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Abstract

An experimental study of fiber motion and nonwoven webs in melt blowing
was done. Fiber motion was characterized in terms of the fiber vibrations -
amplitude and frequency of vibrations - and the fiber position distribution. Fiber
amplitude was measured with both multiple image flash photography and laser
Doppler velocimetry. Fiber frequency was measured with laser Doppler
velocimetry. The fiber frequency experimental results were compared to the
predictions of Rao and Shambaugh model for melt blowing. The fiber amplitude
results showed that the fiber cone was elliptical. The elliptical nature of the fiber
cone was further confirmed with the fiber position distribution study. High speed
flash photography was used to determine the fiber positions in three-dimensional
space below a melt blowing die. For the planes transverse to the spinning
direction, the fiber distribution was found to follow a unimodal biavriate
probability distribution, and the experimental data were fit to a bivariate normal
distribution. Furthermore, it was found that the fiber laydown pattern or the web
distribution also follows a bivariate normal distribution. An image analysis
technique, based on Kullback-Leibler information principle, was developed to
evaluate the distribution of fibers in a melt-blown web. The parameters of the web
distribution were correlated to the melt blowing process variables - air velocity, air
temperature, polymer flow rate and polymer temperature. The web distribution
was found to increase (a) linearly with the axial position below the die, and (b) for
process conditions that reduced the fiber diameter. To further understand the melt
blowing process, the air turbulence structure of the rectangular, inclined cross-jets
was studied using a hot-wire anemometer. The axial mean velocity, turbulence
intensity, skewness factor, and flatness factor profiles were determined for both

continuous and oscillating flows.
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An Experimental Study of Fiber Motion and

Nonwoven Webs in Melt Blowing

Chapter 1

INTRODUCTION

1.1  Overview of Melt Blowing

In the nonwovens industry, melt blowing has become one of the important
processes for producing fine fiber webs. The fiber diameter in commercial melt-
blown webs ranges from 0.1 pm to 30 pm. Because of the fineness of fibers, melt-

blown webs have a large surface area per unit weight. This property of melt-



blown webs makes them excellent filtration and absorbent materials. Currently,
melt-blown webs are used in a wide variety of applications like high performance
filters, medical garments, industrial wipes, geo-textiles, battery separators, hygiene

products, carpets, and insulators.
1.1.1 The Melt Blowing Process

In melt blowing, the molten polymer extrudes through fine c:;lpillaries (about 500
micron) into a high velocity, hot gas jet, usually an air jet. Figure 1.1 shows a
typical setup of single filament melt blowing. The aerodynamic force of the high
velocity hot gas jet attenuates the molten polymer filaments to microfibers. These
microfibers entangle and get captured on the collection drum to form a nonwoven
web. The properties of nonwoven web depend on the fineness of fibers in web.
The higher the air velocity, the larger the aerodynamic drag force on the fiber, and
the more the fiber attenuates. Shambaugh (1988) has shown that the melt blowing
process has three main regions of air jet exit velocity. In region I, the low air
velocity region, the fiber is continuous and moves almost parallel with the air flow.
Typical fiber diameters in this velocity region are >10 pm. With the increase in the
air jet exit velocity, region I is reached, and the fiber becomes discontinuous and
forms undesirable polymer lumps, or “shots” (typically 20.3 mm in diameter). On

further increasing the air velocity, the process enters region III. In this region, fiber



shots are still present, but are much finer (<0.3 mm in diameter). The fiber
diameters in this region range from 0.1 pm to 10 um. The decrease in fiber
diameter, due to increase in air velocity, changes the fiber motion characteristics.
Consequently, air jet exit velocity becomes an important parameter in studying the
fiber motion. In the present work, all the experiments were done in region I of air

velocity.

For a given air jet exit velocity, fiber motion varies with the distance from the die.
Wu and Shambaugh (1992) defined three spatial “zones” of fiber motion at the exit
of melt blowing die. Zone A is close to the die exit. The fiber motion in zone A is
predominantly in the axial direction, and the fibers are predominantly oriented in
the axial direction. In zone C, the fibers are almost randomly oriented. Zone B is
the transition region between zone A and zone C. Furthermore, in their work
involving the measurement of fiber velocities with laser Doppler velocimetry, Wu
and Shambaugh described that the spatial location of the three zones of melt
blowing is a function of the air velocity region. Knowledge of orientation of fibers
in a zone is useful in defining the fiber motion and fiber-to-fiber contact and
entanglement. In the light of this, the present work concentrates on determining
the two parameters of fiber motion - fiber vibrations and fiber positions - in melt

blowing, and the parameters’ effect on the resulting nonwoven web.
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Figure 1.1 Typical setup of single-filament melt blowing



1.1.2 Background

The origin of melt blowing is attributed to the work of Fred W. Manning
(Manning, 1946). In his method, the hot molten polymer was extruded into two
consecutive air jets. The first jet heated and stretched the polymer into fiber, while
the second jet further stretched the filament and directed the fiber to the collection
screen. This work originated the concept of attenuating the molten polymer by
high velocity gas jet. The pioneering work in setting up a melt blowing unit was
done by V. A. Wente in 1950's (Wente, 1954; 1956). His unit was set up in Naval
Research Laboratory to produce filters for removing radioactive contaminants
formed in radioactive testing. The process was later commercialized by Exxon
Corporation; they developed first commercial multiple hole slot die for producing
nonwovens. Exxon has made dozens of patent claims in melt blowing, e.g., Buntin
etal. (1976) and Prentice (1978). Besides Exxon, many others have produced melt
blowing patents. For example, Schwarz (1983) patented a die design to improve

the economics of the process in terms of air to polymer mass loading.

1.1.3 Melt Blowing Models

Shambaugh (1988), Kayser and Shambaugh (1990), and Milligan and Haynes (1995)

have empirically modeled melt blowing to predict the fiber behavior at different



process conditions. Mathematical models of Uyttendaele and Shambaugh (1990)
and Rao and Shambaugh (1993) can be used to predict the diameter, rheological
stress, velocity, and temperature of the fiber. The Rao-Shambaugh model can also
predict the vibrations of the fiber threadline. The Uyttendaele-Shambaugh model
is one-dimensional, while the Rao-Shambaugh model is two-dimensional.
Recently, Bansal (1997) extended the Rao-Shambaugh model to three dimensions.
Bansal also performed online experiments to measure fiber properties in melt

blowing and melt spinning.

1.1.4 Air Drag in Melt Blowing

For the mathematical modeling of melt blowing, air drag coefficient correlations
were first studied by Narasimhan and Shambaugh (1986). They extended Matsui’s
(1976) correlation for drag coefficient in melt spinning to melt blowing. Milligan
and Haynes (1987) experimentally measured the air drag acting on the fiber
filament for a slot die. However, they did not evaluate a correlation for the drag
coefficient which can be used in a mathematical model. Majumdar and
Shambaugh (1990) experimentally measured the drag force on the fiber filament
in an annular, turbulent air stream to determine the drag coefficient of a filament
in a parallel flow. Later, Ju and Shambaugh (1994) developed correlations for the

air drag on the fiber filament at oblique and normal angles to the flow. Their



correlation was used in the models of Rao and Shambaugh (1993) and Bansal
(1997). In another work, Milligan (1991) hypothesized that the “form” drag or
pressure drag is due to the “flapping” or changing shape of the fiber threadline for

a melt blowing slot die.

1.1.5 Air Velocity and Temperature Flow Fields

The isothermal air velocity field of slot die were first studied by Milligan and
Haynes (1987) with a hot wire anemometer. The air flow fields required for
modeling the melt blowing process were experimentally measured by Uyttendaele
and Shambaugh (1989) for annular dies at isothermal conditions. They used a Pitot
tube for their measurements. Majumdar and Shambaugh (1991) measured velocity
and temperature fields of annular jets. Mohammed and Shambaugh (1993; 1994)
studied the velocity and temperature fields below a Schwarz die. Recently,
Harpham and Shambaugh (1996; 1997) developed correlations for the air velocity

and temperature fields below a slot die.

1.2  Objectives

The objectives of this study are (a) understanding the fiber motion in melt blowing,

and (b) relating the fiber motion to melt-blown webs. Fiber motion in melt



blowing has three main parameters: fiber velocity, fiber vibrations, and fiber
positions. Wu and Shambaugh (1991) measured the velocity of the fiber threadline
for an annular die with laser Doppler velocimetry. Shivaswamy (1994) extended
their work for the fiber motion below a slot die. Since velocity of the fiber at
different process conditions has already been studied, the works presented in this
study concentrate on fiber vibrations and fiber positions below a melt blowing slot

die.

Rao and Shambaugh observed that fiber vibrates with a characteristic frequency
in melt blowing. Tyagi and Shambaugh (1995) found that the fiber diameter could
be reduced by oscillating the primary air jets of a slot die with a frequency that
matches the natural frequency of the fiber. Recently, Chhabra and Shambaugh
(1996) measured the amplitude and frequency of fiber vibrations below a melt
blowing slot die. Their results for frequency measurements matched with the
results predicted by the Rao-Shambaugh model. This work is presented in Chapter

2 of this dissertation.

Fiber positions below a melt blowing die are apparently random. Milligan (1991)
concluded that, in melt blowing, the fiber motion is not periodic and exhibits the
nature of a chaotic phenomena. However, in this work, it has been found that the

fiber positions, while the fiber is in motion, follow a pattern. The pattern in which



fiber moves can be fitted to a probability distribution. Chapter 3 of this
dissertation deals with the statistics of fiber positions below a melt blowing die.

The contents of Chapter 3 have been submitted for a journal publication.

The effects of melt blowing process conditions on the morphological and
mechanical properties of polypropylene webs have been studied by Lee and
Wadsworth (1992). However, neither the fiber web distribution nor correlation
between the process conditions and the web structure were evaluated. A detailed
review of literature on the evaluation of web structure and fiber orientation in web
has been presented in Chapters 3 and 4. In the work described in Chapter 3, it has
been found that the fiber laydown pattern should also follow the same probability
distribution as the fiber follows while in motion. Following this conclusion, a
study has been done to evaluate the distribution of fibers in a melt-blown web. An
image processing technique, based on information entropy, has been developed to
evaluate the distribution of fibers in a single filament, melt-blown web. The
statistical parameters of the web distribution have been correlated to the melt
blowing process conditions. This work is presented in Chapter 4 of this

dissertation. The contents of Chapter 4 will be submitted for a journal publication.

Finally, since the fiber motion is affected by the air flow fields below a melt

blowing die, a one-dimensional study of the air turbulence in melt blowing has



been done. The study could not be extended to higher dimensions due to the lack
of equipment. However, the conclusions obtained from the results can be taken as
a starting point for two or three-dimensional study. This study is described in

Chapter 5 of this dissertation.
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Chapter 2

EXPERIMENTAL MEASUREMENTS OF FIBER THREADLINE

VIBRATIONS IN THE MELT BLOWING PROCESS

(The contents of this chapter were published in the journal Industrial & Engineering

Chemistry Research, v. 35, n. 11, 1996, pp. 4366-4374.)

21 Abstract

The motion of a melt blown fiber was experimentally measured. After exiting the
spinning die, a melt biown fiber was found to vibrate with frequencies and
amplitudes that were functions of the operating conditions (polymer flowrate,

polymer temperature, air flowrate, and air temperature). Fiber amplitude was
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measured with both multiple image flash photography and laser Doppler

velocimetry. Fiber frequency was measured with laser Doppler velocimetry.

2.2 Introduction

In melt blowing a stream of hot polymer is extruded into a rapidly moving field
of hot gas. The force of the gas upon the polymer results in the rapid attenuation
of the polymer into fine filaments. The polymer filaments are collected on a screen
as a nonwoven mat of fibers. Such mats have commercial value as filter media,
sorbent materials, insulation, and other uses. See Shambaugh (1988) for an
overview of melt blowing. Empirical models for melt blowing have been
developed for annular dies (Shambaugh, 1988; Kayser and Shambaugh, 1990) and

slot dies (Milligan and Haynes, 1995).

As the polymer filaments travel from the spinneret to the collection screen, the
filaments exhibit vibration. The amplitude of these vibrations can be
(qualitatively) observed with the naked eye. Under mild conditions (e.g., low gas
velocities), the amplitude is almost imperceptible. However, as conditions become
more severe (e.g., at higher gas velocities), the vibration amplitude becomes

steadily larger. Shambaugh (1988) defined three regions of melt blowing which
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relate to fiber breakup; these regions correspond to the severity of vibration

amplitude.

Mild (small amplitude) conditions of melt blowing were modeled by Uyttendaele
and Shambaugh (1990), and Kayser and Shambaugh (1990) did extensive
experimental work in this area. Basically, Uyttendaele and Shambaugh assumed
that the polymer stream moved in one direction only. Rao and Shambaugh (1993)
extended the Uyttendaele-Shambaugh model. The Rao-Shambaugh model
accounts for fiber vibrations: as conditions become more severe, the model predicts
larger vibration amplitudes. The model also predicts that there are characteristic
frequencies of vibrations associated with melt blowing — i.e., though conditions
along the threadline change rapidly, the threadline is a mechanical system and, as

such, has a characteristic frequency of vibration.

This work involves the experimental measurement of fiber vibration amplitude
and frequency. This work can be compared with the theoretical predictions of the

Rao-Shambaugh model.
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23  Experimental Equipment

The polymer was melted and pressurized with a Brabender extruder of 19.0 mm
(0.75 in) diameter and 381 mm (15 in) length. After exiting the extruder, the
polymer was fed to a modified Zenith pump which in turn fed a single hole melt

blowing die.

Refer to Tyagi and Shambaugh (1995) for details on the polymer supply
equipment; Figure 2.1 shows a cross section of the die. (Haynes and Milligan
[1991] have done work with a similar single hole die.) The polymer capillary had
an inside diameter of 0.407 mm and a length of 2.97 mm. The two air slots were
0.65 mm wide and 74.6 mm long. The air fields below this same melt blowing die
were recently characterized by Harpham and Shambaugh (1996). The polymer
used was 75 MFR (melt flow rate) Fina Dypro* polypropylene with M, =122,500.
The ranges of basic operating conditions used for the experiments are given in

Table 2.1.

Multiple image photographs were taken with a Canon AE-1 camera equipped with
a Tokina AT-X Macro 90 mm lens. A GenRad 1546 digital strobe provided the

illumination.
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The laser measurements were made with a one-dimensional, frequency shift, fiber
optic LDV system assembled by TSI Incorporated. The laser was a 15-mW He-Ne
laser built by Spectra Physics. A Bragg cell provided frequency shifting for
measuring flow reversals. The measuring volume (mv) was produced by a
backscatter probe that was at the end of a 10 meter long optic cable. This probe
and cable allowed us to keep the LDV system away from the spinning machine.
The small probe was 14 mm in diameter, 100 mm long, and had a working distance
of 60 mm. The laser probe was mounted on a Velmex 3-D traverse system that
permitted x, y, and z motions in 0.01 mm increments. Additional information on
this laser system is given by Wu and Shambaugh (1992); also see Appendix I for

the settings of LDV used in the experiments.

A multiple hole die as used in industry produces large numbers of filaments below
the die. With such a die, it is difficult to separate the measurements (via
photography and LDV) of one filament from that of another. Hence, as stated

above, a single hole die was used in the experiments.
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24  Experimental Techniques

2.4.1 Cone Diameter Measurements with Multiple Image Photography

The fiber "cone" is the volume below a melt blowing die in which a fiber travels.
The apex of the cone is at the spinneret hole. Figure 2.2a shows the setup used to
measure fiber cone diameter in the x direction; the coordinate system is shown in
the figure. Since the cone is three-dimensional, a similar setup was used to
measure cone diameter in the y direction. Figure 2.3 shows a top view of the setup
shown in Figure 2.2a. The camera was focused by temporarily placing a fine metal
wire directly below the die head and focusing the lens on the wire. The position
of the strobe resulted in excellent illumination of the filaments. The following

particulars gave photographs with excellent contrast between the filaments and the

background:

Lens aperture: f/2.5 for z s 10 cm; f/4.0 for z> 10 cm

Exposure time: 30 seconds in darkened room

Flash rate: 300 per minute (hence, there were 150 exposures per film frame)
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Field of view of lens: 12.5cm x 8.3 cm at25 cm

Film: Kodak T-Max 400 developed with Kodak T-Max developer

Paper: Kodak Polymax RC

To take cone photographs the camera was placed at the following five different z

levels: 5.0, 7.5, 10.0, 12.5, and 15.0 cm. At each z level, 5 replicate photographs

were taken. The distance between the two extreme fiber positions on the

photograph was taken as the fiber cone diameter.

To measure cone size in the y direction, the positions of the camera and strobe

were rotated 90° about the z-axis (see Figure 2.3). The above photographic

procedure was then repeated.

2.4.2 Cone Diameter Measurements with Laser Doppler Velocimetry

Cone diameter measurements were also produced using laser Doppler
velocimetry. This diameter measurement was based on the fact that an electronic

signal occurred whenever a fiber crossed the measuring volume (mv), which is the
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intersection of the two laser beams of the LDV system (see Wu and Shambaugh,

1992).

For the LDV measurements the camera and strobe (see Figure 2.2a) were replaced
with the LDV probe; see Figure 2.2b. For example, consider the placement of the
probe with the probe's major axis located along or parallel to the positive y axis.
Consider also that the probe is rotated about its major axis such that the two laser
beams lie in the x-y plane; see Figure 2.4. Now, consider the placement of the
beam intersection, the mv, along the x-axis; measuring volume "A" is
representative of an mv located along the x-axis. Since the fringes in this mv are
parallel to the y-z plane, fiber motion in the +x direction would be measured; this
is exactly the kind of motion that occurs in a fiber cone with an x dimension.
Traversing the mv along the x-axis would determine the presence or lack of fibers
all along the x-axis. This fiber presence should be comparable to the presence of
fibers in a cone photograph. Hence, the x-direction cone dimensions should be
measurable with this technique. (The use of the measuring volume "B" will be

discussed later.)

The laser system gives the data rate, which is the number of times that objects cross
the mv fringes during a given time period. Since fiber crossings produce strong

signals, it is easy to tell when the mv is located within the fiber-dense center of the
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cone. However, the signals fall off as the mv is moved away from the center of the
cone. Some arbitrary cut-off point is needed to quantify the size of the cone. The
edge of the cone was arbitrarily defined as the position where the data rate fell to

10% of the maximum (cone center) value.

Figure 2.5 shows an arrangement for measuring the y dimension of the fiber cone.
Here the major axis of the fiber probe is located along or parallel to the -x axis and
the probe is rotated so that the laser beams both lie in the x-y plane. The fringes
are thus parallel to the x-z plane. To measure the y dimension of the fiber cone, the
mv is traversed along the y axis; measuring volume "A" is representative of an mv

located along the y-axis.

2.4.3 Fiber Threadline Frequency Measurements

In their computer modeling of melt blowing, Rao and Shambaugh (1993) calculated
fiber frequency by counting how many times a fiber element crossed the centerline.
The frequency of vibration was found by first dividing this count by the time
interval of measurement. This result was then multiplied by 1/2 (since there are

two crossovers for each cycle).



In the present work, a similar line of reasoning was used to take actual
measurements of crossovers. (Refer to Figure 2.4.) For the previously discussed
measurement of x-direction amplitude, the fiber probe was moved in the +x
direction; measuring volume "A" illustrates a typical location of the mv for these
measurements. For the measurement of crossovers of the y-z plane, the major axis
of the measuring probe was kept coincident with the y axis. The probe was then
translated along the y axis such that the measuring volume was always located
along the y axis; measuring volume "B" is typical of these locations. The vertical

fringes of these measuring volumes measured crossovers of the y-z plane.

To measure crossovers of the x-z plane, the major axis of the probe was kept
coincident with the x axis. Refer to Figure 2.5. The probe was then translated
along the x axis such that the measuring volume was always located along the x

axis. Measuring volume "B" is typical of these locations.

25 Results and Analysis

2.5.1 Photographic Measurements of Cone Diameter

In the melt blowing die, the two air slots are arranged parallel to the y axis (see

Figure 2.2a). Hence, the air field is not radially symmetric with respect to the z
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axis. As a consequence, the fiber vibration amplitudes might not be radially
symmetric. In the Cartesian system of Figure 2.2a, the amplitude in the x direction

might be different than the amplitude in the y direction.

Figure 2.6 is a multiple image photograph of the fiber cone during typical melt
blowing conditions. For this photograph, the camera was positioned along the +y
axis as shown in Figure 2.2a. Hence, the photograph shows the fiber cone size in
the x direction. Keep in mind that this photograph shows 150 separate exposures

of a single threadline.

Figure 2.7 is a multiple image photograph taken with the camera located along the
+x axis — i.e., from a position oriented 90° to the arrangement of Figure 2.2a. Thus,
Figure 2.7 shows fiber cone size in the y-direction. As can be qualitatively
observed, the cone sizes in both directions are of a similar magnitude. This implies
that the cone cross-section (in a plane of constant z) is approximately circular.
Thus, the non-radial symmetry of the air slots does not cause a large non-radial

symmetry in the cone amplitude.

Figure 2.8 compares quantitative measurements of fiber cone diameters. The x-axis
cone diameter is slightly larger than the y-axis cone diameter. Additional cone

photographs (not shown) were also taken from a position 45° to both the x-axis and
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the y-axis. Cone diameter measurements taken from these photographs
demonstrated that, as expected, cone diameters at 45° were intermediate between
the measurements taken along the x-axis and the y-axis. This suggests that the
cone cross-section is an ellipse with the x-axis corresponding to the major axis of
the ellipse. The ellipse becomes more circular as the distance from the die
increases. This result parallels the behavior of an air field below a slot jet: a slot
jet air field approaches a point source air field (which is a radially symmetric field)

at large distances below the slot jet. [Refer to Harpham and Shambaugh (1996).]

2.5.2 LDV Measurements of Cone Diameter

Figure 2.9 shows measurements of x-axis cone diameter via LDV. For comparison,
results from photography are also given. The two techniques give similar results:
the slopes of the data are nearly the same and the magnitudes are fairly close.
Figure 2.10 compares y-axis cone diameters determined via the two techniques.

Again, the two techniques give very similar results.

As discussed by Rao and Shambaugh (1993), higher gas velocities should
theoretically produce higher amplitudes. Figure 2.11 gives experimental
verification of their work: as gas velocity increases, the fiber amplitude (measured

via LDV) increases. Besides gas velocity, the other basic variables in melt blowing



are gas temperature, polymer temperature, and polymer throughput (Tyagi and
Shambaugh, 1995). LDV measurements showed that — for the ranges listed in
Table 2.1 — the fiber amplitude was fairly insensitive to changes in these three

remaining operating variables.

2.5.3 LDV Measurements of Fiber Frequency

Development of an LDV Response Correlation

The Experimental Techniques section (section 2.3) described how the mv could be
positioned within the fiber cone to measure fiber vibration frequency.
Unfortunately, as discussed by Wu and Shambaugh (1992), there is not a one-to-
one correspondence between an LDV signal and an actual crossover of the mv by
a fiber. Consider the measurement of crossovers of the y-z plane (see Figure 2.4).
Then, in the geometry of present experiments, Wu and Shambaugh described the

following important variables which effect LDV signals:

(1) fiber angle a: the angle between the z direction and the projection of the fiber

upon the y-z plane.

(2) fiber angle f. the angle between the fiber axis and the y-z plane.
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(3) fiber-mo crossover (y ): the location within the mv where the fiber intersects

the mv.

(4) motion of fiber relative to the fringes: the angle that the fiber motion vector

makes with respect to the optical fringes of the mv.

(5) fiber diameter (8).

Similar arguments would apply for fiber crossovers of the x-z plane~ (see Figure

2.5).

Wu and Shambaugh found that, as long as the fiber crossed the mv, item (4) had

no effect on the LDV signal. Then the LDV signal can be expressed as

data / passage = h(e, B, y’, d) (2.1)

Wu and Shambaugh also found that the effects of the angles « and [ are constant
when 0<40° and <15°. From photographs such as Figure 2.7, the average value
of a was determined for various z levels: see Figure 2.12. Obviously, a<40°.
Photographs of the x axis cone size (see Figure 2.6) were used to calculate the x axis

fiber angle values shown on Figure 2.12. For smali angles (e.g., angles less than
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10°), these fiber angles are a good approximation for B. Hence, f<15°. In terms of
the fiber zones defined by Wu and Shambaugh, Figure 2.12 represents zones A and

B, not the random orientation of zone C (where the average angle is 45°).

Since angles a and B are small, the LDV signal can be represented by the simplified

expression

data / passage = h*"(y’, 3) (2.2)

Now, similar to the procedure followed by Wu and Shambaugh, let the h™ function

be expressed empirically as
h*@y', 8) = aC-D (2.3)
where
C = 1/[c1 + czy'zexp(c3y')] 24
D = (8/27.6)* (2.4
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The parameters g, c,, ¢, and c; are empirical constants. These empirical constants
were determined by a calibration wheel experiment wherein fibers were taped to
the rim of a wheel. The wheel was rapidly rotated and the fiber was passed
through the measuring volume of an LDV. The wheel (and thus fiber) speed was
controlled along with the orientation of the fiber with respect to the measuring
volume. Figure 2.13 resulted from this procedure. (See Wu and Shambaugh [1992]
for additional details on the calibration wheel technique; also see Figure AL1 in
Appendix I for calibration experiments done with other fiber diameters.) The
empirical constants were then determined by mjnimizing the following function

with a Gauss-Newton scheme:

Y [r*(y’8) - data per passage at a given point|’ 2.5)
all data points

The best-fit values were determined to be a = 0.987, c,= 2.457, ¢c,= 0.489, and ¢; =

0.670.

2.5.4 Superposition of the Response Correlation (h*) on the Fiber Cone

Figure 2.14 illustrates the situation where the mv is moved outward in 3 mm steps

from the center of the fiber cone. The fiber density in the fiber cone is highest at
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the center and falls off radially. Hence, the data rate measured by the LDV system

is a function of both h” and of the fiber density.

Let us assume that the fiber cone density can be described by the normal

distribution

f@) = 1 E-wifee)

y2no? @0

where p is the mean and o is the standard deviation of the cone density

distribution.

Figure 2.15 shows the superposition of a normal fiber distribution and an
arbitrarily positioned mv. Because the cone is centered over the origin of the x
axis, u=0. The center of the mv is located at x., and the mv limits are x; and x.

An arbitrary element i of length Ax lies between x;; and x;3.

Now, for the mv, the LDV signal is

data % response o actual number
recorded ~ Z( elemenespo ti f)' of CrosSOvers of 27)
all i element i

Dividing by the actual number of crossovers of the mv gives
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( actual number )
data of crossovers of
recorded  _ ( % response of) |  element i 2.9)
actual number i\ element i actual number
of crossovers of crossovers
of mo \ of mo )

Of the total fibers that cross the mv, the fraction that cross the element i can be

expressed as

iR
total crossovers
actual number of fﬂx)dx [ of cone ]
crossovers of element i _ |z, 29
actual number of 1, total (2-9)
crossovers of mv .| rotat crossovers
f [Raydx [ of cone ]
L

Since the percent response of element i is simply h, then equation (2.3) can be used
in equation (2.8). If, in addition, equation (2.9) is used in equation (2.8), the result

is

data f fix)dx
recorded - o/ | Far
actual number §[k \/ '6)] Xp (210)
of crossovers f Ax)dx
of mo .,
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Equation (2.10) is the working equation which allows the conversion of data

recorded to the actual number of fiber crossovers.

The parameters in the distribution function f(x) were determined from the cone
size measurements. As stated earlier, the LDV cone size was determined by
assuming that the cone boundary occurred where the fiber density fell to 10% of

the centerline value. Thus, for a given cone radius x, 6=0.4660x.

For a particular set of operating conditions, the diameter 6 used in equation (2.9)
was found by off-line measurements of the product fiber diameter. Uyttendaele
and Shambaugh (1990) determined that the final fiber diameter is reached by z =
5 an. Hence, since all of the measurements in the present study were taken for z

> 5 cm, the use of the final (product) diameter is appropriate.

2.5.5 |Interpretation of LDV Data

Figure 2.16 shows the results of using equation (2.9) to find the corrected crossover
frequency from the measured data rate. Corrected frequencies are given at z = 10
cm for both crossover of the y axis and crossover of the x axis. [Equation (2.9) was
used as is for calculating x axis crossover; for calculating y axis crossover, the x and

f(x) in equation (2.9) were replaced with y and f(y).] Observe that the frequency
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per mv length was larger across the y axis than across the x axis. Also, since the

mv length is significantly less than the cone width, the ordinate value can be

interpreted as the local frequency per length.

For crossovers of the x axis, Figure 2.17 shows the corrected crossover frequency
at different z levels. As z increases, the center (maximum) value decreases, but
crossovers occur at larger |x| values. Figure 2.18 shows similar results for
crossovers of the y axis. (See Figures AL2 through ALS in Appendix I for the
similar experiments done at air velocity v, = 17.6 m/s and polymer mass flow rates
Q, =0.60 and 0.80 cm’/min.) A comparison of Figure 2.18 with Figure 2.17 shows
that the frequency per length levels are higher for crossings of the y axis (as was

suggested by Figure 2.16).

As discussed by Tyagi and Shambaugh (1995), there are four major operating
variables in melt blowing: polymer flow rate, polymer temperature, air flow rate
(or gas velocity), and air temperature. The effects of each of these variables upon
the crossover frequency were examined. For x axis crossovers, Figure 2.19 shows
the frequency/length as a function of polymer flowrate (Q,). The crossover
frequency stays fairly constant for Q, values of 0.40, 0.50, and 0.60 cm®/min, but
then the frequency rises as Q, is increased. For y axis crossovers, Figure 2.20

shows that the frequency/length values are highest at Q,=0.60 cm®/min. Except
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for this 0.60 cm®/min rate on Figure 2.20, the frequency/length profiles in both
figures are quite similar, though the Figure 2.19 profiles are a little lower. For
example, at x=0 on Figure 2.19, the average frequency/length is about 0.78
Hz/mm, while at the corresponding y=0 on Figure 2.20, the average

frequency/length is about 1.20 Hz/mm.

The effect of polymer temperature (T,) is shown in Figure 2.21 for x axis
crossovers. A low polymer temperature of 300°C gave the highest
frequency/length. Figure 2.22 shows the effect of polymer temperature on y axis

crossovers. Again, the frequency/length is highest at 300°C.

Figures 2.23 and 2.24 show how air velocity effects the frequency/length. For the
case of x axis crossover shown in Figure 2.23, the lower air velocity causes a higher
frequency/length. The lower air velocity also gives a higher frequency/length for
y axis crossover. However, as Figure 2.24 illustrates, the effect is much more

pronounced.

Figure 2.25 shows the effect of air temperature (T,) on frequency/length for x axis
crossover. Figure 2.26 is the analogous graph for y axis crossover. A rise in air

temperature T, appears to decrease the crossover frequency. However, this



decrease is not that definitive (at least not definitive for the range of temperatures

investigated).

Since, as stated previously, the frequency/length data on Figures 2.16-2.25 can be
considered as local values (rates), then a particular frequency/length profile can
be integrated over the cone width to give the fiber crossover frequency at a
particular z level. The profiles in Figures 2.17 and 2.18 were integrated in this
manner to produce Figures 2.27 and 2.28. Figure 2.27 shows results for a gas
velocity of 17.6 m/s, while Figure 2.28 shows results for a gas velocity of 30.9 m/s.
As suggested by earlier figures, for both Figures 2.27 and 2.28 the frequency across
the y axis is higher than the frequency across the x axis. For both figures the x axis
frequency is nearly constant all along the threadline, while the y axis data appear
to decrease as z increases. The data scatter is probably caused by the
approximations involved in calculating the points on these two figures. At v,=30.9
m/s (see Figure 2.28) the frequencies of both the x and y axis crossovers are about

half as great as the corresponding frequencies at v,,=17.6 m/s (see Figure 2.27).

Rao and Shambaugh (1993) developed a mathematical model for melt blowing.
This model is highly complex and involves the simultaneous solution of a group
of differential equations. Because of the model's complexity, some model

predictions are not what one would expect from a more simplistic analysis of the

35



melt blowing problem. The model utilizes carefully measured input parameters
such as the constants in drag force correlations (Majumdar and Shambaugh, 1990;

Ju and Shambaugh, 1994).

The Rao and Shambaugh model predicts that the fiber frequency is constant along
the threadline. For x axis crossovers, the present work verifies this prediction. For
the more vigorous (higher frequency) y axis crossovers, the experiments in the
present work showed a decrease in crossovers as z increased. However, the

decrease was only about 2X, and not, for example, 10X.

For typical operating conditions, Rao and Shambaugh predicted vibration
frequencies ranging from 8 to 62 Hz. In the present work, the average measured
frequencies across the x axis were 14 and 6.6 Hz/mm at 17.6 and 30.9 m/s,
respectively. Across the y axis, the measured frequencies were 45 and 18 Hz/mm,
respectively, at 17.6 and 30.9 m/s. The correspondence between the model
predictions and the measurements in the present work is very good. Rao and
Shambaugh modelled an annular melt blowing die, while the present work
involved a slot die. Apparently, the basic process of melt blowing — and the
associated frequencies - is not greatly effected by whether the die is axisymmetric

(annular) or two-dimensional (a slot).
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As discussed earlier, the air field below the two-dimensional slot jet used in this
study approximates the field of an axisymmetric jet (e.g., an annular jet) at large
z values. Since the largest fiber vibrations occur at large z, then the air field
configuration at large z is dominant. Thus, at large z values, the fiber motions
below a slot die should be similar to the fiber motions below an annular die. Also,
because the whole fiber vibrates as a unit, the vibrations at large z will effect

vibrations at small z.

2.6 Conclusions

Fiber cone dimensions can be measured by either high speed photography or laser
Doppler velocimetry. The results from these two techniques are comparable. The
fiber cone cross-section is slightly elliptical; the x axis is the major axis in the
direction across the slots. The cone cross-section becomes circular at large

distances from the die.

The fiber oscillation frequency can be measured by laser Doppler velocimetry. The
oscillation frequency across the y axis (in the x direction) is higher than the
frequency across the x axis. For a given set of operating conditions, the frequency

is roughly constant along the threadline.
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The measured frequency range matches the frequency range predicted by the
model of Rao and Shambaugh (1993). Knowledge of fiber oscillation and cone size
can be used to predict such things as fiber laydown pattern and fiber-to-fiber

contact and entanglement.
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27 Nomenclature

a = constant in eq (2.3)

¢ = camera to filament distance defined in Fig 2.3, cm
c, = constant in eq (2.3), mm*

¢, = constant in eq (2.3), mm*

¢, = constant in eq (2.3), mm™

C = quantity defined in eq (2.3)

D = quantity defined in eq (2.3)

M,, = weight average molecular weight, g/mole

Q, = polymer ﬂo'wrate, cm®/min

s = strobe to filament distance defined in Fig 2.3, cm
T, = air temperature, °C

T, = polymer temperature, °C

v,, = discharge air velocity, m/s

x = Cartesian coordinate defined on Fig 2.2, mm

xc = the location of the measuring volume's center, mm

x, = the left limit of the measuring volume, mm
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xg = the right limit of the measuring volume, mm

x;; = the left limit of an element of the measuring volume, mm
X g = the right limit of an element of the measuring volume, mm
y = Cartesian coordinate defined on Fig 2.2, mm

y’ = fiber-mv crossover location, mm

z = distance below the die defined on Fig 2.2, mm

Greek Symbols

o = angle between the z direction and the projection of the fiber upon the y-z plane
(or x-z plane; see text), degrees

B = angle between the fiber axis and the y-z plane (or x-z plane; see text), degrees
8 = fiber diameter, pm

0 = angle defined in Fig 2.3, degrees

u = the mean of the cone density [see eq (2.6)], mm

o = standard deviation of cone density [see eq (2.6)], mm
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N

(1) Discharge (nominal) air velocity: 17.6, 30.9, and 39.7 m/s.
(2) Discharge air temperature: 300, 310, 320, 330, and 340°C.
(3) Polymer flow rate: 0.40, 0.50, 0.60, and 0.70 cm®/min.

(4) Discharge polymer temperature: 300, 325, and 350°C. "

Table 2.1 The operating conditions used in the experiments.
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Figure 2.1 Cross-section of the melt blowing die used in the experiments.
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polymer ;

camera

Figure 2.2a The photographic setup used to measure fiber cone diameter in the x
direction.
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Figure 2.2b LDV setup used to measure fiber cone diameter along the y axis and
fiber crossover frequency across the x axis.
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Figure 2.3 Top view of the photographic setup used to measure cone diameter.
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laser beam

e
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measuring volume ‘B’ laser beam

} vZz

measuring volume ‘A’

laser beams crossing in x-y plane with probe aligned along y
axis

Figure 2.4 The LDV arrangement for measuring cone diameter along the x axis
and crossover frequency across the y axis. The two laser beams cross in the x-y
plane, the probe axis is aligned parallel to the y axis, and the fringes are parallel

to the y-z plane.
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Figure 2.5 The LDV arrangement for measuring cone diameter along the y axis
and crossover frequency across the x axis. The two laser beams cross in the x-y
plane, the probe axis is aligned parallel to the x axis, and the fringes are parallel to
the x-z plane.



tiple image
fiber cone from z=1

ical mul
ting cond
/m

A typ
xis

igure 2.6
photograph of the x a

F

=350°C,

itions were
Tp

in,

The opera
Q=04 cm’

=8 cm.
as follows

to z

and T,=320°C.

V;,=30.9m/s,

49



image photograph of

tiple

gure 2.7 A mul

Fi

ltoz=8cm.
tions were the same as

xis fiber cone from z
ting cond
gure 2.6.

theya

i

The opera
for Fi

50



40
Polymer: Q ; = 0.40 cm 3/ min
- T =350°C
P -

A3-°Lr Air: v, =30.9ms é
E T,=320°C :
2 :
E i %
@
5
5 2.0~ % :
p i
c
8 i
3 X .
-

1.0~ & FAN X axis cone diameter

B [] yaxs cone diameter
0 1 ' ] l 1 l J I J 1 ] |
'ﬁ.O 6.0 8.0 10.0 120 14.0 16.0
Zz (cm)

Figure 2.8 A comparison between the x axis and the y axis cone diameters
measured using multiple image photography. Each data point represents the
average from six replicate photographs, and each error bar represents a range of
t one standard deviation.
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Figure 2.9 The x axis cone diameters measured via both LDV and multiple image
photography.
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Figure 2.10 The y axis cone diameters measured via both LDV and multiple image
photography.
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Figure 2.11 The effect of air velocity on the x axis fiber cone diameter. Each data
point represents the average of six independent LDV measurements, and each

error bar represents a range of + one standard deviation.
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Figure 2.12 The average fiber angle determined from photographs. For the y axis
measurements, the angle corresponds to ¢. Each data point represents the average
of about 50 angle measurements, and each error bar represents a range of + one
standard deviation.
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Figure 2.13 Effect of measuring volume position on data/passage. The solid line
is predicted from the fitted correlation of eq 2.3.
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Figure 2.14 A qualitative comparison between the actual number of fiber passages
and the passages measured by the laser mv.
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Figure 2.15 Superposition of the fiber density distribution function f(x) and the
laser measuring volume response function h'.
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Figure 2.16 A comparison of corrected crossover frequencies per unit length across
x and y axes at z =10 cm.
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Figure 2.17 The fiber crossover frequency per unit length across the x axis.
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Figure 2.18 The fiber crossover frequency per unit length across the y axis.
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Figure 2.19 Effect of polymer flow rate on crossover frequency per unit length
across the x axis at z =10 cm.
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Figure 2.20 Effect of polymer flow rate on crossover frequency per unit length
across the y axis at z = 10 cm.
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Figure 2.21 Effect of polymer temperature on crossover frequency per unit length
across the x axis at z=10 cm.
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Figure 2.22 Effect of polymer temperature on crossover frequency per unit length

across the y axis at z=10 cm.
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Figure 2.23 Effect of air velocity on crossover frequency per unit length across the
x axis atz=10 cm.
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Figure 2.24 Effect of air velocity on crossover frequency per unit length across the
y axis atz=10 cm.
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Figure 2.25 Effect of air temperature on crossover frequency per unit length across
the x axis at z = 10 cm.
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Figure 226 Effect of air temperature on crossover frequency per unit length across
the y axis atz= 10 cm.
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Figure 2.27 The total crossover frequency as a function of z when v,, = 17.6 m/s.
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Chapter 3

THE STOCHASTIC NATURE OF FIBER THREADLINE

MOTION IN THE MELT BLOWING PROCESS

(The contents of this chapter have been submitted for a publication in the journal

Industrial & Engineering Chemistry Research)

3.1 Abstract

Fiber threadline motion below a melt blowing slot die was studied as a stochastic
process. High speed flash photography was used to obtain the fiber positions in
three-dimensional space. For planes transverse to the spinning direction, a good
fit of the experimental data to the bivariate normal distribution was obtained. The

width of the fiber distribution was found to increase linearly with respect to the
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axial distance from the die. There exists a small correlation between the orthogonal
position variables in the transverse plane. The orientation angle of the distribution
sinusoidally varied as a function of the axial distance from the die; this suggested
that the fiber motion was that of an elliptical spiral which sinusoidally rotated in

the transverse planes.

32 Introduction

In the melt blowing process, a high velocity gas stream or streams attenuate molten
polymer strands to form microfibers; see Shambaugh (1988). These microfibers are
extensively used in manufacture of nonwoven textiles. Empirical and theoretical
studies have shown that the melt blowing process can be controlled to produce
fiber webs with desirable characteristics. Shambaugh (1988), Kayser and
Shambaugh (1990), and Milligan and Haynes (1995) have empirically modeled the
process for different die geometries. The theoretical models of Uyttendaele and
Shambaugh (1990) and Rao and Shambaugh (1993) are based on fundamental fluid

mechanics and can be used to predict and improve melt blowing performance.

The characteristics of a nonwoven web depend on the fiber orientation and
distribution in the web. The fiber orientation and distribution can be controlled by

varying the operating conditions during melt blowing. With a fixed die geometry
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and a fixed polymer type, the four main operating conditions are gas flowrate, gas
temperature, polymer flowrate, and polymer temperature. How these parameters
affect the fiber orientation and distribution is of great interest. The models of
Uyttendaele and Shambaugh (1990) and Rao and Shambaugh (1993) use these four
parameters as inputs. Both models predict final fiber size, while the Rao and
Shambaugh model also predicts the presence of characteristic fiber frequencies
associated with the melt blowing process. Chhabra and Shambaugh (1996)
experimentally measured the fiber threadline amplitudes and frequencies of
vibrations. Their work correlates with the predictions of Rao and Shambaugh'’s
model. Their work also suggests that the vibrational pattern of the fiber motion
has a well-defined statistical distribution. The present work involves the
experimental measurement of the statistical distribution of the fiber threadline
motion. This knowledge of fiber motion in melt blowing will help in predicting

the resultant fiber laydown in the product sheet.

33 Literature Review

Spatial fiber distribution in nonwoven webs plays an important role in defining the
physical characteristics of the web. Many analytical and experimental techniques
have been developed to study the fiber distribution and orientation. All these

techniques have concentrated on characterization of the final product web.
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Different methods to evaluate the average angle of orientation of the fibers in a
web have been developed by the researchers. Hearle and Stevenson (1963) used
a direct fiber counting method to measure the fiber orientation. A small area of the
web was viewed under a microscope and the fibers aligned in different directions
were counted. Huang and Bresee (1993, Part I) applied image processing
techniques to automate and thus speed-up the fiber counting method for
measuring the diameter-based fiber orientation distribution. Random samples of
a web image were taken, and image analysis techniques were used to evaluate the
fiber orientation with respect to the machine direction. Neither Hearle and
Stevenson nor Huang and Bresee fit their data to a standard statistical distribution

function.

Prud’homme et al. (1975) developed an x-ray diffraction method to convert the
crystal angle distribution within the fibers to the fiber orientation distribution in
a cellulosic sample. They assumed that the fiber orientation distribution function

N(e) is represented by the following geometrical relation:

C
N(e) = 3.1
C?sin’e + cos’e S
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where

€ = fiber orientation angle

C = experimentally determined orientation parameter

Kallmes (1969) and Votava (1982) used a zero-span testing method to evaluate the
ratio of machine- and cross-directional strengths of paper. Votava used this ratio
to determine the fiber orientation with the theory given by Van den Akker, Jentzen
and Spiegelberg (1966). Tsai and Bresee (1991) employed electrical measurements
to characterize the fiber orientation. Then, with electric field theory, they
transformed the electric current distribution into a fiber orientation distribution.
Rodrigues et al. (1990) characterized anisotropy of papers in terms of vision
entropy. They used Shanon’s (1948) famous relation of information entropy to
extract the degree of directionality in the spatial fiber distribution. Recently,
Pourdeyhimi (1993) applied image processing techniques to assess the fiber
orientation in simulated nonwoven webs. These nonwoven webs were simulated
with overlapping straight lines generated randomly. He used three methods (the
methods were Fourier analysis, pore orientation, and flow-field analysis) to

evaluate the dominant direction of alignment of the fibers in a simulated web.
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Web uniformity depends on the spatial distribution of fibers. The uniformity of
the web structure affects the physical properties and the appearance of the web.
For example, in filtration processes, web performance is largely dependent on the
uniformity of the web. Any thin spots in the fiber sheet will cause filter failure by
allowing large particles to pass through the filter. Typically, nonwoven webs are
characterized in terms of basis weight, structure, and visual uniformity. The
nonwovens industry uses the coefficient of weight variation as a standard quality
index to quantify the web uniformity. Beta rays and electromagnetic radiation
(gamma rays and lasers) have been used for online measurement of the web mass
and uniformity. See Boeckerman (1992) for details on the application of beta rays
for measuring web uniformity. Aggarwal, Kennon and Porat (1992) used a
scanned-laser technique to monitor both weight and cover factor of a web. In their
method, the scanning laser light was transmitted through the web twice with the
aid of a retro-reflector. Then, the intensity of the transmitted light was calibrated
to give information about the variations across the web and the web mass. Their
technique can be used as a monitoring tool and a feedback signal sending device
to control the variations in mass and structure of the web. Huang and Bresee
(1993, Part III) correlated an image analysis technique with more conventional
methods of measuring the web uniformity. The conventional methods they
considered were the measurement of the structural uniformity with a gamma-ray
gauge and the cut-and-weigh procedure to measure the coefficient of web mass

variation. They correlated the coefficient of web mass variation to the coefficient
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of pixel gray level variation of the web image. They also performed a
nonuniformity spectral analysis to evaluate the coefficient of variation of the visual
uniformity in the machine-direction and the cross-direction. Ericson and Baxter
(1973) studied the structural and visual uniformity of spunbonded webs. They
correlated the tensile strength of the web with the filament separation and the
visual uniformity. They determined the filament separation with a projection
microscope. By measuring the intensity of the transmitted light, they evaluated the

coefficient of variation of the visual uniformity.

The excellent work of previous researchers concentrated on the characterization of
the nonwoven web after its production. However, the present work concerns the
measurement and statistical modeling of the presence of a melt blown fiber as a
function of its position below the spinneret. Relating this to the laydown pattern
is simply a matter of defining the location (z position) of the collection screen
below the spinneret. Of course, the implicit assumption here is that the presence
of the collection screen does not greatly disturb the fiber distribution. In
experimental practice this is not a bad assumption if a proper level of suction is

applied to the collection screen.
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34 The Statistics of Fiber Position

In the melt blowing process, the fiber moves in three orthogonal dimensions.
Chhabra and Shambaugh (1996) have described the volume below a melt blowing
die in which a fiber travels as a fiber “cone”. The apex of the cone is at the
spinneret hole. To understand the fiber motion, the fiber position, velocity, and
orientation have to be evaluated as a function of time. Wu and Shambaugh (1992)
used LDV (laser Doppler velocimetry) to measure the fiber velocities in three-
dimensional space during melt blowing. The spatial positions, which the fiber
threadline assumes during its motion, can be predicted by rigorous fluid
dynamical modeling as was done in the Rao-Shambaugh model (1993). In contrast,
the present study considers a statistical approach to understand the fiber motion
in melt blowing: a statistical model was fit to experimentally-determined fiber

positions.

* 3.4.1 Mathematical Formulation

Chhabra and Shambaugh (1996) experimentally showed that, for a given transverse
plane, the fiber vibrations for a single-hole slot die decreased as the fiber moved
away from its mean axial position. This meant that the fiber spent most of its time

close to its mean axial position. The tendency of fiber to stay mostly near the center

79



of the fiber cone was apparent from the multiple exposure photographs.
Consequently, it was hypothesized that the fiber threadline positions follow a
Gaussian distribution. With this assumed distribution, Chhabra and Shambaugh
corrected the frequency of vibrations measured with laser Doppler velocimetry
(LDV). The distribution in the x-direction was assumed to be independent of that
in the y-direction, and vice versa. This assumption may not be true. Since the fiber
is a continuous strand, one would expect motion in one direction to affect the
motion in an orthogonal direction. Furthermore, a degree of dependence can also
be attributed to the turbulent gas jet which serves as an attenuating force in melt
blowing. The momentum of such a turbulent gas jet in the x-direction is correlated
to the momentum in the y-direction (Tennekes and Lumley, 1972). As a result of
these concerns, the work described herein involved distributions with a

dependence parameter (correlation coefficient).

Various bivariate probability distributions could be fitted to the fiber distribution.
Examples of commonly used bivariate probability distributions include the normal
distribution, binomial distribution, Cauchy distribution, Student’s t-distribution,
and gamma distribution. A detailed review of bivariate probability distributions
is given by Mardia (1970). However, only those distributions that fulfilled the

following criteria were considered worth fitting:
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(i) Since the fiber motion is continuous, the distribution function should be

continuous.

(i) Experimental observations (Chhabra and Shambaugh, 1996) have shown that
most of the fiber threadline positions are close to a central mean position, and the
number of positions decrease as distance from the mean position increases.
Therefore, the distribution should be unimodal and the probability of occurrences

should decrease at distances away from the mean position.

(iii) The random variables should have both positive and negative real values.

Thus, the choice is limited by the above criteria. A bivariate normal distribution
is a well-defined distribution which fulfills the above criteria. Examples of other
bivariate distributions, which also have above-mentioned properties, include the
bivariate Cauchy distribution and the bivariate Student’s t-distribution. However,
for the bivariate Cauchy distribution and the bivariate Student’s t-distribution, the
random variables must be from a population that follows a bivariate normal
distribution. Therefore, in the present study, only the bivariate normal distribution
was considered. Mardia (1970) and Johnson and Kotz (1972) have described the

mathematical properties of these bivariate distributions.
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The bivariate normal distribution has been applied to many problems in science
and engineering. For example, Evans et al. (1993) determined the direction of
dominant wave travel, the variance in wave slopes, and the directional spectra of
waves in the ocean from the parameters of a fitted bivariate normal distribution.
Holst and Schneider (1985) applied the bivariate log-normal distribution to study
the stochastic relationship between the diameter and the length of fibers in
aerosols. Johnson and Kotz (1972) have presented a detailed review of the

mathematical properties of the bivariate normal distribution.

In the present work, the probability p(x, y) was evaluated for the presence of a fiber
ata position (x, y) in a plane of constant z below the die. Figure 3.1 shows the die
with the appropriate coordinate system. The following assumptions were made

concerning the fiber motion:

(@)  The fiber threadline is assumed to be made of infinitesimal beads linked to
each other along the fiber axis. The link is flexible, but the motion of
sequentially connected beads is correlated. The assumption of linked beads
is reasonable because, physically, the fiber threadline is not a series of

independent beads falling in random directions from the die.
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(b)

(©

The motion of a bead is assumed to be correlated to the motion of its
neighboring beads only. Therefore, the more distant are the two beads, the
more independent is their motion. The size of the neighborhood of
sequentially connected beads defines the characteristic length of a fiber
element. These fiber elements overlap each other as neighborhoods of the
beads overlap. Thus, it is assumed that the position vector of a bead is
correlated to that of another bead in the same fiber element only. The
correlation is called auto-correlation since x and y components of the bead
position vector are correlated to the corresponding components of the other

bead position vector.

The motion of the fiber threadline is assumed to be a Markov process. As
described by Stewart (1994), a Markov process is a stochastic process whose
future evolution only depends on its current state and not on its past
history. The theory of Markov processes is used to analyze diffusion,
Brownian motion, electromagnetic signals, and many other stochastic
processes. Gillespie (1992) defines a stochastic process as a random function
X(t) whose values up to and including parameter ¢ allow one to
probabilistically predict the function’s value at an infinitesimally later
parameter value #+dt. The values of the random function X(¢) are called

states, and a set of these states is called the state space of the process. The
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state space of a stochastic process can be discrete or continuous. A
continuous stochastic process has a continuous (real-valued) state space, and
its parameter space is also continuous. The fiber threadline motion is
considered as a continuous Markov process because the fiber threadline is
a continuously moving strand that assumes various positions in a real-
valued space at real-valued times. The state of a fiber bead in the fiber
threadline is defined by its position and its momentum, which are
correlated to the positions and the momentums of the other beads in the
same fiber element. Since the motion of a fiber bead is assumed to be a
continuous Markov process, the future state of a fiber bead is dependent
only on its present state, and is independent of its past states. It is
reasonable to consider the motion of the fiber threadline as a continuous
Markov process since the momentum from the past state is conserved in the
present state and not in the future state. Furthermore, the momentum at the
present position of a fiber bead, the momentum transfer from the external
forces, and the future states of the other beads in the same fiber element
define the future position and the momentum of the fiber bead. Therefore,
the future state of a fiber bead is independent of the past states, and only
dependent on the present state. This assumption can be used to predict the

fiber laydown pattern as described in a later section.



In the present study, the assumptions (a)-(c) are validated using the experimental
data. With the above assumptions, the fiber density distribution is the actual
probability density distribution of the positions of individual fiber beads. The
cumulative distribution function for the fiber bead probability density distribution
function is normalized in the xy plane. In the following sections, some relevant
mathematical properties for the bivariate normal distribution are presented in

relation to the fiber motion.

For a bivariate Gaussian probability distribution, the probability p(x, y) of fiber
being present at position (x, y) can be described in the general case as (Johnson and

Kotz, 1972)

p(x, y) = exp[ -28(x y)) (3.2)

2no,0, Y1 - p?

where

o, = standard deviation of positions of fiber in x direction
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o, = standard deviation of positions of fiber in y direction

p = correlation coefficient of fiber positions in x and y directions

The quantity g(x, y) in equation (3.2) is defined as

2 2
x - x-pl|ly-mn -
g(xy) = — Pl -2 ad| A N A
(1-p3) o o, o, o,
where
U, = mean position of fiber in x direction
1, = mean position of fiber in y direction
Fitting the distribution is mathematically simplified if the distribution is

standardized. By substituting p, =p,=0and 6,=c,= 1 in equations (3.2) and

(3.3), the following standardized bivariate distribution can be obtained:
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The £, and {, are normalized variables given by

¢, = (3.5a)

and

(3.5b)

Johnson and Kotz (1972) have shown that quadratic term g(x, y) in equation (3.3)
follows a x* distribution with 2 degrees of freedom. Therefore, statistic x* with two

d of freedom (v = 2) and % probability distribution f{x? ) are represented b
egrees P P y

E=x,=8(xyY) (3.6)

and
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_ B2 exp(-§/2) _ 1, (g)
f® 27T(s/2)] 5 &P ~5 (3.7)

If « percent of the distribution is contained in the region 0 < x* < K, then

[><}
a2
@ plck]-1- exp(-1%/2) 4.2 (3.8)
100 2
K
Integration gives
a K
= =1- -2 )
100 exP( 2) 5:9)
Solving for K gives
K=-2In|1--2 3.10
( 100] (3-10)

For arbitrary o and K, the ellipse, which contains a percent of the distribution, can

be obtained by substituting equations (3.6) and (3.10) into equation (3.3) to obtain
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The equation (3.11) is the most general form of equation for an ellipse. This
equation represents an ellipse whose center does not lie at the center of the origin
and whose major axis has been rotated about its center. The center of the general
ellipse (1, 1) can be translated to the origin of the coordinate system. The

equation of this translated ellipse is given by

’ 2 1,7 ! 2
E.20 2240 A R T pz)ln(l - i) (3.12)
g, 0.0, o, 100
where
X =x-u
and
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Then, the translated ellipse, given by equation (3.12), can be rotated by applying

the following transformation:
x" cos@ -sinfO) [ x’
= (3.13)
y” sin@ cos®) \y
where x” and y” are arbitrary coordinates of the ellipse rotated by an angle 6.
Therefore, the equation of the rotated ellipse is

|

_[ sin20 _sin20 +2pcos26]x,y,+2(l _ pz)]_n(l _ _“_] -0 (314

WAl =

2
6.0 o .0

_ psin20 e 1, psin26 y'?
y y y

2 2 0.0 1
Ox Oy xy 00
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As described by Palmer and Krathwohl (1921), the major axis of the rotated ellipse
coincides with the x axis when the third term (the term containing x’'y’) in
equation (3.14) becomes zero. Mathematically, this condition can be expressed by

the following equation:

sin20 _sin20  2pcos28 _

2 2 O
g, Oy xy

0 (3.15)

Hence, the appropriate angle of rotation of the major axis of the ellipse can be

obtained by solving equation (3.15) for 0; the resulting equation is

0 - % arctan | —— ¥ (3.16)

Therefore, for a given variance vector, the rotation of the ellipse would depend on
the correlation coefficient p. Table 3.1 shows the various values 6 can have for
three different cases. Since the two ends of the major axis of the distribution ellipse
are indistinguishable from each other, the orientation angles ranging between 90°

and 180° (as in case 3, Table 3.1) can be considered as negative angles lying
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between -90° and 0°, respectively. Therefore, the transformed range of the
orientation angles would be -90° to 90° instead of 0° to 180°. As described by
Johnson and Kotz (1972), a zero correlation (as in case 2, Table 3.1) means that the
variables are independent. In our case, it would mean that x coordinate of the fiber
position is statistically independent of the y coordinate. However, zero correlation
is not expected for the fiber threadline motion as there exists some interdependence
between the x dimension momentum and the y dimension momentum of the
threadline. Thus, the positions in the two orthogonal directions must depend on
each other. This interdependence, however, may not be constant along the fiber
threadline and may also vary with time. Varying values of the correlation
coefficient along the threadline ata given time would cause the distribution ellipse
to be oriented at different angles in the xy planes at different z positions for a given
set of variance vectors. In a physical sense, a distribution ellipse is a cross-section
of the fiber cone ata z position. A variation in the correlation coefficients along the
threadline would mean that the cross-sections of the fiber cone at different z
positions are oriented at different angles in the xy planes at a given time.
Therefore, at any instant, the fiber cone would be twisted at different angles along
the fiber threadline for a given set of variance vectors and correlation coefficients.
The variation in the twisting angles could be a regular or irregular function of the

z position and/or time. This means that, due to a variation in the twisting angles,
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the fiber cone would have an irregular or a regular rotational motion in the xy

planes.

A large absolute value of the correlation coefficient is also not expected as it would
mean clustering of data points in a highly elliptical manner with the major axis
much larger than the minor axis. Since Chhabra and Shambaugh (1996) have
shown that fiber amplitude in the x direction is not very much larger than that in

the y direction, a small value of the correlation coefficient is expected.

3.4.2 Fitting the Data to the Distribution Function

The bivariate normal distribution is a continuous function. However, the
experimental data is discrete. The experimental bivariate data were fit by
expanding a procedure outlined by Blank (1980) for a univariate normal
distribution. For our bivariate case, Blank’s procedure was transformed into the

following steps:

1. The experimental position data (x and y coordinates for a given value of z) were
grouped into cells that form a uniform spatial grid. Figure 3.2 shows the grid
with the frequencies of fiber occurrences centered at each grid cell. The number

of cells in each direction was calculated as a positive square root of the number
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of observed positions. Square root values were rounded to the next higher
integer values. The grid size in each direction was calculated by dividing the
corresponding range of the measured variable in that direction by the number

of cells .

The means and the standard deviations of both the variables from the grouped

data were found with the following equations:

[ foi'fiz] - P-:'N ( Zﬁlj'sz] - H;'N
G = \ i=1 . g = \ j=1 (3.17)
g (N -1) Ty (N - 1)

where

N=YY f;= number of observations
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n = INTEGER(/N) +1

(£ 9;)is the center of the cell C;

3. The correlation coefficient p of the variables was calculated from the raw data

with the formula

i . (3.18)

e
where
N
Ty,

4. The variables were normalized using equation set (3.5). The x and y values at

the upper boundaries of the cells were used for this calculation.
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5. The cumulative probability density function was computed for each grid cell
using the normalized probability density function as given by equation (3.4).
Since the data obtained from experiments were finite, the cumulative
distribution function and the frequency of the grid cell C; were evaluated with

these equations:

Cx‘ Cy, c*i (Yj-l
Plo )= [ [Pl Q) ey =] [ P(Cr &) &, 42,

(r‘ -1 (yl cxl -1 -1

[ [P )y [ [ P g &g, B19

®, = N-P(C, ¢,)

6. For a 95% confidence level, a x* goodness-of-fit test was performed on the

calculated frequencies and the observed frequencies of the cells.

3.4.3 Experimental Equipment

A single hole slot die was used in the experiments. The polymer was melted and

pressurized in a Brabender extruder with a 19.0 mm (0.75 in.) diameter barrel and
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381 mm (15 in.) long screw. The molten polymer was pumped to the die using a
modified Zenith pump. See Tyagi and Shambaugh (1995) for an explanation of the
polymer supply details. The polymer capillary of the die was 2.97 mm long and
0.407 mm in diameter, and the air slots were 0.73 mm wide and 74.6 mm long. The
polymer used was 88 MFR (melt flow rate) Fina Dypro™ polypropylene with M,
= 160,000 and M, = 40,000. Figure 3.1 shows the cross-section of the die. The
following operating conditions were used in the experiments: discharge (nominal)
air velocity = 26.8 m/s, discharge air temperature = 320°C, polymer mass flow rate

= 0.3 g/min, and discharge polymer temperature = 330°C.

The fiber exiting the die was photographed with two Canon AE-1 cameras. One
camera was equipped with a Tokina AT-X Macro 90 mm lens and the other camera
had a Sigma 50 mm macro lens. A Sunpak Auto 622 Pro-system flash provided the

illumination.

3.4.4 Experimental Technique

Any technique that can measure the fiber positions or the number of times the fiber
passes through a position can be used for the stochastic modeling of the fiber
motion. Chhabra and Shambaugh (1996) used laser Doppler velocimetry (LDV)

to measure the fiber crossover frequency at a position in the xy plane below a melt
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blowing die. The actual number of fiber crossovers at a position over a period of
time was proportional to the crossovers through the measuring volume of the LDV.
To evaluate the actual crossover frequency at a position, Chhabra and Shambaugh
assumed the fiber distribution to be Gaussian. Since, in our work, the fiber
distribution itseif was to be evaluated, LDV could not be used. Instead, high speed

flash photography was used to measure the fiber position at an instant of time.

The three orthogonal coordinates (x, y, and z) of a Cartesian system were used to
define the fiber position. For a fixed value of z, only x and y coordinates need to
be measured simultaneously. Two cameras, placed along x and y axes at the same
z below the die, were simultaneously fired to capture, respectively, the y and the
x coordinates of the fiber. Figure 3.3 shows the top view of the experimental setup.
The camera placed along the y axis was called the x-camera since it captured the
x coordinate of the fiber position. Similarly, the camera placed along the x axis was
called the y-camera. The shutters of the cameras were manually operated in
darkened conditions and a flash of about 1/14,000 second duration was fired.
Because of the high velocity of light, the reflected light from the fiber essentially
reached both cameras simultaneously. The x-camera was fitted with a 50 mm
macro lens, while the y~camera had a 90 mm macro lens. To keep the field of view
identical for both lenses, the x-camera was placed 9 cm from the fiber, while the y-

camera was placed 16 cm from the fiber. With this setup, the field of view of both
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the lenses was 6 cm x 4.75 cm. The 50 mm lens was set at an f-stop of 11, while the
90 mm lens was set at an f-stop of 8. A stainless steel ruler with 1 mm graduations
was temporarily placed along the z axis. The end of the ruler was placed at the
polymer orifice of the die. Thus, a photograph of the ruler both defined the origin
of the coordinate system (see Figure 3.1) and allowed us to scale the measurements
of fiber positions. The ruler was removed before any polymer was extruded from
the die. The film used was Kodak T-Max 400 developed with Kodak T-Max

developer. The paper used was Kodak Polymax II RC at 3%z contrast grade.

The cameras were placed at z levels of 2.5 cm and 6.5 cm. At each z level, 100
replicate photographs were taken. A sample size of 100 was assumed to represent
the fiber distribution completely. The time taken to obtain a data set at each z
position was assumed to be sufficient to make the fiber motion process statistically
stationary (i.e., invariant under an arbitrary shift in the time origin). The distance
of the fiber from the zero position was measured for both x and y photographs at
sixteen z levels between 0.5 cm and 8 cm. Photographic prints were developed
with a magnification of four. Measurements had a precision of 0.1 mm in actual
distance (not distance on the negative, but distance in the actual melt blowing

system).



3.5 Results

A computer program in FORTRAN 77 was developed using the algorithm
described previously. The program was run on an IBM RISC 6000 computer using
the IMSL subroutine BNRDF to compute the bivariate normal cumulative
distribution function (IMSL, 1994). The ¥? goodness-of-fit test was done with a
subroutine developed by Press et al. (1992). Surface and contour plots of the
experimental distribution and the fitted bivariate normal distribution were gridded

using the Kriging method; see Journel (1989).

It was found that, at a 95% confidence level, the experimental data fitted a bivariate
normal distribution at all z positions studied. Figure 3.4 shows the root mean
square deviation between the experimental data and the fitted distribution for
various values of z. The average root mean square deviation of the probability of
occurrence was 0.9%. The fitted distribution was found to normalize in the
experimental range of the x and y values. Therefore, the experimental data
completely represented the fiber distribution in the xy planes. Figures 3.5 and 3.6
depict the surface plots of the experimental and the fitted bivariate normal
distribution at z = 20 mm. Figures 3.7 to 3.12 show both experimental and fitted
data surface plots at z levels of 40, 60, and 80 mm (see Appendix II for the

experimental and fitted fiber distribution surface plots for z = 10, 30, 50, and 70
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mm). From these figures, it can be clearly seen that a bivariate normal distribution
fits the experimental data. Figure 3.13 compares the contours of the fitted and the
experimental distributions at z =20 mm. Although minor peaks in experimental
data are present, the dominant peak(s) is well-fit by the elliptical pattern. The
arrow in the figure describes the orientation of the major axis of the (fitted)
elliptical pattern with respect to the x axis. Both experimental and fitted data are
oriented in the same direction. Similar contour plots for z positions of 40, 60, and

80 mm are shown in Figures 3.14, 3.15, and 3.16, respectively.

As a next step, the variations with z position of the statistical parameters of the
fitted data were obtained. Figures 3.17 and 3.18 depict the auto-correlation profiles
for the x and y directions, respectively. Both these plots show that a position of the
fiber in the z direction is correlated only to those positions of the fiber that are in
its close neighborhood along the same direction. The strongest auto-correlation is
seen between the fiber z positions that are approximately 5 mm from each other.
Therefore, under the studied conditions, a fiber element that forms a neighborhood
is contained in a spatial separation of about 5 mm along the z direction (the spatial
separation along the z direction is defined as the distance between the two xy
planes along the z direction). The results of Figures 3.17 and 3.18 validate our
assumptions that (a) the fiber threadline is a linked chain of fiber beads, and (b) the

x and the y components of the position vector of a fiber bead are correlated only to
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the corresponding components of the position vectors of the fiber beads lying in
the same fiber element along fiber axis. However, the direction of the fiber axis
may not be the same as the z direction. Shambaugh (1988) described the
orientation of the fiber in different zones below a melt blowing die. The Rao and
Shambaugh (1993) model emphasizes that the direction of the fiber axis is often
different than the vertical direction. Therefore, a spatial separation along the z
direction may not necessarily be equal to the length of a section of the fiber
contained in it. Consequently, the size of a fiber element (which forms the
neighborhood of the fiber beads, and is contained in the characteristic spatial
separation of about 5 mm along the z direction) varies with the z position and the
orientation of the fiber below the die. However, the characteristic spatial
separation along the z direction does not vary with the z position below the die.
Furthermore, low values of auto-correlations are seen in Figures 3.17 and 3.18 for
the fiber z positions that are separated much further than 5 mm. Since the
downstream fiber positions are the past states of the upstream fiber positions and
the upstream fiber positions are weakly correlated with the downstream fiber
positions further than than 5 mm, the future state (upstream fiber position) of the
fiber motion is independent of its past state (downstream fiber position). This

result validates our assumption that fiber threadline motion is a Markov process.
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Figure 3.19 shows the profile of the correlation coefficient between x and y
positions of the fiber. As expected, the correlation coefficient was low for all the
z positions studied: an average absolute value of 0.08 was found for the correlation
coefficient. This result implies little interdependence between the x and the y
positions. As mentioned earlier in the mathematical formulation, a non-zero value
of the correlation coefficient means a specific orientation of the major axis of the
fiber distribution ellipse with respect to the x axis in the xy plane. Therefore, the
physical effect of the variation of the correlation coefficient was studied as a
variation of the orientation angle of the distribution ellipse. Figure 3.20 shows the
variation of the orientation angle of the major axis of the distribution ellipse with
respect to the x axis in the xy planes along the z direction. The graph shows that
there is an aperiodic sinusoidal variation in the orientation angle profile. To
extract the frequency of variation of the orientation angles, a Fourier transform of
the data was taken. Since a fiber element was contained in a characteristic
separation length of about 5 mm in the z direction, the data were sampled at a
spatial separation (spatial period) of 5 mm. This corresponded to a sampling wave
number (spatial frequency) of 1.26 mm™. Figure 3.21 shows the Fourier orientation
angle amplitude spectrum plotted against the z direction spatial separation. The
spectrum depicts the spatial separation content of the orientation angles. However,
the spectrum does not give any indication where these spatial separations exist in

the data set. According to Kramer (1996), a narrow Fourier amplitude spectrum
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means that the variation of orientation angles has a dominant frequency or a spatial
separation, which can produce almost sinusoidal variation. In contrast, a broad
spectrum corresponds to a variety of frequencies that produce an irregular
variation. It can be seen from Figure 3.21 that there is a high amplitude, narrow
spectrum for the spatial separations of about Smm, while there is a high amplitude,
broad spectrum for the spatial separations larger than 15 mm. The low peaks in
the spectrum are present for the spatial separations between 10 and 15 mm. This
means that a large number of fiber cone cross-sections, which are spatially
separated by 5 mm, have an almost sinusoidal variation in their orientation angles
in the xy planes. A small number of fiber cone cross-sections that are spatially
separated between 10 and 15 mm also have an almost sinusoidal variation in their
orientation angles in the xy planes. However, there are a large number of fiber
cone cross-sections that are spatially separated between 20 and 40 mm and have
an irregular variation in their orientation angles in the xy planes. These results
again show that fiber threadline has a characteristic separation length of about 5
mm in the z direction. Furthermore, the fiber cone is twisted at angles that have
a sinusoidal variation with a spatial separation of about 5 mm. A small number of
higher harmonics in variation of the fiber cone twisting angles, which have a
spatial separation between 10 and 15 mm, is also present. On the other hand, there
is no correlation between the fiber cone twisting angles that are spatially separated
by more than 15 mm. Thus, the fiber elements follow a Markov property of

forgetting their past history. This validates the assumption that the fiber threadline
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motion is a Markov process. The varying angles of orientation of the fiber cone

cross-sections are seen in the distribution contours in Figures 3.13 through 3.16.

Figures 3.22 and 3.23 show, respectively, the x and the y dimension standard
deviation profiles. Higher values of the standard deviation mean a greater spread
of the distribution. For the bivariate normal distribution, 46.7% of the distribution
is present within one standard deviation of both the variables with an absolute
correlation coefficient of 0.08. The spread of the fiber distribution is linear. For the
same die, Harpham and Shambaugh (1996; 1997) have shown that the air jets also
spread linearly with z position. The air jet half-width describes the jet spread.
(The jet half-width is a position, transverse to the axial flow, where the velocity of
the jet falls to half its maximum value.) Figure 3.24 compares spreading of the
fiber distribution and the air jets. The slope of the fiber spread is different from the
slope of the air jet. However, the graph shows that fiber distribution is contained
within one jet half-width of the air jet. The best-fit line for the fiber standard
deviation profile lies at almost half the distance from the jet half-width line.
Furthermore, it has been found that about 96% of the fiber distribution is present
within one jet half-width. This means that the energy from the air jet is transferred
to the fiber within one jet half-width. Tennekes and Lumley (1972) describe the
energy cascade in a turbulent jet. The energy from the mean flow is transferred to

the large eddies via shear forces. The large eddies, which are mostly present
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between the center and one jet half-width, lose their energy to the small eddies by
vortex shedding. These small eddies, which are present toward the center of the
jet, lose their energy by viscous dissipation. It is possible that the energy from the
eddies is transferred to the fiber in melt blowing. Gutmark and Wygnanski (1976)
have shown that most of the energy transactions in a rectangular turbulent jet take
place within one jet half-width. A fiber segment might leave the turbulent jet.
However, because the segment is linked, the segment tends to be drawn back into
the turbulent jet. Therefore, it is reasonable that about 96% the fiber distribution

lies within one jet half-width.

The linear spreading and the rotational character of the fiber motion
mathematically describe the fiber cone as studied by Chhabra and Shambaugh
(1996). Figure 3.25 depicts the profile of the distribution sample mean values in
both x and y directions. An expected population mean zero position is shown as
the dotted line in the plot. Closeness to mean zero position is seen at all z positions

studied.

3.6 Conclusions

The foremost conclusion of this study is that the fiber density distribution follows

a unimodal bivariate probability distribution. One such distribution that fits the
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experimental data is a bivariate normal distribution. Statistical analysis shows that
the fiber motion in the transverse plane (xy plane) is almost independent in the two
orthogonal directions (x and y) forming the plane. However, due to the non-zero
value of the correlation between the x and y coordinates of the fiber position, the
major axis of the distribution ellipse is oriented at a certain angle with respect to
the x axis in the xy plane. There is a high degree of sinusoidal variation in the
orientation angles of the fiber cone cross-sections along the z direction. This
suggests that the fiber motion is that of an elliptical spiral which sinusoidally

rotates in the transverse planes.

The fiber distribution spreads linearly with the z direction. This is a corollary to
the linear increase in fiber cone amplitude as shown by Chhabra and Shambaugh
(1996). From the present study and from the studies on the flow field of the jet by
Harpham and Shambaugh (1996; 1997), it can be concluded that most of the
transverse motion of the fiber threadline takes place within one jet half-width. The
dynamics of the turbulent air jet also suggest the presence of most of the fiber

distribution within one jet half-width.

The fiber positions are auto-correlated only to those positions that lie within a
length of a fiber element along the fiber axis. This means that a fiber position along

the threadline is only affected by the fiber positions that are in the close
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neighborhood. This neighborhood of the fiber beads (fiber element) is contained
in a characteristic spatial separation of about 5 mm in the z direction. Furthermore,
since the motion of the fiber threadline is a continuous Markov process, the future
state of a fiber threadline section is only dependent on its present state, and is
independent of its past states. Therefore, the downstream fiber positions in the xy
plane will not affect the upstream fiber positions, if the positions are further apart
than a characteristic spatial separation along the z direction, and vice versa. If an
imaginary screen, which allowed only air to pass through, was positioned in the
xy plane at an arbitrary z position, the fiber would be captured by that screen.
Since the captured fiber sections would not affect the fiber section that is just
reaching the screen, the laydown pattern of the fiber would follow a bivariate
normal distribution. Therefore, the fiber laydown pattern can be predicted from
the obtained fiber distribution. Figure 3.26 shows the top view of the fiber pattern
formed on a real (not imaginary) wire-mesh screen placed at z position of 300 mm.
The collection time was about one minute. The air flow characteristics of this
screen (the screen had 65% open space) approximate the flow character of an
imaginary screen. The photograph in Figure 3.27 depicts the side view of the fiber
collected for a longer duration (about 10 minutes) on the same screen at the same
position. From the bell shape of the fiber distribution in Figure 3.27, we can

conclude that the fiber laydown pattern follows a bivariate normal distribution.
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Knowledge of the spread and the orientation of a fiber distribution will be used in
future work. One future goal will involve predicting fiber-to-fiber entanglements
below a multiple hole die. This knowledge of entanglements should be useful for
tasks such as (a) designing the spatial separation of the spinneret holes in the melt

blowing dies, and (b) predicting the structural properties of the melt-blown webs.
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3.7 Nomenclature
¢ = camera to filament distance defined in Figure 3.3, cm
C = experimentally determined orientation parameter [see eq (3.1)]
C; = grid cell in Figure 3.2
fx; = sum of frequencies of cells in the x direction [see eq (3.17)]
fy:; = sum of frequencies of cells in the y direction [see eq (3.17)]
f; = frequency of occurrence of fiber in grid cell C;
fE) = ¥* probability distribution [see eq (3.6)]
K = upper limit of ¥ probability distribution region [see eq (3.10)]
m, = polymer mass flow rate, g/min
N = number of observations
N{(e) = fiber orientation distribution function [see eq (3.1)]
p(x, y) = probability density distribution function

P(C,, G,) = cumulative probability density distribution function of a cell [see eq
(3-19)]

s = flash to filament distance defined in Figure 3.3, cm

T, = air temperature at die discharge, °C
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T, = polymer temperature at die discharge, °C

v, = nominal air discharge velocity, m/s

x = Cartesian coordinate defined in Figure 3.1, mm

2= abscissa of the center of the grid cell C; [see eq (3.17)]

x' = arbitrary x coordinate of the translated ellipse [see eq (3.12)]
x" = arbitrary x coordinate of the rotated ellipse [see eq (3.13)]

y = Cartesian coordinate defined in Figure 3.1, mm

9= ordinate of the center of the grid cell C; [see eq (3.17)]

y’ = arbitrary y coordinate of the translated ellipse [see eq (3.12)]
y" = arbitrary y coordinate of the rotated ellipse [see eq (3.13)]

z = Cartesian coordinate defined in Figure 3.1, mm

Greek Symbols

a = percentage distribution contained in the ellipse [see eq (3.10)]
€ = fiber orientation angle [see eq (3.1)]

1 = mean position of the fiber [see eq (3.17)], mm

®; = calculated frequency of the grid cell C;
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v = degrees of freedom

8 = angle between major axis of the distribution ellipse and the x axis [see eq
(3.16)], deg

p = correlation coefficient of the fiber positions in x and y directions [see eq (3.18)]
o = standard deviation of the fiber positions [see eq (3.17)], mm

o = angle between the flash and the y-camera defined in Figure 3.3, deg

E = x? statistic defined in eq (3.6)

¢ = normalized random variable [see eq (3.5)]
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P o 0
casel: p>0 o, >a, 0° <0 <45°
o, =0, 0 =45°
6, <0, 45° <9 <90°
case2: p=0 6, >Gq, 0=0°
o, =0, 6=0°
o, <o, 6=0°
case3: p<0 o, >0, 135° <6 <180°
O, =0, 0 =135°
o, <0, 90° <0 <135°

Table 3.1 Various values of 8 for different values of p, 5,, and o,
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o) o 0
p<0 o, >0, -45° <96 <0°
o, =0, 6 =-45°
o, <O -90° <0 <-45°

Table 3.2 Modified values of 9 for case 3, Table 3.1
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Figure 3.1 Cross section of the melt blowing die used in the experiments. The
origin of the coordinate system, which is shown separately, lies at the polymer
orifice of the die.
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Figure 3.2 Gridding used to group the fiber position (x, y) data. Frequencies are
shown to lie at the center of each grid cell. The fiber distribution is contained in
the shown ellipse.
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Figure 3.3 Top view of the experimental setup used to measure the fiber position
data.
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Figure 3.4 Root mean square deviation between the experimental data and the
fitted distribution for various values of z below the die.
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Figure 3.5 Surface plot of experimental fiber density distribution at z =20 mm.
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Figure 3.6 Surface plot of fitted bivariate normal distribution at z =20 mm.
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Figure 3.7 Surface plot of experimental fiber density distribution at z = 40 mm.
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Figure 3.8 Surface plot of fitted bivariate normal distribution at z = 40 mm.
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Figure 3.9 Surface plot of experimental fiber density distribution at z = 60 mm.
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Figure 3.10 Surface plot of fitted bivariate normal distribution at z = 60 mm.
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Figure 3.11 Surface plot of experimental fiber density distribution at z = 80 mm.
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Figure 3.12 Surface plot of fitted bivariate normal distribution at z = 80 mm.
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Figure 3.13 Contour plots showing the experimental and fitted bivariate normal

distribution at z =20 mm. The direction of the arrow shows that the major axis of
the elliptical pattern is oriented at 20.8° with respect to the x axis.
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Figure 3.14 Contour plots showing the experimental and fitted bivariate normal
distribution at z =40 mm. The direction of the arrow shows that the major axis of
the elliptical pattern is oriented at 5.5° with respect to the x axis.
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Figure 3.15 Contour plots showing the experimental and fitted bivariate normal
distribution at z = 60 mm. The direction of the arrow shows that the major axis of
the elliptical pattern is oriented at -73.4° with respect to the x axis.
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Figure 3.16 Contour plots showing the experimental and fitted bivariate normal
distribution at z = 80 mm. The direction of the arrow shows that the major axis of
the elliptical pattern is oriented at 9.9° with respect to the x axis.
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Figure 3.17 Surface plot showing the auto-correlation p, between the x
components of the fiber positions in the xy planes at different z levels below the
die.
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Figure 3.18 Surface plot showing the auto-correlation p, between the y

components of the fiber positions in the xy planes at different z levels below the

die.
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Figure 3.19 Correlation coefficient between the x and y components of fiber
positions at different z levels below the die.
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Figure 3.20 Orientation angle of the fiber distribution ellipse at different z levels
below the die.
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Figure 3.21 Fourier orientation angle amplitude spectra as a function of spatial
separation (spatial period) along the z direction.
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Figure 3.22 Variation in the x direction standard deviation of the fiber distribution

with z position.

140



6.0

polymer: m = 0.30 g/min A experimental
T,=33°C linear fit
air: Vie = 26.8 m/s
T,=320°C A A
4.0 - A
E
E |
o
©
2.0
0.0 ] L 1l l 1 l L I 1
0 20 40 60 80

Z (mm)

100

Figure 3.23 Variation in the y direction standard deviation of the fiber distribution

with z position.
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Figure 3.24 Comparison of spreading characteristics of the fiber distribution and
the air jets in the z direction.
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Figure 3.25 Variation in the x and y direction mean positions of the fiber threadline
with z position below the die.
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Figure 3.26 Top view image of the fiber pattern formed on a black wire-mesh
screen placed at z = 300 mm. The white lines shown in the image correspond
to the digitally overlaid coordinate axes.
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Figure 3.27 Side view image of the fiber collected on a black wire-mesh screen
placed at z = 300 mm. The white lines in the image correspond to the
coordinate axes which were set on the screen before fiber collection.
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Chapter 4

AN ENTROPIC MEASURE OF SPATIAL FIBER

DISTRIBUTION IN A MELT-BLOWN WEB

(The contents of this chapter will be submitted for a publication in the journal

Industrial & Engineering Chemistry Research)

41  Abstract

A method based on spatial entropy of a web image was developed to evaluate the
fiber distribution in a melt-blown web. The spread of the web distribution was
found to be a function of the axial position below the die and the process variables
(nominal air jet velocity, discharge air temperature, polymer mass flow rate, and
polymer temperature). The width of the web distribution increased (a) linearly

with the axial distance from the die, and (b) for a value of a process variable that
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reduced the fiber diameter. The orientation of the web distribution varied
irregularly for all conditions. The large standard deviation of the web orientation
angle suggested that the web orientation angle is a function of time. A method,
similar to the one used in the present study, has been proposed for multiple

filament melt-blown webs.

4.2 Introduction

Melt blowing and spunbonding are two of the most important processes for
producing nonwovens. Melt blowing produces nonwovens made of low strength
microfibers, while spunbonded nonwoven fabrics have larger fiber diameters and
strong mechanical properties. The kind of web to be used depends on the
application. Therefore, it becomes very important to understand the properties of
these webs. Morphological and mechanical properties of the webs are related to
the web structure that in turn greatly depends on the process mechanics and
conditions. Shambaugh (1988), Kayser and Shambaugh (1990), and Milligan and
Haynes (1995) empirically modeled melt blowing for various conditions to
understand the process mechanics. The theoretical fluid mechanics models of
Uyttendaele and Shambaugh (1990) and Rao and Shambaugh (1993) can be used
to predict the fiber diameter and various aspects of fiber motion in melt blowing.

Both empirical and theoretical models of melt blowing can be used to predict the
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properties of melt-blown web. Many researchers have independently studied
different techniques to determine the web structure and the effect of process
variables on the web properties. Lee and Wadsworth (1992) have studied the effect
of process conditions on the physical and mechanical properties of the melt-blown
webs. A similar detailed study on the spunbonded webs has been done by
Malkan, Wadsworth, and Davey (1994). However, the correlations between the

process variables and the web structure parameters have not been quantified.

In the present study, a method has been developed for evaluating the distribution
of fibers in a melt-blown web. The method used is based on the conclusions of the
fiber distribution studies described in Chapter 3 that, in the melt blowing process,
the fiber positions in a transverse plane follow a bivariate normal distribution.
Furthermore, it was concluded that the fiber laydown pattern should also follow
a bivariate normal distribution. Therefore, for a given set of process variables, the
probability of the fiber being present at a position in a given transverse plane can
be predicted using the distribution function. As discussed by Tyagi and
Shambaugh (1995), there are four main process variables in melt blowing: air flow
rate (or gas velocity), air temperature, polymer flow rate, and polymer
temperature. The effects of each of these variables on the statistical parameters of
the web distribution have been examined in this study. Though this study has

been done for a web produced from a single hole melt blowing die, the fiber
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distribution in any nonwoven web can be evaluated on a similar basis. In the
following sections, a method based on the spatial entropic analysis of the web

image to evaluate the fiber web distribution has been developed.

4.3 Literature Review

The properties of the nonwoven webs are dependent on the positional and the
directional pattern of the fibers in web. Many researchers have studied this
vectorial nature of the fiber presence in nonwoven webs. A review of the literature
on the web characterization has been given in Chapter 3. Heretofore, most
researchers have quantified nonwoven webs in terms of fiber orientation and web

uniformity.

Web uniformity is characterized in terms of basis weight, structure, and visual
uniformity. The nonwovens industry uses the coefficient of weight variation as a
standard quality index to quantify the web uniformity. Boeckerman (1992) and
Aggarwal, Kennon, and Porat (1992) have calibrated the intensity of the
transmitted radiation through the web to evaluate the weight uniformity. Huang
and Bresee (1993, Part III) analyzed the web images to correlate the coefficient of
web mass variation to the coefficient of pixel gray level variation. Ericson and

Baxter (1973) used a projection microscope to find the filament separation, which
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was correlated to the tensile strength of the web. They determined the coefficient

of visual uniformity by measuring the intensity of transmitted light.

In most methods for the measurement of the fiber orientation, the directionality is
evaluated by measuring the fiber position vectors directly. Hearle and Stevenson
(1963), Huang and Bresee (1993, Part I) and Pourdeyhimi (1993) have described the
methods to measure the fiber orientation with respect to the machine direction
directly. Prud’homme et al. (1975), Kallmes (1969), Votava (1982), and Tsai and
Bresee (1991) indirectly measured the fiber orientation by correlating physical

properties of a web to the fiber orientation.

Conventional methods for the characterization of nonwoven webs do not quantify
the correlation between web structure parameters and the process variables. It was
shown in Chapter 3 that, during the fiber motion, the transverse positions of a
single filament in melt blowing follow a bivariate normal distribution. A high
speed photographic method was developed to determine the statistical pattern of
the fiber positions. The variance vector of the distribution defined the spread of
the distribution, and the correlation coefficient described the orientation of the
cross-sections of the fiber cone in the transverse planes; Chhabra and Shambaugh
(1996) define the fiber “cone” as the volume below a melt blowing die in which a

fiber travels. By varying the process variables, the variance vector and the
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correlation coefficient of the distribution could be changed. Therefore, the nature
of the fiber motion could be transformed by changing the process variables. Since
it was concluded in the fiber motion study (see Chapter 3) that the fiber web
structure was dependent on the fiber threadline motion, the fiber web could be
transformed by varying the process variables (air velocity, air temperature,
polymer flow rate, and polymer temperature). However, they did not correlate the
statistical parameters of the fiber position distribution to the process variables. In
the present work, the effect of the process variables on the variance vector and the

correlation coefficient of the fiber web distribution has been quantified.

44  Technique Development

As discussed in Chapter 3, a direct method was developed to stochastically explain
the fiber threadline motion. In this method, fiber threadline was photographed
simultaneously from two orthogonal angles. The position data was fitted to a
known probability distribution. It was found that the fiber threadline followed a
bivariate normal distribution. However, this direct method could only be applied
to positions that are close (up to 80 mm) to the single hole melt blowing die
because further away from the die, the fiber amplitudes become large, and many
positions of the fiber lie out of depth-of-field of the cameras; see Chhabra and

Shambaugh (1996) for fiber amplitude measurements. For the positions further
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away from the die, and for multiple hole die system, another method had to be

developed.

4.4.1 Origin

The technique discussed in this chapter has its origin in the fiber position
distribution study described in Chapter 3. They found that the fiber positions were
auto-correlated only to those positions that lie within a length of a fiber element
along the fiber axis. Furthermore, it was found that the fiber motion was a
continuous Markov process so that the future state of a fiber threadline element
was only dependent on its present state, and was independent of its past states.
Therefore, it was concluded that the downstream fiber positions in the xy plane
would not affect the upstream fiber positions, if the positions were further apart
than a characteristic spatial separation along the z direction, and vice versa.
Consequently, if an imaginary screen, which allowed only air to pass through, was
kept in the xy plane at an arbitrary z position, the fiber elements captured on the
screen would not affect the fiber elements just reaching the screen. Thus, the
laydown pattern of the captured fiber would also follow a bivariate normal
distribution. From an experiment, they found that the side-view of the fiber
collected on a real wire-mesh screen had a bell shape. The air flow characteristics

of this screen approximated the flow character of the imaginary screen mentioned
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earlier. This experiment further confirmed that the laydown pattern followed a
bivariate normal distribution. Hence, the fiber motion and the web structure could
be characterized by a bivariate normal distribution function. From the conclusions
obtained in the fiber distribution study described in Chapter 3, it can be inferred
that, by measuring the distribution of fibers in the web, the distribution of the fiber
positions while the fiber is in motion can be obtained. Therefore, in this study, an
image processing method has been developed for evaluating the probability

distribution function of the laydown pattern from an image of a melt-blown web.

In principle, a photograph of the fiber web can store all the information about the
fiber distribution in a web. The fibers reflect light when illuminated. The
reflectance of the fibers at different positions can be recorded as different intensity
levels of gray present in the black and white photograph of the web sample. As
the number of fibers at a position will increase, reflectance at that position will
increase because the fibers are translucent (not opaque). Evidently, the fiber
distribution can be estimated from the spatial gray level intensity distribution of
the web image. However, after a number of the fiber presences (not maximum),
the reflectance will reach its maximum. The image gray level will reach a
maximum value for a lesser number of the fiber presences than the true maximum.
Consequently, the computed spatial gray level distribution of the web image will

be the apparent fiber distribution. Since the data will be lost due to the limited
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bandwidth of the imaging method (photography), the model fiber distribution
function cannot be directly estimated from the apparent fiber distribution. In other
words, the gray level distribution of the image will give “insufficient” information
about the true fiber distribution, especially in the regions where a larger number
of fibers will be present. Figure 4.1 shows a typical image of the top view of a
melt-blown web. The completely white areas corresponding to the flat regions of
the image intensity distribution. The information is lost in these flat regions of the
web image intensity distribution. Nevertheless, itis expected that the spatial order
of fibers in the varying (non-maximum) gray levels of the web image will be
identical to the spatial order of fibers in the actual web. Therefore, the spatial
order information from the image can be used to estimate the true fiber

distribution.

Rodrigues et al. (1990) used information entropy of the image intensity distribution
to extract the degree of directionality of the fibers in printing papers. They
characterized anisotropy of the printing paper in terms of the information entropy.
However, they did not use the entropy relation to predict the fiber distribution
function. In the following sections, a mathematical formulation has been described
for evaluating the spatial distribution of fibers in a nonwoven web using the

concepts of the information entropy.
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4.4.2 Mathematical Formulation

The estimation of the fiber distribution has been subdivided into two main
sections. In the first section, the formulation for calculating the fiber presence
probability density function of the sample web image has been described. The
mathematical relationships to predict the fiber web distribution from the web
image distribution using the principles of information entropy are given in the

second section.

The photographic image of the collected web sample can be digitized and stored

as an 8-bit (256 gray levels) image. According to Frieden (1972), the statistical
model of an image can be derived by dividing the image into 7 resolution cells, or
n events. The normalized frequency of occurrence of the ith event in the image is

given by

L=~ @.1)
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where ¥ is the gray level intensity of the ith cell. Similarly, a statistical model for
the web image can be developed. The web image is divided into W windows such

that

W = [m]im x [m]izxt 4.2)

where

N = number of rows of pixels or height of the image in pixels

M = number of columns of pixels or width of the image in pixels

[A)ic = next higher integer value of real A

If n be the number of pixels in each window, then

4.3)

The gray levels of the pixels in the image are assigned such that g, is the lowest,
and g, is the highest gray level for the image. The gray level g, corresponds to the

intensity of the light reflected from an area of the collection screen where no fiber
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is present

The fiber presence probability density function of the sample web image is
evaluated as the normalized frequency of the fiber presences of each window.
Using Frieden’s statistical model (1972), the apparent frequency of the fiber
presences in the kth window of the web image can be defined as a sum of the gray

level intensities of all the pixels in the window; the resulting equation is

fo = 2 my,; Ar (4.4)

where

i = index of the highest gray level in the web image

Myi = number of pixels with ith gray level in the kth window of the web

image

Ar; = ith relative gray level of a pixel
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The relative gray level Ar; is defined as

Ar, =g - &, 4.5)

where

g; = ith gray level in the image

g, = lowest gray level in the image

The relative gray level Ar; represents the amount of light reflected from the number
of fibers present at a pixel with ith gray level in the web image. However, it has
to be shown that the relative gray level Ar,,.. does not necessarily correspond to the
maximum number of the fiber presences in the web. Huang and Bresee (1993, Part
II) have shown that the intensity of light transmitted through the fiber web is
reduced by reflection and scattering. They viewed the reduction in the intensity
of the transmitted light as a reduction in the “effective” incident light.
Furthermore, they have shown that the amount of reduction is proportional to the
intensity of incident light. Since the reduction is due to reflection and scattering,
the combined intensity of the reflected and the scattered light can be represented

by
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I =4I (4.6)

where

.« = combined intensity of the reflected and the scattered light from the

fibers

I, = intensity of the light incident on the fibers

A = proportionality constant such that0 s 1 <1

According to Huang and Bresee (1993, Part IIl), the proportionality constant A is
a function of web thickness, fiber spatial arrangement, and other web structural

features. Therefore, the proportionality constant 4 can be represented by

A=At Q) @)

where

t = web thickness
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£2 = factor representing fiber spatial arrangement and other structural

features of web

The web thickness ¢ is given by

¢ = vd (4.8)

where

d = mean fiber diameter in the web

v = number of fibers at a position in the web

Since the mean diameter of the fibers is the same throughout the whole web
(variation in the fiber diameter can be assumed to be the same throughout the

web), equation (4.7) is reduced to

A=A4(v 9) 4.9)

Furthermore, for a given spatial arrangement of the fibers in the web, the factor

2is constant. Therefore, A should be a function of the number of fiber presences
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at a position only. Consequently, equation (4.9) reduces to

A = A(v) (4.10)

As the number of fibers at a position will increase, the intensity of reflected light
will increase. The intensity of reflected light will reach a maximum value, i.e.,
almost equal to the intensity of incident light [1 = 1; see equation (4.6)], and will
not increase any more with the increasing number of fibers. Therefore, the domain
of 1, for which the intensity of the reflected light increases almost linearly with the
number of fibers, will represent a true measure of the actual number of fibers

present at a position.

For a pixel position with the relative gray level Ar; corresponding to the presence

of v, number of fibers, substituting equation (4.10) in equation (4.6) gives

I
[ I—"J = A(v) (4.11)

For a pixel position with the relative gray level Ar,,, due to the presence of v,
number of fibers, equation (4.11) becomes
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I
[ —I’i] = AV, ) (4.12)

[}

Dividing the equation (4.11) by the equation (4.12) gives

[I'S]i - A(v,)
[I’slmaz J(Vm)

(4.13)

However, the intensity of the reflected light I, is proportional to the relative gray

level Ar. Therefore, equation (4.13) is transformed to the following equation:

(4.14)

Now, the specific apparent frequency of the kth window can be defined from

equation (4.4) as

e Ar,
fo, = Je = ity —— (4.15)

Substituting equation (4.14) in equation (4.15) gives
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The specific apparent frequency can be normalized as

Substituting equation (4.16) in equation (4.17) gives

= A®v)
m;
F- - i=0 ’l(vm)
£ Wi A(v.)
> ) m——

Since A(v,,,) is constant for an image, the equation (4.18) reduces to
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(4.17)

(4.18)



> 5 i, A5 4.19)

Equation (4.19) represents the normalized apparent frequency of the fiber
presences in terms of number of fibers present in the kth window. Since v

represents relative gray level Ar, equation (4.19) can be written as

F = = (4.20)

From equations (4.19) and (4.20), it can be seen that knowledge of v, and Ar,
respectively, is not required to evaluate the normalized apparent frequency of the
windows in the web image. However, the normalized frequency has to be
compared with the normalized actual frequency to know the deviation between the
apparent (web image) and the actual web distribution functions. The actual

frequency of the fiber presences in the kth window is

fi=2 m;j (4.21)



where

m,; = number of coordinate positions of pixel-area size with j number of

the fiber presences in the kth window

maximum number of fibers present at any coordinate position of

Jmax

pixel-area size in the web sample

Therefore, the actual normalized frequency of the fiber presences in the kth

window is given by

Fp = ——— (4.22)

From the equations (4.19) and (4.22), it can be seen that, since v,,, is less than or
equal to the actual maximum number of the fiber presences j,,, at any position in
the web sample, the probability density function evaluated from the image analysis
is not the true probability density function. Consequently, the data is lost because
of the image saturation. Nevertheless, as stated earlier, it is possible to estimate the

data loss with the spatial entropy analysis. Hence, the true fiber probability
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density function of web can be estimated from the apparent (web image)

probability density function given by equation (4.20).

In the preceding section, it has been shown that the web image spatial intensity
distribution is not a true estimate of the fiber presence distribution because of the
loss of information. However, the lost information, as mentioned earlier, can be
estimated using information entropy. The fiber presence information can be
evaluated in terms of entropy of the fiber presence in the web. According to
Shannon (1948), the information entropy of the fiber presence in the web can be

defined by

H,(y) = Z; ¥ Iny, (4.23)

where
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w = fiber presence probability density function

H,(y) = information entropy of n fiber presence positions

If the true fiber presence distribution is considered to be the message distribution
and the web image fiber presence distribution is considered to be the signal
distribution, then by Shanon’s information theory, the entropies of these

distributions are related by the following equation:

H(S) - Hp(S) = H(R) - Hy(R) (4.24)

where

H(S) = entropy of the source of messages (actual web distribution)

H(R) = entropy of the received signals (web image distribution)

Hg(S) = equivocation or uncertainty in the message source (actual web

distribution) if signal (web image distribution) be known
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H(R) = uncertainty in the received signals (web image distribution) if the

message (actual web distribution) sent be known

Rearrangement of equation (4.24) gives

H(S) = H(R) - Hy(R) + Hg(S) (4.25)

Consequently, the true fiber presence distribution can be estimated from the
equations (4.23) and (4.25) if the uncertainty terms are known. Equivocation or
uncertainty in the true fiber distribution is related to the variance of the
distribution. Uncertainty in web image fiber presence distribution is due to the
noisy or the bandwidth limited image capture of the web sample. However, both
these uncertainty terms cannot be directly estimated. Therefore, instead of
extracting the information directly from the fiber presence coordinates in the web

image, another method to obtain the spatial information of the web was developed.

As stated earlier, it is expected that the spatial order of the fibers in a web is the
same as that in the web image. Therefore, a method based on the directed
divergence between the observed spatial distribution F and the model spatial
distribution G can be used to estimate the true distribution. Spatial distribution

includes the information about the spatial order of the fiber positions in the web.
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It is assumed that the observed spatial distribution F describes a web such that
minimum spatial order information is lost in imaging the actual web. The directed
divergence between the two distributions is given by Kullback-Leibler (KL)

information (Kullback and Leibler, 1951). Mathematically, the KL information

function can be written as

(4.26)

1¢:9) - [ 17) lnf(”?’) dp

where
I(f:g) > 0 and the equality exists when {7F) = g(#)
f{P) = observed (spatial, in our case) probability density function
g(#) = model (spatial, in our case) probability density function
f = random variable vector

The smaller the KL information function I(f:g) is, the closer the observed spatial
distribution F is to the model spatial distribution (Arizono and Ohta, 1989).

Therefore, the problem is reduced to bringing the observed spatial distribution F
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close to the model spatial distribution G as much as possible. As described by
Kapur and Kesavan (1992), this problem can be solved by minimizing the KL
information function. The minimization can be achieved by iteratively varying the
parameters of the model spatial distribution G, and is subject to the following set

of constraints:

f f(P) dp =1 (4.27a)
and

[ 8@ dp=1 (4.27b)

The spatial order can be measured in terms of interrelationships between the
values of the random variable at various positions in the web sample. The fiber
presence probability density function P(x, y) of a window is taken as the random
variable function for the sample web. The interrelationships between the fiber
presence probability density function of different pairs of windows in the web
image have to be evaluated to calculate the spatial distribution function. Only the
non-flat regions of the web image distribution are considered for the evaluation of
the spatial distribution since no information is assumed to be lost in these regions.

The interrelationship between the fiber presence probability density function P(x,
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y) of the two pairs of windows in the image can be computed as a bivariate
probability density function. As described by Rossi and Posa (1992), the spatial
bivariate cumulative distribution function for the interrelationship between two

pairs of windows is given by

®.(p, p’; k) = Prob (P(%) < p, P(Z + k) s p’) (4.28)

where

I = lag vector, measuring the displacement between the two position

vectors of the center of the windows

p = maximum fiber presence probability value for the first window

p ’= maximum fiber presence probability value for the second window

P(X) = fiber presence probability of the first window

P(% + h) = fiber presence probability of the second window

X = position vector of the center of the first window
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The maximum fiber presence probability values p and p ’for the two windows can
take K outcome values of the fiber presence probabilities. Rossi and Posa described
that the bivariate spatial probability density function @(p, p ’; f) can be estimated

from the cumulative distribution function ®,(p, p; k) with the following equation:

¢lp p' B) = @(p « ap, p’ + Ap's ) - @,(p, p’ + Ap'; R)

- @,(p + dp, pi B) + @,(p p's B) | / (Bp-ap’) 429

where Ap and Ap / respectively, are the discrete increments in the maximum fiber

presence probability values for the two windows. The spatial probability density

function @(p, p; It) is highly dependent on the values of Ap and Ap . The values

of Ap and Ap ’can be optimized by reducing the absolute deviation in values of ¢,

in the consecutive iterations of the evaluation procedure. The cumulative
distribution function ®,(p, p’; k) is dependent on the representability of the
sample pairs [P(¥), P(¥ +h)]. According to Journel and Deutsch (1993), if the
sample pairs [P(%), P(Z+ k)] are spatially positioned very far from each other, i.e.,
h = +=, then the sample pairs can be considered statistically independent: ®,(p, p *

; ) = 0. This case of independence is not very useful as the information about the

spatial interrelationship has to be evaluated. Therefore, a lag vector i has to be
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chosen such that the information about the spatial order is retained. For this
purpose, Brink (1995) has shown the sample can be considered as a type of Markov
random field with each position dependent only on the positions in its immediate
3x3 or 5x5 neighborhood. This means that the lag vector kis (n, h) with -1 < h; <
+1 and -1 < k; < +1 for the 3x3 neighborhood, or -2 < h; < +2 and -2 < I; < +2 for the
5x5 neighborhood. In fact, Brink (1995) has shown that redundancy in calculations
in the 3x3 or 5x5 neighborhood can be reduced by modifying the neighborhood
to include only the origin, its immediate neighbors to the right and below, and its
diagonal neighbors below the 3x3 or 5x5 neighborhood. Table 4.1 shows the

modified asymmetrical 5x5 neighborhood of coordinate (i, j) as the non-shaded

cells.

Thus, the cumulative distribution function and probability density function can be
calculated over all the values (12, if considering asymmetrical 5x5 neighborhood)
of the lag vector & considered over the whole image. Then, the KL information can
be computed as an average over the asymmetrical neighborhood to include the

spatial information completely.

The observed and model spatial probability density functions are normalized to
calculate the KL information. The normalization is with respect to the maximum

observed fiber presences in the non-flat region of the web image distribution. This
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“maximum” is calculated as the maximum value of the observed fiber presence
probability of a window P,(¥) after which the absolute value of the partial
derivative dP,/dx; starts decreasing. Furthermore, KL information function
described by equation (4.26) is only valid for the continuous distribution functions.
For the normalized values of P, and P, the integral in equation (4.26) is

transformed to summations in the discrete case as shown in the following equation:

ax

L(f:g:k) = % Y5 Y flp plih) e pi) (4.30)

£ p0p'0 g(p. p’;h)

iel

From equation (4.28), the observed and the model spatial cumulative distribution

function can derived as

=

Ep p'i K) = Prob (B,(2) < p, B,(Z + ) s p’) (4.31a)

Gy(p. p's ) = Prob ( B,(%) < p, B, (2 + K) s p’) (4.31b)

where 150 is the normalized observed fiber presence probability density function,
and P_ is the normalized model fiber presence probability density function of the

web image.

For a single hole die, the model fiber presence probability density function is taken
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as bivariate normal distribution following the conclusions of fiber motion study
described in Chapter 3. Therefore, the model fiber presence probability density

function is given by

Pn(X y) = L exp[‘ %w(x' y)] (4.32)

270, ay\ll - p?

where

o, = the x direction standard deviation of the fiber positions

o, = the y direction standard deviation of the fiber positions

p = correlation coefficient of the fiber positions in the x and y directions

The quantity a(x, y) in equation (4.32) is defined by




where

4, = the x direction mean position of the fibers

4, = the y direction mean position of the fibers

The spatial probability density functions for both cumulative distribution functions
given by equation set (4.31) can be calculated with the equations (4.29), (4.32), and
(4.33). The discretized KL information [,(fg; k) given by the equation (4.30) is
minimized by varying the parameters of the model spatial density distribution g(p,
p’; k). Since the model fiber presence probability density function P,, is a function
of the statistical parameters i, @, and p, the model spatial density distribution g(p,
p’; it) can be varied by varying the parameters of P,. However, all the statistical
parameters, i.e,, fi, @, and p, do not have to be varied. As shown in Chapter 3, the
mean vector ji of the fiber distribution, which is a bivariate normal distribution,
forms the coordinates of the center of the distribution ellipse. Johnson and Kotz
(1972) have shown that if a percent of the distribution is contained in the ellipse,

then the equation of the ellipse is given by (also see Chapter 3)
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20 P ST | T =_2(1_p2)1n(1__a’_) (4.39)
. % |5, 3, 100

Since the variance vector d?describes the axes of the distribution ellipse, it is a
measure of the spread of the distribution. A non-zero correlation coefficient p of
the distribution explains the angular orientation of the distribution with respect to
the x direction. As shown in Chapter 3, the angular displacement 8 between the
major axis of the bivariate normal distribution ellipse and the x direction can be

evaluated by

1 2pa 0,
6= -i arctan Ty—Z (4.35)
(o - o

Therefore, the fiber web orientation angle can be evaluated in terms of the
correlation coefficient and the variance vector. From Figure 4.1, it can be seen that
the information about the mean position of the actual web is not lost in the web
image. Consequently, the means in both the x and the y dimensions of the model
distribution can be assumed to be equal to the means observed in the web image
intensity distribution. In fact, the mean or the center of the distribution ellipse

should theoretically coincide with the origin in the xy plane. Since the web image
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distribution is expected to be flat where most fibers are present, the variance vector
d2should differ from that of the observed web image probability density function.
However, the orientation of the web image distribution and the model distribution
should be identical because the only difference between the two distributions is the
flatness of the web image distribution. The invariance of the orientation of the web
distribution can be used as a constraint for minimizing KL function. The
correlation coefficient of the two distributions should be identical because it is only
related to the orientation of the distribution. Thus, the value of the variance vector
d2that minimizes the KL function should be the best estimated value for the model

distribution as predicted by the information entropy.

4.4.3 Web Distribution in Multiple Filament Melt Blowing

The image analysis described in the preceding section can also be applied to
evaluate the apparent distribution of fibers in multiple filament melt blowing.
Equation (4.20) used for evaluating the apparent or observed fiber presence density
distribution P, from the web image intensity distribution is independent of the
fiber motion and the number of fiber filaments coming out of the die. Since only
spatial information considered in the entropic analysis is the information about the
arrangement of fibers in a web, the entropic analysis used for a single filament

melt-blown web can be applied to a multiple filament melt-blown web. Both
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observed spatial density distribution fp, p’; k) and model spatial density
distribution g(p, p*; ) can be evaluated from the observed and the model fiber
presence density distributions P, and P,, respectively, in the same way as in a
single filament system. However, the model fiber presence distribution P, in
multiple filament melt blowing will not be the same as in the case of single
filament process. As an approximation to the actual web distribution, the model
fiber presence distribution can be a superposition of the bivariate normal
distributions of the fiber filaments. Therefore, the model fiber presence

distribution P_ in n filament melt blowing can be described by

P = 2 a P (4.36)

where

a, = coefficient describing the contribution of ith fiber filament to the overall

model fiber presence distribution P_

P_ = bivariate normal distribution of ith fiber filament
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The coefficient g; can be a function of the fiber-to-fiber interaction parameter.
Consequently, in multiple filament melt blowing, the fiber-to-fiber interaction
parameter will have to be determined to evaluate the model fiber presence
distribution P, . Once the model fiber presence distribution is obtained, the KL
information function given by equation (4.30) can be minimized by varying the
statistical parameters (more than two) of the model fiber presence distribution.
However, the web orientation angle constraint used in the case of single filament
process cannot be used. A new constraint based on the geometrical information of
the multiple filament web will have to be developed. Nevertheless, the method
developed in the preceding section can be applied to evaluate the distribution of

fibers in a multiple filament melt-blown web.

45 Technique Implementation

4.5.1 Experimental Details

A single hole slot die was used in the experiments. The polymer was melted and
pressurized with a Brabender extruder with a 19.0 mm (0.75 in) diameter barrel
and 381 mm (15 in) long screw. The molten polymer was pumped in the die with
a modified Zenith pump. Tyagi and Shambaugh (1995) have further explained the

polymer supply details. The polymer capillary of the die had an inside diameter
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of 0.407 mm and a length of 2.97 mm. The two rectangular air slots in the die were
74 mm long and 0.74 mm wide. The die was the same as that used by Chhabra and
Shambaugh (1996) and in Chapter 3. Figure 4.2 shows the cross-section of the die.
The polymer used was 88 MFR (melt flow rate) Fina Dypro™ polypropylene with
M,, =160,000 and M, = 40,000. The ranges of basic operating conditions used for

experiments are given in Table 4.2.

The fiber coming out of the spinneret was collected on a metal wire-mesh screen
(65% open space) painted with non-reflecting Krylon® 1613 Semi Flat Black paint.
The wire-mesh screen allowed only air to pass through it. The fiber was collected
for a sufficient amount of time to make the fiber collection process statistically
stationary (i.e., invariant under an arbitrary shift in the time origin). The
characteristic time to make the process statistically stationary was empirically
determined to vary from 30 seconds to 1 minute. Any longer than this period of

time started blocking the collection screen, and led to a nonuniform web.

After the web was collected on the screen, the top view of the web was
photographed using a Canon AE-1 Program camera at an automatic exposure. The
camera was equipped with a Sigma 50 mm macro lens. Three 100 Watts General
Electric Soft White tungsten bulbs provided the illumination. The film used was

Kodak T-Max 400 and the prints were made on liford Multigrade IV RC paper.
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The prints were digitized with a Hewlett-Packard ScanJet 3C scanner at a
resolution of 300 dots per inch. The web images were digitally overlaid with 3
pixel wide coordinate axes lines corresponding to the actual geometrical coordinate
axes in the xy plane. Adobe Photoshop® 4.0 software was used for digitally
overlaying the coordinate axes lines. These web images were stored as 8-bit
grayscale images in the Portable Gray Map (PGM) format. Figure 4.1 shows a

typical web image with digitally overlaid coordinate axes.

4.5.2 Data Analysis

The mathematical formulation described earlier was used to develop a FORTRAN
77 computer program to analyze the web images. The analysis procedure used in

developing the computer program is summarized as follows:

1. The web image was divided into W windows as described by equation (4.2).
The number of pixels in each window was calculated with equation (4.3). The
web image fiber presence probability density function was evaluated as the
normalized frequency of fiber presences in a window P, with equation (4.20).
The normalized frequency of each window (group) was assumed to lie at the
center of each window. The means, the standard deviations, and the

correlation coefficient of the grouped data were computed with the procedure
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outlined in Chapter 3. The angular orientation of the web image was calculated
with equation (4.35). It was assumed that the web image distribution ellipse
had the same orientation as a bivariate normal distribution ellipse with the
same statistical parameters as that of the web image distribution. By making
this assumption, the variances of the model distribution were constrained to
have a specific relationship between them, while keeping the orientation of the
web image distribution identical to the orientation of the model probability
distribution. The orientation constraint was mathematically defined as the
difference between the orientations of the web image distribution ellipse and
the model probability distribution ellipse. This constraint was used to keep the

variance variables in a reasonable range.

The means and the correlation coefficient of the web image distribution were
taken as the best estimates for the model fiber presence distribution. The
standard deviations of the web image distribution were taken as the guess
values in the first iteration loop of optimization. In the subsequent iterations,
the minimization routine provided the estimates of the standard deviations.
Using these estimated statistical parameters, the model fiber presence
probability density function was evaluated as a bivariate normal probability
distribution. An IMSL subroutine BNRDF was used to evaluate the bivariate

normal cumulative distribution function of each window (IMSL, 1994). The
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bivariate normal cumulative distribution function of a window was considered

as the model fiber presence distribution P, of the window.

3. For normalizing the fiber presence probabilities, the partial derivatives of the
observed fiber presence probability distribution P, with respect to each
direction (x and y) were computed. The maximum value of the observed fiber
presence probability after which the absolute value of the partial derivative
oP,/ox; started decreasing was selected for normalizing both observed and
model fiber presence probabilities. The four vector positions of the windows
(two positions for positive and negative directions of each dimension) after
which the partial derivatives started decreasing were considered as the
positions which enclosed the flat region of the observed fiber presence
distribution. The flat region of the observed fiber presence distribution was not

considered for evaluating the spatial distribution functions.

4. The observed and model spatial cumulative distribution functions were
calculated with the equation set (4.31). From the observed and the model
cumulative distribution function, the spatial probability density functions were

computed with the equation (4.29).

5. The discretized KL information function was evaluated with the equation (4.30).
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The objective function f;;.,. for the minimization was constructed by adding
the squared KL function to the squared orientation constraint function. The KL
function and the orientation constraint function were squared to make the
objective function a convex function of the standard deviations. The objective

function f,,, can be mathematically described by the following equation:

fojusioe = WFEH) + (6, - 6F 437)
where
6, = angle of orientation of the major axis of the model
distribution ellipse

6, = angle of orientation of the major axis of the observe

distribution ellipse

. The objective function f, .+, Was minimized with the Simulated Annealing
algorithm developed by Goffe, Ferrier, and Rogers (1994). This minimization
algorithm repeated the steps 2 through 4 with different values of the variance
vector of the estimator bivariate normal fiber presence probability density

function to minimize the objective function f; ;-

. The best estimate of the fiber presence probability density function was
calculated with the best estimate of the variance vector @%that minimized the

objective function.
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4.6 Results

A computer program in FORTRAN 77 (see Appendix III for program code) was
developed to analyze the web image data. The program was run on an IBM RISC
6000 42T computer workstation. The average CPU time to run the program was
about 40 hours. The bivariate normal probability distribution of the fiber presences
in the melt-blown web was successfully estimated from the flat web image
intensity distribution with the entropic analysis for all the conditions listed in Table

4.2,

Figures 4.3 and 4.4, respectively, depict the typical surface plots of the observed
and the model spatial probability density functions. The spatial probability
density functions in the plots represent the typical spatial interrelationship between
the two adjacent windows (h, = 0 and h, = +1) in the y direction of the web. The
closeness in the surface plots shows that the observed and the model spatial
distributions are almost equal. Therefore, the Kullback-Liebler information
function describing the directed divergence between the two spatial distributions
has been minimized. The best estimates of the standard deviations obtained by
minimizing the KL information function were used to compute the bivariate
normal fiber presence distribution of the web. Figures 4.5 and 4.6, respectively,

show the typical surface plots of the observed (web image) fiber presence
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distribution and the model (bivariate normal) fiber presence distribution. On
comparing Figures 4.5 and 4.6, it can be seen that the web image intensity
distribution underpredicts the bivariate normal distribution of the web. However,
the underprediction is corrected by the spatial information entropy analysis. The
corrected bivariate normal distribution in Figure 4.6 represents the best estimate

of the true fiber distribution in a typical single filament melt-blown web.
4.6.1 Effect of z Position on the Spread of the Web Distribution

Figure 4.7 shows the spread of web distribution along the z direction. The
standard deviations of the model fiber distribution increase linearly with the z
direction. The linear increase in the standard deviations of web distribution with
the z direction is similar to the one shown in Chapter 3 for the case of fiber position
distribution. For the same die, Harpham and Shambaugh (1996; 1997) have shown
that the air jets also spread linearly with the z position. The air jet half-width
describes the jet spread. One jet half-width is a position, transverse to the axial
flow, where the velocity of the jet falls to half its maximum value. Figure 4.8
compares spreading of the web distribution and the air jets. The slope of the web
distribution spread is different from the slope of the air jet spread. However, it can
be seen that most of the web distribution is contained within one jet half width.

The standard deviation profiles lie at about half the distance from the jet half-width
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line (shown as a solid line on the graph). About 94% of the web distribution is
contained in one jet half-width for the range of z positions investigated. In Chapter
3, the containment of fiber distribution within one jet half-width is explained using
turbulent air jet dynamics. In Figure 4.7, it can also be seen that the x direction
standard deviation is larger than the y direction standard deviation at all the z
positions. Therefore, the web distribution is elliptical for all the z positions

studied.

4.6.2 Effect of Process Variables on the Spread of the Web Distribution

The effect of each of the four main process variables - nominal air jet velocity,
discharge air temperature, polymer mass flow rate, and discharge polymer
temperature - on the standard deviations of the web distribution was examined.
Before discussing the effects of these variables, a brief description of dynamics of
fiber motion in melt blowing is presented to help in understanding the effect of the

process variables.

In melt blowing, the fiber attenuates under the action of the aerodynamic force.
The greater the aerodynamic force (higher nominal air jet velocity), the greater the
fiber attenuates (Shambaugh, 1988). Uyttendaele and Shambaugh (1990)

determined that the final diameter of the fiber is reached by z =50 mm. A similar
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result was also observed in the present study. Figure 4.9 shows the fiber diameter
remains almost constant for all the z positions studied (z = 200 to 400 mm). After
the fiber attains its final diameter, the aerodynamic force only affects the fiber
motion. As described by Rao and Shambaugh (1993), this aerodynamic force can
be resolved into lift and drag forces. The drag force is responsible for the
downward motion of the fiber, while the lift force is responsible for the transverse
motion of the fiber. The fiber elements of different masses per unit length should
respond differently to these forces. Ata distance greater than 50 mm from the die,
for the same amount of aerodynamic lift stress, a fiber element with a lesser mass
per unit length (thinner fiber element) should move a larger distance in a
transverse plane than a fiber element with a larger mass per unit length (thicker
fiber element). Since the spread of the web distribution is the spread of the fiber
position distribution while the fiber is in motion (see Chapter 3), this effect of
aerodynamic lift stresses on the fiber motion can be used in explaining the

variation in spread of the web distribution.

Figure 4.10 shows the variation of the model standard deviations with the nominal
air jet velocity. Itis seen that the standard deviations increase gradually with the
increase in nominal air jet velocity at z =300 mm. The increase in spread of the
web distribution with the increase in nominal air jet velocities is expected since the

fiber attenuates more at the higher nominal jet velocities and, as explained earlier,
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a thinner fiber element (lesser mass per unit length) moves a larger distance in the
transverse plane than a thicker fiber element (larger mass per unit length) for the
same amount of lift stress. Figure 4.11 shows the decrease in the fiber diameter
with the increase in the nominal air jet velocity. However, the fiber diameter does
not decrease sharply with the nominal air jet velocity. Consequently, the gradual
increase in spread of the web distribution is reasonable. The amount of lift stress
acting on the fiber at the various nominal air jet velocities can be judged from the
air jet flow characteristics of the die. At the studied conditions, the air velocity and
temperature correlations developed by Harpham and Shambaugh (1997) for the
same die can be used to obtain the air velocity profiles. Figure 4.12 shows the
decay in the centerline velocity of the jet for the various nominal air jet velocities
at a discharge temperature of 330°C. From the graph, it can be seen that, at z =300
mm, the centerline velocities for all the nominal air jet velocities have decayed to
about 2 m/s. Therefore, there should not be a large difference in the amount of
aerodynamic lift stresses acting on the fiber. Consequently, almost the same
amount of lift stress should be acting on the fibers of different diameters (different
masses per unit length) obtained at different nominal air jet velocities. Hence,
larger spreads of the web distribution are obtained for the nominal air jet velocities
that produce finer fiber diameters. Furthermore, in Figure 4.10, the x direction
standard deviation is larger than the y direction standard deviation for all nominal
air jet velocities studied. Therefore, the web distribution remains elliptical with

changing nominal air jet velocities.
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Figure 4.13 illustrates that the fiber diameter does not change with discharge air
temperature (at least for the range of temperatures investigated). Therefore, the
spread of the web distribution should not vary with discharge air temperature. As
expected, Figure 4.14 shows that the standard deviations of the web distribution
do not vary appreciably with discharge air temperature. Furthermore, it can be
seen from the graph that the web distribution spreads more in the x direction than

in the y direction.

The effect of polymer mass flow rate on the fiber diameter is shown in Figure 4.15.
From the graph, it can be seen that, with the increase in polymer throughput, the
fiber diameter increases. The increase in fiber diameter with the increase in
polymer throughput is expected since a fiber element with a higher mass per unit
length will require a greater amount of aerodynamic stress than a fiber element
with a lower mass per unit length to attenuate by the same amount. An increase
in the fiber diameter with polymer throughput suggests that the standard
deviations of the web distribution should decrease with an increase in polymer
throughput. This effect can be observed in Figure 4.16 which shows the variation
of standard deviations with polymer mass flow rate. Furthermore, it is evident
from Figure 4.16 that the web distribution is elliptical with the x direction standard
deviation larger than the y direction standard deviation for all polymer mass flow

rates investigated.
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Figure 4.17 shows the effect of discharge polymer temperature on the fiber
diameter. An increase in discharge polymer temperature gave finer diameter
fibers. This effect was expected since, at higher polymer temperatures, the
viscosity of the polymer reduces. Consequently, for the same amount of
aerodynamic stress, the less viscous polymeric fiber attenuates more than the fiber
with a higher polymer viscosity. A decrease in the fiber diameter implies a greater
spread in the web distribution. Figure 4.18 illustrates the increase in the standard
deviations of the web distribution with discharge polymer temperature. Once
again, the x direction standard deviation is larger than the y direction standard

deviation for all polymer temperatures studied.

4.6.3 Effect on the Orientation Angle of the Web

Figure 4.19 shows the variation in the orientation angle of the web distribution
with the z position. As shown in Chapter 3, in the xy plane, the orientation angle
of the fiber position distribution varies almost sinusoidally with a spatial
separation (spatial period) of about 5 mm in the z direction. For the spatial
separations of more than 15 mm in the z direction, they have shown that there is
an irregular variation of the distribution orientation angle. Furthermore, in
Chapter 3, it was suggested that the fiber moved in an elliptical spiral following a

bivariate normal distribution in the transverse plane, and the ellipse rotated
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sinusoidally in the same transverse plane (at the same z position). The sinusoidal
rotation of the ellipse in a transverse plane means that the orientation angle of the
ellipse should have a large variation. As expected, both these effects - an irregular
variation of the “average” web orientation angle with the z position, and a large

variation of the web orientation angle at a z position - are observed in Figure 4.19.

Figures 4.20 through 4.23 show the effect of four main process variables on the
orientation angle of the web distribution. From these figures, it is evident that the
“average” web orientation angle varies irregularly with the process variables
investigated. However, there is some degree of sinusoidal variation, but it is not
definitive. Furthermore, the web orientation angles have large standard deviations
for all the values of the process variables examined. The large values of the
standard deviation of the web orientation angle suggest that, for any value of a
process variable, the web orientation angle distribution has a large spread. Since
only five web samples were collected at a process condition, the web orientation
angle distribution could not be estimated. Furthermore, the large variation of the
orientation angle suggests that the web orientation angle may be a function of time.

However, the variation of the web orientation angle with time was not studied.
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4.7 Conclusions

The foremost conclusion of this study is that the fiber presence distribution in a
melt-blown web can be estimated from the spatial information of the pixel
intensity in the web image. The distribution of fibers in a single filament melt-
blown web is a bivariate normal distribution. This distribution is the same as the
fiber position distribution described in Chapter 3 for the fiber motion in melt
blowing. Therefore, the fiber position distribution while the fiber is in motion can

be evaluated from the web distribution, and vice versa.

For all the z positions and the process conditions studied, the web distribution is
elliptical. The web spreads more in the x direction than in the y direction. The
spreads in both x and y directions are linear functions of the z position below the
die. The linear spreading of the web distribution is similar to that of the fiber
position distribution as observed in Chapter 3, and to the increase in fiber cone
amplitude as shown by Chhabra and Shambaugh (1996). From the present study
and the studies on the velocity and temperature fields of the air jets by Harpham
and Shambaugh (1997), it can be concluded that most of the web distribution is

contained in one jet half-width.

The spread of the web distribution is a strong function of the fiber diameter. The
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values of the process variables that reduced the fiber diameter increase the spread
of the web distribution. Figure 4.24 shows the increase in the standard deviations
with the decrease in the fiber diameter for various ranges of the process variables.
Since nominal air jet velocity, polymer mass flow rate, and discharge polymer
temperature affect the fiber diameter to a large extent, the spread in the web
distribution depends largely on these variables. The discharge air temperature
does not appear to affect the spread of the web distribution because the range of
discharge air temperature studied did not affect the fiber diameter. In conclusion,
any process variable that would reduce the fiber diameter should increase the
spread of the web distribution. This conclusion should be very helpful in

controlling the basis weight (mass per unit area) of a nonwoven web.

The web orientation angle varies irregularly with the z position and the process
variables studied. However, the variation in the average web orientation angle
appears to have a sinusoidal character. For the z direction spatial separation
studied (50 mm), the variation of the web orientation angle is similar to the
variation of the orientation angle of the fiber position distribution observed in
Chapter 3. Ata z position and for a value of a process variable, the web orientation
angle has a large variance which suggests that the web orientation angle is a
function of time. Furthermore, there may be a correlation between the orientation

of fibers in web and the web orientation angle because it appears that most fibers
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should lie in a specific orientation for a web to have an orientation in a preferred
direction. Therefore, the orientation of fibers in a web may be evaluated in terms
of the web orientation angle. Knowledge of variation of spread and orientation
angle of the web distribution with the z position and process variables should be
useful in predicting fiber-to-fiber contact and entanglement since the web
distribution is the same as the fiber position distribution while the fiber is in

motion.

Another important future goal will be studying the web distribution in multiple
filament melt blowing. An information entropic analysis similar to the one used
for single filament web has been suggested to evaluate the web distribution in a
multiple filament system. The fiber-to-fiber interaction parameter for multiple

filament melt blowing will be obtained to evaluate the web distribution.
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4.8 Nomenclature

a; = coefficient describing the contribution of ith fiber filament to overall
distribution [see eq (4.36)]

[A]ie = next higher integer value of real A
d = web average fiber diameter
f,.= apparent frequency of fiber presences in the kth window
Sfsjectioe = Objective function for minimization
f%= specific apparent frequency of fiber presences in the kth window
fP) = observed spatial probability density function
F, = observed spatial cumulative distribution function
E,= normalized apparent frequency of fiber presences in the kth window
F, = normalized frequency of the fibers presences in the kth window
g, = lowest gray level in the image
Zmax = highest gray level in the image
g(7) = model spatial probability density function
G, = model spatial cumulative distribution function
h; = x component of the lag vector &

h; = y component of the lag vector h
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I = lag vector
H(S) = entropy of the source of messages (actual web distribution)
H(R) = entropy of the received signals (web image distribution)

Hi(S) = equivocation or uncertainty in the message source (actual web distribution)
if signal (web image distribution) be known

H(R) = uncertainty in the received signals (web image distribution) if the message
(actual web distribution) sent be known

H (y) = information entropy of n fiber presence positions

i = image pixel index

i, = index of the highest gray level in the web image

I(f-g) = Kullback-Leibler information function

I{fg; k) = Kullback-Leibler information function for the discrete case [see eq (4.30)]
I, = intensity of the light incident on the fibers

I, = combined intensity of the reflected and the scattered light from the fibers

j = actual number of fibers present at a position

Jmee = maximum number of fibers present at a coordinate position of pixel-area size
k = index of the windows in the web image

"= number of coordinate positions of pixel-area size with j number of fiber
presences in the kth window of actual web
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i, . = number of pixels with ith gray level in the kth window of the web image
M = number of rows of pixels in the image or height of the image in pixels

n = number of pixels in each window of the image

N = number of columns of pixels in the image or width of the image in pixels

p = maximum fiber presence probability for first window [see eq (4.28)]

p’= maximum fiber presence probability for second window [see eq (4.28)]
P(%, y) = fiber presence probability density function

Ap = discrete increment in maximum fiber presence probability for first window

Ap’ = discrete increment in maximum fiber presence probability for second
window

f = random variable vector [see eq (4.26)]

P(Z) = fiber presence probability of a window with position vector ¥

P (&) = observed fiber presence probability of a window with position vector ¥
P, (%) = model fiber presence probability of a window with position vector ¥

P_(#) = normalized observed fiber presence probability of a window with position
vector ¥

P_(%) = normalized model fiber presence probability of a window with position
vector ¥

P_ = bivariate normal distribution of ith fiber filament in multiple filament melt
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blowing

P_=model fiber presence distribution in multiple filament melt blowing
Ar, = relative gray level of ith pixel in the image

t = web thickness

W = number of windows in the image

x = abscissa of the fiber position in a web

X = position vector of the center of a window

y = ordinate of the fiber position in a web

Greek Symbols

a = percentage of the distribution contained in the ellipse [see eq (4.34)]
n = proportionality constant in eq (4.10)

#.(p, p’; h) = spatial bivariate probability density function

@,(p, p’; h) = spatial bivariate cumulative distribution function

7, = gray level intensity of ith cell [see eq (4.1)]

[; = normalized frequency of occurrence of ith event [see eq (4.1)]

A = proportionality constant in eq (4.6)
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4, = x direction mean position of the fibers

4, = y direction mean position of the fibers

ji = mean vector of the fiber positions

v = number of fibers present at a position in web

v, = number of fibers present at a pixel of gray level g; in the web image

Ve = NUumber of fibers present at a pixel of gray level g, in the web image
0= orientation angle of the major axis of the web distribution ellipse [see eq (4.35)]
6, = orientation angle of the major axis of the model web distribution ellipse

6, = orientation angle of the major axis of the observed web distribution ellipse
p = correlation coefficient of the fiber positions in the x and y directions

o, = x direction standard deviation of the fiber positions

o, = y direction standard deviation of the fiber positions

@ = standard deviation vector of the fiber positions
@2 = variance vector of the fiber positions

2 = factor representing fiber spatial arrangement and other structural properties
of web in eq (4.7)

w = fiber presence probability density function [see eq (4.23)]
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Table 4.1 Asymmetrical 5x5 neighborhood, shown as non-shaded cells, of window
(i, j) in a web image.
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(1) z-positions below the die: 200, 250, 300, 350, and 400 mm
(2) discharge (nominal) air velocities: | 17.6, 22.2, 26.8, and 30.9 m/s
(3) discharge air temperature: 270, 300, 330°C

(4) polymer mass flow rate: 0.3, 0.4, 0.5, 0.6, 0.7 g/ min

(5) discharge polymer temperature: | 290, 305, 320, 335°C

Table 4.2 The operating conditions used in the experiments
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Figure 4.1 Typical top-view image of a single filament melt-blown web. The
two orthogonal white lines, corresponding to the coordinate axes, were
digitally overlaid on the image.
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Figure 4.2 Cross-section of the melt blowing die used in the experiments. The
origin of the coordinate system, which is shown separately, lies at the polymer
orifice of the die.
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Figure 4.3 Typical surface plot of the observed (web image) spatial order
distribution.

210



Polymer: Qp = 0.3 g/min Position:
Tp =320°C Lag:
z 02 Air: Vo = 26.8 mJ/s
32 . T,=330°C Data:
0.
g
:
E 0.10
i o
2
]

bivariate normal distribution

Figure 4.4 Typical surface plot of the model spatial order distribution.
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Figure 4.5 Typical surface plot of the observed (web image) distribution of fibers
in a single filament melt-blown web.
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Figure 4.6 Typical surface plot of the model fiber presence distribution in a single
filament melt-blown web.
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217



40.0

30.0

200

polymer: m p = 0.3 g¢/min
T p = 320°C

fiber diameter, d (um)

100 &ir T, =330°C

position: z =300 mm

0.0 | ] ] | I 1 1
16.0 18.0 20.0 220 240 26.0 28.0 30.0 32.0

nominal air jet velocity, Vio (m/s)

Figure 4.11 Effect of nominal air jet velocity on the fiber diameter at z = 300 mm.
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Chapter 5

AIR TURBULENCE STRUCTURE IN MELT BLOWING

5.1 Overview

In melt blowing, the aerodynamic drag force of a high velocity hot air (gas) jet
rapidly attenuates the fiber. The higher the air velocity, the larger the aerodynamic
drag force on the fiber; the greater the fiber attenuates. Shambaugh (1988) has
shown that the melt blowing process has three main regions of air velocity in the
order of increasing velocity. Air jet turbulence increases as higher air velocity
regions are reached. Therefore, it is possible to explain the nature of aerodynamic

drag force in three air velocity regions if jet turbulence characteristics are known.
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Air jet turbulence also varies as the distance from the die increases. Wu and
Shambaugh (1992) defined three spatial zones of fiber motion at the exit of melt
blowing die. Fiber has different orientations in three spatial zones. Once again,
it is possible to explain the spatial orientation of fiber by understanding the air jet

turbulence below the die.

Besides the qualitative explanation for the observed fiber diameter and motion at
different air velocities, knowledge of air jet turbulence is needed to quantitatively
predict the fiber parameters in melt blowing. Mathematical models of Uyttendaele
and Shambaugh (1990), Rao and Shambaugh (1993), and Bansal (1997) can be used
to predict the diameter, rheological stress, velocity, and temperature of the fiber.
The mathematical models of Rao and Shambaugh (two-dimensional) and Bansal
(three-dimensional) can also predict the vibrations of the fiber threadline. These
models use extensions of Matsui’s (1976) correlation to evaluate the drag and skin
friction coefficients required for calculating aerodynamic drag and lift forces
acting the fiber. Matsui developed the correlation for drag coefficient for the fiber
threadline in melt spinning up to the spinning speed of 6000 m/min. Using
Prand#l’s mixing length model [Tennekes and Lumley (1972, p. 49)] to approximate
the Reymnolds stress in the boundary layer parallel to the fiber filament, he derived

the following relation for the drag coefficient:
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C = p-Re "0€1 (5.1)

where

C;= drag coefficient of the filament

Re = Reynolds number of the air flow based on the diameter of the filament

B = empirically determined constant

Narsimahan and Shambaugh (1986) extended Matsui’s correlation up to 30,000
m/min in melt blowing. Their correlation was used in the Uyttendaele-
Shambaugh model. Later, Majumdar and Shambaugh (1990) experimentally
measured the drag force on the fiber filament in an annular, turbulent air stream
to determine the drag coefficient in a flow parallel to the filament. Their
correlation for the drag coefficient was also proportional to Re®¢!. In melt blowing,
since the fiber axis is mostly oriented at an angle with respect to the air flow, the
assumption of parallel air flow is incorrect. Therefore, Ju and Shambaugh (1994)
developed correlations for the air drag on the fiber filament at oblique and normal
angles to the flow. In their work, the oblique fiber filaments were exposed to the

air flow field near the end of a pipe. For a given Reynolds number, the
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aerodynamic force acting on the fiber in this flow field was expected to be identical
to that in the flow field below an annular melt blowing die; see Kayser and
Shambaugh (1990) for details of the annular die, and Uyttendaele and Shambaugh
(1989) and Majumdar and Shambaugh (1991) for the velocity and temperature flow
fields of the same die. Rao and Shambaugh’s model uses the drag coefficient
correlation developed by Ju and Shambaugh to predict the diameter, velocity, and
amplitude and frequency of vibration of the fiber. However, their model
underpredicts the amplitude of fiber vibrations. One possible reason for the
underprediction could be that the turbulent air flow field used by Ju and
Shambaugh was not the same as the annular air flow field used by Rao and
Shambaugh. Another reason could be that Rao and Shambaugh’s model uses only
the axial direction mean velocity flow field studied by Majumdar and Shambaugh
(1991). Though, Ju and Shambaugh give correlation to evaluate the lift forces in the
transverse direction using axial direction mean air velocity, there must be some
types of aerodynamic forces acting in the transverse directions due to turbulent air

velocity flow field in the transverse directions.

Recently, Harpham and Shambaugh (1996; 1997) studied the axial mean velocity
and temperature flow fields of a slot (“Exxon” type) die. Figure 5.1 shows the
cross-section of the slot die used by Harpham and Shambaugh (the same die was

used in the present work). For the same slot die, Bansal (1997) extended two-
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dimensional Rao-Shambaugh model to three dimensions. However, Bansal's
model also underpredicts the fiber amplitude for the slot die. One of the reasons
for the underprediction of the fiber amplitude for the slot die could be that Bansal’s
model uses only axial flow field of the slot die to evaluate the aerodynamic drag
and lift forces, and does not take into account the effect of transverse components
of velocity on the aerodynamic drag and lift forces. Furthermore, the slot die has
two inclined jets crossing close to the die face. The crossing of the jets affects the
turbulent air flow field of a slot die. Owing to the “history” effect of the jet
crossing, the turbulent air flow field of such a die is expected to be different than
that studied by Ju and Shambaugh for evaluating the drag coefficient. The
difference in the two air flow fields may affect the aerodynamic force acting on the

fiber filament; hence, the fiber amplitude is underpredicted.

Milligan (1991) experimentally related the “form” drag or pressure drag to the
“flapping” or changing shape of the fiber threadline for a melt blowing slot die.
The aerodynamic flapping of the fibers can be attributed to the air turbulence in

melt blowing.

The melt blowing model of Rao and Shambaugh (1993) predicted that the fiber
vibrates with a characteristic natural frequency under the action of aerodynamic

forces. Tyagi and Shambaugh (1995) found that the fiber diameter could be
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reduced by oscillating the primary air jets of a slot die with a frequency that
matches the natural frequency of the fiber. They found that the most significant
reduction in the fiber diameter was achieved by oscillating the jets with frequencies
in the range of 28 Hz to 46 Hz for three different air flow rates: 54, 100, 144
standard liters per minute. Furthermore, they observed the air-to-polymer mass
loading was significantly reduced by oscillating the jets. Therefore, Tyagi and
Shambaugh concluded that, to produce a fiber of given desired diameter, less air
is needed if oscillation is used. From their results, it can be conjectured that, by
oscillating the air jets of a slot die, the same or higher degree of air turbulence is
achieved as in a continuous flow; hence a reduction in the fiber diameter is
observed. Consequently, in order to understand the effects of oscillating jets in
melt blowing, it becomes important to study the air turbulence structure of flow

field formed by these turbulent jets.

In an effort to explain the above mentioned effects, a study was done to understand
air turbulence in melt blowing. A one-dimensional hot-wire anemometer probe
was used to measure air turbulence characteristics. However, a three-dimensional
probe was needed to completely understand the air turbulence structure below the
die. Due to the lack of equipment, the study could not be extended to higher
dimensions. Nevertheless, some characteristics of air turbulence below the die

were obtained with one-dimensional probe. In the following sections, a review of
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literature on the turbulent air jets in melt blowing, an experimental procedure for
measuring the air turbulence structure for a slot die, and a discussion of results of

the study are presented.

5.2 Literature Review

The axial mean velocity and temperature fields of annular melt blowing dies have
been studied by Uyttendaele and Shambaugh (1989) and Majumdar and
Shambaugh (1991). Mohammed and Shambaugh (1993; 1994) studied the axial
mean velocity and temperature fields of a Schwarz die. Recently, Harpham and
Shambaugh (1996; 1997) did a similar study for a slot die. All these studies were
done with a Pitot (impact) tube, and air turbulence characteristics were not

measured.

As mentioned earlier, a slot die has two inclined, rectangular jets crossing close to
the die face. Figure 5.2 shows the crossing of the two inclined slot jets. The cross-
point of the two jets affects the development of the combined jet flow field.
Heretofore, no work has been done to study the turbulent flow characteristics of
inclined, rectangular free cross-jets. However, a lot of work has been reported on
mean and turbulent flow characteristics of single and multiple jets in a cross-flow.

Examples include the works of Abramovich (1963), Kamotani and Greber (1972),
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Rudinger and Moon (1976), Andreopoulos and Rodi (1984), Andreopoulos (1985),
Issac and Jakubowski (1985), Ahmed and So (1987), Barata et al. (1991; 1992), and
Savory and Toy (1991). Extensive experimental studies on turbulent flow of
circular, free cross-jets have been done by Rho and Choi (1989), Rho et al. (1990;
1995). They have analyzed the turbulent mixing characteristics such as mean and
fluctuating velocities, probability density distributions, intermittency factors,
turbulence intensities, and Reynolds stresses. They found that the inclined,
circular jets after crossing formed an elliptical jet which transformed to a circular
jet further downstream. Their work has been correlated to the present work on

turbulence characteristics of rectangular, free cross-jets of melt blowing slot die.

5.3 Experimental Details

5.3.1 Experimental Equipment

The turbulent air flow field below a slot die was measured at isothermal
conditions. Figure 5.1 shows the cross-section of the slot die used. Figure 5.35.3
shows the top view of the same die. Each slot of the die had a width b = 0.64 mm
and a length I = 74.6 mm. The outer edges of the slots were separated by a
distance i = 5.03 mm. Harpham and Shambaugh (1996) have further explained the

air supply details.
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A single channel hot-wire anemometer was used. Goldstein (1983) and Hinze
(1975) have detailed the theory and working principle of the hot-wire anemometer.
A constant current Dantec hot-wire anemometer set - model 55-M-10 CTA bridge
amplifier with model 55-M-01 main unit - was used. A Keithley Metrabyte
DAC/ASYST terminal accessory board STA-16 DAS-16 was used to convert analog
signals from bridge amplifier to digital signals. An IBM-compatible 386 computer
equipped with a math co-processor was used to analyze the digital data with
AcqWire® (version 1.05) software. A single wire Dantec probe (model 55P11) was
used to collect the data. The probe sensor wire was Platinum-plated tungsten wire
with a diameter of 5 pm and a length of 1.25 mm. The sensor wire had a resistance
of 3.9 ohm at 20°C and a temperature coefficient of resistance of 0.0036 /°C. The
probe was mounted on a Velmex 3-D traverse system that permitted x, y, and z

motions in 0.01 mm increments.

Figure 5.3 shows the coordinate system used in the experiments. The origin of the
system lies at the center of the face of the die. The y direction is parallel to the
slots, the x direction is perpendicular to the slots, and the z direction perpendicular
to the plane of the drawing with the positive z axis directed into the plane of the

drawing.
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All the runs were done at an air temperature of 21°C. The air flow rate, at
standard conditions of 21°C and 1 atm pressure, was set at 1.67 x 10° m*/s (100
L/min). For a slot width of b = 0.64 mm, the two air flows through the two slots
corresponded to average nominal discharge velocities of V, = 17.5 m/s and
Reynolds number (based on h = 5.03 mm) of about 5800. There was no polymer
flowing through the die during the experiments, and the temperature of the die

was 21°C.

5.3.2 Hot-wire System Calibration Procedure

The hot-wire system needs to be calibrated both before and after each experimental
run. If the calibration changes during the experimental run, the collected data are
meaningless. In such case, the experiment has to be redone. The calibration is
done after the experiment to ensure that calibration had not change during the
experiment. Thus, calibration is one of the most important steps which has to be

performed very carefully.

For calibrating the hot-wire system, a low turbulence flat velocity field is required
(Goldstein, 1983). In such a field, all velocities, at least up to the maximum velocity
to be measured, should be possible and reproducible. This kind of velocity field

was obtained using 180-cm-long plastic pipe with a flat and low turbulence
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velocity profile. The pipe was long enough to give fully developed flow. The pipe
was the same as used by Ju and Shambaugh (1994) for air drag measurements. The
pipe had an inside diameter of 12.6 mm. The air was supplied at the top end of the
pipe at flow rates ranging from 0.03 to 0.14 m> (STP)/min (30 to 140 standard
L/min). The temperature of the air was 21°C. To characterize the air velocities at
different air flow rates through the pipe, a Pitot (impact) tube was placed vertically
at the end of the pipe. The Pitot (impact) tube was the same as used by Harpham
and Shambaugh (1996; 1997) in their study of air flow fields below a melt blowing
slot die. The Pitot tube was mounted on the Velmex 3-D traverse system, and was
traversed across the diameter of the pipe to measure the air velocity profiles. The
Pitot tube had an outer diameter of 0.71 mm, an inner diameter of 0.45 mm, and
a conical nose shape with a cone angle of 25 deg. The tube was 22.9 mm long and
was connected with 1.19 mm inner diameter tubing to an oil-filled manometer.
Uyttendaele and Shambaugh (1989) have discussed the formula to convert pressure
to velocity. The Pitot tube pressure was referenced to ambient static pressure. It
is possible that the hot-wire probe may not be placed at the exact same spatial
position for calibrations before and after an experimental run. Furthermore, as
discussed by Goldstein (1983), a nonuniform velocity profile along the sensor
increases the error in calibration. Therefore, to minimize the error in calibration,
a flat velocity profile of the pipe was needed. Since the flow was the least
turbulent at the center of the cross-section at the end of the pipe, the hot-wire probe
was placed there. To avoid mixing of flow with the ambient flow, the tips of both
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the Pitot tube and the hot-wire probe were placed vertically about 1 mm from the
end of the pipe. The flow rates were chosen such that there was more data for the
lower range of velocities since the relation between the velocity and voltage was

nonlinear.

Step-wise Pipe Flow Characterizafi

1. The pipe was set vertical with a plumb line. The Pitot tube was placed normal
(vertical) to the flow. To check whether the Pitot tube was in a normal position
or not, it was rotated sideways and the position, where the maximum pressure
indicated, was selected as the vertical position. The vertical traverse position

corresponding to the end of the pipe was then found out.

2. The Pitot tube was traversed along a chord close to the end of the pipe to find
the two diametrically opposite ends. The positions, where the velocities were
about zero (velocities become zero near the wall) and maximum, were noted.
The length of the chord was equal to the difference between the two positions
with zero velocity. This value was compared with the diameter of the pipe
(12.6 mm). If the relative difference between the two values was less than 1%,
the above procedure was performed for the transverse direction. Otherwise,

the Pitot tube was moved to a new position closer to the center of the cross-
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section of the pipe, and the above procedure was repeated until the center of
the pipe cross-section was found. After the center of the pipe was obtained, the
Pitot tube was traversed along one of the diameters of the pipe to measure the

velocity profiles.

3. The air flow rate was set corresponding to the lowest velocity required to be
measured in the actual flow. A rough estimate of the air velocity at the end of
the pipe was obtained with the continuity equation. The data at 25 different air
flow rates (ranging from 0.03 to 0.14 m> (STP)/min) was taken. Figure 5.4
shows the flat velocity profiles of the calibration pipe at three different air flow

rates.

After the pipe flow was characterized, the above steps were not repeated during
each calibration. The data were stored as pressure differences and not as velocities
because the velocity depended on the ambient pressure and flow temperature that
change with time [see Uyttendaele and Shambaugh (1989) for the formula to
convert pressure to velocity]. The ambient pressure and air temperature were
noted each time the calibration was performed. The air velocities were then

calculated using the existing values of ambient pressure and air temperature.
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The sensor of the hot-wire probe was positioned horizontally at the center of cross-
section of end of the pipe. The vertical position of the sensor was about 1 mm from
the end of the pipe. The center of cross-section was found using the procedure
described in step 2 of the characterization of the pipe flow. However, for the hot-
wire probe, instead of finding zero velocity, minimum voltage was found. A
Tektronix oscilloscope (Model 2445B) was used to find the minimum voltage. For
each known air flow rate or velocity, the value of voltage was measured on the
bridge-amplifier of the hot-wire system. A low turbulence profile becomes
important since it lessens the uncertainty in the measurement of both air velocity
(measured with the Pitot tube) and voltage (measured with bridge-amplifier).
Therefore, the mean value of the voltage corresponding to each velocity was
measured. This mean value was not an ensemble average, but a time average.
Thus, the time-averaged voltage was measured with on-line signal analysis
module of the AcqWire® software. In order to find out the optimum time for
averaging, the mean values of the voltages were measured for 2.5 minutes and 5
minutes. Since the relative difference between the two mean voltage values was
less than 1%, the values corresponding to a period of 2.5 minutes were selected as
optimum. The air velocities corresponding to the air flow rates were found from
the pressure data obtained from the pipe characterization experiment performed
earlier. The formula for converting pressure to velocity has been discussed by
Uyttendaele and Shambaugh (1989). Then, each of the mean voltage values along
with the corresponding air velocities were entered in the calibration module, and
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the best-fit curve of the voltage versus velocity was obtained with the AcqWire®

software.

5.3.3 Experimental Conditions

At a fixed z position below the die, the sensor wire of the probe was aligned
parallel to the y axis or the slots, and the probe traversed along the x axis
(transverse to the slot direction). The length-to-width ratio (I/b) of the die was
about 117 while the [/h ratio was about 15. Since these ratios were large, the cross-
jets were assumed to be infinite for the positions near the center plane of the die
and not very far from the die face. Therefore, all the experiments were done at

positions in the bisecting plane (y = 0) of the die.

From the schematic of the flow geometry in Figure 5.2, it can be seen that the two
inclined slot jets combine to form a single jet. The geometrical cross-point of the
two inclined slot jets was found to be z, = 3.8 mm. In their study of circular cross-
jets, Rho et al. (1990) considered the distance of geometrical crossing of the jets as
the characteristic length for non-dimensional analysis. This length was
characteristic since it combines the effect of the distance of separation between the
jets and their angle of inclination. Rho et al. (1990) observed that the turbulence

intensities reached their maximum after the cross-point. Consequently, it was
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concluded that the position of crossing of the jets plays an important role in
defining the turbulence characteristics of the combined jet. Therefore, in the
present study, the distance of geometrical crossing of two slot jets was considered
as the characteristic length for non-dimensionalizing the z distance below the die.
The mean air velocity, turbulence intensity, skewness, and flatness profiles were
studied at seven z positions corresponding to z/z, of 1.0 to 2.5 with the increments
of 0.25. Since the air velocities are time-averaged, the averaging time should be
much larger than the integral (characteristic) time scale of the flow (Tennekes and
Lumley, 1972, pp. 211-212). However, the integral time scale of the flow was not
known. Therefore, the “averaging time” was found by comparing various data
collection time periods. Thus, the velocity data was collected for 1 min at a
position, and was compared with data collected for 2 min at the same position.
Since the percentage difference between the data collected for two time periods
was greater than 1%, a period of 1 min was not the correct “averaging time”. The
procedure was repeated for time periods of 2 min and 3 min. It was found that a
time period of 2 min was an optimum “averaging time”. Though for time-
averaging the effect of sampling frequency is insignificant, a large number of
samples have to be taken for averaging. A sampling frequency of 136.5 Hz
(corresponding to 16384 samples in a 2 min time interval) was selected as the
highest possible sampling frequency with the available hardware. The sampling

frequency only affects the energy spectra of the flow. Since the energy spectra of
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the flow was not measured, the sampling frequency did not affect the air velocity

results.

54 Results

5.4.1 Definitions of Terms Used

1. Mean Velocity and Fluctuating Velocity: As described by Tennekes and Lumley

(1972), the Reynolds decomposition of the instantaneous velocity @ in a turbulent

flow field is given by

5=V+o (.2)

where V is the mean (time averaged) velocity component of the instantaneous

velocity @, and v is the fluctuating component of the instantaneous velocity @.

2. Root Mean Square of Velocity Fluctuations: The root mean square of velocity

fluctuations v,,, is defined as

v =02 (5.3)
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3. Turbulence Intensity: The turbulence intensity T(v) is defined as the ratio of the
root mean square of velocity fluctuations v, and the mean velocity of that

component. Mathematically,

_ Oms (54)
T(v) = v

4. Skewness Factor: Itis a dimensionless measure of asymmetry of the fluctuating

velocity probability distribution. The skewness factor S(v) is defined as

S@ = — (5.5)

For example, for a normal distribution, the skewness factor is zero since a normal

distribution is symmetrical about the mean position.

5. Flatness Factor or Kurtosis: It is a dimensionless measure of the flatness of the
probability tails, or the peakedness of the fluctuating velocity distribution. The

flatness factor or kurtosis K(v) is defined as
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(4

K@) = — (5.6)

i

As described by Hinze (1975, pp. 242), for a normal distribution, the flatness factor
is equal to 3. A velocity fluctuation distribution with zero mean and a value of
flatness factor higher than 3 has a more peaked distribution around zero mean than
a normal distribution. Therefore, the probability for zero values is higher than the
probability for nonzero values, indicating an intermittent character of the velocity
fluctuations. Consequently, he suggested that, if the flow is known to be
intermittent in a separate way, the flatness factor might be considered as a measure
of degree of intermittency. The intermittency factor y is defined as a fraction of
time for which turbulence occurs at a point in the flow. A low value of the
intermittency factor y would mean that the flow is mostly laminar and
intermittently turbulent, while a high value of y means that the flow is mostly

turbulent.

5.4.2 Mean Velocity Field

Figure 5.5 shows the development of axial mean velocity profile for all the 2z

positions studied. Since all the positions studied were beyond the cross-point of
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the jets, only one peak was seen. The mean velocity profile becomes flatter as the
axial distance from the die increases. Figure 5.6 shows the nondimensional axial
mean velocity profile below the die. The velocity (ordinate) has been
nondimensionalized by dividing by maximum velocity at the respective z level.
The position (abscissa) has been nondimensionalized with the jet half-width: the
width at which the mean jet velocity drops to half its maximum value. It is seen
from the graph that, for all the z positions studied, the nondimensional mean
velocity profiles are the same. This self-similar behavior of the jet in the studied
region shows that the combined jet flow is self-preserving with respect to the axial
mean velocity downstream from the jet cross-point. The semi-empirical
correlations developed for simple jet flows are not available for such complex
flows as in the present study. However, the correlations developed for simple jet
flows can be used for comparison with the data from the flow of the cross-jets.
Figure 5.6 shows three correlations applied to the experimental data. The solid line
on the graph is the correlation developed using Tollmien (1926) and Reichardt
(1942) analysis for a circular turbulent jet. The details of the Tollmien-Reichardt
analysis have been shown by Uyttendaele and Shambaugh (1989). The dotted line
on the graph is the predicted velocity profile based on the correlation developed
by Gortler (1942) for a plane turbulent jet; see Rajaratnam (1976) for details. The
third line (dotted and dashed line) corresponds to Bradbury’s (1965) correlation for
a rectangular turbulent jet. These semi-empirical correlations are shown in the

following equation set:
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2 -2
Tollmien-Reichardt ~ — = (1 «(y2 - 1)[ _x-] ] (5.7a)
v, *)/2

Gortler: VV 1 2(0.881—x—J (5.7b)

X2

X. X, /2

- tanh
\ % x )2 x |
Bradbury: — = exp|- 0.6749] — | -| 1 + 0.027| — 5.7¢)
v xp
0 1/2

where

x . . .
—— = transverse nondimensional position

X2

-‘-/K = nondimensional axial mean velocity
o

From Figure 5.6, it is seen that Tollmien-Reichardt and Gértler correlations fit the

data very well with coefficient of determination R? values of 0.996 and 0.995

respectively. The R? values for each of seven data sets fit separately to Tollmien-

Reichardt correlation range from 0.990 to 0.998, while the R’ values range from

0.993 to 0.997 for the data sets fit separately to Gortler's equation. Furthermore,

Bradbury’s equation for rectangular jets fits the data with an R’ of 0.984. Itis seen

from the graph that Bradbury’s equation fits the data well up to 1.5 jet half-widths,

but beyond that it does not represent the data as good. Harpham and Shambaugh

(1996; 1997) also found that, for the same flow geometry, Bradbury’s equation fits
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the nondimensional axial mean velocity data very well up to 1.5 jet half-widths.
However, in the present study, both Tollmien-Reichardt's and Gértler's equations
represent the data very well at all the x-positions (up to three jet half-widths). Rho
et al. found that, for the two circular jets crossing at 45° angle, the experimental
nondimensional axial mean velocity data fits well with the correlations of Gortler

within one jet half-width.

Figure 5.7 shows the decay of the centerline axial mean velocity. For a self-
preserving plane turbulent jet, Bradbury (1965) described that the centerline axial

mean velocity V, should be proportional to z'/% in particular

-1
z c 2
- T Y
ZC

Vv, [
— Cl
Ve

where
V, = centerline axial mean velocity

V,, = nominal jet exit velocity
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¢y, ¢, = empirical constants

The solid line on Figure 5.7 is a least-squares fit of equation (5.8). It can be seen

that the data fits the equation well (R? = 0.950) with ¢, = 0.874 and ¢, = 0.526.

Gutmark and Wygnanski (1976) showed that a plane turbulent jet spreads linearly
with the z direction. Kotsovinos (1976) described the spread of a rectangular jet by

the following equation:

X1/2 z .
y2 2 ik
w kl( w 2)

where k, is the measure of spreading rate of the jet. The constant k, is related to the

virtual origin z, of the jet by the following equation:

N
"
|

g [N
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where w is the width of the jet. Figure 5.8 shows spreading of the jet in terms of
the jet half-width. The position x (abscissa) has been nondimensionalized by
dividing by h which is assumed to replace w in equations (5.9) and (5.10). The
solid line on Figure 5.8 is a least-squares fit of equation (5.9) to the data. The fitted
values of k; and k, are 0.11 and 0.116, respectively, and the R? of the fit is 0.960. For
a plane turbulent jet, Gutmark and Wygnanski (1976) found the values of k; and
k, to be 0.1 and 2, respectively. Kotsovinos found that the value of k; ranges from
0.087 to 0.128 with a typical value of 0.11, while the value of k, ranges from -4.5 to
+6.5. Therefore, the values of k; and k, obtained in the present study are in the
range of those obtained for a single plane turbulent jet. The dotted line on Figure
5.8 is spread of the jet obtained by Harpham and Shambaugh (1996) for the same
flow geometry. The jet spread obtained by Harpham and Shambaugh is larger
than that obtained in the present study. The difference between the two jet spreads

is explained later in the next section.

5.4.3 Turbulence Structure of the Jet Flow

Figure 5.9 shows the variation of turbulence intensity along the centerline of the
combined jet flow. From the graph, it is seen that the centerline turbulence
intensity increases with the dimensionless distance 2/z_ at least up to z/z. = 2.5. The

increasing turbulence intensities in the center plane of the jet suggest the
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generation of turbulence after the crossing of two inclined slot jets. Rho et al.
(1990) found that the centerline turbulence intensity in a circular cross-jet flow (two
circular jets inclined at 45°) had a peak near z/z, of two. Beyond the peak position,
the turbulence intensity values decreased and became constant. In the present
study, Figure 5.9 shows that a similar “maximum” in centerline turbulence
intensity is not present. However, there is a possibility that the centerline
turbulence intensity might reach a peak value and/or become constant after z/z, =

25 (zh = 2). Bradbury (1965) and Gutmark and Wygnanski (1976) observed that

the centerline turbulence intensity of a plane turbulent jet increased initially, and
then became constant (self-preserving) about 40 slot-widths downstream from the
nozzle. Furthermore, they found that, in the initial region (z/h < 10) of a plane
turbulent jet, the magnitude of the centerline turbulence intensity was less that

10%. However, in the present study, the magnitude of turbulence intensity at z/z,
= 2.5 (z/h = 2) is about 22%. Consequently, in the initial region of the jet flow, a

turbulent cross-jet has a higher level of turbulence than a plane turbulent jet.

Figure 5.10 shows the variation of turbulence intensity profile along the z direction.
The turbulence intensity of the axial component of the air velocity sharply
increases on moving away from the center of the jet. The turbulence intensity
reaches a maximum at a distance of about 1.75 jet half-widths for all the z positions

studied. Furthermore, Figure 5.10 shows that the turbulence intensities across the
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jet increase with the z position. The increase in turbulence intensities with the z
position signifies (a) a strong generation of turbulence after the crossing of the two
inclined jets, and (b) a lack of self-preservation of the jet flow, at least in the initial
region of the jet flow. The maximum value of turbulence intensity across the jet
varies from about 50% at z/z. = 1.0 to about 62% at z/z = 2.5. Gutmark and
Wygnanski (1976) observed that, for the axial positions further than 40 slot-widths,
the turbulence intensity profiles became the same, indicating the self-preserving
region of the jet. Furthermore, they found that the axial-component turbulence
intensity increases slowly across the jet, and reaches a peak value around one jet
half-width. However, they observed that the peak value of the turbulence intensity
was about 30% as compared to the peak value of about 62% observed in the present
study. Consequently, in the present study, the cross-jet flow has a different
turbulent structure than the plane jet at least in the initial region of the flow. Rho
et al. (1990) found similar results on comparing the axial component turbulence

intensity of circular cross-jets with that of a round jet.

The asymmetry of the velocity fluctuation distribution is illustrated as skewness
factor profile in Figure 5.11. From the graph, it is seen that, close to the center of
the jet, the distribution of velocity fluctuations is symmetrical: the large velocity
fluctuations in both the positive and negative z directions are equally probable.

However, the distribution starts becoming positively skewed on moving about one
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jet half-width across the jet: the large velocity fluctuations are mostly in the
positive z direction. The skewness factor reaches a positive peak value about two
jet half-widths further from the center of the jet. Similar profiles of skewness factor
are observed for all the z positions studied. Close to the center of the jet, the
skewness factor of the velocity fluctuation distribution is almost zero for all the z
positions. However, on moving away from the center of the jet, the skewness
factor becomes more positive for the higher values of z/z. The variation in
skewness factor with the z position indicates the absence of self-preserving nature

of the jet.

Figure 5.12 shows the flatness factor profile across the jet. From the graph, it is
seen that the flatness factor is almost Gaussian (with value equal to 3) up to one jet
half-width, and large values are observed as jet boundary approaches. Rho et al.
(1990) and Gutmark and Wygnanski (1976), respectively, observed a similar
behavior for the circular turbulent cross-jets and a plane turbulent jet. The large
positive values of the skewness factor and the flatness factor about two jet half-
widths (close to the jet boundary) from the center of the jet suggest that the
intermittency factor is low, i.e., the flow is less turbulent, and is mixing with the
irrotational flow outside of the jet boundary: entrainment of the external

irrotational flow.
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5.4.3.1 A Comment on the Jet Spread

Figure 5.8 illustrates that the jet half-widths obtained in the present study are
smaller than that obtained by Harpham and Shambaugh (1996) for the same flow
geometry. This difference is attributed to the different instruments used for
measuring the flow field. Harpham and Shambaugh used a Pitot (impact) tube for
measuring the mean velocities, while a hot-wire anemometer was used in the
present study. As discussed by Goldstein (1983, pp- 14-16 and 64-66), with a Pitot
(impact) tube, the error in measuring the mean velocity in a turbulent flow is

proporional to 2, mean square of velocity fluctuations. Mathematically,

; 1/2
V.. =Vl1+— (5.11)

where V_,, is the mean velocity measured by the Pitot (impact) tube. Therefore,
for the flows with large turbulent intensity, the mean velocity measured by a Pitot
(impact) tube will be much larger than the actual mean velocity V. For example,
in the present flow, for the highest turbulence intensity of 0.62 (see Figure 5.10), the
mean velocity measured with a Pitot (impact) tube will be about 20% more than the

actual mean velocity at that position. Furthermore, with a Pitot tube, the mean
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velocity measured is the spatial root mean square of the instantaneous velocity
over the circumferential plane of the Pitot probe [Goldstein (1983, pp. 14-16)].
Therefore, the size of the probe (diameter of the Pitot probe) becomes very
important. Goldstein has discussed that the shear flow displaces the effective
center of the probe (measured value of the average pressure is assumed to lie at the
center of the probe) is shifted toward the high velocity region by 15% of the inside
diameter of the Pitot probe. Therefore, the velocity measured at a position is
higher than the actual the velocity at that position. Because of (a) the turbulence
and (b) a shift in the effective center of the probe, the velocities measured with a
Pitot tube will be higher than the actual velocities. Since a jet half-width is a
position where the mean velocity falls to half its maximum value, the jet half-width
measured by a Pitot tube is expected to be larger than the jet half-width measured
by a hot-wire anemometer. Table 5.1 shows a comparison of jet half-widths
measured in the present study (with a hot-wire anemometer) and those obtained
with Harpham and Shambaugh (1996) correlation for jet half-width. The probe

sizes used in two studies are also shown in Table 5.1.

Figure 5.13 shows the turbulence intensity profile across the jet. The x position is
nondimensionalized with jet half-width calculated using the correlation developed
by Harpham and Shambaugh for the same flow geometry. A comparison of

Figures 5.10 and 5.13 shows that the peak in turbulence intensity (maximum
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velocity fluctuations), which is observed at about 1.75 jet half-widths in Figure 5.10,
has moved to about one jet half-width in Figure 5.13. Since, for their work,
Harpham and Shambaugh used a Pitot (impact) tube, they measured a higher
value for the mean velocity V at the positions corresponding to high levels of
turbulence intensity. Moreover, from Table 5.1, it can be seen that spatial size of
the Pitot probe is of the same order of magnitude as the jet half-width. Therefore,
the possibility of error increases in averaging the pressure of the highly turbulent
flow (as in the present case) over the circumferential plane of the Pitot probe.
Consequently, for the same flow geometry, the jet half-width calculated with the
Harpham and Shambaugh correlation is larger than the jet half-width measured

in the present study.

5.4.4 Mean Velocity in Oscillating Jets

In oscillating flow, the air emits from one slot at a time, while in continuous flow,
the air emits from both slots at the same time. The two inclined slot jets of the die
were pulsed using the experimental procedure described by Tyagi and Shambaugh
(1995) for the same melt blowing arrangement. There was no polymer flowing
through the die during the experiments. The temperature of the air was 21°C. For
the same nominal jet exit velocity (V;, = 17.5 m/s) through each of the oscillating

jets, Tyagi and Shambaugh found that a peak in the fiber diameter profile (fiber
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diameters greater than that obtained for a continuous flow) was observed at an
oscillation frequency of 9 Hz, and a plateau in the diameter profile (fiber diameters
smaller than that obtained for a continuous flow) was observed between the
oscillation frequencies of 28 and 46 Hz. Therefore, the flow field of the oscillating
jets was studied for pulsation frequencies of 9, 28, and 46 Hz at the dimensionless
position 2/z.= 1.0. The sampling time and frequency of the hot-wire anemometer
system for the case of pulsating flow were the same as used for the continuous

flow: a sampling frequency of 136.5 Hz and a sampling time of 2 minutes.

Figure 5.14 compares the axial mean velocity profile of the continuous flow and the
flow of oscillating jets. At an oscillation frequency of 9 Hz, the velocity profile is
flatter as compared to the velocity profile of the continuous flow, and the centerline
mean velocity of oscillating flow is lower than that of the continuous flow.
However, at oscillation frequencies of 28 and 46 Hz, the mean velocity profiles
become almost identical to the mean velocity profile of the continuous flow. Since
the same sampling time was used for all the flow conditions and the flow at 9 Hz
oscillates slower than the flows at 28 and 46 Hz, it is possible that the sampling
time for the case of 9 Hz was not sufficient to evaluate the actual mean velocity V
by time-averaging the instantaneous velocity #. Therefore, a flatter velocity profile
was obtained for the flow at 9 Hz. Figure 5.15 shows the nondimensional mean

velocity profile for all the four flow conditions. The velocity (ordinate) has been
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nondimensionalized by dividing by the maximum axial mean velocity for the
respective flow condition. The position (abscissa) has been nondimensionalized
with the jet half-width. Itis seen from the graph that, for all the flow conditions,
the nondimensional profiles are the same. This self-similar behavior of the jet
shows that, despite the oscillations, the flow is self-preserving with respect to the
axial mean velocity. The three semi-empirical correlations described by the
equation set (5.7) were applied to the experimental data. The solid line on the
Figure 5.15 is the correlation developed using Tollmien (1926) and Reichardt (1942)
analysis for a circular turbulent jet. The dotted line on the graph is the predicted
axial mean velocity profile based on the correlation developed by Gortler (1942) for
a plane turbulent jet. The third line (dotted and dashed line) corresponds to
Bradbury’s (1965) correlation for a rectangular turbulent jet. From the figure, it can
be seen that all three correlations fit well with the data. The R? values for the least-
squares fit of the correlations of Tollmien-Reichardt, Gortler, and Bradbury were

found to be 0.987, 0.991, and 0.990, respectively.

5.4.5 Turbulence Structure in Oscillating Jets

The turbulence intensity profile at all four flow conditions is illustrated in Figure
5.16. The turbulence intensity profiles of 28 Hz and 46 Hz oscillating flow are the

same as observed for the continuous flow. A peak in turbulence intensities is
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observed around 1.5-1.75 jet half-widths. However, for the flow at 9 Hz, the
turbulence intensities are much higher than that for other flow conditions. Atan
oscillation frequency of 9 Hz, the turbulence intensity rises sharply on moving
away from the center of the jet, reaches a peak value around 1.5 jet half-widths,
and starts decreasing sharply. At the same oscillation frequency (9 Hz), the peak
value of the root mean square of the fluctuations matches the mean velocity at that

position. This suggests that there is a strong generation of turbulence.

Figure 5.17 shows the skewness factor profile at all the flow conditions. From the
graph, it can be seen that, for all flow conditions, the velocity fluctuation
distribution is symmetrical within one jet half-width: both positive and negative
velocity fluctuations are equally probable. Beyond one jet half-width, the profiles
show that the distributions start becoming positively skewed, and reach a peak
value about two jet half-widths from the center of the jet. The flows oscillating at
28 Hz and 46 Hz have almost the same skewness factors as the continuous flow at
all the positions across the jet. At 9 Hz, the skewness profile is the same as
continuous flow up to one jet half-width. However, beyond one jet half-width, the
flow at 9 Hz starts having higher positive values of the skewness factor that for the
continuous flow. Furthermore, for the flow at 9 Hz, the peak value of the skewness

factor is much larger than the peak value for other flow conditions studied.
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Figure 5.18 illustrates the flatness factor profile for both the oscillating and
continuous flows. Once again, the jets oscillating at 28 and 46 Hz have the same
flatness factor profile as the continuous flow: the flatness factor has a Gaussian
value of 3 up to one jet half-width, and then starts increasing for the intermittent
flow near the jet boundary. However, for the flow at 9 Hz, the flatness factor has
a lower value than Gaussian value of 3 up to one jet half-width. Beyond one jet
half-width, for the flow at 9 Hz, the flatness factor starts increasing sharply to the

values much greater than Gaussian value of 3.

From the turbulence intensity, skewness factor, and flatness factor profiles across
the jet (Figures 5.16, 5.17, and 5.18, respectively), it is evident that, by oscillating
the jets at the frequencies of 28 and 46 Hz, a turbulence structure identical to the
continuous flow is generated. The trends in Figures 5.16 through 5.18 suggest that,
by oscillating the flow at 9 Hz, a much stronger turbulence structure is generated.
However, it is possible that, for the flow at 9 Hz, the obtained turbulence intensity,
skewness factor, and flatness factor distributions could be due to either a

measurement error (because of the small sampling time) or the resonance of jets.
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5.5 Conclusions and Recommendations

Following conclusions can drawn from one-dimensional experimental studies on

isothermal, turbulent cross-jets in melt blowing:

1. The dimensionless axial mean velocity profiles can be predicted from (a)
Goértler's or Tollmien-Reichardt’s correlations, (b) a power law equation for the
centerline mean velocity (see Figure 5.7), and (c) the linear equation for jet half-
width (see Figure 5.8). The axial mean velocity profile was narrower than that
measured by Harpham and Shambaugh (1996) for the same flow geometry. The
turbulence structure of the jet flow field explains the difference in two mean

velocity profiles.

2. The turbulence structure of the inclined, rectangular cross-jets is different from
the turbulence structure of a plane jet or a round jet, but matches the turbulence
structure of inclined, circular cross-jets (see Rho et al., 1990). Higher levels of
turbulence are observed in the initial region of the cross-jet flow than that in a
plane jet or a round jet. As described by Rho et al., due to the crossing of the jets,
a very strong history effect in the turbulence structure is present in the cross-jet
flow. Therefore, the jet cross-point region is the key to the downstream

development of the flow. Consequently, the modeling of the cross-jet flow requires
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a complete understanding of this region of the flow. Therefore, for the
mathematical modeling of melt blowing below a slot die, the drag force and lift
force correlations developed by Majumdar and Shambaugh (1990) and Ju and
Shambaugh (1994) have to be corrected to include the turbulence effects due to the
crossing of the jets. Furthermore, studies need to be done to understand the
turbulence structure due to the transverse components of the air velocity. In melt
blowing, the turbulence effects due to all three components of the air velocity must
be included in the drag and lift force correlations to predict the fiber diameter and

the amplitude of fiber vibrations accurately.

3. Since the jet cross-point plays an important role in defining the turbulence
structure of the cross-jet flow field, the distance of geometric cross-point of air jets
z, can be used as a characteristic length for the melt blowing process.
Consequently, the characteristic z direction spatial separation of 5 mm, which
contains a fiber element formed with the neighborhood of correlated fiber beads
(see Chapter 3), can be nondimensionalized by dividing by the corresponding
value of z, used. For the die settings used in the study described in Chapter 3, z,
= 2.39 mm; see Figure 3.1. Therefore, the nondimensionalized characteristic z
direction spatial separation will be 2.1 corresponding to the melt blowing

conditions used in the study.
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4. The dimensionless axial mean velocity profiles of the oscillating jets follow the
semi-empirical correlations of Gortler and Bradbury. Since Gértler's correlation
can also be used to predict the axial mean velocity profile for the continuous flow,
the use of Gortler's equation for predicting the axial mean velocity profiles of both
continuous and oscillating flows is suggested. The dimensional axial mean
velocity profiles of the flows oscillating at 28 and 46 Hz are similar to that of the
continuous flow. However, the dimensional axial mean velocity profile of the flow
at 9 Hz is flatter than the velocity profile of the continuous flow. Therefore, it is
expected that the axial mean velocity flow field of jet oscillating with the
frequencies in the range of 28 Hz to 46 Hz (corresponding to the plateau region of
the fiber diameter profile; see Tyagi and Shambaugh, 1995) is similar to the

velocity profile of the continuous flow.

5. For the jets oscillating at 28 and 46 Hz, the turbulence structure of the flow field
is similar to the turbulence structure of the continuous flow. The flow field of the
jets oscillating at 9 Hz is much more turbulent than the flow field of continuous
flow or the flow at 28 or 46 Hz. Therefore, it can be concluded that, by oscillating
the jets with the frequencies in the range of 28 to 46 Hz (corresponding to the
plateau region of the fiber diameter profile), a “constructive” turbulence structure
similar to that of the continuous flow is generated at a lesser air flow rate.

However, by oscillating the jets with a frequency of 9 Hz (corresponding to the
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peak of the fiber diameter profile), a turbulence structure, “destructive” for the
fiber diameter, is generated. Further studies need to be done to understand the
turbulence structure of the air velocity flow field in oscillating jets. Such studies
would help in understanding the reduction in the fiber diameter due to oscillating

jets in melt blowing.

6. The present study of one-dimensional turbulent flow field of continuous and
oscillating flow should be a good starting point for two and three-dimensional
studies. These studies would help to improve the understanding of spatial

orientation and vibrations of the fiber threadline in melt blowing.
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5.6 Nomenclature

b = width of an individual slot of the die as defined on Figure 5.3, mm
¢, = dimensionless empirical constant in eq (5.8)

¢, = dimensionless empirical constant in eq (5.8)

C; = drag coefficient of the filament

h = distance between edges of two slots (see Figure 5.3), mm

k, = dimensionless constant in eq (5.9)

k, = dimensionless constant in eq (5.9)

K(v) = dimensionless flatness factor or kurtosis of axial component of air velocity
defined in eq (5.4)

I = total length of an individual slot as defined on Figure 5.3, mm
Re = Reynolds number of the air flow based on the diameter of the filament

S(v) = dimensionless skewness factor of axial component of air velocity defined in
eq (55)

T(v) = dimensionless turbulence intensity of axial component of air velocity
defined in eq (5.4)

v = axial component of velocity fluctuations [see eq (5.2)], m/s
U,, = root mean square of axial velocity fluctuations defined in eq (5.3), m/s

¥ = instantaneous axial air velocity defined in eq (5.2), m/s
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2= mean of the square of axial velocity fluctuations [see eq (5.4)], m?/s

2= mean of the cube of axial velocity fluctuations [see eq (5.5)], m*/s®

0*= mean of the fourth power of axial velocity fluctuations [see eq (5.6)], m*/s*
V = axial mean velocity [see eq (5.2)], m/s

V, = centerline axial mean velocity [see eq (5.2)], m/s

V, = nominal air jet exit velocity, m/s

Vit = mean air velocity measured by a Pitot tube [see eq (5.11)], m/s

w = width of single rectangular jet [see eq (5.10)], mm

x = Cartesian coordinate defined on Figure 5.1, mm

x, = jet half-width in the x direction, mm

y = Cartesian coordinate defined on Figure 5.1, mm

z = distance below the die (see Figure 5.1), mm

z.= geometrical cross-point of two inclined, slot jets of the die (see Figure 5.2), mm

z, = position of the virtual origin of a rectangular jet [see eq (5.10)], mm

Greek Symbols

S = dimensionless empirical constant in eq (5.1)
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X172 inner hot-wire
[Harpham and diameter of X172 sensor wire

z Shambaugh (1996)] | Pitot probe [[presentstudy]| diameter
(mm) (mm) (mm) (mm) (mm)
3.80 1.08 0.45 0.48 0.005
4.75 1.19 0.45 0.59 0.005
5.70 1.30 0.45 0.69 0.005
6.65 141 0.45 0.80 0.005
7.60 1.52 045 0.90 0.005
8.55 1.64 0.45 1.01 0.005
9.50 1.75 0.45 1.11 0.005

Table 5.1 Comparison of jet half-widths and the probe sizes used in the present
study and by Harpham and Shambaugh (1996)
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Figure 5.1 Cross-section of the melt blowing slot die used in the experiments. The
origin of the coordinate system, which is shown separately, lies at the polymer
orifice of the die.
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Figure 5.2 Structure of cross-jet mixing flow below a melt blowing slot die.
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Figure 5.3 Top view of the die face. The z axis (not shown) is perpendicular to the
plane of the drawing with positive z axis direction into the plane of the drawing.

279



30.0
T,=21 °c o 30sipm o 100 sipm
¢ 60slpm s 140 slpm
5 200f s o & o
& ® r:
@
= R o o o
© & o o © °© o o &
z o .
<]
g 1000 o
b
= . * * L L 2 L ® P . .
*
_ .
¢ L, O o g o o o o o o ,
a ]
0.0 | 1 | L | L | L L 1 | 11
-6.0 -4.0 -2.0 0.0 20 40 6.0

distance across pipe cross-section (mm)

Figure 54 Development of flat velocity profiles at the end of the calibration pipe
for four different air flow rates. The measurements done at other air flow rates are
not shown on the figure.
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Figure 5.5 Development of the axial mean velocity profile for seven z positions
below the die. All measurements were done at y = 0 with a hot-wire anemometer.
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Figure 5.6 Nondimensional axial mean velocity profiles for different z positions
studied.
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Figure 5.7 Dimensionless centerline axial mean velocity distribution at different
z positions below the die.
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Figure 5.8 Growth of jet half-width with increasing distance from the die.
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Figure 5.9 Centerline axial component turbulence intensity distribution at different
z positions below the die.
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Figure 5.10 Dimensionless axial component turbulence intensity distribution
across the cross-jet flow.
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Figure 5.11 Dimensionless axial component skewness factor profile. Gaussian
value of zero is shown as the dotted line on the figure.
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of 3 is shown as the dotted line on the figure.
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Figure 5.13 Dimensionless axial component turbulent intensity distribution across
the jet. For nondimensionalizing the transverse position x, Harpham and
Shambaugh’s (1996) equation was used to calculate the jet half-width x, ,.
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Figure 5.14 Comparison of axial mean velocity profiles of oscillating flow and
continuous flow through the die slots.
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Figure 5.15 Comparison of dimensionless axial mean velocity profiles of oscillating
flow and continuous flow through the die slots.
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Figure 5.16 Comparison of dimensionless axial component turbulence intensity
profiles of oscillating flow and continuous flow through the die slots.
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Figure 517 Comparison of dimensionless axial component skewness factor

profiles of oscillating and continuous flows through the die slots.
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Chapter 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary of Conclusions

The nature of fiber motion, nonwoven webs, and air turbulence structure in single-
filament melt blowing has been experimentally studied. Fiber motion has been
studied in terms of both fiber vibrations and fiber position distribution. The
statistical parameters of a single-filament melt-blown web have been correlated to
the fiber motion that in turn has been related to the air turbulence structure in melt
blowing. Numerous conclusions have been drawn from the various results

obtained in this study.
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The results of fiber vibrations study (see Chapter 2) show that the fiber cone is
elliptical with the direction across the slots of the die forming the major axis of the
ellipse. Furthermore, it was found that, across the axis in the direction of slots, the
frequency of fiber oscillations was more than the frequency of oscillations across
the direction perpendicular to the slots. Therefore, the fiber motion is
predominantly in the direction across the slots. The elliptical behavior of the fiber
motion is further illustrated in the fiber position distribution that follows a
unimodal bivariate probability distribution. One such distribution that was fit to
the experimental data was a bivariate normal distribution (see Chapter 3). The
fiber distribution spreads linearly with the increase in distance from the spinneret.
Furthermore, it was found that the fiber motion in the two transverse directions
was correlated. Hence, the elliptical cross-section of the fiber cone has a preferred
orientation in the plane transverse to the spinning direction. The angle of
orientation was found to vary sinusoidally for the fiber positions that were within
a characteristic spatial separation along the spinning direction. Therefore, it is
suggested that the fiber motion be that of an elliptical spiral that sinusoidally
rotates in the transverse planes. Furthermore, it was observed that the fiber
positions were auto-correlated only to those positions that were within a length of
a fiber element along the fiber axis. Consequently, the fiber laydown pattern or the
distribution of fibers in the web will follow the same distribution as the fiber
positions of a moving threadline follow in a transverse plane. To evaluate the web
distribution and the effect of melt blowing process variables on the statistical
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parameters of the distribution, an analysis of web images was done (see Chapter
4). The image analysis technique was based on Kullback-Leibler principle of
information entropy. The web distribution was found to spread linearly with the
distance from the die. In addition, it was observed that process conditions, which
reduced the fiber diameter, increased the spread of the web distribution. This
result should be very helpful in controlling the basis weight (mass per unit area)
of a melt-blown web. Furthermore, for a fixed z position below the die and for a
given set of process variables, a large variance in the web orientation angle
suggests that the web orientation angle is a function of time. This variation of the
web orientation angle with time is a corollary to an earlier suggestion that the fiber

moves spirally in a transverse plane, and the spiral rotates sinusoidally.

The study of the turbulent cross-jets shows that the position, at which the two slot
jets cross below a melt blowing die, plays an important role in defining the
turbulence structure of the flow field. Therefore, the distance of geometric cross-
point of the cross-jets can be used as a characteristic length in melt blowing. The
flow field of rectangular cross-jets is different from that of a single
rectangular/two-dimensional jet. Since the fiber motion is dependent on the
aerodynamic forces acting on the fiber, the existing correlations for the drag
coefficient in melt blowing have to be corrected to include the turbulence effects

due to crossing of the jets. The turbulence structure of oscillating cross-jets shows
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that, by oscillating the jets between 28 - 46 Hz, an air turbulence structure similar
to that of a continuous flow is generated at a lower air flow. However, a strong
generation of turbulence is observed for the flow oscillating at frequencies (close
to 9 Hz) for which a peak in the fiber diameter profile is seen. Therefore, it is
suggested that an optimum amount of turbulence is required to produce finer

fibers.

6.2 Applications and Recommendations

The foremost implication of the present work is that, for a given set of process
variables and z position below the die, the structure of a melt-blown web can be
predicted before the production of an actual web. Though the method
implemented to predict the web distribution is mathematically and
computationally intensive, the experimental equipment and number of
experiments required for the prediction make the method very economical.
Therefore, the method employed in the present study can be used for future

studies of the web structure.

Fiber motion and web distribution studies suggest that knowledge of spread and
orientation of the distribution of fiber positions would be useful in (a) predicting

fiber-to-fiber entanglements in multiple filament melt blowing, (b) designing
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spatial separation of the spinneret holes in the melt blowing dies, and (c)

predicting the structural properties of melt-blown webs.

Another important goal achieved in the present study was the understanding of
one-dimensional turbulence structure of the air flow field in melt blowing. This
work can be used as a starting point for two- and three-dimensional turbulence
studies, and eventually turbulence modeling of the melt blowing process. The
turbulence study of the flow field of oscillating jets can be applied to control and

improve the laydown pattern and structure of melt-blown webs.
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Appendix I

A SUPPLEMENT TO CHAPTER 2

ALl LDYV Settings for Amplitude and Frequency Measurements
From the calibration wheel experiments, the following settings for LDV equipment

were found optimum for the measurement of amplitude and frequency of fiber

vibrations:
Counter mode: Total Burst Count (TBC)
Frequncy shift: 0.5 MHz
Number of samples: up to 1024
Number of cycles: 8
Timer comparison: 10%
Gain: 10
Low filter limit: 0.3 MHz
High filter limit: 1.0 MHz
Probe rotation: 90°
Sampling time: 30 - 150 seconds
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Figure AL1 Effect of fiber diameter and measuring-volume position on
data/passage in calibration wheel experiments. The solid and dotted lines are
predicted from the fitted correlation of eq 2.3.
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Figure AL2 Fiber crossover frequency per unit length across the x axis for an air
velocity v, = 17.6 m/s.
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Figure AL3 Fiber crossover frequency per unit length across the y axis for an air

velocity v, = 17.6 m/s.
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Figure AL4 Fiber crossover frequency per unit length across the y axis for a
polymer flow rate Q, = 0.60 cm*/min.
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Figure AL5 Fiber crossover frequency per unit length across the y axis for a
polymer flow rate Q, = 0.80 cm®/min.
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Appendix II

A SUPPLEMENT TO CHAPTER 3

On the following pages, in this appendix, are the supplementary fiber density

distribution surface plots which were not included in Chapter 3.
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Figure AIL1 Surface plots of (a) experimental and (b) fitted fiber density

distribution at z = 10 mm.
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Figure AIL4 Surface plots of (a) experimental and (b) fitted fiber density
distribution at z = 70 mm.
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Appendix II1

COMPUTER PROGRAM FOR EVALUATING THE WEB

DISTRIBUTION USING ENTROPIC ANALYSIS

This appendix includes the computer program developed to analyze the web
images as described in Chapter 4. The description of each variable and
subroutine is present in the respective subroutine. To make the program self-
explanatory and user-friendly, the comments for each module have been

included.

CCCccecceceeecececceececeeeeccecccceccecececccceccccceccecccecccceccecececeeccececececececcce

LANGUAGE: FORTRAN 77
FILENAME: entropy.f (main program)

C (o
Cc (o
(] Cc
C (od
C This program approximates the fiber presence probability density (od
C function using Kullback-Leibler entropy optimization principle of (of
C minimum information. The observed distribution is evaluated (od
C from 8-bit gray scale image of the laydown pattern. The image is (od
C stored in PGM (Portable Gray Map) format with 256 gray levels. c
C The program uses IMSL function BNRDF for evaluating probability (o]
C integral for bivariate normal distribution as model fiber presence C
C pdf. For minimizing KL-information function, Simulated Annealing (of
C global minimization routine is used. c
C C
(o4 Cc
(o Cc
Cc (o
(o4 C
C Cc
C [od

EXTERNAL SUB-PROGRAMS CALLED IN ORDER:
Calstats (calstats.f)
Minimize (minimize.f)
Printout (entropy.f)

CCCCCCCCCCCCcccecceeeeececeecececececceceececeeceeccceceecececcececececececececeeccececececcececcece
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PROGRAM Entropy
MAIN ROUTINE

**«%* DECLARATION OF VARIABLES ****

INTEGER Wx, Wy, ndim

PARAMETER (ndim=2)

REAL Po(35,35), Pm(35,35), mu(ndim), sigma(ndim), sd(ndim),
* r, xbw(36), ybw(36), CF, t, rho

DOUBLE PRECISION sdguess(ndim)

EXTERNAL CalStats, Minimize, Printout

COMMON /OBSERVED/ mu, r, Wx, Wy, Po, xbw, ybw, CF, t

*+++* DEFINITION OF VARIABLES ****

———-— INTEGER VARIABLES ----

Wx : Number of windows set in X direction of the image
Wy : Number of windows set in X direction of the image
ndim : Number of dimensions in the problem -~ 2 in this case

---- REAL VARIABLES ----

Po : Array to store observed fiber presence pdf
Pm : Array to store model (binormal) fiber presence pdf
mu : Array to store means of distribution
mu(l) - X dimension mean
mu(2) - Y dimension mean
sd : Array to store observed (image) standard deviations

sd(l) - observed X dimension standard deviation
sd(2) -~ observed Y dimension standard deviation
sigma : Array to store optimized standard deviations
sigma(l) - X dimension standard deviation
sigma(2) - Y dimension standard deviation

r : observed correlation coefficient
rho : optimized correlation coefficient
xbw : array of X coordinates of NORTH boundaries of windows
ybw : array of Y coordinates of WEST boundaries of windows
t : orientation angle (in degrees) between major axis of

bivariate normal distribution ellipse and x-axis
***+* DEFINITIONS OF SUB-PROGRAMS CALLED FROM MAIN ***«*
Calstats: Calculates the statistics of observed fiber presence
pdf. It calls a subroutine to read the image and
then evaluates the statistics.
Minimize: Minimizes the KL-information function. This routine
calls the Simulated Annealing algorithm
PrintOut: Prints final statistical output of the program
** CALLING ROUTINE TO EVALUATE STATISTICS FROM OBSERVED DATA **
call Calstats(ndim, sd, sdguess)
** CALLING SUBROUTINE TO MINIMIZE KL INFORMATION FUNCTION **
call Minimize(ndim, sd, sdguess, sigma, rho)

** CALLING SUBROUTINE TO PRINT OUT THE FINAL STATISTICS **

call PrintoOut(ndim, sd, sigma, rho)
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STOP
END

t2 222 2222222222222 2222222222222 22222222 222232222222232228202%2d2S02lsdts s

10

20

SUBROUTINE PrintOut(ndim, sd, sigma, rho)

**** DECLARATION OF VARIABLES ****

CHARACTER infile*12, prob_dat*12, statfile*12
INTEGER Wx, Wy, ndim

REAL Po(35,35), mu(2), sigma(ndim), sd{ndim),
+ r, xbw(36), ybw(36), CF, t, rho

DOUBLE PRECISION ThetaFCN, KLF

COMMON /OBSERVED/ mu, r, Wx, Wy, Po, xbw, ybw, CF, t
COMMON /FILES/ infile, prob_dat, statfile

COMMON /OPTIMIZED/ ThetaFCN, KLF

*+*** WRITING FINAL STATISTICS IN statfile #****

open(unit=1, file=statfile, status='unknown')

write(l,10)

format(' This program approximated the fiber presence'/
probability density function using Kullback-Leibler'/
entropy optimization principle of minimum information.'/
The observed distribution was evaluated from 8-bit gray'/
scale image of the laydown pattern. The image was stored'/
in PGM (Portable Gray Map) format with 256 gray levels.'/
The program used IMSL function BNRDF for evaluating'/
probability integral for bivariate normal distribution as'/
model fiber presence pdf. For minimizing KL-information'/
function, Simulated Annealing routine was used.'/)

+OVOdJOANNDWN

write(l,20) infile, Wx, Wy, KLF, (mu{(j), mu(j), j=1,ndim),
(sd(i), sigma(i), i=1,ndim), r, rho
format (1lx, 'ANALYZED IMAGE: ',A,/
1x, '"NUMBER OF X-DIRECTION WINDOWS: ',I2/
1x, '"NUMBER OF Y-DIRECTION WINDOWS: ',I2/
1x, '"MINIMUM VALUE OF KULLBACK-LEIBLER FUNCTION: ',el3.6//
1x, 'STATISTICAL PARAMETERS OF THE DISTRIBUTIONS:',/
1x,' 'Y/
2x, 'PARAMETER', 10x, 'OBSERVED'*, 10x, "MODEL', /
1x, v/
2%,
2x,
2x,

+

mu(X)',10x, £8.4, 7x, £8.4,/
mu(Y)',10x, £8.4, 7x, £f8.4,/
sigma(X)',10x, £8.4, 7x, £8.4,/
2x,' sigma(Y)',10x, f8.4, 7x, f8.4,/
2%, rho(XY)',7x, ell.4, 4x, ell.4,/
1x," v, //
1x, 'NOTE: mu AND sigma VALUES ARE IN mm')

SR T IR S T S e,

RETURN
END

(2T ELSEIE LRSI S22 2SS RS2 RS2 222 222222222222 s 2sdRtX el s Rl

314



CCCCCCCCCeeeceeceeecececeeccecceccceccccccecccccecccececccccecccccceccccccececcceececcece

aaoaaaaQaaoaaaaanan

FILENAME: calstats.f
This file contains following subroutine(s):

SUBROUTINE PARENT-ROUTINE PARENT-RT-FILE VARIABLES—-RETURNED

-~ o -~

Calstats Main entropy.f sd, mu, r, Wx, Wy,
and Po

Subroutine CalStats evaluates the grouped mean, standard deviations

and correlation coefficient from the windowed image.

Calstats CALLS EXTERNAL SUBROUTINE
CalWinFreq (set_img.f)

aoaaaaaoaaaoaaanaoaan

CCCCCCCCCCcCCCcceecccececceeeeccceececcececcecccecececcccececcececeececcecececeecececececcecee
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aaaaaaaaa aa a0

SUBROUTINE Calstats(ndim, sd, sdguess)

**** DECLARATION OF ARGUMENT VARIABLES ****

INTEGER Wx, Wy, ndim

REAL Po(35,35), mu(2), sd(ndim), r, xbw(36), ybw(36), CF, t
DOUBLE PRECISION sdguess (ndim)

COMMON /OBSERVED/ mu, r, Wx, Wy, Po, xbw, ybw, CF, t

EXTERNAL CalWinFreq

Subroutine CalWinFreq first reads the image pixel intensities

from (8-bit) 256 gray level image, then groups the image

pixels into W windows. It, then, computes the normalized fiber
presence (fp) frequencies of the W windows and returns them as

observed fp-pdf array Po to the parent subroutine Calstats.
***%* DECLARATION OF LOCAL VARIABLES ****

INTEGER i, j

REAL tan2t

DOUBLE PRECISION uf, Ui, FiUi, FiU2i, Ux, Uy, fxy, PI
PARAMETER (PI=3.14159265359)

**%+ DEFINITION OF LOCAL VARIABLES *¥***

---- REAL VARIABLE ----

CF : Conversion factor from pixel to millimeter
(to be multiplied)

-—-- DOUBLE PRECISION VARIABLES ----

uf : Sum of normalized freq. in jth column or ith row
Ui : Class mark of jth column or ith row

FiUi : Sum of (uf*Ui)

Fiu2i : Sum of (uf*ui~2)

Ux : Class mark of each row

Uy : Class mark of each column

fxy : Sum of (frequency*coordinates of center of cell)
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or [Po(i,j)*Ux*Uy]
sdguess: Array containing initial guess values of standard
deviations to be used by optimization routine

**** CALLING THE SUBROUTINE TO READ AND GROUP IMAGE DATA ****x
call CalwWinFreq(CF, Wx, Wy, Po, xbw, ybw, sdguess)
**** COMPUTING MEAN, SD, AND R FROM THE GROUPED DATA ****

FiUi=0.0
Fiu2i=0.0

print S
format(/5x,'X STATISTICS:')
do 20 i=1,Wx
uf=0.
do 10 j=1,Wy
uf=uf+Po (i, j)
continue
Ui=(xbw(i) +Xxbw(i+l1l)-1)*CF/2.0
FiUi=FiUi + uf*Ui
FiU2i=FiU2i + uf*(Ui**2.0)
print 15, Ui, uf, Fivui, Fivu2i
format(1lx,£6.4,3(1x,ell.4))
continue
mu(l)=FiUi
sd(1l)=sqrt(FiU2i-(mu(l)**2.0))
mu({l)=FiUi/sumPo
sd(1l)=sqrt((FiU2i-(mu(l)**2.0) *sumPo)/ (sumPo-1.0))
print 30, mu(l), sd(l)
format(7x, 'mean =',£7.3,"' mm;',2%,"'s.d. =',£7.3,' mm')

FiUi=0.0
FiUu2i=0.0

print 35
format (5x, 'Y STATISTICS:')
do 50 j=1,Wy
uf=0.
do 40 i=1,Wx
uf=uf+Po(i, j)
continue
Ui=(ybw(j) +ybw(j+1)+1)*CF/2.0
FiUi=FiUi + uf*yi
Fiu2i=FiU2i + uf*(Ui**2.0)
print 15, Ui, uf, FiUi, Fivu2i
continue
mu(2)=FiUi
sd(2)=sqrt (FiU2i-(mu(2)**2.0))
mu(2)=FiUi/sumPo
8d(2)=sqrt((FiU2i-(mu(2)**2.0) *sumPo) / (sumPo-1.0))
print 30, mu(2), sd(2)

—-——— COMPUTING OBSERVED CORRELATION COEFFICIENT ----
fxy=0.
do 70 i=1,Wx

Ux=(xbw(i)+xbw(i+l)-1)*CF/2.0
do 60 j=1,Wy
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Uy=(ybw(j)+ybw(j+1)+1) *CF/2.0
fxy=fxy+Po (i, j) *Ux*Uy
60 continue
70 continue
r=(fxy-mu(l)*mu(2))/(sd(1l)*sd(2))
print 75, r
75 format (5x, 'CORRELATION COEFFICIENT:',/7x,'r = ', £7.4)

(o4 —— COMPUTING ANGLE BETWEEN MAJOR AXIS OF ELLIPSE AND X-AXIS --
if (sd(l).EQ.sd(2)) then
if (r.GT.0.0) then
t=45.0
else if (r.LT.0.0) then
t=135.0
else
t=0.0
end if
tan2t=1.0E99
else
tan2t=2.0*r*sd (1) *sd(2)/(sd(1)**2.0-sd(2)**2.0)
t=0.5%*atan(abs(tan2t))
if (r.GE.0.0) then
if (sd(l).GT.sd(2)) then
t=180.0*t/PI
else
t=180.0*(0.5-t/PI)
end if
else if (r.LT.0.0) then
if (sd(l).GT.sd(2)) then
t=180.0*(1.0-t/PI)
else
t=180.0*(0.5+t/PI)
end if
end if
end if
print 85, t
85 format (5x, 'ANGLE BETWEEN X-AXIS AND MAJOR AXIS OF ELLIPSE:',/
+ 1x,'t = ',£6.2,' degrees')

RETURN
END

[22 322222222222 2222222222222 2222222222232t 2t tRdfiind sttt sl sl
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FILENAME: set_img.f

This file contains following subroutines:

SUBROUTINE PARENT-ROUTINE PARENT-RT-FILE VARIABLES-RETURNED

~ o -~

PixelInWin CalWinFreq calstats.f Wx or Wy, and
nx_ptl or ny ptl

CalWinFreq CalStats calstats.f Wx, Wy, Po, xbw,
and ybw

Subroutine PixelInWin calculates the total number of windows (full
and partial) in a given direction. It also finds out number of
pixels in the given direction's partial window.

Subroutine CalWinFreq first reads the image pixel intensities from
(8-bit) 256 gray level image, then groups the image pixels into

W windows. 1It, then, computes the normalized fiber presence (fp)
frequencies of the W windows and returns them as observed fp-pdf
array Po to the parent subroutine CalStats.

CalwinFreq CALLS EXTERNAL SUBROUTINE
PixelInWin (set_img.f)

oMo Ne R Ne N NeNe Ne Ne N e e e Ne Ne Ne Ne Ne Ne Ee Ne e Ne N2 Ke!

Ccceceececcecececceeecececececececececceccceccceecceecececeecececceecececeeccececcececececcccececcce
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SUBROUTINE CalWinFreq(CF, Wx, Wy, Po, xbw, ybw, sdguess)
**** DECLARATION OF ARGUMENT VARIABLES ****x

CHARACTER infile*12, prob_dat*12, statfile*12, sp_file*18
INTEGER Wx, Wy

REAL Po(35,35), xbw(36), ybw(36), CF

DOUBLE PRECISION sdguess(2)

LOGICAL print_flag, spatial_print

COMMON /FILES/ infile, prob_dat, statfile, sp_ file
COMMON /PRINTING/ print_flag, spatial_print

**** DECLARATION OF LOCAL VARIABLES ****

CHARACTER dummy*50, ans*3, gz_infile*1l5, command*30

INTEGER d_lines, x, y, k, wd, ht, gmax, gmin, xo, yo, Wapprox,
+ r_pix(0:900,0:900),pix(-550:550,-550:550), npix,
+ nx_ptl, ny ptl, =xstart, xend, ystart, yend
LOGICAL there, xo_found, yo_found

DOUBLE PRECISION sumPo

EXTERNAL PixelInWin, SYSTEM

**** DEFINITION OF LOCAL VARIABLES ****

-—-—-~ CHARACTER VARIABES —-~--

infile : Image file name (12 characters allowed)
statfile: Final statistics' results file name

prob_dat: Probability output file name

sp_file : sSpatial probability output file name

dummy : Dummy strings in image file (max. characters = 50)
ans : Answer to questions asked to user
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is

—-~-~ INTEGER VARIABLES --——-
d_lines: No. of dummy lines describing the creator program

wd : Width of the image in pixels

ht : Height of the image in pixels

gmax : Maximum gray level intensity of a pixel in the image

gmin : Minimum gray level intensity of a pixel in the image
It corresponds to complete fiber absence

x : Index variable in X dimension (height-ways)

Yy : Index variable in Y dimension (width-ways)

k : File inquiry index

xo : X axis zero position

yo : Y axis zero position

pix : 2~D array to store pixel intensity level.

Indices store position of pixel in web coordinate
system

r_pix : 2-D array to read pixel intensity level from the file.
Indices store position of pixel in image coordinate
system

Wapprox: Approximate no. of windows in any direction of image

npix : No. of pixels (odd no.) on each side of FULL window
>> It needs to be odd as center of a window has to be
>> a pixel position and not the edge of a pixel

nx ptl: No. of pixels (odd no.) in X dir. partial window

ny ptl: No. of pixels (odd no.) in Y dir. partial window

xstart: X dir. pixel position at NORTH end of each window

xend : X dir. pixel position at SOUTH end of each window

ystart: Y dir. pixel position at WEST end of each window

vend : Y dir. pixel position at EAST end of each window

———-= LOGICAL VARIABLES --—--

there : Indicates whether file exists

Xo_found: Indicates whether X axis zero position is found
yo_found: Indicates whether Y axis zero position is found

——--- DOUBLE PRECISION VARIABLE ----
sumPo : Sum of observed frequencies over all the windows
>> Needed for normalization of frequencies

**%* READING IMAGE FILENAME ****

k=0

write(*,10)

format (5x, '"ENTER THE IMAGE FILE WITHOUT " .pgm" EXTENSION:')
read 15, infile

format (A)

infile='test93.pgnm'

*+%** ADDING EXTENSIONS TO FILENAMES ****

prob_dat=infile(:INDEX(infile,' ')-1)//'.dat’
statfile=infile(:INDEX(infile,' ')-1)//'.stt’
gz_infile=infile(:INDEX(infile,"' ')-1)//'.pgm.gz'
infile=infile(:INDEX(infile,"' ')-1)//'.pgm'

**%** CHECKING IF INPUT FILE EXISTS ****
inquire(file=infile, exist=there)
if(.NOT.there) then
inquire(file=gz_infile, exist=there)
if (there) then
command='gunzip -v '//gz_infile//' \O0'
write(*,'(/5x, ' 'INPUT FILE COMPRESSED!'"',
/5%, ' "UNCOMPRESSING INPUT FILE USING:''/5x,A)"')
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command
write(*,*)
i=SYSTEM(command)
else
print 16, infile
format (5x, '**+** INPUT FILE ',A,' DOES NOT EXIST! #*#*wxt/)
k=k+1
>> ASK FOR NEW FILENAME ONLY THRICE
if (k.GT.3) then
write(*,*) ' FINALLY QUITTING'
STOP
end if
go to 5
end if
end if

***%* CHECKING IF INPUT FILE ALREADY ANALYZED ****
there=_ FALSE.
inquire(file=prob_dat, exist=there)
if (there) then
write(*,17) infile
format(/5x, '** IMAGE ',A,' HAS BEEN ANALYZED BEFORE! **',
/5%, 'DO YOU WISH TO RE-ANALYZE THE IMAGE? (y/n)')
read(*,18) ans
format(A)
if ((ans(l:1).EQ.'n').OR.(ans(1:1).EQ.'N')) STOP
end if

*#%** PRINTING THE FILENAMES ***%*

write(*,19) infile, prob_dat, statfile

format(/5x, 'IMAGE FILE TO BE ANALYZED: ',A,
/5x, 'PROBABILITY OUTPUT TO BE STORED IN FILE: ',A,
/5%, 'FINAL STATISTICS TO BE STORED IN FILE: ',A)

*%#+*%* READING IF USER WANTS TO PRINT SPATIAL PROBABILITIES ***+*
write(*,'(/5x,''DO YOU WANT TO PRINT SPATIAL PROBABILITIES?'’,
vt e [
(y/n}'')*)
read(*,'(A)') ans
if ((ans(l1:1).EQ.'n').0R.(ans(1:1).EQ.'N')) then
spatial_print=.FALSE.
write(*, ' (5x,''>> YOU CHOSE NOT TO PRINT SPATIAL '‘,

' 'PROBABILITIES'') ')
else
spatial_print=.TRUE.
sp_file=infile(:INDEX(infile,'.')-1)//'.spa.tar'
write(*, ' (5x, ''SPATIAL PROBABILITIES WILL BE STORED IN'',/
5x,''24 FILES WHICH WILL BE tar AND gzipped'',/
Sx, ''AND STORED AS: '',A,/
Sx,''THE FILES CAN BE RETREIVED BY EXECUTING:'',/
5x, '‘gunzip ~-v '',A,'' ; tar -xvf '',A)")
sp_file(:INDEX(sp_file,' ')-1)//'.gz',
sp_file(:INDEX(sp_file,' ')-1)//'.gz', sp_file
end if

open(unit=1, file=infile, status='old')

«**%* READING FIRST LINE OF PGM IMAGE FILE ****

>> FIRST LINE DESCRIBES THE TYPE OF PGM FILE (ASCII OR BINARY)
>> SO IS STORED IN A DUMMY STRING AS FIRST DUMMY LINE

read(l,20) dummy
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format (AS0)
d_lines=]

**** COUNTING LINES STARTING WITH '#' CHARACTER IN FILE ****
>> LINES STARTING WITH '§' DESCRIBE THE IMAGE CREATOR PROGRAM
>> THEIR NUMBER IS UNKNOWN AS EVERYTIME IMAGE IS TRANSFORMED
>> THE TRANSFORMING/CREATOR PROGRAM ADDS A LINE ABOUT ITSELF

read(l,20) dummy
d_lines=d_lines+l
if (dummy(1:1).EQ.'#') then
go to 25
else
d_lines=d_lines-1
end if
write(*,*) 'dummy lines=',d lines

#*x+%* REWINDING THE FILE ****
>> SO THAT DUMMY LINES CAN BE IGNORED WHEN RE-READING

rewind (1)

*%%%* RE~-READING DUMMY LINES WITH KNOWN NO. OF DUMMY LINES ****
do 30 i=1,d lines

read(l,20) dummy

print 20, dummy
continue

**** READING WIDTH AND HEIGHT OF THE IMAGE FROM IMAGE FILE ****
read(l,*) wd, ht

***%* READING MAXIMUM GRAY LEVEL OF THE IMAGE ****
read(l,*) gmax

*+** READING MINIMUM GRAY LEVEL OF THE IMAGE FROM THE USER ****
write(*,35)

format(/5x, '"ENTER THE MINIMUM GRAY LEVEL OF THE IMAGE:')

read*, gmin

gmin=96

gmin=0

write(*,37) gmin

format (5x, '>> MINIMUM GRAY LEVEL OF THE IMAGE: ',I2)

***+* READING CONVERSION FACTOR FROM PIXEL TO MM **+*«
write(*,40)

format (/5x, "ENTER THE NUMBER OF PIXELS IN ONE ACTUAL CM:')
read*, CF

write(*,42) CF

format (5%, *>> NUMBER OF PIXELS IN ONE ACTUAL CM: ',F4.0)
CF=10./CF

CF=0.62/320. ifor test7 image

CF=14.0/320. tfor test8 image

CF=10.0/37.0 tfor test58, test9, and testl0 images

***+ READING INITIAL GUESS VALUES OF S.D. *#***

write(*,'(/5x, ''ENTER INITIAL GUESS VALUES OF S.D. IN mm:'"',/
+ 5x, ''IF NOT SURE, ENTER ZERO FOR BOTH GUESSES.'',
+ 5x,''IMAGE S.D.s WILL BE TAKEN AS GUESS VALUES:'')")

read*, (sdguess(i), i=1,2)
if (sdguess(2).EQ.sdguess(l) .AND.sdguess(2) .NE.O.) then

321



ana

45

46

47

50
60

70
80

write(*,'(5x,''>> TO AVOID DIVISION BY ZERO IN ANGLE '‘',
+ ' '"CALCULATION, '', /8%, ' 'sdguess(Y) IS REDUCED BY 0.01''/)"')
sdguess (2)=sdquess (2)-0.01
end if
write(*, ' (5x, ' '"ENTERED INITIAL GUESS VALUES OF S.D. ARE:'‘'/,
+ 7x,''sdguess(X) = '',£5.2,'' mm'"'/,
+ 7x, ' 'sdguess(Y) = '',£5.2,'' mm'"')"') (sdqguess (i), i=1,2)

**%#* READING PIXEL POSITIONS AND INTENSITIES ****

write(*,45) wd, ht

format(/5x," ',/ Sx,'READING IMAGE',/
+ Sx,’ ',//5x, 'IMAGE INFORMATION:',/
+ 71x, ‘width = ',I3,' pixels; height = ',I3,' pixels')

read(1l,*) ((r_pix(x,y), y=0,wd-1), x=0,ht-1)
**+* PFINDING ZERO POSITION OF THE WEB ****

xo_found=.FALSE.
yo_found=.FALSE.
do 60 x=0,ht-1
do 50 y=0,wd-1
if (r_pix(x,y).EQ.gmax) then
if ((.NOT.xo_found) .AND. (y.EQ.0)) then
>> axis line is 3 pixel wide, middle pixel is xo
xo=x+1
xo_found=.TRUE.
write(*,46) xo
format(7x, 'x axis zero position = ',I3)
else if (.NOT.yo_ found) then
>> axis line is 3 pixel wide, middle pixel is yo
yo=y+1
yo_found=.TRUE.
write(*,47) yo
format(7x, 'y axis zero position = ',I3)
end if
end if
continue
continue

**%** RESETING PIXEL POSITIONS ACCORDING TO WEB COORDINATES ****

do 80 x=0,ht-1
do 70 y=0,wd-1
pix((x~-x0), (yo-y))=r_pix(x,¥)
if ((mod(x-xo0,20).EQ.0}.AND. (mod(yo-y,20).EQ.0)) then
print *, x-%o, yo-y, pix((x-xo), (yo-y))
end if
continue
continue

**** CREATING WINDOWS *+*=x*
Wapprox=nint (sqrt(float (max(ht,wd))))

npix=nint (min(ht,wd)/float (Wapprox))
if (mod(npix,2).EQ.0) then

npix=npix+1l
end if
print*, 'Wapprox=',Wapprox,' npix=',npix
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*#x*%* SUBROUTINE CALLS TO COUNT NO. OF WINDOWS IN EACH DIR. *%**

call PixelInWin(wd, npix, Wy, ny ptl)
call PixelInWin(ht, npix, Wx, nx ptl)

print*, 'Wx=',6Wx,' nx_ptl=', nx_ptl
print*, 'Wy=',Wy,' ny_ptl=', ny ptl

write(*,85) wx, Wy, npix, nx_ptl, ny_ ptl

format (7x, 'Windows in X-direction (heightwise), Wx = ',I2,/
7x, 'Windows in Y-direction (widthwise), Wy = ',I2,/
7x,'No. of pixels in each full window, npix = ',I2,/
7x, 'Pixels in X-direction partial window ', 12,/
7x, 'Pixels in Y-direction partial window ', I2)

*+** CALCULATING FREQUENCIES OF THE WINDOWS ****

xend=0-xo0-1
do 90 i=1,Wx
xstart=xend+1l

>> if xstart lies on x axis (3 pixels wide),

>> increment xstart by accordingly

>> axis line is to be ignored for probability calculation
>> as actual gray level at zero position is unknown

if (xstart.EQ.-1) then
xstart=xstart+3

else if (xstart.EQ.0) then
xstart=xstart+2

else if (xstart.EQ.l) then
xstart=xstart+l

end if

if ((i.BEQ.Wx).AND. (nx_ptl.NE.0)) then
xend=xstart+(nx_ptl-1)
>> xend is not allowed to exceed image boundary
if (xend.GT.(wd-1l-xo0)) then
xend=wd-1-xo
end if
else
xend=xstart+ (npix-1)
end if

>> if axis lies somewhere in full window or on xend position

>> ignore it by incrementing xend accordingly. However, if
>> x axis is somewhere in the partial window, no need to
>> increase xend as axis position then has already been

>> taken into account

if ((xstart.LT.-1.AND.xend.GE.l).AND.(i.NE.Wx)) then
xend=xend+3
end if

~-~-- setting lower boundary of window -——-
xbw(i)=float(xstart)

continue
xbw(Wx+1)=xend+1

yend=yo+l
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do 100 j=1,Wy
ystart=yend-1

>> if ystart lies on y axis (3 pixels wide),

>> decrement ystart by accordingly

>> axis line is to be ignored for probability calculation
>> as actual gray level at zero position is unknown

eNeNeNg

if (ystart.eQ.l) then
ystart=ystart-3

else if (ystart.EQ.0) then
ystart=ystart-2

else if (ystart.EQ.-1) then
ystart=ystart-1

end if

if ((j.EQ.Wy).AND.(ny_ptl.NE.O)) then

yend=ystart-(ny ptl-1)
C >> yend is not allowed to exceed image boundary
if (yend.LT.(yo-(ht-1))) then
yend=yo- (ht-1)

end if

else
yend=ystart-(npix-1)

end if

(of >> if axis lies somewhere in full window or on xend position
Cc >> ignore it by incrementing xend accordingly. However, if
c >> y axis is somewhere in the partial window, no need to
(o] >> increase xend as axis position then has already been
(o >> taken into account
if ((ystart.GT.-l1.AND.yend.LE.1l) .AND. (j.NE.Wy)) then
yend=yend-3
end if

ybw(j)=float(ystart)

100 continue
ybw(Wy+1)=yend-1.

c print*, '-————--—— - -
c print 102
C 102 format(3x,'i',3x,'j',2x, 'xstr',2x, 'xend’, 2x, 'ystr',2x, 'yend',
(o} + 4x, 'xbw', 5x, 'ybw')
(of print*, ‘'-—-- - ———m e '
sumPo=0.
-—— i loop: traverses windows in +ve X dir. heightwise ---
do 140 i=1,Wx
-- j loop: traverses windows in -ve y dir. widthwise --
do 130 j=1,Wy
Po(i,j)=0.
xstart=xbw(i)
xend=xbw(i+l)-1
ystart=ybw(j)
yend=ybw(j+1)+1
(od if (j.EQ.Wy.OR.i.EQ.1l) then
c print 105, i,j,xstart,xend,ystart,yend, xbw(i), ybw(j)
C 105 format(2(2x,12),4(2%x,I4),2(2x,F6.2))
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c end if
c -- 2nd and 3rd inner loops: traverse pixels in windows --
o -- while ignoring pixel positions lying on either axes --
(od -- Therefore, care must be taken when calculating Pm --
do 120 x=xstart,xend, 1l
do 110 y=ystart, yend, -1
if ((x.NE.-1.AND.x.NE.O.AND.x.NE.1l) .AND.
+ (y.NE.-1.AND.y.NE.O0.AND.y.NE.1) .AND.
+ (pix(x,y) -GT.gmin)) then
Po(i,j)=Po(i,j)+(pix(x,y)-gmin)
end if
110 continue
120 continue

sumPo=sumPo+Po (i, j)
130 continue
140 continue

(o **** NORMALIZING WINDOW FREQUENCIES TO FINALLY COMPUTE Po ****

do 160 i=1,Wx
do 150 j=1,Wy
Po(i,j)=Po(i,j)/sumPo
150 continue
160 continue
(o4 print*, 'Normalized Po(l,1l)=', Po(l,1)

RETURN
END
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SUBROUTINE PixelInWin(len, npix, Wx_or_y, n_ptl)

c **+%* DECLARATION OF ARGUMENT VARIABLES ****
INTEGER len, npix, Wx_or_y, n_ptl

c *+** CALCULATING NO. OF FULL WINDOWS IN GIVEN DIRECTION ***«*

c >> THREE PIXELS ARE DECREMENTED TO ALLOW FOR AXIS LINE WIDTH
Wx_or_y=(len-3)/npix

***+ CALCULATING NO. OF PIXELS IN LEFT OVER PARTIAL WINDOW ****
n_ptl=(len-3) - npix*Wx_or_y

(¢}

>> SINCE LEFT OVER PARTIAL WINDOW IS ALSO A WINDOW, Wx_or_y
>> HAS TO BE INCREMENTED BY ONE. ALSO, n_ptl HAS TO BE ODD.
>> THEREFORE, IT IS CHECKED IF IT IS ODD. AS IT IS A COUNT
>> OF PIXELS IN LAST WINDOW, IT IS DECREASED BY ONE IF IT IS
>> EVEN (CAN'T HAVE AN EXTRA ROW/COLUMN OF PIXELS OUT OF IMAGE

anoaoQan

if (n_ptl.NE.O) then
Wx_or_y=Wx_or_y+l
if (mod(n_ptl,2).EQ.0) then
n_ptl=n_ptl-1
end if
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end if

RETURN
END
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FILENAME: minimize.f
USES SIMULATED ANNEALING FOR GLOBAL MINIMIZATION

This file contains following subroutine(s):

SUBROUTINE PARENT-ROUTINE PARENT-RT-FILE VARIABLES-RETURNED

- -~ oo -~ ~ - o v o o

Minimize Main entropy.f sigma, rho, KLF

FCN Minimize minimize.f FCNvalue, KLF,
ThetaFCN

Gp ECN minimize.f Gp

KLECN FCN minimize.f KLFCN, KLF

CDF KLFCN minimize.f CDF

ModelFpProb Minimize, FCN minimize.f Pm

Minimize subroutine manages the optimization procedure, prints the
optimized values standard deviations of model fiber presence PDF,
and fiber presence PDF in a file. For minimization procedure, it
calls the simulated annealing procedure, SIM ANNEAL, which returns
the optimized values of the objective function and variables (s.d.)
Routine SIM ANNEAL requires initial guess values of variables, the
lower and the upper limits on variables and the number of variables
to be optimized.

FCN is a double precision function that calculates the objective
function to be minimized by simulated annealing.

Minimize CALLS FOLLOWING EXTERNAL SUBROUTINES:

SIM ANNEAL (anneal.f)

FCN (minimize.f ~ this file)
ModelFpProb (minimize.f - this file)
SYSTEM (UNIX Library)

FCN CALLS FOLLOWING EXTERNAL SUBROUTINES:
ModelFpProb (minimize.f ~ this file)
Gp (minimize.f - this file)
KLFCN CALLS EXTERNAL SUBROUTINE:

CDF (minimize.f - this file)
SYSTEM (UNIX Library)

ModelFpProb CALLS EXTERNAL SUBROUTINE:
BNRDF (IMSL Library)
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SUBROUTINE Minimize(ndim, sd, stguess, sigma, rho)

Cc **+* DECLARATION OF ARGUMENT VARIABLES ***%*
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CHARACTER infile*12, prob_dat*12, statfile*l2, sp_file*18
INTEGER Wx, Wy, ndim

REAL Po(35,35), mu(2), sd(l:ndim), sigma(l:ndim), r, xbw(36),
+ ybw(36), CF, t

DOUBLE PRECISION stguess(ndim)

COMMON /OBSERVED/ mu, r, Wx, Wy, Po, xbw, ybw, CF, t
COMMON /FILES/ infile, prob_dat, statfile, sp_file

**%%* DECLARATION OF LOCAL VARIABLES ****

INTEGER i, nopt
PARAMETER (nopt=2)

CHARACTER command*80

REAL rho, Pm(35,35), x, y

DOUBLE PRECISION stat(nopt), LB(nopt), UB(nopt)
DOUBLE PRECISION ThetaFCN, Fopt

DOUBLE PRECISION KLF

LOGICAL minimized, print_flag, spatial_ print

EXTERNAL FCN, SIM ANNEAL, SYSTEM, ModelFpProb
COMMON /OPTIMIZED/ ThetaFCN, KLF
COMMON /PRINTING/ print_flag, spatial_print

*+*%*%* DEFINITION OF LOCAL VARIABLES ****

—-——— CHARACTER VARIABLES ----
command: variable to store archiving command to pass
to system

-~-—— INTEGER VARIABLES --—-—-
nopt : number of variables to be optimized (= 2)

---- REAL VARIABLES ----

rho : correlation coefficient of the model distribution
Pm : array to store model fiber presence probabilities
b 4 : x dimension of the center of the window

y : y dimension of the center of the window

—-—— DOUBLE PRECISION VARIABLES ----
stat : array of statistical parameters to be optimized (s.d.)

LB : array of lower bound of variable optimization range
UB : array of upper bound of variable optimization range
KLF : Kullback-Leibler function to be optimized

(must be >= 0.0)

ThetaFCN: theta function constraint added to KL function
to be optimized. It is equal to the square of
differences in tangents of model and observed
orientation angles of distribution ellipses

Fopt : objective function to be optimized. It is sum of
square of KLF and ThetaFCN

~=——— LOGICAL VARIABLES ----

minimized: flag to indicate completion of minimization

print_flag: flag to indicate whether to print spatial
probabilities if user flags spatial_print to TRUE

spatial print: user switch to indicate printing of spatial
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**+«%* COMPRESSING (gzip) THE IMAGE FILE TO SAVE DISK SPACE ****
write(*,'(/5x,29(''~-'")
+ /5x, ' 'COMPRESSING IMAGE FILE USING:''/5x,29(''-''))")
command='gzip -v '//infile//' \O'
write(*,'(5x,A/)') command
>> CALLING SYSTEM (unix) AND SENDING THE COMPRESSION COMMAND
i=SYSTEM(command)
write(*,  *)

print 5

format(/5x,"’ 'y
+ /5%, '"MINIMIZING KULLBACK-LIEBLER INFORMATION FUNCTION',
+ /5%, '/)

***+ SETTING print_flag TO FALSE BEFORE OPTIMIZATION ****
print_flag=.FALSE.

**+* SETTING LOWER AND UPPER BOUNDS ON stat VARIABLES ****
do 10 i=1, nopt
if (stqguess(i).EQ.0.) stguess(i)=sd(i)

LB(i)=sd(i)*0.85 !Decrease by 15%

UB(1i)=sd(i)*1.25 !Increase by 25%

stguess (i)=23.0 1sd(i)+1.0E-06
continue

**++ MAKING SURE THAT LB(l) AND UB(l) ARE GREATER THAN ***x*
**x%* LB(2) AND UB(2) RESPECTIVELY haladadd
if (LB(1) .LT. LB(2)) then
LB(2)=0.99*LB(1)
UB(2)=0.99*UB (1)
end if

**x* MAKING SURE THAT stguess({X) > stguess(Y) ***x
if (stguess(l) .LT. stguess(2)) stguess(2)=stguess(l)*0.99

**** SETTING CORRELATION COEFF. FOR MODEL DISTRIBUTION **+**
**%x* BOUAL TO THAT OF OBSERVED (IMAGE) DISTRIBUTION kit
rho=r

*««* PRINTING GUESS VALUES OF stat #*¥*w

write(*,25) (stguess(j),j=1, nopt)

format (/5x, 'GLOBAL MINIMIZATION WITE FOLLOWING GUESS VALUES:',
+ /7x, 'stguess(X) = ',el0.4,
+ /7%, 'stguess(Y) = ',el0.4/)

**4* MINIMIZATION USING SIMULATED ANNEALING ****
call SIM ANNEAL(nopt, stguess, LB, UB, stat, Fopt)

***+* EYALUATING THETA AND KL FUNCTIONS AT OPTIMUM stat (i) *+**=*
call FCN(nopt, stat, Fopt)

*+*+** CONVERTING DOUBLE PRECISION stat TO SINGLE PRECISION ****
do 30 j=1,nopt

sigma(j)=stat(j)
continue

*+** PRINTING FINAL VALUES OF PARAMETERS AND FUNCTIONS ****
print 280, (sd(i)}, sigma(i), i=1,ndim), r, rho,
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Fopt, KLF, KLF**2., ThetaFCN

280 format(//Sx,'KULLBACK-LIEBLER FUNCTION MINIMIZED...',/

282

285
290
300

5x,
7x,
7x,
7=,
S5x,
5x,
Sx,
S5x,

I I

Sx,38('="),//

'STATISTICAL PARAMETERS OF THE DISTRIBUTIONS ARE:',/
'OBS. sd(X) =',f8.4,' mm; MODEL sigma(X) =',f8.4,' mm',/
'OBS. sd(Y) =',f8.4,' mm; MODEL sigma(Y) =',f8.4,' mm',/

'OBS. r =',ell.4,'; MODEL rho =',el2.4,/

'WHEN MINIMUM VALUE OF OBJECTIVE FUNCTION = ',el3.6/,
'VALUE OF KI. FUNCTION = ',el3.6/,
'VALUE OF SQUARE OF KL FUNCTION = ', el3.6/,
'VALUE OF THETA FUNCTION = 1',el3.6/)

*+** PRINTING FINAL VALUES OF SPATIAL PDF ****
if (spatial _print) then

print_flag=.TRUE.

call FCN(nopt, stat, Fopt)

end if

**%* PRINTING FINAL VALUES OF FIBER PRESENCE PDF ****
call ModelFpProb({ndim, sigma, rho, Pm)
open(unit=99, file=prob_dat, status='unknown')
write (99, 282)
format (5x, 'x',7x,'y',8%, 'Po',10x, 'Pm')
do 300 i=1l,wx
do 290 j=1,Wy
x=(xbw(i)+xbw(i+l)-1)*CF/2.
y=(ybw(j)+ybw(j+1)+1) *CF/2.
write(99,285) x,y,Po(i,j),Pm(i,J)
format(2(2x,£6.2),2(2x,e10.4))
continue

continue

RETURN
END
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SUBROUTINE FCN(nopt,stat, FCNvalue)

**%** DECLARATION OF ARGUMENT VARIABLES ****

INTEGER Wx, Wy, nopt

REAL Po(35,35), mu(2), r, xbw(36), ybw(36), CF, t
DOUBLE PRECISION FCNvalue, stat(2), ThetaFCN
DOUBLE PRECISION KLF

LOGICAL print_flag, spatial_print

COMMON /OBSERVED/ mu, r, Wx, Wy, Po, xbw, ybw, CF, t
COMMON /OPTIMIZED/ ThetaFCN, KLF
COMMON /PRINTING/ print_flag, spatial_print

**#*%* DECLARATION OF LOCAL VARIABLES ****

INTEGER i, j, k, Kn, fl1tB(4)

REAL Pm(35,35), pi(250), dp, PoMax, PoMax_ij, rho

REAL NPo(35,35), NPm(35,35), sigma(2), X, y

DOUBLE PRECISION Gp, PIvalue, KLFCN, varl, var2, diffvar
PARAMETER (PIvalue= 3.14159265359)

EXTERNAL Gp, KLFCN
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INTEGER no_fn eval
SAVE no_fn_eval, PoMax, dp, Kn, pi

DATA no_fn_eval /0/

*##%* DEFINITION OF LOCAL VARIABLES ****

—--—- INTEGER VARIABLES ----
Kn : No. of outcome values assigned to computed fiber
presence observed and model probabilities (= 50)
no_fn eval: No. of function evaluations done so far
It is needed to avoid re-calculating PoMax, dp,

Kn, pi. These variables are calculated only first

time. It is also needed in printing status of
program

~——— REAL VARIABLES ———-

Pm Array to store model (binormal) fiber presence pdf

pi Array of Kn outcome values assigned to normalized
fiber presence observed and model probabilities

dp : Delta p needed to compute spatial PDF using finite
difference numerical approximation of derivative

PoMax : Maximum probability wvalue of Po (fp observed) pdf

PoMax_ij: Maximum probability wvalue of Po (fp observed) pdf
in any direction

rho : Model correlation coefficient

NPo : Array of normalized observed fiber presence pdf by
NPo(i,j) = Po(i,j)/PoMax

NPm : Array of normalized model fiber presence pdf by
NPm(i,j) = Pm(i,j)/PoMax

sigma : Array of single precision fstat' wvariables passed

to subroutine evaluating model fp pdf

X dimension coordinate of center of a window

Y dimension coordinate of center of a window

X
y

—--—-— DOUBLE PRECISION VARIABLES ----
Gp : External function to evaluate gradient of Po
values in a given direction
PIvalue: Value of PI (3.141592...)
KLFCN : External function to evaluate square of KL function
varl : X dimension variance [= sqr(stat(X))]
var2 : Y dimension variance [= sqr(stat(Y))]
diffvar: Difference in variances [varl - var2]

** CALLING ROUTINE TO COMPUTE MODEL FIBER PRESENCE PROB. **

ndim=nopt

sigma(l)=stat(l)

sigma (2)=stat(2)

rho=r

call ModelFpProb{(ndim, sigma, rho, Pm)

** ASSIGNING FIBER PRESENCE PROBABILITIES AS Kn OUTCOMES **

-- FINDING MAXIMUM VALUE OF Po AT WHICH PROFILE GETS FLAT --
—— AND MARKING THE FLAT REGION --
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if (no_fn eval.EQ.0) then

>> For Error Checking
open(unit=10, file='gradpox.dat', status='unknown’')
do 5 i=2,wWx-1
do 3 j=2,Wy-1
x=(xbw(i)+xbw(i+l)—-1)*CF/2.
y=(ybw(j)+ybw(j+1)+1) *CF/2.
write(10,2) x, y, Gp(i,j), Po(i,])
format (2 (2x,£6.2),2(2x,e10.4))
continue
continue
close(unit=10)

print*
print¥, ' FINDING MAXIMUM VALUE OF Po AT WHICH PROFILE
'GETS FLAT:'
PoMax=0.
-- FINDING FIRST MAXIMUM IN INCREASING X-DIRECTION --
——- IGNORING FIRST AND LAST Y WINDOWS, AS THEY COULD --
-— HAVE ALL ZERO Po —-
PoMax_ij=0.
do 20 j=2,Wy-1
i=2
>> IF GRADIENT INCREASES, GO TO NEXT i
>> FIRST CHECK FOR GRADIENT INCREASE BETWEEN i AND i+l
if (Gp(i+l,j,'x').GE.Gp(i,j,'x')) then
i=i+l
go to 10
>> IF GRADIENT DECREASES BETWEEN i AND i+1, THEN
>> CHECK FOR GRADIENT INCREASE BETWEEN i AND i+2 TO
>> AVOID ANY LOCAL MINIMA
else if (Gp(it+2,j,'x').GE.Gp(i,j,"'x')) then
i=i+l
go to 10
>> IF GRADIENT DECREASES, SELECT Po(i,j) AS MAXIMUM

>> AND MARK i AS X-DIR STARTING POSITION FOR FLAT REGION

else
if (Po(i,j).GE.PoMax_ij) then
PoMax_ij=Po(i,j)
fltB(1l)=i+l
end if
end if

>> CHOOSE MAXIMUM OF ALL MAXIMA FROM ALL j
PoMax=max (PoMax_ij, PoMax)

continue

print*, ! PoMax in increasing x-dir =', PoMax_ij

—-- FINDING FIRST MAXIMUM IN DECREASING Y-DIRECTION --
-- AND INCREASING j, STARTING X FROM f1ltB(1l) BOUNDARY --
PoMax_ij=0.
do 40 i=f1tB(1l),Wx-1
j=2
>> IF GRADIENT INCREASES, GO TO NEXT j
>> FIRST CHECK FOR GRADIENT INCREASE BETWEEN j AND j+1
if (Gp(i,j+1,'y').GE.Gp(i,j,'y')) then
j=j+1
go to 30
>> IF GRADIENT DECREASES BETWEEN j AND j+1, THEN
>> CHECK FOR GRADIENT INCREASE BETWEEN j AND j+2 TO
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>> AVOID ANY LOCAL MINIMA
else if (Gp(i,j+2,'y').GE.Gp(i,j,'y"')) then
J=j+1
go to 30
>> IF GRADIENT DECREASES, SELECT Po(i,j) ASs MAXIMUM
>> AND MARK j AS Y-DIR STARTING POSITION FOR FLAT REGION
else
>> CHOOSE MAXIMUM OF ALL MAXIMA FROM ALL i
if (Po(i,j).GE.PoMax_ij) then
PoMax_ij=Po(i,j)
f1tB(3)=j+1
end if
end if

>> CHOOSE MAXIMUM OF ALL MAXIMA FROM ALL j
PoMax=max (PoMax_ij, PoMax)

continue

printw, ! PoMax in decreasing y-dir =', PoMax ij

-— FINDING SECOND MAXIMUM IN INCREASING Y-DIRECTION --
—— AND DECREASING j, STARTING X FROM fltB(1) BOUNDARY --
PoMax_ij=0.
do 60 i=fltB(1l),Wx-1
j=Wy-1
>> IF ABSOLUTE GRADIENT INCREASES, GO TO PREVIOUS j
>> FIRST CHECK FOR ABSOLUTE GRADIENT INCREASE BETWEEN
>> j AND j-1
if (abs(Gp(i,j-1,'y')).GE.abs(Gp(i,j,'y'))) then
j=j-1
go to 50
>> IF ABSOLUTE GRADIENT DECREASES BETWEEN j AND j-1,
>> CHECK FOR ABSOLUTE GRADIENT INCREASE BETWEEN j AND j-2
>> TO AVOID ANY LOCAL MINIMA
else if (abs(Gp(i,j-2,'y')).GE.abs(Gp(i,j,'y’'})}) then
i=j-1
go to 50
>> IF ABSOLUTE GRADIENT DECREASES, SELECT Po(i,j) AS MAX
>> AND MARK j AS Y-DIR ENDING POSITION FOR FLAT REGION
else
>> CHOOSE MAXIMUM OF ALL MAXIMA FROM ALL i
if (Po(i,j).GE.PoMax_ij) then
PoMax_ij=Po(i,])
f1tB(4)=j-1
end if
end if

>> CHOOSE MAXIMUM OF ALL MAXIMA FROM ALL j
PoMax=max (PoMax_ij, PoMax)

continue

print*, ' PoMax in increasing y-dir =', PoMax_ij

—-~ FINDING SECOND MAXIMUM IN DECREASING X-DIRECTION --
~— STARTING Y FROM fl1tB(3) AND ENDING AT fltB(4) BOUNDARY --
PoMax_1ij=0.
do 80 j=f1tB(3),f1tB(4)

i=Wx-1

>> IF ABSOLUTE GRADIENT INCREASES, GO TO PREVIOUS i

>> FIRST CHECK FOR ABSOLUTE GRADIENT INCREASE BETWEEN

>> 1 AND i-1

if (abs(Gp(i-1,j,'x')).GE.abs(Gp(i,j,'x'))) then

i=i-1
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go to 70
>> IF ABSOLUTE GRADIENT DECREASES BETWEEN i AND i-1,

>> CHECK FOR ABSOLUTE GRADIENT INCREASE BETWEEN i AND i-1

>> TO AVOID ANY LOCAL MINIMA

else if (abs(Gp(i-2,j,'x')).GE.abs(Gp(i,j,'x'))) then
i=i-1
go to 70

>> IF ABSOLUTE GRADIENT DECREASES, SELECT Po(i,j) AS MAX

>> AND MARK i AS X-DIR ENDING POSITION FOR FLAT REGION
else
>> CHOOSE MAXIMUM OF ALL MAXIMA FROM ALL j
if (Po(i,j).GE.PoMax ij) then
PoMax_ij=Po(i,j)
f1tB(2)=i-1
end if
end if

>> CHOOSE MAXIMUM OF ALL MAXIMA FROM ALL j
PoMax=max (PoMax ij, PoMax)

continue

printx, PoMax in decreasing x-dir =', PoMax_ ij

write(*,90) (fltB(i),i=1,4), PoMax
format(7x, '£1tB(X1,X2) = (',I12,"',',I2,%'); ',
'fltB(Yl,YZ) = (',IZ,', 'IIZI .)'l
/7x, ‘PoMax = ',eld.8)
print*

open(unit=99, file='poS58.out’', status='unknown')
write(99,122)
format(5x, 'x',7x,'y', 6x, 'Po', 6x, 'NPo',6x, 'Pm', 6x, 'NPm')

end if !FINISHED FINDING PoMax

**+* NORMALIZING FIBER PRESENCE PROBABILITIES TO AVOID ****
**** EVALUATION OF SPATIAL CO-OCCURENCE PROBALITIES IN ****
**%* FLAT REGION *hhh
do 170 i=1,Wx

do 160 j=1,Wy
NPo(i,j)=Po(i,j)/PoMax
NPm(i,j)=Pm(i,j)/PoMax
if (no_fn eval.EQ.0) then
x=(xbw(i) +xbw(i+l)-1) *CF/2.
y=(ybw(j)+ybw(j+1)+1l)*CF/2.
write(99,155) x,y,Po(i,j),NPo(i,j),Pm(i,j),NPm(4i,])
format(2(2x,£6.2),4(2x,£6.4))
end if
continue

continue

**+** EVALUATING pi VALUES ONLY ON FIRST FUNCTION CALL ****
if (no_fn_eval.LE.0) then

-- FTINDING Kn, dp AND pi VALUES --
Kn=50

pi(Kn)=1.0

dp=pi (Kn)/float (Kn)

print*, ‘'dp=',dp

print 175, no_fn_eval, Kn, pi(Kn)

format(10x,I2,': pi(',I3,')=',6£7.5)
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do 180 k=Kn-1,1,-1
pi(k)=pi(k+1l)-dp

c print 175, no_fn_eval, k, pi(k)
180 continue

(o] close (unit=99)
end if

c print*

(o4 **** CALLING FUNCTION TO EVALUATE SQUARED KL FUNCTION ****
FCNvalue=KLFCN(NPo, NPm, Wx, Wy, pi, dp, Kn)

(od **** EYALUATING THETA FUNCTION ****
varl=stat(l)**2.
var2=stat(2) **2.

diffvar=varl-var2
ThetaFCN=2.*rho*stat(l)*stat(2)/diffvar
ThetaFCN=(ThetaFCN-dtan(2.*t*PIvalue/180.) ) **2,

o4 *%x%* EVALUATING FINAL OBJECTIVE FUNCTION ***w
FCNvalue=FCNvalue+ThetaFCN

c -- INCREMENTING FUNCTION CALL VARIABLE --
no_fn eval=no_fn eval+l

C **+** DPRINTING STATUS OF PROGRAM EVERY 40 FUNCTION CALLS ****
if (.NOT.print_ flag.AND.mod(no_fn_eval,40).EQ.0) then
print 240, no_fn eval

240 format (/5x,42('-")
+ /5x, '>> STATUS: ',I4,' FUNCTION EVALUATIONS DONE!'
+ /5%,42('~'))
C >> USED FOR ERROR CHECKING
(o4 print 250, no_fn_eval, (stat(i),i=1,nopt), FCN
250 format (/5x, 'INTERMEDIATE FUNCTION EVALUATION ',
+ I3,':',/5x,40('-"),/
+ 7%, ' sigma (X) = ',el14.8,/
+ 7%, 'sigma(Y) = ', eld4.8,/
+ 7x, 'KLF VALUE = ',eld4.8/)
end if
RETURN
END

222222222222 2222222222223 222 2222322222222 2222222222222 222222222X2222X22 2

DOUBLE PRECISION FUNCTION Gp(i,j,dir)

c ***%* DECLARATION OF ARGUMENT VARIABLES ****
CHARACTER dir*1l
INTEGER i, j
REAL Po(35,35), xbw(36), ybw(36), CF

(o4 **+* DECLARATION OF LOCAL VARIABLES ****
DOUBLE PRECISION dXi, dPo

o ** UNUSED VARIABLES **

INTEGER WX, Wy
REAL mu(2), r, t
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COMMON /OBSERVED/ mu, r, Wx, Wy, Po, xbw, ybw, CF, t

o *+«%% DEFINITION OF LOCAL VARIABLES ***¥*

(o ———- DOUBLE PRECISION VARIABLES ----

(o] dxi : Central difference delta displacement

c dPo : Central difference delta probability

C *#+%* FINDING DELTA DISPLACEMENT AND PROBABILITY ****

if (dir.EQ.'x') then
(o4 >> X VALUES INCREASE AS i INCREASES
dXi=CF* (xbw(i+l)-xbw(i-1))
dPo=Po (i+l1,j)-Po(i-1,3)
else
c >> Y VALUES DECREASE AS j INCREASES
dXi=CF* (ybw(j-1)-ybw(j+1))
dPo=Po (i, j+1)-Po(i,3j-1)

end if

(o4 *%*#*%* CENTRAL DIFFERENCE GRADIENT ****
Gp=dPo/dXi

(od print 10, i, j, Po(i,j), dXi, dir, Gp

10 format(7x, 'Po(',12,',',1I2,*') = !',el0.4,'; dXi = ',f6.2,

+ '; Grad Po(',Al,') = ',el0.4)
RETURN
END
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DOUBLE PRECISION FUNCTION KLFCN(NPo, NPm, Wx, Wy, pi, dp, Kn)

o **x+*+* DECLARATION OF ARGUMENT VARIABLES ****
CHARACTER infile*12, prob_dat*12, statfile*12, sp_file*18
INTEGER Wx, Wy, Kn
REAL NPo(35,35), NPm(35,35), pi(250), dp
LOGICAL print flag, spatial_print

COMMON /FILES/ infile, prob_dat, statfile, sp_file

c *%*+* DECLARATION OF LOCAL VARIABLES ****
INTEGER i, j, k, k1, k2, hx i, hy_ i, ufileno, ofileno
INTEGER hx(12), hy(12)
DATA hx /0,1,1, 1,-1,0,1,2,2,2, 2, 2/
DATA hy /1,1,0,-1, 2,2,2,2,1,0,-1,-2/
c DATA hx /0,1,1,1,-1,0,1,2,2,2,2,2,-2,-1,0,1,2
(o] DATA hy /1,1,0,-1,2,2,2,2,1,0,-1,-2,3,3,3,3,3
CHARACTER filename*12, command*80
REAL P1, P1_dP, P2, P2_dP, CDF, SpdfTol
DOUBLE PRECISION £(30000), g, SpPDF, fINT(24), gINT(24),
+ SpoCDF, SpmCDF, KLFsum, dummy
DOUBLE PRECISION KLF

3,3,3,3,3/
1

3,
IZI 101“11—21"3/

14
’

COMMON /OPTIMIZED/ dummy, KLF
COMMON /PRINTING/ print_flag, spatial_print

EXTERNAL CDF, SYSTEM

INTEGER count
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SAVE f, count

DATA SpdfTol /1.E-06/, count /0/

*4*** DEFINITION OF LOCAL VARIABLES **%***

—-——— CHARACTER VARIABLES ----

filename: Character array for storing spatial probability files
command : Command to archive spatial probability files

—-—— INTEGER VARIABLES ----

k1l : Loop index for p values (for first window of pair)
k2 : Loop index for p' values (for second window of pair)
hx : Array of X dimensions of the lag vectors

hy : Array of Y dimensions of the lag vectors

hx_i : X dimension of ith lag vector passed to CDF function
hy i : Y dimension of ith lag vector passed to CDF function

ufileno: Unit numbers of unoptimized spatial probability files

ofileno: Unit numbers of optimized spatial probability files

count : Counts number of function calls. It is needed as
observed spatial co-occurrence probabilities are
computed only on first function call as they remain
constant for an image

—-—— REAL VARIABLES -~---

Pl : 1st window p value for which spatial PDF is computed

P1_dP : p+dp for finite difference numerical approximation of
derivative to compute spatial PDF

P2 : 2st window p' value for which spatial PDF is computed

P1_dP : p'+dp for finite difference numerical approximation
of derivative to compute spatial PDF

CDF : External function to compute spatial CDF

SpdfTol: Spatial pdf tolerance. It is the tolerance allowed
for SpPDF to become greater than 1.0 in case of
numerical instability caused due to finite difference
gradient approximation. It is also used when SpPDF
becomes less than SpdfTol but greater than 0.0,
f or g is set to 0.0

—--—— DOUBLE PRECISION VARIABLES ----

£ : Array of observed spatial co-occurrence PDF (computed
on first call only, saved for rest of the program)

g : Model spatial co-occurrence PDF

SpPDF : Spatial PDF at each of p and p' value

fINT : Array of integral of observed spatial PDF at each lag
distance, 'h'. Each must be less than equal to 1.0
fINT = INTEGRAL ( INTEGRAL (f dp) dp')

gINT : Array of integral of model spatial PDF at each lag
distance, 'h'. Each must be less than equal to 1.0
gINT = INTEGRAL ( INTEGRAL (g dp) dp')

SpoCDF: Observed spatial CDF

SpmCDF: Model spatial CDF

KLFsum: Sum of KL functions over all Cartesian lag distances

dummy : Dummy variable corresponding to ThetaFCN evaluated
in FCN subroutine. Since it is computed after calling
this function, its value from this function is
overwritten in FCN subroutine

KLF : Value of KLF function (not squared) passed to
subroutine Minimize through ‘'OPTIMIZED' common block
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** SETTING FILENAMES AND OPENING FILES FOR SPATIAL PDF & CDF **
if (spatial_print .AND. count.EQ.0) then
ufileno=11
do 10 iw=],12
open(unit=90, status='scratch’)
>> ATTACH LAG INDEX TO FILENAME & STORE IT IN SCRATCH FILE
if (i.GE.10) then
write(90,3) i
format('spun_h',12)
else
write(90,4) i
format('spun_h', Il)
end if
rewind (90)
read(90,5) filename
format (A8)
close(unit=90, status="'delete')

>> ATTACH '.dat' EXTENSION TO SPATIAL FILENAME
filename=filename (:INDEX(filename,' *')-1)//'.dat’
open{unit=ufileno, file=filename, status='unknown')
write(ufileno, 8)

format(4x, 'pl', 5x, 'p2',7x, '£', 6x, 'SpoCDF', 7%, 'g", 6X,

+ 'SpmCDF ')
ufileno=ufileno+l
continue '
ufileno=11
end if

if (spatial_print .AND. print_flag) then
ofileno=31
do 20 i=1,12
open(unit=90, status='scratch')
>> ATTACH LAG INDEX TO FILENAME & STORE IT IN SCRATCH FILE
if (i.GE.10) then
write(90,12) i
format('spop_h',I2)
else
write(90,14) i
format('spop_h',Il1)
end if
rewind (90)
read(90,16) filename
format (A8)
close(unit=90, status="'delete')

>> ATTACH '.dat' EXTENSION TO SPATIAL FILENAME
filename=filename(:INDEX(filename,' ')-1)//'.dat’
open(unit=ofileno, file=filename, status='unknown')
write(ofileno, 8)
ofileno=ofileno+l

continue

ofileno=31

end if

** FOR EACH LAG VECTOR h=[hx,hy], COMPUTING KL-FUNCTION **
KLFsum=0.0
j=1
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do 80 i=1,12
£INT(i)=0.
gINT (i)=0.
hx i=hx(i)
hy_ i=hy(i)
print 25, hx(i), hy(i)
format(lx, 'hx=',I12,'; hy=',6 I2)

~- SUMMING SPATIAL PDF OVER ALL pi VALUES FOR 1ST WIN --
do 70 kl=1,Kn
Pl=pi (k1)

~- SUMMING SPATIAL PDF OVER ALL pi VALUES FOR 2ND WIN --
do 60 k2=1,Kn
P2=pi (k2)

if (count.EQ.0) then
-— COMPUTING OBSERVED SPATIAL PDF --
SpPDF=( CDF(NPo, (Pl1+dp), (P2+dp),hx_i,hy i,wx,Wy)
~CDF (NPo, (Pl-dp), (P2+dp),hx_i,hy i,Wx,Wy)
~CDF(NPo, (Pl+dp), (P2-dp),hx_i,hy_i,Wx,Wy)
+CDF(NPo, (P1-dp), (P2-dp),hx_i,hy_ i, Wx,Wy)
)/ {4.0%dp**2.)

>> IF SpPDF BECOMES GREATER THAN 1.0 DUE TO
>> APPROXIMATION OF FINITE DIFFERENCE GRADIENT, SET
>> SpPDF TO 1.0
if (SpPDF.GT.l.) then
if ((SpPDF~1.).LE.SpdfTol) then
print 30, SpPDF-1l.,hx(i),hy(i),P1l,P2
format(/4x, 'SpPDF:Po > 1.0 by ',e9.4,/4x,

'at h=(',I12,1x,I12,'); Pl1l=',£7.5,'; p2=',
£7.5/,4x,'** SpPDF set to 1.0 **')
end if
SpPDF=1.0
end if
£ (j) =SpPDF

fINT(i)=fINT(i)+£(j)*(dp**2)

>> IF £(j) IS GREATER THAN 2ZERO BY SpdfTol, f£(j)=0.0
if (£(j) -LT.SpdfTol.AND.£f(j).NE.0.0) then
print 35, £(3j)
format (8x, 'f=',el0.4)
£(j)=0.0
end if

end if fof if (count.EQ.0)

—-— COMPUTING MODEL SPATIAL PDF --

SpPDF=( CDF(NPm, (Pl+dp), (P2+dp),hx_i,hy_ i,Wx, Wy)
-CDF (NPm, (P1-dp), (P2+dp), hx_i,hy_i,Wx,Wy)
-CDF(NPm, (P1+dp), (P2-dp),hx_i,hy i,Wx, Wy)
+CDF (NPm, (P1-dp), (P2-dp),hx_i,hy i, Wx,Wy)

)/ (4.0*dp**2.)

>> IF SpPDF BECOMES GREATER THAN 1.0 DUE TO
>> APPROXIMATION OF FINITE DIFFERENCE GRADIENT, SET
>> SpPDF TO 1.0
if (SpPDF.GT.l.) then
if ((SpPDF-1l.).LE.SpdfTol) then
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print 40, SpPDF-1.,hx(i),hy(i),Pl,P2
format(/4x, 'SpPDF:Pm > 1.0 by ',e9.4,/
4x,'at h=(',I2,1x,12,"'); Pl=',£7.5,"'; P2=',
£7.5/,4x,'** SpPDF set to 1.0 ***)
end if
SpPDF=1.0
end if

g=SpPDF
gINT (i) =gINT (i) +g* (dp**2)

>> IF g IS GREATER THAN ZERO BY SpdfTol, g = 0.0
if (g.LT.SpdfTol.AND.g.NE.0.0) then
print 45, g
format (8x, 'g=',el0.4)
g=0.0
end if

~— CALCULATING KL-FUNCTION -~--
if (£(j).NE.O0.0.AND.g.NE.0.0) then
KLFsum=KLFsum+f (j)*dlog(£f(j)/qg)
end if

~— PRINTING SPATIAL PDF AND CDF WHEN FLAGGED --—
if (spatial_print.AND. (count.EQ.0.OR.print_flag)) then
SpoCDF=CDF (NPo, P1,P2,hx_i,hy_i,Wx,Wy)
SpmCDF=CDF (NPm, P1,P2,hx_i, hy_ i, Wx,Wy)
if (count.EQ.0) then
write(ufileno,5S) P1,P2,£f(j),SpoCDF, g, SpmCDF
else if (print_flag) then
write(ofileno,55) P1l,P2,£f(j),SpoCDF, g, SpmCDF
end if
format(2(2x, £5.3),4(2x,£8.6))
end if

—— INCREMENTING INDEX FOR f(j) ~--
j=j+1
continue
continue

-~ INCREMENTING SPATIAL FILE UNIT NOS. --
if (spatial_print.AND. (count.EQ.0.OR.print_flag)) then
ufileno=ufileno+l
ofileno=ofileno+l
end if
print*, fo—-mmm—m e
continue

*x** AVERAGING KL FUNCTION OVER 12 LAG DISTANCES ****
KLF=KLFsum/12.

** SQUARING KL FUNCTION AS REQUIRED FOR OBJECTIVE FUNCTION **
KLFCN=KLF**2.

** CLOSING SPATIAL PDF AND CDF FILES WHEN FLAGGED **
if (spatial_print .AND. count.EQ.0) then
ufileno=11
do 110 i=1,12
close (unit=ufileno)
ufileno=ufileno+l
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110 continue
end if

if (spatial_print .AND. print flag) then
ofileno=31
do 120 i=1,12
close(unit=ofileno)
ofileno=ofileno+l
120 continue
write(*, ' (S5x, ' 'ARCHIVING, THEN REMOVING SPATIAL FILES '’,
+ tTUSING: ') ')
command='tar -cv -f '//sp_file(:INDEX(sp_file,' ')-1)
+ //' sp*.dat; gzip -fv '//sp_file(:INDEX(sp_file,' ')-1)
+ //': rm sp*.dat\O0'
write(*,'(5x,A/)') command
i=SYSTEM(command)
end if

lod **** TNCREMENTING FUNCTION EVALUATION COUNT ***+*
count=count+1l

RETURN
END

P L R R R R T R S e s e s L g
REAL FUNCTION CDF(P, Pa, Pb, hi, hj, Wx, Wy)
c **%** DECLARATION OF ARGUMENT VARIABLES ****

INTEGER hi, hj, Wx, Wy
REAL P(35,35), Pa, Pb

c *%*%*%* DECLARATION OF LOCAL VARIABLES ****

INTEGER X, ¥y, X _h, vy h
REAL Pxy, Pxy h, no_pairs, total pairs, n_win

(o] *x%* VARIABLE USED FOR PRINTING WHILE DEBUGGING ****
INTEGER counter, i
SAVE counter, i
DATA counter,i /2*0/

Cc

(o *x%* DEFINITION OF LOCAL VARIABLES ****

c ———— INTEGER VARIABLES ---—-

(od b 4 : Index of windows in X dimension

c : Index of windows in Y dimension

c Xx_h : Index of (x+hi) lagged window in X dimension

(o} y_h : Index of (y+hj) lagged window in Y dimension

c counter: Function evaluation counter (error checking)

(of i : Counter for function evaluations when CDF = 1.0

c —---- REAL VARIABLES ----

(o] Pxy : Normalized fiber presence probability of (x,y) window
(o Pxy_h : Normalized fp probability of (x+hi, y+hj) window

c n_win : Total number of windows in the image

(o total pairs: Total number of pairs that can be possibly

(o] selected from n_win windows, Combinatorial(n_win,2)
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no_pairs: Number of pairs of windows in the image with lst
window having fp probability < = Pa and the 2nd
window, lagging from 1st window by given vector
(hi,hj),having fp probability < = Pb. Both windows
have to be in the image to be considered

n_win=float (Wx*Wy)
total pairs=n_win*(n_win-1.)/2.
no_pairs=0.
do 20 x=1,Wx
X_h=x+hi
do 10 y=1,Wy
Pxy h=0.
y_h=y+hj

>> If second window of the pair [x+hi, y+hj] is out of
>> image, then the pair is ignored

if (x_h.LE.Wx.AND.y h.LE.Wy.AND.y h.GE.O) then
Pxy=P(X,Y)
Pxy h=P(x_h, y h)

-- CHECKING IF (Pxy <= Pa) AND (Pxy_h <= Pb) --

if ((Pxy.LE.Pa) .AND.(Pxy_h.LE.Pb)) then
no_pairs=no_pairs+l.

end if

-——- ERROR CHECKING ----
if (counter.EQ.0.AND.x.EQ.1.AND.y.EQ.Wy-1) then
print S, Pxy, Pxy_h, hi, hj
format(1lx, 'Pxy=',£6.4,'; Pxy h=',£6.4,'; h=',12,

+ 1x,I2)
end if
end if
continue
continue

**** EVALUATING CDF FUNCTION ****
CDF=no_pairs/total_pairs

counter=counter+l

**%** ERROR CHECKING ***+*
if (mod(counter,100).EQ.0.0R.no_pairs.EQ.total_pairs) then
if (no_pairs.EQ.total pairs) then
i=i+l
print 30, i, hi, hj, no_pairs, total pairs
format(lx,I8,"': h=(',I2,1x,I2,'); np=',£7.0,'; tp=',£7.0)
end if

RETURN
END
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SUBROUTINE ModelFpProb(ndim, sigma, rho, Pm)

*%%** DECLARATION OF ARGUMENT VARIABLES ****

342



O o000 a0n0 aoaaoaaon0aao aaao a0 O

a0 a a

Q

INTEGER Wx, Wy, ndim
REAL Po(35,35), mu(2), sigma(2), rho, xbw(36), ybw(36), CF,
+ Pm(35,35), r, t

COMMON /OBSERVED/ mu, r, Wx, Wy, Po, =bw, ybw, CF, t
**** DECLARATION OF LOCAL VARIABLES ****x
INTEGER i, j

LOGICAL x0_exists, y0 exists
REAL zx(36), zy(36), zxlt0, zxgt0, zylt0, zygtO

*#*%x* DEFINITION OF LOCAL VARIABLES ***¥

—-—=—— INTEGER VARIABLES --—--
i : Window index in X dimension
j ¢ Window index in Y dimension

---- LOGICAL VARIABLES ----

xX0_exists: Indicates whether x axis exists in a window.

y0_exists: Indicates whether y axis exists in a window.
Needed for a situation when x and y axes cross in a
window. The fp probability is not to be evaluated
for the width of the axes. To avoid the
subtraction of cross-over region of the axes twice
from the calculations, logical variables are required.

--——- REAL VARIABLES —----

zx : Array of normalized X coordinates of windows
zy : Array of normalized Y coordinates of windows
zxlt0 : Normalized X dimension position calculated as 1.5

pixel lengths less than zero position (axes are
3 pixels wide and are to be ignored)

zxgt0 : Normalized X dimension position calculated as 1.5
pixel lengths greater than zero position

2ylt0 : Normalized Y dimension position calculated as 1.5
pixel lengths less than zero position

2ygt0 : Normalized Y dimension position calculated as 1.5
pixel lengths greater than zero position

**** CALCULATING BIVARIATE NORMAL DISTRIBUTION ****
-- NORMALIZING CELL BOUNDARIES --

print 5
format(6x, 'bw',7x,'2"')
do 10 i=1,Wx+l
2Zx(i)=(xbw(i) *CF-mu(l))/sigma (1)
print 25, xbw(i)*CF, zx(i)
continue

print*
do 20 j=1,Wy+l
2y (j)=(ybw(j) *CF-mu(2))/sigma(2)
print 25, ybw(j)*CF, 2y(3)
continue
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—— NORMALIZING X-BOUNDARIES OF 3 PIXELS WIDE X AXIS LINE --
Zzx1t0=((0.-3.*CF/2.)-mu(l))/sigma(l)
zxgtO=((0.+3.*CF/2.)-mu(l))/sigma(l)

print*

print 2S5, 2zx1lt0, zxgto

-- NORMALIZING Y-BOUNDARIES OF 3 PIXELS WIDE Y AXIS LINE --
ZyltO=((0.-3.*CF/2.)-mu(2))/sigma(2)
zygtO=((0.+3.*CF/2.)-mu(2))/sigma(2)

print 25, zyltO0, zygtO

format(2(2x,£7.4))

-- EVALUATING PROBABILITY INTEGRAL USING IMSL ROUTINE BNRDF --

do 40 i=1,Wx
do 30 j=Wy,1, -1
x0_exists=.FALSE.
y0_exists=_FALSE.

Pm(i,j)= BNRDF(2x(i+l), zy(j), rho)
-BNRDF(2x(i+l), zy(j+l), rho)
-BNRDF(zx(i), 2y(j), rho)
+BNRDF(2zx(i), zy(j+l), rho)

+ 4+ +

>> X axis line is 3 pixels wide and is to be ignored
>> for evaluating binormal probabilty integral of cell
if (xbw(i).LT.0.0.AND.xbw(i+l).GT.0.0) then
Pm(i,j)=Pm(i,j)-( BNRDF(z2xgt0, zy(j), rho)
-BNRDF (zxgt0, zy(j+l1l), rho)
-BNRDF (2x1t0, zy(j), rho)
+BNRDF(zx1t0, zy(j+l), rho) )
X0_exists=.TRUE.
end if

+ 4+ +

>> Y axis line is 3 pixels wide and is to be ignored
>> for evaluating binormal probabilty integral of cell
if (ybw(j+1).LT.0.0.AND.ybw(j).GT.0.0) then
Pm(i,j)=Pm(i,j)—( BNRDF(zx(i+l), 2ygtO, rho)
-BNRDF(zx(i+l), zyltO, rho)
-BNRDF (zx (i), zygtO, rho)
+BNRDF(zx (i), 2zyltO, rho) )
y0_exists=.TRUE.
end if

+++

>> if both X axis and Y axis exist in a cell and both
>> have been ignored, the pixel width corresponding to
>> actual zero position is ignored twice. Therefore,
>> probability integral of the pixel has to added
if (x0_exists.AND.yO_exists) then
Pm(i,j)=Pm(di, j)+( BNRDF(zxgt0, zygt0, rho)
+ -BNRDF (zxgt0, zy1t0, rho) -BNRDF (2x1t0, zygtO, rho)
+ +BNRDF (zx1t0, 2zy1tO, rho) )
end if
continue
continue

**** ERROR CHECKING ****
print*, 'Po Integral'
do 50 i=1,Wx

print 65, (Po(i,j), j=1,Wy)
continue
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print~*
print*, 'Pm Integral'
do 60 i=1,Wx
print 65, (Pm(i,j), j=1,Wy)
60 continue

aaQaaan

65 format(l7(1x,£6.4))

RETURN
END
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FILENAME: anneal.f
{Modified form of the routine developed by Goffe et al. (1994)]

ABSTRACT:

Simulated annealing is a global optimization method that
distinguishes between different local optima. Starting from an
initial point, the algorithm takes a step and the function is
evaluated. When minimizing a function, any downhill step is
accepted and the process repeats from this new point. An uphill
step may be accepted. Thus, it can escape from local optima. This
uphill decision is made by the Metropolis criteria. As the
optimization process proceeds, the length of the steps decline and
the algorithm closes in on the global optimum. Since the algorithm
makes very few assumptions regarding the function to be optimized,
it is quite robust with respect to non-quadratic surfaces. The
degree of robustness can be adjusted by the user. In fact,
simulated annealing can be used as a local optimizer for difficult
functions.

This implementation of simulated annealing was used in "Global
Optimization of Statistical Functions with Simulated Annealing, "
Goffe, Ferrier and Rogers, Journal of Econometrics, vol. 60,

no. 1/2, Jan./Feb. 1994, pp.65~100. Briefly, we found it
competitive, if not superior, to multiple restarts of conventional
optimization routines for difficult optimization problems.

For more information on this routine, contact its author:
Bill Goffe, bgoffe@whale.st.usm.edu

To understand the algorithm, the documentation for SA on lines 236-
484 should be read along with the parts of the paper that describe
simulated annealing. Then the following lines will aid the user

in becomming proficient with this implementation of simulated
annealing.

Learning to use SA:

Use the sample function from Judge with the following suggestions

to get a feel for how SA works. When you've done this, you should

be ready to use it on most any function with a fair amount of
expertise.

1. Run the program as is to make sure it runs okay. Take a look at
the intermediate output and see how it optimizes as temperature
(T) falls. Notice how the optimal point is reached and how
falling T reduces VM.

2. Look through the documentation to SA so the following makes a
bit of sense. In line with the paper, it shouldn't be that hard
to figure out. The core of the algorithm is described on
pp. 68-70 and on pp. 94-95. Also see Corana et al. pp. 264-89.

3. To see how it selects points and makes decisions about uphill
and downhill moves, set IPRINT = 3 (very detailed intermediate
output) and MAXEVL = 100 (only 100 function evaluations to limit
output).

4. To see the importance of different temperatures, try starting
with a very low one (say T = 10E-5). You'll see (i) it never
escapes from the local optima (in annealing terminology, it
quenches) & (ii) the step length (VM) will be quite small. This
is a key part of the algorithm: as temperature (T) falls, step
length does too. In a minor point here, note how VM is quickly
reset from its initial value. Thus, the input VM is not very
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important. This is all the more reason to examine VM once the c
algorithm is underway. (o

S. To see the effect of different parameters and their effect on c
the speed of the algorithm, try RT = .95 & RT = .1. Notice the c
vastly different speed for optimization. Also try NT = 20. Note C
that this sample function is quite easy to optimize, so it will C
tolerate big changes in these parameters. RT and NT are the c
parameters one should adjust to modify the runtime of the c
algorithm and its robustness. (o]

6. Try constraining the algorithm with either LB or UB. c
o

c

aaaaaaaaaaan
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SUBROUTINE SIM ANNEAL(N, X, LB, UB, XOPT, FOPT)
PARAMETER (NEPS = 4)

DOUBLE PRECISION LB(N), UB(N), X(N), XOPT(N), C(N), VM(N),
1 FSTAR(NEPS), XP(N), T, EPS, RT, FOPT

INTEGER NACP(N), NS, NT, NFCNEV, IER, ISEED1l, ISEED2,
1 MAXEVL, IPRINT, NACC, NOBDS

LOGICAL MAX
EXTERNAL FCN

C Set underflows to zero on IBM mainframes.
(o] CALL XUFLOW(O0)

C Set input parameters.
MAX = .FALSE.
EPS = 1.0D-5
RT = .5
ISEEDl = 1
ISEED2 = 2
NS = 20
NT = 2
MAXEVL = 3500
IPRINT = 2
Do 10, T =1, N
C(x) = 2.0
10 CONTINUE

C Set input values of the input/output parameters.
T=5.0
DO 20, I =1, N
VM(I) = 1.0
20 CONTINUE

WRITE(*,1000) N, T, RT, EPS, NS, NT, NEPS, MAXEVL

CALL PRTVEC (X,N, 'STARTING VALUES')

CALL PRTVEC (VM,N, 'INITIAL STEP LENGTH')

CALL PRTVEC (LB, N, 'LOWER BOUND')

CALL PRTVEC (UB,N, 'UPPER BOUND')

CALL PRTVEC(C,N, 'C VECTOR')

WRITE(*, *(/,5X,''**** END OF DRIVER ROUTINE OUTPUT ****''
1 /,5%,''**** BEFORE CALL TO SA. *xEE ) 1)
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CALL SA(N,X,MAX,RT,EPS,NS,NT,NEPS, MAXEVL, LB, UB, C, IPRINT, ISEED1,

1 ISEED2, T, VM, XOPT, FOPT, NACC, NFCNEV, NOBDS, IER,
2 FSTAR, XP, NACP)
WRITE(*, '(/,5x, ' '**x** RESULTS AFTER SA *hAw vy

CALL PRTVEC (XOPT, N, 'SOLUTION"')
CALL PRTVEC(VM,N, 'FINAL STEP LENGTH')
WRITE(*,1001) FOPT, NFCNEV, NACC, NOBDS, T, IER

1000 FORMAT(/,S5x,38('-'),

1 /,5x%x, 'STARTING SIMULATED ANNEALING ALGORITHM',
2 /,5x%,38('-")/,
3 /,5x, '"NUMBER OF PARAMETERS: ',I1,
4 /,5x, "INITIAL TEMP: ',FS.1,
S /.5x, '"TEMP REDUCTION FACTOR, RT: ',F5.2,
6 /,5x, 'EPS: *,E10.4,
7 /.5x, '"NO OF CYCLES, NS: ', 13,
8 /,5%, 'NO OF ITERATIONS, NT: ',I12,
9 /,5x, '"NEPS: ',I12,
+ /,5x, '"MAXEVL: ',1I5/)
1001 FORMAT(/5x,50('="'),
+ /5x, 'OPTIMAL FUNCTION VALUE: ',El14.4,
1 /5%, '"NUMBER OF FUNCTION EVALUATIONS: ', 1S,
2 /5x, '"NUMBER OF ACCEPTED EVALUATIONS: ', IS,
3 /5x, '"NUMBER OF OUT OF BOUND EVALUATIONS: ', IS,
4 /5x, 'FINAL TEMP: ',E1l4.4,
5 /5x, 'IER: ', I5,
6 /5%,50('="))
RETURN
END

L2222 22222222222 222222223 2222222222222 223222 2222222222222 222Ra st sl S8

SUBROUTINE SA(N,X,MAX,RT,EPS,NS,NT, NEPS,MAXEVL, LB, UB, C, IPRINT,

1 ISEED1, ISEED2, T, VM, XOPT, FOPT, NACC, NFCNEV, NOBDS, IER,
2 FSTAR, XP, NACP)
Synopsis:

This routine implements the continuous simulated annealing global
optimization algorithm described in Corana et al.'s article
"Minimizing Multimodal Functions of Continuous Variables with the
"Simulated Annealing®™ Algorithm" in the September 1987 (vol. 13,
no. 3, pp- 262-280) issue of the ACM Transactions on Mathematical
Software.

A very quick (perhaps too quick) overview of SA:

SA tries to find the global optimum of an N dimensional function.
It moves both up and downhill and as the optimization process
proceeds, it focuses on the most promising area.

To start, it randomly chooses a trial point within the step length
VM (a vector of length N) of the user selected starting point. The
function is evaluated at this trial point and its value is compared
to its value at the initial point.

In a maximization problem, all uphill moves are accepted and the
algorithm continues from that trial point. Downhill moves may be
accepted; the decision is made by the Metropolis criteria. It uses T
(temperature) and the size of the downhill move in a probabilistic

s EeNeNeNe e Ne e N Ee Ne e Ne Ne Ne e Ne Ne N Nyl
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manner. The smaller T and the size of the downhill move are, the more
likely that move will be accepted. If the trial is accepted, the
algorithm moves on from that point. If it is rejected, another point
is chosen instead for a trial evaluation.

Each element of VM periodically adjusted so that half of all
function evaluations in that direction are accepted.

A fall in T is imposed upon the system with the RT variable by
T(i+l) = RT*T{(i) where i is the ith iteration. Thus, as T declines,
downhill moves are less likely to be accepted and the percentage of
rejections rise. Given the scheme for the selection for VM, VM falls.
Thus, as T declines, VM falls and SA focuses upon the most promising
area for optimization.

The importance of the parameter T:

The parameter T is crucial in using SA successfully. It influences
VM, the step length over which the algorithm searches for optima. For
a small intial T, the step length may be too small; thus not enough
of the function might be evaluated to find global optima. The user
should carefully examine VM in the intermediate output (set IPRINT =
1) to make sure that VM is appropriate. The relationship between the
initial temperature and the resulting step length is function
dependent.

To determine the starting temperature that is consistent with
optimizing a function, it is worthwhile to run a trial run first. Set
RT = 1.5 and T = 1.0. With RT > 1.0, the temperature increases and VM
rises as well. Then select the T that produces a large enough VM.

For modifications to the algorithm and many details on its use,
(particularly for econometric applications) see Goffe, Ferrier
and Rogers, "Global Optimization of Statistical Functions with
Simulated Annealing, " Journal of Econometrics, wvol. 60, no. 1/2,
Jan./Feb. 1994, pp. 65-100.

In this description, SP is single precision, DP is double precision,
INT is integer, L is logical and (N) denotes an array of length n.
Thus, DP(N) denotes a double precision array of length n.

Input Parameters:

Note: The suggested values generally come from Corana et al. To
drastically reduce runtime, see Goffe et al., pp. 90-1 for
suggestions on choosing the appropriate RT and NT.

N - Number of variables in the function to be optimized. (INT)

X - The starting values for the variables of the function to be

optimized. (DP(N))

MAX - Denotes whether the function should be maximized or
minimized. A true value denotes maximization while a false
value denotes minimization. Intermediate output (see IPRINT)
takes this into account. (L)

RT - The temperature reduction factor. The value suggested by

Corana et al. is .85. See Goffe et al. for more advice. (DP)

EPS - Error tolerance for termination. If the final function
values from the last neps temperatures differ from the
corresponding value at the current temperature by less than
EPS and the final function value at the current temperature
differs from the current optimal function value by less than
EPS, execution terminates and IER = 0 is returned. (EP)

NS - Number of cycles. After NS*N function evaluations, each

element of VM is adjusted so that approximately half of
all function evaluations are accepted. The suggested value
is 20. (INT)

NT - Number of iterations before temperature reduction. After
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NT*NS*N function evaluations, temperature (T) is changed
by the factor RT. Value suggested by Corana et al. is
MAX (100, S*N). See Goffe et al. for further advice. (INT)
NEPS - Number of final function values used to decide upon termi-
nation. See EPS. Suggested value is 4. (INT)
MAXEVL - The maximum number of function evaluations. If it is
exceeded, IER = 1. (INT)
LB - The lower bound for the allowable solution variables. (DP(N))
UB - The upper bound for the allowable solution variables. (DP(N))
If the algorithm chooses X(I) .LT. LB(I) or X(I) .GT. UB(I),
I =1, N, a point is from inside is randomly selected. This
This focuses the algorithm on the region inside UB and LB.
Unless the user wishes to concentrate the search to a par-
ticular region, UB and LB should be set to very large positive
and negative values, respectively. Note that the starting
vector X should be inside this region. Also note that LB and
UB are fixed in position, while VM is centered on the last
accepted trial set of variables that optimizes the function.
C - Vector that controls the step length adjustment. The suggested
value for all elements is 2.0. (DP(N))
IPRINT -~ controls printing inside SA. (INT)
Values: 0 - Nothing printed.

1 - Function value for the starting value and
summary results before each temperature
reduction. This includes the optimal
function value found so far, the total
number of moves (broken up into uphill,
downhill, accepted and rejected), the
number of out of bounds trials, the
number of new optima found at this
temperature, the current optimal X and
the step length VM. Note that there are
N*NS*NT function evalutations before each
temperature reduction. Finally, notice is
is also given upon achieveing the termination
criteria.

2 - EBach new step length (VM), the current optimal
X (XOPT) and the current trial X (X). This
gives the user some idea about how far X
strays from XOPT as well as how VM is adapting
to the function.

3 - Bach function evaluation, its acceptance or
rejection and new optima. For many problems,
this option will likely require a small tree
if hard copy is used. This option is best
used to learn about the algorithm. A small
value for MAXEVL is thus recommended when
using IPRINT = 3.

Suggested value: 1
Note: For a given value of IPRINT, the lower valued
options (other than 0) are utilized.

ISEED1 - The first seed for the random number generator RANMAR.
0 .LE. ISEEDl1 .LE. 31328. (INT)

ISEED2 - The second seed for the random number generator RANMAR.
0 .LE. ISEED2 .LE. 30081. Different values for ISEEDl
and ISEED2 will lead to an entirely different sequence
of trial points and decisions on downhill moves (when
maximizing). See Goffe et al. on how this can be used
to test the results of SA. (INT)

Input/Output Parameters:
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T - On input, the initial temperature. See Goffe et al. for advice.
Oon output, the final temperature. (DP)
VM - The step length vector. On input it should encompass the
region of interest given the starting value X. For point
X(I), the next trial point is selected is from X(I) - VM(I)
to X(I) + VM(I). Since VM is adjusted so that about half
of all points are accepted, the input value is not very
important (i.e. is the value is off, SA adjusts VM to the
correct value). (DP(N))

Output Parameters:
XOPT - The variables that optimize the function. (DP(N))
FOPT - The optimal value of the function. (DP)
NACC - The number of accepted function evaluations. (INT)
NEFCNEV - The total number of function evaluations. In a minor
point, note that the first evaluation is not used in the
core of the algorithm; it simply initializes the
algorithm. (INT).
NOBDS - The total number of trial function evaluations that
would have been out of bounds of LB and UB. Note that
a trial point is randomly selected between LB and UB.
(INT)
IER - The error return number. (INT)
Values: 0 - Normal return; termination criteria achieved.
1 - Number of function evaluations (NFCNEV) is
greater than the maximum number (MAXEVL).
2 - The starting value (X) is not inside the
bounds (LB and UB).
3 - The initial temperature is not positive.
99 - Should not be seen; only used internally.

Work arrays that must be dimensioned in the calling routine:

RWK1 (DP(NEPS)) (FSTAR in SA)
RWK2 (DP(N)) (XP ")
IWK (INT(N)) (NACP " ")

Required Functions (included):

EXPREP - Replaces the function EXP to avoid under- and overflows.
It may have to be modified for non IBM-type main-
frames. (DP)

RMARIN - Initializes the random number generator RANMAR.

RANMAR - The actual random number generator. Note that
RMARIN must run first (SA does this). It produces uniform
random numbers on [0,l1]. These routines are from
Usenet's comp.lang.fortran. For a reference, see
"Toward a Universal Random Number Generator"”
by George Marsaglia and Arif Zaman, Florida State
University Report: FSU-SCRI-87-50 (1987).

It was later modified by F. James and published in

"A Review of Pseudo—-random Number Generators." For
further information, contact stuart@ads.com. These
routines are designed to be portable on any machine
with a 24-bit or more mantissa. I have found it produces
identical results on a IBM 3081 and a Cray Y-MP.

Required Subroutines (included):
PRTVEC - Prints vectors.
PRT1 ... PRT10 - Prints intermediate output.
FCN - Function to be optimized. The form is
SUBROUTINE FCN(N,X, F)
INTEGER N
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Cc DOUBLE PRECISION X(N), F
(o4 cee
c function code with F = F(X)
Cc ees
(od RETURN
(od END
c Note: This is the same form used in the multivariable
c minimization algorithms in the IMSL edition 10 library.
(o4
C Machine Specific Features:
(o] 1. EXPREP may have to be modified if used on non-IBM type main-
o] frames. Watch for under- and overflows in EXPREP.
c 2. Some FORMAT statements use G25.18; this may be excessive for
c some machines.
c 3. RMARIN and RANMAR are designed to be protable; they should not
c cause any problems.
C Type all external variables.
DOUBLE PRECISION X(*), LB(*), UB(*), C(*), VM(*), ESTAR(*),
1 XOPT(*), XP(*), T, EPS, RT, FOPT
INTEGER NACP(*), N, NS, NT, NEPS, NACC, MAXEVL, IPRINT,
1 NOBDS, IER, NFCNEV, ISEEDl1l, ISEED2

LOGICAL MAX

C Type all internal variables.
DOUBLE PRECISION F, FP, P, PP, RATIO
INTEGER NUP, NDOWN, NREJ, NNEW, LNOBDS, H, I, J, M
LOGICAL QUIT

C Type all functions.
DOUBLE PRECISION EXPREP
REAL RANMAR

C Initialize the random number generator RANMAR.
CALL RMARIN(ISEEDl, ISEED2)

C Set initial values.
NACC =0
NOBDS = 0
NECNEV = 0
IER = 99

¢ N
X(I)
0

XOPT(I)
NACP(I)
10 CONTINUE

Do 10, I =1

DO 20, I = 1, NEPS
FSTAR(I) = 1.0D+20
20 CONTINUE

C If the initial temperature is not positive, notify the user and
C return to the calling routine.
IF (T .LE. 0.0) THEN

WRITE(*,'(/,5%x,'' THE INITIAL TEMPERATURE IS NOT POSITIVE. ''
1 /,5%x,'' RESET THE VARIABLE T. ''/)"'")

IER = 3

RETURN
END IF

C If the initial value is out of bounds, notify the user and return

352



C to the calling routine.
DO 30, I =1, N
IF ((X(I) .GT. UB(I)) .OR. (X(I) .LT. LB(I))) THEN
CALL PRT1
IER = 2
RETURN
END IF
30 CONTINUE

C Evaluate the function with input X and return value as F.
CALL FCN(N,X,F)

C If the function is to be minimized, switch the sign of the function.
C Note that all intermediate and final output switches the sign back
C to eliminate any possible confusion for the user.

IF{.NOT. MAX) F = -F

NFCNEV = NECNEV + 1

FOPT = F

FSTAR(l) = F

IF(IPRINT .GE. 1) CALL PRT2 (MAX,N,X,F)

C Start the main loop. Note that it terminates if (i) the algorithm
C succesfully optimizes the function or (ii) there are too many
C function evaluations (more than MAXEVL).
100 NUP = 0O
NREJ = 0
NNEW = 0
NDOWN = 0
LNOBDS = 0

DO 400, M = 1, NT
po 300, J =1, NS
DO 200, H=1, N

C Generate XP, the trial value of X. Note use of VM to choose XP.
po 110, I =1, N
IF (I .EQ. H) THEN
XP(I) = X(I) + (RANMAR()*2.- 1.) * VM(I)
ELSE
XP(I) = X(I)
END IF

C If XP is out of bounds, select a point in bounds for the trial.
IF((XP(I} .LT. LB(I)) .OR. (XP(I) .GT. UB(I))) THEN
XP(I) = LB(X) + (UB(I) - LB(I))*RANMAR()
LNOBDS = LNOBDS + 1
NOBDS = NOBDS + 1
IF(IPRINT .GE. 3) CALL PRT3(MAX,N,XP,X,FP,F)

END IF
110 CONTINUE
C If XP(l) (sigma(X)] is less than XP(2) (sigma(2)], set new XP(2)
C New XP(2) is to lie somewhere between LB(2) and XP(l).
C IT IS ASSUMED THAT LB(2) IS LESS THAN LB(1l)
C EPS is subtracted to make sure XP(2) is always less than XP(1l)
112 IF (XP(l1) .LT. XP(2)) THEN
XP(2) = LB(2) + (XP(l) -~ LB(2) - EPS)*RANMAR()
GO TO 112
END IF
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C Evaluate the function with the trial point XP and return as FP.
CALL FCN(N,XP, FP)
IF(.NOT. MAX) FP = -FP
NECNEV = NFCNEV + 1
IF(IPRINT .GE. 3) CALL PRT4(MRX,N,XP,X,FP,F)

C If too many function evaluations occur, terminate the algorithm.
IF(NFCNEV .GE. MAXEVL) THEN
CALL PRTS
IF (.NOT. MAX) FOPT = -FOPT
IER = 1
RETURN
END IF

C Accept the new point if the function value increases.
IF(FP .GE. F) THEN
IF(IPRINT .GE. 3) THEN
WRITE(*, ' (Sx, ' 'POINT ACCEPTED'')"')
END IF
DO 120, I =1, N
X(I) = XP(I)
120 CONTINUE
F = FP
NACC = NACC + 1
NACP(H) = NACP(H) + 1
NUP = NUP + 1

C 1If greater than any other point, record as new optimum.
IF (FP .GT. FOPT) THEN
IF(IPRINT .GE. 3) THEN
WRITE(*, ' (5x, ' 'NEW OPTIMUM' "} ')
END IF
DO 130, I =1, N
XOPT(I) = XP(I)
130 CONTINUE
FOPT = FP
NNEW = NNEW + 1
END IF

C If the point is lower, use the Metropolis criteria to decide on
C acceptance or rejection.
ELSE
P = EXPREP((FP - F)/T)
PP = RANMAR()
IF (PP .LT. P) THEN
IF(IPRINT .GE. 3) CALL PRT6 (MAX)
DO 140, I =1, N
X(I) = XP(I)
140 CONTINUE
F = FP
NACC = NACC + 1
NACP(H) = NACP(H) + 1
NDOWN = NDOWN + 1
ELSE
NREJ = NREJ + 1
IF(IPRINT .GE. 3) CALL PRT7(MAX)
END IF
END IF

200 CONTINUE
300 CONTINUE
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C Adjust VM so that approximately half of all evaluations are accepted.
DO 310, I = 1, N
RATIO = DFLOAT (NACP(I)) /DFLOAT(NS)
IF (RATIO .GT. .6) THEN
VM(I) = VM(I)*(1. + C(I)*(RATIO - .6)}/.4)
ELSE IF (RATIO .LT. .4) THEN
VM(I) = VM(I)/(1. + C(X)*((.4 - RATIO)/.4))
END IF
IF (VM(I) .GT. (UB(I)-LB(I))) THEN
VM(I) = UB(I) - LB(I)
END IF
310 CONTINUE

IF{IPRINT .GE. 2) THEN
CALL PRTS8 (N, VM, XOPT, X)
END IF

DO 320, I = 1, N
NACP(I) = O
320 CONTINUE

400 CONTINUE

IF(IPRINT .GE. 1) THEN
CALL PRTY9(MAX,N, T, XOPT, VM, FOPT, NUP, NDOWN, NREJ, LNOBDS, NNEW)
END IF

C Check termination criteria.
QUIT = .FALSE.
FSTAR(1) = F
IF ((FOPT - FSTAR(l)) .LE. EPS) QUIT = .TRUE.
DO 410, I = 1, NEPS
IF (ABS(F ~ FSTAR(I)) .GT. EPS) QUIT = .FALSE.
410 CONTINUE

C Terminate SA if appropriate.
IF (QUIT) THEN
DO 420, I =1, N
X(I) = XOPT(I)
420 CONTINUE
IER = 0
IF (.NOT. MAX) FOPT = -FOPT
IF(IPRINT .GE. 1) CALL PRT10
RETURN
END IF

C If termination criteria is not met, prepare for another loop.
T = RT*T
DO 430, I = NEPS, 2, -1
FSTAR(I) = FSTAR(I-1)
430 CONTINUE
F = FOPT

440 CONTINUE

C Loop again.
GO TO 100

END
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FUNCTION EXPREP (RDUM)
This function replaces exp to avoid under- and overflows and is
designed for IBM 370 type machines. It may be necessary to modify
it for other machines. Note that the maximum and minimum values of
EXPREP are such that they has no effect on the algorithm.

(s NeNeN?]

DOUBLE PRECISION RDUM, EXPREP

IF (RDUM .GT. 174.) THEN
EXPREP = 3.69D+75

ELSE IF (RDUM .LT. -180.) THEN
EXPREP = 0.0

ELSE
EXPREP = EXP (RDUM)

END IF

RETURN
END
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subroutine RMARIN(IJ,KL)
This subroutine and the next function generate random numbers. See
the comments for SA for more information. The only changes from the
orginal code is that (1) the test to make sure that RMARIN runs first
was taken out since SA assures that this is done (this test didn't
compile under IBM's VS Fortran) and (2) typing ivec as integer was
taken out sirce ivec isn't used. With these exceptions, all following
lines are original.

This is the initialization routine for the random number generator

RANMAR ()
NOTE: The seed variables can have values between: 0 <
0 <

IJ <= 31328
KL <= 30081

a0 aaaooaoan

real U(S87), C, CD, CM
integer I97, J97
common /rasetl/ U, C, CD, CM, I97, J97
if( 13 .1t. 0 .or. IJ .gt. 31328 .or.
* KL .1t. 0 .or. KL .gt. 30081 ) then
print '(A)', ' The first random number seed must have a value
*between 0 and 31328°'
print '(A)',' The second seed must have a value between 0 and
*30081'
stop
endif
i = mod(IJ/177, 177) + 2
j = mod(IJ , 177) + 2
k = mod(KL/169, 178) + 1
1 = mod (KL, 169)
do 2 ii =1, 97
s = 0.0
t =0.5
do 3 jj =1, 24
mod (mod (i*j, 179)*k, 179)
=]
k

m
mod (53*1+1, 169)

3
m
i
J
k
1
if (mod(l*m, 64) .ge. 32) then
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s =3 + t

endif
t=0.5*+¢
3 continue
U(ii) = s
2 continue

C = 362436.0 / 16777216.0
CD = 7654321.0 / 16777216.0
CM = 16777213.0 /16777216.0
I97 = 97

J97 = 33

return

end
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function ranmar()
real U(97), ¢, CD, CM
integer 197, J97
common /rasetl/ U, C, CD, CM, IS7, J97
uni = U(I97) - U(J97)
if( uni .1t. 0.0 ) uni = uni + 1.0
U(I97) = uni
I97 = 197 - 1
if(197 .eq. 0) I97 = 97
J97 = J97 - 1
if(J97 .eq. 0) J97 = 97
C=C-¢CD
if(C .1t. 0.0 ) C=C + CM
uni = uni - C
if( uni .1t. 0.0 ) uni = uni + 1.0
RANMAR = uni
return
END
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SUBROUTINE PRT1
This subroutine prints intermediate output, as does PRT2 through
PRT10. Note that if SA is minimizing the function, the sign of the
function value and the directions (up/down) are reversed in all
output to correspond with the actual function optimization. This
correction is because SA was written to maximize functions and
it minimizes by maximizing the negative a function.

aaaoanan

WRITE(*, '(/,7x,''THE STARTING VALUE (X) IS OUTSIDE THE BOUNDS ''
1l /,7x,'' (LB AND UB). EXECUTION TERMINATED WITHOUT ANY''
2 /,7x, ' 'OPTIMIZATION. RESPECIFY X, UB OR LB SO THAT ''
3 /,7x,''LB(I) .LT. X(I) .LT. UB(I), I =1, N. ''/)")

RETURN
END
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SUBROUTINE PRT2 (MAX,N,X,F)
DOUBLE PRECISION X(*), F

INTEGER N
LOGICAL MAX
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WRITE(*, '(5x,'' '')"')
CALL PRTVEC(X,N, 'INITIAL X')
IF (MAX) THEN

WRITE(*,'(5x,''INITIAL F: '',/,7x,G25.18)"') F
ELSE

WRITE(*, ' (5x, ' 'INITIAL F: '*',/,7%,625.18)"') -F
END IF

RETURN
END
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SUBROUTINE PRT3 (MAX,N,XP,X,FP,F)

DOUBLE PRECISION XP(*), X(*), FP, F
INTEGER N
LOGICAL MAX

WRITE(*, ' (5%, "' 1))
CALL PRTVEC (X,N, 'CURRENT X')
IF (MAX) THEN
WRITE(*, ' (5x, ' 'CURRENT F: *'',G24.18)"') F
ELSE
WRITE(*, ' (Sx, ''CURRENT F: '',G24.18)') -F
END IF
CALL PRTVEC (XP,N, 'TRIAL X')
WRITE (*, ' (5%, ' 'POINT REJECTED SINCE OUT OF BOUNDS'')')

RETURN
END
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SUBROUTINE PRT4 (MAX,N,XP,X,FP,F)

DOUBLE PRECISION XP(*), X(*}, FP, F
INTEGER N
LOGICAL MAX

WRITE(*, ' (5x,'"' 1))
CALL PRTVEC(X,N, 'CURRENT X')
IF (MAX) THEN
WRITE(*, ' (5x, ''CURRENT F: '',2x,G24.18)') F
CALL PRTVEC(XP,N, 'TRIAL X')
WRITE(*, ' (5x,''RESULTING F: '',G24.18)') FP
ELSE
WRITE(*, ' (5x, ''CURRENT F: '',2x,G24.18)') -F
CALL PRTVEC(XP,N, 'TRIAL X')
WRITE(*, ' (5x, ''RESULTING F: '',G24.18)') -FP
END IF

RETURN
END
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SUBROUTINE PRTS

WRITE(*,'(/,S5x, ''TOO MANY FUNCTION EVALUATIONS; CONSIDER '’
1 /,5x%, ' 'INCREASING MAXEVL OR EPS, OR DECREASING ''
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2 /,5%,''NT OR RT. THESE RESULTS ARE LIKELY TO BE ''
3 /,5%,''POOR."'"',/)")

RETURN
END
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SUBROUTINE PRT6 (MAX)
LOGICAL MAX
IF (MAX) THEN

WRITE(*, ' (5x, ' 'THOUGH LOWER, POINT ACCEPTED'')"')
ELSE

WRITE(*, ' (5x, ' 'THOUGH HIGHER, POINT ACCEPTED'')')
END IF

RETURN
END
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SUBROUTINE PRT7 (MAX)
LOGICAL MAX

IF (MAX) THEN

WRITE(*, ' (5x, ' 'LOWER POINT REJECTED'')"')
ELSE

WRITE(*, ' (5x,''HIGHER POINT REJECTED'')')
END IF
RETURN
END
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SUBROUTINE PRT8 (N, VM, XOPT, X)

DOUBLE PRECISION VM{*), XOPT(*), X(¥*)
INTEGER N

WRITE(*,'(/, 5%,

1 ''INTERMEDIATE RESULTS AFTER STEP LENGTH ADJUSTMENT'',/)')
CALL PRTVEC(VM,N, '"NEW STEP LENGTH (VM) ')

CALL PRTVEC (XOPT, N, ' CURRENT OPTIMAL X')

CALL PRTVEC(X,N, 'CURRENT X')

WRITE(*,'(5x,'' '")"')

RETURN
END
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SUBROUTINE PRTY (MAX,N, T,XOPT, VM, FOPT, NUP, NDOWN, NREJ, LNOBDS, NNEW)
DOUBLE PRECISION XOPT(*), VM(*), T, FOPT

INTEGER N, NUP, NDOWN, NREJ, LNOBDS, NNEW, TOTMOV
LOGICAL MAX
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TOTMOV = NUP + NDOWN + NREJ

WRITE(*, '(/,5x,
1 ‘''INTERMEDIATE RESULTS BEFORE NEXT TEMPERATURE REDUCTION'',/)‘')

WRITE(*, ' (5x, ' 'CURRENT TEMPERATURE: '‘',E12.5)*') T
IF (MAX) THEN
WRITE(*, ' (7x, ' 'MAX FUNCTION VALUE SO FAR: *',E16.5)"') FOPT
WRITE(*, '(7x, ' 'TOTAL MOVES: *,I8)') TOTMOV
WRITE(*, '(7x, "'’ UPHILL: '*',I8)') NUP
WRITE(*, '(7x, '’ ACCEPTED DOWNHILL: f*,I8)*) NDOWN
WRITE(*, '(7x,*'"’ REJECTED DOWNHILL: '*,1I8)"') NREJ
WRITE(*, ' (7x, ' 'OUT OF BOUNDS TRIALS: '*,I8)"') LNOBDS
WRITE(*, ' (7x, ' 'NEW MAXIMA THIS TEMPERATURE:'',I8)') NNEW
ELSE
WRITE(*, '(7x, ' 'MIN FUNCTION VALUE SO FAR: *',E16.5)"') -FOPT
WRITE(*, ' (7x,''TOTAL MOVES: '*,I8)') TOTMOV
WRITE(*,'(7x,'*' DOWNHILL: '*,I8)') NUP
WRITE(*, '(7x, "'’ ACCEPTED UPHILL: '*,I8)') NDOWN
WRITE(*, '(7x,'" REJECTED UPHILL: '",I8)') NREJ
WRITE(*, ' (7x, ' 'TRIALS OUT OF BOUNDS: '*,I8)') LNOBDS
WRITE(*, ' (7x,'*'NEW MINIMA THIS TEMPERATURE:'',I8)') NNEW
END IF

CALL PRTVEC (XOPT,N, 'CURRENT OPTIMAL X')
CALL PRTVEC(VM,N, 'STEP LENGTH (VM) ')
WRITE(*, ' (5x%,'' '*)")

RETURN
END
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SUBROUTINE PRT10

WRITE(*, ' (/,5x, ' 'SIMULATED ANNEALING ACHIEVED'',
1 '' TERMINATION CRITERION OF IER = 0'',/)"')

RETURN
END
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SUBROUTINE PRTVEC (VECTOR, NCOLS, NAME)
This subroutine prints the double precision vector named VECTOR.
Elements 1 thru NCOLS will be printed. NAME is a character variable
that describes VECTOR. Note that if NAME is given in the call to
PRTVEC, it must be enclosed in quotes. If there are more than 10
elements in VECTOR, 10 elements will be printed on each line.
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INTEGER NCOLS
DOUBLE PRECISION VECTOR (NCOLS)
CHARACTER *(*) NAME

WRITE(*,1001) NAME

IF (NCOLS .GT. 10) THEN
LINES = INT(NCOLS/10.)

DO 100, I = 1, LINES
LL = 10*(I - 1)
WRITE(*,1000) (VECTOR(J),J = 1+LL, 10+LL)
100 CONTINUE
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WRITE(*,1000) (VECTOR(J),J = 1ll+LL, NCOLS)
ELSE

WRITE(*,1000) (VECTOR(J),J = 1, NCOLS)
END IF

1000 FORMAT(7x, 10(Gl12.5,1X))
1001 FORMAT(/,Sx,A)

RETURN
END
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#Makefile for linking and compiling all the files of the program

FTN=/usr/bin/£77

LIBS=-1limsl

OBJS=entropy.o calstats.o set_img.o minimize.o anneal.o
EXEC=entropy

$(EXEC): $(OBJS)
$ (FTN) -o $(EXEC) $(OBJS) $(LIBS)

#Compile Files
anneal.o: anneal.f
$(FTN) —-c anneal.f

minimize.o: minimize.f
$(FTN) -c minimize.f

set_img.o: set_img.f
$(FTN) -c set_img.f

calstats.o: calstats.f
$(FTN) -c calstats.f

entropy.o: entropy.f
$(FIN) -c entropy.f

#Remove *.o files that have changed

clean :
/bin/rm -f core $(EXEC) *.o

’***************t*******i**********ii**t*t**t**i****i**************i**t
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