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Abstract

A balloon-bome x-ray spectrometer was developed to fly on free balloons into 

thunderstorms in order to test hypotheses that strong electric-fields could accelerate 

cosmic-ray secondary electrons and produce bremsstrahlung x rays. Five flights were 

made over a period of two years into the stratiform regions of mesoscale convective 

systems. The x-ray spectrometer flew with an electric-field meter and a meteorological 

radiosonde. In four instances, increases in x-ray intensity were observed during these 

flights. All were observed in conjunction with strong electric fields. Both negative and 

positive polarities (referenced to the vertical field) produced x rays. These events lasted 

on the order of lO's of seconds. In three of the cases, the increased x-ray intensity 

returned to near background levels when lightning flashes reduced the local electric field. 

These two observations appear to indicate that the increases in x-ray intensity observed 

are associated with the strong electric field present in thunderstorms. However, the time 

resolution of these observations does not allow any conclusions to be made about the 

production of x-rays by lightning
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Chapter 1 
Introduction

In 1924, C.T JL Wilson hypothesized that the strong electric fields known to 

occur in thunderstonns should be able to accelerate P particles (electrons) to high 

energies [Wilson, 1925]. hi his work, Wilson assumed P emissions from radium to be the 

source of the energetic electrons and that at some point the electric field inside the cloud 

must approach the sparking limit (where dielectric breakdown occurs), which for air at 

sea level is about 3000 kV m '\ He further assumed that some x and y radiation should be 

produced as these P particles pass through the air (bremsstrahlung radiation), since 

whenever a charged particle is accelerated it will produce electromagnetic radiation. In 

this case energetic electrons (P particles) are accelerated during interactions with the air 

molecules. Although the full theoretical details are not presented in Wilson [1925], the 

basic physical principles are discussed. The more recent detailed theoretical work is 

based on these principles. Wilson [1925] noted that "It would be o f interest to test by 

experiment whether a thundercloud does emit any measurable amount of extremely 

penetrating radiation of the P- or y-ray type."

1.1 Ground-based measurements

To test Wilson's hypothesis, researchers over the years have tried to observe 

increases in x-rays or electrons during thunderstorms by making measurements at or near 

the ground. Suszcynsky et al. [1996] provides an excellent review of these efforts and



Table 1.1 provides a summary of the observational results. Although some of these 

measurements indicated a correlation between thunderstorm activity and increased P and 

Y radiation [Schonland and Viljoen, 1933; Appleton and Bowen 1933; Halliday, 1934; 

Clay et al., 1952; Whitmire 1979 and D'Angelo, 1987], th ^  were still inconclusive 

because of limited temporal resolution and because no clear source could be identified. 

Other investigations found no increases in radiation levels finom background. For 

example Hill [1963] placed photographic emulsions near lightning strike points on a 300 

meter tower and found no evidence of enhanced radiation levels.

Table 1.1 Previous ground-based expeinnents for energetic electrons or x rays from thunderstorms and

Experiment Location Instrument
Source

Distance Source Type
Schonland [1930] ground ionôation chamber >250 m none observed

Schonland and 
Viljoen [1933]

ground Geiger (G-M) tube 20-60 km lighting/Stonn

Appleton and 
Bowen [1933]

ground G-Mtube 2000-3000 km lightning

Halliday [1934, 1941] ground expansion cloud 
chamber

0 to 40 km lightning

Macky [1934] balloon photographic plate in cloud none observed

Oayetal.[\951\ ground ionization tubes few km thimderstorm

Wi//[1963] 300ft tower dosiroeteis tower strike none observed

Shaw [1963] mountain top Nal scintillator 0 to few km thunderstorm

Whitmire [1979] 1800ft tower dosimeters tower strike thunderstorm

D Angelo [19871 ground diftusion cloud chamber —100 m lightnmg



Shaw [1967] used sodium iodide (Nal) scintillation detectors to look at the 

gamma emissions (with energies greater than 500 keV) produced by the energetic 

electrons. The emissions are relatively weak, since for an electrons with energies of a 

few MeV only a few percent of the energy loss is due to bremsstrahlung. Bremsstrahlung 

emissions provide an indirect method to look for the existence of energetic electrons in 

thunderstorms. The chance for success in measuring gamma-ray emissions is higher 

because they have a much longer attenuation length than electrons and should be more 

easily detected than the electrons themselves. The detectors were placed on a mountain 

top in Arizona at an altitude of2800 m MSL (above mean sea level). Measurements of 

electric field and corona current were also made. No correlations were found between 

lightning flashes and increases in the gamma-ray count rates. Although there was an 

increase in count rate of about 5 percent that occurred with a time constant of about 10 

minutes, Shaw [1967] was not able to draw any conclusions about the source of this 

increase. Suszcynsky et al. [1996] found similar increases during thunderstorms that 

appear to be correlated with the rain-out of radioactive particles from the air.

A problem with all ground-based measurements is that if the region in which the 

energetic electrons are produced is distant from the detector, the x-ray and electron fluxes 

will be strongly attenuated. For example, if the source is located near the bottom of the 

thunderstorm about two kilometers above the ground, the x-ray flux would be attenuated 

by a factor of about 10̂  and the electron flux by 10*. This assumes an attenuation 

distance of about 150 m for 100 keV x rays, and about 10 meters for 1 MeV electrons 

[McCarthy and Parks, 1985], and no geometrical effects on the flux between source and 

detector. These attenuation distances are for air at an altitude of about 8000 m. If the



measurements are made near the surface, the attenuation would be even greater due to the 

increased air density. The x-ray count rate due to an energetic electron source would 

have to be significantly greater than the background rate observed. For a background of 

order 10 counts per second (ops) and an attenuation of 10̂ , the source strength would 

have to be of the order 10̂  cps. Again this assumes no geometrical effect on the x-ray 

flux. Because of fire ambiguous results of ground observations made to date, it seems 

reasonable to infer that x-ray sources in thunderstorms, when they occur, are rarely 

intense enough to be observed at great distances. Clearly, to test Wilson's hypothesis, 

measurements have to be made closer to the source.

1.2 Airborne measurements

Macky [1934] made an attempt to detect electrons inside a thunderstorm using 

photographic plates attached to balloons. He found no evidence of increased levels of P 

radiation. It was not until the 1980's when the first definitive measurements were made. 

Parks et al. [1981] and McCarthy and Parks [1985] found increases of one to two orders 

of magnitude above background in the x-ray count rate inside thunderstorms. These 

increases lasted for periods on the order of a few seconds. In some cases, the count rate 

would abruptly return to background at about the time of a lightning flash, while for other 

events, the rate decreased slowly over a period of a few seconds. The occurrence of 

lightning flashes was determined by pilot observations, optically by a photo diode, or by 

a commercially available lightning detection avionics. Although no electric-field 

measurements were available for comparison, th^r believed that the increases were a 

result of the strong electric field in the thunderstorm increasing or maintaining the energy
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of energetic cosmic-ray electrons [McCarthy and Parks, 1985; and McCarthy and Parks, 

1992].

1.3 New measurements

To fully test Wilson’s hypothesis, measurements of x-ray intensity and electric 

field are needed. The goal of my research was to measure simultaneously the x-ray 

intensity and the electric field in thunderstorms to test the hypothesis that a significant 

population of energetic electrons (and the accompanying bremsstrahlung x rays) could be 

produced by the thunderstorm electric field. Previous thunderstorm x-ray measurements 

did not have electric-field data to accompany them [Parks et al., 1981 and McCarthy and 

Parks, 1985]. A proven balloon-bome electric-field instrument has been in use by 

Marshall and Rust for over a decade [Marshall et al., 1995a]. Using this instrument, 

Stolzenburg et al. [1994] found that a fairly uniform vertical electric-field, sometimes in 

excess of 100 kV m % can exist over large horizontal distances for relatively long periods 

of time in the stratiform region of a mesoscale convective system (MCS). These types of 

storms provide an ideal laboratory in which to test Wilson's hypothesis because:

1. The extensive electrified region in MCS storms makes it more likely to get balloon-

bome instruments into an electrified region inside the storm.

2. Previous measurements of electric fields in MCS thunderstorms suggests that strong

fields (greater than 50 kV m ') will be observed during these flights.



3. The stratifonn region o f MCS storms has a relatively low lightning flash rate in

comparison to the convective region of the storm. This makes it easier to 

determine the relationship between electric field and x-ray production.

4. The stratiform region, where these strong and wide-spread electric fields have been

observed, has relatively calm conditions (low wind speed, and no large hail). This 

improves the chance that both the launch and flight will be successful.

In the next chapter, two basic models will be presented that demonstrate the 

plausibility of energetic electron and x-ray production in thunderstorms, along with some 

possible implications of effects they might have on the thunderstorm. Chapter 3 

discusses the instrumentation used for this study. Chapters 4 and 5 present the 

observations made on five balloon flights and discuss those observations in context with 

the current models reviewed in Chapter 2. The final chapter comprises a summary, 

concluding remarks and some ideas about what to do next.



Chapter 2 
Theory and Implications

As background for the presentation of the observations, which are the focus of this 

study, a short review of the theories and models that have been advanced to explain 

thunderstorm x-ray production is in order. There are two distinct types of energetic 

electron models: those that involve runaway electrons and those that do not. Runaway 

electrons and their production of electron avalanches were considered later because of the 

apparent failure of the non-runaway model to explain the x-ray observations of McCarthy 

and Parks [1985].

2.1 Non-Runaway Model (Electron ‘̂ Gathering’*)

Although Wilson [1925] described the first model for gamma ray production in a 

thunderstorm environment, McCarthy and Parks [1992] provided the first quantitative 

model based on direct measurements of x rays inside thunderstorms. McCarthy and 

Parks [1992] used a one-dimensional model, using only the vertical component of both 

electric field and electron motion. They assumed a constant electric field over a region 

between 5 and 10 km in altitude. This electric field allowed energetic electrons, produced 

continuously by cosmic rays and radioactive decay, to travel over a much greater distance 

than they would without the field present A result of this is that the electron flux near 

the positive charge region in the thunderstorm would be greatly enhanced [McCarthy and 

Parks, 1992]. hi other words electrons are “gathered,” fiom other places in the



atmosphere because the electric field reduces the net energy loss per unit path length in 

air. This results in a localized increase in the electron flux.

Both Wilson [1925] dSié McCarthy and Parks [1992] assumed that electrons from 

radioactive decay were present but the latter stated that the dom inant source of energetic 

electrons at the altitudes of interest is cosmic-ray secondaries. In McCarthy and Parks 

[1992], monoenergetic electrons are uniformly distributed in the altitude range from 9 to 

14 km MSL. The model predicts the number of x rays per electron produced in the 

altitude range from 9 to 10 km. As the electric field is increased from zero, the x-ray 

production rate increases weakly until the breakeven field is reached. The

breakeven field is the electric field in which a 1 MeV electron is at an energy balance 

between the frictional losses from interactions with the air and the gain from the electric 

field. A 1 MeV electron is chosen since it loses the least energy per unit path length in 

air. In their simulation, McCarthy and Parks [1992] found that x-ray production 

increased by nearly 3 orders of magnitude when the electric-field reaches the breakeven 

field strength.

McCarthy and Parks [1992] used the x-ray production simulation to determine the 

number of electrons required to produce the observed x-ray flux of 50 cm ̂  s'' sr ' 

[McCarthy and Parks, 1985], assuming that all x-rays originate within 1 km of the 

detector. They found that radioactive decay provides an electron source that is a factor of 

300 too small. Cosmic ray secondaries are found to provide a factor of 8 fewer electrons 

than are thought to be required [McCarthy and Parks, 1992] but the authors point out that 

the approximations used in the model and its one-dimensional nature do not allow them 

to rule out cosmic-ray secondary electrons as the source of the x-ray production they

8



observed. An important result in McCarthy and Parks [1992] is that their prediction of x- 

ray fluxes requires that an electric field o f at least 2/3 Egg must exist over an altitude 

range of about 1 km. However, the predicted x-ray flux fiom this model was SO times 

less than those observed by airborne instruments flown through thunderstorms.

2.2 Runaway Electron Model

Although McCarthy and Parks [1992] point out that most of the energy loss an 

electron under 100 MeV experiences is due to ionizing processes, they did not suggest 

what happens to the knock-off electrons that are produced as a result. Gurevich et al. 

[1992] suggests that these electrons may contribute to the production process and that a 

runaway electron avalanche, initiated by cosmic ray secondaries, may take place. 

Roussel-Dupre et at. [1994] modeled the temporal evolution of such an avalanche, and 

estimated the x-ray emissions from it. Furthermore, Gurevich et al. [1994] extended the 

model yet again to include spatial structure of the breakdown. The details in the model of 

Roussel-Dupre et al. [1994] require a detector with time resolution better than one 

microsecond, a spatially uniform electric field, and a uniform and continuous source of 

energetic “seed” electrons. Gurevich et al. [1994] addresses a runaway breakdown fiom 

a single breakdown pulse (a single energetic “seed” electron) and examines the spatial 

structure of the pulse. The results of these latter two models cannot be compared with the 

observations presented here that were made with a single detector and with low temporal 

resolution. However the earlier woric of Gurevich et al. [1992] provides the basic physics 

behind the later worics and a basic model that can be used to compare with the 

observational data presented here.
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As in McCarthy and Parks [1992], Gurevich et al. [1992] uses the concept of the 

breakeven field (Egg) and introduces a dimensionless parameter 0 ,̂ which is defined as 

the magnitude of the electric field divided by the breakeven field value. The minimum 

energy loss occurs at an electron energy of about 1 MeV, and so only electrons with 

energy greater than I MeV are considered in Gurevich et al. [1992]. As electron energy 

increases above 1 MeV, the frictional loss slowly increases. If the electron has energy 

lower than 1 MeV, the frictional loss increases with decreasing electron energy. At 0„=1 

only the 1 MeV electrons have no net energy gain or loss. Higher energy electrons will 

lose energy until they reach 1 MeV or are removed from the electron population by 

collisions. Electrons with energies less than 1 MeV will slow down. Since all electrons 

with energy other than 1 MeV experience a net energy loss, any ionization process that 

results in an energetic knock-off electron will result in the loss of both electrons. In this 

scenario, no avalanche can occur, since there is no additional electron production.

More interesting events occur when 0g>l. Not only will the equilibrium energy 

be greater than 1 MeV, depending on the value of 6^ but electrons with lower energy 

than the equilibrium energy will also be able reach equilibrium. These conditions will 

allow knock-off electrons with sufiScient energy to accelerate to the equilibrium energy. 

As a result, electron multiplication can occur. As a result, if 0„>1 occurs over a distance 

that exceeds the runaway length, approximately 20 m for 5,=1.2, an avalanche of 

runaway electrons can occur [Gurevich et al., 1992; M.P. McCarthy, private 

communication]. The runaway length is the exponential scale length for electron 

multiplication and is a fimction of the electric field, so that as increases, the runaway 

length decreases (for 5„=1.5 the scale length is 12 meters).

10



A problem arises when the electron multiplication models are used to predict 

runaway breakdown and x-ray production in thunderstorms. The model predictions use a 

ôg approximately equal to 2 [Roussel-Dupre et al., 1994]. In the five flights presented 

here, as well as the 23 flights without x-ray data presented in Marshall et al. [1996b], the 

electric field rarely exceeds Eg  ̂(5g=l) by any significant amount. However, there have 

been rare observations of extremely strong electric fields in thunderstorms. For example 

Winn et al. [1974\ measured a field approximately 4 times breakeven at 6 km MSL. 

Similarly, Marshall et al. [1995c] also measured fields above breakeven, but only in a 

few cases and for only short time periods before a lightning discharge reduced the local 

electric field. Although not impossible, conditions such as those used in the model 

predictions are observed relatively infiequently.

2.3 Some Effects of Increased Numbers of Energetic Electrons in Thunderstorms

Besides producing energetic electrons and x-rays, what is the impact of the 

runaway electron mechanism on the thunderstorm or on the atmosphere in general?

Large numbers of energetic (1 MeV or greater) electrons may serve to limit the electric 

field found inside thunderstorms in at least two ways. First, since electrons are removed 

firom air molecules and moved towards the positive charge regions in the storm, they may 

transport significant amounts of charge inside the thunderstorm and reduce the electric 

field. Second, any energetic ions produced will be stopped in a short distance, since the 

minimum energy loss occurs at much higher energies for heavier particles (about 1500 

MeV for protons) E\ans [1955]. The increased ionization of the air may help to provide 

leakage paths for the thunderstorm charge to move through, limiting the growth of the

11



electric field. Although these possibilities are only hypothetical, there is some 

experimental evidence that the electric field is limited to magnitudes near the threshold 

for runaway electron multiplication to occur [Marshall et a i, 1995a]. The runaway 

electron mechanism is one theory that has been proposed to explain the increased x-ray 

levels observed in thunderstorms [Gurevich et al., 1992].

There are no known observations of electric fields in thunderstorms strong enough 

(on the order of 1000 kV m ') to cause dielectric breakdown. As a consequence, it is not 

clear how lightning is initiated. The runaway mechanism has been invoked as a way to 

initiate lightning [Gta^evich et al., 1994; Roussel-Dupre et al., 1994], since it requires an 

electric field an order of magnitude less than dielectric breakdown. Fields of this 

magnitude are commonly observed in thunderstorms [Marshall et al., 1995a].

The runaway mechanism has also been invoked [Roussel-Dupre and Gurevich, 

1996] to explain recently observed optical phenomena, called Red Sprites and Blue Jets, 

that occur above some thunderstorms [Sentman et al., 1995; Wescott et al., 1995]. These 

are luminous events that occur over Üiunderstoims at altitudes between 20 and 80 km 

MSL. Red Sprites appear to occur simultaneously with positive cloud-to-ground 

lightning flashes that remove hundreds of coulombs of charge from the cloud [Lyons,

1995; Pasko et a i, 1995; Roussel-Dupre et al., 1996]. Although there are only a few 

observations. Blue Jets do not appear to be associated with cloud-to-ground lightning 

[Wescott et al., 1995].

Although the physical mechanism that produces Sprites and Jets is unknown, 

most models use a lightning discharge to produce an electric-field transient above the 

thunderstorm that heats mesospheric electrons to energies of a few eV [Pasko et al.,
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1995] or drives a runaway breakdown initiated by energetic electrons produced by cosmic 

rays [Roussel-Dupre et a i, 1996]. Some experimental evidence consistent with runaway 

breakdown has been found in the form of gamma-ray bursts detected both by satellite 

{Fishman et at., 1994] and by balloon instrumentation {Racket al., 1996a].

Because the experimental evidence is limited, the existence of these or other 

effects on the atmosphere and on the thunderstorm environment is unproven. More 

experimental and theoretical woric is needed to verify and characterize runaway 

breakdown in the atmosphere before its effects can be reasonably understood or 

predicted.
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Chapter 3 
Instrumentation

3.1 Design Considerations

Instruments designed to Oy on small balloons into thunderstorms have some 

significant design restrictions. First, they must be light. This translates into limits on 

size as well as power consumption, since battery power available is restricted by the mass 

of the batteries to be used. Second, they must fimction in both cold and wet 

environments (-40 °C or colder at the top of thunderstorms). Third, they must be 

shielded fiom a harsh electrical environment. Shielding must exclude strong electric 

fields and radio-fiequency interference fiom lightning to prevent interference with signals 

and destruction of onboard electronics.

Figure 3.1. Picture of two assembled x-ray 
spectrometers. The instrument on the left is partially 
encased m its outer housing.
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3.2 X-ray spectrometer overview

The x-ray spectrometer consists of two main sections: the Nal detector, and the 

support electronics. The entire system is mounted in an aluminum framework and 

covered with four thin alum inum  cans that form the outer shield. Additional shielding 

measures are described later. The assembled detector is SO cm long, 8.25 cm in diameter, 

and has a mass of 1.1 kg. Figure 3.1 is a picture of two instruments without complete 

outer shields. Figure 3.2 is a schematic diagram of the complete detector. Appendix A 

has more detailed information on the x-ray instrument components.

Schematic Diagram of 
Baiioon-bome Detector

xroy
Transmitter 

400 MHz
Nal

Crystal 2400 baud 
Serial Data

0.03 photons/éV 
(Wavotength: —400 nm)

Microcontroller

PtK>tomultfplier Tube 
(PMT)

X20 Amp
3 Ctiannel 
Pulse Height 
DiscriminatorX6 Pre-amp

HV Supply 
lOOOV

EG&G Sclntipack

Figure 3 .2. Schematic diagram of x-ray detector. Signal path begms with incident x ray and ends 
at the transmitter. After transmission, die data is converted into RS-232 level serial data and then 
recorded and time stamped by a computer on die ground.

15



3.2.1 Sodium Iodide Scintillation Detector

The detector uses a 5 cm diameter by 2 mm thick scintillation crystal with a I mil 

thick aluminum entrance window. The crystal is optically coupled to a Hamamatsu 

RI847 10-stage photomultiplier tube (PMT). The PMT bias is provided by an EG&G 

ScintiPack which also incorporates a pre-amplifier. As a precaution to prevent arcing in 

the PMT socket supplied on the ScintiPack, it was removed to allow hardwiring of the 

PMT. Because the instrument needs to function at reduced pressures (100 mb or lower), 

all high voltage sections were potted in GE Silicone RTV to prevent arcing. The mixed 

RTV was placed in a vacuum chamber to remove any air bubbles entrained during 

mixing, and then poured carefully into the mold to avoid the introduction of new bubbles. 

As a result o f potting in RTV, the PMT and High Voltage (HV) supply are one unit and 

are mounted together in a thin wall aluminum tube that provides mechanical protection as 

well as shielding fiom light and electric fields. The Nal crystal is then afBxed to the 

PMT with optical grease and held in place using black self-vulcanizing tape. After 

mounting the detector assembly into the instrument fiamewotk, the crystal sides are 

insulated with foam to prevent thermal shock and to protect fiom vibration during 

transportation. The entrance window is covered by 2.5 cm thick styrofoam to protect it 

fiom damage during transit and handling and fiom ice particles in storms, as well as fiom 

rapid temperature changes (Figure 3.3). Returned instruments had no damage to the 

crystal, indicating that the protection was adequate. This arrangement allows the detector 

to view a 120 degree cone, resulting in a geometry factor of 64 cm^-sr. To save weight, a 

lead collimator is not used. As a result, the geometry factor will be larger for higher
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Figure 3 J .  Schematic of the detector 
window. This arrangement results in the 
detector having a 120-degree field of
view.

energy x rays due to their greater ability to penetrate the outer shield. This could 

effectively widen the viewing angle to as much as 180 degrees, increasing the geometry 

factor by a factor of 2 (due to the increase in solid angle viewed). Angles greater than 

ISO degrees are more heavily shielded by the instrument structure and electronics. For 

the energies of interest, little if any contribution to the x-ray flux would be made horn 

angles outside the 180 degree field of view.

Two categories of counting efGciency, absolute and intrinsic, are commonly used 

to describe a detector. Absolute efficiencies are dependent on both the properties of the 

detector and the counting geometry [KnolU 1979]. The intrinsic efficiency is dependent 

primarily on the detector material, detector thickness, and the energy of the photon.

Knoll [1979] points out that although the absolute counting efficiency is strongly 

dependent upon the geometry, the intrinsic efficiency is not for cases in which the source 

is far fiom the detector. Since the thunderstorm source is presumed to be large in 

comparison to size of the detector (on the order of lO's of meters based on the current

17



thunderstonn x-ray production models) and the source region is more than a few meters 

fiom the detector, the intrinsic efficiency is the appropriate specification. Each of these 

categories can be further divided into two categories: total efficiency (a measure of all 

events detected) and peak efficiency (only events that deposit the fiill energy of the 

incident radiation into the detector are counted). Because the detector observes a 

continuous spectrum firom bremsstrahlung radiation and not a source with defined peaks 

in the energy spectrum (like a radioactive source), the calibration should be reported as a 

total intrinsic efficiency. The easiest method to compute the total intrinsic efficiency is to 

use the linear absorption coefficients [Knoll, 1979] for Nal. For each energy channel, the 

average absorption coefficient for each energy range was used (44 cm ' for 42 keV, 11 

cm ' for 73 keV, and 5.5 cm ' for 104 keV) [Evans, 1955]. Using these, the probability of 

absorption in the 2 mm thick Nal crystal was calculated for angles of incidence fix>m 0 to 

60 degrees. The probabilities were then corrected for the absorption of x rays in the 2.5 

cm thick foam layer in fiont of the detector window (also corrected for the angular 

dependence of the path length). The result of this is plotted in Figure 3.4. Both the 30 to 

60 keV and the 60 to 90 keV channels have relatively minor variations in efficiency with 

respect to incident angle and have average efficiencies of 0.94 and 0.88 respectively. The 

high energy channel (90 to 120 keV) shows a significantly lower efficiency for normal 

incidence, with an average efficiency of 0.69.

As verification that the detector was working properly, tests using calibrated point 

sources (the 31 keV x ray fi»m '̂ ^Ba and the 24 keV x ray of '®®Cd) gave absolute total 

efficiencies of about 0.14. The source to detector separation was 2.5 cm. Knoll [1919] 

reports a theoretical calculation of the absolute total efficiency for this geometry of 0.15.
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3.2.2 Support Electronics

The support electronics package consists of a signal amplifier, a pulse 

discriminator, a microcontroller and an FM transmitter. The crystal-controlled 

transmitter is firom a meteorological radiosonde and operates on a fiequency near 404 

MHz. A Blue Earth Micro-485 was used for the microcontroller. Three 16-bit 

counter/timers built into the microcontroller were used to accumulate x-ray counts in the 

energy bands set by the discriminator. The counting time of 0.25 s is controlled by the 

onboard clock. At the end of each counting interval, the microcontroller sends the 

number of counts in each of the three channels, along with a checksum over its serial port 

to the transmitter. The data is transmitted in ASCII form at 2400 baud. Although an 

ASCn data stream is inefiBcient, data quality can be checked easily and in most cases, 

errors in one or two bytes per spectrum could be corrected.

The signal amplifier is a simple non-inverting amplifier, without any separate 

pulse shaping filter. The signal from the detector’s charge amplifier decays with a time 

constant of 50 ps. At high count rates where the average time between incoming x rays is 

comparable to the amplifier time constant, a pulse “pile up’’ can occur. This results in
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fewer x rays counted than were incident to the detector and also each x ray is reported to 

have a greater energy than it actually had. Pulse shying Qiigh pass filtering) fiom the 

charge amplifier reduces this problem. For this instrument, count rates greater than 

10000 cps where not expected. This was based on previous observations of count rates 

on the order of 1000 cps [McCarthy and Parks, 1985]. Therefore, since space on the 

circuit board was limited no pulse shaping was used.

The amplified signal is sent to an array of voltage comparators. The reference 

voltage for the comparators is set by a voltage divider network. Metal-film resistors with 

a tolerance of 1% and a temperature coefiBcient of ±100 ppm / °C were used in the 

divider network Each comparator output is cormected to a non-retriggerable monostable 

multivibrator (one-shot) that has an output pulse duration of 1.7 ps. Additional digital 

logic after the one-shots determines which charmel the x-ray event is in and increments 

the proper microcontroller counter. Each counter input was protected fiom voltage 

transients by a transorb connected to ground. The entire support electronics package is 

wrapped with a metalized plastic then with a layer of aluminum foil in contact with the 

metal firamewoik and outer housing (chassis ground). The microcontroller is wrapped 

with an additional layer of metalized plastic and grounded foil.

3.2 J  Flight conflgaration

The x-ray detectors were suspended fiom a 1200-g helium balloon in the typical 

flight configuration shown in Figure 3.5. The x-ray detector can look upward or 

downward, depending on how it is rigged. The viewing direction will be a factor in 

determining the characteristics and location of the source. Initial flights used a downward
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looking detector to reduce the chance that water would enter the instrument through the 

sQrofoam insulation, hi addition to the x-ray detector, the balloon carries a standard 

meteorological radiosonde and an electric-field meter (EFM). The radiosonde provides 

temperature, pressure, humidity, and LORAN position data. LORAN or Long Range Aid 

to Navigation is a system of 100 kHz radio beacons used to determine geographic 

location. From these parameters, altitude, windspeed and wind direction are determined. 

The electric-field meter measures the vertical and horizontal electric field (the direction 

of the horizontal component is undetermined). This EFM is based on one developed by 

Winn et a/.[1978; 1981]. Stolzenburg [1993] reports an error of about 7 percent for the 

electric field data finm these instruments. More details of the EFM and its data are 

presented in Appendix B.

IZOOgDolocn

iM-cio«nReei

Figure 3.S. Typical flight 
configuiatioii for making smiultaneous 
X ray and electric-field soundings.
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3.3 CalibratioD and Testing 

3J.1 Calibration

Each x-ray detector received two di£ferent calibrations. The first was the initial 

calibration of the Nal detector assembly. A multichannel analyzer was used to determine 

the peak location and area (number of counts in the entire peak) for the 59.6 keV gamma 

produced by an ̂ ‘Am source. The analyzer used has 1024 energy bins. The high voltage 

of each unit was adjusted to match the gains of the PMT tubes. This results in the same 

pulse height for a given x ray energy to be the same for all detectors, and the peak count 

rate to be in the same analyzer bin. Then using a counting time of two minutes, the area 

of the peak was found with the styrofoam protective cover in place. This was then 

divided by 2 (to determine the number of x-ray counts in the peak above 60 keV) and 

then by 480 (the number o f 0.25 s intervals in the two minute counting time). The result 

is the number of counts expected in the 60 to 90 keV channel for a 0.25 second counting 

time.

Even a monochromatic x-ray source will produce a spectral peak that has spread 

due to instrumentation effects (spectral broadening due to the characteristics of the source 

is much smaller than those due to this instrument). A puiser was connected to the pre

amplifier of the detector to simulate a purely monochromatic signal fiom the PMT. The 

puiser signal is adjusted until the output of the pre-amp falls into the 60 keV bin of the 

multichannel analyzer. The voltage of this peak can then be easily measured on an 

oscilloscope to find the pulse height produced by a 60 keV x ray. Because the output of 

an Nal is linear with incident x-ray energy, the relationship between incident energy and 

peak height can be determined.
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The second calibration was to set the discriminator to the desired energy ranges of 

30 to 60,60 to 90 and 90 to 120 keV. The resistor values of the voltage divider were 

selected to give each bin a width of 30 keV. A variable resistor was used to fine tune the 

networic, so that the number of counts in the 60 to 90 keV channel matched the number 

expected fiom the first calibration. "^Ba and *”Cd Qxroducing x rays with energy 31 keV 

and 24 keV respectively) sources were also used in addition to the ^̂ 'Am were to check 

the calibration of the instrument. No sources with x ray energies between 60 and 120 

keV were readily available for these tests.

Before flight, the x-ray detector is rechecked with the Am source used in the 

bench calibrations. This was done to be sure that no damage to the instrument had 

occurred between final assembly and launch and that the calibration did not change.

3.3.2 Testing

To verify that the instruments are not subject to electromagnetic interference, two 

instruments were tested on the ground at The Irving Langmuir Laboratory for 

Atmospheric Research (near Socorro, New Mexico). One of the instruments was blinded 

by removing the Nal crystal, but was otherwise identical to the active instrument. During 

several thunderstorms the inactive detector reported no counts, while the active detector 

observed only normal background x-ray levels. The x-ray count rate increased fiom 

background over a period of about 20 to 30 minutes during the storms and in a manner 

consistent with the rainout of radioactive particles by precipitation [Lockhart et a i,

1959]. No independent data are available for comparison, but because of the time scale 

of the increases they were clearly not caused by electromagnetic or other interference.

23



Two additional tests were performed in the laboratory to determine the effects of 

strong electric fields on the instrument The first test used a small plate (0.4 by 0.4 m) 

connected to a high-voltage supply. The instrument was grounded and suspended over 

the plate with the detector window facing it. With the spacing between the instrument 

and plate set at 11.5 cm, the plate voltage was raised slowly over a period of eight 

minutes to 4000 V. No variation fiom background levels of x-ray counts was observed. 

The separation was then reduced to 1.5 cm, and the plate voltage was raised over a period 

of 5 minutes from 0 V to 2700 V, at which time a discharge occurred between the plate 

and the instrument From small bum maiks in the styrofoam, the discharge was found to 

have connected with the instrument at the bottom of the outer metal housing, near the 

detector window. Again, no variation in the x-ray count fiom background was observed 

at any time.

The second high voltage test was performed at Langmuir Laboratory using a large 

(3 by 3 m) plate suspended over the ground. An insulating line, which ran through the 

plate, was used to suspend the instrument, with the detector window facing the upper 

plate. In addition, an electric-field mill was recessed in the ground plate under the center 

of the top plate to provide a direct measurement of the electric field. The upper plate was 

positioned 1.2 meters above the ground plane and connected to a high voltage supply.

The voltage was slowly increased to 125 kV, giving a measured electric field strength of 

120kV/m, with no increase in the x-ray count rate (Figure 3.6). This procedure was 

repeated with opposite polarity o f the electric field, again with no change in x-ray rates 

fix)m background..The plate separation was then reduced to 1 meter, and a wire corona 

point was placed in the field of view of the detector. The electric field was increased to
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170 kV/m causing corona to be emitted fiom both the wire and the instrument. This was 

done with the instrument measuring background x rays and then repeated with an x-ray 

source placed on the detector window. No variations fiom the combined natural 

background and source x-ray levels were observed (Figure 3.7).

J ■ |i • “T ■ ■ ' “ " T

23 kV/ni 48 kVW 73 kV/ni 120 kV/rrf 0 kV/rr

0 40 80 120 160 200 240 280 320
Time (seconds after 00 Z)

Figure 3.6. Measurement o f x-ray background (at Langmuir Laboratory, elevation approximately 
3200 meters) during high-voltage testing of die mstrument Vertical dashed lines indicate points 
where electric field was measured. Error bar represents one standard deviation in count rate.
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Figure 3.7. Measurement of x-ray background and a ̂ 'Am source combined during high- 
voltage testing of the x-ray instrument at Langmuir Laboratory. Vertical dashed lines indicate 
points of electric-field measurement Error bars represent one standard deviation in count rate.
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Chapter 4 
Observations

Five balloon flights were made during the 1994 and 1995 thunderstorm seasons. 

The only flight in 1994 was partially successful, since the instrument failed shortly after 

launch. Because the instrument was not recovered, the exact cause of the failure is not 

known. In 1995, four successful flights were made in to MCS storms in Oklahoma. 

Three flights were made fiom Norman, while the fourth was launched fiom the 

Oklahoma Panhandle.

Although all launches were made into stratiform regions of MCS storms, the only 

launch criterion used was an on-the-spot judgement of the electrical state of the storm 

made fit)m observations of nearby lighting activity. This was done in an effort not to 

launch into a storm that was near the end of its lifo-time. This criterion, although 

qualitative, worked quite well, with two of the four 1995 flights observing large increases 

in x-ray intensity. The fourth 1995 flight did not observe any in-cloud x-ray increases. 

This flight was launched into a relatively inactive portion of an MCS (as compared to 

previous flights).

The polarity of the electric field data is plotted according to the polarity of the 

vertical electric field. A positive vertical field has field vectors that point upward. The 

horizontal electric field can be estimated using the "width" of the trace [Stolzenburg,

1996]. More details about this are given in Appendix B.
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4.1 Flight 0:27 May 1994

Flight 0 was launched near Ralls, Texas on May 27,1994 at 0326 UTC 

(coordinated universal time). After reaching an altitude of about 3.5 km MSL at 0334 

UTC, the signal modulation ended with the carrier still present. The carrier signal 

strength was strong during the entire ascent to 17 km. The electric-field meter and 

radiosonde operated normally throughout the flight. Later, during high-voltage testing of 

an x-ray instrument, it was found that in high electric fields the transmitter would 

sometimes “lock-up” and produce a good carrier signal with no modulation.

3.5 3.5

3.0 3.0

2 5 2 5

20 2 0

1.5 1.5

1.0 1.0

0.5 0.5
•ISO -100 -50 0 50 100 1500 10 20 30 40 50 60 70 80 90 100

Electric Field (kV/m) X-ray Intensity (cps)

Figure 4.1. Plot of x-ray and electric-field sounding for Flight 0 made fiom Ralls Texas on 27 May, 1994. 
The dotted line m die right-hand plot shows die expected x-ray profile for a 70 cps (counts per second) 
source of 75 keV x rays located at die ground, superimposed on a constant source of 10 cps.
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Figure 4.1 shows the data fiom the portion of Flight 0 when the transmitter was 

still operating properly. Note that there is a nearly «cponential decay in x-ray intensity as 

the balloon ascends. This profile can be reproduced using a simple model: assume a 

source located at the ground that produces an intensity (as measured at the ground) of 70 

counts per second (cps). Such a source could be a result of the decay of Radon and its 

daughter products. These radioactive nuclei are more highly concentrated near the 

Earth’s surface (within 10 to 100 meters above ground) [Schery et a/., 1992]. Added to 

this is a constant source of 10 cps due to the cosmic-ray background. Both sources are 

assumed to be monochromatic at 75 keV. If the ground source is attenuated by the air 

(assumed to have constant density) between it and the detector as the balloon ascends, the 

dashed line on Figure 4.1 results.

Although this model is extremely simple, it fits the observed profile surprisingly 

well. As a result, it is assumed that the initial exponential decay in x-ray intensity is due 

to the detector moving away fiom a ground source. This "signature" was found to be 

present on all five flights.

4.2 Flight 1:24 May 1995

Flight 1 was launched into a MCS that passed over Norman Oklahoma on 24 May 

1995. Frequent intra-cloud lightning was observed before and during the flight. This 

flight was launched at 0047 UTC and reached a maxim um  altitude of 5.1 km MSL (above 

mean sea level) afier an ascent time of less than 20 minutes. The flight was short because 

the balloon burst prematurely. Although no specific cause for the balloon burst is known 

for this flight, common reasons are hail and lightning strikes to the balloon. Figure 4.2
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Figure 4 Sounding of x-ray intensity and electric field for Flight 1 made from Nonnan, Oklahoma on 24 
May 1995. This, and the plots for the three additional flights that follow are all plotted on the same scale 
for easier comparison

shows the complete sounding of both x-ray intensity and electric-field for Flight 1. The 

instruments were recovered in October east of Moore, Oklahoma.

During the ascent, the balloon passed fiirough one region with a positive electric 

field near 4 km MSL. While in this region, an increase in x-ray intensity was observed. 

When the balloon reached 3.9 km MSL, a lightning flash reduced the measured electric 

field, and at the same time the x-ray intensity quickly returned to near background levels. 

Lightning flashes are determined by fast (over one data point) changes in the electric 

field.
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4 3  FUght2:24M ay 1995

Flight 2, launched at 0141 UTC, was in the same storm as Flight 1. At the time of 

launch, the lightning activity was less frequent than at the time of the launch of Flight 1. 

The balloon reached an altitude of 7 km MSL at 0210 UTC and began to float (neither 

ascending or descending), most likely because of ice loading on the balloon (freezing 

level occurred at 3.9 km MSL). The balloon descended to about 2 km MSL (pressure 850 

mb) at 0253 UTC, and then climbed back to 7.2 km MSL at 0320 UTC. Again, 

presumably loaded with ice, it began to descend again. At 0341 UTC, flight recording 

was terminated with the balloon still descending. Although the flight lasted over 2 hours 

with multiple ascents and descents, only the data from the initial ascent are shown. Data 

from later portions of the flight are considered to be unreliable due to very poor 

telemetry. Figure 4.3 shows the data from the first ascent of Flight 2. The instrument 

packages fiom Flight 2 were recovered in southeast Kansas a few weeks after launch.

Electric fields of both polarities were observed during this flight. However only a 

very small increase in x-ray intensity was observed near 4.2 km MSL in a region of 

negative electric field.
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Figure 4 J .  Flight 2 sounding of x-ray intensity and electric field.
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4.4 Flight 3:27 May 1995

Flight 3 was launched from Norman Oklahoma at 0605 UTC on 27 May 1995. 

The balloon reached a maximum altitude of about 18.5 km (71 mb pressure) at 

approximately 55 minutes after launch. At about 12 km MSL and at an ambient 

temperature of about -60 °C, the mercury switch on the electric-field meter fix>ze. 

Although this switch is used to determine the polarity of the electric field, it does not 

affect measurement of the field magnitude. No significant electric fields were observed 

above 10 km MSL. During this flight, two regions with an electric field exceeding 50 

kV m^ were observed, one of each polarity (Figure 4.4). In both cases, significant 

enhancements in x-ray intensity were observed. The x-ray intensity quickly returned to 

near background levels at the time of a lightning flash.
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Figure 4.4. X-ray and electric-field sounding for Flight 3. Flight 3 was made fiom Norman, 
Oklahoma on 27 May 1995.
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4.5 FUght 4:29 June 1995

The final flight of 1995 was made in the Oklahoma Panhandle near Hardesty (east 

of Guymon). The balloon was launched at about 06(X) UTC and reached a maximum 

altitude of 17.5 km MSL after 75 minutes of flight time. Figure 4.5 shows the sounding 

of electric field and x-ray intensity. Four regions of strong (magnitude of about 50 kV/m 

or greater) electric field were observed on this flight, two of each polarity. Although no 

increase in x-ray intensity was observed in the thunderstorm, x-ray pulses with a duration 

of about 1 second were observed near 15 km MSL. No significant electric field was 

observed at the time of the pulses. Eack et al. [1996a] could not draw any conclusions 

about the origin o f these pulses. Appendix C discusses these pulses in further detail.
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Figure 4.5. X-ray and electric-field sounding fiom Hardesty Oklahoma (Flight 4) made on 29 Jun 1995. 
The x-ray spike at 15 km MSL is one ofdnee x-ray pulses described in £hck et a/. [1996a].
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Chapter 5 
Discussion

This chuter contains a discussion of the balloon observations introduced in 

Chapter Three. On three of the four flights in 1995 significant increases in x-ray 

intensity were observed. Two x-ray events were associated with positive electric fields, 

and one with a negative electric field. There was one less significant event, with poorer 

counting statistics. There were also three cases in which electric fields larger than 50 kV 

m'̂  (two positive, the other negative) were observed but where no x-ray increases were 

observed. For each x-ray event, a souice-to detector distance is estimated. The electric 

field at this distance is computed using a simple charge distribution based on the vertical 

and horizontal electric field measured by the EFM. In all the x-ray data presented, 3o 

error bars are shown, where a=N'^ and N is the number of counts detected (Poisson or 

counting statistics) [Taylor, 1982].

5.1 Source-to-detector Distance Estimates and Electric Field at X-ray Source

The ultimate goal of x-ray measurements in thunderstorms is to understand what 

mechanism is at work and to discover what effects the mechanism may have on the 

thunderstorm itself. In order to do this, a direct measurement of the source electrons 

would be ideal, however so for only x-ray emissions caused by these electrons have been 

observed. Therefore, as a tentative first step towards understanding the source 

mechanism, the distance fix>m the source to the detector will be estimated fiom the x-ray
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data. The source location and intensity cannot be uniquely determined using only a 

single detector. To estimate the souice-to-detector distance, two methods are used.

These look at either (1) the behavior of the x-ray event increase and decrease as the 

balloon ascends and (2) the relative intensity of each energy channel. Both methods use 

atmospheric absorption of x rays and do not include Compton scattering. Although 

important, calculating the scattering effects on x-ray intensity and spectrum requires a 

Monte Carlo computer code {McCarthy and Parks, 1992] and is beyond the scope of this 

work. The purpose here is to determine whether or not the observations and models 

(Chapter 2) are consistent Eventually, a more detailed analysis should be undertaken.

After making an estimate of the source-to-detector distance, the next step is to 

estimate the electric field that may have occurred at the source location. In context of the 

current models, the question to be answered is: could realistic charge distributions allow 

the electric field at the estimated distance of the source to exceed breakeven (Egg). To 

estimate this, the horizontal component of the measured electric field is used. In doing 

this, the only assumption that is made is that the horizontal field is due to a single 

uniform spherical charge distribution located at the estimated source distance fiom the 

balloon path. This charge is centered at the altitude of observed peak x-ray intensity. 

From this distribution, the electric field at the source and at the balloon is calculated and 

compared with the breakeven field and the actual electric-field measurement.
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5.1.1 Distance Estimation

Attenuation of x rays in matter is an exponential process [£vons, 1955]. The 

attenuation length is dependent on the energy o f the x ray and for this case the density of 

air. As in calculating the efficiency of the detector, the average value of the attenuation 

length, in this case for X rays in air, for each ofthe three energy bins will be used. Of the 

four x-ray events observed, three occurred at 4 km and the fourth at 8 km MSL. At 4 km 

the attenuation lengths are: 65 m, 87 m, and 131 m and at 8 km: 107 m, 143 m, and 216 

m for channels 1,2 and 3 respectively. The attenuation at distance r for each channel is 

given by:

7,=5,exp(-r/p,) a =1,2,3 (1)

where n is the spectrometer channel number, p, is the attenuation length for channel n, 

and Ig and S„ are the x-ray intensities at the detector and source respectively. The total x- 

ray intensity at the detector is then given by:

^total ^total ^
a=l

where is the source intensity. The distance r is that due to the vertical separation, 

which changes as the balloon ascends, and the horizontal separation that is assumed to be 

constant. The horizontal separation is defined as the source-to-detector distance when the 

source and detector are at the same altitude. The vertical separation is assumed to be zero 

at the point where the peak x-ray intensity is observed.

To estimate the horizontal distance, the S /s  are set to 0.55,0.28, and 0.16 for
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n=l^, and 3. These values were calculated by Gurevich et al. [”Theory of x-ray emission 

and fast preconditioning associated with thunderstorms”, submitted to J. Geophys. Res.,

1997] for bremsstrahlung emissions finm energetic electrons produced in thunderstorm 

electric fields. The exact spectrum of x-ray emission depends on the energy spectrum of 

the electrons, which is in turn dependent upon the electric field. Electric field values of 

about 1.2 Egg were used for the calculation o f the x-ray spectrum.

Distance estimates using the rate of rise to and fall from peak intensity essentially 

involves fitting equation (2) to the observed data. Two rate of rise methods were used. 

The first is a trial and error method where only 8^,̂  and the horizontal separation are 

varied. The source strength is set so that the peak height of the calculated curve is the 

same as the peak height of the observed. Varying the horizontal separation changes the 

width of the calculated curve and its curvature. The horizontal distance is varied until 

the curve best matches the observed data. The second method uses a chi-square 

minimization using the same parameters and equation. Plots of the first method are 

included in this chapter, while the chi-square plots are shown in Appendix D.

The second way to estimate the horizontal separation is to compare the predicted 

Ig's (equation 1) to the spectral intensities measured at the total x-ray intensity peak. Two 

comparisons are made. The first is with a calculation made by Gurevich et al. ["Theory 

of x-ray emission and fast preconditioning associated with thunderstorms”, submitted to 

J. Geophys. Res., 1997]. However I believe that this calculation is not correct, and so 1 

have calculated my own version of this and use it for the second comparison. My 

calculations are included in Appendix D. The results of all methods are included in the 

discussion of each event and are summarized in Table 5 .1 at the end of this chapter.
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5.1.2 Simple Charge Dbtribotion

After estimating the source-to-detector distance, the electric field at the estimated 

source location is calculated. This is based on the measured electric field using both the 

vertical and horizontal electric components. See Appendix B for details. Most MCS 

charge analyses result in uniform horizontally extensive (considered to be infinite) charge 

layers [Stolzenburgy 1996]. This charge structure will produce only a vertical electric 

field, resulting in a thin trace on the electric-field plot (Figure 5.1). The electric-field data 

shown in Chapter 4 indicates that there is a horizontal component present. This means 

that there is some inhomogeneity in the charge layer, either in charge density or in

Electric Field (at BaOoon)

Figure 5.1. Schematic diagram of horizontal charge layers in the stratiform 
region of an MCS. Note du t in the qualitative electric field schematic, the 
trace is thm indicatmg that dure is no horizontal component to the electric 
field. The equation at the bottom of the field plot is Gauss’s law in one 
dimension, and is used to determine the charge density in die layers fiom 
an electric field sounding.
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Etadrte FieU (at Balloon)

Figure 5^. Schematic diagram of charge distribution with spherical charge 
“mhomogeneity” in charge layers. Note that the electric field schematic is 
relatively wide, mdicating die presence of a horizontal component in the electric 
field.

distribution or thickness of the layer. For these purposes, a spherical discontinuity in the 

charge density in one of the layers is used. This is an octremely simple distribution, but, 

as the results show, serves as a good test for these calculations. The variation in charge 

density can be viewed as a spherical charge embedded in a horizontal charge layer 

(Figure 5.2). This spherical charge is centered at the source-to-detector distance 

estimated for each case. The total charge in the spherical region is determined from the 

estimated horizontal electric field. The sphere is allowed to have a radius no larger than 

the source-to detector distance, since any charge located outside this distance would not 

contribute to the horizontal field. As a result, the field of the spherical charge observed at 

the balloon is the same as a point charge located at the center of the sphere. The density
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of the horizontal layers is calculated by a one-dimensional Gauss’s law approximation as 

described by Stolzenburg [1993]

After the total charge in the spherical distribution is determined, the electric field 

fix)m the spherical charge and the horizontal layers is calculated along a vertical path that 

goes through the center o f the spherical charge (thick dashed line in Figure 5.2). These 

are plotted for each of the four x-ray events and provide an estimate of the field in the 

source region. Finally the electric field fit>m this simple charge distribution calculated 

along the actual balloon path (thin dashed line in Figure 5.2) is plotted for comparison 

with the observed electric field.

5.2 FUght 1:24 May 1995

5.2.1 Discussion of X-ray Event

Figure 5.3 is a plot at high resolution of the x-ray increase near 4 km MSL. On 

the electric field plot, the breakeven field strength (Egg) and 2/3 Egg are also shown for 

comparison. As the balloon reached 3.7 km MSL, the x-ray intensity began to increase as 

the balloon entered the positive electric field region at 4 km, and peaked at about 3.9 km. 

At this point, a lightning flash occurred at an unknown distance reducing the local electric 

field, as shown by the abrupt change in the electric field (mariced with an "L” in Figure 

5.3). At the same time, the x-ray intensity abnq)tly returned to background levels. About 

ten seconds later, another lightning flash, again at an unknown location, increased the 

local electric field, with a simultaneous increase in the x-ray intensity. The total duration 

of this event was about 90 seconds. Figure 5.4 shows the individual energy channels for
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the event. The majority of the observed x rays were in the center (60 to 90 keV) channel. 

During the period that the x-ray levels returned to background, the spectrum is similar to 

that of the background observed below and above the region of increased x-ray intensity.
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Altitude (km MSL)

Figure 5.3. Detail of x-ray event observed near 4 km MSL. Electric-field transients due 
to lightning flashes are mdicated by an T ."  The x-ray event begms near 3.7 km and lasts 
for nearly 1 minute. The time between die two flashes is 10 seconds. Horizontal error 
bars result from die ̂ 1 second error m timing between die x-ray and electric-field data 
sets. Egg is the breakeven field discussed in Chapter 2.
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Figure 5.4. X-ray intensity in each energy channel and the total intensity observed by all three channels 
(lower most panel). Note that the low x-ray intensity near 3.9 km has a spectra similar to that of the 
background that was observed before and after the event
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Using the spectral information and assuming that the source was constant during 

the observation time, an estimate can be made of what would be expected for a detector 

moving towards and then away from a source. To do this, the location and height of the 

peak x-ray intensity is found for each channel. For each channel, the average attenuation 

length is used for each channel (42 keV for channel 1,73 keV for channel 2, and 104 keV 

for channel 3; at 4 km M.S.L. the attenuation lengths are 65m, 87m, and 131m 

respectively). Figure 5.5 shows the observed x-ray intensity and the estimated intensity 

using the above assumptions. It appears that the slow increase and decrease at the 

beginning and end of the event are a result of the vertical ascent of the balloon.

3500
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S  1500
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3.4 3.63.5 3.7 3.9 4.0 4.1 4.3 4.4
AlWude (km MSL)

Figure 5.5. Estmiated x-ray intensity superimposed onto Ae observed x-ray intensity. 
The estimated flux was calculated by using die peak flux and Aen attenuating it to 
account for Ae distance between the detector and the peak location. This estimate shows 
that Ae slow rise and fail of Ae event appears to be due to Ae motion of Ae detector 
towards and away from Ae x-ray source.
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The previous estimate used only the observed x-ray peak locations to gain some 

insight into the temporal behavior of the observation. This assumes that the source is in 

the path of the balloon as it flies through the thunderstorm. There is no reason a priori to 

assume this, histead assume a source at 4 km MSL that is located some distance away 

from the balloon flight path. Total source strength in the simple model is left as a free 

parameter and is adjusted so that the estimated peak intensity at the balloon is the same as 

the observed peak intensity. Figure 5.6 shows the observed data with two model plots for 

a horizontal distance o f250 m and 500 m from the x-ray source. Although the match is 

not perfect, especially for the rise to peak, the best fit is for a source located 

approximately 250 m away finm the balloon path. A chi-square fit (Appendix D) 

estimates the distance at 23frt30 m.
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Figure 5.6. Estunates of x-ray mtensity for a source located 250 m and 500 m from the 
flight path of the balloon. The observed x-ray intensity is shown for comparison.
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Estimates using the relative intensities of the each energy channel at peak x-ray 

flux cannot be estimated using my calculations, most likely a result of neglecting 

Compton scattering effects on the spectrum. The method of Gurevich et aL [submitted, 

1997] estimates the distance to be 500 m and also does not include Compton scattering.

hi all of the estimates, only attenuation between the source and the detector was 

considered, with no inclusion of Compton scattering. Compton scattering may prove to 

be an important effect, especially for the rise to peak, since the detector looked down, 

away hom the source as the instrument approached the source region.

5.2.2 Electric Field

As the plot in Figure 5.3 shows, the observed electric field does not appear to 

support either type of x-ray production theory. Since the electric field strength reaches 

only 2/3 Egg for a vertical distance of about 200 meters, the electron “gathering” model 

[McCarthy and Parks, 1992] does not appear to be a suitable explanation. The x-ray flux 

observed is about 44 (cm  ̂s Sr)*‘, similar to the 50 (cm  ̂s Sr)*‘ that McCarthy and Parks 

[1985] observed. The number of energetic electrons produced by a “gathering” 

mechanism is too small to account for x-ray fluxes in this range [McCarthy and Parks. 

1992]. Two possible explanations (other than instrumentation related errors) for this are 

that (1) runaway electrons may occur in weaker electric fields than predicted, and (2) the 

electric field elsewhere in the storm is greater than the breakeven field strength. The first 

explanation appears to be very unlikely, since the energy loss in matter and energy gain in 

an electric field for energetic electrons are well known. I will concentrate on the 

possibility that the electric field was stronger at some distant point, but not so distant that
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the x-ray signal is not observable.

In the previous section, the source to detector distance was estimated using the 

attenuation of a source located off the balloon path (Figure 5.6) and was determined to be 

about 250 meters. During the x-ray event obsaved the horizontal field was about 50 

kV/m. For a spherical charge distribution centered 250 meters away from the balloon 

path, the total charge required for a 50 kV/m horizontal electric field is 0.35 C. This 

results in a charge density o f 83 nC m'̂  for a sphere with radius 100 m, and 10 nC m ̂  for 

a 200 m radius. The 200 meter sphere has a charge densi^ a factor of 2-3 times greater 

than measurements in the stratiform region have estimated [Stolzenburg et al. [1994]. 

Figure 5.7 shows the electric field along a path through the source location and the field 

that should be observed by the balloon calculated from the simple charge distribution.

For the 100 meter sphere, the electric field reaches nearly 2.2 Egg and exceeds breakeven 

over a vertical distance of about 100 meters, where the field of the 200 meter sphere 

peaks just above the breakeven field strength. The 100 meter sphere has two problems. 

First, the charge density is excessive, a factor of 10 greater than previous measurements 

[Stolzenburg, 1993]. The 100 meter sphere should also create a second region where 

runaway breakdown can occur at 4.1 km MSL. The x-ray measurements do not indicate 

occurred. From this argument, it seems plausible that a runaway electron process 

occurred within 250 meters o f the balloon resulting fiom an reasonable variation in the 

charge density o f the horizontal layer.
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Figure 5.7. Left panel shows calculated electric field fbr a path ditough the center of the spherical charge 
(not the balloon path) for two spherical charges widr the same total charge and different radii. This is 
added to the field ftom horizontal layers, which is shown separately for comparison. Electric field has no 
horizontal component due to symmetry. The right panel shows a comparison between the observed electric 
field at the balloon, and the toud electric field calculated from the model charge distribution along the 
flight path of the balloon. The two compare very well, considering die simplicity of the charge 
distribution.
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5.3 FUght 2:24 May 1995

5.3.1 X-tay Event

The x-ray event observed on this flight (Figure 5.8), made shortly after Flight I, 

was much weaker and associated with a negative electric field. The x-ray event at 4 km 

MSL has a peak intensity of about 70 cps, with a background rate of about 10 cps.

Again, as in flight 1, the x-rays abruptly decreased nearly to background levels at the time 

of a lightning flash. After this flash there appears to be a slow increase in x-ray count rate 

to approximately 40 cps. This second increase also terminated at the time of a lightning 

flash when the balloon was near 5 km MSL. A third increase, although extremely weak 

with only a few to 10 cps above background level appears to be coincident with the 

positive electric field region at 5.3 km to 5.9 km MSL. This last event is more easily 

discernable in the individual channel data figure 5.7). The majority of this increase, as 

well as the previous two, occurs in channel 3 (90 to 120 keV).

The three events are much weaker than that observed in Flight 1. Most of the 

increases for the Flight 2 event occur in the higher energy channels. A higher 

proportion of counts in the upper channels could indicate greater distance to the source, 

since higher energy x-rays have longer attenuation distances. Also the longer distance 

between source and detector would attenuate the x-ray signal so that it would have a 

lower peak intensity. In order to estimate the source to detector distance, the procedure 

described in section 5.1 and in section 5.2.1 are repeated. Using the peak locations from 

each channel, an estimate of the profile (fi>r the first event) that would be expected due to 

balloon motion alone is found and is shown in Figure 5.10.
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Figure 5.8. Detail of x-iay event observed near 4.2 km MSL. Electric-field transients due to lightning 
flashes are indicated by an “L.”.
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Figure 5.9. X-ray intensity in each energy channel and the total intensity observed by all three channels 
(lower most panel). The majority of the counts during die event were observed in the 90 to 120 keV 
energy chaimeL
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Figure 5.10. Estimated x-ray mtensity superimposed oa to the observed x-ray 
mtensity. The method used to calculate the estmiated flux is same as Figure 53.
The slow rise of die event ̂ ipears to be due to the motion of the detector towards 
the x-ray source

The profile generated matches the observation much better than in Flight 1, and appears 

to indicate that the slow variations are due mostly to the change in detector to source 

distance as the balloon ascends. Again, there is no reason to assume the balloon flew 

directly into the source, so additional expected profiles are generated with a source 

located horizontally away fiom the balloon flight path. Figure 5.11 shows this profile for 

horizontal separations o f250 and 500 meters. The profile for 250 meters matches the 

observed profile better. Both estimates do not indicate that the source was located any 

farther away than in Flight 1. The chi-square estimate is 200±30 m.

Relative spectral intensities estimate a distance of275 m by my calculations, and 

250 m by those of Gurevich et al. [submitted, 1997].
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Figure 5.11. Estimates of x-ray mtensity fbr a source located 250 m and 500 m &om 
the flight path of the balloon. The obse^ed x-ray intensity is shown for comparison.

5.3.2 Electric Field

As in Flight I, the horizontal electric field is used to estimate the amount of 

charge necessary at the estimated source to detector distance determined above. For a 

distance o f250 meters at closest approach and a horizontal electric field of 25 kV/m, a 

charge of 0.17 C is required. Distributing this charge in spheres with radii of 100 and 200 

meters results in a charge density of 42 and 5 nC/m?. The vertical field fiom this 

spherical charge is less than 5 percent of the observed vertical field. Most of the vertical 

electric field is produced by a horizontal charge distribution. Figure 5.12 shows the 

vertical electric field finm the two charge distributions as a fimction of distance fiom the 

center of the spherical charge, and the expected field as observed at the balloon. For the 

100 meter sphere, the maximum electric field is about 1.4 Eĝ  and breakeven is exceeded
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over a vertical distance of about SO meters. The 200 meter spherical charge reaches a 

maximum of 0.8 5^^ b  comparison to Flight 1, it seems rather unlikely that a runaway 

electron x-ray source would he operational in both Flights 1 and 2 at similar distances and 

produce an x-ray intensif a factor of 50 smaller. Also the charge density for the 100 

meter sphere is large relative to previous estimates [Stolzenburg, 1993].

Electric Field at X-ray Source
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Figure 5.12. Left panel shows calculated electric field for a padi through the center of the spherical 
charge (not the balloon path) for two spheres containmg die same amount of charge but with different 
radii. Electric field has no horizontal conqiooent due to symmetry. The right panel shows a comparison 
between the observed electric field at die balloon, and die electric field calculated fiom the model charge 
distribution along the flight path of die balloon. The two compare very weU, considering the simplicity 
of the charge distribution.
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However, the electric field profile observed may woric well for the electron 

“gathering” model. The electric field was measured to be close to 2/3Egg between 4 and 

5 km MSL and again between 5.5 and 6.5 km MSL. This profile fits with the model 

proposed in McCarthy and Parks [1992]. This model did not appear to be able to explain 

the high x-ray fluxes observed by aircraft observations similar to those observed in the 

first flight [McCarthy and Parks, 1985], because the number of electrons available was 

too small by a factor of 8. Considering that the model also predicted each electron would 

produce ^proximately 10 x-rays over a 1 km path length, the x-ray intensity predicted is 

a factor of 80 smaller than the aircraft observations or balloon Flight 1. However, it may 

account for the weak x-ray event observed during Flight 2, which is a factor of 50 smaller 

than observed in Flight I .
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5.4 FUght 3, Event A: 27 May 1995

5.4.1 X-ray Event

Figure 5.13 shows the detail ofthe first x-ray event observed during Flight 3. A 

region of strong negative electric field was measured at about 4 km MSL. The peak 

electric field reached about 0.85 Egg. Coincident with the strong electric-field was a 

significant increase in the x-ray intensity, reaching nearly 2000 cps. From the geometry 

factor o f the instnunent, the peak flux was calculated to be 32 (cm  ̂s Sr) '. During the x- 

ray event, two changes in the electric field, one at about 3.9 km MSL and the other at 

about 4.3 km MSL caused a large change in the measured x-ray intensity. The first was 

an abrupt decrease in the electric field accompanied by a decrease in x-ray intensity. The 

second change in electric field caused a change in x-ray intensity fiom nearly 1800 cps to 

200 cps. Figure 5.14 shows the individual energy channels for this event. Most of the 

increase occurred in channel 2 (60 to 90 keV). One interesting feature of the spectra is 

that the peak flux in channel 3 (90 to 120 keV) occurs right before the event turns off at 

4.3 km MSL. One explanation for this might be a change in the source to detector 

geometry. Since electrons in a negative electric field are accelerated upward, the 

bremsstrahlung photons emitted will also have an upward momentum. For a downward 

looking detector located below the source, upward moving x-rays will have to scatter at 

least twice before they have any chance to he detected. These two Compton scattering 

events will degrade the energy spectrum. Once the detector is above the source, x rays 

emitted from the source can be detected without any scattering. The x-ray event ended 

shortly after the increase in 90 to 120 keV x-ray count rate.
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Figure 5.13. Détail of the first x-ray event observed during Flight 3. The electric-field transient from a 
lightning flash is indicated by an “L.” The event lasted for about 45 seconds until die time of the flash.

57



90-120 keV

2000
60-90 keV

800
COI &600
JE S  
^  400

30-60 keV

200

^ 2 0 0 0
CO

I 1500 
c
^ 1000

500

3.7 3.8 4.03.9 4.1 4.2 4.3
Altitude (km MSL)

Figure 5.14. X-ray intensity in each energy channel and die total intensity observed by all three channels 
(lower most panel). Most counts during the event were in die 60 to 90 keV channel. The cause of the 
increase in counts in the highest energy bin near die end of the event is not known. It is possible that this 
is a result of the detector reaching a position where scattering was unnecessary for the x-rays to reach it.
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Once again, the slow increase to peak can matched by taking into account the 

motion of the balloon. Figure 5.15 shows the expected curve for a detector moving 

directly towards a source with peak locations determined by the individual energy 

channels. Again, there is no reason to assume that instrument went directly through the 

source. Using the relative intensity of the bremsstrahlung source for each channel, a 

model curve is generated for a source located at some horizontal distance finm the 

balloon flight path. Figure 5.16 shows these curves for distances of 100 and 250 meters. 

For this case, the best match is the 100 meter curve. The chi-square calculation gives an 

estimate of 40tl0  m.
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Figure S.15. Estimated x-ray intensity superimposed on to die observed x-ray intensity. 
The mediod used to calculate the estmiated flux is same as Figure 5.5. The slow rise of 
the event appears to be due to the motion of die detector towards the x-ray source
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Estimates using the relative spectral intensif at peak are 200 m fiom the 

calculation of Gurevich et al, [submitted, 1997]. No estimate could be made using my 

calculations (Appendix D), indicating that the effects of scattering on the spectrum are 

important

5.4.2 Electric Field

During this flight the electric field reached nearly 0.9 Egg. The horizontal field at 

the time of the peak x-ray flux was about 65 kV/m. Since the source is estimated to be 

only about 100 meters away, the 200 meter spherical charge distribution used for the 

previous two flights will not be used. For a spherical charge distribution with a radius of 

100 m located 100 meters away fiom the balloon, a horizontal field of 65 kV/m requires a 

total charge of 0.12 C, and gives a charge density in the spherical region of 29 nC/m .̂

The field fiom the spherical charge is added to the vertical field fiom the horizontal 

charge layers. The total vertical electric field fiom this configuration is shown in Figure 

5.17. The electric field reaches a peak of about 1.4 Egg and exceeds breakeven over a 

vertical path of about 75 meters. Again it seems reasonable to believe that a runaway 

process could have occurred near the balloon that produced the observed x rays.

Although the electric field profile exceeded 2/3Egg, it did so only for about 200 meters, so 

it does not seem likely that the x rays were generated by an electron “gathering” type of 

mechanism. The high flux similar to the aircraft measurements [McCarthy and Parks, 

1985] also appears to make this mechanism unlikely.
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Figure 5.16. Estimâtes of x-ray intensity for a source located 100 m and 250 m 
&om the flight path of the balloon. The observed x-ray intensity is shown for 
comparison
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Figure 5.17. Left panel shows calculated electric field for a padt dirough the center of the 
spherical charge (not the balloon path) for a 100 m sphere with 0.12 C total charge. The right 
panel shows a comparison between the observed electric field at the balloon, and the electric 
field calculated from the model charge distribution along the flight path of the balloon.
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5.5 Flight 3, Event B: 27 May 1995

5.5.1 X-ray Event

The second event observed on Flight 3 has a much di£ferent character fiom that of 

the previous three events. A plot of this event and the observed electric field is shown 

with higher resolution in Figure 5.18. Since models of the runaway mechanism predict 

exponential electron multiplication over the distance in which the electric field exceeds 

breakeven, the x ray production would be strongly affected by small variations in the 

electric field [M.P. McCarthy, private communication]. This may indicate that the 

electric field in the source region was very close to the threshold needed for the x-ray 

production.

Assuming the source is in the direct flight path of the balloon, a model curve is 

generated to compare the observation to what might be expected for a balloon moving 

towards the source. The location of the peaks was determined fix)m the spectral data 

plotted in Figure 5.19. The model curve in Figure 5.20 matches the overall profile of the 

event fairly well, but with the assumption of a constant source, the fast variations are not 

accounted for. The analysis used previously for a source horizontally distant from the 

balloon flight path is again q*plied. In the case shown here, the model curve is matched 

with the second peak. The first peak was also tried, and gives a similar result. Figure 

5.21 shows the model curves fiir 250 and 500 meters, with the 250 meter curve providing 

the best match. The chi-square method estimates the distance to be 470t50 m. The 

spectral method of Gurevich et al. [submitted, 1997] gives an estimate o f500 m. My 

spectral method is unable to produce an estimate. Again indicating that scattering may be 

playing an important role.
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Figure 5.18. Detail ofdie second x-ray event observed during Flight 3. An electric-field transient, 
possibly due to a lightning flash is indicated by an “L.”
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(lower most panel) for the second event observed during Flight 3.
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Figure 5.21. Estimates of x-ray intensity for a source located 100 m and 250 
m fiom die flight path of die balloon. The observed x-ray intensity is shown 
for comparison
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5.5.2 Electric Field

The electric field observed at the balloon during the event reached 2/3 Egg over a 

vertical extent of about 500 meters. During this time, the horizontal field was 35 kV/m. 

For a spherical charge region centered 250 meters away, a total charge of 0.25 C is 

required, giving a charge density of 60 or 7.5 nC/m’ for a spherical region with radii of 

100 or 200 m. The electric field fiom this charge is then added to the field firom the 

horizontal layers, and the result is shown in Figure 5.22. The 100 meter spherical charge 

region produces a region of electric field that exceeds breakeven for about 100 meters and 

reaches a peak of about 2.4 Egg, and the 200 meter sphere also produces a field that just 

reaches breakeven for a limited vertical extent. The excessive charge density in the 100 

m sphere spears to make it an unlikely possibility. The sphere with a radius of 200 

meters provides a plausible explanation for x-ray production with an electric-field profile 

on the edge of producing a runaway avalanche. As a result small variations in the field 

could create large variations in the numbers of electrons and x rays produced.
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Figure 522. Left panel shows calculated electric field for a path through the center of the spherical charge 
(not the balloon path) for 100 and 200 m spheres with 025 C total charge. The right panel shows a 
conq>arison between the observed electric field at the balloon, and the electric field calculated firom the 
model charge distribution along the flight path of the balloon.
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5.6 FUght 4:29 June 1995

There were no increases in the x-ray count rate observed while Flight 4 was inside 

the thunderstorm. Figure 4.5 shows that there were two regions of strong electric field 

observed during this flight. The first was at 4 km MSL and was about 1 km thick. The 

magnitude of the electric field in this region was nearly constant at 75 kV/m, with a 

vertical component of about 45 kV/m. The second region has a peak magnitude of about 

70 kV/m and a vertical component ranging from 50 to 70 kV/m. Appendix C has details 

on the x-ray pulses observed while the balloon was above the thunderstorm.

5.7 FUght 0: 27 May 1994

The flight made in 1994 (Flight 0,24 May 1994) briefly mentioned in Chapter 4 

was not a complete failure, in the sense that it helps show that the source and detector 

must be relatively close in order to observe significant x ray count rates. Figure 5.23 

shows the x-ray and electric-field observations for Flight 0. The x-ray instrument 

telemetry stopped at about 3.5 km MSL. Note that a strong negative electric field region 

was located 500 meters higher. This field in this region had a peak magnitude of about 

70 kV/m and a vertical component of 50 kV/m. This was slightly weaker than the field 

observed during the event of Flight 1, and might be enough of a difference that runaway 

did not occur in this first region of strong electric field. However the second electric-field 

region of interest was located about 900 meters above the failure point of the telemetry. 

The electric field had a peak magnitude o f 100 kV/m and a vertical component of 80 

kV/m. This is similar in magnitude and altitude to the field observed during the first 

event of Flight 3. It seems reasonable that there might have been an increase in x-ray
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count rates associated with this strong electric field. Since the distance o f900 meters is 

almost 9 e-folding lengths for the high energy channel, and more for the lower channels, 

the x-ray source would have to have been very strong to be observable at this distance.

100

o -50

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
Altitude (km MSL)

Figure 5.23. X-ray and electric-field sounding from Flight 0 made on 24 May 1994. Note that the peak 
magnitude of the electric field was larger than observed m the later flights. Although strong electric-fields 
were located less than 1 km away (assuming die electric-field profile remained somewhat constant) there 
was no observable mcrease in x-ray intensity.
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Table 5.1 Estimate of source-to-detector distances usmg fourmetfaods.

Method Fliiditl Flight 2 Flight 3A FUght 3B

Rate of Rise/Fall 250 m 250 m 100 m 250 m

Chi-square 
Rate of Rise/Fall

230±30m 200i30m 401:10 m 470*50 m

Spectral Intensif 
Gurevich et aL [1997]

500 m 250 m 200 m 500 m

Spectral Intensity 
Appendix D

No Estimate 
Possible

275 m No Estimate 
Possible

No Estimate 
Possible
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Chapter 6 

Concluding Remarks

6.1 Samnuuy

The five flights presented here are (at this time and to the best of my knowledge) 

the only simultaneous observations of x-ray intensity and electric field inside 

thunderstorms. Although the data set is small, the x-ray observations are similar to those 

previously made fi»m aircraft [Parks et aL, 1981; McCarthy and Parks, 1985]. Because 

of the duration of the x-ray events observed and of the coincidence between the reduction 

in the local electric field and the return of x-ray intensity to or near background levels, I 

conclude that the x-ray production mechanism responsible for these observations is 

driven by the large-scale thunderstorm electric field.

The question of exactly how thunderstorm electric-fields can produce enough 

electrons to account for the observed x-rays is difficult to answer with the present data 

set. The analysis presented demonstrates that the x-ray events observed (except for Flight 

2) can be reconciled with the runaway electron model (electron multiplication) using 

estimates of the horizontal electric field and the estimates o f source distance based on the 

rate of change with height of the x-ray intensity (Table 6.1). However, the data fix)m a 

single detector observing a source with an unknown energy spectrum, spatial size, and 

location cannot be used to derive a unique explanation of the observations. Also, since 

the electric-field measurement is valid only for the point at which it was measured, there 

is no way to know exactly what the electric field was at any distant point.
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Table 6.1 Summary of analysis of x-ray events and the possible mechanisms behind their production.

Event NonrRunaway Local Runaway Distant Runaway

No No Yes
Flight 1 Intensity too great 

E-ficId region small
E<Eg£ Distance -  2S0 m

Yes No Yes
Flight! E=2/3 EggGir 1 km 

Low x-ray mtensity
E<Egg If Distance» 600 m and 

not at estimated 200 m
No No Yes

Flight 3A Intensity too great 
E-field region small

E<EK Distance» 100 m

No No Yes
Flight 3B Intensity too great 

E-field region small
E<E,e Oistance»250 m

6.2 Concerns

The result of this analysis seems to indicate that all of the sources were located 

100 to 300 meters away fiom the balloon. Although physically plausible, this is certainly 

not the only possible explanatioiL This may simply be a result of the high attenuation of 

x-rays in the lower atmosphere. It does raise some issues that at least need to be 

considered.

If the production mechanism only occurred in small localized areas in the storm, it 

would seem rather fortunate that two out of four flights observed large increases in x-ray 

intensity. It is more likely that x-ray production occurs over a large area (at least in the 

stratiform region of MGS storms) or that there are numerous localized “pockets” of x-ray 

production. If this is true, is a 100 meter scale length a characteristic of the 

inhomogeneity of the electric charge distribution in MCS stratiform regions? Yet another 

possibility is that x-ray production was much closer but did not require electric fields in 

excess of breakeven.
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A final possibility is that the presence of the balloon and instrument train reduces 

the field locally, and that the undisturbed electric field is larger than what is observed. 

Calibration of the electric-field meter does not indicate that this is the case for an isolated 

instrument {Stolzenburg, 1993]. Jonnson [1990] measured the conductance of materials 

used for balloon rigging under various conditions and found that currents on the order of 

I nA could flow through the rigging material. Jonsson [1990] argued that current 

flowing through the rigging would have a significant effect on the measured electric field. 

Since the conductance measurements were made on comparatively short pieces of line 

and in a laboratory environment, th ^  do not completely represent balloon flight 

situation. Based on a line current measurement made during a balloon flight and a few 

calculations, the effects of the small current that flows through the rigging (orders of 

magnitude less than reported in Jonsson [1990]) and the enhancement of the electric field 

due to the presence of a long thin dielectric (balloon rigging) are at worst case one- 

percent effects [Bateman, et al., "An instrument to measure balloon rigging line current 

inside thunderstorms, submitted to Journal o f Oceanic and Atmospheric Technology, 

1997].

6.3 Future Observations

Additional observations are needed not only to characterize the x-ray source 

better, but also to provide more information on the electric-field strength and vertical 

profile necessary for the production of the large numbers o f energetic electrons thought to 

be responsible for the x-ray production observed. Improvements on these observations 

can be made in a number of ways. First using dual detectors to look both upward and
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downward or to look for both x-rays and electrons at the same time should provide 

additional information on the location and nature of the x-ray source. Multiple balloon 

flights into the same storm, separated by a few hundred meters would also aid in locating 

the source. Finally improved resolution of the horizontal electric-field measurements in 

conjunction with multiple flights would give additional insight into the electric field that 

produces the energetic electrons and x rays.
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Appendix A 
X-ray Spectrometer Details

A.1 X-ray Detector Vendor and Parts List

HV supply and Pre-amp EG&G ScindPack Model 296 Price: $940

EG&G Ortec 
100 Midland Road 
Oak Ridge TN 37831-0895 
800-251-9750 (Val Johnson)

Gain XI or X6 preamp 
Output time constant: 50 ps

Photomultiplier Hamamatsu R1847-05 (flying leads) Price: $360

Hamamatsu Corp.
380 Foothill Rd.
P.O Box 6910
Bridgewater NJ 08807-0910 
908-231-0960 
800-524-0504 (Tech Asst)

10 stage 2" diameter 
Gain: 3x10^
Daric current: 2 nA

Nal Scintillator Bicron 2xr.080A (Deltaline) 

Bicron
12345 Kinsman Rd.
Newbury OH 44065-9577 
216-564-2251 
216-564-8047 (Fax)

Price: $340

2" diamter x 2 mm thick 
1 mil (0.001") A1 window 
0.125" thick optical window

Microcontroller Micro-485

Blue Earth Research 
165 W. Lind C t 
Mankato MN 56001-0400 
507-387-4001 
507-387-4008 (Fax)

Price: $299
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Transmitter AIR AS-IA-T (Temp only radiosonde) Price: $48

Atmospheric histrumentation Research 
8401 Baseline Rd.
Boulder CO 80303 
303-499-1701 
303-499-1767 (Fax)

Frequencies: 403.4,403.5 
403.6,404.4,404.5 ,404.6 MHz

A.2 Amplifier and Discriminator Circuit

*w

CF RF

CF OF

m
T M K X t l

c m t

Figure A.I. Schematic of distriminator and amplifier cscuit Pin numbers and power connections for the 
integrated circuits are not shown. 74HC221 monostable multivibrators (one-shots) are set to leading edge 
triggering. CF is 100 pF and RF is 20 kQ giving and output pulse duration of 1.4x10^ s. RP is a pull-up 
resistor with a valiK of 5.6 kfi. RO to R4 fimn die voltage divider diat sets the energy bms of the 
discrimmator. Typically R0-R3 are 3 kû for 30 keVbin spacings. R4 is chosen to calibrate the circuit and 
is different for each detector, since each has a different calibration.
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Appendix B 
Electric-Field Meter Data

The electric-field meter (EFM) measures both the vertical and horizontal 

components of electric field. The total electric-field vector is assigned the polarity of the 

vertical component. A positive electric field vector points inward and will accelerate an 

electron downward. The instrument senses both components by rotating about two axes 

(Figure B.l). Driven by a small motor, rotation about the horizontal axis at about 2.5 Hz 

allows measurement of the vertical electric field. A mercury switch is used to determine 

the orientation of the two spheres and therefore the polarity of the electric field. 

Rhomboid vanes made fiom Styrofoam on the ends of the instrument rotate the 

instrument about the vertical axis as the instrument ascends at a speed of about 5 m s ' (in 

still air). Rotation fi^quency is about 0.125 Hz. Horizontal orientation is determined by 

a simple magnetic compass [Stolzenburg, 1996]. Typically the horizontal electric field is 

unresolved, although recently a technique has been developed to deconvolve the vertical 

and horizontal components {Bateman, private communication).

Although unresolved, the horizontal field can be estimated using the electric field 

plots in Chapters 4 and 5. In many cases, the electric field plot has what appears to be a 

significant width to the trace. This results fiom the instrument sensing only the vertical 

electric field at some points and the total electric field at others. In Figure B.2. a sample 

electric field sounding is shown. The outer part o f the trace represents the total electric 

field, the sum of the horizontal and vertical components. The inner portion of the trace is
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the vertical electric field only [Stolzenburg, 1996]. The difference between these two, or 

the width of the trace is representative of the horizontal component. This is calculated 

using the Pythagorean theorem and the magnitudes of the vertical and total electric-field 

vectors.

Rotation: 0.125 Hz

Metal 
Spheres

Spin: 2.5 Hz Rhomboid Vones

Figure B.l. Du^ram of electric field meter. Spin 
around the horizontal axis and rotation about the 
vertical allow die mstniment to measure bodi the 
vertical and horizontal conqxments of die electric field. 
The metal spheres are used to sense the electric field 
and as the telemetry antenna.
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Figure Sample electric field sounding. The inner envelope of the trace is the measurement of the 
vertical component, while the outer envelt^  of the trace is die measurement of the total electric field. 
The dots marked Eg and E show the measurement at a single pomt of the vertical and total electric field 
respectively.
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Appendix C 

X ray Pulses

C.l ObservatioDS

At an altitude of about 15 km MSL (about 3 km above the electrical cloud top), 

and a measured pressure of 130 mb, we observed three x-ray pulses with peak fluxes of 

37,39 and 270 (cm^-s-sr)'*, each with a duration of about one second (Figure C.l). We 

define electrical cloud top as the altitude at which the electric field becomes insignificant, 

in this case at about 12 km MSL (Figure C.2). Time series plots of each energy channel 

are shown in Figure C.3. Note that in the lowest energy range (30 to 60 keV), the pulses 

are slightly longer (by a few counting intervals) than in the higher energy ranges. In the 

case of the first pulse, the low energy channel has a second peak 0.75 seconds after the 

first. With a single x-ray detector we cannot determine the location or spatial extent of 

the x-ray source. Although the detector field of view was upward, x-rays fiom a source 

located below the detector could have reached the detector as a result of Compton 

scattering.

The x-ray pulses occurred at 0654:50,0655:24 and 0655:26 UT. More than 100 

cloud-to-ground lightning flashes were reported within 350 km of the balloon by the 

National Lightning Detection Network ̂ 4LDN) during a two minute period from 

06:54:00 to 06:56:00 UT (Figure C.4). Eleven of these were positive flashes. Two of the 

positive flashes occurred at 06:55:22 and 06:55:24 UT (within two seconds of the last 

two x-ray pulses). These were both single-stroke flashes with reported peak currents of
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Figure C l. Plot of three x-ray pulses observed near IS km MSL on 29 June 
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Figure C.2. Complete ascent sounding o f x-ray intensiQr and electric field.
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about 75 kA. The first was 170 km fit>m the balloon location, while the second was

about 110 km distant. Negative flashes also occurred at the time of each x-ray pulse, and

in each case had peak currents of about -20 kA and located about 125 km fiom the

balloon's position. We also visually observed a horizontally extensive lightning

discharge northeast of the launch site at 0655:23 UT.

At the time of the x-ray pulses, the steady electric field measured at the balloon 

was about -500 V/m (electric-field vector directed downward). No significant changes in 

electric field were observed at the time of the x-ray pulses. However, in other balloon 

measurements [Marshall et al.. 1996] electric-field "discontinuities" have been observed 

above the cloud. These appear to be associated with lightning and have durations ranging
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from several seconds to several tens of seconds and field-change magnitudes of 1.1 to 4 

kV m ‘.

C.2 Discussion

The measurement of no significant electric field or field change at the times of the 

x-ray pulses is puzzling when viewed with the current theories on runaway electrons and 

the resulting production of x-rays. Instrumentation problems are always a possibility, but 

we are confident that both the x-ray and the electric-field instruments were working 

properly. If so, then the lack of significant electric field at the balloon at the time of the 

x-ray pulses suggests that either (1) some unknown x-ray production mechanism was 

responsible, (2) a runaway breakdown occurred some distance fiom the balloon, where 

the electric field was sufQcient for runaway, or (3) the electric field driving the runaway 

process near balloon was not measured by the electric field meter. Since theories for 

new production mechanisms are beyond the scope of this paper, we will examine the last 

two suggestions.

To address the second suggestion, that a runaway breakdown occurred at some 

distance fiom the balloon, we need to consider possible locations of the sources. A 

source could have been located in the thunderstorm cloud or above the position of the 

balloon. The electrical cloud top was about 3 km below the balloon. X-rays with 

energies of 100 keV have an exponential attenuation length of about 300 meters at an 

altitude of 15 km. If we assume this attenuation length fi)r the entire path between the 

source and detector (underestimating the attenuation) then the x-ray flux at the source 

would have to have been a factor of 10̂  greater than we measured. In this case we have
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assumed a large planar x-ray source, which without atmospheric attenuation, provides a 

constant flux irrespective of distance. Other source geometries would suffer a reduction 

in x-ray flux with distance, requiring even greater source intensity.

For a source located above the balloon's position, we consider the results of 

Taranenko and Roussel-Dupre [1996]. They have modeled a runaway breakdown which 

is initiated at 25 km MSL and predict gamma-ray emissions that are in agreement with 

the CGRO measurements. They predict that the CGRO detector should detect 800 

gamma-rays (with energies of 100 keV, and assuming no attenuation) at a distance of 500 

km [Taranenko and Roussel-Dupre, 1996]. We calculate that a source of this strength 

would produce about 10̂  counts in our detector 10 km away. This is similar to our 

measurements, but this calculation only includes the r  ̂  factor for distance effects on flux 

from a point source with no atmospheric attenuation. At an altitude of 25 km the 

attenuation length is about 1 km. Using this attenuation for a source 10 km above the 

detector, the source would need to be a factor of about 10̂  stronger to account for our 

observations.

Now we address the third suggestion, that the electric field transient was 

somehow missed by the electric-field instrument Since we believe that the instrument 

was working properly, two possibilities exist for this case. The first is that the transient 

had a duration less than 200 ms, but this seems unlikely given that the x-ray pulses had 

durations of nearly 1 s. The second possibility is that the electric field driving the 

runaway process may have been horizontally oriented. The electric field instrument is 

primarily responsive to vertical electric fields and could miss a 1 s horizontal field 

transient as a result of the instrument orientation. However, it is unlikely that this would
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occur for each of the three pulses.

For both possibilities discussed above, the electric field is driving the runaway 

breakdown. This will occur if  the electric field exceeds a threshold value over a distance 

of at least a few electron doubling lengths, which is dependant upon the atmospheric 

pressure and the strength of the electric field (see Roussel-Dupre and Gurevich, [1996] or 

Gurevich et al. [1992] for a discussion of the runaway process). The threshold is given 

by Eth=2I8 (P/PJ kV/m, where P is the atmospheric pressure, and P„ is the pressure at 

sea level [Roussel-Dupre and Gurevich, 1996]. At 15 km the threshold electric field is 

about 40 kV/m, and at 50 km altitude it is about 500 V/m. A necessary result of a 

runaway process is the emission of bremsstrahlung radiation with a spectrum dependant 

upon the energy of the electrons. The runaway process should continue to operate as long 

the electric field exceeds the threshold over a long enough path length. The electric-field 

profile may become unsuitable for the continuation of the runaway breakdown as a result 

of the runaway process iXsc\£ [Taranenko and Roussel-Dupre, 1996], which separates 

electrons ftom positive ions and produces an electric field opposite in direction to the 

original field. Runaway processes driven by the large-scale electric field inside a 

thunderstorm may end as a result of lightning discharges or leakage between charge 

regions due to increased conductivity that results from the runaway process [Marshall et. 

al, 1995a]. Observations made inside thunderstorms appear to support these possibilities 

[Each et al., 1996; McCarthy and Parks, 1985]. Runaway might also end as a result of 

the rearrangement of space charge in the weakly conducting atmosphere.

Measurements made above thunderstorms [Marshall et a l, 1996; Blakeslee et ai, 

1989] have shown that the quasi-static electric field is too weak to support a runaway
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process. However, electric field transients may occur above a storm [Marshall et ai, 

1996] as a result of the rapid removal or neutralization of charge fiom the cloud during a 

lightning discharge (cloud-to-ground or intracloud). As a result, the space charge 

distribution above the cloud will change in response to the reduction o f charge in the 

cloud on a time scale determined by the local relaxation time (€/o) of the atmosphere, 

where a  is the conductivity and 6 is the permittivity o f air. Thus the transient field will 

decrease with a time constant equal to the local relaxation time, which is altitude 

dependent For example, using a conductivity profile of a(z)=5 x 10‘‘‘* ê ®™ mho m ‘ 

(where z is the altitude in km) [Dejnakarintra and Park, 1974], the relaxation time is 

about 30 s near cloud top (about 10 km), 15 s at 15 km, and jqiproximately 40 ms at 50 

km. If the transient electric field exceeds the threshold value, then runaway breakdown 

may occur [Taranenko and Roussel-Dupre, 1996]. The transient duration is determined 

by the relaxation time. Therefore the relaxation time and magnitude o f the transient will, 

in part, determine the time during which a runaway can occur as a result of such a 

transient.

The gamma ray flashes observed by the CGRO satellite had origins no lower than 

about 30 km, estimated on the basis of atmospheric scattering and absorption [Fishman et 

al., 1994]. Roussel-Dupre and Gurevich [1996] predict that maximum gamma-ray 

emissions will occur below 40 km where the majority o f the electron avalanche occurs 

during the runaway breakdown. At these altitudes, fix>m the relaxation time alone, a 

runaway might be expected to last no longer than lO's or lOO's of milliseconds. This is 

significantly longer than, but not inconsistent with, the CGRO observations of 0.1 to 2 

ms. For a runaway process occurring at 15 km, the relaxation time would predict that a
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runaway process could continue for times on the order of 10 s. The durations of the x- 

ray pulses we observed at 15 km are not inconsistent with this. However, the 

measurement of no significant electric field at the balloon indicates that the runaway 

process would have to have occurred relatively far fit>m the balloon's position.

C.3 Concluding Remarks

With a balloon flying over an MGS, we observed three x-ray pulses that lasted on 

the order of one second at an altitude o f 15 km MSL, 3 km above electrical cloud top. No 

significant electric field was observed at the time of the pulses. If a runaway breakdown 

produced these x-rays, our measurements suggest that it had to occur at considerable 

distance fiom the balloon. If so, then the source must be strong in order for x-rays to have 

been detected, since atmospheric attenuation of x-rays at these altitudes is relatively great. 

Even so, we cannot rule out other mechanisms for x-ray production that do not involve a 

runaway breakdown driven by an electric field.

This ^pendix has been excerpted fiom Hack, BLB., W. H. Beasley, WJ3. Rust, T.C 
Marshall and M. Stolzenburg, '%-ray pulses observed above a mesoscale convective 
system” published in Geophysical Research Letters, volume 23, p%es 2915-1918,1996. 
Copyright by the American Geophysical Union.
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Appendix D

Additional Plots for Source-to-Detector Distance Estimates

Oata:24MAY95 
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Figure D.l. Minûnized chi-square Gt for x-ray event observed durmg Flight 1. Horizontal (source-to- 
detector) distance is estimated to be 220±40 meters.
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Figure D2. Minimized chi-square fit for x-ray event observed during Flight 2. The estimated source-to- 
detector distance is 200±30 meters.
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Figure D3. Minimized chi-square fît for first x-ray event oliserved during Flight 3. The estimated source- 
to-detector distance is 35±10 meters.
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Figure D.4. Minimized chi-square fit for second x-ray event observed during Flight 3. The estimated 
source-to-detector distance is 470±S0 meters.
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Figure D.S. Relative intensiQr of each channel as a function of distance from a bremsstrahlung x-ray 
source. Numbered dots indicate the relative mtensities at peak total x-ray intensity for the event observed 
during Flight 1. Note that channels 2 and 3 are reversed and that a distance estimate caimot be made. This 
indicates that Compton scattering effects on die spectrum need to be considered.
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Figure D.6. Relative intensity o f each channel as a function of distance from a bremsstrahlung x-ray 
source. Numbered dots mdicate the relative intensities at peak total x-ray intensity for the event observed 
during Flight 2. From spectral information, the distance is estimated to be about 275 meters in agreement 
with the estimate &om the rate o f rise/fall method shown in Chapter 5.
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Figure D.7. Relative intensif of each channel as a function of distance firom a bremsstrahlung x-ray 
source. Numbered dots indicate the relative intensities at peak total x-ray mtensity for the first event 
observed during Flight 3. Note that charmels 2 and 3 are reversed. A a distance esthnate cannot be made. 
This mdicates that Corrrpton scattering effects on the spectrum need to be considered.
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Figure D.8. Relative intensity of each channel as a function of distance from a bremsstrahlung x-ray 
source. Numbered dots indicate the relative intensities at peak total x-ray intensity for the second event 
observed during Flight 3. Note that channels 2 and 3 fit well for a distance of nearly 200 to 250 meters, 
but that X rays in channel I are almost conqiletely absent As for Flight 1, no distance estmiate can be 
made using only absorptive efiects on the spectrum.
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