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ABSTRACT

This dissertation describes research on the effects o f the uncertainty in annual load 

variation and uncertainty in generation availability on the variance o f production cost in an 

electrical power system. Two different approaches of load uncertainty modeling are 

developed. The load uncertainty modeling accounts for uncertainty when reliable weather 

(e.g. temperature) forecasts are not available. Both approaches can be used to estimate the 

variance of long-term production cost, typically for an annual study.

Production costs are usually simulated on the basis that the availability of 

generation capacity is subject to random failures of system generating units. In order to 

estimate the variance of cost, both the random forced outages o f units and load 

uncertainty should be modeled in a production cost simulation. In this dissertation, the 

effects of uncertainties in generation availabilities will be analyzed using a Monte Carlo 

approach.

In this long-term (annual) load model, emphasis is placed on modeling the 

variation in chronological load so that a chronological production cost simulator can 

efficiently produce an estimate o f the variance of annual production cost. A stochastic 

approach, using a conditional weekly sampling scheme, is proposed to model the annual 

load variation. Then, a probabilistic approach using stratified sampling is proposed to 

model the load variation on an annual basis. Furthermore, the stochastic and probabilistic 

approaches are compared in terms of accuracy and effort. The result o f this dissertation is



to provide a model that can be used to estimate the variance of annual production cost 

using a chronological production cost simulator. Thus, the variance in production cost can 

be expressed as a function of load uncertainty and uncertainty in generator availability.
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CHAPTER I 

INTRODUCTION

The objective o f an electrical utility has been to provide electrical service to its 

customers in an economical and reliable manner. As part of this process, system 

operational scheduling, fuel budgeting, transmission planning and system planning 

studies play important roles. Unfortunately, these functions are complicated by future 

uncertainties. Also, the increasingly competitive markets and the onset of de­

regulation of electrical utility industry with their concomitant emphasis on prices rather 

than simply costs have increased the interest in reflecting uncertainty in power system 

planning studies. Therefore, the need to represent uncertainty of future conditions in 

system operation and planning is widely recognized in the electrical power industry.

Regardless of how long is the lead time, a generation system needs to be 

scheduled and operated to satisfy the operational constraints for the planning horizon 

at a minimum cost. System operational scheduling and system planning both depend 

on many forecast parameters, including; unit availability, electrical demand, fuel prices, 

and environmental and regulatory requirements. Unfortunately, the forecast of these 

parameters is subject to uncertainty. Furthermore, this range of uncertainty tends to 

become broader as the forecast lead time lengthens. Although uncertainties are broadly 

considered in long-term operational planning, it is also very clear that uncertainties are 

also essential in the analysis of short-term operational strategy.



Planning under uncertainty involves identifying the potential uncertain (or 

risky) events and assigning probabilities to those events. Among the uncertain factors 

that impact the system production cost, this dissertation’s attention is concentrated on 

the uncertainties of generation units’ forced outages and load uncertainty. The 

problem of modeling the reliability o f the generating unit forced outage performance 

has received considerable attention in the past. However, load uncertainty may play a 

larger role in production cost uncertainty than uncertainty in generation availability 

does. Furthermore, not only will the accuracy of load representations impact the 

estimation of production cost o f an electric power system, but also the uncertainty in 

load will contribute to the variation in production cost. Power system scheduling and 

planning begins with the development of load representation models. Consequently, to 

estimate the variance of production cost induced by load variation, emphasis is placed 

on developing a chronological load model that includes uncertainty. In this 

dissertation, presuming that the annual load forecasts do not use weather forecasts, the 

annual load variation representations are modeled to estimate the variance of 

production cost in system planning studies. In the sequel, uncertainty in load and 

uncertainty in generation availability are reflected through production cost simulation 

in order to estimate the uncertainty in operational cost.

1.1 Production Cost Simulation and Its Uncertainty

When planning future operations, questions that naturally arise are how much 

generating capacity is required to meet the potential demand and how much



uncertainty is associated with the plan for committing generation. As power generating 

units experience unexpected forced outages, the uncertainty in unit’s availability must 

be included in production cost simulation if accurate results are to be obtained. 

Usually, probabilistic methods can be used to account for the characteristics of the 

random outage rate. In this research, the unit forced outage rate is implemented in 

Monte Carlo sampling using a discrete-state Markov process (stochastic process).

On the other hand, many techniques and approaches to short-term load 

forecasting have been proposed in the last two decades. Among them are: artificial 

neural networks algorithm [I, 2, 3], time series analysis [4, 5, 6], linear regression 

methods [7, 8] and fuzzy logic approaches [9, 10]. Most of these load forecast 

procedures use the weather information to refine the prediction. Without a reliable 

long-term weather forecast, electrical load forecasts with these long lead times are 

challenging, and are complicated by the future uncertainties. Since accurately 

predicting production costs is a vital function for supporting system planning and 

operational scheduling, production cost simulations with the capability of reflecting 

annual load uncertainty are becoming an important tool in power system operational 

planning.

To plan for the future, a production cost simulator is needed to assess and 

compare the projected production costs o f alternative strategies with a view to 

optimizing the overall system economy. Production cost models are computational 

models designed to calculate a generation system’s production cost. They are widely 

used throughout the electrical utility industry as a tool in long-range system planning, 

in fuel budgeting and in system operation. The primary function, i.e., estimating future



system energy cost, is accomplished by simulating the operation o f the generation 

system to meet the projected future loads. Since generating units are not perfectly 

reliable and future loads are forecasted with uncertainties, many production cost 

programs are used mainly to compute the expected cost based on deterministic or 

probabilistic models. To provide more meaningful simulation results, a production 

simulator should be able to evaluate the effects of uncertainties. A production cost 

simulation with load and generator availability uncertainty has the capability to provide 

information about cost variation, as well as expected cost, can be useful in decision 

making.

There are two prevalent types o f production cost simulation: a probabilistic ( 

or load duration curve based) approach and a Monte Carlo approach. A probabilistic 

model (load duration curve method) was suggested by Baleriaux [11] and Booth [12]. 

The basis of this simulation method is the use of probability distributions to describe 

the system load and generating units’ forced outage. The combination o f these 

distributions are used to obtain the expected energy generated for each unit in the 

system. In this formulation, the load is described by means o f a load duration curve 

which ignores the chronological variation in the load distribution. It has been shown in 

Reference [13] that using the concept o f unit duty cycle, the Equivalent Load Duration 

Curve (ELDC) approach, can be extended to approximate unit start-up failure and 

start-up time considerations. In recent years, the method o f  moments described in 

Reference [14] and [15] had been adopted in the computation o f the ELDC. This 

development greatly improved the computational efficiency o f  the analytical approach. 

In practice, the probabilistic model is fast compared to chronological simulations and



is attractive for planning studies that extend for more than one year. However, an 

inherent limitation of the analytical approach to production cost calculation is that the 

chronological information o f the electrical load is lost.

The need for generating the distributions o f production costs, as opposed to an 

expected value only, has been emphasized by Rau and Nesculescu [16]. Reference [17] 

extends the Baleriaux formulation so as to be able to compute the variance of the 

system production costs. Due to the large quantity o f  coefBcient of variation of cost 

observed in Reference [17], Mazumdar and Yin suggest that production costing 

models should be enlarged to include the variance o f cost as well. In Reference [18], 

Rau and Hegazy further pointed out that the variance o f the production cost is greatly 

influenced by the method o f modeling the load and the implicit assumption regarding 

the outage of generating units. They provide a simpler procedure than Mazumdar does 

to obtain the variance of production cost. Reference [19] presents a stochastic outage 

capacity state model for evaluating the random error in production cost, which is also 

estimated via the Baleriaux-Booth approach. Using these probabilistic approaches to 

estimate the variance of production cost [16, 17, 18, 19], the load uncertainty can be 

included by the use of probability distributions that describe the system loads. Thus, 

the effects of load uncertainty on production cost can be modeled using a load 

duration curve method.

Since production costs are sensitive to chronological effects, Monte Carlo 

simulations provide more realistic and accurate results than those provided by 

probabilistic models, especially in the short-term power system operational scheduling. 

Monte Carlo simulation is a numerical simulation procedure applied to problems



involving random variables with known probability distributions. The Monte Carlo 

simulations described in Reference [20-23] have been developed to estimate the 

production cost considering the chronological variation o f  generating units’ 

availabilities. This method involves repeating the simulation process using a particular 

set of sampled values o f the random variables that are generated corresponding to their 

probability distributions in each iteration. Therefore, the results of Monte Carlo 

simulation are estimated statistically.

A major concern with regards to the application of Monte Carlo simulations is 

that a large number of samples is required to obtain meaningful results. The method 

for estimating approximate confidence bounds o f production cost for Monte Carlo 

simulation is proposed in Reference [23]. This method can be used to determine a 

sufficient number of simulation samples needed to achieve a specified degree of 

precision, thus resulting in savings in computing time. In Reference [24], a combined 

control variable and stratified sampling method has been proposed for Monte Carlo 

production cost simulation. This method reduces the computational time and enables 

the chronological simulation to play a much more significant role in medium range 

planning studies. A structure for stochastic chronological production cost simulations 

is described in Reference [25] which is useful for handling annual chronological 

constraints in operational scheduling and planning.

Monte Carlo simulations have been used to model the effects of unit outage 

characteristics on the variance of annual production costs based on an expected load 

profile [22, 23]. Most production cost simulators estimate the expected production 

cost, but do not give information regarding the extent of the fluctuation of these costs.



Information containing only the expected production costs may be insufScient for 

system planners on many occasions. A decision maker may want to estimate the 

accuracy of the results to prepare for the unexpected in the future. For example, an 

increasly important use o f production cost estimation is to select a most economical 

transaction or to set the priorities to the available transaction options. In this case, 

production cost simulation studies are used to evaluate potential benefits associated 

with contractual purchases or sales o f electricity to another utility or energy marketer. 

The energy transaction can be modeled as specified megawatt sales or purchases on an 

hourly basis. As such, they can be considered as a territorial load adder or subtracter 

for the system load. However, if the actual annual energy turns out to be more than 

what is expected due to the uncertainty in the forecasted system loads, the increase o f 

the annual energy will cause the system production cost to increase dramatically. Thus, 

for this unexpected situation, the fluctuation in the estimated production cost will not 

be captured by a single estimate of the expected production cost. Moreover, when a 

situation exists such that the difference between the estimated production costs of two 

transaction options is very small in magnitude, a measure of the variation of the 

production cost about the expected cost considering the load uncertainty will be useful 

to a decision maker.

Although Wang proposes a method for estimating confidence bounds of Monte 

Carlo simulation results in Reference [23], this method only focuses on the effects of 

unit availability uncertainty on the variance of production cost. Usually, the forecasted 

system loads are handled by a deterministic approach in Monte Carlo simulations. 

Thus, the uncertainty in system load is not considered, when the variance of



production cost is estimated based on the expected load profile. An expected load 

profile will not be adequate in estimating the variance of production cost, [n order to 

estimate the variance of production cost caused by annual load variation, a method of 

modeling the variation in a chronological load profile is required when using a Monte 

Carlo simulation technique.

1.2 Load Uncertainty Modeling

When the future uncertainty is included, a measure for precision on the 

projected cost becomes very import. A decision maker would like to make a decision 

between “higher risk - lower operating cost” and “ lower risk - higher operating cost”. 

For most utilities, uncertain load requires higher planning reserve margins than known 

demand does. Therefore, if this additional information is desired by the decision 

maker, a method of modeling load uncertainty is essential. In this dissertation, instead 

of modeling the expected load profile only, a chronological load uncertainty model will 

be developed to represent the annual load variation. Herein, two approaches to load 

variation modeling, in conjunction with a chronological production cost simulation, are 

proposed.

Since the load at a fixed time is a sum o f  independent variables, i.e., the loads 

of many customers, and based on the Central Limit Theorem, the random variables of 

this application have normal distributions. Likewise, it is reasonable to presume that 

both the total energy and peak load of a particular week are also normal random 

variables. Furthermore, the characteristics of these random variables change with time.



If a collection of random variables is changed with a parameter such as time or space, 

such collections are known as stochastic processes. Consider a random variable that 

represents the weekly peak load in an electrical system, it is intuitive to model the 

weekly peak load as a stochastic process. Similarly, the weekly energy also should be 

treated as a stochastic process. Moreover, these two random variables are not 

independent in each week. In addition, the electric load is highly dependent on the 

weather conditions, which are changing all the time. Therefore, the correlation 

between weekly energy and peak load changes as the time progresses as well. For this 

research, a discrete-state Markov process unit availability model has been adopted in 

Monte Carlo simulation. Modeling the system load as a Gauss-Markov random 

process is consistent with that of the unit outage modeling. These representations lead 

us to model the annual load variation using a stochastic approach.

In the stochastic approach, a conditional sampling scheme for the weekly 

energy and peak load will be used to model the annual load variation. However, 

modeling the annual load variation in weekly detail requires the two sets o f 

distributions that describe the stochastic characteristics o f the weekly energy and peak 

load. Accurate estimations o f these weekly parameters usually are the bases used to 

model the annual load variation. In practice, it is too tedious to estimate all the weekly 

parameters, and it is not efiScient to sample a large number of load profiles to reflect 

the annual variation. A simplified approach to estimate the variance o f cost induced by 

unit outage and load variation uncertainties is necessary.

Ideally, it would be useful to provide the estimate of expected cost when the 

future load is high or low, in addition to the expected cost and the variance of cost



based on the expected load. The probabilistic approach is developed to approximate 

the variances of cost with reduced number o f simulations; and to provide the expected 

costs o f three scenarios (low, mean, and high load). The annual energy and peak load 

are modeled by a joint normal distribution with the consideration of correlation. Thus, 

the variance o f production cost induced by load uncertainty are estimated according to 

the simulation results of the three load scenarios, which are represented using stratified 

sampling. In addition, the results of the probabilistic approach are compared to those 

of the stochastic approach to ensure that comparable estimations have been obtained.

1.3 Outline of The Dissertation

The reminder of this dissertation consists of five chapters. A review of the 

production cost simulator and the generation availability uncertainty modeling for 

Monte Carlo simulation will be provided in Chapter II. The smart Monte Carlo 

sampling for estimating the expected production cost and ordinary Monte Carlo 

sampling to evaluate the variances of production cost are also discussed in this 

chapter. In Chapter QI, the annual load variation is analyzed. Also a stratified sampling 

technique to describe probabilistic load scenarios and a conditional sampling scheme 

used to sample the stochastic annual load profile are presented. In Chapter IV, the 

stochastic and probabilistic approaches to modeling annual chronological load 

variation are described. The mathematical formulation to estimate the variance of 

production cost caused by unit outages and load variation using two proposed 

approaches are presented in this chapter as well. The estimation of the expected costs 

and variances of a medium size utility using both approaches are illustrated in Chapter

10



V. Also, these two approaches are compared in this chapter. Chapter VI concludes 

this dissertation.

To complete this dissertation, the programs of both approaches are listed in 

Appendix C. The stochld.c and probald c are the main programs for the stochastic and 

probabilistic approaches respectively. The loadlib.c is a subroutine library for both 

programs. These two main programs are used to generate the annual load profiles in 

the format of Scheduler's binary load file. All the programs are written in C language.

II



CHAPTER n  

CHRONOLOGICAL PRODUCTION COST SIMULATION 

WITH UNIT AVAILABILITY UNCERTAINTY

In the electrical power industry, a production cost simulation consists of 

modeling generation system, system load, a number of constraints including, fuel 

constraints, transmission constraints, emission constraints, and transactions in order to 

determine the generation operating expenses that the utility will incur for a future 

period. In the past, chronological production cost simulation algorithms were not 

popular because they required higher computational effort and are consequently of 

limited use in the context o f long-term studies. As the electric utility industry is 

becoming a competitive market, there is an incentive to reduce costs and increase 

profits. The ability to accurately evaluate the future production cost is of considerable 

importance to utility plaimers. Thus, the need to estimate accurately both short-term 

and long-term production costs has called for the reconsideration of detailed 

chronological simulation so that chronological events can be included.

In this chapter, in order to estimate the variance of production cost, we begin 

with a review of some important features concerning the uncertainty in unit availability 

sampling, which afifect the estimation of the production cost. Followed the review are 

the descriptions of the two different Monte Carlo sampling techniques used to model 

unit outage uncertainty.

12



II. 1 Chronological Production Cost Simulation

In this dissertation, the precision of the estimate o f production cost is studied 

by the estimated variance. To estimate the variance of annual production cost, a 

production cost simulator based on Monte Carlo simulation technique is used. A 

Monte Carlo simulation is a numerical simulation procedure applied to problems 

involving random variables with known probability distributions. Assuming that the 

probability distributions of these random variables are given, the first step in Monte 

Carlo sampling, is to generate random samples based on their distributions. The next 

step is deterministic, in which the unit commitment and economic dispatch are used to 

obtain the simulated results. Finally, after the first two steps have been repeated a 

sufficient number of times, a statistical analysis of the simulated results can be 

performed.

Computer programs for electrical energy production, based on the Monte 

Carlo sampling techniques, have long been used in the utility industry. A Monte Carlo 

type production cost simulator. Scheduler, is used in our studies. Scheduler is a 

chronological resource scheduling program developed by Power Costs, Inc. This 

software package is capable of both short-term operational scheduling and long-term 

operation planning, because it simulates the operational costs of the power system for 

time periods between one hour and several years. This simulator captures the 

chronological aspects o f power system operations including unit commitment 

constraints such as, minimum up-time, minimum down-time and start-up costs. 

Scheduler uses the sequential bidding method [26] to solve the unit commitment 

problem. It also models adaptive compliance with annual emission and fuel constraints.

13



That is, an allocation of the constrained fuel is made for the first week; the simulation 

results of the first week are monitored at the end of the first week, and an allocation is 

made for the second week based on the results of the first week’s operation. This 

adaptive fuel allocation is used to assign the upcoming week’s target consumption of a 

constrained fuel in order to satisfy the overall fuel constraints.

Because o f random load fluctuations and random outages of generating units, 

any realistic long-term planning or production cost simulation procedure must take 

into account the uncertainty of the future. Production costs are usually simulated on 

the basis that the availability o f generation capacity is subject to random failures (i.e., 

forced outages) as well as scheduled maintenance outages of system generating units. 

The forced outage of generating units assumes that the generating units are 

independent of each other and the load. Thus, the availability status of each generating 

unit is determined by independent Monte Carlo sampling.

Scheduler models the effects of uncertainty in generator availability using 

Monte Carlo sampling. When Monte Carlo sampling is used with a chronological 

model, the resulting simulation is called stochastic. Stochastic models of production 

cost have the advantages of accuracy; however, many repetitions of a chronological 

algorithm are often required for the estimated mean of an observed quantity to be a 

close approximation of the true mean. Such a procedure makes the simulation very 

time-consuming. As a result, a conditional sampling technique is introduced to 

improve the precision of Monte Carlo estimates, and thus reduces the required number 

of repetitions. By using this “smart” Monte Carlo sampling, the coeflBcient of variation 

of cost, which is due to unit forced outages, is significantly reduced so that one annual

14



production cost simulation is sufficient to estimate the expected production cost. 

However, in order to estimate the variance o f the production cost, the smart Monte 

Carlo sampling must be replaced by ordinary Monte Carlo sampling.

On the other hand. Scheduler and all other chronological models, o f which the 

author is aware, model the system load using a deterministic approach. Since the 

expected chronological load profile is used, the resulting production cost only takes 

into account the unit availability uncertainty. That means it estimates the production 

cost based on the expected loads. Thus, a tool which can be effectively reflect the 

variation in system load to production cost simulation will be useful, and should be 

considered especially for long-term studies. This is the major contribution of the 

research reported in this dissertation.

II.2 Ordinary Monte Carlo Sampling

A generating unit has several operating conditions. A planned maintenance 

outage (often called an “overhaul”) occurs when a unit is removed fi'om service to 

perform routine work that is scheduled in advance. A forced outage occurs when a 

unit is unexpectedly forced out o f service for repair. The forced outage rate is defined 

as the fi'action of time that the generating unit is unavailable for service. Thus, the 

forced outage rate measures the ratio of the hours when the unit is unavailable due to a 

forced outage divided by the exposure time, i.e., available hours plus forced outage 

hours. Both forced outages and maintenance outages are considered in the production 

cost simulation.

15



[n a Monte Carlo type simulation, a random sampling technique is used. The 

heart o f Monte Carlo sampling is a pseudo random generator. The occurrences of 

events in the simulated operations are determined by the outcomes o f the random 

draws. In practice, random numbers are usually generated on a weekly basis. Units on 

outages and units in service remain unchanged for the entire week. In order to 

recognize the chronology of all simulated events, Monte Carlo sampling is used to 

describe the availability status of each generating unit in the production cost 

simulation. Chronological Monte Carlo models represent the system state as a set of 

resource availabilities. The system state, described by the on/oflf status of every 

available unit, can be used to formulate a deterministic model. A simulation for a given 

time period, e.g., one week, for one sample system state is called an iteration. For each 

generating unit, the system state is established for each iteration by comparing a 

randomly generated number with the forced outage rate o f that unit. The set of states 

of each unit typically has just two possibilities, the possibility of that unit being 

available at the unit’s rated capacity and the possibility of it being on outage at zero 

capacity. The state of a unit can be determined to be 1 -  which represents available, if 

randomly generated number is greater than the forced outage rate of that unit -  else 

the state will be 0, which represents unavailable.

Assuming the generating unit’s availabilities are independent of each other, a 

set of unit states is sampled for each iteration. After establishing a set o f system states 

for each iteration, a chronological simulation model can be applied to simulate the 

production cost o f each iteration. With a sufScient number o f repeated iterations, the 

simulation results are estimated statistically to represent the expected value of

16



production costs. In order to estimate the mean and variance o f the production cost 

with an acceptable precision, a large number of simulations is required. Therefore, a 

“smart” Monte Carlo sampling technique is introduced to fulfill the need to reduce the 

simulation time and maintain the accuracy o f  production cost estimation.

II.3 Smart Monte Carlo Sampling

As the Monte Carlo simulation results are derived by averaging the outcomes 

o f several iterations, the basic Monte Carlo method requires a large number of 

repetitions to reduce the coefiScient of variation of the resulting cost to an acceptable 

value. These averages will be imprecise if the number o f iterations is not large enough. 

For example, if the number of iterations is not large enough, the frequency of unit 

outage will not closely approach the unit forced outage rate. Clearly, the number of 

repetitions will afifect the precision of Monte Carlo estimates. In Scheduler, a “smart” 

sampling scheme is applied to improve the precision of the estimates.

In this production cost model, planned maintenance outages are considered 

first. When the iteration (week) is in the unit's planned maintenance period, the unit is 

unavailable. These weeks will not be included in the weeks sampled for forced 

outages. For those weeks which the unit is not on planned maintenance, “smart” 

Monte Carlo sampling is performed. For each unit, the expected number of iterations 

(weeks) in which the unit is fisrced out can be estimated as the total number of 

iterations (weeks) that the unit is not on planned maintenance schedule times the unit 

forced outage rate. That is.
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EOUT= FOR * WA VA (2-1 )

where

EOUT Expected number o f weeks in which a unit is forced out

FOR The unit forced outage rate

WA VA Number of week in which a unit is not on planned maintenance

For each unit, the availability status of the first iteration is established by 

comparing a randomly generated number with its forced outage rate. For the 

subsequent iterations, the generating unit state can be determined based on the states 

of the previous iterations. In order to have the number o f weeks that the unit is 

unavailable closely match the expected number o f weeks that the unit is unavailable, 

the forced outage rate for the remaining weeks should be adjusted to reflect the 

updated conditions. After the first iteration, a randomly generated number is compared 

to the conditional forced outage rate of that unit, CFOR  ̂ for week i, which is defined 

as follows;

(2-2)

where

FOUT,_i : Weeks forced out through week i-1.

Therefore, the sampled unit state is conditional upon the number of weeks in which 

that unit has been forced out. When the observed number of weeks that the unit has 

been unavailable reaches the expected number o f weeks that the unit is unavailable, the 

conditional outage rate will be modified to be zero or negative. At this point, the states 

of the following iterations will be determined to be available. When the observed
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number of weeks that the unit has been available reaches the expected number o f 

weeks the unit is available, the conditional outage rate will all be modified to be one or 

greater than one. Then, the states o f the fisUowing iterations will be determined to be 

unavailable. Thus the numbers of unavailable and available weeks are both 

approximately bounded by their expected number o f weeks. By using this type o f 

sampling, the simulated number of weeks that the unit is unavailable and the expected 

number of unavailable weeks will be very close (i.e., the maximum different is one 

week). Afier the availability state of each unit is determined by this kind of conditional 

Monte Carlo sampling, the weekly deterministic chronological production cost 

simulation can be used.

In this subsection, we present an approximate theoretical analysis of the 

variance of the cost resulting fi'om the smart Monte Carlo sampling [25]. Since the 

weekly availability states of a generating unit are dependent on the sampled 

availabilities o f the previous week, the weekly production costs are not independent on 

each other. However, in order to demonstrate the effect on the variance of production 

cost using smart Monte Carlo sampling, if the adaptive fuel allocation is ignored ,we 

assume that the weekly production costs are independent, each with a mean ( /̂  ) and

variance (of)- The mean ( /^ )  and variance (cr^) o f annual production cost can be

52 52 a  a
estimated as Mr Mi and o f = ^  o;’ . Assuming —  = —, the coefBcient o f

1=1 1=1 M M

(jf \
variation of annual production cost is —  =

52

Mr ^  52m yf^M
, which is less

1=1
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than the coefficient of the variation of weekly cost, However, the weekly

samples of this conditional weekly sampling are not independent. This conditional 

sampling forces the number of weeks that unit is on forced outage to be very close to 

the expected number of weeks on forced outage. Hence, the variance of the number of 

weeks that unit is forced out is reduced. Consequently, this smart Monte Carlo 

sampling can be used to reduce the coefficient of variation of the estimated annual 

production cost.

The main advantage of this smart Monte Carlo sampling over ordinary Monte 

Carlo sampling is that smart Monte Carlo sampling can be used to simulate production 

cost with a small coefficient of variance with one annual simulation. Thus, the estimate 

of the expected production cost results fi'om this conditional sampling scheme is more 

accurate. In other words, as compared to ordinary Monte Carlo sampling, the 

estimated variance of production cost induced by unit outage uncertainty is reduced by 

using a smart sampling scheme. It will be misleading to estimate the variance of the 

production cost using the smart Monte Carlo sampling. This is the reason that ordinary 

Monte Carlo sampling must be used when the estimation o f the variance o f production 

cost is important for a decision maker.
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CHAPTER III 

ANNUAL LOAD VARIATION

The demand of an electric utility varies with time. Although the overall pattern 

is predictable, there is a large random component that makes the hourly prediction of 

the electrical load difficult. While an accurate hourly load representation is important, 

the amount o f  computer time is almost directly proportional to the number o f  distinct 

hourly loads being evaluated. Therefore, there is an incentive to compromise load 

representation from 8760 hourly loads per year to something less. For this reason, 

most long-term planning studies tend to use a load duration curve, which gives the 

description o f the load level o f a system using a probability distribution. However, the 

load presentation in Scheduler is based on a chronological load profile which will 

maintain the chronology of time. Thus, our approach to modeling annual load variation 

is to generate several annual chronological profiles to be used in estimating variance of 

cost using a chronological production cost simulator.

In order to model annual load variation, it is essential to understand the 

behavior of electrical load in some detail. In this chapter, the annual variation of the 

electrical load will be analyzed by using historical load data of the previous five 

contiguous years of the stimulated system. The main task of this chapter is to present a 

methodology which can be used to estimate the means and variances of energy and 

peak load in both annual and weekly time frames. Also, the correlation between energy 

and peak load, which is critical for the load variation modeling, is estimated. Two
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sampling techniques for future load variation modeling are implemented based on the 

characteristics of the system load. With these two sampling techniques, a 

chronological load projecting algorithm is developed to transform a pair of sampled 

energy and peak load into a chronological load profile. This chronological load 

projecting algorithm, in conjunction with different schemes for sampling energy and 

peak load, can be used to create chronological load profiles in the stochastic and 

probabilistic approaches of load variation modeling.

III.l Analyzing Historical Load Data

Electric load varies fi'om day to day, week to week, month to month, and year 

to year. Among those future uncertainties that afifect the electrical demand, the 

weather conditions and economical growth are two significant factors considered in 

the modeling of annual load variation. In general, weather forecasts with long lead 

times are usually either unavailable or unreliable, so we model the load variation 

without using weather forecasts in an annual horizon. However, the annual economical 

growth o f the service area is usually reflected on the historical load data. Thus, to 

minimize the influence of economical growth in estimating load variation, the historical 

load data are adjusted to account for the different growths of different years. The 

variations in energy and peak load are measured to represent the variation in load.

Even though we model the annual load variation without the information of 

weather forecasts, the electrical load is still affected by the weather conditions, 

especially in summer and winter seasons. During the summer, load increases with high 

temperature. Similarly, during the winter, load increases with low temperature.
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Therefore, the influence of weather should be minimized in the process o f adjusting 

historical load data. In practice, the monthly energy o f April usually is used to estimate 

the economical growth with the least amount of weather influence. However, it is 

possible that abnormal weather may occur in April. An estimate of the non-weather 

sensitive energy of a year, which is affected the least by the weather, will be a better 

choice to estimate the annual economical growth. In this dissertation, the average 

weekly energy of the seven lowest weekly energies o f a year is used to represent the 

non-weather sensitive energy of that year. Hence, the annual load growths o f the 

previous years are estimated using these non-weather sensitive energies as the measure 

of annual load growth. For example, if the average of the seven lowest weekly 

energies for year I and base year are Monengi and Noneng^ respectively. The load

growth from year I to base year is estimated to be growth^ = ’

while the adjusted loads of year 1 are the hourly loads of year I multiplied by growth^. 

Consequently, the historical load data can be adjusted based on the estimated annual 

load growths to account for the load growths of the previous years. After the annual 

load growths are adjusted, five adjusted historical load profiles correspondent to the 

previous five years are used to estimate the means and variances of energy and peak 

load statistically.

Assuming that energy and peak load are jointly normally distributed, the annual 

load variation is described by the variations of the total energy and the peak load and 

correlation between these two variables. A medium size utility, system A, is used in 

this chapter to illustrate the estimation of annual load variation. Consider year 5 as the
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base year, we adjust the hourly loads between year 1 and year 4 to base year using the 

estimated load growths as described previously. If the growths of both annual energy 

and peak load from the base (fifth) year to the future (sixth) year are not available 

from the system, they can be estimated according to a linear trend o f the estimated 

load growths of the previous five years. In this case, the growths of the annual energy 

and the peak load of system A are estnnated to be 0.0314 and 0.0228 respectively. 

Then, the adjusted annual energies and peak loads of these five years are projected to 

the future year using the estimated growths, and are listed in Table 3-1. The means and 

standard deviations of annual energies and peak loads are also estimated and provided 

in Table 3-1.

Table 3-1 Adjusted Future Annual Energy and Peak Load

Annual Energr 
(MWH)

Peak Load 
(MW)

Year 1 23,351,532 5,065
Year 2 22,835,826 4,821
Year 3 23,332,126 5,049
Year 4 23,234,975 4,845
Year 5 22,322,742 4,617
Mean

STDEV
23,015,440

439,754
4,880

185

To model load variation in weekly detaU, the means and standard deviations of weekly 

energy and peak load are estimated as well. According to the five sets of adjusted 

hourly load data, the mean and standard deviation of weekly energies and peak load 

are estimated statistically. The smoothed results of the estimated means of weekly 

energies and peak loads with a one standard deviation envelope are shown in Figure 3- 

1 and Figure 3-2 respectively.
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Comparing Figure 3-1 and Figure 3-2, there is a consistent weekly pattern in 

both graphs. Obviously, the expected value of the weekly peak load tracks the 

expected value of weekly energy quite well. It is on double that there is a correlation 

between weekly energy and peak load observed from these two graphs.

To simulate the load variation o f  the future year, the growths of the weekly 

energies and peak loads from base (fifth) year to future (sixth) year are estimated and 

smoothed by a moving average routine with a five-week window. The growths of 

weekly energies and peak loads with the weekly smoothed values are shown in Figure 

3-3 and Figure 3-4 respectively. Once again, both the weekly energy growth and 

weekly peak load growth follow the same pattern. This indicates that there is 

correlation between weekly energy and peak load.

Estimated Weekly Energy Growth
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Figure 3-3
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We observed that there are two major dips that occurs on week 6 and week 33 

in the smoothed values of weekly energy growth in Figure 3-3. These negative weekly 

growths occur when there is a decreasing trend in the adjusted weekly energies of 

previous five years. The same situation is also found in the smoothed values of weekly 

peak load growth during the same weeks in Figure 3-4. Again, this implies the 

correlation between weekly energy and peak load is significant.

To examine how significant the correlation between weekly energy and peak 

load is, the correlation coefficients between energy and peak load of the same week 

are estimated. In Figure 3-5, the estimated weekly correlation coefficients between 

energy and peak load are smoothed by a moving average routine and plotted.
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Figure 3-5 verifies that the weekly correlation coefiGcients between energy and peak 

load are significant during most o f the weeks. Therefore, it is necessary to estimate the 

weekly correlation coefficients between energy and peak load when modeling the 

dependency between weekly energy and peak load.

In addition, we observed that the estimated annual energy standard deviation 

fi'om the previous five years o f load data is 439,754 MWH. However, the square root 

of the summation of the weekly energy variances is estimated to be 259,018 MWH 

which only contributes about half of the annual energy standard deviation. This 

indicates that the energy correlation between weeks also contributes a significant part 

of the annual energy variance. This analysis of the historical load data provides strong 

evidence to support modeling the correlation between the weekly energies. It also
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provides an estimation o f the variance o f annual energy which we expect the weekly 

sampling scheme to capture for the simulated system. Thus, the weekly energy 

correlation coefficients with one week lag are also estimated and shown in Figure 3-6.
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Figure 3-6

However, the variation o f the weekly peak loads is less stable than that of 

weekly energy, because the weekly peak load is more likely to be afifected by 

temperature. In the sampling of weekly peak loads, the weekly peak load correlation 

coefficients with one week lag are not considered.

III.2 Normal Sampling And Stratified Sampling

To evaluate the impact o f the uncertainty of a random variable, which has 

infinite possible outcome values, is to carry out the “what-if ’ studies. Since sampling is
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the basis to perform hundreds or thousands of “what-if’ scenarios, sampling 

techniques are essential tools for us to simulate the uncertainty of a random variable. 

Sampling is the process of drawing values randomly from a probability distribution 

associated with that random variable. The selection of a value from a probability 

distribution is called sampling and each sample represents a possible outcome. When 

enough samples have been drawn, the sampled values of a probability distribution 

become distributed in a manner which approximates the known distribution. Sampling 

is usually used in a simulation to generate possible values from probability distribution 

functions which are used to represent the characteristics of the random variables. 

Thus, sampling can be used to provide information about the population from which 

the sample has been selected. As a result, the behavior of a random variable can be 

simulated.

Since the range of outcomes is often associated with levels of probability of 

future occurrence, most people are interested in predicting the expected value of 

outcome variable and are also concerned about those situations which turn out to be 

not what they expected. In general case, we might want the analysis to be extended to 

include several special cases, such as "worst case” and "best case”, in addition to the 

expected value. In this dissertation, a normal sampling technique is used to simulate 

the possible future events of a random variable which has a normal distribution. 

Stratified sampling is used to sample random variables which have pre-defined 

subgroups. This stratified sampling scheme provides a way to evaluate the extreme 

cases, such as; worst case and best case and to reduced the sample size with reduced 

sampling error.
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ni.2 .1  Normal Sampling

Sampling of random variables has a variety of applications in statistical 

simulations. Specifically, we might want to use samples from a particular distribution 

to represent a random variable rather than the entire population, when the population 

is too large to process. For example, we might want to use normal distribution to 

characterize the population of weekly energies or weekly peak loads. Instead of using 

the entire population in simulations, normal samples are used to represent the possible 

outcomes o f the normal random variable.

A normal random number generator is used to generate independent samples 

from a normal distribution. Normal sampling is a tool to draw independent samples 

from a normal distribution to represent the population of a random variable. Normal 

sampling can be accomplished for each variable by transforming a uniformly 

distributed random number generator into a random normal distribution. An example 

of the formulae to generate normally distributed random numbers is listed in Equation 

(3-4) [27].

A', = 7~21n(M,) *sin2;r*i/, (3-4)

where

«, and //, are two random numbers from a standard uniform distribution.

X, is a random number which has a standard normal distribution #(0,1).
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[11.2.2 Stratified Sampling

Simple random sampling does not take into consideration any information that 

is known about the elements of a population. Under this sampling scheme, it is 

possible that a particular subgroup o f the population would not be represented by a 

small number of samples. Therefore, stratified sampling [28, 29, 30] is used to avoid 

this kind of situation. Stratified sampling is a technique of sampling that draws 

independent samples fiom a set of mutually exclusive subgroups called strata. In 

stratified sampling, the whole population is divided into strata, and a simple random 

sampling can be used to draw samples from each stratum. This method ensures that 

each stratum is represented in the overall samples.

To use the stratified sampling, it requires not only to divide a distribution into a 

finite number of strata, but also to know the probability o f each stratum. Therefore, to 

apply stratified sampling in drawing samples from the distribution of a random 

variable, it is essential that the subgroups o f the whole population are pre-defined; this 

also implies that the sample size of the strata is known. To benefit most from stratified 

sampling, stratified sampling should be used when the population of a random variable 

to be sampled is similar within each stratum; however, relatively dififerent among the 

strata. Thus, a more precise estimate o f a stratum mean can be obtained from a small 

amount of samples within each stratum. These estimates can then be combined to form 

a more precise estimate for the entire population.

In our application, the implementation of stratified sampling is used to estimate 

the mean ( / / )  and variance (cr') o f the overall population with finite samples. 

Suppose there are m different subgroups within the entire population and each
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subgroup has mean {ft,)  and variance (cr"). We further define the (O, as the fi’action 

of the entire population in subgroup i, then ^  = I . In stratified sampling, we have
1=1

the flexibility to select a sample rate for each subgroup and to obtain the estimations of 

the overall population by weighting the estimations o f each subgroup. In the following 

sub-section, the estimations of the population mean and variance is illustrated [29].

We now consider the discrete case for simplicity, although the argument can 

also be made for the continuous case. Suppose there are only a total number of N  

possible outcome values of x in the whole population, and n. values of x  are within 

subgroup i. In addition, these subgroups are not overlapping, and together they

m n  /
comprise the whole population. Thus, we have N  = and y ^  = eo,. To

f=I

distinguish the difference between the true value and the estimated value of a variable, 

the estimated value is indicated by the hat symbol (^). Therefore, the estimation of 

population mean can be derived by the follow;

1 iV I m

I BI 4 y \ ”

t=i t=i

Note that the estimated means of all subgroups, ^ , are weighted by the fi’action, to, , 

to estimate the population mean. Also, the estimation o f population variance is derived

by:
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Y

(3-7)
t=I

where p{x^ ) is the probability of the value x .. The probability also can be expressed

in terms o f conditional probabilities:

Pix, ) = X  \J)PiJ) = Z  U)® ;
y = l  ]= \

(3-8)

where p {x \j)  is the conditional probability o f the value x., given that r, belongs to 

subgroup (or stratum) j. p(J) is the probability that jc, belongs to subgroup j, so

.V y

p{J) is estimated by cô . Thus, we have ^ /7(x ,|y ) = land ^ x , p { x \ j )  = for
1=1 1=1

each subgroup j. Hence, it follows from Equation (3-8) that Equation (3-7) can be 

expressed as:

à-  = Z (^ .  -PŸPix^)
1=1

= Z (jf , - PŸ'^P ix,\j)cûj 
1=1 7=1

1=1 7=1

m
= £ û>7

7='
m

= £ û>7
7=1
m

= Z® 77=1
m

7 = 1

Z (^ , - a ) ' p (jti|7)

Z [ ( ^ . i M j  - m)Ÿ Pi^i|y):=l
■ Y

Z (^ . - P j ) ' p (^ i |7)+ ^iMj - « ) Z (̂ 1 - /̂ 7)p( î|y )Hmj - «)■ Z p(^ ,|7 )
, r = I  j = I  1=1

-  Pj^ + -^)(L^iP(^i\j)-PjJiPi^i\j)}+iPj -PŸ.1=1 1=1 ( = I
' Y

Z (̂ 1 - P j ) ' P i ^ i |7) + - u ) { p j  - P j ]  + {Pj  - P Ÿ

.V
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y=i
Z  -  Mi ŸPix ,  \j) + -  / i f
1=1

= Z (3-9)
y=i

= Z  + Z  (i“y -
y=I y = l

As a result, the estimation o f population variance can be separated into two parts. The 

first summand is the weighted average of the variances which is contributed by each 

subgroup. The second summand is the weighted average of the variance which is 

caused by the errors between the population mean and the mean of each subgroup. 

The aforementioned formulations suggest that the mean and variance of the whole 

population can be estimated based on a weighted average of those estimations of each 

subgroup.

How to divide the whole population into subgroups is dependent on different 

applications. Reference [31] states that a better choice of strata is to define the strata 

such that the variation of samples in each stratum o f a random variable is small. In 

order to provide the expected cost at high load and low load scenarios in addition to 

mean load scenario, three subgroups are defined in the probabilistic approach. Based 

on a standard normal distribution and its symmetrical properties, a solution to allocate 

three subgroups can be found such that the conditional variances of each stratum are 

equal. An approximate solution is found in Reference [32] using a bisection method. 

The probabilities for these subgroups under a standard normal distribution are 

approximately {02,0.6,02}.
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III.3 Chronological Load Projecting Algorithm

To estimate the cost variance induced by load variation using a chronological 

production cost simulator, it is necessary to reflect the load variation in the 

chronological load curves. To reflect the load uncertainty in the chronological load 

profiles, the annual (or weekly) energy and peak load are sampled according to their 

distributions in which the uncertainty is included. Then, the annual (weekly) load 

profiles are generated using a load projecting algorithm based on the sampled annual 

(weekly) energy and peak load. Consequently, the load variation represented by the 

estimated variations of energy and peak load is embedded in the resulting load profiles.

As we observed, the system load follows a quite consistent pattern from day to 

day, week to week and year to year. Although, the energy and peak load are sampled 

based on their distribution, the chronological patterns are also important to simulate 

the characteristics of an electrical power system. In this dissertation, an annual typical 

load profile is used to carry out the chronological patterns in the system load. A load 

projecting algorithm which converts this typical load curve to a new chronological 

load profile with the specified energy and peak load o f a specified period (week or 

year) has been developed. Thus, the generated load scenarios will inherit the 

characteristic of the chronological pattern of the system load and the variation in 

system load.

We first generate a typical load curve by averaging the adjusted hourly loads of 

the previous five years to obtain an annual pattern of the system load profile. To 

preserve the continuity of chronological load at the first hour o f March 1, 24 hourly 

load values are deleted at the end of the year, if a leap-year historical load profile is
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used in generating a typical load profile o f a non-leap-year. On the other hand, 24 

hourly loads are added at the end of the year, if a historical load profile of a non-leap 

year is used in generating a typical load profile of a leap year. Thus, the effect of leap 

year on creating a typical load profile is taken into account.

To average the adjusted hourly loads of the same weekday type is extremely 

important to maintain the weekly pattern in the process of creating a typical hourly 

load profile. Since the weekday type of January I of each year may not be the same, 

the weekday type of each day also should be considered when averaging the adjusted 

loads. Therefore, the loads of the adjusted load profiles are shifted to the appropriate 

weekday type dependent on the year of the historical load data and the year we want 

to study before averaging. Using these steps, a typical load profile with the historical 

chronological pattern can be generated.

In this load projecting algorithm, we presume there is a linear relation between 

the new load, (/), and typical load, (/), at hour i. The linear equation used to 

transform the typical load profile to a new load curve is defined as follow;

L„(i)=a^b*L^{ i)  (3-10)

By providing the sampled energy and peak load of the defined horizon and the energy 

and peak load of the typical load profile of the same horizon, the coefBcients, a and b, 

can be calculated using the following two equations

Peak^ =a-\-b* Peak^ (3-11)

Energy^ = T* a+  b* Energy^ (3-12)
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where

T Number of hours in the defined period.

Peak^, Peak^ Typical and new peak loads in the defined period,

respectively.

Energy^, Energy^ Typical and new energies in the defined period,

respectively.

Consequently, a new hourly load profile, with the provided total energy and peak load, 

can be constructed using the calculated coefficients, a and b.
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CHAPTER IV 

TWO APPROACHES OF ESTIMATING COST VARIANCES

IV. I Stochastic Approach

Load forecasting is a fundamental function in electric power system operation 

and planning. Many techniques and approaches on short-term load forecasting have 

been proposed in the last two decades [1-9]. However, to forecast an electrical load 

profile accurately for the long-term, such as an annual horizon, is almost impractical, 

because the most important forecast indicator, temperature forecast, is not reliable for 

such lengths of lead time. Another way to deal with the long-term load forecast is to 

forecast the weekly energy and peak load and reflect these forecast values into a 

weekly hourly load profile. Using this approach, we can either to forecast the expected 

values or to sample the values based on their distributions. Thus, incorporating the 

uncertainty in a chronological load profile is possible. In the stochastic approach, we 

model future loads by sampling weekly energies and weekly peak, loads according to 

their distributions.

IV. 1.1 Weekly Conditional Sampling

Suppose that both weekly energy and peak load are normally distributed. To 

sample the weekly energies and peak loads, the means and variances of the weekly 

energies and peak loads are required to describe their distributions. Also, the 

correlation coefficients between weekly energies with one week lag time and the
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weekly correlation coefficients between energy and peak load of each week are 

estimated and implemented in this conditional sampling scheme. Since 168 load values 

are included in weekly energy to provide an averaging and smoothing effect, the 

weekly energy data have much less variability than that o f the weekly peak load. We 

will sample the weekly energy first, the weekly peak load will then be sampled 

conditionally on the sampled weekly energy during the same week. As we have 

observed, the correlation between weekly energies with one week lag is more 

significant than the correlation between weekly peak loads with one week lag. Even 

after adjusting the influences of weather, the weekly peak load series still has much 

variability. This is the reason that the correlation between weekly peak loads is not 

modeled in the weekly peak load modeling.

As described previously, the loads between year I and year 5 (i.e., the previous 

five years) were adjusted to a future (sixth) year based on the estimated weekly energy 

growths and peak load growths to account for the differences in the load growth. 

Thus, we have the adjusted future loads, which produce five future weekly energies 

and five future weekly peak loads for each week. The means and variances o f the 

weekly energy and peak load are estimated using standard statistical procedures. Also, 

the correlation coefficient {pe,_̂s ,) between weekly energies of week i and week i-1

and the weekly correlation coefficient ) between energy and peak load o f week i

are estimated as follows;
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where

 ̂g; The estimated covariance between weekly energies of week i-1 and

week i.

The estimated weekly covariance between energy and peak load of 

week i.

cr|.. The estimated variances of energy and peak load of week i, respectively.

All the estimated values described above are also smoothed by applying a moving 

average routine.

The historical load data reveal that there is a significant weekly energy 

correlation that contributes to the annual energy variance, and the variation of weekly 

energy is more stable than that of the weekly peak load. Using a normal sampling 

procedure, the weekly energies and peak loads are sampled to represent the future 

loads in this stochastic load variation modeling. Based on the Gauss-Mark property of 

the weekly energy, the energy correlation with one week lag is modeled in the weekly 

energy sampling [33]. This conditional sampling scheme for weekly energy is 

presented as follows [33]:

Week I:

(4-3)

Week 2-52
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-  ( ^ ' - 1  )
(4-4)

+<̂ E< (1 -  %.,.E, )'^ ^2

where

E ., The sampled energy and peak load of week I, respectively.

Ue,^Mp, The estimated weekly mean energy and mean peak load o f week i,

respectively.

Nj The independent samples o f standard normal distribution.

The energy for week one is sampled based on its mean and variance only. For 

week 2 to week 52, the weekly energy correlation with the previous week is also 

modeled. The first and second summand in Equation (4-4) represent the conditional 

(upon E,_i ) mean, while the third summand is the random conditional variation fi*om 

the conditional mean.

The weekly peak load is also modeled as a normal distribution with the 

estimated mean and variance. In addition, if the weekly correlation coefficient between 

energy and peak load is significant (i.e., greater than 0.5), the correlation between 

weekly energy and peak load is included in the weekly peak load sampling. The weekly 

peak load is sampled as follows; 

iT Pe,.p, ^0-5
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else

(4-6)

The weekly energies and peak loads o f the entire year are sampled using the 

proposed conditional sampling scheme. Then, given the sampled weekly energies and 

peak loads, an associated weekly chronological load curve is generated using the linear 

load projecting algorithm. Notice that weekly energies and peak loads are randomly 

sampled based on their normal distributions, which may cause large variability in the 

sampled values from week to week. As a result, the change from a week with a high 

sample value to a week with a low sample value will create a huge discontinuities 

during the transition between weeks, which is not likely to happen in real situations. 

To use the atmual chronological load curve composed of these weekly curves, the 

discontinuities that occur at the beginning of each week are adjusted by applying a 

moving average routine to the loads of the first three hours of each week. One 

example of the sampled energies and peak loads is plotted in Figure 4-1, included are 

the expected weekly energies and peak loads for the purpose of comparison.
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IV. 1.2 Cost Variances Estimation

Using this stochastic approach to sample the load profiles, the variance of the 

annual production cost caused by load variation can be simulated based on the 

estimated load variation of the simulated system. The generated load profiles including 

the expected annual load curve are simulated using a chronological production cost 

simulator. The number of simulations in which the estimated variance of annual cost 

will converge is usually dependent on the simulated system. Instead of specifying a 

fixed number of simulations, the simulations are continued until the estimate of the 

variance of cost becomes stable. The variance o f cost will be re-estimated as an 

indication of convergence when an additional annual simulation is completed. If the



change o f the variance o f cost is within the specified tolerance criteria, say 5%, for five 

consecutive simulations, then no more simulation is required. The mean and variance 

of production cost will be estimated at this point.

Since the annual load variation is modeled by a weekly sampling scheme, 

several load profiles should be sampled and simulated until the sampled annual load 

variation is comparable to the system annual load variation. The convergence criterion, 

which requires the change of estimated cost variance within 5% error bounds for five 

consecutive runs, does not guarantee that the simulated annual load variation is 

comparable with the system annual load variation. Thus, we need to impose an 

additional criterion on annual energy to ensure the agreement of annual load variation 

, because the annual energy has a dominant effect on the production cost. The 

simulations should be continued until the mean and standard deviation of the sampled 

annual energy are both within 5% error bounds of the mean and standard deviation of 

system annual energy as well.

To estimate the variance of cost induced by unit availability uncertainty using a 

chronological production cost simulator, an expected annual load profile is used. In 

the simulations, different random number seeds are selected to generate different unit 

outage patterns. In this case, the estimated mean and standard deviation of annual 

production cost are caused by the only uncertain factor, unit outage. On the other 

hand, the variance of cost induced by load variation uncertainty is simulated using 

different sampled load profiles with a fixed random number seed. In this way, the unit 

outage patterns remain the same in each simulation; the load variation is the only 

uncertain factor that impacts the production cost. In this case, we assume the effects
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of different fixed random number seed is not significant by presuming the cost variance 

induced by unit outage uncertainty is much smaller than that caused by load variation 

uncertainty.

In this dissertation, the uncertainties in load variation and unit outage are the 

only two uncertain factors that influence the variance of production cost. Thus, the 

total cost variance, which is caused by both load variation and unit outage, can be 

roughly approximated based on the estimated cost variances caused by each individual 

uncertain factor. The expected costs estimated in the previous two study cases are 

close, so we can estimate the total cost variance to be the summation of the two cost 

variances induced by each individual uncertain factor. However, to estimate the cost 

variance induced by both uncertain factors more accurately, a set of simulations was 

made by varying both the random number seed and sampled load curve. Then, the 

mean and variance of cost induced by both uncertain factors can be obtained.

IV.2 Probabilistic Approach

rv.2.1 Stratified Load Scenarios Sampling

The idea o f the probabilistic approach is to simulate the production cost based 

on the loads of the three pre-defined load scenarios and to estimate the variance of 

cost according to the probability of each load scenario. Usually, enough samples are 

required to be sampled fi'om each subgroup to describe the distribution o f the entire 

population when using a simple random sampling. Thus, a large number of total 

samples will result in long simulation time. However, if intelligently used, a 

stratification sampling always can result in a smaller variance for the estimated mean
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and variance than that is given by a comparable simple random sampling. This 

encourages us to implement stratified sampling in the load variation modeling, and 

thus reduce the simulation time. In the probabilistic approach, the annual energies and 

peak loads o f the pre-defined load scenarios are sampled using a stratified sampling 

scheme.

Implied by the Central Limit Theorem is that annual energy and peak load, 

which are determined by a large number of independent causes, tend to have a normal 

probability distribution function. In addition, the dependency of these two random 

variables suggests that a bivariate normal distribution is an ideal distribution to model 

the two normal random variables with correlation. A Joint normal distribution is used 

to describe the annual energy and peak load of the high, mean, and low load scenarios; 

this is accomplished by partitioning the joint normal distribution into three strata based 

on stratified sampling techniques [28, 29, 30]. The bivariate joint normal density 

function describes a bell-shape surface above the (%,, jc, ) plane. Given a joint normal 

distribution N  (0,0; a ,̂ ) , a contour plot of equal density of the bivariate normal

distribution with the three pre-defined strata is shown in Figure 4-2. They are high 

load (Al), mean load (A2), and low load (A3) scenarios. The major axis of the ellipse

make an angle o f # =  ^ tan  ' 2̂/3; /(cr,‘ - <r,")] with respect to the x, axis. Note

that this angle is 45% if cr, = tr, and A,2^0, regardless of the numerical value of a.z 

Figure 4-2 also shows that the ellipse is symmetric about cr,x, -  cr,x, = c ,the major 

axis.
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Figure 4-2 Stratified Strata of A Bivariate Normal Distribution

When sampling a random variable based on its distribution, a stratified sampling 

technique is introduced to reduce the sample size o f each stratum without diminishing 

the precision of the estimate. The high load scenario is pre-defined such that the annual 

energy and peak load within this stratum are both high. Using a small number of 

samples to represent a stratum, the points on the edges of area A l, such as P and O, 

will not be appropriate to stand for that stratum. A typical sample which is selected 

fi'om those points on the major axis within a stratum is a good candidate to represent 

the population of that stratum. To simplify the analysis, a special case of interest is the 

bivariate normal distribution with mean 0 and variances I and a positive correlation 

coefficient p, , .  Given a joint normal distribution X  ~ W(0,0;l,I,p\ , )  described as in

Equation (4-7), the major axis of the ellipse is x, = x , .
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The goal o f our formulation is to find the expected value with respect to x, 

and x^, conditional on the major axis. This can be accomplished by formulating the 

conditional density j., where we express the statistics o f Z in terms of the function 

z = .r, -  r , . By defining z = x, -  x, , the system x, = x, and z = x, -  x, has a single

solution: x, =x , ,  x, = x , - z .  Since the jacobian, y (x ,,x ,)  = 

transformation equals -1, the transformation [34] yields:

I - --f\

I 0 
I - 1

, of the

Pl.2

1 ' -ft.: -  2( A.: I

~  Pi.z

I ^/,Tk]t(.-A.z)xr-(.-p..)x..->^ii^, (4-8)

Pl.2
I  1 .

______  ̂ * ’4(1-A.z)

Hence, the density function o f z can be determined by integrating (4-8) respect to x, 

firom — CO to CO as follows:
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IÀ-)  =

2 _ . (4_9)

^ ï —
-m2t7C1 2

= e

Define ;/ = J -—- — (x, -  and du = -—-— dt, ; Equation (4-9) yields 
 ̂+ A.2 2 u i + A.z

I-------------  :---- f  I Îf_

2V̂ (i-A 2) iVïF
1

2 ^ ( 1  -  , )
V '@â .

Therefore, the conditional density function,/^,., can be derived as follows:

(z)
-(X,---)- -

g 0+A.:) *g-*0-A.2)
iTt^X-pÇ,

 :3-------- (4-11)
1

2V^(1-A.2)
- ( x , - r ) -

 ______  Ô M.2)

g - » ( I - P l .2)

V ^ O + a I )

Thus, the bivariate normal distribution is transformed into a scalar normal distribution 

based on the given condition. So far, we have obtained a conditional density function 

fi’om which the samples of each scenario can be sampled. Thus, we assign 20% of the
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distribution /^  |_q to the high load scenario, such that / /,,|_ o ^ i =02 . This particular 

a  can be look up from a standard normal distribution table after applying a scaling

transformation on x , . Thus, if we define t = I— - — x, and dt -  I— -— ok, , the
1 + P\.Z

resulting transformation is described as follows;

J dx.

V ^Ô + Â I) V 2
I —

e - dt = 02

(4-12)

Using one of the tables of the standard normal distribution, we found that

a
l + Pl.2

= 0.85. Thus nr = 0 . 8 5 ^ 1 ^

The conditional mean respect to x, can be calculated according to Equation (4-13).

 ̂ = o]= ^ î0-2 '

= 2 5 *

= 25 ,

I + A 2

00

a
- a '

tr
,('+A.î)

(4- 13)

For the case /o,, = 0.9, the conditional mean can be calculated as follows:
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£ [x ,|x , > a ,  X, -  =  o ] =  2 5 ,

= IJ5

f ïT ô J

,C '+ P ij)

0.85^ ( 1+0 9 )
2( 1+0 9 )

;r
(4-14)

Now, we use the estimated conditional expected values to describe three 

scenarios. 20% of the area under the conditional density, , is dedicated to the

high load scenario, 60% to the mean load scenario and 20% to the low load scenario. 

This allocation of the conditional distribution is shown by Figure 4-3.
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Figure 4-3
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Then, the conditional (upon = 0 2 )  mean with respect to x̂  is used to

describe the annual energy of the high load scenario. When = 0 2  and
a

yC>, , =0.9 are defined, a  is found to be 0.83. Therefore, the conditional mean with

respect to x, of the high load scenario can be calculated as follows;

£[x,|x, > 0.83.x, — .X., = o] = —  ? —j = = e  ' ®d!x, = 1.35 (4-16)
I ' ' '  J 0.2 V L ^

Similarly, the conditional means o f the mean load and low load scenarios are estimated 

to be 0 and -1.35 respectively. Since the joint normal density function is symmetric 

about X, =  X , ,  the conditional mean with respect to x, is equal to the conditional 

mean with respect to x , . Therefore, the conditional means of the annual peak load 

(x ,)  o f the three scenarios are also calculated to be 1.35, 0 and -1.35 respectively. 

Consequently, these conditional means of each stratum can be used to describe how 

far away the annual energy and peak load should deviate from their means of the 

annual energy and peak load. As a result, the annual energy and peak load of the high 

load scenario are sampled as follows:

+ (4-17)

fi^ + \35*âp  (4-18)

where

The estimated means of the adjusted future annual energy and annual 

peak.
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cTg., âp The estimated standard deviations o f  the adjusted future annual energy

and annual peak.

Similarly, the annual energies and peak loads of the “mean load” and “low load” cases 

are

(4-19)

Mp (4-20)

(4-21)

(4-22)

Daily Curves of Three Load Scenarios
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Figure 4-4

According to a typical load profile and the sampled annual energies and peak 

loads, three load scenarios (high load, mean load, and low load) are created by using
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the load projecting algorithm described in Section m .3 and are used in a chronological 

production cost simulator. A  set o f winter daily load curves of these three scenarios is 

illustrated in Figure 4-4.

IV.2.2 Cost Variances Estimation

We assume that fifteen annual simulations, five runs for each load scenario, will 

be required to estimate the cost variation due to uncertainty in unit outages and load. 

In each load scenario, the variance is induced by different random forced outage 

patterns. The population variance due to unit outage uncertainty is the weighted 

average of the individual variances of each stratum. Thus, the variance of cost due to 

the unit random forced outages can be estimated as follows:

i ( A  -  Ï ) -
â : = 0 2 * ^ -------------- + 0 .6 * ^ ---------------+ 0 2 * - ^ -------------  (4-23)

w — I n — \ n — \

where

n The sample size. (n=5 in this case)

, A/,, Z. The costs of the high load, mean load, and low load for run i 

respectively.

H ,M ,L  The expected costs of the high load, mean load, and low load 

respectively.

In each stratum, compared to cost variation due to load uncertainty, we 

assume that the cost variation caused by the uncertainty in unit outage is small. That is
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the estimated data vary Uttie within a stratum. The variance o f cost due to load 

uncertainty is evaluated according to the same fifteen simulated production costs 

previously obtained. The population mean of the production cost is first calculated as 

follows:

// = 0 .2 * ^  + 0 . 6 * M + 0 2 * r  (4-24)

We assume the unit uncertainty is averaged out in calculating the expected cost o f the 

three load scenarios. The expected cost o f each load scenario varied with different 

load profile. Thus, the variance of cost caused by load variation can be estimated by 

the variance of the estimated means o f all the scenarios within the whole population. 

This is formulated as the following equation:

a;- = 02 *( / i -  H r  . 0 .6*(/} -M r . 0 2 * (Â-  L r  (4-25)

By implementing stratified sampling, the estimation of population variance 

i^Tocai) can be estimated based on Equation (3-9), which is the sum of the weighted 

average o f the variance of each stratum (i.e. <t„‘ ) and the variance o f the means o f the 

three pre-defined strata (i.e. â f  ).

(4-26)
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CHAPTER V 

PRODUCTION COST VARIANCES AND COMPARISIONS

The efifects of load variation on annual production cost are measured in terms 

of the variance of cost. In this chapter, both the stochastic and the probabilistic 

approaches are applied using the chronological production cost simulator. Scheduler, 

to estimate the variance of annual production cost of a medium size utility. System A 

is used, the capacity of which is roughly 6,000 MW; the system spinning reserve is set 

to 500 MW. The generation unit data o f system A is summarized in Appendix A. In 

addition to the generation unit data of this system, historical load profiles of the latest 

five contiguous years are used as input for analyzing the variation in system load. The 

two uncertain factors, which are considered in this research, are the unit outage 

uncertainty and load variation uncertainty. First, the variance of the production cost 

caused by each individual factor is estimated. Then, the variance of the production cost 

induced by both uncertain factors is estimated. To conclude this chapter, the 

simulation results of both approaches are compared.

V.I Example of the Stochastic Approach

V.1.1 Cost Variance Due to Unit Outage Uncertainty

A common use for the production cost simulation is the estimation of the 

expected cost of the power system over an extended period of time. In the stochastic 

approach, an expected load profile is used to estimate the expected value and the
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variance of annual production cost caused by the uncertainty in unit outages alone. 

The effects of unit outage uncertainty are simulated by varying the random number 

seed in the Monte Carlo simulations. Since the required number of simulations is not 

specified in the stochastic approach, the simulations are continued until the estimate of 

the variance o f cost converges in order to obtain a reasonable estimation. That means 

the variance o f cost is obtained when the change of the estimated variance of cost is 

within a 5% tolerance criterion for five consecutive simulations. The simulated results, 

based on the expected load profile with different random number seeds, are 

summarized in Table 5-1.

Table 5-1 Stochastic Results Due To Unit Outage Uncertainty

Random
Seed

Annual Production 
Cost ($)

STDEV o f 
Cost

Cost Variance 
Change (%)

I 255210784 - -
2 253439648 1252382 -
3 254414432 887065 -99.33
4 252656976 1115962 36.82
5 251390912 1491271 44.00
6 252298304 1410591 -11.77
7 251303808 1480210 9.15
8 250352976 1651397 19.66
9 254189136 1629454 -2.72
10 251585216 1584051 -5.81
II 252350816 1506122 -10.62
12 251346912 1484768 -2.89
13 251882144 1433396 -7.30
14 249827152 1550672 14.55
15 254227472 1574675 3.03
16 251561328 1536766 -4.99
17 251420112 1505971 -4.13
18 251478816 1474432 -4.32
19 251609200 1440991 -4.69
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In this case, the estimation of the variance o f cost reaches a stable state at run #19. 

From Table 5-1, the mean and standard deviation o f the production cost induced by 

the unit outages uncertainty alone are estimated to be $252,239,271 and $1,440,991, 

respectively. The coefficient of variation o f cost is approximately 0.57 %.

V.1.2 Cost Variance Due to Load Variation Uncertainty

If a decision maker wants to know how significant the load variation 

uncertainty will impact the production cost, the load variation should be the uncertain 

factor that varies in the simulations. For the purposes of estimating the variance of 

cost caused by load variation alone, a fixed random number seed, “ 1”, is arbitrarily 

selected and different load profiles are used in the simulations o f Table 5-2. Thus, 

assuming that the estimated cost variance due to load variation uncertainty is more 

significant than that due to unit outage uncertainty, we can estimate the variance of 

cost induced by load variation based alone on an arbitrarily selected random number 

seed. However, the convergence criterion, which requires the change o f  estimated 

variance o f cost to be within 5% for five consecutive runs, does not guarantee that the 

simulated annual load variation is comparable with the system annual load variation. 

Therefore, an additional criterion was imposed on the annual energy to ensure the 

comparability of annual load variation, because the annual energy has a more dominant 

effect on the production cost than annual peak load does. The simulations should be 

continued until the mean and standard deviation o f the estimated annual energy of the 

simulated load profiles are both within the 5% error bounds of the system annual
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energy as well. The necessity of this additional criterion is also demonstrated using the 

results of the stochastic approach in Table 5-2.

Table 5-2 Stochastic Results Due To Load Variation Uncertainty

Load
Curve

ID

Annual
Energy
(MWH)

Cost
($)

Cost
Variance
Change

Coefficient of 
Variation of 

Cost
1 22705996 246194656 % %
2 23813079 264214160 - -
3 23101752 251892112 -91.4 3.62
4 22950312 251264544 -44.9 3.02
5 23000461 251976800 -32.1 2.63
6 23621917 260457104 0.3 2.62
7 22997089 251411984 -16.2 2.44
8 22814032 248996736 -6.8 2.63
9 23178872 254237536 -13.9 2.21
10 22926674 251213392 -10.6 2.II
11 23230723 255083136 -9.7 2.01
12 23173320 254464896 -9.5 1.92
13 22909122 249743728 -4.0 1.88
14 23888278 253981625 24.9 2.17
15 23101319 252666928 -7.3 2.09
16 22673799 246056224 6.5 2.17
17 22923532 249988032 -4 1 2.13
18 23297418 256056736 -4.5 2.08
19 23087990 251238480 -4.9 2.03
20 23056694 251437264 -4.9 1.98
21 24097126 249322736 -2.3 1.96
22 23742451 261582352 8.2 2.05
23 22901736 268460832 24.4 2.34
24 23348134 257339328 0.0 2.34
25 22492190 244708240 2.9 2.38
26 23862874 263074848 4.8 2.44
27 23135635 254813200 -4.0 2.39
28 22506714 248215968 -0.3 2.39

60



In Table 5-2, even though the change of cost variance satisfies the convergence 

criteria of cost variance at run # 21, the standard deviation of the estimated annual 

energy (Jg =321508) of the first 21 simulated load profiles is not within the 5% error 

bounds of the standard deviation ( 0-^=439,754) of the system annual energy. This 

small amount of annual energy variation results a small coefiBcient of variation of cost. 

The simulations should be continued until a set of comparable mean and standard 

deviation o f annual energy =23162117, =418800) are obtained at run #28.

Then, the mean and standard deviation considering load variation alone are statistically 

estimated according to the costs summarized in Table 5-2. They are $252,976,626 and 

$4,967,378 respectively. The estimated coefiBcient of variation of cost is 2.39%.

In the simulations of Table 5-2, the cost variance caused by load variation 

uncertainty is estimated based on an arbitrary selected random number seed. There is 

no doubt that different unit outage patterns will result in different estimations of the 

variance of production cost, even though the unit outage pattern of each simulation is 

unchanged in each case. We expect to estimate the variance of cost, which is induced 

by load variation alone, by using a fixed unit outage pattern. This estimation will make 

sense only when the estimated variance of cost due to load variation uncertainty is 

more significant than due to the unit outage uncertainty. The simulated results of Table 

5-1 and Table 5-2 confirm the previous assumption that cost variance due to load 

variation is more significant than that due to unit outage uncertainty. A related 

question is how significant the difiference is in estimating cost variance based on 

different pre-selected unit outage patterns. The following case study illustrates how

61



significant the estimated variance of cost induced by load variation alone will be 

affected by different pre-selected unit outage patterns.

In the following study, different random number seeds are selected for different 

cases. However, the same random number seed is used for all simulations in each case. 

Thus, consider the effects of load variation uncertainty alone, the difference in the 

estimated coefGcient o f variation of annual production cost cased by different random 

number seed can be observed. The estimated coefGcients of variation of cost are 

summarized in Table 5-3. Also, the more detailed simulation results of each case are 

listed in Appendix B.

Table 5-3 Estimated Cost Variance Due To Load Variation

Case Random 
Number Seed

Total Number o f 
Simulations

CoefGcient o f 
Variation o f Cost

1 I 28 2.39 %
2 2 30 2.43 %
3 3 30 2.46 %
4 6 30 2.45 %

The results of Table 5-3 show that the estimated coefGcients of variation of cost based 

on different unit outage patterns are fairly close. The effects o f different unit outage 

patterns on the estimation o f the variance of cost caused by load variation uncertainty 

are not significant.

V.1.3 Cost Variance Due to Both Uncertain Factors

We assume that the uncertainties in load and unit outages are the only two 

factors that influence the cost variance in the production cost simulation. We also
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notice that the estimated expected costs of the previous two sub-sections are fairly 

close, $252,239,271 vs. $252,976,626. Suppose that the variances o f cost induced by 

the two different factors are independent, the total variance of cost, which is caused by 

load variation and unit outages uncertainty, can be roughly approximated based on the 

estimated cost variances caused by each individual uncertain factor. Thus, the total 

variance of cost can be approximated to be the summation of the two estimated cost 

variances induced by each individual uncertain factor. That is $1,440,991" + 

$4,967,378= = $5,172,166%

However, to estimate the total variance of cost with better precision, another 

set of simulations can be made by varying both the random number seed (unit outage 

pattern) and the sampled load curve in the same study. Again, the convergence criteria 

for the change of the variance of cost and the mean and standard deviation o f annual 

energy are all set to 5%. The simulation results, which can be used to estimate the 

variance of cost induced by both uncertain factors at the same time, are summarized in 

Table 5-4. Once again, the estimated standard deviation of the annual energy of the 

first 21 simulations are not comparable with the estimated value using the historical 

load data. The estimated variance of cost becomes stable at run #31, and the simulated 

load variation is comparable with the system load variation as well. Hence, the mean 

and standard deviation of the cost are estimated to be $253,320,131 and $5,025,573 

respectively. The estimated cost variance, $5,025,573, of the simulation results is 

approximately equal to the approximated total variance o f cost, $5,172,166.
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Table 5-4 Stochastic Results Due To Both Uncertain Factors

Load
Curve

ID

Annual
Energy
(MWH)

Cost
($)

Cost
Variance
Change

CoefGcient of 
Variation of 

Cost
I 22705996 249847392 % %
2 23813079 266051808 - -

3 23101752 254785008 -90.3 3.23
4 22950312 252217152 -34.1 2.81
5 23000461 251674624 -22.9 2.54
6 23621917 260457104 -8.4 2.43
7 22997089 250521216 -6.6 2.36
8 22814032 248137520 2.3 2.40
9 23178872 255814000 -13.3 2.49
10 22926674 251039328 -8.3 2.16
II 23230723 255729184 -10.1 2.06
12 23173320 253697264 -9.9 1.97
13 22909122 249233648 -0.9 1.96
14 23888278 262954672 14.2 2.11
15 23101319 254512608 -7.7 2.03
16 22673799 245575684 10.5 2.15
17 22923532 249325088 -2.2 2.13
18 23297418 256277536 -4.8 2.08
19 23087990 251660928 -5.0 2.03
20 23056694 251300400 -4.4 1.99
21 24097126 248910592 -1.0 1.98
22 23742451 262770976 10.2 2.09
23 22901736 269097536 24.2 2.39
24 23348134 256395248 -4.1 2.35
25 22492190 244725984 6.2 2.42
26 23862874 265686976 8.7 2.53
27 23135635 256219296 -3.7 2.49
28 22506714 246093680 2.7 2.52
29 23524232 257944224 -2.5 2.49
30 23756729 259793920 -I .l 2.48
31 22952411 249120352 -0.9 2.47
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To complete this sub-section, the estimated variances o f annual cost using the 

stochastic approach are summarized in Table 5-5 for the purpose of comparison.

Table 5-5 Cost Variance and Coefficient of Variation o f Stochastic Approach

Variance Coefficient o f Variation
Due to Unit $ 1,440,99P 0.57 (%)
Due to Load $4,976,378- 2.39 (%)
Due to Both $5,172,166- 2.47 (%)

V.2 Exam ple o f  the Probabilistic Approach

Modeling the annual load variation in weekly detail requires a large number of 

chronological load profiles in order to simulate the annual load variation. 

Consequently, to estimate the variances of cost due to different uncertain factors 

requires long computational time. A simplified approach to deal with the annual load 

variation is to sample the energy and peak load in an annual horizon instead of a 

weekly horizon. Thus, by enlarging the time interval of the random variable, the 

stochastic process is simplified to a probabilistic model. The annual energy and peak 

load of each load scenario are sampled so that they can represent each load scenario 

with an associated probability.

The same generation system and historical load profiles are used in the 

probabilistic approach to illustrate the estimation of the variance of cost. Based on the 

adjusted annual load data of Table 3-1, the means and standard deviations of annual 

energy and peak load are =23,015,440 (MWH), =439,754 (MWH), /ip =4880 

(MW), and ô-p=185 (MW). Also, the correlation coefficient ( pe.p) between the annual
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energy and peak load is estimated to be 0.9 for system A. According to the stratified 

sampling scheme, the annual energy and peak load of each scenario are calculated 

according to Equation (4-17) ~ (4-21) described in Chapter IV.2.1.

= 23015440 + 1.35*439754 = 23,609,108 (MWH)

Hp =4880+  1.35*185 = 5,130 (MW)

Mg =23,015,440 (MWH)

Mp  = 4,880 (MW)

Lp. = 23015440 - 1.35*439754 = 22,421,772 (MWH)

Ap = 4880- 1.35*185 =4,630 (MW)

Given the annual energy and peak load of each load scenario, a chronological 

load profile can be created using the load projecting algoritfim described in Chapter 

H1.3. These three hourly load curves are linearly transformed based on a typical load 

profile of the simulated system. In the following simulations, we also use the ordinary 

Monte Carlo sampling scheme in the production cost simulation to estimate the 

variances of cost. Fifteen annual production cost simulations are made, five for the 

high load, five for the mean load, and five for the low load, to evaluate the variance of 

cost. The resulting production costs are summarized in Table 5-6, and no unserved 

energy has occurred in these simulations.

Table 5-6 Annual Cost Summary of Probabilistic Approach

($) ECghLoad Mean Load Low Load
Run No. 1 
Run No. 2 
Run No. 3 
Run No. 4 
Run No. 5 

Mean

263,899,664
263,065,696
263,806,208
261,779,104
260,838,048
262,677,744

254,288,096
253,302,656
254,035,280
252,147,728
251,144,192
252,983,590

244,491,504
243,149,984
244,225,888
241,900,384
241,284,256
243,010,403

66



The expected annual production cost is represented by the population mean 

which is the weighted average o f the means o f all scenarios. It is estimated to be 

$252,927,784 using Equation (4-24). In each load scenario, the variance of cost is 

induced by different unit outage patterns which are used to simulate the unit 

availability uncertainty. Given the probability o f each load scenario based on stratified 

sampling, the variance of cost caused by unit outage uncertainty is calculated to be 

$1,341,385 '  based on Equation (4-23). It is the weighted average of the variances of 

all scenarios. The results o f Table 5-6 show that the variation of cost in each load 

scenario is very small when compared to the variance o f the expected costs o f the 

three scenarios. Based on Equation (4-25), the variance of cost induced by load 

variation alone can be estimated to be $6,219,735" which is the variance of the 

expected costs of all scenarios. According to Equation (4-26), the variance of cost 

induced by both uncertain factors is also estimated to be $6,362,736" which is the 

summation of variances induced by the two uncertain factors. These estimations of the 

variance of cost are summarized in Table 5-7, and the estimated coefficient of 

variation of cost are included as well.

Table 5-7 Cost Variance and Coefficient o f Variation o f Probabilistic Approach

Variance o f 

Cost

Coefficient of 

Variation o f Cost

Due to Unit $1,341,385- 0.53 (%)

Due to Load $ 6 ,219,7 3 5 : 2.46 (%)

Due to Both $6,362,736: 2.52 (%)
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In this probabilistic load modeh we assumed that only five simulations for each 

scenario are required to estimate the variances of cost. This assumption is Justified 

according to the following study using the probabilistic approach. In this study, the 

total number of simulations of case 1 is nine, and the number o f simulations in each 

load scenario is increased to observe the stability of the estimated variances of cost. 

The results o f this study are summarized in Table 5-8.

Table 5-8 Case Study Summary of Probabilistic Approach

Case Total Number 
of Simulations

Cost Variation Due 
to Unit Outage

Cost Variation Due 
to Load Uncertainty

I 9 0.22% 2.45%
2 12 0.40% 2.45%
3 IS 0.53% 2.46%
4 18 0.53% 2.46%
5 21 0.54% 2.46%

The results show that the coefGcient of variation of cost due to load variation 

uncertainty is more stable than that due to unit outages, because the load scenarios are 

not random samples. Instead they are stratified points fi’om a probability distribution. 

The slight variation in cost that occurs is due to the difference in the random sampling 

of unit outages that also slightly affects the cost variation due to the load uncertainty. 

The results imply that three runs are adequate to estimate the cost variance due to load 

variation uncertainty alone, but the estimated variance of cost due to unit outages will 

be more accurate when the number o f simulations is more than four. Thus the number 

of simulations for the probabilistic approach is verified to be 5 in each scenario (total
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IS) in order to estimate the variance of cost caused by unit outage uncertainty and 

load variation at the same time.

V.3 C om parisons o f  the T w o Approaches

The stochastic and probabilistic approaches are compared in this sub-section. 

Depending on the quality of the chronological production cost simulator that is used, 

both approaches may result in different estimates of coefGcient o f variation of cost and 

computational time. However, no matter which chronological production cost 

simulator is used, the results of the two proposed approaches should be consistent 

based on the same simulator. Included in the results will be the comparisons of the two 

approaches based on the quality o f estimation, the efforts of load variation modeling, 

and computational time. To compare the estimated variance of cost, it is important to 

ensure that the annual load variation modeled by both approaches is comparable. The 

comparability of the simulated annual load variations of both approaches is addressed 

first.

V.3.1 Load Variation

In this dissertation, the annual load variation is measured by the variations in 

both annual energy and peak load. In the stochastic approach, the mean and standard 

deviation of annual energy and peak load are modeled by weekly samples, while the 

probabilistic approach uses the estimated mean and standard deviation of annual 

system load to represent the annual load variation. The annual load variation modeled 

by the two approaches is summarized in Table 5-9. In this table, the statistical data of

69



annual load variation for the stochastic approach are estimated based on the 28 

sampled load profiles. The results o f Table 5-9 indicate that the annual load variation 

modeling o f the two approaches are reasonable close.

Table 5-9 Annual Load Variation Summary

Stochastic Load 
Variation

Probabilistic Load 
variation

Energy Mean 
Energy STDEV 
Peak Load Mean 
Peak Load STDEV

23,162,117
418,800

5,092
265

23,015,440
439,754
4,880

185

V.3.2 Quality of Estimation

The primary goal of this research is to quantify the effects of both load 

uncertainty and unit availability uncertainty on annual production cost. The quality of 

the estimated results is the most important when compare the two proposed 

approaches. However, the philosophy of developing these two approaches is first to 

model the annual load variation according to the stochastic property o f load variation 

over time in order to accurately estimate the variance of cost caused by load 

uncertainty. A simplified approach is then developed to reduce the efforts with an 

acceptable accuracy o f estimation. Consequently, we already presume that the 

estimation of the stochastic approach should be more accurate than that o f the 

probabilistic approach, because the stochastic behavior of the annual load variation is 

modeled. In addition, the stochastic approach models the annual load variation in a 

weekly horizon which is more detailed than an annual horizon in the probabilistic 

approach. Moreover, enough annual load profiles are sampled to ensure that annual
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load variation is well represented in the stochastic approach. On the other hand, only 

three load scenarios are used in the probabilistic approach to probabilistically describe 

the annual load variation according to the variation o f system load.

The simulation results of the previous two examples are used to compare the 

quality o f the estimated variances of cost. As the two approaches result in slightly 

different expected costs, the variation of annual production cost is compared in terms 

o f the coefficient o f variation of cost. The coefficients o f variation of cost caused by 

load uncertainty, unit outage uncertainty, and both are estimated by the two 

approaches and are summarized in Table 5-10.

Table 5-10 Coefficient of Variation of Cost Summary of Two Approaches

Coefficient o f Variation Stochastic Probabilistic

of Annual Cost Approach Approach

Due to Unit Outage Uncertainty 0.57 % 0.53 %
Due to Load Uncertainty 2.39 % 2.46 %
Due to Both Uncertain Factors 2.45 % 2.52 %

The simulation results o f Table 5-10 show that the estimated coefficients o f variation 

o f cost are fairly close. The difference in the estimated coefficients of variation of cost 

using different approach are not significant. Thus, we conclude the two approaches are 

comparable in the quality of estimation. Table 5-10 also reveals the important result 

that the cost variation due to load variation is significantly larger than that induced by 

the unit outages. This result is quite consistently estimated by both proposed 

approaches.
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V.3.3 Effort of Load Variation Modeling

Since both approaches can result in a comparable estimation, it is important to 

know how much effort is required for each approach. In terms of the efforts of load 

variation modeling, the probabilistic annual load representation is much simpler than 

the weekly sampling scheme of the stochastic approach. To model the load variation 

stochastically, the weekly energies and peak loads are defined as the random variables 

which are described by their estimated distributions. Compared to the estimation of the 

distributions of annual energy and peak load in the probabilistic approach, it is more 

tedious to estimate all 52 pairs o f  distributions of random variables in the stochastic 

approach. In order to implement the conditional sampling, the estimations of the 

weekly correlation between energy and peak load and the correlation between weekly 

energies with one week lag are also required in the stochastic approach. Obviously, to 

model the annual load variation in a weekly horizon is more complicated than that in 

an annual horizon. Considering the efforts of modeling, the probabilistic approach is 

preferred. However, in order to use the probabilistic approach in estimating the 

variances of cots, it is necessary to verify the comparability o f the estimated results 

first for different power system.

V.3.4 Computational Time

Certainly, the computational time of either approach will depend on what kind 

of computer and the production cost simulator that are used. However, it is fair to 

compare the computational time o f  two approaches based on the same production cost 

simulator and computer. Since the computational time required for each single annual
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simulation is fairly close, the total computational time of each approach is directly 

proportional to the total number of simulations. The simulation results obtained in this 

chapter show that the total number of simulations of the stochastic approach requires 

at least 28 simulations when the purpose is to estimate the cost variance caused by 

each individual uncertain factor or by both uncertain factors together. On the other 

hand, only 15 simulations are required to estimate the variances of cost in the 

probabilistic approach. Thus, the probabilistic approach can almost reduce the 

computational time required to estimate the variance of cost by one half.

For reference purposes, the total computational time required to estimate the 

variance of annual production cost using Scheduler for both approaches are provided. 

The computational time required for an annual simulation is about 7 minutes on a 

Pentium-90 computer with 24 MB RAM. Hence, it requires at least 3 hours (28 annual 

simulations) to estimate the variance of cost induced by load variation alone using a 

stochastic approach. It takes approximately one hour and 45 minutes (15 annual 

simulations) to estimate the variance of cost caused by unit outage uncertainty, load 

variation, and both factors using a probabilistic approach on the same computer.
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CHAPTER VI 

CONCLUSION

This dissertation reports on the investigation of the impact of the uncertainty in 

load and unit availability uncertainty on annual production cost using a chronological 

production cost simulation. The effects of these uncertainties on the annual production 

cost is measured in terms o f the variance of cost. In addition to estimating the 

expected value of annual production cost, the variances o f cost induced by load 

variation, unit outage uncertainty, and that induced by both factors are estimated. 

Thus, the estimated expected cost becomes much more meaningful when a measure of 

the variation of the annual production cost about the expected value is also included.

In this dissertation, both the stochastic and the probabilistic approaches of the 

annual load variation are proposed and demonstrated by applying each approach to 

estimate the variances of annual production cost of a medium size utility. In both 

cases, a chronological load projecting algorithm is used with different sampling 

schemes to generate hourly load profiles. The stochastic approach used a weekly 

conditional sampling scheme to model the load variation over time, while the 

probabilistic approach used a stratified sampling technique to describe the annual load 

variation probabilistically. The results herein have presented two approaches which 

simulate load variation over time in the format of a chronological load profile using 

either one of the two approaches.
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This dissertation reports that the use of either one o f these two approaches 

together with Monte Carlo simulations can be used to quantify the variances of cost 

due to unit outage uncertainty and load variation. In addition, the illustrative examples 

of both approaches reveal the import result that the estimated cost variance due to 

load uncertainty is more significant than that due to unit availability uncertainty, and 

therefore the annual load variation should be emphasized in estimating the variance of 

annual production cost.

In comparing the probabilistic approach to the stochastic approach, it is clear 

that the annual load variation modeling of the stochastic approach is more 

complicated, but more accurate than that of the probabilistic approach. The results of 

the stochastic approach are more accurate because the weekly load variation modeling 

does capture the stochastic behavior of the system load. However, the accuracy of the 

estimated variances of cost using the probabilistic approach is verified by the results of 

the stochastic approach. We recommend that the probabilistic approach should be 

compared with the stochastic approach for each system. Given comparable results, the 

simulations according to the probabilistic load variation modeling can be performed 

with significantly less time.

To estimate the cost variation due to unit availability, load variation and due to 

both factors, the probabilistic model can provide reasonable accuracy with less 

computational time. In addition, the probabilistic approach provides extra information, 

such as the expected cost o f both the high and low load scenarios. Based on its 

performance, we conclude that the probabilistic approach is an efBcient approach to 

approximate the variances of cost.
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When estimating uncertainty in operational cost, uncertainty in load and 

uncertainty in generator availability are reflected through the production cost 

simulation in this dissertation. The uncertainty in unit outages is modeled by Monte 

Carlo sampling in a chronological production cost simulation, while the load variation 

can be modeled by either a stochastic approach or a probabilistic approach. Thus, a 

tool to reflect the variation in system load into the estimated variance of annual 

production cost will be usefiil and should be considered, especially for long-term 

studies. Consequently, the variance of annual production cost which is induced by the 

load uncertainty can be estimated. This is the major contribution of the research 

reported in this dissertation.
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APPENDIX A

Table A-1 Generation Unit Data

Unit
#

Type Pmax
(MW)

Pmin
(MW)

Mm. Down 
(Hour)

Min. Up 
(Hour)

I Gas 74 22 24 24
2 Gas 26 26 48 48
3 Gas 26 26 48 48
4 Gas 48 12 4 4
5 Gas 178 45 48 48
6 Gas 239 68 48 48
7 Gas 394 80 48 48
S Gas 184 45 48 48
9 Coal 500 15 48 120
10 Coal 500 150 48 120
11 Coal 515 150 48 120
12 Gas 58 15 48 48
13 Gas 57 15 48 48
14 Gas 122 30 48 48
15 Gas 260 60 48 48
16 Gas 64 16 4 4
17 Gas 530 100 48 120
18 Gas 507 100 48 120
19 Gas 500 100 48 120
20 Gas 19 19 4 4
21 Coal 505 150 48 120
22 Coal 510 150 48 120
23 Gas 11 11 4 4
24 Gas 160 80 48 48
25 Gas 160 80 48 48
26 Gas 110 60 48 48
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APPENDIX B

Table B-1 Costs Due To Load Variation Case 2
(Random Number Seed = 2)

Load
Curve

m

Annual
Energy
(MWH)

Cost
(S)

Cost
Variance
Change

Coefficient of 
Variation of 

Cost
I 22705996 247875896 % %
2 23813079 266051808 - -

3 23101752 255813248 -90.8 5.00
4 22950312 253574224 -46.8 3.64
5 23000461 253971456 -32.4 3.01
6 23621917 262237056 -0.4 2.60
7 22997089 253600768 -16.9 2.41
8 22814032 250678224 -5.9 2.35
9 23178872 255663952 -14.2 2.20
10 22926674 253471488 -11.3 2.08
11 23230723 257351408 -9.1 1.99
12 23173320 255693168 -9.9 1.90
13 22909122 250985360 -2.3 1.88
14 23888278 266878992 26.6 2.19
15 23101319 254499952 -7.3 2.11
16 22673799 247608160 6.9 2.20
17 22923532 251630384 -4.0 2.16
18 23297418 257006208 -5.4 2.10
19 23087990 254891616 -5.9 2.04
20 23056694 253259152 -4.9 1.99
21 24097126 270102528 23.6 2.27
22 23742451 263325456 17.6 2.19
23 22901736 251104016 2.9 2.22
24 23348134 259308736 0.8 2.23
25 22492190 246163472 13.0 2.39
26 23862874 264557824 4.7 2.45
27 23135635 256831360 -0.7 2.44
28 22506714 251819456 -1.5 2.42
29 23524232 258448848 0.7 2.43
30 23656729 260405328 i.o 2.43
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Table B-2 Costs Due To Load Variation Case 3
(Random Number Seed = 3)

Load
Curve

ID

Annual
E ner^
(MWH)

Cost
($)

Cost
Variance
Change

Coefficient of 
Variation of 

Cost
I 22705996 248853376 % %
2 23813079 267246176 - -

3 23101752 256961520 -91.9 3.65
4 22950312 254126304 -45.0 3.04
5 23000461 254412144 -31.9 2.66
6 23621917 263645792 1.7 2.67
7 22997089 254134304 -16.1 2.48
8 22814032 250979072 -4.2 2.44
9 23178872 256994336 -13.9 2.28
10 22926674 254097040 -11.0 2.17
11 23230723 258003712 -9.6 2.07
12 23173320 257334656 -9.5 1.98
13 22909122 252463360 -4.3 1.94
14 23888278 267394960 23.4 2.21
15 23101319 254795744 -6.8 2.14
16 22673799 248731296 5.9 2.21
17 22923532 252497568 -4.0 2.17
18 23297418 258625088 -4.8 2.11
19 23087990 255768816 -5.9 2.06
20 23056694 254023968 -4.7 2.01
21 24097126 270788832 22.5 2.27
22 23742451 264234128 15.6 2.18
23 22901736 252195600 2.8 2.21
24 23348134 260425568 0.7 2.22
25 22492190 247247760 12.4 2.37
26 23862874 265499328 4.0 2.42
27 23135635 257885552 -0 9 2.41
28 22506714 249929776 1.9 2.43
29 23524232 260797440 1.9 2.45
30 23656729 262024768 1.5 2.46
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Table B-3 Costs Due To Load Variation Case 4
(Random Number Seed = 6)

Load
Curve

ID

Annual
E n er^
(MWH)

Cost
($)

Cost
Variance
Change

CoeflScient o f 
Variation of 

Cost
I 22705996 249847392 % %
2 23813079 267469872 - -

3 23101752 254911360 -88.6 3.52
4 22950312 254657424 -45.0 2.93
5 23000461 254967152 -31.4 2.56
6 23621917 263872160 1.7 2.57
7 22997089 254860704 -16.5 2.39
8 22814032 252168464 -6.2 2.32
9 23178872 257228512 -14.1 2.17
10 22926674 254858208 -11.2 2.06
11 23230723 258796196 -9.0 1.97
12 23173320 257119824 -9.9 1.88
13 22909122 252569776 -2.7 1.86
14 23888278 268565856 27.9 2.18
15 23101319 255724912 -7.1 2.11
16 22673799 249352624 5.9 2.18
17 22923532 252895232 -3.7 2.14
18 23297418 258837784 -5.1 2.09
19 23087990 256933760 -5.9 2.03
20 23056694 253928688 -4.1 1.99
21 24097126 271197504 23.2 2.26
22 23742451 264581904 16.9 2.18
23 22901736 252576656 2.7 2.21
24 23348134 260732864 0.5 2.21
25 22492190 247626976 12.7 2.37
26 23862874 266075936 4.6 2.42
27 23135635 258312512 -0.8 2.41
28 22506714 250808352 2.2 2.44
29 23524232 260596288 1.2 2.45
30 23656729 261003904 0.3 2.45
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APPENDEX C. 1

‘stochld.h”
/ *  =

/♦ 
j*

I*
#include <stdio.h> 
#include <string.h> 
#include <math.h> 
#include "loadlib.h"

extern double 
extern double 
extern int 
FILENAME

stochastic approach of load variation modeling 
main program of weekly sampling program

* /

* /

wke[52][l0], wkp[52][I0], grow[lO]; 
old[366][24], ld[366][24], fld[366][24]; 
byear, fyear, 
fhame[10];

void mainO
{
FILE
int
double
double
double
double
double
double
double
double
double
double
char

*dataf, *fb;
option, yeamum, i, j, k, 1, lastweek, weeknum, ld[25], samplenum; 
*p_point, *p_wkl, *p_wk2;
*p_ave, *p_cov, *p_covl, *p_coep; 
wgrowe[52], wgrowp[52], sgrowe[52], sgrowp[52]; 
oavee[52], oavep[52], savee[52], savep[52]; 
ocove[52], ocovp[52], scove[52], scovp[52]; 
ocovle[52], ocovlp[52], tempe[52], tempp[52]; 
ocoe[52], scoe[52], ocop[52], scop[52]; 
coep[52], ocoepr[52], scoepr[52]; 
weeke[52], weekp[52], Nordat[52][100], Nl, N2, N3; 
engsum, peaksum, sumvar, aaa, bbb, gaaa, gbbb; 
buf[IO], NOR[50], LDB[50];

/* load normal samples into array */
dataf=fopen("C;\\CPROA\\STOCH\\NORMAL","r+b");
if(dataf!=NULL){

for(i=0; i<100; i++)
{
forO'=0; j<52;j++)

{
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fseek(data^ (i*4l6+J*8), SEEK_SET); 
fread(&Nordat(j][i], 8, 1, dataf);
}

}
}

fcIose(dataf);

/* reset typical load array to all 0 */
for (i=0; i<366; i++)

{
forO'=0;j<24; j-H-)

ald[i]D']=0.0;
}

/* convert historical load files to binary files */
datafi=fopen("C;\\CPROA\\DATAF.TXT", "rfb");
fyear =0;
lastweek=8;
if (dataf != NULL){

fscanf(dataf, "%3d", &option); 
fscanf(dataf, "%3d", &yeamum);

/* read load file name */
for (i=0; i<yeamum; i++)

{
fiiame[i].name[0]='\0'; 
fseek(dataf, (i*ll)+6, SEEK_SET); 
fi^ead(&fiiame[i].name, 10, 1, dataf); 
fiiame[i].name[9]=^0';
if (option =  1) convert binary(fiiame[i]. name);

/* replace the text file name with a binary file name */
stmcpy(buf fiiame[i].name, 10);
fiiame[i].name[0]=A0';
stmcpy(fiiame[i].name, bu( 6);
fiiame[i]. name[6]="\0';
strcat(fiiame[i].name, "LDB");
fiiame[i] .name[9]="\0';
/* calculate weekly energy and peak */
week eng peak(fiiamefi].name, i); 
arrange_daytype(byear, fyear);
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}
}

fclose(dataf);

/* average the load curve added by week eng peak subroutine */
for(j=0; j<366; J++)

{
for (i=0; i<24; i-H-)

aidO][i]=aid[j][i]/yeamum;
}

/* estimate the weekly energy and peak growth of the future year */
/* according to a linear trend */
for(i=0;i <52; i-H-)

{
p_point = &wke[i][0];
wgrowep] = trend(yeamum, p_point)/wke[i][4]; 
p_point = &wkp[i][0];
wgrowp[i] = trend(yeamum, p_point)/wkp[i][4];
}

/* calculate 7 lowest weekly energy to estimate annual growth */
I* and adjust loads to base year (year 5) */
low_set(yeamum);

/* calculate the weekly mean and variance of the adjusted five years energy */
p w k l  = &wke[0][0];
pave  = &oavee[0];
pcov  = &ocove[0];
covar(5, 0, p wkl, p ave, p_cov);

p w k l  = &oavee[0];
pave  = &savee[0];
move_average(52, 5, p wkl, p_ave);

for(i=0; i<52; i-H-)

tempe[i] = sqrt(ocove[i]);

p w k l  = &tempe[0];
pave  = &scove[0];
move average(S2, 5, p wkl, p_ave);
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for(i=0; i<52; i-H-)

scovep] = scove[i]*scove[i];

/* calculate the weekly mean and variance of the adjusted five years peak */
p w k l  = &wkp[0][0];
pa v e  = &oavep[0];
p c o v  = &ocovp[0];
covar(5, 0, p wkl, p ave, p_cov);

p w k l  = &oavep[0];
pa v e  = &savep[0];
move_average(52, 5, p wkl, p_ave);

for(i=0; i<52; i-H-)

tempp[i] = sqrt(ocovp[i]);

p w k l  = &tempp[0];
pa v e  = &scovp[0];
move_average(52, 5, p wkl, p_ave); 
for(i=0; i<52; i-H-)

scovp[i] = scovp[i]*scovp[i];

/* calculate the correlation coefBcient of weekly energy with one week lag */
/* and smooth the weekly coeflBcient */
p w k l  = &wke[0][0];
p a v e  = &oavee[0];
p_covl= &ocovle[0];
covar(5, 1, p wkl, p ave, p covl);

for (i=0; i<51; i-H-)
ocoe[i] = ocovlep] /  sqrt(ocove[i] * ocove[i+l]); 

p w k l  = &ocoe[0];
pa v e  = &scoe[0];
move_average(51, 5, p wkl, p_ave);

/* calculate the correlation coefiBcient of weekly peak load */
/* with one week lag and smooth the weekly coefiBcient */
p w k l  = &wkp[0][0];
p a v e  = &oavep[0];
p_covl= &ocovlp[0];
covar(5. I, p wkl, p ave, p covl);
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for (i=0; i<51; i++)
ocop[i] = ocovlp[i] / sqrt(ocovp[i] * ocovp[i+l]); 

p w k l  = &ocop[0];
p a v e  = &scop[0];
move_average(5I, 5, p wkl, pjave);

/* calculate the correlation coefBcient between weekly energy and peak */
p w k l  = &wke[0][0];
p_wk2 = &wkp[0][0];
pcoep  = &coep[0];
covep(5, 0, p wkl, p_wk2, p coep);

for (i=0; i<52; i++)
ocoepr[i] = coep[i] / sqrt(ocove[i] * ocovp[i]); 

p w k l  = &ocoepr[0];
p a v e  = &scoepr[0];
move_average(52, 5, p wkl, p_ave);

/* smooth the growths o f weekly energy and peak load */ 
p w k l  = &wgrowe[0];
p a v e  = &sgrowe[0];
move_average(52, 5, p wkl, p_ave);

p w k l  = &wgrowp[0];
p a v e  = &sgrowp[0];
move_average(52, 5, p wkl, p_ave);

/* adjust weekly growth based on the estimated annual growths of annual *!
I* energy and peak load such that the annual energy and peak load are */
/* comparable with the results of annual growth; The annual energy and */
/* peak load growths from 1992 to 1993 is 1.0304 and 1.0228 */
aaa = 0.0;
bbb = 0.0;
gaaa = 0.0;
gbbb = 0.0;
for (i=0; i<52; i++)

{
aaa = aaa + savee[i]; 
if (savep[i] > bbb) bbb = savep[i]; 
gaaa = gaaa + savee[i] * sgrowe[l];
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if (savep[i] * sgrowpp] > gbbb) gbbb = savep[i] * sgrowp[i];
}

sumvar = 0.0; 
for(i=0; i<52; i-H-)

{
sgrowe[i] = sgrowep] * 1.0314 / (gaaa / aaa); 
sgrowp[i] = sgrowp[i] * 1.0228 / (gbbb / bbb); 
sumvar += ocove[i];
}

/* start sampling load scenarios */
samplenum = 41;
for(l=0; 1 < samplenum; 1-H-)

{
engsum = 0.0; 
peaksum = 0.0; 
weeknum = 7; 
sprintf(buf, "%ld",l);
NOR[0]=A0'; 
for(i=0; i<52; i-H-)

{
■ if (11=0)

{
if (i =  51) weeknum = lastweek; 
if ( i= 0 )

{
Nl =Nordat[i][l-l];
weeke[i] = sgrowe[i] * (savee[i] -f- sqrt(scove[i]) * Nl);
}

else
{
N2 = Nordat[i][I-l];
weekep] = sgrowep] * savee[i] + scoe[i-l] * sqrt(scove[i] / 
scove[i-l]) * (weeke[i-l] - sgrowe[i-l] * savee[i-l]) -t- 
sgrowe[i] * sqrt(scove[i] * (I-scoe[i-l] * scoe[i-I])) * N2 ;
}
N3 = Nordat[i][100-1]; 
if (scoepr[i] > 0.5)

weekp[i] = sgrowp[i] * savep[i] + scoepr[i] * 
sqrt(scovp[i]/scove[i])*(weeke[i]- sgrowe[i]*savee[i]) -+-
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else

sgrowpp]* sqrt(scovp[i]* (1 - scoeprp] * coepr[i])) * 
N3;

else
weekp[i] = sgrowp[i] * (savep[i] + sqrt(scovp[i]) * N3);

}

{
weekep] = I.O * sgrowep] * savee[i]; 
weekpp] = 1.0 * sgrowpp] * savep[i];
}

}

/* use the sampling weekly energy and peak to fit a hourly load curve */
I* based on the generated system typical load profile */

weeknum = 7; 
for(i=0; i<52; i+-t-)

{
if ( i = 5 1) weeknum = lastweek; 
wfittwo( i+1, weeke[i], weekp[i]);
}

lsmooth(200); 
weeknum = 7;
LDB[0]="\0';
strcpy(LDB, "C:\\CPROA\\STOCH\\LOAD");
strcat(LDB, buf);
strcat(LDB, ".LDB");
fb=fopen(LDB, "w+b");
ld[0]=l;
ld[l]=l995;
forO'=2;j<25;j-H-)

ld[j]=0;
fseek(fb, (long)(0), SEEK_SET); 
fwrite(&ld, sizeof(ld). I, fb); 
for(i=0; i<52; i++)

{
if (i==51) weeknum = lastweek; 
for(k=0; k<weeknum; k-H-)

{
ld[0]=i*7+k+2;
for0=l;j<25;j++)

{
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ldD] = (int)fld[i*7 + lc]D];
if OdO] > peaksum) peaksum = ld[j];
engsum = engsum + ld[j];
}

fseek(fb, (long)(lOO ♦ (i*7+k+l)), SEEK_SET); 
{write(&Id, sizeof(ld). I, fb);
}

}
fcIose(fb);
}

}
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APPENDEX C. 2

/ *      ■   ----------------
/* “probald.h” probabilistic approach o f load variation modeling 
/* main program ofannual sampling program

:    ■

#include <stdio.h>
#include <string.h>
#include <math.h>
^include "loadlib.h"

=♦/
*!
*!

extern double 
extern double 
extern int 
FILENAME

wke[52][10], wkp[52][I0], grow[10]; 
oId[366][24], ld[366][24], fld[366][24]; 
byear, fyear, 
fiiame[6];

void mainO
{
FILE *data^ *fb,
char buf[IO];
int option, yeamum, i, j, k, lastweek, ld[25];
double annualE[6], annualP[6], meanvarE[2], meanvarP[2], adde, addp;
double *p_eng, *p_peak, *p meanvarE, *p meanvarP;

/* reset typical load array *!
for (i=0; i<366; i++)

{
forO=0;j<24;j++)

ald[i]D']=0.0;
}

/* convert historical load files to binary files */
datafi=fopen("C:\\CPROA\\DATAF.TXT", "r+b");
fyear = 0;
lastweek=8;
if(dataf!=NULL){

fscanf(dataf, "%3d", &option); 
fscanf(dataf "%3d", &yeamum);
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[* read load file name */ 
for (i=0; i<yeamum; i++)

{
fiiame[i].name[0] = \0'; 
fseek(data^ (i*l l)+6, SEEK_SET); 
fi’ead(&fiiame[i].name, 10, 1, dataf); 
fiiame[i].name[9] = \0'; 
fseek(£t, i*ll, SEEK_SET); 
fivrite(fiiame[i].name, sizeof(fi\ame[i].name), I, ft); 
if (option =  1) convert_binary(fiiame[i].name);

/* replace the text file name with a binary file name */
stmcpy(buf, fhame[i].name, 10);
fiiame[i].name[0] = "\0";
stmcpy(fiiame[i].name, buf̂  6);
fiiame[i].name[6] = "\0";
strcat(fiiame[i].name, "LDB");
fiiame[i].name[9] = "\0";
/* calculate weekly energy and peak */
week eng peak(fhamefi].name, i); 
arrange_daytype(byear, fyear);
}

}
fclose(dataf);

/* average the load curve added by week eng peak subroutine */
for(j=0; j<366; j++)

{
for (i=0; i<24; i++)

ald|j][i] = ald[j][i] / yeamum;
}

/* calculate 7 lowest weekly energy to estimate annual growth */
/* and adjust loads to base year (year 5) */
low set(yeamum);

/* calculate adjusted annual energy and peak and project to future year */
for (i=0; i<5; i-H-)

{
annualE[i] = 0.0; 
armualP[i] = 0.0;
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for(i=0; j<  52; j-H-)

{
aimualE[i] += wkeQlH;
if (wkp[j][i] > annualP[i]> annualP[i] = wkpD][i];
}

/* annual growth from 1992 to 1993 for energy and peak
are 1.0304 and 1.0228 */

annualE[i] = annualE[i] * 1.0304; 
annuaiP[i] =annuaIP[i] * 1.0228;
}

/* the alpha values of annual energy and peak result from stratified sampling */ 
adde = 1.345; 
addp = 1.345;

/* calculate mean and variance of annual energy and peak */ 
p en g  = &annualE[0]; 
p meanvarE = &meanvarE[0]; 
mean(5, p eng, p meanvarE);

p_peak = &annualP[0]; 
pmeanvarP = &meanvarP[0]; 
mean(5, p_peak, p meanvarP);

/* create high load scenario profile file in Scheduler load format */ 
yfittwo(meanvarE[0] + adde * sqrt(meanvarE[l]), meanvarP[0] + addp * 

sqrt(meanvarP[l]) ); 
fb = fopen("C:\\CPROA\\PROBA\\HILOADXDB'', "wfb"); 
ld[0] = 1; 
ld[l] = 1995; 
for0'=2;j<25; j-H-)

IdO] = 0; 
fseek(fb, (long)(0), SEEK_SET); 
fwrite(&ld,j^sizeof(kI), 1,-fb); 
fo r (i= l;  I <= 365; i-H-)

{
ld[0] = i4-l; 
forO=l;j< 25; j-H-)

{
if (fld[i-l]D-l] - (int)fld[i-l][j-l] > 0.5 )

ldD]=(int)fld[i-l]D-l] + l;
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else
IdD]=(int)fld[i-l]D-l];

}
fseek(fb, (Iong)(100 * 0, SEEK_SET); 
fwrite(&ld, sizeof(ld). I, fb);

fclose(fb);

/* create mean load scenario profile file in Scheduler load format */ 
yfittwo(meanvarE[0], meanvarP[0]); 
fb = fopen("C:\\CPROA\\PROBA\\MELOADXDB", "w+b"); 
ld[0] = I; 
ld[I] = 1995; 
forO=2 ;j<  25;j++) 

ldD]=0; 
fseek(fb, (long)(0), SEEK_SET); 
fwrite(&ld, sizeof(ld). I, fb); 
for(i=l; i<= 365; i++)

{
ld[0]=i+I;
for(j = l;j<  25; j++)

{
if (fld[i-I][j-I] - (int)fld[i-I]D-l] > 0.5 )

ldD]=(int)fld[i-l]D-l] +  l;
else

ldD]=(int)fld[i-l]D-l];
}

fseek(fb, (long)(IOO * i), SEEK_SET); 
fwrite(&ld, sizeof(ld), I, fb);
}

fclose(fb);

/* create low load scenario profile file in Scheduler load format */ 
yfittwo(meanvarE[0] - adde * sqrt(meanvarE[l]), meanvarP[0] - addp * 

sqrt(meanvarP[ 1 ])); 
fb = fopen("C;\\CPROA\\PROBA\\LOLOAD.LDB", "w+b"); 
ld[0] = 1; 
ld[I] = 1995; 
for(j = 2;j<25;j++) 

ld[j] = 0; 
fseek(fb, (long)(0), SEEK_SET);
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fwrite(&ld, sizeof(lcl). I, fb); 
for(i = I; i<= 365; i-H-)

{
ld[0] = i-t-l; 
for(i=I;j<25;j++)

{
if  (fld[i-l]D-I] - (int)£ld[i-l]D-l] > 0.5 ) 

ldD]=(int)fld[i-l]D'-l]+l;
else

IdQ]=(int)fld[i-I]D-l];
}

fseek(fb, (long)(100 * i), SEEK_SET); 
fwrite(&id, sizeof(Id), 1, fb);
}

fclose(fb);
}
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/* determine the total number of days in a given month of a year */
! ******************************************************* 
int monthday(int month, int year)
{
int ndy;

if(m onth=I || month=3 || month==5 || m onth=7 ||
month=8 || month==10 || m onth=I2)

ndy = 31;
else if (month==2 && leapyear(year) = 1 )  

ndy = 29; 
else if (month =  2) 

ndy = 28;
else

ndy = 30; /* all other months */
return (ndy);
}

y * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

/* determine the day type of a given date */
y * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * y

int findday(int day, int month, int year)
{
int dy_of_wk, ndy, mon, yr;
int yearl, year2, dit;
double rem day;

if (year < 1993)
{
yearl = year, 
year2 = 1992;
}

else
{
yearl = 1993; 
year2 = year - 1;
}

dy_of_wk = 6; /* January 1, 1993 is Friday */
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/* og&e load data file */ 
out_file[0] = "\0'; 
stmcpy(out_file, filename, 6); 
strcat(out file, "LDB"); 
out file[9] = "\0';

/* read year, check record number and write first year record */
if ((fp = fopen(filename, "r+b")) =  NULL) return (0); 
if ((fout = fopen(out_file, "w+b")) =  NULL) return (0);

fscanf(fp, "%2d", &month); 
fscanf(fp, "%2d", &day); 
fscanf(fp, "%2d", &yearid); 
yearid = yearid + 1900;

I* we only have the system data of 1995 and historical load profile only *!
/* available fî om 1988 ~ 1992. we will create load file to be used in 1995 */
if (yearid =  1993) yearid=I995;
ldhr[0] = I;
ldhr[l] = yearid;
for0=2;j<25;]++)

IdhrQ] = 0; 
fseek(fout, 0, SEEK SET); 
fwrite(&ldhr, sizeof(ldhr). I, fout);

if (leapyear(yearid) = 1 )  
numday = 366;

else
numday = 365;

I* write numday records in (*.ldb) file */
for (1=1; j<= numday; j++)

{
ldhr[0] = (int)j+l; 
for (k=l; k<=24; k++)

fscanf(fp, "%5d", &ldhr[k]); 
if 0 != numday)

{
for(k=l; k<=3; k++)

fscanf(fp, "%2d", &dum);
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oId[i*7+j][lc-l] = (double)(Idhr[k]); 
wke[i][yearorder] += (doubIe)Idhr[k]; 
if ((doubIe)ldhr[k] > wkp[i][yearorder])

wkp[i][yearorder] = (doubie)ldhr[k];
}

}
}

fclose(fin); 
return (I);
}

! * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * y

/* fit the hourly loads of base year to day type of the future year */
/* old[366][24]: the original hourly load form binary file */
/* ald[366][24]: the fitting hourly load for forecasting year *!
/* byear : the base year id */
/* fyear ; the forecasting year id */

void arrange_daytype(int byear, int fyear)
{
int bnumday, fiiumday, i, j, a, b, dif; 
double temp[366][24], fiv, Iw, 12w;

if (leapyear(byear) =  1; 
bnumday = 366;

else
bnumday = 365;

if (leapyear(fyear) = 1 )  
fiiumday = 366;

else
fhumday = 365; 

fw = 0.0;
Iw = 0.0;
12w = 0.0; 
for(i = 0; i<7; i-H-)

{
forO=0;j<24;j-H-)

{
fw += old[i]Q];
Iw += old[M57]Dl;
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12w+=old[i+350]0];
}

}
if(findday(l,l, byear) =  findday(l, 1, fyear))

{
£br(i=0; i<fiiumday; i++)

{
forO=0;j<24;j++)

ald[i]D]+=oid[i]D'];
}

if (Ieapyear(fyear) =  I && leapyear(byear) !=l)
{
forO*=0; j<24;j-t-+)

ald[365](j] += oid[358](j] * Iw/12w;
}

}
else

{
a = findday(l. I, byear); 
b = findday(l, 1, fyear); 
dif = b -a;
if (dif < 0) d if+= 7;

/* loads of the first day remain the same *! 
for(j=0;j<24; j4H-)

temp[0]D] = old[0][j];

/* shift day 2 ~ 364-dif forward to the right weekday type */
for (i=l; i<bnumday-dif; i++)

{
forO=0;j<24;j++)

temp[i][|] = old[i+dif]0];
}

/* average the connection point */
temp[l][0] = temp[0][23]/2.0 + temp[l][l]/2.0;

/* copy day (364-dif»-1 ~ numday) from day (2 ~ 2+dif) */
for (i=bnumday-dif; i<fiiumday-l; i-H-)

{
forO=0;j<24;j-H-)

temp[i][j] = temp[i-7][j] * lw/12w;
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}
temp[bnumday-di£][0] =temp[bnumday-dtf-l][23]/2.0 +

temp[bnumday-di£][l]/2.0;

/* last day remain the same (new year eve) */
forO'=0;j<24;j-H-)

temp[fiiumday-l][i] = old[bnumday-I][j]; 
temp[fiiumday-l][0] = temp[fiiumday-2][23]/2.0 + temp[fiiumday-l][I]/2.0;

/* add to average array aid[366][24] */
for (i=0; i<fiiumday; i++)

{
forO'=0;j<24;j-H-)

ald[i][j] += temp[i][j];
}

}
}

! *******
/* find the seven lowest weekly energies and adjust hourly loads */
/* based on load growth */
/* total[5]: the total energy o f the seven energy weeks */
/* adjust wk[52][l2] to the first year using total[0]/total[i] */
/ *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * y

void low_set(int yeamum)
{
double low[lO][IO], total[IO];
int i, j, k, 1, count;

for (1=0; Kyeamum; 1++)
{
for (i=0; i<7; i++)

low[i][l] = 9999999.9; 
for (i=0; i<52; i-H-)

{
count = 0; 
for(j=G;j<7;j-H-)

if (wke[i][l] < lowQJQ]) count = count-*-1; 
if (count > 1)

{
for(k=6; k >= 8-count; k—)
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f o r  (i=0; i<52; i-H -)

{
*(average+0 = 0 0;
*(result+i)= 0.0; 
for(k=0; k<order; k -H -)

*(average+0 += *(dataset + i * 10 -i- k) /  order ;
}

for (i=0; i< n u m ; i-H -)

{
for (1^0; k<order, k-H-)

*(result+i) += ( (*(dataset-<-i*IO-<-k) - *(averagefi)) *
(*(dataset -»- (i-t-lap)* 10 k) - *(average+i+lap) ) )/(double)(order-l); 

*(result-t-i) = *(result+i) ;
}

}

! * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

I* calculate covariance between energy and peak */
I* lap: lag number o f the two dataset */
/* * dataset: pointer of the first dataset array element address */
/* *result : pointer of the covariance value array element address *!
J  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

void covep(int order, int iap, double *datasetl, double *dataset2, double ^result)
(
int i, j, k, num;
double aver[52][2];
double *p aver;

paver = &aver[0][0]; 
num = 52 - lap; 
for (i=0; i<52; i-H-)

{
for (j=0;j<2;j-H-)

{
*(p_avert-i*2-<-j) = 0.0;
*(result-H) = 0.0;
}

for(k=0; k<order, k -H -)

{
*(p_aver+i*2) -f-= *(dataset 1 +i* 10+k) / (double)(order) ; 
*(p_aver+i*2-M) -(-= *(dataset2-<-i* lOfk) / (double)(order) ;
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}
}

for (i=0; i<num; i-H -)

{
for O'=0; j<order; j-H -)

*(resuIt-^0 += (*(datasetl-f-i*lCHj) - *(p_aver+i*2)) *
(*(dataset2-Ki+lap)*l(Hj) - *(p_aveH-(i-t-lap)*2+l)) ; 

*(result+i) = *(result+i)/(double)(order-1) ;
}

}

/* generate a normal distribution sample based on mean and variance */
/* mu; mean */
/* sigma: standard deviation */
j * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

double Nor IQ
{
int i;
double sum = 0;

for(i=0; i<12; i-H -)

sum -t-= (double)randO/(double)32767.0; 
sum -= (double)6.0; 
return sum;
}

double Nor20
{
double sum = 0;

sum = sqrt(-2.0* log((double)randO/(double)32767.0)) *
sin(2*3.14l592654*(double)rand0/(double)32767.0); 

return sum;
}

double Nor3Q
{
double sum = 0;

110



sum = sqrt(-2.0 * log((double)rand0/(double)32767.0)) *
cos(2*3.141592654*(double)rand0/(double)32767.0); 

return sum;
}

! * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

/* weekly load projecting algorithm */
/* ald[366][24]: base load array */
/* fld[366][24] : fitted load array *!

int wfittwo(int weekid, double Neng, double Npeak)
{
double Opeak, Oeng, sumxx, Ofirst, a, b; 
int j, k, numday, lastweek, n;

Opeak = 0.0;
Oeng =0.0; 
sumxx = 0.0; 
lastweek = 8; 
numday = 7;
if (weekid =  52) numday = lastweek;
n=24*numday;
for(i=0; J< numday; ]++)

{
for(k=0; k<24; k++)

{
if 0 = 0  && k = 0 ) Ofirst = ald[0][0];
sumxx += ald[(weekid-l)*7+j][k] * ald[(weekid-l)*7+j][k];
Oeng += ald[(weekid-l)*7+j][k];
if ( ald[(weekid-l)*7+j][k] > Opeak ) Opeak = ald[(weekid-l)*7+j][k]; 
}

}
/* two points linear filt *! 
b = (double) ((Neng- n*Npeak)/(Oeng-n*Opeak)); 
a = Npeak - b*Opeak; 
forO=0; j<numday; j -H - )

{
for (k=0; k<24; k -H -)

fld[(weekid-l)*7-0][k] = a-+- b*ald[(weekid-l)*7-fj][k];
}

return (1);
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int lsmooth(int diflf)
{
double mv[5]; 
int i, i;

for(i=l; i<52; i++)
{
mv[0] = 0.0; 
mv[l] = 0.0; 
mv[2] = 0.0; 
mv[3] = 0.0; 
mv[4] = 0.0;
if (fabs(fld[i*7][0] - fld[i*7-l][23]) > dig)

{
if ( fabs(fld[i*7][3]-fld[i*7-l][23])/4.0 > 300.0 && fabs(fld[i*7][5]- 

fld[i*7-l][23])/6.0 < fabs(fld[i*7][3]-fld[i*7-l][23])/4.0 )
{
for(j=0j<5;j-H-)

mv[j] = fld[i*7-I][23]+((fld[i*7][4]- fld[i*7-l][23])/6.0)
* (float)0+I); 

for(j=0;j<5;j-H->
fld[i*7]Q] = rnvQ];

}
else

{
fcr(i=0j<3;j++)

mv[j] =fld[i*7-l][23] +((fld[i*7][3]-fld[i*7-l][23])/4.0)
* (float)0+l); 

forO'=0;j<3;J+-i-)
fld[i*7](j] = mvjj];

}
}

}
return (I);
}

/* apply moving average to a series to smooth the variability */
/* size: size of time series *!
/* window: moving average window size */
/* odata: original data */
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/* ndata: smoothed data *!

void move_average(int size, int window, double *odata, double *ndata)
{
int i;

for (i=0; i<size; i++)
*(ndata + i) = 0.0;

if (window =  5)
{
♦(ndata) += ( ♦(odata) ♦ 0.4 + ♦(odata+I) ♦ 0.2 + ♦(odata+2) ♦ 0 .1 )/0.7; 
♦(ndata+I) += ( ♦(odata) ♦ 0.2 + ♦(odata+1) ♦ 0.4 + ^(odata+2) ♦ 0.2 + 

♦(odata+3) ♦ 0.1 )/0.9; 
for (i=2; i<size-2; i-H-)

♦(ndata+i) += ♦(odata+i-2) ♦ O.l + ♦(odata+i-l) ♦ 0.2 + ♦(odata+i) ♦ 
0.4 + ♦(odata+i+I)^ 0.2 + ♦(odata+i+2)^ 0.1;

♦(ndata+size-2) += ( ♦(odata+size-4) ♦ 0.1 + ♦(odata+size-3) ♦ 0.2 + 
♦(odata+size-2) ♦ 0.4 + ♦(odata+size-1) ♦ 0.2 )/0.9;

♦(ndata+size-1) += ( ♦(odata+size-3) ♦ 0.1 + ♦(odata+size-2) ♦ 0.2 + 
♦(odata+size-1) ♦ 0.4)/0.7;

}
if (window =  7)

{
♦(ndata) += ( ♦(odata) ♦ 0.3 + ♦(odata+l) ♦ 0.2 + ♦(odata+2) ♦ 0.1 + 

♦(odata+3) ♦ 0.05 )/0.65;
♦(ndata+I) += ( ♦(odata) ♦ 0.2 + ♦(odata+1) ♦ 0.3 + ♦(odata+2) ♦ 0.2 + 

♦(odata+3) ♦ O.IO + ^(odata+4) ♦ 0.05)70.85;
♦(ndata+2) += ( ♦(odata) ♦ 0.1 + ♦(odata+1) ♦ 0.2 + ^(odata+2) ♦ 0.3 + 

♦(odata+3) ♦ 0.20 + ^(odata+4) ♦ 0.10 + ^(odata+5) ♦ 0.05)70.95; 
for (i=3; i<size-3; i++)

♦(ndata+i) += ♦(odata+i-3) ♦ 0.05 + ♦(odata+i-2) ♦ 0.1 + ♦(odata+i-l) 
♦ 0.2 + ♦(odata+i) ♦ 0.3 + ♦(odata+i+l)^ 0.2 +
♦(odata+i+2)^ 0.1 + ♦(odata+i+3)^ 0.05;

♦(ndata+size-3) += ( ♦(odata+size-6) ♦ 0.05 + ♦(odata+size-5) ♦ 0.1 + 
♦(odata+size-4) ♦ 0.2 + ♦(odata+size-3) ♦ 0.3 + 
♦(odata+size-2) ♦ 0.2 + ♦(odata+size-l) ♦ 0.1)70.95; 

♦(ndata+size-2) += ( ♦(odata+size-5) ♦ 0.05 + ♦(odata+size-4) ♦ 0.1 + 
♦(odata+size-3) ♦ 0.2 + ♦(odata+size-2) ♦ 0.3 + 
♦(odata+size-1) ♦ 0.2)70.85;

♦(ndata+size-1) += ( ♦(odata+size-4) ♦ 0.05 + ♦(odata+size-3) ♦ 0.1 + 
♦(odata+size-2) ♦ 0.2 + ♦(odata+size-1) ♦ 0.3)70.65;
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}
if (window =  9)

{
♦ (ndata)+= ( *(odata) * 0.250 + *(odata+l) * 0.15 + *(odata+2) * 0.10 +

*(odata+3) ♦ 0.075 + *(odata+4) * 0.050)70.625;
♦ (ndata+l) += ( *(odata) * 0.150 + *(odata+l) * 0.25 +

*(odata+2) * 0.15 + ♦(odata+3) ♦ 0.100 + ♦(odata+4) ♦ 0.075+ 
♦(data+5) ♦ 0.050)70.775;

♦ (ndata+2) += ( ♦(odata) ♦ 0.100 + ♦(odata+l) ♦ 0.15 + ^(odata+2) ♦ 0.25 +
♦(data+3) ♦ 0.150 + ^(odata+4) ♦ 0.100 + ^(odata+5) ♦ 0.075+ 
♦(data+6) ♦ 0.050)70.875;

♦ (ndata+3) += ( ♦(odata) ♦ 0.075 + ♦(odata+l) ♦ 0.10 + ♦(odata+2) ♦ 0.15 +
♦(data+3) ♦ 0.250 + ♦(odata+4) ♦ 0.150 + ^(odata+5) ♦ 0.100+ 
♦(data+6) ♦ 0.075 + ^(odata+7) ♦ 0.05)70.95; 

for (i=4; i<size-4; i++)
♦(ndata+i) += ♦(odata+i-4) ♦ 0.05 + ♦(odata+i-3) ♦ 0.075 +
♦(data+i-2) ♦ 0.1 + ♦(odata+i-l) ♦ 0.15 + ♦(odata+i) ♦ 0.25 + 
♦(odata+i+1) ♦ 0.15 + ♦(odata+i+2)^ 0.1 + ♦(odata+i+3)^ 0.075 + 
♦(odata+i+4)^ 0.05;

♦ (ndata+size-4) += ( ♦(odata+size-8) ♦ 0.05 + ♦(odata+size-7) ♦ 0.075 +
♦(odata+size-6) ♦ 0.10 + ♦(odata+size-5) ♦ 0.15 + ♦(odata+size-4) ♦ 
0.25 + ♦(odata+size-3) ♦ 0.150 + ♦(odata+size-2) ♦ 0.10 + 
♦(odata+size-1) ♦ 0.075)7 0.95;

♦ (ndata+size-3) += ( ♦(odata+size-7) ♦ 0.05 + ^(odata+size-6) ♦ 0.075 +
♦(odata+size-5) ♦ 0.10 + ^(odata+size-4) ♦ 0.15 + ♦(odata+size-3) ♦ 
0.25 + ♦(odata+size-2) ♦ 0.150 + ♦(odata+size-1) ♦ 0.10)7 0.875;
♦ (ndata+size-2) +=( ♦(odata+size-6) ♦ 0.05 + ♦(odata+size-5) ♦ 0.075 
+ ♦(odata+size-4) ♦ 0.10 + ♦(odata+size-3) ♦ 0.15 + ♦(odata+size-2) ♦ 
0.25 + ♦(odata+size-1) ♦ 0.150 )7 0.775;

♦ (ndata+size-1) += ( ♦(odata+size-5) ♦ 0.05 + ♦(odata+size-4) ♦ 0.075 +
♦(odata+size-3) ♦ 0.10 + ♦(odata+size-2) ♦ 0.15 + ♦(odata+size-1) ♦ 
0.25)70.625;

}
}

115


