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ABSTRACT

This study investigates the diumal variability o f the Central Colorado downsiope 

windstorm via linear theory and numerical experiments. A simplified two layer linearized 

analytical solution is used to characterize the effects o f  a neutral boundary layer on the 

mountain wave environment. The theoretical results are compared to simulations fi'om a 

newly developed mesoscale numerical model and to observations. The results indicate 

that parameterized surface heating decreases mountain wave intensity, in accordance 

with observed windstorm tendencies. In terms o f the surface wave drag, the numerical 

solutions o f heated flow over idealized mountain profiles conform to the linear analytical 

findings to within a factor o f two. Owing to a parameterized heating cycle, decreases in 

steady state surface wave drag were observed to be as large as 50%. The decline o f 

wave activity in the simulations and analytical solutions was found to be a function o f the 

mixed layer depth, with thicker mixed layers producing larger reductions.

The two-dimensional simulations o f the January 9, 1989 Boulder windstorm 

event show sensitivities, due to surface heating, that are consistent with observations and 

linear theory. Tests of similarly configured idealized two and three-dimensional heated 

mountain wave flows indicate that when the upstream Froude number is less than order 

unity, the results fi'om the infinite ridge tests can, in general, be applied to a three- 

dimensional ridge of sufficient cross-flow length. The largest differences between the 

two and three-dimensional simulations are evident when the flow splits upstream o f the 

mountain. This occurs for Froude numbers greater than unity. In instances where Fr>I,

X V ll



the pre-heating period steady state flow is substantially different than the infinite ridge 

case, and upstream blocking far outweighs the effects o f parameterized surface heating.

An interesting observation is made regarding the strongly heated experiments. 

The high drag state associated with the strong mountain wave and downsiope windstorm 

control runs prevail but at a reduced level. The numerical experiments reveal that once a 

windstorm develops, a well-mixed boundary layer o f modest depth ( 1.5km) is unable to 

eliminate the high drag state completely. This result suggests that changes in the mean 

state are necessary for dissipation o f the event.
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CHAPTER 1 

INTRODUCTION

Strong westerly winds in the lee o f the Central Colorado Rockies termed 

■‘downsiope winds” have been observed for many years. Windstorms are characterized 

by winds greater than 60mph with a duration on the order o f several hours. This 

phenomenon is also observed near other mountain ranges such as the Andes in South 

America and the Alps in Europe. Until the I970’s, severe wind events were not well 

understood. With the location of the National Center for Atmospheric Research Mesa 

Laboratory in Boulder Colorado in the early I970’s, local atmospheric scientists 

became interested in this phenomenon. Several severe events were investigated and the 

strong winds attributed to gravity wave-related processes. In the years that followed, 

numerical and analytical studies addressed different aspects o f  this phenomenon. 

However, predicting the onset of strong downsiope winds remains a forecasting 

challenge.

The purpose of this work, using analytical and numerical methods, is to 

investigate the effects o f a developing mixed boundary layer (heating period of the 

diumal cycle) on idealized mountain wave flows and to propose an explanation for the 

observed windstorm tendencies. The desire to investigate this topic developed after 

reading hundreds o f  articles on mountain waves and downsiope windstorms. There are 

relatively few papers in the literature addressing the effects o f a neutral boundary layer 

on mountain wave flow. In addition, there was no explanation o f the observed diumal



windstorm bias (presented in the next section). This chapter includes a review of the 

Central Colorado windstorm observational record, mechanisms for downsiope 

windstorms, studies on heated windstorms, and windstorm prediction. This chapter is 

closed with a statement o f the project’s objectives and methods.

1.2 W indstorms O bservations

Boulder Colorado is located on the lee slope o f the Rocky Mountains and has 

experienced a significant number o f high wind events. Three observational studies 

using data collected in the Boulder area suggest a diumal variation in windstorm 

strength and occurrence. The study by Julian and Julian (1969) includes surface 

meteorological data, newspaper accounts o f wind damage, and emergency calls to the 

local fire departments over the period 1906-1969. Their analysis reveals both diumal 

and seasonal variability to windstorm occurrence. They found frequency minima in the 

months o f June, July, and August and a frequency maximum during January (Figure 

1.1). The annual peak in January is associated with a minimum in solar radiation and 

strong cross-mountain flow.

Brinkmann (1974) found 20 windstorm cases over the 1968-1971 period. Her 

criterion for windstorm occurrence is sustained winds o f 22 m/s or wind gusts to >33 

m/s (hurricane force). Her analysis produces a ratio o f approximately 2.5 to I for the 

number o f windstorms occurring at night versus during the day. In addition, the most 

exposed Boulder wind-recording site indicates a tendency for surface wind speed 

maxima at 3, 7, 15, and 20 LST. She found instances during the nighttime hours where
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Figure 1.1. Boulder, CO monthly windstorm frequency distribution. The data source is 

Julian and Julian (1969).



the surface winds subside, only to increase dramatically just before sunrise. Brinkmann 

notes that the wind maxima propagate eastward down the lee slope. Although 

damaging winds have been documented during the mid-day hours, this observational 

study shows that the most severe winds occur during the night.

Whiteman and Whiteman (1974) analyzed data collected from 1869-1972 and 

obtained results similar to those o f Brinkmann. Their study includes an hour by hour 

frequency distribution and is shown in Figure 1.2. The results show a four-fold 

difference between the frequency maximum at night and the daytime minimum.

Observations during the January 12, 1972 windstorm in Boulder (Figure 1.3) 

indicate winds speeds gusting to 100 mph, the instrument limit, with sustained winds of 

60 mph for periods greater than an hour. From Figure 1.3, it is clear that winds 

associated with high wind events are inherently gusty. During the observation period, 

there are two distinct strong wind periods, from 1230-1330LST and 2030-2200LST (a 

three hour power failure occurred between 1330-1630LST and is not indicated on the 

strip chart).
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Figure 1.2. Hourly frequency distribution for windstorms observed in Boulder, CO during the period 1869-1972. The data is 

taken from Whiteman and Whiteman (1974).



1 '  ̂k ' ' ' • • • ' s
■ -isis IIHE! Pp--F!:;-;

',i‘ 7!  : ,  r ^ ;nil : üp'i-itijsni-.ijyi

4441 r't : I ri:IiTLi # = ?

à 1 \ *»T*
: H ! W  1  ' . n \ i  v . B n  l î e i ï  t ' - ' - ’- Æ T  . ï ' . i ^ t - . r - r . c -  % a m a e 9 # g i ' T r ;  ■

'I ' ' ' ' U ft i ; t r  . ■.:
II , i r t , 1  r  1 1 II ■ ! • ■ '■■ t '  ' f  il  ".■ :  f i -  ' --s>3Sj3 i ;  S '-il '; “ i : . , :  ' . r . l Z
' 1 1 1 ! : , .  ’  I I ' 11 111 j  j  , 1  J i  i 4 i  I I  I  '  I  - i i  I  s i i r l ' i M ' i  ■  I  i 1 ; M i m i : ? ^ =

lU 'l  U i i i L t t i / h ' / i i S i f  ^ L a r i E u m i ü J  /  , ' r r v  ; , , -

gj»gggg/y^gfig&r.x/v-fgj»w3aaFggj^g’;^ggg.gK^ ̂ r V? -z> »
' !' 1H

- Z Z I - L Z Z C M 1 I Î I ’l I r i H l  i l l  i f j * l i i w l— J  3  I J H T '!  M  r r o w g p r r i f g s t g R M g w a w B ^
5 £ . c : *

•  •  •  •  #  _ e  •  *  * - • •  •  T

Figure 1.3. Anemometer trace from the Southern Hills Junior high School o f Boulder 

Colorado on January 12, 1972 from 1000-2300LST. A power failure interrupted the 

chart recording at 1325LST and times after this point should be increased by 

approximately 3 hours. Vertical scale is in mph and time runs from right to left. 

(From Lilly and Zipser, 1972)



1.2 Literature Review

This review focuses on the application o f analytical methods to downslope 

windstorm formation and heated mountain flows. The meteorological literature 

contains hundreds o f  papers on gravity wave theory and its application to a variety of 

problems. In this section, gravity wave theory is used in a linear sense to help explain 

some o f the observed mountain wave characteristics. Other theories such as the 

hydraulic flow analog are introduced to add another perspective for downslope 

windstorm development. Finally, heated mountain waves and forecasting efforts are 

discussed from the limited journal entries.

1.2.1 Mechanisms for Downslope Windstorm Generation

Over the past 25 years, a significant effort has been made to unravel the cause 

o f occasional strong winds on the lee side o f  the Front Range of Colorado, using two 

and three-dimensional numerical models, analytical theory, and forecasting 

experience. Three analytical theories explaining the downslope windstorm 

amplification process are reviewed here.

1.2.1.1 Linear Theory

Several authors (Queney, 1948; Scorer, 1955; Eliassen and Palm, I960) used 

linear theory to describe the basic gravity wave response to flow passing over an 

obstacle in a continuously stratified fluid. Their work addresses wave processes, 

transfers of momentum and energy with the mean flow, and wave reflection. Klemp



and Lilly (1975) applied linear perturbation theory to estimate the resonant 

characteristics in multi-layer atmospheres for linear hydrostatic mountain waves. 

Their analysis considered two, three, and four layer atmospheric configurations. For 

a  three layer atmosphere in which the bottom and top layer stability is greater than 

that in the middle layer, the maximum surface wind and corresponding wave drag 

occurs on the lee slope when each of the bottom two layers are V*. of a vertical 

wavelength thick. For the two-layer problem in which the lower layer is less stable 

than the upper layer, the optimum configuration for maximum surface wind response 

occurs when the lower layer is Vz vertical wavelength deep. The reflection theory has 

merit since it is easily applied to observed atmospheric temperature profiles. As 

shown later in this chapter, the three-layer configuration with a less stable middle 

layer is commonly observed upstream of Boulder severe windstorm events.

1.2.1.1 Finite Amplitude Theory

Large amplitude mountain waves and downslope windstorms are high-energy 

events and may not be adequately describable by linear analysis. The validity of 

linear theory for describing downslope windstorms was investigated by Durran (1986, 

1990, 1992). Using a non-linear non-hydrostatic numerical model, Durran (1986) 

found that linear theory is better suited for describing the flow characteristics in 

single layer atmospheres. For multi-layer atmospheres, the nonlinear effects can be 

significant and the value of linear analysis is suspect. With the aid of numerical 

procedures, Durran (1992) applied a two layer Long’s equation analysis to investigate



the evolution o f finite amplitude forced gravity waves. For atmospheres with a high 

stability layer superimposed on a low stability layer, the solution showed a significant 

sensitivity to the height o f  the interface, with linear theory either over- or 

underestimating the wave response.

Clark and Peltier (1977, 1984) and Peltier and Clark (1979) conducted a 

number of non-linear numerical simulations in which significant amplification in the 

surface wave drag was observed in combination with a wave-induced critical layer.

A critical layer occurs when the phase speed o f a wave equals the speed of the flow. 

For waves locked to terrain, this occurs when the wind speed is reduced to zero. In a 

critical layer, both the horizontal and vertical velocity components vanish. More 

information concerning critical layers is available in Bretherton (1966) and Gill 

(1982). Clark and Peltier suggest that strong downslope winds are coupled to the 

presence of a wave-induced critical layer, with high winds developing shortly after 

the critical layer appears. A critical layer generally forms after an intensifying wave 

overturns and breaks. Their numerical model results reveal surface wave drags o f 

order 6 times greater than the linearized counterpart. Clark and Peltier propose, using 

resonant linear theory, that wave-induced critical layers develop when the distance 

between the critical layer and the mountain is;

Hg = — + — n = 0 ,1,2,3...

They contend that the wave-induced critical layer acts as a  reflector of the vertically 

propagating wave energy.



Smith (1985) applies Long’s equation to a strongly forced mountain flow.

The idealized configuration includes a dividing streamline with an initial upstream 

height. Above the dividing streamline height the flow is assumed to be undisturbed. 

Over the mountain, the region above the dividing streamline is assumed to be well- 

mixed. This method implicitly includes a critical layer and wave-overturning 

characteristics in the region above the dividing streamline. Smith’s theory predicts 

amplification when the critical layer height is between (V* + n) and (V* + n) vertical 

wavelengths. This amplification is tied to a specific mountain height. If the 

mountain height is greater than needed, then the upstream conditions may adjust and 

the theory no longer applies. Durran (1986) and Durran and Klemp (1987) tested this 

approach to the downslope windstorm problem through the use of a numerical model 

for a single layer atmosphere. Within the confines o f a mean state critical layer 

required by Smith’s theory, the results were verified for a number of critical layer and 

mountain heights.

1.2.1.3 Hydraulic Theory

The use o f hydraulic theory to describe downslope winds was first proposed 

by Long (1953). Since then, it has been applied by Durran (1986, 1992) to explain 

the similarity between the hydraulic analog and observed strong downslope winds. 

The shallow water equations are commonly used to describe hydraulic theory and are 

reproduced here. Starting with the steady state horizontal momentum and continuity 

equations for the shallow water system with an overlying free surface.
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eu ôD dh
w — + + = 0 , (11)

ex  ex ex

^ ^ ^ > = 0 .  (1.2)
dx

a relationship for the slope o f  the free surface can be developed:

f  = . ( 1.3 )
dx dx

The variables in (I. I), (1.2), and (1.3) are u the horizontal velocity, g  the 

acceleration due to gravity, D  the thickness o f the fluid, and h is the height o f  the 

topography. Flow over an obstacle can be divided up into two categories, subcritical 

and supercritical, according to the Froude number. In shallow water theory, the 

Froude number is defined by:

The Froude number describes the ratio o f  the advection and pressure gradient terms. 

Referring to (1.1), the balance o f  forces for supercritical flow (F r  >1) reveals ± a t the 

advection term (first term) dominates the pressure gradient term (second term). The 

resulting acceleration acts to slow the parcel down as it approaches the mountain
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crest. The slope o f the free surface is positive and the parcel increases its elevation 

on approach to the crest. In the lee o f the obstacle, the free surface has a negative 

slope and the parcel accelerates down the lee slope. In subcritical flow, the pressure 

gradient due to the deflection of the free surface dominates the advection term 

( F r < l )  and the fluid accelerates as it approaches the mountaintop. Following (1.3), 

the slope o f  the free surface is negative upstream of the mountain and positive 

downstream o f the mountain. A transition to strong flow on the lee side o f the 

obstacle is possible when subcritical flow becomes supercritical. This occurs when 

the decrease in the thickness o f the fluid and increase in the velocity is sufficient to 

force the Froude number to greater than unity. A diagram o f three types o f shallow 

water flow is presented in Figure 1.4 courtesy of Durran (1990). This figure presents 

subcritical, supercritical, and hydraulic jump fluid flow patterns over an obstacle. A 

hydraulic jump is defined as a turbulent energy-dissipative region in which a 

supercritical flow pattern transforms to subcritical flow, and is commonly compared 

to severe downslope winds. In this case, potential energy is converted to kinetic 

energy the entire length of the mountain, creating strong lee side flow. Durran (1986) 

contends that the processes leading to strong winds in the lee of the mountain are 

explained most accurately by the hydraulic analog. This theory has its limitations, 

since the free surface assumption prevents vertical gravity wave propagation.

12
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Figure 1.4. Flow regimes for water flowing over an obstacle: (a) supercritical, (b) 

subcritical, and (c) hydraulic jump. (Taken from Durran, 1990)
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1.2.2 Three Dimensional Theory

Studies of three-dimensional flows over mountains are relatively rare in the 

scientific literature. Only recently have attempts been made to explain the processes 

associated with flow over isolated mountains using analytical and numerical methods. 

The numerical approach is discussed later in the forecasting section.

Three-dimensional analytical mountain wave solutions are more difficult to 

obtain. There are far fewer papers related to three-dimensional analytical gravity 

wave solutions as compared to the two-dimensional equivalent. The three- 

dimensional studies include Wurtele (1957) and Crapper (1959, 1962) for non­

hydrostatic modes and the recent work of Phillips (1984) and Smith (1980,1988, and 

1989) for the hydrostatic modes. Smith’s (1980) analytical work discusses a number 

of issues not previously explored. He uses the Boussinesq linearized hydrostatic set 

o f equations to obtain analytical solutions for flow over a circular mountain. The 

solution for the streamline deflection is of the form;

ii
+00 +00

—00 -00

where,

X = x / a ,  y = y / a ,  z = z / a ,  k = k / a ,  I = l / a ,  f  = xa,

fc = yjk^ +1^ ,
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and y/ \s the angle of the horizontal wave number vector. Figure 1.5 depicts the 

analytical vertical streamline deflections at different heights in the vicinity o f  the 

mountain. The low-level solution is quite similar in shape to the surface o f the 

mountain. Flow is diverted around the mountain by a horizontal pressure gradient in 

the cross flow direction. Aloft, the solution magnitude over the mountain is reduced 

but the disturbance extends a significant distance downstream. The disturbance field 

widens in both horizontal directions with increasing z in response to the non-zero 

cross-stream group velocity. From (1.5) h is  not clear that the magnitude should 

decrease with height. This reduction in magnitude is offset in a compressible 

atmosphere by the decrease in density with height. The wave for a three-dimensional 

problem would likely break but at a higher altitude than the two-dimensional case. 

Smith performs an asymptotic analysis far above the mountain to explain the solution 

results. The largest deflection corresponds to the region near the mountain peak. The 

decrease in the wave amplitude with height can be attributed to the dispersive 

properties of three-dimensional gravity waves. The disturbance energy propagates 

along straight lines with slopes;

dz dz _ c ^  dy _ c ^

^  Cgc dx

The group velocities with respect to the mountain are:

r r  r r  ^1  _  U k^
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Figure 1.5. Plots o f vertical streamline deflection for a three-dimensional linear 

hydrostatic Boussinesq mountain wave at (a) Nz I u = 7t/8 and (b) N z ! u  = tc/2. 

(Taken from Smith, 1980).
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For a non-zero y-group velocity the wavelength in the y-direction must be less than 

infinity ( /  > 0). In the two-dimensional infinite ridge limit, the only non-zero group 

velocity with respect to the mountain is the vertical component. The slope of the 

group velocity defines the rate o f widening with height. For small and large

the slope is large and disturbance energy is transported vertically.

Phillips (1984) obtained an analytical expression for the surface wave drag for 

a three-dimensional elliptically shaped mountain. His results show that for a cross­

stream to downstream mountain width ratio greater that 4; I, 90% o f the two- 

dimensional surface wave drag is retained. Phillips also contends that since the 

difference o f the maximum pressure perturbation between the infinite and finite ridge 

cases is about 10%, the three-dimensional problem can be reasonably approximated 

by the simpler two-dimensional solution. For a circular mountain profile, the surface 

drag is 30% lower than the two dimensional counterpart.

1.2.3 Heated Mountain Waves

Few researchers have addressed the effects o f surface heating on mountain 

waves. Malkus and Stem (1953) performed a linear analysis for a stably stratified 

atmosphere with a heat source located over an island and the surrounding ocean 

defined as a heat sink. Their upper boundary condition only allowed lee wave 

motions in the solution and is not suitable for vertically propagating hydrostatic 

modes. In addition, their analysis neglected the direct application o f  diffusion of heat 

away fi’om the lower boundary.
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I have found only one study that includes surface heating or cooling in a non­

linear analytical approach. Raymond (1972) uses a modified approach to Long’s 

equation, which forces non-adiabatic near-surface heating and cooling. His analysis 

includes a single layer atmosphere with a constant upstream wind and stability profile 

as required by Long’s method. The solution procedure involves solving the lower 

non-linear bottom boundary condition via an iterative numerical method. The source 

terms are introduced by an arbitrary function in x and z located in close proximity to 

the surface. This particular source function is defined by a Fourier integral in x and a 

decaying exponential function in z. Raymond’s flux profiles were positioned 

symmetrically over the mountain with the maximum located at the mountain crest. 

Results suggest that heated mountains weaken the gravity wave response while 

cooled mountains enhance the wave activity. These results are limited in scope due 

to the unrealistic application and spatial arrangement of the source terms in the 

equation set and from the limited base state conditions. But, more importantly, his 

analysis did not consider the effects o f the airflow on the heat source.

Reisner and Smolarkiewicz (1994) extend Smith’s (1980) three-dimensional 

analysis by including a surface heating term. In their analysis, the magnitude o f the 

heating function is set to follow the mountain height, with the maximum 

corresponding to the mountain peak. A result is that the heating portion of the 

solution contributes only positive u' I U  perturbations to the solution (Figure 1.6).

The heat generated low pressure near the mountain peak creates a horizontal pressure 

gradient force that accelerates upstream parcels towards the moimtain peak. On the
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lee side, the heat induced pressure gradient force decelerates the previously 

accelerated flow. The trajectory related minimum pressure perturbation is located 

just downstream of the peak and corresponds to the peak in the horizontal 

perturbation velocity. The placement o f this minimum is due to the combination o f 

the low pressure associated on the lee slope from the wave response and the advection 

of the thermally induced pressure minimum from the mountain peak. They found, by 

comparing linear theory to the numerical predictions of heated flow over an isolated 

mountain, that linear theory is in error by as much as a factor o f two. The linear 

three-dimensional analytical solutions are useful as an interpretative guide but are not 

quantitatively applicable to non-linear problems.

In related works by Durran and Klemp ( 1983) and Smith and Lin (1982), the 

sensitivity o f mountain wave flow to elevated heat sources was investigated. Their 

results show that mountain waves are sensitive to latent heat releases, with upstream 

cloud formation reducing mountain wave activity.

An important issue regarding the work presented in the literature needs to be 

addressed. In each of the above studies involving surface heating, the heat source is 

located directly over the mountain (except for Durran and Klemp, 1983) and was not 

a part o f the upstream condition. Therefore, the amount of time the parcel spends 

over the mountain is small compared to the total trajectory time. In the real 

atmosphere surface heating occurs far upstream o f the mountain as well as near the 

mountain. On length scales o f  the mountain width, a nearly horizontally uniform 

mixed layer develops without the assumed mountaintop bias.
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Figure 1.6. Plot o f linear three-dimensional analytical m perturbation velocity 

normalized by the base state value as a function of normalized distance from the 

mountain peak along the line y=z=0. The bold solid line represents the sum o f the 

gravity wave (thin solid line) and heating (dashed line) contributions to the 

horizontal velocity perturbation. (Taken from Reisner and Smolarkiewicz, 1994)
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1.2.4 Windstonn Prediction

In terms of forecasting the onset, strength, and dissipation o f downslope 

windstorms, there are few non-numericai avenues available to the meteorologist. The 

analytical methods discussed above are limited in the value added to a specific 

forecast. Durran (1990) provides a summary of potentially useful suggestions to 

forecasters for the prediction of downslope windstorms. One of the most relevant 

issues is an evaluation of the upstream sounding data. The presence o f  an upstream 

near-mountaintop inversion and moderate cross-mountain winds (20-40m/s) in the 

mid-troposphere were found observationally by Brinkmann (1974) and theoretically 

by Klemp and Lilly (1975) and Durran (1986) to be important to windstorm 

development. These conditions were shown to favor windstorm development and are 

commonly observed upstream of the Boulder area during severe windstorm events. 

Following Clark and Peltier (1977) and Smith (1985), the existence o f  a critical layer 

enhances the development o f  low level high winds. This condition is not very 

common but is thought to play an important role in the windstorms o f the Wasatch 

Front in Northern Utah and in the Bore of the Yugoslav coast. Along the Wasatch 

Front, strong easterly winds at the surface are likely when a synoptic scale closed low 

pressure is situated to the south o f Salt Lake City. With this configuration, a critical 

layer is generally present in the stratosphere.

Another method used to forecast a high wind event is to characterize the 

synoptic scale weather patterns that favor windstonn development. Five of the most 

typical synoptic situations were compiled by Scheetz et. al. (1976). The common
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theme in each o f  these categories is the presence o f moderate to strong mid- 

tropospheric westerly flow over the Front Range Figure 1.7 displays the 500mb 

chart with the surface low and frontal positions for the configuration most likely to 

produce the most intense windstorm in terms o f  wind speed and duration. The 

stability profile that favors strong windstorms involves a stable layer extending above 

the mountaintop and a deeper less stable layer in the mid- to upper troposphere. 

Sounding data collected at Grand Junction, CO on the morning of January 9, 1989 are 

plotted in Figure 1.8. This figure represents what is thought to be a classic Boulder 

windstorm sounding. A configuration similar to this was foimd to be very effective in 

generating high winds near the surface in the numerical simulations of Durran (1986).

Over the past several years the meteorological community in Boulder, CO 

have developed an expert forecast system. It is largely an empirical approach put 

forth by Brown (1986) and Brown et. al. (1992) and is based on a combination of 

numerical model output and windstorm climatology. The forecast pyramid is built 

upon upstream atmospheric variables including the geostrophic wind at 1000, 700, 

and SOOmb, the temperature difference between 500 and 300mb, the sign o f the 

vorticity advection at SOOmb, and the potential for a surface based stable layer in the 

lee of the mountains. During the 1990-92 windstorm seasons, it was evaluated and 

found to predict no greater than a 35% probability o f high winds for any 6-hour 

period in the Boulder area. This system is much better at predicting when high winds 

would not occur. A similar system was applied to the Fort Collins area with better
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TYPE 3

Figure 1.7. Type 3 windstorm composite chart from Scheetz et. al., (1976). Solid 

lines represent 500 mb height contours and the dashed lines the surface fronts. The 

dash-dotted line represents the lee side trough.
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Figure 1.8. Grand Junction, CO sounding data collected 1200UTC January 9, 1989.
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results. This expert forecasting system is designed to predict the maximum wind at a 

specific location, but fails to provide information about the time o f onset and 

dissipation as well as the duration o f the event. I contend (with T. Clark and Durran 

and Klemp, 1987) that these issues are better addressed through the use o f numerical 

prediction methods.

Clark et. al ( 1994) performed a number of two and three-dimensional 

simulations o f the January 9, 1989 Boulder wind event and compared the results to 

observations. They noted significant differences between the two and three- 

dimensional simulations, with the majority o f the differences attributed to fine scale 

structures. In particular for the lee side gust structures, a near equal partitioning of 

the energy spectrum near the 3-km horizontal length scale is evident in the three- 

dimensional case. The two-dimensional study displays more energy at larger 

horizontal scales, with a number o f peaks in the wave number spectrum not present in 

the three-dimensional simulation. Energy spectra for the gust structure in the north- 

south direction are centered near the 10-km wavelength, following the general 

observed variability of the terrain and large east-west oriented canyons. Their 

simulations predicted a windstorm but the location and timing o f  the event was 

inaccurate. The forecast location o f the jump structures is west o f  the observed 

features. They also found that the gust structures were sensitive to model resolution 

and the surface drag formulation. In support o f previous two-dimensional downslope 

windstorm modeling studies, propagating gusts were predicted by their model in both
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the two and three-dimensional simulations. The modeled gusts were found to be 

similar in structure to those observed with Doppler Lidar.

The general void o f detailed three-dimensional numerical simulations of 

downslope windstorms in the literatures is obviously due to the large domain and 

resolution requirements. As discussed later in this paper, lateral boundary conditions 

severely restrict the usefulness o f small domain runs. Large computational domains 

and long time integration are required to fully understand the onset, duration and 

dissipation of strong windstorms.

1.3 Objectives

As revealed in the literature review, little effort has been focused on the 

impacts of surface heating on mountain induced gravity waves. Observations (Figure 

1.2) indicate that windstorms occur during all hours o f  the day but are much more 

frequent at night. Previous work fails to explain the observational record.

Raymond’s study provides insight to the observed diurnal cycle but is limited in its 

application due to the constraints associated with Long’s finite amplitude theory and 

the placement o f the source terms. Brinkmann, from a relatively small sample size of 

20, reported a daytime maximum which is not explained by Raymond’s’ preliminary 

results. The purpose of this study is to investigate the Central Colorado observed 

downslope windstorm diurnal bias via analytical and numerical means. Specifically,

I will address the following questions;
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I ) Is the observed diurnal downslope windstorm frequency distribution 
attributable to the diurnal heating cycle?

2) To what extent can linear theory be used to predict the non-breaking 
mountain wave and downslope windstorm response to a well-mixed 
surface layer?

3) Can the heated gravity wave response in Central Colorado be 
approximated by two-dimensional simulations or are three dimensions 
required?

4) Are large eddy motions in the convective boundary layer needed to 
accurately predict the diurnal response of strong mountain waves and 
downslope windstorms?

5) Is the surface heat flux budget important in improving the predictability of 
strong mountain waves?

1.4 Methods

This study applies both analytical and numerical methods to investigate the 

questions posed in the previous section. The analytical approach involves a 

simplified linear two-layer solution to assess gravity wave responses to variable 

horizontal forcing wavelengths and mixed layer depths. The simplified two-layer 

linear approach is chosen for two reasons. Linear theory captures the basic gravity 

wave structure and the two-layer configuration allows for the introduction o f a neutral 

surface layer. Other methods used in this study include a scale analysis o f  the 

convective boundary layer motions and mountain forced gravity waves. A theoretical 

limit to downslope windstorm strength is also reviewed.
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The majority of the reported results are obtained from application of 

numerical methods. A numerical model is used to simulate two and three- 

dimensional mountain wave and downslope windstorm responses to parameterized 

diurnal heating cycles. The desire to incorporate three-dimensional aspects is brought 

about by the results of Reisner and Smolarkiewicz ( 1994) and Clark et. al. ( 1994). 

Initially, the model is applied in idealized two and three-dimensional configurations.

.A. more realistic two-dimensional downslope windstorm experiment is included for 

comparison purposes. The strength o f the mountain wave response is measured in 

terms of first and second order gravity wave properties. Following Eliassen and Palm 

(I960), computed surface wave drag and vertical profiles o f the horizontally 

integrated vertical flux of horizontal momentum are compared. In most cases, the 

maxima in horizontal surface wind speeds are used to assess the gravity wave 

response. All numerical simulations presented in this study adhere to the following 

protocol:

a) Obtain a steady state non-heated mountain wave solution.

b) Calculate surface heat fluxes and assess the response in terms o f wave 
properties.

An alternative modeling approach that could be performed begins with a 

characteristic atmospheric profile and applies the cooling portion o f the diurnal cycle. 

A potential problem with this procedure is that the depth of the stable surface layer is 

small compared to the daytime boundary layer. The anticipated effects would be 

small since only a shallow stable layer is created overnight. The advantage to the

28



approach is the generation o f  near surface stable air upstream of the mountain. It is 

not clear if the stable air settles in the valleys or is able to pass over the mountain and 

enhance the wave activity. This problem could be addressed in future work.

In order to keep the analysis simple, the earth’s rotation is not included in the 

experiments. The time scale for the hydrostatic waves ( 1/ ) is significantly smaller

than for the rotational modes ( 1 / /  ), justifying the non-rotating assumption. For 

details on the effects o f the Coriolis term on the solutions see Lilly (1983) and Clark 

et. al. (1994). The numerical experiments are categorized in terms of the dimensional 

arrangement and initial conditions.

I ) Two Dimensional Idealized Mountain Profile

- Non-linear narrow and wide mountain shapes in a single layer 
atmosphere using two different heat distribution methods 
(parameterized turbulent diffusion vs. explicit convection).

- Mean state critical layer simulations for a simple one-layer 
atmosphere and wide mountain shape.

- Non-linear parameter range study.

- Two-layer tuned atmosphere simulations.

2) Two Dimensional Central Colorado January 9, 1989 Windstorm

- Numerical experiment with a smoothed terrain cross section 

through Boulder, Colorado (40 ’ N latitude) and Craig, Colorado 
12Z sounding.
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3) Three Dimensional Idealized Mountain Profile

- Non-linear parameter range experiments for circular and 
finite ridge mountain shapes (compared to 2-D tests).

This study is organized as follows: Chapter 2 presents a two-layer linear 

analytical solution and reviews the energetics of mountain waves and the convective 

boundary layer. Chapter 3 describes the numerical model formulation and Chapter 4 

displays model verification test results. Chapter 5 and Chapter 6 focus on the two and 

three-dimensional numerical simulations and Chapter 7 provides a summary of the 

results. The appendices give additional information on the model’s vertically implicit 

time marching method, upper w -  ;r radiation boundary condition, computational 

efficiency, streamline and trajectory computations, and atmospheric sounding 

profiles.
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CHAPTER 2 

ANALYTICAL METHODS

Strong downslcpe windstorms have been shown by Diuran (1992) and others to 

be highly non-linear events. Analytical finite amplitude solutions that include a non­

linear lower boundary condition are available with the aid of numerical procedures. 

Given this constraint, a linearized two-layer solution is presented that adds insight to the 

numerical experiments and observational record. In addition, a scale analysis is 

provided for mountain waves and boundary layer convection.

2.1 Linear Two-Layer Solution

In the context o f this study, linear theory has been applied sparingly in the 

literature. Diffusion o f heat away from the lower boundary complicates the linear 

analysis considerably by introducing a 4th order governing equation. Not only is it 

difficult to apply the diffusion term analytically, the results may have little effect on the 

solution. At the surface, diffusion is useful in transporting heat away from the boundary 

provided the mixing coefficient is sufficiently large, as is the case in the parameterized 

methods described later in Chapter 3. But once heat is transferred away from the lower 

boundary, other effects such as horizontal and vertical advection, with time scales much 

less than the diffusive time scale, dominate the flow.

A different approach is taken here in regards to the linear analysis. Steady state 

linear theory is applied from the standpoint that the convective motions, associated with 

the process o f heat redistribution in the mixed layer, are neglected. The objective is to
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look at the effects o f varying mixed layer depths on wave amplitude. From this 

perspective, the solutions in the overriding stable layer can be easily solved in terms of 

the mixed layer depth and the horizontal and vertical scales. This assumption is 

defended later in this chapter.

During the first part o f the diumal heating cycle, the steady state assumption is 

not defensible as the mixed layer height is strongly time-dependant. The steady state 

assumption is most likely to be valid in the late afternoon when the mixed layer height 

is changing slowly and the heat is distributed over a large vertical extent. A time 

dependent solution in terms of the mixed layer height is not investigated here but is 

possible through the application of similarity theory (Garratt, 1994).

As mentioned in the review of Chapter I, most o f the analytical work applies the 

assumption that the heating source decreases away from the mountain. This restriction 

is not used here. In the real atmosphere, surface heating is not confined to the mountain 

and extends far upstream. The result is a boundary layer height that is, on average, 

nearly uniform upstream o f the mountain. Consequently, this analysis investigates the 

significance o f different boundary layer depths on the overlying mountain wave flow.

A linearized two-dimensional Boussinesq equation set in terms of u ' ,w ' ,9 ' , and 

;r' is used in this analysis. Little generality is lost from the application o f the 

Boussinesq set o f equations, as the effects o f decreasing density with height are well 

known (Gutman, 1991). For the analysis given here, the base state wind is constant

g  d d{U ) with height and equal in both layers. The stratification is defined as =
d  dz

o
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and is set to zero in the lower layer ( ) and to a positive constant ( ) in the upper

layer. The steady state version o f  the Boussinesq equation set is:

U —  + \v'—  = Q , (2.3)
âc â

^  + ^  = 0 . (2.4)
àc cz

Figure 2 .1 sets up the problem graphically. The bottom layer (layer 1) is neutrally 

stratified ( A, = 0) and represents a well-mixed boundary layer. The upper layer (layer 

2) is stratified with A , = constant and supports gravity waves. Equations (2. l)-(2.4) 

combine to give a single equation in perturbation vertical velocity w' :

(— + - ^ ) w '+ ^ w ' = 0 . (2.5)

Equation (2.5) defines w' in the stratified environment o f layer 2. For the neutral 

stability o f layer 1, (2.5) simplifies to:

(— ■ (26)

and describes potential flow. Equations (2.5) and (2.6) are forced by introducing a base 

state flow (A  ) over a small amplitude mountain. The terrain h{x) is defined by
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A  =  V  , ( 2 . 7 )

where k  is the horizontal wave number and A, Is the mountain height. This expression 

can be used to represent a single wave or be combined with other wave components in a 

Fourier series representation o f a particular mountain profile. This example is confined 

to a single wave component without loss o f generality.

U

Layer 2 = constant

Layer I M = 0

Figure 2.1. Graphical depiction of the two-layer linear problem. In the analysis, the 

mountain is chosen to be a cosine function.
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Solutions to (2.5) and (2.6) are o f  the form:

w:(T,j) = Re(Cg " " ^ ')  , (2.8)

( X ,  z)  =  Re(/te-*'-'*'^ + , (2.9)

where the wave numbers are:

■ »  .  ^ .  " T  .  1m z = i - ^ r - k -

/wf = k '  .

The wave number in layer 2 is a function of the stability, base state wind, and horizontal 

wave number. Equation (2.8) is valid for /n, real. If /n, becomes imaginary then the 

solutions no longer admits gravity waves modes and follows the form o f (2.9).

Assuming hydrostatically forced gravity wave flow in the upper layer ( /«'  >0), the

wavelike solution of (2.8) holds. The wave number in the bottom layer is equivalent to 

the horizontal wave number. The complex coefficients A , B  , C , and D  are determined 

from application o f the boundary and matching conditions. The upper boundary 

condition requires energy to propagate out of the domain. Following Eliassen and Palm

(1960) this is true when w' p ' > 0 ,  where the overbar represents the horizontal average. 

The matching conditions require the displacement and pressure at the layer interface 

height (z=0) to be equivalent. A number of horizontal wavelengths and mixed layer 

depths are investigated here. In addition, a discontinuity in density is introduced into 

the solution. This is intended to represent an inversion placed at the interface between

35



the two layers, [nversions are commonly observed at the top of the mixed layer. The 

application of the interface pressure condition follows that o f Klemp and Lilly (1975) 

and can be obtained by integrating the hydrostatic relation. These conditions are 

presented in terms o f the vertical velocity:

w’(l) = w’(2) , a tz  = 0

The second matching condition requires continuity of the vertical derivative o f the 

vertical velocity and is equivalent to matching the horizontal pressure gradient term in 

the two layers. The term A 0  / 6  represents the change in potential temperature across 

the inversion. Physically, the inversion represents external gravity waves along the 

layer interface. For the non-inversion case this term vanishes. The bottom boundary 

condition is linearized using:

wJO) = U — = ik U h e
' a

ikx

Enforcing upward energy propagation away from the mountain in the upper layer 

requires D = 0 in (2.8), since the phase (/far-  m^z ) emits only downward propagating 

energy when sgn(k )  = sgn(m ,). The three remaining coefficients are determined from 

application of the matching and lower boundary conditions:

A ^ B = C  ,
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- ( B - A ) = C  . 
m.

where H  is the depth o f the mixed layer. Solving for the complex coefficients and 

incorporating them into (2.8) and (2.9) and taking the real parts gives;

w',(.r.z) = - - [( -  >•;)cos(Ax + m^z) - +  y:  + y , )sin(kx + m,z)] ,
~ >'5

y , = k U H y ^  ,

y ^ = y \ ^ y *  ,
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(2 . 10)

w[{x,z) = cos(kr) -(>•,y, +>-;)sin(Ax)]e ‘=

-  [(̂ 2 cos(Ax) + y ,  sin( Ax)]e*̂  ) , (2.11)

where the constants are given by:

^ 1= -------   '
{ k + ^ y  +/%;

2m ̂ k
yz =



with.

Results from the two-layer solution are presented in terms o f  normalized surface wave 

drag. For a linear hydrostatic Boussinesq system, the steady state surface wave drag is 

equivalent to the vertical flux o f horizontal momentum (Eliassen and Palm, I960):

^  "Up^juw'dx = jp 'w 'dx  , (2.12)

pw = ^p,(0)yImi^arr{vi/(z)‘w.(z)} ,

where w(z)‘ denotes the com plex conjugate and pw is the average over one 

wavelength. The vertical flux o f  horizontal momentum can be shown to be:

•

or,

Im ^k

{k + +/«2
pw-p^(p)U{kUH^)-e\2-2kH    U l

{k + +/«; {k + +m;

The sensitivity of the surface wave drag to the mixed layer depth, horizontal 

wavelength, and for the hydrostatic case the inversion strength, is illustrated by the
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colored curves in Figure 2.2. For this analysis, the base state wind is t /  = 20m/s and the 

static stability in the upper layer is N  = 0.0 1. The flux is normalized by the H = 0 case 

-A.S indicated in the figure, the steady state momentum flux in the upper layer is 

significantly affected by changes in the thickness o f  the mixed layer and to a lesser 

extent by the horizontal wave number. The results reveal a nearly 80% reduction of the 

wave activity in layer 2 for a mixed layer depth of 3 km. The wave number dependence 

is small, with only a 6% decrease in the remaining wave activity for the non-hydrostatic 

case versus the hydrostatically forced flows for a 3 km deep neutral layer. Interestingly, 

the plot also shows that an inversion acts to offset the reduction of mountain wave 

activity due to the development of a neutral layer. For a 1.5 ' K inversion, a mixed layer 

of 0.5km depth is required to remove the inversion layer mountain wave enhancement.

A 10 K inversion, although not likely to be observed during windstorms, greatly 

enhances the mountain wave activity. The enhancement is likely due to surface wave 

effects, but a detailed study has not been performed to confirm this. This analysis can 

be extended to systems with more than two layers.
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Momentum Flux vs. Mixed Layer Depth

2.8

Normalized
Momentum

Flux

1.8

0.8

♦ 16km 
-»-80km  
-A - 160km 
-♦ “ 80km 1.5K Inv. 
-)K-80km 10K Inv.

0 0.28 0.8 0.78 1 1.28 1.8 1.78 2 2.28 2.8 2.78 3

Mixed Layer Depth (km)

Figure 2.2. Plot o f the analytical steady state vertical flux of horizontal momentum curves as a function o f mixed layer depth, 

horizontal wave number (16,80, and 160 km) and inversion strength. The values are normalized by the H  =0 steady state values.
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2.2 Energy and Scaling Considerations

2.2.1 Downslope Windstorm Horizontal Velocity Limit

A simplified system can be used to estimate the maximum winds generated by 

flow over an obstacle. One such method involves the Bernoulli equation (Fiedler,

1992). Consider the case in which the terrain elevations upstream and downstream of 

the mountain are equal and the entire upstream flow is reduced to a thin layer in the lee 

o f the mountain. For irrotational flow upstream o f the mountain, the Bernoulli relation 

can be applied along the surface streamline;

— + f — +gTi = —(7̂  + = constant . (2.13)
2  ̂ p  2 '   ̂ p

The subscripts I and 2 represent the upstream and downstream values, respectively. 

Since the height o f the streamline is approximately the same upstream and downstream, 

(2.13)reduces to:

= C M )

where q = u and the density is assumed to be constant for a Boussinesq atmosphere. 

Solving for the downstream wind (m, ), we obtain:

A .  .

2 ■ 2 ■ V ,   ̂ p .
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Assuming a hydrostatic atmospheric profile and confining the entire upstream flow to a 

small depth downstream o f the mountain, the difference in pressure between the 

upstream and downstream points is approximated by:

If z =0, and the static stability is assumed constant and defined as A/"' = — — , the

resulting relation for the downstream wind is:

u l= u - + N - H -  . (2.15)

Equation (2.15) relates the downstream wind speed to the static stability and the change 

in height of the fluid from its upstream value. For a fluid depth on the order of 

/ /  = 10km and static stability iV = 0.01, the downstream wind speed is on the order of 

lOOm/s. All known observations of windstorms in the lee o f the Colorado Rockies lie 

within the above limit, with wind gusts from 30-60 m/s commonly observed, but no 

observations of wind speeds approaching lOOm/s.

2.2.2 Mountain Wave Scale Analysis

The scaling of such events can be estimated using the vertical and horizontal 

time and length scales. The length of the forcing mechanism, the mountain wave 

number k , gives the horizontal scale in this case. For a linearized Boussinesq
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atmosphere with a constant base state wind, the vertical scale (wave number) is a simple 

function of the base state wind, static stability, and the horizontal wave number. The 

Scorer (1955) parameter is:

Cl­

one  time scale can be determined from the velocity and the length scales ( a l U  ) and 

represents the time a parcel takes to move through the standing wave. For 

hydrostatically forced mountain flow with a standard atmospheric temperature and wind 

profile, the vertical length scale is on the order o f  10km. The corresponding time scale 

is approximately 1-2 hours. In numerical predictions, a steady state value is often 

obtained after the non-dimensional time of (// / a  = 60, where a is the horizontal length 

scale. This measure refers to the time it takes for a parcel to pass through the wave. A 

second time scale can be defined which involves the Brunt-Vaisala frequency M . 

Taking the reciprocal gives dimensions of time on the order of 1 /  ̂ . Typical values of 

M in the troposphere are on the order o f 0.01 and equate to an approximate

oscillation period o f 10 minutes. The velocity scale can be defined by the vertical 

displacement times the stability. This equates to the maximum vertical distance an 

upstream parcel could be displaced before all the kinetic energy o f the parcel has been 

converted to potential energy. For a 1km tall mountain and stability o f  0.01 1/s, the 

velocity scale is on the order o f  10 m/s. From this perspective, a 1km tall mountain can 

force significant perturbations on the base state to the point in which non-linear effects
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become important. From the above scaling arguments, it is apparent that the key 

variables include the static stability, base state wind, mountain height, and horizontal 

wavelength. These quantities form a basis that will be used in the numerical 

experiments o f Chapters 5 and 6.

2.2.3 Convective Boundary Layer Scaling

Motions in the convective boundary layer can often be estimated using 

similarity theory. This theory is based on the characteristic length and time scales 

associated with the development o f the heated boundary layer. Following a standard 

text on atmospheric convection, such as Emanuel ( 1994), it is shown that the velocity 

scale in a convective boundary layer can be estimated by:

w’ = s{z,w 'B y  . (2.16)

For a mixed layer depth of I km and a buoyancy flux w'B' = 0.10 (equivalent to a 

heating rate o f 100 IF I m ~ \ the convective scale velocity is on the order o f  I m/s. A 

number of modeling and observation studies support this scaling result. The horizontal 

scale o f the most unstable convective motion ( ) in a three-dimensional Rayleigh

convection problem with flee slip boundaries can be formulated in terms o f  the fluid 

depth H .

4  = 2^/2H
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Thus, for a three-dimensional heated surface problem, the horizontal scale is 

approximately six times the vertical scale. The time scale for convection can be 

estimated &om the velocity and length scales.

K-onv ^  = 5 -  lOminutes
w

2.2.4 Discussion

For linear waves, the mountain height is small and the resulting contribution in 

the boundary layer from the convective motions is on the same order of magnitude as 

the gravity wave perturbations. For large amplitude mountain waves and downslope 

windstorms, the convective motions are an order o f  magnitude smaller than those 

generated by the gravity wave. The convective time, length, and velocity scales are 

significantly smaller than those associated with a strong gravity wave. From this 

perspective, the convective motions should play a minor role in the gravity wave 

solution. From a gravity wave perspective, as illustrated in Figure 2.2, the impact o f  the 

boundary layer convective motions is most important in terms of the development o f the 

mixed layer height with time.

To test these scaling arguments, a simplified two-dimensional mountain wave 

simulation is presented in Chapter 5 for an explicitly resolved convective boundary 

layer solution and a less resolved diffusive approach.
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CHAPTER 3 

NUMERICAL MODEL

A new three dimensional model (with a two dimensional option) is used to 

simulate dry heated mountain wave flows. The model, ARP 13 D, was constructed 

initially in a simple two-dimensional framework to test horizontal boundary condition 

applications for use in the ARPS. The code is extensively documented and the 

initialization of the horizontally homogeneous base state variables follows that o f the 

,\RPS.

Since its inception, ARPI3D was modified to include a simple coordinate 

transformation, a vertically-implicit solving technique, and a linearized upper radiation 

condition between pressure and vertical velocity. In addition, this model solves for the 

non-dimensional Exner function re instead of pressure. Initially, ARP 13 D included a 

‘‘p” (pressure) or “pi” (Exner function) option but the p-option was later dropped for the 

more efficient pi-system. The inclusion o f the non-linear pressure gradient and 

divergence term coefficients closes the model energy budget. The decision to include 

the total potential temperature in the pressure gradient term is not solely based on the 

goal of energy conservation. It was due in part fi*om tests comparing the linearized and 

total term versions. Perturbations on the order of 30% o f the base state potential 

temperature were observed in the breaking wave regions in the stratosphere.
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3.1 Equation Set

The ARP 13 D equation set is:

â i à t d i à i X i j - t  n ,  .  t . K U k V k W — iP  ~~ -k tUtb^ , (3.1)
à  àc â  âc

à> âv à f  à f ^ÔK'■— + H ‘ — 4- V - “ "k M/ —  — '~'C J9 —
^  ^  4^

/ /  -t- V ——r  I f  — ----------------------- 1 (3 .2)

àv àv àif àv . ârc' ^
 k  Zf k  V  k  W  — ~C 6  —k  - = r -k f  U  D  - k - t U r b  , (j.3)
a  a  4 ' a   ̂ â: G

æ æ æ æ  ̂ ^
—  + U —  -^V— +W — -D g+ tU rbg+ Sg  , (j.4)

4

âîc Ô7C âic ÔK ,à i  4  4 ,  R . k  dG y u  f-V—  + Vf—  —------ /r(-----1-----H------)h-------------  (3.5)
àl àc 4  4  àc â  G dt

The total Cartesian velocities «, v , and vf are defined as:

u = U  + u \  U  is the base state wind in the x direction.

v = y  + v ', y  is the base state wind in the y direction.

Vf = Vf ',  is the velocity in the z direction.

The thermodynamic variables, non-dimensional pressure, potential temperature, and 

their base state equivalents are computed according to:

_  &. _  &
;r = n + ;r', and ^  , with FI = (— ) “'  ,

P o  P o
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0  =  0  ^ 0 '  .

The coriolis terms f  and / '  are:

/  = 2n s in (^ )  , 

/ '  = 2n c o s(^ )  ,

where Q is the angular velocity o f the Earth and (f> the latitude. Equations (3 .1 )-(3 .5) 

describe the Euler equations with the addition o f a heat source Sg in the potential 

temperature and pressure equations and turbulent and computational mixing terms in 

(3. L)-(3.4). Normally, mesoscale models make a number o f approximations that are 

focused primarily on the linearization o f the meteorologically insignificant acoustic 

modes. In this application, the non-linear pressure gradient terms were foimd to 

contribute significantly in strongly forced mountain wave flows and are incorporated in 

the current model configuration. The non-linear divergence terms is included to close 

the model energetics. The non-linear pressure gradient term reduces the time step 

slightly but improves the numerical solution. Little improvement is noted when the 

coefficient o f the divergence term is at fiill strength. Equations (3. l)-(3.5) conserve 

energy in the absence o f fiiction, mixing, and heat.

The above equation set can be transformed to a terrain following coordinate 

system by:
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where z, is the top o f the model domain, j ,  is the height o f  the surface, and z is the 

physical height o f  the computational surface. Using the chain rule, the coordinate 

transformation is given by:

The spatial derivatives in the transformed system become:

ô<!>
âc

â0
â c

ô<f>
(3.6)

C(j>

4

â(p (3.7)

à<f> _  j â<!> (3.8)

for any variable (p. Applying equations (3.6) - (3.8) to equations (3. l)-(3.5) the 

transformed system o f equations become:
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+ + ~  = d { ~  + J ^ ^ )  + f v ~  f[ v  + inrb^+D^ , (3.9)
a  àc ^  cÇ àc àÇ

—  ~ u  —  -rv —  ̂ W  —  = - c O { ^ -  + J ^ ^ ^ ) - J u  + turb +D^ , (3.10)a àc ^ âç  ̂ - âç '

^  + u ^  + v ^  + W ‘ ^  = - c a / ^ ^  + g ^  + fU ^ tu r b ^ + D ^  , (3.11)
a  àc ^  âÇ dÇ 9

= , (3.12)
a  àc cy cz cz

o n ' o n ’ â n ' à n ' âîS.  + ff + v  + fV -----+ w j ,-----a àc a âz

R j a t ÔV aV " n  d d— — —  7r("~~~ 4- - ■• "f* ) +■— ————
àc ^  â ç 9 d t

The contravariant vertical velocity is defined by.

(3,13)

(T ' = ^  = .31 *  + ^  *
d t àc d t ôy d t â  d t '

or following (3.6)-(3.8), W  -  J;W+y,w + .

The base state variables U ,V , 9 , II  are horizontally homogeneous and hydrostatically 

balanced.

£ n . = . _ ^
4 " c ,e
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The turbulent mixing terms are described in detail in Section 3 .2. The numerical 

smoothing terms D^,D^„ D^,Dg are composed of computational mixing and Rayleigh 

damping:

Dg=Cg+Rg

Sections 3.4.1 and 3.4.2 give a detailed description o f the computational mixing and 

Rayleigh damping terms.

3.2 Sub-Grid Scale Closure

The sub-grid scale processes are those that cannot be predicted explicitly by the 

model. In the planetary boundary layer (PBL), the sub-grid scale mixing can contribute 

significantly to the evolving flow field. Thus, considerable work has focused on 

estimating the unresolved flow patterns. When the surface is heated and the atmosphere 

becomes unstable, convection occurs initially on scales proportional to the mixed layer 

height. There are a number o f  ways in which to represent convective processes in the 

boundary layer by the model. Two types of mixing mechanisms are presented and 

encoded in the model.

The first method applies strong diflusion in areas o f  neutral or unstable lapse 

rates. This sub-grid closure scheme requires large eddy viscosities capable o f mixing
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the unstable boundary layer and developing the height o f the mixed layer in a timely 

manner. Since the convective elements are not explicitly resolved, this type of scheme 

allows for large horizontal and vertical grid spacings on the order o f 5000m and 200m, 

respectively. This method is preferred if the convective motions in the boundary layer 

are small when compared to the surrounding flow.

A second method of addressing the unstable boundary layer is the Large Eddy 

Simulation (or LES). The purpose of the LES is to explicitly resolve the majority of the 

convection in the heated boundary layer. As shown by Deardorff ( 1980) and many 

others, this requires resolutions on the order o f  100 meters in each spatial direction.

This approach makes use of the sub-grid closure scheme, but the amount of energy in 

the unresolved scales is significantly reduced. Most researchers are satisfied when 90- 

95% of the fluxes, energy, and variances are explicitly resolved.

For large three-dimensional mountain wave flows, the LES resolution 

requirements place a severe constraint on the size o f the domain that can be studied with 

current computing power. Horizontal resolution on the order o f 400-1000 m is suitable 

for simulating mountain waves but is not sufficient to resolve properly the convective 

elements in the mixed layer. Thus, simulations o f broad mountain ranges are better 

served by the eddy viscosity method than the LES approach. The scale analysis of 

Chapter 2 indicates that strong mountain wave flows are more energetic than boundary 

layer circulations. But in the interest o f evaluating the sub-grid closures, both methods 

are tested and the results are compared in Chapter 5.
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The turbulent parameterization scheme used in this study follows the base model 

o f Sullivan et. al. ( 1994). It was first developed by Deardorff ( 1980) and later applied 

by Moeng ( 1984). This scheme is chosen because o f its simplicity and ability to match 

the simulated planetary boundary layer solution to Monin-Obukov similarity theory in a 

LES. The method utilizes a 1.5 order closure scheme that predicts turbulent kinetic 

energy ( t; ) for use in the determination of the eddy viscosity. For simulations with 

horizontal resolutions greater than 200m, the convective motions in the early 

development stage of the boundary layer cannot be adequately resolved. The mixing 

length in the convective boundary layer is enhanced following Sun and Chang (1986). 

This modification was incorporated after tests the using the Wangara Day 33 data set 

and the baseline Deardorff eddy viscosity model predicted an untimely development o f 

the mixed layer height. The unmodified Deardorff and Sun and Chang schemes are 

presented later in this section. The sub-grid closure terms are given in Cartesian 

coordinates and equated to their coordinate transformed counterparts via.

mrb
âc ^  â

&  - ' ' ~ d r

mrb
âc dz

-  , r ^ ( - r « )  , à{rT:a) , T , r
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„rb= 2 tS }â ^ É tS !d ^ .2 tÎM l
âc ^  â

I  j  ,  ^ ( - ^ 3z )  ,  j  ^ t b d + j  ^ ( - ^ 3 3 )

âc ' ^  4 / - ^  ^

„ ,r b , . f k W + f ( = W + f L W  
 ̂ âc â

= f k l l â i l ^  I , à { - t g . )  , ^ ( - r g j  , r à { - tg .J

The strain tensors are defined by:

r„= -2v^5„ , 

r,, =-2v,5,, ,

r,3=-2v,5i3 ,

= -2v,^32 '

2̂3 = -2V,^23 ,

By definition r^j = r,^, = T23 , = z-jj. Following Deardorff (1980) the eddy

viscosity is:

v ,= C Je^ ,

where C .̂ = 0 .1 . The velocity stresses ) in Cartesian and transformed coordinates 

are given by:
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_ \ ( à i  cî/  ̂ à i  . à i
i f  •

I  ̂d  d i ' iT
2 2 .

à i . à i  â / . âv
— +J-. — H— + y, —  
dy ~ dÇ dx c(^ ̂

I ^dv di^ _ r
2 ^dc d j 2 .

S ~ ^  =  —
—  7

^ d) cv'' 
4 / ây^

d f  , d f

- I ç  '

5 , ,  =  —
^ ÔA! d>'' 

4 ' â ]

f  - îd v  . Ôa;  ̂ Ôv

» + - " = â 7 " ^ 'â 7 .

.  _ i
■̂33 -  2

ÔAf dv''
â  â

= J,
dv

The scalar fluxes are defîned by;

^ei = -^e
æ  , æ  , æ .

æ  , æ  , æ .

æ ,, æ.

The eddy diffusion is defîned in terms of the mixing length, average grid spacing, and 

the eddy viscosity using:
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n  2 / ,
= (l + —KA

The average grid spacing is defined by the relation A = (ArAyA<^)". The sub-grid scale 

kinetic energy ( e ), used in defining the mixing length /  and the eddy viscosities v, and 

. is predicted following;

— + u — + v— +fV^ —  = P-hB + D - E  , 
ât âc âÇ

where P  is the shear production term, B  the buoyant production term, D the diffusion 

of e , and E  the dissipation o f e . The sub-grid scale energy source or sinks terms are 

defined as:

S  | r , 3  ,

ac, oc.

where Q  = 0.93 and each index i , j  are summed from I to 3. The mixing length above 

the boundary layer is computed following Deardorff (1980):

/ = A, for neutral and unstable stratification ,
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/  = 2:ZÉf_ for stable stratification , 
;V

where M is the grid computed static stability.

In the Sun and Chang application, Deardorff s length scale in the unstable 

boundary layer is replaced by a fraction o f the observed peak wavelength for the 

vertical velocity component (A^). Caughey and Palmer (1979) obtained an expression

for the peak for experimental data collected in the Kansas, Minnesota, and 

Ashchurch field studies. The following expression provides a good fit to the observed 

data:

= 1.8Z,[1 -  exp(-4—) -  0.0003 exp(8 —)] , 
z. z.

/ = 0.25Z„ ,

where z, is the depth o f the mixed layer and z the height above the ground surface. The

last term inside the square bracket is small and is here omitted. The inversion height is 

diagnosed by comparing the surface potential temperature to the potential temperature 

in and above the mixed layer.

3.3 Surface Flux Parameterization

A simple surface drag formulation is used to represent the surface stress. The 

method presented here follows that implemented by Miller and Durran (1991) and can
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be found in Haltiner and Williams ( 1980). The surface stress for the ii and v velocity 

components is computed by:

r,3=Cj|rtw . (3.14)

=Cj\V\v . (3.15)

r  is the magnitude of the surface wind computed at the first point above the surface. 

Equation (3.14) and (3.15) describe the flux for an unbalanced base state. Subtracting 

the base state strain from (3.14) and (3.15) allows the base state wind to be in friction 

balance:

r,3{surf) = max[0, ( j r | w  - |F|w)] ,

{surf) = max[ 0, {\V\v -  |F|v)] ,

where ü  and v are the base state surface wind components. This formulation reduces 

the stress for only positive perturbations. The negative perturbations remain 

unchanged. The drag coefficient is computed from the relation:

l n ( ^ )

l n ( - )

where is the height at which the drag coefficient is valid. The above is either 

substituted in for the flux in the explicit method or is a source term in the implicit
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method. The surface heat flux is introduced as a flux or a volume source term. The 

source term has the form;

rg] ik) =  — rr max(/zeaf^, sin ûjT) , (3.16)

where is the maximum heating rate in watts per unit area, the specific heat, p

the base state density at the level o f  heating, h e a t^  the minimum heating magnitude, 

and k is the level at which the heat is applied (the surface in this study). The period co 

is specified in the input file. If the flux option is chosen, the magnitude is specified and 

replaces the coefficient in (3.16).

3.4 Numerical Smoothing

3.4.1 Computational Mixing

Two types o f numerical smoothing are used in this study. The first type, 

computational, acts to remove small-scale structures created by non-linear aliasing and 

dispersive effects created by the advection scheme. This smoother is of fourth order 

and is applied to u \v ',w \9 '  in the horizontal and vertical directions. The form follows 

that used in the ARPS and is computed in computational space using:

c . = - c .
â * u ' c

âc* '
L.fr

~ â \ '  â W r ’
âc* '

Lfr
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c =-c à-*w'
H àc'"

- C .

Cg -  Cff
â ^ e ’ â* d ' 
âc* ^  4 /̂

— Cu
â*0 '

The specified mixing coefficients are C„ and , and are generally chosen to be on the 

order o f  10"̂  times the grid spacing to the fourth power.

3.4.2 Rayleigh Damping

Additional smoothing is used to damp gravity waves in the upper part o f  the 

modeling domain when the top boundary is set to the rigid lid condition. This type of 

numerical damping is designed to simulate a radiation condition by preventing 

reflection o f gravity wave energy off o f the top boundary (rigid lid). For this type of 

damping to be effective, the damping layer needs to be greater that one vertical 

wavelength in depth and a minimum o f 30 grid points (Klemp and Lilly, 1978 and 

Durran and Klemp, 1983). Commonly referred to as Rayleigh damping, it is applied to 

w', v \ w \ O' and is defined here by:

a Z -Z rr{z) = cos(;r------- —)),
Z t  - D

for z > r D ■

The damping terms are:

&  = r{z)u ' ,
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= r{z)w  .

&  = ,

where is the height at which the damping begins and z^ is the height o f the top of

the model. The coefficient a  represents the maximum damping coefficient (.s ' ) at the 

top o f the damping layer, generally selected so that the dominant horizontal wave 

number is damped after about 25 time steps.

3.5 Boundary Conditions

Boundary conditions can pose a formidable challenge to long term mesoscale 

numerical predictions and to simulations that interact significantly with flow adjacent to 

the boundaries. The only true physical boundary in this numerical model is the bottom 

boundary. Much effort has been spent developing lateral and vertical boundary 

conditions for models whose domains are not periodic. To my knowledge, a fully 

robust open lateral boundary condition, which properly handles a combination of 

acoustic, gravity, and inertial waves, does not exist. As a result, this model includes a 

variety of schemes for predicting the time dependent variables at the lateral and vertical 

boundaries.

3.5.1 Lateral Formulation

There is a need to specify the normal advection and velocity terms at the first 

grid point outside the physical boundary. The normal velocity boundary condition is 

presented first. ARP 13 D includes 5 choices for computing the boundary values of the
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normal velocity at the lateral boundaries. The reason for such a variety is simple: each 

specific modeling application could require a different type o f  boundary condition.

The five lateral boundary condition options for the normal velocity components are:

a) the zero gradient condition

b) the Orianski (1976) condition

c) the vertically averaged Orianski phase speed scheme o f Klemp and Lilly 

(1979), later modified by Durran and Klemp (1983)

d) the Klemp-Wilhelmson (1978) constant phase speed method

e) a newly developed hydrostatically (or environmentally) estimated phase 

speed

Schemes (b)-(e) are designed to allow waves in the interior o f the model domain 

to pass fi-eely out through the horizontal boundary with minimal reflection. With the 

exception o f the zero gradient condition (which is self-explanatory), all o f the above 

methods estimate the gravity wave phase speed and replace the normal velocity 

component equation o f motion with outflow advection:

, (3,17,
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The spatial derivatives in (3 .17) and (3 .18) are computed on the small time step ( r  ), 

whereas the advective and gravity wave phase speeds are determined using big time 

step ( / ) data. The small and large time steps are described in more detail in Section 3 6. 

The above selection for computing the phase velocity on the big time step and the 

gradient on the small time step stems from linear mountain waves test results.

For method (d), the gravity wave phase speeds and are specified by 

estimating the fastest gravity wave phase speed. For method (e), the phase speed is 

estimated by the linear hydrostatic value. It can be found from the relation;

a> Nk

k { k ' + m ')-  

For hydrostatic modes k  =>0 and we have:

where the vertical wave number m = N ! U  is the hydrostatic limit corresponding to the 

fastest wave. The method is also applied to the v velocity component. For moist 

convection, Klemp and Lilly (1979) found it was advantageous to over-estimate the 

phase speed rather than underestimate it.

A review of (c), from the Durran and Klemp (1983) implementation, is given 

here. The vertically averaged phase speeds are formulated by solving (3.17) and (3.18) 

for the local gravity wave phase speed and averaging only the outgoing components. 

The inward directed components are set to zero prior to averaging. The vertically
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averaged phase speeds {u + cY  for u and v are computed using the following 

relationships;

(w + c j 'd )  = ^ n a in

nr-Z
(u -h c j'{ fix )  = 2 ]min

(v + c j ' ( l )  = ^ m in
t= :

nr-Z A y  - v 'r/iv-lic fMV-lt

where and v ^  are magnitudes o f the fastest phase speed allowed by the time step 

and the grid spacing. The above equation is discretized using the leapfrog centered in 

time and upstream in space scheme. If the phase velocity is directed outward, then the 

velocities are updated using (3.17) and (3.18). If the flow (u + c) is directed inward, 

the velocity is unchanged or relaxed back to the base state according to a specified 

relaxation coefficient.

For methods (b) and (c) the phase speed is computed following Orianski (1976). 

Note that the original Orianski form is obtained by removing the vertical averaging step 

in the Durran and Klemp procedure.

For the horizontal advection terms at the lateral boundary, the higher order 

advection schemes cannot be directly applied. At an outflow boundary, the stable first
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order one-sided upstream differencing scheme is used for the normal horizontal 

advection term. On inflow boundaries, the normal advective term is set to zero since 

there is no information on the gradient o f  the advected variable outside the boundary.

The lateral boundary conditions for the fourth order computational mixing terms 

follows those used in the ARPS. The intermediate computational mixing value (second 

order derivative) at the point just inside the boimdaries is used to set the value of the 

point outside the boundary. All other quantities that require definition o f  intermediate 

quantities at the boundary computations, such as the stress and strain terms in the sub­

grid scale closure model, invoke the zero gradient condition.

3.5.1 Vertical Formulation

The commonly used Rayleigh sponge-rigid upper boundary and fixed bottom 

boundary conditions are employed in this model. In addition, following Klemp and 

Durran (1983), a radiation condition between w and ;r is available at the top boundary. 

The radiation condition forces the numerical solution at k=nz-l for w and k=nz-2 for k  

with a linear analytical Boussinesq relation. The analytical solution allows upward 

propagating gravity wave energy to pass vertically out of the top boundary and removes 

the need for a sponge in the top part o f the model domain. This method can reduce 

significantly the vertical extent o f the computational domain without a degradation of 

the solution in a wide variety o f gravity wave problems. The radiation condition is 

given later in this section.
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Whea the rigid boundary condition is applied to the top and bottom boundaries, 

the perturbation scalar quantities in the vertical, with the exception of ,t at the surface, 

are set to zero gradient following;

m(/, j ,  1) = «/(/, y,2) , and «(/, j ,  n z - \ ) =  «/(/, j ,  nz -  2) ,

v{i, j , l )  = v(/. y ,2) , and v(/,y, nr - 1) = v(/, j , n z - 2 )  ,

O'iL y.l) = 0'{i, y ,2), and y, n r -1 ) = 0'{i, J, n r -  2) .

y,l) = y,2) , and y, n r - 1) = 7r\i, y, nr -  2)

The non-dimensional pressure n"' at k=l is computed using an extrapolation condition:

n-U  y.l) = 2 * n-V, y.2) -  y,3) .

The vertical velocity and the contravariant vertical velocity at the lower boundary are 

defined by the relationship between the slope and the horizontal wind speed and the 

impermeability condition, respectively. The vertical velocity at the lower boundary is

w(/,y,2) =
ac âÇ 

The contravariant vertical velocity is

fV‘i iJ ,2 )  = 0 .

For the rigid upper boundary condition, both vertical velocities are set to zero

w(/. y , n r - 1) = fF ' (/, y, /K -  1) = 0 .
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Quantities involved in intermediate steps at the boundary tor the turbulent and 

computational mixing terms make use of the zero gradient condition, regardless of the 

top boundary condition type.

The upper radiation condition makes use o f the linear Boussinesq hydrostatic 

system o f equations. This formulation follows that developed by Klemp and Durran

(1983);

where k  and vv are Fourier transformed non-dimensional pressure and vertical 

velocity, N  is the local static stability, k .̂ are the horizontal wave numbers, d  is

the local base state potential temperature, and is the specific heat. A comparison of

the upper radiation and Rayleigh sponge-rigid lid upper boundary conditions for a 

simulated linear hydrostatic mountain wave is given in Chapter 4.

3.6 Discretized Equations

The model equations are computed using spatially centered finite differences on 

the Arakawa (1966) staggered C-grid. The grid box is illustrated in Figure 3 .1. The 

velocity variables are located on the sides of a grid box and define the physical model 

boundaries. The scalar quantities are defined at the center o f each grid box. The model 

scalar variables are computed on scalar points firom 1 to nx-1 and 1 to ny-1 in the 

horizontal plane and fi-om 2 to nz-2 in the vertical direction (Figure 3.2). The u 

velocity is computed from I to n x , 1 to ny-1, and 2 to nz-2 . The v velocity component
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Figure 3.1. ARPI3D grid box displaying the spatial arrangement o f the scalar and 

vector quantities.
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l  ,  2  n v - 2  ^  a v - I

1 2  ■ n y - l

w  - nW W ç W W

l-H -H -------- 1 - 4 - H
,  l  _  2  n z - 2  \  n z - l
1 2  n z - l  n z

Figure 3.2. Location o f the scalar and velocity points in terms of each o f the model 

axes. Hatching indicates the physical model domain.
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is computed from I to nx-l, I to ny, and 2 to nz-2. The vertical velocity is computed 

from 1 to nx-1. 1 to ny-1, and 2 to nz-l.

The spatial derivatives for the gravity, inertial, and acoustic wave terms are 

differenced using centered second order accurate finite differences. The time 

integration follows the split time step approach of Klemp and Wilhelmson ( 1978). The 

time integration is broken up into two parts; terms evaluated using big time step 

information, denoted by the superscript t corresponding to advective, gravity, and 

inertial wave modes as well as all mixing terms and sub-grid scale processes. The terms 

evaluated on the small time step, denoted by the superscript r , represent the acoustic 

modes and include the pressure gradient and divergence terms. The forcing terms 

computed on the big time step are used in the small time step to advance the dependent 

variables forward in time. This approach has been implemented and tested by a number 

of modeling efforts including Durran and Klemp (1983) and the ARPS (1995). The full 

discretized equation set is:

A t
= - c /  [S X + J ,S r7 T ' Y  -a d vu ' +turb[+D[  .

A t

u

-  advw‘ + + turbl +■ Dl  ,
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 --------  = - æ h S '  -  iiirK -  D ; -  S', .I M  » 0 a

=-adv7c" - ^ r c \ { 5 , u " ^ ^  + p 3 , w ^ ) - { \ - p ) S . w " ^ ^ \
S t c^

Note that all the variables except for 6 ’ are advanced on the small time step using the 

forward time scheme. The forcing terms for r/, v. w, and /r are applied in the small time 

step. The small time step is advanced using the forward scheme in n  steps where

In the non-dimensional pressure equation, the scheme is referred to as forward- 

backward differencing since the updated velocities are used in the divergence term. The 

potential temperature is evaluated and integrated on the big time step using leapfrog 

time differencing. The non-dimensional pressure and w are advanced using the fully 

explicit forward scheme or the vertically implicit forward scheme. The implicit scheme 

removes the vertical grid spacing time step restriction for acoustic wave propagation. 

The vertically implicit scheme follows the Crank-Nicholson method and is absolutely 

stable with respect to vertical sound wave propagation. The Crank-Nicholson scheme 

requires more computations due to the need to solve a tridiagonal matrix, but is 

beneficial for horizontal to vertical grid spacing ratios greater than 2.5. Use of the 2 

time step mode splitting method reviewed above allows for certain unstable acoustic
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modes to exist. Durran and Klemp (1983) suggest that values o f p  between 0.5 and 

1 0 successfully damps the unstable modes. These unstable modes are due to 

interactions between the sound waves and the advective and gravity waves as shown by 

Skamarock and Klemp ( 1992). A description o f the vertically implicit w -  /T solving 

technique is given in Appendix A  Appendix B reviews yv - tv upper boundary 

condition used in the vertically implicit time marching scheme.

The spatial averaging and differencing operators are defined by:

,,  n^s. , ,  «At,

(Z)" = --------- 2--------------- 2 _

n ù s s .  , .  « A y ,  + — ) -  <!>is -  — )

nAs

The horizontal and vertical advection terms are differenced using an energy conserving 

scheme first proposed by Arakawa (1966) and later modified to the fourth order 

equivalent advective form by Xue and Lin (1991). This form conserves the first and 

second order moments.

advu^ = + r s /  + ] ,

(3.19)

adw '  = + fV ‘''âçV ]

(3.20)
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a d v w ‘ -  — h i ^ ô w  w -h fV '''’ â . w  [ f f w -^-v-"'-'S, w  ~ ( V ‘ ~’ â . . w  12  *  > T 3 —

(3.21)

adv0‘ = ^[uS^e '^  + vô^d’'  ^  W ‘Ô.G'' ] -  + v '’5 . y  + W - J .  .9 ' ' '  ]

—\w S -9  ] — —[ h ^ ' c ! > , ] , (3.22)
3 3

(3.23)

The contravariant vertical velocity is computed using

The sub-grid scale contributions are discretized according to;

X
turbl = «y,( - r„  ) + y ,Ô. ( - r , , ) '  +6^ ( - r ,, ) + 7 , "5 .  ( - r „  ) + J .  ( - r ,,  ) ,

turbl = S^{-T^^)^J ,ôr irT^yŸ  ^ S y { -T y )+ J .S r { -T ^ .)  + ,

turbl =S^{-Tg^) + J^S.{rTg^)^ -^Sy(-Vg.) + J ,5-{-Tg,J^^ JzSri-Zg-^)
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The stresses are computed using:

^ ô ^ u + j ,  S.Û'' )

- i S ^ w  + + J ,

z-3 =

t 33 = -2 v Jy ,j.w ]

The sub-grid scale kinetic energy is integrated on the big time step using the leapfrog 

scheme.

_ g r - a r
—  = -a d ve‘ +P + + â^(2v/s^e)  + â^(2v/â^e) + <^(2w,%g) -  C, y

The advection and shear production terms are:

adue' = — + vS^e^ + f V S ^ e '  ] - - [ « ^ + fV " 'S ,.e  ] ,

P = 2v,5„5„ + 2 v ,S , .S , .^  + -h2v ,S^S^  -i-2 v,S ._ ,S ./‘’' + 2v,S,,S,,

The strains are:
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5,, = ô m + J , 5 - u

s ^ . = - ô v  + ( 5 . +  SyU + y,  Sru'

= t Ê

5’j3 ---/̂ 5<5.3V

The mixing terms D ', D ', D^, Dg are represented by:

d; = c; + « ; = - b„[5j(Æ>')+5;(^;v')]]-t2^[<j|(Æfu’)]]-K ?)V  , 

Dj = c ;  = 4 c j< y ;y ;« ')+ ^ ; (< y ;S 0 j] -b r [< « (« » ') ) l - '- ( f )« ' ■

The computational mixing coefficients and are held constant and generally 

chosen to be on the order o f 0.0005. Finally, an Asseiin (1972) is applied to all the 

predicted variables on the big time step to prevent the divergence o f the odd-even time 

step solutions:
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A smoothing coefficient u  o f 0.2 strongly damps the computational modes without 

affecting the physical modes significantly.
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CHAPTER 4 

MODEL VERIFICATION

Since this is a new model, several tests were conducted to validate the numerical 

formulations, with five o f the most important test groups presented here. The validation 

suite includes: two two-dimensional analytical mountain wave solutions, a simplified 

one-dimensional surface flux test using the Wangara data set, a three-dimensional density 

current simulation, and a two-dimensional simulation of the January 11, 1972 Boulder 

Colorado windstorm. With regard to the Boulder January 11, 1972 windstorm test, the 

current model is compared to established models. New results that are related to the 

proper numerical simulation o f  strong mountain waves are presented. Table 4 .1 

summarizes key model parameters used in each test.
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Table 4.1 Summary of Model Test Parameters

Parameter Linear Linear Rad. Long’s Wangara Bubble Boulder
nx 98 98 386 7 50 130
ny 4 4 4 7 50 4
nz 83 43 83 70 53 86
Ar (m) 2000 2000 400 80000 800 1000
4v (m) — — - 80000 800 —

A: (m) 200 200 250 30 100 341
A  (s) 20 20 10 20 4 5.0
Ar (s) 5 5 I 20 1 2.5
U (m/s) 20 20 10 0 0 Sounding

N  ( s  ' ) 0.01956 0.01956 0.0108 Sounding 0 Sounding

T ( K ) 250 250 — Sounding — Sounding

AÛ ( AT) — — — — -4.0 —

À. (m) — — — — 2000 —

^x(m) — — — — 14000 —

(m) I I 500* 0 500 2000
a^(m) 10000 10000 2000* 0 2000 10000

— — — 0 2000 -------*

C /A x ' 0.00001 0.00001 l.Oe-5 0 5.0e-5 0.0004
C./Az' 0.0 0.0 0.0 0 5.0e-5 0.00001
a  ( s  ') 0.0025 — — — 0.0015

(m) 8000 — — — 18000
u 0.2 0.2 0.2 0.2 0.2 0.2

^Terrain profile was numerically iterated using the non-linear lower boundary 

condition, starting with an initial height o f  h = 570 m and width = 2000 m. 

Sounding data are listed in Appendix E.
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4.1 Two Dimensional Linear Hydrostatic Mountain Wave

Two tests were performed using a linear hydrostatically forced mountain profile 

in an isothermal atmosphere. The goal here is to verify the model’s ability to reproduce 

basic mountain wave characteristics. In the first test, a Rayleigh sponge is applied to the 

top half of the domain (fi’om 8-16 km) in combination with the rigid upper boundary 

condition ( = 0 ). The second test incorporates the upper linear hydrostatic w -  it

radiation condition at the 8km level. All other parameters remain unchanged and are 

given in Table 4 .1.

The numerical solutions are compared to their analytical counterparts. Following 

Smith (1979), analytical solutions to a linear compressible hydrostatic mountain flow are 

developed in terms of streamline displacement from the undisturbed upstream value. For 

linearized compressible hydrostatic flow, the differential equation for streamline 

deflection is;

4 ^ + /= < y = o  , (4.1)
C Z '

where 5  is the streamline displacement and l~ is the Scorer parameter describing the 

vertical structure o f the disturbance. The Scorer parameter is defined by:

r - = g -

The mountain profile is bell shaped:

1 1
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h{x) = 4 = ^  (4.2)
.r' + a '

The distance from the center o f the mountain is x , a  is the mountain quarter-width, and 

is the mountain height. Applying the mountain profile to the lower boundary 

condition J(x,0) = h {x ) , and assuming the disturbance vanishes at large distances up and 

downstream of the mountain, the solution for streamline displacement is;

0{x,z) =
^ % aco s(/r)-x s in (/r)

 ; :--------P_
'^PoJ X' 4- a '

where is the air density at the surface ( z  = 0 )  and p  is the base state density. The 

analytical velocity fields are functions o f the streamline deflection;

= , ,4.3,
p  cz

= . (4.4,

In (4.3) and (4.4), w is obtained and then u is computed using the anelastic continuity 

equation.

Results from the Rayleigh sponge rigid lid test are presented in Figures 4.1 and 

4.2. Figure 4.1 displays the model, analytical, and difference perturbation horizontal 

velocities at a non-dimensional time U t / a  =60 (30000 seconds). Figure 4.2 follows the 

convention o f Figure 4.1 for the vertical velocity field. The present model reproduces 

the analytical fields with acceptable accuracy. The difference fields indicate a slight
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upstream tilt with height o f the wave structure and accounts for most o f the observed 

error. The maximum and minimum perturbations are within 10% of the analytical values 

at a height o f  one vertical wavelength (approximately 6.4 km). The upper radiation 

condition test requires only half the grid points in the vertical when compared to the 

sponge case. Figures 4.3 and 4.4 reveal similar characteristics found in the Rayleigh 

damping-rigid lid test. This suggests that for weakly forced hydrostatic flows the 

radiation condition can be used without appreciable loss in numerical accuracy. Both 

tests compare favorably with results presented by Nance and Durran (1994). They 

conducted a number of linear hydrostatic mountain wave experiments with similar initial 

and boundary conditions and computed difference fields to measure model accuracy. 

Their error characteristics are quite similar to the present models in terms of magnitude 

and location.

Another measure of the accuracy o f a numerical model is the transport of wave 

energy with height. One type of wave activity, as discussed by Eliassen and Palm 

(I960), is the vertical flux of horizontal momentum. The momentum flux at the surface 

can be expressed by:

= - j p u 'w 'd x =  j . (4.5)
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Figure 4 .1. Numerical model results for a linear hydrostatic mountain wave test using the Rayleigh damping rigid lid combination at 

time Ut/a = 6 0  (30000 seconds) for (a) u' , (b) , (c) m' The contour intei'val is ( a ) , (b) 0 005 m/s and (c) 0,001 m/s

The area depicted is centered over the mountain and is 80 km x 8 km
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Figure 4.2. Numerical mode! results for a linear hydrostatic mountain wave test using the Rayleigh damping rigid lid combination at 

time Utia = 60 (30000 seconds) for (a) w', (b) ŵ , , and (c) iv' - iv^„ . The contour interval for (a) and (b) is 0.0005 m/s, and (c) 

0.000125 m/s. The area depicted follows that o f Figure 4 .1
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Figure 4.3. Numerical model results for a linear hydrostatic mountain wave test using the upper radiation condition at time (/f/u 

= 60 (30000 seconds) for ( a ) / / ,  (b) , (c) The contour interval is (a), (b) 0.005 m/s and (c) 0,001 m/s. The area

depicted follows that given in Figure 4.1.
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Figure 4.4. Numerical model results for a linear hydrostatic mountain wave test using the upper radiation condition at time ( I d a  

60 (30000 seconds) for (a) w ' , (b) , and (c) h’’ . The contour interval in (a), (b) is 0 0005 m/s and (c) 0.000125 m/s

The area depicted follows that given in Figure 4.1.
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The momentum flux at the surface is equal to but opposite in sign to the vertical flux o f 

wave energy or surface wave drag, where u and w' represent the perturbation velocities 

and p  the base state density. The momentum flux is often normalized by the linear 

hydrostatic value.

where p,, is the surface reference density and M is the static stability for an isothermal 

atmosphere;

Figure 4.5 reveals a difference o f only a few percent between the rigid lid/sponge and 

linear radiation condition tests. Both cases support momentum fluxes o f 90% or better 

at one vertical wavelength and 95% of the normalized value at the surface. For steady 

state mountain waves, Eliassen and Palm (1960) show that the vertical flux o f horizontal 

momentum remains constant with height when U  . The present model produces a 

nearly vertical profile and is consistent with other compressible models (Durran and 

fCIemp, 1983 and ARPS, 1995). Normalized flux profiles approach unity for horizontal 

model domains twice that used above (not shown).
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Figure 4.5. Vertical flux of horizontal momentum at Ut I a  = 20, 40 ,60 normalized by 

the linear hydrostatic value. Solid lines represent the Rayleigh damping solution and the 

dashed lines represent the upper radiation condition results. One vertical wavelength is 

approximately 6.4 km.
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4.2 Two-Dimensional Finite Amplitude Boussinesq Flow

The model is tested using a two-dimensional non-linear Boussinesq flow and 

compared to Long’s (1953) solution. Following Durran and Klemp’s (1983) 

implementation o f Long’s solution, the differential equation for the streamline deflection 

from the undisturbed upstream height is similar to the linear case presented in Section 

4 I. The equation for streamline deflection is:

^  + . (4.6)
ex ' CZ~

The non-hydrostatic component is represented by the x derivative. With the Brunt- 

Vaisala fi'equency defined by:

N
The Scorer parameter is / = =  . For a constant base state flow and static stability.

Equation (4.6) describes non-linear flow using a linear differential equation. The lower 

boundary condition ^(x, is non-linear and cannot be directly applied. After

implementation of the linearized upper radiation condition, the solution to (4.6) is

5{x ,z)  = A„aRej^£exp[/(Ax + (/^ -  k ' Y  z) -  k b \ik  + Ç  &cp[ikx -  kb -  {k~ -/■)-z)]cft
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A numerical approximation for the non-linear lower boundary streamline deflection is 

made using the initial terrain profile from (4.2). The procedure involves solving (4.6) for 

the surface streamline deflection using the initial terrain profile. The resulting streamline 

is substituted back into the non-linear lower boundary condition and iterated until the 

change in streamline deflection is within acceptable limits. StefFensen’s Algorithm found 

in Burden and Paires ( 1989) is used to obtain the iterated non-linear lower boundary 

condition for use in the numerical model. For an initial mountain height o f 570 meters 

and mountain quarter-width of 2 km, the final mountain peak is 500 meters with the crest 

shifted upstream a few hundred meters. The analytically determined velocity 

perturbations have the same form as (4.3) and (4.4) without the base state density term;

= . (4 7)
cz

. (4.8)
ac

The analytical velocities were calculated using the same horizontal spacing used by the 

model but with an enhanced vertical grid spacing o f 50 m.

The numerical model is prepared by applying the Boussinesq approximation to 

the buoyancy term in (3.3) and substituting a reference potential temperature into the 

total potential temperature for the pressure gradient terms o f (3. l)-(3.3). The advection 

terms were removed from the pressure equation (3 .5). In this form, the pressure is 

allowed to change according to the linearized divergence term. The input parameters for 

this test are provided in Table 4.1 under Long’s test group. The numerical solutions for
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^'./T 'are reproduced in Figure 4.6 at a non-dimensional time o f U t!a=  60 (12000 

seconds). Only the center portion of the domain (measuring 40 km across and 8 km 

deep) is shown. A comparison o f the approximately steady state model predicted u . 

ly'. analytical , and associated difference fields (u  a n d w '-w ^  ) is

presented in Figure 4.7 and 4.8. Overall, the model reproduces the analytical solution 

reasonably well. The maxima and minima are within 7% for u and to within a few 

percent for ;y at a height of one vertical wavelength (approximately 5.8 km). The 

combined phase and amplitude errors for the velocities at the height of one vertical 

wavelength are on the order of 10-20%. Most o f the difference is related to phase 

errors. Additional tests (not presented here) indicate that both the radiation and 

Rayleigh sponge/rigid lid applications produce similar errors in magnitude and phase. 

Note that these phase errors are consistent with those fi'om the linear hydrostatic tests in 

Section 4.1.

For this test, the vertical flux of momentum is nearly constant with height and 

within a few percent o f the normalized non-linear value at Ut/a = 60 (Figure 4.9). 

Analytical streamlines (trajectories involving a single time level o f data) were computed 

and compared to the model equivalents with the results illustrated in Figure 4.10. The 

streamlines are computed by advancing a parcel through the respective velocity fields 

using a predictor-corrector method. The trajectory method and test solutions are 

presented in Appendix C. In general, the numerical model provides a good 

representation o f  the analytical streamline pattern over the mountain and displays errors 

characteristic similar to those shown in Figure 4.7 and 4.8.
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Figure 4.9. Vertical profile o f the vertical flux of horizontal momentum for Ut I a  = 15, 

30, 45, and 60 normalized by the non-linear Boussinesq value. One vertical wavelength 

is approximately 5.8 km.
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Figure 4.10. Comparison o f numerically computed streamlines for the numerical model 

solution (solid line) and the analytical solution (dotted line) for the non-linear Boussinesq 

test { N a lU  % 2) at a non-dimensional time Ut I a  =60.
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4.2 Wangara Day 33

A simple test o f  the surface parameterization scheme is performed in conjunction 

with the Wangara Day 33 data set. The simulation is initialized with the observed 9 am 

vertical profiles o f ^ , u , and v . The primary focus o f  this test is to validate the sub­

grid scale mixing o f the potential temperature field when heat is applied to the surface. 

No horizontal gradients are present in the initial data set and therefore no gradients 

develop during the coarse o f  the simulation. Yamada and Mellor (1975) updated the 

horizontal wind fields with estimated geostrophic values computed from surface pressure 

data. Their results indicate that even with the estimated change in the geostrophic winds 

with time, the predicted profiles deviated fi'om the observed data. Therefore, mixing of 

the horizontal wind components is not evaluated here. Since this is a one-dimensional 

test, it is an opportunity to tune the mixing length parameter for simulations not capable 

of resolving boundary layer convective cells. The relevant input parameters are listed in 

Table 4 .1 under the Wangara test group. Following Sun and Chang (1986), heat flux 

was applied at the surface with a magnitude of 0.216 and half-period o f 11 hours. Figure 

4 .11 compares the observed and model predicted potential temperature profiles as a 

function of time. The simulation compares favorably to the observed data. The 

turbulent mixing scheme captures both the average temperature and mixed layer depth.
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Figure 4.11. Vertical 6  profiles fi'om the (a) observed Wangara Test Day 33 fi'om Sun 

and Chang, (1986), and (b) model at 9 am, 12 noon, 3 p.m., and 6 p.m. local time.
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4.4 Three Dimensional Symmetry Test

ARP 13 D is tested for symmetry errors by dropping a cold bubble over a 

symmetric mountain in a neutral environment. The initial bubble perturbation was -4 K 

with the mountain defined by (4.2). The model parameters used in this test are listed in 

Table 4 1 under the Bubble test group. This test is designed to show errors in the 

numerical implementation, which are asymmetric in nature. The horizontal velocities « 

and V, are symmetric out to 11 decimal places at t=3000 seconds on a CRAY J90 

computer. As the bubble moved out o f the domain, slight asymmetries were noted (at 

the 10th place) in the horizontal velocity fields. This test was rerun using zero gradient 

lateral boundary conditions. The horizontal velocity fields remained symmetric out to 

the 14th place at t=3000 seconds. It appears that slight asymmetries are introduced by 

the lateral boundary condition scheme.

4.5 Idealized January 11,1972 Boulder Colorado Windstorm Simulations

A number o f  researchers have numerically simulated the Boulder CO, January 11, 

1972 windstorm event. The numerical results are often compared to the observed storm 

structures reported by Lilly and Zipser (1972) and Lilly (1978). Many of the observed 

windstorm characteristics, such as strong lee side surface winds and wave breaking 

regions in the upper troposphere and lower stratosphere, are well-represented by the 

numerical models. This is quite remarkable given the application o f an idealized terrain 

profile (see equation 4.2), the estimated thermodynamic upstream profile, and the two- 

dimensionality o f the numerical experiments.
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This test group is broken up into three sections. The first section compares the 

present model’s numerical prediction to the historical numerical studies. The second part 

exposes the sensitivity of the numerical solution to the vertical resolution and advection 

scheme accuracy, and the third section addresses the lateral boundary condition issue.

4.5.1 Comparison with Previous Numerical Studies

Two well known two-dimensional numerical simulations o f the Boulder January 

11, 1972 windstorm were conducted by Peltier and Clark ( 1979) (denoted as PC) and 

Durran and Klemp (1983) (denoted as DK). Despite significant differences in terms of 

the system of equations, initial and boundary conditions, and solution techniques, results 

from the two models compare favorably. Both display amplification of the mountain 

wave and subsequent wave breaking structure in the lower stratosphere and upper 

troposphere with strong surface winds in the lee o f the mountain crest. Numerical 

results fi'om PC and DK and the present model, in terms of total potential temperature, 

are displayed in Figure 4.12 and 4.13. The present model’s results using a mountain 

shape defined by (4.2) and upstream conditions closely matches those reported by DK. 

Model parameters for this test are listed in Table 4.1 under the Boulder test group. The 

thermodynamic profile is evaluated fi'om a sounding supplied by DK with the lowest 

pressure set to 820 mb and an isentropic layer between 820 mb and 68S mb. Data for 

levels above 110 mb were obtained &om PC’s initial Grand Junction 1200Z sounding.

For comparison with DK, the horizontal advection terms are approximated by a centered 

fourth order scheme. The vertical advection terms are computed using a centered 

second order scheme. The second order equivalent to that presented in (3 . 19)-(3 .23) is
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obtained by setting the coefficients in the first terms to unity and omitting the second 

term. The observed cross section obtained fi'om observations as reported by Lilly and 

Zipser ( 1972) is given in Figure 4.14. This model compares favorably with results from 

DK and PC. -All three models generate similar transient gravity waves and wave 

breaking turbulent regions over the mountain crest.

As with previously reported aspects o f the numerical storm, the wave response 

grows continuously and becomes unstable for the selected time step after approximately 

/=10,000 seconds. A comparison of the surface wave drag as a function of time fi'om 

DK, PC, and the current model are given in Figure 4.15 (a) and (b), respectively. The 

DK and PC models project an initial peak at approximately t=1000 seconds (due to the 

startup procedure) and then level oflf until about 6000 seconds, when the wave response 

and corresponding surface wave drag increases significantly. DK noted that the solution 

was unsteady and amplified with time, contrary to the observed storm, and suggests the 

unbounded growth may be due to the absence of surface fiiction. The solid line in 

Figure 4.15 (b) traces the surface wave drag computed fi-om the present model. The 

surface drag time series fi’om this model follows that given by DK and PC.

During the process o f comparing the results from ARP 13 D to previously reported 

numerical predictions, significant sensitivities were uncovered that were related to 

vertical grid resolution (or advection scheme accuracy), and lateral boundary conditions. 

These factors separate or combined, produce dramatic changes in the outcome of the 

experiments. The next two sections focus on these issues.
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Figure 4.12. Isentropes for the January 11, 1972 Boulder, CO windstorm at t =4000s from (a) the present model, (b) DK, and (c) 

PC (at 4160s). The contour interval for (a) and (b) is 5 “ K and unknown in (o).
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4.5.2 Sensitivity to Vertical Resolution

In order to remove any potential lateral boundary effects and investigate the 

above noted sensitivities, two experiments were conducted in which the mountain is 

located at the 200-km mark o f a 430-km wide domain. The experiments are 

distinguished by different vertical grid resolutions; dz=l50m and dz=34lm. All other 

model options and parameters remained unchanged except for a decrease in the time step 

to allow the simulation to continue during the amplification period without violating the 

CFL time step criteria. Both simulations, using second order vertical advection, place 

the wave breaking and turbulent zones at the base o f the stratosphere, with the coarsely 

resolved case (dz=341m) exhibiting a stronger wave response in this region. A 

comparison of the total potential temperature fields is given in Figure 4.16. The wave 

activity in the stratosphere above the main breaking level is more coherent in the 

dz=150m case than in its coarser resolved counterpart. The vertical wavelength in the 

stratosphere is approximately 6km and resolved by 17 grid points in the coarse resolution 

and by nearly 40 grid points in the fine resolution case. A surface drag comparison for 

the vertical resolution tests is plotted in Figure 4.17. The coarsely resolved simulation 

displays a similar wave amplification pattern as the original simulation (Figure 4 .15b), 

while the dz=150m case indicates an initial delay in the amplification process by 

approximately 5000s. The pseudo-steady state wave drag is noticeably lower for the 

dz=l 50m case. The amplification o f the stratospheric momentum flux in the coarse 

resolution run is reduced (delayed), suggesting that the vertical transfer o f wave energy 

and wave dissipation is sensitive to vertical grid resolution (Figure 4.18).
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Figure 4,16, Large domain (430x28km) model simulated isentropes for the January 11, 1972 Boulder, CO windstorm at r = l 5.000 

seconds for (a) dz=150m, and (b) dz=34lm, after both cases achieved high drag states. Second order vertical advection is used in 

both runs. The contour interval is IO°K and the entire model domain is plotted.
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simulations. Note the dashed line follows the small domain results from Figure 4 .15(b).

107



16.0

12.0

(km 005
" " ■ ^ + - 0 0 5 - ^ ^ ^3.0

4.0

0.0
0.0 0.4 0.8 1.2

M/MH
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the dz=l50m case (solid line) and the dz=341m case (dashed line) at f=SOOO seconds. 

The flux was normalized by an estimated mid-tropospheric value. Note the increased 

wave activity near the tropopause for the dz=150m run.
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4.5.3 Lateral Boundary Influence

As alluded to in the previous section, the lateral boundaries can pose a formidable 

threat to mountain wave prediction. In this section, two o f the five boundary conditions 

discussed in Chapter 3 are tested for the dz=l50m case. One method o f testing lateral 

boundary conditions is first to perform a large domain control run in which boundary 

influences are minimal in a desired location. Then, conduct boundary condition 

sensitivity experiments for a smaller upstream domain, with the boundary in close 

proximity to the forcing mechanism. The control run for these tests is the high- 

resolution large domain run of the previous section. The two experiments involve the 

vertically averaged phase scheme of Durran and Klemp (1983) and the environmental 

phase speed. The environmental gravity wave phase speed was set i o l * U  . The choice 

of phase speed is somewhat arbitrary but it ensures that any gradient in the normal 

velocity component that reaches the boundary is passed on to the outside point. The 

inflow boundary (west boundary) is located 63.5km upstream of the mountain crest.

This location corresponds to the 136.5km mark in the large domain control run. The 

simulations were advanced to / =5,000 seconds and the perturbation u fields in the first 

50km of the domain are compared in Figure 4.19 to the same area of the control run. In 

the control run, the perturbation fields are smooth, with significant wave energy present 

upstream o f the mountain. Note that the velocity perturbations are nearly zero at the 

inflow boundary in the vertically averaged Orlanski case (Figure 4 .19b). The 

environmentally determined phase speed compares rather well to the control run
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Figure 4,19. Comparison of the perturbation horizontal velocity (//' ) at t =5000 seconds for (a) large domain control run, (b) 
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perturbation u field, although there are still noticeable errors. The errors in the Orlanski 

case are of suflScient magnitude to hamper wave development over the mountain crest 

severely. In fact, the amplification stage present in the control run is delayed in the 

vertically averaged Orlanski run until approximately t =20,000 seconds. The reason for 

this is tied to the development o f the flow reversal region above the mountain. The 

inflow boundary reduces the negative u field in the vicinity o f the tropopause to almost 

zero. The interior velocity field is unable to develop a wave-induced critical layer in a 

timely fashion. The amplification for the environmentally determined phase speed case 

occurs at approximately f=9000 seconds, nearly 1 hour prior to the control run. The 

reason for this behavior is unclear, but may be due to the smaller domain size.

The formulation of the lateral boundary condition for the normal velocity 

component, following Orlanski, is inherently flawed. The advection equation approach 

in (3 .17) and (3 .18) requires the quantity ( m + c ) to be directed outward to modify the 

normal velocity at the outermost grid point. The computed phase speed is a function of 

the normal velocity field. As the solution approaches a steady state, the time tendency 

approaches zero, reducing the magnitude o f the velocity used in the advection equation. 

For the vertically averaged Orlanski case, the phase speed and corresponding solutions 

for t <2,000 seconds at the boundary is very similar to the control run. But as the 

solution advances, errors in the first order determination o f the quantity (m + c ) and 

spatial derivatives generate inward pointing phase velocities. The time dependent 

structure o f the horizontal wind field at the boundary for the vertically averaged Orlanski 

case supports the findings o f Durran et. al. (1993). Their study compares various phase
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speed estimation methods, including the Orlanski method, at the lateral boundaries in a 

single layer shallow water system. They reported that early in the simulation the 

Orlanski method reproduces the true phase speed reasonably well. But as partial 

reflections due to numerical errors occur at the boundary, the computed phase speed 

deteriorates significantly and becomes a poor representation o f the true phase speed.

4.6 Model T est Summary

This newly developed numerical model compares favorably with a number o f 

steady state analytical solutions and currently existing models in similar flow regimes. In 

regards to the well-known Boulder windstorm of January 11, 1972, the model performs 

admirably when measured against current models and observations. The windstorm tests 

reveal sensitivities not previously reported in terms of vertical resolution and lateral 

boundary condition type. Results fi-om Sections 4.5.2 and 4.5.3 suggest that tighter 

constraints on the vertical grid resolution and lateral boundary conditions are needed in 

future windstorm prediction studies. Given the strong gradients of base state variables 

and the fi-equent development o f  a wave breaking region, the commonly used method of 

dividing the vertical wavelength by the grid spacing produces less than adequate results. 

Improved forecasts are possible by either increasing the vertical resolution or improving 

the accuracy o f the advection scheme.
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CHAPTER 5

TWO DIMENSIONAL HEATED MOUNTAIN WAVE SIMULATIONS

This chapter investigates idealized and observed two-dimensional surface heated 

mountain wave flows through the use o f a mesoscale numerical model. Researchers 

have frequently applied two-dimensional numerical models to the observed downslope 

wind events in Central Colorado. The success o f the two-dimensional studies is largely 

due to the fact that the Front Range of the Rocky Mountains are oriented in the north- 

south direction. Their north-south wavelength is substantial and acts as a two 

dimensional barrier to the predominantly westerly flow.

Six two-dimensional test groups are used to evaluate the heating and cooling 

aspects of the diurnal cycle. They include finite amplitude narrow and wide mountain 

profiles, mean state critical layer tests, non-dimensional parameter (Froude number) 

range experiments, and the observed January 9, 1989 Boulder Colorado windstorm.

Each group approaches the windstorm problem from a different perspective, ranging 

from analytical comparisons to the January 9, 1989 highly variable recorded event. The 

tests are designed to isolate the impacts of the parameterized surface heating on the 

numerically generated mountain wave flows. In each test group, a comparison is made 

between the non-heated or control run and their heated counterparts. Direct evaluations 

are possible since the control runs are advanced the same length in time as the heated 

runs. In the heated cases, an approximate steady state is attained before the diumal
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cycle is activated. One idealized cooling simulation is performed at the completion of 

the heating period.

As mentioned in Chapter 3, the redistribution of surface heating in this model is 

accomplished in one o f two ways. In one method, a strong diffusion coefficient is 

applied to distribute the heating in the vertical. Due to its strong dependence on the 

turbulent kinetic energy budget and mixing length, this method is referred to as the 

parameterized approach. It is best suited for horizontal grid spacing equal to or greater 

than 1000m. The parameterized method works well for flow over long wavelength 

mountains. In the second technique, 1 attempt to explicitly resolve the convection in the 

developing boundary layer. The mixing length is an order o f magnitude smaller than 

that used in the parameterized approach and allows for the development o f  a 

superadiabatic layer near the surface. A random number generator is applied to the 

heating term at the beginning of the diumal cycle. These small spatial variations in the 

potential temperature field near the surface grow with time into efficient convection, 

responsible for nearly all o f  the heat redistribution in the boundary layer. The explicit 

technique requires resolution on the order o f 100m in each dimension to resolve 

accurately the developing mixed layer eddies. This approach is better suited for short 

wavelength mountains that force non-hydrostatic gravity waves or lee waves. Lee 

waves require horizontal grid spacing o f  order 400m. Note that in all heated 

simulations, the upstream lower boundary is heated, allowing for a more realistic 

boundary layer evolution. Recent and relevant surface flux observations are presented 

in the next section.
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5.1 Surface Heat Flux Measurements

The choice o f a maximum heat flux for use in the numerical simulations is 

guided in part by a recent field study conducted in the Boreal forest of Saskatchewan 

and Manitoba, Canada. The Boreal Ecosystems Atmosphere Study (BOREAS) is 

designed to improve the understanding o f energy exchanges between the boreal forest 

and the lower atmosphere. A description of the project can be found in Sellers et. al

(1995).

Data collection began in August 1993 and continued through 1996. The 

majority o f the measurements were taken in contiguous periods spanning several days 

and included data from eddy correlation equipment on a surface tower network. Flux 

measurements were enhanced with observations from four instrumented aircraft. At the 

end of 1995, two years into the study, a detailed wintertime boundary layer study was 

conducted. This period represents the first in-depth study o f the Boreal forest 

ecosystem during the winter months. Tree-top sensible heat fluxes as high as 400 

W /m ' were measured near the end of March 1996. Figure 5.1, courtesy o f Black

(1996), displays a plot o f  sensible heat flux as a function o f time at a site in the Boreal 

forest and is typical for data collected during March 1996. These observations provide 

evidence that significant heating can take place in the tree canopy above the snow- 

covered tundra.
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Figure 5.1. Plot o f  sensible heat flux (top curve) and latent heat flux (bottom curve) for 

the period March 22, 1996 inclusive. The data were collected at the Old Aspen Site 

PANP in Saskatchewan, Canada.
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5.2 Idealized Finite Amplitude Mountain Wave Flow

Three tests are conducted for finite amplitude wide and narrow mountain forced 

flows. Referring to (4.2), the mountain quarter wavelength a  is 10km and 2km for the 

wide and narrow mountain tests, respectively. Two narrow mountain simulations are 

offered to measure the sensitivity o f  the gravity wave response aloft to the developing 

boundary layer circulation. One prediction of a wide mountain flow is made and the 

resulting wave activity contrasted with that predicted by linear theory. The results 

obtained in this section will be used in all of the remaining numerical experiments.

5.2.1 Heated Narrow Mountain Tests

Two methods of heat distribution are investigated here using a narrow mountain 

profile. The non-hydrostatic effects can be measured by the ratio o f the horizontal to 

vertical wavelengths, where values approaching unity indicate scale equivalence and 

signify substantial non-hydrostatic forcing. For this test the ratio is:

where N  =0.0108 is the static stability, a  =2 km the quarter wavelength parameter, 

and U  =20 m/s is the base state wind. The mountain profile is estimated by (4.2). The 

non-linear effects are measured by the gravity wave strength { N h )  normalized by the 

base state wind. For the narrow mountain case with h  = 300m, the non-linear effects 

are classified as moderate with:

^ « 0 . 3 2 4
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Table 5 .1 provides a summary o f the model parameters used in the two-dimensional 

simulations presented in this Chapter. For this particular test the model parameters are 

listed under the narrow mountain test group.

The approach to steady state of a mountain wave simulation can be evaluated 

using a time series of the computed surface wave drag. This test indicates a steady state 

at approximately Ut I a=6Q or 12,000 seconds. Therefore, in both the parameterized 

and explicit heated runs the heating cycle begins at 12,000 seconds. Recalling (3.16), 

the diurnal heating cycle is;

Tg; {k) = —^  max{heat min, sin cot) ,

with a maximum value of lOOfF / m~ and a heating period o f 12 hours. The heating 

cycle begins with zero amplitude and grows to a maximum at 6 hours. The sine wave 

time representation produces a shape similar to the observed diumal cycle. As 

introduced in Chapter 1, the majority of windstorms occur during the winter months 

when the days are shorter than 12 hours. The length o f day chosen here is arbitrary and 

is likely longer than would be experienced during the peak downslope windstorm 

period.

5.2.2 Parameterized vs. Explicit: Results and Discussion

Each simulation is advanced to / =55,000 seconds, or a non-dimensional time 

Ut! a = 275. The comparison includes a time series o f surface wave drag, vertical 

profiles o f vertical fluxes of horizontal momentum, and x-z cross-sections o f selected
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Table 5.1 Two-Dimensional Heated Mountain Wave Parameter Summary

Parameter Narrow Wide 7km Critical 17km Critical 2-Layer NLP030,010,002 Boulder
nx,ny,nz 434,4,83 434,4,83 434,4,113 434,4,213 245,4,83 163/237.4.75/103 650.4.115
Ax (m) 200 1000 1000 1000 1500 2000 1000

AV (m) - - - --- —

Az (m) 50 100 100 100 200 100.200,250 250
I (s) 5.0 10,0 5,0 5,0 10 10,20.20 5,0
r  (s) 0,5 2,0 2,5 2.5 2.5 2,5.2 5,4,0 2,5

U (m/s) 10 20 20 20 20 10 Soundingt
NH/U 0,324 0,293 0,31,0,39,0,47 0.10,0.31,0.52 0.6,03 3,0,1 0,0 2 —

N (1/s) 0,0108 0,01956 0,01047 0,01047 0.02,0.01 0,03,0,01,0,002 Sounding-»-

f  ( K) - - - 250 — - " " "

h  (m) 300 300 600,750,900 200,600,1000 600 1000 Profile*
a  (m) 2000 10000 10000 10000 10000 15000 Profile*
H.. (W/m^) 100 100 200,-40 200 300 360,300,60 200
Û) (hrs) 24 24 24 24 27,7 72,27,7,16,6 24
r./Ax' 0,00001 0,00001 0,0005 0,0005 0,0005 0,0005 0,0004

C J A z ^ 0,0 0,0 0,0001 0.0001 0,0005 0,0005 0,00001
V 0,2 0,2 0,2 0.2 0,2 0,2 0,2

♦Terrain profile is created from the ARPS terrain pre-processor. ** Sounding data is listed in Appendix E
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perturbation fields. Figure 5 .2 limns a comparison o f the normalized vertical profiles of 

momentum flux at Ut I a  = 75, ISO. and 225 for the parameterized run (solid line) and 

the explicit run (dashed line). The curves are normalized by the two-dimensional linear 

hydrostatic values. For the parameterized experiment, the profiles are relatively 

smooth, with nearly vertical orientation and exhibit decreasing wave activity with 

increasing time and mixed layer depth. Overall, the mountain flux profiles for the 

explicit case compares favorably with the parameterized pattern. At Ut I a  = 75 and 

150, the profiles are nearly identical. At U tI a =  225, the explicit case generates flux 

near the top o f the mixed layer (approximately 10 km) that is 35% greater than its 

parameterized counterpart. This is likely due to the inclusion o f the convective 

elements in the flux computation. But as the distance above the inversion increases the 

difference between the explicit and parameterized experiments is reduced to less than 

10% at the height o f 2/3 vertical wavelength (approximately 4 km). Plots o f the 

perturbation horizontal velocity in Figure 5.3 and potential temperature in Figure 5.4 

contrast the results between the two classes o f heat redistribution. Figure 5 .3 presents 

the horizontal velocity perturbation ax. Ut Ia =  225 near the mountain peak. The 

location o f the maximum surface wind moves upslope and approaches the mountaintop 

as the mixed layer deepens. In the potential flow limit, the maximum wind is located at 

the mountain peak upstream o f the maximum associated with a mountain wave. Figure 

5.4 contrasts the simulated isentropes of each test for the entire model domain. As 

evident in Figure 5.3, both simulations predict a nearly identical upstream boundary 

layer height, to within 50 meters (see the 294 ’ K isentrope). The disturbances in the
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Figure 5.2. Vertical profile o f the vertical flux of horizontal momentum for heated 

narrow mountain flow for the parameterized case (solid lines) and explicit method 

(dashed lines) at non-dimensional times o f  Ut I a  = 75, 150, and 225.
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Figure 5.3. Perturbation horizontal velocity for a finite amplitude heated short wavelength mountain flow for (a) the parameterized 

case and (b) the explicit simulation at Utla= 225 (40,000 seconds). Area depicted is in the vicinity o f the mountain peak 

extending to the model top. The contour interval is 0,5 m/s.
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Figure 5.4. Isentropes for a finite amplitude heated narrow mountain flow for (a) parameterized and (b) explicit runs at l l t l u  = 225 

(40,000 seconds). The area shown follows that of Figure 5.3. The contour interval is 10" K
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potential temperature field near the top of the mixed layer in the explicit case exhibit a 

dominant wavelength on the order o f 5 km or less. In these experiments, the 

perturbations at the top o f the mixed layer become lee wave sources. The minimum 

vertical wavelength that could propagate vertically [ I tt N I U )  'm this example is 

nearly 6 km. Thus, gravity waves with horizontal wavelengths less than 6km are 

classified as evanescent waves and do not propagate vertically. The majority o f  the 

disturbances measure less than 6 km in length and do not contribute significantly to 

the momentum flux at higher elevations.

The ratio o f  the horizontal wavelength o f the convection to the depth o f the 

mixed layer in Figure 5.3 (b) is approximately 4:5 to I. The grid spacing is 200 x 50 

meters corresponding to approximately 20 grid points per convective cell in each 

spatial direction. Note that the gravity wave activity aloft is clearly visible in both 

cases although slightly modified in the explicit experiment. Inspecting the predicted 

turbulent kinetic energy field e best illuminates individual convective plumes in the 

explicit mixed layer. Figure 5.5 illustrates the total e cross-section at Ut l a  = 225 for 

each test. The structures o f the e field in these plots are markedly different. The 

convective plumes in (b) extend to nearly 1.3 km above the surface. This is due 

primarily to the method in which the mixing length I is computed and the randomness 

o f the initial temperature perturbation. The vertically oriented e fields in (b) 

correspond to resolved updrafts in the simulated two-dimensional dry convection. In 

these tests the primary source of e is the buoyant production (see page 56):
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The mixing length in the parameterized method can be an order o f magnitude larger 

than the explicit case. As a result, resolved convection can be produced in the 

parameterized case but the depth and magnitude will be hampered since the vertical 

mixing will reduce any developing vertical potential temperature gradients.

As portrayed in the explicit and parameterized simulations, the convective 

motions modify the surface winds significantly but the flow aloft remains largely 

unchanged. The kinetic energy from this moderately non-linear case is comparable to 

that found in boundary layer convective motions. Yet, both tests reveal a nearly 50% 

reduction in wave energy aloft at the conclusion of the diumal heating cycle. The 

majority o f  wave degradation stems from the results o f convection and not the 

convection itself. From a mountain wave perspective, the differences in the 

parameterized and explicit experiments are small. This result favors the use of the 

computationally efficient parameterized approach for the redistribution o f heat in the 

convective boundary layer. Choosing the parameterized technique allows the 

simulation o f large two and three-dimensional downslope windstorms with today’s 

computer resources. In support o f the coarser grid spacing selection, Clark et. al. (1994) 

show that horizontal grid spacings on the order o f 500-1000 meters are sufficient for 

resolving the hydrostatic modes and the majority of the shorter wavelength lee waves.

5.2.3 H eated Wide M ountain Flow Test

The impacts o f a parameterized diumal cycle on a longer wavelength mountain 

profile of moderate height are presented here. The mountain quarter wavelength is five 

times that given in Section 5.2.1 and therefore forces mainly hydrostatic gravity wave
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modes. The stability and base state wind are nearly twice those o f the previous case. 

The resulting hydrostatic measure is:

where iV = 0.0195 (isothermal), a =  10 km, and U  = 20m/s. For h = 300 m, the non­

linear measure or inverse Froude number is:

^ . 0 . 2 9 3  .

approximately the same as given in the narrow mountain simulations. A summary of 

the model parameters used in this test is provided in Table 5.1 under the wide mountain 

test group. A steady state solution for the wide mountain case is obtained at Ut!a=6Q  

ox t =  30,000 seconds, after which the diumal heating is activated via the parameterized 

method, and the simulation advanced to 80,000 seconds { U t I a =  160). The horizontal 

velocity (Figure 5.6) and potential temperature (Figure 5.7) are well mixed in the 

neutral layer and the maximum and minimum perturbations aloft are approximately 5- 

10% lower than the steady state values.

Both the narrow and wide heated mountain wave simulations exhibit reduced 

surface wave drag as the heating cycle increases the depth o f the mixed layer (Figure 

5.8). The largest deviations in the momentum flux from the wide mountain control run 

steady state values are observed at the end o f the experiment, in conjunction with the 

maximum depth of the mixed layer (Figure 5 .9). The decrease in momentum flux for 

the parameterized run is approximately 18%, nearly one third o f the reduction
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experienced by the heated narrow mountain test (49%). Most o f  the discrepancy can be 

explained by the fact that for the narrow mountain run, the static stability is 

approximately one-half that used in the wide mountain simulation. This point is 

illustrated in Figure 5.10. The resulting mixed layer depth for the wide mountain case 

is about half that o f  the narrow ridge simulation. As illustrated in Chapter 2, the 

reduction o f wave activity in the stable layer aloft is a function o f the mixed layer depth 

(H). Referring to Figure 2.2. linear theory predicts for a horizontal wavelength of 80 

km (the main contributor o f the a  = 10 km mountain shape) and mixed layer depth of 

0.6 km, a reduction o f integrated wave activity ( u'w' ) on the order o f 16%. The 

corresponding linear theory estimate for reduction in wave activity for the narrow ridge 

is 43%. Linear theory captures nearly all the simulated reductions in wave activity 

associated with heated mountain wave flows o f this variety. These results lend support 

for linear theory in estimating the wave behavior for moderately non-linear mountain 

flows under the influence of surface heating.
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Figure 5.8. Plot o f  surface wave drag as a function of time for the parameterized heated 

wide (solid) and narrow (dashed) ridge flow tests. Heating curves are provided at the 

bottom of the plot for the wide (solid) and narrow (dashed) mountain tests. The 

maximum heating rate for both tests is 100 w/ m~. The vertical lines represent the 

approximate mixed layer depth.
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80, 100, 120, and 140 for the heated wide ridge flow test. Profiles are normalized by 
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5.3 Mean State Critical Layer Experiments

Downslope windstorms frequently display elevated regions o f flow reversals 

and enhanced turbulence with weak or neutral stability. These regions are commonly 

referred to as critical layers. Current numerical models are quite capable o f producing 

such features as evident in the January 11, 1972 Boulder windstorm simulation 

illustrated in Chapter 4. A critical layer exists when the phase velocity o f the wave 

equals that o f  the transport medium. For the case of airflow over mountains, as alluded 

to earlier, this occurs when the cross-mountain wind speed is reduced to zero. These 

experiments are designed to classify the sensitivity o f mountain wave flow to surface 

heating in the presence of varying mean-state critical layer heights. One experiment is 

extended to include the response due to a parameterized nocturnal cooling period. 

Simulations with a mean state critical layer are similar to those found in downslope 

windstorms: they both involve a critical layer, above which reduced wave activity is 

observed.

Studies o f mean state critical layers in mountain wave simulations are presented 

by Durran (1986) and Durran and Klemp (1987). Durran investigates the amplification 

mechanisms o f  strong downslope windstorms. He compared numerical predictions of 

flow over a mountain with varying critical layer heights to the linear amplification 

model o f  Peltier and Clark (1979, 1983), to Smith's (1985) hydrostatic non-linear 

analytical theory, and to the hydraulic analog. He found, for a Boussinesq atmosphere, 

the numerically predicted low and high drag states followed Smith’s non-linear theory 

and to a lesser, yet significant, degree the hydraulic analog. He concluded that the
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height of the wave-breaking region is sensitive to subtleties in the flow, including 

upstream inversion heights and that the prediction o f the onset and placement o f the 

wave-overturning layer can only be addressed through the use o f numerical models. 

Two of Durran’s critical layer test groups are investigated here. The two groups are 

defined by the height o f  the mean state critical layer, 7 km and 17 km. Following 

Durran’s work has at least two benefits. The first is the evaluation o f the model in 

another non-linear environment by comparing the numerical solutions with Smith’s 

predictions and Durran’s numerical results. The second allows for a direct assessment 

of the mature windstorm’s sensitivity to changes in the low-level stability given a 

simplified mountain shape and base state wind profile.

Motivated by the results of Chapter 4, the resolution in the present study is 

enhanced over what Durran used. Grid spacings were dx =1000 m and dz =100 m as 

compared to Durran’s dx =1500 m and dz =333 m. The Boussinesq option was invoked 

in the model for all o f the critical layer tests. The details of the Boussinesq 

modification are summarized in the finite amplitude test description in Chapter 4.

5.3.1 7 km Mean State Critical Layer Results

The experimental set-up follows Durran (1986). The base state wind is 

reduced in a shear layer firom 20m/s at 5 km to zero at 7 km. From 7 km to the top of 

the model domain (11 km) the base state wind is set to zero. All simulations are 

performed without surface fiiction parameterization. Table 5.1 presents a listing o f the 

pertinent model parameters under the 7 km Critical test category. This experimental 

group is composed o f three separate simulations in which only the mountain height
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varies. The mountain heights used in these tests are 600m, 750m, and 900m, which 

corresponds to a non-linear factor or inverse Froude number N h / U  = 0.314. 0.392, and 

0 471, respectively. These tests are similar to those given in the second line o f  Durran s 

Table I. The mountain profiles are defined by the "‘Witch of Agnesi” profile in (4.2). 

The mountain quarter wavelength is a  = 10 km. The heating cycle for each test began 

a t f =  35,000 seconds {Ut I a =  70) and the prediction advanced to / = 80,000 seconds or 

a non-dimensional time o ï  Ut I a =  160. The A= 750 m case is extended to Ut I a =  240 

using an estimated minimum surface cooling rate oî AQ WI n r . The time dependant 

cooling function is given in Section 3.3. The present model's control runs reproduced 

the results o f Durran’s Table I reasonably well, although the computed surface wave 

drags are lower. Figure 5.11 compares the normalized surface wave drag detemined 

from the present model with those fi'om Durran (1986). Figure 5.12 displays the 

computed surface drag time series for all the 7 km critical layer tests. Both the h  =750 

m and h =900 m tests achieve high drag states approximately 3.5 times that predicted 

by linear hydrostatic theory, while the h =600 test produces significantly sub-linear 

theory surface wave drag. These results agree with those illuminated by Smith’s theory. 

The surface wave drag, measured at the end o f the heating period, for the heated h =900 

m and h =750 m simulations were reduced by 28% and 22%, respectively. In both 

cases, the mixed layer achieved a depth o f approximately 2.0 km. During the h  =750 m 

cooling period (between 80,000 and 120,000 seconds) the surface drag increases but 

remains considerably lower than the control run. An experiment initialized with a 

neutral surface layer depth equal to the maximum mixed layer depth obtained for the 

A = 750 m heated case was performed with the results presented in Figure 5.12 for
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Figure 5 .11. Normalized surface wave drag as a function of mountain height and critical layer height. Results from 

Durran’s (1986) results are indicated by the far right bar in all but the far right group. The far left bar in each group 

represents the non-heated present model results and the center bar depicts the heated results.
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Figure 5.12. Time series plot of computed surface wave drag for all tests with a mean 

state critical layer at 7 km. The solid lines represent the control runs and the dashed 

lines the heated simulations. The heating curve is provided at the bottom o f the plot 

with a maximum heating rate o f200 w I n r  and a minimum rate o f -40 w I n r . The 

vertical lines represent the approximate mixed layer depth.
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comparison. No heat is applied and the simulation is advanced to t = 80,000 seconds. 

The graph shows that for nearly 14 hours the wave drag remains nearly an order of 

magnitude lower than the control and heated runs. At / = 80,000 seconds the heated and 

neutral layer simulations exhibit nearly identical surface wave drags and peak surface 

winds. Two different paths are used to achieve the same result. Since the growth rate 

was small, a low drag state could have been mistakenly estimated prior to t= 40,000 

seconds. In this test, no gravity waves are present in the neutral surface layer. The 

distance from the top of the neutral layer to the base o f the critical layer is 5 km, of 

which 2 km involves a linear decrease in the base state wind. The vertical wave number 

increases and the vertical wavelength decreases in the shear layer. Reports by B lumen 

(1965) and Klemp and Lilly (1975) present a case for linear resonance. The h=  600 m 

heated simulation exhibits a low steady state drag and undergoes a near 50% reduction 

at the completion o f the diurnal heating cycle.

Figure 5.13 displays the normalized surface wave drag curve for the analytical 

two layer 80 km wavelength solution from Chapter 2 (line) and the final surface wave 

drag for the three heated 7 km critical layer tests (circular points). Note that all three 

critical layer runs points rest above the curve, indicating that for a 80 km wavelength 

mountain profile, linear theory overestimates the wave suppression due to a well mixed 

surface layer. The best estimate by linear theory is made for the h  = 600 m low drag 

state condition in which the error is approximately 10%. For the high drag states of the 

h = 900 m and h  = 750 m tests, linear theory under estimates the wave amplitude by 

factor of two. The h  = 900 and h = 750 m cases exhibit a 10% reduction in the 

maximum predicted surface wind at the conclusion o f  the heating cycle (Figure 5 .14).
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Figure 5.13. Plot o f the linear analytical steady state surface wave drag curve as a function o f mixed layer depth and horizontal 

wave length (80 km) and 7 km heated critical layer tests. The values are normalized by the H=0 steady state values. Plotted points 

represent the normalized surface drag at the conclusion o f the heating cycle for the simulations indicated in the box above.
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Figure 5.14. Time series plot o f the maximum surface wind speed with a mean state 

critical layer at 7 km for all control and heated tests. The solid line represents the 

control runs and the dashed line the heated tests. The heating curve is provided at the 

bottom o f the plot with a maximum heating rate o f 200 w/rn^  and a  minimum rate o f • 

40 w/ /n*. The vertical lines represent the approximate mixed layer depth.
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Most of the reduction in surface u take place late in the heating cycle, corresponding 

to the maximum mixed layer depth. Note the hydraulic jump-like structure downstream 

of the mountain peak at x= 320 km and wave induced critical layer at approximately z= 

4.8 km (Figures 5.15 and 5.16). As anticipated, very little wave activity is present 

above the critical layer (z=7 km).

The h = 750 m test was extended 40,000 seconds past the end o f the heating 

cycle. The purpose of this experiment is to gain insight on the effects o f nocturnal 

cooling on a heated mountain wave. Although the main goal o f  this study is to 

investigate the diurnal trends from the heating perspective, the cooling period is also a 

likely contributor to the observed trends, since gravity wave magnitude is a direct 

function of stability ( A/̂  ). A stable near-surface layer develops as a result o f the 

parameterized cooling function (Figure 5.17). The stability in the surface layer is 

similar to the original base state profile and is approximately one-third the depth of the 

mixed layer height (not shown). In response to the increase in static stability at the 

surface, the wave drag and maximum wind speed increase during the simulated 

nocturnal period, recovering nearly one-third o f  the reduction attributed to the heating 

period. But, the remnants of the heating cycle are clearly visible, with the presence of 

an elevated mixed layer o f appreciable depth (Figure 5 .18). It is clear from this 

experiment that the mixed layer continues to restrain the mountain wave response, 

albeit from an elevated location. The overall character of the simulation remains 

unchanged from that at r=  80,000 seconds. Additional cooling period simulations were 

not conducted in order to focus on heating portion o f the daily trend.
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Figure 5.IS. Numerical model perturbation horizontal velocity for a mean state critical 

layer at 7 km for the A = 750 m heated case at t = 80,000 seconds. Area depicted is the 

entire model domain. The contour interval is 5.0 m/s.
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Figure 5.16. Total potential temperature for a mean state critical layer at 7 km for the 

h  = 750 m heated case at f=  80,000 seconds. Area depicted is the entire model domain. 

The contour interval is 5 ° K.
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Figure 5.17. Total potential temperature for a mean state critical layer at 7 km for the 

h  = 750 m cooling portion at /=  120,000 seconds { U t I a =  240). Area depicted is the 

entire model domain. The contour interval is 5 “ K.

us



5.3.2 17 km Mean State Critical Layer Results

This section presents experiments with a mean state critical layer at 17 ion and 

mountain heights o f A = 200, 600, and 1000 m. These tests differ from the previous 

work since multiple waves in the vertical are possible. The non-linear effects are 

estimated by N h I U  =0.104, 0.314, and 0.523 for the h = 200,600, and 1000m tests, 

respectively. As before, each case is brought to a steady state and the diurnal heating 

cycle enabled. The steady state was estimated at approximately t = 35000 seconds or 

Ut I a  = 10 for each test (Figure 5 .18), even though there was a slight increase with time 

of the surface wave drag to the end of the simulation. For the A= 1000, and 600 m tests 

a significant reduction o f 43% and 37% from the non-heated run is noted at the end of 

the heating cycle. For each heated run the mixed layer developed to a height o f  2 km by 

the end o f  the heating period. For the h  = 200 m case, a high drag state was not attained 

and the drag reduction due to heating is approximately 26%. Reductions for each case 

are plotted on Figure 5.13. The graph indicates linear theory overpredicted the 

reduction by about a factor o f  two. The weakly forced case ( /» = 200 m) exhibited the 

largest deviation from linear theory. This is contrary to earlier results in which 

moderately non-linear hydrostatic and non-hydrostatic heated simulations followed 

linear theory reasonably well. The peculiar behavior for the h = 200 m case may be due 

to enhanced resonance, as the effective gravity wave guide depth changes with the 

height o f  the mixed layer. The vertical wavelength in each test is 12 km. The shear 

layer below the critical layer is a likely candidate for reflecting part o f the wave
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Figure 5.18. Time series plot o f  the surface wave drag for the control (solid lines) and 

heated (dashed lines) runs with a  mean state critical layer at 17 km for A = 1000, 600, 

200m, and h = 1000m constant base state wind with height (lOOOm-nc). The heating 

curve is provided at the bottom o f  the plot with a maximum heating rate of 200 w!  m ' . 

Vertical lines indicate the approximate depth o f the mixed layer.
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energy back toward the surface. The reduction in maximum wind speed for the h=lOOO 

m and 600m tests are on the order 10 % (Figure 5.19). There is actually an increase in 

the maximum surface wind speed in the h  = 200 m case. This is due to the generation 

o f poorly resolved convective cells in the boundary layer. In each o f the heated tests, 

small-scale features are present when the heating is strongest and are an artifact of 

poorly resolved convection. The turbulent parameterization scheme is unable to 

properly mix the near surface super adiabatic layer and the horizontal grid spacing is too 

coarse to properly resolve the convective motions. Location o f the maximum u 

perturbation field (not shown) for the h = 1000 m and 600 m simulations move down 

the lee slope of the mountain and onto the downwind plain during the heating period. 

The magnitude of the surface wind maximum is about 10-15% lower in the heated tests 

as compared to the control case. In the h — 200 m test maximum surface winds were 

observed to increased and can be attributed to the convective boundary layer motions. 

The perturbation horizontal velocity and total potential temperature fields at r=  75,000 

seconds for the A= 1000 case are illustrated in Figures 5.20 and 5.21. As alluded to 

earlier, both fields show signs o f poorly resolved convection far downstream of the 

mountain crest.
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Figure 5.19. Time series o f the maximum surface wind speed for all tests with a mean 

state critical layer at 17 km. The soUd and dashed lines represent control and heated 

solutions, respectively. The heating curve is provided at the bottom of the plot with a 

maximum heating rate of 200 w I . Vertical lines indicate the approximate depth of 

the mixed layer.
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Figure 5.20. Perturbation horizontal velocity for the heated mean state critical layer test 

at 17 km for the h  = 1000 m case at / = 75,000 seconds for the entire model domain.

The contour interval is 2.5 m/s.
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Figure 5.21. Isentropes for the heated mean state critical layer at 17 km A = 1000 m 

case at /=  75,000 seconds for the entire model domain. The contour interval is 5 ° 1C.
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5.3.3 Discussion

[n every experiment, the introduction o f the diurnal heating cycle reduced the 

gravity wave activity in the stable layer aloft. The surface wave drag was reduced 

approximately 20-25% with the exception o f the 7 km 600 m simulation, which realized 

a reduction on the order of 50%. Thus, it appears that the response is fairly predictable 

regardless of the placement of the critical layer. For the critical layer tests, linear theory 

continually overestimated the actual wave reduction by 10% to 100%. From a 

qualitative standpoint, the non-heated critical layer simulations compared favorably to 

Smith’s theory and to other published numerical results. Smith’s work predicts 

amplification for critical layer heights between ( I/4+n) Â, and (3/4+n) À,  for n > =0. A 

notable exception is the 7 km A = 750 m test case. The numerical model predicted a 

high drag state, whereas Smith’s theory does not. Other simulations with lower 

mountain peaks failed to generate a high drag state (see the 7 km, h  = 600 test). Yet as 

heat is introduced to the h = 750m case, a nearly 2 km deep mixed layer develops. The 

mountain wave response remains in the high drag regime with a normalized flux > 2.0 

(see Figure 5.13). The 7 km A = 750m 2 km deep neutral layer test requires nearly 20 

hours to achieve a steady high drag state. The neutral layer test verifies the heated h  = 

750 m simulation but also exposes a slow yet significant growth mode. This particular 

result suggests that, given sufficient time, the 2 km neutral layer test can achieve a high 

drag state similar to that displayed by the heated run. A mean state critical layer (with 

respect to terrain features) is not common in the atmosphere, while a 2 km deep mixed 

layer is observed frequently.
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The weakly forced h = 200 m, 17 km critical layer test defies linear theory This 

may be due to partial reflections below the critical layer, which the linear solution does 

not include. The reduction of the surface winds follows linear theory, as most tests 

produced a 10%-15% decrease in the predicted maxima at the end of the diurnal heating 

cycle. As shown in Chapter 2, the magnitudes o f the perturbation velocity fields are 

functions o f the mixed layer depth. Since the drag is a quadratic quantity in terms o f  the 

perturbation velocity fields, the reduction of wave drag should be more dramatic than 

that in each individual wind field. During the cooling period for the A = 750 m 

simulation, the wave drag rebounded, recovering only a fi-action of the control runs 

value. This is not surprising since only a portion of the mixed layer nearest to the 

surface layer reestablishes stable stratification.

In the mid-latitudes, localized mean state critical layers are rarely observed.

With this in mind, a  numerical exercise was conducted for the h = 1000m 17 km critical 

layer test. The simulation is performed with a constant non-zero base state flow 

extending to the top o f  the domain. The results indicate a wave drag approximately 

50% of the critical layer counterpart and are included in Figure 5.18 for comparison. 

Clearly, the presence o f a critical layer enhances the response for certain atmospheric 

profiles.

One method used to measure the effects o f surface heating is to present the 

results as a function o f  non-dimensional parameters (Figure 5.22). For this study, the 

relevant parameters are the static stability { N ) ,  base state wind {U) ,  mountain height 

(A), heat input (Q) ,  and the depth of the mixed layer ( H ) .  This particular

153



configuration was chosen because the ease o f comparing it with linear theory from 

Chapter 2 and to radiosonde observations. Figure 5.22 displays a nearly linear decrease 

in wave drag as compared to the exponential decrease forecast by the linear solution of 

Chapter 2. Another option is to plot the normalized surface wave drag as a function of 

heat input ( O ) to the system normalized by the perturbation kinetic energy. This 

approach and others were attempted but deemed unsuitable for a variety of reasons.
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Figure 5.22. Normalized sur&ce wave drag as a fimction o f the ratio o f the mixed layer 

depth to die mountain height for die critical layer experiments. The wave drag was 

normalized by the linear hydrostatic value.
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5.4 Non-Linearity Parameter Study

In this section, a wider range o f  flow conditions is used to further our 

understanding of the effects of heating on the gravity wave environment. The work 

discussed earlier in this chapter involved inverse Froude number flow between 0 .1 and 

0.5. This section introduces results from three classes o f inverse Froude number with a 

non-linear measure of N h /U =  0.2, l.O, and 3.0. The simulations presented here were 

conducted in the absence of a mean state critical layer. For N h l U =  l .O, the flow is 

nearly blocked from the kinetic energy argument of Sheppard (1956). Smith (1988) 

contends that the flow unblocked remains up to = 1.3. As before, each

simulation is allowed to achieve a pseudo steady state and then surface heating is 

introduced. The magnitude of the heating is different for each case, according to the 

base state static stability. In these tests the only variable that is changed is the static 

stability. Each simulation is designed to produce a minimum 2 km deep-mixed layer. 

For the N h / i f  = 3.0 test, this minimum thickness was not reached in a timely fashion 

(less than 1.8 days) owing to strong base state static stability. Table 5 .1 contains a 

summary o f the model parameters used here under the NLP colunm. In each simulation 

the mountain height is 1000m and the base state wind is lOm/s. The mountain quarter 

width a =  15 km is chosen to force mainly hydrostatic gravity wave modes. A 

horizontal Rayleigh type sponge was placed near the downstream lateral boundary to 

minimize the boundary effects due to sustained strong perturbation flelds located near 

the boundary.
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5.4.1 Results

Each simulation was advanced to the point where the depth o f the boundary 

layer is equal to or greater that 2 km. For the M hlU  = Q.l test, a 3 km deep mixed layer 

was established only after a short integration period of 10 hours ov Ut /  a  = 21 using a 

relatively small maximum heating value o f  60 w / m ~ . The N h t U  = 1.0 and 3.0 tests 

required U t i a  =96  and 80 and reached a depth o f 2.7 km and 1.4 km, respectively.

The required heating rate maxima and period lengths for the N h f U  = 1.0 and 3 .0 tests 

were 300 I n r  and 40000 seconds, and 360 w ! n r  and 130000 seconds, respectively. 

Following the format given in Figure 5.22, the normalized surface wave drags are given 

as a function o f  normalized mixed layer depths in Figure 5.23 for each o f the heated 

experiments. The control run wave drags were used to compute the H  (mixed)/ A =0 

values. The N h I U  =0.2 test did not reach a high drag state or its linear equivalent.

The N h I U  = 1.0 and 3.0 cases reached an elevated drag states and were found to be 

sensitive to the development of the mixed layer depth. Both tests displayed significant 

reductions (40% of the steady state control value) in computed surface wave drag by the 

end o f the heating cycle.
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Figure 5.23. Normalized sur&ce wave drag as a function of the ratio o f the mixed layer 

depth to the mountain height for the two-dimensional non-linear parameter experiments.
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5.4.2 Discussion

Results from this section indicate that for a meteorologically significant range of 

flows over a mountain, the final drag state is sensitive to the development of a well- 

mixed boundary layer. In each case wave activity was reduced by nearly 40% fi-om the 

control case values. The slope and shape of the surface wave drag curves are more 

closely related to the linear theory solution than the critical layer tests. The slope of the 

N h I U  =1.0 and 3.0 curves is non-linear as compared to the linear reduction trends 

displayed by the critical layer tests. The N h I U  = 1.0 and 3.0 tests undergo similar 

reductions in wave drag for differing mixed layer depths and associated energy input.

5.5 Two Layer Experiments

This section investigates the sensitivity o f a strongly forced two-layer flow to 

surface heating. The purpose is to determine how the non-linear effects o f scorer 

parameter layering are influenced by parameterized surface heating. Previous works 

assists the choice o f the layering configuration. Durran (1986) performed a number o f 

simplified multiple layer tests and found one particular case in which the expected 

linear response is small and the actual non-linear solution was large. This case involves 

a stable lower layer Vz vertical wavelength thick with an overlaying less stable upper 

layer with an assumed infinite depth. The expected linear response o f  this configuration 

is approximately Vi o f the single lower layer analytic value. In his test, the non-linear 

effects created a surface wave drag nearly 6 times the expected linear value. Note that 

there are infinitely many multi-layer configurations to choose fî om and that only one of 

the most intriguing is investigated here.
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5.5.1 Results and Discussion

The input data for these tests follow Durran’s ( 1986) Table 1 case 2 entry and 

are summarized in Table 5 .1 under the two-layer test group. The bottom layer stability 

is .V = 0.02 and the upper layer stability is N  = O.Q\. The control and heated cases 

were extended to 60,000 seconds or a non-dimensional time of U t /a =  120. The 

heating cycle was enabled at U t/a =  20. As evident by a plot o f  the surface wave drag 

in Figure 5.24, an elevated drag state develops after approximately 10,000 seconds. 

Significant oscillations are present through the first half o f the control solution, but 

during the last third of the simulation the wave drag is very nearly steady. The 

normalized surface wave drag for this test compares favorably with the results presented 

in Table I of Durran (1986).

The application o f  the heating cycle reduces the wave drag by almost 50% and 

the maximum surface wind speed by 15% (Figure 5 .25). In terms of the wave response 

at the surface, these results compare favorably with previous non-critical layer findings. 

Figure 5 .26 provides a comparison o f the potential temperature field and indicates a 

I 2km deep mixed layer (b). This equates to an expected reduction o f 40% by the linear 

theory presented in Chapter 2. The decrease in the surface drag is approximately 20- 

25%. Note that the flow downstream of the mountain is weaker in the heated case.

This test shows that strongly non-linear flows are just as susceptible to surface heating 

as their moderately non-linear and linear counterparts.
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Figure 5.24. Time series o f computed surface wave drag for the two-layer control 

(solid) and heated (dashed) simulations. The wave drag is normalized by the linear 

hydrostatic lower layer value. The heating cycle began at 10,000 seconds. The heating 

curve is provided at the bottom of the plot with a maximum heating rate o f 300 w / / » ' . 

Vertical lines indicate the approximate depth of the mixed layer.
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Figure 5.25. Time series of the maximum surface wind speed for the two-layer control 

(solid) and heated (dashed) simulations. The heating cycle was initiated at 10,000 

seconds. The heating curve is provided at the bottom of the plot with a maximum 

heating rate o f 300 w /  m '. Vertical lines indicate the approximate depth o f  the mixed 

layer.
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Figure 5 .26. Plot of the potential temperature field for the two-layer test at 40,000 seconds for the (a) control and (b) heated runs. 

The contour interval is 4° K . Only a portion of the domain is shown
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5.6 January 9,1989 Boulder, Colorado Windstorm

Ail previous tests involved simplified base state conditions and idealized terrain 

profiles. In this section, a numerical experiment is posed using the January 9, 1989 

Boulder windstorm event. These simulations include observations taken upstream of 

the Front Range and a realistic two-dimensional moimtain profile. As mentioned in 

Chapter 4, two-dimensional simulations o f observed events have been investigated for 

years with the purpose o f  expanding our understanding of observed windstorm 

characteristics. The ultimate goal is to predict the timing and magnitude of windstorm 

features with reasonable accuracy. The intent o f  the simulations presented here is to 

classify the effects of surface heating on a more realistic atmospheric flow pattern. 

Comparisons are made to observations, but with the expectations that the details o f  the 

observed event are not well represented by the model. The accurate prediction o f 

windstorm onset, magnitude, and dissipation requires a far more sophisticated 

numerical model and is beyond the scope o f this study. Data collected during the 

Boulder windstorm initializes the control nm. This particular event is chosen for two 

reasons; first, limited observational data are available for verification purposes and 

secondly, a comparison can be made with the published numerical results of Clark et. 

al. (1994).

5.6.1 Model Initialization

The model is initialized with the 2305 UTC atmospheric sounding collected 

from Craig, Colorado. An additional control run was performed on data collected prior 

to the windstorm (0505 UTC). This test (not shown) did not produce significant surface
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winds or surface wave drag. Forecast Systems Lab and National Severe Storms Lab 

personnel collected the data and the final sounding data was provided by Clark et. al.

( 1994). For each experiment, the base state variables at the lateral boundaries are held 

fixed with respect to the horizontal advection terms for the duration o f the prediction. A 

more complete investigation o f  this windstorm event in which this scenario and others, 

including those with time dependent lateral boundary conditions, is found in Clark et. 

al. (1994). Their study contrasts the two and three-dimensional numerical model 

predictions to the observed surface winds, wind profiler information, and lidar data 

collected in the Boulder area. Their primary goal was to assess the ability o f the 

numerical model to predict the onset and general windstorm features.

The ARPS terrain pre-processor provided a smoothed terrain profile from the 

raw global 5-minute resolution data set supplied by NCAR Data Services. The 5- 

minute data are smoothed and matched to the model grid using a multi-pass Bames 

(1964) analysis technique. In this particular application, the Bames scheme is applied 

twice and the resulting data field is available for direct insertion in the model. The 

Bames response function for the final smoothed data field is determined fi'om a preset 

first pass response and selected wavelength. Figure 5.27 displays the response function 

for these experiments as a function o f model horizontal wavelength (in terms o f A x).

The analysis package operates fi'om the model grid reference and not fi'om the terrain 

data spacing. The response for an 8 Ax wave and 28 Ax wave is approximately 2% and 

90%, respectively, of their initial values. A detailed description o f the multi-pass Barnes 

analysis technique and response function is available in Chapter 8 of the ARPS Users 

Guide Version 4.0. The terrain profile is taken along the 40 ’ N latitude line and passes
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Figure 5.27. Bames two-pass response curve as a function o f model grid spacing for 

the terrain used in the two-dimensional January 9, 1989 Boulder windstorm experiment. 

The model horizontal grid spacing is 500m.
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through the City o f  Boulder, Colorado. The model domain is 650 x 28 km and extends 

from Eastern Utah eastward to the western portion of the Kansas-Nebraska state line. 

The predictions do not include the Coriolis force but incorporate parameterized surface 

friction. As determined from the control run, heating begins at r = 25,000 seconds and 

the solution advanced to r = 70,000 seconds. The other pertinent model parameters are 

summarized in Table 5.1 under the Boulder test group.

One item that needs explanation is the choice o f the upper boundary condition. 

Clark et. al. (1994) used a sponge layer in combination with a rigid lid. Bacmeister and 

Schoeberl ( 1989) presented a detailed numerical study on the impacts of breaking 

waves in the stratosphere on the near mountain level flow. Their results indicate that 

breaking waves aloft can alter the existing steady state mountain wave flow 

dramatically by reflecting upward propagating gravity wave energy downward. Their 

simulations clearly show propagation of the momentum flux reduction downward with 

time. For N h I U  < 0  AS,  the decrease o f the vertical momentum flux computed over the 

mountain is found to be periodic in time. For N h I U  = 0.8, reductions in the computed 

vertical momentum flux originated in the breaking wave aloft and traveled downward, 

influencing the flow above the mountain, but the near surface flow is only minimally 

affected. Bacmeister and Schoeberl note a minimal impact o f  the downward moving 

disturbance in the momentum flux field when a breaking layer is observed near the 

mountain peak. For cases in which a breaking wave exists near the mountain, the 

importance o f the upper boundary condition choice is reduced. Given their result, a 

linear hydrostatic radiation condition is applied in these simulations. This method 

allows wave breaking to occur up to the top o f the model domain. Even though errors
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due to the noti-linear terms at the top boundary are produced, the majority o f the wave 

energy is absorbed and/or reflected back towards the surface by breaking waves when 

they are present below the model top.

5.6.2 Windstorm Observations

Aside from the collection o f data upstream o f the Front Range (Craig, 

Colorado), observations were taken in the Boulder area using surface wind instruments 

and lidar. The observed winds at the top o f the NOAA Building in Boulder are plotted 

in Figure 5.28. Note the abrupt increase in wind speed near 1100 UTC January 9, 

representing the onset of the windstorm. The winds remain above 30m/s for several 

hours but show a steady decrease during the afternoon. The wind speed drops below 

20m/s by 0000 UTC January 10, marking the dissipation stage. Figure 5.29 displays a 

vertical cross section time series o f Doppler Lidar observations taken in Boulder and 

reveal an elevated jet with maxima on the order o f  30m/s. An observational study by 

Neiman et. al. (1988) report the existence o f an elevated jet region during windstorm 

events. The base state wind and temperature profiles measured from the Craig, CO 

sounding location and used to initialize the model experiments are plotted in Figure 

5 .30. The data show a strong jet near a height o f  10.5 km, corresponding to the level of 

the tropopause.
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Figure S.28. Peak S-minute wind gusts as a function o f time as measured from the roof 

o f the NOAA Building (20m AGL). Taken from Clark et. al. (1994).
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Figure S.29. Doppler Lidar vertical cross sections from the Boulder area at (a) 0015 

UTC, (b) 0052 UTC, (c) 0143 UTC, (d) 0230 UTC. Shaded regions represent velocities 

>24m/s. Plots taken from Clark et. al. (1994). The contour interval is 4.0 m/s.
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5.6.3 Results

The mountain induced surface wave drag and maximum surface wind speed as a 

function o f time for the 2305 UTC control and heated runs are contrasted in Figures 

5 3 1 and 5.32, respectively. The wave drag computed from the 2305 UTC heated run 

(dashed line) is nearly 20% lower than the control run (solid line). The maximum 

surface wind speed is reduced by 20% from the control run and the depth of the mixed 

layer reached 1.5 km. The simulated maximum surface wind speed and observed wind 

measurements are not directly comparable, since the model did not include the change 

in the upstream conditions with time. But, using data collected upstream at a 2305UTC 

during the downslope wind event, the simulated maximum surface wind speed is similar 

in magnitude to those measured near the end of the observed storm. Figure 5.33 

displays cross sections o f potential temperature for the control and heated tests for the 

region near the Front Range and the Boulder community. The heated run exhibits a 

relatively well-mixed boundary layer approximately 1.5 km deep near the mountain 

peak. The near surface total horizontal velocity is disclosed in Figure 5.34 for the 2305 

UTC (a) control and (b) heated runs at t=70,000 seconds. Note in each case that the 

strongest winds are not at the surface but elevated a few hundred meters above the 

surface and are consistent with the result o f Miller and Durran (1991). In the heated 

case, the vertical gradient o f u is weakened, likely owing to the unrealistically strong 

parameterized vertical turbulent mixing.
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Figure 5.31. Graph of the surface wave drag for the January 9, 1989 Boulder 

windstorm simulation for the 2305 UTC control (solid line) and heated (dashed line) 

runs. The heating curve is provided at the bottom o f the plot with a maximum heating 

rate of 200 w //n '. Vertical lines indicate the approximate depth o f the mixed layer.
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Figure S.32. Plot o f  the maximum surface wind speeds for the Boulder January 9, 1989 

windstorm simulation for the 2305 UTC control (solid line) and heated (dashed line) 

runs. The heating curve is provided at the bottom of the plot with a maximum heating 

rate o f200 w I . Vertical lines indicate the approximate depth of the mixed layer.
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Figure 5.33. Plot of potential temperature at /=  60,000 seconds for the (a) control and (b) heated 2305 UTC Boulder windstorm 

simulations. The contour interval is 2.0 “K .
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Figure 5.35 displays the perturbation u velocity at selected times for the 2305 

UTC control experiment and shows that the highest winds remain near the foot of the 

mountain. In addition, a strong vertical gradient in wind speed is present. This is 

qualitatively similar to that shown by the lidar observations (Figure 5.29). Figure 5.36 

presents the perturbation u field for the heated case and reveals a general decrease in 

the elevated jet magnitude as the mixed layer develops. Overall, surface heating acts to 

decrease the lee side horizontal velocity roughly 10-15%. A comparison of isentropes 

field for the control run (Figure 5.37a) with the January 11, 1972 simulation given in 

Chapter 4 reveals two distinctly different windstorm types. The deviation of the 

potential temperature surfaces and related wave induced critical layer directly over the 

mountain peak are significantly reduced in the January 9, 1989 case from those of the 

observations and idealized predictions o f  the January 11, 1972 Boulder windstorm 

event. This case exhibits characteristics more like the hydraulic flow analog than the 

critical layer amplification theory o f Peltier and Clark.
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(c) 60,000 seconds, and (d) 70,000 seconds. The contour interval is 5.0 m/s.
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Figure 5.36. Total horizontal velocity on the lee slope for the January 9, 1989 Boulder 

windstorm heated simulation 2305 UTC at r=  (a) 40,000 seconds, (b) 50,000 seconds, 

(c) 60,000 seconds, and (d) 70,000 seconds. The contour interval is 5.0 m/s.
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5.7 Discussion

In ail but one test, parameterized surface heating reduces the established 

mountain wave activity, as measured by surface wave drag, horizontal velocity at the 

surface and aloft, and by the vertical flux of horizontal momentum. Reductions on the 

order of 30% for the wave drag and 10-15% for the maximum surface winds were 

common in the heated simulations. The response to surface heating is found to be a 

function of the mixed layer depth, with deeper surface layers forcing larger reductions 

in the wave activity aloft. The decrease in the steady state flow for the critical layer 

experiments is approximately linear in terms of the mixed layer depth. This is contrary 

to the results from the non-critical layer simulations and linear theory where the impact 

is observed to be a non-linear function of the neutral layer depth.

In tests displaying wave-breaking characteristics, such as those from the critical 

layer and N h l U =  1.0 and 3.0 experiments, the surface drag is weakened but a high 

drag state remains. The transition from the steady high drag state to a low drag state did 

not occur when influenced by a moderate amount of surface heating. Most of the tests 

performed here applied surface heating at a rate similar in magnitude to that observed in 

Central Canada in March. In only a few of the experiments, especially the low 

mountain height cases did the mixed layer motion approach that expected from potential 

theory. In all o f the high drag simulations, the flow in the boundary layer is dominated 

by the upper layer wave response. This is expected since the depth of the mixed layer 

was rarely greater that 1/4 o f  a vertical wavelength. For the two-layer tests, the surface 

wave drag was reduced 45% by the end of the heating period. This configuration is
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especially vulnerable to surface heating, since the lower layer is only 3km deep. Strong 

solar heating could all but wipe out the low-level stable layer. The surface wind speed 

did not undergo such a large decrease. It is likely due to two factors: the drag is a 

quadratic quantity in perturbation variables and will respond to changes in the flow 

more rapidly. Secondly, potential flow theory requires an increase in the flow on 

approach to an obstacle.

In strongly forced flows, the linear theory presented in Chapter 2 over predicts 

decreases in wave activity as a result o f  a neutral boundary layer. The largest 

differences with linear theory were noted in the critical layer tests. For two-dimensional 

flow, linear theory, as presented in Chapter 2, is quite useful in both qualitative and 

quantitative terms for the moderately forced heated mountain flows.
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CHAPTER 6

THREE DIMENSIONAL HEATED MOUNTAIN WAVE
SIMULATIONS

This chapter presents results from two groups of three-dimensional simulations. 

The experiments are distinguished by mountain shape. A circular mountain shape 

defines the first and a ridge of finite length with the long axis oriented perpendicular to 

the base state flow defines the second. The purpose of these experiments is to 

investigate the effects o f surface heating on mountain wave flows in three dimensions.

6.1 Experimental Setup

These simulations can be directly compared with the numerical solutions for the 

similarly configured two-dimensional heated mountain wave flows. In addition, the 

circular and finite ridge shaped mountain flows are contrasted qualitatively with three- 

dimensional linear theory of Phillip’s (1984), Smith (1980, 1988, 1989), and numerical 

results of Reisner and Smolarkiewicz (1994). A cross to parallel flow mountain axis 

ratio of 5:1 defines the finite ridge shape. This ratio is similar to the observed north 

south to east west Front Range aspect ratio near Boulder, Colorado. A modified form 

of (4.2) defines the circular mountain profile:

* . =  (6 1 )

a b
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For a circular mountain, the parameters a  and b are equivalent. For the finite ridge 

simulations, (6.1) is replaced by the two-dimensional equivalent (4.2) between the north 

and south ends of the ridge. At the ridge ends, (6 .1) is applied directly where y  is 

defined by the distance fi-om each end of the ridge and x  is the distance fi'om the ridge 

line in the direction of the base state flow. For these simulations, the base state flow is 

directed fi'om west to east.

In each test group, designated by the NLP groups in Table 6.1, three 

experiments are conducted to test the affects o f surface heating over a range of inverse 

Froude Numbers. The static stability is varied over a range that includes the standard 

atmosphere. These tests follow those defined in Chapter 5 and are distinguished by 

their non-linear measure / ( /  = 3.0, 1.0, and 0.2. The domain size for all the circular 

mountain flow simulations was 197x117x75 and for the finite ridge N h/U =  2.0 and 

0.2 tests was 197x157x75 grid points in the x, y, and z directions. The N h /U  = 1.0 

finite ridge simulation required a larger computational domain (237x193x103), owing 

to observed lateral and vertical boundary condition sensitivities. The initiation and 

duration of the heating period followed that used in the two-dimensional tests. Aside 

from the addition o f the third dimension, all other experimental variables remained 

unchanged.

6.2 Results

As before, time series of surface wave drag and maximum surface wind speed 

and vertical cross sections of selected model fields through the mountain centerline are 

used to measure the wave activity. The predictions are advanced to a pseudo-steady
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Table 6.1 Three Dimensional Heated Mountain Wave Parameter Summary.

Parameter Circular Mountain Finite Ridge
nx,ny,nz 197,157,75 197/237,157/193,75/103
Ar (m) 2000 2000
^y  (m) 2000 2000
A4'(m) 100,200,250 100,200,250
t (s) 10,20,10 5,10,20
r (s) 2.5,40,4.0 2.5,4.0,40
U  (m/s) 10 10
N h /U 30,1.0,0.2 3.0,1.0,0.2

N 0.03,0.01,0.002 0.03,0.01,0.002
h (m) 1000 1000

(m) 15000 15000
a.  (m) 15000 75000
Q ( w/ m~ ) 360,300,60 360,300,60
Û) (hrs) 72,27.7,16.6 72,27.7,16.6
C / ( A r \A / ) 0.0005 0.0005
CJAC* 0.0005 0.0005
a 0.2 0.2
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State prior to the introduction of surface heating. In each test, the magnitude of the pre­

heating period wave activity is smaller than the steady state infinite ridge analog and is 

a function of the blocking characteristics of the flow. According to Smith (1989) 

blocking along the y=z=0 centerline of a three-dimensional mountain with a ridge width 

to length ratio of 5:1 occurs at Mi/C/ = 1. When blocking commences, flow is 

diverted around the mountain by a north-south pressure gradient oriented along the 

mountain y=0 centerline. For circular terrain shapes, a larger mountain is required to 

produce blocked flow. This is due to the fact that gravity waves generated at the north 

and south ends of a finite ridge are dispersive in the y-direction. In the three- 

dimensional problem, the group velocity in the east-west direction is now a function of 

the north-south wave number and is less than the environmental flow and consequently 

the disturbance is swept downstream by the base state current.

6.2.1 Nh/U = 3.0

A summary of the surface wave drag computed along the mountain centerline as a 

function of NhIU  and H  (mixed)/h for all of the three-dimensional heated mountain 

flow tests is presented in Figure 6.1. The three-dimensional NhIU  = 3.0 tests recover 

only 10% of the normalized surface wave drag realized by the two-dimensional 

counterpart (see Figure 5.23). These values are far below those expected by the linear 

theory of Phillips (1984) and Smith (1989). Linear theory predicts the steady state 

three-dimensional surface wave drag for a circular mountain to be 70% of the two- 

dimensional limit. For a ridge with the long axis oriented perpendicular to the flow and
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Figure 6.1. Normalized sur&ce wave drag as a function of the ratio of the mixed layer 

depth H  (mixed) to the mountain height h for the three-dimensional heated mountain 

tests. Values are normalized by Unear hydrostatic two-dimensional theory.
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a long to short axis ratio of > 4:1, the surface wave drag is expected to be >90% of the 

infinite ridge value. In ±is case, the mountain wave is weak, with the strongest 

perturbations occurring in the v field as air moves around the mountain and converges 

downstream. In contrast to the two-dimensional simulations, the NhIU  =3.0 circular 

and finite ridge experiments diverted a significant amount of flow around the mountain. 

Note the strong nearly horizontal flow around the peak and the lee-side convergence in 

the circular mountain simulation (Figure 6.2). The heating cycle had little impact on the 

surface wave drag and other flow characteristics above the boundary layer.

According to Smith’s (1989) Figure I, these tests lie in the region of flow 

splitting and wave breaking and no longer satisfy his assumptions and boundary 

conditions. It is apparent that flow separation has dominated the solution, with only a 

small portion of the flow traversing the mountain. These results are very different from 

the two-dimensional simulations in which wave breaking is observed above the 

mountain. A comparison of isentropes along the y=0 mountain centerline from the 

present model is made with those generated by Reisner and Smolarkiewicz (1994) 

(Figure 6.3). They used three-dimensional linear theory and a three-dimensional 

hydrostatic isentropic model to characterize and simulate heated mountain flow over 

isolated obstacles and the island of Hawaii. Their numerical predictions for Nh iU  =

3 .0 with no heating are quite similar to those predicted by the current model for a 

similar Froude number in their numerical simulations.
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The contour interval in (a) is 10' K and unknown in (b). The cross section is taken from the mountain centerline y=0

190



6.2.2 Nh/U = 1.0

Both the NhIU =1.0 circular and finite ridge tests achieve steady state surface 

drag states equal to or greater than the two-dimensional linear normalized values. The 

circular mountain profile test generated a similar gravity wave response to that expected 

by a linear infinite ridge. During the heating period, both three-dimensional tests 

underwent a significant reduction in wave drag and surface wind speed (Figures 6.4 and 

6.5). The reduction of surface wave drag when the mixed layer depth is approximately 

2km for the three-dimensional simulations (approximately 35%) is almost 1/2 that 

predicted by linear theory (67%) and larger ±an the value in the two-dimensional 

NhiU=\.0  experiment (25%). The corresponding maximum surface wind for the 

three-dimensional tests is 10% lower than the non-heated steady state values. Near the 

end of the heating cycle, the maximum surface wind actually increases due to 

unresolved convection near the surface.

Cross sections of total horizontal velocity and potential temperature prior to 

heating for the two and three-dimensional ridge cases display strong near-surface fiow 

in the lee o f the mountain (Figures 6.6 and 6.7). At /=  60,000 seconds ( ( / / /a =  40), the 

total horizontal velocity and potential temperature variables, portrayed in Figures 6.8 

and 6.9, reveal significant differences between the infinite and finite ridge experiments. 

The infinite ridge case exhibits a stronger mountain wave flow, with alternating levels 

of strong and weak flow above the mountain. The infinite ridge potential temperature 

and total horizontal velocity fields are similar to those shown in the 17km critical layer 

tests presented in Chapter 5. Well-mixed critical layers define a significant portion of
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the flow above the two-dimensional mountain. The strong flow between the critical 

layers advects perturbations signiflcant distances downstream. In the finite ridge case, 

wave breaking is only evident within a few kilometers above the mountain peak and the 

flow is considerably weaker. Plots of the vertical velocity at the k=2 and k=30 

computational surfaces (Figure 6.10) show a spreading of the wave energy in the north- 

south and downstream directions with height, in accordance with three-dimensional 

linear theory. The spreading of the wave envelope with height plays an important role 

in the development of the flow above the mountain. As shown by Smith (1980), in a 

Boussinesq atmosphere, the wave amplitude of a three-dimensional gravity wave 

decreases with height above the mountain. On the other hand, the amplitude for the 

equivalent two-dimensional gravity wave is not a function of height. Therefore, the 

amplitude for a given mountain profile should be larger for the infinite ridge case. In 

the finite ridge tests, there is a slight increase in amplitude near the top of the model 

domain and is likely associated with a decrease in density with height.
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Figure 6.4. Plot of surface wave drag computed along the mountain centerline as a 

function of time for the NhIU  = 1.0 two and three-dimensional circular and finite ridge 

mountain wave simulations. The solid lines represent the control runs and dashed lines 

the heated experiments. The heating cycle was initiated at 20,000 seconds with a 

maximum of 250 w ! n r . The vertical lines represent the approximate mixed layer 

depth.
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6.2.3 Nh/U = 0.2

These tests, with a aonlinear measure NhIU = 0.2, are more closely related to 

linear theory than the two prior experiments and those presented in Chapter 5. The 

corresponding static stability is small and the vertical wavelength large, approximately 

60 km. The pre-heating steady state surface drag is nearly equivalent to the linearized 

analytical values for both the circular and finite ridge tests (see Figure 6.1). Both tests 

experience diminished surface wave drag and maximum surface wind speed (not 

shown). The loss in wave drag for the heated finite ridge and circular mountain profiles 

is 35% and 25%, respectively. The reduction in wave drag for the finite ridge is nearly 

identical to the two-dimensional counterpart and accounts for only 50% of that 

predicted by two-dimensional linear theory (Figure 6.11). The response in the surface 

wind field is similar between the two and three-dimensional tests (not shown). Due to 

the development of unresolved convection, an increase in maximum surface wind is 

noted near the end of the heating period. The similarity between the finite and infinite 

is due to the weak stratification. Smith (1988) shows that the perturbation pressure near 

the surface is a direct function of the stability. If the gravity wave perturbation 

decreases, the cross-stream velocity also decreases and more of the incident fiow 

traverses the mountain.
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6.3 Discussion

The results suggest that the largest differences are associated with the 

development of flow around the mountain and not associated with the heating aspects of 

the simulation. For high Froude number tests (Nh!U=  0.2), the two and three- 

dimensional finite ridge flow characteristics are very similar in both the pre- and post 

heating periods. These tests were found to provide the best fit to linear theory. This Is 

expected since the non-linear measure {NhI U)  Is small.

For the low Froude number flows tests {NhIU  = 1.0 and 3.0), the differences in 

the solutions were dominated by whether the low-level flow circumvented or traversed 

the mountain profile. The factors that determine the near surface flow include the base 

state stability ( iV), the base state wind ( f / ) and the mountain profile {a, b , h). The 

Nh!U= 2.0 experiments produced the largest deviations firom the infinite ridge case.

The three-dimensional runs produced significantly reduced perturbations aloft and 

surface wave drag when compared to the two-dimensional counterparts. A significant 

portion of the upstream flow is directed around the mountain (see Figure 6.2). Reisner 

and Smolarkiewicz’s (1994) simulations of flow over an obstacle with U ! Nh = 0.33 

compare favorably to the present model’s NhIU =2.0 results. Despite the differences 

in the heating function strength and spatial orientation, the model predicted lee wake 

regions are qualitatively similar. Only a weak gravity wave is present above the 

mountain, as indicated in the potential temperature field displayed in Figure 6.3.

For the marginally non-blocking flow case {NhIU  = 1.0), finite and infinite 

ridge experiments were qualitatively similar in terms of the pre-heating gravity wave
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response with some notable quantitative differences. The finite ridge pre-heating wave 

drag is nearly 50% of the infinite ridge counterpart. At the conclusion of the heating 

period the potential temperature and total horizontal velocity display large differences 

in the flow field aloft, but the gap in surface wave drag is considerably smaller. The 

decrease in wave drag due to heating is qualitatively similar in terms of percentage 

(25% vs. 35%) from the pre-heating values in the two and three-dimensional tests, 

respectively. Phillips ( 1984) suggests that an elliptically shaped ridge with a long to 

short axis ratio > 4 will realize >90% of the infinite ridge surface wave drag. In the 

strongly non-linear tests presented here, a mountain width to length ratio of 5:1 

produces a pre-heating steady state wave drag approximately 75% of the infinite ridge 

solution and two times the two-dimensional linear normalized estimate. Linear theory 

does a fair job in the marginally blocking cases.

The circular mountain shape tests failed to produce high drag states over the 

range o f Froude numbers examined here. For the configurations that force strong 

mountain wave responses, the parameterized surface heating significantly impairs the 

mountain wave fiow. The two-dimensional approximation is qualitatively similar to the 

finite ridge experiments but notable differences remain which are not well represented 

by linear theory. If blocking is an issue, the resulting three-dimensional flow pattern 

can be markedly different from the two-dimensional case. In this case, the introduction 

of surface heating has little effect on the existing weak mountain wave fiow aloft.
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6.4 Notes on Other Three Dimensional Simulations

Several attempts were made to simulate the January 9, 1989 windstorm in three 

dimensions using smoothed topography. The results within the first 10 hours are quite 

good, with a strong response generated in the lee o f the mountain along the Front 

Range, but the simulation degrades during the heating cycle, preventing any useful 

interpretation. The problem is believed to be associated with the model mass balance. 

Approximately 10% o f the model mass is lost during the second half of the experiment. 

Both the control and heated tests experienced similar losses in mass and a domain wide 

deceleration of the flow. The problem can be traced to significant perturbations in the 

normal velocity component at the upstream boundary. The decelerated flow on the 

windward side of the Front Range decreases the amount of mass entering the model 

domain. At the same time, air moves around the mountain range towards Wyoming to 

the north and exits the model domain. Equations (3.17) and (3.18) in combination with 

the other predicted variables do not conserve mass at the lateral boundaries. The vast 

horizontal extent of the mountains forced a compromise between computer resources 

and safe modeling practices. The resulting three-dimensional computational domain is 

not able to prevent strong perturbations at the lateral boundaries. Methods exist that can 

reduce boundary influences. These include nested grid techniques and specifying the 

lateral conditions from another larger scale model. Both are viable options but are not a 

part of present model’s framework. The issue of strong forcing at a nested grid 

boundary or a pre-specified condition is only now being investigated and demands 

further study. The difficulty with accurately representing the flow over the Front Range 

stems from the vast extent of the Rocky Mountains in three of the four lateral directions.
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For a high-resolution simulation (order of400-meter horizontal grid spacing) a 

minimum o f two nested grids is required inside a larger grid spanning hundreds of 

kilometers on a side. This configuration would allow strong flow in the lee of the 

mountain to be resolved and the important upstream conditions to remain relatively 

undisturbed. Other models, such as the one used by Clark et. al. (1994), incorporate 

multiple nested grids and update the lateral boundaries from a larger domain model. 

The physical domain is frequently set to 1200 by 1200 km in order to reduce the lateral 

boundary influences (personal communication with Bill Hall at NCAR).
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CHAPTER 7 

DISCUSSION

7.1 General Results

Linear theory builds a foundation for the understanding of the response of a 

stratified flow over a mountain (Klemp and Lilly, 1975). Gravity wave strength is a 

function of the static stability, with higher stabilities achieving stronger wind speeds (up 

to the point of upstream blocking). The initial response in a gravity wave flow is 

attributed to a linear term, the vertical advection of the base state density. But as 

Durran (1992) shows, linear theory can either under or overpredict the wave response of 

a two-dimensional mountain wave, depending on the upstream wind and density 

profiles. In a neutrally buoyant environment, gravity waves do not exist. In this 

situation, potential flow (if other waveforms are absent) dominates the physical 

processes. The perturbations associated with a neutrally stable flow decrease with 

increasing distance fi'om the obstacle. The anticipated result is that deeper neutral 

layers correspond to smaller deflections in an overlying stable layer.

The simplified two-dimensional linear analytical solution to a two-layer 

atmosphere presented in Chapter 2 demonstrates that a well-mixed boundary layer 

reduces the existing gravity wave activity in the stable layer aloft by an appreciable 

amount. The neutral layer is assumed to be horizontally uniform and the result of a 

well-mixed convective boundary layer. This application of the upstream boundary 

condition is notably different from Reisner and Smolarkiewicz (1994), where the 

heating rate is a fimction of the mountain height. The present form allows for heating
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far upstream of the mountain, simulating large-scale diumal heating. For a 

hydrostatically forced mountain flow, linear theory predicts the decay of wave activity 

(Figure 2.2). For non-hydrostatic modes, the reduction o f the wave activity is a 

function of horizontal wavelength with shorter mountains exhibiting higher reductions. 

The decreases in wave activity are modified significantly if a strong inversion is 

introduced at the top of the mixed layer. Depending on the strength of the inversion, the 

reduction in wave activity could be reversed, as was the case for a 10 AT inversion. The 

results from the linear analysis, related to an inversion at the top of the surface layer, 

compare favorably with those of Klemp and Lilly ( 1975).

In the numerical experiments, the amplitude of the mountain wave flow aloft is 

largely insensitive to the method of heat redistribution. Tests indicate that either the 

explicit or parameterized turbulent mixing methods are adequate for distributing the 

heat in the mixed layer. Both the timing and magnitude o f the integrated momentum 

flux in the layer aloft were found to be comparable between the two mixing length 

methods. The explicit method generated short wave length gravity waves at the top of  

the mixed layer. These gravity waves did not contribute significantly to the pre-existing 

vertically propagating modes. An important result is that the magnitude of the 

mountain wave response to parameterized surface heating is a function of the mixed 

layer depth, with deeper mixed layer producing larger reductions from the pre-heating 

steady state values. This is true for both the linear and strongly non-linear flow 

regimes. In experiments where high drag states developed, a mixed layer of appreciable 

depth inhibits the wave response, but an elevated drag state remained.
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The difference between the two and three-dimensional tests were most notable 

for small Froude number flows, or block flow. In these situations, only weak mountain 

waves developed and surface heating had little impact on the solution. For non-blocked 

flows with cross to parallel flow axis ratios >4:1, the effects o f surface heating on a 

three-dimensional mountain wave could be approximated by the two-dimensional case. 

For circular mountain shapes, the control and heated mountain wave statistics are 

significantly lower that the two-dimensional equivalent.

7.2 Comparison with Observations

The primary objective of this work is to investigate the role of the diumal 

heating cycle in downslope windstorm climatology. The tests and analyses were 

designed to focus on the heating portion of the diumal cycle. Results from both the 

linear analysis and the numerous model simulations indicate that strong mountain 

waves and downslope windstorms are sensitive to parameterized surface heat fluxes. 

Both the analytical and numerical modeling efforts concur, surface heating decreases 

the strength of the windstorm. These results are in agreement with the observational 

studies of Whiteman and Whiteman (1974). The daily windstorm frequency 

distribution exhibits a distinct minimum just after the maximum solar radiation period, a 

time when the mixed layer is near its maximum depth. One numerical experiment 

included a parameterized nocturnal cooling period. The results from that test indicate a 

decrease in maximum surface winds during the heating period and an increase in wave 

activity during the cooling period, as measured by maximum surface wind speed and
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integrated surface wave drag. This test, although representing a small sample size, 

supports the observed day and nighttime windstorm frequency climatology.

The seasonal trends shown by Julian and Julian (1969) (Figure 1.1 ) are more 

difficult to fît to the results presented here, since model heating rates were chosen to 

match observations from January through March, and the simulations were held to less 

than 1.5 days in duration. The seasonal minimum observed during the summer months 

may be due to weak tropospheric stability and light cross-mountain flow.

In terms of specific windstorm events, only one experiment was performed. The 

January 9, 1989 Boulder, CO windstorm simulation, incorporating a smoothed two- 

dimensional mountain profile and observed base state atmospheric data, predicted 

noticeably weaker wind speeds (15%) and surface wave drag (15-20%) on the lee of the 

mountain at the conclusion of the heating cycle. The maximum surface wind speed 

time series for the heated test does not register a significant deviation from the control 

run until seven hours into the heating cycle. This may be due to a positive velocity 

perturbation associated with neutral layer development near the mountain peak 

combined with the base state wind sheer.

The simulation was limited in many respects since is was two-dimensional, used 

a single sounding to initialize the domain wide model variables, and incorporated fixed 

inflow boundary conditions. Yet, it was able to reproduce a number of the observed 

windstorm characteristics, such as elevated jet region on the lee slope and strong 

downslope winds similar in magnitude to those observed in Boulder. The time series of 

the observed maximum surface wind speed peaks near noon January 9, 1989 and
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steadily decreases through the afternoon hours. This observation supports the results 

presented here, but may be fortuitous, as the windstorm may have been adjusting to 

other upstream influences.

7.3 Application to Forecasting

As presented in Chapter 1, forecasting the onset, duration, and 

dissipation of downslope windstorms remains a challenge. With time scales on the 

order of a day, disturbance energy can be transported to great heights above and 

downstream of the terrain feature, requiring a large model domain. For numerical 

predictions conducted over a relatively short time period (a few hours), the onset and 

amplitude of the downslope windstorm remains a strong function of grid resolution and 

boundary conditions. Results presented in Chapter 4 stress the need for significantly 

enhanced vertical resolution (minimum 250m) in wave breaking regions. Tests of the 

lateral boundary conditions (not shown), the bulk of which were reported by Durran et. 

al. (1993), were foimd to have a profound effect on the windstorm development phase. 

In some instances, a specific lateral condition on the normal velocity component 

(Orlanski, 1976) prevented the development of a high drag state entirely.

For strong mountain wave responses, those that are most important to 

forecasters along susceptible mountainous regions, linear theory overpredicts the 

decrease of non-linear wave activity due to a developing mixed layer. This 

overprediction of the wave reduction varied in magnitude ftom 10% to 100% in the 

numerical simulations. Including a small inversion in the linear analysis, similar to that 

developed by the parameterized turbulent mixing, improves its use as a forecasting tool.
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It is quite capable of predicting the trends in measurable mountain wave quantities such 

as wave drag, velocity perturbations, and momentum flux transfers.

Results from the analytical and numerical studies presented here provide a guide 

to improving windstorm forecasts. Whether it is an empirical approach or a three- 

dimensional time dependant numerical model, the diumal cycle contributes to the 

strength of the windstorm. The numerical tests show that parameterized turbulent 

mixing is sufficient for capturing the time dependant mixed layer height. This is 

especially useful to mesoscale models, as it relaxes the horizontal resolution 

requirement. In terms of global climate modeling, the analytical result may be quite 

useful. Climate models, due to lack o f computer resources, are unable to resolve 

gravity waves and thus, parameterize the transfer of mountain generated momentum 

flux. The parameterized momentum transfer formulation could be modified, following 

the analysis in Chapter 1, to include the contribution from a neutral surface layer.

7.4 Future Work

This study did not thoroughly investigate the cooling period of the diumal cycle. 

Only one test, as an extension of a heated experiment, included parameterized nocturnal 

cooling. The results indicate that increases in the low-level static stability, associated 

with nocturnal cooling, forced amplification of the mountain wave, in support of 

windstorm climatology. Additional tests are needed verify this result.

The sensitivity to the vertical boundary condition was not thoroughly tested in 

the strong windstorm cases, although the use of the upper radiation condition and larger 

vertical extent of the modeling domain is supported by Bacmeister and Schoeberl
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(1989). They investigated the importance of wave breaking structures in the 

stratosphere on the flow near the mountaintop and found a strong sensitivity of the near 

surface flow to breaking waves in the stratosphere. Further work is needed to validate 

the upper radiation boundary condition in long-term mountain wave simulations.

Satisfactory results for the three-dimensional simulations of the observed 

January 9, 1989 windstorm were difflcult to obtain under the current model 

configuration. Problems with the lateral boundary conditions prevented any useful 

comparisons with the two-dimensional tests and the observations. A more substantial 

three-dimensional modeling study, using grid-nesting procedures, is posed for the future 

that addresses the upstream and boundary conditions in a more reliable manner.

7.5 Summary

A summary o f the significant contributions is provided below.

* Analytical and numerical solutions indicate the reduction in mountain wave 

activity is a function of mixed layer depth, with deeper layers producing 

larger responses.

* The numerical simulations and analytical results support the hypothesis that 

the observed diumal windstorm bias is at least partially attributed to the 

response from surface heating.

* Linear theory is useful in determining the reduction of wave activity due to a 

developing mixed layer to within a factor of two.
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* Linear analysis shows that the presence of an inversion inhibits the mixed 

layer effect on mountain waves. The contribution from the inversion 

enhances the usefulness of linear theory when compared to the non-linear 

numerical model results. Enhanced vertical resolution is needed in the 

inversion.

* Parameterized turbulent mixing is sufficient for predicting the height of the 

mixed layer.

* Mountain wave activity decreases after the development of a surface bound 

mixed-layer, yet in the highly non-linear events, a high drag state remains.

* Results from experiments using real data follow the idealized counterparts.

* Onset and strength of downslope windstorms are sensitive to vertical 

resolution and lateral boundary conditions. Vertical resolution on the order 

of 250m is required to adequately resolve developing critical layers.

* For non-blocking situations, results from the two-dimensional experiments 

can be applied to three-dimensional mountains of sufficient cross-flow width.

* When strong upstream blocking is present {NhIU  =3.0), the three- 

dimensional solutions differ significantly from the two-dimensional case and 

surface heating has little impact on the solution.
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APPENDIX A 

VERTICAL w-;r IMPLICIT SOLVER

The pressure and vertical velocity are coupled in the vertical through a Crank- 

Nicholson scheme. This approach removes the vertical sound constraint on the small 

time step. The method follows that o f Durran and tClemp (1983) and the ARPS (1995). 

The discretized equations for rt and w are (from Chapter 3);

-  advw‘ + + D'̂  (A. I )

= -advic" - ^ ( n  -^+6y )
At c

(A.2)
c, e c^9 d

The time weighting term f t  is used to reduce the small to large time step instability and 

is applied to w in the n  equation and to ;r in the w equation. A value of 0.6 is 

sufficient following the results of Durran and Klemp (1983). All the large time step 

forcing terms and the known small time step terms in (A. 1) and (A  2) are grouped into 

wforce and p force.
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wforce = ——  c^6' à .K f  + - advw' + f ü ’̂  + turb̂  ̂+ D' (A.3)

pforce = —---- advK^ -  — (II ■‘rit’' ' + + 6 y ~ ' ^ ^  4- fô^w^J
At  c .

4- P ^ rt'^ )^ à ,B ‘ ( A 4 )
c /  c, d

In (A 4) the total non-dimeasional pressure at the current small time step multiplies the 

divergence term and the heating term. These terms are explicit and remove some of the 

gain obtained from the implicit application. The effect on the time step criterion is 

small since perturbation pressures are rarely greater than 3kPa or 1/30th of the base 

state pressure. Equations (A. I) and (A.2) are rewritten as;

= Ax(wforce -c^B ^ p j^ ^ô.k'' *) (A.5)

= ^ t{ p fo r c e -— {U. + 7t"̂  Y y -  + ( l - ^ ) ——=M-) (A.6)
Cv " c^B

Eliminating the pressure produces an equation for w at the friture time step in terms of 

known terms.

A(k)w(k - 1) + B{k)w{k) + C{_k)w{k +1) = D(k)

A(k), B(k), C(k), and D(k) are given by:
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A{k) = -a {d  + e)

= \ + a{b + c - d  - i - e )  

C (k )= a (6 -c )

D{k) = wforce -  a{pforce^ -  pforce^_^ )

where, a =

b =

c =

d  —

e =

^ k - \  X*^3it '*■ )

4A^

Ar/?(l -  bousopt)g

2 ^ A

A c R /n ,+ y ;)y a /,,

Ar>g(l -  bousopt)g
^p^k-l

AcR^crit.i + < _ , W3fc,i 
CvAg-

The tridiagonal system is solved with appropriate boundary conditions. The solver is 

applied from 3 to nz-2. The top boundary condition for the rigid lid case is w=0. For 

the linear radiation condition between pressure and w the formulation from Durran and 

Klemp (1983) is used. The details o f the upper radiation condition implementation are
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given in Appendix B. The performance of the implicit solver is roughly 2.0 times 

slower than the explicit version for a given small step. The implicit method is 

computationally effective when the ratio of the horizontal to vertical grid spacing is:

^ . 2 . 0
A;

225



APPENDIX B 

LINEAR HYDROSTATIC w-;r TOP BOUNDARY CONDITION

Vertical energy propagation from hydrostatically forced gravity waves can be 

significant. A damping layer in combination with a rigid lid is commonly used in 

mesoscale numerical models to prevent reflection from a rigid lid. The rigid lid-sponge 

combination is effective (Klemp and Lilly, 1978) in preventing significant reflection. 

But for strong mountain waves the thickness o f a properly designed damping layer can 

be as much as 1/2 of the model vertical domain. Another method applied by Klemp and 

Durran (1983) as well as others applies a linearized hydrostatic analytical relation 

between the vertical velocity and pressure variables at the top boundary. The advantage 

to this method is the number of grid points in the vertical is significantly reduced 

without degradation o f the numerical solution. Fewer vertical grid points correspond to 

smaller memory and CPU cycle requirements. Since the relation between vertical 

velocity and pressure is linearized, the application is somewhat limited. Tests o f the 

condition for a finite amplitude mountain wave reveals solution sensitivity to the upper 

radiation condition. The condition is more applicable to cases in which wave breaking 

takes place below the upper boundary.

The formulation implemented in ARP 13D follows Klemp and Durran (1983).

For a linearized hydrostatic Boussinesq set of 3-dimensional equations, to which the 

derivation is not reproduced here, the Fourier transformed analytical relation between w 

and k ' is
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K “  = ■ , K X  (B-1)

The relation (B. I) is applied at k=nz-2. The pressure and velocity points are staggered 

in the vertical, so (B. 1) is approximate. An average of w at nz-1 and nz-2 proved to be 

unstable and the above relation is adopted. The outline of the solution method is:

1. Apply the reduction step of the tridiagonal solver from Appendix A to w.

2. Starting with the pressure equation, obtain a relation for w(nz-2) in terms of 

w(nz-l) and ;r(nz-2). Substitute the result into the reduced step (I). Step 

(1) becomes an equation relating w(nz-l) and k  (nz-2).

3. Transform (2) into Fourier space.

4. Apply (B. I ) to (3) obtaining an equation for w(nz-1 ) in Fourier space it 

terms of known quantities.

5. Solve (4) for w(nz-1 ), perform a reverse transform and apply the result to 

the back-substitution phase of the tridiagonal solver to recover w at all 

other levels.

The above method is applied to both the vertically explicit and implicit w- k  solving 

techniques in ARPI3D. Step (2) uses the discretized pressure equation:

= ^V -Z  -pM ^^nz-Z  (B-2)

The variable pforce includes all the known terms in the pressure equation including the 

big time step advection and heating terms and the small time step updated horizontal
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velocity divergence and a weighted portion (1-^) of the vertical velocity divergence 

from the previous small time step. The reduction phase of the tridiagonal solver 

provides a relation between w(nz-2) and w(nz-l).

(B-3)

The coefficients c and d have been modified from the reduction steps. Substituting 

(B.3) into (B.2) gives;

(Al -  A2 - p f o r c e -  A2 - (B.4)

Where Al and A2 are the coeffrcients of w(nz-l) and w(nz-2) in (B.2), respectively.

The last step is the transformation of (B.4) into Fourier space and the substitution of 

(B . 1) into (B.4) to obtain an equation for w(nz-l) in terms of known quantities. The 

vertical velocity at k=nz-l is then transformed back to real space and the remaining 

vertical velocities at all other levels are obtained using the back substitution phase of the 

tridiagonal solver. Pressure is then computed using the updated three-dimensional 

velocity field-
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APPENDIX C 

STREAMLINE METHOD AND TESTS

Two-dimensional streamline-trajectory computations used in Chapter 4 to 

validate the numerical model formulation are described and tested here. The trajectory 

model applies the predictor-corrector method to the three-dimensional velocity field.

No generality is lost in presenting only the x-direction, as this analysis can be equally 

applied in the y and z directions. In the .x-direction, a parcel trajectory is defined as:

f . V  ( C )

where (A. 1) can be integrated to obtain the new parcel location given the current parcel 

velocity and position. A simple approach to computing the new parcel location would 

be to estimate the velocity at the present location and apply a time increment obtaining 

the distance traveled and the new position. Assuming that the velocity field changes 

slowly in space the deviation from the true parcel movement would be small. However, 

for the case of strong spatial velocity gradients large errors are possible from simply 

estimating the initial velocity as the average velocity over the parcel displacement. To 

improve the accuracy o f the scheme, the predicted parcel movement is used to obtain an 

updated or corrected velocity field. The initial parcel position X "  is used to obtain a 

linearly interpolated velocity K". The time step is applied to the interpolated velocity 

field and an updated intermediate position X"  is obtained. The relationship describing 

the parcel displacement is
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X "  = X ” (C.2)

where F"'‘ is the current interpolated velocity field. The corrected velocity field is 

determined using;

F "  =  0 . 5 * ( V °  + F ' " ^ )  ( C . 2 )

With the updated velocity. Equation (C.2) is reapplied n times producing a final parcel 

location X"  for each time step. For the n=l case, there is no velocity correction and 

only Equation (C.2) is used. This process can be repeated n times but little is gained 

after the 2nd application. For a slowly varying velocity field, n=2 produces a 

convergent streamline pattern. This method is similar to the Adams-Moulton presented 

by Hombeck, ( 1975). Tests of this trajectory method were conducted for a radially 

varying velocity field. The error is a function of the time step (dt) and the number of 

iterations (n). Figure C. I displays the streamlines using a radially varying two- 

dimensional wind field for two different number of corrector steps. The radial velocity 

fields are defined by:

where L is the width and H is the height o f the test domain, xcenter and zcenter are the 

central locations, and and are the velocity magnitudes.
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Figure C.I. Streamline test pattern for f/„=20 m/s, fF =20m/s, dt=25 seconds, 

dx=400m, dz=2S0 m , for (a) n=l, and (b) n=2. The CFL criteria is approximately 0.2.
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APPENDIX D 

MODEL PERFORMANCE

The two-dimensional simulations presented in this report were run on the 

University of Oklahoma EGAS Cray J-90 series computer. This computer is composed 

of 8 processors and 256 megawords of main memory. Model performance was 

measured using the -perf compiler option on the Cray FORTRAN 77 compiler. The 

domain size is 64 x 64 x 53 grid points in the x, y, and z directions. The test was run on 

one processor using the -Zv compiler option. The large and small time steps were 20 

and 4 seconds respectively. The grid spacing was dx = dy = 2000m and dz = 250m and 

the base state wind was a constant lOm/s. The vertically implicit v i - K  solution 

technique and upper radiation were implemented. Table D-1 presents a compilation of 

the performance statistics by subroutine for a three-dimensional mountain wave 

simulation. The overall code rating for this test is 95.6 MFLOPS.

The percentage of the total time for the w -Æ solver is a function of the ratio of 

large time steps to small time steps. For a large big to small time step ratio, the small 

time step solver requires a larger portion of the total CPU time. Figure D. 1 presents a 

pie chart of the most significant contributors to the model total CPU time. 

Approximately 35% of the time is spent in the small time step solvers dwpimSd and 

tri3d. The subroutine arpi3d also contains small time step calculations for u and v.
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P e r f  t r a c e  S t a t x s t i c s  R e p o r t  
S h o w i n g  T r a c e d  R o u t i n e s  

( S o r t e d  b y  C PU  T im e  U s e d  ( D e s c e n d i n g ) )  
(C P U  T i m e s  a r e  S h o r n  i n  S e c o n d s )

G r o u p  0  Canter S u m m a r y

Hme C a l l e d T im e A u g  T im EX Z ACM Z M m em s H F l o p s

9 U P W 5 0 0 6 . 1 H E « 0 1 1 . 2 4 E - 0 1 2 8 . 5 2 8 . 5 1 0 7 . 3 1 1 8 . 1
A R P I3D 1 4 . 6 3 E * 0 1 4 . 6 3 E « 0 1 2 1 . 4 4 9 . 9 1 0 9 . 1 8 5 . 2
TUVUS 5 0 1 . 6 2 E * 0 1 3 . 2 4 E - 0 1 7 . 5 5 7 . 3 3 5 . 9 7 6 . 9
TR I 5 0 0 1 . 4 G E * 0 1 2 . 9 1 Ê - 0 2 6 . 7 6 4 . 0 8 7 . 3 9 3 . 3
nras 1 0 0 1 . 2 2 E « 0 1 1 . 2 2 E - 0 1 5 . 6 6 9 . 6 1 1 7 . 9 9 5 . 6
TMIXUVW 5 0 8 . H E * 0 0 1 . 6 2 E - 0 1 3 . 7 7 3 . 4 1 0 6 . 0 9 1 . 5
S TR ESS 5 0 7 . 9 5 E « 0 0 1 . 5 7 E - 0 1 3 . 6 7 7 . 0 U 7 . 4 9 5 . 1
A3VZ 3 0 0 7 . 8 1 E * 0 0 2 . 8 0 E - 0 2 3 . 6 8 0 . 6 1 1 3 . 8 9 8 . 2
AOVX 2 5 0 6 . 7 3 E « 0 0 2 . 6 9 E - 0 2 3 . 1 8 3 . 7 1 0 7 . 5 9 2 . 9
ADVY 2 5 0 S . 3 3 E « 0 0 2 . 5 3 E - 0 2 2 . 9 8 6 . 6 1 1 4 . 3 9 8 . 5
0 1 IX Z 2 0 0 4 . 2 5 E « 0 0 2 . 1 4 E - 0 2 2 . 0 8 8 . 6 1 0 2 . 3 8 3 . 1
CMIXX 2 0 0 4 . 2 7 E « 0 0 2 . 1 3 E - 0 2 2 . 0 9 0 . 6 1 0 0 . 3 8 0 . 9
CMIXY 2 0 0 4 . 1 S E * 0 0 2 . 0 7 E - 0 2 1 . 9 9 2 . 5 1 0 3 . 2 8 3 . 2
VRADFC 2 0 0 0 3 . 9 3 E * 0 0 1 . 9 6 E - 0 3 1 . 8 9 4 . 3 9 9 . 8 6 0 . 4
UCOHT lO O 2 . 8 3 E « 0 0 2 . 8 3 E - 0 2 1 . 3 9 5 . 6 1 2 7 . 0 1 1 9 . 5
TflUSD 5 0 2 . 4 3 E « 0 0 4 . 9 6 E - 0 2 1 . 1 9 6 . 7 1 0 5 . 2 9 6 . 9
H RXniN 2 3 1 . 3 3 E * 0 0 8 . 4 0 E - 0 2 0 . 9 9 7 . 6 2 6 . 2 9 . 9
TKE3D 5 0 1 . 5 4 E * 0 0 3 . 0 8 E - 0 2 0 . 7 9 8 . 3 9 3 . 6 5 8 . 9
UPRA03 5 0 0 1 . 5 0 E * 0 0 3 . 0 0 E - 0 3 0 . 7 9 9 . 0 2 0 . 7 9 5 . 1
I N IT 1 7 . 9 3 E - 0 1 7 . 9 8 Ê - 0 1 0 . 4 9 9 . 4 5 0 . 0 5 7 . 2
VCOST . 2 0 0 0 7 . 1 0 E - O 1 3 . 5 5 E - 0 4 0 . 3 9 9 . 7 9 4 . 3 5 4 . 5
V R F T F l 2 0 0 0 2 . 6 0 C - O 1 1 . 3 0 E - 0 4 0 . 1 9 9 . 8 6 2 . 6 3 0 . 6
V R A IF 2 2 0 0 0 2 . 1 Œ - 0 1 1 . 0 5 E - O 4 0 . 1 9 9 . 9 7 4 . 8 9 1 . 4
BCUV3D 5 0 6 . 9 2 E - 0 2 1 . 3 8 E - 0 3 0 . 0  1 0 0 . 0 5 0 . 0 3 2 . 0
V R F R F 2 0 0 0 3 . 5 3 E - 0 2 1 . 7 7 E - 0 5 0 . 0  1 0 0 . 0 7 . 8 0 . 0
PINACH 2 0 0 4 1 . 3 0 E - O 2 8 . 4 7 E - 0 S 0 . 0  1 0 0 . 0 0 . 2 0 . 0
VCDSTI 2 1 . 2 8 E - 0 4 G . 3 S E - 0 6 0 . 0  1 0 0 . 0 8 . 3 4 1 . 5
V R F T I l 2 1 . 2 0 C - 0 4 5 . 3 B E - 0 S 0 . 0  1 0 0 . 0 4 . 3 1 7 . 3
V R F F T l 2 4 . 8 G E - 0 5 2 . 4 3 E - 0 5 0 . 0  1 0 0 . 0 4 . 8 0 . 0
R R P I S H E U

1 2 . 4 7 E - 0 5 2 . 4 7 E - 0 5 0 . 0  1 0 0 . 0 1 4 . 2 0 . 0

T o t a l s 1 S 4 3 6  2 . 1 7 E « 0 2 1 0 0 . 0  1 0 0 . 0  1 0 0 . 3 9 5 . 6

Table D-1. Performance statistics for ARPI3D three-dimensional mountain wave 

simulation on a Cray J-90 series computer using a single processor and the vector 

compiler option.
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Figure D. I. Pie chart of CPU time requirements for a three-dimensional mountain wave 

simulation using ARPI3D and the EGAS Cray J-90 computer.
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Tests were conducted during the initial model development phase which 

measured the efficiency o f different terrain transformations and pressure equation 

formulations. The simple chain rule terrain formulation is found to be significantly 

faster (>33%, without turbulence) than the strongly conservative form used in a number 

of models including the ARPS. This is primarily due to the computationally intensive 

floating-point divisions in the strong conservation formulation. The adaptation of the 

system of equations from pressure to non-dimensional pressure also improves the 

computational efficiency of the code, as does the implementation of the advective form 

of the equations. In the dimensional pressure system of equations, the additional term 

in the buoyancy relation, due to a power series approximation, is computed on the small 

time step. The effect of this term was not explicitly determined but is estimated on the 

order of a few percent of the total solution time.

Another method of estimating computational efficiency is to test the model with 

other established mesoscale numerical models. A rough comparison of ARPI3D with 

ARPS Version 4.0 was made for a number of simple tests with the results of only two 

comparisons presented here. In 2-D mode, ARPI3D is on the order of 12-15 times more 

efficient (CPU seconds) than a similarly configured ARPS simulation. In defense of the 

ARPS, this is primarily due to the fact that the ARPS has a pseudo 2-dimensional 

option. The ARPS 2-dimensional mode computes 4 vertical slices, due to boundary 

condition requirements, while ARPI3D’s 2-D mode computes only 1 vertical slice. A 

more realistic test involves a 3-dimensional cold bubble dropped over a symmetric 

mountain. Both models were run without moisture since ARPI3D currently uses a dry 

formulation. The simulation time on a Cray J-90 computer for ARPS is approximately
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3 times greater than ±at required by ARP 13 D. Such a large discrepancy is likely due to 

the use of a simple coordinate transformation (chain rule), equivalent advective form of 

the advection terms, solving non-dimensional pressure, and the absence of operator 

subroutines. The memory requirements between the two models are comparable with 

ARP 13 D requiring approximately 1/2 that of the ARPS.

The three-dimensional experiments presented in this report were performed on 

the Pittsburgh Super Computing Center’s Cray T3D and T3E massively parallel 

computers and the University of Oklahoma Hitachi SR2201C parallel super computer. 

During the winter of 1996, the source code was upgraded to include message passing 

interface (MPI) subroutine calls. MPI was chosen over the Parallel Virtual Machine 

(PVM) message passing technique because it is more efficient in passing similarly sized 

packets. The message passing application allows the code to be run on massively 

parallel computer platforms. The advantage to this method is the removal o f the 

memory limitation existing on the Cray J90 and other symmetric multi-processor (SMP) 

platforms. Tests were conducted on the T3D in which the per processor model grid 

arrays remained constant and the number of processors increased. This experiment tests 

the scalability of ARP 13 D on a specific machine type. As the number of processors 

increases the domain size also increases. A perfect code implemented on an infinitely 

fast computer would register the same wall clock times regardless of the number of 

processors. The relation for the number of grid points per processor to the global 

domain size is;
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gnx = (nx-5)*nprocx-h5  (D.I)

gny = {ny -  5) * nprocy + 5 (D.2)

Nx and ny are the number of grid points for each processor in the x and y-directions and 

gnx and gny are the number of global grid points in the x and y directions. The choice 

of the per processor domain in (D.I) and (D.2) is based on the desire to eliminate 

message passing of intermediate variables associated with fourth order spatial 

derivatives. In the present configuration no intermediate variable passing is required. 

Other models (e.g. ARPS) use a smaller more memory efficient per-processor domain 

(nx-3 and ny-3) but are required to pass intermediate results. Intermediate variables are 

present in the turbulence and fourth order advection and turbulent mixing terms. The 

disadvantage to the method applied to the present model is a slight increase in the 

number of grid points per processor. This redundancy is balanced by a more efficient 

message-passing configuration. Figure D.2 presents a chart of the scalability of 

ARPI3D through a range of processor configurations on the PSC T3D computer. The 

values are normalized by the 16-processor test simulation. The results indicate that as 

the processor domain is expanded fi'om 16 to S12 processors the code is 80% efficient. 

Persotmel communication with PSC consultants reveals that this efficiency rating is 

very good, exceeding a large fi’action of the current MPP applications. The code 

performance was measured on the T3D using the apprentice performance monitoring 

software. ARPI3D is rated at approximately lOMfiops on the T3D. This is 

approximately 9 times slower than simulations performed on a single processor J90 and

6.5 time slower than a single Hitachi SR201C node. Attempts were made to improve
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the code performance on the T3D. Optimization was minimal due to the small data 

cache on the DEC alpha processor. ARPS has a similar mflop rating and is equally 

difficult to optimize on the T3D.
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Figure D.2. Plot of the normalized wall clock time for a 20x12x115 per processor grid 

simulations as a function o f  processor configuration. Tests were conducted on the PSC 

Cray T3D computer.
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APPENDIX E 

SOUNDING PROFILES

Sounding data for Wangara Day 33 simulations.

Sounding filename = wang.snd 
l-D Sounding Input for ARPI3D
Sounding Data collected at Wangara Surface Experiment,
34.5 South 144.93 East, Australia
Date; 9:00am August 16, 1967
Sounding obtained from Yamada and Mellor, 1975.

Surface Height = 0.0 m, Surface Pressure = 102,300 Pa

Number of Levels = 23

Pressure Temp. Qv U V
15000 -65.0 .00000 35.00 00.00
35000 -40.0 .00023 30.00 00.00
48000 -15.0 .00023 25.00 00.00
62300 -5.0 .00026 15.00 00.00
72300 -1.5 .00031 7.00 00.00
79900 -0.2 .00060 .50 1.10
82000 1.4 .00070 -.70 1.72
84000 1.7 .00080 -1.19 .26
86100 2.0 .00080 -1.45 .07
88300 2.3 .00150 -1.93 -.90
89000 2.6 .00180 -2.29 -1.41
90500 2.5 .00200 -2.55 -1.16
91600 2.9 .00220 -2.28 -.76
92800 3.5 .00250 -2.45 -.48
93900 3.8 .00290 -2.43 -.35
95100 4.7 .00320 -2.79 -.26
96300 5.8 .00330 -2.49 -.37
97400 6.8 .00330 -3.20 -.47
98600 7.4 .00370 -3.12 -.51
99800 7.5 .00380 -2.79 -.57
101100 5.4 .00380 -2.92 -.38
101700 5.1 .00370 -2.84 .03
102300 5.5 .00420 0.0 0.00
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Sounding data for January 11, 1972 Boulder Colorado windstorm simulations.

Sounding filename = bld2.snd

l-D Sounding Input for ARP 13D

Sounding Data collected at Grand Junction, Colorado

Date; l2ZJan. 11, 1972

Sounding estimated from Figure 10 Durran and fClemp (1983) 

The top two layers were taken from Peltier and Clark (1979) 

Surface Height = 0.0 m. Surface Pressure = 82000 Pa 

Number of Levels = 13

Pressure Pt Qv u V
100.00000 1481.0000 0.00000 20.00 0.00
1000.00000 764.00000 0.00000 20.00 0.00
11000.00000 388.00000 0.00000 20.00 0.00
16000.00000 350.00000 0.00000 22.00 0.00
18500.00000 328.50000 0.00000 31.00 0.00
22000.00000 321.50000 0.00000 44.00 0.00
24000.00000 319.50000 0.00000 53.00 0.00
30000.00000 317.00000 0.00000 46.00 0.00
40000.00000 313.00000 0.00000 38.50 0.00
53000.00000 308.50000 0.00000 31.00 0.00
62500.00000 296.50000 0.00000 20.00 0.00
68000.00000 293.00000 0.00000 17.00 0.00
82000.00000 293.00000 0.00000 9.00 0.00
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Sounding Data for the January 9, 1989 Boulder Colorado 2305UTC simulations. 

Sounding filename = cl2d.snd

l-D Sounding Input for ARPI3D taken from Clark et. al. (1994)

Data collected at Craig, Colorado

Date: 15Z January 9, 1989

Surface Height 0.0 m. Surface Pressure 100000 Pa

Number of Levels = 20

Pressure Temp. Qv u V
500.00000 -55.70000 0.00000 30.00 0.00
2500.00000 -55.70000 0.00000 30.00 0.00
5000.00000 -55.70000 0.00000 30.00 0.00
9810.00000 -55.70000 0.00000 30.00 0.00
n  880.00000 -55.80000 0.00000 31.09 0.00
15090.00000 -56.90000 0.00000 31.26 0.00
19980.00000 -60.90000 0.00000 40.57 0.00
24970.00000 -57.10000 0.00000 39.28 0.00
29920.00000 -47.20000 0.00000 34.74 0.00
35000.00000 -41.90000 0.00000 29.77 0.00
40030.00000 -35.00000 0.00000 29.07 0.00
45000.00000 -28.80000 0.00000 27.14 0.00
50170.00000 -22.60000 0.00000 26.11 0.00
55210.00000 -20.30000 0.00000 27.99 0.00
60290.00000 -15.30000 0.00000 25.50 0.00
69460.00000 -11.90000 0.00000 23.26 0.00
70220.00000 -11.00000 0.00000 13.34 0.00
75420.00000 -6.80000 0.00000 9.96 0.00
81160.00000 -6.00000 0.00000 3.75 0.00
100000.0000 -6.00000 0.00000 3.75 0.00
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