
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI 

films the tert directly from the original or copy submitted. Thus, some 

thesis and dissertation copies are in typewriter free, while others may be 

from any type of computer printer.

The quality of this reproduction is dependent upon the quality o f the 

copy submitted. Broken or indistinct print, colored or poor quality 

illustrations and photographs, print bleedthrough, substandard margins, 

and improper alignment can adversely afreet reproduction.

In the unlikely event that the author did not send UMI a complete 

manuscript and there are missing pages, these will be noted. Also, if 

unauthorized copyright material had to be removed, a note will indicate 

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand comer and 

continuing from left to right in equal sections with small overlaps. Each 

original is also photographed in one exposure and is included in reduced 

form at the back of the book.

Photographs included in the original manuscript have been reproduced 

xerographically in this copy. Higher quality 6” x 9” black and white 

photographic prints are available for any photographs or illustrations 

appearing in this copy for an additional charge. Contact UMI directly to 

order.

UMI
A Bell & Howell Infonnaticn C om paiy 

300 North Zed) Road, Ann Arbor MI 48106-1346 USA 
313/761-4700 800/521-0600





THE UNIVERSITY OF OKLAHOMA 

GRADUATE COLLEGE

AN EXPERIMENTAL STUDY OF HBER MOTION AND 

NONWOVEN WEBS IN MELT BLOWING

A DISSERTATION 

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the 

degree of

DOCTOR OF PHILOSOPHY

by

RAJEEV CHHABRA

Norman, Oklahoma 

1997



UMI Number: 9812252

mvn Microform 9812252 
Copyright 1998, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized 
copying under Title 17, United States Code.

UMI
300 North Zeeb Road 
Ann Arbor, MI 48103



© Copyright by RAJEEV CHHABRA 1997 
AU Rights Reserved.



AN EXPERIMENTAL STUDY OF HBER M OTION AND NONWOVEN
WEBS IN MELT BLOWING

A Dissertation Approved for the 

SCHOOL OF CHEMICAL ENGINEERING AND MATERIALS SCIENCE

BY

muijr
tC W



Ï Ï T 5  ^  I ^  W :  I a n W  #  W :  I

"Mother is like God, father is like God, teacher is like God.'

Dedicated to My Parents and Teachers



Acknowledgements

I w o u ld  like to dedicate this dissertation to my parents and  teachers (hrom 
Elementary school to Graduate school), and all those who have taught me different 
things in life so far. I am tiiankful to all m y friends who w ere there for m e during 
all the years of my learning. To start w ith, I w ould like to sincerely thank -

Dr. Robert L  Shambaugh, for being a great research advisor and  a teacher, 
for his thoughtful suggestions, intelligent and interesting discussions, and financial 
support over the last five years. I have deepest gratitude for him  for giving me an 
opportunity to do the research I always wanted;

Dr. Faruk Civan, for being a m em ber of my committee, and teaching me 
Advanced Engineering Analysis for Digital Computers course;

Dr. Simon Fung at 3M, for being a member of my committee, giving me 
useful suggestions, and loaning the hot-wire anemometer;

Dr. M. U. Nollert; for being a m em ber of my committee, and teaching me 
Engineering Rate Operations course;

Dr. B. P. Grady and Dr. E. O 'Rear IH, for being members of my committee;

Dr. K  Partihasarthy, for teaching me how to use a hot-wire anemometer and 
the Turbulence course;

Dr. R. Harrison, for teaching m e Chemical Engineering Design course and 
helping me as a co-instructor for Chemical Engineering Design Laboratory course;

Dr. S. Lakshmivarahan, Dr. L. Lee, Dr. L. Lobban, and Dr. D. Trytten, for 
teaching m e various courses at the University of Oklahoma;

Dr. J. N. Kapur, for enlightening m e with Kullback-Leibler principle of 
inform ation theory;

Dr. R. Mallinson and Mr. Jay Liang of EGAS lab, for letting me use the 
IBM/RISC computer workstations;



Larry Isley, for the putting in countless hours in  building equipm ent 
essential to m y research, thoughtful and intelligent discussions, and for being a 
friend;

Thor Sheffield, for helping me in processing photographic prints, 
maintaining lab computers, and being a friend;

Vishal Bansal, for the insightful suggestions and discussions useful for my 
research, being m y room-mate for last five years, and for his friendship;

Vishal Bansal, John Jacob, Anil Shenoy, and  Anne de Rovere for reviewing 
different parts of this dissertation;

Manoj Tyagi and Uday Shivaswamy, for teaching me various skills to w ork 
w ith  the m elt blowing equipm ent and LDV at the Center for Polymer and Fiber 
Research. Brian Tate, Mike Hankinson, Steve Kelley, Anthony Harpham, Lance 
Canaday, and Anne de Rovere for being great colleagues. I have enjoyed working 
w ith you;

Shailesh Ekbote, Atul Joshi, Sachin Deshpande, and Balaram Bollapragada, 
for giving me an objective viewpoint of my research, and for being great friends;

Sameer Kalucha, Navin Chaddha, Puneet Suri, Bala Gadiyar, Vishal Singal, 
Sushant Parti, Sandeep Verma, Gurinder Singh, Uday Malhan, John Jacob, Aravind 
Salecha, Rohit Panse, Bhanu Gunturi, Firoz Ghadiali, Naval Goel, Nagendra 
Shivakumar, Sanjay KunapuUi, Tahir Munawar, Harry, Rashmi, Aishwarya, and 
Bhvya for your m oral support and great friendship that has enriched my life;

Dr. V. P. Sharma for teaching me the fundamentals of science and 
mathematics during m y high school years;

Kim Channer, Robin, Bob, and Nick Chaffee, for their emotional support 
and being m y family in  the United States of America;

My aunt Kailash Sharma and Dr. V. P. Sharma, for being a constant source 
of inspiration and encouragement;

My m other Santosh Chhabra, my father Sudarshan Chhabra, my sister 
Beenu, my brother-in-law Ajay, and most of all my niece Apoorva, for being the 
greatest fomily, encouraging me, and supporting me all the time. I could not have 
done this w ithout you.

vi



Table of Contents

A cknow ledgem ents........................................................................................................v

Table of C o n te n ts ......................................................................................................... vü

List of Illu stra tions.........................................................................................................xi

List of T ab les................................................................................................................  xx

A bstract..........................................................................................................................xxi

Chapter 1 ........................................................................................................................  1
INTRODUCTION

1.1 Overview of Melt B low ing................................................................  1
1.1.1 The Melt Blowing Process....................................................... 2
1.1.2 Background ..............................................................................  5
1.1.3 Melt Blowing Models .............................................................  5
1.1.4 Air Drag in Melt B low ing .......................................................  6
1.1.5 Air Velocity and Temperature Flow F ields.........................  7

1.2 O bjectives.............................................................................................  7
1.3 References .........................................................................................  11

Chapter 2 ......................................................................................................................  14
EXPERIMENTAL MEASUREMENTS OF FIBER THREADLINE VIBRATIONS 

IN THE MELT BLOWING PROCESS
2.1 A b s tra c t .............................................................................................  14
2.2 In troduction .......................................................................................  15
2.3 Experimental E qu ipm ent................................................................  17
2.4 Experimental Techniques................................................................  19

2.4.1 Cone Diameter Measurements w ith Multiple Image
Photography............................................................................  19

V ll



2.4.2 Cone Diameter Measurements w ith  Laser Doppler
V e lo c im e try ............................................................................. 20

2.4.3 Fiber Threadline Frequency M easurem en ts..................... 22
2.5 Results and A nalysis.........................................................................  23

2.5.1 Photographic Measurements of Cone D iam eter..............  23
2.5.2 LDV Measurements of Cone D ia m e te r ................................25
2.5.3 LDV Measurements of Fiber F req u en cy ...........................  26
25.4 Superposition of the Response Correlation (h*) on the Fiber

Cone .......................................................................................... 29
25.5 Interpretation of LDV D a ta ................................................... 32

26  C onclu sions........................................................................................  37
2 7  Nomenclature .................................................................................... 39
28  References ..........................................................................................  41

Chapter 3 .......................................................................................................................  72
THE STOCHASTIC NATURE OF FIBER THREADLINE MOTION IN THE 

MELT BLOWING PROCESS
3.1 Abstract ..............................................................................................  72
3.2 In troduction ........................................................................................  73
3.3 Literature R e v ie w .............................................................................  74
3.4 The Statistics of Fiber P osition ........................................................  79

3.4.1 Mathematical F orm ulation ................................................... 79
3.4.1.1 Bivariate Normal D istribution ...............................  85

3.4.2 Fitting the Data to the Distribution F u n c tio n ..................... 93
3.4.3 Experimental E q u ip m en t..................................................... 96
3.4.4 Experimental T echnique....................................................... 97

3.5 Results ..............................................................................................  100
3.6 C onc lu sions...................................................................................... 106
3.7 Nom enclature .................................................................................  110
3.8 References ........................................................................................  113

Chapter 4 .....................................................................................................................  146
AN ENTROPIC MEASURE OF SPATIAL FIBER DISTRIBUTION IN A MELT- 

BLOWN WEB
4.1 Abstract ............................................................................................  146
4.2 In troduction ...................................................................................... 147

viii



4.3 Literature R ev iew ............................................................................  149
4.4 Technique Developm ent.................................................................. 151

4.4.1 O r ig in .....................................................................................  152
4.4.2 Mathematical F o rm ulation .................................................  155

4.4.2.1 Evaluation of the Fiber Presence Probability Density 
Function of the Sample Web h n a g e ...................... 155

4.4.22 Evaluation of Fiber Presence Probability Density 
Function using Information E n tro p y .................... 166

4.4.3 Web Distribution in  M ultiple Filament Melt Blowing . .  178
4.5 Technique Implementation ...........................................................  180

4.5.1 Experimental D etails............................................................  180
4.5.2 Data A nalysis........................................................................  182

4.6 Results ............................................................................................... 186
4.6.1 Effect of z Position on the Spread of the Web Distribution

.................................................................................................  187
4.6.2 Effect of Process Variables on the Spread of the Web 

Distribution ..........................................................................  188
4.6.3 Effect on the Orientation Angle of the W e b .................... 192

4.7 C onclu sions......................................................................................  194
4.8 Nomenclature ..................................................................................  197
4.9 References ........................................................................................  202

Chapter 5 ..................................................................................................................... 232
AIR TURBULENCE STRUCTURE IN MELT BLOWING

5.1 O v e rv ie w ..........................................................................................  232
5.2 Literature R ev iew ............................................................................  238
5.3 Experimental D etails........................................................................ 239

5.3.1 Experimental E q u ip m e n t...................................................  239
5.3.2 Hot-wire System Calibration P rocedu re ..........................  241
5.3.3 Experimental Conditions ...................................................  246

5.4 Results ..............................................................................................  248
5.4.1 Definitions of Terms Used .................................................  248
5.4.2 Mean Velocity F ie ld .............................................................. 250
5.4.3 Turbulence Structure of the Jet F lo w ................................  255

5.4.3.1 A Comment on the Jet Spread ..............................  259
5.4.4 Mean Velocity in Oscillating J e t s ......................................  261

ix



5.5 Conclusions and R ecom m endations...............................................266
5.6 Nomenclature ..................................................................................  270
5.7 References ........................................................................................  272

Chapter 6 .............................................................................................................. 295
CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary of C onclusions............................................................... 295
6.2 Applications and Recommendations ..........................................  298

A ppendix I .......................................................................................................... 301
A SUPPLEMENT TO CHAPTER 2

ALl LDV Settings for Am plitude and Frequency Measurements . .  301

Appendix I I .........................................................................................................  307
A SUPPLEMENT TO CHAPTER 3

Appendix i n .......................................................................................................  312
COMPUTER PROGRAM FOR EVALUATING THE WEB DISTRIBUTION

USING ENTROPIC ANALYSIS



List of Illustrations

Figure 1.1 Typical setup of single-filament m elt b low ing .......................................4

Figure 2.1 Cross-section of ttie melt blowing die used in  the experiments. 
.........................................................................................................................................  43

Figure 22a The photographic setup used to measure fiber cone diameter in the x 
direction.........................................................................................................................  44

Figure 22b  LDV setup used to measure fiber cone diam eter along the y axis and 
fiber crossover frequency across the x ax is............................................................... 45

Figure 2 3  Top view  of the photographic setup used to m easure cone diameter 
.........................................................................................................................................  46

Figure 2 4  The LDV arrangem ent for measuring cone diam eter along the x axis 
and crossover frequency across the y axis. The two laser beams cross in  the x-y 
plane, the probe axis is aligned parallel to the y axis, and the fringes are parallel 
to the y-z plane................................................................................................................ 47

Figure 2.5 The LDV arrangem ent for measuring cone diam eter along the y axis 
and crossover frequency across the x axis. The two laser beams cross in the x-y 
plane, the probe axis is aligned parallel to the x axis, and the fringes are parallel to 
the x-z plane..................................................................................................................  48

Figure 26  A typical multiple image photograph of the x axis fiber cone from z=l 
to z=8 cm. The operating conditions were as follows: Qp=0.4 cmVmin, Tp=350°C, 
v^=30.9m/s, and T.=320=C ....................................................................................  49

Figure 2 7  A multiple image photograph of the y axis fiber cone from z = 1 to z = 
8 cm. The operating conditions were the same as for Figure 2 6 .......................... 50

Figure 2.8 A comparison between the x axis and the y  axis cone diameters 
m easured using m ultiple image photography. Each data point represents the 
average from six replicate photographs, and each error bar represents a range of 
± one standard deviation............................................................................................  51

XI



Figure 2-9 The x axis cone diameters measured via both LDV and multiple image 
photography..................................................................................................................  52

Figure 2.10 The y  axis cone diameters measured via boüi LDV and multiple image 
photography..................................................................................................................  53

Figure 211 The effect of air velocity on the x axis fiber cone diameter. Each data 
poin t represents tiie average of six independent LDV measurements, and each 
error bar represents a range of ± one standard deviation.....................................  54

Figure 212 The average fiber angle determined from photographs. For the y  axis 
measurements, the angle corresponds to a. Each data poin t represents the average 
of about 50 angle measurements, and each error bar represents a range of ± one 
standard deviation........................................................................................................ 55

Figure 213 Effect of m easuring volume position on data/passage. The solid line 
is predicted from the fitted correlation of eq 2 3 .....................................................  56

Figure 214 A qualitative comparison between the actual num ber of fiber passages 
and the passages m easured by the laser m v ........................................................... 57

Figure 215 Superposition of the fiber density distribution function f(x) and  the 
laser m easuring volum e response function h .........................................................  58

Figure 216 A comparison of corrected crossover frequencies per unit length across 
X and y axes a t z = 10 cm.............................................................................................  59

Figure 217 The fiber crossover frequency per un it length across the x axis. . 60

Figure 2.18 The fiber crossover frequency per unit length across the y axis. . 61

Figure 219 Effect of polymer flow rate on crossover frequency per unit length 
across the x axis a t z  = 10 cm......................................................................................  62

Figure 220 Effect of polymer flow rate on crossover firequency per unit length 
across the y  axis at z  = 10 cm......................................................................................  63

Figure 221 Effect of polymer temperature on crossover frequency per unit length 
across the x axis at z  = 10 cm......................................................................................  64

Figure 222 Effect of polymer temperature on crossover frequency per unit length 
across the y axis at z  = 10 cm...................................................................................... 65

X ll



Figure 223 Efkct of air vdodty  on crossover frequency per un it length across the 
X axis a t z  = 10 cm......................................................................................................... 66

Figure 224 Effect of air velocity on crossover frequency per un it length across the 
y  axis a t z  = 10 cm........................................................................................................  67

Figure 225 Effect of air temperature on crossover frequency per un it length across 
tiie X axis a t z  = 10 cm..................................................................................................  68

Figure 226 Effect of air temperature on crossover frequency per un it length across 
the y axis a t z  = 10 cm..................................................................................................  69

Figure 227  The total crossover frequency as a function of z w hen vj  ̂= 17.6 m /s
..........................................................................................................................................  70
Figure 228 The total crossover frequency as a function of z  w hen Vĵ  = 30.9m/s 
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Abstract

An experimental study of fiber motion and nonwoven webs in melt blowing 

was done. Fiber m otion was characterized in  terms of the riber vibrations - 

amplitude and hnequency of vibrations - and the fiber position distribution. Fiber 

am plitude was m easured w ith  both multiple image flash photography and  laser 

Doppler velocimetry. Fiber frequency was m easured w ith laser Doppler 

velocimetry. The fiber frequency experimental results were compared to the 

predictions of Rao and Shambaugh model for m elt blowing. The fiber am plitude 

results showed that the fiber cone was elliptical. The elliptical nature of the fiber 

cone was further confirmed with the fiber position distribution study. H igh speed 

flash photography was used to determine the fiber positions in three-dimensional 

space below a m elt blowing die. For the planes transverse to the spinning 

direction, the fiber distribution was found to follow a unimodal biavriate 

probability distribution, and the experimental data were fit to a bivariate norm al 

distribution. Furthermore, it was found that the fiber laydown pattern or the web 

distribution also follows a bivariate normal distribution. An image analysis 

technique, based on  Kullback-Leibler information principle, was developed to 

evaluate the distribution of fibers in a melt-blown web. The parameters of the web 

distribution were correlated to the melt blowing process variables - air velocity, air 

temperature, polym er flow rate and polymer temperature. The web distribution 

was found to increase (a) linearly with the axial position below the die, and (b) for 

process conditions that reduced the fiber diameter. To further understand the melt 

blowing process, the air turbulence structure of the rectangular, inclined cross-jets 

w as studied using a hot-wire anemometer. The axial m ean velocity, turbulence 

intensity, skewness factor, and flatness factor profiles were determined for both 

continuous and oscillating flows.
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An Experimental Study of Fiber M otion and 

Nonwoven Webs in Melt Blowing

Chapter 1

INTRODUCTION

1.1 Overview of M elt Blowing

In the nonwovens industry, melt blowing has become one of the important 

processes for producing fine fiber webs. The fiber diameter in  commercial melt- 

blown webs ranges from 0.1 |im to 30 |im. Because of the fineness of fibers, melt- 

blow n webs have a large surface area per unit w eigh t This property of melt-



blow n webs makes Üiem excellent filtration and absorbent materials. Currently, 

melt-blown webs are used in a wide variety of applications like high performance 

filters, medical garments, industrial wipes, geo-textiles, battery separators, hygiene 

products, carpets, and insulators.

1.1.1 The Melt Blomng Process

In melt blowing, the m olten polymer extrudes through fine capillaries (about 500 

micron) into a high velocity, hot gas jet, usually an air je t  Figure 1.1 shows a 

typical setup of single filament m elt blowing. The aerodynamic force of the high 

velocity hot gas jet attenuates the molten polymer filaments to microfibers. These 

microfibers entangle and get captured on the collection drum  to form a nonwoven 

w eb. The properties of nonwoven web depend on the fineness of fibers in  web. 

The higher the air velocity, the larger the aerodynamic drag force on the fiber, and 

the more Üie fiber attenuates. Shambaugh (1988) has show n that the melt blowing 

process has three m ain regions of air jet exit velocity. In region I, the low air 

velocity region, the fiber is continuous and moves almost parallel w ith the air flow. 

Typical fiber diameters in  this velocity region are ^10 pm. W ith the increase in the 

air jet exit velocity, region II is reached, and the fiber becomes discontinuous and 

forms undesirable polymer lumps, or "shots" (typically ^0.3 mm in diameter). On 

further increasing the air velocity, ttie process enters region IIL hi this region, fiber



shots are still p re sen t but are much finer (iO.3 m m  in  diameter). The fiber 

diam eters in  tiiis region range from 0.1 pm to 10 pm. The decrease in  fiber 

diameter, due to increase in air velocity, changes the fiber motion characteristics. 

Consequently, air jet exit velocity becomes an im portant param eter in studying the 

fiber motion. In the present work, all the experiments w ere done in region I of air 

velocity.

For a given air jet exit velocity, fiber m otion varies w ith the distance from the die. 

Wu and Shambaugh (1992) defined three spatial "zones" of fiber motion a t the exit 

of melt blowing die. Zone A is close to the die ex it The fiber motion in zone A is 

predominantly in the axial direction, and  the fibers are predom inantly oriented in 

the axial direction. In zone C, the fibers are almost random ly oriented. Zone B is 

the transition region between zone A and zone C  Furthermore, in their work 

involving the measurement of fiber velocities w ith laser Doppler velocimetry, W u 

and Sham baugh described that the spatial location of the three zones of m elt 

blowing is a function of the air velocity region. Knowledge of orientation of fibers 

in  a zone is useful in  defining the fiber motion and fiber-to-fiber contact and 

entanglem ent In the light of this, the present work concentrates on determining 

the two param eters of fiber motion - fiber vibrations and fiber positions - in m elt 

blowing, and the param eters' effect on the resulting nonwoven web.
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Figure 1.1 Typical setup of single-filament m elt blowing



1.1.2 Background

The origin of melt blowing is attributed to the work of Fred W. Manning 

(Mannings 1946). hi his method, the hot molten polymer was extruded into two 

consecutive air jets. The first jet heated and stretched the polymer into fiber, while 

the second jet further stretched the filament and directed the hber to the collection 

screen. This work originated the concept of attenuating the m olten polym er by 

high velocity gas je t The pioneering work in setting up a m elt blowing un it was 

done by V. A. Wente in 1950's (Wente, 1954; 1956). His unit w as set up  in Naval 

Research Laboratory to produce filters for removing radioactive contaminants 

form ed in radioactive testing. The process was later commercialized by Exxon 

Corporation; they developed first commercial multiple hole slot die for producing 

nonwovens. Exxon has made dozens of patent claims in melt blowing, e.g., Buntin 

et al. (1976) and Prentice (1978). Besides Exxon, many others have produced melt 

blowing patents. For example, Schwarz (1983) patented a die design to improve 

the economics of the process in terms of air to polymer mass loading.

1.1.3 M elt Blowing Models

Shambaugh (1988), Kayser and Shambaugh (1990), and Milligan and Haynes (1995) 

have empirically modeled m elt blowing to predict the fiber behavior at different



process conditions. MaÜiematical models of Uyttendaele and Sham baugh (1990) 

and Rao and Sham baugh (1993) can be used to predict the diameter, rheological 

stress, velocity, and temperature of the hber. The Rao-Shambaugh m odel can also 

predict the vibrations of the fiber threadline. The Uyttendaele-Shambaugh model 

is one-dimensional, while the Rao-Shambaugh m odel is two-dimensional. 

Recently, Bansal (1997) extended tiie Rao-Shambaugh model to three dimensions. 

Bansal also perform ed online experiments to m easure fiber properties in melt 

blowing and m elt spinning.

I . IA A ir Drag in M elt Blaunng

For the mathematical modeling of melt blowing, air d rag coefficient correlations 

were first studied by Narasimhan and Shambaugh (1986). They extended Matsui's 

(1976) correlation for d rag  coefficient in m elt spinning to melt blowing. Milligan 

and Haynes (1987) experimentally measured the air drag acting on the fiber 

filament for a slot die. However, they did not evaluate a correlation for the drag 

coefficient which can be used in a mathematical model. M ajumdar and 

Shambaugh (1990) experimentally measured the drag  force on the fiber filament 

in an annular, turbulent air stream to determine the drag coefficient of a filament 

in a parallel flow. Later, Ju and Shambaugh (1994) developed correlations for the 

air drag on the fiber filament a t oblique and normal angles to the flow. Their



correlation was used in the models of Rao and Shambaugh (1993) and Bansal 

(1997). In another work, Milligan (1991) hypothesized that the "form " drag  or 

pressure drag is due to ttie "flapping" or changing shape of the fiber threadline for 

a m elt blowing slot die.

1.1.5 A ir Velocity and Temperature Flaw Fields

The isotherm al air velocity field of slot die were first studied by M illigan and 

H aynes (1987) w ith a hot wire anemometer. The air flow fields required for 

modeling die melt blowing process w ere exp>erimentally measured by Uyttendaele 

and Shambaugh (1989) for annular dies at isothermal conditions. They used  a Pitot 

tube for their measurements. Majumdar and Shambaugh (1991) m easured velocity 

and tem perature fields of annular jets. Mohammed and Sham baugh (1993; 1994) 

studied the velocity and tem perature fields below a Schwarz die. Recentiy, 

Harpham  and Shambaugh (1996; 1997) developed correlations for the air velocity 

and tem perature fields below a slot die.

1.2 Objectives

The objectives of this study are (a) understanding the fiber motion in m elt blowing, 

and  (b) relating the fiber motion to melt-blown webs. Fiber m otion in  melt



blowing has three m ain parameters: fiber velocity, fiber vibrations, and fiber 

positions. Wu and Shambaugh (1991) measured the velocity of the fiber threadline 

for an annular die w ith laser Doppler velocimetry. Shivaswamy (1994) extended 

their work for the fiber m otion below a slot die. Since velocity of the fiber at 

different process conditions has already been studied, the works presented in this 

study concentrate on fiber vibrations and fiber positions below a melt blowing slot 

die.

Rao and Shambaugh observed that fiber vibrates w ith a characteristic frequency 

in melt blowing. Tyagi and Shambaugh (1995) found that the fiber diameter could 

be reduced by oscillating the prim ary air jets of a slot die w ith a frequency that 

matches the natural frequency of the fiber. Recently, Chhabra and Shambaugh 

(1996) measured the am plitude and frequency of fiber vibrations below a melt 

blowing slot die. Their results for frequency measurements matched with the 

results predicted by the Rao-Shambaugh model. This work is presented in Chapter 

2 of this dissertation.

Fiber positions below a melt blowing die are apparently random . Milligan (1991) 

concluded that, in m elt blowing, the fiber motion is not periodic and exhibits the 

nature of a chaotic phenomena. However, in this work, it has been found that the 

fiber positions, while tiie fiber is in motion, follow a pattern. The pattern in which
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fiber moves can be fitted to a probability^ distribution. Chapter 3 of this 

dissertation deals w ith  the statistics of fiber positions below a m elt blowing die. 

The contents of Chapter 3 have been submitted for a journal publication.

The effects of m elt blowing process conditions on the morphological and 

mechanical properties of polypropylene webs have been studied by Lee and 

W adsworth (1992). However, neither the fiber web distribution nor correlation 

between tiie process conditions and the web structure were evaluated. A detailed 

review of literature on the evaluation of web structure and fiber orientation in web 

has been presented in Chapters 3 and 4. In the work described in Chapter 3, it has 

been found that the fiber laydown pattern should also follow the same probability 

distribution as the fiber follows while in motion. Following this conclusion, a 

study has been done to evaluate tiie distribution of fibers in a melt-blown web. An 

image processing technique, based on information entropy, has been developed to 

evaluate the distribution of fibers in a single filament, melt-blown web. The 

statistical parameters of the web distribution have been correlated to the melt 

blowing process conditions. This work is presented in Chapter 4 of this 

dissertation. The contents of Chapter 4 will be subm itted for a journal publication.

Finally, since the fiber motion is affected by the air flow fields below a melt 

blowing die, a one-dimensional study of the air turbulence in  m elt blowing has



been done. The study could not be extended to higher dimensions due to the lack 

of equipm ent However, the conclusions obtained from the results can be taken as 

a starting point for two or three-dimensional study. This study is described in 

Chapter 5 of this dissertation.

10



1.3 References

Bansal, V. Online Measurement and Mathematical Modeling of Fiber Properties 
D uring the Melt Blowing and Melt Spinning Processes. Ph D. Dissertation, 
University of Oklahoma, Norman, OK, 1997.

Buntin, R. R.; I ^ e r ,  J. P.; Harding, J. W. Non-woven Mats by Melt Blowing. U.S. 
Patent 3,849,241, Nov. 19,1974.

Chhabra, R.; Shambaugh, R. L. Experimental Measurements of Fiber Threadline 
Vibrations in  the Melt-Blowing Process. Ind. Eng. Chem. Res. 1996, 35 (11), 4366- 
4374.

Harpham, A. S.; Shambaugh, R. L. Flow Field of Practical Dual Rectangular Jets. 
Ind. Eng. Oiem. Res. 1996,35 (10), 3776-3781.

Harpham , A. S.; Shambaugh, R. L. Velocity and Temperature Fields of Dual 
Rectangular Jets. Ind. Eng. Chem. Res. 1997,36 (9), 3937-3943.

Ju, Y. D.; Shambaugh, R. L. Air Drag on Fine Filaments a t Oblique and Normal 
Angles to the A ir Stream. Polym. Eng. Sci. 1994,34 (12), 958-964.

Kayser, J. C.; Shambaugh, R. L. The Manufacture of Continuous Polymeric 
Filaments by the Melt Blowing Process. Polym. Eng. Sci. 1990,30 (19), 1237-1251.

Lee, Y.; W adsworth, L. Effects of Melt-blowing Process Conditions on 
Morphological and Mechanical Properties of Polypropylene Webs. Polymer 1992, 
33 (6), 1200-1209.

M ajumdar, B.; Shambaugh, R. L. Air Drag on Filaments in the Melt Blowing 
Process. /. Rheol. 1990,34 (4), 591-601.

Majumdar, B.; Shambaugh, R. L. Velocity and Temperature Fields in A nnular Jets. 
Ind. Eng. Otem. Res. 1991,30 (6), 1300-1306.

11



M anning, F. W. Method of Making Filter Cartridges, Abrasive Sheets, Scouring 
Pads, and the Like. U.S. Patent 2,411,660, Nov. 26,1946.

Matsui, M. Air Drag on a Continuous Filament in Melt Spinning. Trans. Soc. Rheol. 
1976,20 (3), 466-473.

Milligan, M. W.; Haynes, B. D. Air Drag on Monofilament Fibers - Melt Blowing 
Application. ASME Ind. Ajrpl. Fluid. Mech. 1987, FED. 5 4 ,47-50.

Milligan, M. W. Aerodynamic Flapping Characteristics of Meltblown Fibers. 
ASM E Ind. Appl. Fluid. Mech. 1991, FED. 132,1-5.

Milligan, M. W.; Haynes, B. D. Empirical Models for Melt Blowing. /. Appl. Polym. 
Sci. 1995,5 8 ,159-163.

Mohammed, A.; Shambaugh, R. L  Three-Dimensional Flow Field of a Rectangular 
A rray of Practical Air Jets. Ind. Eng. Chem. Res. 1993,32 (5), 976-980.

Mohammed, A.; Shambaugh, R. L. Three-Dimensional Temperature Field of a 
Rectangular Array of Practical Air Jets. Ind. Eng. Chem. Res. 1994, 33 (3), 730-735.

Narasimhan, K  M.; Shambaugh, R. L. Fiber/Gas hiteraction During Melt Blowing. 
Society of Rheology Meeting, Tulsa, OK, 1986.

Prentice, J. S. Laminated Non-woven Sheet U.S. Patent 4,078,124, March 7,1978.

Rao, R. S.; Shambaugh, R. L. Vibration and Stability in the Melt Blowing Process. 
Ind. Eng. Chem. Res. 1993,32 (12), 3100-3111.

Schwarz, E. C. A. Apparatus and Process for Melt Blowing a Fiberforming 
Thermoplastic Polymer and Product Produced Thereby. U.S. Patent 4,380,570, 
April 19,1983.

12



Shambaugh, R. L. A  Macroscopic View of the Melt Blowing Process for Producing 
Microfibers. Ind. Eng. Chem. Res. 1988,27 (12), 2363-2372.

Shivaswamy, U. Mass Flux and Related M easurements in the Processing of Melt 
Blown Fibers. M.S. Thesis, University of Oklahoma, Norman, OK, 1994.

Tyagi, M. K.; Shambaugh, R. L. Use of Oscillating Gas Jets in Fiber Processing. Ind. 
Eng. Chem. Res. 1995,34 (2), 656-660.

Uyttendaele, M. A. J.; Shambaugh, R. L. The Flow Field of Armular Jets at 
Moderate Reynolds Numbers. Ind. Eng. Chem. Res. 1989, 28 (11), 1735-1740.

Uyttendaele, M. A. J.; Shambaugh, R. L. Melt Blowing: General Equation 
Development and Experimental Verification. AICHE }. 1990,36 (2), 175-186.

Wente, V. A  Manufacture of Superfine Organic Fibers. United States Departm ent 
of Commerce, Office of Technical Services, Report No. PB 11437, April 15,1954.

Wente, V. A. Superfine Thermoplastic Fibers. Ind. Eng. Chem. Res. 1956, 8 ,1342- 
1346.

Wu, T. T.; Shambaugh, R. L. Characterization of the Melt Blowing Process w ith 
Laser Doppler Velocimetry. Ind. Eng. Chem. Res. 1992,31 (1), 379-389.

13



Chapter 2

EXPERIMENTAL MEASUREMENTS OF FIBER THREADLINE 

VIBRATIONS IN THE MELT BLOWING PROCESS

(The contents of this chapter were published in the journal Industrial & Engineering 

Chemistry Research, v. 35, n. 11,1996, pp. 4366-4374.)

2.1 Abstract

The motion of a melt blown fiber w as experimentally measured. After exiting the 

sp inning  die, a melt blown fiber was found to vibrate w ith frequencies and 

am plitudes that were functions of the operating conditions (polymer flowrate, 

polym er temperature, air flowrate, and air temperature). Fiber am plitude was
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m easured w ith both m ultiple image flash photography and laser Doppler 

velocimetry. Fiber frequency was measured w ith  laser Doppler velocimetry.

2.2 Introduction

In melt blowing a stream of hot polymer is extruded into a rapidly moving field 

of hot gas. The force of the gas upon the polymer results in  the rapid attenuation 

of the polymer into fine filaments. The polymer filaments are collected on a screen 

as a nonw oven m at of fibers. Such mats have commercial value as filter media, 

sorbent materials, insulation, and other uses. See Shambaugh (1988) for an 

overview of m elt blowing. Empirical models for m elt blowing have been 

developed for annular dies (Shambaugh, 1988; Kayser and Shambaugh, 1990) and 

slot dies (Milligan and Haynes, 1995).

As the polym er filaments travel from the spinneret to the collection screen, the 

filaments exhibit vibration. The am plitude of these vibrations can be 

(qualitatively) observed with the naked eye. U nder m ild conditions (e.g., low gas 

velocities), the amplitude is almost imperceptible. However, as conditions become 

more severe (e.g., at higher gas velocities), the vibration amplitude becomes 

steadily larger. Sham baugh (1988) defined three regions of melt blowing which
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relate to fiber breakup; these regions correspond to the severity of vibration 

amplitude.

Mild (small amplitude) conditions of melt blowing were m odeled by Uyttendaele 

and Shambaugh (1990), and Kayser and Sham baugh (1990) d id  extensive 

experimental w ork  in  this area. Basically, Uyttendaele and Shambaugh assumed 

diat the polymer stream moved in one direction only. Rao and Shambaugh (1993) 

extended the Uyttendaele-Shambaugh model. The Rao-Shambaugh model 

accounts for fiber vibrations: as conditions become more severe, the model predicts 

larger vibration amplitudes. The model also predicts that there are characteristic 

frequencies of vibrations associated with m elt blowing — i.e., though conditions 

along the tiueadline change rapidly, the threadline is a mechanical system and, as 

such, has a characteristic fi-equency of vibration.

This w ork involves the experimental m easurement of fiber vibration am plitude 

and frequency. This work can be compared w ith the theoretical predictions of the 

Rao-Shambaugh model.
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2.3 Experimental Equipment

The polymer was melted and pressurized w ith  a Brabender extruder of 19,0 mm 

(0.75 in) diam eter and 381 mm (15 in) length. After exiting Üie extruder, the 

polymer was fed to a modified Zenitii pum p which in turn fed a single hole melt 

blowing die.

Refer to Tyagi and Shambaugh (1995) for details on the polym er supply 

equipm ent; Figure 2.1 shows a cross section of the die. (Haynes and Milligan 

[1991] have done work with a similar single hole die.) The polymer capillary had 

an inside diameter of 0.407 mm and a length of 2.97 mm. The two air slots were 

0.65 mm wide and 74.6 mm long. The air Helds below this same m elt blowing die 

w ere recently characterized by H arpham  and Shambaugh (1996). The polymer 

used w as 75 MFR (melt flow rate) Fina Dypro* polypropylene w ith  M^=122,500. 

The ranges of basic operating conditions used for the experiments are given in 

Table 2.1.

Multiple image photographs were taken with a Canon AE-1 camera equipped with 

a Tokina AT-X Macro 90 mm lens. A GenRad 1546 digital strobe provided the 

illumination.
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The laser measurements were made with a one-dimensional, frequency shifty frber 

optic LDV system assembled by TSI fricorporated. The laser w as a 15-mW He-Ne 

laser built by Spectra Physics. A Bragg cell provided frequency shifting for 

m easuring flow reversals. The measuring volume (mv) w as produced by a 

backscatter probe that was a t the end of a 10 m eter long optic cable. This probe 

and cable allowed us to keep the LDV system away from the spinning machine. 

The small probe was 14 mm in diameter, 100 mm long, and had a working distance 

of 60 mm. The laser probe was mounted on a Velmex 3-D traverse system that 

permitted x, y, and z motions in 0.01 mm increments. Additional information on 

this laser system is given by W u and Shambaugh (1992); also see A ppendix I  for 

the settings of LDV used in  the experiments.

A multiple hole die as used in industry produces large numbers of filaments below  

the die. With such a die, it is difficult to separate the measurements (via 

photography and LDV) of one filament from that of another. Hence, as stated 

above, a single hole die w as used in the experiments.
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2.4 Experimental Techniques

2.4.1 Cone Diameter Measurements with Multiple Image Photography

The fiber "cone" is the volume below a m elt blowing die in w hich a fiber travels. 

The apex of tiie cone is at the spinneret hole. Figure 2.2a shows the setup used to 

measure fiber cone diameter in  the x direction; the coordinate system  is shown in 

the figure. Since the cone is three-dimensional, a similar setup was used to 

measure cone diameter in the y  direction. Figure 2.3 shows a top view  of the setup 

shown in Figure 2.2a. The camera was focused by temporarily placing a fine metal 

wire directly below the die head and focusing the lens on the wire. The position 

of the strobe resulted in excellent illumination of the filaments. The following 

particulars gave photographs witii excellent contrast between the filaments and the 

background:

Lens aperture: f/2.5 for z s 10 cm; f / 4.0 for z > 10 cm 

Exposure time: 30 seconds in  darkened room

Flash rate: 300 per minute (hence, there were 150 exposures per film frame)
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Field of view of lens: 12.5 cm x 8.3 cm at 25 cm

Film: Kodak T-Max 400 developed w ith Kodak T-Max developer

P aper Kodak Polymax RC

To take cone photographs the camera was placed a t the following five different z 

levels: 5.0, 7.5,10.0,12.5, and 15.0 cm. At each z level, 5 replicate photographs 

were taken. The distance between the two extreme fiber positions on the 

photograph was taken as the fiber cone diameter.

To m easure cone size in the y direction, the positions of the camera and strobe 

were rotated 90“ about the z-axis (see Figure 2.3). The above photographic 

procedure was then repeated.

2,4.2 Cone Diameter Measurements with Laser Doppler Velocimetry

Cone diameter measurements were also produced using laser Doppler 

velocimetry. This diameter m easurement was based on the fact that an electronic 

signal occurred whenever a fiber crossed the measuring volume (mv), which is the
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intersection of the two laser beams of the LDV system (see W u and Shambaugh, 

1992).

For the LDV measurements tiie camera and strobe (see Figure 2.2a) w ere replaced 

w ith tiie LDV probe; see Figure 2.2b. For example, consider the placem ent of the 

probe w ith the probe's major axis located along or parallel to the positive y axis. 

Consider also tiiat the probe is rotated about its major axis such that the two laser 

beams lie in  the x-y plane; see Figure 2.4. Now, consider the placem ent of the 

beam  intersection, the mv, along the x-axis; m easuring volume "A" is 

representative of an m v located along the x-axis. Since the fringes in this m v are 

parallel to the y-z plane, fiber motion in  the ±x direction would be measured; this 

is exactly the kind of motion that occurs in a fiber cone w ith an x dimension. 

Traversing the m v along the x-axis would determine the presence or lack of fibers 

all along the x-axis. This fiber presence should be comparable to the presence of 

fibers in a cone photograph. Hence, the x-direction cone dimensions should be 

m easurable w ith  this technique. (The use of the measuring volume "B" will be 

discussed later.)

The laser system gives the data rate, which is tiie number of times that objects cross 

the mv fringes during a given time period. Since fiber crossings produce strong 

signals, it is easy to tell when the mv is located w ithin the fiber-dense center of the
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cone. However, the signals fall off as ttie m v is m oved away from the center of the 

cone. Some arbitrary cut-off poin t is needed to quantify the size of the cone. The 

edge of the cone was arbitrarily defined as the position where the data rate fell to 

10% of the maximum (cone center) value.

Figure 25 shows an arrangement for m easuring the y  dimension of the fiber cone. 

Here the major axis of the fiber probe is located along or parallel to the -x axis and 

tiie probe is rotated so tha t the laser beams both lie in  the x-y plane. The fringes 

are thus parallel to the x-z plane. To measure the y  dimension of the fiber cone, the 

m v is traversed along the y axis; measuring volum e "A" is representative of an mv 

located along the y-axis.

2.4.3 Fiber Threadline Frecjuenq/ Measurements

In their computer modeling of melt blowing, Rao and Shambaugh (1993) calculated 

fiber frequency by counting how many times a fiber element crossed the centerline. 

The frequency of vibration was found by first dividing this count by the time 

interval of m easurem ent This result was then m ultiplied by 1 /2  (since there are 

two crossovers for each cycle).
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In. the p resen t work, a similar line of reasoning was used to take actual 

measurements of crossovers. (Refer to Figure 2.4.) For the previously discussed 

m easurem ent of x-direction amplitude, the fiber probe was moved in  the ±x 

direction; m easuring volume "A" illustrates a typical location of the m v for these 

measurements. For the measurement of crossovers of the y-z plane, the major axis 

of the m easuring probe was kept coincident w ith  the y axis. The probe was then 

translated along the y axis such that the m easuring volume was always located 

along the y  axis; m easuring volume "B" is typical of these locations. The vertical 

fringes of these m easuring volumes measured crossovers of the y-z plane.

To m easure crossovers of the x-z plane, the major axis of the probe was kept 

coincident w ith  the x axis. Refer to Figure 2.5. The probe was then translated 

along the x axis such that the measuring volume w as always located along the x 

axis. M easuring volume "B" is typical of these locations.

2.5 Results and  Analysis

2.5.1 Photographic Measurements o f Cone Diameter

In the m elt blowing die, the two air slots are arranged parallel to the y  axis (see 

Figure 2.2a). Hence, the air field is not radially symmetric w ith respect to the z
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axis. As a consequence, the fiber vibration amplitudes m ight no t be radially 

symmetric. In tiie Cartesian system of Figure 2.2a, the amplitude in  the x direction 

might be different tiian the amplitude in  the y  direction.

Figure 2.6 is a multiple image photograph of the fiber cone during  typical melt 

blowing conditions. For this photograph, the camera was positioned along the +y 

axis as shown in Figure 2.2a. Hence, the photograph shows the fiber cone size in 

the X direction. Keep in m ind that this photograph shows 150 separate exposures 

of a single threadline.

Figure 2.7 is a multiple image photograph taken w ith the camera located along the 

+x axis — i.e., from a position oriented 90® to the arrangement of Figure 2.2a. Thus, 

Figure 2.7 shows fiber cone size in the y-direction. As can be qualitatively 

observed, the cone sizes in both directions are of a similar magnitude. This implies 

that the cone cross-section (in a plane of constant z) is approximately circular. 

Thus, the non-radial symmetry of the air slots does not cause a large non-radial 

symmetry in the cone amplitude.

Figure 28 compares quantitative measurements of fiber cone diameters. The x-axis 

cone diam eter is slightly larger than the y-axis cone diameter. Additional cone 

photographs (not shown) were also taken from a position 45® to botii the x-axis and
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the y-axis. Cone diam eter measurements taken hom  these photographs 

demonstrated th a t as expected, cone diameters at 45° were interm ediate between 

the measurements taken along the x-axis and the y-axis. This suggests that the 

cone cross-section is an ellipse w ith the x-axis corresponding to the major axis of 

the ellipse. The ellipse becomes m ore circular as the distance from the die 

increases. This result parallels the behavior of an  air field below a slot je t  a slot 

jet air field approaches a point source air field (which is a radially symmetric field) 

at large distances below the slot je t  [Refer to Harpham and Sham baugh (1996).]

2.5.2 LDV Measurements o f Cone Diameter

Figure 2.9 shows measurements of x-axis cone diameter via LDV. For comparison, 

results from photography are also given. The two techniques give similar results: 

the slopes of the data are nearly the same and the magnitudes are fairly close. 

Figure 2.10 compares y-axis cone diameters determined via the two techniques. 

Again, the two techniques give very similar results.

As discussed by Rao and Shambaugh (1993), higher gas velocities should 

theoretically produce higher amplitudes. Figure 2.11 gives experimental 

verification of their work: as gas velocity increases, the fiber am plitude (measured 

via LDV) increases. Besides gas velocity, the other basic variables in m elt blowing
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are gas tem perature, polym er tem perature, and polymer throughput (Tyagi and 

Shambaugh, 1995). LDV m easurements showed that — for the ranges listed in 

Table 2.1 — the fiber am plitude was fairly insensitive to changes in  these three 

remaining operating variables.

2.5.3 LD V  Measurements o f Fiber Frecjuenq/

Development of an LDV Response Correlation

The Experimental Techniques section (section 2.3) described how the m v could be 

positioned w ithin the fiber cone to measure fiber vibration frequency. 

Unfortunately, as discussed by W u and Sham baugh (1992), there is not a one-to- 

one correspondence between an LDV signal and an actual crossover of the mv by 

a fiber. Consider the m easurem ent of crossovers of the y-z plane (see Figure 2.4). 

Then, in the geometry of present experiments, Wu and Shambaugh described the 

following im portant variables which effect LDV signals:

(1) fiber angle ca the angle between the z direction and the projection of the fiber 

upon the y-z plane.

(2) fiber angle fk the angle between the fiber axis and the y-z plane.
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(3) fiber-mv crossaver (y 9: the location witiiin the m v where the fiber intersects 

them v.

(4) motion o f fiber relative to the fringes' the angle that the fiber m otion vector 

makes w ith respect to the optical fiinges of the mv.

(5) fiber diameter (Ô).

Similar arguments w ould apply for fiber crossovers of the x-z plane (see Figure 

2.5).

W u and Shambaugh found that, as long as the fiber crossed the mv, item (4) had 

no effect on the LDV signal. Then the LDV signal can be expressed as

data/passage = h(a, p, y', 6) (2.1)

W u and Shambaugh also found that the effects of the angles a and P are constant 

w hen a<40® and P<15°. From photographs such as Figure 2.7, the average value 

of a  was determined for various z levels: see Figure 2.12. Obviously, a<40°. 

Photographs of the x axis cone size (see Figure 26) were used to calculate the x axis 

fiber angle values shown on Figure 212. For small angles (e.g., angles less than
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10“), these fiber angles are a good approximation for p. Hence, P<15“. In terms of 

the fiber zones defined by Wu and Shambaugh, Figure 212 represents zones A and 

B, not the random  orientation of zone C (where the average angle is 45“).

Since angles a  and P are small, ttie LDV signal can be represented by the simplified 

expression

data I  passage = h '( y ',  Ô) (2.2)

Now, similar to the procedure followed by Wu and Shambaugh, let the h function 

be expressed empirically as

/i*(y', Ô) = a-GD (2.3)

where

C = l / [ q  + c^y'^exp[c^y')\ (2.4

D = (0 /27 .6 )°-^  (2.4
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The parameters a, Cj, C;, and c, are empirical constants. These empirical constants 

were determined by a calibration wheel experim ent wherein fibers w ere taped to 

the rim of a wheel. The wheel was rapid ly  rotated and the fiber was passed 

through the measuring volume of an LDV. The wheel (and thus fiber) speed was 

controlled along w ith the orientation of the fiber w ith respect to the measuring 

volume. Figure 2.13 resulted fiom ttiis procedure. (See Wu and Shambaugh [1992] 

for additional details on the calibration wheel technique; also see Figure A l l  in 

A ppendix I for calibration experiments done w ith other fiber diameters.) The 

empirical constants were then determ ined by minimizing the following function 

w ith a Gauss-Newton scheme:

52 [k ‘(y Cô) -  data per passage at a given pointY  (2.5)
aU data points

The best-fit values were determined to be a = 0.987, Cj = 2.457, C2 = 0.489, and C3 = 

0.670.

2.5.4 Superposition o f the Response Correlation (h*) on the Fiber Cone

Figure 2.14 illustrates the situation where the m v is moved outw ard in 3 mm steps 

from the center of the fiber cone. The fiber density in the fiber cone is highest at
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tiie center and Êdis oÉf radially. Hence, the data rate m easured by the LDV system 

is a function of both h  and of the fiber density.

Let us assume that the fiber cone density can be described by the normal 

distribution

w here  p, is the mean and a  is the standard deviation of the cone density 

distribution.

F igure 2.15 shows the superposition of a normal fiber distribution and an 

arb itrarily  positioned mv. Because the cone is centered over the origin of the x 

axis, n=0. The center of the m v is located at x^, and the m v limits are x  ̂and Xr. 

A n arbitrary element i of length Ax lies between Xĵl x̂ ĝ.

Now, for the mv, the LDV signal is

data
recorded

% response o f\ 
~ m X  element i )

actual number 
o f crossovers o f 

element i
(2.7)

D ividing by the actual num ber of crossovers of the m v gives
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data
recorded _ ^   ̂% response of\ 

actual number au, \  element i j 
o f crossovers 

o f mv

' actual number 
of crossovers o f 

element i 
actual number 
o f crossovers 

o f mv

(2.8)

O f the total fibers that cross the mv, the fraction that cross the element i can be 

expressed as

actual number of 
crossovers o f element i

hR
j f ( x ) d x total crossovers 

of cone

actual number of 
crossovers o f mv

R̂
f f ( x )dx \ total crossovers 

of cone

(2.9)

Since the percent response of element i is simply h  , then equation (2.3) can be used 

in equation (2.8). If, in addition, equation (2.9) is used in  equation (2.8), the result

IS

data
recorded

actual number 
of crossovers 

o f mv

aU i

*i.R

jf{x)dx

(2.10)
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Equation (2.10) is the working equation which allows the conversion of data 

recorded to the actual num ber of hber crossovers.

The param eters in  the distribution function f(x) w ere determined from the cone 

size measurements. As stated earlier, tiie LDV cone size was determined by 

assum ing that the cone boundary occurred w here the fiber density fell to 10% of 

the centerline value. Thus, for a given cone radius x, o=0.4660x.

For a particular set of operating conditions, the diam eter Ô used in equation (2.9) 

was found by off-line measurements of the product fiber diameter. Uyttendaele 

and Shambaugh (1990) determined that the final fiber diameter is reached by z = 

5 cm. Hence, since all of the measurements in the present study were taken for z 

k 5 cm, the use of the final (product) diameter is appropriate.

2.5.5 Interpretation o f LDV Data

Figure 216 shows the results of using equation (29) to find the corrected crossover 

frequency from the measured data rate. Corrected frequencies are given at z = 10 

cm for both crossover of the y axis and crossover of the x axis. [Equation (2.9) was 

used as is for calculating x axis crossover; for calculating y axis crossover, die x and 

f(x) in equation (2.9) were replaced with y and f(y).] Observe that the frequency
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per mv length was larger across the y  axis than across the x axis. Also, since the 

m v length is significantly less than the cone width, the ordinate value can be 

interpreted as the local fi*equency per length.

For crossovers of the x axis. Figure 2.17 shows the corrected crossover frequency 

a t difierent z  levels. As z increases, the center (maximum) value decreases, bu t 

crossovers occur at larger |x | values. Figure 2-18 shows similar results for 

crossovers of the y  axis. (See Figures AL2 through AL5 in  Appendix I for the 

similar experiments done at air velocity Vj„ = 17.6 m /s  and polymer mass flow rates 

= 0.60 and 0.80 cmVniin.) A  comparison of Figure 2.18 w ith Figure 2.17 shows 

that the frequency per length levels are higher for crossings of the y  axis (as was 

suggested by Figure 2.16).

As discussed by Tyagi and Shambaugh (1995), there are four major operating 

variables in m elt blowing: polymer flow rate, polymer temperature, air flow rate 

(or gas velocity), and air temperature. The effects of each of these variables upon 

the crossover frequency were examined. For x axis crossovers. Figure 2.19 shows 

the frequency/length as a function of polymer flowrate (Qp). The crossover 

frequency stays fairly constant for Qp values of 0.40, 0.50, and 0.60 cmVmin, but 

then the firequency rises as Qp is increased. For y axis crossovers. Figure 2.20 

shows that the frequency/length values are highest a t Q =0.60 cm^/ min. Except
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for this 0.60 cmVmin rate on Figure 2.20, the frequency/length profiles in  both 

figures are quite similar, though the Figure 2.19 profiles are a little lower. For 

example, a t x=0 on Figure 2.19, the average frequency/length is about 0.78 

H z/m m , while at the corresponding y=0 on Figure 2.20, the average 

frequency/length is about 1.20 H z/m m .

The effect of polymer tem perature (Tp) is shown in Figure 2.21 for x axis 

crossovers. A  low polymer temperature of 300°C gave the highest 

frequency/length. Figure 2.22 shows the effect of polymer temperature on y axis 

crossovers. Again, the frequency/length is highest at 300°C.

Figures 2.23 and 2.24 show how air velocity effects the frequency/length. For the 

case of X axis crossover shown in  Figure 2.23, tiie lower air velocity causes a higher 

ffequency/lengtiL The lower air velocity also gives a higher frequency/length for 

y  axis crossover. However, as Figure 2.24 illustrates, the effect is much more 

pronounced.

Figure 225 shows the effect of air temperature (T,) on frequency/length for x axis 

crossover. Figure 226 is the analogous graph for y  axis crossover. A rise in air 

temperature T, appears to decrease the crossover frequency. However, this
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decrease is not that definitive (at least not definitive for the range of temperatures 

investigated).

Since, as stated previously, the frequency/length data on Figures 2.16-2.25 can be 

considered as local values (rates), then a particular frequency/length profile can 

be integrated over the cone w idth  to give the fiber crossover frequency a t a 

particu lar z level. The profiles in Figures 2.17 and 2.18 were integrated in this 

m anner to produce Figures 2.27 and 2.28. Figure 2.27 shows results for a gas 

velocity of 17.6 m /s, while Figure 2.28 shows results for a gas velocity of 30.9 m /s . 

As suggested by earlier figures, for both Figures 227 and 228 the frequency across 

the y  axis is higher than the frequency across the x axis. For both figures the x axis 

frequency is nearly constant all along the threadline, while the y axis data appear 

to decrease as z increases. The data scatter is probably caused by the 

approximations involved in calculating die points on these two figures. At Vjo=30.9 

m /s  (see Figure 228) tiie frequencies of both the x and y axis crossovers are about 

half as great as the corresponding frequencies at Vj^=17.6 m /s  (see Figure 2.27).

Rao and Shambaugh (1993) developed a mathematical model for melt blowing. 

This m odel is highly complex and involves the simultaneous solution of a group 

of differential equations. Because of the model's complexity, some model 

predictions are not w hat one w ould expect from a more simplistic analysis of the
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melt blowing problem. The model utilizes carefully measured input parameters 

such as the constants in  drag force correlations (Majumdar and Shambaugh, 1990; 

Ju and Shambaugh, 1994).

The Rao and Shambaugh model predicts that the fiber frequency is constant along 

the threadline. For x axis crossovers, the present w ork verifies this prediction. For 

the more vigorous (higher frequency) y axis crossovers, the experiments in the 

present work showed a decrease in crossovers as z increased. However, the 

decrease was only about 2X, and n o t for example, lOX.

For typical operating conditions, Rao and Shambaugh predicted vibration 

ftequencies ranging from 8 to 62 Hz. In the present work, the average m easured 

frequencies across the x axis were 14 and 6.6 H z /m m  at 17.6 and 30.9 m /s, 

respectively. Across ttie y  axis, die measured frequencies were 45 and 18 H z / mm, 

respectively, a t 17.6 and  30.9 m /s. The correspondence between the model 

predictions and the measurements in the present work is very good. Rao and 

Shambaugh modelled an annular melt blowing die, while the present work 

involved a slot die. Apparently, the basic process of melt blowing — and the 

associated frequencies — is not greatly effected by whether the die is axisymmetric 

(annular) or two-dimensional (a slot).
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As discussed earlier, the air field below the two-dimensional slot je t used in  this 

study approxim ates the field of an axisymmetric jet (e.g., an annular jet) a t large 

z  values. Since the largest fiber vibrations occur at large z, then the air field 

configuration a t large z is dom inant Thus, a t large z values, the fiber motions 

below a slot die should be similar to tiie fiber motions below an annular die. Also, 

because the whole fiber vibrates as a unit^ the vibrations a t large z  w ill effect 

vibrations a t small z.

2.6 Conclusions

Fiber cone dimensions can be measured by either high speed photography or laser 

Doppler velodmetry. The results from these two techniques are comparable. The 

fiber cone cross-section is slightly elliptical; the x axis is the m ajor axis in the 

direction across the slots. The cone cross-section becomes circular a t large 

distances from the die.

The fiber oscillation frequency can be measured by laser Doppler velocimetry. The 

oscillation frequency across the y axis (in the x direction) is higher than the 

frequency across the x axis. For a given set of operating conditions, the frequency 

is roughly constant along the threadline.
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The m easured frequency range matches the frequency range predicted by the 

model of Rao and Shambaugh (1993). Knowledge of fiber oscillation and cone size 

can be used to predict such things as fiber laydown pattern and fiber-to-fiber 

contact and entanglem ent
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2.7 Nomenclatuie

a = constant in  eq (23)

c = camera to filament distance defined in Fig 23, cm 

Cl = constant in  eq (23), m m ''

Cj = constant in eq (23), mm ^

Cj = constant in eq (23), mm'^

C = quantity defined in eq (23)

D = quantity defined in eq (23)

= weight average molecular w eight g/m ole 

Qp = polymer flowrate, cm^/min 

s = strobe to filament distance defined in  Fig 23, cm 

T, = air temperature, “C 

Tp = polymer temperature, ®C 

Vjg = discharge air velocity, m /s

X = Cartesian coordinate defined on Fig 2.2, mm

Xc = the location of the measuring volume's center, mm

XI = the left limit of the measuring volume, mm
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Xr = the right limit of the measuring volume, mm

Xĵ L ~ the left limit of an element of the m easuring volume, mm

Xm = the right limit of an element of the m easuring volume, mm

y = Cartesian coordinate defined on Fig 2.2, mm

y ' = fiber-mv crossover location, mm

z = distance below the die dehned on Fig 2.2, mm

Greek Symbols

a = angle between the z direction and the projection of the fiber upon the y-z plane 
(or x-z plane; see text), degrees

P = angle between the fiber axis and the y-z plane (or x-z plane; see text), degrees

Ô = fiber diameter, pm

0 = angle defined in Fig 2.3, degrees

p = the mean of the cone density [see eq (2.6)], mm

o = standard deviation of cone density [see eq (2.6)], mm
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(1) Discharge (nominal) air velocity: 17.6,30.9, and 39.7 m /s .

(2) Discharge air temperature: 300,310, 320,330, and 340“C

(3) Polymer flow rate: 0.40, 0.50, 0.60, and  0.70 cmVmin.

(4) Discharge polymer temperature: 300,325, and 350“C

Table 2.1 The operating conditions used in  the experiments.

42



polymer
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0.65 mm
2.03 mm

\<r
3.33 mm

Figure 2.1 Cross-section of the melt blowing die used in the experiments.
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a ir  p o ^ e r

s t r o b e

Figure 22a The photographic setup used to measure fiber cone diameter in the x 
direction.
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polym er 
air ^ , air

\  L /

m easuring vo lum e

Figure 22b  LDV setup used to measure fiber cone diam eter along the y  axis and 
fiber crossover frequency across the x axis.

45



die head

digital strobe c 25 cm
s 7 cm
e 15°

Figure 2.3 Top view  of the photographic setup used to m easure cone diameter.
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laser beam

measuring volume laser beam

measuring volume "A'

laser beams crossing in x-y plane w ith probe aligned along y
axis

Figure 2.4 The LDV arrangement for measuring cone diam eter along the x axis 
and crossover frequency across the y axis. The two laser beams cross in the x-y 
plane, the probe axis is aligned parallel to the y axis, and the fringes are parallel 
to the y-z plane.

47



measuring volume 'B'

laser beam measuring volume 'A'

laser beams crossing in x-y plane with probe aligned along x
axis

Figure 2.5 The LDV arrangem ent for measuring cone diam eter along the y  axis 
and crossover frequency across the x axis. The two laser beams cross in the x-y 
plane, the probe axis is aligned parallel to the x axis, and the fringes are parallel to 
the x-z plane.
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ÈÊm

Figure 2.6 A typical m ultiple image 
photograph of the x axis fiber cone from z=l 
to z=8 cm. The operating conditions were 
as follows: Qp=0.4 cm^/ min, Tp=350°Q 
Vjo=30.9 m /s , and T,=320“C
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' '  ' w i

Figure 1 7  A multiple image photograph of 
the y  axis fiber cone from z = 1 to z = 8 cm. 
The operating conditions were the same as 
for Figure 16.
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Polymer Q p = 0.40 cm min 
T p = 350 “ C

Air Vjg =30.9 m/s 
T 3 = 320 “ C

}
Û

A

□

10.0 
z (cm)

X axis cone diameter 

y axis cone diameter

16.0

Figure 2.8 A comparison between the x axis and the y axis cone diameters 
m easured using multiple image photography. Each data po in t represents the 
average from six replicate photographs, and each error bar represents a range of 
± one standard deviation.

51



4.0
Polymer Q p = 0.40 cm min 

T p = 350 “ C

3Q, Air =30.9 m/s
E T = 320 ° C

I
I  2.0 
«
8
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0.0

■ Multiple Image Photography

O Laser Doppler Velodmetry

J I I I I I 1 L
4.0 6.0 8.0 10.0 12.0 14.0 16.0

z  (cm)

Figure 2.9 The x axis cone diam eters m easured via both LDV and m ultiple image 
photography.
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Figure 2,10 The y axis cone diameters measured via both LDV and m ultiple image 
photography.
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Polymer Q p  = 0.40 cm min 

T _ = 350 ° C

= 320 ° CAir

S  2.0

1.0
= 17.6 m/s

= 30.9 m/s

= 39.7 m/s

0 .0  L- 
4.0 10.0 12.0 14.0 16.06.0 8.0

z (cm)

Figure 2.11 The effect of air velocity on the x axis fiber cone diameter. Each data 
point represents the average of six independent LDV measurements, and each 
error bar represents a range of ± one standard deviation.
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Figure 2.12 The average fiber angle determined from photographs. For the y axis 
measurements, the angle corresponds to a. Each data point represents the average 
of about 50 angle measurements, and each error bar represents a range of ± one 
standard deviation.
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0.6
Probe angle = 0°
Fiber angle = 90“
Fiber diameter = 30.1 p. m 

“ Wheel speed = 435 rpm

0.4
a>

0.2

experimental data

0.0 0.8 1.2-0.4 0.0
fiber-mv crossover (mm)

0.4 1.6- 1.2 - 0.8- 1.6

Figure 2.13 Effect of measuring volume position on data/passage. The solid line 
is predicted from the fitted correlation of eq 2.3.
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actual number of passagesbo

passages recordedCL

1.2 mm 1.2 mm1.2 mm 1.2 mm

3 mm 3 mm

Figure 2.14 A qualitative comparison between the actual num ber of fiber passages 
and the passages m easured by  the laser mv.
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f(x)

f(x)

Ax

Figure 2.15 Superposition of the fiber density distribution function f(x) and the 
laser measuring volume response function h .

58



10.0

g

H
© î .
o £0) O)
i lU >n
g  Q.

8

8.0

6.0

4.0

2.0

0.0

Polymer Q = 0.40 cm min □ across x axis

T p = 350 “ C O across y axis

Air. V .g = 17.6 m/s
- T g = 320 " C

— o

o
o

”  o

□1

□
□

1 . 1
□

I

o

1 9
- 8.0 -4.0 0.0 

xory (mm)
4.0 8.0

Figure 2.16 A comparison of corrected crossover frequencies per unit length across 
X and y  axes at z = 10 cm.
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Figure 2.17 The fiber crossover frequency per unit length across the x axis.
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Figure 2.18 The fiber crossover frequency per unit length across the y axis.
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Chapter 3

THE STOCHASTIC NATURE OF FIBER THREADLINE 

MOTION IN THE MELT BLOWING PROCESS

(The contents of this chapter have been submitted for a publication in the journal 

Industrial & Engineering Chemistry Research)

3.1 Abstract

Fiber threadline motion below a m elt blowing slot die w as studied as a stochastic 

process. High speed flash photography was used to obtain the fiber positions in  

three-dimensional space. For planes transverse to the spinning direction, a good 

fit of the experimental data to the bivariate normal distribution was obtained. The 

w id th  of the fiber distribution was found to increase linearly w ith respect to the
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axial distance from the die. There exists a small correlation between the orthogonal 

position variables in  die transverse plane. The orientation angle of the distribution 

sinusoidally varied as a function of die axial distance from the die; this suggested 

that the fiber m otion was that of an elliptical spiral which sinusoidally rotated in 

the transverse planes.

3.2 Introduction

In the melt blowing process, a high velocity gas stream or streams attenuate molten 

polymer strands to form microfibers; see Shambaugh (1988). These microfibers are 

extensively used in  manufacture of nonwoven textiles. Empirical and theoretical 

studies have show n that the melt blowing process can be controlled to produce 

fiber webs w ith  desirable characteristics. Shambaugh (1988), Kayser and 

Shambaugh (1990), and Milligan and Haynes (1995) have empirically m odeled the 

process for different die geometries. The theoretical models of Uyttendaele and 

Shambaugh (1990) and Rao and Shambaugh (1993) are based on fundam ental fluid 

mechanics and  can be used to predict and  improve melt blowing performance.

The characteristics of a nonwoven w eb depend on the fiber orientation and 

distribution in the web. The fiber orientation and distribution can be controlled by 

varying the operating conditions during m elt blowing. With a fixed die geometry
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and a fixed polymer type, the four main operating conditions are gas flowrate, gas 

temperature, polymer flowrate, and polymer temperature. H ow  these parameters 

affect the fiber orientation and distribution is of great in terest The models of 

Uyttendaele and Shambaugh (1990) and Rao and Shambaugh (1993) use these four 

param eters as inputs. Both models predict final flber size, while the Rao and  

Sham baugh model also predicts the presence of characteristic fiber frequencies 

associated w ith the melt blowing process. Chhabra and Shambaugh (1996) 

experim entally measured the fiber threadline amplitudes and frequencies of 

vibrations. Their work correlates w ith the predictions of Rao and Shambaugh's 

m odel. Their work also suggests that the vibrational pattern of the fiber motion 

has a well-defined statistical distribution. The present work involves the 

experim ental measurement of the statistical distribution of the fiber threadline 

motion. This knowledge of fiber motion in m elt blowing will help in predicting 

the resultant fiber laydown in the product sheet

3.3 Literature Review

Spatial fiber distribution in nonwoven webs plays an important role in defining the 

physical characteristics of the web. Many analytical and experimental techniques 

have been developed to study the fiber distribution and orientation. All these 

techniques have concentrated on characterization of the final product web.
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Different m ethods to evaluate the average angle of orientation of the fibers in a 

web have been developed by the researchers. Hearle and Stevenson (1963) used 

a direct fiber counting meüiod to measure the fiber orientation. A small area of the 

web was viewed under a microscope and the fibers aligned in  difierent directions 

were counted. H uang and Bresee (1993, Part I) applied image processing 

techniques to autom ate and thus speed-up the fiber counting m ethod for 

measuring the diameter-based fiber orientation distribution. Random samples of 

a web image were taken, and image analysis techniques were used to evaluate the 

fiber orientation w ith  respect to the machine direction. Neither Hearle and 

Stevenson nor Huang and Bresee fit fiieir data to a standard statistical distribution 

function.

Prud'homm e e t al. (1975) developed an x-ray diffraction method to convert the 

crystal angle distribution within the fibers to the fiber orientation distribution in 

a cellulosic sample. They assumed that the fiber orientation distribution function 

N(e) is represented by the following geometrical relation:

= 7 7 - 5  r  (3.1)C sin 6 + cos €
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where

6 = fiber orientation angle

C = experim entally determined orientation param eter

Kallmes (1969) and Votava (1982) used a zero-span testing m ethod to evaluate the 

ratio of machine- and cross-directional strengths of paper. Votava used this ratio 

to determine the fiber orientation with the theory given by Van den  Akker, Jentzen 

and Spiegelberg (1966). Tsai and Bresee (1991) employed electrical measurements 

to characterize the fiber orientation. Then, w ith electric field theory, they 

transform ed the electric current distribution into a fiber orientation distribution. 

Rodrigues e t al. (1990) characterized anisotropy of papers in  terms of vision 

entropy. They used Shanon's (1948) famous relation of information entropy to 

extract the degree of directionality in the spatial fiber distribution. Recently, 

Pourdeyhim i (1993) applied image processing techniques to assess the fiber 

orientation in  simulated nonwoven webs. These nonwoven webs w ere simulated 

with overlapping straight lines generated random ly. He used three methods (the 

methods w ere Fourier analysis, pore orientation, and flow-field analysis) to 

evaluate the dom inant direction of alignm ent of the fibers in a sim ulated web.
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Web uniform ity depends on the spatial distribution of fibers. The uniform ity of 

the w eb structure affects ttie physical properties and the appearance of the web. 

For example, infiltration processes, web performance is largely dependent on the 

uniformity of the web. Any thin spots in  the fiber sheet will cause filter failure by 

allowing large particles to pass through the filter. Typically, nonwoven webs are 

characterized in terms of basis weight, structure, and visual uniformity. The 

nonwovens industry uses the coefficient of w eight variation as a standard quality 

index  to quantify the web uniformity. Beta rays and electromagnetic radiation 

(gamma rays and lasers) have been used for online measurement of the w eb mass 

and uniformity. See Boeckerman (1992) for details on the application of beta rays 

for m easuring web uniformity. Aggarwal, Keimon and Porat (1992) used a 

scanned-laser technique to monitor botti weight and cover factor of a web. In their 

method, the scanning laser light was transmitted through the web twice w ith  the 

aid of a retro-reflector. Then, the intensity of the transmitted light was calibrated 

to give information about the variations across the web and the web mass. Their 

technique can be used as a monitoring tool and a feedback signal sending device 

to control the variations in mass and structure of the web. H uang and Bresee 

(1993, Part HI) correlated an image analysis technique with more conventional 

m ethods of measuring the w eb uniformity. The conventional m ethods they 

considered were the measurement of the structural uniformity w ith a gamma-ray 

gauge and the cut-and-weigh procedure to measure the coefficient of web mass 

variation. They correlated the coefficient of web mass variation to the coefficient
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of pixel gray level variation of the web image. They also performed a 

nonuniformity spectral analysis to evaluate the coefficient of variation of the visual 

uniformity in  the machine-direction and the cross-direction. Ericson and Baxter 

(1973) studied the structural and visual uniformity of spunbonded webs. They 

correlated the tensile strength of die web w ith  the filament separation and the 

visual uniformity. They determined the filam ent separation w ith a projection 

microscope. By measuring die intensity of the transmitted light they evaluated the 

coefficient of variation of the visual uniformity.

The excellent w ork of previous researchers concentrated on the characterization of 

the nonwoven web after its production. However, the present work concerns the 

m easurem ent and statistical modeling of the presence of a melt blown fiber as a 

function of its position below the spinneret Relating this to the laydown pattern 

is sim ply a m atter of defining the location (z position) of the collection screen 

below the sp inneret Of course, the implicit assumption here is that the presence 

of the collection screen does not gready disturb the fiber distribution. In 

experim ental practice this is not a bad assum ption if a proper level of suction is 

applied to the collection screen.
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3.4 T he Statistics of Fiber Position

In the m elt blowing process, the fiber moves in  three orthogonal dimensions. 

Chhabra and Shambaugh (1996) have described the volume below a m elt blowing 

die in  w hich a fiber travels as a fiber "cone". The apex of the cone is at the 

spinneret hole. To understand the fiber motion, the fiber position, velocity, and 

orientation have to be evaluated as a function of time. W u and Shambaugh (1992) 

used LDV (laser Doppler velocimetry) to m easure the fiber velocities in three- 

dim ensional space during melt blowing. The spatial positions, which the fiber 

threadline assumes during its motion, can be predicted by rigorous fluid 

dynamical modeling as was done in the Rao-Shambaugh model (1993). In contrast 

the present study considers a statistical approach to understand the fiber motion 

in  m elt blowing: a statistical model was fit to experimentally-determined fiber 

positions.

3.4.1 Mathematical Formulation

Chhabra and Shambaugh (1996) experimentally showed that for a given transverse 

plane, the fiber vibrations for a single-hole slot die decreased as the fiber moved 

away from its mean axial position. This m eant that the fiber spent most of its time 

close to its mean axial position. The tendency of fiber to stay mostly near the center
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of the fiber cone was apparent firom the m ultiple exposure photographs. 

Consequently, it  w as hypothesized Üiat the fiber threadline positions follow a 

Gaussian distribution. W ith this assumed distribution, Chhabra and Shambaugh 

corrected the firequency of vibrations measured w ith  laser Doppler velocimetry 

(LDV). The distribution in  the x-direction was assum ed to be independent of that 

in the y-direction, and vice versa. This assumption m ay not be true. Since the fiber 

is a continuous strand, one would expect motion in  one direction to affect the 

motion in an orthogonal direction. Furthermore, a degree of dependence can also 

be attributed to the turbulent gas jet which serves as an  attenuating force in  m elt 

blowing. The momentum of such a turbulent gas jet in  tiie x-direction is correlated 

to the m omentum  in  the y-direction (Tennekes and Lumley, 1972). As a result of 

these concerns, the work described herein involved distributions w ith  a 

dependence param eter (correlation coefficient).

Various bivariate probability distributions could be fitted to the fiber distribution. 

Examples of commonly used bivariate probability distributions include the norm al 

distribution, binomial distribution, Cauchy distribution. Student's t-distribution, 

and gamma distribution. A detailed review of bivariate probability distributions 

is given by M ardia (1970). However, only those distributions that fulfilled the 

following criteria w ere considered worth fitting:
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(i) Since the fiber motion is continuous, the distribution function should be 

continuous.

(ii) Experimental observations (Chhabra and Shambaugh, 1996) have shown that 

most of the fiber threadline positions are close to a central m ean position, and the 

num ber of positions decrease as distance hrom the m ean position increases. 

Therefore, the distribution should be unimodal and the probability of occurrences 

should decrease at distances away from the mean position.

(iii) The random  variables should have both positive and negative real values.

Thus, the choice is limited by the above criteria. A bivariate normal distribution 

is a well-defined distribution which fulhlls the above criteria. Examples of other 

bivariate distributions, which also have above-mentioned properties, include the 

bivariate Cauchy distribution and the bivariate Student's t-distribution. However, 

for the bivariate Cauchy distribution and the bivariate Student's t-distribution, the 

random  variables must be from a population that follows a bivariate normal 

distribution. Therefore, in ttie present study, only the bivariate normal distribution 

was considered. Mardia (1970) and Johnson and Kotz (1972) have described the 

mathematical properties of these bivariate distributions.
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The bivariate norm al distribution has been applied to m any problems in  science 

and engineering. For example, Evans et al. (1993) determ ined the direction of 

dominant wave travel, Üie variance in wave slopes, and  the directional spectra of 

waves in  the ocean hrom the parameters of a fitted bivariate normal distribution. 

Holst and Schneider (1985) applied the bivariate log-normal distribution to study 

the stochastic relationship between the diameter and the length of fibers in 

aerosols. Johnson and Kotz (1972) have presented a detailed review of the 

mathematical properties of the bivariate normal distribution.

hi the present work, the probability p(x, y) was evaluated for the presence of a fiber 

at a position (x, y) in  a plane of constant z below the die. Figure 3.1 shows the die 

with the appropriate coordinate system. The following assumptions were m ade 

concerning the fiber motion:

(a) The fiber threadline is assumed to be made of infinitesimal beads linked to

each other along the fiber axis. The link is flexible, but the motion of 

sequentially connected beads is correlated. The assumption of linked beads 

is reasonable because, physically, the fiber threadline is not a series of 

independent beads falling in random directions from the die.
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(b) The m otion of a bead is assumed to be correlated to the motion of its 

neighboring beads only. Therefore, the m ore distant are the two beads, the 

m ore independent is their motion. The size of the neighborhood of 

sequentially connected beads defines the characteristic length of a tiber 

elem ent These fiber elements overlap each other as neighborhoods of the 

beads overlap. Thus, it is assumed that the position vector of a bead is 

correlated to tiiat of another bead in  the same fiber element only. The 

correlation is called auto-correlation since x  and y components of the bead 

position vector are correlated to the corresponding components of the other 

bead position vector.

(c) The m otion of the fiber threadline is assumed to be a Markov process. As 

described by Stewart (1994), a Markov process is a stochastic process whose 

fu tu re  evolution only depends on its current state and not on its past 

history. The theory of Markov processes is used to analyze diffusion. 

Brow nian motion, electromagnetic signals, and many other stochastic 

processes. Gillespie (1992) defines a stochastic process as a random  function 

X(t) whose values up to and including parameter t allow one to 

probabilistically predict the function's value at an infinitesimally later 

param eter value f+df. The values of the random  function X(t) are called 

states, and a set of these states is called the state space of the process. The
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state space of a stochastic process can be discrete or continuous. A 

continuous stochastic process has a continuous (real-valued) state space, and 

its param eter space is also continuous. The fiber threadline m otion is 

considered as a continuous Markov process because the fiber threadline is 

a continuously moving strand that assumes various positions in  a real­

valued space at real-valued times. The state of a hber bead in the fiber 

threadline is dehned by its position and its m omentum, which are 

correlated to the positions and the momentums of the other beads in  the 

sam e fiber elem ent Since the motion of a fiber bead is assumed to be a 

continuous Markov process, die future state of a fiber bead is dependent 

only on its present state, and is independent of its past states. It is 

reasonable to consider the motion of the fiber threadline as a continuous 

Markov process since the momentum from the past state is conserved in  the 

present state and not in  tiie future state. Furthermore, the momentum at the 

present position of a fiber bead, the momentum transfer from the external 

forces, and the future states of the other beads in the same fiber element 

define the future position and the momentum of the fiber bead. Therefore, 

the future state of a fiber bead is independent of the past states, and only 

dependent on the present state. This assumption can be used to predict the 

fiber laydown pattern as described in a later section.
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In the present study, the assumptions (a)-(c) are validated using the experimental 

data. W ith the above assumptions, the fiber density distribution is the actual 

probability density distribution of the positions of individual fiber beads. The 

cumulative distribution function for the fiber bead probability density distribution 

function is normalized in the ry  plane. In the following sections, some relevant 

mathematical properties for fiie bivariate norm al distribution are presented in 

relation to the fiber motion.

3.4.1.1 Bivariate Normal Distribution

For a bivariate Gaussian probability distribution, the probability p(x, y) of fiber 

being present at position (x, y) can be described in the general case as Johnson and 

Kotz, 1972)

1 f 1p(x, y) = ------------  ■ exp - - g ( x ,  y)
2710 o / l  -  V

(3.2)

w here

Oj = standard deviation of positions of fiber in x  direction
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<5 = standard deviation of positions of fiber in y direction

p = correlation coefficient of fiber positions in x  and y directions

The quantity g(x, y) in equation (3.2) is defined as

g{x,y)  =
-  P^)

-2p
/  \ 

y -  P; (3.3)

where

Pi = mean position of fiber in x  direction

Py = m ean position of fiber in  y direction

Fitting the distribution is mathematically simplified if the distribution is 

standardized. By substituting p, = Py = 0 and a ,  = Oy = 1 in equations (3.2) and 

(3.3), the following standardized bivariate distribution can be obtained:
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2tc
• exp

. 2 ( 1 - p M
(3.4)

The Cr and Q  are norm alized variables given by

Cx =
X -  II,

(3.5a)

and

c„ =
y - (3.5b)

Johnson and Kotz (1972) have shown that quadratic term g(x, y) in equation (3.3) 

follows a distribution with 2 degrees of fteedom. Therefore, statistic w ith two 

degrees of freedom (v = 2) and probability distribution/(x^ ) are represented by

f  = %v=2 = y) (3.6)

and
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 ̂ ^-^>/^exp(-g/2)_ 1 r i l
[2"/2p(v/2)] 2 I 2

(3.7)

If a  percent of the distribution is contained in  the region 0 s s K, then

a
ÏÔÔ = Pr[f ; K] = 1 -

oo

/ exp(-xV2) (3.8)

Integration gives

« 1 I K'  = 1 -  exp -  —
100 ^ 2 ,

(3.9)

Solving for K  gives

K = -  2In 1 -

g
ÏÔÔ (3.10)

For arbitrary a  and K, the ellipse, which contains a  percent of the distribution, can 

be obtained by substituting equations (3.6) and (3.10) into equation (3.3) to obtain
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t \
X-IL^

-2p
/ \ 

x - i i .
\

y-K,
(

y-K, (3.11)

The equation (3.11) is the most general form of equation for an  ellipse. This 

equation represents an ellipse whose center does not lie a t the center of the origin 

and whose major axis has been rotated about its center. The center of the general 

ellipse (m. My) can be translated to the origin of the coordinate system. The 

equation of this translated ellipse is given by

\ 2 p x ' y \ = - 2(1 - p2)ln 1 -

g
ÎÔÔ

(3.12)

where

X' = x-Mx

and
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y' =y-Hy

Thetv the translated ellipse, given by  equation (3.12), can be rotated by applying 

the following transformation:

COS0 -s in 0

.y">  ̂sinG COS0, .y'>
(3.13)

where x" and y" are arbitrary coordinates of the ellipse rotated by an angle 0.

Therefore, the equation of the rotated ellipse is

1 psin20 x '2 + 1  ̂ psin20

J [ o f  J
 ̂ sin20 sin20 ^ 2pcos20 ^ x 'y '+ 2 ( l  -  p ’■ ) J  1 -  J L  

I 100 j
= 0 (3.14)
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As described by Palmer and Krathwohl (1921), the major axis of the rotated ellipse 

coincides w ith the x  axis w hen the third term (the term containing x 'y ' )  in 

equation (3.14) becomes zero. Mathematically, this condition can be expressed by 

the following equation:

sin 28 sin20  2 pcos20 

^

Hence, the appropriate angle of rotation of the major axis of the ellipse can be 

obtained by solving equation (3,15) for 0; the resulting equation is

0 = — arctan (3.16)

Therefore, for a given variance vector, the rotation of the ellipse w ould depend on 

the correlation coefficient p. Table 3.1 shows the various values 0 can have for 

three different cases. Since tiie two ends of the major axis of the distribution ellipse 

are indistinguishable from each other, the orientation angles ranging betw een 90° 

and 180° (as in case 3, Table 3.1) can be considered as negative angles lying

91



betw een -90" and 0", respectively. Therefore, the transformed range of the 

orientation  angles w ould be -90“ to 90“ instead of 0“ to 180“. As described by 

Johnson and  Kotz (1972), a zero correlation (as in case 2, Table 3.1) means that the 

variables are independent In our case, it would mean tha tz  coordinate of the fiber 

position is statistically independent of die y  coordinate. However, zero correlation 

is not expected for die fiber threadline motion as diere exists some interdependence 

betw een the x  dimension momentum  and the y dimension momentum  of the 

threadline. Thus, the positions in the two orthogonal directions m ust depend on 

each other. This interdependence, however, may not be constant along the fiber 

threadline and may also vary  w ith time. Varying values of the correlation 

coefficient along the threadline a t a given time would cause the distribution ellipse 

to be oriented at diderent angles in the xy  planes at different z positions for a given 

set of variance vectors. In a physical sense, a distribution ellipse is a cross-section 

of the fiber cone at a z position. A variation in die correlation coefficients along the 

threadline w ould mean that the cross-sections of the fiber cone at different z 

positions are oriented a t different angles in the xy  planes a t a given time. 

Therefore, a t any instant^ the fiber cone w ould be twisted at different angles along 

the fiber tiireadline for a given set of variance vectors and correlation coefficients. 

The variation in the twisting angles could be a regular or irregular function of the 

z position a n d / or time. This means that, due to a variation in the twisting angles.
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the fiber cone w ould have an irregular or a regular rotational motion in the xy 

planes.

A large absolute value of the correlation coefficient is also no t expected as it w ould 

m ean clustering of data points in a highly elliptical m anner w ith the major axis 

much larger than the minor axis. Since Chhabra and Shambaugh (1996) have 

shown that fiber amplitude in the x direction is not very m uch larger than that in 

the y direction, a small value of the correlation coefiicient is expected.

3.4.2 Fitting the Data to the Distribution Function

The bivariate normal distribution is a continuous function. However, the 

experimental data is discrete. The experimental bivariate data were fit by 

expanding a procedure outlined by Blank (1980) for a univariate normal 

distribution. For our bivariate case. Blank's procedure was transformed into the 

following steps;

1. The experimental position data (x and y coordinates for a given value of z) were 

grouped into cells that form a uniform spatial grid. Figure 3.2 shows the grid 

witti the frequencies of fiber occurrences centered at each grid cell. The num ber 

of cells in each direction was calculated as a positive square root of the num ber
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of observed positions. Square root values were rounded to the next higher 

integer values. The grid size in  each direction was calculated by dividing the 

corresponding range of the measured variable in  that direction by the number 

of ce lls.

2. The means and tiie standard deviations of both tiie variables from the grouped 

data were found with the following equations:

E f y j ' ÿ j
u =

=

-  Ki 'N

(N -  1) ^y =

-

(N -  1)
(3.17)

where

;=i

fyrilfij1=1

N = iiunibGr of observations
i = l  ; = l
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n = IN T E G E R (^  ) + 1

9i) is the center of the cell Q

3, The correlation coefficient p of the variables was calculated from  the raw  data 

w ith the formula

P =
- ^ ) - ( y i  - y )

i = l

N ' N

[ i = i
E(y. ~ ÿ f
i = l

(3.18)

where

X  =

N

1 =  1  

N

y  =

N

E y ,
i = l

N

4. The variables were norm alized using equation set (3.5). The x  and  y values at 

the upper boundaries of the cells were used for this calculation.
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5. The cumulative probability density function was computed for each grid  cell 

using the norm alized probability^ density function as given by equation (3.4). 

Since the data obtained brom experiments w ere finite, the cumulative 

distribution function and the frequency of the grid  cell Q  were evaluated w ith 

these equations:

y  " f .  “Cy - /  / '  (y)

-  /  /  P(C, g  dC, " 7  7  P(Ĉ  (,) dC, (3.19)

6. For a 95% confidence level, a goodness-of-fit test was perform ed on the 

calculated frequencies and the observed frequencies of the cells.

3.4.3 Experimental Equipment

A single hole slot die was used in the experiments. The polymer was m elted and 

pressurized in  a Brabender extruder w ith a 19.0 mm (0.75 in.) diam eter barrel and
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381 mm (15 in.) long screw. The m olten polymer was pum ped to the die using a 

modified Zenith pump. See Tyagj and Shambaugh (1995) for an explanation of the 

polymer supply details. The polymer capillary of the die was 2.97 m m  long and 

0.407 mm in diameter, and the air slots were 0.73 mm wide and 74.6 m m  long. The 

polymer used was 88 MFR (melt flow rate) Fina Dypro'^** polypropylene w ith  

= 160,000 and M, = 40,000. Figure 3.1 shows the cross-section of the die. The 

following operating conditions were used in the experiments: discharge (nominal) 

air velocity = 26.8 m /s , discharge air temperature = 320“C, polymer mass flow rate 

= 0.3 g/m in, and discharge polymer tem perature = 330”C

The fiber exiting the die was photographed w ith two Canon AE-1 cameras. One 

camera was equipped with a Tokina AT-X Macro 90 mm lens and the other camera 

had a Sigma 50 mm macro lens. A Sunpak Auto 622 Pro-system flash provided the 

illumination.

3.4.4 Experimental Technique

Any technique that can measure the fiber positions or the number of times the fiber 

passes through a position can be used for the stochastic modeling of the fiber 

motion. Chhabra and Shambaugh (1996) used laser Doppler velocimetry (LDV) 

to measure the fiber crossover frequency at a position in the xy  plane below a melt
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blowing die. The actual number of fiber crossovers at a position over a period of 

time was proportional to the crossovers through the measuring volume of the LDV. 

To evaluate die actual crossover frequency a t a position, Chhabra and Shambaugh 

assum ed the fiber distribution to be Gaussian. Since, in  our work, the fiber 

distribution itself was to be evaluated, LDV could not be used, histead, high speed 

flash photography was used to measure the fiber position a t an instant of time.

The three orthogonal coordinates (x, y, and z) of a Cartesian system were used to 

define the fiber position. For a fixed value of z, only x  and y coordinates need to 

be measured simultaneously. Two cameras, placed along x  and y axes at the same 

z below the die, were simultaneously fired to capture, respectively, the y and the 

X  coordinates of the fiber. Figure 3.3 shows the top view of the experimental setup. 

The camera placed along the y axis was called the z-camera since it captured the 

X coordinate of tiie fiber position. Similarly, tiie camera placed along the x axis was 

called tiie y-camera. The shutters of the cameras were m anually operated in 

darkened conditions and a flash of about 1/14,000 second duration was fired. 

Because of the high velocity of light; the reflected light from the fiber essentially 

reached both cameras simultaneously. The z-camera was fitted w ith a 50 mm 

macro lens, while tiie y-camera had a 90 mm macro lens. To keep the field of view 

identical for botii lenses, the z-camera was placed 9 cm from the fiber, while the y- 

camera was placed 16 cm from tiie fiber. With this setup, the field of view of both
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Üie lenses was 6 cm x 4.75 cm. The 50 mm lens was set a t an f-stop of 11, while the 

90 m m  lens was set at an f-stop of 8. A stainless steel ruler w ith  1 mm graduations 

w as tem porarily  placed along the z axis. The end of the ru ler w as placed a t the 

polymer orifice of the die. Thus, a photograph of the ruler both defined the origin 

of the coordinate system (see Figure 3.1) and allowed us to scale the measurements 

of fiber positions. The ruler was removed before any polymer w as extruded from 

the die. The film used was Kodak T-Max 400 developed w ith  Kodak T-Max 

developer. The paper used w as Kodak Polymax IIR C  at 3% contrast grade.

The cam eras were placed at z levels of 2.5 cm and 6.5 cm. A t each z level, 100 

replicate photographs were taken. A sample size of 100 was assum ed to represent 

the fiber distribution completely. The time taken to obtain a data set a t each z 

position was assumed to be sufficient to make the fiber motion process statistically 

stationary (i.e., invariant under an arbitrary shift in the time origin). The distance 

of die fiber fi-om the zero position was measured for both x  and  y photographs a t 

sixteen z levels between 0.5 cm and 8 cm. Photographic prints w ere developed 

w ith  a magnification of four. Measurements had a precision of 0.1 m m  in actual 

distance (not distance on the negative, bu t distance in the actual m elt blowing 

system).
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3.5 Results

A com puter program  in  FORTRAN 77 w as developed using the algorithm 

described previously. The program was run  on an IBM RBC 6000 computer using 

the IMSL subroutine BNRDF to compute the bivariate normal cumulative 

distribution function (IMSL, 1994). The goodness-of-fit test was done w ith a 

subroutine developed by Press et al. (1992). Surface and contour plots of the 

experimental distribution and the fitted bivariate normal distribution were gridded 

using the Kriging method; see Joumel (1989).

It was found that; at a 95% confidence level, the experimental data fitted a bivariate 

norm al d istribution  at all z positions studied. Figure 3.4 shows the root m ean 

square deviation between the experimental data and the fitted distribution for 

various values of z. The average root m ean square deviation of the probability of 

occurrence w as 0.9%. The fitted distribution was found to normalize in  the 

experimental range of the x and y values. Therefore, the experimental data 

completely represented the fiber distribution in  the xy  planes. Figures 3.5 and 3.6 

depict the surface plots of the experimental and the fitted bivariate normal 

distribution a t z = 20 mm. Figures 3.7 to 3.12 show both experimental and fitted 

data surface plots a t z levels of 40, 60, and  80 mm (see Appendix II for the 

experimental and fitted fiber distribution surface plots for z = 10, 30, 50, and 70
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mm). From these figures, it can be dearly seen tiiat a bivariate norm al distribution 

fits the experimental data. Figure 3.13 compares the contours of the fitted and the 

experimental distributions a t z = 20 mm. Although m inor peaks in  experimental 

data are p resen t the dom inant peak(s) is well-fit by the elliptical pattern. The 

arrow  in  the figure describes the orientation of the major axis of the (fitted) 

elliptical pattern w ith respect to the x  axis. Both experimental and fitted data are 

oriented in  the same direction. Similar contour plots for z positions of 40, 60, and 

80 m m are shown in Figures 3.14, 3.15, and 3.16, respectively.

As a next step, the variations w ith z position of the statistical parameters of the 

fitted data were obtained. Figures 3.17 and 3.18 depict the auto-correlation profiles 

for the X  and y directions, respectively. Both these plots show that a position of the 

fiber in  the z direction is correlated only to those positions of the fiber that are in 

its dose neighborhood along tiie same direction. The strongest auto-correlation is 

seen between the fiber z positions that are approximately 5 mm from each other. 

Therefore, under tiie studied conditions, a fiber element that forms a neighborhood 

is contained in a spatial separation of about 5 mm along the z direction (the spatial 

separation along the z direction is defined as the distance between the two xy 

planes along the z direction). The results of Figures 3.17 and 3.18 validate our 

assumptions that (a) the fiber threadline is a linked chain of fiber beads, and (b) the 

X  and tiie y components of the position vector of a fiber bead are correlated only to
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the corresponding components of the position vectors of the fiber beads lying in  

the sam e fiber element along fiber axis. However, die direction of the fiber axis 

m ay no t be die same as the z direction. Sham baugh (1988) described the 

orientation of the fiber in  different zones below a m elt blowing die. The Rao and 

Shambaugh (1993) model emphasizes that the direction of the fiber axis is often 

d i^ e ren t than the vertical direction. Therefore, a spatial separation along the z 

direction may not necessarily be equal to the length of a section of the fiber 

contained in i t  Consequendy, the size of a fiber elem ent (which forms the 

neighborhood of the fiber beads, and is contained in  the characteristic spatial 

separation of about 5 mm along the z direction) varies w ith the z position and  the 

orientation of the fiber below the die. However, the characteristic spatial 

separation along the z direction does not vary w ith the z position below the die. 

Furdiermore, low values of auto-correlations are seen in  Figures 3.17 and 3.18 for 

the fiber z positions that are separated m uch further than 5 mm. Since the 

downstream fiber positions are the past states of the upstream  fiber positions and 

the upstream fiber positions are weakly correlated w ith the downstream fiber 

positions further than than 5 mm, the future state (upstream fiber position) of the 

fiber motion is independent of its past state (downstream fiber position). This 

result validates our assum ption that fiber threadline motion is a Markov process.
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Figure 3.19 shows the profile of the correlation coefficient between x  and y 

positions of the  fiber. As expected, the correlation coefficient was low for all the 

z positions studied: an average absolute value of 0.08 was found for the correlation 

coefficient This result implies little interdependence between the x  and  the y 

positions. As mentioned earlier in the mathematical formulation, a non-zero value 

of the correlation coefficient means a specific orientation of the major axis of the 

fiber distribution ellipse with respect to the x  axis in  the xy plane. Therefore, the 

physical effect of the variation of the correlation coefficient was studied as a 

variation of the orientation angle of the distribution ellipse. Figure 3.20 shows the 

variation of the orientation angle of the m ajor axis of the distribution ellipse w ith 

respect to the x  axis in  the xy planes along the z direction. The graph shows that 

there is an aperiodic sinusoidal variation in the orientation angle profile. To 

extract die frequency of variation of the orientation angles, a Fourier transform  of 

the data  was taken. Since a fiber elem ent was contained in a characteristic 

separation length of about 5 mm in the z direction, the data were sam pled at a 

spatial separation (spatial period) of 5 mm. This corresponded to a sam pling wave 

number (spatial frequency) of 1.26 mm \  Figure 3.21 shows the Fourier orientation 

angle am plitude spectrum  plotted against the z direction spatial separation. The 

spectrum depicts the spatial separation content of the orientation angles. However, 

die spectrum does not give any indication where these spatial separations exist in 

the data se t  According to Kramer (1996), a narrow  Fourier am plitude spectrum
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means ttiat the variation of orientation angles has a dominant frequency or a spatial 

separation, w hich can produce almost sinusoidal variation, h i contrast, a broad 

spectrum  corresponds to a variety of frequencies that produce an  irregular 

variation. It can be seen from Figure 3.21 that there is a high am plitude, narrow 

spectrum for the spatial separations of about 5mm, while there is a h igh amplitude, 

broad spectrum  for the spatial separations larger than 15 mm. The low peaks in 

the spectrum are present for the spatial separations between 10 and  15 mm. This 

m eans that a large number of fiber cone cross-sections, which are spatially 

separated by 5 mm, have an almost sinusoidal variation in their orientation angles 

in  the xy planes. A small num ber of fiber cone cross-sections th a t are spatially 

separated between 10 and 15 mm also have an almost sinusoidal variation in their 

orientation angles in the xy planes. However, there are a large num ber of fiber 

cone cross-sections that are spatially separated between 20 and 40 mm and have 

an  irregu lar variation in their orientation angles in  the xy  planes. These results 

again show  that fiber threadline has a characteristic separation length of about 5 

mm in  the z direction. Furthermore, the fiber cone is twisted at angles that have 

a sinusoidal variation with a spatial separation of about 5 mm. A sm all number of 

higher harmonics in  variation of the fiber cone twisting angles, which have a 

spatial separation between 10 and 15 mm, is also present On the other hand, there 

is no correlation between the fiber cone twisting angles that are spatially separated 

by m ore than 15 mm. Thus, the fiber elements follow a M arkov property of 

forgetting their past history. This validates the assumption that the fiber threadline
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m otion is a M arkov process. The varying angles of orienbtion of the fiber cone 

cross-sections are seen in the distribution contours in  Figures 3.13 through 3.16.

Figures 3.22 and 3.23 show, respectively, the x  and  the y dimension standard 

deviation profiles. Higher values of die standard deviation mean a greater spread 

of die distribution. For the bivariate normal distribution, 46.7% of the distribution 

is present w iüün  one standard deviation of both the variables w ith an absolute 

correlation coefficient of 0.08. The spread of the fiber distribution is linear. For the 

same die, Harpham and Shambaugh (1996; 1997) have shown that the air jets also 

spread linearly w ith z  position. The air jet half-w idth describes the jet spread. 

(The jet half-width is a position, transverse to the axial flow, where the velocity of 

the jet falls to half its maximum value.) Figure 3.24 compares spreading of the 

fiber distribution and the air jets. The slope of the fiber spread is different from the 

slope of the air je t However, the graph shows that fiber distribution is contained 

w ithin  one jet half-width of the air je t  The best-fit line for the fiber standard 

deviation profile lies at almost half the distance from the jet half-width line. 

Furdiermore, it has been found that about 96% of the fiber distribution is present 

within one jet half-widtti. This means that the energy from the air jet is transferred 

to the fiber w ithin one jet half-width. Tennekes and Lumley (1972) describe the 

energy cascade in a turbulent je t The energy from the m ean flow is transferred to 

the large eddies via shear forces. The large eddies, which are mostly present
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between Üie center and one jet half*widtiv lose their energy to the small eddies by 

vortex shedding. These small eddies, w hich are present tow ard the center of the 

jeb lose their energy by viscous dissipation. It is possible that the energy brom the 

eddies is transferred to the fiber in  m elt blowing. Gutm ark and W ygnanski (1976) 

have shown that most of the energy transactions in a rectangular turbulent jet take 

place w ithin one jet half-width. A  fiber segment m ight leave the turbulent je t  

However, because the segment is linked, the segment tends to be draw n back into 

the turbulent je t  Therefore, it is reasonable that about 96% the fiber distribution 

lies w ithin  one jet half-width.

The linear spreading and the rotational character of the fiber motion 

m athematically describe the fiber cone as studied by Chhabra and Shambaugh 

(1996). Figure 3.25 depicts the profile of the distribution sample m ean values in 

both X  and y directions. An expected population mean zero position is shown as 

the dotted line in the plo t Qoseness to mean zero position is seen a t all z positions 

studied.

3.6 Conclusions

The foremost conclusion of this study is that the fiber density distribution follows 

a unim odal bivariate probability distribution. One such distribution that fits the

106



experimental data is a bivariate normal distribution. Statistical analysis shows that 

the fiber motion in  the transverse plane (%y plane) is almost independent in  the two 

ortiiogonal directions ( r  and y) forming the plane. However, due to the non-zero 

value of the correlation between the x  and y coordinates of the fiber position, the 

major axis of the distribution ellipse is oriented a t a certain angle w ith  respect to 

the X  axis in  the xy  plane. There is a high degree of sinusoidal variation in  the 

orientation angles of the fiber cone cross-sections along the z direction. This 

suggests that the fiber motion is that of an elliptical spiral which sinusoidally 

rotates in  the transverse planes.

The fiber distribution spreads linearly w ith the z direction. This is a corollary to 

the linear increase in  fiber cone amplitude as show n by Chhabra and Sham baugh 

(1996). From the present study and fi-om the studies on the flow field of the jet by 

H arpham  and Sham baugh (1996; 1997), it can be concluded that m ost of the 

transverse motion of the fiber threadline takes place w ithin one jet half-width. The 

dynam ics of the turbulent air jet also suggest the presence of most of the fiber 

distribution w ith in  one jet half-width.

The fiber positions are auto-correlated only to those positions that lie w ithin a 

lengtii of a fiber element along the fiber axis. This means that a fiber position along 

the threadline is only affected by the fiber positions that are in the close
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neighborhood. This neighborhood of die fiber beads (fiber element) is contained 

in a characteristic spatial separation of about 5 mm in the z direction. Furthermore, 

since the motion of the fiber threadline is a continuous Markov process, the future 

state o f a fiber threadline section is only dependent on its present state, and is 

independent of its past states. Therefore, the downstream fiber positions in the xy 

plane will not affect ttie upstream fiber positions, if the positions are further apart 

than a characteristic spatial separation along the z direction, and  vice versa. If an 

im aginary screen, which allowed only air to pass through, w as positioned in the 

xy  p lane at an arbitrary z position, the fiber would be captured by that screen. 

Since the captured fiber sections would not affect the fiber section that is just 

reaching the screen, the laydow n pattern of the fiber would follow a bivariate 

normal distribution. Therefore, the fiber laydown pattern can be predicted from 

the obtained fiber distribution. Figure 3.26 shows the top view of the fiber pattern 

formed on a real (not imaginary) wire-mesh screen placed at z position of 300 mm. 

The collection time was about one minute. The air flow characteristics of this 

screen (the screen had 65% open space) approximate the flow character of an 

imaginary screen. The photograph in Figure 3.27 depicts the side view of the fiber 

collected for a longer duration (about 10 minutes) on the same screen at the same 

position. From the bell shape of the fiber distribution in Figure 3.27, we can 

conclude that the fiber laydown pattern follows a bivariate norm al distribution.
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Knowledge of die spread and the orientation of a fiber distribution w ill be used in 

future work. One future goal w ill involve predicting fiber-to-fiber entanglements 

below a multiple hole die. This knowledge of entanglements should be useful for 

tasks such as (a) designing the spatial separation of the spinneret holes in  the melt 

blowing dies, and (b) predicting the structural properties of the m elt-blown webs.
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3.7 Nomenclature

c = camera to filament distance defined in  Figure 3.3, cm 

C = experimentally determined orientation parameter [see eq (3.1)]

Cÿ = grid  cell in  Figure 3.2

fr i = sum  of firequendes of cells in  the x  direction [see eq (3.17)] 

f y i  = sum  of ffequendes of cells in the y direction [see eq (3.17)]

= frequency of occurrence of fiber in grid  cell Q  

~ probability distribution [see eq (3.6)]

K = upper lim it of probability d istribution region [see eq (3.10)] 

nip = polymer mass flow rate, g /m in  

N  = num ber of observations

N(e) = fiber orientation distribution function [see eq (3.1)] 

p(x, y) = probability density distribution function

P(Ç^, Q) = cumulative probability density distribution function of a cell [see eq 
(3.19)]

s = flash to filament distance defined in  Figure 3.3, cm 

= air temperature at die discharge, “C
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Tp = polym er temperature a t d ie  discharge/ “C

Dy, = nom inal air discharge velocity/ m /s

X  = Cartesian coordinate defined in  Figure 3.1/ mm

t=  abscissa of the center of tiie grid  cell [see eq (3.17)]

x ' = arbitrary x  coordinate of the  translated ellipse [see eq (3.12)]

x" = arbitrary x coordinate of the rotated ellipse [see eq (3.13)]

y = Cartesian coordinate defined in  Figure 3.1/ mm

y = ordinate of the center of the grid cell C  ̂[see eq (3.17)]

y ' = arbitrary y coordinate of the translated ellipse [see eq (3.12)]

y"=  arbitrary y coordinate of the rotated ellipse [see eq (3.13)]

z = Cartesian coordinate defined in  Figure 3.1/ mm

Greek Symbols

a  = percentage distribution contained in the ellipse [see eq (3.10)] 

e = fiber orientation angle [see eq (3.1)]

H = m ean position of the fiber [see eq (3.17)]/ mm 

Oÿ = calculated frequency of the grid cell
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V = degrees of freedom

6 = angle betw een major axis of the distribution ellipse and the x  axis [see eq 
(3.16)], deg

p = correlation coefficient of the fiber positions in  x  and y directions [see eq (3.18)] 

a  -  standard deviation of the fiber positions [see eq (3.17)], mm 

(D = angle between the flash and the y-camera defined in  Figure 3.3, deg 

^ statistic defined in eq (3.6)

Ç = normalized random  variable [see eq (3.5)]
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p a 0

case 1: p > 0 0“ < 0 < 45“

0* = 0y 0 = 45“

45“ < 0 < 90“

case 2: p = 0 a«>Oy 0 = 0 “

Gx = Gy 0 = 0 “

Ox<Gy 0 = 0 “

case 3: p < 0 a^>Oy 135“ < 0 < 180“

Gx = Gy 0 = 135“

Gx<Gy 90“ < 0 < 135“

Table 3.1 Various values of 0 for different values of p, and a„
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p a 0

p < 0 a^>Gy -4 5 “ < 9 < 0 “

9 = -4 5 “

- 90“ < 9 < - 45“

Table 3.2 M odified values of 9 for case 3, Table 3.1
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Figure 3.1 Cross section of the melt blowing die used in the experiments. The 
origin of the coordinate system, which is shown separately, lies at the polym er 
orifice of the die.
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Figure 3.2 Gridding used to group the fiber position (x, y) data. Frequencies are 
shown to lie at the center of each grid cell. The fiber distribution is contained in 
the shown ellipse.
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Figure 3.3 Top view of the experimental setup used to measure the fiber position 
data.
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Figure 3.4 Root m ean square deviation between the experimental data  and  the 
fitted distribution for various values of z below the die.
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Figure 3.5 Surface plot of experimental fiber density d istribution at z = 20 mm.
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polym er = 0 .3 0  g/min
Tp = 330“C

position: z  = 20 mm

data: bivariate normal fit

V. = 26.8 m/s
Tg = 320“C

Figure 3.6 Surface plot of fitted bivariate normal distribution at z = 20 mm.
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polymer, = 0.30 g/min
Tp = 330°C

v.g = 26.8 m/s 
T = 320“C

position: z = 40 mm

data: experimental

Figure 3.7 Surface plot of experimental fiber density distribution a t z = 40 mm.
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polymer = 0.30 g/min
Tp = 330“C

air V.JJ =26.8 m/s 
T. = 320“C

position: z  = 40 mm

data: bivariate normal fit

Figure 3.8 Surface plot of fitted bivariate norm al distribution at z = 40 mm.

126



polymer, = 0.30 g/mln
Tp = sao^c

position: z = 60 mm

data: experimental

Vjg = 26.8 m/s 
T , = 320‘’C

Figure 3.9 Surface plot of experimental fiber density distribution at z — 60 mm.
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polymer = 0.30 g/mln 
T =330“Cp

position: z = 60 mm

data: bivariate normal fit

Vjg = 26.8 m/s 
T = 320“C

Figure 3.10 Surface plo t of fitted bivariate normal distribution at z = 60 mm.

128



polymer =0.30 g/mln
Tp = 330“C

Vjg = 26.8 m/s

position: z = 80 mm

data: experimental

T, = 320“C

I

Figure 3.11 Surface plot of experimental fiber density distribution at z — 80 mm.
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polymer m = 0.30 g/min position: z  = 80 mm

data: bivariate normal fitTp = 330"C

VjQ = 26.8 m/s
T = 320“C

Figure 3.12 Surface plot of fitted bivariate normal distribution a t z — 80 mm.
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Figure 3.13 Contour plots showing the experimental and fitted bivariate normal 
distribution at z = 20 mm. The direction of the arrow shows that the major axis of 
the elliptical pattern is oriented a t 20.8“ w ith respect to the x  axis.
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Figure 3.14 Contour plots showing the experimental and fitted bivariate normal 
distribution at z = 40 mm. The direction of the arrow shows that the major axis of 
the elliptical pattern is oriented at 5.5“ with respect to the x  axis.
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Figure 3.15 Contour plots showing the experimental and fitted bivariate normal 
distribution at 2 = 60 mm. The direction of the arrow  shows that the major axis of 
the elliptical pattern is oriented a t -73.4° w ith  respect to the x  axis.

133



12.5

10.0

Ê 7.5 
E
%  5.0

2.5

0.0

-2.5

-5.0

-7.5

polym er = 0.30 g/mln 
Tp = 330°C

a ir

- 10.0

VjQ = 26.8 m/s 
Tg = 320"C

position: z  = 80 mm

  experimental

- ......... bivariate normal fit

X (mm)

20.0

Figure 3.16 C ontour plots showing the experimental and fitted bivariate normal 
distribution at z = 80 mm. The direction of the arrow  shows that the major axis of 
the elliptical pattern  is oriented at 9.9“ w ith respect to the x  axis.

134



Figure 3.17 Surface plot showing the auto-correlation between the x 
components of the fiber positions in the xy  planes a t different z levels below the 
die.
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Figure 3.18 Surface plot showing the auto-correlation between the y 
components of the fiber positions in the xy  planes a t different z levels below the 
die.
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Figure 3.19 Correlation coefficient between the x  and y components of fiber 
positions at different z levels below the die.
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Figure 3.20 Orientation angle of the fiber distribution ellipse at different z levels 
below the die.
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Figure 3.21 Fourier orientation angle amplitude spectra as a function of spatial 
separation (spatial period) along the z  direction.
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Figure 3.22 Variation in the x  direction standard deviation of the fiber distribution 
with 2 position.
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Figure 3.23 Variation in tiie y direction standard deviation of the fiber distribution 
w ith 2 position.
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Figure 3.24 Comparison of spreading characteristics of the fiber distribution and 
the air jets in the z direction.
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Figure 3.25 Variation in the x  and y direction mean positions of the fiber threadline 
w ith z position below the die.
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Figure 3.26 Top view image of the fiber pattern formed on a black wire-mesh 
screen placed at z = 300 mm. The white lines shown in the image correspond 
to the digitally overlaid coordinate axes.
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Figure 3.27 Side view image of the fiber collected on a black wire-mesh screen 
placed at z = 300 mm. The white lines in the image correspond to the 
coordinate axes which were set on the screen before fiber collection.
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Chapter 4

AN ENTROPIC MEASURE OF SPATIAL FIBER 

DISTRIBUTION IN A MELT-BLOWN WEB

(The contents of this chapter will be subm itted for a publication in the journal 

Industrial & Engineering Chemistry Research)

4.1 Abstract

A method based on spatial entropy of a web image was developed to evaluate the 

fiber distribution in a melt-blown web. The spread of the web distribution was 

found to be a function of the axial position below  the die and the process variables 

(nominal air jet velocity, discharge air tem perature, polymer mass flow rate, and 

polym er temperature). The w idth of the w eb distribution increased (a) linearly 

w ith  the axial distance from the die, and (b) for a value of a process variable that
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reduced the fiber diameter. The orientation of the web distribution varied 

irregularly for all conditions. The large standard deviation of the w eb orientation 

angle suggested Üiat the web orientation angle is a function of time. A method, 

similar to the one used in  the present study, has been proposed for multiple 

filament melt-blown webs.

4.2 Introduction

Melt blowing and spunbonding are two of the most im portant processes for 

producing nonwovens. Melt blowing produces nonwovens m ade of low strength 

microfibers, while spunbonded nonwoven fabrics have larger fiber diameters and 

strong mechanical properties. The kind of web to be used depends on the 

application. Therefore, it becomes very im portant to understand the properties of 

these webs. Morphological and mechanical properties of the w ebs are related to 

the web structure that in turn greatly depends on the process mechanics and 

conditions. Shambaugh (1988), Kayser and Shambaugh (1990), and  Milligan and 

Haynes (1995) empirically modeled m elt blowing for various conditions to 

understand the process mechanics. The theoretical fluid mechanics models of 

Uyttendaele and Shambaugh (1990) and Rao and Shambaugh (1993) can be used 

to predict the fiber diameter and various aspects of fiber motion in  m elt blowing. 

Botti empirical and theoretical models of m elt blowing can be used to predict the
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properties of melt-blown web. Many researchers have independently studied 

different techniques to determine the web structure and the effect of process 

variables on the web properties. Lee and W adsworth (1992) have studied the effect 

of process conditions on the physical and mechanical properties of the m elt-blown 

webs. A similar detailed study on the spunbonded webs has been done by 

M alkan, Wadsworth, and Davey (1994). However, the correlations between the 

process variables and the web structure parameters have not been quantified.

Ih the present study, a method has been developed for evaluating the distribution 

of fibers in a melt-blown web. The method used is based on the conclusions of the 

fiber distribution studies described in Chapter 3 th a t  in the melt blowing process, 

the fiber positions in a transverse plane follow a bivariate normal distribution. 

Furthermore, it was concluded tiiat tiie fiber laydow n pattern should also follow 

a bivariate normal distribution. Therefore, for a given set of process variables, the 

probability of the fiber being present at a position in  a given transverse plane can 

be predicted using the distribution function. As discussed by Tyagi and 

Shambaugh (1995), there are four main process variables in  melt blowing: air flow 

rate (or gas velocity), air temperature, polym er flow rate, and polym er 

temperature. The effects of each of these variables on the statistical parameters of 

the web distribution have been examined in this study. Though this study has 

been done for a web produced from a single hole m elt blowing die, the fiber
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distribution  in  any nonwoven web can be evaluated on a sim ilar basis. In the 

following sections, a method based on the spatial entropie analysis of the web 

image to evaluate the fiber web distribution has been developed.

4.3 Literature Review

The properties of the nonwoven webs are dependent on the positional and  the 

directional pattern of the fibers in web. Many researchers have stud ied  this 

vectorial nature of tiie fiber presence in nonwoven webs. A review of the literature 

on the w eb characterization has been given in  Chapter 3. Heretofore, most 

researchers have quantified nonwoven webs in terms of fiber orientation and  web 

uniformity.

Web uniform ity is characterized in terms of basis w eigh t structure, and  visual 

uniformity. The nonwovens industry uses the coefficient of w eight variation as a 

standard  quality index to quantify the w eb uniformity. Boeckerman (1992) and 

Aggarwal, Kennon, and Porat (1992) have calibrated the intensity of the 

transmitted radiation through the web to evaluate the weight uniformity. Huang 

and Bresee (1993, Part HI) analyzed the w eb images to correlate the coefficient of 

web mass variation to the coefficient of pixel gray level variation. Ericson and 

Baxter (1973) used a projection microscope to find the filament separation, which
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was correlated to die tensile strength of the web. They determ ined the coefficient 

of visual uniformity by measuring the intensity of transm itted ligh t

In most metiiods for die measurement of the fiber orientation, the directionality is 

evaluated by measuring the fiber position vectors directly. Hearle and Stevenson 

(1963), H uang and Bresee (1993, Part I) and Pourdeyhimi (1993) have described the 

methods to measure the fiber orientation w ith respect to the machine direction 

directly. Prud'hom m e et al. (1975), Kallmes (1969), Votava (1982), and Tsai and 

Bresee (1991) indirectiy measured the fiber orientation by correlating physical 

properties of a web to the fiber orientation.

Conventional metiiods for the characterization of nonwoven webs do not quantify 

the correlation between web structure parameters and the process variables. It was 

show n in  Chapter 3 th a t during the fiber motion, the transverse positions of a 

single filam ent in m elt blowing follow a bivariate norm al distribution. A high 

speed photographic method was developed to determine the statistical pattern of 

the fiber positions. The variance vector of the distribution defined the spread of 

the distribution, and the correlation coefficient described the orientation of the 

cross-sections of the fiber cone in the transverse planes; Chhabra and Shambaugh 

(1996) define the fiber "cone" as the volume below a m elt blowing die in which a 

fiber travels. By varying the process variables, the variance vector and the
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correlation coefficient of the distribution could be changed. Therefore, the nature 

of the fiber motion could be transformed by changing the process variables. Since 

it was concluded in  tiie fiber motion study (see Chapter 3) that the fiber web 

structure w as dependent on the fiber threadline motion, the fiber web could be 

transform ed by varying the process variables (air velocity, air temperature, 

polymer flow rate, and polymer temperature). However, they did not correlate the 

statistical parameters of the fiber position distribution to the process variables. In 

the present work, tiie effect of the process variables on the variance vector and the 

correlation coefficient of the fiber web distribution has been quantified.

4.4 Technique Developm ent

As discussed in Chapter 3, a direct method was developed to stochastically explain 

the fiber threadline motion. In this method, fiber threadline was photographed 

simultaneously from two orthogonal angles. The position data was fitted to a 

known probability distribution. It was found that the fiber threadline followed a 

bivariate normal distribution. However, this direct method could only be applied 

to positions that are close (up to 80 mm) to the single hole m elt blowing die 

because further away from the die, the fiber amplitudes become large, and many 

positions of the fiber lie out of depth-of-field of the cameras; see Chhabra and 

Shambaugh (1996) for fiber amplitude measurements. For the positions further
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aw ay from the die, and  for multiple hole die system, another method had to be 

developed.

4.4.1 Origin

The technique discussed in this chapter has its origin in  the fiber position 

distribution study described in Chapter 3. They found that the fiber positions w ere 

auto-correlated only to those positions that lie w ith in  a length of a fiber elem ent 

along the fiber axis. Furthermore, it was found that the fiber motion w as a 

continuous Markov process so that the future state of a fiber threadline elem ent 

was only dependent on its present state, and w as independent of its past states. 

Therefore, it was concluded that the downstream  fiber positions in the xy  plane 

w ould not affect the upstream  fiber positions, if the positions were further apart 

than  a characteristic spatial separation along the z direction, and vice versa. 

Consequentiy, if an imaginary screen, which allowed only air to pass through, was 

kept in  the xy  plane a t an arbitrary z position, the fiber elements captured on the 

screen w ould not afreet the fiber elements just reaching the screen. Thus, the 

laydow n pattern of the captured fiber w ould also follow a bivariate normal 

distribution. From an experiment; they found that the side-view of the fiber 

collected on a real wire-mesh screen had a bell shape. The air flow characteristics 

of dus screen approximated the flow character of the im aginary screen mentioned
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earlier. This experiment further confirmed that the laydown pattern  followed a 

bivariate normal distribution. Hence, the fiber motion and the web structure could 

be characterized by a bivariate normal distribution function. From the conclusions 

obtained in  the fiber distribution study described in  Chapter 3, it  can be inferred 

d iat by measuring ttie distribution of fibers in  the web, the distribution of the fiber 

positions while tiie fiber is in m otion can be obtained. Therefore, in  this study, an 

image processing method has been developed for evaluating the probability 

distribution function of the laydow n pattern fi'om an image of a m elt-blown web.

In principle, a photograph of the fiber web can store all the information about the 

fiber distribution in  a web. The fibers reflect light w hen illum inated. The 

reflectance of the fibers at different positions can be recorded as different intensity 

levels of gray present in  the black and white photograph of the web sample. As 

the num ber of fibers at a position w ill increase, reflectance at that position will 

increase because the fibers are translucent (not opaque). Evidently, the fiber 

distribution can be estimated ft-om the spatial gray level intensity distribution of 

the web image. However, after a num ber of the fiber presences (not maximum), 

the reflectance w ül reach its maximum. The image gray level w ill reach a 

maximum value for a lesser number of the fiber presences than the true maximum. 

Consequentiy, the computed spatial gray level distribution of the w eb im age will 

be the apparent fiber distribution. Since the data will be lost due to the lim ited
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bandw id th  of the imaging meüiod (photography), the m odel fiber distribution 

function cannot be direcüy estimated from Ae apparent fiber distribution. In oAer 

words, Ae gray level distribution of A e image will give "insufficient" information 

about A e true fiber distribution, especially in A e regions where a larger number 

of fibers w ill be present Figure 4.1 shows a typical image of A e top view of a 

melt-blown web. The completely w hite areas correspondm g to A e flat regions of 

A e image intensity distribution. The information is lost in  Aese flat regions of A e 

web image intensity distribution. Nevertheless, it is expected A at A e spatial order 

of fibers in  A e varying (non-maximum) gray levels of A e web image will be 

identical to A e spatial order of fibers m  A e actual web. Therefore, Ae spatial 

order information from A e image can be used to estimate A e true fiber 

distribution.

Rodrigues e t al. (1990) used information entropy of Ae image intensity distribution 

to extract A e degree of directionality of A e fibers m  printing papers. They 

characterized anisotropy of A e printing paper in terms of A e information entropy. 

However, A ey did not use A e entropy relation to predict A e fiber distribution 

function. In A e following sections, a maAematical formulation has been described 

for evaluating A e spatial distribution of fibers in a nonwoven web using Ae 

concepts of A e information entropy.
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4.4.2 Mathematical Formulation

The estimation of the fiber distribution has been subdivided into two main 

sections. In the first section, tiie formulation for calculating the fiber presence 

probability density function of the sample web image has been described. The 

mathematical relationships to predict the fiber web distribution from the web 

image distribution using the principles of information entropy are given in the 

second section.

4.4.21 Evaluation of die Fiber Presence Probability Density Function of the Sample 

Web Image

The photographic image of the collected web sample can be digitized and stored 

as an 8-bit (256 gray levels) image. According to Frieden (1972), the statistical 

model of an image can be derived by dividing the image into n resolution cells, or 

n events. The normalized frequency of occurrence of the ith event in die image is 

given by

° ^  (4.1)
E r ,
1=1
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where y; is the gray level intensity of the ith cell. Similarly, a statistical model for 

the web image can be developed. The web image is divided into W  windows such 

that

W = " l # l w  (4.2)

where

N  = num ber of rows of pixels or height of the image in pixels

M  = num ber of columns of pixels or w id th  of the image in pixels

[A]int “  next higher integer value of real A

If n be the num ber of pixels in  each w indow, then

The gray levels of the pixels in the image are assigned such that is the lowest, 

and is tiie highest gray level for the image. The gray level corresponds to the 

intensity of the light reflected from an area of the collection screen where no fiber
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is p resen t

The fiber presence probability^ density fimction of ttie sam ple web image is 

evaluated as the normalized frequency of the fiber presences of each window. 

Using Frieden's statistical m odel (1972), the apparent frequency of the fiber 

presences in  the ktix window of the web image can be defined as a sum  of the gray 

level intensities of all the pixels in  the window; the resulting equation is

/k = E  ^ k i  (4 4)
i=0

w here

= index of the highest gray level in the web image

= num ber of pixels w ith  ith gray level in the fcth w indow  of the web 

image

Ar, = ith relative gray level of a pixel
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The relative gray level Ar, is defined as

= Si -  So (4.5)

where

gi = ith gray level in  the image

gg = lowest gray level in  the image

The relative gray level Ar, represents tiie amount of light reflected from the number 

of fibers present at a pixel w ith  ith gray level in the w eb image. However, it has 

to be shown that the relative gray level does not necessarily correspond to the

maximum number of the fiber presences in the web, Huang and Bresee (1993, Part 

m ) have shown that the intensity of light transm itted through the fiber web is 

reduced by reflection and scattering. They viewed the reduction in  the intensity 

of the transmitted light as a reduction in the "effective" incident ligh t 

Furtiiermore, they have shown that the amount of reduction is proportional to the 

intensity of incident lig h t Since the reduction is due  to reflection and scattering, 

the combined intensity of the reflected and the scattered light can be represented 

by
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^rs -  (4.6)

where

I„ = combined intensity of the reflected and the scattered light from the

fibers

f, = intensity of the light incident on the fibers 

A = proportionality constant such that 0 s A s 1

According to H uang and Bresee (1993, Part HI), the proportionality constant A is 

a function of w eb thickness, fiber spatial arrangem ent and other web structural 

features. Therefore, the proportionality constant A can be represented by

A = A(f, Ü) (4.7)

where

f = w eb thickness
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/2  = foctor representing fiber spatial arrangement and other structural 

features of web

The w eb thickness t  is given by

t = vd  (4.8)

where

d — m ean fiber diameter in the w eb

V -  num ber of fibers at a position in  the web

Since the  m ean diameter of the fibers is the same throughout the whole web 

(variation in the fiber diameter can be assumed to be the same throughout the 

web), equation (4.7) is reduced to

A = Â{v, Û) (4.9)

Furthermore, for a given spatial arrangem ent of the fibers in the web, the factor 

12 is constant Therefore, À should be a function of the num ber of fiber presences
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a t a position only. Consequently, equation (4.9) reduces to

A = A(y) (4.10)

As the num ber of fibers a t a position will increase, the intensity of reflected light 

w ill increase. The intensity of reflected light w ill reach a maximum value, i.e., 

alm ost equal to the intensify of incident light [A = 1; see equation (4.6)], and w ill 

not increase any more wdfh the increasing number of fibers. Therefore, the dom ain 

of A, for which tiie intensity of the reflected light increases alm ost linearly w ith the 

num ber of fibers, w ill represent a true measure of the actual number of fibers 

present a t a position.

For a pixel position w ith  the relative gray level Ar, corresponding to the presence 

of v; num ber of fibers, substituting equation (4.10) in  equation (4.6) gives

= A(V.) (4.11)

For a pixel position w ith  the relative gray level due  to the presence of v„ 

num ber of fibers, equation (4.11) becomes
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(4.12)
max

Dividing tiie equation (4.11) by the equation (4.12) gives

(4.13)

However, tiie intensify of the reflected light I„ is proportional to the relative gray 

level Ar. Therefore, equation (4.13) is transform ed to the following equation:

Ar. /l(v.)

(4.14)

Now, the specific apparent frequency of the kth window can be defined from 

equation (4.4) as

Â Ar,
Armax maxAr_

(4.15)

Substituting equation (4.14) in equation (4.15) gives
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The specific apparent frequency can be normalized as

Lp  -

‘ w (4.17)

Substituting equation (4.16) in equation (4.17) gives

s  %

k = l :=0

Since X( i s  constant for an image, the equation (4.18) reduces to
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E  «K 4 \  )
p  -  ‘=0

----------------------------W
e :fc=l i=0

Equation (4.19) represents the normalized apparen t frequency of the fiber 

presences in  terms of num ber of fibers present in  the fcth window. Since v- 

represents relative gray level Ar̂ , equation (4.19) can be w ritten as

E  %
F, =   (4.20)

E  E  ^ k i
k=l 1=0

From equations (4.19) and  (4.20), it can be seen that knowledge of and A r^ , 

respectively, is not required to evaluate the norm alized apparent frequency of the 

w indow s in  the web image. However, the norm alized frequency has to be 

compared w ith tiie normalized actual frequency to know the deviation between the 

apparent (web image) and  the actual web distribution functions. The actual 

frequency of the fiber presences in the kth w indow  is

f k  = E  j  (4.21)
;=0
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where

= num ber of coordinate positions of pixel-area size w ith / num ber of 

the fiber presences in  the kOx w indow

/ ^  = m axim um  num ber of fibers present at any coordinate position of 

pixel-area size in the web sample

Therefore, the actual normalized firequency of the fiber presences in  the kth 

w indow is given by

f ,  = - f j -   (4.22)

EE ”‘k,ifc=l ;=0

From the equations (4.19) and (4.22), it can be seen th a t since is less than or 

equal to the actual maximum num ber of the fiber presences / ^  at any position in 

the web sample, the probability density function evaluated from die image analysis 

is not the true probability density function. Consequently, the data is lost because 

of tiie image saturation. Nevertheless, as stated earlier, it is possible to estimate the 

data loss w ith the spatial entropy analysis. Hence, the true fiber probability
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density  function of web can be estimated from the apparent (web image) 

probability density function given by  equation (4.20).

4.4.2.2 Evaluation of Fiber Presence Probability Density Function using 

Information Entropy

In the preceding section, it has been shown that the web image spatial intensity 

distribution is not a true estimate of the fiber presence distribution because of the 

loss of information. However, the lost information, as mentioned earlier, can be 

estim ated using information entropy. The fiber presence information can be 

evaluated  in  terms of entropy of the fiber presence in the web. According to 

Shannon (1948), the information entropy of the fiber presence in the w eb can be 

defined by

(4.23)
i = l

where
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\ff= fiber presence probability density fimction

= information entropy of n fiber presence positions

If the true fiber presence distribution is considered to be the message distribution 

and the  w eb image fiber presence distribution is considered to be the signal 

distribution, then by Shanon's information theory, the entropies of these 

distributions are related by the following equation:

H {S) -  H^{S) = H {R) -  Hg(R) (4.24)

where

H(S) = entropy of the source of messages (actual web distribution)

H(R) = entropy of the received signals (web image distribution)

^^(5) = equivocation or uncertainty in  the message source (actual web 

distribution) if signal (web image distribution) be known
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Hg(R) = uncertainty in  the received signals (web im age distribution) if the 

message (actual web distribution) sent be know n

Rearrangement of equation (4.24) gives

H (S) = H (R ) -  Hg(R) + H^(S) (4.25)

Consequently, the true fiber presence distribution can be estim ated from the 

equations (4.23) and (4.25) if the uncertainty terms are known. Equivocation or 

uncertainty in  die true fiber distribution is related to the variance of the 

distribution. Uncertainty in  web image fiber presence distribution is due to the 

noisy or the bandwidtii limited image capture of the web sample. However, both 

these uncertainty terms cannot be directly estimated. Therefore, instead of 

extracting the information directly from the fiber presence coordinates in the web 

image, anodier metiiod to obtain the spatial information of the web was developed.

As stated earlier, it is expected that the spatial order of the fibers in a web is the 

same as that in  the web image. Therefore, a m ethod based on the directed 

divergence between the observed spatial distribution F and the model spatial 

distribution G can be used to estimate the true distribution. Spatial distribution 

includes the information about the spatial order of the fiber positions in the web.
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It is assumed that the observed spatial distribution. F describes a web such that 

minimum spatial order information is lost in imaging ttie actual web. The directed 

divergence between the two distributions is given by Kullback-Leibler (KL) 

information (KuUback and Leibler, 1951). Mathematically, the KL information 

function can be w ritten as

(4.26)
= f  m

where

V f g) ^ 0 and the equality exists w h en /(^ ) = g{p) 

f{p )  = observed (spatial, in  our case) probability density function 

g{p) = m odel (spatial, in our case) probability density function 

p  = random  variable vector

The sm aller the KL information function lif'.g) is, the closer the observed spatial 

distribution F is to the model spatial distribution (Arizono and Ohta, 1989). 

Therefore, the problem is reduced to bringing the observed spatial distribution F
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close to the m odel spatial distribution. G as much as possible. As described by 

K apur an d  Kesavan (1992), this problem can be solved by minim izing the KL 

information function. The minimization can be achieved by iteratively varying the 

parameters of the model spatial distribution G, and is subject to the following set 

of constraints:

f  f ( p )  dp  = 1 (4.27a)

and

/  giP) dp = 1 (4.27b)

The spatial order can be measured in terms of interrelationships between the 

values of the random  variable at various positions in the web sample. The fiber 

presence probability density function P(x, y) of a window is taken as the random 

variable function for the sample web. The interrelationships between the fiber 

presence probability density function of different pairs of w indow s in the web 

image have to be evaluated to calculate the spatial distribution function. Only the 

non-flat regions of the web image distribution are considered for the evaluation of 

the spatial distribution since no information is assumed to be lost in  these regions. 

The interrelationship between the fiber presence probability density function P{x,
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y) of the two pairs of w indows in  the image can be computed as a bivariate 

probability density function. As described by Rossi and Posa (1992), the spatial 

bivariate cumulative distribution function for the interrelationship between two 

pairs of windows is given by

P'r ft) = Prob ( P ( f )  i  p, P { i * h) i  p ' ) (4.28)

where

it = lag vector, measuring the displacement between the two position 

vectors of the center of the windows

p = m aximum fiber presence probability value for the first w indow

p maximum fiber presence probability value for the second w indow

P (f)  = fiber presence probability of the first w indow

P (?  + h) = fiber presence probability of the second w indow

f  = position vector of the center of the first window
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The maximum fiber presence probability values p and p 'fo r  the two windows can 

take K outcome values of the fiber presence probabilities. Rossi and Posa described 

that the bivariate spatial probability density function ^(p , p h )  can be estimated 

firom the cumulative distribution function P 'f k) w ith the following equation:

<PhiP' p ' ;  ^  [ ^ h i p  + ^P' p '  + ^ p ’> -  ^hiP' v '  + A p ' ;  ft)

- <&̂(p + Ap, p')h) + $h(p/ p'; ft) ] /  (^P'^pO

where Ap and Ap  ̂respectively, are the discrete increments in  the maximum fiber 

presence probability values for the two windows. The spatial probability density 

function ^(p, p h) is highly dependent on the values of Ap and Ap '. The values 

of Ap and Ap ^can be optimized by reducing the absolute deviation in values of ^  

in  the consecutive iterations of the evaluation procedure. The cumulative 

distribution function Ô Cp, p '  ; h) is dependent on the representability of the 

sam ple pairs P(£+h)]. According to Joumel and Deutsch (1993), if the

sample pairs [P(f), P(jP+h)] are spatially positioned very far from each other, i.e., 

it = ±*>, then tiie sample pairs can be considered statistically independent 9>fc(p, p ' 

; it) = 0. This case of independence is not very useful as the information about the 

spatial interrelationship has to be evaluated. Therefore, a lag vector it has to be
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chosen such that the information about the spatial order is retained. For this 

purpose. Brink (1995) has shown the sample can be considered as a type of Markov 

random  field with each position dependent only on the positions in  its immediate 

3x3 or 5x5 neighborhood. This means that the lag vector h  is Qif, hj) w ith -1 s hi s 

+1 and -1 s hj s  +1 for the 3x3 neighborhood, or -2 s hi ^ +2 and -2 ^ hj ^ +2 for the 

5x5 neighborhood. In fact; Brink (1995) has shown ttiat redundancy in calculations 

in  the 3x3 or 5x5 neighborhood can be reduced by modifying the neighborhood 

to include only the origin, its imm ediate neighbors to the right and below, and its 

d iagonal neighbors below the 3x3 or 5x5 neighborhood. Table 4.1 shows the 

m odified  asymmetrical 5x5 neighborhood of coordinate (i, j) as the non-shaded 

cells.

Thus, tiie cumulative distribution function and probability density function can be 

calculated over all the values (12, if considering asymmetrical 5x5 neighborhood) 

of the lag vector h considered over the whole image. Then, the KL information can 

be com puted as an average over the asymmetrical neighborhood to include the 

spatial information completely.

The observed and model spatial probability density functions are normalized to 

calculate the KL information. The normalization is w ith respect to the maximum 

observed fiber presences in the non-fiat region of the web image distribution. This
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"maximum" is calculated as the maximum value of the observed fiber presence 

probability of a window P ,(f)  after which the absolute value of the partial 

derivative dPg/dXi starts decreasing. Furthermore, KL information function 

described by equation (4.26) is only valid for the continuous distribution functions. 

For the normalized values of P„ and P ^  the integral in equation (4.26) is 

transformed to summations in the discrete case as shown in the following equation:

= -  E E E f (P ' p ' '^ )  (4.30)
« p=o p'=o g[prp' ' , h)

From equation (4.28), the observed and the model spatial cumulative distribution 

function can derived as

p') it) = Prob ( s  p, + ft) ^ p ' ) (4.31a)

^hiP' P ''i^ )  = Prob ( P ^ i i )  s  p, P j i  + a) i  p ' )  (4.31b)

where P^ is the normalized observed fiber presence probability density function, 

and P^ is the normalized model fiber presence probability density function of the 

web image.

For a single hole die, the model fiber presence probability density function is taken
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as bivariate normal distribution following the conclusions of fiber motion study 

described in  Chapter 3. Therefore, the model fiber presence probability density 

function is given by

exp -  y) (4.32)

where

= the X  direction standard deviation of the fiber positions

(J = the y direction standard deviation of the fiber positions

p  = correlation coefiicient of the fiber positions in  the x  and y directions

The quantity cix, y) in equation (4.32) is defined by

<y(x,y) =
( l - / )

/  \  
x - p

- I p
f \

V y

f \
y - Py

\

/ \ 
y - ^

V ^y /
(4.33)
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where

/fj = the X  direction mean position of the fibers

fi^ = the y direction mean position of the fibers

The spatial probability density functions for bodi cumulative distribution functions 

given by equation set (4.31) can be calculated w ith the equations (4.29), (4.32), and 

(4.33). The discretized KL information h)  given by the equation (4.30) is 

minimized by varying the parameters of tiie model spatial density distribution g(p, 

p ') it). Since tiie model fiber presence probability density function P„ is a function 

of the statistical parameters p, 9, and p, the model spatial density d istribution g(p, 

p h) can be varied by varying the parameters of P„. However, all the statistical 

parameters, i.e., A, S , and p, do not have to be varied. As shown in C hapter 3, the 

mean vector p  of the fiber distribution, which is a bivariate normal distribution, 

forms the coordinates of the center of the distribution ellipse. Johnson and  Kotz 

(1972) have shown that if a  percent of the distribution is contained in  the ellipse, 

then the equation of the ellipse is given by (also see Chapter 3)

176



(  \  
x - f l^

- I p
/  \  

X - / Z ,
I \y-P

/

^y
= - 2 ( l V ) l n ( l - ^ )  («-34)

Since the variance vector describes the axes of the distribution ellipse, it is a 

measure of the spread of the distribution. A non-zero correlation coefficient p  of 

the distribution explains the angular orientation of the distribution w ith respect to 

the X  direction. As show n in Chapter 3, the angular displacement 9 between the 

major axis of the bivariate normal distribution ellipse and the x direction can be 

evaluated by

6 = — arctan 
2

h '  -  ‘’v )
(4.35)

Therefore, the fiber web orientation angle can be evaluated in terms of the 

correlation coefficient and the variance vector. From Figure 4.1, it can be seen that 

the inform ation about the mean position of the actual w eb is not lost in  the web 

image. Consequently, the means in both the x and the y dimensions of the model 

distribution can be assumed to be equal to the means observed in the web image 

intensity distribution. In fact the mean or the center of the distribution ellipse 

should theoretically coincide w ith the origin in the xy plane. Since the web image
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distribution is expected to be flat where most fibers are present^ the variance vector 

d^should differ from tiiat of the observed web image probability^ density function. 

However, the orientation of the web image distribution and the m odel distribution 

should be identical because tiie only difference between the two distributions is the 

flatness of the web image distribution. The invariance of the orientation of the web 

distribution can be used as a constraint for minimizing KL function. The 

correlation coefficient of the two distributions should be identical because it  is only 

related to the orientation of tire distribution. Thus, the value of the variance vector 

that minimizes the KL function should be the best estimated value for the m odel 

distribution as predicted by the information entropy.

4.4.3 Web Distribution in Multiple Filament Melt Blowing

The image analysis described in the preceding section can also be applied to 

evaluate the apparent distribution of fibers in multiple filament m elt blowing. 

Equation (4.20) used for evaluating the apparent or observed fiber presence density 

distribution P, from the web image intensity distribution is independent of the 

fiber motion and the num ber of fiber filaments coming out of the die. Since only 

spatial information considered in the entropie analysis is the information about the 

arrangem ent of fibers in a web, the entropie analysis used for a single filament 

m elt-blown web can be applied to a m ultiple filament melt-blown web. Both
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observed spatial density distribution f(p, p '  ; h)  and model spatial density 

distribution g(p, p it) can be evaluated tirom the observed and the model fiber 

presence density distributions and respectively, in  the same way as in  a 

single filament system. However, the model fiber presence distribution P„ in 

m ultiple filament m elt blowing will not be the same as in  the case of single 

filament process. As an approximation to the actual web distribution, the model 

fiber presence distribution can be a superposition of the bivariate normal 

distributions of the fiber filaments. Therefore, the model fiber presence 

distribution P^ in n  filament m elt blowing can be described by

p. = t  », p., (4 %)
t = l  '

where

Of = coefficient describing the contribution of zth fiber filament to the overall 

model fiber presence distribution

P = bivariate normal distribution of ith fiber filament
m.
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The coefficient a, can be a function of the fiber-to-fiber interaction parameter. 

Consequently, in  m ultiple filament m elt blowing, the fiber-to-fiber interaction 

param eter w ill have to be determined to evaluate the m odel fiber presence 

distribution P ^. Once the model fiber presence distribution is obtained, the KL 

inform ation function given by equation (4.30) can be m inim ized by varying the 

statistical param eters (more than two) of the m odel fiber presence distribution. 

However, the w eb orientation angle constraint used in  the case of single filament 

process cannot be used. A new constraint based on the geometrical information of 

the m ultiple filam ent web will have to be developed. Nevertheless, the method 

developed in the preceding section can be applied to evaluate the distribution of 

fibers in a m ultiple filament melt-blown web.

4.5 T echnique Im plem entation

4.5.1 Experimental Details

A single hole slot die was used in the experiments. The polym er was melted and 

pressurized w ith  a Brabender extruder w ith a 19.0 m m  (0.75 in) diam eter barrel 

and 381 mm (15 in) long screw. The molten polymer w as pum ped in the die with 

a modified Zenith pump. Tyagi and Shambaugh (1995) have further explained the 

polymer supply details. The polymer capillary of the die had an inside diameter
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of 0.407 mm and a lengüi of 2.97 mm. The two rectangular air slots in  the die were 

74 mm long and 0.74 mm wide. The die was the same as that used by  Chhabra and 

Shambaugh (19%) and in Chapter 3. Figure 4.2 shows the cross-section of the die. 

The polymer used was 88 MFR (melt flow rate) Fina Dypro’'“  polypropylene w ith 

= 160,000 and = 40,000. The ranges of basic operating conditions used for 

experiments are given in  Table 4.2.

The fiber coming out of the spinneret was collected on a metal w ire-m esh screen 

(65% open space) painted w ith non-reflecting Krylon* 1613 Semi Flat Black p a in t 

The wire-mesh screen allowed only air to pass through i t  The fiber was collected 

for a sufficient amount of time to make the fiber collection process statistically 

stationary (i.e., invariant under an arbitrary shift in the time origin). The 

characteristic time to make the process statistically stationary was empirically 

determined to vary from 30 seconds to 1 minute. Any longer than this period of 

time started blocking the collection screen, and led to a nonuniform web.

After the web was collected on the screen, the top view of the web was 

photographed using a Canon AE-1 Program camera at an automatic exposure. The 

camera was equipped w ith a Sigma 50 mm macro lens. Three 100 W atts General 

Electric Soft White tungsten bulbs provided the illumination. The film used was 

Kodak T-Max 400 and the prints were m ade on Ilford Multigrade IV RC paper.
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The prints were digitized w ith a Hewlett-Packard ScanJet 3C scanner at a 

resolution of 300 dots per inch. The web images were digitally overlaid w ith 3 

pixel wide coordinate axes lines corresponding to tiie actual geometrical coordinate 

axes in  the xy  plane. Adobe Photoshop® 4.0 software was used for digitally 

overlaying the coordinate axes lines. These web images were stored as 8-bit 

grayscale images in  the Portable Gray Map (PGM) form at Figure 4.1 shows a 

typical web image w ith  digitally overlaid coordinate axes.

4.5.2 Data Analysis

The mathematical formulation described earlier was used to develop a FORTRAN 

77 computer program to analyze the web images. The analysis procedure used in 

developing the com puter program is summarized as follows:

1. The web image was divided into windows as described by equation (4.2). 

The number of pixels in each window was calculated w ith equation (4.3). The 

w eb image fiber presence probability density function was evaluated as the 

normalized frequency of fiber presences in a w indow  P„ w ith equation (4.20). 

The normalized frequency of each window (group) was assumed to he at the 

center of each w indow. The means, the standard deviations, and the 

correlation coefficient of the grouped data were computed w ith the procedure

182



outiined in Chapter 3. The angular orientation of the web image w as calculated 

w ith  equation (4.35). It w as assum ed that the web image distribution ellipse 

had  the same orientation as a  bivariate normal distribution ellipse w ith  the 

same statistical parameters as that of the web image distribution. By making 

this assumption, the variances of the model distribution w ere constrained to 

have a specific relationship between them, while keeping the orientation of the 

w eb image distribution identical to the orientation of the m odel probability 

distribution. The orientation constraint was mathematically defined as the 

difference between the orientations of the web image distribution ellipse and 

the model probability distribution ellipse. This constraint was used to keep the 

variance variables in a reasonable range.

2. The means and the correlation coefficient of the web image distribution were 

taken as the best estimates for the model fiber presence distribution. The 

standard deviations of the web image distribution were taken as the guess 

values in the first iteration loop of optimization. In the subsequent iterations, 

the minimization routine provided the estimates of the standard deviations. 

Using these estimated statistical parameters, the m odel fiber presence 

probability density function was evaluated as a bivariate norm al probability 

distribution. An IMSL subroutine BNRDF was used to evaluate the bivariate 

norm al cumulative distribution function of each w indow  (IMSL, 1994). The
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bivariate normal cumulative distribution function of a w indow  w as considered 

as the m odel fiber presence distribution P„ of the window.

3. For normalizing the fiber presence probabilities^ the partial derivatives of the 

observed fiber presence probability distribution w ith respect to each 

direction (x and y) were computed. The maximum value of the observed fiber 

presence probability after which the absolute value of the partial derivative 

dPydXi started decreasing was selected for normalizing both observed and 

model fiber presence probabilities. The four vector positions of the w indows 

(two positions for positive and negative directions of each dimension) after 

which the partial derivatives started decreasing were considered as the 

positions which enclosed the flat region of the observed fiber presence 

distribution. The flat region of ttie observed fiber presence distribution was not 

considered for evaluating the spatial distribution functions.

4. The observed and m odel spatial cumulative distribution functions were 

calculated w ith the equation set (4.31). From the observed and  the model 

cumulative distribution function, the spatial probability density functions were 

computed w ith  the equation (4.29).

5. The discretized KL information function was evaluated with the equation (4.30).
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The objective function for A e minimization w as constructed by adding 

the squared KL function to the squared orientation constraint function. The KL 

function and the orientation constraint function w ere squared to make the 

objective function a convex function of the standard deviations. The objective 

function fojKtix can be mathematically described by  the following equation:

f o b j^ c  =

where

= angle of orientation of the major axis of the model 

distribution ellipse 

-  angle of orientation of the major axis of the observe

distribution ellipse

6. The objective function minimized w ith  the Simulated Annealing

algorithm developed by Goffe, Ferrier, and Rogers (1994). This minimization 

algorithm repeated the steps 2 through 4 w ith different values of the variance 

vector of the estimator bivariate normal fiber presence probability density 

function to minimize the objective function

7. The best estimate of the fiber presence probability density function was 

calculated with the best estimate of the variance vector 3^ that minimized the 

objective function.
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4.6 Results

A computer program  in  FORTRAN 77 (see Appendix III for program code) was 

developed to analyze tiie web image data. The program  was run  on an IBM RISC 

6000 42T computer workstation. The average CPU time to run  the program  was 

about 40 hours. The bivariate normal probabüify distribution of the fiber presences 

in the melt-blown web was successfully estim ated from the flat web image 

intensity distribution w ith the entropie analysis for all the conditions listed in Table 

4.2.

Figures 4.3 and 4.4, respectively, depict the typical surface plots of the observed 

and the model spatial probability density functions. The spatial probability 

density functions in the plots represent the typical spatial interrelationship between 

the two adjacent w indow s (h^ = 0 and hy = +1) in the y direction of the web. The 

closeness in the surface plots shows that the observed and the model spatial 

distributions are almost equal. Therefore, the Kullback-Liebler information 

function describing the directed divergence between tiie two spatial distributions 

has been minimized. The best estimates of the standard deviations obtained by 

minimizing the KL information function were used to compute the bivariate 

norm al fiber presence distribution of the web. Figures 4.5 and 4.6, respectively, 

show the typical surface plots of the observed (web image) fiber presence
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distribution and the model (bivariate normal) tiber presence distribution. On 

com paring Figures 4.5 and 4.6, it  can be seen tiiat the web image intensity 

distribution underpredicts the bivariate normal distribution of the web. However, 

tiie underprediction is corrected by the spatial information entropy analysis. The 

corrected bivariate normal distribution in  Figure 4.6 represents the best estimate 

of the true fiber distribution in  a typical single tilament m elt-blown web.

4.6.1 Effict o fz Position on the Spread o f the Web Distribution

Figure 4.7 shows the spread of web distribution along the z  direction. The 

standard deviations of the model fiber distribution increase linearly w ith  the z 

direction. The linear increase in the standard deviations of web distribution with 

the z direction is similar to tiie one shown in Chapter 3 for the case of fiber position 

distribution. For the same die, Harpham and Shambaugh (1996; 1997) have shown 

that the air jets also spread linearly w ith the z position. The a ir je t half-width 

describes the jet spread. One jet half-width is a position, transverse to the axial 

flow, where the velocity of the jet falls to half its maximum value. Figure 4.8 

compares spreading of the web distribution and the air jets. The slope of the web 

distribution spread is different from tiie slope of the air jet spread. However, it  can 

be seen that most of the web distribution is contained within one jet half width. 

The standard deviation profiles lie at about half tiie distance fi'om tiie jet half-width
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line (show n as a solid line on the graph). A bout 94% of the web distribution is 

contained in  one jet half-width for the range of z positions investigated. In Chapter 

3, die containment of fiber distribution within one jet half-w idth is explained using 

tu rb u len t air jet dynamics. In Figure 4.7, it  can also be seen that the x  direction 

s tan d a rd  deviation is larger than the y  direction standard deviation a t all the z 

positions. Therefore, the web distribution is elliptical for all the z  positions 

studied.

4.6.2 Effect o f Process Variables on the Spread o f the Web Distribution

The effect of each of the four main process variables - nominal air jet velocity, 

d ischarge air temperature, polymer mass flow rate, and discharge polymer 

tem perature - on the standard deviations of the web distribution was examined. 

Before discussing the effects of these variables, a brief description of dynamics of 

fiber motion in melt blowing is presented to help in understanding the effect of the 

process variables.

h i m elt blowing, the fiber attenuates under the action of the aerodynamic force. 

The greater the aerodynamic force (higher nom inal air jet velocity), the greater the 

fiber attenuates (Shambaugh, 1988). Uyttendaele and Shambaugh (1990) 

determined that the final diameter of the fiber is reached by z = 50 mm. A similar
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result was also observed in the present study. Figure 4.9 shows the fiber diameter 

remains alm ost constant for all the z positions studied (z = 200 to 400 mm). After 

the fiber attains its final diameter/ die aerodynamic force only affects the fiber 

motion. As described by Rao and Shambaugh (1993)/ this aerodynamic force can 

be resolved into lift and drag forces. The drag force is responsible for the 

downward motion of die fiber/ while the lift force is responsible for the transverse 

motion of the fiber. The fiber elements of different masses per unit length should 

respond differendy to diese forces. At a distance greater than 50 mm from the die/ 

for the same am ount of aerodynamic lift stresS/ a fiber element w ith a lesser mass 

per u n it length (thinner fiber element) should move a larger distance in a 

transverse plane than a fiber element w ith a larger mass per unit length (thicker 

fiber element). Since the spread of the web distribution is the spread of the fiber 

position distribution while the fiber is in motion (see Chapter 3)/ this effect of 

aerodynam ic lift stresses on the fiber motion can be used in explaining the 

variation in spread of the web distribution.

Figure 4.10 shows the variation of the model standard deviations w ith the nominal 

air jet velocity. It is seen that the standard deviations increase gradually w ith the 

increase in  nominal air jet velocity at z = 300 mm. The increase in spread of the 

web distribution with the increase in nominal air jet velocities is expected since the 

fiber attenuates more at the higher nominal jet velocities and/ as explained earlier/
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a Üiiniier fiber element (lesser mass per unit length) moves a larger distance in the 

transverse plane than a thicker fiber element (larger mass per un it length) for the 

same am ount of lift stress. Figure 4.11 shows the decrease in  the fiber diameter 

with die increase in  the nominal air jet velocity. However, the fiber diam eter does 

not decrease sharply w ith the nominal air jet velocity. Consequently, the gradual 

increase in  spread of the web distribution is reasonable. The am ount of lift stress 

acting on the fiber at the various nominal air jet velocities can be judged from the 

air jet flow characteristics of the die. A t the studied conditions, the air velocity and 

tem perature correlations developed by Harpham and Shambaugh (1997) for the 

same die can be used to obtain the air velocity profiles. Figure 4.12 shows the 

decay in  the centerline velocity of the jet for the various nominal air jet velocities 

at a discharge temperature of 330“C  From the graph, it can be seen th a t  at z = 300 

mm, the centerline velocities for all the nominal air jet velocities have decayed to 

about 2 m /s . Therefore, there should not be a large difference in the am ount of 

aerodynam ic lift stresses acting on the fiber. Consequently, alm ost the same 

amount of lift stress should be acting on the fibers of different diameters (different 

masses per unit length) obtained a t different nominal air jet velocities. Hence, 

larger spreads of the web distribution are obtained for the nominal air jet velocities 

that produce finer fiber diameters. Furthermore, in Figure 4.10, the x  direction 

standard deviation is larger than the y direction standard deviation for all nominal 

air jet velocities studied. Therefore, the web distribution remains elliptical with 

changing nominal air jet velocities.
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Figure 4.13 illustrates that the fiber diameter does not change w ith  discharge air 

tem perature (at least for the range of temperatures investigated). Therefore, the 

spread of the web distribution should not vary with discharge a ir temperature. As 

expected. Figure 4.14 shows that the standard deviations of the web distribution 

do no t vary appreciably w ith  discharge air temperature. Furthermore, it can be 

seen hx>m die graph that the web distribution spreads m ore in  the x  direction than 

in  the y direction.

The effect of polymer mass flow rate on the fiber diameter is show n in Figure 4.15. 

From tiie graph, it can be seen that, w ith  the increase in polym er throughput, the 

fiber diam eter increases. The increase in fiber diam eter w ith the increase in 

polymer tiiroughput is expected since a fiber element w ith  a higher mass per unit 

length will require a greater amount of aerodynamic stress than a fiber element 

w ith a lower mass per unit length to attenuate by the sam e am ount An increase 

in  the fiber diameter w ith polymer throughput suggests that the standard 

deviations of the web distribution should decrease w ith an  increase in polymer 

throughput This effect can be observed in Figure 4.16 w hich shows the variation 

of standard deviations w ith  polymer mass flow rate. Furthermore, it is evident 

from Figure 4.16 that the web distribution is elliptical w ith the x  direction standard 

deviation larger tiian the y direction standard deviation for all polymer mass flow 

rates investigated.
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Figure 4.17 shows the effect of discharge polym er tem perature on the fiber 

diam eter. An increase in  discharge polymer tem perature gave finer diam eter 

fibers. This effect w as expected since, a t higher polymer temperatures, the 

viscosity  of the polym er reduces. Consequently, for the same am ount of 

aerodynamic stress, the less viscous polymeric fiber attenuates more than the fiber 

w ith a higher polymer viscosity. A decrease in the fiber diam eter implies a greater 

spread in the web distribution. Figure 4.18 illustrates the increase in the standard 

deviations of the web distribution with discharge polym er temperature. Once 

again, the x  direction standard deviation is larger than the y  direction standard 

deviation for all polym er temperatures studied.

4.6.3 Effect on the Orientation Angie of the Web

Figure 4.19 shows the variation in  the orientation angle of the web distribution 

witii the z  position. As shown in Chapter 3, in the x y  plane, the orientation angle 

of the fiber position distribution varies almost sinusoidally w ith a spatial 

separation (spatial period) of about 5 mm in the z direction. For the spatial 

separations of more than 15 mm in the z direction, they have shown that there is 

an  irregular variation of the distribution orientation angle. Furthermore, in 

Chapter 3, it was suggested that the fiber moved in an elliptical spiral following a 

bivariate normal distribution in the transverse plane, and the ellipse rotated
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sinusoidally in die same transverse plane (at the same z position). The sinusoidal 

rotation of the ellipse in  a transverse plane means that the orientation angle of the 

ellipse should have a large variation. As expected, bodi these effects - an irregular 

variation of the "average" web orientation angle w ith  the z position, and a large 

variation of the web orientation angle at a z position - are observed in  Figure 4.19.

Figures 4.20 through 4.23 show the effect of four m ain process variables on the 

orientation angle of the web distribution. From these figures, it is evident that the 

"average" web orientation angle varies irregularly w ith the process variables 

investigated. However, there is some degree of sinusoidal variation, but it is not 

definitive. Furthermore, the web orientation angles have large standard deviations 

for all the values of the process variables examined. The large values of the 

standard  deviation of the web orientation angle suggest that> for any value of a 

process variable, the web orientation angle distribution has a large spread. Since 

only five web samples were collected at a process condition, the web orientation 

angle distribution could not be estimated. Furthermore, the large variation of the 

orientation angle suggests tiiat tiie web orientation angle may be a function of time. 

However, the variation of the web orientation angle w ith time was not studied.
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4.7 Conclusions

The foremost conclusion of this study is that the fiber presence distribution in a 

melt-blown web can be estimated hrom the spatial information of the pixel 

intensity in the web image. The distribution of fibers in  a single filam ent melt- 

blown web is a bivariate norm al distribution. This distribution is the same as the 

fiber position distribution described in  Chapter 3 for the fiber m otion in m elt 

blowing. Therefore, the fiber position distribution while the fiber is in  m otion can 

be evaluated firom the w eb distribution, and vice versa.

For all the z positions and the process conditions studied, the web distribution is 

elliptical. The web spreads more in  the x  direction than in  the y direction. The 

spreads in both x  and y directions are linear functions of the z position below the 

die. The linear spreading of the web distribution is similar to that of the fiber 

position distribution as observed in  Chapter 3, and to the increase in  fiber cone 

amplitude as shown by Chhabra and Shambaugh (1996). From the present study 

and the studies on the velocity and temperature fields of the air jets by Harpham  

and Shambaugh (1997), i t  can be concluded that most of the web distribution is 

contained in one jet half-width.

The spread of the web distribution is a strong function of the fiber diameter. The
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values of the process variables Üiat reduced the fiber diameter increase the spread 

of the web distribution. Figure 4.24 shows the increase in the standard deviations 

with die decrease in  the fiber diameter for various ranges of the process variables. 

Since nominal air jet velocity, polymer mass flow rate, and discharge polymer 

tem perature affect the fiber diameter to a large ex tent the spread in  the web 

distribution depends largely on these variables. The discharge air tem perature 

does not appear to affect the spread of the w eb distribution because the range of 

discharge air temperature studied did not aAect the hber diameter. In conclusion, 

any process variable that would reduce the fiber diameter should increase the 

spread of the web distribution. This conclusion should be very helpful in 

controlling the basis w eight (mass per un it area) of a nonwoven web.

The w eb orientation angle varies irregularly w ith the z  position and the process 

variables studied. However, the variation in  the average web orientation angle 

appears to have a sinusoidal character. For the z direction spatial separation 

studied (50 mm), the variation of the w eb orientation angle is sim ilar to the 

variation of the orientation angle of the fiber position distribution observed in 

Chapter 3. A t a z position and for a value of a process variable, the w eb orientation 

angle has a large variance which suggests that the web orientation angle is a 

function of time. FurÜtermore, there may be a correlation between the orientation 

of fibers in web and the web orientation angle because it appears that most fibers
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should lie in  a specific orientation for a w eb to have an orientation in  a preferred 

direction. Therefore, the orientation of fibers in a web m ay be evaluated in  terms 

of the w eb orientation angle. Knowledge of variation of spread and  orientation 

angle of the web distribution w ith  the z position and process variables should be 

useful in  predicting fiber-to-fiber contact and entanglement since the web 

distribution is the same as the fiber position distribution while the fiber is in 

motion.

Another im portant future goal w ill be studying the web distribution in multiple 

filam ent m elt blowing. An information entropie analysis similar to the one used 

for single filament web has been suggested to evaluate the web distribution in  a 

m ultiple filament system. The fiber-to-fiber interaction param eter for multiple 

filament m elt blowing will be obtained to evaluate the web distribution.
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4.8 Nomenclature

fl, = coefficient describing the contribution of ith fiber filament to overall 
distribution [see eq (4.36)]

“  next higher integer value of real A 

d = web average fiber diameter

apparent frequency of fiber presences in  tiie fcth window 

fcbjedxK ~ objective function for minimization

= specific apparent firequency of fiber presences in the Icth window 

j{p )  = observed spatial probability density function 

Ff, = observed spatial cumulative distribution function 

F̂ .= norm alized apparent frequency of fiber presences in the fcth window 

ffc = normalized frequency of the fibers presences in the küi window 

gg = lowest gray level in the image 

gnnzr = highest gray level in the image 

g{p) = model spatial probability density function 

Gfc = model spatial cumulative distribution function 

/i( = X component of the lag vector ft 

hj = y component of the lag vector ft
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h  = lag vector

H(S) = entropy of the source of messages (actual web distribution)

H(R) = entropy of the received signals (web image distribution)

Hr(S) = equivocation or uncertainty in  the message source (actual w eb distribution) 
if signal (web image distribution) be known

Hs(R) = uncertainty in the received signals (web image distribution) if the message 
(actual web distribution) sent be know n

H^(y/) = information entropy of n fiber presence positions 

i = image pixel index

^  = index of the highest gray level in  the web image 

I(/:g) = KuUback-Leibler information function

4(/;g; h) = KuUback-Leibler information function for the discrete case [see eq (4.30)] 

[g = intensity of the light incident on  the fibers

I„ = combined intensity" of the reflected and the scattered light from the fibers 

j  = actual number of fibers present at a position

-  maximum number of fibers present at a coordinate position of pixel-area size 

k = index of the windows in the w eb image

m^.= number of coordinate positions of pixel-area size w ith ; num ber of fiber 
presences in the fcth w indow of actual web
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in̂ .̂ = num ber of pixels witti itii gray level in  the Irth w indow  of the web image 

M  = num ber of rows of pixels in  tiie image or height of the image in pixels 

n = num ber of pixels in each w indow  of the image

N  = num ber of columns of pixels in  the image or w id th  of the image in pixels 

p = m axim um  fiber presence probability for first w indow  [see eq (4.28)] 

p '= m axim um  fiber presence probability for second w indow  [see eq (4.28)] 

p„(x, y) = fiber presence probability density function

Ap = discrete increment in  maximum fiber presence probability for first w indow

Ap '  = discrete increment in maximum fiber presence probability for second 
w indow

p  = random  variable vector [see eq (4.26)]

P ( f )  = fiber presence probability of a window w ith position vector f

Pg{i) = observed fiber presence probability of a w indow  w ith position vector f

P„(£) = m odel fiber presence probability of a w indow  w ith position vector f

P (i) = normalized observed fiber presence probability of a w indow  with position 
vector i

(i) = norm alized model fiber presence probability of a w indow with position 
vector f

P^ = bivariate normal distribution of ith fiber filament in  multiple filament melt
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blowing

P^=  m odel fiber presence distribution in m ultiple filament m elt blowing 

Ar, = relative gray level of ith pixel in  the image 

t  = web thickness

W  = num ber of w indow s in the image 

X  = abscissa of the fiber position in a web 

f  = position vector of the center of a w indow 

y = ordinate of the fiber position in a web

Greek Symbols

a  = percentage of the distribution contained in  the ellipse [see eq (4.34)] 

r\ = proportionality constant in  eq (4.10)

p it) = spatial bivariate probability density function 

®h(P/ P 'f  A) = spatial bivariate cumulative distribution function 

Yi = gray level intensity of ith cell [see eq (4.1)] 

r , = normalized frequency of occurrence of ith event [see eq (4.1)]

A = proportionality constant in eq (4.6)
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direction m ean position of the fibers 

Mÿ = y  direction mean, position of the fibers 

ji = m ean vector of the fiber positions 

y=  num ber of fibers present a t a position in  web 

Vi = num ber of fibers present a t a pixel of gray level g, in  the web image 

Knax ~ num ber of fibers present a t a pixel of gray level in the web image 

6= orientation angle of the major axis of the web distribution ellipse [see eq (4.35)] 

= orientation angle of the major axis of the model web distribution ellipse 

6g = orientation angle of the major axis of the observed web distribution ellipse 

p  = correlation coefiicient of the fiber positions in the x  and y directions 

(T̂ = X direction standard deviation of the fiber positions 

<̂  = y direction standard deviation of the fiber positions 

3 = standard deviation vector of the fiber positions 

3^ = variance vector of the fiber positions

Q  = factor representing fiber spatial arrangement and other structural properties 
of web in eq (4.7)

y/= fiber presence probability density function [see eq (4.23)]
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(* + ! / /) (f + 2,7)
(i + 2 ,; + l)( i - h  -1) ih j + l) (i + l , ;  + l)

( i - Z j  + 2) ( ï - lw  + 2) (4 /+  2) 0 + 1,7+ 2) 0 + 2, / +  2)

Table 4.1 Asymmetrical 5x5 neighborhood, shown as non-shaded cells, of w indow  
0, /) m a  web image.
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(1) z-positions below the die: 200/ 250/ 300/ 350/ and 400 m m

(2) discharge (nominal) air velocities: 17.6/ 22.2,26.8/ and 30.9 m /s

(3) discharge air temperature: 270/ 300/ 330"C

(4) polymer mass flow rate: 0.3/ 0.4/ 0.5/ 0.6/ 0.7 g /  m in

(5) discharge polym er temperature: 290/ 305/ 320/ 335“C

Table 4.2 The operating conditions used in (he experiments
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Figure 4.1 Typical top-view image of a  single filament melt-blown web. The 
two orthogonal white lines, corresponding to the coordinate axes, were 
digitally overlaid on the image.
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Figure 4.2 Cross-section of the m elt blowing die used in the experiments. The 
origin of the coordinate system, w hich is shown separately, lies at the polymer 
orifice of the die.
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Polymer = 0.3 g/mln
Tp = 320 “C

VjQ = 26.8 m/s 
T, = 330"C

Position: z = 300 mm

Lag: h ,=  0
hy = -1

Data: experimental

Figure 4.3 Typical surface plot of the observed (web image) spatial order 
distribution.
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Polymer = 0.3 g/min 
T„ = 320 “Cp

Vjg = 26.8 m/s 
Tg = 330“C

Position: z = 300 mm 

Lag: h%= 0
hy = -1

Data: bivariate normal distribution

,3

Figure 4.4 Typical surface plot of the m odel spatial order distribution.
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Polymer Qp = 0,3 g/min 
T = 320 “Cp

Position: z  = 300 mm

Data: experimental

Vjg = 26.8 m/s 
T, = 330 “C

Figure 4.5 Typical surface plot of the observed (web image) distribution of fibers 
in a single filament melt-blown web.
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Figure 4.6 Typical surface plot of the model fiber presence distribution in a single 
filament m elt-blown web.

213



30.0
polymer m  ̂ =0.3 g/min 

T = 320 ° C

25.0 Vjg = 17.6 m/s 
T = 330 “ C

airE
E

•3 2 0 .0  .o

o
•d
(0 10.0 = 0.064

a = 0.059

300 
z (mm)

350 400 450250200

Figure 4.7 Variation in the standard deviations of the web distribution with the z 
position.
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die: h = 3.49 mm

polymer m  ̂ = 0.3 g/min 
T „ = 320 “ C

200

QA air = 17.6 m/s 
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Figure 4.8 Comaprison of spreading characteristics of the web distribution and the 
air jets in  the z  direction.
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Figure 4.9 Fiber diameter a t different z positions below the m elt blowing die.
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Figure 4.10 Variation in the standard deviations of the web distribution w ith 
nominal air jet velocity a tz  = 300 mm.
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Figure 4.11 Effect of nominal air jet velocity on the fiber diameter a tz  = 300 mm.
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Figure 4.12 Centerline air velocity profile below the die.
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Figure 4.13 Effect of discharge air tem perature on the fiber diameter at z = 300 
mm.
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Figure 4.14 Variation in the standard deviations of the web distribution with 
discharge air temperature a tz  = 300 mm.
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Chapter 5

AIR TURBULENCE STRUCTURE IN MELT BLOWING

5.1 Overview

In m elt blowing, the aerodynamic drag force of a high velocity hot air (gas) jet 

rapidly attenuates the fiber. The higher the air velocity, the larger the aerodynamic 

drag force on the fiber; the greater the fiber attenuates. Shambaugh (1988) has 

shown that the melt blowing process has three main regions of air velocity in  the 

order of increasing velocity. Air jet turbulence increases as higher air velocity 

regions are reached. Therefore, it is possible to explain the nature of aerodynamic 

drag force in three air velocity regions if jet turbulence characteristics are known.
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A ir je t turbulence also varies as the distance from the die increases. W u and 

Sham baugh (1992) defined three spatial zones of fiber motion at the exit of m elt 

blowing die. Fiber has different orientations in  three spatial zones. Once again, 

it is possible to explain die spatial orientation of fiber by understanding the air jet 

turbulence below the die.

Besides the qualitative explanation for the observed fiber diameter and motion at 

different air velocities, knowledge of air jet turbulence is needed to quantitatively 

predict die fiber parameters in melt blowing. Madiematical models of Uyttendaele 

and Shambaugh (1990), Rao and Shambaugh (1993), and Bansal (1997) can be used 

to predict the diameter, rheological stress, velocity, and temperature of the fiber. 

The mathematical models of Rao and Shambaugh (two-dimensional) and Bansal 

(three-dimensional) can also predict the vibrations of the fiber threadline. These 

models use extensions of Matsui's (1976) correlation to evaluate the drag and skin 

friction coefficients required for calculating aerodynamic drag and lift forces 

acting the fiber. Matsui developed the correlation for drag coefficient for the fiber 

threadline in m elt spinning up to the spinning speed of 6000 m /m in. Using 

Prandti's mixing length model [Tennekes and Lumley (1972, p. 49)] to approximate 

the Remolds stress in the boundary layer parallel to the fiber filam ent he derived 

the following relation for the drag coefficient
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(5.1)

where

C f-  drag coefficient of the filament

Re = Remolds number of the air flow based on the diam eter of the filament

P  = empirically determined constant

N arsim ahan and Shambaugh (1986) extended Matsui's correlation up to 30,000 

m /m in  in  m elt blowing. Their correlation was used in  the Uyttendaele- 

Shambaugh model. Later, Majumdar and  Shambaugh (1990) experimentally 

measured the drag force on the fiber ffiament in an annular, turbulent air stream 

to determ ine the drag coefficient in a flow parallel to the ffiam ent Their 

correlation for the drag coefficient was also proportional to Re^'^^. In m elt blowing, 

since the fiber axis is mostly oriented a t an  angle with respect to the air flow, the 

assumption of parallel air flow is incorrect Therefore, Ju and Sham baugh (1994) 

developed correlations for the air drag on the fiber filament at oblique and normal 

angles to the flow, hi their work, the oblique fiber filaments w ere exposed to the 

air flow field near the end of a pipe. For a given Reynolds number, the
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aerodynamic force acting on the fiber in fius flow field was expected to be identical 

to tha t in  the flow field below an annular m elt blowing die; see Kayser and 

Shambaugh (1990) for details of the annular die, and Uyttendaele and Shambaugh 

(1989) and Majumdar and Shambaugh (1991) for the velocity and temperature flow 

fields of the same die. Rao and Shambaugh's model uses the drag coefficient 

correlation developed by Ju and Shambaugh to predict the diameter, velocity, and 

am plitude and fiequency of vibration of the fiber. However, their model 

underpredicts the am plitude of fiber vibrations. One possible reason for the 

underprediction could be that the turbulent air flow field used by Ju and 

Shambaugh was not the same as the annular air flow field used by Rao and 

Shambaugh. Anofiier reason could be fiiat Rao and Shambaugh's model uses only 

the axial direction mean velocity flow field studied by M ajumdar and Shambaugh 

(1991). Though, Ju and Shambaugh give correlation to evaluate the lift forces in  the 

transverse direction using axial direction mean air velocity, there m ust be some 

types of aerodynamic forces acting in the transverse directions due to turbulent air 

velocity flow field in  the transverse directions.

Recently, Harpham and Shambaugh (1996; 1997) studied the axial mean velocity 

and tem perature flow fields of a slot ("Exxon" type) die. Figure 5.1 shows the 

cross-section of the slot d ie  used by Harpham and Shambaugh (the same die was 

used in the present work). For the same slot die, Bansal (1997) extended two­
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dimensional Rao-Shambaugh m odel to three dimensions. However, Bansal's 

model also underpredicts the fiber am plitude for the slot die. One of the reasons 

for the underprediction of die fiber amplitude for the slot die could be that Bansal's 

model uses only axial flow field of the slot die to evaluate the aerodynamic drag 

and lift forces, and does not take into account the effect of transverse components 

of velocity on the aerodynamic drag and lift forces. Furthermore, the slot die has 

two inclined jets crossing close to the die face. The crossing of the jets afiects the 

turbulent air flow field of a slot die. Owing to the "histoiy" effect of the jet 

crossing, the turbulent air flow field of such a die is expected to be different than 

that studied by Ju and Shambaugh for evaluating the drag coefficient The 

difference in the two air flow fields m ay affect the aerodynamic force acting on the 

fiber filament; hence, the fiber am plitude is underpredicted.

Milligan (1991) experimentally related the "form" drag or pressure drag to the 

"flapping" or changing shape of the fiber threadline for a melt blowing slot die. 

The aerodynamic flapping of the fibers can be attributed to the air turbulence in 

melt blowing.

The melt blowing model of Rao and  Shambaugh (1993) predicted that the fiber 

vibrates w ith a characteristic natural frequency under the action of aerodynamic 

forces. Tyagi and Shambaugh (1995) found that the fiber diam eter could be
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reduced by oscillating the prim ary air jets of a  slot die w ith  a frequency that 

matches the natural frequency of the fiber. They found that the m ost significant 

reduction in the fiber diameter was achieved by oscillating the jets w ith  Aequencies 

in  the range of 28 Hz to 46 H z for three different air flow rates: 54, 100, 144 

standard liters per minute. Furthermore, they observed the air-to-polymer mass 

loading was significantly reduced by oscillating the jets. Therefore, Tyagi and 

Shambaugh concluded th a t to produce a fiber of given desired diameter, less air 

is needed if oscillation is used. From their results, it can be conjectured th a t by 

oscillating the air jets of a slot die, the same or higher degree of air turbulence is 

achieved as in a continuous flow; hence a reduction in  the fiber diam eter is 

observed. Consequently, in order to understand the effects of oscillating jets in 

m elt blowing, it becomes im portant to study the air turbulence structure of flow 

field formed by these turbulent jets.

In an effort to explain tiie above mentioned effects, a study was done to understand 

air turbulence in melt blowing. A one-dimensional hot-wire anemometer probe 

was used to measure air turbulence characteristics. However, a three-dimensional 

probe was needed to completely understand the air turbulence structure below the 

die. Due to the lack of equipment, the study could not be extended to higher 

dim ensions. Nevertheless, some characteristics of air turbulence below the die 

were obtained witii one-dimensional probe. In the following sections, a review of
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literature on the turbulent air jets in  melt blowing, an experim ental procedure for 

measuring the air turbulence structure for a slot die, and a discussion of results of 

the study are presented.

5.2 Literature Review

The axial mean velocity and temperature Helds of annular m elt blowing dies have 

been studied by Uyttendaele and Shambaugh (1989) and  M ajum dar and 

Shambaugh (1991). Mohammed and Shambaugh (1993; 1994) studied the axial 

mean velocity and temperature fields of a Schwarz die. Recently, H arpham  and 

Shambaugh (1996; 1997) d id  a similar study for a slot die. All these studies w ere 

done w ith a Pitot (impact) tube, and air turbulence characteristics w ere not 

measured.

As mentioned earlier, a slot die has two inclined, rectangular jets crossing close to 

the die face. Figure 5.2 shows the crossing of the two inclined slot jets. The cross- 

poin t of the two jets affects the development of the com bined jet flow field. 

Heretofore, no w ork has been done to study the turbulent flow  characteristics of 

inclined, rectangular free cross-jets. However, a lot of w ork has been reported on 

mean and turbulent flow characteristics of single and m ultiple jets in  a cross-flow. 

Examples include the works of Abramovich (1963), Kamotani and  Greber (1972),
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Rudinger and Moon (1976), Andieopoulos and Rodi (1984), Andreopoulos (1985), 

Issac and Jakubowski (1985), Ahmed and So (1987), Barata e t  al. (1991; 1992), and 

Savory and Toy (1991). Extensive experimental studies on turbulent flow of 

circular, free cross-jets have been done by Rho and Choi (1989), Rho et al. (1990; 

1995). They have analyzed die turbulent mixing characteristics such as m ean and 

fluctuating velocities, probability density distributions, intermittency factors, 

turbulence intensities, and Reynolds stresses. They found that the inclined, 

circular jets after crossing formed an elliptical jet which transform ed to a circular 

jet further downstream. Their work has been correlated to the present w ork on 

turbulence characteristics of rectangular, free cross-jets of m elt blowing slot die.

5.3 Experim ental Details

5.3.1 Experimental Equipment

The turbulent air flow field below a slot die was m easured a t isothermal 

conditions. Figure 5.1 shows the cross-section of the slot d ie  used. Figure 5.35.3 

shows the top view of the same die. Each slot of the die had a w idth  b = 0.64 mm 

and a length I = 74.6 mm. The outer edges of the slots were separated by a 

distance h = 5.03 mm. Harpham and Shambaugh (1996) have further explained the 

air supply details.
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A single channel hot-wire anemometer was used. Goldstein (1983) and Hinze 

(1975) have detailed the theory and working principle of the hot-wire anemometer. 

A constant current Dantec hot-wire anemometer set - model 55-M-lO CTA bridge 

am plifier w ith  model 55-M-Ol m ain unit - was used. A Keithley Metrabyte 

DAC/ ASYST terminal accessory board STA-16 DAS-16 was used to convert analog 

signals from bridge amplifier to digital signals. An IBM-compatible 386 computer 

equipped witti a math co-processor was used to analyze the digital data with 

AcqWire* (version 1.05) software. A  single wire Dantec probe (model 55P11) was 

used to collect fire data. The probe sensor wire was Platinum-plated tungsten wire 

with a diameter of 5 pm and a length of 1.25 mm. The sensor w ire had a resistance 

of 3.9 ohm at 20°C and a temperature coefficient of resistance of 0.0036 /  °C  The 

probe was mounted on a Velmex 3-D traverse system that perm itted x, y, and z 

motions in  0.01 mm increments.

Figure 5.3 shows fire coordinate system used in the experiments. The origin of the 

system lies at the center of the face of the die. The y direction is parallel to the 

slots, the X  direction is perpendicular to the slots, and the z direction perpendicular 

to the plane of the drawing with the positive z axis directed into the plane of the 

drawing.
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All the runs were done a t an air temperature of 21“Q  The air flow rate, at 

standard  conditions of 21 “C and 1 atm pressure, was set a t 1.67 x 10^ m^/s (100 

L/m in). For a slot w id th  of b = 0.64 mm, the two air flows through the two slots 

corresponded to average nominal discharge velocities of V}, = 17.5 m /s  and 

Reynolds number (based o n b  = 5.03 mm) of about 5800. There w as no polymer 

flowing through tiie die during the experiments, and the tem perature of the die 

was 21 “C

5.3.2 Hot-vrire System Calibration Procedure

The hot-wire system needs to be calibrated botii before and after each experimental 

run. If the calibration changes during the experimental run, the collected data are 

meaningless. In such case, the experiment has to be redone. The calibration is 

done after the experiment to ensure that calibration had not change during the 

experim ent Thus, calibration is one of the most im portant steps w hich has to be 

performed very carefully.

For calibrating ttie hot-wire system, a low turbulence flat velocity field is required 

(Goldstein, 1983). In such a field, all velocities, at least up to the maximum velocity 

to be measured, should be possible and reproducible. This kind of velocity field 

was obtained using 180-cm-long plastic pipe w ith a flat and low turbulence
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velocity profile. The pipe was long enough to give fully developed flow. The pipe 

was the same as used by Ju and Shambaugh (1994) for air drag measurements. The 

pipe had an  inside diameter of 12.6 mm. The air was supplied a t the top end of the 

pipe a t flow  rates ranging from 0.03 to 0.14 m^ (STP)/m in (30 to 140 standard 

L/min). The temperature of the air w as 21 "C. To characterize the air velocities at 

different air flow rates through the pipe, a Pitot (impact) tube was placed vertically 

at the end of the pipe. The Pitot (impact) tube w as the same as used by Harpham  

and Shambaugh (1996; 1997) in their study of air flow fields below a m elt blowing 

slot die. The Pitot tube was mounted on the Velmex 3-D traverse system, and was 

traversed across the diameter of the pipe to m easure the air velocity profiles. The 

Pitot tube had an outer diameter of 0.71 mm, an iimer diameter of 0.45 mm, and 

a conical nose shape witii a cone angle of 25 deg. The tube was 22.9 mm long and 

was connected w ith 1.19 mm inner diam eter tubing to an oil-filled manometer. 

Uyttendaele and Shambaugh (1989) have discussed the formula to convert pressure 

to velocity. The Pitot tube pressure w as referenced to ambient static pressure. It 

is possible that the hot-wire probe m ay not be placed at the exact same spatial 

position for calibrations before and after an experimental run. Furthermore, as 

discussed by Goldstein (1983), a nonuniform  velocity profile along the sensor 

increases the error in calibration. Therefore, to minimize the error in calibration, 

a flat velocity profile of the pipe was needed. Since the flow was the least 

turbulent at the center of the cross-section at the end of the pipe, the hot-wire probe 

was placed there. To avoid mixing of flow w ith the ambient flow, the tips of both
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the Pitot tube and the hot-wire probe were placed vertically about 1 mm from the 

end of the pipe. The flow rates were chosen such tha t there was more data for the 

lower range of velocities since flie relation betw een the velocity and voltage was 

nonlinear.

Step-wise Pipe Flow Characterization

1. The pipe w as set vertical with a plumb line. The Pitot tube was placed normal 

(vertical) to the flow. To check whether the Pitot tube was in a normal position 

or not^ it was rotated sideways and the position, w here the maximum pressure 

indicated, w as selected as the vertical position. The vertical traverse position 

corresponding to the end of the pipe was then found o u t

2. The Pitot tube was traversed along a chord close to the end of the pipe to find 

the two diametrically opposite ends. The positions, where the velocities were 

about zero (velocities become zero near the wall) and maximum, were noted. 

The length of the chord was equal to the difference between the two positions 

w ith  zero velocity. This value was com pared w ith  the diameter of the pipe 

(126 mm). If the relative difference between the two values was less than 1%, 

the above procedure was performed for the transverse direction. Otherwise, 

the Pitot tube was moved to a new position closer to the center of the cross-
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section of the pipe, and the above procedure w as repeated until the center of 

die pipe cross-section was found. After the center of the pipe was obtained, the 

Pitot tube was traversed along one of the diam eters of the pipe to measure the 

velocity profiles.

3. The a ir flow rate was set corresponding to the lowest velocity required to be 

measured in the actual flow. A rough estimate of the air velocity at the end of 

the pipe was obtained wiÜi die continuity equation. The data at 25 different air 

flow rates (ranging from 0.03 to 0.14 m^ (STP)/min) was taken. Figure 5.4 

shows the flat velocity profiles of the calibration pipe a t three different air flow 

rates.

After the pipe flow was characterized, the above steps were not repeated during 

each calibration. The data were stored as pressure differences and not as velocities 

because the velocity depended on die ambient pressure and flow temperature that 

change w ith time [see Uyttendaele and Sham baugh (1989) for the formula to 

convert pressure to velocity]. The ambient pressure and air temperature were 

noted each time the calibration was performed. The air velocities were then 

calculated using the existing values of ambient pressure and air temperature.
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The sensor of tiie hot-wire probe was positioned horizontally a t the center of cross- 

section of end of die pipe. The vertical position of the sensor w as about 1 mm from 

the end  of the pipe. The center of cross-section w as found using the procedure 

described in step 2 of the characterization of the pipe flow. However, for the hot­

w ire probe, instead of finding zero velocity, m inim um  voltage was found. A 

Tektronix oscilloscope (Model 2445B) was used to find the m inim um  voltage. For 

each know n air flow rate or velocity, the value of voltage was measured on the 

bridge-am plifier of the hot-wire system. A low turbulence profile becomes 

important since it lessens the uncertainty in the m easurem ent of both air ve loci^  

(m easured w ith the Pitot tube) and voltage (m easured w ith  bridge-amplifier). 

Therefore, the m ean value of the voltage corresponding to each velocity was 

m easured. This m ean value was not an ensemble average, bu t a time average. 

Thus, the time-averaged voltage was measured w ith  on-line signal analysis 

m odule of the AcqWire® software. In order to find out the optimum time for 

averaging, the m ean values of the voltages were m easured for 2.5 minutes and 5 

minutes. Since the relative difference between the two m ean voltage values was 

less than 1%, the values corresponding to a period of 2.5 minutes were selected as 

optimum. The air velocities corresponding to the air flow rates were found from 

the pressure data obtained from the pipe characterization experiment performed 

earlier. The formula for converting pressure to velocity has been discussed by 

Uyttendaele and Shambaugh (1989). Then, each of the m ean voltage values along 

with the corresponding air velocities were entered in the calibration module, and
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the best-fit curve of the voltage versus velocity w as obtained w ith the AcqWire* 

software.

5.3.3 Experimental Conditions

A t a fixed z position below ttie die, the sensor w ire of the probe was aligned 

parallel to the y axis or the slots, and the probe traversed along the x  axis 

(transverse to the slo t direction). The length-to-width ratio (J/b) of the die was 

about 117 while the Ifii ratio was about 15. Since these ratios w ere large, the cross- 

jets were assumed to be infinite for the positions near the center plane of the die 

and not very far from  the die face. Therefore, aU the experiments were done at 

positions in  the bisecting plane (y = 0) of the die.

From the schematic of the flow geometry in Figure 5.2, it can be seen that the two 

inclined slot jets combine to form a single je t  The geometrical cross-point of the 

two inclined slot jets w as found to be ẑ  = 3.8 mm. In their study of circular cross­

jets, Rho et al. (1990) considered the distance of geometrical crossing of the jets as 

the characteristic length for non-dimensional analysis. This length was 

characteristic since it combines the effect of the distance of separation between the 

jets and their angle of inclination. Rho et al. (1990) observed that the turbulence 

intensities reached their maximum after the cross-point Consequently, it was
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concluded Üiat the position of crossing of the jets plays an important role in  

defining tiie turbulence characteristics of the combined je t  Therefore, in the 

present study, the distance of geometrical crossing of two slot jets was considered 

as the characteristic length for non-dimensionalizing the z distance below the die. 

The m ean air velocity, turbulence intensity, skewness, and flatness profiles w ere 

studied a t seven z positions corresponding to z/z^ of 1.0 to 2.5 w ith the increments 

of 0.25. Since the air velocities are time-averaged, the averaging time should be 

much larger than the integral (characteristic) time scale of the flow (Tennekes and 

Lumley, 1972, pp. 211-212). However, the integral time scale of the flow was not 

known. Therefore, the "averaging time" was found by comparing various data 

collection tim e periods. Thus, the velocity data  w as collected for 1 m in a t a 

position, and w as compared with data collected for 2 m in at the same position. 

Since the percentage difference between tiie data collected for two time periods 

was greater than 1%, a period of 1 m in was not the correct "averaging time". The 

procedure was repeated for time periods of 2 m in and 3 min. It was found that a 

time period of 2 m in was an optimum "averaging time". Though for time- 

averaging the effect of sampling frequency is insignificant a large num ber of 

samples have to be taken for averaging. A sam pling fi-equency of 136.5 H z 

(corresponding to 16384 samples in a 2 m in time interval) was selected as the 

highest possible sampling frequency w ith the available hardware. The sampling 

frequency only affects the energy spectra of the flow. Since the energy spectra of
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tiie flow was not measured/ the sam pling frequency did  not affect the air velocity 

results.

5.4 Results

5.4.1 Definitions of Terms Used

1. Mean Velocity and Fluctuating Velocity; As described by Tennekes and Lumley 

(1972), the Reynolds decomposition of the instantaneous velocity ÿ  in  a turbulent 

flow field is given by

^  = V  + V (5.2)

w here V  is the m ean (time averaged) velocity component of the instantaneous 

velocity ÿ , and v is the fluctuating component of the instantaneous velocity v .

2. Root Mean Square of Velocity Fluctuations: The root m ean square of velocity 

fluctuations is defined as

v ^ = \ j v ^  (5.3)
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3. Turbulence Intensity: The turbulence intensity T(u) is defined as the ratio of the 

root m ean square of velocity fluctuations and  the m ean velocity of that 

com ponent Mathematically,

T(v) =
V

4. Skewness Factor It is a dimensionless measure of asym metry of the fluctuating 

velocity probability distribution. The skewness factor S(v) is defined as

cr \S(v) = —  (5.5)
^rms

For example, for a norm al distribution, the skewness factor is zero since a norm al 

distribution is symmetrical about the mean position.

5. Flatness Factor or Kurtosis: It is a dimensionless m easure of the flatness of the 

probability tails, or the peakedness of the fluctuating velocity distribution. The 

flatness factor or kurtosis K(v) is defined as
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(̂P) = —  (5.6)
^rms

As described by Hinze (1975, pp. 242), for a normal distribution, the flatness factor 

is equal to 3. A  velocity fluctuation distribution w ith zero m ean and  a value of 

flatness factor higher than 3 has a more peaked distribution around zero m ean than 

a normal distribution. Therefore, the probability for zero values is higher than the 

probability for nonzero values, indicating an intermittent character of the velocity 

fluctuations. Consequently, he suggested th a t  if the flow is know n to be 

intermittent in  a separate way, the flatness factor m ight be considered as a m easure 

of degree of intermittency. The intermittency factor y is defined as a fraction of 

time for w hich turbulence occurs at a point in  the flow. A low value of the 

interm ittency factor y would mean that the flow is mostly lam inar and 

interm ittently  tu rbu len t while a high value of y means that the flow is mostly 

tu rbu len t

5.4.2 Mean Velocity Field

Figure 5.5 show s the development of axial m ean velocity profile for all the z 

positions studied. Since all the positions studied were beyond the cross-point of
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the jets, only one peak w as seen. The mean velodty^ prohle becomes flatter as the 

axial distance from die die increases. Figure 5.6 show s the nondimensional axial 

m ean velocity profile below die die. The velocity (ordinate) has been 

nondimensionalized by  dividing by maximum velocity a t the respective z level. 

The position (abscissa) has been nondimensionalized w ith the jet half-width: the 

w idth  at which die m ean jet velocity drops to half its maximum value. It is seen 

from  the graph th a t for all die z positions studied, the nondimensional mean 

velocify profiles are the same. This self-similar behavior of the jet in the studied 

region shows that the combined jet flow is self-preserving w ith  respect to the axial 

m ean velocity downstream  from the jet cross-point The semi-empirical 

correlations developed for simple jet flows are no t available for such complex 

flows as in the present study. However, the correlations developed for simple jet 

flows can be used for comparison with the data from  the flow of the cross-jets. 

Figure 5.6 shows three correlations applied to die experimental data. The solid line 

on the graph is the correlation developed using Tollmien (1926) and Reichardt 

(1942) analysis for a circular turbulent je t  The details of the Tollmien-Reichardt 

analysis have been shown by Uyttendaele and Shambaugh (1989). The dotted line 

on tiie graph is the predicted velocity profile based on the correlation developed 

by Gôrtier (1942) for a plane turbulent jet; see Rajaratnam (1976) for details. The 

tiiird hne (dotted and dashed line) corresponds to Bradbury's (1965) correlation for 

a rectangular turbulent je t  These semi-empirical correlations are shown in the 

following equation s e t
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ToUm ien-Reichardt —  = 1 + (V5 - i)
f \

X

'■ 1/2

-2

C order —  = 1 -  tanh 
V

0.881

V
Bradbury: —  = exp -  0.6749 I

^V2/

{ X1 f  0.027 —
. ^ n l

(5.7a)

(5.7b)

(5.7c)

where

 = transverse nondimensional position
1/2

V
= nondimensional axial mean velocity

From Figure 5.6, i t  is seen that ToUmien-Reichardt and Gortler correlations fit the 

data very weU w ith  coefficient of determination R  ̂ values of 0.996 and 0.995 

respectively. The values for each of seven data sets fit separately to ToUmien- 

Reichardt correlation range from 0.990 to 0.998, whUe the R̂  values range firom 

0.993 to 0.997 for tiie data sets fit separately to Gortler's equation. Furthermore, 

Bradbury's equation for rectangular jets fits the data w ith an R̂  of 0.984. It is seen 

from the graph tiiat Bradbury's equation fits the data weU up to 1.5 jet half-widths, 

but b ^ o n d  that it does not represent the data as good. Harpham  and Shambaugh 

(1996; 1997) also found that; for the same flow geometry, Bradbury's equation fits
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the nondimensional axial mean velocity data very well up to 1.5 jet half-widths. 

However, in  die present study, bodi ToUmien-Reichardt^s and Gdrtler's equations 

represent the data very well a t all the r-positions (up to three jet half-widths). Rho 

e t al. found that^ for the two circular jets crossing at 45° angle, the experimental 

nondimensional axial mean velocity data fits well w iüi the correlations of Gortler 

w ithin one jet half-width.

Figure 5.7 shows the decay of the centerline axial mean velocity. For a self- 

preserving plane turbulent je^ Bradbury (1965) described that the centerline axial 

m ean velocity should be proportional to in  particular

y  _ \  -1/2

where

Vg = centerline axial mean velocity

Vjg = nominal jet exit velocity
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Cl, C2 = empirical constants

The solid line on Figure 5.7 is a least-squares fit of equation (5.8). It can be seen 

that the data fits the equation well (R  ̂= 0.950) w ith  Cj = 0.874 and  Cj = 0.526.

Gutmark and Wygnanski (1976) showed that a plane turbulent jet spreads linearly 

with the 2 direction. Kotsovinos (1976) described the spread of a rectangular jet by 

the following equation:

where fcj is the measure of spreading rate of the je t The constant is related to the 

virtual origin z, of the jet by the following equation:
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where w  is the w id th  of the je t  Figure 5.8 shows spreading of the jet in  terms of 

the jet half-widtii. The position x  (abscissa) has been nondimensionalized by 

dividing by h w hich is assumed to replace w  in  equations (5.9) and (5.10). The 

solid line on Figure 5.8 is a least-squares fit of equation (5.9) to the data. The fitted 

values of fcj and are 0.11 and 0.116, respectively, and the of the fit is 0.960. For 

a plane turbulent je t  Gutmark and Wygnanski (1976) found the values of and 

to be 0.1 and 2, respectively. Kotsovinos found that the value of ki ranges from 

0.087 to 0.128 with a typical value of 0.11, while the value of k; ranges from -4.5 to 

+6.5. Therefore, the values of kj and k; obtained in the present study are in  the 

range of those obtained for a single plane turbulent je t  The dotted line on Figure 

5.8 is spread of the je t obtained by Harpham and Shambaugh (1996) for the same 

flow geometry. The jet spread obtained by Harpham  and Shambaugh is larger 

than that obtained in the present study. The difference between the two jet spreads 

is explained later in the next section.

5.4.3 Turbulence Structure o f the Jet Row

Figure 5.9 shows the variation of turbulence intensity along the centerline of the 

combined jet flow. From the graph, it is seen that the centerline turbulence 

intensity increases witti the dimensionless distance z/z^ a t least up to zjz^ = 2.5. The 

increasing turbulence intensities in the center plane of the jet suggest the
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generation of turbulence after the crossing of two inclined slot jets. Rho et al. 

(1990) found that die centerline turbulence in ten sif  in a circular cross-jet flow (two 

circular jets inclined at 45°) had a peak near of two. Beyond the peak position,

the turbulence intensity values decreased and became constant In the present 

study. Figure 5.9 shows that a similar "maximum" in centerline turbulence 

intensity  is not present However, there is a possibility that the centerline 

turbulence intensity might reach a peak value a n d /o r  become constant after z/ẑ  ̂= 

25 ( ^  “  2). Bradbury (1965) and Gutm ark and W ygnanski (1976) observed that

die centerline turbulence intensity of a plane turbulent jet increased initially, and 

then became constant (self-preserving) about 40 slot-widths downstream from the 

nozzle. Furthermore, they found that^ in the initial region {jjh <. 10) of a plane 

tu rbu len t jet, the magnitude of the centerline turbulence intensity was less that 

10%. However, in the present study, the m agnitude of turbulence intensity at z/z^ 

= 2.5 {zjh “  2) is about 22%. Consequentiy, in  the initial region of the jet flow, a 

turbulent cross-jet has a higher level of turbulence than a plane turbulent je t

Figure 5.10 shows the variation of turbulence intensity profile along the z direction. 

The turbulence intensity of the axial component of the air velocity sharply 

increases on moving away from the center of the je t  The turbulence intensity 

reaches a maximum at a distance of about 1.75 jet half-widths for all the z positions 

studied. Furthermore, Figure 5.10 shows that the turbulence intensities across the
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je t increase w iüi the z  position. The increase in  turbulence intensities w ith  the z 

position signifies (a) a strong generation of turbulence after the crossing of the two 

inclined jets, and (b) a lack of self-preservation of the jet flow, a t least in  the initial 

region of die jet flow. The maximum value of turbulence intensity across the jet 

varies from  about 50% a t z/z^ -  1.0 to about 62% at z/z = 2.5. G utm ark and 

Wygnanski (1976) observed that^ for die axial positions further than 40 slot-widths, 

the turbulence intensity profiles became the same, indicating the self-preserving 

region of the je t  Furthermore, they found that the axial-component turbulence 

intensity increases slowly across the je t  and reaches a peak value around one jet 

half-width. However, they observed that the peak value of the turbulence intensity 

was about 30% as compared to the peak value of about 62% observed in  the present 

study. Consequently, in  the present study, the cross-jet flow has a different 

turbulent structure than the plane jet at least in the initial region of the flow. Rho 

et al. (1990) found similar results on comparing the axial com ponent turbulence 

intensity of circular cross-jets w ith  that of a round je t

The asymmetry of the velocity fluctuation distribution is illustrated as skewness 

factor profile in  Figure 5.11. From the graph, it is seen th a t close to the center of 

the je t  the distribution of velocity fluctuations is symmetrical: the large velocity 

fluctuations in bofii die positive and negative z  directions are equally probable. 

However, the distribution starts becoming positively skewed on m oving about one
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jet half-w idth across ttie je t  ttie large velocity fluctuations are mostly in die 

positive z  direction. The skewness factor reaches a positive peak value about two 

jet half-widths further from the center of the je t Similar profiles of skewness factor 

are observed for all the z positions studied. Close to the center of the je t  the 

skewness factor o f die velocity^ fluctuation distribution is alm ost zero for all die z 

positions. However, on moving away from the center of the je t  die skewness 

factor becomes m ore positive for the higher values of z/z^ The variation in 

skewness factor w ith die z position indicates the absence of self-preserving nature 

of the je t

Figure 5.12 shows the flatness factor profile across the je t  From the graph, it is 

seen that the flatness factor is almost Gaussian (with value equal to 3) up to one jet 

half-width, and large values are observed as jet boundary approaches. Rho e t al. 

(1990) and G utm ark and W ygnanski (1976), respectively, observed a similar 

behavior for the circular turbulent cross-jets and a plane turbulent je t  The large 

positive values of the skewness factor and the flatness factor about two jet half- 

w idths (close to the jet boundary) from die center of the jet suggest that the 

intermittency factor is low, i.e., the flow is less tu rbu len t and is mixing w ith the 

irrotational flow outside of the jet boundary: entrainm ent of the external 

irrotational flow.
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5.4.3.1 A Comment on  the Tet Spread

Figure 5.8 illustrates that the jet half-widths obtained in the present study are 

smaller than diat obtained by Harpham and Shambaugh (1996) for the same flow 

geometry. This difference is attributed to the different instruments used for 

measuring the flow field. Harpham and Shambaugh used a Pitot (impact) tube for 

m easuring the m ean velocities/ while a hot-wire anemometer was used in the 

present study. As discussed by Goldstein (1983/ pp. 14-16 and 64-66)/ w ith a Pitot 

(impact) tube/ the error in measuring the m ean velocity in a turbulent flow is 

proporional \a v^, mean square of velocity fluctuations. Mathematically/

5  M/2
(5.11)

where is the m ean velocity measured by the Pitot (impact) tube. Therefore, 

for the flows with large turbulent intensity, the m ean velocity measured by a Pitot 

(impact) tube will be m uch larger than the actual mean velocity V. For example, 

in the present flow, for the highest turbulence intensity of 0.62 (see Figure 5.10), the 

mean velocity measured with a Pitot (impact) tube will be about 20% more than the 

actual m ean velocity at that position. Furthermore, w ith a Pitot tube, the mean
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velocity m easured is the spatial root mean square of the instantaneous velocity 

over the orcum ferential plane of the Pitot probe [Goldstein (1983, pp. 14-16)]. 

Therefore, the size of the probe (diameter of the Pitot probe) becomes very 

im portan t Goldstein has discussed that the shear flow displaces ttie effective 

center of the probe (measured value of ttie average pressure is assum ed to lie a t the 

center of the probe) is shifted toward the high velocity region by 15% of the inside 

diam eter of the Pitot probe. Therefore, the velocity m easured a t a position is 

higher than the actual the velocity at that position. Because of (a) the turbulence 

and (b) a shift in  the effective center of the probe, the velocities m easured w ith a 

Pitot tube will be higher than the actual velocities. Since a jet half-width is a 

position where the mean velocity falls to half its maximum value, the jet half-width 

measured by a Pitot tube is expected to be larger than the jet half-width measured 

by a hot-wire anemometer. Table 5.1 shows a comparison of jet half-widths 

measured in the present study (with a hot-wire anemometer) and those obtained 

with Harpham  and Shambaugh (1996) correlation for je t half-width. The probe 

sizes used in two studies are also shown in Table 5.1.

Figure 5.13 shows the turbulence intensity profile across the je t  The x  position is 

nondimensionalized w ith jet half-width calculated using the correlation developed 

by H arpham  and  Shambaugh for the same flow geometry. A comparison of 

Figures 5.10 and 5.13 shows that the peak in turbulence intensity (maximum
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velocity fluctuatioiis)/ which is observed at about 1.75 jet half-widths in  Figure 5.10, 

has m oved to about one je t half-width in Figure 5.13. Since, for their work, 

H arpham  and Shambaugh used a Pitot (impact) tube, they m easured a higher 

value for the m ean velocity V  a t the positions corresponding to high levels of 

turbulence intensity. Moreover, from Table 5.1, it  can be seen that spatial size of 

the Pitot probe is of the same order of m agnitude as the jet half-width. Therefore, 

the possibility of error increases in  averaging the pressure of the highly turbulent 

flow (as in  the present case) over the circumferential plane of the Pitot probe. 

Consequently, for the same flow geometry, the je t half-w idth calculated w ith the 

H arpham  and Shambaugh correlation is larger than the je t half-width measured 

in  the present study.

5.4.4 Mean Velocity in Oscillating fets

hi oscillating flow, the air emits hrom one slot a t a time, while in continuous flow, 

the air emits from both slots a t the same time. The two inclined slot jets of the die 

were pulsed using the experimental procedure described by Tyagi and Shambaugh 

(1995) for the same m elt blowing arrangem ent There w as no polymer flowing 

tiirough the die during tiie experiments. The temperature of the air was 21°C. For 

the same nominal jet exit velocity (V), = 17.5 m /s )  through each of the oscillating 

jets, Tyagi and Shambaugh found that a peak in  the fiber diam eter profile (fiber

261



diam eters greater than  that obtained for a continuous flow) w as observed at an 

oscillation hequency of 9 Hz, and a plateau in  the diameter profile (fiber diameters 

sm aller than ttiat obtained for a continuous flow) was observed between the 

oscillation fiequencdes of 28 and 46 Hz. Therefore, the flow field of the oscillating 

jets was studied for pulsation frequencies of 9,28, and 46 H z a t the dimensionless 

position i/z^ - 1.0. The sampling time and frequency of the hot-w ire anemometer 

system for the case of pulsating flow were the same as used  for the continuous 

flow; a sampling frequency of 136.5 H z and a sampling time of 2 minutes.

Figure 5.14 compares the axial mean velocity profile of the continuous flow and the 

flow of oscillating jets. A t an oscillation frequency of 9 Hz, the velocity profile is 

flatter as compared to the velocity profile of the continuous fiow, and  the centerline 

m ean velocity of oscillating flow is lower than that of the continuous flow. 

However, a t oscillation frequencies of 28 and 46 Hz, the m ean velocity profiles 

become almost identical to the mean velocity profile of the continuous flow. Since 

the same sampling tim e was used for all the flow conditions and  the flow at 9 Hz 

oscillates slower than  the flows at 28 and 46 Hz, it is possible that the sampling 

time for ttie case of 9 H z was not sufficient to evaluate the actual m ean velocity V 

by time-averaging ttie instantaneous velocity V. Therefore, a flatter velocity profile 

was obtained for the flow at 9 Hz. Figure 5.15 shows the nondim ensional mean 

velocity profile for all the four flow conditions. The velocity (ordinate) has been

262



nondimensionalized by dividing by the maximum axial mean velocity for the 

respective flow condition. The position (abscissa) has been nondimensionalized 

witti the jet half-width. It is seen from the graph tiia t for all the flow conditions, 

the nondimensional profiles are the same. This self-similar behavior of the jet 

shows that^ despite the oscillations, the flow is self-preserving w ith respect to tiie 

axial m ean velocity. The three semi-empirical correlations described by the 

equation set (5.7) w ere applied to the experimental data. The solid line on the 

Figure 5.15 is tiie correlation developed using Tollmien (1926) and Reichardt (1942) 

analysis for a circular turbulent je t  The dotted line on the graph is the predicted 

axial mean velocity profile based on the correlation developed by Gortler (1942) for 

a plane turbulent je t  The third line (dotted and dashed line) corresponds to 

Bradbury's (1965) correlation for a rectangular turbulent je t From the figure, it can 

be seen that all three correlations fit well with the data. The values for the least- 

squares fit of the correlations of ToUmien-Reichardt Gortler, and Bradbury were 

found to be 0.987, 0.991, and 0.990, respectively.

5.4.5 Turbulence Structure in Oscillating fets

The turbulence intensity profile at aU four flow conditions is iUustrated in Figure 

5.16. The turbulence intensity profiles of 28 Hz and 46 H z osciUating flow are the 

same as observed for the continuous flow. A peak in turbulence intensities is
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observed around 1.5-1.75 jet half-widtiis. However, for the flow a t 9 Hz, the 

turbulence intensities are much higher than that for other flow conditions. A t an 

oscillation frequency of 9 Hz, die turbulence in te n s if  rises sharply on m oving 

away from  the center of the jet, reaches a peak value around 1.5 jet half-widths, 

and starts decreasing sharply. A t the same oscillation frequency (9 Hz), the peak 

value of die root mean square of the fluctuations matches the m ean velocity a t that 

position. This suggests that there is a strong generation of turbulence.

Figure 5.17 shows the skewness factor profile at all the flow conditions. From the 

graph, it can be seen th a t for all flow conditions, the velocity fluctuation 

distribution is symmetrical within one jet half-width: both positive and negative 

velocity fluctuations are equally probable. Beyond one jet half-width, the profiles 

show that the distributions start becoming positively skewed, and reach a peak 

value about two jet half-widths from the center of the je t  The flows oscillating at 

28 Hz and 46 Hz have almost the same skewness factors as the continuous flow at 

all the positions across the je t A t 9 Hz, the skewness profile is the sam e as 

continuous flow up to one jet half-width. However, beyond one jet half-width, the 

flow at 9 Hz starts having higher positive values of the skewness factor that for the 

continuous flow. Furdiermore, for tiie flow at 9 Hz, the peak value of the skewness 

factor is much larger than the peak value for other flow conditions studied.

264



Figure 5.18 illustrates the flatness factor profile for both the oscillating and 

continuous flows. Once again, the jets oscillating at 28 and  46 H z have the same 

flatness factor profile as the continuous flow: the flatness factor has a Gaussian 

value of 3 up  to one jet half-width, and  then starts increasing for the intermittent 

flow near the jet boundary. However, for the flow a t 9 Hz, the flatness factor has 

a low er value than Gaussian value of 3 up to one jet half-width. Beyond one jet 

half-width, for tiie flow a t 9 Hz, the flatness factor starts increasing sharply to the 

values m uch greater than Gaussian value of 3.

From the turbulence intensity, skewness factor, and flatness factor profiles across 

the jet (Figures 5.16, 5.17, and 5.18, respectively), it is evident that, by oscillating 

the jets at the frequencies of 28 and 46 Hz, a turbulence structure identical to the 

continuous flow is generated. The trends in Figures 5.16 through 5.18 suggest th a t 

by oscillating tiie flow at 9 Hz, a m uch stronger turbulence structure is generated. 

However, i t  is possible that; for tiie flow at 9 Hz, the obtained turbulence intensity, 

skewness factor, and flatness factor distributions could be due to either a 

m easurem ent error (because of the small sampling time) or the resonance of jets.
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5.5 Conclusions and Recommendations

Following conclusions can draw n from one-dimensional experimental studies on 

isothermal, turbulent cross-jets in melt blowing:

1, The dimensionless axial mean velocity profiles can be predicted from (a) 

Gôrtlei's or ToUmien-Reichardt's correlations, (b) a power law equation for the 

centerline m ean velocity (see Figure 5.7), and (c) the linear equation for jet half­

w id th  (see Figure 5.8). The axial mean velocity proUle was narrower than that 

measured by H arpham  and Shambaugh (1996) for the same flow geometry. The 

turbulence structure of the jet flow field explains the difference in two m ean 

velocity profiles.

2  The turbulence structure of the inclined, rectangular cross-jets is different from 

the turbulence structure of a plane jet or a round je^ but matches the turbulence 

structure of inclined, circular cross-jets (see Rho e t al., 1990). Higher levels of 

turbulence are observed in  the initial region of the cross-jet flow than that in  a 

plane jet or a round je t As described by Rho e t al., due to the crossing of the jets, 

a very strong history effect in the turbulence structure is present in the cross-jet 

flow. Therefore, the jet cross-point region is the key to the downstream  

development of the flow. Consequently, ttie modeling of the cross-jet flow requires
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a complete understanding of this region of the flow. Therefore, for the 

m athem atical modeling of m elt blowing below a slot die, the drag force and lift 

force correlations developed by Majiundar and Shambaugh (1990) and Ju and 

Shambaugh (1994) have to be corrected to include the turbulence effects due to the 

crossing of the jets. Furthermore, studies need to be done to understand the 

turbulence structure due to the transverse components of the air velocity. In m elt 

blowing, ttie turbulence effects due to all three components of the air velocity m ust 

be included in ttie drag and lift force correlations to predict the fiber diameter and 

the amplitude of fiber vibrations accurately.

3. Since the jet cross-point plays an im portant role in  defining the turbulence 

structure of the cross-jet flow field, the distance of geometric cross-point of air jets 

Zg can be used as a characteristic lengtli for the melt blowing process. 

Consequently, the characteristic z direction spatial separation of 5 mm, which 

contains a fiber element formed w ith the neighborhood of correlated fiber beads 

(see Chapter 3), can be nondimensionalized by dividing by the corresponding 

value of Zg used. For the die settings used in the study described in Chapter 3, ẑ  

= 2.39 mm; see Figure 3.1. Therefore, the nondimensionalized characteristic z 

direction spatial separation will be 2.1 corresponding to the melt blowing 

conditions used in the study.
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4. The dimensionless axial m ean velocity^ profiles of the oscillating jets follow the 

semi-empirical correlations of GôrÜer and Bradbury. Since GôrÜer's correlation 

can also be used to predict the axial m ean velocity profile for the continuous flow, 

the use of GôrÜe/s equation for predicting the axial mean velocity profiles of both 

continuous and oscillating flows is suggested. The dimensional axial mean 

velocity profiles of the flows oscillating at 28 and 46 H z are sim ilar to that of the 

continuous flow. However, the dimensional axial mean velocity profile of the flow 

at 9 H z is flatter than the velocity profile of the continuous flow. Therefore, it is 

expected that the axial m ean velocity flow field of jet oscillating w ith the 

frequencies in the range of 28 H z to 46 H z (corresponding to the plateau region of 

the fiber diameter profile; see Tyagi and Shambaugh, 1995) is similar to the 

velocity profile of the continuous flow.

5. For the jets oscillating at 28 and 46 Hz, tiie turbulence structure of the flow field 

is similar to the turbulence structure of the continuous flow. The flow field of the 

jets oscillating at 9 H z is much more turbulent than the flow field of continuous 

flow or the flow at 28 or 46 Hz. Therefore, it can be concluded th a t by oscillating 

the jets w ith the fi-equencies in  the range of 28 to 46 Hz (corresponding to the 

plateau region of the fiber diam eter profile), a "constructive" turbulence structure 

sim ilar to that of the continuous flow is generated a t a lesser air flow rate. 

H ow ever, by oscillating the jets w ith a frequency of 9 Hz (corresponding to the
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peak of the fiber diam eter profile), a turbulence structure, "destructive" for the 

fiber diam eter, is generated. Further studies need to be done to understand the 

turbulence structure of the air veloci^  flow field in  oscillating jets. Such studies 

would help in  understanding die reduction in  the fiber diam eter due  to oscillating 

jets in  m elt blowing.

6. The present study  of one-dimensional turbulent flow field of continuous and 

oscillating flow should be a good starting point for two and three-dimensional 

studies. These studies would help to im prove the understanding of spatial 

orientation and vibrations of the fiber threadline in melt blowing.
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5.6 Nomenclature

b = w idth of an individual slot of the die as defined on Figure 5.3, mm 

Cl = dimensionless empirical constant in  eq (5,8)

C; = dimensionless empirical constant in  eq (5.8)

Cf= drag coefficient of the filament

h = distance between edges of two slots (see Figure 5.3), mm 

ki = dimensionless constant in  eq (5.9) 

k; = dimensionless constant in eq (5.9)

K(v) = dimensionless flatness factor or kurtosis of axial component of air velocity 
defined in eq (5.4)

I = total length of an  individual slot as defined on Figure 5.3, mm

Re = Reynolds num ber of the air flow based on the diameter of the hlam ent

S(p) = dimensionless skewness factor of axial component of air velocity defined in 
eq (5.5)

T(v) -  dimensionless turbulence intensity of axial component of air velocity 
defined in eq (5.4)

V  = axial component of velocity fluctuations [see eq (5.2)], m /s

= root mean square of axial velocity fluctuations defined in  eq (5.3), m /s

# = instantaneous axial air velocity defined in eq (5.2), m /s
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mean of the square of axial velocity fluctuations [see eq (5.4)], mVs^ 

v^= mean of tiie cube of axial velocity fluctuations [see eq (5.5)], mV

mean of the fourth pow er of axial velocity fluctuations [see eq (5.6)], m^/s^ 

V -  axial mean velocity [see eq (5.2)], m /s  

V„ = centerline axial m ean velocity [see eq (5.2)], m /s  

Vj, = nominal air jet exit velocity, m /s

Vpflot -  mean air velocity m easured by a Pitot tube [see eq (5.11)], m /s

w ~ w idtii of single rectangular jet [see eq (5.10)], mm

X -  Cartesian coordinate defined on Figure 5.1, mm

Xyi = jet half-width in the x  direction, mm

y = Cartesian coordinate defined on Figure 5.1, mm

z = distance below the die (see Figure 5.1), mm

Zc -  geometrical cross-point of two inclined, slot jets of the die (see Figure 5.2), mm 

Zg = position of the virtual origin of a rectangular jet [see eq (5.10)], mm

Greek Symbols

P = dimensionless empirical constant in eq (5.1)
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z
(mm)

Xl/2
[Harpham and 

Shambaugh (1996)] 
(mm)

inner 
diameter of 
Pitot probe 

(mm)

^1/2
[present study] 

(mm)

hot-wire 
sensor w ire 

diameter 
(mm)

3.80 1.08 0.45 0.48 0.005
4.75 1.19 0.45 0.59 0.005
5.70 1.30 0.45 0.69 0.005
6.65 1.41 0.45 0.80 0.005
7.60 1.52 0.45 0.90 0.005
8.55 1.64 0.45 1.01 0.005
9.50 1.75 0.45 1.11 0.005

Table 5.1 Comparison of je t half-widths and the probe sizes used in the present 
study and by Harpham and Shambaugh (1996)
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polymer

3.75 mm
mm

5.03 mm

Figure 5.1 Cross-section of ttie melt blowing slot die used in the experiments. The 
origin of the coordinate system, which is shown separately, lies at the polymer 
orifice of the die.
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air air

geometrical 
jet cross-point

= 3.8 mm

Figure 5.2 Structure of cross-jet mixing flow below a melt blowing slot die.
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Right AirLeft Air

Figure 5.3 Top view of the die face. The z axis (not shown) is perpendicular to the 
plane of the draw ing w ith positive z axis direction into the plane of the drawing.
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Figure 5,4 Developm ent of flat velocity proflles at the end of the calibration pipe 
for four different air flow rates. The measurements done at other air flow rates are 
not shown on the figure.

280



20.0

16.0

12.0

I
>

X (mm)

Ta =21 C 
Vjg = 17.5 m/s

□ z = 3.80 mm
★ z = 4.75 mm
+ z = 5.70 mm
o z = 6.65 mm
A z = 7.60 mm
< z = 8.55 mm
X z = 9.50 mm

3.0

Figure 5.5 Development of the axial mean velocity profile for seven z  positions 
below the die. All measurements were done a t y = 0 with a hot-wire anemometer.
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Figure 5.6 Nondimensional axial mean velocity profiles for different z positions 
studied.
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Figure 5.7 Dimensionless centerline axial mean velocity distribution at different 
z positions below the die.
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Figure 5.8 Grow th of jet half-width w ith increasing distance from the die.
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Figure 5.14 Comparison of axial mean velocity profiles of oscillating flow and 
continuous flow through the die slots.
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Figure 5.15 Comparison of dimensionless axial mean velocity profiles of oscillating 
flow and continuous flow through the die slots.
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Chapter 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Sum m ary of Conclusions

The nature of fiber motion, nonwoven webs, and air turbulence structure in single­

filament m elt blowing has been experimentally studied. Fiber m otion has been 

studied in  terms of both fiber vibrations and fiber position distribution. The 

statistical parameters of a single-filament melt-blown w eb have been correlated to 

the fiber motion that in turn has been related to the air turbulence structure in  melt 

blowing. Numerous conclusions have been draw n from the various results 

obtained in  this study.
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The results of fiber vibrations study (see Chapter 2) show th a t the fiber cone is 

elliptical with the direction across the slots of the die forming the  m ajor axis of the 

ellipse. Furthermore, it was found that^ across the axis in the d irection of slots, the 

frequency of fiber oscillations was more than the frequency o f oscillations across 

the direction perpendicular to the slots. Therefore, the  fiber m otion is 

predominantly in the direction across the slots. The elliptical behavior of the fiber 

m otion is further illustrated in the fiber position distribution that follows a 

unimodal bivariate probabüity distribution. One such distribution that w as fit to 

the experimental data was a bivariate normal distribution (see Chapter 3). The 

fiber distribution spreads linearly with the increase in distance fi-om the spinneret. 

Furthermore, it was found that the fiber motion in the two transverse directions 

was correlated. Hence, die elliptical cross-section of the fiber cone has a preferred 

orientation in the plane transverse to the spinning direction. The angle of 

orientation was found to vary sinusoidally for the fiber positions that w ere w ithin 

a characteristic spatial separation along the spinning direction. Therefore, it is 

suggested that the fiber motion be that of an elliptical spiral that sinusoidally 

rotates in the transverse planes. Furthermore, it was observed that the fiber 

positions were auto-correlated only to those positions that w ere w ith in  a length of 

a fiber element along die fiber axis. Consequendy, the fiber laydow n pattern  or the 

distribution of fibers in  the web will follow the same distribution as the fiber 

positions of a moving threadline follow in a transverse plane. To evaluate the web 

distribution and the effect of melt blowing process variables on the statistical
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parameters of the distribution, an analysis of w eb images w as done (see Chapter 

4). The image analysis technique was based on KuUback-Leibler principle of 

information entropy. The web distribution w as found to spread linearly w ith  the 

distance from die die. In addition, it was observed, that process conditions, which 

reduced the hber diameter, increased the spread of the w eb distribution. This 

result should be very helpful in  controlling the basis w eight (mass per unit area) 

of a melt-blown web. Furthermore, for a fixed z position below the die and for a 

given set of process variables, a large variance in the web orientation angle 

suggests diat the web orientation angle is a function of time. This variation of the 

web orientation angle widi time is a corollary to an earlier suggestion that the fiber 

moves spirally in a transverse plane, and the spiral rotates sinusoidally.

The study of the turbulent cross-jets shows that the position, at which the two slot 

jets cross below a melt blowing die, plays an im portant role in defining the 

turbulence structure of the flow field. Therefore, the distance of geometric cross- 

point of the cross-jets can be used as a characteristic length in  m elt blowing. The 

flow field of rectangular cross-jets is different from that of a single 

rectangular/two-dim ensional je t  Since the fiber m otion is dependent on the 

aerodynam ic forces acting on the fiber, the existing correlations for the drag 

coefficient in melt blowing have to be corrected to include the turbulence effects 

due to crossing of the jets. The turbulence structure of oscillating cross-jets shows
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th a t by oscillating the jets between 28 - 46 Hz, an air turbulence structure similar 

to that of a continuous flow is generated a t a lower air flow. However, a strong 

generation of turbulence is observed for Üie flow oscillating a t frequencies (close 

to 9 Hz) for which a peak in the fiber diam eter profile is seen. Therefore, it is 

suggested that an optimum amount of turbulence is required to produce finer 

fibers.

6.2 Applications and  Recommendations

The foremost implication of the present w ork is th a t for a given set of process 

variables and z position below the die, the structure of a melt-blown web can be 

predicted before the production of an actual web. Though the m ethod 

implemented to predict the web distribution is m athem atically and 

computationally intensive, the experimental equipm ent and num ber of 

experiments required for the prediction make the m ethod very  economical. 

Therefore, the m ethod employed in the present study can be used for future 

studies of the web structure.

Fiber motion and web distribution studies suggest that knowledge of spread and 

orientation of the distribution of fiber positions would be useful in  (a) predicting 

fiber-to-fiber entanglements in multiple filament melt blowing, (b) designing
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spatial separation of the spinneret holes in tiie m elt blowing dies, and (c) 

predicting the structural properties of melt-blown webs.

Another im portant goal achieved in  the present study was the understanding of 

one-dimensional turbulence structure of the air flow field in  m elt blowing. This 

work can be used as a starting point for two- and three-dimensional turbulence 

studies, and eventually turbulence modeling of the melt blowing process. The 

turbulence study of the flow held of oscillating jets can be applied to control and 

improve the laydown pattern and structure of melt-blown webs.
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Appendix I

A SUPPLEMENT TO CHAPTER 2

A1.1 LDV Settings for A m plitude and Frequency M easurem ents

From the calibration wheel experiments, the following settings for LDV equipm ent

w ere found optim um  for the measurement of am plitude and frequency of fiber

vibrations:

Counter mode: 

Frequncy shift: 

Number of samples: 

Number of cycles: 

Timer comparison: 

Gain:

Low filter lim it 

High filter lim it 

Probe rotation: 

Sampling time:

Total Burst Count (TBQ 

0.5 MHz 

up to 1024 

8 

10%

10

0.3 MHz

1.0 MHz 

90“

30 -150 seconds
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Figure ALl Effect of fiber diameter and measuring-volume position on 
data/passage in calibration wheel experiments. The solid and dotted lines are 
predicted from the fitted correlation of eq 2.3.
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Appendix II

A SUPPLEMENT TO CHAPTER 3

O n the following pages, in this appendix, are the supplem entary fiber density 

distribution surface plots which were not included in Chapter 3.
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polymer = 0.30 g/min
Tp = 330“C

= 26.8 m/s 
T , = 320'C

(a)

position: z  = 10 mm

data: experimental

polymer mp = 0.30 g/min 
Tp = 330"C

(b)

position: z = 1 0 m m

bivariate nornial fitV. = 26.8 m / s

T = 320"C

Figure A ILl Surface plots of (a) experimental and (b) fitted fiber density
distribution a t z = 10 mm.
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Tp = 330'C

(b)

position: z = 30 mm 

data: bivariate normal fitVjg = 26.8 m/s
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Figure AIL2 Surface plots of (a) experimental and (b) fitted fiber density
distribution at z = 30 mm.
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I

Figure AII.3 Surface plots of (a) experimental and (b) fitted fiber density
distribution a t z = 50 mm.
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(a)
position: z = 70 mm

data: experimentalVjg » 26.8 m/s
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polymer: mp = 0.30 g/min 
Tp = 330'C

(b)

position: z = 70 mm 

data: bivariate normal fitV .  = 26.8 m/s
T = 320'C

n5 *

Figure AH4 Surface plots of (a) experimental and (b) fitted fiber density
distribution at z = 70 mm.
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Appendix III

COMPUTER PROGRAM FOR EVALUATING THE WEB 

DISTRIBUTION USING ENTROPIC ANALYSIS

This appendix includes the com puter program  developed to analyze the web 

im ages as described in Chapter 4. The description of each variable and 

subroutine is present in the respective subroutine. To make the program  self- 

explanatory and  user-friendly, the comments for each m odule have been 

included.

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c
C LANGUAGE: FORTRAN 77 C
C FILENAME: entropy.f (main progrêua) C
C C
C This program approximates the fiber presence probability density C
C function using Kullback-Leibler entropy optimization principle of c
C mim'mum information. The observed distribution is evaluated C
C from 8-bit gray scale image of the laydown pattern. The image is C
C stored in PGM (Portable Gray Map) format with 256 gray levels. C
C The program uses IMSL function BNRDF for evaluating probability C
C integral for bivariate normal distribution as model fiber presence c
C pdf. For minimizing KL-information function, Simulated Annealing C 
C global minimization routine is used. C
C c
C EXTERNAL SUB-PROGRAMS CALLED IN ORDER: C
C CalStats (calstats.f) C
C Minimize (minimize.f) c
C Printout (entropy.f) C
c C
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
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c PROGRAM Entropy
C MAIN ROUTINE
C **** DECLARATION OF VARIABLES ♦***

INTEGER Wx, Wy, ndiffl 
PARAMETER (ndim»2)REAL Po(35,35), Pm(35,35), mu(ndim), sigma(ndim), sd(ndim),

★  r, xbw(36), ybw(36), OF, t, rho
DOUBLE PRECISION sdguess(ndim)
EXTERNAL CalStats, Minimize, Printout
COMMON /OBSERVED/ mu, r, Wx, Wy, Po, xbw, ybw, CF, t

C **** DEFINITION OF VARIABLES ****
C ---  INTEGER VARIABLES ---C Wx : Number of windows set in X direction of the image
C Wy : Number of windows set in X direction of the image
C ndim : Number of dimensions in the problem - 2 in this case
C --- REAL VARIABLES-----
C Po : Array to store observed fiber presence pdf
C Pm : Array to store model (binormal) fiber presence pdf
C mu : Array to store means of distribution
C mu(1) - X dimension mean
C mu(2) - Y dimension mean
C sd : Array to store observed (image) standard deviations
C sd(l) - observed X dimension standard deviation
C sd(2) - observed Y dimension standard deviation
C sigma : Array to store optimized standard deviations
C sigma(1) - X dimension standard deviation
C sigma(2) - Y dimension standard deviation
C r : observed correlation coefficientC rho : optimized correlation coefficient
C xbw : array of X coordinates of NORTH boundaries of windows
C ybw : array of Y coordinates of WEST boundaries of windows
C t : orientation angle (in degrees) between major axis of
C bivariate normal distribution ellipse and x-axis
C **** DEFINITIONS OF SUB-PROGRAMS CALLED FROM MAIN ****
C CalStats: Calculates the statistics of observed fiber presence
C pdf. It calls a subroutine to read the image and
C then evaluates the statistics.
C Minimize: Minimizes the KL-information function. This routine
C calls the Simulated Annealing algorithm
C Printout: Prints final statistical output of the program
C ** CALLING ROUTINE TO EVALUATE STATISTICS FROM OBSERVED DATA **

call CalStats(ndim, sd, sdguess)
C *♦ CALLING SUBROUTINE TO MINIMIZE KL INFORMATION FUNCTION **

call Minimize(ndim, sd, sdguess, sigma, rho)
C ** CALLING SUBROUTINE TO PRINT OUT THE FINAL STATISTICS **

call Printout(ndim, sd, sigma, rho)
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STOP
END

SUBROUTINE Printout(ndiffl, sd, sigffla, rho)
: ***♦ DECLARATION OF VARIABLES ♦***

CHARACTER infile*12, prob_dat*12, statfile*12 
INTEGER Wx, Wy, ndiffl
REAL Po(35,35), mu(2), sigma(ndiffl), sd(ndim),
+ r, xbw(36), ybw(36), CF, t, rho
DOUBLE PRECISION ThetaFCN, KLF
COMMON /OBSERVED/ fflu, r, Wx, Wy, Po, xbw, ybw, CF, t 
COMMON /FILES/ infile, probdat, statfile 
COMMON /OPTIMIZED/ ThetaFCN, KLF

: WRITING FINAL STATISTICS IN statfile ****
open(unit=l, file-statfile, status»'unknown’) 
write(1,10)

10 format(' This program approximated the fiber presence'/
2 * probability density function using Kullback-Leibler'/
3 ' entropy optimization principle of minimum information.'/
4 ' The observed distribution was evaluated from 8-bit gray*/
5 ' scale image of the laydown pattern. The image was stored'/
6 ' in PGM (Portable Gray Map) format with 256 gray levels.'/
7 ' The program used IMSL function BNRDF for evaluating ' /
8 ' probability integral for bivariate normal distribution as'/
9 ' model fiber presence pdf. For minimizing KL-information'/
+ ' function. Simulated Annealing routine was used.'/)
writed,20) infile, Wx, Wy, KLF, (mu(j), mu(j), j=l,ndim),

(sd(i), sigma(i), i=l,ndim), r, rho 
;D IMAGE: ',A, /
: OF X-DIRECTION WINDOWS: ',12/
: OF Ï-DIRECTION WINDOWS : ',12/
M  VALUE OF KULLBACK-LEIBLER FUNCTION: ',el3.6// 
TICAL PARAMETERS OF THE DISTRIBUTIONS :',/

V , /
= = = = = ’ , /

20
+
format(Ix,'A+ Ix, '+ Ix, '+ Ix, '+ Ix, '+ Ix, '+ 2x, '+ Ix, '+ 2x, '+ 2x, '+ 2x, '+ 2x, '+ 2x, '

+ Ix, 1
+ Ix, '

mu(X)',10x, f8.4, 7x, f8.4,/ 
mu(Y)',10x, f8.4, 7x, f8.4,/ 

sigma(X)',lOx, f8.4, 7x, f8.4,/ 
sigma(Y)',lOx, f8.4, 7x, f8.4,/ 
rho(XY)',7x, ell.4, 4x, ell.4,/ 

« = = = = = = = « = = « = = = = = - = = = = = = = = = ' ,  / /

Ix,'NOTE: mu AND sigma VALUES ARE IN mm')
RETURN
END

314



ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c
c FILENAME: calstats.f C
c c
c  This file contains following subroutine(s): C
C C
c SUBROUTINE PARENT-ROUTINE PARENT-RT-FILE YARIABLES-RETURNED C
C ----------       CC CalStats Main entropy, f sd, mu, r, Wx, Wy, C
C and Po c
C CC Subroutine CalStats evaluates the grouped mean, standard deviations C
C and correlation coefficient from the windowed image. c
C CC CalStats CALLS EXTERNAL SUBROUTINE C
C CalWinFreq (setimg.f) C
C C
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

SUBROUTINE CalStats(ndim, sd, sdguess)
C **** DECLARATION OF ARGUMENT VARIABLES ***♦

INTEGER Wx, Wy, ndimREAL Po{35,35), mu(2), sd(ndim), r, xbw(36), ybw(36), CF, t 
DOUBLE PRECISION sdguess(ndim)
COMMON /OBSERVED/ mu, r, Wx, Wy, Po, xbw, ybw, CF, t
EXTERNAL CalWinFreq

C Subroutine CalWinFreq first reads the image pixel intensities
C from (8-bit) 256 gray level image, then groups the image
C pixels into W windows. It, then, computes the normalized fiber
C presence (fp) frequencies of the W windows and returns them as
C observed fp-pdf array Po to the parent subroutine CalStats.
c **** DECLARATION OF LOCAL VARIABLES **♦*

INTEGER i, j 
REAL tan2t
DOUBLE PRECISION uf, Ui, FiUi, FiU2i, Ux, Uy, fxy, PI 
PARAMETER (PI=3.14159265359)

C **** DEFINITION OF LOCAL VARIABLES ****
C --- REAL VARIABLE-----
C CF : Conversion factor from pixel to millimeter
C (to be multiplied)
C ---  DOUBLE PRECISION VARIABLES ---
C uf : Sum of normalized freq. in jth column or ith row
C Ui : Class mar)c of jth column or ith row
C FiUi : Sum of (uf*Ui)
C FiU2i : Sum of (uf*Ui''2)
C Ux : Class mar)c of each row
C Uy : Class mar)c of each column
C fxy : Sum of (frequency*coordinates of center of cell)
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c or [Po(i,j)*Ux*Uy]
C sdguess: Array containing initial guess values of standard
C deviations to be used by optimization routine
C
C **** CALLING THE SUBROUTINE TO READ AND GROUP IMAGE DATA ****

call CalWinFreq (CF, Wx, Wy, Po, xbw, ybw, sdguess)
C **** COMPUTING MEAN, SD, AND R FROM THE GROUPED DATA ****

FiUi»0.0 
FiU2i=0.0
print 5

5 format(/5x,'X STATISTICS : ' )
do 20 1=1,Wx 

uf=0.
do 10 j=l,Wy

uf=uf+Po(i, j )
10 continue

Ui=(xbw(i)+xbw ( i+1)-1)*CF/2.0 
FiUi=FiUi + uf*Ui 
FiU2i=FiU2i + uf*{Ui**2-0)

C print 15, Ui, uf, FiUi, FiU2i
C 15 format(Ix,f6.4,3(lx,ell.4))
20 continue

mu(l)=FiUi
sd(l)=sqrt(FiU2i-(mu(l)**2.0) )

C mu(l)=FiUi/sumPo
C sd(l)=sqrt ( (FiU2i- (mu(l) **2.0) *sumPo) / (svunPo-1.0) )

print 30, mu(l), sd(l)
30 format(7x,'mean =',f7-3, ' mm;',2x, 's.d. =',f7.3,' mm')

FiUi=0.0 
FiU2i=0.0
print 35 

35 format(5x,'Y STATISTICS: ' )
do 50 j=l,Wy 

uf=0.
do 40 1=1,Wx

uf=uf+Po(i, j)
40 continue

Ui= (ybw( j ) +ybw( j+1) +1) *CF/2.0 
FiUi=FiUi + uf*Ui 
FiU2i=FiU2i + uf*(Ui**2.0)

C print 15, Ui, uf, FiUi, FiU2i
50 continue

mu(2)=FiUi
sd(2)=sqrt(FiU2i-(mu(2)**2.0))

C mu(2)=FiUi/sumPo
C sd(2)=sqrt((FiU2i-(mu(2)**2.0)*sumPo)/ (sumPo-1.0))

print 30, mu(2), sd(2)
C ---  COMPUTING OBSERVED CORRELATION COEFFICIENT ---

fxy=0.
do 70 1=1,Wx

Ux=(xbw(i)+xbw(i+l)-1)*CF/2.0 do 60 j=l,Wy
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Uy= ( ybw(j)+ybw(j+1)+1)*CF/2.0 
fxy=fxy+Po(i, j)*Ux*Uy 

60 continue70 continue
r=(fxy-mu(1) *mu(2) )/(sd(l)*sd(2)) 
print 75, r75 format(5x,'CORRELATION COEFFICIENT:/7x,'r = ', f7 .4)

C —  COMPUTING ANGLE BETWEEN MAJOR AXIS OF ELLIPSE AND X-AXIS —
if (sd(l).EQ.sd(2)) then 

if (r.GT.O.O) then 
t-45.0else if (r.LT.0.0) then 
t=135.0 

else
t=0.0 

end if 
tan2t=1.0E99 

else
tan2t=2.0*r*sd{l)*sd(2)/(sd{l)**2.0-sd(2)**2.0) 
t=0.5*atan(abs(tan2t)) 
if (r.GE.0.0) then

if (sd(l).GT.sd(2)) then 
t=180.0*t/PI 

else
t=180.0*(0.5-t/PI) 

end if 
else if (r.LT.0.0) then

if (sd(l).GT.sd(2)) then 
t=I80.0*(1.0-t/PI) 

else
t=180.0*(0.5+t/PI) 

end if 
end if 

end if 
print 85, t

85 format(5x,'ANGLE BETWEEN X-AXIS AND MAJOR AXIS OF ELLIPSE:',/ 
+ 7x,'t = ',f6.2,' degrees')
RETURN
END
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ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c
c FILENAME: set_img.f C
c c
c This file contains following subroutines: C
C C
C SUBROUTINE PARENT-ROUTINE PARENT-RT-FILE VARIABLES-RETURNED C
C ------------- ----------  -------------- ------------------ CC PixelInWin CalWinFreq calstats.f Wx or Wy, and C
C nx_ptl or ny_ptl C
C CC CalWinFreq CalStats calstats.f Wx, Wy, Po, xbw, C
C and ybw C
C CC Subroutine PixelInWin calculates the total number of windows (full C
C and partial) in a given direction. It also finds out number of C
C pixels in the given direction's partial window. c
C C
C Subroutine CalWinFreq first reads the image pixel intensities from C
C (8-bit) 256 gray level image, then groups the image pixels into C
C W windows. It, then, computes the normalized fiber presence (fp) C
C frequencies of the W windows and returns them as observed fp-pdf C
C array Po to the parent subroutine CalStats. C
C C
C CalWinFreq CALLS EXTERNAL SUBROUTINE C
C PixellnWin (setimg.f) C
C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE CalWinFreq(CF, Wx, Wy, Po, xbw, ybw, sdguess)
C ♦*♦* DECLARATION OF ARGUMENT VARIABLES ****

CHARACTER infile*12, prob_dat*12, statfile*12, sp_file*18 
INTEGER Wx, Wy
REAL Po(35,35), Xbw(36), ybw(36), CF 
DOUBLE PRECISION sdguess(2)
LOGICAL printflag, spatial_print
COMMON /FILES/ infile, probdat, statfile, spfile 
COMMON /PRINTING/ printflag, spatial_print

C **** DECLARATION OF LOCAL VARIABLES ****
CHARACTER dummy*50, ans*3, gz_infile*15, command*30
INTEGER dlines, x, y, k, wd, ht, gmax, gmin, xo, yo, Wapprox,+ r_j>ix(0:900,0:900),pix(-550:550,-550:550), npix,

+ nx_ptl, ny_ptl, xstart, xend, ystart, yend
LOGICAL there, xofound, yofound 
DOUBLE PRECISION sumPo 
EXTERNAL PixellnWin, SYSTEM

C **** DEFINITION OF LOCAL VARIABLES ♦♦**
C   CHARACTER VARIABES ---
C infile : Image file name (12 characters allowed)
C statfile: Final statistics' results file ncune
C probdat: Probability output file name
C sp_file : Spatial probability output file name
C dummy : Dummy strings in image file (max. characters = 50)
C ans : Answer to questions asked to user
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c   INTEGER VARIABLES -C d_llnes: No. of dummy lines describing the creator program
C wd : Width of the image in pixels
C ht : Height of the image in pixels
C gmax : Maximum gray level intensity of a pixel in the image
C gmin : Minimum gray level intensity of a pixel in the image
C It corresponds to complete fiber absence
C X : Index variable in X dimension (height-ways)
C y : Index variable in Y dimension (width-ways)
C k : File inquiry index
C xo : X axis zero position
C yo : Y axis zero position
C pix : 2-D array to store pixel intensity level.
C Indices store position of pixel in web coordinate
C system
C r_pix : 2-D array to read pixel intensity level from the file.
C Indices store position of pixel in image coordinate
C system
C Wapprox: Approximate no. of windows in any direction of image
C npix : No. of pixels (odd no.) on each side of FULL window
C »  It needs to be odd as center of a window has to be
C »  a pixel position and not the edge of a pixel
C nx_ptl: No. of pixels (odd no.) in X dir. partial window
C ny_ptl: No. of pixels (odd no.) in Y dir. partial window
C xstart: X dir. pixel position at NORTH end of each window
C xend : X dir. pixel position at SOUTH end of each window
C ystart: Y dir. pixel position at WEST end of each window
C yend : Y dir. pixel position at EAST end of each window
C   LOGICAL VARIABLES -
C there : Indicates whether file exists
C xofound: Indicates whether X axis zero position is found
C yofound: Indicates whether Y axis zero position is found
C ---- DOUBLE PRECISION VARIABLE ---
C sumPo : Sum of observed frequencies over all the windows
C »  Needed for normalization of frequencies
C READING IMAGE FILENAME ****

k=0
5 write(*,10)10 format(5x,'ENTER THE IMAGE FILE WITHOUT ".pgm" EXTENSION:')

read 15, infile 
15 format (A)

C infile='tes193.pgm '
C **** ADDING EXTENSIONS TO FILENAMES ****

prob_dat=infile(: INDEX(infile,' ')-!)//'.dat'
statfile=infile(: INDEX(infile,' ')-l)//'.stt' 
gz_infile*infile(:INDEX(infile,' ')-!)//'.pgm.gz' 
infile=infile(:INDEX(infile,* ')-1)//’.pgm'

C **♦* CHECKING IF INPUT FILE EXISTS ****
inquire ( file*=infile, exis t=there ) 
if(.NOT.there) then

inquire(file=gz_infile, exist=there) 
if (there) then

command»'gunzip -v '//gzinfile//' \0' 
write(*,'(/5x, ''INPUT FILE COMPRESSED!'',

+ /5x, ''UNCOMPRESSING INPUT FILE USING:''/5x,A) ')
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+ command
write(*,*) 
i^SYSTEM ( command) 

else
print 16, infile

16 format(5x,'**♦* INPUT FILE ’ ,A, ' DOES NOT EXIST! ****'/) 
k-k+1

C »  ASK FOR NEW FILENAME ONLY THRICE
if (lc.GT.3) then

write{♦,*) ' FINALLY QUITTING'
STOP 

end if go to 5 
end if 

end if
C **** CHECKING IF INPUT FILE ALREADY ANALYZED ***♦

there-.FALSE -
inquire(file-probdat, exist-there) 
if (there) then

write(*,17) infile
17 format(/5x,'** IMAGE ',A, ' HAS BEEN ANALYZED BEFORE! **',

+ /5x,'DO YOU WISH TO RE-ANALYZE THE IMAGE? (y/n)')
read(*,18) ans

18 format (A)if ((ans(1:1).EQ.'n').OR.(ans(1:1).EQ.'N')) STOP 
end if

C **** PRINTING THE FILENAMES ****
write(*,19) infile, probdat, statfile

19 format(/5x, 'IMAGE FILE TO BE ANALYZED: ' ,A,
+ /5x,'PROBABILITY OUTPUT TO BE STORED IN FILE: ',A,
+ /5x,'FINAL STATISTICS TO BE STORED IN FILE: ',A)

C **♦* READING IF USER WANTS TO PRINT SPATIAL PROBABILITIES ****
write(*,'(/5x,''DO YOU WANT TO PRINT SPATIAL PROBABILITIES?'', 
+ '' (y/n) "  ) ' )read(*,'(A) ' ) ans
if ((ans(1:1).EQ.'n').OR.(ans(1:1).EQ.'N')) then 

spatial_print=.FALSE.
write(*, ' (5x, " »  YOU CHOSE NOT TO PRINT SPATIAL ' ',

+ ' 'PROBABILITIES' ' ) ' )
else

spatial_print=. TRUE.
spfile-infile(:INDEX (infile,'.')-!)//'.spa.tar'
write(*, ' (5x, ''SPATIAL PROBABILITIES WILL BE STORED IN' ',/

+ 5x,''24 FILES WHICH WILL BE tar AND gripped'',/
+ 5x, "AND STORED AS: ' ',A, /
+ 5x, "THE FILES CAN BE RETREIVED BY EXECUTING:'',/
+ 5x,''gunzip -v '' ,A, '' ; tar -xvf '',A)')
+ sp_file(: INDEX(sp_file,' ')-!)//'.gz',
+ sp file(: INDEX(sp file,' ')-1)//'.gz', sp file
end if
open(unit—1, file-infile, status— 'old')

C **** READING FIRST LINE OF PGM IMAGE FILE *♦**C »  FIRST LINE DESCRIBES THE TYPE OF PGM FILE (ASCII OR BINARY)
C »  SO IS STORED IN A DUMMY STRING AS FIRST DUMMY LINE

readd, 20) dummy
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20 format (A50) 
dlinea-l

C **** COUNTING LINES STARTING WITH '#' CHARACTER IN FILE ****
C »  LINES STARTING WITH DESCRIBE THE IMAGE CREATOR PROGRAM
C »  THEIR NUMBER IS UNKNOWN AS EVERYTIME IMAGE IS TRANSFORMED
C »  THE TRANS FORMING/CREATOR PROGRAM ADDS A LINE ABOUT ITSELF
25 readd,20) dummy 

d_linea«d_lines+l 
if (dummy(1:1).EQ.'i') then 

go to 25 
else

d_lines=d_lines-l 
end if

C write(♦,*) 'dummy lines-', d lines
C ♦*** REWINDING THE FILE **♦*
C »  SO THAT DUMMY LINES CAN BE IGNORED WHEN RE-READING

rewind(1)
C **** RE-READING DUMMY LINES WITH KNOWN NO. OF DUMMY LINES ****

do 30 i-1,dlines 
read(1,20) dummy 

C print 20, dummy
30 continue

C **♦* READING WIDTH AND HEIGHT OF THE IMAGE FROM IMAGE FILE ****
read(l,*) wd, ht

C ♦*** READING MAXIMUM GRAY LEVEL OF THE IMAGE
readd,*) gmax

C **♦♦ READING MINIMUM GRAY LEVEL OF THE IMAGE FROM THE USER ****
write(♦,35)

35 format(/5x,'ENTER THE MINIMUM GRAY LEVEL OF THE IMAGE:') 
read*, gmin 

C gmin-96
C gmin—0

write(*,37) gmin
37 format(5x, ' »  MINIMUM GRAY LEVEL OF THE IMAGE: ’,12)

C **** READING CONVERSION FACTOR FROM PIXEL TO MM ****
write(*,40)

40 format(/5x,'ENTER THE NUMBER OF PIXELS IN ONE ACTUAL CM:') 
read*, CF 
write(*,42) CF

42 format ( 5x,' »  NUMBER OF PIXELS IN ONE ACTUAL CM: ', F4 .0 )
CF-IO./CF

C CF-0.62/320. ! for test7 image
C CF-14.0/320. ! for test8 image
C CF-10.0/37.0 ! for test58, testS, and testlO images
C **** READING INITIAL GUESS VALUES OF S.D. ****

write(*,'(/5x,''ENTER INITIAL GUESS VALUES OF S.D. IN mm:'',/
+ 5x,''IF NOT SURE, ENTER ZERO FOR BOTH GUESSES . ' ', /
+ 5x, ' 'IMAGE S.D.s WILL BE TAKEN AS GUESS VALUES: ' ' ) ' )
read*, (sdguess(i), i=l,2)
if (sdguess(2).EQ.sdguess(1).AND.sdguess(2).NE.O.) then
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write (*, ' (5x, ' »  TO AVOID DIVISION BY ZERO IN ANGLE ' ',
+ ''CALCULATION, ",/8x, ''sdguess(Y) IS REDUCED BY 0.01"/)')

sdguess(2)«sdguess(2)-0.01 
end if
write(*,'(5x,''ENTERED INITIAL GUESS VALUES OF S.D. ARE:''/,
+ 7x,''sdguess(X) « '',f5.2,'' mm''/,
+ 7x,''sdguess(Y) « '',fS.2,'' mm'')')(sdguess(i), i=l,2)

C **** READING PIXEL POSITIONS AND INTENSITIES
write(*,45) wd, ht

45 format(/5x, '«=— — — ',/ 5x, 'READING IMAGE',/
+ 5x, • ',//5x, ' IMAGE INFORMATION : ', /
+ 7X,'width » ',13,' pixels; height » ',13,' pixels')
readd,*) ( (r_pix(x,y), y-0,wd-1), x=0,ht-1)

C **** FINDING ZERO POSITION OF THE WEB ****
xo_f ound=.FALSE. 
yo_f ound=. FALSE. 
do 60 x=0,ht-l 

do 50 y«0,wd-1
if (r_pix(x,y).EQ.gmax) then

if ((.NOT.xofound).AND.(y.EQ.0)) then 
C »  axis line is 3 pixel wide, middle pixel is xo

xo=x+lxo_found«.TRUE. 
write(*,46) xo

46 format(7x,'X axis zero position = ',13) 
else if (.NOT.yofound) then

C »  axis line is 3 pixel wide, middle pixel is yo
yo=y+lyo_f ound=.TRUE. 
write(*,47) yo

47 format(7x,'y axis zero position = ',13) 
end if

end if 
50 continue
60 continue

C **** RESETING PIXEL POSITIONS ACCORDING TO WEB COORDINATES ****
do 80 x=0,ht-l 

do 70 y=0,wd-1
pix((x-xo),(yo-y))=r_pix(x, y)

C if ((mod(x-xo,20).EQ.O) .AND. (mod(yo-y,20).EQ.O)) then
C print *, x-xo, yo-y, pix((x-xo),(yo-y) )
C end if
70 continue
80 continue

C **** CREATING WINDOWS ****
Wapprox=nint(sqrt(float(max(ht, wd)))) 
npix=nint(min(ht,wd)/float(Wapprox)) 
if (mod(npix,2).EQ.O) then 

npix=npix+l 
end if

C print*, 'Wapprox=',Wapprox,' npix=',npix
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c  * * ♦ *  SUBROUTINE CALLS TO COUNT NO. OF WINDOWS IN EACH D IR . *

call PixellnWin(wd, npix, Wy, ny_ptl) 
call PixellnWin(ht, npix, Wx, nx_ptl)

C print*, 'Wx»*,Wx, * nx_ptl=', nx_ptl
C print*, 'Wy-',Wy,' ny_ptl-', ny_ptl

write(*,85) Wx, Wy, npix, nx_ptl, ny_ptl 
85 format(7x,'Windows in X-direction (heightwise), Wx = ',12,/ 

+ 7X,'Windows in Y-direction (widthwise), Wy = ',12,/
+ 7x,'No. of pixels in each full window, npix = ',12,/
+ 7x,'Pixels in X-direction partial window = ',12,/
+ 7X,'Pixels in Y-direction partial window = ',12)

CALCULATING FREQUENCIES OP THE WINDOWS ****
xend=0-xo-l 
do 90 i=l,Wxxstart=xend+l

C »  if xstart lies on x axis (3 pixels wide),
C »  increment xstart by accordingly
C »  axis line is to be ignored for probability calculation
C »  as actual gray level at zero position is unknown

if (xstart.EQ.-l) then 
xstart=>xstart+3 

else if (xstart.EQ.O) then 
xstart=xstart+2 

else if (xstart.EQ.l) then 
xstart=xstart+I 

end if
if ((i.EQ.Wx).AND.(nx_ptl.NE.O)) then 

xend=xstart+(nx_ptl-l)
C »  xend is not allowed to exceed image boundary

if (xend.GT.(wd-l-xo)) then 
xend=wd-1-xo 

end if 
elsexend=>xstart+ (npix-1 ) 
end if

C »  if axis lies somewhere in full window or on xend position
C »  ignore it by incrementing xend accordingly. However, if
C »  X  axis is somewhere in the partial window, no need to
C »  increase xend as axis position then has already been
C »  taken into account

if ( (xstart.LT.-l.AND.xend.GE.l) .AND. (i.NE.Wx) ) then 
xend=xend+3 

end if
C ---  setting lower boundary of window ----

xbw(i)“float(xstart)
90 continue

xbw(Wx+l)=xend+l
yend=yo+l
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do 100 j“l,Wy 
ys tart-yend-1

C »  if ystart lies on y axis (3 pixels wide),
C »  decrement ystart by accordinglyC »  axis line is to be ignored for probability calculation
C »  as actual gray level at zero position is unknown

if (ystart.EQ.l) then 
ystart«ystart-3 

else if (ystart.EQ.O) then 
ystart»ystart-2 

else if (ystart.EQ.-l) then 
ystart-ystart-1 

end if
if ((j.EQ.Wy).AND.(ny_ptl.NE.O)) then 

yend-ystart-(ny_ptl-l)
C »  yend is not allowed to exceed image boundary

if (yend.LT.(yo-(ht-l))) then 
yend*»yo- (ht-1) 

end if 
else

yend=ystart-(npix-1) 
end if

C »  if axis lies somewhere in full window or on xend position
C »  ignore it by incrementing xend accordingly. However, if
C »  y axis is somewhere in the partial window, no need to
C »  increase xend as axis position then has already been
C »  taken into account

if ( (ystart.GT.-l.AND.yend.LE.1) .AND. (j .NE.Wy) ) then 
yend=yend-3 

end if
ybw(j)=float(ystart)

100 continue
ybw (Wy+1)=yend-l.

C print*, '----------------------------------------------------- '
C print 102C 102 format (3x, ’i',3x, 'j',2x, 'xstr' ,2x, 'xend',2x, 'ystr ', 2x, 'yend',
C + 4x,'xbw', 5x,'ybw')
C print*, '----------------------------------------------------- '

sumPo=0.C - i loop: traverses windows in +ve x dir. heightwise -----
do 140 i*l,Wx

C —  j loop: traverses windows in -ve y dir. widthwise —
do 130 j=l,Wy 

Po(i,j)=0. 
xstart=xbw(i) 
xend=xbw(i+l)-1 
ystart=ybw(j) 
yend=ybw( j+1)+1

C if (j.EQ.Wy.OR.i.EQ.l) then
C print 105, i,j,xstart,xend,ystart,yend,xbw(i),ybw(j)
C 105 format(2(2x,12),4(2x,I4),2(2x,F6.2))

324



c  e n d  i f

C —  2nd and 3rd inner loops: traverse pixels in windows —
C —  while ignoring pixel positions lying on either axes —
C —  Therefore, care must be taken when calculating Pm —

do 120 x=xstart,xend,1
do 110 y*ystart,yend,-1if ( (x.NE.-l.AND.x.NE.O.AND.x.NE.l) .AND.

+ (y.NE.-l.AND.y.NE.O.AND.y.NE.l) .AND.
+ (pix( X ,  y) .GT.gmin) ) then

Po(i, j)-Po(i,j) + (pix(x,y)-gmin) 
end if 

110 continue
120 continue

sumPo-sumPo+Po(i,j)
130 continue
140 continue

C **♦* NORMALIZING WINDOW FREQUENCIES TO FINALLY COMPUTE Po ****
do 160 i=l,Wx 

do 150 j-l,Wy
Po(i,j)=Po(i, j)/sumPo 

150 continue
160 continue

C print*, 'Normalized Po(1,1), Po(1,1)
RETURN
END

SUBROUTINE PixellnWin(len, npix, Wx_or_y, n_ptl)
C **♦♦ DECLARATION OF ARGUMENT VARIABLES ****

INTEGER len, npix, Wx_or_y, n_ptl
C *♦** CALCULATING NO. OF FULL WINDOWS IN GIVEN DIRECTION ****
C »  THREE PIXELS ARE DECREMENTED TO ALLOW FOR AXIS LINE WIDTH

Wx_or_y=(len-3)/npix
C **** CALCULATING NO. OF PIXELS IN LEFT OVER PARTIAL WINDOW ****

njptl=(len-3) - npix*Wx_or_y

AS IT IS A COUNT
c »
c »
c »
c »
c »

i f
Wx_o r_y=Wx_o r_y+1 if (mod(n_ptl,2).EQ.O) then 

n_p tl=n_ptl-1 
end if
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e n d  i f

RETURNEND
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C FILENAME: minimize.f
C USES SIMULATED ANNEALING FOR GLOBAL MINIMIZATION 
C
C This file contains following subroutine(s):
C

PARENT-ROUTINE

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c

C SUBROUTINE
C Minimize 
C
C FCN
C
c
C Gp 
C
C KLFCN 
C
C CDF 
C
C ModelFpProb 
C

Main
Minimize

FCN
FCN
KLFCN
Minimize, FCN

PARENT-RT-FILE 
entropy.f 
minimize.f

minimize.f 
minimize.f 
minimize.f 
minimize.f

VARIABLES-RETURNED
sigma, rho, KLF
FCNvalue, KLF, 
ThetaFCN
Gp
KLFCN, KLF
CDF
Pm

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
c
c
c
c
c
c
c
c
c
c
c

Minimize subroutine manages the optimization procedure, prints the 
optimized values standard deviations of model fiber presence PDF, 
and fiber presence PDF in a file. For minimization procedure, it 
calls the simulated annealing procedure, SIM_ANN£AL, which returns 
the optimized values of the objective function and variables (s.d.) 
Routine SIM_ANNEAL requires initial guess values of variables, the 
lower and the upper limits on variables and the number of variables 
to be optimized.
FCN is a double precision function that calculates the objective 
function to be minimized by simulated annealing.

Minimize CALLS FOLLOWING EXTERNAL SUBROUTINES: 
SIM_ANNEAL (anneal.f)
FCN (minimize.f - this file)
ModelFpProb (minimize.f - this file)
SYSTEM (UNIX Library)
FCN CALLS FOLLOWING EXTERNAL SUBROUTINES: 
ModelFpProb (minimize.f - this file)
Gp (minimize.f - this file)
KLFCN CALLS EXTERNAL SUBROUTINE :
CDF (minimize.f - this file)
SYSTEM (UNIX Library)
ModelFpProb CALLS EXTERNAL SUBROUTINE:
BNRDF (IMSL Library)

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
c
c
c
c
c
c
c
c
c
c

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

SUBROUTINE Minimize(ndim, sd, stguess, sigma, rho)
C **** DECLARATION OF ARGUMENT VARIABLES ****

327



CHARACTER infile*12, prob_dat*12, statfile*12, sp_file*18 
INTEGER Wx, Wy, ndim
REAL Po(35,35), mu(2), ad(I:ndlm), sigma(l:ndim), r, xbw(36), 
+ ybw{36), CF, t
DOUBLE PRECISION stguess(ndim)
COMMON /OBSERVED/ mu, r, Wx, Wy, Po, xbw, ybw, CF, t 
COMMON /FILES/ infile, probdat, statfile, spfile
**** DECLARATION OF LOCAL VARIABLES ***♦
INTEGER i, nopt 
PARAMETER (nopt=2)
CHARACTER command*80 
REAL rho, Pm(35,35), x, y
DOUBLE PRECISION stat(nopt), LB(nopt), UB(nopt)
DOUBLE PRECISION ThetaFCN, Fopt 
DOUBLE PRECISION KLF
LOGICAL minimized, printflag, spatial_print
EXTERNAL FCN, SIM_ANNEAL, SYSTEM, ModelFpProb
COMMON /OPTIMIZED/ ThetaFCN, KLF
COMMON /PRINTING/ printflag, spatial_print

C **** DEFINITION OF LOCAL VARIABLES ****
C ---  CHARACTER VARIABLES ---
C command: variable to store archiving command to pass
C to system
C ---  INTEGER VARIABLES ---
C nopt : number of variables to be optimized (= 2)
C --- REAL VARIABLES----
C rho : correlation coefficient of the model distribution
C Pm : array to store model fiber presence probabilities
C X  : X  dimension of the center of the window
C y : y dimension of the center of the window
C ---  DOUBLE PRECISION VARIABLES ---C stat : array of statistical parzuneters to be optimized (s.d.)
C LB : array of lower bound of variable optimization range
C UB : array of upper bound of variable optimization range
C KLF : Kullbac)c-Leibler function to be optimized
C (must be >= 0.0)
C ThetaFCN: theta function constraint added to KL function 
C to be optimized. It is equal to the square of
C differences in tangents of model and observed
C orientation angles of distribution ellipses
C Fopt : objective function to be optimized. It is sum of
C square of KLF and ThetaFCN
C ---  LOGICAL VARIABLES —— —C minimized: flag to indicate completion of minimization
C printflag: flag to indicate whether to print spatial
C probabilities if user flags spatial_print to TRUE
C spatial_print: user switch to indicate printing of spatial
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c probabilities

C ***♦ COMPRESSING (gzip) THE IMAGE FILE TO SAVE DISK SPACE ****
write(*, ' (/5x,29C •-")+ /Sx, ' • COMPRESSING IMAGE FILE USING: ' ' /Sx, 29 ("-"))' )
command-'gzip -v '//infile//' \0' 
write{*,'(Sx,A/)') command

C »  CALLING SYSTEM (unix) AND SENDING THE COMPRESSION COMMAND
i-SYSTEM ( command) 
write{*,*) 
print S

5 format ( /Sx, ' ',
+ /Sx,'MINIMIZING KULLBACK-LIEBLER INFORMATION FUNCTION',
+ /S x ,  ' , r . „  , , .  ^  r. ' /  )

C SETTING print_flag TO FALSE BEFORE OPTIMIZATION *♦**
printflag-.FALSE.

C **♦* SETTING LOWER AND UPPER BOUNDS ON stat VARIABLES ****
do 10 i-l,nopt

if (stguess(i).EQ.0.) stguess(i)-sd(i)
LB(i)»sd(i)*0.8S !Decrease by 15%
UB(i)-sd(i)*1.2S !Increase by 2S%

C stguess(i)-23.0 !sd(i)+1.0E-06
10 continue

C *♦♦* MAKING SURE THAT LB(1) AND UB(1) ARE GREATER THAN ****
C **** LB(2) AND UB(2) RESPECTIVELY ****

if (LB(1) .LT. LB(2)) then 
LB(2)=0.99*LB(1)
UB(2)=0.99*UB(1) 
end if

C **** MAKING SURE THAT stguess (X) > stguess (Y) ****
if (stguess(1) .LT. stguess(2)) stguess(2)-stguess(1)*0.99

C **** SETTING CORRELATION COEFF. FOR MODEL DISTRIBUTION ****
C **** EQUAL TO THAT OF OBSERVED (IMAGE) DISTRIBUTION ****

rho=r
C **** PRINTING GUESS VALUES OF Stat ****

write(*,2S) (stguess(j),j=l,nopt)
2S format (/5x,'GLOBAL MINIMIZATION WITH FOLLOWING GUESS VALUES:',

+ /7x,'stguess(X) = ',elO.4,
+ /7x,'stguess(Y) = ',el0.4/)

C **♦* MINIMIZATION USING SIMULATED ANNEALING ****
call SIM_ANNEAL(nopt, stguess, LB, UB, stat, Fopt)

C *♦** EVALUATING THETA AND KL FUNCTIONS AT OPTIMUM stat(i) ****
call FCN(nopt, stat, Fopt)

C **♦* CONVERTING DOUBLE PRECISION stat TO SINGLE PRECISION ****
do 30 i=l,nopt

sigma (])-stat(])30 continue
C **** PRINTING FINAL VALUES OF PARAMETERS AND FUNCTIONS ****

print 280, (sd(i), sigma(i), i-1,ndim), r, rho,
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+ Fopt, KLF, KLF**2., ThetaFCN
280 format (//5x, ' KULLBACK-LIBBLBR FUNCTION MINIMIZBD. .. ', /

+ 5x, 38(•-•),//+ 5x,'STATISTICAL PARAMETBRS OF THB DISTRIBUTIONS ARB:',/
+ 7x,'OBS. 3d(X) “ ',f8.4,' mm; MODBL sigma(X) -',f8.4,* mm',/
+ 7x,'OBS. sd(Y) -',f8.4,' mm; MODBL sigma(Y) =',f8.4,' mm',/
+ 7x,'OBS. r -',ell.4,'; MODBL rho »',el2.4,/
+ 5x, 'WHBN MINIMUM VALUB OF OBJBCTIVE FUNCTION = ',el3.6/,
+ 5x,'VALUB OF KL FUNCTION = ',el3.6/,
+ 5x,'VALUB OF SQUARB OF KL FUNCTION = ',el3.6/,
+ 5x,'VALUB OF THETA FUNCTION = ',el3.6/)

: *♦** PRINTING FINAL VALUES OF SPATIAL PDF ****
if (spatial_print) then 

printflag-.TRUE. 
call FCN(nopt,stat,Fopt) 

end if
: **** PRINTING FINAL VALUES OF FIBER PRESENCE PDF ****

call ModelFpProb (ndim, sigma, rho. Pm) 
open(unit-99, file-probdat, status-'unknown') 
write(99,282)282 format(5x, x',7x,'y',8x, 'Po', lOx,'Pm') 
do 300 i—l,Wx 

do 290 j=l,Wy
x-(xbw(i)+xbw(i+l)-1)*CF/2. 
y- (ybw(j)+ybw(j +1)+1)*CF/2. 
write(99,285) x,y, Po(i, j),Pm(i,j)

285 format(2(2x,f6.2),2(2x,elO.4))
290 continue 
300 continue

RETURN
END

SUBROUTINE FCN ( nopt, stat, FCNvalue )
*♦** DECLARATION OF ARGUMENT VARIABLES ***♦
INTEGER Wx, Wy, nopt
REAL Po(35,35), mu(2), r, xbw(36), ybw(36), CF, t 
DOUBLE PRECISION FCNvalue, stat(2), ThetaFCN 
DOUBLE PRECISION KLF 
LOGICAL printflag, spatial_print
COMMON /OBSERVED/ mu, r, Wx, Wy, Po, xbw, ybw, CF, t
COMMON /OPTIMIZED/ ThetaFCN, KLF
COMMON /PRINTING/ printflag, spatial_print
**♦* DECLARATION OF LOCAL VARIABLES ♦***
INTEGER i, j, k, Kn, fltB(4)
REAL Pm(35,35), pi(250), dp, PoMax, PoMaxij, rho 
REAL NPo(35,35), NPm(35,35), sigma(2), x, y 
DOUBLE PRECISION Gp, PIvalue, KLFCN, varl, var2, diffvar 
PARAMETER (PIvalue- 3.14159265359)
EXTERNAL Gp, KLFCN
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c

INTEGER no_fn_eval
SAVE no_fn_eval, PoMax, dp, Kn, pi 
DATA no_fn_eval /O/

C DEFINITION OP LOCAL VARIABLES ****
C ---  INTEGER VARIABLES ----C Kn : No. of outcome values assigned to computed fiber
C presence observed and model probabilities (= 50)
C no fn eval: No. of function evaluations done so far
C It is needed to avoid re-calculating PoMax, dp,
C Kn, pi. These variables are calculated only first
C time. It is also needed in printing status of
C program
C --- REAL VARIABLES-----
C Pm : Array to store model (binormal) fiber presence pdf
C pi : Array of Kn outcome values assigned to normalized
C fiber presence observed and model probabilities
C dp : Delta p needed to compute spatial PDF using finite
C difference numerical approximation of derivative
C PoMax : Maximum probability value of Po (fp observed) pdf
C PoMax i] : Maximum probability value of Po (fp observed) pdf
C in any direction
C rho : Model correlation coefficient
C NPo : Array of normalized observed fiber presence pdf by
C NPo(i,j) = Po(i,j)/PoMax
C NPm : Array of normalized model fiber presence pdf by
C NPm(i,j) = Pm(i, j )/PoMax
C sigma : Array of single precision 'stat' variables passed
C to subroutine evaluating model fp pdf
C X  : X dimension coordinate of center of a window
C y : y dimension coordinate of center of a window
C ---  DOUBLE PRECISION VARIABLES ---
C Gp : External function to evaluate gradient of Po
C values in a given direction
C PIvalue: Value of PI (3.141592...)
C KLFCN : External function to evaluate square of KL function
C varl : X dimension variance [= sqr (stat (X) ) ]
C var2 : Y dimension variance [= sqr (stat (Y) ) ]
C diffvar: Difference in variances [varl - var2]

C ** CALLING ROUTINE TO COMPUTE MODEL FIBER PRESENCE PROB. *♦
ndim=nopt 
sigma(1)=stat(1) 
sigma(2)=3tat(2) 
rho=r
call ModelFpProb (ndim, sigma, rho. Pm)

C ** ASSIGNING FIBER PRESENCE PROBABILITIES AS Kn OUTCOMES **
C —  FINDING MAXIMUM VALUE OF Po AT WHICH PROFILE GETS FLAT —
C —  AND MARKING THE FLAT REGION —
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if (nofneval.EQ.0) then 
C »  For Error Checking
C open(unit-10, file-'gradpox.dat',status-'unknown')
C do 5 i-2,¥x-l
C do 3 j-2,Wy-lC x-(xbw(i)+xbw(i+l)-l)*CF/2.
C y-(ybw( j)+ybw(j+1)+1)*CF/2.
C write(10,2) x, y, Gp(i,j), Po(i,j)C 2 format(2(2x,f6.2), 2 (2x,elO.4))
C 3 continue
C 5 continue
C close(unit—10)

print*
print*, ' FINDING MAXIMUM VALUE OF Po AT WHICH PROFILE ', 

+ 'GETS FLAT:'
PoMax-0.

C —  FINDING FIRST MAXIMUM IN INCREASING X-DIRECTION —
C —  IGNORING FIRST AND LAST Y WINDOWS, AS THEY COULD —
C —  HAVE ALL ZERO Po —

PoMaxi]-0. do 20 j=2,Wy-l 
i-2

C »  IF GRADIENT INCREASES, GO TO NEXT i
C »  FIRST CHECK FOR GRADIENT INCREASE BETWEEN i AND i+1
10 if (Gp(i+1,j,'x').GE.Gp(i,j,'x')) then

i-i+1 
go to 10

C »  IF GRADIENT DECREASES BETWEEN i AND i+1, THEN
C »  CHECK FOR GRADIENT INCREASE BETWEEN i AND i+2 TO
C »  AVOID ANY LOCAL MINIMA

else if (Gp(i+2,j,'x').GE.Gp(i,j,' X ' )) then 
i=i+l 
go to 10

C »  IF GRADIENT DECREASES, SELECT Po(i,j) AS MAXIMUM
C »  AND MARK i AS X-DIR STARTING POSITION FOR FLAT REGION

else
if (Po(i,j).GE.PoMaxi]) then 

PoMax_ij=Po(i, j) 
fltB(l)=i+l 

end if 
end if

C »  CHOOSE MAXIMUM OF ALL MAXIMA FROM ALL j
PoMax-max ( PoMax i], PoMax)

20 continue
print*, ' PoMax in increasing x-dir =', PoMaxij

C —  FINDING FIRST MAXIMUM IN DECREASING Y-DIRECTION —
C —  AND INCREASING j, STARTING X FROM fltB(l) BOUNDARY —

PoMaxij-0. 
do 40 i-fltB(l),Wx-l 

j-2C »  IF GRADIENT INCREASES, GO TO NEXT j
C »  FIRST CHECK FOR GRADIENT INCREASE BETWEEN j AND j+130 if (Gp(i,j+1,'y').GE.Gp(i,j,'y')) then

j-j+1 
go to 30

C »  IF GRADIENT DECREASES BETWEEN j AND j+1, THEN
C »  CHECK FOR GRADIENT INCREASE BETWEEN j AND j+2 TO
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c »  AVOID ANY LOCAL MINIMA
else if (Gp(i, j+2,*y')-GE.Gp(i,j, *y')) then 

j-j+1 
go to 30

C »  IF GRADIENT DECREASES, SELECT Po(i,j) AS MAXIMUM
C »  AND MARK j AS Y-DIR STARTING POSITION FOR FLAT REGION

else
C »  CHOOSE MAXIMUM OF ALL MAXIMA FROM ALL i

if (Po(i, j).GE.PoMax ij) then 
PoMhx_ij-Po(i,j) 
fltB(3)-j+l 

end if 
end if

C »  CHOOSE MAXIMUM OF ALL MAXIMA FROM ALL j
PoMax-max ( PoMax ij, PoMax )

40 continue
print*, ' PoMax in decreasing y-dir PoMaxij

C —  FINDING SECOND MAXIMUM IN INCREASING Y-DIRECTION —
C —  AND DECREASING j, STARTING X FROM fltB(l) BOUNDARY —

PoMax_ij-0. 
do 60 i=fltB(l) ,WX-1 

j=Wy-l
C »  IF ABSOLUTE GRADIENT INCREASES, GO TO PREVIOUS j
C »  FIRST CHECK FOR ABSOLUTE GRADIENT INCREASE BETWEEN
C »  j AND j-1
50 if (abs(Gp(i,j-1, *y')).GE.abs(Gp(i,j,'y'))) thenj=j-l 

go to 50
C »  IF ABSOLUTE GRADIENT DECREASES BETWEEN j AND j-1,
C »  CHECK FOR ABSOLUTE GRADIENT INCREASE BETWEEN j AND j-2
C »  TO AVOID ANY LOCAL MINIMA

else if (abs(Gp(i,j-2,'y')).GE.abs(Gp(i,j,'y'))) then 
j-j-1 go to 50

C »  IF ABSOLUTE GRADIENT DECREASES, SELECT Po(i,j) AS MAX
C »  AND MARK j AS Y-DIR ENDING POSITION FOR FLAT REGION

else
C »  CHOOSE MAXIMUM OF ALL MAXIMA FROM ALL i

if (Po(i,j).GE.PoMaxij) then 
PoMax_ij=Po(i,j) 
fltB(4)=j-l 

end if 
end if

C »  CHOOSE MAXIMUM OF ALL MAXIMA FROM ALL j
PoMax-max (PoMax ij, PoMax)

60 continue
print*, ' PoMax in increasing y-dir =', PoMaxij

C —  FINDING SECOND MAXIMUM IN DECREASING X-DIRECTION —
C —  STARTING Y FROM fltB(3) AND ENDING AT fltB(4) BOUNDARY —

PoMax_ij=0.
do 80 j-fltB{3),fltB(4) 

i=Wx-l
C »  IF ABSOLUTE GRADIENT INCREASES, GO TO PREVIOUS iC »  FIRST CHECK FOR ABSOLUTE GRADIENT INCREASE BETWEEN
C »  i AND i-1
70 if (abs(Gp(i-l,j,'x')).GE.abs(Gp(i,j,'x'))) then

i=i-l
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go to 70C »  IF ABSOLUTE GRADIENT DECREASES BETWEEN i AND i-1,
C »  CHECK FOR ABSOLUTE GRADIENT INCREASE BETWEEN 1 AND i-1
C »  TO AVOID ANY LOCAL MINIMA

else if (abs(Gp(i-2,j,'X'))-GE.abs(Gp(i, j,'X'))) then 
i-i-1 
go to 70C »  IF ABSOLUTE GRADIENT DECREASES, SELECT Po(i,j) AS MAX

C »  AND MARK i AS X-DIR ENDING POSITION FOR FLAT REGION
elseC »  CHOOSE MAXIMUM OF ALL MAXIMA FROM ALL j

if (Po(i,j).GE.PoMaxi]) then 
PoMax_ij“Po(i,j) 
fltB(2)-i-l 

end if end if
C »  CHOOSE MAXIMUM OF ALL MAXIMA FROM ALL j

PoMax-max ( PoMax ij, PoMax)
80 continueprint*, ' PoMax in decreasing x-dir PoMax_ij

write(*,90) (fltB(i),i=l,4), PoMax 
90 format(7x,'fltB(XI,X2) - (',12,',',12,'); ',

+ 'fltB(Yl,Y2) = (',12,',',12, ')',
+ /7x,'PoMax - ',el4.8)

print*
C open(unit=99, file-'po58.out', status-'unknown')
C write(99,122)
C 122 format(5x,'x',7x,'y',6x,'Po',6x,'NPo',6x,'Pm',6x,'NPm') 

end if ! FINISHED FINDING PoMax

C **** NORMALIZING FIBER PRESENCE PROBABILITIES TO AVOID ****
C **** EVALUATION OF SPATIAL CO-OCCURENCE PROBALITIES IN ****
C **** FLAT REGION ****

do 170 i=l,Wx 
do 160 j=l,Wy

NPo(i,j)-Po(i, j)/PoMax 
NPm(i,j)-Pm(i,j)/PoMax 

C if (nofneval.EQ.0) then
C x-(xbw(i)+xbw(i+l)-l)*CF/2.
C y-(ybw(j)+ybw(j+l)+l)*CF/2.
C write (99,155) x, y, Po (i, j ), NPo (i, j ), Pm(i, j ), NPm(i, j )
C 155 format(2(2x, f6.2),4(2x, f6.4))
C end if
160 continue
170 continue

C **** EVALUATING pi VALUES ONLY ON FIRST FUNCTION CALL ****
if (nofn eval.LE.O) then

C —  FINDING Kn, dp AND pi VALUES —
Kn-50
pi(Kn)=1.0 
dp-pi(Kn)/float(Kn)C print*, 'dp-',dp

C print 175, nofneval, Kn, pi(Kn)
175 format(lOx,12,': pi(', 13,')-',f7.5)
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do 180 Jc-Kn-1,1,-1 
pi(k)»pi(k+1)-dp

C print 175, no fn eval, k, pl(k)
180 continue

C close(unit-99)
end if

C print*
C ***♦ CALLING FONCTION TO EVALUATE SQUARED KL FUNCTION **♦♦

FCNvalue-KLFCN (NPo, NPm, Wx, Wy, pi, dp, Kn)
C **♦* EVALUATING THETA FUNCTION ****

variestat(1)**2. 
var2“stat(2)**2. 
diffvar-varl-var2
ThetaFCN-2.*rho*stat(1)*stat(2)/diffvar 
ThetaFCN-(ThetaFCN-dtan(2.*t*PIvalue/180.))**2.

C **** EVALUATING FINAL OBJECTIVE FUNCTION ****
FCNvalue—FCNvalue+ThetaFCN

C —  INCREMENTING FUNCTION CALL VARIABLE —
no_fn_eval=no_fn_e val+1

C *♦** PRINTING STATUS OF PROGRAM EVERY 40 FUNCTION CALLS
if ( .NOT.print_flag.AND.mod(no_fn_eval, 40) .EQ.O) then 

print 240, no fneval 
240 format(/5x, 42('-')

+ /5x, ' »  STATUS : ',14,' FUNCTION EVALUATIONS DONE! '
+ /Sx,42('-'))

C »  USED FOR ERROR CHECKING
C print 250, nofneval, (stat(i),i-1,nopt), FCN
250 format ( /5x, ' INTERMEDIATE FUNCTION EVALUATION ',

+ 13,':',/5x,40('-'),/
+ 7x,'sigma(X) = ',el4.8,/
+ 7x,'sigma(Y) - ',el4.8,/
+ 7x, 'KLF VALUE = ',el4.8/)
end if

RETURN
END

DOUBLE PRECISION FUNCTION Gp(i,j,dir)
**** DECLARATION OF ARGUMENT VARIABLES **** 
CHARACTER dir*l 
INTEGER i, j
REAL Po(35,35), xbw(36), ybw(36), CF
**** DECLARATION OF LOCAL VARIABLES *♦** 
DOUBLE PRECISION dXi, dPo
* UNUSED VARIABLES **
INTEGER Wx, Wy
REAL mu(2), r, t
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COMMON /OBSERVED/ m u, r ,  Wx, Wy, P o , xbw , ybw , C F , t

C **** DEFINITION OF LOCAL VARIABLES ****
C ----DOUBLE PRECISION VARIABLES-----
C dXl : Central difference delta displacement
C dPo : Central difference delta probability

C FINDING DELTA DISPLACEMENT AND PROBABILITY
if (dir.EQ.'x') then C »  X VALUES INCREASE AS i INCREASES

dXi-CF* (xbw(i+l) -xbw(i-1) ) 
dPo-Po(i+1,j)-Po(i-1, j) 

elseC »  Y VALUES DECREASE AS j INCREASES
dXi“CF*(ybw(j-l)-ybw(j+l) ) 
dPo-Po(i,j+1)-Po(i, j-1) 

end if
C CENTRAL DIFFERENCE GRADIENT **♦*

Gp=dPo/dXi

C print 10, i, j, Po(i,j), dXi, dir, Gp
10 format(7x,'Po(',I2,',',12,') = *,el0.4,'; dXi = ',f6.2,

+ Grad Po(',Al,') = ’,el0.4)
RETURN
END

DOUBLE PRECISION FUNCTION KLFCN (NPo, NPm, Wx, Wy, pi, dp, Kn)
C **** DECLARATION OF ARGUMENT VARIABLES ****

CHARACTER infile*12, prob_dat*l2, statfile*12, sp_file*18 
INTEGER Wx, Wy, Kh
REAL NPo(35,35), NPm(35,35), pi(250), dp 
LOGICAL printflag, spatial_print
COMMON /FILES/ infile, probdat, statfile, spfile

C ♦♦♦* DECLARATION OF LOCAL VARIABLES
INTEGER i, j, Jc, )cl, k2, hx i, hy_i, ufileno, ofileno 
INTEGER hx(12), hy(12)
DATA hx /0,1,1, 1,-1,0,1,2,2,2, 2, 2/
DATA hy /I,1,0,-1, 2,2,2,2,1,0,-1,-2/

C DATA hx /0,1,1,1,-1,0,1,2,2,2,2,2,-2,-1,0,1,2,3,3,3,3,3,3,3/
C DATA hy /I,1,0,-1,2,2,2,2,1,0,-1,-2,3,3,3,3,3,3,2,1,0,-1,-2,-3/

CHARACTER filename* 12, commandes0 
REAL PI, Pl dP, P2, P2_dP, CDF, SpdfTol
DOUBLE PRECISION f(30000), g, SpPDF, fINT(24), gINT(24),
+ SpoCDF, SpmCDF, KLFsum, dummy
DOUBLE PRECISION KLF
COMMON /OPTIMIZED/ dummy, KLF
COMMON /PRINTING/ printflag, spatial_print
EXTERNAL CDF, SYSTEM
INTEGER count
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SAVE f, count
DATA SpdfTol /l.E-06/, count /O/

C
C
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

definition of local variables ****

  CHARACTER VARIABLES ---filename: Character array for storing spatial probability files 
command : Command to archive spatial probability files
  INTEGER VARIABLES ---
kl : Loop index for p values (for first window of pair)
k2 : Loop index for p* values (for second window of pair)
hx : Array of X dimensions of the lag vectors
hy : Array of Y dimensions of the lag vectors
hx i : X dimension of ith lag vector passed to CDF function
h y i  : Y dimension of ith lag vector passed to CDF function
ufileno: Unit numbers of unoptimized spatial probability files 
ofileno: Unit numbers of optimized spatial probability files
count : Counts number of function calls. It is needed as

observed spatial co-occurrence probabilities are 
computed only on first function call as they remain 
constant for an image

— —  REAL VARIABLES ---
PI : 1st window p value for which spatial PDF is computed
PldP : p+dp for finite difference numerical approximation of

derivative to compute spatial PDF
2st window p' value for which spatial PDF is computed
p'+dp for finite difference numerical approximation 
of derivative to compute spatial PDF 
External function to compute spatial CDF 

SpdfTol: Spatial pdf tolerance. It is the tolerance allowed 
for SpPDF to become greater than 1.0 in case of 
numerical instability caused due to finite difference 
gradient approximation. It is also used when SpPDF 
becomes less than SpdfTol but greater than 0.0, 
f or g is set to 0.0

  DOUBLE PRECISION VARIABLES ---
f : Array of observed spatial co-occurrence PDF (computed

on first call only, saved for rest of the program)
Model spatial co-occurrence PDF 
Spatial PDF at each of p and p' value 
Array of integral of observed spatial PDF at each lag 
distance, 'h'. Each must be less than equal to 1.0 
fINT - INTEGRAL ( INTEGRAL (f dp) dp')
Array of integral of model spatial PDF at each lag 
distance, 'h'. Each must be less than equal to 1.0 
gINT = INTEGRAL ( INTEGRAL (g dp) dp')

SpoCDF: Observed spatial CDF 
SpmCDF: Model spatial CDF
KLFsum: Sum of KL functions over all Cartesian lag distances 
dummy : Dummy variable corresponding to ThetaFCN evaluated

in FCN subroutine. Since it is computed after calling
this function, its value from this function is 
overwritten in FCN subroutine 

KLF : Value of KLF function (not squared) passed to
subroutine Minimize through 'OPTIMIZED' common block

P2
Pl_dP
CDF

gSpPDF
fINT

gINT
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C ** SETTING FILENAMES AND OPENING FILES FOR SPATIAL PDF £ CDF **
if (spatial_print .AND. count.EQ.O) then 

ufileno-11 
do 10 1-1,12

open(unit-90,status-'scratch*)
C »  ATTACH LAG INDEX TO FILENAME fi STORE IT IN SCRATCH FILE

if (i.GE.lO) then 
write(90,3) i

3 format('spunh',12) 
else
write(90,4) i

4 format('spunh',II) 
end if
rewind(90)
read(90,5) filename

5 format(A8)
close(unit-90,status— 'delete')

C »  ATTACH ' .dat' EXTENSION TO SPATIAL FILENAME
filename-filename(:INDEX(filename,' ')-1)//'.dat ' 
open(unit-ufileno, file-filename, status-'unknown' ) 
write(ufileno,8)

8 format(4x,'pi',5x,'p2',7x,'f',6x,'SpoCDF',7x, 'g',6x,
+ 'SpmCDF')ufileno-ufileno+1 

10 continue
ufileno=ll 

end if
if (spatial_print .AND. print flag) then 

ofileno=31 
do 20 i—1,12

open(unit=90,status-'scratch')
C »  ATTACH LAG INDEX TO FILENAME & STORE IT IN SCRATCH FILE

if (i.GE.lO) then 
write(90,12) i 

12 format('spoph',12)
else 
write(90,14) i 

14 format('spoph',11)
end if 
rewind(90)
read(90,16) filename 

16 format (A8)
close(unit-90, status— 'delete')

C »  ATTACH '.dat' EXTENSION TO SPATIAL FILENAME
filename-filename(: INDEX(filename,' ')-!)//'.dat' 
open (unit-ofileno, file-filename, status-' un)cnown' ) 
write ( o fileno, 8 ) 
ofileno-ofileno+1 

20 continue
ofileno—31 

end if
C ** FOR EACH LAG VECTOR h=[hx,hy], COMPUTING KL-FUNCTION **

KLFsum—0.0
j=l
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do 80 i=l,12 
fINT(i)-0. 
gINT(i)-G. 
hx_i-hx(i) 
hy_i-hy(i)C print 25, hx(i), hy(i)

C 25 formatdx,'hx-',I2, •; hy-',I2)
C —  SUMMING SPATIAL PDF OVER ALL pi VALUES FOR 1ST WIN —

do 70 kl-l,Kn 
Pl-pi(kl)

C —  SUMMING SPATIAL PDF OVER ALL pi VALUES FOR 2ND WIN —
do 60 k2-l,Kn 

P2-pi()c2)
if (count.EQ.O) then 

C —  COMPUTING OBSERVED SPATIAL PDF —SpPDF-( CDF(NPo,(Pl+dp),(P2+dp), hx_i, hy_i,Wx,Wy)
+ -CDF(NPO, (Pl-dp), (P2+dp), hx_i, hy_i,Wx, Wy)
+ -CDF(NPo, (Pl+dp), (P2-dp) ,hx_i,hy_i,Wx,Wy)
+ +CDFCNPO, (Pl-dp), (P2-dp) ,hx_i,hy_i,Wx,Wy)
+ )/(4.0*dp**2.)

C »  IF SpPDF BECOMES GREATER THAN 1.0 DUE TO
C »  APPROXIMATION OF FINITE DIFFERENCE GRADIENT, SET
C »  SpPDF TO 1.0

if (SpPDF.GT.1.) then
if ((SpPDF-1.).LE.SpdfTol) then

print 30, SpPDF-1.,hx(i), hy(i), PI,P2 
30 format(/4x,'SpPDF:Po > 1.0 by *,e9.4,/4x,

+ 'at h=(',I2,lx,12,'); Pl=',f7.5,'/ P2=',
+ f7.5/,4x,'** SpPDF set to 1.0 **')

end if 
SpPDF-1.0 

end if
f(i)-SpPDF
fINT(i)-flNT(i)+f(j)*(dp**2)

C »  IF f(j) IS GREATER THAN ZERO BY SpdfTol, f(j)=0.0
if (f(j).LT.SpdfTol.AND.f(j).NE.0.0) then 

C print 35, f(j)
C 35 format(Sx, 'f=', elO.4)

f(j)=0.0 
end if

end if ! of if (count.EQ.O)
C —  COMPUTING MODEL SPATIAL PDF —

SpPDF-( CDF(NPm,(Pl+dp),(P2+dp),hx_i,hyi,Wx,Wy)
+ -CDF(NPm,(Pl-dp),(P2+dp),hx_i,hyi,Wx,Wy)
+ -CDF(NPm, (Pl+dp), (P2-dp), hx i,hy i,Wx,Wy)
+ +CDF(NPm, (Pl-dp), (P2-dp) ,hx_i,hy_i,Wx,Wy)
+ )/(4.0*dp**2.)

C »  IF SpPDF BECOMES GREATER THAN 1.0 DUE TOC »  APPROXIMATION OF FINITE DIFFERENCE GRADIENT, SET
C »  SpPDF TO 1.0

if (SpPDF.GT.l.) then
if ((SpPDF-1.).LE.SpdfTol) then
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print 40, SpPDF-1.,hx(i),hy(i),PI,P2 
40 format(/4x,'SpPDF:Pm > 1.0 by ',e9.4,/

+ 4x,'at h-{',I2,lx,I2, •); Pl=',f7.5,P2=',
+ f7.5/,4x,'** SpPDF set to 1.0 **■)

end if 
SpPDF-1.0 

end if
g-SpPDF
gINT (i) -gINT (i) +g* (dp**2)

C »  IF g IS GREATER THAN ZERO BY SpdfTol, g » 0.0
if (g.LT.SpdfTol.AND.g.NE.0.0) then 

C print 45, g
C 45 format(8x,'g-',elO.4)

g-0.0 
end if

C —  CALCULATING KL-FUNCTION —
if (f(j).NE.O.O.AND.g.NE.0.0) then 

KLFium=KLFsum+f(j)*dlog(f(j)/g) 
end if

C —  PRINTING SPATIAL PDF AND CDF WHEN FLAGGED —if {spatial_print.AND. (count.EQ.0.OR.print_flag) ) then 
SpoCDF=CDF ( NPo, PI, P2, hx i, hy i, Wx, Wy )
SpmCDF=CDF(NPm, PI, P2, hx_i, hy_i,Wx, Wy) 
if (count.EQ.O) then

write(ufileno,55) PI, P2, f(j), SpoCDF,g,SpmCDF 
else if (printflag) then

write(ofileno,55) PI, P2, f(j), SpoCDF,g,SpmCDF 
end if55 format(2(2x,f5.3),4(2x,f8.6))

end if
C —  INCREMENTING INDEX FOR f(j) —

j=j+l 
60 continue
70 continue

C —  INCREMENTING SPATIAL FILE UNIT NOS. —if (spatial_print.AND. (count.EQ.O.OR.print_flag) ) then 
ufileno=ufileno+l 
ofileno=ofileno+l 

end if
C print*, '--------------------------------- '
80 continue

C *♦** AVERAGING KL FUNCTION OVER 12 LAG DISTANCES **♦*
KLF—KLFsum/12.

C ** SQUARING KL FUNCTION AS REQUIRED FOR OBJECTIVE FUNCTION **
KLFCN=KLF**2.

C ** CLOSING SPATIAL PDF AND CDF FILES WHEN FLAGGED **
if (spatial_print .AND. count.EQ.O) then 

ufileno=ll 
do 110 i=l,12

close(unit=ufileno) 
ufileno=ufileno+l
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110 continue
end if
if (spatial_print .AND. printflag) then 

ofileno»31 
do 120 i-1,12close(unit-ofileno) 

o fileno-o fileno+1 
120 continuewrite(*, • (5x, "ARCHIVING, THEN REMOVING SPATIAL FILES ",

+ "USING:")')
command-'tar -cv -f '//spfile(:INDEX(spfile,' ')-1)

+ //' sp*.dat; gzip -fv '//spfile(:INDEX(spfile,' ')-1)
+ //'; rm sp*.dat\0'

write(*,'(5x,A/)') command 
i-SYSTEM ( command) 

end if
: **** INCREMENTING FUNCTION EVALUATION COUNT ****

count—count+1
RETURN
END

REAL FUNCTION CDF(P, Pa, Pb, hi, hj, Wx, Wy)
C **** DECLARATION OF ARGUMENT VARIABLES ****

INTEGER hi, hj, WX, Wy 
REAL P(35,35), Pa, Pb

C DECLARATION OF LOCAL VARIABLES ****
INTEGER X ,  y, x_h, y_h
REAL Pxy, Pxyh, no_pairs, total_pairs, nwin

C **** VARIABLE USED FOR PRINTING WHILE DEBUGGING ****
INTEGER counter, i 
SAVE counter, i 
DATA counter,i /2*0/

C
C DEFINITION OF LOCAL VARIABLES ****
C ----INTEGER VARIABLES-----
C X  : Index of windows in X dimension
C y : Index of windows in Y dimension
C X  h : Index of (x+hi) lagged window in X dimension
C y_h : Index of (y+hj) lagged window in Y dimension
C counter: Function evaluation counter (error checlcing)
C i : Counter for function evaluations when CDF = 1.0
C ---- REAL VARIABLES ---C Pxy : Normalized fiber presence probability of (x,y) window
C Pxy_h : Normalized fp probability of (x+hi, y+hj) window
C nw i n  : Total number of windows in the image
C total_pairs: Total number of pairs that can be possibly
C selected from nwin windows. Combinatorial(nwin,2)
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c no_paxrs: Number of pairs of windows In the Image with 1st 
C window having fp probability < - Pa and the 2nd
C window, lagging from 1st window by given vector
C (hi,hj ),having fp probability < = Pb. Both windows
C have to be In the Image to be considered

n_wln=float (Wx*Wy) 
total_palrs=n_wln*(n_wln-l.)/2. 
no_palrs“0. 
do 20 x-l,Wx 

x_h“x+hl 
do 10 y-l,wy 

Pxy_h-0. 
y_h=y+hj

C »  If second window of the pair [x+hl, y+hj] Is out of
C »  Image, then the pair Is Ignored

If (x_h.LE.Wx.AND.y_h.LE.Wy.AND.y_h.GE.O) then 
Pxy=P(x,y)
Pxy _h=P(xh, y_h)

C —  CHECKING IF (Pxy <= Pa) AND (Pxyh <= Pb) —
If ((Pxy.LE.Pa).AND.(Pxyh.LE.Pb)) then no_palrs=no_palrs+l. 
end If

C ---  ERROR CHECKING ----C If (counter.EQ.O.AND.x.EQ.l.AND.y.EQ.Wy-1) then
C print 5, Pxy, Pxyh, hi, hj
C 5 format(Ix,'Pxy=',f6.4,'; Pxy_h=',f6.4,'; h=',I2,
C + Ix,12)
C end If

end If 
10 continue
20 continue

C EVALUATING CDF FUNCTION ****
CDF=no_palrs/total_palrs
counter=counter+l

C **** ERROR CHECKINGC If (mod(counter,100).EQ.O.OR.no_palrs.EQ.totaljpalrs) then
C If (no_palrs.EQ.total_palrs) then
C 1=1+1
C print 30, 1, hi, hj, no_palrs, total_palrs
C 30 format(Ix,18,': h=(',12,Ix,12,'); np=',f7.0,'; tp=',f7.0)
C end If

RETURNEND

SUBROUTINE ModelFpProb (ndim, sigma, rho. Pm)
c **** declaration of argument variables
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INTEGER WX, Wy, ndimREAL Po(35,35), mu(2), sigma(2), rho, xbw(36), ybw(36), CF, 
+ Pm(35,35), r, t
COMMON /OBSERVED/ mu, r, Wx, Wy, Po, xbw, ybw, CF, t
**** DECLARATION OF LOCAL VARIABLES **♦*
INTEGER i, j
LOGICAL xOexists, yOexists
REAL zx(36), zy(36), zxltO, zxgtO, zyltO, zygtO

C **** DEFINITION OF LOCAL VARIABLES ***♦
C ---  INTEGER VARIABLES ---
C i :  Window index in X dimension 
C j : Window index in T dimension
C --- LOGICAL VARIABLES-----
C xOexists: Indicates whether x axis exists in a window.
C yOexists: Indicates whether y axis exists in a window.
C Needed for a situation when x and y axes cross in a
C window. The fp probability is not to be evaluated
C for the width of the axes. To avoid the
C subtraction of cross-over region of the axes twice
C from the calculations, logical variables are required.
C —— — REAL VARIABLES ———
C zx : Array of normalized X coordinates of windows
C zy : Array of normalized Y coordinates of windows
C zxltO : Normalized X dimension position calculated as 1.5
C pixel lengths less than zero position (axes are
C 3 pixels wide and are to be ignored)
C zxgtO : Normalized X dimension position calculated as 1.5
C pixel lengths greater than zero position
C zyltO : Normalized Y dimension position calculated as 1.5
C pixel lengths less than zero position
C zygtO : Normalized Y dimension position calculated as 1.5
C pixel lengths greater than zero position

C **** CALCULATING BIVARIATE NORMAL DISTRIBUTION ****
C —  NORMALIZING CELL BOUNDARIES —
C print 5
C 5 format(6x,'bw',7x, 'z' )

do 10 i=l,Wx+l
zx(i)»(xbw(i)*CF-mu(l))/sigma(1)

C print 25, xbw(i)*CF, zx(i)
10 continue

C print*
do 20 j=l,Wy+l

zy(j)=(ybw(j)*CF-mu(2))/sigma(2)
C print 25, ybw(j)*CF, zy(j)
20 continue
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c —  NORMALIZING X-BOÜNDARIES OF 3 PIXELS WIDE X AXIS LINE —
zxltO-((0.-3.*CF/2.)-mu(l))/sigma(1) 
zxgtO»((0.+3.*CF/2.)-mu(l))/sigma(1)

C print*
C print 25, zxltO, zxgtO
C —  NORMALIZING Y-BOUNDARIES OF 3 PIXELS WIDE Y AXIS LINE —

zyltO»((0.-3.*CF/2.)-mu{2))/sigma(2) 
zygtO»((0.+3.*CF/2.)-mu(2))/sigma(2)

C print 25, zyltO, zygtO
C 25 format(2(2x,f7.4))
C —  EVALUATING PROBABILITY INTEGRAL USING IMSL ROUTINE BNRDF —

do 40 i=>l,Wx
do 30 j“Wy,1, -1

xO_exists=.FALSE. 
yOexists-.FALSE.
Pm(i,j)- BNRDF(zx(i+l), zy(j), rho)

+ -BNRDF(zx(i+1), zy(j+l), rho)
+ -BNRDF(zx(i), zy(j), rho)
+ +BNRDF(zx(i), zy(j+l), rho)

C »  X axis line is 3 pixels wide and is to be ignored
C »  for evaluating binormal probabilty integral of cellif (xbw(i).LT.O.O.AND.xbw(i+l).GT.O.O) then 

Pm(i,j)»Pm(i,j)-{ BNRDF(zxgtO, zy(j), rho)
+ -BNRDF(zxgtO, zy(j+l), rho)
+ -BNRDF(zxltO, zy(j), rho)
+ +BNRDF(zxltO, zy(j+l), rho) )

xOexists— .TRUE. 
end if

C »  Y axis line is 3 pixels wide and is to be ignored
C »  for evaluating binormal probabilty integral of cell

if (ybw(j+l).LT.0.0.AND.ybw(j).GT.O.O) then
Pm(i,j)=Pm(i,j)-( BNRDF(zx(i+1), zygtO, rho)

+ -BNRDF(zx(i+1), zyltO, rho)
+ -BNRDF(zx(i), zygtO, rho)
+ +BNRDF(zx(i), zyltO, rho) )

yOexists— .TRUE. 
end if

C »  if both X axis and Y axis exist in a cell and both
C »  have been ignored, the pixel width corresponding to
C »  actual zero position is ignored twice. Therefore,
C »  probability integral of the pixel has to added

if (xOexists.AND.yOexists) then
Pm(i,j)=Pm(i,j) + ( BNRDF(zxgtO, zygtO,rho)

+ -BNRDF(zxgtO,zyltO,rho)-BNRDF(zxltO,zygtO,rho)
+ +BNRDF(zxltO,zyltO, rho) )

end if 
30 continue
40 continue

C *♦** ERROR CHECKING **♦*
C print*, 'Po Integral'
C do 50 i-1,Wx
C print 65, (Po(i,j), j=l,Wy)
C 50 continue
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c print*
C print*, 'Pm Integral'
C do 60 i-1, Wx
C print 65, {Pm(i,j), j-l,Wy)
C 60 continue 
cC 65 format(17(lx,f6.4))

RETURN
END
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c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c  
c  c
c  FILENAME: anneal.f C
c  [Modified form of the routine developed by Goffe et al. (1 9 9 4 ) ]  C
C C
C ABSTRACT: C
C Simulated annealing Is a global optimization method that C
C distinguishes between different local optima. Starting from an C
C Initial point, the algorithm takes a step and the function is C
C evaluated. When minimizing a function, any downhill step Is C
C accepted and the process repeats from this new point. An uphill C 
C step may be accepted. Thus, It can escape from local optima. This C 
C uphill decision Is made by the Metropolis criteria. As the c
C optimization process proceeds, the length of the steps decline and c  
C the algorithm closes In on the global optimum, since the algorithm C 
C makes very few assumptions regarding the function to be optimized, C 
C It Is quite robust with respect to non-quadratic surfaces. The C
C degree of robustness can be adjusted by the user. In fact, C
C simulated annealing can be used as a local optimizer for difficult C 
C functions. C
C C
C This Implementation of simulated annealing was used In "Global C
C Optimization of Statistical Functions with Simulated Annealing, " C 
C Goffe, Ferrler and Rogers, Journal of Econometrics, vol. 60 , C
C no. 1 / 2 ,  Jan./Feb. 1 9 9 4 , pp.6 5 - 1 0 0 .  Briefly, we found It C
C competitive, if not superior, to multiple restarts of conventional C 
C optimization routines for difficult optimization problems. C
C C
C For more Information on this routine, contact Its author: C
C Bill Goffe, bgoffe8whale.st.usm.edu C
C C
C To understand the algorithm, the documentation for SA on lines 236- C 
C 484 should be read along with the parts of the paper that describe C 
C simulated annealing. Then the following lines will aid the user c  
C In becommlng proficient with this Implementation of simulated C
C annealing. C
C C
C Learning to use SA: C
C Use the sample function from Judge with the following suggestions C 
C to get a feel for how SA works. When you've done this, you should C 
C be ready to use It on most any function with a fair amount of C
C expertise. C
C 1 .  Run the program as Is to make sure it runs okay. Take a look at C 
C the Intermediate output and see how It optimizes as temperature C 
C (T) falls. Notice how the optimal point is reached and how C
C falling T reduces VM. C
C 2 .  Look through the documentation to SA so the following makes a C 
C bit of sense. In line with the paper. It shouldn't be that hard C 
C to figure out. The core of the algorithm Is described on C
C pp. 6 8 -7 0  and on pp. 9 4 - 9 5 .  Also see Corana et al. pp. 2 6 4 -9 .  C 
C 3. To see how It selects points and makes decisions about uphill C 
C and downhill moves, set IPRINT = 3 (very detailed Intermediate C 
C output) and MAXEVL » 100 (only 100 function evaluations to limit C 
C output). C
C 4 .  To see the importance of different temperatures, try starting C 
C with a very low one (say T = lOE-5). You'll see (1 ) It never C
C escapes from the local optima (In annealing terminology. It C
C quenches) t (il) the step length (VM) will be quite small. This C 
C Is a key part of the algorithm: as temperature (T) falls, step C 
C length does too. In a minor point here, note how VM Is quiclcly C 
C reset from its Initial value. Thus, the input VM is not very C
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c  important. This is all the more reason to examine VM once the C
C algorithm is underway. C
C 5. To see the effect of different parameters and their effect on C
C the speed of the algorithm, try RT “ .95 fi RT = .1. Notice the C
C vastly different speed for optimization. Also try NT = 20. Note C
C that this sample function is quite easy to optimize, so it will c
C tolerate big changes in these parameters. RT and NT are the C
C parameters one should adjust to modify the runtime of the c
C algorithm and its robustness. C
C 6. Try constraining the algorithm with either LB or UB. C
C C
c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c

SUBROUTINE SIM_ANNEAL (N, X, LB, UB, XOPT, FOPT)
PARAMETER (NEPS - 4)
DOUBLE PRECISION LB(N), UB(N), X(N), XOPT(N), C(N), VM{N), 
1 FSTAR(NEPS), XP(N), T, EPS, RT, FOPT
INTEGER NACP(N), NS, NT, NFCNEV, 1ER, ISEEDl, ISEED2,

1 MAXEVL, IPRINT, NACC, NOBDS
LOGICAL MAX
EXTERNAL FCN

C Set underflows to zero on IBM mainframes.
C CALL XUFLOW(O)
C Set input parameters.

MAX = .FALSE.
EPS = l.OD-5 
RT = .5 
ISEEDl » 1
ISEED2 = 2
NS = 20 
NT = 2
MAXEVL = 3500
IPRINT = 2
DO 10, I = 1, N

C(I) = 2.0 
10 CONTINUE
C Set input values of the input/output parameters.

T = 5.0
DO 20, I = 1, N 

VM(I) = 1.0 
20 CONTINUE

WRITE (*,1000) N, T, RT, EPS, NS, NT, NEPS, MAXEVL
CALL PRTVEC(X,N, 'STARTING VALUES' )
CALL PRTVEC (VM, N, ' INITIAL STEP LENGTH')
CALL PRTVEC(LB,N,'LOWER BOUND')CALL PRTVEC(UB,N,'UPPER BOUND')
CALL PRTVEC (C,N, 'C VECTOR' )
WRITE(*,'(/,5x,''♦*** END OF DRIVER ROUTINE OUTPUT ****•' 

1 /,5x, ''**** BEFORE CALL TO SA. ****' ' ) ' )
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CALL SA(N, X,MAX, RT, EPS, NS, NT, NEPS,MAXEVL, LB, UB, C, IPRINT, ISEEDl,
1 ISEED2, T, VM, XOPT, FOPT,NACC,NFCNEV,NOBDS,1ER,
2 FSTAR,XP,MACP)
WRITE (*,'(/,5x, "♦*** RESULTS AFTER SA **** 
CALL PRTVEC(XOPT,N, 'SOLUTION* )
CALL PRTVEC(VM,N, ’FINAL STEP LENGTH')
WRITE(*,1001) FOPT, NFCNEV, NACC, NOBDS, T, 1ER

1000 FORMAT (/,5x, 38 ('-'),

) ’ )

1
2
3
4
5
6
7
8 
9 
+

/,5x, 'STARTING SIMULATED ANNEALING ALGORITHM', 
/,5x,38('-')/,
/,5x,'NUMBER OF PARAMETERS; ',11,
/,5x,'INITIAL TEMP: ',F5.1,
/,5x,'TEMP REDUCTION FACTOR, RT: ',F5.2,
/,5x,'EPS:
/,5x,'NO OF CYCLES, NS: 
/,5x,'NO OF ITERATIONS, NT: 
/,5x,'NEPS:
/,5x, 'MAXEVL:

,E10.4, 
',13,

M 2 ,
M 2 ,

M S / )

1001 FORMAT(/5x,50('='),
+ /Sx,'OPTIMAL FUNCTION VALUE:
1 /5x, 'NUMBER OF FUNCTION EVALUATIONS :
2 /5x,'NUMBER OF ACCEPTED EVALUATIONS:
3 /5x,'NUMBER OF OUT OF BOUND EVALUATIONS:
4 /Sx,'FINAL TEMP:
5 /5x,'1ER:
6 /5x,50('='))

,E14.4,
,15,
, 1 5 ,
,15,,E14.4,
,15,

RETURN
END

SUBROUTINE SA(N, X,MAX, RT, EPS, NS, NT, NEPS,MAXEVL, LB, UB, C, IPRINT,
1 ISEEDl, ISEED2, T, VM, XOPT, FOPT, NACC, NFCNEV, NOBDS, 1ER,
2 FSTAR,XP,NACP)

C Synopsis:
C This routine implements the continuous simulated annealing global 
C optimization algorithm described in Corana et al.'s article 
C "Minimizing Multimodal Functions of Continuous Variables with the 
C "Simulated Annealing" Algorithm" in the September 1987 (vol. 13,
C no. 3, pp. 262-280) issue of the ACM Transactions on Mathematical 
C Software.
C
C A very quic)c (perhaps too quick) overview of SA:
C SA tries to find the global optimum of an N dimensional function.
C It moves both up and downhill and as the optimization process 
C proceeds, it focuses on the most promising area.
C To start, it randomly chooses a trial point within the step length
C VM (a vector of length N) of the user selected starting point. The 
C function is evaluated at this trial point and its value is compared 
C to its value at the initial point.
C In a maximization problem, all uphill moves are accepted and the
C algorithm continues from that trial point. Downhill moves may be 
C accepted; the decision is made by the Metropolis criteria. It uses T 
C (temperature) and the size of the downhill move in a probabilistic
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c manner. The smaller T and the size of the downhill move are, the more
C likely that move will be accepted. If the trial is accepted, the
C algorithm moves on from that point. If it is rejected, another point
C is chosen instead for a trial evaluation.
C Each element of VM periodically adjusted so that half of all
C function evaluations in that direction are accepted.
C A fall in T is imposed upon the system with the RT variable by
C T(i+1) - RT*T(i) where i is the ith iteration. Thus, as T declines,
C downhill moves are less likely to be accepted and the percentage of 
C rejections rise. Given the scheme for the selection for VM, VM falls. 
C Thus, as T declines, VM falls and SA focuses upon the most promising 
C area for optimization.
C
C The importance of the parameter T:
C The parameter T is crucial in using SA successfully. It influences
C VM, the step length over Wiich the algorithm searches for optima. For 
C a small intial T, the step length may be too small; thus not enough 
C of the function might be evaluated to find global optima. The user 
C should carefully examine VM in the intermediate output (set IPRINT =
C 1) to make sure that VM is appropriate. The relationship between the 
C initial temperature and the resulting step length is function 
C dependent.
C To determine the starting temperature that is consistent with
C optimizing a function, it is worthwhile to run a trial run first. Set 
C RT = 1.5 and T =* 1.0. With RT > 1.0, the temperature increases and VM 
C rises as well. Then select the T that produces a large enough VM.
C
C For modifications to the algorithm and many details on its use,
C (particularly for econometric applications) see Goffe, Ferrier 
C and Rogers, "Global Optimization of Statistical Functions with 
C Simulated Annealing," Journal of Econometrics, vol. 60, no. 1/2,
C Jan./Feb. 1994, pp. 65-100.
C
C In this description, SP is single precision, DP is double precision,
C INT is integer, L is logical and (N) denotes an array of length n.
C Thus, DP(N) denotes a double precision array of length n. 
c
C Input Parameters:
C Note: The suggested values generally come from Corana et al. To
C drastically reduce runtime, see Goffe et al., pp. 90-1 for
C suggestions on choosing the appropriate RT and NT.
C N - Number of variables in the function to be optimized. (INT)
C X - The starting values for the variables of the function to be
C optimized. (DP(N))
C MAX - Denotes whether the function should be maximized or 
C minimized. A true value denotes maximization while a false
C value denotes minimization. Intermediate output (see IPRINT)
C takes this into account. (L)
C RT - The temperature reduction factor. The value suggested by
C Corana et al. is .85. See Goffe et al. for more advice. (DP)
C EPS - Error tolerance for termination. If the final function
C values from the last neps temperatures differ from the
C corresponding value at the current temperature by less than
C EPS and the final function value at the current temperature
C differs from the current optimal function value by less than
C EPS, execution terminates and 1ER = 0 is returned. (EP)
C NS - Number of cycles. After NS*N function evaluations, each
C element of VM is adjusted so that approximately half of
C all function evaluations are accepted. The suggested valueC is 20. (INT)
C NT - Number of iterations before temperature reduction. After
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c  MT*NS*N function evaluations, temperature (T) is changed
C by the factor RT. Value suggested by Corana et al. is
C MAX(100, S*N). See Goffe et al. for further advice. (INT)
C NEPS - Number of final function values used to decide upon termi- 
C nation, see EPS. Suggested value is 4. (INT)
C MAXEVL - The maximum number of function evaluations. If it is
C exceeded, 1ER - 1. (INT)
C LB - The lower bound for the allowable solution variables. (DP(N))
C UB - The upper bound for the allowable solution varieibles. (DP(N) )
C If the algorithm chooses X(I) .LT. LB(I) or X(I) .GT. UB(I),
C I = 1, N, a point is from inside is randomly selected. This
C This focuses the algorithm on the region inside UB and LB.
C Unless the user wishes to concentrate the search to a par-
C ticular region, UB and LB should be set to very large positive
C and negative values, respectively. Note that the starting
C vector X should be inside this region. Also note that LB and
C UB are fixed in position, while VM is centered on the last
C accepted trial set of variables that optimizes the function.
C C - Vector that controls the step length adjustment. The suggested
C value for all elements is 2.0. (DP(N))
C IPRINT - controls printing inside SA. (INT)
C Values: 0 - Nothing printed.
C 1 - Function value for the starting value and
C summary results before each temperature
C reduction. This includes the optimal
C function value found so far, the total
C number of moves (brolcen up into uphill,
C downhill, accepted and rejected), the
C number of out of bounds trials, the
C number of new optima found at this
C temperature, the current optimal X and
C the step length VM. Note that there are
C N*NS*NT function évalutations before each
C temperature reduction. Finally, notice is
C is also given upon achieveing the termination
C criteria.
C 2 - Each new step length (VM), the current optimal
C X (XOPT) and the current trial X (X). This
C gives the user some idea about how far X
C strays from XOPT as well as how VM is adapting
C to the function.
C 3 - Each function evaluation, its acceptance or
C rejection and new optima. For many problems,
C this option will li)cely require a small tree
C if hard copy is used. This option is best
C used to learn about the algorithm. A small
C value for MAXEVL is thus recommended when
C using IPRINT = 3.
C Suggested value: 1
C Note: For a given value of IPRINT, the lower valued
C options (other than 0) are utilized.
C ISEEDl - The first seed for the random number generator RANMAR.
C 0 .LE. ISEEDl .LE. 31328. (INT)
C ISEED2 - The second seed for the random number generator RANMAR.
C 0 .LE. ISEED2 .LE. 30081. Different values for ISEEDl
C and ISEED2 will lead to an entirely different sequence
C of trial points and decisions on downhill moves (when
C maximizing). See Goffe et al. on how this can be used
C to test the results of SA. (INT)
c
C Input/Output Parcimeters :
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T - O n  input, the initial temperature. See Goffe et al. for advice.
On output, the final temperature. (DP)

VM - The step length vector. On input it should encompass the 
region of interest given the starting value X. For point 
X(I), the next trial point is selected is from X(l) - VM(I) 
to X(I) + VM(I) . Since VM is adjusted so that about half 
of all points are accepted, the input value is not very 
important (i.e. is the value is off, SA adjusts VM to the 
correct value). (DP(N))

Output Parameters:
(DP(M))

Values : 0 
1

2 -

XOPT - The variables that optimize the function.
FOPT - The optimal value of the function. (DP)
NACC - The number of accepted function evaluations. (INT)
NFCNEV - The total number of function evaluations. In a minor

point, note that the first evaluation is not used in the 
core of the algorithm; it singly initializes the 
algorithm. (INT).

NOBDS - The total number of trial function evaluations that
would have been out of bounds of LB and UB. Note that 
a trial point is randomly selected between LB and UB.
(INT)

1ER - The error return number. (INT)
Normal return; termination criteria achieved. 
Number of function evaluations (NFCNEV) is 
greater than the maximum number (MAXEVL) .
The starting value (X) is not inside the 
bounds (LB and UB).

3 - The initial temperature is not positive.
99 - Should not be seen; only used internally.

Nor)c arrays that must be dimensioned in the calling routine:
RWKl (DP(NEPS)) (FSTAR in SA)RWK2 (DP(N)) (XP - - )
IWK (INT(N)) (NACP " " )

Required Functions (included):EXPREP - Replaces the function EXP to avoid under- and overflows. 
It may have to be modified for non IBM-type main­
frames. (DP)

RMARIN - Initializes the random number generator RANMAR.
RANMAR - The actual random number generator. Note that

RMARIN must run first (SA does this). It produces uniform 
random numbers on [0,1]. These routines are from 
Usenet's comp.lang.fortran. For a reference, see 
"Toward a Universal Random Number Generator" 
by George Marsaglia and Arif Zaman, Florida state 
University Report: FSU-SCRI-87-50 (1987).
It was later modified by F. James and published in 
"A Review of Pseudo—random Number Generators. " For 
further information, contact stuart6ads.com. These 
routines are designed to be portable on any machine 
with a 24-bit or more mantissa. I have found it produces 
identical results on a IBM 3081 and a Cray Y-MP.

Required Subroutines (included):
PRTVEC - Prints vectors.
PRTl ... PRTIO - Prints intermediate output.
FCN - Function to be optimized. The form is 

SUBROUTINE FCN(N,X,F)
INTEGER N
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C DOUBLE PRECISION X(N), F
CC function code with F = F(X)
C
C RETURN
C ENDC Note: This is the same form used in the multivariable
C minimization algorithms in the IMSL edition 10 library.
CC Machine Specific Features:
C 1. EXPREP may have to be modified if used on non-IBM type main-
C frames. Watch for under- and overflows in EXPREP.
C 2. Some FORMAT statements use 625.18; this may be excessive for
C some machines.C 3. RMARIN and RANMAR are designed to be protable; they should not
C cause any problems.
C Type all external variables.DOUBLE PRECISION X(*), LB(*), UB(*), C(*), VM(*), FSTAR{*) ,

1 XOPT(*), XP(*), T, EPS, RT, FOPT
INTEGER NACP(*), N, NS, NT, NEPS, NACC, MAXEVL, IPRINT,

1 NOBDS, 1ER, NFCNEV, ISEEDl, ISEED2
LOGICAL MAX

C Type all internal variables.
DOUBLE PRECISION F, FP, P, PP, RATIO
INTEGER NUP, NDOWN, NREJ, NNEW, LNOBDS, H, I, J, M
LOGICAL QUIT

C Type all functions.
DOUBLE PRECISION EXPREP 
REAL RANMAR

C Initialize the random number generator RANMAR.
CALL RMARIN(ISEEDl,ISEED2)

C Set initial values.
NACC = 0 
NOBDS = 0 
NFCNEV = 0 
1ER = 99
DO 10, I = 1, N 

XOPT(I) = X(I)
NACP(I) = 0 

10 CONTINUE
DO 20, I - 1, NEPS 

FSTAR(I) = l.OD+20 
20 CONTINUE
C If the initial temperature is not positive, notify the user and 
C return to the calling routine.

IF (T .LE. 0.0) THENWRITE (*,'(/, 5x, ' ' THE INITIAL TEMPERATURE IS NOT POSITIVE. ' ' 
1 /,5x,'• RESET THE VARIABLE T. ''/)')

1ER = 3 
RETURN 

END IF
C If the initial value is out of bounds, notify the user and return
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c to the calling routine.
DO 30, I - 1, MIF {(X(I) .GT. UB(IJ) -OR. (X(X) .LT. LB{I))) THEN 

CALL PRTl 
1ER - 2 
RETURN 

END IF 
30 CONTINUE
C Evaluate the function with input X and return value as F.

CALL FCN(N,X,F)
C If the function is to be minimized, switch the sign of the function. 
C Note that all intermediate and final output switches the sign back 
C to eliminate any possible confusion for the user.

IF(.NOT. MAX) F = -F 
NFCNEV » NFCNEV + 1 
FOPT - F 
FSTAR(l) » FIF(IPRINT .GE. 1) CALL PRT2(MAX,N,X,F)

C Start the main loop. Note that it terminates if (i) the algorithm 
C succèsfully optimizes the function or (ii) there are too many 
C function evaluations (more than MAXEVL).
100 NUP =■ 0 

NREJ “ 0 NNEW - 0 
NDOWN " 0 
LNOBDS = 0
DO 400, M = 1, NT 

DO 300, J = 1, NS 
DO 200, H = 1, N

C Generate XP, the trial value of X. Note use of VM to choose XP.
DO 110, I = 1, N 

IF (I .EQ. H) THEN
XP(I) =» X(I) + (RANMAR()*2.- 1.) * VM(I)

ELSE
XP(I) = X(I)

END IF
C If XP is out of bounds, select a point in bounds for the trial.

IF((XP(I) .LT. LB(D) .OR. (XP(I) .GT. UB(I))) THEN 
XP(I) = LB(I) + (UB(I) - LB(I))*RANMAR()
LNOBDS = LNOBDS + 1 
NOBDS = NOBDS + 1
IFdPRINT .GE. 3) CALL PRT3 (MAX, N, XP,X, FP, F)

END IF 
110 CONTINUE
C If XP(1) [sigma(X)] is less than XP(2) [sigma(2)], set new XP(2)
C New XP(2) is to lie somewhere between LB(2) and XP(1).
C IT IS ASSUMED THAT LB (2) IS LESS THAN LB(1)
C EPS is subtracted to make sure XP(2) is always less than XP(1)
112 IF (XP(1) .LT. XP(2)) THEN

XP(2) » LB(2) + (XP(1) - LB(2) - EPS)*RANMAR()
GO TO 112 
END IF
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c Evaluate the function with the trial point XP and return as FP. 
CALL FCN{N,XP, FP)
IF (.NOT. MAX) FP - -FP NFCNEV - NFCNEV + 1
IFdPRINT .GE. 3) CALL PRT4 (MAX,N,XP,X, FP, F)

C If too many function evaluations occur, terminate the algorithm. 
IF(NFCNEV .GE. MAXEVL) THEN 

CALL PRT5IF (.NOT. MAX) FOPT - -FOPT 
1ER - 1 
RETURN 

END IF
C Accept the new point if the function value increases.

IF(FP .GE. F) THEN
IFdPRINT .GE. 3) THEN

WRITE(♦, ' (5x, ’'POINT ACCEPTED'')')
END IF
DO 120, I - 1, N 

X(I) - XPd)
120 CONTINUE

F = FP
NACC = NACC + 1 
NACP(H) = NACP(H) + 1 NUP « NUP + 1

C If greater than any other point, record as new optimum.
IF (FP .GT. FOPT) THEN 
IFdPRINT .GE. 3) THEN

WRITE(*, ' (5x, ''NEW OPTIMUM' ')')
END IF

DO 130, I = 1, N 
XOPT(I) = XPd)

130 CONTINUE
FOPT - FP NNEW - NNEW + 1 

END IF
C If the point is lower, use the Metropolis criteria to decide on 
C acceptance or rejection.

ELSE
P = EXPREP((FP - F)/T)

140

PP = RANMAR()
IF (PP .LT. P) THEN 

IFdPRINT .GE. 3) 
DO 140, I = 1, N 

X(I) = XP(I) 
CONTINUE 
F = FP
NACC - NACC + 1 
NACP(H) = NACP(H) 
NDOWN = NDOWN + 1 

ELSENREJ = NREJ + 1 
IFdPRINT .GE. 3) 

END IF 
END IF

CALL PRT6(MAX)

+ 1

CALL PRT7(MAX)

200 CONTINUE
300 CONTINUE

354



c  Adjust VM so that approximately half of all evaluations are accepted. 
DO 310, I - 1, N

RATIO - DFLOAT(NACP(I) ) /DFtOAT(NS)
IF (RATIO .GT. .6) THENVM(I) - VM(I)*(1. + C(I)*(RATIO - .6)/.4)
ELSE IF (RATIO .LT. .4) THEN

VM(I) - VM(I)/(1. + C(I)*((.4 - RATIO)/.4))
END IF
IF (VM(I) .GT. (UB(I)-LB(I))) THEN 

VM(I) - UB(I) - LB(I)
END IF 

310 CONTINUE
IFdPRINT .GE. 2) THEN 

CALL PRT8(N,VM,XOPT,X)
END IF
DO 320, I - 1, N 

NACP(I) » 0 
320 CONTINUE
400 CONTINUE

IFdPRINT .GE. 1) THEN
CALL PRT9 (MAX, N, T, XOPT, VM, FOPT, NUP, NDOWN, NREJ, LNOBDS, NNEW)

END IF
C Check termination criteria.

QUIT = .FALSE.
FSTARd) = F
IF ((FOPT - FSTARd) ) .LE. EPS) QUIT = .TRUE.
DO 410, 1 = 1 ,  NEPS

IF (ABS(F - FSTAR(I) ) .GT. EPS) QUIT = .FALSE.
410 CONTINUE
C Terminate SA if appropriate.

IF (QUIT) THEN
DO 420, I = 1, N 

X(I) = XOPT(I)
420 CONTINUE

1ER = 0
IF (.NOT. MAX) FOPT = -FOPT 
IFdPRINT .GE. 1) CALL PRTIO 
RETURN 

END IF
C If termination criteria is not met, prepare for another loop.

T * RT*T
DO 430, I = NEPS, 2, -I 

FSTAR(I) = FSTAR(I-l)
430 CONTINUE 

F = FOPT
DO 440, I = 1, N 

X(I) = XOPT(I)
440 CONTINUE
C Loop again.

GO TO 100
END
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FUNCTION EXPREP (ROUM)
C This function replaces exp to avoid under- and overflows and is 
C designed for IBM 370 type machines. It may be necessary to modify 
C it for other machines. Note that the maximum and minimum values of 
C EXPREP are such that they has no effect on the algorithm.

DOUBLE PRECISION RDUM, EXPREP
IF (RDUM .GT. 174.) THEN 

EXPREP - 3.69D+75 
ELSE IF (RDUM .LT. -180.) THEN 

EXPREP - 0.0 
ELSEEXPREP = EXP (RDUM)
END IF
RETURN
END

subroutine RMARIN(IJ,KL)
C This subroutine and the next function generate random numbers. See 
C the comments for SA for more information. The only changes from the 
C orginal code is that (1) the test to make sure that RMARIN runs first 
C was taken out since SA assures that this is done (this test didn't 
C compile under IBM's VS Fortran) and (2) typing ivec as integer was 
C taken out since ivec isn't used. With these exceptions, all following
C lines are original.
C This is the initialization routine for the random number generator 
C RANMARO
C NOTE: The seed variables can have values between : 0 <= IJ <= 31328C 0 <= KL <= 30081

real U(97), C, CD, CM 
integer 197, J97
common /rasetl/ U, C, CD, CM, 197, J97 
if( IJ .It. 0 .or. IJ .gt. 31328 .or.
* KL .It. 0 .or. KL .gt. 30081 ) then

print ' (A) ', ' The first random number seed must have a value 
^between 0 and 31328'

print ' (A) ', ' The second seed must have a value between 0 and 
*30081' stop
endif
i = mod(IJ/177, 177) + 2
j = mod(IJ , 177) + 2
k = mod(KL/169, 178) + 1
1 = mod(KL, 169)
do 2 ii = 1, 97

s = 0.0 
t = 0.5
do 3 jj =» 1, 24

m = mod(mod(i*j, 179)*k, 179) 
i = j 
j “ k k = m
1 = mod(53*l+l, 169) 
if (mod(l*m, 64) .ge. 32) then
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s - 3 + t
endif
t = 0.5 * t 

continue 
U(ii) - s 

continue
C = 362436.0 / 16777216.0
CD = 7654321.0 / 16777216.0
CM - 16777213.0 /16777216.0
197 - 97
J97 - 33
return
end

function ranmarO 
real U(97), C, CD, CM 
integer 197, J97

uni = U(I97) - U(J97)
if( uni .It. 0.0 ) uni = uni
U(I97) = uni
197 = 197 - 1
if(197 .eq. 0) 197 = 97
J97 = J97 - 1
if(J97 .eq. 0) J97 = 97
C = C - CD
if( C .It. 0.0 ) c = C + CM
uni = uni - C
if( uni .It. 0.0 ) uni » uni
RANMAR = uni

+  1.0

+ 1.0
return
END

SUBROUTINE PRTl
C This subroutine prints intermediate output, as does PRT2 through 
C PRTIO. Note that if SA is minimizing the function, the sign of the 
C function value and the directions (up/down) are reversed in all 
C output to correspond with the actual function optimization. This 
C correction is because SA was written to maximize functions and 
C it minimizes by maximizing the negative a function.

WR1TE(*, • (/, 7x, ''THE STARTING VALUE (X) IS OUTSIDE THE BOUNDS ' '
1 /,7x, ' ' (LB AND UB) . EXECUTION TERMINATED WITHOUT ANY' '
2 /,7x, ''OPTIMIZATION. RESPECIFY X, UB OR LB SO THAT ' '
3 /,7x,"LB(I) .LT. X(I) .LT. UB(I), 1 = 1, N. ''/)')
RETURN
END

SUBROUTINE PRT2 (MAX, N, X, F)
DOUBLE PRECISION X(*), F 
INTEGER N 
LOGICAL MAX
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WRITE (*,'(5X, "  ")')
CALL PRTVEC(X,H,•INITIAL X')
IP (MAX) THENWRITE (*,'(5x, "INITIAL F : "  , 7x, G25.18 ) ' ) F 
ELSEWRITE (*,'(5x, "INITIAL F : "  ,/, 7x, G25.18 ) ' ) -F 
END IF
RETURN
END

SUBROUTINE PRT3(MAX,N,XP,X,FP,F)
DOUBLE PRECISION XP(*), X(*], FP, F 
INTEGER N 
LOGICAL MAX
WRITE (♦,'(5x, "  ")•)
CALL PRTVEC(X,N,'CURRENT X')
IF (MAX) THEN

WRITE (*,'(5x, "CURRENT F : ",G24.18)') F 
ELSE

WRITE(*,'(5x,''CURRENT F: '',G24.18)') -F 
END IF
CALL PRTVEC(XP,N, 'TRIAL X')
WRITE(*, ' (5x,''POINT REJECTED SINCE OUT OF BOUNDS' ')')
RETURN
END

SUBROUTINE PRT4(MAX, N, XP, X, FP, F)
DOUBLE PRECISION XP(*), X(*), FP, F 
INTEGER N 
LOGICAL MAX
WRITE (*,'(5X, "  ")')
CALL PRTVEC (X,N, 'CURRENT X')
IF (MAX) THEN

WRITE (*,'(5x, "CURRENT F : "  , 2x, G24 .18 ) ' ) F 
CALL PRTVEC(XP,N,'TRIAL X')WRITE (*,' (5x, "RESULTING F : ",G24.18)') FP 

ELSEWRITE (*,'(5x, "CURRENT F : "  , 2x, G24 .18 ) ' ) -F 
CALL PRTVEC(XP,N,'TRIAL X')WRITE(*,'(5x,''RESULTING F: '',G24.18)') -FP 

END IF
RETURN
END

SUBROUTINE PRT5
WRITE (*,'(/, 5x, "TOO MANY FUNCTION EVALUATIONS; CONSIDER ' ' 
1 /,5x, "INCREASING MAXEVL OR EPS, OR DECREASING ' '
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2 /,5x,''NT OR RT. THESE RESULTS ARE LIKELY TO BE
3 /,5x, "POOR. ",/)')
RETURN
END

SUBROUTINE PRT6(MAX)
LOGICAL MAX
IF (MAX) THENWRITE(*, ' (5x, ''THOUGH LOWER, POINT ACCEPTED'')') 
ELSEWRITE(*, '(5x, ''THOUGH HIGHER, POINT ACCEPTED' ')') 
END IF
RETURN
END

SUBROUTINE PRT7(MAX)
LOGICAL MAX
IF (MAX) THEN

WRITE(*, ' (5x, ''LOWER POINT REJECTED' ')') 
ELSE

WRITE(*, ' (5x, ''HIGHER POINT REJECTED'') ' ) 
END IF
RETURNEND

SUBROUTINE PRT8(N,VM,XOPT,X)
double PRECISION VM(*), XOPT(*), X(*)
INTEGER N
WRITE(*,'(/,5x,
1 ' 'INTERMEDIATE RESULTS AFTER STEP LENGTH ADJUSTMENT'',/) ')
CALL PRTVEC (VM,N,'NEW STEP LENGTH (VM) ' )
CALL PRTVEC (XOPT, N, 'CXnWENT OPTIMAL X')CALL PRTVEC(X,N, 'CURRENT X')
WRITE (♦,'(5x, "  ")')
RETURN
END

SUBROUTINE PRT9 (MAX, N, T, XOPT, VM, FOPT, NUP, NDOWN, NREJ, LNOBDS, NNEW)
DOUBLE PRECISION XOPT(*), VM(*) , T, FOPT 
INTEGER N, NUP, NDOWN, NREJ, LNOBDS, NNEW, TOTMOV 
LOGICAL MAX
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TOTMOV -  NUP + NDOWN + NREJ

WRITE(♦,'(/, 5x,I ''INTERMEDIATE
WRITE(*,'(5x,''CU
IF (MAX) THEN

WRITE(♦, '(7x,'
WRITE(*, '(7x,'WRITE(*, ’(7x,'
WRITE(*, '(7x,'
WRITE(*, '(7x,'
WRITE(*, '(7x,'
WRITE(*, '(7x,•

ELSE
WRITE{*, '(7x,'
WRITE(♦, '(7x,'
WRITE(*, '(7x,'
WRITE(♦, '(7x,'
WRITE(*, '(7x,'
WRITE(*, '(7x,'
WRITE(♦, '(7x,'END IF

CALL PRTVEC(XOPT,
CALL PRTVEC(VM, N,
WRITE(*,' (5x, "  '

MAX FUNCTION VAX.UE SO FAR: 
TOTAL MOVES:

UPHILL:
ACCEPTED DOWNHILL: 
REJECTED DOWNHILL:

OUT OF BOUNDS TRIALS:
NEW MAXIMA THIS TEMPERATURE :
MIN FUNCTION VALUE SO FAR: 
TOTAL MOVES:
DOWNHILL:
ACCEPTED UPHILL:
REJECTED UPHILL:

TRIALS OUT OF BOUNDS:
NEW MINIMA THIS TEMPERATURE:

STEP LENGTH (VM) ’ ) 
) • )

REDUCTION'',/)') 
’',E12.5)') T

'•,E16.5)') FOPT 
18)') TOTMOV 
18)') NUP 
18)') NDOWN 
18)') NREJ

LNOBDS 
NNEW

)18) •)
18) ’)
',E16.5)') -FOPT
18)
18)
18)
18)
18)
18)

) TOTMOV
NUP
NDOWN
NREJ
LNOBDS
NNEW

RETURN
END

SUBROUTINE PRTIO 
WRITE(*, ' (/,5x, ''SIMULATED ANNEALING ACHIEVED'',

TERMINATION CRITERION OF 1ER = O' ' , /) ' )
RETURN
END

SUBROUTINE PRTVEC(VECTOR,NCOLS,NAME )
C This subroutine prints the double precision vector named VECTOR.
C Elements 1 thru NCOLS will be printed. NAME is a character variable 
C that describes VECTOR. Note that if NAME is given in the call to 
C PRTVEC, it must be enclosed in quotes. If there are more than 10 
C elements in VECTOR, 10 elements will be printed on each line.

INTEGER NCOLS
DOUBLE PRECISION VECTOR(NCOLS)
CHARACTER *(*) NAME
WRITE(*,1001) NAME
IF (NCOLS .GT. 10) THEN 

LINES = INT(NCOLS/10.)
DO 100, 1 = 1, LINES 

LL = 10*(I - 1)
WRITE(*,1000) (VECTOR(J),J = 1+LL, 10+LL)

100 CONTINUE
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WRITE(*,1000) (VECTOR(J),J » 11+LL, NCOLS) 
ELSEWRITE(*,1000) (VECTOR(J),J - 1, NCOLS)
END IF

1000 FORMAT(7x, 10(012.5,IX))
1001 FORMAT (/, Sx, A)

RETURN
END

iMalcefile for linlcing and compiling all the files of the program
FTN=/usr/bin/f77
LIBS=-limsl
OBJS=entropy.o calstats.o setimg.o minimize.o anneal.o 
EXEC=entropy
$(EXEC): $(OBJS)

S(FTN) -o $(EXEC) $(OBJS) $(LIBS)
fCompile Files 
anneal.o: anneal.f$ (FTN) -c anneal.f
minimize.o: minimize.f

$ (FTN) -c minimize. f
setimg.o: setimg.f

$ (FTN) -c setimg.f
calstats.o: calstats.f

$(FTN) -c calstats.f
entropy.o: entropy.f

$(FTN) -c entropy.f
iRemove *.o files that have changed 
clean :

/bin/rm -f core $(EXEC) *.o
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