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ABSTRACT

The goal of this research is to formulate and present 
a methodology that evaluates short-term risk in power system 
planning. Specifically, this research shows how to 

determine the risk of short-term planning in the presence of 

electrical load forecast and fuel price uncertainty, both of 
which have a large impact on the outcome of power system 
production cost planning. The uncertainty in the load is 
described by Bayesian forecasting and fuel price uncertainty 

is modeled by conditional triangular probability 
distributions.

Classical decision analysis forms the backbone of the 
methodology presented herein. Throughout this dissertation, 
sampling theory, load forecasting theory and general 
engineering are applied with the aim of transforming the 

short-term power system planning problem into a suitable 

structure for decision analysis. Probabilistic sampling is 
used to discretize the load and fuel prices; then an 
electrical power production simulation model results in a 

unit commitment strategy and a cost of each plan. A best, 
i.e., minimum cost, plan can be selected and the expected 

cost of uncertainty can be estimated.
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The results presented in this dissertation are as 
follows: The impact of weather forecasts on Bayesian load 

forecasting as a function of forecast lead time is shown in 

Chapter 2. Risk in the presence of load forecast 
uncertainty alone and risk in the presence of load forecast 
uncertainty together with fuel price uncertainty are shown 
in Chapters 4 and 5, respectively. The expected cost of 

uncertainty, in these chapters, is given as a function of 
lead time in $/MWh.
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CHAPTER 1 

INTRODUCTION

§ 1.1 Introduction
The goal of this chapter is to introduce to the reader 

the general subject matter of this dissertation, and to 

describe the motivation for this research topic. To begin, 

the classical purpose of the electric utility is presented; 
this discussion is followed by a synopsis of the changing 
electrical energy market, and a description of where an 
electricity supplier takes its new place.

Next, utility system planning is discussed. Within 

this section, the classical planning process is presented, 

as well as, planning in a competitive environment. Long

term planning is briefly described, because the concepts of 
classical long-term planning will be used to form the 
framework of short-term planning in the future. Following 
this, risk in short-term planning is discussed, and then an 

illustrative example shows an application of the purposed 
research as an effective planning tool.

To conclude the chapter, an outline of the steps taken 

to formulate the risk analysis model is given, and a 
literature review cites a list of works on which this



research is based.

§ 1.2 The Electric Energy Market

In the past, the basic mission of the electric utility 

has been to provide its customers with their desired demand, 

i.e., to deliver electrical energy to the utility's end 
users, while minimizing operational costs, satisfying the 
system load and maximizing reliability. This mission is 
often called "The obligation to serve," and has well 

described the electrical utility industry in the United 

States. Presently, the industry is undergoing changes to 
its fundamental structure. This industry, which in the past 
has operated as a government regulated monopoly, is moving 
towards a free enterprise energy market, where the 

traditional boundaries of a well-defined service area or 

franchise no longer exist. These types of changes, not only 

impact the structure of an electric utility, but affect 
business practices and strategic planning, as well.

In a competitive market, the obligation to serve 
philosophy of system operation is outdated and can be 

replaced by the notion of profit maximization. Past 

fundamental operational concepts, such as the obligation to 

serve all end users' demand requirements at a minimum cost, 
change to a utility's opportunity to serve a customer's need 

for a specified length of time, while maximizing profit. In



the future, an electric utility will be challenged to 
provide the customer with incentives, such as low energy 
prices and high power-quality, in order to sell its product. 
In addition, energy rates, which in the past were decided in 

rate hearings by public commissions, will be set during 

contract negotiations or sales agreements.
Inherent to the change of the electric utility market 

is a restructuring of the industry itself. The electric 
utility industry will most likely be split into four 
independent entities: generation, transmission, distribution 

and marketing. In the current industry infrastructure one 

company owns the first three sectors, while the last, power 
marketing, has not surfaced as a primary function. In the 
future, it will be possible for competitors to join the 

supply sector without having to build transmission or 
distribution systems. Utility companies will have the 

option to sell distribution and transmission sectors, or 

contract for maintenance and upkeep. With the proposed 
future free enterprise energy market, the possibilities are 
too numerous to entertain in full. However, the importance 
of new price structuring cannot be overstated.

In the future, the energy customer will likely pay a 

local distribution fee with a fixed overhead charge for 

Operation and Maintenance (O&M) and an energy charge for 
real time usage. For transmission services, the customer



may pay an O&M fee, a demand charge and a distance charge. 

To the generation company, a power marketer or a 
distribution company may pay a negotiated price per MWh, but 
most importantly, the energy customer will be given the 
opportunity to share in the risk of generation scheduling 

and capacity allocation.

These are only a few possibilities of the direction the 

electric utility industry can take. However, there is at 
least one certainty; as the electric utility industry 

changes, so will the operational planning concerns and 
methods. This research attempts to anticipate these future 

planning changes by including risk in the operational 

planning model.

§ 1.3 Power System Operational Planning
The power system planning process will undergo changes 

as the electric utility industry transforms into a 

competitive market. Power system operational planning can 

be summarized as the development of operational strategies, 
which dictate the actions of the electric utility over a 

finite period, while attempting to achieve the goal of 
maximizing profit. In general, operational planning is 

grouped into short and long-term study horizons. Short-term 

planning takes place over the course of a day to a few 
months, and the long-term planning study horizon ranges from



several months to several years. As this research applies 

a method used in classical long-term planning to the short
term planning problem of the future, the following section 
briefly describes long-term power system planning and the 
particular long-term planning model this research exploits.

§ 1.3.1 Long-Term Planning

In general, long-term system planning involves 
decisions regarding capacity expansion and system extension. 
Fuel budgeting is also included in the long-term planning 

process. A crucial decision in the electric utility 
industry is whether or not to purchase power from 

neighboring suppliers or to build new production facilities. 
Since construction lead times can run from five to ten years 
on large power plants, the load growth uncertainty can have 
a huge impact on the financial outcome of the project. Both 
under and over-sizing a plant can be financially 

devastating. In the past, capacity expansion decisions were 

made based on two criterion: one was the minimum percentage 
capacity margin; the other was the loss of load probability 
of one day in five years [1] . If production lead time could 

be shortened, the uncertainty of the load growth forecast 
could be reduced.

Decision theory provides the underlying framework for 

the solution process of such studies. This type of risk



analysis involves making long-term energy and demand growth 
forecasts, developing a decision structure that is suitable 

to the problem and finding the expected cost of uncertainty 
due to load growth variation. See Reference [1] for a 
detailed treatment of the subject. Similar studies can be 
performed for short-term planning, where the unit commitment 
decision replaces the decision to build a new power plant. 

In the following section, the application of decision 

analysis and the aforementioned long-term risk model to 
short-term power system planning studies will be discussed.

§ 1.3.2 Short-Term Planning

In short-term planning, the goal is to allocate an 

appropriate mix of generation to satisfy the projected 

demand for the upcoming week. Note that the study horizon 
can be reduced to a matter of hours or extended to several 
weeks. Both load and fuel price forecasts play an important 
role in the short-term planning process. Even small 

variations in either can result in large operating cost 

swings.

For short study horizons, when weather forecast lead 
time permits, temperature dependent load forecasts can be 
used. Looking into the future, the load forecast variance 

increases as a function of time due, in part, to the weather 

forecast uncertainty. As the electrical energy industry



changes into a free enterprise market, the requirement of 
quoting prices will become increasingly important. The cost 

of uncertainty that is due to the load forecast will impact 

prices quoted from one hour to one month ahead of time. Of 
course, with shorter lead times, the risk of quoting prices 
decreases. This type of planning problem can be approached 
in a manner similar to the long-term planning case described 

previously. Decision theory will play a large role in the 

solution to the risk problem. In addition, it is possible 

to consider more than one uncertain planning variable. This 
research will also detail the inclusion of fuel price 
uncertainty into the risk model.

§ 1.4 Risk in Short-Term Power System Planning

Risk analysis can be an useful tool in the power system 
planning process. In the past, operational scheduling was 
performed for the purpose of minimizing costs while 

complying with the obligation to serve. In the future when 
rates will be decided during contract negotiations, the 

electric utility must have at their disposal a set of tools 

to analyze and quote prices intelligently. When taking 
pricing issues into account, there are many new challenges 

the electric utility will have to overcome in order to 

maintain economic stability. It is in the area of pricing 

that the research herein provides the greatest contribution



to the power system planning field.
In the past, when rates were decided in public 

hearings, utilities based their price structures on the 

expected production cost plus a fixed rate of return. 

Moreover, if units were committed during real time operation 
that were not necessary, or if a utility had to buy power 

from a neighboring system to cover unserved energy, the 
extra costs were passed on to the end user in the form of a 

cost adjustment. In the future, however, rates will be 

negotiated in advance, and prices will probably be binding 
for the length of the contract. The most important point 
here is that these contracts will more than likely not 
contain cost adjustment clauses. As a result, the electric 

utility may have a larger incentive to operate their system 

efficiently, and the value of accurate forecasts will 

increase. If the load forecast or fuel price estimate is in 
error, and these are the bases for future energy rates, then 
the supplier may have to cover the extra cost, and not the 

customer. Future energy rates should be quoted with 
uncertainties in mind, but at the same time, be competitive 

with respect to other suppliers in the industry. The 

following section describes one example of how risk analysis 
can be applied to the short-term power system planning 
process.



§ 1.5 Descriptive Example
A manager of a power company has the task of putting 

together a bid for a contract to provide energy to a local 

industrial customer. The customer is a tomato cannery, 

which receives its fruit from local and out-of-state 
growers. The desired length of the contract is for the main 
production season, which equates to the tomato harvest. 
Typically, the harvest lasts from early May to mid- 
September. The load factor of the cannery during this 

season is near unity. The load is comprised mostly of 

induction motors and lighting. The variation in the plant's 
demand is only due to shift changes, production line changes 

and the transitions from day to night. To the unwary 
manager, the cannery sounds like a great customer. How can 

you beat a unity load factor? There are, however, hidden 

problems.
The first problem is that the substation, which is 

owned by the plant, is extremely sensitive to voltage 
fluctuations. Any sudden variations in the voltage will 
trip the breakers. This may compromise system security, 

because the cannery's demand represents a large enough 

contribution to the local demand that grid stability is a 
concern. Also, the plant production supervisors tend to 
ignore recommendations of incremental start-up schemes, 

which are designed to gradually bring the plant up to full



operating capacity. Another major concern is that the 
weather has been very erratic this year. It is expected 
that the consistently warm summer nights, which are required 

for tomatoes to ripen, will not regularly occur.

While operation in the past was not disrupted due to 

planned harvests and dependable weather, processing this 
year's harvest will be a challenge. There may be weeks 

without any fruit and some weeks with too much. This issue 
concerns the tomato company as well; they run their plant at 

full capacity so extra tomatoes mean wasted tomatoes. 

Fortunately, the plant has a few options. The over-ripe 
tomatoes can be run through the sauce and ketchup lines; 
however, the solid pack production will suffer. The 

possibility of irregular operation also concerns the utility 
manager.

In order to serve the plant's demand, an additional 

medium size coal-fired unit must be brought on line. With 

minimum up and downtime running several days, it is still 
better to keep the unit on line, even when the cannery 
experiences downtime. However, the system itself would not 

be optimally scheduled. How does this manager decide on a 

pricing scheme, and what type a structure should be used?

The extra coal-fired unit lightens the burden to some 
of the expensive gas peaking units; as a result, the system 
will run at a higher economic efficiency, when the cannery

10



is included. The question is, to whom is the greatest 
portion of risk assigned. Should the electric company cover 
the cost of the risk, because their profit margin will be 

higher while serving the tomato plant, or should the tomato 
cannery be held accountable because of the uncertainties 

they impose on the system?

Fortunately our manager is equipped with a rare 
understanding of the price and risk elasticities of the 
customer. Moreover, the tomato plant supervisors will know 
one to two weeks ahead of time if a weekly harvest will not 

arrive as expected. With all of this information, the 

manager can reasonably negotiate as to what portion of the 

risk each participant should pay, as well as, determine how 
far ahead to quote prices. One possibility is to quote 
monthly prices at a higher rate due to the uncertainty in 

the sporadic harvests and potential lulls in activity. This 

tends to keeps the "spot" price of electricity constant, but 

the premium the cannery pays is due to uncertainty in the 
load forecasts and tomato harvests, which are not accurate 
for a month.

Another plan is to provide weekly prices because the 
harvest and the weather will be known well enough in advance 

to project the activity of the following week. If no 

problems occur this may lead to lower prices over time, but 
this situation does increase the chances of volatile energy

11



prices. All of this information can be used with the 

expected cost of uncertainty to develop a price strategy 
suitable for the electric utility and the tomato cannery. 
The bottom line is that uncertainty implies risk, and the 
cost of this risk should not be left out of pricing 

considerations. This discussion is only one of many 

applications that can utilize risk analysis to aid in system 

planning decisions.

§ 1.6 Risk and the Unit Commitment Decision

As stated before, evaluating the risk in short-term 
planning requires the use of concepts from decision 

analysis, power system planning and sampling theory. The 
planning process is modeled as a classical decision analysis 

problem whose goal is to evaluate the expected cost of 

uncertainty. The first step is to identify the decision 
variable; next, the load and the fuel prices must be 

discretized to represent the possible states of nature; 

lastly, probabilities must be assigned to the states of 
nature.

For the purposes of this research the decision variable 

is the short-term unit commitment decision. The states of 

nature are high, medium and low values of the electrical 

load and fuel prices. If the future were known, the optimum 
strategy could always be implemented, however, as planning

12



occurs in advance, the utility runs the risk of selecting a 

unit commitment strategy that will not minimize the 
production cost over the chosen study horizon. That is, 
another unit commitment may exist that would result in a 

lower production cost. The difference between the minimum 
expected cost in the presence of uncertainty and the 

expected cost if the future were known is said to be the 

risk associated with that unit commitment decision. The 
uncertainties that exist within the planning process are 
many; this research considers two very important parameters: 
the electrical load and fuel prices.

The electric load can be thought of as both a 

deterministic and a random time series. The system load, in 

the deterministic sense, is nothing more than the 
aggregation of each end user's demand, plus system losses. 
However, this type of description is not adequate for 

planning purposes. In general, the number of end users are 

large, and a good percentage of them cannot reliably predict 

their future energy consumption.
As a chronological profile of the electrical load is 

needed to determine a unit commitment strategy, the time 

series must be provided in advance of when the operational 

plan is to be implemented; a load forecast profile is one 

type of load representation that is sufficient for power 

system planning. Moreover, the load can be characterized as

13



a stochastic time series. Since a great deal of effort has 
been devoted to estimating random processes, forecast 

methods are numerous. However, in order to take advantage 
of decision analysis, the states of nature are better 
modeled as discrete events. If the electrical load could be 
described by a probability density function, stratified 
sampling theory could then be applied to separate the load 

into individual events. Probabilities of the states of 

nature are also required for decision analysis, and are 
generated during the stratification process.

To represent the electrical load as a distribution, a 

forecast method should be selected based on this criterion. 
Bayesian forecasting is one such method; it provides both a 

forecast mean and variance. If the electric load could be 
considered a normal random process, then the forecast mean 
and variance, from Bayesian estimation, completely describe 

the normal probability distribution. At this point, the 
stratified sampling process can be applied. The above 

description forms the backbone of the purposed research, and 

is detailed in the following chapters.

Fuel prices also have a considerable effect on the 
planning process. A triangular distribution will be used to 

represent the fuel prices, and the same stratified sampling 

process, as with the load, will be used to discretize fuel 

prices into individual events. Because fuel prices are

14



affected by the electrical load, additional efforts will be 
required to accurately model this relationship. When more 
than one planning parameter imposes uncertainty on the 

planning process and interdependencies exist, conditional 

densities should be used in the stratification process. 
Also, when multiple inputs are used, the number of 
simulations required to evaluate the risk can grow very 

large. Reductions in simulation sizes should be made if 

possible. A  method proposed to account for this situation 
is derived from the concepts of statistical experimental 

design, and is presented in this research. The next section 
gives a brief outline of the major subjects covered by this 
research and where they can be found.

§ 1.7 Dissertation Outline

The organization of the rest of this dissertation is 
outlined below. A literature survey concludes this 
introductory chapter. Chapter 2 is devoted to Bayesian 
electrical load forecasting. Chapter 3 covers the necessary 

prerequisites from sampling theory and other modeling 

concerns. Chapter 4 focuses on the formulation of the 
solution of the expected cost of load uncertainty. Chapter 
5 covers the combined problem of representing fuel price and 

load forecast uncertainty. Case studies are performed and 
included in Chapters 2, 4, and 5 from utility derived system

15



data and National Weather Service temperature forecasts. 
The results are summarized and evaluated in Chapter 6. 
Chapter 6 also serves as a conclusion that provides the 
reader with a summary of the research results, as well as 

possible directions to further these research efforts.

§ 1.8 Literature Survey

In the following section, an outline of the references 
used by this research will be presented. The survey is 

split into three sections, each describing a different field 

whose concepts are drawn from within this research. The 
subjects described below are decision theory sampling 
theory, and load forecasting.

§ 1.8.1 Decision Theory

Some of the first works on decision analysis, following 
that of Von Neumann and Morgens tern who proved the Max-Min 

Principle for two-person zero-sum games in Reference [2], 
were authored by Raiffa and Luce [3], Howard [4,5] and North 

[6j. Raiffa and Luce concentrate on game theory; however, 

a short treatment of the decision analysis problem is 

included. Raiffa and Luce relate the decision problem to 
the two-person zero-sum game, where the decision maker plays 

against nature. Howard explains the basic structure and 
procedures of setting up the practical decision problem in

16



a qualitative manner in Reference [4], and he takes a 
mathematical approach to the decision analysis problem in 
Reference [5]. North provides an excellent tutorial on the 
basic mathematical decision problem in Reference [6] . Both 

References [5] and [6] tie the Bayesian notion of prior 

probabilities to the conditional expectation of a 
probability density function, an important result this 
research will exploit. Raiffa develops the notion of the 

expected cost of uncertainty in Reference [7] . Esser et al. 
and Anders list many examples of the application of 

decision analysis to power system planning in References [8] 
and [9] . Many of the examples involve building or siting 
decisions; however, Esser et al. suggest that decision 

analysis techniques can be utilized to evaluate operational 
decisions, such as the long-term trade-offs of capacity 

expansion. References [10] and [11] make this claim as 

well. The proposed research will take these works in a 
different direction and explore the effects of uncertainty 
in short-term operational planning.

§ 1.8.2 Electrical Load Forecasting

Over the past few decades, many procedures have been 

used for short-term electrical load forecasting. The most 

common approaches include time series methods [12-15], 
regression techniques [16-19] and artificial neural network

17



algorithms (ANN) [20-23] . ANN represents the most popular 
and current technology. One significant characteristic of 
ANN is that the method captures non-linear relationships 
between input and output variables. References [20] and 

[21] are some of the first applications of ANN to electrical 

load forecasting. References [22] and [23] are current 

sources that report mean absolute errors of 0.02 and better.
In regression analysis, the load is represented as a 

linear combination of exogenous inputs, which include 
weather and load information. References [16] and [17] are 

some of the first applications of multivariate regression to 

electrical load forecasting. References [18] and [19] 
comprise a set of current works on file.

The time series approach is the most widely documented 
methodology. Autoregressive moving average (ARMA) models 

are the most common time series approach that has been 
applied to load forecasting. The autoregressive part of 

ARMA is an all-pole recursive filter, while the moving 
average part is an all-zero recursive filter. Transfer 
function models may be used to incorporate explanatory 

variables. References [12] and [13] are some of the first 
works using ARMA models for load forecasting. References 

[14] and [15] are some of the current works in the fields.

What is required is a forecast method that is simple to 
implement, and that provides a forecast distribution. It is
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in this area where Kalman filters and Bayesian estimation 

excel. The Kalman filter provides a forecast distribution, 
including forecast variance, which is useful in risk 
analysis. The load signal is modeled as the output of a 
state space dynamic system; the model is adaptive in that 
the Kalman gain changes with the forecast error. Some of 

the first applications of Kalman filtering theory to 

electrical load forecasts are cited in Reference [24] and
[25]. Current works in the field are covered in References
[26] and [27] . A  disadvantage of Kalman filters is the 

necessity of knowing both the process and the observation 

noise.

Parallel in time to the development of Kalman filters 
was the development of Bayesian estimation. When normal 
distributed noise is considered, the algorithms are 

identical. However, additional features were developed in 
Bayesian estimation theory which compensate for the noise 

identification problems prevalent in Kalman filtering 

theory. The use of discount factors in place of the state 
evolution noise and the addition of a variance learning 
algorithm for the observation noise makes Bayesian 
estimation an attractive forecasting model that provides a 

forecast distribution. The first works on Bayesian analysis 

are cited in References [28-30]. Current works are covered 

in References [31-33]. The concept of sampling with unknown
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parameters is well known; References [31,32] show its 

application to Bayesian estimation. Reference [28,33] 

incorporate variance learning into the fundamental Kalman 
filter/Bayesian estimation forecast algorithm.

This research will exploit these features of Bayesian 
estimation in order to further the study of lead time 

dependent risk analysis in power system planning.

§ 1.8.3 Sampling Theory
Fundamental to decision theory is the ability to 

properly structure a real-life situation into a decision 
tree. Since both the electrical load and future fuel prices 

are described by continuous probability density functions, 

some means of forming discrete events is necessary. 
Stratified sampling is employed to provide representations 
of discrete events for a given probability distribution. 
Works on general sampling theory include References [34-36]. 

These works, however, concentrate on discrete sampling of 

finite populations. References [37-40] provide excellent 

coverage of sampling with infinite populations described by 
probability density functions.

This concludes the literature survey. In the following 
pages, these three topics, load forecasting, stratified 

sampling and decision analysis, will be drawn on as this 

research details the development of a methodology that
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evaluates the risk as a function of lead time due to load 
forecast and fuel price uncertainty in short-term power 
system planning.
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CHAPTER 2

SHORT-TERM BAYESIAN ELECTRICAL LOAD FORECASTING

§ 2.1 Introduction

This chapter presents a short-term load forecast 

methodology that is suitable for power system operational 

planning studies. Bayesian estimation is use to predict 

multiple step ahead peak forecasts using peak and average 
temperature forecasts as explanatory variables. Herein, the 
forecast model is developed and illustrated in a case study 

with utility derived system data. Special attention is 

given to the practical issue of forecasting the electrical 

load with imperfect weather information.

Electrical load forecasting is an integral step in the 
short-term power system operational planning process. 

Accurate hourly forecast profiles, with study horizons of up 
to one week, are necessary for economic dispatch, energy 

transactions and short-term generation scheduling. As the 

electric energy supply sector changes to a competitive 
industry, the need to operate at maximum economic efficiency 
has increased. Electrical load forecast accuracy greatly 
affects the utility's ability to achieve this goal.

Coupled with each load forecast algorithm is an
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inherent model error, i.e., the fundamental errors due to 
the model not completely representing all load 
characteristics of the service area. This model error is 

determined empirically, and usually with perfect weather 

information. However, to evaluate a load forecast method 
based on model errors alone overlooks an important factor 
that enters into practical applications. Most short-term 
load forecast algorithms use weather information to refine 

the load estimate; in a real time setting, weather 
information generally takes the form of temperature 

forecasts. Errors present in the temperature forecast can 
have a huge impact on the accuracy of the final load 
forecast and also the planning process.

Consider a utility that has made a one week load 
forecast based on imperfect weather information, and has 

chosen to implement the optimum unit commitment decision 

based on that load forecast. If the load forecast is in 
error, enough such that a different unit commitment strategy 
would have been otherwise selected, the utility will be 

forced to reschedule its units, if possible. This type of 

planning is a common procedure in real time power systems 

operation. However, increasing the accuracy of the load 
forecast will result in minimizing the number of times 
generation rescheduling is necessary. To fully appreciate 

this aspect of short-term planning, the usefulness of a
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load forecast algorithm should be analyzed when using 
temperature forecasts.

The focus of this chapter is to report on the 
application of Bayesian estimation to electrical load 

forecasting, and to present comparative results with both 

perfect temperature information and temperature forecasts 
supplied by reliable sources. Bayesian estimation is a 
recursive algorithm that is used in conjunction with a 
dynamic linear model (DLM) to represent the behavior of the 

electrical load. Bayesian forecasting makes use of a priori 

and a posteriori distributions, along with sampled data, to 

project estimates of the future electrical load. Bayesian 
forecasting has the ability to make multiple step ahead 
forecasts, and the DLM easily models the trend and periodic 

characteristics of the electrical load. In addition, 

explanatory or causal variables, such as weather 

information, can be introduced into the model to further 
reduce the forecast error. Also, the Bayesian forecasting 
method yields a forecast distribution. The desire for the 
availability of forecast distributions has increased as the 
electric utility industry changes to a competitive market, 

where planning under uncertainty is emphasized.

The structure of the rest of this chapter is as 
follows. Section 2.2 details this chapter's concise problem 

statement. Section 2.3 describes the Bayesian forecasting
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paradigm, and its application to electrical load 
forecasting. Section 2.4 discusses weather behavior and 
presents graphical results of both temperature forecast 
biases and standard deviations as a function of forecast 

lead time. Section 2.5 takes the form of an illustrative 

case study that shows the impact that temperature forecast 

errors can have on electrical load forecasts. Section 2.6 
concludes the chapter with a summary and evaluation of the 
results.

Load forecasting methods for short-term planning fall 

into several different categories, such as regression 

analysis, artificial neural network methods, time series 

analysis, and state space approaches. Autoregressive moving 
average (ARMA) models have received a great deal of 
attention in the literature [12-15] . ARMA models fall into 

the time series category, but can be implemented in state 

space formulation. Linear regression models are also common 

[16-19]. These models minimize the squared error over the 
data set to determine weighting coefficients of explanatory 

variables. Artificial Neural Network (ANN) models are 
currently the most popular and reported method of load 

forecasting [20-23] . ANN models are unique in that they 

capture the non-linear relationship between the load and 

weather information. Kalman filtering is a state space 
method found in the literature [24-27]. Kalman filtering
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uses the state space description to recursively update 

forecast results. However, a difficult aspect of Kalman 
filtering is the selection of the process and the 
observation noise. In the following pages, the Bayesian 
estimation method of forecasting will be applied to the 

electrical load forecasting problem [32,33]. The updating 

equations of Bayesian estimation are similar to those of 

Kalman filtering; however, several model enhancements allow 
for easier implementation.

§ 2.2 Problem Statement

Given an acceptable set of historical load data, 

historical temperature data and temperature forecast data 
provided by the National Weather Service, the goal of this 
chapter is to present a multiple step ahead load forecast 

methodology, adequate for use in system planning studies. 
Results are presented, which provide further insight into 

the impact of temperature forecast errors on electrical load 

forecasting. The load forecast takes the form of an hourly 
load profile that is suitable for input to a chronological 
production cost simulation program, which determines the 

unit commitment strategy. Bayesian forecasting and dynamic 

linear modeling comprise the main prediction algorithm. 

This model is structured to predict daily peaks from one to 
several days in advance. Typical daily load profiles are
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then scaled to the forecasted peaks to provide a weekly load 

profile suitable for chronological production cost 
simulators. Note that this is different from real time 
forecasts used for generation dispatch, where the study 
horizon is generally one hour to one day. This chapter 

emphasizes the theoretical development of the Bayesian 
forecasting method and details its application to short-term 

electrical load forecasting. In addition, an error analysis 

is provided with actual and forecasted weather information 
used as exogenous inputs to the forecast model.

§ 2.3 Methodology

Bayesian estimation is a recursive prediction algorithm 

that uses an a priori distribution and sampled data to 

update an a posteriori distribution for the next time 

increment. A dynamic linear model (DLM) is used in 
conjunction with this updating scheme to describe the output 

signal characteristics. Trends and periodic behavior are 

easily represented by the dynamic linear model in terms of 
the state space description. The DLM also has the 

capability to reflect the impact of explanatory variables on 
the forecast. These exogenous inputs in the case of

electrical load forecasting take the form of up-to-date 

weather information and forecasts. The following

development is taken from [32,33]. For a thorough treatment
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of the theoretical aspects of Bayesian estimation and 
dynamic linear models, see [32]; for practical examples, see 

[33] . For practical suggestions regarding software 
implementation, see [25].

§ 2.3.1 Bayesian Estimation
A stochastic state space description is used as the 

dynamic linear model (DLM) . Since the DLM is to be used as 

an estimator only, by selecting the evolution and output 
matrices properly, the system will maintain observability. 
The state space system is given as follows:

0, = + Oj. where ~ N{0,W^)
y, = F'0, + where v ^ ~ N { 0 , V J

0. is the time dependent (k*!) state vector, G is the (kxk)

state evolution matrix and is the (kxk) covariance matrix 
of the zero mean process noise, is the scalar output,
Fr is the time dependent (kxl) regression vector and V. is 

the scalar variance of the zero mean observation noise, v̂ . 

The normal noise processes, co. and v̂ , are both mutually and 

temporally independent. G describes the behavior of the 
state vector, 0., over time, which can be represented by 
trend and cyclic components. Although G can be time
varying, in this case G is fixed. Note that the above

state space system is given in general terms. Section 2.3.3

covers its application to electrical load forecasting. F.
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contains exogenous regression variables. Bayesian
estimation relies on the recursive use of Bayes' rule to 

generate a forecast. That is, prior distributions are 

updated to posterior distributions via Bayes' rule and these 
distributions are scaled based on forecast errors. To the 

above multivariate normal state space description, Bayes' 
rule is applied. With some mathematical manipulation, a set 
of updating equations can be formulated. Equation (2.2) 

shows the a posteriori distribution for time t-1 and the a 

priori distribution for time t.

a, = (2.2)
R, = 5 --GC,

D._- is the complete state knowledge at time t-1. is the

(kxk) a posteriori covariance matrix and m._̂  is the (kxl) a 

posteriori state mean vector. is the state knowledge at 

time t. The updated a priori mean and covariance of time t 

are â  and R̂ , respectively, where n t.jis the degrees of 

freedom of the student-t distribution and is an estimate 

of the scalar output variance at time t. d̂.-, and n._- are also 
parameters of a Gamma probability distribution used in the 

derivation of Equation (2.2). The forecast distribution is 
shown below.
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= K
0. = F.R.F' + S
f, = F>, (2.3)

Where f̂  and Q̂  are the scalar forecast distribution mean and 

variance. The one step ahead point forecast is generally 

taken to be the forecast distribution mean. The updated a 

posteriori distribution is give by:

( 9 J D J  - W ( m ^ , C J  
= a, + 4,2;

= (F - A ^ )
2; = - fc

- 1

( 2. 4:

n, = + 1

where m^ and denote the updated a posteriori mean and 

covariance, respectively. is the adaptive factor and e. 

is the forecast error. The adaptive factor, Â , and the 
covariance matrix, Ĉ , are asymptotic in nature and converge 
over time. In our practical application, W ,̂ the process 
noise covariance, is replaced by a scalar discount factor, 

and a variance learning scheme is used in lieu of V ,̂ the 

observation noise variance. The updating equation for is 

somewhat different than what is cited in the Bayesian 
literature. After a number of iterations, the covariance 

matrix, Ĉ , becomes non-symmetric, when implemented on a 
digital computer. Instead, the Joseph stabilized equation
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is used. This symmetric version guarantees the positive 

semi-definiteness of in the presence of round-off and 
truncation error, and is often used in software 

implementation. See Reference [25] for further details.

At times, it is desirable to make multiple step ahead 
forecasts. In this case, the k"̂  ̂ step ahead forecast 
distribution is given as follows:

f j k )  = F'a^(k)
Q^ik) = F^R^{k)F'^ + (2.5)

(k) = Gm^ (k-1)
RAk) = Ô'^-GR^ (k-l)G'

§ 2.3.2 Model Identification
Until now, only the general system has been discussed, 

and no mention has been made regarding the selection of G, 

F, d and 5. G is the state evolution matrix with dimensions 

(kxk) . G can be time varying, but for purposes of this 
research, G is time invariant. The selection of G depends 
on which fundamental signal components (trend, periodic 

behavior, causal relationships) are to be modeled. G is a 
block diagonal matrix where each block corresponds to a 

signal component form. A portion of the regression vector, 

F, is devoted to each component block in G. A thorough 
treatment of this subject is given in [32] .

Once the model has been identified based on the output 
signal characteristics, a word or two on the selection of
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initial conditions is warranted. Due to the asymptotic 
nature of both m and C, if enough lead time data exist, 
almost any reasonable guess will be fine, provided m and C 
are not zero. For example, in the case of forecasting the 

daily peak load explained later in this chapter, if m is 

selected "arbitrarily" and C is large, twenty days of lead 
time data is sufficient for m and C, to converge. It is 

certainly possible to select m and C with better accuracy, 
but this requires much experience and has little impact on 

the forecast results after the transient period. However, 

the selection of both d and 5 has an effect on the forecast 
outcome. d should be chosen close to the actual output 
variance, because in practice, the convergence of d is slow. 

The discount factor, 5, is basically a tuning parameter to 

refine the accuracy of the forecast. There are many
different forecast error criteria, which can be used to 

evaluate the accuracy while adjusting 5. The mean absolute 
error, MAE, or the mean squared error, MSE, are reasonable 

methods to try. The bulk of the previous discussion is 
taken from [32] and [33], which provide excellent

theoretical development as well as practical examples of 

Bayesian forecasting.

§ 2.3.3 Electrical Load Forecasting

This section covers the application of Bayesian
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estimation to electrical load forecasting. The first 
decision to make is whether to use an hourly model or a 
daily peak model. There are certain difficulties that arise 
in the practical implementation of hourly models. In order 

to use an hourly model, an hourly temperature profile is 

required, if the causal relationship between temperature and 

the electrical load is to be exploited. In usual practice, 
weather forecast services only provide peak, valley, and 
average temperature predictions for the following day and 
the rest of the week. Even if a typical temperature profile 

is scaled to match the peak, valley and mean temperature 

predictions, forecasting an entire week would require a 
multiple step ahead forecast of up to 168 hours; this 
situation is not reasonable as the forecast variance can 

grow very large for this many iterations without updating. 
In addition, the model order is larger than 170''"; even with 

the Joseph stabilized algorithm, numerical instability is 

still a concern. Another approach is to use a daily peak 
model where the peak load is forecasted, and then a typical 
load profile is linearly scaled to generate the required 

load profile. Historical load data are generally available 
to find typical load profiles, and these profiles tend to be 

good representations, when drastic weather changes are not 

present. Furthermore, the periodic representation is only 
seventh order for the weekly load cycle, and the model order
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including regression variables is 15"\ In fact, it is this 

model that has been implementation herein.
The model uses as regression variables, the previous

day mean, peak, and hour 24 temperature and load, as well

as, temperature forecasts of the next days peak and average

temperature. A full harmonic DLM description is used to 

represent the loads weekly cyclic behavior with a period of 

seven. A first order trend component is also included. For 
this system, F is shown as follows:

“ A V G i r - i ;  L i c i t - i i  A/ric-li L v o ( t i  : i  - - ' ] ( 2 .  6 )

Lavg -.-!)̂ Lpk;..i; and are the previous day average, peak

and hour 24 loads, respectively. T;̂vG(t-iî  TpKit_i, and 
are the previous day average, peak and hour 24 temperatures, 

respectively. and T p̂-.t) are the forecasted daily
average and peak temperatures, respectively. Note that t in 

Equation (2.6) is in days.

As to initial conditions, m can be selected 
"arbitrarily" and C as IxlO'̂ Î .̂î . The discount factor which 

gave rise to the lowest MSE was found to be 0.93. This 
indicated that past information remains fairly important to 

the forecast results. Although a block discounting method 
can be used whereby each component block has its own 

discount factor, in practical experience with load 

forecasting, it has been found that block discounting had 

little impact on the forecast results. The model tended to
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yield a forecast standard deviation of 200 and so dg was 
selected as (200)-, or 40000.

Now that all of the initial conditions have been 
specified for the peak load forecast model, a scheme must be 

used to linearly scale a typical day to generate a load 
forecast profile. This process can be reduced to the 
solution of a 2%2 linear set of equations. The known 

quantities at the time of the forecast are the load estimate 
at hour 24 of the previous day and the typical load at hour 
24 of the previous day. We also have the peak load of the 

typical day and the forecasted peak load, all of which can 
be used to solve for the parameters a, b in the following 

system of equations [19]:

J (p) = a + blAp) (2.7)1(0) = a + hl;(0)

I (p) is the peak forecast, (p) is the typical day peak load, 

^(0) is the load estimate at hour 24 of the previous day and

1.(0) is the typical load at hour 24 of the previous day. 

When solving for a and b we have:

l.(p) 1(0) - 1,(0) Up)[ ,2 .8,
^  ̂ K p )  - 1(0)

1;(P) - 1,(0)
Once a and b are found, the typical day can be scaled to fit 

the peak load forecast.

1(1) = a + Jbl.(l) V i  = l,...,24 (2.9)
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This process guarantees that the typical day passes through 
the peak load forecast and the load estimate at hour 24 of 

the previous day. Note that the typical load at hour 24 of 

the previous day is required; therefore, a typical week must 

be generated. If a forecast variance profile is desired for 
this research. Equation (2.9) can be rewritten as:

Hi) = ' lAp) - l,(i)'1(0) + ' 1,(1) - 1,(0)'
Up)\ - 1,(0) / - J (̂0) 1 (p)

The variance of i(i) is:

' lAp) - lAj) ]'
Var[l{j)] = i,(p) - 1,(0) 

i,(j) - 1,(0)

Var[I(0) ]

Var[lip) ]

2

I r̂(P) - J;(0)
11,ip) - I,(J)] [i,(j) - 1,(0)] 

[lAp) - 1,(0)]: Cov[l{0) ,l{p)

(2 .10:

(2 .11)

In the case that forecast is a one day ahead forecast, 1(0) 
is not an estimate, but is a known value with zero variance. 
When multiple step ahead load forecasts are desired, note 
that by using the estimate of the previous day hour 24 load 
in the scaling equation, continuity of the load shape is 

preserved. This is very important when the load forecasts 

are intended to be used in a chronological production cost 
simulation. This completes the development of Bayesian 
estimation and electrical load forecasting. The following 
section will discuss temperature forecast errors.
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§ 2.4 Weather Forecast Accuracy

Since the goal of this research is to capture the 
effects of weather forecast uncertainty in short-term load 

forecasting, it is important to note that a sizable portion 

of the load forecast error is due to a lack of accuracy in 

the weather forecast. Figures 2.1 - 2.4 are plots of the 
seasonal weather forecast standard deviations as a function 
of forecast lead time, from several forecast sources within 
the service area of the illustrative case study. Due to 

legal ramifications, we are not at liberty to cite these 

sources by name, with the exception of the National Weather 

Service signified by the dotted line in all figures. It is 
interesting to note that all seasons, with the exception of 

winter have similar variance characteristics. Notice the 
dip present after day three in Figures 2.2 - 2.4. Note also 

that the summer season has the smallest standard deviation. 

In addition to the standard deviation profile, the 
temperature forecast biases are shown in Figures 2.5 - 2.8. 

The bias is the estimate subtracted from the true value. 

The temperature bias plots show that all seasons have a 

negative bias (temperature forecast is high), with the 
exception of spring.
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The plot in Figure 2.1 (winter) appears as expected. 
The temperature forecast standard deviation increases with 
lead time. However, Figures 2.2-2.4 (spring, summer, 
autumn) indicate that the standard deviation either levels 

out or decreases past day 2 or 3. These results are somewhat 

counterintuitive. An F test was performed at a 5% 

significance level to check if this behavior can be 
attributed to chance alone. For Figure 2.2 (spring), there 
is enough evidence to support the null hypothesis of equal 
variances from day three and beyond. For Figures 2.3 and 2.4 

(summer, autumn), again there is enough evidence to support 

the null hypothesis of equal variances from day two and 
beyond.

§ 2.5 Illustrative Case Study

The case study preformed uses data from a medium size 
electric utility whose annual peak is around 5,000 MW and 

whose annual energy is roughly 23,000 GWH. Unit data for 
this system is detailed in Appendix 2.

In order to further understand the effects of forecast 

model error and the error present in the forecast due to 

weather forecasts, the following relationship is helpful 
[41] .

F[ ( y - £[ ylx] )-] = E [ y^] -£:[£'[y|x]] (2.12)
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When put in terms of load forecasting, we have the 
following:

£[e-] = £[ { e - £[ el t=r] )‘] +£[£^[e|t]] (2.13)

Where e is the load forecast error and t denotes the 

temperature forecast random variable. Note in the above 

equation that E[(e - E[e\t=T])"] corresponds to both the 
forecast error variance due to inaccurate modeling and to 
variance that is inherent in the random model. Such is the 
case when actual temperatures are used in the forecast 

scheme. £[£-[e|t]] represents the portion of the load 

forecasting error that is due to weather forecast 

inaccuracies. That is, the errors that are present when 
temperature forecasts are used in place of actual weather 

information.
Below in Figures 2.9 - 2.12 are plots which show the 

peak normalized errors as a function of lead time for load 

forecasts made with forecasted temperatures and load 

forecasts made with actual temperatures. In each plot, the 
dashed line corresponds to load forecasts made with the 

National Weather Services' temperature forecasts, and the 
line marked with the diamonds are load forecasts made with 

actual weather data.
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§ 2.6 Conclusion

From the graphs above, one can see that the impact of 
temperature forecast errors differ with the annual seasons. 

While winter and spring have similar traits, summer is 
dramatically different. From Figure 2.11, the summer 
season, we see that the difference between load forecasting 

with actual temperatures verses forecasting with predicted 

temperatures can vary from thirty to fifty percent. It is 

also important to note that the summer standard deviations 

are the smallest of any of the seasons. The reason for this 
is due to the fact that the summer load is extremely weather 

sensitive. On the other hand. From the winter plot we see 
an example of a season which is temperature non-sensitive.

A  technique using Bayesian forecasting to estimate 
multiple day ahead load forecast distribution profiles has 
been presented. With data from a medium sized utility and 

temperature forecasts from the National Weather Service, 
results are given as a function of forecast lead time and 

prove to be reasonable. In the following pages, the 

forecast mean and variance profiles will be used in 

conjunction with sampling theory to describe the states of 
nature of the electrical load to be used in the decision 

analysis risk model.
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CHAPTER 3 

MODELING CONSIDERATIONS

§ 3.1 Introduction
When developing a decision tree structure that 

describes a practical problem, four tasks must be 
accomplished. The decision variables need to be identified, 

states of nature must be defined and probabilities assigned 

to the possible outcomes. Also, the terminal node cost 
functionals have to be evaluated. Since the goal of this 
research is to evaluate risk due to uncertainty in short
term planning, the natural decision variable is the short
term unit commitment decision.

§ 3.2 Stochastic Unit Commitment vs. Risk
The short-term unit commitment problem has a finite 

number of solutions, one of which will be optimal for a 
given load and set of fuel prices. Unfortunately, the 

solution set is too large to enumerate exhaustively. A 
great deal of research has been done in this area to find a 
near optimal solution in a timely manner. Dynamic 

Programing, LaGrange Relaxation and Sequential Bidding are 
among the most popular solution methods. Each method
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requires a load forecast profile and fuel price estimates to 
determine the generation schedule. However, if one seeks the 
true optimal solution, but does not fix the load, and 
instead considers the load to be a random process, finding 

a solution that minimizes the expected production cost is a 

problem that has yet to be solved. This is known as the 

stochastic unit commitment problem.

This problem can be modeled using decision analysis. 
Consider a decision tree with finitely many courses of 
action, e.g., unit commitment strategies, and infinitely 

many states of nature corresponding to the electrical load. 

Note that the finite number of unit commitment strategies is 

still very large. The goal of this problem is to determine 
the unit commitment strategy that minimizes the expected 
cost, over all possible load profiles and fuel prices. It is 
important to remember that the emphasis lies in determining 
the unit commitment strategy; the evaluation of the

production cost is secondary, even though the production 
cost is used as a minimization criterion. This research
does not attempt to solve the stochastic unit commitment 
problem.

To evaluate the risk due to load forecast and fuel

price uncertainty, instead of infinitely many states of 

nature, only three will be considered. These states are 
denoted high, medium and low for both the load and fuel
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prices. The set of admissible strategies are those unit 

commitment decisions that correspond to the load and fuel 
prices set to high, medium and low. It is not proposed that 
the solution strategies to the risk decision tree model are 

the same as the stochastic unit commitment problem. The unit 
commitment strategies corresponding to the high, medium and 

low states that have been discussed previously are not the 

only solutions. Others are certain to exist and one may be 
optimal.

Since the expected production cost corresponding to the 

solution of the risk model will be greater than or equal to 
that of the stochastic unit commitment problem, the risk 

model forms an upper bound, which is fairly tight in most 

practical circumstances. By reducing the states of nature, 
a feasible solution is attainable. However, it cannot be 
understated that, for the purposes of this research, the 

expected cost of the risk model is emphasized, the derived 

unit commitment strategy is secondary. The rest of the 

chapter will cover the development of a method to classify 
the load and fuel prices into states of nature and to assign 
probabilities to the possible outcomes.

§ 3.3 Sampling Theory

From sampling theory, to reduce study costs, a small 

number of samples from well chosen sub-populations can
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sufficiently represent an entire population. The sub
populations are called strata, and each stratum corresponds 
to a certain part of the total population that exhibits a 

similar trait. It is sometimes convenient, for the purposes 
of theoretical investigation, to represent the domain of a 
probability distribution function by a set of mutually 
exclusive strata. In this case, the population can assume 

infinitely many values. Furthermore, each stratum can be 

represented by its conditional expected value.
The electrical load for a given hour, which can be 

considered normal by the central limit theorem [42-44], and 
fuel prices, which are considered to follow a triangular 

distribution, will be represented as probability density 

functions so as to utilize sampling theory to synthesize the 

states of nature of the decision problem. For each 
distribution, the high and low strata correspond to the 
upper and lower p% of the area under the respective density 

function. The medium stratum corresponds to the (100-2p)% 
of the area remaining in the center.

An assumption that is made in this research is that the 

load is well behaved and maintains a similarly shaped hourly 
profile. It is felt that the set of load profiles which lie 
within certain bounds can be adequately described by the 

profile of hourly expected values. In Figure 3.1, the load 

is assumed to be similar in shape to Series D or C, which
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lies between the bounds of Series A  and B. During different 
seasons of the year, the shape of the load profile may 

change, but these changes do not occur drastically. 
However, if the load profile is sporadic and is shaped like 

Series E, this type of analysis and characterization would 
not be appropriate.
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Figure 3.1 Load Profiles: Standard and Irregular

When using stratified sampling, two important decisions 

must be made. First is the number of strata to be used, and 
second is choosing strata boundaries. Selecting the number 
of strata is a matter of cost. In this case, the cost is 
computer simulation time. With the need for enumerating
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many combinations of varying load profiles, fuel prices and 

unit commitment strategies, if k is the number of possible 

actions, and m is the number of states of nature, then k^m 

simulations will be required to complete the study. 

Theoretically speaking, one could choose twenty partitions, 

but for only a small increase in accuracy a huge increase in 
computer simulation time is required.

Stratum boundary selection is also an important part of 

the sampling process. Reference [34] has suggested that as 

a first cut, the strata should be partitioned so that each 

stratum has an equal number of members. Since our 

population is a continuous density function, choosing the 
partition boundaries such that the area under the density 
function within each stratum is equal would do. However, 

Reference [40] states that a better choice is to select the 

strata boundaries such that the conditional variances of the 

strata are equal. When the population is the electrical 
load, which is described by the normal distribution, a 
solution can be approximated by using the standard normal 
distribution and the numerical bisection method. From 

Reference [40], the solution to the following yields the 

strata boundaries.

£ [ ( z - z ) - I zGHJ = Constant V i  = 1,2, ... ,p (3.1) 
Where p denotes the number of strata and H, is the i'̂

partition. When p is large this is a difficult problem to
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solve. However, when p is three, a solution can be found by 

exploiting the symmetrical properties of the standard normal 
density function. When p = 3, we have the following

partitions :

{ (-",-0.848); (-0.848, 0.848); (0.848,°°) }

The probabilities for these partitions are approximately:
{ 0 .2, 0.6, 0.2 }

Once the strata and partition boundaries have been selected, 

the conditional expected value of each stratum serves as the 

representation of an event. Below the expected value of z in 

(a,b) is shown.

f ^zf(z)dz
E[z\ze{a,b)] =   (3.2)

j f(z) dz

Where f(z) is the standard normal probability density 

function as shown below.

f(z) = - ^ e x p ( - z V 2 } d z  (3.3:
y2n

When a = 0.848 and b = °° in Equation (3.2), the

expected value of the high stratum is 1.389. Figure 3.2 

shows the standard normal density function partitioned with 
equal conditional variances.

Since the fuel prices are described by the triangular 
distribution, to be consistent, the partitions will be
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selected using the (20%,60%,20%) area allotment. These 
distributions are unconditional distributions, and as said 
before, the expected value of each stratum represents a 
possible state of nature for both the load profile and fuel 
prices. The probabilities being (.2,.6,.2) for the 
independent states of nature corresponding to low, medium 

and high.

20%
Low

60%
Medium

20%
High

■1.389 1.389

Figure 3.2 Standard Normal Density Function

However, interdependencies exist between fuel prices and 

varying loads, and between different fuels. Using

conditional densities is a better representation, when 

evaluating risk with multiple dependent uncertain input 

variables.
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§ 3.4 Conditional Distributions

When considering only load forecast uncertainty, we do 
not account for dependencies in the input variables. 
However, if it is desired to evaluate the risk due to both 
load forecast and fuel price uncertainty, the 
interdependencies that exist between the load and the fuel 
prices should not be overlooked. In the following pages, a 

method for considering these relationships is presented.

The easiest way to account for these dependencies is to 
specify the conditional densities. However, these 
conditional density functions are rarely known; herein a 
method is devised to approximate the generation of these 

conditional densities with a minimum number of requirements. 

Only the unconditional densities and the correlation 
coefficients for each input variable will be necessary.

Consider the two following relationships, which are 

valid for two normal random variables, xl and x2 [45]:

x̂i Pl2 
= e;.(l - PC;)

(3.4:

Where û ux: and are the conditional mean and variance of

xl given x2 = X2; and o-̂ . are the unconditional

means and variances of xl and x2; and Pi; is the correlation

coefficient between xl and x2. If each the fuel price

densities were normal, then the above equations would be
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sufficient to formulate any conditional density. However, 
the fuel price density functions are assumed to be 
triangular. Nonetheless, the above relationships can be used 

as a guide to transform unconditional triangular 
distributions into approximate triangular conditional 
distributions. Note what occurs to an unconditional normal 
distribution when Equation (3.4) is applied. The 

unconditional mean is shifted on the abscissa by a factor 

involving the unconditional variances, the correlation 
coefficient, etc. The unconditional variance is then scaled 
by the correlation coefficient. The same will be done to the 
unconditional triangular distribution.

Consider the following: 

load ~ N (pL, 
fuel ~ Tri {f̂ , f„, fw)

HL = Pl + 1.3890l —  High Load 
where f„ and f„ are the low, most likely, and high values 
of the triangular fuel price distribution. Since the 

triangular distribution is described by its coordinates, 

shifting the distribution can be accomplished by adding the 

same shifting factor, as described before, to each low, most 
likely and high value of the unconditional distribution. The 

conditional expected value is shown as follows:
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Due to the definition of HL, above. Equation (3.5) can be 

simplified.

fiSL = + Pf.L
/  V

(Pr + 1.389a - p,

I \
f£
a.

(3.61
= + 1 . 3 8 9 o ^ P f ^

= + 1 . 3 8 9 o u p ^ ^

From Equation (3.6), it can be seen that shifting the 

unconditional fuel price mean by 1.389p^^^a^ produces the 

desired conditional mean. The same shifting effect can be

obtained by adding this factor to each of the triangular
distribution's coordinate values. The shifted distribution 
is as follows:

SHIFTED ~ T r i [ f ^  + ^ ' ^ H  ^
(3.7)

C = 1.389p^,o^
The conditional variance is found by the following:

= C}(1 - P},J (3.8)
The low and high coordinates of the shifted unconditional
triangular distribution must be changed to reflect the new

conditional variance. If the unconditional triangular

density is not symmetric about the most likely value,

efforts must be made to maintain the same skewed shape
during the transformation. This can be accomplished by

solving for the conditional coordinates, while ensuring that

the ratio of the areas of the triangles of either side of
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the most likely value remain constant. This added constraint 
is reduced to the following:

f.r = M f f - f
(3.9:

where fl.L\EL> flM\HL and flniHL are the conditional coordinates.

The scaled triangular distribution is the following: 

f\ HL ~ Tri [fr I ^h\el'̂

- Trx

where/, 

variance.

f ~ r
18 a;fiHL
1+r+r“ •«I HI -̂ VIHI 1+r+r~

(3.10)

is the conditional 

See Appendix 1 for the proof of the above 
relationship. The stratified sampling technique described 
earlier in the chapter can then be applied to the 

conditional distributions, derived from the above 
transformation. Figure 3,3 shows a graphical representation 

of the above method.

The next chapter. Chapter 4, will discuss the risk due 
to load forecast uncertainty alone. Chapter 4 applies the 
techniques described earlier in this chapter to formulate 
the short-term planning problem in terms of a suitable 

decision analysis problem that is feasibly analyzed. In 

Chapter 5, the method for considering the conditional 

relationships between the load and the fuel prices will be 
used when fuel price uncertainty is added to the risk 
problem. One more modeling concern is the number of
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simulations required to evaluate the multiple fuel risk 
model. As the number of fuels increase, the required number 
of simulations grow exponentially. A method for reducing 
the model order is presented in this dissertation, but is 

deferred until Chapter 5.

\
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Z7

y  Unconditional 
Shifted

TT' 57

Shifted and \ 
Scaled \

295 4.7 556

Figure 3.3 Triangular Transformation
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CHAPTER 4 
RISK DUE TO LOAD UNCERTAINTY

§ 4.1 Introduction

This chapter presents a methodology to analyze the risk 
of short-term power system operational planning in the 

presence of electrical load forecast uncertainty. As this 
methodology requires an estimate of the load forecast 

variance, the Bayesian load forecaster, presented in Chapter 

2, is used in the practical implementation. The results are 
expressed as a function of forecast lead time from one to 
five days into the future, in terms of $/MWh. The risk due 

to load forecast uncertainty is based on the forecast 
variance, and is found by determining the expected cost of 

perfect information. The risk evaluation method is 

illustrated in a case study with utility derived system data 
and temperature forecast data from the National Weather 
Service.

As the energy market moves from a government regulated 
monopoly to a competitive free enterprise industry, the 

analysis of operational risk will become increasingly 

important. In the future, energy prices will most likely be 
determined contractually, instead of the current practice of
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public rate hearings. As a result, the contract lead time 

and contract price become important parameters in the short
term power system operational planning process.

Uncertainties impose additional risk in short-term 
planning, because of the unit commitment decision's large 

influence. Electrical load forecasts and spot fuel price 

estimates are two such uncertain quantities. For example, 
if the load forecast for the next week is in error, the 
electric utility runs the risk of committing either too much 
or too little capacity. In either case, the electric 
utility can incur additional costs. Furthermore, as the 

load forecast lead time increases, so does the forecast 

uncertainty. A similar situation exists when a significant 
proportion of the electrical utility's natural gas is 
supplied by the daily spot market. In the future free 
enterprise system, where prices may be quoted with a lead 
time of one hour to one month, new tools to analyze the risk 
due to load forecast and fuel price uncertainty will prove 

helpful in contract negotiation and energy price 
structuring. In this chapter the effects of load
forecast uncertainty on short-term planning are explored; 
the effects of fuel price uncertainty are deferred until the 

next chapter. The impact of this planning variable is 

represented by the operational risk. Electric utilities 

employ various types of load forecasting models. The choice
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of forecast method generally depends on the study horizon 

lead time. When the study horizon lead time is short, 

conditional forecasts, which make use of weather forecast 
information to refine the load estimate, can be used to 
perform daily and weekly planning tasks. However, when the 
study horizon lead time is significant, unconditional 

forecasts, which only have the benefit of historical load 

or climatological data, may be the only feasible estimate. 

This is normally the case when the study horizon lead time 
is large enough to question the validity of the weather 
forecasts. Five days lead time is the limit for reliable 
temperature forecasts in the service area of our case study.

The aim of this chapter is to present a general 

procedure for evaluating the operational risk that is 

independent of the load forecast algorithm. The risk 
methodology demonstrated in this chapter is expressed as a 
function of forecast lead time. The load forecast variance, 
which differs from method to method, is an underlying 

quantity in the risk calculation, but can be generated from 

any load forecast source that estimates the forecast 
variance. Unfortunately, only a few load forecasting 
techniques yield a forecast distribution that includes a 
variance estimate. Bayesian estimation is one such method, 

and is the technique used in this chapter's illustrative 

case study.
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Statistical decision theory and probabilistic sampling 
theory are used to evaluate the effects of load forecast 

uncertainty on short-term planning. Decision analysis has 

proven valuable, when evaluating system extension options 
[8-11]. In addition, the technique has been applied to 
capacity expansion studies with respect to annual load 
growth [1] . In this chapter, we take these concepts in a 

new direction and evaluate the risk of system planning in 

the short-term. From decision analysis, the evaluation of 
risk is straight forward. The Expected Cost Of Uncertainty 
(ECOU), or otherwise called the expected value of perfect 
information, serves very well as a risk indicator. The main 
task is to formulate and transform the short-term planning 

problem into a suitable structure for analysis using 

decision theory. Hence, decision variables must be defined 
and identified, states of nature have to be chosen and 
probabilities corresponding to the states of nature must be 
assigned.

For the purposes of this research, we define the 

decision variable to be the short-term unit commitment 

decision. The states of nature correspond to high, medium 
and low electrical load classes. In particular, efforts are 
made herein to describe the electrical load as discrete 

events derived from probability densities. The

representations of the load is then assigned a likelihood of
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occurrence. This problem has a two-part solution. First, 
sampling theory is used to form discrete load categories via 

conditional expected values [34-40]. Secondly, the load 

forecast distribution profiles are scaled with the 
conditional expectations obtained from the stratification 
process. The load profiles are then used as input for a 

chronological production cost simulator to determine the 
unit commitment strategy and the production cost. 

Probabilities are available from the conditional 

expectations.

The rest of this chapter is structured as follows: 
Section 4.2 provides a concise problem statement. Section 
4.3 describes the risk calculation methodology. This 
section contains four subsections. Subsection 4.3.1 covers 

electrical load forecasting. In this chapter, we use 

Bayesian forecasting to predict the conditional forecast 
distribution. Those aspects of probabilistic stratified 

sampling necessary to classify and categorize the electrical 
load are covered in Subsection 4.3.2. Subsection 4.3.3 

details attributes of production cost simulation important 

to risk calculations. The fundamentals of decision analysis 
used to calculate short-term risk are described in 
Subsection 4.3.4. Section 4.4 is a practical implementation 

of the presented methodology, which provides an illustrative 

case study. Utility derived system data from a medium size
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electric company are used in Section 4.4, as well as, 

temperature forecast data from the National Weather Service. 
Section 4.5 concludes the chapter.

§ 4.2 Problem Statement

Given an acceptable set of historical load data, 
historical temperature data and short lead time temperature 

forecasts; the goal of this chapter is to determine the 
daily expected value of perfect information due to 

electrical load forecast uncertainty as a function of lead 

time. The study horizon for this research is limited to 
five days into the future. The results will provide a 
measure of uncertainty for each day of the study horizon. 

From the historical data and temperature forecasts, one 

through five day ahead load forecast distributions are 

generated, which, by means of sampling theory, are 
transformed into three individual events, denoted as high, 
medium and low load profiles.

Using decision analysis, where the decision variable is 
the unit commitment decision, we find the expected value of 

both nature's decision tree and the clairvoyant's decision 

tree. Nature's tree represents decision making under 

uncertainty and the clairvoyant's tree emulates decision 
making, when the future is known with 100% certainty. The 

difference in expected cost between the two scenarios yields
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the expected cost of load forecast uncertainty [7] . By 
using forecast distributions with varying study horizons, 
the expected cost of uncertainty can be expressed as a 

function of lead time, which can be a useful tool in short

term power system planning.

§ 4.2.1 Assumptions
Fundamental to this analysis are several points. First 

is that some method of determining the optimal unit 
commitment strategy and short-term production cost must be 

available. Scheduler, a resource allocation and scheduling 

tool developed by Power Costs, Inc. of Norman, Oklahoma, is 
used in this research. Although the determination of the 

expected cost of uncertainty is independent of the forecast 
method, the electrical load forecast must take the form of 

a time series profile suitable for use with a chronological 
production cost simulator.

Second is that the solution of the decision problem in 

terms of the strategy, which corresponds to the smallest 
expected cost, should not be confused with the solution to 

the stochastic unit commitment problem. Although both the 

stochastic unit commitment problem and the risk problem can 

be modeled using the same decision tree, the emphasis of our 
research rests on the derived expected cost while the 

solution to the stochastic unit commitment problem
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emphasizes the strategy that yields the minimum expected 
cost. Allowing the load to take on uniformly high, medium 
and low values is an approximation, and not a true 
representation of all possible load scenarios. The strategy 

corresponding to the solution of the decision problem will 

not, in general, correspond to the solution of the 

stochastic unit commitment problem. While the two 
strategies could be the same, it is not true in every case.

§ 4.3 Methodology

Probabilistic sampling theory will be used later to 

represent the load as a set of individual events. Necessary 
for that process is a load forecast distribution profile, 
which includes both mean and standard deviation. The 
following section will discuss, briefly, a method to 

generate distribution profiles.

§ 4.3.1 Forecast Distributions
Conditional load forecasts are those electrical load 

forecasts in which weather information can be used to refine 

the prediction. Many load forecast procedures are in use 

today. Among them are: artificial neural network

algorithms, time series analysis, least squares methods, and 
state space approaches [26]. Some forecast techniques give 
only a point estimate and not a forecast distribution as
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required by this research. However, Bayesian estimation, 
which is in the state space category, does provide the 
necessary forecast distribution.

Bayesian estimation is a recursive prediction algorithm 

that uses an a priori distribution and sampled data to 

update to an a posteriori distribution for the next time 

increment. A dynamic linear model (DLM) is used in 
conjunction with this updating scheme to describe the output 
signal characteristics. Trends and periodic behavior are 

easily represented by the dynamic linear model in terms of 

the state space description. The DLM also has the 

capability to reflect the impact of explanatory variables on 

the forecast. These exogenous inputs, in the case of load 
forecasting, take the form of current weather forecast 
information. For a thorough treatment of the theoretical 

aspects of Bayesian estimation and dynamic linear models, 
see Chapter 2 and Reference [30-33].

Since the goal of this research is to capture the 
effects of load forecast uncertainty in short-term planning, 
it is important to note that a sizable portion of the load 
forecast uncertainty is due to a lack of accuracy in the 
weather forecast. For our particular case, temperature 

forecast errors can double the load forecast errors. 

Figures 2.9 - 2.12 in Chapter 2 are plots of the seasonal 
weather forecast standard deviations as a function of
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forecast lead time from several forecast sources within the 

service area used in the illustrative case study.

§ 4.3.2 Probabilistic Stratified Sampling
In the following section, aspects of probabilistic 

stratified sampling will be discussed and used to classify 

and categorize the electrical load. An important assumption 

this research makes is that the load at any given hour can 
be considered a normal random variable [42-44]. This is a 
reasonable assumption because the system load is actually an 
aggregation of all end users connected to the grid. If each 

customer is considered a random variable, then their summed 

loads will approximate a normal distribution by the Central 
Limit Theorem [44].

From the concepts of sampling theory, a distribution 
can be partitioned into a finite number of strata, where 
each stratum mean is a representation of all members in the 

stratum [34]. By choosing the strata wisely, sampling can 

be reduced to save effort. Since there are infinitely many 
values the electrical load can assume for a given hour, the 
goal is to represent the electrical load, described as a 
normal distribution, by the conditional expected value of 

well chosen partitions within the distribution. In so 

doing, not only does this discretize the load into a finite 

number of events, but also assigns probabilities to each
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event. Since forecast distribution profiles will be 

available, the process can be implemented for each hour of 

the load forecast profile. See Chapter 3 for further 
details.

However, in Chapter 3 the selection of strata and
partition boundaries are shown only for the standard normal 
distribution. In fact, this process must be repeated for 

each hour of the forecast distribution profile. Since the

load is normal, there are two short cuts that reduce the
calculation workload. Any normal distribution can be 

represented in scaled terms of the standard normal 
distribution. Therefore, the conditional expectation of the 

standard normal curve, stratified as previously discussed, 

need to be found only once. The load profiles are found by 
scaling the hourly and standard deviation profiles.
Furthermore, the standard normal distribution is symmetric 
about the ordinate so the conditional expectation of the 
medium stratum is zero and the low conditional expectation 

is opposite in sign from that of the high partition. Hence, 

only one conditional expectation need be found. By using 
the equation below, high, medium and low load profiles can 

be generated with the load forecast and standard deviation 
profiles.
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l,U,k) = Uj,k) - 1.389à(j,k)

= î{j,k) (4.1)
l^(j,k) = î(j,k) + 1.389Ô(j,k)

Where l(j,k) is the appropriate load of day and the k"'’ 
hour. Note that the above equations are independent of the 
forecast method.

§ 4.3.3 Production Cost Simulators

To effectively plan future courses of action, an 
essential tool for the system planner is the production cost 
simulator; a computer simulation package that determines 
unit commitment strategies and the minimum expected 
production cost, given load profiles, fuel price estimates 

and other system characteristics. There are two predominant 

methods of simulating power system production and activity. 
The Beleriaux-Booth method provides an analytical solution, 
where system demands and unit reliability characteristics 

are represented by probability distribution functions 

[46,47]. Since this method is based on the load duration 

curve, temporal information is lost. The chronological 

production cost simulator is the other method of evaluating 
power system planning options and strategies. This method 

requires the use of chronological load profiles as inputs 
and performs statistically based Monte Carlo simulations, 

which consider unit outage characteristics.
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This research uses a chronological production cost 
simulator, because temporal information is important. Since 
the study horizon for this research is limited to short

term, where obtaining the unit commitment strategy is the 

main goal, unit outage characteristics will be ignored. 

Scheduler, a product of Power Costs, Inc. of Norman, 

Oklahoma is the chronological production cost simulator used 

in this research, because it provides all of the necessary 

tools of analysis. Not only does the program have the 

ability to simulate both fixed and flexible unit commitment 

strategies, but Scheduler also has the unique characteristic 

of using a dynamically linked library (DLL) as the main 
optimization engine, separate from the graphical user 

interface. This allows the user to run automated multiple 

simulations by calling the DLL from an external program, 
which is an essential requirement of this type of research.

Once the load profiles have been categorized and the 
high, medium and low load profiles have been generated, the 
profiles are used as input load files for a short-term 

deterministic production cost simulation, in order to 

determine associated cost and unit commitment strategy. It 
is important to note that the production cost simulator 
program must have the ability to evaluate production costs 

using both fixed and optimizing unit commitment strategies. 
Moreover, it is helpful, but not necessary, to have macro
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programing features in order to perform automated multiple 
simulation runs. The reasons for these requirements will 
become apparent in the next section.

§ 4.3.4 Expected Cost of Perfect Information
The goal of this chapter is to find the expected cost 

of uncertainty due to electrical load forecast variation. 

This is easily accomplished using the concepts of decision 
analysis. In its basic form, decision analysis models the 

available options in the form of a decision tree with 

decision nodes representing events that are under the 
control of the decision maker and chance nodes representing 
uncertain events outside the control of the decision maker. 
Assessed probabilities for each state of nature must be 

assigned, as well, as values for each outcome represented by 

terminal nodes [8] . See [7] for a thorough treatment of the 
subject.

Figure 4.1, on the following page, is the decision tree 
that corresponds to the standard short-term power system 
operational planning problem with electrical load forecast 

uncertainty. That is, a short-term unit commitment strategy 

is developed, deterministically, using one to five day load 
forecast profiles. The decision variable is the unit 

commitment decision and is denoted by the square decision 
node in the figure. HUC, MUC and LUC are different unit
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commitment strategies, where HUC is the unit commitment 
strategy of the high load scenario. MUC and LUC are defined 
similarly for medium and low load situations. The unit 
commitment decision is made prior to the week in question, 

and for the purposes of comparison, rescheduling is not 

considered.

HUC
!

MUG

LUC

\  I

C(HUC,HL)
HL

■ML — C(HUC,ML)
■̂ LL

X C(HUC.LL)
C(MUC,HL)

HL
Ml___ C(MUC,ML)
LL

X C(MUC.LL)
C(LUC,HL)

HL

Ml___ C(LUC,ML)
‘LL

X C(LUC,LL)

Figure 4.1 Nature's Decision Tree

Tied to each circular chance node are the states of nature. 

For our case we have high, medium and low load 

representations denoted by HL, ML and LL in the figure. 

Assigned to each state of nature are probabilities P(HL), 
P(ML) and P(LL) (Not shown in the figure). The terminal 
nodes of the tree, outboard right of the figure, correspond

74



to cost functions. For example, C(HUC,ML) is the weekly 
operational cost if the high unit commitment strategy was 
selected and the load turned out to be medium. Each of the 
nine possible outcomes are defined in this fashion.

For the purposes of this research, the cost functionals 

are determined by a chronological production cost simulator 

run under the appropriate set of circumstances. The 
decision tree can be evaluated by a method called averaging 
out and folding back [7]. The quantity that is determined 
from the tree's evaluation is the expected value. The 

decision tree in the above figure is sometimes called 

nature's decision tree. The calculation of the expected 
value of nature's tree, denoted EV(N), is shown as follows: 

EV{N) =
H M D  ■C(HUC,HL)  ̂P{ML) ■ C{HUC, ML)  ̂P{LL) ■ C(HUC, LL) ,

(4.2)min ■
PiHL) ■C{HUC,HL) * P(ML)-C(HUC,ML) * P(LL) ■ C(HUC, LL) ,
P(HL)-C(MUC,HL) * P{ML)-C(MUC,ML) * P[LL) ■ C(MUC, LL) ,
P(HL)-CiLUC.HL) * P(ML)-C(LUC,ML) * P(LL) -C(LUC, LL)

Another decision tree configuration is called the

clairvoyant's tree, and is shown on the following page. 
This is the case where the decision maker has perfect
knowledge of the future. Notice in the figure that only one

terminal node is tied to each decision node. Presumably,
the decision maker will chose to implement the optimal unit 

commitment strategy if the future is known with complete 

certainty.
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> Q - H U C “ C(HUC.HL)
HL

O ^ M L  _ Q _ |V |U C  -  C(MUC.ML) 

LL

LUC -  C(LUC,LL)

Figure 4.2 Clairvoyant's Decision Tree

The expected value of the clairvoyant's tree, denoted EV(C), 
is shown in Equation (4.3).

EV{C) =
P{HL)-CiHUC.HL) + P{ML)-C{MUC,ML) * P(LL) • C{LUC, LL) (4.3)

The difference between EV(N) and EV(C) is called the 

expected cost of uncertainty, denoted ECOU, and is shown in 
Equation (4.4) [7].

ECOU = EV(N) - EV[C) (4.4)
The ECOU is the most the decision maker should pay for load 
forecasting services, whether it be in engineering costs or 

to a weather forecast service. The ECOU is also the risk 

due to load forecast uncertainty. In the decision analysis 
sense, the ECOU due to load forecast inaccuracies is a good 

indicator of the danger present in planning under longer
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forecast lead times.

There are two possible ways to find the daily ECOU as 
a function of forecast lead time. One method is the perform 
one day unit commitments for each day of the study horizon 
and find the corresponding ECOU of each day. A problem with 
this method is that the one day unit commitment does not 

capture startup and shutdown times necessary for plant 

operation. These factors are an essential part of realistic 
planning and should not be overlooked. Instead, we first 

find the ECOU for k days by considering the k day unit 

commitment strategy starting from the present to k days into 

the future.

4 Day UC

3 Day UC

2 Day UC

1 Day UC
sooo

I
1

3000

2000

1000

0 724ft Oft24

OL##d Tim# 
• Low -U##n
-Hioh

Por#cMt L##d Tfen# (Ho«r«)

Figure 4.3 Period ECOU as a Function of Lead Time

In this way, startup and shutdown times are reflected in the 

ECOU, and a more realistic representation of the passage of
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time is presented. See Figure 4.3 for a graphical view. We 

define the ECOU for one day, say day k, to be the difference 

between the period ECOU(k) and the period ECOU(k-l), where 

ECOU(j) denotes the expected cost of uncertainty when the 

decision variable is the unit commitment decision with a 

study horizon ranging from the present to j days into the 

future. Note that ECOU(O) = 0.

Consider the following: A power supplier has the

responsibility for quoting daily energy prices for the next 
week. The guideline that the power supplier uses for 

setting the daily energy price for the k''’ day into the 

future is defined to be the aggregation of the expected 

production cost, the daily ECOU of day k and a thirty 

percent profit margin. Given the daily expected costs which 
are based on a load forecast and obtained by performing a 
short-term deterministic unit commitment simulation, the 

price for the first day is the expected cost plus ECOU(l) 
plus thirty percent. To price day two, however, we cannot 

simply add the expected cost and EC0U(2), because ECOU(2) 

contains the cost of uncertainty of day one as well. 
Instead, we need only add in the cost due to uncertainty not 
recovered in the price of day one; that is, EC0U(2) 
ECOU(l). Therefore, the price of day two becomes the 

expected cost of day two, plus ECOU (2) - ECOU ( 1 ) plus a

profit margin of thirty percent; this method is defined
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similarly for k days into the future. For our simplified 

pricing task we have the following:

P{k) = il+PM) {C(k) * ECOUik) -ECOU{k-l)) (4.5)
Where P{k) is the price of day k, PM is the profit margin, 

C(k) is the expected production cost for day k and ECOU(k) 

is the expected cost of uncertainty whose decision variable 

is the k day unit commitment.

It is important to note that the high, medium and low 

unit commitments that have been discussed previously are not 

the only solutions. Others are certain to exist, and one 
may be optimal. The selection of the true optimal unit 

commitment decision in the presence of infinitely many loads 
is better known as the stochastic unit commitment problem. 

This research does not attempt to solve this problem. 

Since we may not have identified the true optimal unit 
commitment, the ECOU, found from the suggested methodology, 

may be slightly higher. This implies that Equation (4.4) 
represents an upper bound of the true ECOU. Practical 
experience has shown that the optimal ECOU is roughly 

fifteen percent lower. However, this accounts for less than 

one percent of the production cost for the period in 
question.

§ 4.4 Illustrative Case Study

The case study performed used data from a medium size
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electric utility whose annual peak is around 5,000 MW and 

whose annual energy is roughly 23,000 GWH. See Appendix 2 
for a detailed list of generator data. Figures 4.4 - 4.7, 

at the end of this chapter, show plots of the expected cost 

of uncertainty due to load forecast uncertainty as a 
function of lead time, in $/MWh.

§ 4.5 Conclusion

Based on the above results we can see that the period 

expected cost of uncertainty (The ECOU from the present to 

k days into the future) exhibits reasonable behavior. That 

is, the period ECOU increases with lead time. However, the 
daily ECOU does not. Such is the case when the period ECOU 
increases by a smaller amount with the passage of time. Is 

this reasonable? From the plots of the temperature forecast 

variance, the reader should note that the daily cost of 
uncertainty tracks the temperature forecast standard 

deviation. Winter is the best seasonal example. A spike in 
the daily ECOU occurs on day three, similar to the plot of 
the temperature standard deviation.

The above analysis considers risk as a function of lead 

time due to electrical load forecast uncertainty. However, 
the load forecast in not the only uncertain variable in 

short-term power system planning that has a significant 

impact on the unit commitment strategy. Spot market fuel
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prices also affect the short-term planning process. In the 
next chapter, fuel price uncertainty is included in the risk 
analysis. Chapter 5 also considers the effects of

conditional relationships between input variables, such as 

the interdependencies between load and fuel prices, and 

presents a methodology to reduce the model order by
approximation to decrease computer simulation time.
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Figure 4.4 Winter Load Forecast Uncertainty
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CHAPTER 5
RISK DUE TO LOAD AND FUEL PRICE UNCERTAINTY

§ 5.1 Introduction
This chapter presents a methodology to analyze the risk 

of short-term power system operational planning in the 

presence of electrical load forecast and fuel price 
uncertainty. As the methodology will require an estimate of 

the load forecast variance, the Bayesian load forecaster 
from Chapter 2 will be used. In addition, a decision tree 
structure, similar to that of Chapter 4, will be the 

starting point for including fuel price uncertainty in the 
risk model. Due to the interdependencies that exist between 

the load and fuel prices, the results form Chapter 3 will be 

used to account for these relationships. The illustrative 
case study's results are expressed as a function of forecast 
lead time from one to five days into the future, in terms of 
$/MWh. The risk evaluation method that is implemented in 

this chapter's illustrative case is taken from the utility 

derived data set and National Weather Service temperature 

forecast data that have been used throughout this 
dissertation.

As shown in the previous chapter, load forecast
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uncertainty can have a large impact on the expected 
operational cost, in some cases the ECOU was almost 3 $/MWh. 
However, the electrical load is not the only variable in the 
short-term power system planning process that has a degree 

of uncertainty linked to it. Fuel prices also tend to 

fluctuate throughout the year, especially spot market 

natural gas. As a result, fuel price uncertainties should 
not be overlooked, when evaluating risk in short-term 

planning. As will be shown in the following pages, the risk 
due to fuel price uncertainty is significant, as well.

However, the dimensionality of the decision tree cannot 

just be increased without further analysis. When evaluating 
risk models with multiple input variables, where 
dependencies may exist, conditional densities should be used 

in place of unconditional densities. Furthermore, the model 
order quickly grows very large as the number of input 

variables increase. Exhaustive simulations become

impractical, when three or more random inputs are 
considered. It is common for electric utilities to have five 

or more fuel suppliers; because of this, additional efforts 
are made herein to reduce the model order by using a 

reasonable approximation.

The rest of this chapter will be structured as follows: 

Section 5.2 provides a concise problem statement. Section 
5.3 uses results from Chapter 3 to represent dependent

85



inputs. Section 5.4 details a method to reduce the over all 

model order and the number of simulations required to 
evaluate the risk model with multiple inputs. Section 5.5 
covers the formulation of the new decision tree that is to 
be evaluated by the techniques described in Chapter 4. 

Section 5.6 is the illustrative case study which make use of 

the standard data set found in the Appendix 2.

§ 5.2 Problem Statement

Given an acceptable set of historical load data, 

historical temperature data, fuel price densities, fuel 

price and load correlations, and short lead time temperature 

forecasts; the goal of this chapter is to determine the 
daily expected cost of uncertainty, due to load forecast and 

fuel price uncertainty, as a function of lead time. The 
study horizon for the research is limited to five days into 

the future. The results will provide a measure of 

uncertainty for each day of the study horizon.

From the historical data and temperature forecasts, one 
through five day ahead load forecast distributions are 

generated, which by means of sampling theory, are 
transformed into three individual events, denoted high, 

medium and low. These are the same load profiles used in the 

previous chapter. Using the unconditional fuel price 
densities and a set of correlation coefficients, conditional
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densities for the fuel price distributions are created. 
These densities dictate the formation of individual fuel 
price events using sampling theory, as well.

Using decision analysis, where the decision variable is 
the unit commitment decision, the expected value of both 

nature's decision tree and the clairvoyant's decision tree 

are found. Nature's tree represents decision making under 

uncertainty, where both the load and fuel prices are unknown 
to the decision maker. The clairvoyant's tree represents 
decision making with complete knowledge of the future. The 
difference in expected costs between the two scenarios 

yields the expected cost of load forecast and fuel price 

uncertainty [7] . By using forecast distributions with 
varying study horizons, the expected cost of uncertainty can 
be expressed as a function of lead time, which can be a 

useful tool in short-term power system planning.

§ 5.2.1 Assumptions

Fundamental to this analysis are two points. First is 
that the assumptions made in the previous chapter are also 

valid here. That is, the load is assumed to be well behaved, 
and the stochastic unit commitment problem is not 

considered. Secondly, fuel prices are given as unconditional 

triangular probability density functions, and these density 

functions stay constant over the entire study horizon, which
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is different from the load forecast distribution profiles.

§ 5.3 Dependent Input Variables
Using the formulae describing the conditional normal 

density function as a guideline, found in Chapter 3, a 
method for approximating conditional triangular densities 

was developed, to account for interdependencies that may 

exist between input variables. The triangular fuel price 

distributions will be adjusted using Equations (3.9) and 
(3.10) in Chapter 3. This implies that the unconditional 
triangular distributions must be known, as well as, the 
correlation coefficients. Note that if a correlation 

coefficient is zero, then the conditional density defaults 

to the unconditional density. However, a zero correlation 
coefficient, in general, does not necessarily imply 
independence. When multiple fuels are considered the matrix 
form of Equation (3.4), in Chapter 3, is the most efficient 

method of generating the conditional means and variances 

[44]. Consider the following:

X =

X, X, ,1
X, X.X, = X^ =X. 1 2 :

X. Xk m

.̂v = =
Sii

.Ezi
(5.1)

Let X be a m-dimensional multivariate normal random vector 

and let X; and X- be two sub random vectors of X, such that
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the augmentation of X, and X, is X. û ! and denote the

unconditional means of X, and En, S2 2, E^ and E21 are the

unconditional covariance matrices of Xj and X̂ . Note that 

is (Xxl) and E„ is (X%X) . The following can be shown [44] :

I .V ,  “  ^  12 ^ 2 2  ^ - ^ 2  )

(5.2)
“  ^11 "  ^ 12^ 22^21

Where Pxnx; and are the conditional mean and covariance

of XI given X 2 . To use Equation (5.2), set k = 1. To find 

the conditional fuel distribution, the vector X can be 

restructured such that the fuel in question is the first 
element. The covariance matrices are formed using the

correlation coefficients. The most difficult aspect of this 

method is the matrix inverse in Equation (5.2). However, 
because the covariance matrix is usually positive definite, 
an inverse should exist. As to its calculation, if the 

numerical ranges of the elements are great, numerical 
instability may occur. In that case, a linear transformation 

can be applied to bring as many elements of the covariance 

matrix to a similar order as possible, and thus limiting the 
round-off and truncation error.

§ 5.4 Model Order

Another consideration for multiple input cases is the 

model order. For n fuels and the load forecast, the total
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number of simulations required to evaluate the expected cost 
of uncertainty is This relationship is based on three

states of nature per fuel plus three for the electrical 

load. The squared term is due to the need for evaluating 
the production cost of each course of action together with 
all states of nature. If an electric utility has five fuel 

suppliers, 3̂ - or 531441 simulations are necessary. Two 
methods can be sought to reduce the number of simulations.

First, the overall model order can be reduced by 

neglecting those fuels which either have an insignificant 
contribution to the total fuel cost or those fuels which 
remain predominantly invariant over the study horizon. The 

criterion for making these types of judgements is 

engineering experience. The second method involves a sample 

reduction technique, similar to the central composite design 
used for finding regression surfaces [35] . Consider Figure 
5.1, with one fuel and the electrical load, on the following 
page.

By sampling only the extremes and the most likely 

cases, denoted by the X 's in the figure, the number of 

possible states of nature decrease. As the courses of 
action correspond to the total enumerated number of states 

of nature, the strategies are reduced as well! For example, 

both the courses of action and the states of nature in the 

2-d case are reduced from 9 to 5. Therefore, simulations
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for the above 2-d case are reduced from 81 to 25. Consider 
the two fuel case in Figure 5.2.

LOAD 
L M  H

FUEL M

Figure 5.1 2-d Central Composite Design

M FUEL 2

M FUEL 1

L M H 
LOAD

Figure 5.2 3-d Central Composite Design
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Notice that state HHH (back right) and the case MMM 
(center) are not shown. With this design, the total number 
of simulations is reduced from 729 to 81, because the 

courses of action and states of nature have be reduced from 

27 to 9. For the general reduced order sampling case with n 

fuels, (2'"*̂ '’ + !)^ simulations are required. If an electric 
utility has five fuel suppliers, the number of simulations 
is reduced from 3̂ - to 4225, which is a 99% reduction in 

simulation time. Using today's modern desktop computer, 
Pentium 166 MHZ with 32MB Ram, the simulation time is 

reduced from 45 days to 12 hours, (10 sec/run). Note that 
if the simulation time exceeds the study horizon, the model 
is probably too large.

This is a significant improvement. The probabilities of 

each state need to be adjusted as well. The center state, MM 

or MMM in the above figures, will assigned the weight of 
0.6. The remaining probabilities corresponding to the 

extreme cases will carry a weight of 0.4/ (2 ) , for n

fuels, to ensure that the probabilities sum to unity. This 

provides a reasonable approximation. Table 5.1 is a 

tabulation of such an approximation. The expected 

production cost, found by using the reduced order 
approximation, is within H% of that found using the full 

order model. The production cost variance was found to be 

within 1% of that found with the full order model. Other
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probability assignments are possible. For example, the 
conditional probabilities of each sampled state can be used. 
As they do not sum to one, scaling should be performed. 

Although, this method provided adequate results for mean 

estimates, within 10%, this method was in error for variance 

estimates by a factor of two. As a result the first 
probability assignment scheme was implemented.

Production Cost 
($)

Expected Cost 
($)

Cost Variation
(f)

Expected Cost 
Reduced Order ($)

Cost Variation 
Reduced Order ($^

1277224 10218 1.301E+11 63861 8.134E+11
2289594 54950 2.190E+11
2858262 22866 4.811E+10 142913 3.007E+11
2871311 68911 1.428E+11
5377091 387151 3.183E+08
5938295 142519 9.456E+09
3101282 24810 3.905E+10 155064 2.441 E+11
7605397 182530 1.264E+11
9166252 73330 1.189E+11 458313 7 433E+11
1417202 34013 3638E+11
2706795 194889 4.881 E+11
3498059 83953 7 885E+10
3096933 222979 3 528E+11
5835502 1260468 5.951E+10 3501301 1.653E+11
6643596 478339 1 279E+11
3410314 81848 8.667E+10
8188963 589605 5.965E+11
9908103 237794 5.073E+11
1581018 12648 1113E+11 79051 6.955E+11
3103786 74491 1.169E+11
4160836 33287 1.058E+10 208042 6 610E+10
3386922 81286 8.881 E+10
6310095 454327 7.193E+10
7358918 176614 1.007E+11
3919292 31354 1.549E+10 195965 9.679E+10
8746654 209920 2.834E+11
10687224 85498 2.313E+11 534361 1.445E+12

5310599 4.526E+12 5338871 4.571 E+12
Table 5.1 Model Reduction Example
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§ 5.5 Decision Analysis

The calculation of the expected cost of uncertainty is 
no different than in Chapter 4, when only load forecast 

uncertainty was considered. That is, the ECOU is still the 

expected value of the clairvoyant's case minus the expected 

cost of nature's case, minimized over all possible courses 

of action. The tree however, is somewhat larger. Added to 
each of the possible load states are the states of nature 
and courses of action that correspond to the varying fuel 
prices. Figure 5.3 shows one branch of nature's tree when 

two fuels are considered.

I (HUC.HF1UC.HF2UC)

o

(HUC.LF1UC.HF2UC)

C(HUC.O,LF1UC.HF1.HF2UC.HF2)
f t  ML —  HF2“O nr, O C{HUC.LLLF1 UC.HF1 .HF2UC.MF2)

C(HUC.LL.LF1UC.HF1 ,HF2UC.LF2)

LF1

(LUC.LF1UC.LF2UC)

Figure 5.3 One Branch of Nature's Tree 

This tree représentes the case where the decision maker has 

uncertain knowledge of the future states of nature. 
C (HLUC,ML, LF1UC,MF1,HF2UC,HF2) is defined as the cost of 

selecting a unit commitment strategy for a high load, a low 

price for fuel #1 and a high price for fuel #2; given the 
load is medium, the price of fuel #1 is medium and the price
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of fuel #2 is high. The above figure is only one branch of 

nature's tree. The rest of the tree is drawn similarly. The 
expected value of nature's tree is the expected cost linked 
to the unit commitment strategy which yields the smallest 
expected cost when minimized over all admissible strategies. 
The idea is the same as Equation (4.2) in Chapter 4. In set 

notation we can write the following:

EV(N) = min [c(i) ] , c
where A is the set of all admissible courses of action and 

the expected production cost, denoted c(i) , is defined as 

follows :

c(i) = E p ( j )  c(i, j) ( 5  4 )
where Q is the set of all viable states of nature, p(j) is

the probability corresponding to the j'̂  state of nature and 
c(i,j) is the production cost resulting from the selection 
of the course of action, when the i'" state of nature

occurred. Note that the above formulae are valid for both

the reduced order case, as well as the full order model.

Only the contents of the set describing the states of nature
and the courses of action change.

The clairvoyant's tree is the other decision tree, one
branch of which is shown in Figure 5.4,
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HF1 /O

Q ^ mlQ

XD

C(HLUC.HULF1 UC.LF1 .HF2UC.HF2)

  C(HLUC.HL.LF1UC,LF1,MF2UC.MF2)

C(HLUC,HLLF1UC,L51.LF2UC.U=2)

Figure 5.4 One Branch of the Clairvoyant's Tree 
Again, the clairvoyant's tree represents that case where the
decision maker has prefect knowledge of the future states of

nature. C(HLUC,HL,LF1UC, LF1,HF2UC,HF2) is defined as the

cost of selecting a unit commitment strategy for a high
load, a low price for fuel #1 and a high price for fuel #2;

given the load is high, the price of fuel #1 is low and the
price of fuel #2 is high. This is the "optimal" case in the

decision analysis sense, but not the stochastic unit

commitment sense.

The expected value of the clairvoyant's tree, EV(C) as 
denoted in Chapter 4, is found by applying Equation 5.4 to 
the clairvoyant's tree. In this case however, there is only 
one logical course of action that corresponds to any one 

state of nature, and that is the unit commitment strategy 

that minimizes the production cost over the state of nature 
in question. When finding the expected cost of uncertainty 
for the reduced order case, only the center and the extremes 

are considered to be admissible courses of action; the same
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set also makes up the possible states of nature. The new 
probability assignments are used as well.

§ 5.6 Case Study

The standard system is used here in this case study,

refer to Appendix 2 for more information. Assumptions made

in this case study are that three of the five fuels
represent so little of the overall study horizon cost (less
than 2%) that they can be ignored. Only coal and spot

natural gas will be considered. In addition, spinning

reserve will remain constant over the study horizon, and

rescheduling will not be performed. The following are the
coal and gas price distributions:

Coal ~ Tri(0.600, 0.827, 1.050)
Gas ~ T ri(2.500, 2.760, 3.000)

The following are the correlation coefficients between the

fuels and the load:

Load Coal Gas
Load 1.0 0.8 0.7
Coal 0.8 1.0 0.5
Gas 0.7 0.5 1.0

Note that the correlation matrix should be positive 
definite. A sufficient condition for positive definiteness 

is that the matrix be symmetric, real and all eigenvalues 

must be positive [32]. In the above case, the eigenvalues 
are (0.1514,0.5078,2.4308). Table 5.2 shows the conditional 
fuel prices, which are generated using Equation (5.2) . The
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States are defined such that position one is the state of 

the load, position two is the state of the coal price and 
position three is the state of the gas price.

State Prot)abtlitv Coal Gas
ILL 0.0500 0.693 2.603
LLH 0.0500 0.699 2.770
LHL 0.0500 0.819 2.611
LHH 0.0500 0.825 2.778
HLL 0.0500 0.828 2.736
HLH 0.0500 0.834 2.899
HHL 0.0500 0.953 2.744
HHH 0.0500 0.959 2.907
MMM 0.6000 0.825 2.752

Table 5.2 Conditional Fuel Prices

For example, 0.828 is the price of coal, given the load is 

high and the price of gas is low. Note also that the load 

profiles are generated using Equation (4.1) from Chapter 4. 

Figures 5.5 - 5.8, in the following pages, show the period 
and daily ECOU, due to load forecast uncertainty and fuel 
price uncertainty, as a function of lead time. The method 
for evaluation is the same method developed in Chapter 4, 

Equation (4.5); however, the expected value of nature's tree 

and the clairvoyants tree are replace with the expressions 
developed in this chapter.

§ 5.7 Conclusion

Note that the plots have similar shapes to those of the 

previous chapter. However, the magnitude of the daily ECOU 
is much higher. It is easily seen that when fuel price 
uncertainty is included in the risic model, the expected cost
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of uncertainty increases dramatically. In the next chapter,

the results of both Chapter 4 and 5 are compared. In
addition, the following chapter will serve as a conclusion 
to this dissertation. A summary outline will detail the 

methods used to evaluate the risk due to load forecast and
fuel price uncertainty, as well as, expand on

recommendations for future research possibilities.
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Figure 5.5 Winter Load and Fuel Price Uncertainty
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Figure 5.6 Spring Load and Fuel Price Uncertainty
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Figure 5.8 Autumn Load and Fuel Price Uncertainty
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CHAPTER 6  

CONCLUSION

§ 6.1 Introduction

The structure of this chapter will be as follows: first 
a discussion of the results from Chapters 4 and 5 is 

presented. Then a brief summary of the research reported 

herein is included. Lastly, a recommendation for further 
research efforts is provided.

§ 6.2 Summary of Results

In Chapters 4 and 5, methods for evaluating the risk 

due to load forecast uncertainty alone and load forecast 

together with fuel price uncertainty were presented. In 
Chapter 4, the electrical load forecast was considered to be 
the only random process, while all other planning variables 
were held constant.

The results of Chapter 4 indicate what effects the load 

forecasting error can have on the short-term planning 

process. The results were given in $/MWh as a function of 

forecast lead time. Table 6.1 shows the tabulated results 
from the illustrative case study performed in Chapter 4.
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Season Lead Time 
(Days)

Total ECOU
m

Differenced 
ECOU ($)

DaiyEnergV
(MWh)

Period ECOU 
($/MWh)

DaHyECOU
(SWWh)

W inter 1 11700 11700 53388 0.219 0.219
2 34633 22933 56956 0:608 0.403
3 75817 41184 57665 1.315 0.714
4 102310 26493 55808 1.833 0.475
5 122797 20487 53597 2.291 0.382

Spring 1 25025 25025 65566 0.382 0.382
2 80005 54980 67938 1.178 0.809
3 134619 54614 67740 1.987 0.806
4 177006 42387 66100 2.678 0.641
5 257371 80365 61259 4201 1.312

Sum m er 1 22524 22524 92814 0.243 0.243
2 66599 44075 69213 0.747 0.494
3 116511 49912 83756 1.391 0.596
4 177017 60506 86718 2.041 0.698
5 278226 101209 83366 3.337 1.214

Fall 1 21967 21967 59743 0.368 0.368
2 57511 35544 58283 0.987 0.610
3 104974 47463 56746 1.850 0.836
4 161937 56963 44755 3.618 1.273
5 248762 86825 47163 5.272 1.840

Table 6.1 Load Forecast Uncertainty 

The period ECOU results are monotone increasing as is 
expected. The daily ECOU results, however, do not always 
increase with lead time. As the daily ECOU is a differenced 

quantity, when the period ECOU increases, but with 

decreasing slope, the daily ECOU will decrease with time as 
well. The daily ECOU can never be negative, as long as the 
period ECOU is increasing.

In Chapter 4 the load forecasts are the only uncertain 
planning variable. In this case, it is easy to see that the 

planning uncertainty tracks the load forecast uncertainty, 

which follows the weather forecast error. The following 
figure shows an example plot of these uncertainties. Note

103



the ordinate scale has been left off because here the shapes 

are important and not the absolute magnitudes. Note that it 

was shown in Chapter 2 that the dip in the temperature 
forecast errors are not statistically significant.

21 3 54

-OiiVBCtXJ 

'L o ad  B ro r 

-Tettp . Error

L ead Tim e (Days)

Figure 6.1 Uncertainty Shapes 

Chapter 5 includes fuel price uncertainty into the risk 
model. The main addition that chapter 5 makes is reducing 

the multi-input variable risk model order and accounting for 

the interdependencies that may exist between the load and 
fuel prices. The results of Chapter 5 were given in the 
same format as Chapter 4. Table 6.2 shows the results of 
Chapter 5 in tabular form.
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Season Lead Time 
ODays)

Total EGOU 
($)

Differenced 
ECOU ($)

Dally Energy 
(MWh)

Period EGOU 
(SflVIWh)

Dally ECOU 
($/MWh)

W inter 1 115116 115116 53388 2.156 2.156
2 238136 123Q:M 56956 4.181 2.160
3 382702 144566 57665 6.637 2.507
4 593942 211240 55808 10.643 3.785
5 780209 186267 53597 14.557 3.475

Spring 1 152570 152570 65566 2.327 2.327
2 350922 198352 67938 5.165 2.920
3 672177 321255 67740 9.923 4.742
4 1031278 359101 66100 15.602 5.433
5 1711511 680233 61259 27.939 11.104

S u m m e r 1 106588 106588 92814 1.148 1.148
2 244939 138351 89213 2.746 1.551
3 640816 395877 83756 7.651 4.727
4 943444 302628 86718 10.879 3.490
5 1092805 149361 83366 13.108 1.792

Fall 1 107574 107574 59743 1.801 1.801
2 352042 244468 58283 6.040 4.194
3 697165 345123 56746 12286 6.082
4 1046754 349589 44755 23.388 7.811
5 1474895 428141 47183 31.259 9.074

Table 6.2 Load Forecast and Fuel Price Uncertainty

Notice that the fuel price uncertainty increases the over 
all uncertainty significantly. In a way, these results are 

unrealistic for the specific case listed. In general, the 

price of coal will not fluctuate over a weeks time, because 

coal is purchased in bulk, and in advance. However, this 
situation is realistic for a utility when two main fuels 
have volatile prices.

In addition, the correlation coefficients between the 
load and fuel prices have an impact on the model outcome as 

well. When studies are run for the completely dependent 

case and the completely independent case, the expected cost 
of uncertainty for these cases represent lower and upper
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bound for the risk, respectively, where varies from zero 

to one. This last section provides a summary of the
research methodology and recommendations for the future 
research.

§ 6.3 Summary of Research and Recommendations

As a final analysis, this research presents a method 

for evaluating the risk due to load forecast and fuel price 
uncertainty. To achieve this goal, the following steps were 
taken. A  load forecast method was developed in Chapter 2 
that used Bayesian estimation to arrive at a load profile 
prediction for one to k days into the future. Bayesian 

estimation was chosen because the algorithm provides an 

estimation of the forecast variation. With both the load 

forecast profiles, standard deviation profiles and concepts 
from stratified sampling, three load scenarios were 
generated: high, medium and low. To each scenario, a

probability was assigned. The results were used in 

conjunction with decision analysis to evaluate the ECOU, 
which is the expected value of decision making under 
uncertainty minus the expected value of decision making with 

perfect information. The cost functionals of the decision 
problem were determined by a chronological production cost 

simulator using the high, medium and low load scenarios as 

input. As the load forecasts were made from one through
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five days in advance, the expected cost of uncertainty was 
expressed as a function of lead time. The results were 

given in $/MWh. Fuel price uncertainty was then added to 
the risk model. This addition increased the dimensionality 
of the problem, so efforts were made to reduce the model 
order. Since the load and fuel prices have a dependent 
relationship, a method to approximate conditional triangular 

densities was developed as well.

The risk model, however, is not yet complete. Initial 
assumptions made regarding spinning reserve, the price of 
unserved energy and the utility's ability to reschedule 
generation units can be relaxed. Spinning reserve is 

determined based on a percentage of the annual system peak 

load. Suppose that in the future, spinning reserve can vary 

as a function of the system demand. To reflect this 
situation in the risk model, the spinning reserve can be 

evaluated on an hourly basis and included in the production 
cost simulation. To better mimic the competitive energy 

market, the price of unserved energy can be specified on an 

hourly basis as well. This price should follow the marginal 
cost of energy, as it varies over time. In real time 
operation, electric utilities can reschedule generation 

units; this constraint can be relaxed and included in the 

risk model also. It is in these directions that our 

research attention will be focused in the future.
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APPENDIX 1 
PROOF OF TRIANGULAR VARIANCE SCALING 

This appendix serves as the proof of the variance 
scaling equation used in Chapters 3 and 5. Consider the 

following skewed triangular distribution:

X, X, X;

Figure A.l 
Function

Triangular Density

Given the center coordinate Xj,the variance a~, the desired 

skewedness r and the coordinate Y such that the area of the 

triangle is unity; the goal is to find and Xc. It is 

assumed that 0 < X, < X 3 < . The number r is the area of the
left hand triangle divided by that of the right hand 
triangle, where the left hand triangle is (Xi,X3,Y) and the 

right hand triangle is (X],Xc,Y). This ratio can be reduced 

to the following expression:

112



r = (A.l)

The variance of a triangular distribution is as follows'; 

1a- = 18 » XjXj)] (A. 2:

Equation (A.2)can be rewritten as

i8o' = (xr - 2X;X, > x;) (x̂ Xj - x̂ x, - x~ * x^xj (x; - 2x,x̂   ̂xç)

= (*: X3 - X, 
\X, - %

] . *3 - .f X3 -x,yX, - X, [ ̂5 - X3J

(% '

h  - ̂ 3)"

(A.3)

Note that X^< X^. Equation (A. 3) is simplified to

I 8 0 " = (X5 - %̂ ) ̂ (1 + r + r') 
and further simplified to

A:; = X, + 18a-

(A.4:

(A.51
1 + r + r -

Note that 0 < 1 + r + . From Equation (A.l) we have

X. = (I+DX 3 - rXg (A.6 )
By using the results of (A. 5) in (A. 6 ), the following 

completes the proof.

Xi = X3 - r 18a- 
1+r+r"

(A.7;

Q.E.D.

' Evans, M.,et al.. S t a t i s t i c a l  D i s t r i b u t i o n s ,  2"" 2d.,John Wiley 
& Sons, Inc., New York, 1993, pg. 149.
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APPENDIX 2 
TEST SYSTEM DATA 

The data set used for this research is taken from a 
medium size electric utility whose annual peak is 
approximately 5,000 MW and whose annual energy is roughly 
23,000 GWH. Five years of hourly chronological load and 
temperature data is available, as well as, one year of peak 
and valley temperature forecasts from the National Weather 
Service. Listed below are the unit data.
Unit# Type Pmax Pmln Ramp

Rate
Mîn
Up

Min
Down

Heat Rate 
aO

Heat Rate 
al

Heat Rate 
a2

1 Gas 74 22 4 24 24 8.62E+01 9.40E+00 1-90E-02
2 Gas 48 12 2 4 4 9.40E+Q1 1.54E+01 1.00E-03
3 Gas 178 45 5 24 24 2.30E+02 7.41 E+00 6.00E-03
4 Gas 238 125 5 24 24 3.49E+02 6.94E+00 1.60E-03
5 Gas 412 100 10 24 24 5.87E+02 8.12E+00 3.00E-03
6 Gas 184 45 5 24 24 2.11 E+02 8.09E+00 4.00E-03
7 Coal 500 150 10 72 72 5.72E+02 9.01 E+00 6.50E-04
8 Coal 500 150 10 72 72 5.72E+02 9.01E+00 650E-04
9 Coal 500 150 10 72 72 5.55E+02 8.20E+00 2.00E-03
10 Gas 58 15 2 24 24 1.20E+02 7.80E+00 3.45E-02
11 Gas 57 15 2 24 24 7.58E+01 9.57E+00 3.00E-04
12 Gas 122 30 3 24 24 1.46E+02 8.15E+00 1.57E-03
13 Gas 260 60 5 24 24 3.13E+02 6.99E+00 9.70E-03
14 Gas 64 16 2 4 4 3.20E+01 1.54E+01 1.00E-03
15 Gas 530 150 10 24 24 3.53E+02 8.22E+00 1.45E-03
16 Gas 507 150 10 24 24 4.93E+02 822E+00 1.00E-03
17 Gas 500 150 10 24 24 7.40E+02 7.22E+00 2.70E-03
18 Gas 19 18 2 4 4 3.80E+Q1 1.54E+01 1.00E-03
19 Coal 505 150 10 72 72 7.01 E+02 6.07E+04 5.00E-C3
20 Coal 510 150 10 72 72 6.71 E+02 7.16E+00 3.50E-03
21 Gas 11 10 2 4 4 2.20E+01 1.54E+01 1 .OOE-03

Tvoe Caoacitv CF% Tvpe Capacitv CF%
#22 Cogen 110 95 #23 Cogen 160 65
#24 Cogen 160 65 #25 Cogen 64 85

Table A.l Unit Data
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APPENDIX 3 
SOURCE CODE

This appendix contains the main source code functions 
used to perform the illustrative case studies. Code written 
in C++ is formatted such that when lines are continued, they 
follow on the next line without indication. C++ Lines
always end with a Code written in BASIC has an to
signify the continuation of a line and a carriage return to
signify the end of the line.

// Short-term Load Forecasting
// Bayesian Estimation
// FORECAST.CPP

#include <time.h>
#include <math.h>
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fstream.h>
#include <iomanip.h>
#include <iostream.h>
#include "utility.hpp"
int main(void) {

ifstream ifs("dtbase.bin", ios::in I ios::binary); 
enum simType { forecast, actual } runType;
Dtbase Dt[ 6 ];
FILE *matrixln;
double e,xa,xb,ae,pk_4cast, hr24_4cast; 
double n = l,d = 40000,del = 0.93; 
int It = 5, order = 15, i, j , )c, 1 ;
Matrix^ G (order,order,matrixin); Matrix GT = G;
Transpose(&GT);
Matrix FT(1,order,matrixin); Matrix F = FT;

Buzzi-Ferraris, G., S c i e n t i f i c  C++; B u i l d i n g  N u m e r i c a l  L i b r a r i e s  

t h e  O b j e c t - O r i e n t e d  W a y , Addison-Wesley Publishing Co., New York, 1994.
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Matrix eye(order, order,matrixin);
Matrix Q (1,1),S O (1, 1,d),Sl(l,1) ;
Matrix m(order, 1,matrixin);
Matrix C = 100000.0*eye; 
runType = forecast;
//runType = actual; 
do {

ifs.read((char *)&Dt[0],sizeof(Dt[0])) ;
} while(Dt[0].cal.year != 1994); 
do {

ifs.read((char *)&Dt[1],sizeof(Dt[1]) ) ; 
m = G*m;
C = G*C*GT/del;
F T (1,2) = Dt[0].sLd.ld[23];
FT (1,3) = Dt [0] ,sLd.ld[Dt[0] .tLd.plcHr] ;
F T (1,4) = Dt[0].sLd.mu;
F T (1,5) = D t [0].aTemp.temp[23] ;
FT (1,6) = Dt[0].aTemp.pk;
F T (1,7) = Dt[0].aTemp.mu; 
if(runType == forecast) {

FT (1,8) = D t [1].aTemp.mu4[0] ;
F T (1,9) = Dt[l].aTemp.pk4[0] ;

}
else {

FT (1,8) = D t [1].aTemp.mu;
F T (1,9) = D t [1].aTemp.pk;

}
F = FT; Transpose(&F);
Q = FT*C*F+SO;
Matrix f = FT*m;
pk_4cast = f (1,1)+Dt[1].bLd.ld[Dt[1].tLd.pkHr]; 
e = D t [1].aLd.Id[Dt[1].tLd.pkHr]-pk_4cast; 
31(1,1) = d/double(n);
Matrix A = C*F/Q(1,1);
Matrix AT = A; Transpose(&AT) ;
Matrix U = (eye-A*FT);
Matrix UT = U; Transpose(&UT);
C = 51 (1,1)*(U*C*UT+A*SO*AT)/SO(1, 1); 
m = m+e*A; 
n = n*del+l;
d = d*del+SO(1,1)*e*e/Q(l,1) ;
SO = SI;
D t [0] = Dt[1];

} while (Dt[0].cal.julian_date < 60); 
for (l=spring; K=winter; 1++) { 

for(k=l;k<=91;k++) {
ifs.read((char *)&Dt[1],sizeof(Dt [1])) ; 
m = G*m;
C = G*C*GT/del;
FT (l,2)=Dt[0].sLd.ld[23] ;
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F T (1,3)=Dt [0].sLd.ld[Dt[0] .tLd.pkHr]; 
FT(l,4)=Dt[0] .sLd.mu;
FT (1,5)=Dt [0].aTemp.temp[23];
FT (1,6) =Dt [0] .aTemp.pk;
FT (1,7)= D t [0].aTemp.mu; 
if(runType == forecast) {

F T (1,8) = Dt[1].aTemp.mu4[0];
FT (1,9) = Dt [1] .aTemp.pk4 [0] ;

}
else {

F T (1,8) = Dt[1].aTemp.mu;
FT (1,9) = Dt[l] .aTemp.pk;

}
F = FT; Transpose(&F) ;
Q = FT*C*F+SO;
Matrix f = FT*m;
pk_4cast = f (1,1)+Dt[1].bLd.ld[Dt[1].tLd.pkHr]; 
e = D t [1].aLd.ld[Dt[1 ].tLd.pkHr]-pk_4cast; 
Matrix mSave = m;
Matrix fSave = f;
Matrix FTSave = FT;
Matrix CSave = C;
Matrix QSave = Q;
xa=(Dt[l].tLd.pk*Dt[0].aLd.ld[23]- 

Dt[0] .tLd.ld[23] *pk_4cast)/
(Dt [1] .tLd.pk-Dt[0].tLd.ld[23]); 

xb = (pk_4cast-Dt[0].aLd.Id[23])/
(Dt[1] .tLd.pk-Dt[0] .tLd.ld[23]); 

hr24_4cast = xa+xb*Dt[1].tLd.Id[23]; 
for(i=l;i<lt;i++) (

ifs.read((char * ) &Dt[i+1],sizeof(Dt [ i+1]) ) ; 
m = G*m;
C = G*C*GT/del; 
if(runType == forecast) {

F T (1,8) = Dt[1].aTemp.mu4[i];
FT (1,9) = Dt[l].aTemp.pk4[i];

}
else {

F T (1,8) = Dt[i+1].aTemp.mu;
FT (1,9) = Dt [i+1] .aTemp.pk;

}
Q = f t *C*F+(i+1)*S0; 
f = FT*m; 
pk_4cast=f(1,1)+

Dt[i+1].bLd.ld[Dt[i+1].tLd.pkHr]; 
ae=Dt[i+l].aLd.ld[Dt[i+1].tLd.pkHr]-pk_4cast; 
xa = (Dt [ i+1].tLd.pk*hr24_4cast- 

Dt[i].tLd.Id[23]*pk_4cast)/
(Dt[i+1].tLd.pk-Dt[i].tLd.ld[23]); 

xb = (pk_4cast-hr24_4cast)/
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(Dt[i+1].tLd.pk-Dt[i].tLd.Id[23]); 
hr24_4cast=xa+xb*Dt [i+1].tLd.ld[23];

}
if(It != 1 ) {

ifs.seekg(~lt*int(sizeof(Dt[1])),ios: : cur); 
ifs.read((char *)&Dt[1],sizeof(Dt [ 1]));

}
m = mSave; 
f = fSave;
FT = FTSave;
C = CSave;
Q = QSave;
SK I ,  1) = d/n;
Matrix A = C*F/Q(1,1};
Matrix AT = A; Transpose(&AT);
Matrix U = (eye-A*FT);
Matrix UT = U; Transpose(&UT);
//Joeseph Algorithm pp. 305-306 Gelb 
//Applied Optimal Estimation
//Ensures symmetry of C and numercially stable 
C = S I (1,1)*(U*C*UT+A*SO*AT)/SO(1,1); 
m = m+e*A;n = n*del+l; 
d = d*del+SO(1,1)*e*e/Q(l,1);
SO = SI;
D t [0] = Dt[1];

}
}

return(0 ) 
}
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x*** + *********** + * + + ** + * + + + **** + * + * + * + + *-* + * + + * + * + + + + + + + '
'* Risk due to Load Forecast Uncertainty\ *
'* ECOULOAD.XLS'************■******************************************'

Public Sub loadUncertainty(ByVal ext As Integer, _
ByVal loadExt As String)

Dim i As Integer, j As Integer, order As Integer: 
order = 3
Dim uclndex As Integer, loadlndex As Integer, _ 

fuellndex As Integer, fuelNumberlndex As Integer 
Dim returnPCI As Integer, sys_invl As String, _ 

stsysmOl As String, fileExt As String 
Dim xVector(4) As Single, yVector(4) As Single, _ 

zVector(4) As Single, totalCount As Integer 
totalCount = 0
Dim fuelProb{2) As Single, loadProb(2) As Single, _ 

loadFileNames (2) As String, ucFileNamesO As String 
Dim testNumber As Double, lowlndex As Integer, _ 

numberOfFuels As Integer 
Dim expcetedCost() As Double, z() As Single, _ 

costs () As Long, clair As Double 
Dim studyType As String: studyType = getStudyType ()
Dim currentSheet As Object
Dim goAliead As Integer, simNumber As Integer, _ 

timeLeft As Double 
Dim to As Long, timeString As String

ReDim ucFileNames(order - 1) As String 
ReDim costs(order - 1, order - 1) As Long 
ReDim expectedCost(order - 1) As Double 
Set currentSheet = Sheets(CStr(iniSheet()) ) 
loadFileNames(0) = "low" + loadExt 
loadFileNames(1) = "mean" + loadExt
loadFileNames(2) = "high" + loadExt
testNumber = lE+20 
lowlndex = 0
sys_invl = driveLetter + _

" :\scheduler\dbdata\sys_invl." + runExt 
stsysmOl = driveLetter + _

":\scheduler\output\stsysm01," + runExt 
loadProb(O) = 0.2: loadProb(l) = 0.6: loadProb(2) = 0.2
fuelProb(O) = 0.2: fuelProb(l) = 0.6: fuelProb(2) = 0.2
For loadlndex = 0 To 2

ucFileNames(loadlndex) = driveLetter + _
":\scheduler\dbdata\ucfile." + AgetExt(loadlndex) 

Next loadlndex 
to = Timer
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If putLoadFile{loadFileNames(1)) = False Then Exit Sub 
If putUCTag("flexable") = False Then Exit Sub 
For loadlndex = 0 To 2

If putLoadFile(loadFileNames(loadlndex)) = _
False Then Exit Sub 

returnPCI = callPCI(ext)
FileCopy driveLetter + ":\scheduler\dbdata\unicom01.

runExt, ucFileNames(loadlndex) 
costs(loadlndex, loadlndex) = getProdCost () 
currentSheet.Cells(2 + loadlndex + loadlndex * 3, 1) =
costs(loadlndex, loadlndex) 
totalCount = totalCount + 1 

Next loadlndex
If putUCTag("fixed") = False Then Exit Sub 
For uclndex = 0 To 2

FileCopy ucFileNames(uclndex) , driveLetter + _
":\scheduler\dbdata\unicom01," + runExt 
For loadlndex = 0 To 2

If putLoadFile(loadFileNames(loadlndex)) = _
False Then Exit Sub 

If uclndex <> loadlndex Then 
returnPCI = callPCI(ext)
costs(uclndex, loadlndex) = getProdCost() 
currentSheet.Cells(2 + 3 * uclndex + _

loadlndex, 1 ) = costs(uclndex, loadlndex) 
totalCount = totalCount + 1 

End If 
Next loadlndex 

Next uclndex 
clair = 0
For uclndex = 0 To 2

expectedCost(uclndex) = 0 
For loadlndex = 0 To 2

If loadlndex = uclndex Then clair = clair + _ 
fuelProb(loadlndex) * costs(uclndex, loadlndex) 

expectedCost(uclndex) = expectedCost(uclndex) + _ 
fuelProb(loadlndex) * costs(uclndex, loadlndex)

Next loadlndex
If expectedCost(uclndex) < testNumber Then _ 

testNumber = expectedCost(uclndex)
Next uclndex 
End Sub
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% + + + + + * + + + + + * + + + + + + + + + + + + + + + + + + + + + + + + + +
\ +

' * 
\ *

Risk due to Load Forecast and 
Fuel Price Uncertainty
ECOUFUEL.XLS

Public Sub fueluncertainty(ByVal ext As Integer, _
ByRef x() As Single, ByVal loadExt As String)

'scalar integer definitions
Dim i As Integer, j As Integer, k As Integer, _ 
totalNumber As Integer, simNumber As Integer, _ 

loadlndex As Integer, fuelNumberlndex As Integer, 
goAhead As Integer, returnPCI As Integer, _ 
numberOfFuels As Integer, fuellndexl As Integer, _
fuellndex2 As Integer, fuellndexS As Integer, _
fuellndex4 As Integer, fuellndexS As Integer, _
fuellndex6  As Integer, fuellndex? As Integer, _
cellNumber As Integer, fuelstate(7) As Integer, _ 
uclndex As Integer 

'scalar string definitions
Dim StudyType As String, sys_invl As String, _ 

stsysmOl As String 
'vector string definitions

Dim loadFileNames(2) As String, states(2) As String, 
ucFileNames() As String 

'vector single definitions
Dim xVector(4) As Single, yVector(4) As Single, _ 

zVector(4) As Single, z() As Single 
'scalar double definitions

Dim timeLeft As Double, probs As Double, _ 
muPrior As Double, sigmaPrior As Double, _ 
sigmaPosterior As Double, r As Double, _ 
newfuel As Double, testNumber As Double, _ 
clair As Double 

'vector double definitions
Dim shiftValue(7) As Double, expectedCost ( ) As Double 

'scalar long definitions
Dim to As Long, costs () As Long 

'scalar object definitions 
Dim currentSheet As Object 

'scalar matrix definitions
Dim sigma As Matrix, sigmal2 As Matrix, _

sigma21 As Matrix, sigma22 As Matrix, _
statevector As Matrix, resultl As Matrix, _ 
result2 As Matrix, results As Matrix, _
expFuel As Matrix, varfuel As Matrix, _
triFuel As Matrix, covFuel As Matrix

loadFileNames(0) = "low" + loadExt
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loadFileNames(2) = "high" + loadExt
states(0) = "L" 
states(1) = "M" 
states(2) = "H"
numberOf Ehiels = AgetNumberOf Fuels ( ) 
numberOfFuels = 2
sys_invl = driveLetter + __

" :\scheduler\dbdata\sys_invl. " + runExt 
stsysmOl = driveLetter + _

":\scheduler\output\stsysm01." + runExt 
ChDrive driveLetter
Set currentSheet = Sheets(CStr{iniSheet()) ) 
totalNumber = 2 (numberOfFuels + 1) + 1 
probs = 0 . 4 /  (totalNumber - 1) 
testNumber = lE+20 
clair = 0

ReDim ucFileNames (totalNumber) As String 
ReDim costs (totalNumber, totalNumber) As Long 
ReDim expectedCost (totalNumber) As Double

' set rows and columns for matrices
expFuel.cols = 3
exp Fuel. Rows = numberOf Fuels
varfuel.cols = 3
varfuel.Rows = numberOfFuels
triFuel.cols = 5
triFuel.Rows = numberOfFuels
covFuel.cols = numberOfFuels
covFuel.Rows = numberOfFuels
'determines the triangular distribtuion moments 
For j = 0 To numberOfFuels - 1 

For i = 0 To 4
xVector(i) = x(j, I)

Next i
If (Coords(xVector, yVector, 0.1) = 0 )  Then Exit Sub 
For i = 0 To 4

triFuel.vais (j +1, i + 1 )  = xVector(i)
Next I

'Tcond??? uses x and y-Vectors as inputs,
'zVector is the ouput

TcondExp xVector, yVector, zVector 
For i = 0 To 2

expFuel. vais ( j +1, i + 1) = Csng(zVector(i))
Next I
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TcondVar xVector, yVector, zVector 
For i = 0 To 2

varfuel.vais(j + 1 ,  1 + 1) = Csng(zVector(1)) 
Next I 

Next j

Dim rhoArray As Variant
rhoArray = Array(1,0.8 ,0.7,0.8,1,0.5,0.7,0.5,1)
For j = 0 To 7 

For i = 0 To 7
corr(j, i) = CSng(rhoArray(i + j * 8 ))

Next I 
Next j

'make the covariance matrix
'load the diagonal first with unconditional variances 
For i = 1 To numberOfFuels

covFuel.vais(i, i) = tVar(triFuel.vais(i, 1), _ 
triFuel.vais(i, 3), triFuel.vais(i, 5))

Next i

'generate off diagonals with correlation coefficients 
For i = 1 To numberOfFuels 

For j = 1 To numberOfFuels
covFuel.vais(i, j) = covFuel.vais(i, i) * _ 

covFuel.vais(j, j) * corr(i, j)
Next j 

Next i
For loadlndex = 0 To totalNumber - 1

ucFileNames(loadlndex) = driveLetter + _
":\scheduler\dbdata\ucfile." + AgetExt(loadlndex) 

Next loadlndex
Application.ScreenUpdating = True 
simNumber = -1
If putUCTag("flexable") = False Then Exit Sub 
For loadlndex = 0 To 2 Step 2

If putLoadFile(loadFileNames(loadlndex)) = _
False Then Exit Sub 

fuelstate(0 ) = loadlndex 
For fuellndexl = 0 To 2 Step 2 

fuelstate(1 ) = fuellndexl 
For fuellndex2 = 0 To 2 Step 2 

fuelstate(2 ) = fuellndex2  

If numberOfFuels = 1 Then Exit For 
If numberOfFuels = 2 Then 

simNumber = simNumber + 1 
cellNumber = 3 + simNumber + _ 

simNumber * totalNumber

123



currentSheet.Cells(3 + simNumber + _ 
simNumber * totalNumber, 7) = 
states(fuelstate(0 ) )

For k = 1 To numberOfFuels
currentSheet.Cells(cellNumber, 7) = _ 

currentSheet.Cells(cellNumber, 7) + _ 
states(fuelstate(k)) 

newfuel = condFuelPrice (k, covFuel, __ 
numberOfFuels, fuelstate, expFuel, _ 
varfuel, triFuel) 

currentSheet.Cells(cellNumber, 7 + k) = _ 
newfuel

If (putFuelPrice(k - 1, newfuel) = 0) Then 
Exit Sub 

Next k
returnPCI = callPCI(ext)
FileCopy driveLetter + _

":\scheduler\dbdata\unicom01." + runExt, _ 
ucFileNames(simNumber) 

costs(simNumber, simNumber) = getProdCost() 
currentSheet.Cells (cellNumber, 1) = _ 

costs(simNumber, simNumber)
Application.StatusBar = Cstr(simNumber)
End If 

Next fuellndex2 
Next fuellndexl 

Next loadlndex

probs = 0 . 6
loadlndex = 1
simNumber = simNumber + 1
cellNumber = 3 + simNumber + simNumber * totalNumber 
currentSheet.Cells(cellNumber, 7) = states(1)
For k = 1 To numberOfFuels

newfuel = expFuel.vais(k, 2)
currentSheet.Cells(cellNumber, 7 + k) = newfuel 
currentSheet.Cells(cellNumber, 7) = _ 
currentSheet.Cells(cellNumber, 7) + states (1)
If (putFuelPrice(k - 1, newfuel) = 0) Then Exit Sub 

Next k
returnPCI = callPCI(ext)
FileCopy driveLetter + ":\scheduler\dbdata\unicom01." + 

runExt, ucFileNames(simNumber) 
costs(simNumber, simNumber) = getProdCost() 
currentSheet.Cells(cellNumber, 1) = costs(simNumber, _ 

simNumber)
Application.StatusBar = "0," + Cstr(simNumber)

If putUCTag("fixed") = False Then Exit Sub
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For uclndex = 0 To 8  
simNumber = -1
FileCopy ucFileNames(uclndex), driveLetter + _

":\scheduler\dbdata\unicom01." + runExt 
For loadlndex = 0 To 2 Step 2

If putLoadFile(loadFileNames(loadlndex)) = _ 
False Then Exit Sub 
fuelstate(0 ) = loadlndex 
For fuellndexl = 0 To 2 Step 2 

fuelstate(1 ) = fuellndexl 
For fuellndex2 = 0 To 2 Step 2 

fuelstate(2 ) = fuellndex2  

If numberOfFuels = 2 Then 
simNumber = simNumber + 1 
cellNumber = 3 + simNumber + _ 

uclndex * totalNumber 
If uclndex <> (simNumber) Then 
currentSheet.Cells(cellNumber, _

7) = states(fuelstate(0) )
For k = 1 To numberOfFuels

currentSheet.Cells(cellNumber, _
7) = currentSheet.Cells(3 + _ 
simNumber, 7) + _ 
states(fuelstate(k)) 

newfuel = condFuelPrice(k, _ 
covFuel, numberOfFuels, _ 
fuelstate, expFuel, varfuel, _ 
triFuel)

currentSheet.Cells(cellNumber, _
7 + k) = newfuel 

If (putFuelPrice(k - 1, _
newfuel) = 0) Then Exit Sub 

Next k
FileCopy driveLetter + _

":\scheduler\dbdata\unicom0 1 ." _
+ runExt, ucFileNames (simNumber) 

returnPCI = callPCI (ext) 
costs(uclndex, simNumber) = _ 

getProdCost() 
currentSheet.Cells(cellNumber, _

1) = costs(uclndex, simNumber) 
Application.StatusBar = _

Cstr(uclndex) + + _
Cstr(simNumber)

End If 
End If 

Next fuellndex2 
Next fuellndexl 

Next loadlndex
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probs = 0 . 6
loadlndex = 1
simNumber = simNumber + 1
cellNumber = 3 + simNumber + uclndex * totalNumber 
If uclndex <> simNumber Then

currentSheet.Cells (cellNumber, 7) = states (1)
For k = 1 To numberOfFuels 

newfuel = expFuel.vais(k, 2)
currentSheet.Cells(cellNumber, 7 + k) = newfuel 
currentSheet.Cells(cellNumber, 7) = _

currentSheet.Cells(3 + simNumber, 7) + states(1) 
If (putFuelPrice (k - 1, newfuel) = G) Then Exit Sub 

Next k 
FileCopy driveLetter + _

" :\scheduler\dbdata\unicom01." + runExt, _ 
ucFileNames(simNumber) 

returnPCI = callPCI(ext)
costs(uclndex, simNumber) = getProdCost() 
currentSheet.Cells(cellNumber, 1)=costs (uclndex, _ 

simNumber)
Application.StatusBar = CStr(uclndex) + "," + _

Cstr(simNumber)
End If 

Next uclndex
Dim ii As Integer 
ii = 0
For uclndex = 0 To 8

expectedCost(uclndex) = 0 
For loadlndex = 0 To 8

If loadlndex = 8 Then: probs = 0.6 
Else: probs = 0.05: End If
If loadlndex = uclndex Then clair = clair + _ 

probs * costs(uclndex, loadlndex) 
expectedCost(uclndex) = expectedCost(uclndex) + _ 

probs * costs (uclndex, loadlndex)
Next loadlndex
If expectedCost (uclndex) < testNumber Then 

testNumber = expectedCost(uclndex) 
ii = uclndex 

End If 
Next uclndex

End Sub
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'* Conditional Fuel Price\ *■
'* ECOUFUEL.XLS

Function condFuelPrice(ByVal k As Integer, _
covFuel As Matrix, numberOfFuels As Integer, _ 
fuelstate0 As Integer, expFuel As Matrix, _ 
varfuel As Matrix, triFuel As Matrix) As Double

Dim sigma As Matrix, sigmal2 As Matrix, _ 
sigma21 As Matrix, sigma22 As Matrix, _ 
statevectorPrior As Matrix, statevector As Matrix, _ 
resultl As Matrix, result2 As Matrix, _ 
results As Matrix

Dim muPrior, sigmaPrior, sigmaPosterior 
Dim xVector(4) As Single, yVector(4) As Single, _ 

zVector(4) As Single 
Dim r As Double, newfuel As Double 
Dim j As Integer, shiftValue(7) As Double

'(1 ) get matrix conditional mean 
copyMatrix covFuel, sigma 
swapRC sigma, 1, k
pickMatrix sigma,sigmal2,1,1,2,numberOfFuels 
pickMatrix sigma,sigma21,2,numberOfFuels, 1, 1 
pickMatrix sigma,sigma22,2,numberOfFuels, 2, numberOfFuels

For j = 1 To numberOfFuels
StatevectorPrior.vais(j, 1) = expFuel.vais (j, _ 

fuelstate(j) + 1) - expFuel.vais(j , 1 + 1)
Next j

StatevectorPrior.Rows = numberOfFuels 
StatevectorPrior.cols = 1 
swapR StatevectorPrior, 1, k
pickMatrix statevectorPrior, statevector, 2, _ 

numberOfFuels, 1, 1
copyMatrix sigma22, resultl 
If invMatrix(sigma22, resultl)^ <> True Then 

condFuelPrice = 0 
Exit Function 

End If

Press, H.W., Numerical Recipes in C: The Art of Scientific
Computing, 2'”’ Ed., Cambridge University Press, New York, 1992.
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multMatrix sigmal2, resultl, resultl 
multMatrix resultl, statevector, resultZ 
muPrior = triFuel.vais(k, 3) + result2.vais(1, 1) 
multMatrix resultl, sigma21, results
sigmaPrior = varfuel.vais(k, fuelstate(k) + 1)
results.vais(1 , 1 )
'(2 ) get scalar conditional mean 
If fuelstate(0) = 0 Then

shiftValue(k) = -1.S89 * corr(0, k) * Sqr(sigmaPrior) 
Elself fuelstate(0) = 2 Then

shiftValue(k) = 1.S89 * corr(0, k) * Sqr(sigmaPrior) 
Else

shiftValue(k) = 0 
End If
sigmaPosterior = sigmaPrior * (1 - corr(0, k) '' 2)

'shift and scale the new distribution 
r = (triFuel.vais (k, S) - triFuel.vais (k, D )  / _ 

(triFuel.vais(k, 5) - triFuel.vais(k, S)) 
xVector (1) = 0 
xVector (S) = 0
xVector(2) = muPrior + shiftValue(k)
xVector(4) = xVector(2) + Sqr(18 * sigmaPosterior / _

( 1 + r + r  ̂ 2 ) } 
xVector(0) = (1 + r) * xVector(2) - r * xVector(4) 
yVector(0) = 0 
yVector(1) = 0 
yVector(S) = 0 
yVector(4) = 0
yVector(2) = 2 / (xVector(4) - xVector(0))
Call coords2(xVector, yVector, 0.1)
Call TcondExp(xVector, yVector, zVector)

'setfuel price
condFuelPrice = zVector(fuelstate(k))
End Function
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