exit
ta ir tem perature of air at a  specified position in space
TfO fiber tem perature at nozzle exit
thetai angular orientation of the e lec tiv e  air velocity
time4 tim e a t the beginning of an interval for w hich the average

tim e increm ent is being calculated 
tU M  tim e intervals at which the bounds/lim its of the dependent

variables are output to files and reset 
toi m axim um  percent change in a dependent variables value

as com pared to its value at the sta rt of th a t tim e increment 
tP rt tim e intervals a t which ou tput is p rin ted  to files
vaO air velocity a t nozzle exit
vaeff effective air velocity
vaN l effective air velocity in the norm al direction 1 (see chapter

5)
veiN2 effective air velocity in the norm al direction 2 (see chapter

5)
vaPAR efiective air velocity parallel to  the fiber
vay velocity of air a t a specified position in  space
vfO fiber velocity at nozzle exit
w new  new  'w ' transverse position of a control volum e a t the end

of a tim e interval
xnew new  'x ' transverse position of a control volum e at the end

of a tim e interval 
y  y  position of a control volum e

C*
C*
C*
C*
C*
C*
C*

The following program  determ ines the tim e history of the fiber * 
below  a m elt blow ing nozzle. The die is a slo t die. For details * 
regarding m elt blow ing using a slot die geom etry, refer to * 
Tyagi and Sham baugh (1995) *
Runga-Kutta-Gill m ethod is em ployed to solve the system  of 7 * 
differential equations. Further details of the equations used can *
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c*. be found in  chapter 5 of thesis. 
C*

C ****** ARRAYS of DEP. VARs. for a  C.V.
C --------------------------------

DIMENSION dfi(550)^(550),Tfi(550),vfxi(550),vfyi(550), 
xfi(550)

C ****** ARRAYS of INTRMDT. VALs. of DEP.VARs. for a C.V.
C -------------------------------------------------

DIMENSION di(550)4ni(550),Ti(550),vxi(550),vyi(550),xi(550)

C ****** ARRAYS of INTRMDT. TIME DERV. of the DEP. VAR. for a C.V. 
C ---------------------------------------------------------

DIMENSION dmidt(550,4),dTidt(550,4),dvxidt(550,4), 
dvyidt(550,4),dxidt(550,4)

C ****** ARRAYS of TIME DERV. of tiie DEP. VAR. for a  C.V.
C -------------------------------------------------

DIMENSION derm(550),dert(550),dervx(550),dervy(550),derx(550)

C ****** ARRAYS of FIB. & AIR PARM. for a C.V.
C --------------------------------

DIMENSION alpha(550)^phai(550) J^rheo(550), 
freqCum(550)4ieqIns(550),
IheqCuxn(550)4h^£nÙ5(5^), 
tamax(550),vaymax(550), 
vfi(550),vzi(550), 
fCiixn(550),fIns(550),
IfCum(550)J£Ins(550),
Iw£req(550), wfreq(550),
Ifcninw(550), fcumw(550)

C ****** ARRAYS of FIB. FARM. & a C.S.
C ------------------------------

DIMENSION Al(550)^phal(550),dl(550),dvfdz(550)^vfdzl(550),
* F rheol(5S0)frI^xl(550)frheoyl(5% )^rheo(550),

Srheol(550),H(550),visfibl(550),vxl(550),vyl(550), 
vzl(550),df(550),vx(550),vy(550),Tf(550)
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CONSTANTS

cpfibs 2570 
d= 3.45e-3 
denfîb= 750 
dref= 78e-6 
g=9.8
Pi= 3.141592654
Read(ll,*) dfO,dy,taO,TfO,vaO,vfO,dyfrz
PMFR= denfîb*vfO*Pi*dfO*’*2/4
rl=3
xfO-0.0
wfo = 0.0

•••* W riting in INPUT1.DAT

Write(16,161) dfO,dy,taO,TfO,vaO,vfO/iyfrz 
161 F o rm a t(lx ^ l0 .1 ,lx ^ .3 ,lx ^ (f6 .1 ,lx )^ .l,lx J6 .3 ,lx ^ .3 )

W riting in  USERDEF.DAT

W rite (5 0 ^ ) START OF THE CONSTANTS OUTPUT * 
W rite(50^1) d,dref»le6
W rite(50^2) CONSTANT POLYMER PROPERTIES’, cpfib, denfib 
Write(50,503) "POLYMER VARIABLES & NOZZLE EXIT’,dfO*le6, 

vfO,TfO-273
Write(50,504) AIR VARIABLES @ NOZZLE EXrT,vaO,taO 
Write(50,505) STEP SIZES’,dy*100,dy£cz*100 
Write(50,506) Therefore’, PMFR
Write(50,500) '•■«** END OF THE CONSTANTS OUTPUT 
Write(50,*) ' '

500 Form at(lx ,/A /)
501 Form at(lx /’A nnulus O.D. (d)= ’,£7.4,’ m ’,5x,

’ Ref. Dia. in  Ju"s Cor.= ,f6.1,' urn’/ / )
502 F o rm at(lx ,A //lx ,’cpfib= ’,B.O,’ J/(KgJC)’3 x ,

’ denfib= ’,£5.0,’ K g/m 3’/ / )
503 F o rm at(lx ,A //lx ,’dfOs ’,£6.1,’ um ’,3x,’vfO= ’,£63,’ m /s ’,

3x,’T£0=’,£6.1,’C’/ / )
504 F orm at(lx ,A //lx ,’vaO= ’,£6.1,’ m /s ’3 x ,’ taO= ’,£6.1,’ C’/ / )
505 F orm at(lx ,A //lx ,’A ttenuating Section (dy)= ’,£4.1,’ cm’,

3x,' Frozen Section (dyhrz)= ',£4.1,' cm’/ / )

241

*



506 Form at(lxA //Ix/PO LY M ER  FLOW RATE= \e 9 ^ / K q/sec' /)  

1=1

:  *••••••* INITIAL DATA

W rite( V ) 'Reading INITIAL DATA’
31 Read(ll,*ÆND=30) dfi(I),vfyi(I),Tfia) 

dfi(D= dfi(Dne-6 
TfiO)= Tfi(D+273 
1= 1+1 
Goto 31 

30 N i=I-2 
Lfib= Ni*dy
Nfrz= INT((1.0-Lfib)/dy£tz)
W rite (5 0 ^ )  START OF THE INITIAL DATA OUTPUT *

»»»»»»•» MANIPULATING INITIAL DATA

W rite(V ) 'MANIPULATING INITIAL DATA'
W rite(V ) In itia l slope= '
Read(V ) Slope
delta = pi/(2.00000) - le-3
Angie= ATAN(Slope)
W rite(50309) TAN(Angle)

509 Foixnat(lx,Tnitial linear displacem ent of fiber w ith  slope= '
45J1)

Write(50,500) DETAILED INITIAL CONDHIONS OF THE FIBER 
W rite(50^11) 't'/y '/x fi'/d fi'/v fid '/v fy i'/T fi'

511 F o n n a t( lx ,4 x ^ 3 x ,lx ^ x ^ 3 x ,lx 3 X /A ^ ,lx ^ ^ ^ ,lx , 
2 ( 2 x ^ ^ , l x ) ^ A ^ / )

Do 401= IJSfi 
y= (I-0.5)"*dy
mfi(I) = denfib*Pi*(dfi(I)»^+dfi(I)*dfia+l)+

dfia+l)*'*2)*dy/(12*COS(Angle))/sin(delta) 
dfi(D = (dfi(I)+dfi(I+l))/2 
Tfi(I) = (Tfi(I)+Tfi(I+l))/2 
vfed(I)= 0.0 
vfwi(I)= 0.0
vfyi® = (vfyi(I)+vfyi(I+l))/2*COS(Angle)*sin(delta) 
vfi(I) = SQRT(vfxi(I)'«2+vfyi(I)*’̂ +vfw i(I)'«2) 
xfi(I) = y*TAN(An^e)
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wfi(I) = y/cos(angle)/tan(delta) 
d id ) =dfi(D  
I£reqCxim®= 0 
IfreqIns(I)s 0
W rite(50312) t,y*100pcfi(l)n00,dfi(l)ne6,vfxi(l), 

vfyi(D,Tfi(D-273 
W rite(*^12) t,y*100^(DnOO,dfi(I)*le6,vfed(I), 

v£yi(I),Tfi(I)-273 
40 CONTINUE

W rite(V ) "What distance beyond’,Lfib*100/ cm should  die',
* ' fiber be analysed (m)? (NXtra>=2)'

R ead(V ) Xtra 
NX tra= IN T(X tra/dy)

v6d(N i+l)=  (2*vfyi(Ni+l)-vfyi(Ni))-SIN(Angle) *sin(delta) 
vfyi(N i+l)=  (2*v^(N i+l)-v^(N i))*C O S(A ngle) *sm(delta)

Do 431= Ni+1, Ni+NXtra 
y=  (I-0.5)*dy 
dfi(I) = dfi(N i+l)
mfiO) = denfib*Pi*dfi(Ni+l)**2/4*dy/COS(Angle)/sin(delta) 
Tfi(I)=T£i(N i+l) 
v£xi(I)=s 0.0 

vfwi(I)= 0.0 
vfyi(I)= vfyi(N i+l)
vfiO) = SQRT(vfed(I)**2+vfyi(I)**2+vfwi(I)*^) 
xfi(I) = y*TAN(An^e)

: n (d e ltam efi/2 )d ien
wfi(I)= y/cos(angle)/tan(delta)

: Endif
d id ) =dfi(D  

: xfi(Ni+NXtra)= le-6
Write(50,512) t,y*100pcfi(D*100,dfi(D*le6,v6d(D, 

vfyi(D,Tfi(D-273 
W riter,512) t,y*100,xfid)*100,dfi(D‘̂ le6,vhd(D, 

vfyi(D,Tfi(D-273 
43 CONTINUE

N i= Ni+NXtra 
N frz=  Nfrz-NXtra 
Lfib= Lfib+NXtra*dy
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W rite(50307) N i 
W rite(50308) Lfîb*100

507 Form at(lx/N o. of Iterations on ttie attenuating fiber (Ni)= ’
,13/)

508 Form at(lx,’Lengtti of the attenuating fiber analysed (Lfib)='
,f5 ^ ; cm '/)

512 Form at(lx ,e8^,lx ,f6 .3 ,lx ,E 8^,lx ,f7 .2 ,lx^(E 8^,lx),f7^)

W rite (5 0 ^ )  '«*** END OF THE INITIAL DATA OUTPUT *•***'

C INPUT

W rite( V ) 'Reading INPUT 
t=s 0.0 
dt=  2e-10
Write(*,*) '% tolerance o f the dependent variable= '
R ead(V ) to i
Write(V) time interval to print current values (secs)= '
R ead(V ) tP rt
Write(*,*) time interval to print & reset limiting values',

* ' (secs)=
R ead(V ) tU M
Write( V ) 'total time to be analysed (secs)='
Read( V ) Eternity
Write(V) Indicate every iteration'
R ead(V ) IterM ax 
IterPrt=  IN T (tP rt/d t)
IterU M = IN T(tLIM /dt)
IterE t^=  IN T ^ tem ity /d t)
Write(50,500) '***- START OF INITIALIZING OUTPUT *****'
Write(50,518) d t
Write(50,519) t
Write(50,520) Eternity
Write(50,521) tP rt
Write(50,522) tU M
Write(50,523) IterM ax
W rite(50324) toi

518 F o rm atflx /lx ,'tim e increm ent step a t t=0 (dt)= ',e9% ' sec )
519 Form at(lx,'tim e a t sta rt of iterations = 'je92,,' sec )
520 Form at(lx,'tim e a t end of iterations = ,e9.2,' sec )
521 Form at(lx,'tim e interval betw een prin ting  = ',e92,' sec )
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522 Fonnat(lx ,’tim e interval betw een updating lim its =
e 9 2 / sec’)

523 Form at(lx,lndicate no. of iterations after ',112,
* ’ iterations')

524 Form at(lx,’percent tolerance in  the dep. var. = ,f62)

INITIALIZING

W rite(V ) ’INITIALIZING’
Write(50,500) ’CENTER-LINE AIR PROFILE'
Write(50,514) 'y ', 'vam ax', 'tam ax'

514 Form at(lx,3x,A ,2x,3x,lx,A ,lx,3x,lx,A ,lx/)
Do 411=1, N i

y=(I-0-5)*dy
Call AirMax(dJ,y,taO,vaO,tamax,vaymax)
Write(50,515) 5r*100,vaymax(I),tamax(I)-273 

41 CONTINUE
515 Format(lx,f5.2,3x,f7.2,3x,f7.2) 

a(l)= 0
b (l)= 0  
c(l)= 0  
a(2)=0.5 
b(2)= 0 
c(2)=0
a(3)= -0.5+SQRT(0.5) 
b(3)= 1-SQRT(0.5) 
c(3)=0 
a(4)= 0
b(4)=-SQRT(0.5) 
c(4)= 1+SQRT(0.5)
Q ieck= 0 
Iter = 0
Iterl=  IterMax-1 
time2= 100 
time3= 100 
time4= 0
Write(50,516) CONSTANTS FOR RUNGA_KUTTA_GILL ALGORITHM'

516 F orm at(lx ,/A /)
Do 50 K= 1,3

W rite(50317) K,a(K),K,b(K),K,c(K)
Do 601= 1, Ni+1
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dmidtCUQ = 0 
dTidt(I% ) = 0 
d vx id t(I^)=  0 
dvyidt(I,K)= 0 

d vw id t(I^ =  0 
dxidt(I,K) = 0 

dwidt(I,K) = 0 
60 CONTINUE 
50 CONTINUE

K =4
W rite(50^17) K,a(K)^,b(K),K,c(K)

517 Form at(lx/a('42;)=  ’,£7A^x,
•bC42;)= ',f7.4^x,
'c(M 2/)=\f7.4)

W rite(50300) ***** END OF XNTIIALIZING OUTPUT ****** 

C ******** START COMPUTATIONS

W riter,*) S tart COMPUTATIONS’
70 If (tJtÆ tem ity) then

Iter = Iter +1 
Iterl=  Iterl+1 
If (Iterl.eq Jterxnax) then 

Write(*/150) t,d tjte r - l,t/lte r  
Write(*/998) *Avg. d t for the previous in tervals 

* (t'tim e4)/IterM ax
Write(*/998) "Eternity = '^Eternity 

998 Form at(lx,A ,lx,el2.4)
Write(*/997) *rara= *,rara/ yaya= *,yaya 

997 Foim at(lx,A ,lxJ2,lx,A ,f5^)
Iterl=  0 
time4= t  

Endlf 
BIGsO

Do 80 K= 1,4
****** Updating LIMITS

If (K.eq^) then 
Do 901= 1, N i 

mSE= m frz 
FFFFPs FDfrz

2 4 6



alpha(I)= alphai(I) 
delt(I)= delti(I) 

dfi(I)=di(D  
df(D =dl(I) 
dvfdz(I)= dvfdzl(I)
SrheoW = SrheolG)
Frheo(]Q= Frheol®
T f® = T l®  
vy® = vyl®

If (alphai®  .gt.alpM ax® ) then  
alpMaxCQs alphai®  

else
If (alphai®  Jt.alpM in® ) A en  

alpM in® s alphai®
E ndlf

E ndlf

If ( delti®  .gt. deltm ax®  )then 
deltm ax®  = delti®  

else
If (delti®  Jt.deltm in® )then 
d d tm in ®  = delti®  

endif 
endif

If (dfi® .gt.dfîM ax® ) then  
df!M ax® *dfi®  

else
If (dfi® .lt.dfiM in® ) then 

dfiM in® = dfi®
Endlf

Endlf

If (Frheol®  .gtJ^rhM ax®) then 
FrhM ax(0= Frheol®  

else
If (Frheol® .ItFrhM in® ) then 

FrhM in® = Rrheol®
E ndlf

E ndlf
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If (SrheoI(I).gt.SrhM ax(I)) then 
SrhM ax(6= SrheoI(I) 

else
If (SrheoI(I).lt.SrhM m(I)) then 

SrhM iii(I)= Srheolfl)
E ndlf

E ndlf

If (Tfi(I).gt.TfiMax(I)) then  
TfiMaxCD* Tfi(D 

else
If (Tfi(I).lt.TfiM in(I)) then 

TfiM in(D=Tfi(I)
E ndlf

E ndlf

If (xfi(I).gtJcfiMax(I)) then 
xfiMsuc(I)s xfi(I) 

else
If (xfi(I)dtJcfiMin(I)) then  

xfiM in(I)= xfi(I)
E ndlf

Endlf

If ( w fi(I) .gt. wfîmax(I))then
wEmaxQ) = wfi(I)
else
if ( wfi(I) dt. wfim in(I))then 
wfim in(I) ss wfi(I) 
endif 
endif

If (vfxi(I).gt.v£xiMax(I)) then 
vfxiM axG)- v6d(I) 

else
If (vhd(I) Jt.v6dNfin(I)) then 

v£xiNCn(I)= v£xi(I)
Endlf

E ndlf

If (v£yi(I).gt.vfyiMax(I)) then
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vfyiMax(I)= vfyi(I) 
else

If (vfyi(I).lt.vfyiMm(I)) then  
vfyiMin(I)= vfyi(I)

Endlf
Endlf

If (vfwi(I).gt.vfwiinax(I))then
vfwùnax(I) = vfivi®
else
K (vfwi(I) Jt. vfwim in(I))then 
vfivixnin(I) = vfwi(I) 
endif 
endif

90 CONTINUE

Endlf

C ******«•»■««* c a L. o f INTRMDT VAL. of THE DEP. VAR. for THE C.V

Do 1001= 1, N i 
Ti(I) = TfiO) +a(K )*(dT idtai)

+b(K )*dTidta^)
+c(K )*dTidta3))*dt 

vxi(I)= vfxi®+a(K)*(dvxidt(I,l)
+b(K )*dvxidta^)
+d(K)»dvxidt(I^))*dt 

vyi(I)= vfyi(I)+a(K)*(dvyidt(I,l)
+b(K )*dvyidta/2)
+c(K )*dvyidta3))*dt 

xi(D = xfi(D +a(K)*(dxidt(IA)
+b(K )*dxidta^)
+c(K )*dxidta3))*dt 

mi(I) = mfi(I) +a(K )*(dm idta,l)
+b(K )*dm idta/2)
+c(K )*dinidta^))*dt

vwi(I) = vfwi(I) + a(K)*(dvwidt(I,l)
+ b(K )*dvw idta^)
+ c(K)*dvwidta3))*dt
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wi(I) = wfi(I) + a(K)*(dwidt(I,l)
+ b(K )*dw idta^)

+ c(K )*dw idta^))*dt

100 CO N TIN U E

CAL. of THE FIB. alpha's, H (I) & vis£ibl(I)

alphal(l) = ATAN(2*(xi(l)-xfO)/dy) 
alphai(l)=  ATAN((xi(2)+xi(l))/(2*dy)) 

c If(d€dta Jie. P i/2)tl% n
delü(l)=  A TA N ((dy/2/(w i(l)-w fo)/cos(alphal(l)) )) 
delti(l)=A TA N ((2*dy/(w i(2)+w i(l))/cos(alphai(l)))) 

c else
c deld(l)= P i/2
c delti(l)= P i/2
c Endif

If ( deltl(l) Jt.O.O)deltI(l)=Pi+deltl(l)
If ( delti(l) Jt.O.O)delti(l)=Pi+delti(l)

c print*/deltl(l)= ’,delti(l)
c print*,'delti(l)= ',delti(l)

T l(l) = TfO
visfibl(l)=  0.88'*1.28e-3’"exp(6021.44/Tl(l)) 

c visfibl(l)=  0.528*3.76e-3*exp(5754.71/Tl(l))

Do 1101= 2, N i 
alphal(I)= A TAN ((xi(I)-xi(I-l))/dy) 
alphai(I)= ATAN((xi(I+l)-xi(I-l))/(2*dy))

c If(delta Jie. P i/2 ) then
deltl(I)=A TA N ((dy/(w i(I)-w i(I-l))/cos(alphal(I)))) 
delti(I)=A TA N ((2*dy/(w ia+l)-w ia-l))/cos(al 

• phai(I))))
c If ( I.eq.30) delti(I)=-delti(I)
c else
c delÜ(I)=Pi/2
c delti(I)=Pi/2
c Endif
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If ( delÜO) .It. 0.0)delÜ(I)=Pi+delÜ(I) 
If ( delti(I) i t . 0.0)delti(I)=Pi+delti(I)

c p rm t» ;deiti('j;)’,deltl(I)
c print*;delti(’j ; ) ’,deIti(D

T1(D = (Ti(I)+Ti(I-l))/2 
visfibl(I)= 0.88*1.28e-3*exp(6021.44/Tl(I)) 

c visfibl(D= 0.528*3.76e-3*exp(5754.71/Tl(D)
110 CONTINUE

alphai(Ni) = ATAN((3*xi(Ni)-4*xi(Ni-l)+xi(Ni-2))
/(2*dy)) 

alphal(N i+l) = alphai(Ni) 
c If ( delta Jie. P i/2 ) tiien

deiti(Ni)=ATAN((2*dy/(3*wi(Ni)-4*wi(Ni-l)+wi(Ni-2)) 
* /cos(alphai(Ni)))>

deltl(Ni+l)=s delti(Ni) 
c else
c delti(N i) = P i/2
c deltl(N i+l)= delti(Ni)
c Endif

if(deiti(Ni).lt.O.O)deIti(Ni)=H+deIti(Ni)
deltl(N i+l)=delti(N i)

c print*/deIti(N i)’,deIti(Ni)
c print*;delti(N i+l)',deltl(N i+l)

Tl(N i+l) = 2*Ti(Ni)-Tl(Ni) 
visfibl(Ni+l)=0.88*128e-3*exp(6021.44/Tl(Ni+l)) 

c visfibl(N i+l)= 0.528*3.76e-3*exp(5754.71/Tl(Ni+l»

C CAL. of the DIA. & CRS.SECT. @ the C.S & C.V

d l(l) = dfO
A l(l) = Pi*(dl(l)**2)/(4*COS(alphaI(l)))/sin(delti(l)) 
C oeffl= 1.0
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Do 1341=2, Ni-NXtra+1 
y  = (I-0.5)*dy
d z i = dy /C O S (alphaia-l))/sin (delti(I'l))
Coe££2= dia-1)
Coe£f3= d ia -l)* ^ -12*m ia-l)/(denfib*Pi*d2 i)
C all QUADROOT(Coe£fl,Coef£2,Coe£f3,Root) 
dlCO = Root
A id) = Pi*(dl(I)**2)/(4*COS(alphaia)))/sin(delti(I)) 
d i(I-l)=  (dl(I-l)+dl(D )/2 

134 CONTINUE

D o 137 I=N i-NXtra+l, N i 
d z i = dy/C O S(alphai(I))/sin(delti(I)) 
di(I) = dl(Ni-NXtra+l) 
d l(I+ l)=  dl(Ni-NXtra+l)
A ia+ l)*Pi*(dia+ l)**2)/(4*C O S(alphaia+l)))/sin(deltia+ l))
m id) = denfib*Pi*di(D**2/4*dzi 

137 CONTINUE

C CAL. of THE FIB. VeL

»
»

1=1
vzid)=  vxid)*SIN(alphai(D)*sin(deltid)) 

+vyid)"COS(alphai(]Q)*sin(delti(Q) 
+vwi®*cos(delti(D) 

vx l(l)=  vfO*SIN(alphal(l))*sm(deld(l)) 
vy l(l)=  vfO*COS(alphal(l))*sm(delti(l)) 

vw l(l)=  vfO*cos(deltld)) 
v z l(l)=  vfO

D o 5501=2, N i 
vzid)=  vxi(D*SIN(alphaid))*sin(deltid))

* +vyi(I)*COS(alphai(I))*sin(delti(I))
* +vwi(I)*cos(delti(I)) 

vxl(D= (vxid-l)+vxi® )/2  
vyl(D= (vyid-l)+ vyi(0)/2  
vzl® =  (vzid-l)+V 2i® )/2 
vw l® =  (vw id-l)+vw i(I))/2

550 CONTINUE

1= Ni+1
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vxl(I)= vxi(I-l) 
vyl(l)= vyi(I-l) 
vzl® =  vzi^-1)

vwl(I)=svwi(I-l)

C *■»*■«**•****** CAL. o f THE FIB. Fiheo. @ THE C.S.

1=1
dvfdzl(l) = (-vzl(3)+4*vzl(2)-3*vzl(l))

*COS(alphal(l))/(2*dy)*sin(deIti(l))
Srheol(l) = 3*visfibl(l)*dvfdzl(l)
Frheol(l) = Al(l)*Srheol(l)
Frheoxl(l)=Frheol(l)*SIN (alphal(l))*sm (deltl(l))
Frheoyl(l)=Ftheol(l)*CO S(aIphal(l))*sm (deltl(l))

Frheow l(l)=  Frheol(l)*cos(deltl(l))

Do 1301= 2, N i
dvfdzl(I) = (vzi(I)-vzi(I-l))*COS(alphal(I))/dy*sm(deltl(I)) 

SrheolW  = 3*visfibl(I)*dvfdzl®
Frheol(I) = Al(I)*Srheol(I)
FrheoxlCO= Fiheol(I)'*SIN(alphal(I))*sin(deltl(I))
Frheoyl(I)= Frheol®*COS(alphal(I))*sin(deltl(I))

Frheowl(I)= Frheol(I)*cos(deltl0))
130 CONTINUE

FrheoI(N i+l) = 0.0 
Frheoyl(N i+l)= 0.0 
Frheoxl(N i+l)= 0.0 
Frheow l(N i+l)= 0.0

C CAL. of THE INTRMDT. TIME DERV. of THE DEP. VARs.

Do 1401=1, N i

FPARi

y= (I-0.5)*dy
dzi= dy/C O S(alphai(I))/sin(delti(I)) 

r  = ABS(sqrt(xi(D*^ + wi(I)**2)) 
r  =xi(I)

Call A irParm (d J,r,tam ax,vaym ax,y,tair,vay,vax) 
vaw  = 0.0
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c vay=(rl-0.5)/10*vay+vay
Call A irProp(tair,denair,kair,visair) 
thetai= ATAN((vax-vxi® )/(vay-vyi(I))) 
vaeff = SQRT((vax-vxi(I))*^+(vay-vyi(I))*'*2

* +(vaw -vw i® )*^)

c If(delta.eqP i/2) delti(I)=Pi/2
thetail=ACCS(((vax-vxi(I))*sm(delti(I))*sin(alphai(I)

* ) +(vay-vyi(I))*sm(delti®)*cos(aJphai(I)) +
* (vaiv-vw i® )*cos(deIti® ))/ abs(vaeff)A-0)

c * 0.0 )/(vaeff)/1 .0)
c print*, th e ta il, alphaiW -thetai

vaPAR = (vax-vxi®)*SIN(alphai®)*sin(delti(I)) 
+(vay-vyl(I))*COS(alphai®)*sin(drfti(I)) 

+(vaw-vwi(I))*cos(delti(I))
FPARi = 0.78*Pi/2*denair**0.39*(ABS(vaPAR))**(139) 

*di(I)**0.39*visair**0.61*dzi 
If (vaPAR.ge.0) then  

FPARix= FPARi*SIN(alphai(I))*sm(delti(I))
FPARiy= FPARi*COS(alphai(I))*sm(delti(I))

EPARiw=s FPARi*cos(deltiCD)
else

FPARix= -FPARi*SIN(alphai(I))*sm(delti(I))
FPARiy= -FPARi*COS(alphai(I))*sin(delti(I))

FPARiw= -FPARi*cos(deltiW)
Endlf

*
*

FNi

vaN  = (vax-vxi®)*COS(alphai(I)) 
-(vay-vyi(I))*aN (alphîd(I))

vaN l=  (vax-vxi(I))*sin(delti(I))*sin(alphai(I)- 
P i/2 ) +(vay-vyi(I))*sin(delti(I))*cos(alphai®- 
P i/2 ) +(vaw-vwi(^)*cos(delti(I))

vaN2=(vîDc-vxi(I))*sm(delti(I)-Pi/2)*sin(alphai(I)) 
+ (vay-vyi(I))*sin(delti(I)-Pl/2)*cos(alphai(I))
+ (vaw-vwi(I))*cos(delti(I)-Pi/2)

FN li=  6.958/2*denair**0.5601*ABS(vaNl)**1.5601
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♦di(I)**0-9645*visair**0.4399*dref**(-0.4044)
*

FN2i= 6.958/2*denair**03601*ABS(vaN2)**1.5601 
* ■"di(I)**0.9645*visair**0.4399*dief**(-0.4044)

* d z i

If (vaNl.ge.O) then 
FN lix= +FNli*sin(deIti(I))*sin(alphai(I)-Pi/2) 
FN liy=  FNli*sin(delti(I))*cos(alphai(I)-Pi/2) 

FN liw = FNli*cos(delti(I))
else

FN lix= -FNli*sin(delti(I))*sm (alphai(I)-Pi/2) 
FN liy=  -FNli*sin(delti(I))*cos(alphai(I)-Pi/2) 

FNliwss -FNli*cos(delti(I))
Endlf

If (van2.ge.0)then 
FN2ix= +FN2i*sin(delti(I)-Pi/2)*sin(alphai(I)) 
FN2iy= +FN2i*sin(deiti(I)-Pi/2)*cos(alphai(I)) 

FN2iw= +FN2i*cos(delti(I)-Pi/2) 
else

FN2ix= -FN2i*sin(delti(I)-Pi/2)*sm(aIphai(I)) 
FN2iy= -FN2i*sin(delti(I)-Pi/2)*cos(alphai(I)) 
FN2iw= -FN2i*cos(deIti(I)-Pi/2)
E ndif

FU & FD i

FLi= FPARix+FNlix+FN2ix 
FDi= FPARiy+FNliy+FN2iy

FWi= FPARiw+FNliw+FN2iw

hi

Re= denair*ABS(vae£0*di(I)/visair 
hi= 0.764*Re**0.38*kair/di(I)*(59.02

*ABS(SIN(alphai(D-thetai))'«0.849+40)/100 
c * *ABS(SDST(thetail))*n).849+40)/100
C dm idt, dTidt, dvxidt, dvyidt, dx id t
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»
*

»
»

*
*
*

*
*
*

*

dmidt(I,K)= denfib*(vyl(I)*Al(I)-vyl(I+l)
♦Aia+D)

d T id t(I^ =  (-cpfib*Ti(D*dmidta^)-hi»Pi*di(I) 
*dzi*(Ti(I)-tair) + denfib*q>fib 
»(vyl(I)»Al(I)Tl(I)
-vyl(I+l)’̂ Aia+l)*Tl(I+l)))
/(mi(I)*cpfib)

dvxidt(I,K)= (-vxi(I)*dmidt(IJC)
+FIi-Frheoxl(I)+Frheo5d(I+l)
+denfib*(vxl(I)*vyl(I)’̂ Al(I)
-vxl(I+l)*vyl(I+l)'^Al(I+l)))

dvwidt(I,K)= (-vwi(I)*dmidt(I,K)
+Fwi-FrheowI(I)+Frheowl(I+l)

+denfib*(vwl(I)*vyl(I)*Al(I)
-vwI(I+l)*vyl(I+l)*Al(I+l)))
/m i(I)

d v y id t(I^ =  (-vyi(I)*dm idt(I^)
+mi(I)*g+FDi-Frheoyl(P+Frheoyl(I+l)
+denfib*(vyl(I)*^*Al(I)
-vyia+l)**2*Aia+l)))

d x id t(I^ =  vxi(I)

d w id t(I^ ) = vwi(I)

If (I.le.(Ni-NXtra)) Üien 
m erits denfib»Pi»dy/COS(alphai(I))*dl(I)»'*2/12 
/sin(delti(I)) 

else 
m erits mi(I)

Endlf
R A lTO ls A B S (d m id ta^ /m erit)
R A 1 T 0 2 S  ABS(dTidt(IX)/TH(D)
R A T IO S s ABS(dvxidtaJC)/vfi(I))
R A T I0 4 s ABS(dvyidta,K)/vfi(I))

RATIOSs ABS(dvwidta,K)/vfi(I))
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If (RAH01.gt.BIG) then 
BIG= RATIOl 
rara= 1 
yaya= y*100 

E ndlf
If (RATI02.gtBIG) then 

BIG= RATI02 
rara= 2 
yaya= y*100 

Endlf
If (RATI03.gt.BIG) then 

BIG= RATIOS 
rara= 3 
yaya= y*100 

E ndlf
If (RATI04.gt.BIG) then  

BIG= RA1T04 
rara= 4  
yaya= y*100 

Endlf
If (RATIOS .gt.BIG) then 

BIG = RATIOS 
rara = S 
yaya = y*100 

endif

140 CONTINUE

80 CONTINUE

:  CALCULATION OF NEW VALUES

Do 14S 1=1, N i 
derm (I) = (dm idt(I,l)

+ O.S8S786»dmidta/2) 
+ 3.414214*dmidt(I,3) 

* + dm idt(I,4))/6
derTO) = (dTidt(I,l)

+ O.S8S786*dTidt(I,2) 
+ 3.414214*dTidt(I,3) 
+ dTidt(I,4))/6 

dervx(I)= (dvxidt(I,l)
»
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+ 0.585786*dvxidta,2)
+ 3.414214*dvxidt(I^)
+ dvxidt(I,4))/6 

dervy(I)= (dvyid t^ ,!)
+ 0.58S786*dvyidt(I^)
+ 3.414214*dvyidta/3)
+ dvyidt(I,4))/6 

dervw(I)= (dvw idt(I,l)
+ 0.585786M vwidta,2) 
+ 3.414214*dvwidta/3) 
+ dvw idt(I,4))/6 

derx(I) = (dxidt(I,l)
+ 0.585786*dxidta^)
+ 3.414214*dxidta3)
+ d x id ta 4 ))/6  

denv(I) = (dw idt(I,l)
+ 0.585786*dwidta/2)
+ 3.414214*dwidta/3)
+ dw idt(I,4))/6

mfi(I) = m£i(I) + derm (I)*dt 
Tfi(D = Tfi(I) +derT(D *dt 
vfed®= vfed(I) + dervx(I)*dt 
vfjd(I)=s vfyi®  + dervy(P*dt 

vfwi(I)= vf^OO + dervwCI)*dt 
vfi(I) = SQRT(vW(I)**2+vf^(I)**2 

+vfwi(I)**2) 
xnew  = xfi(I) + derx(I)*dt

w new  =w fi(I) +derw (I)*dt 
Check = xnew*xfi(I)
CheckZ = (xnew-2e-5)*(xfi(I)-2e-5) 
Check? =wnew*wfi(I)
Checks = (wnew-2e-5)*(wfi(I)-2e-5) 
If (Check.lt.O) then 

IfreqCumW = IfteqC um (I)+l 
hreqhisCI)- I£reqhis(I)+l 
freqCumW  = IhreqC um (I)/t 
£reqlns(l) = XfreqIns(I)/tLIM 

E ndlf
If (Check2.1t.O) then 

LFCum(I)= IfCum (I)+l 
IfIns(I)= IfIns(I)+l

2 5 8



£Cum(I) = IfC um (I)/t 
£Ins(I) = I£bis(I)/tLIM  

Endlf 
Check= 0 
Check2= 0 
If (Check7.1t.O) then 

Iwfreq(I)= Iw£req(I)+l 
wficeq(I) = Iw freq ® /t 

Endlf
If (Check8.1t.O) then 

EFCumw(I)= IfCum w (I)+l 
fCumw(I) = IfC n m w ® /t 

Endlf 
Check7= 0 
Check8= 0 
xfi(I) = xnew  

wfi(I) = w new

145 CONTINUE 

:  PRINTING

If (time2.ge.Ü*rt) then

Write(15,150) t,d tjte r ,t/lte r  
WriteU6,150) t,d tjte r  
W riteU7,150) t,d t4 ter 
W riteU8,150) t,d tjte r  
WriteU9,150) t,d t J te r 
Write(20,150) t,d tjte r  
Write(21,150) t,d tjte r  

c Write(15,151) y /x fi'/a lp h a '/d fi'/v h d ’,
c * ’vfyi’/T fi/F rh eo ’/dvfdz '/S rheo '

write(15,778)
778 form ate^, *y', 6x, d ia \ 6x, tem p.', 6x, ’Stress’) 

Write(*,150) t,d t,Ite r,t/Ite r 
W rite(V ) ’ mSE= ’,mSE/ FDfrz= ’JT F FF / FSE= ’, 

* mSE*g+FDfrz
W rite(M 51) ’y’/x fi’/a lp h a’/d fi’/vfcd’,

’vfyi’/T fi’,T rheo’;d v fd z ’;S rheo’
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W rite(*/)
Write(17A71) y /d m id tl'/d m id tZ ',

* ’dm idt3','dm idt4',’d en n '
Write(18,171) 'y '/dT id tl'/dT id tZ :

'dTidt3‘;dTidt4*;derT  
Write(19A91) ’y '/d v x id tl’/dvxidtZ ’,

* *dvxidt3’/dvxidt4’,’dervx'
Write(20,191) yV dvyidtl’/dvyidtZ ’,

* 'dvyidt3’/dvy id t4 '/dervy '
Write(21,171) y '/d x id tl'/d x id t2 \

* dxidt3*;dxidt4’;d e rx ’

Do 1601=1, N i 
y=  (I-0.5)*dy

c Write(15,153) xfi(I)*lGO,wfi(I)*lGG,y*10G
W rite(M 53) xfi(l)n00,wfi(l)n00,y*100

c Write(15,152) y*100pcfi(I)*100,alpha(Dn80/Pi,
c * dfi(I)ne6,vfed(I),vfyi(D,Tfi(I)-273,
c * Ftheo(I),dvfdz(I),Srheo(I)
c * delt(I)*18G/Pi,wa(I)*lGG,srhec(I)

Write(15,777) y*lGG, dfi(I)ne6 , tfi(I)-273, srheo(I) 
777 foim at(4x, £6^, 4x, f6^, 4x, £62, elG 2) 

c W rite(M 52) y*lGGpcfi(I)nGG,alpha(I)n8G/Pi,
c * dfi(I)ne6,vfed(I),vfyi(D,Tfi(I)-273,
c * Frheo(I),dvfdz(I)3rheo(I)

Write(16,*) df(D*le6,vy(I),Tf(I)-273 
Write(17,172) y*lGG,dm idt(I,l),dm idt(I2),

* dm idt(I,3),dm idt(I,4),deim (I) 
W rite(18,172)y»lGG,dTidt(I,l),dTidt(I2),

dTidt(I,3),dTidt(I,4),derT(I)
Write(19,172) y*lGG,dvxidt(I,l),dvxidt(I2),

* dvxidt(I3)/dvxidt^,4),dervx(I) 
Write(2G,172) y*lGG,dvyidt(I,l),dvyidt(I2),

* dvyidt(I3)/dvyidtG /4),dervy®  
Write(21,172) y*lGG,dxidt(I,l),dxidt(I2)/

* dxidt(I3),cûidt(I,4),derx(I)
160 CONTINUE

tim e2=0

150 F o rm at(lx //lx ,'t=  ',e9.3,lx,' d t=  ',e9.3,lx.
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* ' # of Iter.= ’48 ,lx / Avg. dt= ’,e9.3/)
151 F o rm at(lx 3 x ,A ^ ,lx 3 x ,A ,2 x ,lx ^ ,lx ,A ,lx ,lx ,

*  2 x ^ ^ , l x ^ ^ ,2 x , l x , l x ,A , l x ^ ^ ^ , l x ^ ,A ,  
l x ^ ,A / / )

152 Form at(lx,f3.1,lx^l0.8,lx,f5.1,lx,£5.0,lx,e8^, 
Ix,e8^,lx^.0,lx^.3,lx,fl0.8/lx^7^)»

153 Form at(lx,fl0.8,4x,fl0.8,^, G .l)

171 F o n n a t(lx 3 X /A ^ ,lx ,4 (2 x A /2 x ,lx )3 x ^ //)
172 Fonnat(lx,fÔ .2,lx^(el0.3,lx))
191 F o rm a t(lx 3 x ,A ^ ,ix ,4 (2 x ^ ,lx ,lx )3 x ,A // )

E ndlf
If (time3.ge.tLIM) then

Write(12,150) t,d tjte r 
Write(13,150) t,dU ter 
Write(14,150) t,d tjte r 
Write(22,150) t,dU ter 
W rite(12421) y;xfiMax*/xfiMm*,’WfiMax’, 

•WfiMin’
Write(13,131) y/vfcdMaxVvfcdMin’,

'vfyiMax'/v^nMm%THMax'/TmÆn 
Write(14,141) y;dfiM ax';dfiM in*,TrhM ax’, 

TrhM in'/SrhM ax’/SrhM m’
W rite(22^1) y /Cum . Freq.^lns. Freq.' 
W rite(23^1 ) y /Cum . Freq.*,Tns. Fieq.’ 
W rite(52^1) y'/Cum . F reql’/C um  Freq2'

Do 2201=1, Ni 
y= (I-0.5)*dy
Write(12,122) y* 100pcfiMax(I)nOO,xfiMm(I)*100, 

WfiMax(I)*100,WfiMin(I)*l(K) 
Write(13,132) yiOO,v£xiMax(I),v£xiMm(I), 

vfyiMax(I),vfyiMin(I), 
TfiMax(D-273,TfiMin(I)-273 

Write(14,142) yiOG,dfiM ax(I)ne6,dfiM in(D*le6, 
FrhMax(I),FrhMm(I)/ 
SrhM ax^,SdiM m W  

Write(22,222) yiOO,freqCum(I),fireqIns(I) 
Write(23,222) y* 100,£Cum(I),fIns(I)
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Endlf

c dt=  tol/(100*BIG)
dt=055e-5 

t= t+ dt
time2= dm e2+dt 
dme3= tim e3+dt 
Goto 70 

Endlf

W rite(V ) ' '
Write(*,*) ’# of iterations=  \ite r / for a total tim e of

* t ;  sec'
WriteC/*) T he average d t for the w hole run  w as-

* t/lte r  
Write(15,») ' '
W rite(15/) '# of iterations^ ’4 te r/ for a total tim e of 

t ;  sec’
Write(15,*) 'The average d t for tiie whole ru n  was=

* t/I te r  
W rite(V ) ' '

999 W rite(V ) 'HAPPY DATA ANALYSIS'

STOP
END

SUBROUTINE QUADROOT(Coeffl,Coeff2,Coeff3,Root)

COMMON /C O N STA N TS/ U ter,dy ,y  
INTEGER K A R A

Term= Coeff2**2 - 4*Coeffl*Coeff3 
If (Term Jlt.O) th en  

WriteCV) Roots are IMAGINARY !!!'
W rite( V ) 'Sorry, I cannot proceed'
W rite(V ) T erm  = ,Term 
W rite(V ) ' @ Iter = ' Jter,'@  I = ' J , ' & y = ',y 
WriteCV) • w ith  ',' d l=  ,Coeff2,' m = ,(Coeff2**2 

-Coeff3)'*750*3.141592654*dy 
W rite(V ) 'Bye'
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HAHA= SQRT(Term) 
else

If (Tenn.gt.O) then 
Rootl= (-Coe£C2+SQRT(Term))/(2*Coe£fl) 
Root2= (-Coeff2-SQRT(Term))/(2*Coe£fl)
If ((Rootl.gt.O).and.(RooÛ.gtO)) then 

W rite(V ) Both roots are +ve !!!'
W rite(V ) 'Sorry, I cannot proceed'
W rite(V ) Rootl= ',R ootl
W rite(V ) Root2= ,Root2
WriteCV) ’@ Iter = ,Iter,'@ I = & y  = ',y
WriteCV) Bye'
HAHA= SQRTC-Term) 

else
If CCRootl.gt.O).and.CRoot2.1t.O)) tiien 

R oots Rootl 
H A H A sl 

else
If CCRootl.lt.O).and.CRoot2.gt.O)) then 

R oots R oo^
H A H A sl

else
If CCRootlit.O).and.CRoo^dt.O)) then 

WriteCV) " ^ th  roots are -ve !!!’ 
WriteCV) Sorry, I cannot proceed' 
WriteCV) R ootl=  ',R ootl 
WriteCV) RootZs *,Root2 

WriteCV) ' @ Iter = ’Jter,'@  I s  ’j , '  & y  = ,y 
WriteCV) "Bye"
H A H A s SQRTC-Term)

Endlf
Endlf

Endlf
Endlf

Endlf
Endlf

RETURN
END

SUBROUTINE AirMaxCd J,y,taO,vaO,tamax,vaymax) 

DIMENSION tamaxC550),vaymaxC550)
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es= 0.01 
ea= l.l*es 
M axlt= 100 
Ite rs  0
tests 1.0
tls2 9 6  
tu=  taO+273 
f ls  fTair(d,jr,taO,tl) 
fu s  fTair(d,y,taO,tu) 
te s ts  fl*fu

13 If ((ea.gtes).and.(Iter Jt.M axIt)) then
Ite rs  Iter+1 

23 If ((Iter.eq.l).and.(test.gt.O)) Üien
W rite(V) "HEY ! YOU !! Test is +ve.’ 
WriteCV) Guess again'
WriteCV) 'y = \y / tl = *,tl/ fl = ',fl 
WriteCV) 'y = ',y,' tu  = ',tu / fu  = ',fu 
WriteCV) Ü S ? tu  = ?'
ReadCV) tl,tu
f l s  fXairCd,y,taO,tl) 
f u s  fTairCd,y,taO,tu) 
te s ts  fl*fu 
Goto 23 

E ndlf
t r s  Ctl+tu)/2
e a s  absCCtu-tl)/Ctl+tu))'*100 
f rs  fIairCd,y,taO,tr) 
te s ts  fl*fr 
If Ctest.eq.O) then

e a s  0
If Cfl.eq.0) then

t r s  tl
Endlf 

else 
If Ctest.lt.O) then 

tu s t r  
fu s  fir 

else
If Ctest.gt.O) then

fls tr 
f ls f r
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E ndlf 
E ndlf 

E ndlf 
Goto 13 

E ndlf
tam ax(I)= tr 
p in fs  1.192
pO= 363.06/tamax(I)**1.005 
yb= y/d*(pinf/p0)**05 
If (y.le. 1.736M) then 

vaym ax(I)= vaO 
else

If(y.gt.l.736*d)then 
vaym ax(I)= va0*1.40*(y/d)** -0.610 

v a y m a x ^ s va0*1.40/(y/d)**0.61 
E ndlf 

E ndlf

RETURN
END

FUNCTION fTair(d^y,taO,t)

thjOs taO-21 
pm f= 1.192 
pO= 363.06/t*1.005 
yb= y/d*(pinf/p0)**05 
If(y.le.l.736*d)then 

<hO= thjO 
else

If (y.gt.l.736*d) tiien 
thO= thj0*1.20/(yb**0.615)

E ndlf
E ndlf
fTair= th0-(t-294)

RETURN
END

SUBROUTINE AirParm(d4,xf,taxnax,vaymax,y,tair,vay,v«oc) 

DIMENSION tamax(550),vaymax(550)
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y d = y /d

If (y.gt.l.736*d) then  
txyl2= (0.109*yd+0.155)*d 
vxyl2= (0.112*yd+0.040)*d 

tair= 294+(tamax(I)-294)*exp(-0.6749*(xf/txyl2)**2*(l
* 0.027*(xf/txyl2)**4))

vay= vaymax(I)*exp(-0.67^*(xf/vxyl2)**2'*^(l +
* 0.027*(xf/vxyl2)**4))

Endlf

if(y .le .l.7 3 6 * d )th e n  
tair = tamax(I) 
vay = vaym ax®  
endif

vax= 0.0

RETURN
END

SUBROUTINE AirProp(tair,denairAcair,visair) 

REALkair

denair= 363.06/(tair**1.005) 
kair = 3.337e-4*tair**0.761 
visair= (0.147+tair*(6.89e-3+tair*(-4.449e-6+tair 

*(1.614e-9))))*le-5

RETURN
END
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APPENDIX B

SUPPLEMENT TO MEASUREMENT TECHNIQUES

B .l InA aied Camera

The fiber tem perature m easurem ent w ith  an  infrared camera requires a 

know ledge of (a) fiber em ittance, (b) background tem perature, and (c) 

foreground tem perature. A detailed calibration technique for the 

determ ination of fiber em ittance w as developed and has been described in 

C hapter 2. The background tem perature and the foreground tem perature w ere 

determ ined as per die procedure described in  operator's m anual of the IR 

cam era (Model 6(X)L O perator's M anual, 1989, pp . A-1 to A-8).

D ue to spatial resolution lim itation o f the camera, the apparent fiber 

tem perature m easured by die cam era have to  be corrected (as described in 

C hapter 2). The slit response factor (SRF) curve for die 3X lens used by us was 

obtained from  the m anufacturer of the cam era. In  the equation form, the SRF 

for 3X lens is:
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S R F = -0.049+9435(sUt angle) -  29.25(sHtangIe)^

where SRF is d ie  slit response factor in  percentage, and  slit angle is in  mrads. 

For m ost of the m easurem ents done in this study, the follow ing settings of the 

IR cam era w ere used.

Camera-to*fiber-distance 55 cm
Background <calibrated>
Filter <OPEN-NORM>
Polarity <WH=HOT>
Center temperature <MANUAL>
Emittance <calibrated>
Blanking <ON>
LS Integrate <ON>
Temperature units <"C>
Temperature output <DISABLED>
Color select <0>
3X telescopic lens transmission <0.78>
External optics <1.0>
Image averaging <1>
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LDV

A detailed description of die fiber velocity m easurem ent technique using 

LDV has been given b y  W u (1991) and Fingerson et al. (1989). Since no flow 

reversal is expected in  m elt spinning, a zero frequency shift w as app lied  for the 

m easurem ents in  diis study.

The follow ing instrum ent settings were used for m ost of the 

m easurem ents of fiber velocity in  diis study:

Laser source 15 MW (Uniphase Inc.)
Filter high limit 10 MHz (variable)
Filter low limit 30 KHz (variable)
Mode TBC (total burst count)
Gain 8
Timer comparison 10%
Cycles per burst 8

B 3 H igh  Speed Photography

A detailed description of diis technique used to m easure fiber diam eters 

is given in  C hapter 2. The top view of the setup used  for h ig ^  speed 

photography is as show n below:
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z (cm) variable
1 (cm) 20
m (cm) 55
n (cm) 22
<D(o) 60

Aluminum plate

Camera Posterboard

Sunpak flash

The distance z w as varied to get as close to die 1:1 ratio (actual fiber size : fiber 

as it appears on  the negative) as possible. For som e m easurem ents, how ever, it 

w as not possible to keep the cam era fiiat close to  the fiber due to  problem s like 

excessive heat from  the d ie, and  other equipm ent coming in  the w ay. The 

background w as a black posterboard. A  Sunpak 622 A utopro flash Mras 

m ounted 10 cm  below  the p lane of the cam era to illum inate die background. A 

22 cm X 22 cm  m etal plate covered w id i alum inum  foil w as used as a reflector 

to reflect ligjht fiom  die flash onto the background to provide better
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illumination. The lens f-stop used w as f l l  and  the flash w as synchronized w ith 

a shutter speed of 1/60 seconds. To provide the reference, a constantan wire of 

211 micron diam eter w as also photographed under the identical conditions.

The developing and printing of film  w as carried out in the chemical 

engineering dark room . A prim er covering the basics of film  developing and 

printing has been prepared by Clint C ulbertson (1997).

B.4 Birefiringence .

The fiber birefringence was m easured using the interference color chart 

technique. Refer to operator's m anual for N ikon Labophot II polarizing 

microscope for a description of this technique.
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