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Abstract

In this work, new developments in primal-dual techniques for general constrained non

linear programming problems are proposed. We first implement a modified version of 

the general nonlinear primal-dual algorithm that was published by El-Bakry et al. [21]. 

We use the algorithm as a backbone of a new stochastic hybrid technique for solving 

general constrained nonlinear programming problems. The idea is to combine a fast 

local optimization strategy and a global search technique. The technique is a  mod

ified nonlinear primal-dual technique that uses concepts from simulated annealing to 

increase the probability of converging to the global minima of the objective function. 

At each iteration, the algorithm solves the Karush-Kuhn-Tucker optimality conditions 

to find the next iterate. A random noise is added to the resulting direction of move in 

order to escape local minima. The noise is gradually removed throughout the iteration 

process. We show that for complicated problems that possess numerous local minima 

and global minima, the proposed algorithm outperforms the deterministic approach. 

We also develop a  new class of incremental nonlinear primal-dual techniques for solving 

optimization problems with special decomposition properties. Specifically, the objective 

functions of the problems are sums o f independent nonconvex differentiable terms min

XI



imized subject to a set of nonlinear constraints for each term. The technique performs 

successive primal-dual increments for each decomposition term of the objective function. 

The method is particularly beneficial for online applications and problems that have a 

large amount of data. We show th a t the technique can be nicely applied to artificial 

neural training and provide experimental results for financial forecasting problems.
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C hapter 1

Introduction

1.1 O verview

For more than ten years there has been a great deal of research in the area of inte

rior point methods (IPMs). Karmarkar's work [35] on projective algorithms for linear 

programming (LP) is a t the origin of IPMs. Since then, many other LP solver algo

rithms have been developed. The primal-dual IPM [43, 75] is now considered the most 

effective technique for solving large scale LP problems. With the success of IPMs for 

LP, extensions to the convex quadratic cases have been investigated. For example, the 

primal-dual method for convex quadratic programming is available as a software pack

age [69]. O ther IPMs such as the trust region techniques [79] have also been successful 

for solving convex quadratic programming problems.

With a better understanding of the theory of IPMs, researchers in the field are now 

trying to extend the algorithms to the next level of complexity: the general nonlinear 

nonconvex programming problem. The first conceptual papers along this line appeared



in 1992. Yatnashita [77] and El-Bakry et al. [21] provided both algorithms and proofs 

of convergence of the  nonlinear primal-dual technique. Since then, other work has been 

published, see for example [78, 41, 8].

The range of applications of the nonlinear primal-dual method is broad. Except differ

entiability, no particular assumption on the objective function and the constraints are 

required. Typically, the problem that is solved is as follows

min  f{x )  (1.1)

s.t.

h{x) =  0

g{x) > 0

where —>• K, 3Î”*, and -> are differentiable.

The range of applications of nonlinear programming is wide. Nonlinear programming 

techniques have been used to solve optimal control problems [7, 11], structural and 

mechanical design problems [12, 26], electrical power network problems [1, 76], water 

resource management problems [29], financial portfolio problems [45] and many other 

problems.

The Artificial Neural Network (ANN) training problem can also be seen as a general 

nonlinear programming problem. The training problem is an error minimization prob

lem. Constraints on the variables arise naturally from the design of the neural network.

The error surface involved is known to be highly nonlinear and nonconvex. In the neu

ral network literature, much work has been done in developing new efficient network



architectures, however little work has been done in applying the new advancements in 

optimization for the training problem. The backpropagation (BP) training algorithm 

[71] is commonly used in commercial neural network software packages. BP is a  gradient 

descent technique th a t exhibits limitations as the network size or the complexity of the 

error surface increases. The algorithm becomes slow or gets trapped in a local minimum 

of the error surface leading to incorrect training of the data. To overcome some of these 

problems, there are two ways to go. One can modify the network architecture or one 

can use more sophisticated optimization tools to  train the network. In this research, we 

propose to develop a new class of primal-dual techniques that is particularly suitable to 

solving the error minimization problem of neural network training.

1.2 R esearch O bjectives

We propose to develop new path following interior point methods for solving the gen

eral nonlinear programming problem. We will first implement a generic primal-dual 

algorithm. Using ideas from linear programming, the algorithm keeps primai and dual 

information by solving the Karush-Kuhn-Tucker conditions of the nonlinear problem. 

A merit function will be used to measure the progress along the direction of move. Im

provements of the techniques will then be investigated.

Among those improvements, we use a Quasi-Newton approximation of the Hessian of 

the Lagrangian of the objective function for applications where the function is non

convex and also where the calculation of the true  Hessian is too complicated and time 

consuming.



We also develop a stochastic version of algorithm. Borrowing ideas from simulated an

nealing, we introduce a random noise in the objective function and slowly remove it as 

we approach the optimal solution. This increases the chance of reaching a  global opti

mum. This is the first time a  stochastic perturbation has been embedded in a general 

nonlinear primal-dual framework. The main motivation of our approach comes from the 

idea of combining efficient local optimization techniques with stochastic optimization 

strategies for global optimization problems.

W ith the artificial neural network training application in mind, we will also develop 

a new class of incremental nonlinear primal-dual techniques. The idea of incremental 

techniques has been applied to gradient descent techniques before [67. 4, 5] but never to 

the primal-dual framework. We will show that this incremental version of the algorithm 

can be nicely applied to the online training of artificial neural networks. The algorithm 

will be used to solve financial forecasting problems with neural networks.

1.3 Scope o f th e  D issertation

Chapter 2 is a literature review of algorithms for linear, quadratic, and nonlinear pro

gramming. Chapter 3 presents the generic nonlinear primal-dual method and its imple

mentation. Chapter 4 describes a stochastic modification of the algorithm and shows 

some computational experiments to validate the use of such modification. Chapter 5 

introduces the incremental version of the algorithm and provides convergence results. 

Chapter 6 described how the technique developed can be used to solve artificial neu-



ral network training problems. Chapter 7 reports computational results for financial 

forecasting problems. Chapter 8 concludes the dissertation and proposes some future 

research.



C hapter 2

Literature Review

2.1 Linear and Q uadratic P rogram m ing

Ideas such, as the ellipsoid method [37] or barrier methods [23] from the 60’s and 70 s 

are at the origin of the interior point methods for linear programming. However, before 

1984, there was no practical implementation of these ideas. In 1984, Karmarkar pre

sented a projective algorithm [35] for linear programming. The algorithm outperformed 

the simplex method for large scale problems. Soon, variants such as the affine scaling 

algorithm [69] and the  method of analytical centers [60] were developed and lead to  even 

better computational complexity than the original projective algorithm. The primal- 

dual method for linear programming [50, 43] was developed in 1986. The primal-dual 

method is now considered as the most effective interior point method for linear pro

gramming. It leads to  very nice complexity results and it also shows a very elegant and 

attractive structure tha t is a t the origin of what is now known as the path-following 

methods. From a theoretical point of view, researchers realized that there was a  strong



connection between these algorithms and the barrier methods [23].

Later, extensions of interior point methods to the convex quadratic programming prob

lem were investigated. Algorithms such as the trust region technique [61, 24] or the 

primal-dual method for convex quadratic problems [53] were proposed. A trust region 

technique for nonconvex quadratic programming problem was later developed [79]. It 

solves a ball constrained convex quadratic program using an affine scaling based method 

at each iteration.

In the past few years, extensive work has been done in the  area of positive semi-definite 

programming (PDP) [68]. The problem is to minimize a  linear function with respect to 

the variable x  subject to the constraint that a matrix F{x)  is positive semi-definite. It 

can be shown that linear and quadratic programming are special cases of PDP. Many 

problems that arise in engineering can be written as PD P problems. Because PDP 

unifies linear, quadratic and convex optimization problems in general, it has become a 

very appealing research direction in the area of optimization. The reader should refer 

to [68] for an extensive review of PDP.

2.2 General N onlinear Program m ing

We have seen tha t for the specific cases above such as linear, convex quadratic or general 

quadratic programming, many algorithms have flourished. However, for the general case 

where the objective function and the constraints are nonconvex differentiable functions, 

only a handful of algorithms have been proposed. These algorithms follow a common



framework- They all attem pt to solve the Karush-Kuhn-Tucker (KKT)systems of opti

mality conditions using a  Newton based strategy [6]. To obtain a  globally convergent 

algorithm, the optimality conditions are parameterized. The parameterized optimality 

conditions have the nice property that their solution coincides with the solution of the 

KKT conditions for the associated logarithmic barrier function problem.

Yamashita [77] proposed the first algorithm of this type. A proof of global convergence 

is given as well as numerical results with large scale linear problems and dense nonlin

ear programs. Later Yamashita and Tanabe [78] published a trust region variant of the 

algorithm. Instead of using a linesearch approach as before, a  trust region technique 

is used to minimize the barrier penalty function. A proof of global convergence is also 

given.

El-Bakry e t al. [21] developed a variant of Yamashita’s algorithm. Both equality and 

inequality constraints are included in the formulation. Global convergence of the algo

rithm is dem onstrated and preliminary results are promising. The paper also discusses 

the relationship between the perturbed KKT and the regular KKT conditions for the 

associated logarithmic barrier problem. They claim that the two systems are not equiv

alent but th a t they share the same optimal solution and that by defining some auxiliary 

variable one can avoid ill-conditioning. This discussion gives some insights into the for

mulation of the KKT conditions of the general nonlinear programming problem. The 

choice of a more general formulation of the problem tha t includes inequality constraints 

gives more practicality to the algorithm as compared to Yamashita’s algorithm.

Lasdon et al. [41] have also proposed a variant of the nonlinear programming algorithm. 

The idea is fundamentally the same. The algorithm attempts to solve the system of

8



perturbed KKT conditions using Newton's method. The formulation of the problem 

sets upper and lower bounds on the variables and treat them separately. The nonlinear 

constraints are taken as equality constraints. The derivation of the KKT optimality 

conditions varies from earlier authors because of the separate treatm ent on the bounds. 

Different versions of the algorithm are investigated. In the primal-dual version, no line

searches are performed. The algorithm takes full Newton’s steps. In the trust region 

version, the linesearches are implicitly avoided by the trust region technique. The third 

version is the primal version obtained by replacing the slack variables for the bound by 

the differences of the variables and their respective bounds. The resulting algorithm is 

similar to the primal-dual algorithm except that the dual variables do not appear in the 

formulation. Computational results are given for the three versions. The primal-dual 

and the primal version performed much better than the trust region variant. Descrip

tions are given for some of the implementation issues such as exploiting the sparsity of 

the matrices and the use of forward differences to compute the derivatives.

Breitfeld and Shanno [8] have considered a different approach for the general nonlinear 

programming problem. They proposed to transform the problem into an unconstrained 

problem by embedding the constraints into the objective function by borrowing ideas 

from the augmented Lagrangian and logarithmic barrier methods. Equality, inequality 

constraints, as well as bounds on the variables are included in the original formulation. 

Update formulas are derived for the barrier parameter and the Lagrange multipliers. 

The resulting code performs really well on the Hock and Schittkowski’s nonlinear pro

gramming problem database [32]. Numerical performance is reported for different up

dates of the barrier parameter and the Lagrange multipliers.



Recently. Forsgren and Gill [25] have proposed a variant of the generic primal-dual 

algorithm. Their methods differs from earlier algorithms by the choice of the merit 

function to be used in solving the unconstrained minimization problem. Instead of us

ing the square norm of the KKT conditions as it is usually implemented, they proposed 

to use an augmented penalty-barrier function. The authors show that this choice of 

merit function has the potential to give points that satisfy the second order necessary 

optimality conditions whereas the usual merit function only guarantees the first order 

optimality conditions.

Issues such as computational errors and ill-conditioning in nonlinear primal-dual meth

ods are now being investigated and some results are already published [73].

In parallel to primal-dual techniques, trust region methods for nonlinear programming 

have been developed. The algorithm uses ideas from the primal-dual methods and 

sequential quadratic programming to solve a sequence o f barrier problems. Trust re

gions are used for each sequential barrier problem. Coleman and Li [13], Dennis e t 

al. [18],Byrd et al. [10], and recently Das [15], published such nonlinear trust region 

algorithms. It is interesting to note tha t when the quadratic subproblems are strongly 

convex, there is an equivalence between the sequential quadratic programming and 

Newton’s method applied to the KKT system of the original nonlinear programming 

problem.

10



C hapter 3

A Nonlinear Prim al-Dual

Algorithm

3.1 Introduction

Interior Point Methods (IPMs) have been very successful in solving large scale problems 

in linear programming. Numerous algorithms have been developed for this purpose. 

The primal-dual algorithm [43] and its variants are among the most efficient techniques 

for solving linear programming problems. In the general nonlinear case, only prelim

inary work has been done and the area is still at its early development. However, 

among the algorithms th a t have been proposed, a common general framework is always 

found. Researchers have naturally tried to borrow ideas from the linear programming 

primal-dual technique and adapt them to the nonlinear case. The main steps of the 

nonlinear primal-dual algorithm (NLPD) are similar to the steps of the IPM linear pro

gramming primal-dual technique. NLPD first transforms the constrained problem into

11



an unconstrained problem by setting the KKT optimality conditions. The KKT system 

of nonlinear equations is linearized and solved using Newton's method. Step lengths are 

chosen on the resulting directions of move in the primal and dual spaces. These steps 

are repeated until some optimality criterion is satisfied.

The difficulty arises when the nonlinear problems are nonconvex. In the nonconvex case, 

the Hessian of the Lagrangian becomes indefinite and the Jacobian matrix involved in 

the Newton step can become singular. To avoid such difficulties, we propose to approx

imate the Hessian matrix by a positive definite matrix and to solve the approximated 

system of equations using Newton’s method. This can be seen as a Quasi-Newton 

method approach. Next, we give the details of the algorithm.

3.2 T he N onlinear Prim al-D ual A lgorithm

Consider the following general nonlinear programming problem

min f{x)  (3.1)

s.t.

h{x) =  0

g{x) > 0

where and -4- The Lagrangian associated with

Problem 3.1 is

L(x, y, z) =  f{ x )  +  y^h[x) -  z^y(z) (3.2)

where y  6 X’" and z  £ W’ are the vectors of Lagrange multipliers for the equalities h 

and the inequalities g.

12



The Karush-Kuhn-Tucker optimality conditions can be written as follows

Vj-L(x, y, r) =  0 (3.3)

h{x) =  0

g{x) > 0

Zg{x)  =  0

z  > 0

where VxL{x ,y ,z )  =  V /(z )  +  Vh{x)y  — Vg{x)z  and Z  is a diagonal matrix formed

with the coordinates of the vector z (Z =  diag{z}).

We introduce slack variables for the inequality constraints. Let s  be the vector of slack 

variables and S be the associated diagonal matrix. We also define e as the unit vector 

(e € e(i) =  1 , z == l , . . . , p ) .  The KKT system of equations 3.3 can be reduced to 

the following compact form

[ \
V xL (i,y , z)

=  0  (s, z) > 0 (3.4)
h{x)

9{x) -  s 

ZSe

When Newtons method is applied to the system 5.24, the complementary slackness 

conditions are linearized as follows

V /

Z A s  +  S A z  =  —S Ze (3.5)

It is important to notice th a t if the  coordinate s f of the current iterate becomes zero, it 

will remain zero in the subsequent iterations. From Equation 3.5, we have {ZAs)i  =  0

13



because s f  =  0. therefore A s  =  0 and the coordinate of s  will remain at

zero. Similar conclusions can be drawn about r  in the case where one of its component 

vanishes. In other words if the current point approaches the boundary, it gets trapped 

by that boundary and this might results in small steps and possible nonconvergence of 

the algorithm. Global convergence is not achieved. To avoid this problem, we perturb 

the complementary slackness condition as follows

S Z e  =  fie (3.6)

where fi > 0  is the perturbation param eter and will be decreased a t each iteration. 

The update of fi will be defined later.

The perturbation of the KKT conditions can be seen as a way to ensure adherence to 

the central path in order to achieve global convergence.

In the following, we will use the perturbed KKT system 3.7 instead of the original KKT

system 5.24. It can be written in the form

( \
V j,L (x,y ,z)

h{x)

g{x) -  s

Z S e  — fie

Next, we described the application of Newton’s method for solving the nonlinear system 

of equations 3.7.

Let Ufc =  (zfc, yk, Sk. ^k) be a current Newton iterate. The Newton correction Avk  =  

(Azfc, Ayk, Ask,  Azk)  is the solution of the following linearized system

\

=  0 (5, x) > 0 (3.7)

J{vk)Avk  =  -F^{vk)  

14
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where J(% ) =  f%(%) and J(vfr) is given by

J(Vk)  =

( \

(3-9)

/

V - L { x .y , z )  Vh{x)  0 -V g (r )

V h { x f  0 0 0

V g(r)^  0  —/  0

0 0 Z  S
\

At this point, we assume that J{vk) satisfies all the necessary conditions in order for 

the system 3.8 to have a unique solution v". We will see later that in the general case 

the matrix J (% ) is indefinite.

We perform linesearches in each Newton direction. Let a t  =  (ûr, Qry.aj. a .)  be the 

vector of resulting optimal steplengths. We can summarize the move in the primal and 

dual spaces by the following update equation

Ufc+i =  Ufc 4- At Aufc (3.10)

where At =  diag{ak} is the diagonal matrix composed of the coordinates of a t-  

The algorithm performs multiple moves as decribed above until a stopping criterion is 

met. The stopping criterion is chosen to be the following

(3.11)

This means th a t we will find an (-approximate solution of the KKT optimality con

ditions. In practice, this approximate solution is usually satisfactory. The choice of 

e depends on the accuracy needed for the practical application. For good accuracy, 

one should expect a larger amount of computational effort than for an average level of 

accuracy.

15



Next, we give a generic primal-dual algorithm that emphasizes and summarizes the 

major steps that we have elaborated above. In the next section, we give details on 

implementation issues such as the implementation of the linesearch, the update of the 

parameter ft, how to handle indefiniteness of the hessian of the Lagrangian and also 

particular choices of e.

N o n lin ea r P rim a l-D u a l A lg o rith m  (N L P D )

S tep  1  Set k=0.

S tep  2 S tart with Vk =  {xk,yk,Sk,Zk) where >  0

and initialize fik > 0 .

S tep  3 Check stopping criterion 3.11

•  if Condition 3.11 is satisfied go to Step 8 .

•  if Condition 3.11 is not satisfied go to Step 4.

S tep  4 Solve the system of linear equations 3.8 for Aufc. 

S tep  5 Perform the linesearches to determine ajt- 

S tep  6  Move to next point == u& 4- AfcAujt- 

S tep  7 Set A: =  Ar -|- 1 , update fik and go to Step 3.

S tep  8  Stop with the optimal point v" =  Vk.
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3.3 Im plem entation Issues

3 .3 .1  E n su r in g  th e  S eco n d  O rder O p tim a lity  C on d ition s

We first recall the second order optimality conditions for which a KKT point is guar

anteed to be a local minimizer of the original function / .  These conditions can be 

summarized in the following theorem

T h eo rem  3.1 (Second Order Optimality Conditions)[48]

Assume that

1. The functions f ,  g and h are tvrice differentiable.

2. There exists a ( x ' , y " , z ‘ ) that solves the K K T  conditions 3.3.

3. For all in € 3?” such that i f

•  Vg_,(i‘ )u7 =  0  for j  e  =  0 , ;r* >  0 }.

• > 0  for j  6  { j fg j ix ' )  =  0 ,x j =  0 },

• V/ifc(i*)u; =  0 /or fc =  1, . . . . m ,

v i^V^L{x ,y ,z )w  > 0  

Then x" is a local minimizer for Problem 3.1.

It can be shown that if the second order optimality conditions are satisfied and if the 

gradients of the binding constraints at x ‘ are linearly independent, the above theorem
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is equivalent with saying th a t the Jacobian matrix J  is non-singular. A proof of this is 

well detailed in [48] for the case where the constraints are equality constraints El-Bakry 

et al. [2 1 ] described how it can be adapted to the more general case where inequality 

constraints are involved.

In the general case, the m atrix J  is indefinite and the non-singularity of J  is not always 

insured. If singularity happens, it is due to the fact tha t the hessian of the Lagrangian 

V ^L (i,y , s) is not positive definite. For problems tha t do not generate singularity, 

we will calculate V^L(x, y, z) by central differences. For problems tha t are nonconvex, 

V*L(z,y, r) will be approximated by a positive definite matrix using a Quasi-Newton 

update formula. This approximation of the hessian not only helps in convexifying 

the problem but also in improving computational complexity. The central differences 

involved in calculating the hessian are rather tedious and time consuming because a 

large amount of function evaluations is required. However, Quasi-Newton techniques 

only require first derivatives, therefore the number of function evaluations is considerably 

reduced.

Next, we describe the Quasi-Newton update used in approximating V |X (i,y , z).

Let denote the approximation of V ^T(i, y, z) a t iteration k. We will use the 

following approximation

=  +  V r L ( z ,y , z ) ( V ,L ( z ,y , z ) ) ^  (3.12)

Using the Sherman-Morrisson-Woodbury formula [19], the inverse of denoted by

p(fc+i) can be expressed as follows

- I -
p(*+i) = -----------------------i------------- -----------------L--------------------  (3.13)
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where =  ^ x L ( x . y . z ) .

This update of the Hessian is based on the Recursive Prediction Error Method (RPEM) 

[59]. It is similar to the Quasi-Newton update of Davidon [16]. In numerical analysis, the 

BFGS update is often used to approximate the Hessian. However, the RPEM method 

only requires the storage of f  a t each iteration whereas the BFGS method requires 

additional storage- For this reason, we will use RPEM update instead of a classical 

BFGS approach.

When the problem is convex, one can use central difference calculations to evaluate the 

hessian. The central difference derivative of a function /  of one variable is given by

/ ( X )  .  +  (3.M)

where h is small.

The choice of the parameter h is critical. Bad choices of h can lead to significant round

off errors [19].

In our case, we are more interested in computing gradients of functions of several vari

ables. To compute the gradients, we will take each component of the function as a 

function of a  single variable itself. In our implementation, h is a parameter of the code 

and can be changed a t any time. We use Bidders’ idea of extrapolating the finite dif

ferences calculation to higher order as h is decreased from its original value [55]. The 

extrapolation follows the Neville’s algorithm [55]. The degree of interpolation deter

mines the number of function evaluations. Typically, we use a  degree of interpolation of 

2 which leads to a maximum of 6  function evaluations to calculate one derivative. The 

algorithm is described in [55].
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For more details on Quasi-Newton updates of Hessian and on Hessian calculations 

through central differences, one should refer to: [19], [48], [55].

3 .3 .2  F actorizing  th e  J a c o b ia n  M a tr ix

Recall that the main step of the primal-dual algorithm is to solve the following linear 

system of equations

where J(ujt) =  F'(ujfc) and J{vk) is given by

(

(3.15)

J{Vk) =

\

\

0

s /

(3.16)

Vh(z) 0 -V g (z )

V h(x)^ 0  0  0

V g { x f  0 - I

0 0 Z

By susbstituting some term s in 3.15, we will see that we can reduce the dimension of 

the system to be inverted from (n +  m -f 2 p) x (n +  m-t-2 p) to (n +  m) x (n +  m) and that 

the reduced system is symmetric. The symmetry of the system is an important property. 

It permits the use of factorization techniques such as the Cholesky factorization or the 

Bunch and Parlett symmetric indefinite factorization [74, 9]. The reduction of 3.15 to 

a  smaller symmetric system is described next.

3.15 can be written as

2 0



V l L { x , y , z ) d x  -i-Vh{x)dy 

Vh{x)^dx

Vg{x)^dx  —ds

Zds

-V ^(x)(fr =  - / i

=  - / 2  

=  - h

+ Sdz  =  — / t

(3.17)

where

F^{x,y,s, z) =

From 3.17, we have

and

therefore,

( \ 
V r l( x ,  y, z)

h{x)

g{^) -  s 

ZSe  — fie

dz  =  - S - ^ h  -  S~^Zds

ds =  Vy(x) dx +  fs

dz =  - 5 - ^ / 4  -  S - ^ Z ' ^ g i x y d x

( \  
f i

Î2

h
(3.18)

(3.19)

(3.20)

(3.21)

Substituting the expression of dz  back in the first equation of 3.17, we obtain

V^(x, y, z)dx  +  Vh{x)dy +  Vff(x)5~74 +  V y(x)S-'ZV y(x)^ dx =  ~ h  (3.22)_

Hence 3.17 is equivalent to

[v2L (x ,y ,x ) +  V y (x )5 -'Z V y(x )^]dx  +V h(x)dy =  - / i  -  V y (x )5 "7 4

V h { x f d x
(3.23)

—A
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and

ds =  V ÿ(x)^dz +  /s  (3.24)

dz = - S - ^ U  -  S ~ ^ Z V g { x f d x  (3.25)

As we can see, the system 3.23 is symmetric and of dimension (n +  m) x (n-h m ). To 

gain memory space and to speed up the algorithm, we use fast factorization techniques 

for inverting 3.23.

3 .3 .3  T h e  U p d a te  o f  /z

The update of fi remains one of the most critical issue in primai-duéd techniques. It has 

great effect on the behavior of the algorithm. It is well understood that it corresponds 

to the concept of adherence to the central path and therefore to the convergence of the 

algorithm to the optimal point. Even though the role of fi is clear, the choice of the 

update formula for fi remains uncertain. In the linear programming case, fi is usually 

chosen as proportional to the duality gap so th a t reducing fi ensures a reduction in the 

duality gap at each iteration and eventually it becomes zero at optimality. Experiments

have shown tha t this update is sucessful. In the nonlinear case, a similar update is used.

The justification for this choice is not as straight forward as in linear programming. 

Attempts to explain it have already been proposed [21, 77].

We use the following update formula

f^k =  (3.26)
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where is a parameter of the algorithm. EI-Bakry e t al. [21] have proposed the 

following values for crt

<Tjt =  lOOs^ f̂c if lOOSfcïfc <  0 . 2

<7fc =  0 . 2  if lOOsfc ît >  0 . 2

3 .3 .4  T h e  L in esea rch es

Recall the following notations

V =

/  \ (  \
X d r

y dy
d v  =

s ds

d~
\  / V - /

We start by taking a full Newton step as follows

Zt+I =  Xfc +  Ûpdr 

yfc+1 =  yfc +  otddy 

Sfc+i = Sk + ajd j  

-Jt+i =  xfc +  Ozd;

where

OTp =  1

Orrf =  1

a ,  = - I

-1

(3.27)

(3.28)
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a ,  and a ,  are chosen so as to ensure tha t and zt+t remain positive after the move. 

We define 0  as follows

$(u) =  ||F (u )f  =  F(u)^F(u) (3.29)

to be used as the merit function for the linesearch. We follow the Armijo rule for

backtracking. The backtracking avoids taking steps that lead to small decrease in $ .

Refer to Dennis and Schnabel’s book [19] or McCormick’s book [48] for more details on 

backtracking and step taking rules. The Armijo condition can be expressed as follows 

Find the smallest integer i  such th a t

$ (u  +  o2~‘du) — $(u) < 0 2 "’du^V $(u) (3.30)

where â  =  min{TOmax, 1 }, «max =  min{op, Oj, and 7  is a  parameter of the al

gorithm. A typical value for 7  is 10”**.

3 .3 .5  T h e  S to p p in g  C r ite r io n

As mentioned before, the algorithm stops when the KKT conditions are satisfied with 

an accuracy of e. Algebraically, the stopping rule is as follows

\\F M W  < ( (3.31)

In our implementation, we will rather use a  normalized version of the criterion as shown 

below

6 is problem dependent and is given as a  parameter of the algorithm.
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3.4 C om putational R esu lts  w ith  G eneral N onlinear Pro

gram s

In this section, we report the computational results for a subset of the Hock and Schit- 

tkowski’s database of nonlinear programs [32]. The dimension of these problems is 

small, however they are famous for their complexity. Most of these problems are highly 

nonconvex and ill-conditioned. We show comparisons in terms of number of iterations 

(Newton's steps) with the modified barrier algorithm proposed by Breitfeld and Shanno 

[8 ]. Tables 3.1 and 3.2 summarize the results. The problem numbers refer to the prob

lems defined in the original book [32]. The columns Iterations and Obj. value under 

NLPD report the number of iterations and the optimal objective value achieved by 

our nonlinear primal-dual algorithm. The Mod. Barrier Iterations column reports the 

number of iterations required by Breitfeld and Shanno’s code for the same problem and 

the Hock and Schittkowski Obj. value gives the theoretical optimal objective value of 

the problem.

In 60 percent of the cases, our algorithm required a  smaller number of iterations to 

reach the optimal value. For other problems, the modified barrier was more efficient. We 

can conclude that on the average our algorithm performs as well as the modified barrier. 

Note that the modified barrier uses the true expression of the hessian of the objective 

function for each problem while our algorithm uses the central difference approxima

tions. Despite the approximation of the hessian, the performance remains similar and 

the optimal objective value is reached with extremely good accuracy. These results 

show very good promise and motivate us to investigate improvements of the algorithm
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Table 3.1: Experiments with Hock and Schittkowski’s Nonlinear Problems

NLPD Mod. Barrier Hock and Schittkowski

Problem Variables Iterations Obj. value Iterations O bj. value

hsl 2 3 1.5240e-04 28 0

hs2 2 16 5.0424e-02 18 5.042e-02

hs3 2 3 1.5242e-04 16 0

hs4 2 6 2.66667 26 2.66667

hs5 2 6 -1.91322 9 -1.91269

hs6 2 43 1.658e-28 32 0

hs7 2 1 2 -1.73205 2 0 -1.73205

hs8 2 60 - 1 .0 7 - 1 . 0

hs9 2 3 -0.5 3 -0.5

hslO 2 23 - 1 .0 26 - 1 .0

h sll 2 72 -8.4987 25 -8.49846

hsl2 2 1 1 -30.0 26 -30.0

hsl4 2 59 1.39337 23 1.39346

hsI5 2 107 306.499 60 306.5

hsl6 2 78 0.25 34 0.25

hsl7 2 78 1 .0 34 1 . 0

hsl8 2 1 0 5.0002 36 5.0

hsl9 2 27 -7950.94 40 -6961.814

hs2 0 2 40 40.1988 35 38.1987
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Table 3.2: (ContM) Experiments with Hock and Schittkowski's Nonlinear Problems

Problem Variables

NLPD 

Iterations Obj. value

Mod. Barrier 

Iterations

Hock and Schittkowski 

O bj. value

hs2 1 2 15 -99.9599 16 -99.96

hs2 2 2 24 1.00023 2 2 1 . 0

hs32 3 59 1 .0 45 1 . 0

hs47 5 49 -3.6593e-08 58 0

hs71 4 1 1 17.01401 48 17.01401

as we will discuss next.
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C hapter 4

A Stochastic Nonlinear

Prim al-Dual Algorithm

4.1 In trod u ction

From its design, the primal-dual algorithm stops when it finds a  KKT point of the 

nonlinear programming problem. Practically, a good local minimum is often satisfying 

and the cost involved in finding the global minimum is too high when compared to 

the corresponding gain in the objective function value. However, in applications that 

lead to function having a  large number of local minima and few global optim a such as 

artificial neural network training where the error surface can be very complicated, there 

is a need for finding the global optimum.

To help in escaping local minima, we propose to add a  random noise to  the objective 

function. These stochastic perturbations can also be seen as perturbations on the New

ton’s directions to visit neighborhoods of the current point and seek better solutions. As
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implemented in simulated annealing approaches [38]. we introduce a schedule of temper

ature that controls the amount of perturbation throughout the iteration process. The 

perturbation should be vanishing as we approach the global optimum so as to ensure 

convergence of the algorithm. We also allow bad moves during the process, this means 

that with some probability, we will accept to move to points th a t lead to worse objective 

values. This feature gives the chance to the algorithm to escape a  local minimum.

This modification of the algorithm is a heuristic and one can not ensure tha t the global 

minimum will be reached. However, simulated annealing based approaches have been 

very successful in practice and we expect to gain improvement from its use. TrafaJis and 

Tutunji [65] has developed an hybrid simulated annealing/logarithmic barrier function 

method for minimizing the error function of artificial neural network training and sig

nificant improvements were obtained. Next, we describe the idea in more mathematical 

details.

4.2 The S toch astic  A lgorithm

Addind the random noise to the ojective function leads to a  new perturbed function /  

given by

f { x k ) = f { x k )  + c'‘ Y ^ X iN t  (4.1)
i=l

where is the correction on the perturbation due to the tem perature T*. A practical

choice of c* is =  V 2 T*. N-^ represents the additive random noise on the coordinate

of X .  is taken as a uniform random number between —1 and 1. One can think of

other choices of probability distribution such as the Gaussian distribution.
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At each iteration k. the temperature must be decreased. The cooling schedule plays 

an important role in simulated annealing and finding the right schedule is still an open 

problem. We found that =  pT^~^ where p =  0.9,0.95 or 0.99 works well in practice. 

The starting temperature T°  is left as a  parameter of the algorithm because its choice 

is often problem dependent.

From Equation 4.1, we derive the corresponding perturbation on the Newton’s direction 

by setting =  0 , which gives

afjt =  +  ocxdx 4- a x ^ 2 T '‘N '‘ (4.2)

We will introduce a probability P  of accepting the above move in the case where it leads 

to a worse objective value. P  should be decreasing as the iteration counter k  increases. 

A common choice in simulated annealing for P  is

P  =  (4.3)

where A /  =  /(xfc) —/(x t) -  Note that the move 4.2 might lead to a point that is infeasible 

and violates one or both types of constraints h and g. The primal-dual technique does 

not require tha t the current point remains feasible. Infeasibility will be corrected by 

bringing the point in the neighborhood of the central trajectory. In practice, we have 

noticed that when starting with an infeasible point, much effort is spent in bringing 

the point in the feasible region. Experiments show th a t the algorithm performs many 

small steps from the infeasible point to a  feasible point. In the case of linear constraints 

as in the error minimization problem of artificial neural network training, we propose 

to project the perturbed direction onto the null space of the constraint matrix. This

ensures that the current point remains feasible a t all times assuming tha t the algorithm

30



started from a feasible point. Note also that this feature is not necessary in the case 

where the constraints are of full dimension such as box constraints because the perturbed 

direction will always be feasible. We recall that the projection matrix Q onto the null 

space of a feasible region defined by a constraint matrix .4 is

Q =  r -  A ^{A À ^) 'K a  (4 .4 )

The stochastic nonlinear primal-dual algorithm is given next.
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Stochastic N onlinear Prim al-D ual A lgorithm  

(SN LPD )

Step  1  Set k= 0 , =  T°.

Step  2 Start with Ufc =  {xk,Vk,Sk,Zk) where (sfc.zfc) > 0 

and initialize nk > 0 .

Step  3 Check stopping criterion 3.11

•  if Condition 3.11 is satisfied go to Step 8 .

# if Condition 3.11 is not satisfied go to Step 4.

Step 4  Solve the system of linear equations 3.8 for Au.

Step  5 Perform the linesearches to determine Ofc.

Step  6 Calculate =  ot -I- AtAr =

and -i-ax\/2T ^N . Compute A /  =  /(x^^^) —

If A / <  0, Ufc+i =

Else P = e ~ ^  and,

if r < P , Vk+i =  (x(2),y(i),s(i),j(i))

else Ufc+i =

Step  7 k =  k + l,  update fik, =  pT^~^, go to Step 3.

Step  8 Stop with the optimal point v "  =  Vk-
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4.3 C om p u tation a l E xperim ents w ith  SN L PD

We test SNLPD algorithm with functions for which the global minimization problem is 

known to be difficult to solve [2]. Tables 4.1 to 4.4 report 10 runs of NLPD and SNLPD 

for 4 functions. Each run used the same starting point for both algorithms. was set 

to 1 0 0  and p =  0.99 for SNLPD. The functions are as follows

Function 1 . Schubert Function. It has more than 760 local minima and more than 18 

global minima. The minimization problem is as follows

m in  f{x )  =  | e L i  z cos[(i +  l)a:i +  %]} ( E L i  ' cos[(i +  l ) i 2 +  z]}

s.t.

—2 0  ^  X1.X2 ^  2 0

The optim al objective value is —186.7309. Schubert’s function is shown on Figures

4.1 and 4.2.

Function 2. Camel-back function. It has 6  local minima and 2 global minima and we 

solve the following minimization problem

m in  /(x )  =  (4 — 2.1xf -f- x^/3)xf + X1X2 4- (—4 +  4 x |)x |

s.t.

—5 < Xi, X2 <  5
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The optimal objective value is —1.032

Function 3. This function has 4 local minima and one global minima. The minimization 

problem is as follows

m in  f{x) = J [(xf — I6xi +  5xi) 4- (x^ -  lQx\ +  5x2)]

s.t.

— 2 0  ^  Xi,x2  ^  2 0

The optimal objective value is —78.332.

Function 4. This function has 8  local minima and one global minima. The minimization 

problem is as follows

m in  / (x )  =   ̂[(xi — 16x  ̂+  5xi) +  (xg — lOx? +  Sio) +  (xg — I6x§ +  0x3)]

s.t.

- 2 0  <  Xi,X2  <  2 0

The optimal objective value is —117.498.

From Table 4.1, we see that the optimal objective value for Function 1 is never 

reached, this is due to  the complexity of the function (see Figure 4.1). However, the 

average objective value obtained by SNLPD is much lower than the one from NLPD. 

For the Camel-back optimization problem (Function 2), the optimal objective value is 

-1.032. NLPD never reached the optimal value (see Table 4.2). SNLPS reached the opti

mal value in 40 % of the cases. For Function 3, SNLPD always reached the optimal value
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20 -20

Figure 4.1: Schubert’s Functioa Restricted to [-20:20].

x2 -5 -5 XI

Figure 4.2: Schubert’s Function Restricted to [-5;5j.
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Table 4.1: Comparisons of NLPD and SNLPD for Function 1

NLPD SNLPD

Starting Objective # o f Objective #  of

Run # point value iterations value iterations

1 ( 1 ,1 ) 8.1955e-09 32 -64.2169 63

2 (0 ,0 ) 1.46677e-09 24 -123.577 149

3 (-5,5) -37.6811 39 -123.577 81

4 (-9,-8) 3.07096e-09 43 -10.2636 204

5 (3.5,6-7) 4.84299e-09 40 -60.0222 6 8

6 (19,-19) 5.85442e-10 60 -39.5887 87

7 (1 ,-1 ) -2.54264e-09 32 -16.8359 6 8

8 (-5,-19) -1.3178e-09 50 -123.577 58

9 (17,18) -1.78365e-09 55 -123.577 8 6

1 0 (0 ,-1 0 ) -1.78365e-09 42 -23.1367 151

Mean -3.76811 41.7 -70.8368 101.5
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Table 4.2: Comparisons of NLPD and SNLPD using for Function 2

NLPD SNLPD

Starting Objective #  of Objective # o f

Run # point value iterations value iterations

1 (1 ,1 ) 0.543718 43 -1.03163 54

2 (0 ,0 ) -0.215464 42 -0.215464 53

3 (-4.54-5) 2.10425 44 -0.215464 13

4 (-4.5,-4.5) 2.10425 45 -0.215464 51

5 (3.5,4.5) 2.10425 24 -1.03163 2 2

6 (4.5,-4.5) -0.215464 48 -0.215464 14

7 (1 ,-1 ) 2.10425 40 -1.03163 13

8 (-2,-3) 2.10425 43 2.10425 9

9 (2,3) 2.22947 38 -1.03163 36

1 0 (-0.5,1.5) -0.215464 41 -0.215464 41

Mean 1.2648047 40.8 -0.309959 30.6
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Table 4.3: Comparisons of NLPD and SNLPD for Function 3

NLPD SNLPD

Objective # o f Objective #  of

Run # value iterations value iterations

1 -78.3304 71 -50.0589 4

2 -78.3258 4 -64.1956 7

3 -78.1829 65 -64.1956 8

4 -78.294 118 0.391225 4

5 -78.3067 57 -64.1956 9

6 -78.1823 19 -50.0589 8

7 -78.3269 23 -78.3323 8

8 -78.1879 45 -64.1956 6

9 -78.3268 9 -50.0589 1 0

1 0 -78.3309 109 -38.9706 9

Mean -78.2795 52 -52.3870 7.3
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Table 4.4: Comparisons of NLPD and SNLPD for Function 4

NLPD SNLPD

Objective # o f Objective # o f

Run # value iterations value iterations

1 -116.833 109 -75.0883 6

2 -89.2251 150 0.586837 5

3 -116.602 47 -75.0883 5

4 -112.085 94 -78.1367 8

5 -113.17 75 -75.0883 7

6 -75.0883 150 -75.0883 6

7 -114.565 60 0.586837 4

8 -89.2251 150 -89.2251 6

9 -78.1367 150 -75.0883 7

1 0 -89.2251 150 -89.2251 6

Mean -99.4155 113.5 -63.32 6
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while NLPD reached it only once. For Function 4. SNLPD reached a close neighbor

hood of the optimal value in 50 % of the cases. NLPD never reached the optimal value. 

Clearly, from these tests on difficult functions, the stochastic version of the primal-dual 

algorithm gives significant improvements in the average objective value. Note that for 

the Camel-back problem, on the average SNLPD even required less number of iterations 

to reach the optimal point.
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C hapter 5

An Increm ental Prim al-D ual

Algorithm  for Problem s w ith

Special Structure

5.1 Introduction

We propose to modify the generic primal-dual technique which was developed in Chapter 

3 for problems th a t have the following form

m in =  (3-1)

s.t.

hi{x) =  0

gi{x) > 0 for 1=1,. . . ,L
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This type of problems is very common in engineering applications. For example, the 

least square problems are one of the special instances of Problem 5.1. Our interest is 

the artificial neural network training problem tha t has also this specific structure. In 

this section, we develop the incremental primal-dual technique for the general problem

5.1 and in the next chapter we describe how it is applied to the neural network training 

problem. In the neural network community, the incremental update of the variables is 

known as online training. In general, the problems for which incremental methods are 

suitable are problems tha t deal with a large amount of d a ta  and the objective function 

/ i s  a sum of given measures between the data points and parameters of the specific 

problem. If the given problem has L data points, the incremental technique decomposes 

the problem into L subproblems. The update of the variables is performed by incre

ments. Each increment corresponds to a data point.

One benefit from using an incremental idea rather than a  classical method is a memory 

space gain. The memory space required by the method depends only on the size of the 

subproblems whereas in the traditional methods one must store information from all 

the data  points simultaneously, which can lead to memory overflows when dealing with 

large scale problems. Another benefit from using an incremental technique is tha t the 

data are fed several times to the system and in the case of neural network training for 

example, cycles of d a ta  feeds increases the chance to  find a global optimum to the error 

function. Also, in online applications, where all the data  are not available at one time 

but only on a one-by-one basis, incremental methods are needed.

Incremental gradient techniques have been investigated recently [4, 5, 67]. Here, we 

propose to use for the first time these ideas with interior point methods and more
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specifically with the primal-dual algorithm previously studied.

5.2 Exam ple

To illustrate the concept of incremental technique, we propose to study a simple ex

ample. For clarity purposes, we will take the case of a one-dimensional unconstrained 

convex minimization problem. We will see later how the technique changes in the case 

of constrained optimization.

Consider the following minimization problem

minf{x )  = / i ( i )  -t- / 2 (x) -f- / 3 (x) (5.2)

where x € K and,

/i(x) =  x2 (5.3)

f2{x) =  Q x 4 -5 j  (5.4)

M^) =  Q r  -  5  ̂ (5.5)

Figure 5.1 shows the plot of the functions i =  1 ,2 ,3  and the plot of the original 

sum function / .  The incremental technique starts by computing a  descent direction for 

the first data  block (i.e. f i ) .  This direction can be taken as a step along the negative 

gradient as follows

di = (5.6)

Starting from the point (—10,1 0 0 ) on the figure, the algorithm moves along di so as to 

decrease the value of / i .  From the new point, the algorithm will now work on decreasing
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Figure 5.1: Incremental Moves for an Unconstrained Example
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/o by moving along the following direction

d, =  -oro/aCx) (5-~)

and finally, the first cycle through the data  blocks is completed by moving along ds =

We see how a single cycle operates. For multiple cycles, the process is repeated starting  

from the ending point of the previous cycle. This constitutes the basic concept o f the 

incremental technique. One can also see on Figure 5.1 tha t the resulting direction for 

the original function after a  single cycle, corresponds to the sum of the directions of 

each increments, which can be written as d == 4- dg 4 - da.

In this example, the functions are one-dimensional convex functions and the problem is 

unconstrained. When the functions are nonconvex. the directions defined above might 

not be descent directions. The addition of constraints in the problems makes also the 

problem much more complicated. In the following, we propose new ideas to overcome 

some of these problems. We consider nonconvex constrained problems and compute 

incremental directions of move by solving a  set of KKT optimality conditions for each 

subproblem associated with a data block.

5.3 T h e Increm ental A lgorithm

The incremental primal-dual algorithm starts  from a point 6  generates

the sequence (u j , . . . ,  j where

=  v f +A[Av[  1=1,. . . ,L

=  wi+i 
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and A v ‘ is calculated by performing one Newton's step towards the solution of the KKT 

conditions for the following subproblem

min fi(x)  

s.t.

hi(x) =  0  

gi(x) > 0

The param eter is the step length along Newton’s direction.

Specifically, Av f  is the solution of the linearized system of the KKT conditions

J(vl)Av[  =  -F^(v!)

where vf =  (xj, y\, sf, zf) and,

(  \  
^ M x l  yf, zf)

(5.8)

=  0 > 0
hi(xj)

31 (xj)  -  sj 

ZSe — fie

^i (xj ,y j , z i )  =  fi(xj) +  -  (z\)'^gi{x\)

\

(5.9)

/

(5.10)

and

J(vf )  =

V

0 0 

0 - I  

0  Z

0

0

S

(5.11)
Vh,(x{)^

Vgi^xf)"^

0
/

Avf  is the vector of step lengths calculated through linesearches. The update of fi is 

only performed after all the increments of one phase have been executed.
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This method of incrementing the update of the variables can be seen as performing a 

Newton’s step th a t is the geometric sum of all the Newton’s directions corresponding

to each one of the data  points f, I =  1 , . . . , £ .  Mathematically, it can be seen as follows

= ^start (5.12)

= (5.13)

4 = Ü2 -{- Ag Aug (5.14)

= +  A^ Au^ (5.15)

: (5.16)

= w i-i +  A£,_i A u£_ i (5.17)

= 4 - Af,Au^ (5.18)

Summing right and left hand sides in Equations 5.12 through 5.18 and cancelling iden

tical terms on both sides, we obtain

«1+1 =  Vjtart +  d} (5.19)

where d} =  and v^tart is some arbitrary starting value.

d} represents the geometric sum of all the Newton’s directions generated by each of the

data point individually.

Next, we give the main steps o f the incremental primal-dual algorithm for nonlinear 

programming.
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N o n lin ear In c re m e n ta l P r im a l-D u a l A lgo rithm  (IN - 

C N L P D )

S tep  1  Set t =  0, / =  1.

S tep  2  S tart with v ‘ = (xj,yi,S[,zf)  where > 0 and

initialize fi > 0.

S tep  3 If stopping criterion Is satisfied, go to Step 10. oth

erwise go to Step 4.

S tep  4 while (/ < L -h 1) do Step 5, 6 , T and 8 . otherwise go 

to Step 9.

S tep  5 Solve the system of linear equations 5.8 for Avf .

S tep  6  Perform the linesearches to determine A|.

S tep  7 Move to next point =  vf -f- AjAu/.

S tep  8  Set 1 = 1 +1  and go to Step 4.

S tep  9 Set f =  t -H 1 , uj =  update /i and go to Step 3.

S tep  1 0  Stop with the optimal point v“ = vf.

Note that in Step 3 the stopping criterion can not be defined as in the general NLPD

algorithm because the norm of the KKT conditions is different for each one of the

increment /. Usually, in practice the stopping criterion used is a measure of accuracy
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for the given application. For example in the case of artificial neural network training, 

the algorithm stops when the training error becomes smaller than a preset threshold. 

For computational experiments with the INCNLPD algorithm, we refer the reader to 

the chapter on application to neural network training where we use the incremental 

technique to train the network.

5.4  L ocal Convergence o f  IN C N L P D

In this section, we prove the local convergence of the incremental nonlinear primal-dual 

algorithm. In other words, we show that starting from a neighborhood of the optimal

solution, the sequence of iterates generated by INCNLPD converges q-linearly to that

solution (See Appendix A for more information on the convergence of algorithms). 

Before stating the convergence theorem, we recall the fundamental equations of the 

incremental primal-dual technique and we introduce new notations th a t we will use in 

the proof of the theorem.

The problem to solve has the following structure

min  /(x )  =  E te i / / ( ^ )  (5.20)

s.t.

h[{x) =  0

gi{x) > 0 for 1=1,...,L

The update of the variable follows the following rule

=  uf-l-A fA uf 1=1,...,L
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Here, we are interested in the sequence {I’i+ i-  U£,+it • * *}• records the values of 

the variable v after each cycle through all L increments. We will show tha t this sequence 

converges to the optim al solution v' .  Note tha t this sequence can also be written as

The direction A v f  is calculated as follows

Au* (5.21)

(5.22)

(5.23)

where

and

(

hl{xf) 

9{xf)  -  sf 

ZSe

\

=  0  (s, z) >  0

P =

( \ 
0

0

0

(5.24)

(5.25)

where e is the vector of ones, Ji =  J((uf), and pk =  (^kmin(SkZke) with (Tk > 0 .

Af is calculated using a line search procedure. We consider equal step lengths for all
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variables, e.g. Af =  diag{âk} with àk =  «fcrûfc)-

ak is chosen as follows

Ok =  m in d , Tito,. Tto,) (3.26)

where o , =  — f 2  - and o^ =  .

Next, we state the assumptions on the problem in order to ensure the local convergence 

of the algorithm.

A ssum ptions 5.1 There exists v ' =  {x’ ,y ’ .s “, z “) such that

1. The K K T  conditions 3.3 are satisfied.

2. Ji{v~) is non-singular fo r I = 1 , . . . ,  L.

3. J[ is locally Lipschitz continuous o/ u*. / =  1 ,  L.

T h eo rem  5.1 Consider the problem 3.20 and a solution v“ satisfying the assumptions

5.1. There exists a neighborhood D{v") of  v’ , and a constant â such that for any 

starting point in D{v*) and fo r  any Tk € [f, 1] ( f  6  (0,1)^ and € (0,0], the sequence 

t'l, V i , v f , . . .  converges q-linearly to v“.

P ro o f: In order to prove the above theorem, we first need to state some preliminary 

results.

L em m a 5.1

-  v'W < (1 -  o d d u f -  v’\ \ - t f i k \ \ J r ^ p \ \ + 0 { \ \ v ' f - v ' f )  (5.27)
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proof o f  Lem m a 5.1:

We have

0 ^ 1  -  V- =  r* -  r* -  a iJ r^  [ f '(u f )  -  ptp] (3.28)

therefore.

Ihf+i -  u'll < 11%;̂  -  t;' -  +  fikai\\Jr^P\\. (5.29)

The first term of the right hand side can be written as follows Since

vl=-v’ - a i J r ^ F \ v h  =  ( l -û , ) ( t ; f - r ;“) + û i [ y f - r ; ' - J r ‘[F'(üf)-F'(v')]]

=  (1  -  ai )(vt  -  u ') +  a iJ r^  [F'(n*) -  F‘(v h  -  J i(v ' -  uf)]]

The first term of the right hand side can be bounded as follows

U  - v ‘ -  a[Jr^F^{v^)\\  <  ( 1  -  a ,) ||u f -  u*|| -f- a^l J r 'l l l l^ ’'(t^') ~  ^ '(u f  ) -  Ji{v ' -  i;f)]||

(5.30)

From the local Lipschitz continuity of Ji, we can write

||F '(u") -  F '(u f) -  M v -  -  uf)]|| <  %||r- -  v f f  (5.31)

where 7  is a positive constant. See for example [19] for a proof of this result.

This leads to

Ilt'f+I -  t^ll <  (1 -  m )||uf -  u*l| +  fikmWJr^PW + ^ o c iW v ' -  uf||2 (5.32)

where M  is a  positive constant such tha t <  M  (the existence of M  is ensured by

the nonsingularity of J().

Therefore,

Ikf+i -  v'W <  (1 -  o ,)lb f -  u '| |4 - p ta ( | |J r 'p l l+ 0 ( | |u "  -  uf||2) (5.33)
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Q .E .D .

L em m a 5.2

Q[ =  Tnin(l,rj +  0(<Ti) +  0 (||F '(i;f)||) (5.34)

proof o f Lem m a 5.2:

This result has been derived for the non-incremental nonlinear primal-dual method. It 

does not involve any particular difficulties. See [21] for a  proof of Lemma 5.2 . Q.E.D. 

We are now ready to  prove the local convergence theorem. The idea is to apply Lemma

5.1 at each increment level and write the recursive rule between increments so as to 

conclude on the asymptotic behavior of two iterates of the sequence (u j, Uj, Vy, ...}  . 

From Lemma 5.1, we have

114 -  u'll < (l-ai)ll4-u*lI-h/Xikai| |Jr‘p | | - t - 0 ( | | r - - 4 f )

I l 4 - y * l l  <  (1 -  «2)114 -  "̂11 +  J f 'p l l  +  0(11%;' -  4 l l" )

Il4-u*ll < (1 -  03)114 -  «;"ll 'pll +0(||i;" -  4||2)

: <  :

114+1 -  "̂11 <  i l - c ^ L ) \ \v i - v ’ \\ +  f ikai, \ \JE'p\\+Oi\\v'-vif)

Substituting each equation in the right hand side of the next equation recursively, 

one would obtain the following

i l 'L .  -  "'II = u; -  V11(1 -  ai)
J= 1

+  » e ( n  w ‘ ‘pii
1=1 V j = i
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+  è  r n ' ( i  -  1 o ( i i t f  -  '- II ')
1=1 \  j=i

Using Lemma 5.2, we can write

J=l
IK  -

£t f  £•—/ —1

1=1 \  j=i 
L f L - l - l

+  E l  n  ( 1  -  r t _ (  +  0 ( ( T ^ _ , )  + 0 ( | | « L ,  -  ^ " 1 1 ) )  I 0 ( | | u f  -  u - | | Z )

We also have

/ijt =  o’iO(||F(i7f)|I) =  criO {\K  -  u" (5.35)

therefore.

14+1 -  (;"ll < l [ { l - r i + 0 { < T i ) + 0 { \ K - v '
U=i

yr -  V (5.36)

or, there exists a positive constant c <  1 , such th a t

(5.37)

or,

(5.38)

This shows tha t the sequence {uf} converges q-linearly to v". Q .E .D .

54



C hapter 6

Application to Artificial Neural 

Network Training

6.1 A rtificial N eural Networks

The earliest form of ArtifidaJ Neural Networks (ANNs) was developed in the 40’s. It was 

introduced by McCulloch and Pitts [49] as network of simple logical units. Since then, 

many forms of ANNs have been elaborated and their capabilities have greatly improved. 

Hopfield and Tank [33] have shown that ANNs can even be used to solve problems as 

hard as the Traveling Salesman Problem. Today, ANNs are applied in many differ

ent fields. They have been applied to pattern and speech recognition [42, 39], medical 

diagnosis [44], business [30], neurocontrol [51], meteorology [46] and many other appli

cations.

ANNs are often thought as black-box systems, but they can actually be represented 

as mathematical quantities. Hecht-Nielsen [31] have proven the Kolmogorov’s mapping
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neural network existence theorem which is an application of the original Kolmogorov 

theorem on continuous functions [40]. The theorem states that every continuous func

tion can be represented as the sum of single variable functions that do not depend on 

the original function. Hecht-Nielsen applied the theorem to ANN to claim that for 

every continuous function, there exists an ANN tha t can represent it. Specifically, the 

Kolmogorov’s theorem was restated for the representation of arbitrary continuous func

tions from the n-dimensional cube [0 , 1 ]” to the real numbers in terms of functions of 

only one variable. It was shown that given any continuous function / ,  / :  [0,1]"

/  can be implemented exactly by a 3 layers feedforward neural network with 2n -f- 1 

hidden nodes. This result is of great importance for the application of ANN to function 

approximation problems. However, it is an existence theorem and it does not give any 

constructive algorithm to find the appropriate architecture.

The training of ANNs is a difficult task. The backpropagation algorithm (BP) is the 

most fundamental technique for training feedforward ANNs. It was first developed by 

Werbos [71] and later studied by Rumelhart e t al. [58, 47]. The idea is to backpropagate 

the output errors to the hidden layers by using what is known as the generalized delta 

rule. The algorithm was able to give a correct mapping for inputs tha t are not linearly 

separable such as the famous exclusive OR problem (XOR) used by Minsky and Papert 

[52] as a counterexample to show that single layer ANNs were not able to map correctly 

nonlinearly separable sets of inputs.

Since the backpropagation algorithm, a  great deal of effort has been given to  increase 

the speed of training. Successfully, algorithms based on the BP framework were pro

posed. For instance Battiti [3] describes second-order methods that use the BP scheme.

56



Instead of using the on-line updating rule for the connection weights, these methods 

follow Newton steps allowing a quadratic convergence to the desired output. Today, 

one of the new direction is to use interior point methods to solve the training error min

imization problem. Some work has already given successful results [62, 65, 63. 64. 14]. 

This research is a  new contribution to training techniques with interior point methods.

6.2 P rob lem  Statem ent and l^ a in in g  A lgorithm s

In this research we will only consider feedforward artificial neural networks. All the 

connections between neurons are forward and there are no connections between neurons 

belonging to the same layer. We are interested in the case of multilayer ANNs. Typically, 

the ANN will have one input layer, one hidden layer and one output layer. The training 

methods that we will develop can be easily adapted to the case where multiple hidden 

layers are present. Furthermore, we will assume that the ANN is fully connected. If for 

some reasons some connections must be deleted between neurons, this can be achieved 

by adding ex tra  constraints in the error minimization problem to be solved. Figure 6 . 1  

illustrates the ANN architecture used in this research.

The problem to be solved is known as supervised ANN training. Given a set of 

input patterns and their corresponding desired outputs for the networks, the optimal 

set of connection weights between neurons tha t achieved a minimum error between the 

desired outputs and the actual outputs of the neurons is to be found. The network is 

said to be trained when the optimal connection weights are found.
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Figure 6.1: Multilayer Artificial Neural Network

The classical methodologies to train such ANNs are based on the backpropagation con

cept first presented by Werbos [71]. The idea is to iteratively update the weights, 

starting from the output layer where complete information is given, and backpropagate 

the information to the layers tha t precede it. The update of the weights is derived from 

the gradient descent technique. Variants that used Quasi-Newton techniques have also 

been proposed [3]. The backpropagation algorithm (BP) has given very good results 

and it is still used as a  benchmark algorithm for its robustness. However, BP leads to 

long training times and its use in online applications th a t require fast training phases 

is therefore inappropriate.

We propose to develop a completely new approach for supervised training of ANNs. We 

avoid the use of a  backpropagation scheme and instead we write the training problem 

as a more general problem that can benefit from sta te  of the art techniques of opti

mization. Instead of considering the ANN as a  succession of layers and train each layer
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at a time, we assimilate the ANN as a  mathematical function as a whole and write 

the training problem as an error minimization problem. By constraining the weights 

between bounds, we avoid very large weights that can lead to  what is known as network 

paralysis [70]. Large weights can create very large output values and the neurons have 

more difficulties to fire. Then the ANN becomes paralyzed.

The training problem is now seen as a general nonconvex constrained minimization 

problem with linear constraints. We will use the algorithms presented in the previous 

chapters to solve this problem. Next, we give a  mathematical formulation of the prob

lem and show how it can be solved.

6 .2 .1  N o ta tio n s

The following notations are to be used next

• F  - Number of input patterns.

•  - Number of input neurons.

• - Number of hidden neurons.

• - Number of output neurons.

• fa - Common activation function for all the neurons.

•  Xp =  {xpi,Xp2, . - Input vector corresponding to pattern p.

• Dp = {dpi, dpi, . . . ,  d ^ i3) - Desired output vector corresponding to pattern p.

• Vij - Weight on the connection from input neuron to  hidden neuron.
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•  Wjk - Weight on the connection from hidden neuron to output neuron.

•  y =  (2/1 ?y2 ........2/n(2i)  ̂- Output vector of the hidden layer.

•  z = [zi ,Z2, . .  - , z^(3) - Output vector of ou tput layer.

From the previous notations, we can already write the following

n(‘)
Vi =  / a ( ^  VijXjn) for all j  =  1 , . . . ,  (6.1)

1=1

and,
n(2)

Zt =  / o ( ^  Wjkyj) for all & =  1 , . . . ,  (6 .2 )
j=i

The activation functions for the neurons are assumed to be all equal. The case where 

not all the neurons have the same activation function can be easily handled by our

methodology. A typical choice for the activation function is the hyperbolic tangent

defined as

fai^) =tanh{x)  =  ^  ^  (fi-3)

6 .2 .2  T h e  E rror M in im iza tio n  P ro b lem

With the use of the ^g-norm as an error measure, the error minimization problem can 

be written as follows

min E[v,  w) 

s.t.

~ M  < V < + M  

—M  < w < + M

(6.4)

where
, P nM

E { v , w )  =  - ' ^ ' ^ ( ^ z k - d p k f  (6.5)2
p = i  t = i
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The error function E{v.  w) is calculated a t the output of the ANN', therefore the ac

tivation functions f a ' s  are nested under the term This makes the function highly 

nonlinear and also highly nonlinear. We will use the nonlinear primal-dual algorithms 

developed in the previous chapter to find a minimizer of E{v,w).

Next, we give an example of a simple ANN architecture and we plot the error surface 

(See Figure 6.3). Some of the weights have been fixed to 1 so that the dimension of 

the weight space is equal to 2. Figure 6.2 shows the ANN. The error function to be 

minimized is as follows

, 2

2
E{w u W2) =  [o -  1 + ^ ]

+

- 1-

+

1 -

l+«

1 -

-I 2

1+e

(6.6 )

2

1 -

1+e

Figure 6.3 shows th a t for this simple ANN, the error surface has two local minima and 

one global minimum. One can imagine th a t as the number of weights increases, the 

function becomes more complicated and the number of local minima increases. It is 

possible tha t the training algorithm gets trapped in a  local minimum and never reaches 

the optimal solution.

6 .2 .3  A  V arian t A p p roach  to  th e  T ra in in g  P ro b lem

Figure 6.4 recalls the shape of the activation function /„ . To ensure tha t the neurons 

are not saturated and tha t they are able to fire a t all times, we would like to remain
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Figure 6.2: Example of Simple ANN Architecture

Example of Training Error Surface

0 1 . 7 4  -

10 -10

Figure 6.3: Example of Error Surface.
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Figure 6.4: Hyperbolic Tangent Activation Function.

in the region 8 (see Figure 6.4) of the curve where it has a linear behavior. With this 

in mind, rather than imposing box constraints on the weights, we will constrain the 

weights between the input and hidden layers as follows

, ( i )

- «  < /a(X ^ UÿXpv) <  a  /o r  y =  1 , . . . ,  n (2 ) (6.7)

fa being symmetric around 0 and one-to-one mapping in the region <9, the above in

equality is equivalent to

(2 ) (6.8)
1=1

where a  is a preset value, typically 0.7 <  a  <  0.9.

Therefore, the training problem can be written as the following new error minimiza-
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tion problem

min E{v,w)

s.t.

fo r  p — 1 , . . . ,  P

< /a-‘ (5) 

<  n t l  < / . - ‘ (5)

- / r ' ( 5 )  <  < / r ‘(3)

where E(v,w) = ^J2p=i — dpk)^- We see that this formulation possesses the

special structure required by the incremental primal-dual technique developed in the 

previous chapter. By using this scheme, the number of constraints is greatly reduced. 

We had box constraints whereas now we have weighted-sum con

straints. Note th a t a t each step of the incremental algorithm, we only consider the 

constraints corresponding to  the current pattern. The information from the previous 

constraints is stored in the incremental direction of move. This type of training is known 

as online training of the data. One pattern is fed to the system at a time. In the next 

section, we show some computational comparisons between the box constraints version 

and this version of the training algorithm.
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Table 6.1: X0R2 Problem

Inputs Output

x l x2 d

0 0 0

0 1 1

1 0 1

1 1 0

6.3 C om putational E xperim ents w ith  O dd-Parity Prob

lem s

We train a 3 layer ANN with the X0R2 problem data. The data are shown on Table

6 .1 . We use 4 hidden nodes. The ANN is trained using 3 versions of the algorithm. The 

notation for the different codes is as follows

TBB Batch Training Algorithm with Box Constraints

TOB Online Training Algorithm with Box Constraints (Using Incremental Primal-Dual 

Technique)

T O SN  Online Training Algorithm with Weighted-Sum Constraints and Noise (Using 

Hybrid Stochastic/Incremental Primal-Dual Technique)

TBB and TOB constrain the weights into box contraints. TBB takes all the patterns 

at one time whereas TOB takes the patterns one by one in an incremental fashion.
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Table 6.2: ANN Training with X 0R2 Problem using TBB.

Run

TBB Algorithm 

Error CPU time (s) Iterations

I 0.0966 2 14

2 0.0944 3 17

3 0.0783 2 16

4 0.0702 3 16

5 0.0672 3 16

6 0.0966 3 18

7 0.0976 3 15

8 0.0832 3 14

9 0.0712 2 13

1 0 0.973 3 18

Mean 0.0853 2.7 15.7

TOSN is an hybrid algorithm, it is an incremental method and also uses the stochastic 

modification of the primal-dual technique. The starting cooling temperature is taken 

as 0.01 and the schedule parameter p is 0.95. Tables 6.2,6.3 and 6.4 report 10 runs of 

each of the algorithms. Table 6.5 is a  comparison of the mean values of the training 

errors, CPU times and numbers of iterations.

TOB is much slower than TBB and TOSN. This shows that the box constraints 

are not well suitable to online training. There are as many constraints as in the batch
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Table 6.3: ANN Training with X0R2 Problem using TOB.

Run

TOB Algorithm 

Error CPU time (s) Iterations

1 0.0970 31 56

2 0.0949 24 43

3 0.0360 24 43

4 0.0884 23 43

5 0.0-541 2 0 35

6 0.0399 2 1 38

i 0.0884 24 43

8 0.0685 25 43

9 0.0947 15 27

1 0 0.762 14 26

Mean 0.0738 2 2 . 1 39.7
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Table 6.4: ANN Training with X 0R 2 Problem using TOSN.

TOSN .Algorithm 

Run Error CPU time (s) Iterations

1 0.01638 2 1 1

2 0.08360 3 15

3 0.01550 3 15

4 0.01023 3 2 0

5 0.00259 5 29

6 0.06498 1 8

7 0.06613 4 2 2

8 0.04802 2 8

9 0.00139 3 16

1 0 0.01348 5 23

Mean 0.03223 3.1 16.7

1.5: Comparisons of Training Algorithm for X0R2 P

Mean Mean Mean

Algorithm Error CPU time (s) Iterations

TBB 0.0853 2.7 15.7

TOB 0.0738 2 2 . 1 39.7

TOSN 0.03223 3.1 16.7
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case but the KKT conditions must be solved many more times because of the successive 

increments. However, TOSN is much faster because the weighted-sum constraints are 

added one at a  time to the system and the dimension of the KKT system is kept rel

atively small in comparison with the box constraint case. The stochastic perturbation 

helps also in achieving small training error. For larger problems, we expect TOSN to 

perform better than TBB. For large problems, TBB will have to store all the patterns 

at the same time and the KKT system to  be solved will be very large and memory space 

overflows might be encountered.
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C hapter 7

Application to  Financial 

Forecasting

7.1 Introduction

In finance, one would like to predict the behavior of some market indicators so as to 

increase the return on investment. The problem of financial forecasting is complicated. 

Its complexity is due to the number of factors tha t can influence the behavior of the 

market. Usually, experts isolate a  number of significant factors tha t are either derived 

from historical data  or estimated subjectively from experience. Recently, a  different 

approach has been shown to be very successful. The idea is to use machine learning 

to detect patterns in the financial history of a  specific market and try to  identify these 

patterns in the present and future data. Neural networks have been shown to be very 

accurate for this specific application [72, 56, 57, 17].
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Figure 7.1: Artificial Neural Network Architecture for Financial Forecasting

7.2 E xperim ents

We present computational results for two types of financial d a ta . The first database 

contains the values of return rate for the BOEING stock price over time (days). The 

second database is a record of the exchange rate from the Swiss Franc to US dollars. 

It has been recorded every minute. We propose to use a  3 layers neural network archi

tecture to learn the da ta . We use data  from the 5 previous tim e steps as input, and 

the next data  point as output. Therefore the input layer has 5 input nodes, the output 

layer has one output node and we use 5 nodes for the hidden layer. Our experiments 

have shown th a t 5 hidden nodes gave the best architecture for this application. Figure 

7.1 describes the precise ANN architecture.

We train the ANN using 5 different methodologies as listed below

• A backpropagation algorithm. It is a gradient descent technique th a t uses infor

mation of the output layer to compute gradients a t the hidden layer.
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•  A Recursive Prediction Error Method (RPEM)[65]. It is Quasi-Newton modifica

tion of the backpropagation algorithm where the update of the approximation of 

the hessian matrix follows the RPEM update [59].

•  A logarithmic barrier method (Log. Barrier)[65, 6 6 ]. The algorithm embeds the 

box constraints on the weights as a logarithmic penalty term into the objective 

function. It is an interior point method th a t uses the backpropagation framework 

to compute the gradients.

•  .A Stochastic logarithmic barrier method (Stoc. Log. Barrier)[6 6 ]. It is a  stochastic 

version of the previous algorithm. It inflicts random perturbation on the search 

directions to  seek better local minima and hopefully global minima.

•  The incremental nonlinear primal-dual algorithm (INCNLPD) developed above.

Tables 7.1 and 7.2 report the means and variances of the training error for ten runs 

of each algorithm. Figures 7.2 to 7.11 show the training and testing results for each 

algorithm for the two databases. For the BOEING stock database, the x  axis represents 

days and the y axis is the stock return. In Figures 7.2 to 7.6, the plain line is the real 

output of the ANN while the ’-f-’ line is the desired output. In Figures 7.7 to 7.11, 

the plain line is also the real output and the dotted  line is the desired output. The 

training is performed over 40 days, and prediction is performed from day 40 to day 

58. For the Swiss Franc Exchange database, the x  axis represents minutes and the y 

axis is the exchange rate. The training is performed over 100 patterns and the next 100 

patterns are used to evaluate the prediction. From the tables and figures, it is clear tha t 

INCNLPD outperforms the backpropagation algorithm. The backpropagation technique
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stops with local minima th a t often are not good enough to train the data. This is due 

to the fact that the backpropagation is a gradient descent technique tha t only uses local 

information on the error surface while INCNLPD uses primal and dual information as 

well as perturbation on the KKT conditions to seek good local minima. INCNLPD 

performs as good as the Stoc. Log. Barrier method. The testing phases are very similar 

for both algorithms. This is very encouraging because the Stoc. Log. Barrier algorithm 

was shown to be very effective for function approximation [65]. INCNLPD seems to be 

more robust than RPEM  or Log. Barrier methods. It gives more consistent results. 

For the Swiss Franc database, the Log. Barrier was not able to  train the data. We 

have also train the same ANN architecture with the NevProp implementation of the 

fast backpropagation algorithm [54]. For the BOEING database, the mean training 

error achieved for 1 0  runs was of 0.31555 with zero variance and for the Swiss Franc 

database, the mean training error was of 0.00326 with also zero variance. Comparing 

these results with those of Tables 7.1 and 7.2, INCNLPD is also much better.
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Table 7.1: Training Results for Boeing Stock Price Return

Mean of Variance of

Training Training

Algorithm Error Error

Backpropagation 0.131106 0.000312879

RPEM 0.605977 0.495492

Log. Barrier 3.6606 63.9709

Stoc. Log. Barrier 0.032735 3.07687E-05

INCNLPD 0.05999418 6.13E-12

Table 7.2: Training Results for Swiss Franc Exchange Rate

Mean of Variance of

Training Training

Algorithm Error Error

Backpropagation 0.000821972 3.84808E-12

RPEM 7.45659E-05 6.56031E-10

Log. Barrier 9.54193 11.2404

Stoc. Log. Barrier 0.000189679 4.17968E-09

INCNLPD 0.00010937982 3.9536324E-11
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Figure 7.2: Training (Time<40) and Testing (Time>40) for Boeing stock price return
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C hapter 8

Application to  M edical Diagnosis

and Classification Problems

In this chapter, we provide additional computational results. We train a  3 layer ANN 

with a  subset of the Breast Cancer Database [44] and the Iris P lant Database [20]. The 

databases are split into two subsets, a training subset and a testing subset. We use 9 

input nodes, 10 hidden nodes and 1 output node for the cancer database and 4 input 

nodes, 5 hidden nodes and 1  output node for the Iris database. Figures 8 . 1  and 8.2 

show the training and testing results for the cancer database. The x-axis represents 

the patient number and the y-axis is the diagnosis. An output T ’ corresponds to the 

diagnosis ’malignant’ and an output ’0’ corresponds to the diagnosis ’begnin’. The 

ANN is trained to perform a  diagnosis. Figures 8.3 and 8.4 show the training and 

testing results for the Iris database. There are 3 classes of plants, the class represented 

as ’- 1 ’, the class ’0’ and the class The ANN is trained to identify the classes. From
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Figure 8.1: Training results for the Breast Cancer Database

the figures, one can see that INCNLPD was able to achieve the correct mapping between 

inputs and outputs for both applications.
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C hapter 9

Summary, Conclusions and

Recom m endations

9.1 Sum m ary

In this work, motivated by the artificial neural network training application, we have 

developed new algorithms for solving the general nonlinear programming problem. We 

provide a new implementation of the nonlinear primal-dual algorithm and validate its 

efficiency through experiments with benchmarking problems. The implementation uses 

a fast factorization technique to solve the KKT system. For nonconvex problems, it 

also approximates the Hessian matrix by a recursive prediction error method.

We have proposed a  stochastic variant of the technique. By introducing random pertur

bations on the direction of move, we increase the chance of reaching a global minimum. 

Computational results show tha t indeed the results were improved and the stochastic 

algorithm reaches either the global minimum or a better local minimum than in the
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deterministic case.

For problems tha t have special decomposition properties, we have developed an in

cremental version of the nonlinear primal-dual method. The technique incrementally 

updates the variables with respect to each data  point of the problem. The d a ta  is fed 

several times to the algorithm. This increases the approximation capabilities of the al

gorithm. The use of the incremental framework reduces the memory space requirements 

and for large scale problems it can also help in reducing computing time. We provide 

convergence results for the incremental nonlinear primal-dual method. The range of 

applications of the algorithm is wide since it can be used to solve general nonlinear least 

square problems.

We show tha t the incremental nonlinear primal-dual technique can be nicely applied to 

the training problem of artificitil neural networks. Such problems possess decomposition 

properties with respect to the training patterns. For the financial forecasting applica

tion, we show tha t a neural network trained with the incremental nonlinear primal-dual 

method can achieve very good predictions. We also show that our algorithm outper

forms existing training techniques such as the backpropagation algorithm.

This work is a contribution to the field of constrained nonlinear optimization and 

more specifically to interior point methods. It provides new optimization tools tha t 

combine a  state of the art technique such as the nonlinear primal-dual method with 

other strategies such as simulated annealing and incremental update of variables. This 

research is also bringing new developments in the area of arthcial neural network train

ing. A new effective training strategy has been presented. Together with other work
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along this line [14, 65, 6 6 . 62], the results tha t are reported here, show that interior 

point methods can be effectively used as training approaches for artificial neural net

works. From the mathematical programming point of view, the training problem is a 

general nonconvex constrained minimization problem tha t we solve using sta te  of the 

art optimization tools. Experiments have shown th a t this is a very successful approach 

and tha t it outperforms classical methodologies such as the backpropagation algorithm 

still widely used in commercial softwares.

9.2 R ecom m endations for Future R esearch

The primal-dual algorithm can be seen as a  type of nonlinear least square technique. 

The problem is to  minimize the merit function $  tha t is the square of the norm of the 

KKT conditions. To solve the problem, we use Newton's method as an unconstrained 

minimization technique. Bertsekas [4, 5] has described how the Extended Kalman Filter 

techniques for solving nonlinear least square problems can be seen as an incremental 

version of the Gauss-Newton's method. There is a  strong connection between Kalman 

Filtering and the incremental version of the primal-dual algorithm that we have de

veloped. Actually, if instead of approximating the  Hessian of the Lagrangian using a 

recursive formula, one would approximate the entire Jacobian matrix of the KKT con

ditions, the incremental primal-dual method equations and the Kalman filter equations 

would be the same and the two approaches would be identical. If indeed the primal- 

dual technique is a  special type of Kalman Filters, then this is a completely new look 

at primal-dual methods. There is a  need for further investigation along this line.
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From another viewpoint, interior point methods are related to some existing techniques 

of the field of physics. W ith some particular settings of parameters, interior points algo

rithms lead to systems of equations th a t are identical to the ones found when deriving 

the Mean Field Equations of statistical physics. Actually, it is possible th a t the KKT 

conditions are special cases o f  the Mean Field Equations. Some work is already be

ing done in relating interior point methods and the Mean Field Equations of statistical 

physics [36].

For the neural network application, one is concerned with the choice of number of hid

den nodes. It is believed th a t for each neural network application, there is an optimal 

number of hidden nodes th a t achieves the correct training and the best generalization 

properties a t the least possible cost. One strategy- is to embed the training algorithm 

within a genetic search procedure. The idea is to use the global search strategy  of genetic 

algorithms to determine the optim al number of hidden nodes. For each intermediate 

architecture, it would be beneficial to  use an effective training technique such as our in

cremental nonlinear primal-dual method. In real life applications, neural networks tend 

to have a large amount of connection weights and the number of hidden nodes become 

critical, such hybrid genetic/INCNLPD strategies could be very effective in achieving 

fast and accurate training of the  data.
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A p p en d ix  A

Convergence o f A lgorithm s

In this appendix, we recall some definitions and concepts relative to the convergence of 

algorithms.

Optimization algorithms can be seen as iterative processes that generate sequences of 

vector iterates {xi,X 2 , i 3 , W h e n  we say an algorithm converges to a  solution, we 

mean th a t the sequence of iterates {xk}  converges to a  solution point x*. An algorithm 

is locally convergent if starting from a neighborhood of the solution, the algorithm 

converges to  th a t solution. An algorithm is globally convergent if it converges from 

almost any feasible starting point (Note: The term global here does not refer to seek

ing a global minimizer). Usually, instead of saying {xjt} converges to x", we say the 

sequence { ||x t — x “||} converges to zero, which can also be written as { ||x t — x“||} —> 0  

or limk-^oo\\xk -  z"|| =  0 .

The rate of convergence is another im portant concept. It gives an estimate of how fast 

the algorithm converges to the solution. The different types of convergence are classified 

according to  the rate  of convergence. Next, we define the classification.
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D efinitions o f  O rd e r  o f  C o n v erg en ce  [19]

• If there exists a  constant c 6  [0,1) and an integer k  such that for aü k  > k .

— arjfcll <  c||xjfc — x “||, then {x*} is said to  be q-linearly convergent to x" .

•  If for some sequence {c&} tha t converges to  0, ||xfc+i — x t|| < c t||x t -  x’ ||. then 

{ it}  is said to be q-superlinearly convergent to x “.

•  If there exist constants p >  1, c >  0, and k > 0 such th a t { it}  converges to x ' 

and for all fc >  k , ||x t+ i — x t|| <  c(|xt — then {xt} is said to converge to 

I *  with q-order at least p. If p =  2 then convergence is said to be q-quadratic, if 

p =  3, convergence is said q-cubic.

•  If {xt} converges to  x”, and for some sequence {ct} tha t converges to 0 and for 

some fixed integer j ,  ||x t+ j — x t|| < ct|]x t — x‘ ||, then {xt} is said to be j-step 

q-superlinearly convergent to x*.

•  If { it}  converges to x‘ , and there exist constants p > 1, c > 0, and t  > 0 such 

that {xt} converges to x* and for all k  >  k ,  ||x t+ j — ztll <  c||xt — x * ||p  for some 

fixed integer j ,  then {xt} is said to converge to x“ with j-step q-order at least p.
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A pp en d ix  B

Source C odes
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Makefile for INCNLPD code

LDIR=/a/ranger/honie/resrchO/iiitptinnc/clapack/F2CLIBS
IDIR=/a/raiiger/home/resrch0fintptinnc/clapack/F2CLIBS

OPTIONS=
incnlpd: incnlpd.o dspsv.o ann o fimcann o gradient o vector.o matrix o multiply.o

g++ {(OPTIONS) -o incnlpd -03 -I$(IDIR) incnlpd.o dspsv.o ann o fimcann o
gradient o vector.o matrix o multiply.o -L$(LDIR) -1F77 -1177 -Ismallblas

incnlpcLo: incnlpd.h incnlpd C
g++ {(OPTIONS) -w -c -03 -B(IDIR) incnIpd.C

dspsv.o: dspsv.o
cc {(OPTIONS) -c -w -03 -I{(IDIR) dspsv.c

ann o: ann.h ann C
g++ {(OPTIONS) -w -03 -c ann.C

fimcann.o: funcann.h fimcann C
g++ {(OPTIONS) -w -03 -c fimcann C

gradiento: gradient.h gradientC
g++ {(OPTIONS) -w -03 -c gradient C

vector.o: vectorJi vector.C
g++ {(OPTIONS) -w -03 -c vector.C

matrix o: matrix.h matrix C
g -H - {(OPTIONS) -w -03 -c matrix C

multiply.o: vectorJi matrixJi multiply.li multiply.C 
g++ {(OPTIONS) -w -03 -c multiply.C

sparse.o: matrix.h sparse.h sparse.C
g++ {(OPTIONS) -w -03 -c sparse.C

clean:
rm *.0
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u ------------------------------------------
// File: incnlpd.h
// Main subroutines declarations
U------------------------------------------

class vector; 
class matrix; 
class ann;

vector fkkt(vector&, vector&, vector&, vector&, double, vector&,int ); 
vector gradL(vector&, matrix&,int pat); 
double phi(vector&,vector&,int);
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u----------------------------------
// File: incnlpdC 
// Main File
// Implementation o f INCNLPD Algorithm
U -------------------------------------------------------------------------

#include <stdlib Ji>
^include <iostieam.h>
^include "incnlpd h"
^include <CcJi>
#include "vectorJi"
#include "matrixJi"
#include "multiply Ji"
#include "ann.h"
#include "fUncannJi"
#include "gradienth"
^include <time.h>

// global variables 
ann network; 
unsigned int n,p; 
double mu=l; 
vector z; 
int fiter=0 ; 
timejt tl,t2 ;

vector fkkt(vector& x, vector& s, vector& z, double mu, vector& vgradL,int pat)
{

vector result(n+p+p);

//vector vgradL=gradL(x); 
vector vh=h(x); 
vector vg=g(x,pat);

// gradL(x)
for (register i=0 ;i<n;i++) 

result[i]=vgradL[i] ;

//h(x)
for (register i=n;i<n;i++) 

result[i]=vh[i-n];

//g (x )-s
for (register i=n;i<n+p;i++) 

result[i]=vg(i-n]-s[i-n];
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// Z s  e > mu e
for (register i=n+p;i<n+p+p;i++) 

result[i]=z[i-n-p] •sp-n-pj-mu;

return (result);
}

vector gradL(vector& x, matrix& gg,int pat)
{

time_t t l ,t2 ; 
vector gradgz(n); 
for (register i=0 ;i<n;i++){ 

double sprod=0 ;
for (register j=OJ<pj++) sprod+=gg.get_val(ij)*z.get_val(i); 
gradgz.set_val(i,sprod)y/=mpv(gg^);

}
vector result; 
tl=time(NULL); 
result=grad(&^x,pat,0 .0 1 ); 
t2=time(NULL);

// cout «  "CPU TIME for grad(f) = " «  dififtime(t2,tl) «endl; 
for (register i=0 ;i<n;i++) resuitset_val(i,result.get_val(i)-gradgz.get_val(i)); 
return (result);

}

double phi(vector& vec,vector& vgradL, int pat)
{

double result=0;
vector vx(n),vs(p),vz(p),vecfkkt(n+p+p);

for (register i= 0 ; i< n ;i+ + )  vx[i]=vec[i]; 
for (register i=n;i<n+p;i++) vs[i-n]=vec[i]; 
for (register i= n + p ;i< n + p + p ;i-H -) vz(i-n-p]=vec[i]; 
vecfkkt=fkkt(vx,vs,vz,mu,vgradL,pat);
for(i=0;i<n+p+p;i-H-) result+=vecflckt.get_val(i)*vecflckt.get_val(i); 
return (result);

}

mainO
{

network.infoO;

n=network.get_weightO-get_dimO;
p=2*network.nb_neurons[l];
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cout «  "size o f  vector v: " «  (n+p+p) «  endl; 
vector x(n);

int seed;
cout «  "enter seed" «  endl; 
cin »  seed; 
srand(seed); 
double random=0 ; 
double coef;
cout «  "Coef. for the starting weights:" «  endl; 
cin »  coef 
// random starting point 
for (register i=0 ;i<n;i++) {

//random=((double)(randO)/RAND_MAX-0.5)*2; 
random=coe£*(2.0*randO/(RAND_MAX+1.0)-l .0); 
x[i]=random;
//if (random>0) {x[i]=0.7*pow(networic.nbjieurons[ I], l/networic.nb_neurons[0]);} 
//else {x[i]=-0.7*pow(networicjib_neurons[l], l/networkjib_neurons[0]);}

}

cout «  "starting point:" «  endl; 
x.printO;

vector s(p); 
vector dv(n);
vector v(n+p+p),new_v(n+p+p); 
vector vgradL(n); 
vector ds(p),dz(p); 
double sigma,sigma2 ,fl,G; 
double lambda; 
double eps;
double tau,taul,beta,alfap; 
double gphiTdv,alfàs,alâz,new_crit; 
double armleft,aimright,wolleft,wolright; 
unsigned int armtrue,woltrue;

double exit;
cout «  "enter exit criterion" «  endl; 
cin »  exit;
cout «  "enter forgetting factor"«endl;
cin »  lambda;
double mO;
cout «  "MO:"«endl;
cin »m O ;
cout «  "enter eps for steps ?"«endl; 
cin »  eps;
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vector xs(n);

double crit; 
double tmp; 
unsigned int iter=0 ;

// used to set the sizes of z
z=g(x,0 );
s=z;

matrix H(n,n);

//C2c declarations 
doublereal ap[n*(n+l)/2 ],brhs[n]; 
integer ipiv[n],info,nrhs,n2 ,ldb; 
char uplo;

H.init(0); 
double hO;
cout « "hO  ? "«èndl;cin»hO;

for (register i=0 ;i<n;i++)
H.set_val(i,i,hO);

crit=lOO;
tl=time(NULL);

while (crit>exit) { 
sigma=0 ;
for (register i=0 ;i<p;i++) sigma+=s.get_val(i)*z.get_val(i); 
mu=sigma/mO;

for(register pat=0;pat<network.np;pat++) {

matrix gg(n,p),gg2(p,n),gg3(n,n);

gg.init(O);

for(register i=0;i<network.nb_neurons[01;i++) for(register 
j=OJ<network.nb_neurons(I]y-H-){

gg.set_val(i*network.nb_neurons[ 1 l,2 *j,-network.get_pat_vec(pat,i)); 
gg.set_val(i*network.nb_neurons[l]^*j+l,network.get_pat_vec(pat,i));}

vgradL=gradL(x,gg,pat);

for (register i=0;i<n;i++) for (register j=O j<ny-H-){
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H.set_vaI(iJ,lambda*H.get_vaI(i j)+vgradL[i] •vgradLO]);}

for (register j=Oj<py++) for (register i=0 ;i<n;i++) 
gg2 .set_valO',i,z[il/sO]*gg.get_val(ij));

for (register i=0 ;i<n;i++) for (register j=Oj<nj++){ 
double sprod=0 ;
for (register t= 0 ;k<p;k++) sprod+=^.get_val(Uc)*gg2.get_vaI(kj); 
gg3 .set_val(ij,sprod);
}

gg2.~matrixO;

//H
register k=0 ; 
for (register j=Oy<ng++) 

for (register i=0 ;i<=g;i++){ 
ap[k]=H.get_val(iJ)+gg3 .get_val(i j); 
k++;}

gg3.~matrl\0;

// solve the linear system: J dv = - Fkkt 
vector vfkkt(n+p+p); 
vfkkt=fkkt(x,s,2ynu,vgradL,pat); 

time_t ts,te; 
ts=time(NULL); 
for (register i=0 ;i<n;i-H-){ 

fl= 0 ;
for (register j=Oj<py-H-)

fl+=gg.get_val(i.j)/s[jl*vfkkt[n+p+j]; 
brhs[i]=-vfkkt[i]-fl ;

}

uplo='U';
n2 =n;
nrhs=I;
Idb=n;
dspsv_(&upio,&n2 ,&niiis,ap,ipiv,brhs,&idb,&info);

for (register i=0 ;i<n:i++) { 
v[i]=x[i]; 
dv[i]=brhs[i];

}
te=time(NULL);
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// cout «"Inversion tûne:"«difilinie(te,ts)<<€ndi; 
for (register j=Oy<pj++) {

Q=0;
for (register i=0;i<n;i++) 

£2+=gg.get_waI(ij)*dv[i]; 
ds[j]=f2+vfkkt[n+j]; 
v[n+j]=s[j];
dz(j]—vfldct[n+p+j]/sD]-0 /s[n*2(n; 
v[n+i+p]=zO];

}
vfkkt.~vectorO;
gg.~matrixO;

// backtracking

tau=0.9995; 
tau 1=0.99; 
beta=O.OOOI; 
alfep=I;
gphiTdv=2*(-phi(v,vgradL,pat));

do{
alfas=-l;
aifez=-I;

for (register i=0;i<p;i++) { 
if ((tmp=ds[i]/s[i])<alfes) alfas=tmp; 
if ((tmp=dz[i]/z[i])<aifaz) alfaz=tmp;

}
alfas=-l/alfas;
alfaz=-l/alfaz;
aifas=al&p*tau*alfas;
alfez=alfep*tau*alfe2 ;
alAs=(al6s<l?alAs:l);
alfaz=(al6z< 1 ?al&z: I);

for (register i=0;i<n;i++) 
ne\\'_v[i]=v[i]+alfap*dv[i]; 

for (register i=n;i<n+p;i++) 
new_v[i]=v[i]+aifes*ds[i-n] ; 

for (register i=n+p;i<n+p+p;i++) 
new_v[i]=v[i]+alfez*d2 [i-n-p] ;

ne\v_crit=phi(new_v,vgradL,pat);
armieft=new_crit-phi(v,vgra<i.,pat);
armright=beta*alfkp*gphiTdv;
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woIIeft=-2*new_crit; 
woIright=tau I *gphiTdv;

armtrue=(armleft<=annright);
woltrue=(woUeft>=wolright);

alfkp*=.5;
} while (((!anntrue)||(!woltrue))&&(alâp>eps));

v=new_v;

// update x,y,s,z 
for (register i=0;i<n;i++) 

x[i]=v(i]; 
for (register i=n;i<n+p;i++) 

s[i-n]=v[i]; 
for (register i=n+p;i<n+p+p;i++) 

z[i-n-pj=v[i];
}

crit=ft(x);
iter++;
cout «  "E=" «  crit «  endl; 
fiter=0;

} // another iteration of the algorithm 
t2=time(NULL); 
cout «  "weights="; 
xprintO; 
cout «  endl; 
cout «  "END" «  endl; 
cout «  "number o f feeds:"; 
cout «  iter «  endl; 
cout «  "CPU time:"; 
cout «  di£ftime(t2,ti)«endl; 
cout «  endl; 
unsigned int resp=l; 
while (resp = l){  

network.testO;
cout «"A nother test ? (0/1)"; 
cin »  resp; 
cout « en d l;

}
}
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u -----------------------------
// File: vectorh 
// Vector Class
U-----------------------------

#ifedef_VECTOR_
#define_VECTOR_

^include <iostream.h>

class matrix; 
class sparse;

class vector { 
unsigned int dim; 
double* ptr; 
unsigned int transpose;

friend vector mpy(const vector&, const matrix&); 
fnend vector mpy(const matrix&, const vector&); 
friend vector mpy(const sparse&, const vector&); 
friend matrix mpy(const vector&, const vector&); 
fnend vector trans(const vector&); 
friend vector sum(const vector&, const vector&); 
fnend vector dif(const vector&, const vector&); 
friend vector mpy(const doublet, const vectort); 
friend double dot(const vectort, const vectort);

public:

vectorO;
vector(unsigned int); 
vector(const vectort);

-vectorQ; 
init(const double);

int get_dim(){return (dim);}

vectort operator=(const vectort); 
doublet operatorQCunsigned int); 
double get_val(unsigned int i) {return ptr[i];}

set_val(unsigned int i,double val){ptr[i]=val;}

settransposeO;
printO;
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};

#endif
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u ----------------------------
// File: vector.C 
// Vector Class Body 
n ----------------------------

înclude "vectorh"
#include <iostream.h>

vector rvectorO I I defeult constructor
{

dim=0;
transposed);

}

vector :vector(unsigned int size) // constructs a size -long vector
{

ptr=new double[dim=size]; 
transpose=0;

}

vector :vector(const vector& vec) // copy constructor
{

ptr=new doubIe[dim=vec.dim]; 
for (register i=0;i<dim;i-H-) 

ptr[i]=vec.ptr[il; 
transpose=vec.transpose;

}

vector: :~vectorO 
{

delete Q ptr,
}

vector :init(const double val) // initialize vector with 'val'
{

for (register i=0;i<dim;i-H-) 
ptr[i]=val;

}

vector& vector: :operator=(const vector& v)
{

if ('.(dim)) ptr=new double[dim=v.dim];
if (dim!=v.dim) {cerr«"vect-affi sizes don't match"«endl;exit(I);} 
for (register i=0;i<dim;i++) 

ptr[i]=v.ptr[i]; 
transpose=v.transpose;
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retura(*this);
}

double& vector.;operatorQ(unsigned int i)
{

if (i<=dim) 
return (ptr[i]); 

else {
cerr «  "subscript out of range in vector" «  endl; 
exit(I);

}
}

vector :set_transposeO
{

transpose= 1 -transpose;

vectoriprintO
{

cout «  "( ";
for (register i=0;i<dim;i++) 

cout «  ptr[i] «  " "; 
cout «  ")";
if ('transpose) cout «  "T"; 
cout «  "\n";

}
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n --------------------------------
// File: matrix.h 
// Matrix Class 
U--------------------------------

#ifiidef_MATRIX_
#define_MATRIX_
#include <iostreamJi>
#include <math.h>

class vector,

class matrix { 
unsigned int row,col; 

double** mat;

friend vector mpy(const vector&, const matrix&); 
friend vector mpy(const matrix&, const vector&); 
friend matrix mpy(const vector&, const vector&); 
friend matrix trans(const matrix&); 
friend matrix sum(const matrix&, const matrix&); 
friend matrix dif(const matrix&, const matrix&); 
friend matrix mpy(const double&, const matrix&); 
friend matrix mpy(const matrix&, const matrix&);

public:
matrixO;
matrix(unsigned int, unsigned int); 
matrix(const matrix&);

~matrix();

unsigned int get_rowQ{ return row;} 
unsigned int get_colQ{ return col; }
doublet get_val(unsigned int i,unsigned int j) { return mat[i]|j];} 

set_val(unsigned int i,unsigned int j,double val) {mat[i][j]=val;}

matrixt operator=(const matrixt);

init(double);
printO;
inv();
vector row2vec(unsigned int); 
vector col2vec(unsigned int);
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#endif
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n -------------------------------
// File: matrix.C 
// Matrix Class Body
U------------------------ 1-----

#include "matrix.h"
#inciude "vectorh"
#include <iostream.h>

înclude <stdio Ji>

matrixrrmatnxO
{

row=coi=0;
}

tnatrix::matrix(uiisigned int nb_row, unsigned int nbjcol)
{

row=nb_row;
coI=nb_coI;
mat=new double*[row]; 
mat[0]=new double[row*col]; 
for (register i=l;i<row;i-H-) 

mat[i]=mat[i-l]+coI;
}

matrix::matrix(const matrix& m)
{

rovv=m.row;
col=m.col;
mat=new double*[row]; 
mat[0]=ne\v double[row*col]; 
for (register i=l;i<row;i++) 

mat[i]=mat[i-1 ]+col; 
for (register i=0;i<row;i++) 

for (register j=Oj<coly++) 
mat[i]|j]=m.mat[ilD];

}

matrix: :~matrixO 
{
// for (register i=0;i<row;i++)
// delete mat[i];

delete Q mat[0];
// delete mat;
}
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matrix& niatrix:;operatOT=(const matrix& m)
{

if (!(row)ll!(coI)) { 
row=m.row; 
coi=m.col;
mat=new double*[row]; 
mat[0]=new doubIe[row*col]; 
for (register i= l; i< r o w ;i-H ')  

mat[i]=mai[i-1 ]+m.col;
}
if ((row!=m.row)||(coI!=m.col)) {cerr«"aff: sizes don't match"«endl;exit(l);} 
for (register i=0;i<row,i++) 

for (register j=Oy<colj++)
tnat[i]Q]=mjnat[i][n;

return (*this);
}

matrix; :init(doubIe val)
{

for (register i=0;i<row;i++) 
for (register j=Oj<coly++) 

mat[i][j]=val;
}

matrix: rprintO 
{

for (register i=0 ;i<row;i++)
{

for (register j=Oy<coiy-H-) 
printf("%7.3f",mat[i][j]); 

cout «  "\n";
}

}

matrix::invO
{

matrix lu(row,row); 
vector y(row),b(ro\v); 
int p,temp; 
double m,s; 
int r[row];

for (register i=0 ;i<row;i++) 
for (register j=Oy<rowy-H-)

Iu.mat[i]D]=mat[i](j];
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// LU decomposition

for (register k=0;k<rowdc++) 
r[k]=k;

for (register k=0;k<row-l;k-H-) { 
p=k;
for (register i=k+l;i<row;i++)

if  (fâbs(lujnat[r[î]][k])>kbs0u.inat[r[p]][k])) p=i; 
if (!lu.mat[r[p]][k]) { cerr «  "singular matrix" «  endl; exit(l);} 
if(p!=k) {

temp=r[k];
r[k]=r[p];
r[p]=temp;

}
for (register i=k+l;i<row,i-H-) {

m=lu jnat[r[i]] [k]/Iu jnat[r[k]] [k]; 
for (register j=k+lj<rowy++) 

Iu.mat[r[i]][n=lu.mat[r[i]][n-m*lu.mat[r[k]](j]; 
lu.mat[r[i]][k]=m;

}
}

// backsubstitution

for (register jj=Oyi<row^j-H-) { 
b.init(O.O); 
b[ii]=l-0;

y[0]=b[r[0]];
for (register i=l;i<row;i++) { 

s=b[r[i]l;
for (register j=Oj<ij++)

s-=lu.mat[r[i]l[j]*yDl;
y[‘l=s;

}

mat[row-l][jj]=y[row-l]/lu.mat[r[row-l]][row-l]; 
for (register i=row-2;i>=0;i—) { 

s=y[il;
for (register j=i+1 j<rowy-H-) 

s-=lu.mat[r[i]][j]*inat[i]Qj]; 
mat[i][iil=s/lu.mat[r[i]][i];

}
}

}
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vector matrix: :row2 vec(unsigned int line)
{

vector result(col); 
for (register i=0 ;i<col;i++) 

result[i]=mat[Iine] [i] ;

return (result);
}

vector matrix::col2 vec(unsigned int column) 
{

vector result(row); 
for (register j=Oj<rowy++) 

result[j]=mat|j] [column] ;

return (result);
}
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n ---------------------------------------------
// File: multiply Ji
// Vector and Matrices Operationsn--------------------------

^include "vectorh"
#inciude "matrixJi"
#include "sparseh"

vector mpy(const vector&, const matrix&); 
vector mpy(const matrix&, const vector&); 
vector mpy(const sparse&, const vector&); 
vector mpy(const double&, const vector&); 
matrix mpy(const vector&, const vector&); 
vector trans(const vector&); 
double dot(const vector&, const vector&);

matrix trans(const matrix&);
vector sum(const vector&, const vector&);
vector dif(const vector&, const vector&);

matrix sum(const matrix&, const matrix&); 
matrix dif[const matrix&, const matrix&); 
matrix mpy(const double&, const matrix&); 
matrix mpy(const matrix&, const matrix&);
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u -------------------------------------------------------
// File: multiply .C
// Vectors and Matrices Operations Body
n ----------------------------------------------- L

#include "multiply .h”
#include <iostream.h>

vector mpy(const vector& v_T, const matrix& m)
{

//if (!v_T.transpose) { cerr «  "vector must be transposed" «  endl; exh(l); } 
if (v_T.diml=m.row) { cerr «  "sizes don't match" «  endl; exit(I); }

vector result(m.col); 
for (register i=0 ;i<m.col;i++) { 

result[i]=0 ;
for (register j=Oy<m.rowy++) 

result[i]+=v_T.ptr(j] *m.mat(j] [i] ;
}
return (result);

}

vector mpy(const matrix& m, const vector& v)
{

//if (v.transpose) exit(l); 
if (v.dim!=m.col) exit(l);

vector result(m.row); 
for (register i=0 ;i<m.row;i++) { 

result[i]=0 ;
for (register j=Oj<m.colj-M-> 

result[i]+=v.ptr[j]*mjnat[fl[n;
}
return (result);

}

vector mpy(const sparse& m, const vector& v)
{

cell* curr,
if (v.dim!=m.col) exit(l);

vector result(mrow); 
for (register i=0 ;i<m.row;i++) { 

result[i]=0 ; 
curr=m.row_elts[i]; 
while (curr) {
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resuIt[n+=v.ptr[curr->coIpos]*curr->vaI;
curr=curr->next_in_row;

}
}
return (result);

}

matrix mpy(const vector& v, const vector& wjt)
{

matrix result(v.dim,w_t.dim); 
for (register i=0 ;i<v.dim;i++) 

for (register j=Oj<w_t.dimy++) 
resuIt.mat[i](j]=v.ptr[i]*w_tptrO];

return (result);
}

vector mpv(const doublet d, const vectort v)
{

vector resuit(v.dim); 
for (register i=0;i<v.dim;i-H-) 

result.ptr[i]=d*v.ptr[i]; 
return (result);

}

double dot(const vectort v, const vectort w)
{

if (v.dim!=w.dim) {cerr«"vec-dot: size pbm"«endl; exit(l);} 
double result=0 ; 
for (register i=0 ;i<v.dim;i++) 

result+=v.ptr[i] *w.ptr[i] ; 
return (result);

}

vector trans(const vectort v)
{

vector result(v.dim); 
result=v;
result-setjtranspcseO;
return (result);

}

matrix trans(const m atrix t m)
(

matrix result(m.col, m.row); 
for (register i=0 ;i<m.col;i++)
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for (register j=OJ<m.iowy++) 
result.set_val(ij,m.niat|jl[i]); 

return (result);
}

vector siun(const vector& v, const vector& w)
{

if (v.dim!=w.dim) {cerr «  "sizes dont match” «  endl; exit(I);}

vector result(v.dim); 
for (register i=0;i<v.dim;i-H-> 

result.ptr[i]=v.ptr[i]+w.ptr[i]; 
return (result);

}

vector dif(const vector& v, const vector& w)
{

if (v.dim!=w.dim) {cerr «  "sizes dont match" «  endl; exit(l);}

vector result(v.dim); 
for (register i=0;i<v.dim;i-H-) 

result.ptr[i]=v.ptr[i]-w.ptr[i] ; 
return (result);

matrix sum(const matrix& a, const matrix& b)
{

if ((a.row!=b.row)||(a.col!=b.col)) {cerr «  "mat-sum; sizes dont match" «  endl; exit(l);}

matrix result(a.row,a.col); 
for (register i=0 ;i<a.row;i++) 

for (register j=0 y<a.colj++) 
result.mat[i] [j]=a.mat[i] [|]+b.mat[i] [j]; 

return (result);
}

matrix dif(const matrix& a, const matrix& b)
{

if ((a.row!=b.row)||(a.col!=b.col)) {cerr «  "mat-dif: sizes dont match" «  endl; exit(l);}

matrix result(a.row,a.col); 
for (register i=0;i<a.row;i-H-) 

for (register j=Oy<a.colj++) 
result.mat[i][j]=a.mat[i][j]-b.mat[i][j]; 

retum(result);
}
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matrix mpv(const doublet d. const m atrix t m)
{

matrix result(m.ro»r%m.coI); 
for (register i=0 ;i<m.row;i++) 

for (register j=Oy<m.colj++) 
result.mat [i] [j]=d*m.mat[i] [j] ; 

return (result);
}

matrix mpy(const m atrix t a, const m atrix t b)
{

if (a.col!=b.row) {cerr«"mat-mpy: sizes pbm" «  endl; exit(l);}

matrix resuIt(a.row,b.col); 
for (register i=0 ;i<a.row;i-M-) 

for (register j=Oy<b.col;j+-t-) { 
result.mat[i]0 ]=O; 
for (register l^;k<a.col;k++) 

resultmat(i]|j]+=a.mat[i][k]*b.mat[k]Q];
}

return (result);
}
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u ----------------------------
// File: gradient Ji 
// Gradient Subroutines
U----------------------------

static double maxargl,niaxarg2;
#define max(a,b) (maxaig l=(a),maxarg2=(b),(maxarg 1 )>(maxarg2)? \ 
(maxargl):(maxarg2))

class vector; 
class matrix;

vector grad(double (*flmc)(vector&),vector& x,double b);
vector grad(double (*fiinc)(vector&,int),vector& x,int pat,double h);
matrix grad(vector (*ilmc)(vector&,matrix&,int),vector& x,matrix& gg, int pat, double h);
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u ---------------------------
// File: gradientC 
// Gradient Subroutines Body
U---------------------------

#include <tnath.h>
^include "gradienth"
^include "fimcannJi"
#inciude "vectorJi"
#include "matrixh"
^include "multiply .h"

^define CON 1.4 
#define C0N2 (CON*CON)
#define BIG I.OelO

// NTAB=10 (deAult)
#define NTAB 2 
#define SAFE 2.0

vector grad(double (*fimc)(vector&),vector& x,double h)
{

int ij;
double err,errt,fec; 
matrix a(NTAB,NTAB); 
vector hh(x.get_dimO); 
vector result(x.get_dimO);

for (int register gc=0 ;gc<x.getjdimO;gc++)
{

if ( h = 0 .0 ) cerr «  "h must be nonzero in gradient." «  endl;
a.init(O);
hh.init(0 );
hh[gc]=h;

a.set_val(0 ,0 ,((*func)(sum(x,hh))-(*func)(dif(xjih)))/(2 .0 *hh[gc]));
err=BIG;
for (i=l;i<NTAB;i++) { /* successive columns in the Neville tableau will •/

/* go to smaller stepsizes and higher orders of */
/* extrapolation •/

hh[gc]/=CON;
a.set_val(0 ,i,((*func)(sum(x,hh))-(*fbnc)(dif(x,hh)))/(2 .0 *hh[gc])); /• try smaller step-

size */
fec=C0N2;
for 0=1 j<=ij++) {/* compute extrapolations of various orders, •/

/* requiring no new function evaluations */
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a.set_vaIO',i,(a.get_vaIO'-l,i)*fec-a.get_vaIO-U*l)K(^àc-1.0)); 
ent=max(febs(a.get_valO,i)"a.get_vaIO’-l.i))rfebs(a.get_vaIO',i)-a.get_yaIO-Ui"l))); 
/* the error strategy is to compare each new extrapolation to one */
/* order lower, both at the present stepsize and the previous one */ 
if  (ent<=err) { /• if error is decreased, save the improved answer •/ 

err=errt;
result[gcl=a.get_vaIO'U);

}
}
if (fabs(a.get_val(i,0-a.get_val(i-l,i-l))>=SAFE*(err)) {

/* if higher order is worse by a  significant Actor SAFE, then quit *!
/* early. •/
break;

}
}

}
return (result);

}

matrix grad(vector (*fiinc)(vector&,niatrix&,int),vector& x,matrix& gg, int pat, double h)
{

int i j ;
double err,ent,fec;
matrix a(NTAB,NTAB);
unsigned int row==x.get_dim();
unsigned int col=(*func)(x,gg,pat).get_dimO;

vector hh(row); 
matrix result(row,col);

for (int register gcol=0 ;gcol<col;gcol++)
{

for (int register grow=0 ;grow<row;grow++)
{

if ( h = 0 .0 ) cerr «  "h must be nonzero in gradient." «  endl;
a.init(O);
hhinit(O);
hh[grow]=h;

a.set_val(0 ,0 ,((*fimc)(sum(x4 di),gg,pat)(gcol]-
(*fiinc)(dif(x,hh),gg,pat)(gcol])/(2 .0 *hh[grow]));

err=BIG;
for (i=l;i<NTAB;i-H-) { /* successive columns in the Neville tableau will */

I* go to smaller stepsizes and higher orders o f */
/* extrapolation */
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hh[grow]/=CON;
a.set_vaI(0,i,((*fUnc)(sum(xJih),gg,pat)[gcoI]- 

(*func)(dif(x,hh),gg,pat)[gcol])/(2-0*hhlgrow])); /* try smaller step-size V 
fac=C0N2;
for (i=l j<=ij++) { /* compute extrapolations o f various orders, */

/* requiring no new function evaluations */ 
a.set_val(j,i,(a.get_valO‘-1 ,i)*fec-a.get_val(j-1 ,i-1 ))/(fec-1.0)); 
errt=max(6bs(a.get_yal(i,i)-a.get_yal(i-l,i)),fabs(a.get_yal(i,i)-a.get_yal(i-l,i-1 ))); 
/* the error strategy is to compare each new extrapolation to one */
/* order lower, both at the present stepsize and the previous one */ 
if (errt<=err) {/*  if error is decreased, save the improved answer •/ 

err=errt;
result.set_vaI(grow,gcol,a.get_valO,i));

}
}
if (fkbs(a.get_val(i,i)-a.get_val(i-I,i-l))>=SAFE*(err)) {

/* if higher order is worse by a significant fector SAFE, then quit */
/* early. •/
break;

}
}

}
}
return (result);

vector grad(doubIe (*func)(vector&,int pat).vector& x,int pat,doubie h)
{

in tij;
double err,errt,fec; 
matrix a(NTAB,NTAB); 
vector hh(x.get_dimO); 
vector result(x.get_dim0 );

for (int register gc=0;gc<x.get_dim();gc++)
{

if (h=0.0) cerr «  "h must be nonzero in gradient." «  endl;
ainit(O);
hhinit(O);
hh[gc]=h;

a.set_val(0,0,((*funcKsum(x,hh),pat)-(*funcKdif[x,hh),pat))/(2.0*hh(gc]»;
err=BIG;
for (i= 1 ;i<NTAB;i++) {/* successive columns in the Neville tableau will •/

/* go to smaller stepsizes and higher orders of */
/• extrapolation •/
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hh(gc]/=CON;
a.set_vaI(04,((*fiinc)(sum(x4ih),patH*fiinc)(dif(x,hh),pat))/(2.0*hh[gc])); I* tr>' 

smaller step-size V
fac=C0N2;
for (i=l { /•  compute extrapolations of various orders, */

/* requiring no new function evaluations */ 
a.set_valO‘,i,(a.get_vaIO'-l,i)*fec-a.get_val(i-l,i"l))/(fec-1.0)); 
errt=max(febs(a.get_valO,i)-a.get_valO'-l,i)),febs(a.get_vaiO',i)-a.get_valO'-l,i-l))); 
/* the error strategy is to compare each new extrapolation to one */
/* order lower, both at the present stepsize and the previous one */ 
if  (errt<=err) { /* if error is decreased, save the improved answer •/ 

err=ent;
result[gc]=a.get_valO,i);

}
}
if  (febs(a.get_val(i,i)-a.get_val(i-l,i-l))>=SAFE*(err)) {

/* if higher order is worse by a significant factor SAFE, then quit • /
/* early. V
break;

}
}

}
return (result);

}
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n ---------------------------------------------------
// File: füncannh
// Objective and Constraints Functions
n ---------------------------------------------------

double f(vector&,int); 
double ft(vector&); 
vector h(vector&); 
vector g(vector&,int);
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u ----------------------------------------------------
// File: funcann.C
// Objective and Constraints functions Body
n --------------------------------------------------1

#include "annJi”
^include "vectorh"

extern aim network; 
extern unsigned int n ^ p ;  
extern int fiter;

double f(vector& w,int pat)
{

network.update_weight_matrix(w);
fiter++;
return (network.E(pat));

}

double ft(vectcr& w)
{

network.update_weight_matrix(w);
fiter++;
return (network.EO);

}

vector h(vector& w)
{

vector vh(0 ); 

return (vh);
}

vector g(vector& w,int pat)
{

vector vg(2 *network.nb_neurons[I]); 
network.update_weight_matrix(w); 
for (register i=0 ;i<network.nb_neurons[l];i++) { 

vg[2*i]=-network.weighted_sum(i,pat)+network.weigfatJbound; 
vg[2 *i+ 1 ]=network.weighted_sum(i,pat)+networi(.weight_bound;

}
return (vg);

}
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u -------------------------------
// File; aim.h 
// ANN Class
n -------------------------------

#include <stdio.h>
#include <iostream.h>

class vector, 
class matrix;
//class sparse; 
struct cell;

class ann {

private: 
char net_filename[ 1 0 ]; 
char out_filename[ 1 0 );
FILE *net_fp;
FILE *out_^; 
unsigned int nbjayers; 
unsigned int totjneurons; 
unsigned int nbjnput; 
unsigned int nbjoutput; 
unsigned int nb_pattems; 
vector* connexion_vector;
//sparse* weight_matrix; 
matrix* \veight_matrix; 
matrix* pattern; 
vector* input;

public: 
unsigned int op; 
unsigned int* nb neurons; 
double weight bound; 
vector* weightvector; 

ann();
~ann(); 
infoO; 

vector get_weightO;
update_weight_matrix(vector&); 

double activation(double); 
vector output(vector&); 
double weighted_sum(int,int); 
double get_pat_vec(int,int); 
double EO;
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double E(int); 
double E_henonO;

set_input(unsigned int, double); 
double verifO; 

load_weightO;
\vrite_outO;

testO;
};
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n---------------
// File: ann.C 
// ANN Class Body
U-----------------------

#include <iostreamii>
#include <math.h>
#include "annh"
^include "vectorh"
^include "matrixJi"
//#include "sparse.h"
#include "multiply .h"

annirannO
{

cout «  "enter net filename:"; 
cin »  net_filename;
if (!(net_fp=fopen(net_filename,"r"))) {cerr «  "unable to open file" «  endl; exit(I);} 
//cout «  "enter outputs filename:";
//cin »  out_filename;
//if (!(out_fp=fopen(out_fiIename,"w"))) {cerr «  "unable to open file" «  endl; exit(I);}

fscanf(net_fp,"%i",&nbjayers);

unsigned int dim=0 ; 
tot_neurons=0 ;

nb_neurons=new unsigned int[nb_layers];

for (register i=0 ;i<nb_layers;i++) { 
fscanf(net_fp,"%i",nb_neurons+i); 
if (i) dim+=nb_neurons[i“I]*nb_neurons[i]; 
tot_neurons+=nb_neurons(i] ;

}
nb_input=nb_neurons[0 ];

input=new vector(nb_input);

nb_output=nb_neurons [nbjayers- 1  ] ;

connexion_vector=new vector(tot_neurons); 
weight_vector=ne\v vector(dim);

//weight_matrix=new sparse(tot_neurons,tot_neurons); 
weight_matrix=nevvmatrix(tot_neurons,tot_neurons);
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fscan£(net_fp,"%lf',&\veightJbound);

fscan£(net_fp,"%i",&nb_patterns);
np=nb_pattems;
pattem=newmatrix(nb_patterns^b_input+nb_output); 

double vai=0 ;

for (register i=0 ;i<nb_paitems;i++) 
for (register j=Oy<nb_input+nb_outputj++) { 

fscanf(net_fp,"%lf',&val); 
pattem->set_val(ij,val);

}

fcIose(net_fp);
}

ann: :load_weightO 
{

char weight_filename[2 0 ];
FILE* \veight_fp; 
double val;

cout «  "enter weight filename:"; 
cin »  weight_filename;

if ( ! (weight_fp=fopen(weight_filename,"r")))
{ cerr «  "unable to open file" «  endl; 
exit(l);

}

for (register i=0 ;i<weigbt_vector->get_dim();i-H-) { 
fscanf(weight_fp,"%lf',&val); 
weight_vector->set_val(i.val);

}

fclose(weight_fp); 
cout «  "weights:"; 
weight_vector->printO; 
update_weight_matrix(*weight_vector);

}

ann::~ann()
{

//fclose(out_fp);
}
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ann::mfoO
{

cout «  "NETWORK FILE: " «  net_filename «  endl; 
cout «  "number of inputs: " «  nb_input «  endl; 
cout «  "number of outputs: " «  nbjoutput «  endl; 
cout «  "number of hidden layers : " «  (nb_layers-2) «  endl; 
for (register i=0;i<nb_layers-2;i++) 

cout «  "hidden layer # " «  (i+1) «  ": " «  nb_neurons[i+l] «  " neurons" «  endl; 
cout «  "weight boundary: "; 
cout «  weightjbound «  endl; 
cout «  endl;
cout «  "training pattem:" «  endl; 
pattem->printO;

}

vector ann::get_weightO 
{

vector result(weight_vector->get_dimO); 
for (register i=0 ;i<result.get_dimO;i++) 

result[i]=weight_vector->get_val(i);

return (result);
}

ann::update_weight_matrix(vector& w)
{

unsigned int col_indx,row_indx; 
unsigned int cpt=0 ; 
weight_matiix->init(0 );

col_indx=nb_neurons[0 ];
row_indx=0 ;
for (register i=0 ;i<nb_layers- 1 ;i++) { 

for (register entry=0 ;entry<nb_neurons[i];entry++) ( 
for (register j=Oj<nb_neurons[i+l]j++) 

weight_matrix->set_val(row_indx+entry,col_indx+j,w.get_val(cpt++));
}
col_indx+=nb_neurons[i+ 1 ] ; 
row_indx+=nb_neurons[i];

}
}

double aim::activation(double in_neuron)
{

double result;
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// result= 17( I +exp(-in_neuron)); // binary sigmoid 
resuIt=(l-exp(-in_neuron))/(l+exp(-in_neuron)); // bipolar sigmoid 
return (result);

}

vector aim;:output(vector& input)
{

//ceil* curr;
//double sum;
vector result(nb_output);

for (register i=nb_neurons[0];i<tot_neurons;i++) 
input[i]=0;

for (register i=nb_neurons[0];i<tot_neurons;i+-t-) 
input[i]=activation(dot(weight_matrix->col2vec(i),input));

// sparse matrix version 
//curr=vveight_matrix->coI_elts[i] ;
//sum=0 ;
//while (curr) {

//sum=sum+input[curr->ro\vpos] *curr->vai; 
//curr=curr->next_in_col;

//}
//input[i]=activation(sum);

//}

for (register i=0;i<nb_output;i-H-) 
resuit[i|=input[i+tot_neurons-nb_output];

return (result);
}

double ann;:weighted_sum(int j,int pat)
{

vector vec(tot_neurons);

for (register i=0 ;i<nb_input;i++) 
vec.set_val(i,pattem->get_val(pat,i)); 

for (register i=nb_input;i<tot_neurons;i++) vec.set_val(i,0 ); 
return (dot(weight_matrix->col2 vecO),vec));

}

double ann::get_pat_vec(int pat,int j)
{

return pattem->get_val(patj);
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}

double ann::EQ 
{

double result=0 ; 
vector out_vec(nb_output);

for (register i=0 ;i<nb_pattems;i++) { 
for (register j=Oj<nb_inputj++) { 

connexion_vector->set_valO,pattem->get_val(ij));} 
out_vec=output(*connexion_vector); 

for (register j=Oy<nb_outputj++) 
out_vecQ]-=pattem->get_val(ij+nb_input); 

result+=dot(out_vec,out_vec);
}
return (result);

}

double ann;:E(int pat)
{

double result=0 ; 
vector out_vec(nb_output);

for(register j=Oj<nb_inputy++) f 
connexion_vector->set_valO',pattem->get_val(patj));} 
out_vec=output(*connexion_vector); 

for (register j=Oj<nb_outputj-H-)
out_vec[j]-=pattem->get_val(patj+nb_input); 

result+=dot(out_vec.out_vec); 
return (result);

}

double ann;:E_henon()
{

double a= 1.4; 
double b=0.3;

//cout «  "zk-l=" «  input->get_val(l) «  " zk-2 =" «  bput»>get_val(2 ) «  endl;

double result=0 ; 
vector out_vec(nb_output);

for (register i=0;i<3;i-n-) 
connexion vector->set_val(i,input->get_val(i)); 

out_vec=output(*connexion_vector); 
result=out_vec[0 ] ;
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resuIt-=l-a*po\v(input->get_vaI(l)^)+b*input->get_val(2);
result*=result;
return (result);

}

ann;:set_input(unsigned int i, double val)
{

input->set_val(i,val);
}

annr.testO
{

vector input(tot_neurons); 
cout «  "enter input vector" «  endl; 
for (register i=0 ;i<nb_input;i++) { 

cout «  "input[" «  i «  "]="; 
cin »  input[i];

}
cout «  "output="; 
output(input) .printO; 
cout «  endl;

}

double ann::verif()
{

vector outvec; 
vector in_vec(tot_neurons); 
int correct=0 ; 
double percent=0 ;

double threshold=0.5; 
for (register i=0;i<nb__pattems;i++) { 
for (register j=Oy<nb_inputj++) { 

in_vec.set_valO',pattem->get_val(ij));
}
out_vec=output(in_vec); 
//fprintf(out_fp,"%g,",out_vec[0 ]); 
if  (out_vec[0 ]<threshold) out_vec[0 ]=0 ; 
else out_vec[0 ]=l;
if (out_vec[0]=pattem->get_val(i,nb_input)) correct++;

}
//fprintf(out_fp,"\n");
cout «  "correct outputs " «  correct «  endl; 
percent=(double)correct/nb_pattems; 
cout «  "efficiency " «  percent «  endl;

146



return (percent);
}

ann:nvrite_outO
{

vector net_out(nb_output);

for (register p=0;p<nb_pattems;p-H-) { 
for (register i=0;i<nb_input;i++) { 

connexion_vector->set_vaI(i,pattem->get_vaI(p,i)); 
net_out=output(*connexion_vector); 
fprintf(out_ô),"%g ",net_out[0]);

}
fprintf(out_fp,"\n");

}
}
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