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HEDGING IN THE INTEREST RATE MARKETS 

Abstract

This study explores how market makers in the Eurodollar options on futures hedge 

their option positions using Eurodollar futures. The delta neutrality hedging model based on 

Black’s option pricing model (0PM ) is examined as well as several hedging methodologies 

extensively studied for spot/futures portfolios. These include naive, risk-minimization, and 

bivariate G ARCH models. A bivariate EGARCH hedge is developed as an alternative 

hedging model. Results suggest that the 0PM delta hedge is the most effective on both a 

within-sample and out-of-sample basis. Consistent with previous studies, the time-varying 

hedge ratio models outperform the risk-minimization and naive models with constant hedge 

ratios. In the option/futures fiamework, the superior performance of the bivariate EGARCH 

hedge looks promising for extensions to spot/futures portfolios and other derivatives.

The suitability of G ARCH and EGARCH models in a cross-hedging framework is 

also examined whereby a T-bill spot position is hedged with Eurodollar futures. The naive 

and risk-minimization models are also included in this extension. The T-bill spot asset is 

chosen for this study because managers of T-bill portfolios commonly cross-hedge with 

Eurodollar futures. Evidence of cointegration between the two markets is factored in with 

an error correction representation. Consistent with previous results, the time-varying hedge 

ratio models outperform the constant hedge ratio models. Unlike the Eurodollar 

option/futures results where EGARCH is superior to G ARCH, the within-sample and out-of- 

sample tests in the T-bill/Eurodollar cross-hedge show that GARCH and EGARCH hedging 

performance is virtually identical.
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CHAPTER 1: INTRODUCTION

1.1 Hedging with Futures and Options

The explosive growth in the use o f financial futures has been explained as the 

fulfillment of a need to manage portfolio risk generated by economic instability, mounting 

federal debt, spiraling inflation, and volatile interest rates.' Those involved in portfolio risk 

management include securities dealers, investment banks, insurance companies, pension 

funds, trust funds, mutual funds, corporations, thrift institutions, and individual investors.

The objectives of hedging through the use of futures include protecting the value of 

portfolio assets and limiting opportunity losses. With these objectives in mind, several 

hedging theories have been developed and tested in recent years. The earliest hedging 

strategy employing futures was based strictly on risk minimization while later approaches 

incorporated portfolio theory with both risk and return as part of the optimization problem. 

The most recent studies of hedging effectiveness have been built on the assumption that spot 

and futures prices are driven by a Bivariate Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) model and considerable evidence in support of this latest 

assumption now exists.

In a typical market an investor can use not only a futures contract to hedge a spot 

position, but he/she also has two other derivative instruments available. The first is the 

option on the spot and the second is the option on futures contracts. Since option contracts 

do not carry the obligation to perform, as futures contracts do, they more closely resemble 

an insurance policy where the hedger pays a premium for the insurance and has the choice 

of either exercising the option or allowing it to expire as worthless.

'Chicago Board of Trade (1990): Treasury Futures for Institutional Investors.



Natenberg (1994) describes hedgers utilizing the options markets as either natural 

longs or natural shorts as dictated by normal business activities. Commodity producers and 

lenders are natural longs in the cash position whereas commodity users and borrowers are 

natural shorts. Other potential hedgers include those who have voluntarily taken long or 

short positions in the market such as speculators or portfolio managers. He describes hedging 

decisions as a tradeoff between what the hedger is willing to give up under one set of market 

conditions in order to protect himself under another set, with the amount of protection 

purchased depending upon the amount of risk that the hedger is willing to bear. The options 

trader has a dual purpose—to hedge downside risk while allowing upside profit potential.

Not only have futures markets grown substantially in recent years, but there has also 

been a proliferation in the introduction of various options on spot instruments as well as 

options on futures. Thompkins (1994) attributes the growth in options usage to three factors:

1) the development of the Black-Scholes (1973) option pricing model, 2) the introduction 

of option contracts on regulated exchanges, and 3) advances in computer technology.

When options are the focus of a hedging study, the common approach involves the 

use of an option pricing model (0PM) for the calculation of hedge ratios such as in Hsin, 

Kuo, and Lee ( 1994) and Hancock and Weise ( 1994). In the case of options on futures, five 

inputs are required for the Black (1976) option pricing model, 1) the current futures price,

2) the option strike price, 3) the days to expiration, 4) the risk-free interest rate, and 5) the 

volatility of the underlying futures contract. The hedge ratio, or delta, is determined by 

measuring the relative change in the option price for a given change in the futures price.

Numerous studies have examined hedging strategies for investors who hold the spot
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position as fixed and use the option on spot or a futures contract as the hedging instrument. 

However, very little attention has been devoted to options on futures or to the professional 

market maker’s hedging behavior. The market maker is willing and ready at any time to buy 

at a bid price or sell at an asked price, thus meeting otherwise unfilled orders, providing a 

ready and liquid market, and reducing price volatility. According to Baird (1993), the 

options market makers are distinguished from the others due to the nature of the instrument 

in which they deal. The many strike prices and calendar months available result in options 

that may trade infrequently and as a consequence, the options market makers are often faced 

with carryover positions on a regular basis that expose them to a level of risk that other 

financial dealers may not experience. Hedging provides a means to manage this risk 

exposure. At a mechanical level, the hedging instrument of choice for the options market 

maker is normally a futures contract.

1.2 The Market Maker’s Hedging Strategy

For market makers in options on futures, the hedging strategy most widely adopted 

is the delta neutral stance based on Black’s (1976) option pricing model (OPM).The method 

is convenient and relatively simple to implement. Since this method utilizes the option strike 

price and the days to expiration as inputs, the hedge ratio is contract specific. Is it reasonable 

to assume, therefore, that the hedging results from this method will be superior to any other 

hedging model that does not incorporate the same level of information? Perhaps not since 

there are several reasons for questioning the effectiveness of 0PM  hedge ratios.

Even though a delta hedge has the advantage of being contract specific, anyone who 

maintains a portfolio o f options rather than a single contract will typically offset the
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“combined” delta position o f the portfolio with the appropriate number of futures contracts 

to establish a delta neutral stance. This “position” delta could possibly lessen the contract- 

specific advantage of the 0PM  delta hedge.

Next consider that the delta hedging strategy is model specific and relies on the 

assumption that the theoretical option pricing model is correct. Further, at the foundation of 

most option pricing models are a set of assumptions that are consistently violated, including 

frictionless markets, constant interest rates, constant volatilities, and continuous trading.

With respect to the last item, the question of discrete rebalancing has been addressed 

by several authors. Robins and Schachter (1994) argue that the distributional properties of 

discretely rebalanced hedges are such that delta-based hedging is not an optimal strategy. 

Figlewski ( 1989) found evidence that discrete rebalancing is one factor that makes it possible 

to only establish bounds rather than uniquely determined option prices, resulting in options 

hedge ratios that are not well defined. Boyle and Emanuel (1980) analyze the distribution 

of the returns on hedge portfolios when rebalancing takes place at discrete points and find 

that the distribution is strongly skewed and leptokurtic.

Recalling the five inputs listed above for the Black 0PM, one of these inputs in 

particular can be incorrectly estimated. When discussing the input of a volatility estimate, 

Baird (1993) states that market makers almost always initially set bid/asked prices around 

recent implied volatility levels, using historical levels for reference. In addition, Natenberg

(1994) also recognizes the mean-reverting tendencies of long-term volatilities as well as the 

apparent serial correlation of volatility. Natenberg, a floor trader, states that the options 

trader intuitively incorporates all of this information when making volatility forecasts. This
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subjective approach could be regarded as the “gut level” method of volatility estimation. 

The obvious question becomes, could an options trader utilize a mathematical model to 

improve volatility estimates and hedging performance?

Another point to consider is that for the trader to effectively hedge an options 

portfolio, he must consider the complication arising from the fact that an option’s delta is not 

constant. That being the case, the market maker must decide how often to compute the delta 

risk of his portfolio, and further, how often he should update his hedged position.

Given these many questions and issues related to the use of option pricing models for 

hedging, further study is warranted. Mean reversion and serial correlation o f volatilities 

imply some form of the Autoregressive Conditional Heteroskedasticity (ARCH) family of 

models. An investigation along these lines could also address the relationship between the 

volatilities of an option and its underlying asset, with that relationship modeled as a 

bivariate GARCH model, such as Baillie and Myers (1991) and others have done to 

determine hedge ratios in spot/futures portfolios. Further, it is possible that other hedging 

strategies could also be applied to the options portfolio. With recent advances in computer 

technology, these alternative methodologies are no longer a cumbersome task to practitioners 

compared to the 0PM delta hedge.

1.3 Thesis Contribution

This paper utilizes several well-known hedging methodologies to examine a 

relatively unexplored subset of hedging activity. The primary focus is on the trader who 

owns an option as a primary asset and who subsequently hedges the option with futures. The 

options market maker most readily fits within this category. For the options market maker,

5



0PM  delta neutrality hedging is the norm, but as suggested by Hsin, Kuo, and Lee (1994), 

the perfect option delta neutrality hedge can only be achieved if the assumptions o f the 

option pricing model are correct and if the hedge ratios can be continuously adjusted.

So why do options market makers use this method? One possibility is that option 

pricing models are relatively easy to program and use whereas other models, such as 

GARCH, appear rather formidable. Another possibility is that delta neutrality hedging is 

"the best" method, which means that those traders who utilize alternative less effective 

strategies would either change tactics or be forced out o f  the market completely.

With these thoughts in mind, this study focuses on strategies that have been applied 

to futures market hedging to see if any conclusions can be drawn for options hedging. 

Included are Ederington's (1979) risk minimization model for hedging options portfolios in 

the interest rate market. The more recent bivariate GARCH hedging model is also studied 

to see if it could be of benefit in an options portfolio framework. Evidence from GARCH 

hedging studies in spot/futures portfolios seem to suggest some benefit to using this model.

An issue that has not been addressed in the hedging literature is the suitability o f the 

Exponential-GARCH model. EGARCH should be superior if the time series reflect an 

asymmetric relation between volatility and past returns. Empirical evidence in support of 

univariate EGARCH effects has been found in numerous financial time series where negative 

return shocks introduce more volatility than positive return shocks. The markets examined 

include monthly U. S. stock returns by Pagan and Schwert (1990), the daily French CAC 40 

index by Rabemananjara and Zakoian (1993), a daily CRSP value-weighted market index 

by Nelson (1991), and the daily S&P 500 index for both spot and futures by Koutmos and
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Tucker (1996). This evidence in other financial markets warrants univariate EGARCH 

analysis for the option and futures time series chosen here, and the development o f a 

bivariate EGARCH model. This extension will be the first application of an EGARCH model 

to the hedging problem.

The use of options in a portfolio leads to some complications that do not surface in 

the spot/futures framework. In the application of the hedging models to the option/futures 

portfolio, great care must be taken to synchronize the option and futures prices. As 

mentioned previously, the many strike prices and calendar months can lead to infrequent 

trading, and in fact, it isn’t unusual for an option contract to trade only once or twice on any 

given day. If the last option trade occurs at say, 9:00 am, then the use of the closing futures 

price for that day will bias the results. To avoid this potential problem, when the options are 

sampled, the time is noted for the last option trade of the day and the futures price is then 

time-matched.

Another issue of importance for the options/futures portfolio relates to the 

specification of the time series used for the application of a hedging model. Should price 

levels, price changes, or returns be used? The spot/futures hedging literature contains 

examples of primarily price changes and returns.- When returns are used, the futures return 

and the spot return are generally of the same magnitude. Options returns, on the other hand.

Returns are used by Figlewski (1984), Cecchetti, Cumby and Figlewski (1988) and 
Hancock and Weise (1994). The change in the logarithm of price (percentage change) is 
used by Baillie and Myers (1991), Park and Switzer (1995), and Kroner and Sultan 
(1993). Price changes are used by Ederington (1979), Hill and Schneeweis (1984), Toevs 
and Jacob (1986), and Saunders and Sienkiewicz (1988).



are considerably different from the returns of the underlying instrument. For this reason, the 

hedging models for the options/futures portfolio must utilize price changes.

Previous authors have considered both in-sample and out-of-sample hedging results, 

and this study also addresses those issues. For the in-sample study, the computation of the 

optimal hedging ratio utilizes all of the prices from the sample as if they were known in 

advance. In other words, this method assumes perfect foresight. This is obviously far from 

reality and in fact, the hedger must utilize information available at one point in time to 

compute a hedge ratio that will hopefully remain appropriate for future price moves. Whereas 

most previous studies within the GARCH framework have used weekly prices to update 

weekly hedges, a more optimal strategy would include more frequent updating. In fact, 

Myers (1991) recognizes that an efficient use of available information is achieved if a 

model’s parameter estimates are updated as each new observation becomes available, 

although he feels that the cost of this strategy is prohibitive. However, a market maker 

whose income depends on trading profits would surely opt for a utilization o f more data 

points as opposed to less.

With this thought in mind, out-of-sample tests are therefore based on a moving 

window of daily information to be used for the computation of the parameter estimates. This 

method is in contrast to previous studies. For example, Cecchetti, Cumby, and Figlewski 

(1988) determine parameter estimates for monthly data using the first six years of their 

sample period and use those same estimates in conjunction with realized values of returns 

over the final two years of the sample. Myers (1991) also computes post-sample hedge 

ratios using parameter estimates from the first six years of his sample period. These are then
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used along with realized weekly values of cash and futures prices available up to the time 

that the portfolio is being adjusted over the final two years of the sample period. Baillie and 

Myers (1991) use daily cash and futures prices over a 1986 contract period to obtain model 

estimates that are used to simulate implied hedging rules over a 1982 contract data period. 

Kroner and Sultan (1993) and Park and Switzer (1995) improve on the previous method by 

re-computing parameter estimates on a weekly basis to forecast the hedge for the following 

week. However, instead of using daily observations, both of these studies use weekly spot 

and futures data.

Given the assumption that options and futures prices have some form of structural 

relationship between them, it is conceivable that this relationship could change over time, 

and daily prices will more readily detect those changes. Engle and Mezrich (1995) relate 

their view that the arrival of news in the marketplace results in patterns of volatility 

clustering and that the frequency of a data sample dictates the type o f cluster that can be seen 

and measured. Higher frequency data are more revealing about the volatility properties. For 

this reason, the use of daily prices is a more realistic approach for the computation of hedge 

ratios on a weekly basis. This method also provides a compromise for the cost issue raised 

by Myers (1991). Figure 1 illustrates the concept.

In this simple illustration, the entire sample period is assumed to be 15 trading days. 

The window of information to compute the first hedge ratio spans the first 10 trading days 

with the hedging ratio computed at the close o f trading on day 10, denoted as trading day t. 

The hedge is simultaneously placed at the close of day / and kept in place through the end 

of day r+ /. At the close of day t+ /, the portfolio is liquidated and a new hedge is placed and
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kept until the close of day t+2. The portfolio liquidation recurs on a daily basis. The hedge 

ratio calculated on day t is used for each day through day t+5. Then at the close of trading 

on day t+5, the closing price information from the previous five days is used to establish a 

new 10-day window, dropping the first week’s prices from the information set. This new 

information set includes prices from day t-5 through day t+5. A  new hedge ratio is then 

computed based on this updated information through the end o f day t+5, and the hedge is 

simultaneously placed and kept through the end of day t+6. In this manner, the hedging 

horizon is one day with an updated hedge ratio computed on a weekly basis.

Two markets are investigated in this paper. The Eurodollar is chosen in particular 

since most of the hedging literature to date has ignored this particular instrument, 

concentrating only on agriculturals, currencies, treasury securities, and stock indices.^ This 

study will therefore provide new insights into this particular market. In terms of market size 

and trading volume, the Eurodollar futures contract is the most actively traded contract with 

an annual Chicago Mercantile Exchange trading volume in 1996 of 99.6 million contracts, 

averaging over $390 billion daily. For the same time period, a total of 21.8 million put and 

call options on futures were traded for an average of $85 billion per day. The Eurodollar 

option on futures is the most heavily traded option market on the Chicago Mercantile

Authors investigating agricultural commodities include Baillie and Myers (1991), Myers 
(1991), and Witt, Schroeder, and Hayenga (1987). Currencies have been investigated by 
Lien and Luo (1994), Hsin, Kuo and Lee (1994), Kroner and Sultan (1993), and Herbst, 
Swanson, and Caples (1992). Treasury security studies have been done by Cecchetti, 
Cumby, and Figlewski (1988), Toevs and Jacob (1986), Hill and Schneeweis (1984), and 
Ederington (1979). Analyses of stock indices have been conducted by Park and Switzer
(1995), Ghosh (1993), Junkus and Lee (1985), and Figlewski (1984,1985).
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Exchange and it represents a very important market segment for practitioners.

Although this paper starts with a study of the hedging of an option on Eurodollar 

futiures with a Eurodollar futures contract, another very different hedging strategy is also 

explored, namely, the hedging of a spot position in Treasury bills with Eurodollar futures. 

Even though T-bill portfolio managers can choose T-bill futures for hedging purposes, they 

commonly use Eurodollar futures contracts because of their superior liquidity. Hedge ratio 

considerations in this cross-hedging framework have not been previously addressed.

This second area of study utilizes the same hedging models as before, but since the 

two instruments are not as closely related, the results could differ substantially from that of 

the option/futures portfolio. In particular, the GARCH models have not been used in the 

study of cross hedges, and the question of whether GARCH models with time-varying 

hedge ratios are superior to the risk minimization alternative with a constant hedge ratio 

remains to be answered.

The rest of the paper is constructed as follows. Chapter 2 provides a literature review 

including a discussion of the evolution of hedging methodology over the past 40 years, as 

well as descriptions and empirical tests of various hedging models. Chapter 3 includes 

applications of the hedging models to the Eurodollar options on futures. Chapter 4 extends 

the same analysis to the T-bill spot market. Chapter 5 provides conclusions.
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CHAPTER 2: LITERATURE REVIEW

This chapter describes the progression o f hedging methodologies from the simplest 

early models to the more recent computationally challenging models. The discussion 

includes a brief explanation for the calculation of hedge ratios and hedging effectiveness 

under three general headings termed risk minimization, GARCH methods, and option delta 

neutrality. In addition, several empirical studies are cited for each. Two other topics are also 

reviewed, the issue of time-varying hedge ratios and the issue of cointegration. However, 

before getting into the details of these models and the other related issues, a brief summary 

of the hedging literature is in order.

2.1 The Hedging Literature

Perhaps the first question that needs to be answered is, why do investors hedge? The 

obvious answer is to minimize risk, but Working (1953) analyzes hedging behavior from a 

different perspective than risk minimization. In his view, hedging activity is related to 

anticipated changes in the basis, suggesting a profit maximization motive. The basis is 

defined simply as the difference between the cash and futures prices. Through personal 

interviews with brokerage firm representatives, Johnson (I960) finds the existence of both 

risk minimization as well as profit maximization motives. His model, as well as a later one 

by Stein (1961), incorporate portfolio theory and the risk minimization/return maximization 

relationship into the hedging decision.

Whatever the motivation for hedging, the next question to be answered is, what hedge 

ratio should be used? And after answering this question, if it can be accurately answered, 

the next question is, how well does the strategy perform? The simplest solution to the hedge
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ratio question is the “naive” strategy where the spot position is offset with an equal and 

opposite position in the futures market. If both prices rise or fail by the exact same amount, 

then the hedge is perfect and losses in one market are exactly offset by profits in the other, 

resulting in the complete elimination of risk. We know, however, that this price pattern is 

not realized, so more sophisticated methods are required.

Ederington (1979) implicitly assumes risk minimization motives in his portfolio 

model when he solves for hedge ratios and further develops a measure of hedging 

effectiveness. Howard and D'Antonio (1984) recognize the short comings of a model that 

ignores return requirements and thus develop an optimization technique that incorporates 

both risk and return to solve for hedge ratios. In addition, they construct a measure of 

hedging effectiveness that they later revise (Howard and D'Antonio (1987)) in response to 

a correction by Chang and Shanker (1987).

Both of these models assume constant hedge ratios, but the question of whether hedge 

ratios are time-varying has been raised by several authors, including Grammatikos and 

Saunders (1983) and Malliaris and Urrutia (1991a, 1991b). The method to solve for these 

changing hedge ratios was developed by Engle (1982), but it wasn’t utilized in the hedging 

arena until Cecchetti, Cumby, and Figlewski (1988) used an ARCH model of time varying 

estimates of the covariance matrix of returns on cash and futures as a means of determining 

an optimal hedge. Baillie and Myers (1991) extend the analysis by relaxing the restrictive 

assumption of constant correlation.

Another issue of prime importance deals with the long-run relationship between the 

two time-series under consideration. If the two variables are cointegrated, Engle and
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Granger (1987) suggest that the bivariate model should include an error correction term. 

Ghosh (1993) applies this reformulation to the minimum risk model. Kroner and Sultan 

(1993) introduce an error correction term for cointegration into the GARCH model, and Lien 

and Luo (1993) extend this same model by moving into a multi-period framework.

From the early 1950's through the mid 1990's, several strides were made in the area 

surrounding the strategies for hedging with futures. In another arena, delta neutrality 

hedging found its start in the development of the Black-Scholes (1973) option pricing model. 

With the formula in hand, it’s a rather straight-forward process to differentiate with respect 

to the variables and determine the set of risk factors (called delta, gamma, vega, theta, rho, 

and lambda) that are used by options traders.

Since the original model evaluated European options on non-dividend paying stock, 

subsequent studies have addressed such issues as the underlying instrument and early 

exercise. Black (1976) provided a modification for pricing options on futures contracts while 

both Cox, Ross, and Rubenstein (1979) and Barone-Adesi and Whaley (1987) developed 

models to value American options with an early exercise feature.

Given this brief background, the issues o f time-varying hedge ratios and cointegration 

are now discussed, followed by more complete details of the risk minimization, GARCH, 

and option delta neutrality models.

2.2 The Issue of Time-varying Hedge Ratios

After a trader computes a hedge ratio and places the hedge, can he just forget it? Is 

a hedge ratio computed on February 28 good enough for a position taken on April 15? The 

answer to both of these questions is no. In fact, several studies have shown that hedge ratios
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are unstable over time.

Grammatikos and Saunders (1983) use three econometric approaches to examine the 

question of hedge ratio stability for five foreign currency futures contracts. The first method 

is a moving window regression procedure whereby hedge ratios are initially estimated for 

a two-year period and then reestimated every quarter by adding the new quarter’s data and 

deleting the initial quarter’s data. The second method examines whether significant shifts 

have taken place in hedge ratios over various subperiods (chosen based on economic events) 

where the regression model includes dummy variables for the chosen subperiods. The third 

method uses a random coefficients model where the hedging equation allows the hedge ratio 

to vary over time. They conclude that hedge ratios are stable in the Canadian dollar, vary 

randomly in the Swiss franc, and increase significantly over time in the British pound and 

Japanese yen.

Manner (1986) tests the stability of hedge ratios in the Canadian dollar market in the 

same fashion as Grammatikos and Saunders but extends the comparison to different hedge 

lengths and varying delivery dates. The regression includes two dummy variables for 

different time periods as follows

AS, = A + B,AF, + B,(D,AFJ + BjfD^AFJ

where

AS, = the change in spot prices

AF, = the change in futures prices

D, = 1 for / equal to July 10, 1981-February 4, 1983 and 0 for all other t

Di = 1 for r equal to July 10,1981-August 26, 1983 and 0 for all other /
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The equation divides the full sample period of 7/10/81 through 9/7/84 into three periods. The 

estimated hedge ratio over the entire period is ê ,. ê ,  + ê ,  is the estimated optimal hedge 

ratio over the first half o f the period, and è , + è j  is the estimated optimal hedge ratio over 

the first two thirds o f the period. If the hedge ratio is stable over time then ê ,  = è  3 = 0. 

Manner finds no evidence of instability in the hedge ratios over the subperiods and he offers 

the possible explanation that the subperiods chosen may not be matched with times having 

significant economic events.

Malliaris and Urrutia (1991a) suggest that both the hedge ratio and hedging 

effectiveness measure (from a risk minimization model) follow a random walk process and 

test this hypothesis in two stock indices and four foreign currency markets. Weekly spot and 

futures data are used and a two-week hedging horizon is assumed. A moving window 

regression procedure is employed whereby the parameters are reestimated every quarter by 

adding a new quarter of spot and futures data and deleting the initial quarter’s data, keeping 

a one-year estimation period. Results for both a Dickey and Fuller test as well as a variance 

ratio test of random walk are reported. The Dickey and Fuller methodology consists of the 

following regression:

Y, = bo +b,Y,.,+ biT + 6, 

where Y, ,Y,_, = hedge ratio or measure of hedging effectiveness 

T = time trend 

e, = residual term at time t 

The null hypothesis that (bo,b,) = (0,1) is not rejected at the 1 percent level suggesting that 

the hedge ratio and hedging effectiveness measure in each of the markets follow a random
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walk process. The variance ratio test reinforces the Dickey/Fuller result.

In a subsequent study, Malliaris and Urrutia (1991b) postulate that if hedge ratios are 

constant over time, then the longest possible estimation period should result in the best 

estimate of the hedge ratio and the most effective hedge. Once again, a moving window 

regression is used where the hedging horizons are one week and four weeks. On an ex post 

and ex ante basis, the hedging effectiveness was only weakly impacted by the length of the 

estimation suggesting some support for the notion that hedge ratios are unstable over time.

The previous studies have employed various methods to address the issue of time- 

varying hedge ratios, but other authors have used the ARCH/GARCH models to provide the 

same information. Cecchetti, Cumby, and Figlewski (1988) determine hedge ratios through 

an ARCH specification for T-Bonds and find that the optimal ratio varies from 0.52 to over 

0.91 for their sample period. Myers (1991) illustrates the hedge ratio path for wheat through 

the use of figures with the constant hedge ratio as a reference point. Baillie and Myers 

(1991) also use this same illustration technique in the commodity markets of beef, coffee, 

com, cotton, gold, and soybeans. Each of the figures seem to illustrate considerable hedge 

ratio variability.

2.3 The Issue of Cointegration

As defined in Hamilton (1994), an {nxl) vector time series y, is said to be 

cointegrated if each of the series taken individually is integrated of order one, 7(1), or is 

nonstationary with a unit root, while some linear combination of the series a'y, is stationary, 

7(0), for some nonzero {nxl) vector a. To understand what this definition means requires 

some background in the analysis of time series data. The following discussion is taken fi-om
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Hamilton (1994), Greene (1993), and Campbell and Perron (1991).

The best place to start is to first define the terms used in the above definition. First, 

a stochastic process, is defined to be covariance stationary if it satisfies three 

requirements: 1) E\y,] is independent of t, 2) Var[yJ is a constant, independent of t, and 3) 

Cov \y, ,y^ is a function of t-s, but not of t or s. The covariance between y, and y,., depends 

only on the length of time separating the observations and not on the date of the observation. 

Second, if a series is found to be non-stationary but it becomes stationary after differencing 

once, then it is said to be integrated o f order one, /(I). Third, to define a unit root process 

requires a little more discussion.

Many financial time series, when graphed, seem to exhibit either increasing or 

decreasing patterns. Two popular approaches to modeling these patterns are deterministic 

time trends and unit root processes. Consider a time series that can be represented as 

follows

y, = TD, + Z,

In this situation, TD, is a deterministic trend in y, which could be represented as

TD( = K + ôt

which is linear in time. Z, is the noise function and the unit root hypothesis concerns the 

behavior of the noise function. Further, we can assume that Z, is described by an 

autoregressive-moving average process:

A(L)Z, = B(L)e,

where A(L) and B(L) are polynomials in the lag operator L of order p  and q, respectively, 

and e, is a sequence of i.i.d. innovations.
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Since the deterministic trend TD, includes the mean oïy„ the noise function Z, is assumed 

to have a zero mean. In addition, the roots of the moving average polynomial B(L) are 

assumed to lie outside the unit circle.

The distinction between a trend-stationary and a difference-stationary model lies in 

the roots of the autoregressive polynomial, A(L). In the first case, the roots are strictly 

outside the unit circle (are greater than one) so that Z, is a stationary process and y, is 

stationary around a trend. In the second case, Z, has one unit autoregressive root and all other 

roots lie strictly outside the unit circle. In this case, the first difference of Z, is a stationary 

process and the first difference ofy,  is stationary around a fixed mean. Therefore, the unit 

root hypothesis is thaty, is difference stationary.

From a practical standpoint, if a series is non-stationary then a transformation is 

required, but which transformation should be made? If the series is trend stationary, then the 

correct treatment is subtracting àt from y, to produce stationarity. On the other hand if the 

series exhibits a unit root process, the correct treatment is to difference the series to achieve 

stationarity.

The Phillips and Perron test statistic for a unit root is

The variables for this test statistic are computed in a multi-step process that starts with a 

regression of)/, ony,.,

y, = a  + py,., + ii,
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The OLS estimation provides p, its standard error d p , and the standard error, 5 . of the 

regression, fo is a consistent estimate of E(u,-) given by

r
2

The computation of k- uses the value of fo and also requires the input of the yth 

autocovariance of the residual (Û = y, - â - Py,., ) which is calculated from the following 

equation for ÿy

Î, = r  ■' t  iA - ,
f = y l

is then computed as

y=i

where q denotes the number of autocovariances used. If the computed test statistic exceeds 

the critical value, then the null hypothesis of a unit root process is accepted and the proper 

correction for the non-stationarity is first differencing.

Tests for unit roots have been conducted in spot and futures of several financial and 

commodity markets. Evidence of unit roots were found by Kroner and Sultan (1993) in the 

British pound, Canadian dollar, Japanese yen and Swiss franc; Park and Switzer (1995) in 

the S&P 500 Index and Toronto 35 Index; Baillie and Myers (1991) in beef, coffee, com.
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cotton, gold and soybeans; and Ghosh (1993) in the S&P 500 Index, Dow Jones Industrial 

Average, and New York Stock Exchange composite index.

Getting back to cointegration, in the case of two time series, cointegration means that 

there is some long-term equilibrium relationship between the two even though permanent 

changes may occur to each series individually. If the series are cointegrated, then the manner 

in which the two variables drift together can be distinguished from the deviations of the 

individual series from their long-run trends. For the regression model

y, = px, + 6 ,

if both series y  and x were /( 1 ), there may be a P such that

is stationary, 7(0). If the two series are both 7(1), this difference between them may be stable 

around a fixed mean.

On the other hand, if the two series are integrated of different orders, say 7(2) and 

7( 1 ), then they must be drifting apart and the distance between them would be increasing with 

time. Typically, when two series are integrated of different orders, then linear combinations 

o f them will be integrated to the higher of the two orders and thus the series would not be 

considered as cointegrated.

The procedure for modeling cointegration of two time series calls for first, a test for 

unit roots in the individual series, second, a regression of one series on the other, third, a test 

o f the residuals, and fourth, if cointegration is found, the residuals are used as an error 

correction term in a first-difference regression. In the application to the hedging problem, 

if  both the futures and spot time series possess unit roots, then the procedure to test for
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cointegration first requires a regression of the spot on futures, with a collection of the 

residuals Ù,. The residual Ù, is then regressed on its own lagged value Û,.,.

Û, = P Ù,., + e,

If the two time series are not cointegrated, then the original regression is spurious and 

should be near 1. On the other hand, if ^ 7- is well below 1, then the null hypothesis of a 

spurious regression is rejected and the variables are considered to be cointegrated. The test 

statistic is

(T-D(Pt -I)

Critical values for the test statistic are calculated by generating a sample of the appropriate 

size for y  „ y 2, independent Gaussian random walks, estimating

y„ = a. + PX’/ + w, and û, = p ù,., + e, 

by OLS, and tabulating the distribution of (T-lXPy-l). In the event of cointegration, the 

exact specification of the error correction term is determined from the analysis, with the 

objective that the term will maintain the long-run relationship between the two series. 

According to Kroner and Sultan (1993), if cointegration is ignored in the regression of price 

changes to establish a hedge ratio, then the model is misspecified because the data is 

overdifferenced thus obscuring the long-run relationship between the two time series and a 

downward bias is implied in the hedge ratio.

Tests for cointegration between the spot and futures have been conducted in several 

financial and commodity markets. Evidence of cointegration was found by Park and Switzer 

(1995) in the S&P 500 Index and the Toronto 35 Index, and by Kroner and Sultan (1993) in 

the British pound, Canadian dollar, German mark, Japanese yen, and Swiss franc. On the
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other hand, Baillie and Myers (1991) find no cointegration in beef, coffee, com, cotton, gold, 

or soybeans. Ghosh (1993) tests for cointegration between the S&P 500 futures and three 

spot indices-the Dow Jones Industrial Average, S&P 500, and New York Stock Exchange 

composite, and finds evidence that each spot index is cointegrated with the S&P 500 futures 

contract.

2.4 Option Delta Neutrality Model

As the price of an underlying security changes, the theoretical value of a call also 

changes. The amoimt of the change depends upon the “moneyness” of the contract. When 

the call is deep in-the-money, its value changes at a rate almost identical to that of the 

underlying, and when it is deep out-of-the-money, its value may change only slightly with 

large changes in the price of the underlying. The measure of how an option’s value changes 

for a given change in the price of the underlying contract is called delta,

. _ D o lla r  change o f  option p r ice

P ositive  dollar change o f  a sse t p r ic e

which is also referred to as the hedge ratio. In theory, an option can never gain or lose value 

more quickly than the underlying, so the upper bound of delta is 1.00. A call also cannot 

theoretically move in the opposite direction of the underlying market, so the lower bound o f 

delta is zero. Most calls will have deltas somewhere between zero and 1.0. A call with a 

delta of .25 is expected to change its value at 25 percent of the rate of the underlying asset. 

When hedging in the options market, if an increase (decrease) in the option position exactly 

offsets the decrease (increase) in the opposite underlying asset position, then the hedge is 

neutral as to the direction of the underlying asset.
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If an option position is hedged against the underlying asset, the delta conveys the 

proper ratio of underlying contracts to options required to establish a neutral stance. The 

underlying asset always has a delta o f 1 .0 , so the proper hedge ratio is determined by 

dividing 1.0 by the option’s delta. For example, a call with a delta of 0.5 requires a hedge 

ratio of 2.0 (1.0/0.5), or for every two options purchased, the hedger should sell one 

underlying contract to achieve neutrality. In a portfolio of multiple options and/or 

underlying assets, the delta is computed as a weighted average of the individual deltas, and 

if this “position delta” equals zero, then the portfolio is considered to be delta neutral.

The neutral position delta provides no particular preference as to the direction in 

which the underlying instrument will move. This is in keeping with the market makers’ 

objective of trading options to derive the bid-ask spread as a primary source of income. They 

generally do not speculate on the capital gains due to option price changes. As such, the 

delta neutral hedge position assumes risk minimization as a goal. When the delta values are 

extracted from an option pricing model, the hedging methodology for purposes of this study 

is called "option delta neutrality".

Analysis of hedging techniques through the use of options and options on futures has 

focused on the delta-hedging ratios derived from various option pricing models such as 

Black and Scholes ( 1973), Black ( 1976), and Barone-Adesi and Whaley ( 1987). The original 

Black-Scholes (1973) option pricing model evaluated European options on non-dividend 

paying stock. A later revision incorporated the dividend component. Black (1976) modified 

the model to price options on futures contracts, and Garman and Kohlhagen (1983) evaluated 

options on foreign currencies. Cox, Ross, and Rubenstein (1979) developed a binomial
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model to value American options while Barone-Adesi and Whaley (1987) utilize a quadratic 

model to value American options.

The Black (1976) model for evaluating European options on futures contracts is as 

follows:

C=Ue"N(d)-Ee-"N[d-v(t)'^]

P=-Ue-TM(-d)+Ee-"N[v(t)"2-d]

where d = InfU/El +('vV2 1 t 
v(t)'^

call delta = e'"N(d)

put delta = -e'T^(-d)

C = theoretical value of a call P = theoretical value of a put
U = price of the underlying contract E = exercise price
t = time to expiration in years v = armual volatility expressed as a decimal
e = base of the natural logarithm fraction
In = natural logarithm r = risk-free interest rate expressed as a
N(x)=the normal cumulative distribution decimal fraction

function

Delta neutral hedge ratios are equal to the call delta and put delta.

According to Natenberg (1994), a floor trader, the American option pricing models 

which allow for the possibility of early exercise are not worth the additional effort, 

particularly in the futures options markets. The additional early exercise value is so small, 

that there is virtually no difference between the Black-Scholes model and an American 

pricing model.

Empirical testing of American versus European option pricing models has been 

conducted in various markets. Blomeyer and Johnson ( 1988) compare the Black and Scholes
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(1973) European model to the Geske and Johnson (1984)American model on put options for 

four stocks. They concluded that both models tended to undervalue put options, although 

the Geske/Johnson values were significantly closer to market prices. In a study of the FTSE- 

100 stock index, Dawson (1994) concludes that American call options are frequently 

overpriced. Shastri and Tandon (1986) consider options on futures for the S&P 500 and 

German Mark. They compare the Black (1976) model with the Geske and Johnson (1984) 

model and find that the European model performs as well as the American model in 

replicating prices observed in the market.

As mentioned previously, a change in any of the inputs to the model results in a 

change to delta. That being the case, the option market maker must continually readjust his 

position to remain delta neutral. Obviously, that would be impossible, but some decision 

must be made as to just how often the rebalancing should occur. If the price changes are 

small and stay within a tight range, then delta-neutrality hedging will probably work 

relatively well with very little rebalancing. However, when this isn’t the case, Thompkins 

(1994) suggests that three methods are used. The first consists of a rebalancing decision that 

occurs at approximately the same time once a day. The second approach pre-defines an 

acceptable delta level and rebalances the position back to zero when the level is exceeded. 

The third technique is the daily standard deviation principle where the market maker first 

converts his predicted annual volatility to a daily volatility with a division by the square root 

o f260 (number of trading days). This number is then multiplied by the current level of the 

underlying instrument to determine the number of ticks represented. When the underlying 

instrument’s price varies by more than this range, the trader rebalances back to delta
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neutrality.

Natenberg (1994) also suggests three approaches for portfolio adjustments. The first 

is to adjust at regular intervals based on the interval of the trader’s volatility estimate. For 

example, if the volatility estimate is based on daily price changes, then the adjustment is 

done daily. If the estimate is based on weekly price changes, then the adjustment is done 

weekly. The second approach adjusts when the position becomes a predetermined number 

of deltas long or short. In this case, the trader doesn’t know how often the adjustment will 

be made. In some instances, the adjustments are frequent while in other instances, no 

adjustment is made for long periods o f time. The predetermined number of deltas depends 

on the size of the positions as well as the trader’s capitalization. The third approach is to 

adjust by feel, for those traders who can sense when the market is about to move.

Hsin, Kuo, and Lee (1994) conduct an empirical test of delta hedging methodology 

by finding the solutions for the Biger and Hull (1983) European option pricing model and 

then using the Barone-Adesi and Whaley (1987) American option pricing model to find 

option prices and delta hedging ratios for four foreign currencies. They develop a measure 

of hedging effectiveness similar to that used by Cecchetti, Cumby, and Figlewski (1988) that 

assumes that the hedger determines the hedge ratios by maximizing expected utility which 

is completely ordered by mean and variance. A negative exponential utility function with 

constant absolute risk aversion is assumed and the function, V(E(r),a;A) is a monotone 

increasing function of the expected utility where A denotes the absolute risk aversion 

coefficient. Hedging effectiveness is measured by the difference of the certainty equivalent 

returns between the hedged position and the spot position.

27



HE* = V(E(rH).OH; A )̂ - V(E(rs),as; A J 

HE* = V(r„“ ,0; A.) - V(rs“ ,0; A J  

HE* = r„“  - Fs“

If  HE* is positive, certainty equivalent returns are higher and the hedge is effective. The 

option delta hedging strategy is compared to a currency futures market hedge in four foreign 

currencies and the futures hedge is found to be superior.

Hancock and Weise (1994) use the Black (1976) model to determine a hedge ratio 

for the S&P index options on futures and use the Black-Scholes (1973) model to determine 

a hedge ratio for the S&P index options. These two options strategies are then compared to 

a futures hedge. Their results show that all of the hedging instruments are equally effective 

for hedging a spot position in the S&P 500.

2.5 Naive Model

The naive model is the simplest to use in terms of hedge ratio computation in the 

spot/futures portfolio framework. In fact, the naive model dictates that the value of the spot 

position should be exactly offset by a futures position, resulting in a hedge ratio of one. The 

underlying assumption is that risk reduction is the primary goal o f the hedger. And in fact, 

if price movements in the spot market are exactly equal to price movements in the futures 

market, then price risk can be completely eliminated. The naive hedge is often used as a 

point of reference for testing the effectiveness of other hedging models.

2.6 Risk Minimization Model

Ederington (1979) uses a portfolio model wherein the spot position is considered 

fixed and the optimal hedge ratio, or number of futures contracts is determined per unit of
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spot. The hedge ratio is obtained from the Ordinary Least Squares regression of spot price 

changes on futures price changes. The optimal hedge ratio results in the minimum risk level 

for the portfolio and consists of the covariance between the spot and futures divided by the 

variance of the futures. The measure of hedging performance in this fiamework is the 

coefficient of determination (R-) from the regression.

The objective of the hedger is to minimize the variance of the price changes for the 

portfolio. The expected price change and variance o f the hedged position are

E(Ap) =  C ,E(P,„ - P J  + CfE(P,,., - P,J 

var(Ap) = C /o / + CfW  + 

where C^C^are the number of units of the spot and futures holdings, Pj, Pf are the prices of 

the spot and futures, o /. Of are the variances of the spot and futures price changes, and 

is the covariance of spot and futures price changes.

To minimize the variance, the equation is differentiated with respect to Cf, and the 

partial derivative is set equal to zero.

va r(A  )
= 2 C / +2C a ,  = 0

2 0 ;

Assuming that the number of units of the spot held, C„ equals 1, then the optimal number 

of futures contracts per spot is equal to
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This result can be obtained by regressing spot price changes on futures price changes as 

follows:

(Ps,.H - Ps.t) = a  + P(Po+i - Pf.J + e,

where

P; t = the spot price at time t 

Pf, = the futures price at time t 

and p equals C / as shown above.

To measure the effectiveness of the hedge ratio, the hedger can compute the 

proportional reduction in the variance of price changes in the hedged portfolio to the variance 

of the unhedged position

v a r ( A ) '
e = I -  ------- —

, o jo  -  p')
e = 1 -  —

e =  p-

where p equals the correlation coefficient of spot price changes and futures price changes. 

The effectiveness o f the hedge, e, is the correlation coefficient squared, R ,̂ from the
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regression.

Subsequent to Ederington's article, other authors have provided refinements to his 

technique. For instance, Herbst, Kare, and Caples (1989) point out that time series data on 

spot and futures can exhibit serial correlation, resulting in violation of the basic assumptions 

of the OLS model. In particular, the R- statistic is overestimated, the variance of the error 

term is underestimated, and the slope coefficient (optimal hedge ratio) is inefficient. A 

simple refinement to correct for serial correlation utilizes an autoregressive procedure where 

the error term is modeled as

e, = V ,  -  a , 6 ,.I - . . .  -  otpEi.p 

with Vt normally and independently distributed with a mean of zero and a variance of a~. 

They test this simple autoregressive model but find that the error terms are still correlated 

across time so they ultimately use an autoregressive integrated moving average (ARIMA) 

specification

(l-B)SP, = r(B) • FU, + 8(B)/0(B) • e, 

where SP, and FU, are spot and futures rates at time t, B is the backshift operator, such that 

B(XJ = X,.|, F(B) is the transfer function, 0(B) is the autoregressive operator, and $(B) is 

the moving average operator. Yau (1993) also recognizes serial correlation as an important 

source of hedge ratio instability and uses a maximum-likelihood method of correction.

Ghosh (1993) extends the analysis in another direction with tests for cointegration 

between the spot and futures. After finding evidence of unit roots and cointegration, he 

proposes the following error correction model:
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1=1 J - \

where P, , is the spot price series, Pf , is the futures price series, and u, is the cointegrating 

residual.

Empirical studies of the risk minimization model include Ederington (1979) who 

computes hedge ratios and the hedging effectiveness of two-week and four-week hedges in 

the GNMA and T-Bill markets. His conclusions include that in most cases, the estimated 

hedge ratio is less than one, and that both the GNMA and T-Bill hedging effectiveness is 

greater over long (four-week) periods than short.

Hill and Schneeweis (1984) extend the Ederington study into additional markets by 

assuming a spot and futures position in five foreign currencies and three equity indices. They 

find significant reductions in variability by using a risk minimizing hedge over a naive 

strategy. They also address the issue of cross hedging by assuming a spot position in 

corporate bonds and a position in either GNMA or T-Bond futures. These results also 

indicate significant reductions in variability.

Ghosh (1993) tests for the presence of cointegration between spot and futures in the 

S&P 500 index, Dow Jones Industrial Average, and New York Stock Exchange composite 

index. He then incorporates an error correction term into the risk minimizing model and 

finds that optimal hedge ratios as well as adjusted R's are higher. Also, out-of-sample 

forecasts are better with an error correction term.

Numerous other empirical studies have also utilized the risk minimizing model in 

various markets, including foreign currencies by Hill and Schneeweis (1982), Dale (1981),
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and Manner (1986); treasury bills by Lasser (1987); European Currency Unit by Saunders 

and Sienkiewicz (1988); stock index futures by Figlewski (1984, 1985) and Junkus and Lee 

(1985); and the Hong Kong Hang Seng Index by Yau (1993).

2.7 Autoregressive Conditional Heteroskedasticity (ARCH) Models

2.71 General Description

Before discussing hedge ratio computations and hedging effectiveness measures, a 

brief background of ARCH models is helpful. A quick look at a chart of prices for any 

financial instrument reveals periods of considerable turbulence as well as periods of relative 

calm. The assumption of time-varying volatility seems evident, and furthermore, the 

patterns suggest that volatility occurs in clusters. For instance, high volatility periods seem 

to persist for some amount of time before falling to lower levels. Engle and Mezrich ( 1995) 

state that historical data show that some clusters are short-lived, say for a few hours, while 

others last for years. So what causes these clusters? They explain that the primary source 

of changes in market prices is the arrival of news, and if the news arrives in rapid succession, 

the retums will exhibit a volatility cluster. At the highest frequency, such as intraday, the 

sources of changes to market price are the pressures and turbulence of trading, called noise. 

At a lower frequency, macroeconomic and institutional changes are the most likely source.

The next step beyond recognizing these patterns, of course, is to answer the question 

of whether volatility in the future can be predicted. A model with this objective in mind 

should determine whether recent information is more important than old information and 

assess how fast information decays. This is the idea behind the Autoregressive Conditional 

Heteroskedasticity (ARCH) model proposed by Engle (1982) which assumes that today’s
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volatility is measurably related to yesterday’s volatility and price movement. According to 

Engle, the ARCH process is a mean zero, serially uncorrelated process with non-constant 

variance conditional on the past. Unconditional variances, however, are constant. How 

these conditional and unconditional variances fit into the analysis was explained by Engle 

(1993). Ify,  is the return on an asset received in period t, then the unconditional mean is

E(yJ = p.

The conditional mean, c„ however, uses information, fi-om the previous period,

c, = E[y, 11,.,] =E,.,[yJ.

The unconditional variance can be defined as

o  ̂= E[y, - I l f  = E[y, - cj- + E[c, - p]- 

and the conditional variance can be defined as

h, = E,.,[y, - cJr.

The conditional variance depends upon the information set. The idea here is that investors 

will be able to utilize the information known and forecast more accurately with h„ implying 

that volatility is predictable.

2.72 Univariate Models

A  formal representation of Engle's model is as follows:

y, = px,+6 ,

e ,=z,A

z, i.i.d., E(zj=0, Var(zJ=l 

6,|6,.,~N(0,hJ

If h, evolves according to
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y=t

then 6 , follows an ARCH process of order q, ARCH(g). This specification suggests that the 

conditional variance is simply a weighted average of past squared forecast errors. Different 

values of q reflect how fast volatility is changing.

If the last equation is rewritten as

1=1

the bracketed term is considered the iimovation in the autoregression for e-. According to 

Engle (1993), this is the source of the name ARCH.

Evidence o f ARCH effects are confirmed with Engle’s (1982) ARCH test in a two 

step process. First, the time series of price changes is modeled as

R, = a  + u,

The residuals are saved and squared to be used in a second regression

m/ = Ô + a^ul,  + . . . + e,

The sample size T times the uncentered R^- from the regression then converges in 

distribution to a %- variable with m degrees o f freedom. The null hypothesis is that u, is 

i.i.d.~N(0,o2).

In those models where a long lag length q is required, the Generalized ARCH, or 

G ARCH model developed by Bollerslev (1986) provides an alternative. If h, evolves
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according to

y = l t=I

then e, follows a GARCH(p,^) process. In this representation, past conditional variances are 

also allowed to impact the present conditional variance.

A potential loss of information occurs in the previous ARCH and G ARCH models, 

however, because the residuals are squared prior to estimation. Thus, an extension to the 

G ARCH model was formulated by Nelson (1991) to account for the fact that information 

may result in asymmetric volatility behavior. For instance, a negative surprise may increase 

volatility while a positive surprise of the same magnitude may decrease volatility.■* The 

result of this intuition was the Exponential G ARCH model. If h, evolves according to

log ft,=ao+^ ô^ log
i=I  y=I

where z= eJ\/\,

then 6 , follows an EGARCH(p,^) process. The use of logarithms allows the parameters to 

be negative without the variance becoming negative. The asymmetric relation is captured 

in the third term on the right hand side o f the above equation which must be a function of 

both the magnitude and the sign of z,. Over the range 0<z,<«>, the term is linear in z, with a 

slope of (j) + Y’ and over the range -«<z,^0, the term is linear in z, with a slope is (J) - y. The

As recapped by Bollerslev, Chou & Kroner (1992), asymmetric volatility reactions in 
equity markets are attributed to a so-called “leverage effect” whereby a reduction in the 
equity value raises the debt-to-equity ratio resulting in an increased riskiness of the firm 
and an increase in future volatility.
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term [|z, | - E|zj |] represents the magnitude effect and the sign effect is captured in the (J) 

coefficient.

The impact of this relationship upon variance is demonstrated in Table 1. For this 

particular example, y equals 1 and the a,, ((), and z,., coefficients values are assumed to be 

0.20, 0.80, and 0.02, any of which can be either positive or negative. The first two lines 

illustrate the situation where both a, and c{) are positive. In this case, a positive standardized 

residual, z,.,, results in a higher variance than a negative residual of the same magnitude. 

The third and fourth lines continue the assumption of a positive magnitude effect, a,, but 

now the sign effect, 4>, is negative. In this instance, a negative standardized residual results 

in a higher variance than a positive residual of the same magnitude. The last four lines of 

the example assume a negative magnitude effect, a,. If the sign effect, (|), is positive, then 

a negative residual results in higher variance than a positive residual. If the sign effect is 

negative, then a positive residual results in higher variance than a negative residual.

Engle and Mezrich (1995) describe the estimation procedure for these G ARCH 

models. Using historical data, a set of parameters are chosen to compute volatility for every 

day over the sample. The resulting volatilities are then compared to the observed volatility 

clusters, and if they fail to match, new parameters are chosen. In this way, the parameters 

are both estimated and checked using the same data. The method of maximum likelihood 

provides a systematic approach to the estimation by postulating a well-defined objective 

function and then maximizing it with respect to the unknown parameters. The solution is 

obtained through an iterative algorithm.

Within the maximum likelihood method, an assumption must be made concerning
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the distribution of z, . Hamilton (1994) explains the issue as follows. The unconditional 

distribution of many financial time series seems to exhibit kurtosis, some of which can be 

explained by the presence of ARCH. In that event, the conditional distribution is normally 

distributed and the density is

1 exp

The parameters of the univariate G ARCH specification under the assumption of normality 

are obtained through maximization of the log likelihood

r
E

/=!  f=l 1=1
É  Io g /(y jx , ,r , . , ;e )  = - ( r /2 ) lo g (2 T r ) - ( l /2 )5 ;  lo g ( A ,) - ( I /2 ) £  ( y , - '/P ) '/A ,

Empirical studies of financial time series utilizing the Autoregressive Conditional 

Heteroskedasticity (ARCH) model by Engle (1982) and the Generalized (GARCH) model 

by Bollerslev (1986) have been extensive.^ Engle (1982) uses the ARCH model to estimate 

the means and variances o f inflation in the United Kingdom and finds the ARCH effect to 

be significant. Bollerslev (1986) applies the GARCH model to explain the uncertainty of the 

inflation rate and finds it to provide a better fit than the ARCH model. Nelson (1991) uses 

the EGARCH method to estimate a model of the risk premium on the CRSP Value-Weighted 

Market Index. Pagan and Schwert (1990) compare various measures of stock volatility 

including GARCH and EGARCH and find EGARCH to be superior to GARCH because it

See Bollerslev, Chou and Kroner (1992) for an extensive discussion of the models and 
empirical testing.

38



reflects the asymmetric relation between volatility and past retums.

2.73 Multivariate Models

For the multivariate extension of GARCH, the form becomes:

y, = p'x, + e,

where y, is an (n x 1 ) vector, p is an (nx^) matrix of coefficients, is a x 1 ) vector of 

explanatory variables, e, is an (n x 1) vector of white noise residuals, and H, is an (« x n) 

conditional variance-covariance matrix of residuals.

Several parameterizations of the multivariate GARCH model have been suggested. 

Engle and Kroner (1993) proposed*

H, = C + B H, ,B; + A,e,.|e,.i A/ 

where C, B„ and A, denote (n x n) matrices of parameters. For hedging applications. n=2.

Another parameterization suggested by Bollerslev (1990) is the constant correlation 

with the following matrix representation

^ 2 . *../ 0 1 P *../ 0

^ 1 2,/ *2 2 ./ . 0  *2 ./ P 1
0

This results in the following two equations

h-,.t = c, + a,e^_,.| + b,h^.,.,

= C2 + + bjh-,...,

Bollerslev, Engle, and Wooldridge (1988) suggest the vech(H)

*A11 parameterizations shown are for the GARCH (1,1).
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vech(HJ = C + A vech(6 ,.,e,.i') + B vech(H,.,) 

where vech is the column stacking operator that stacks the lower triangular portion of a 

symmetric matrix. For the GARCH (1,1), the matrix representation is as follows

iij

12.»

22./

' ^ 1 1  - ^ 1 2  "̂ 13 

^ 2 2  ■̂23 

'̂ 31 ^32 ^33

^12 B

U-1S ./-1 + ^2: ^22 B

4 - , 3̂1 ^32 B

‘ 1 2 . / - 1

‘ 2 2 ./- 1

where h ,,, equals the variance of (e, ,) at time t, h,,., equals the covariance of ( e , ,,e 2.,) at 

time t, and hji,, equals the variance of (e^J at time /. Due to the large number of parameters, 

a simplification suggested by the authors assumes that the A and B matrices are all taken to 

be diagonal, implying that each variance and covariance depends only on its own past values 

and prediction errors. This reduces the number of parameters from 21 to 9.

Recalling that the univariate E-GARCH model assumes that h, evolves as

log ô^Iog
t=i y=i

where z,=e/'Jh,,

under the assumption of constant correlation, the second moments for the bivariate 

representation can be modeled as

h|i.,=exp{a,.o +a,.ilogh,,,.,+a,j,( b,.,., I-EIz,,., l+a,,3Z, 

h2 2.t=exp{a2.o +a2.,logh,2.,.,+a2^( k.,., 1-E k,,., l+a ĵZo,,.,)}

h,2.»=P(h,,.,W ^

This representation was first suggested by Koutmos and Tucker (1996) in a study of the
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interactions between the spot and futures equity markets. In the case of varying correlation, 

the bivariate matrix representation becomes

h,. a. 6,1 *12 6,3 A.. ^1, ^ 1 2 1̂311/ I 11/1
^12/ = exp' «2 + ^1 h2 6 2 3 log 6 1 2 ./-I + ‘̂ 21 ^ 2 2 C2 3

^3. b b. b 6 2 2 ./-1_ c31 32 33 3̂1 ‘'32 33.

abs

"22 ,<

dn d n ^ . 3
r

- E\z^\E\z^\ + *^21 ‘̂ 22 ^ 2 3

E\z^\
‘̂ 3 , ^ 3 2 ^ 3 3

M,r-1^2 .f-/^ 12,/-l

^22j-\^4^22j -\

As explained in Johnson and Kotz (1970), if z has a normal distribution, then |z| is said to 

have a folded  normal distribution whereby the distribution is formed by folding the part 

corresponding to negative values of z about the vertical axis and then adding it to the 

positive part. Leone, Nelson and Nottingham (1961) showed that if z is normally distributed 

with mean // and variance o ’, then E(|z|) = VSTrcoe V  + p[I-2N(-p/o)] where N(d) is the 

cumulative unit normal distribution with upper integral limit d. If the mean and variance of 

z are 0 and 1, respectively, then E (|z |) simplifies to flPH. Once again, the B, C, & D 

matrices are considered to be diagonal to reduce the number o f parameters and give a more 

parsimonious result.

Chowdhury, Kroner, and Sultan (1995) suggest an evaluation of the validity of the 

GARCH model by using post-estimation diagnostics on the standardized residuals (e^ /\/hjj,) 

and (e-jj /Vhij J. The Ljung-Box (Q) statistic provides evidence of any lingering serial
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correlation in the residuals.

2.74 Hedging Applications

The application of these ARCH/GARCH models to the hedging problem was first 

done by Cecchetti, Cumby, and Figlewski (1988) who recognized that the joint distribution 

of cash and futures prices is not constant, and therefore that the hedge ratio must also vary 

over time. In a hedged portfolio, variations in the hedge ratio will change the expected return 

and variance of the portfolio, thus resulting in a risk/return firontier. The optimal futures 

hedge is the one that maximizes expected utility by setting the marginal rate o f substitution 

between risk and return equal to the slope of the risk/return firontier. This intersection point 

also corresponds to the maximum certainty equivalent return. Sub-optimal hedge ratios (and 

certainty equivalent returns) occur at other points of intersection between lesser indifference 

curves and the frontier. Within this fi-amework, the optimal futures hedge is found in a two 

step process. 1) Estimation o f the Joint distribution of retiun which is needed to construct 

a risk-retum frontier, and 2) Optimization by finding a hedge ratio that maximizes expected 

utility.

For the estimation, they first calculate the difference of realized returns from their ex- 

ante means, which are assumed to be equal to the riskless rate plus a time invariant premium. 

Then a three equation, third-order linear Autoregressive Conditional Heteroskedasticity 

(ARCH) model is estimated which yields time-varying estimates of the covariance matrix 

of returns on spot and futures. The correlation is assumed to be constant so changes in the 

covariance are due only to changes in the standard deviations. The optimization procedure 

consists of using the estimates of the covariance matrix to obtain a time series o f expected
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utility maximizing hedge ratios for a logarithmic investor:

” “ //log[l +/î,(r)-A(r)i?/0] ' f,{R,,R^dRdR^
V .

where h(t) is the hedge ratio, R, and /^are the returns on spot and futures, and is the

bivariate normal density with covariance matrix determined by the ARCH model. The 

integral is solved by numerical methods and yields the optimal hedge ratio which is used to 

determine a value for maximum expected utility and ultimately the certainty-equivalent 

return. The ex-ante hedging effectiveness for the Cecchetti, Cumby, and Figlewski (1988) 

model is measured by the certainty equivalent return.

Whereas Cecchetti, Cumby, and Figlewski assume constant correlation, Baillie and 

Myers (1991) extend the methodology through the use of a multivariate (GARCH) 

specification with non-constant correlation. Both a diagonal vech parameterization as well 

as a positive definite parameterization are tested. They contend that if  the expected return 

to holding futures is zero, then the minimum variance hedging rule is also generally the 

expected utility maximizing rule. This provides a hedge ratio which depends solely on the 

elements of the conditional covariance matrix of spot and futures returns, H,.

bt = h,,/h„,
where b is the hedge ratio, A,, is the conditional covariance between spot and futures, 

and All is the conditional variance of futures.^ Estimated parameters from the bivariate 

GARCH model are used as a basis for measuring hedging effectiveness. The variance of the 

return on the hedged portfolio, conditional on information available at time t-1, is given by

’The hedge ratio for the bivariate EGARCH model can be computed in the same marmer.
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where R j are the return to the spot and futures, and Q,., is the information set at time t-1.

The percentage reduction in the conditional variance of the portfolio return is first compared 

to the no-hedge outcome. Next, the variance reductions for each period are averaged to get 

a summary measure. Then the measure for the GARCH portfolio is compared to the same 

measure for a portfolio with a constant hedge ratio. This ex-ante evaluation procedure is the 

same as that chosen by Myers (1991) who looks at wealth levels instead of returns. In 

addition, Myers also supplements it with an ex-post method to measure actual wealth levels 

that would have been achieved under each hedging rule.

Another method for evaluating hedging performance was used by Kroner and Sultan 

(1993) and Park and Switzer (1995). Both studies construct the portfolios implied by the 

computed hedge ratios and then calculate the variance of returns to the portfolios over the 

sample period. They further assume an investor with a mean-variance expected utility 

function of EU(x) = E(x) - yVar(x) where x is the return from the spot-futures hedged 

portfolio and y is the degree of risk aversion. Given that the expected return of the hedged 

portfolio is zero and the risk aversion is y=4, the portfolio variance under each hedging 

strategy is inserted into the equation to arrive at an average utility. In addition, the equation 

allows for analysis of reduced returns due to the introduction of transactions costs.

Another issue addressed in the literature concerns the long-run relationship between 

the two time series under consideration. To explore this question. Kroner and Sultan (1993) 

conduct cointegration analysis and propose a bivariate GARCH error-correction model.
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They assume the constant correlation parameterization, and model the first moments as

s, = «OS + a„(S,.| - 6 F,.,) + 6 «

ft = (Xof+a,A-i -0F,.,) + 6ft

where j  and/ signify spot and futures first differences, S  and F  are spot and futures prices, 

and (S,.| - 0F,.|) is the error correction term.

Empirical testing of GARCH hedging models includes Cecchetti, Cumby, and

Figlewski (1988) who were among the first to utilize an ARCH model to estimate time-

varying estimates o f the covariance matrix o f returns on cash and futures. A time series of 

expected utility maximizing one-month hedge ratios are constructed for 20-year Treasury 

bonds with results showing that over both in-sample and post-sample periods, investors with 

log utility would prefer the utility maximizing hedge to a variance minimizing hedge by a 

certainty equivalent return of, on average, 2 0  basis points.

Baillie and Myers (1991) estimate bivariate GARCH models for cash and futures 

prices in six commodity markets. In-sample results show that the GARCH hedging model 

performs better than a constant hedge ratio but there are marked differences from commodity 

to commodity. Out-of-sample results, however, show the GARCH model to be significantly 

better than constant optimal hedge ratios for almost every commodity.

Myers (1991) compares a bivariate GARCH model to both a constant conditional 

covariance and a moving sample variances and covariances model in constructing optimal 

hedge ratios for wheat storage hedging and finds the GARCH model to be only marginally 

better.

Park and Switzer (1995) study the economic viability of the bivariate GARCH
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hedging method in the presence of transactions costs using stock index futures. Through the 

use of a dynamic hedging strategy, investors rebalance their hedges only if  potential utility 

gains offset losses due to transaction costs. Results show that investors prefer the Bivariate 

GARCH method over three other strategies, 1) Naive, 2) Ordinary Least Squares, and 3) 

Ordinary Least Squares with Co integration between spot and futures.

Kroner and Sultan (1993) use a bivariate error correction model with a GARCH error 

structure on five foreign currencies and compare it to a constant naive hedge, a constant 

conventional hedge, and a constant hedge from an error correction model. Within-sample 

results show variance improvement in all currencies with the conditional hedge, ranging 

from 2.5 percent over the conventional hedge to 6  percent over the naive hedge. For out-of- 

sample testing, the conditional hedge again outperforms all other hedges except in the case 

of the British Pound conventional hedge, where it shows no improvement. Investor utility 

analysis which incorporates transactions costs shows the conditional hedge to be superior in 

all cases.

2.8 Comparison of the Risk Minimization Model and the GARCH Model

Comparing the optimal hedge ratio computed with the risk minimization model to 

the optimal hedge ratio computed with the GARCH model reveals a great deal of similarity, 

b* = Os/Of- Risk Minimization

b*, = h ii/h i;, GARCH

Both can be described as the covariance between spot and futures divided by the variance of 

futures. The difference lies in what kind of variance is used. In the first case, the variances 

are unconditional and constant through time. In the second case, the subscript indicates that
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the variances are conditional on the information available at time t. Recalling the 

explanation by Engle (1993), the conditional variance can be thought of as one o f the 

components that goes into making up the total unconditional variance.

Kroner and Sultan (1993) provide an excellent explanation of the difference between 

these two models. First assume that the investor owns one unit o f  the spot asset and -b units 

of the futures contract. Then the total change in value of the portfolio can be represented as

X =  s - b f

where s equals the change in spot price from time period 0 to time period 1, s = (S, - Sq), and 

f  equals the change in the futures price from time period 0 to time period 1, f = (F, - Fq). 

Next assume that the investor has an expected utility function,

EU(x) = E(x) - yVar(x) 

where y equals the degree of risk aversion. The investor then maximizes his expected utility 

with respect to b

Max {E(s) - bE(f) - y [o / + b- Of - 2bO;j} 

which gives the optimal number of futures contracts in the portfolio.

b ---------------
I'io)

If we assume that E(F,) = Fq, then the equation reduces to
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If the joint distribution of spot and futures is constant over time, then b, = b, =... = bj and 

the hedge ratio can be computed as the least squares estimator from the regression of AS, on 

AF,.

Now if we assume that the distribution of spot and futures prices is time varying, then 

the total change in value of the portfolio can be represented as

x, = s,-b,.,f,.

In this example, the investor chooses the optimal one-period holding of futures at each time 

t by maximizing a slightly different utility function,

E,U(x,*i) = E, (x,*i) - ya,- (x,*,).

Now the risk is measured by conditional variances and the terms are subscripted with t to 

indicate that they are calculated based on the information available at time t. The hedge ratio 

at time t is

ZYoïc/;.,)

Again assuming that Eo(F,) = Fq, then the equation reduces to

b, =—  --------

which differs from the previous representation in that the time-varying conditional moments 

have replaced the time-invariant unconditional moments so that the risk-minimizing hedge 

ratio will change through time as new information arrives in the market. If the joint
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distribution of spot and futures is constant through time, then the conditional model reduces 

to the unconditional model. In both cases, the utility maximizing hedge ratio equals the risk 

minimizing hedge ratio if the futures are assumed to follow a martingale process (i.e., Eo(F,) 

= Fg). This simplifying assumption eliminates the requirement o f knowing the investor’s 

utility function.
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CHAPTER 3: HEDGING OPTIONS ON FUTURES WITH FUTURES

3.1 Data Description, Sample Statistics, and Univariate GARCH Testing

Daily prices of futures and options on futures for the Eurodollar contract are sampled 

for the period of January 2, 1990 through November 30, 1994. There are four delivery 

months for both the futures and options, March, June, September, and December, and the last 

trading day for both is the second London bank business day before the third Wednesday of 

the contract month. The futures price is quoted as 100 minus the annualized futures interest 

rate (three-month LIBOR). The trading unit for the Eurodollar futures and options contracts 

is a Eurodollar time deposit with a principal value of $1,000,000 and a three-month maturity. 

The minimum fluctuation is 1 point (.01) which is equal to $25 per contract.

For the option on futures, a two-step process is used to choose one strike price for 

each contract month. First, the closing futures price is checked on each contract switching 

date, for example, the June futures price on the day following expiration of the March 

contract. Second, several strikes around that price are sampled. Since some strike prices are 

traded more frequently than others depending on the movement in the underlying futures, the 

objective here is to find the most liquid contract.

The sample of prices starts with the March 90 contract on January 2, 1990 and 

continues until its expiration in March. Then the June 90 contract is used through its 

expiration, then the September 90 contract, and so on through each year until the end of the 

sample period. Every trade for the chosen strike price is sampled from the Time and Sales 

Database of the Chicago Mercantile Exchange. For the daily sample, only the last trade of 

each day is included, but since the time of the last option trade varies from day to day, the
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corresponding time is also sampled. This step is necessary so that the futures price can be 

time-matched to avoid bias due to non-synchronization. In addition, any final trade that does 

not occur exactly on the hour is matched to the next hour. For instance, if the final trade 

occurs at 12:47, it is considered as a 1:00 price to be matched with a 1:00 futures price.

For the futures, tick-by-tick prices from the Chicago Mercantile Exchange are 

sampled on an hourly basis for the nearby contract. As with the options, the sample runs 

through the expiration date for each contract before switching to the next contract month. 

The futures prices are then merged with the options prices according to hour so that the 

appropriate time-matched price is included in the daily sample. Although this procedure 

does not result in an exact synchronization unless the option trade occurs exactly on the hour, 

it is much more accurate than a procedure that utilizes only closing futures prices.

The standard practice in much of the hedging literature is to convert the prices to 

logarithms. As explained by Hamilton (1994), then for small changes, the first difference 

o f the log is approximately the same as the percentage change:

(l-L)log(yJ =Iog(y/y,.,)

= Iog{l +[(y,-y,.,)/y,.,]}

= (y, - yi.i)/y,.i.

This follows fi-om the fact that for x close to zero, log(l + x)= x. In addition, several authors 

then multiply the log by some scale number ranging fi-om 100 to 1000. If log(yJ is 

multiplied by 100, then the changes are measured directly in units of percentage change. So 

if (1-L)[100 X log(yi)] = 1.0, then y, is 1 percent higher than y,.,.

When futures are used to hedge a spot position, the two returns are both generally of
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the same magnitude. Options, on the other hand, create a problem in the use of returns. As 

an example, the prices of the options on January 2,1990 and January 3, 1990 were 0.36 and 

0.26, while the prices o f the futures on the same two dates were 91.99 and 91.85. The return 

on options is -27.8 percent and the return on futures is -0.15 percent. In this instance, the 

options return is 185 times larger than the futures return, suggesting that 185 futures 

contracts are required to hedge one option contract. Hedge ratios of this magnitude are 

obviously impractical. To alleviate this undesirable result, daily price changes are used 

instead of returns. For the same example above, the option price change of -0.10 and the 

futures price change o f -0.14 suggests a hedge ratio of 0.71 futures contracts (-0.10/-0.14) 

to one option contract.

Another advantage to using price changes versus returns relates to the empirical 

evidence of an inverse relationship between the level of prices and the rate o f return 

variance.* It is recognized that as the expiration date of the option approaches, option prices 

tend to be very small, implying a possible bias due to high volatility. For example, if the 

price change of an option is + 1 / 8  and the beginning price is 1 /8 , then the return is + 1 0 0  

percent whereas a beginning price of 20 equates to a return of only +0.625 percent. The use 

of price changes alleviates the problem because a one tick increase on an option with a price 

close to zero is the same to the option market maker as a one tick increase for an option with 

a price far greater than zero. When using returns, the standard solution to the bias created by

Cox and Ross (1976) develop the Constant Elasticity of Variance (CEV) model for 
pricing options where the standard deviation of the return distribution moves inversely 
with the level of the stock price, thus incorporating the effects of operating and/or 
financial leverage.
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increased volatility is to roll to the next contract at one to two weeks prior to expiration. 

However, this method fails to address the fact that the market maker must continue to trade 

in the expiring option up to and including the day of expiration. The use of price changes 

rather than returns is therefore supported in this framework.

Another issue of importance is that on the day of the contract rollover, the computed 

price changes are meaningless. So to avoid the elimination of these 20 days from the sample, 

two prices are included on each expiration date, one for the expiring contract and one for the 

new contract. For example, if the March contract expires on March 19, the June contract is 

also sampled on March 19. Then on March 20, the price change is calculated for the June 

contract using the June contract prices from March 20 and March 19.

Since the 0PM delta hedging model requires the input of a risk-free asset, the 90-day 

spot T-bill is chosen. The hourly prices are collected from the Daily Information Bulletin 

o f the Chicago Mercantile Exchange International Monetary Market. In the same procedure 

as mentioned before, these prices are also time-matched to the futures and options price 

series.

Table 2 reports descriptive statistics for both the futures and option on futures of the 

nearby three-month Eurodollar contract traded on the Chicago Mercantile Exchange. There 

are 1,158 observations for both. The mean price change over the sample period is 0.0008 

for the options and 0.0047 for the futures. The futures mean is significantly different from 

zero at the 1 percent level. The variance of the option price changes is smaller than the 

futures, 0.0009 compared to 0.0028. Both the option and futures price changes show a high 

degree of both skewness and kurtosis at the 0 . 1  percent level.
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To get a better idea of what this data looks like, the raw futures prices, raw options 

prices, futures price changes, and options price changes are shown in Figures 2 through 5. 

The futures price series seems to exhibit a definite upward trend from the beginning date of 

January 2,1990 through approximately December of 1992. The options price series, on the 

other hand, appears to be stationary. Figure 4 shows the futures price changes, and the 

positive drift is no longer evident. The options price changes in Figure 5 also seem to exhibit 

a stationary pattern.

Several other diagnostic tests are run on the Eurodollar futures and options series, 

starting with the unit root test which is run on the raw price series. The results are shown in 

Table 2. The Phillips and Perron test statistics are -78.3810 and -1.8383 for the options and 

futures respectively. These numbers indicate that a unit root exists in the futures but not the 

options, which is not too surprising given the evidence from Figures 2 and 3. Since the raw 

price series are integrated of different orders, the series are drifting apart over time, and this 

deems the cointegration test unnecessary. Although the prices of futures and options are 

certainly related, two arguments against cointegration are suggested.

The first is due to the deterioration of time value over the life of the option. In the 

case where the futures price trends upward over time, the upward movement in the options 

price is partially offset by the decrease in time value. In the case where the futures price 

trends downward over time, the downward movement in the options price is magnified by 

the decrease in time value. The second concerns that portion of the option price derived from 

the volatility parameter. For example, suppose a call option is purchased when the volatility 

level is at 15 percent. If the price of the underlying asset falls, the value of the call option
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should decrease. However, if the implied volatility increases to 30 percent at the same time 

as the fall of the imderlying asset’s price, then the value of the option could actually increase.

To test for serial correlation, the Ljung-Box Q statistic for 24 lags is

/i24 T-J

where T is the number of observations, j  is the number of lags, and p is the correlation. 

Under a null hypothesis of no serial correlation, Q is asymptotically distributed as a 

With a test statistic of 48.7106 and 26.6925 for the options and futures respectively, the 

LJimg-Box test shows evidence of serial correlation in the options market but not in the 

futures market.

Table 2 also displays the Engle tests for ARCH effects at 1,3,5, and 10 orders. The 

options show significance in each case, however, the futures exhibit ARCH effects only at 

the 5th and 10th orders. These Engle test results suggest that prior to computing hedge ratios 

within the bivariate model, further univariate testing of the futures and options time series 

is necessary to determine whether ARCH, GARCH, and EGARCH effects are prominent. 

These results are shown in Table 3.’ Since the Engle ARCH test above suggested 

significant ARCH effects of the 5th order in futures, the ARCH(5) model is estimated. For 

the options, the ARCH model coefficients are 0.0451, 0.1326, 0.1802, 0.1045, and 0.4975 

for the 5 lags. The 2nd, 3rd, 4th, and 5th lags are highly significant, but the first lag is not.

Although the results from Table 2 are computed on the entire sample period of 1,158 
observations, all subsequent results are based only on the first half of the sample. The 
change is made to be consistent with the in-sample hedging results which are also 
computed on only the first half of the sample.
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The coefficients suggest that yesterday’s errors are virtually lacking in information for the 

determination of today’s variance, but the errors from all previous days are relevant. In fact, 

the lag from day 5 is larger in magnitude than the first 4 days’ lags, with no decay evident.

For the futures, the ARCH model shows coefficients of -0.0097, -0.0376, 0.1095, 

-0.0138, and 0.1277 for the five lags. Although three of these coefficients are negative, a 

check of the variance series confirms that none of the daily variance values are negative. The 

2nd lag is significant at the 0.1 percent level, the 3rd is significant at the 5 percent level, and 

the 5th is significant at the 1 percent level. The 3rd and 5th lags are of a much greater 

magnitude than the other three lags and once again, there is no decay evident.'®

The parameters of the univariate GARCH (1,1) specification under the assumption 

o f normality are also shown in Table 3. The GARCH model for options shows all of the 

parameters to be highly significant. The coefficient on the lagged variance term is 0.8737 

while the coefficient of the lagged error term is 0.0800. These results seem to confirm the 

previous significant ARCH effects. For the futures, however, the GARCH model 

coefficients are all insignificant.

Turning now to the results of the EGARCH model for the Eurodollar options, these 

results are shown at the bottom of Table 3. The coefficient of the magnitude, a„ for the 

options is 0.1895 which is significant at the 0.1 percent level and the coefficient that

10
A ten lag ARCH model is also tested. For the futures, a high degree of significance is 
found for lags 2, 5, 7, and 9. Marginal significance is found for lags 3 and 10. Lags 1,4, 
6 , and 8  are insignificant. The log likelihood value is 1345. For the options, a high 
degree of significance is found for lags 3 ,4 , 5, 7, 8 , and 9. Marginal significance is 
found for lag 2, and lags 1,6 , and 10 are insignificant. The log likelihood value is 1665.
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measures the sign effect, c, has a value o f0.7777, which is also significant at the 0.1 percent 

level. Since both of these coefficients are positive, this suggests that positive price changes 

result in higher volatility than negative price changes of an equal magnitude. Although the 

“leverage effect” explanation for asymmetric volatility reactions in the equity markets does 

not apply here, the EGARCH process is indeed supported by Eurodollar options prices.

One possible explanation for EGARCH effects could be the consequence of market 

making costs which are reflected in the bid-ask spread. Jameson and Wilhelm ( 1992) note 

that the variation in spreads is related to three costs faced by the market maker: inventory 

carrying costs, asymmetric information costs, and order processing costs. George and 

Longstaff (1993) further suggest that inventory holding costs may be dominant and that these 

costs could be related to option value. If fnctions in money markets imply that market 

makers’ working capital is not perfectly liquid at zero cost, then changing the value of net 

inventory is costly and these costs would be positively related to the price of the option 

traded because higher priced options imply a greater change in the value of inventory. 

When option prices get higher, inventory carrying costs also become higher, which leads to 

a wider bid-ask spread. The wider the bid-ask spread, the higher the price volatility will be. 

George and Longstaff (1993) test this hypothesis in the S&P 100 index options market and 

find that bid-ask spreads are positively related to the option price.

The EGARCH model coefficients for futures are all insignificant with the exception 

of the constant term,ao The magnitude effect, a,, is negative at -0.0936. The coefficient that 

measures the sign effect, c, has a value of 1.3357. The combination suggests that the 

volatility tends to be higher when price changes are negative compared to positive price
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changes of an equal magnitude, although this asymmetry effect appears statistically 

insignificant.

The likelihood ratio test statistic (LR) for EGARCH vs. GARCH is 58 (=2(1699- 

1670)) for the options, which is significant at the 0.1 percent level, and it is 6  (=2(1352- 

1349)) for the futures, which is insignificant. These results suggest than an EGARCH model 

improves, relative to a GARCH model, a measure of fit substantially for the Eurodollar 

options on futures. Overall these univariate results are indicative of ARCH effects in the 

options but not in the futures. However, the bivariate relationship between options and 

futures must be addressed for the computation and evaluation o f hedge ratios.

3.2 Option Delta Neutrality

Since the option contract under consideration has a futures contract as the underlying 

instrument, the appropriate option pricing model is Black’s (1976). Although Black’s model 

is developed for European options, given the conclusions of Shastri and Tandon (1986) and 

Natenberg (1994) concerning its performance for American options, it is used here for the 

computation of hedging ratios under delta-neutrality. The hedge ratio is determined as 

e'T^(d) as shown in Section 2 above. It should be noted here that the hedge ratio computed 

with the Black 0PM  is only valid for small futures price changes. This fact provides 

additional support for the use of daily prices versus the weekly prices used in numerous prior 

hedging studies. It is naturally assumed that daily price changes would be small compared 

to weekly price changes.

Black’s 0PM requires an estimate of volatility, and the question arises as to which 

measure to use. Myers and Hanson (1993) suggest a moving sample variance of past price
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changes over the most recent 30 days, while Hancock and Weise (1994) use the variance of 

daily returns over the previous contract period. For this study, the volatility is estimated 

from the previous 30 days of futures prices for the relevant contract month. The use of 30 

trading days equates to approximately six weeks of price observations which should be 

representative of both low and high volatility days. The idea here is to capture the high 

volatility days generated by the monthly release of government reports such as employment, 

the consumer price index, etc." In order to compute a call delta on the first day of the 

option sample of January 2,1990, it is necessary to have the previous 30 daily prices for the 

underlying futures contract. To accommodate this requirement and avoid the loss of the first 

30 call deltas in January, the daily prices for futures contracts are sampled for the last 30 

days of 1989. In this manner, the sample size is maintained at 1,158 observations.

While the other models lend themselves to the use of all future data points (perfect 

foresight) to construct a hedge ratio on a within-sample basis, the delta neutrality model does 

not. For instance, the risk minimization model assumes perfect foresight and utilizes every 

data point over the sample period within a regression estimation to compute a constant hedge 

ratio, and the GARCH models employ every observation in the estimation of coefficients for 

the lagged error and variance terms. The options delta neutrality model, on the other hand.

Since the hedge ratio is being extracted from the 0PM  for hedging effectiveness 
comparisons, it is important that the input variables used result in an accurate option 
price. When the option prices are computed through the Black (1973) 0PM using 30 
days of historical prices for the volatility of the Eurodollar, the mean option price is 
0.166247 and the variance is 0.017516 for the 1/2/90-11/30/94 period. The mean of the 
actual option prices is 0.156588 with a variance of 0.018587. These values are quite 
close and provide confidence for the chosen volatility measure.
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uses only single known data points at each moment in time along with a volatility estimate 

computed from strictly historical information. This difference in information utilization on 

a within-sample basis has the potential to diminish the perceived effectiveness of the 0PM  

when compared to other models.

Since a change in any of the inputs to the Black model results in a change to delta, 

the hedged position must be readjusted to maintain a neutral stance. For this analysis, the 

option/futures portfolio position is assumed to be rebalanced on a daily basis. Specifically, 

at the end of the first day, one Eurodollar call option is purchased and the appropriate number 

of futures contracts as determined by Black’s 0PM  are shorted. The position is maintained 

until the end of the next day, when the procedure is repeated. The change in the value of the 

delta neutral portfolio from day t to day t+ 1  is represented as:

LPortfolio, ,,^ - P J  -e  - f /J .

The performance of the 0PM  delta hedge can be compared to the value of an unhedged 

option position that varies over time as APqu*, = P̂ ,̂., - P^^

The sample period (1/2/90 - 11/30/94) is divided into a within-sample period (1/2/90 

- 5/15/92) and an out-of-sample period (5/16/92 - 11/30/94). During the 1/2/90-5/15/92 

period, there are a total of 577 observations of daily price changes. The variance of the 

change in the unhedged position value, APg ̂ +i, is 0.001161. If the market maker reduces 

the variance of his portfolio via the Black 0PM delta hedging strategy by updating the hedge 

ratio on a daily basis with the volatility forecast computed from the past 30 daily returns, the 

variance of the APortfblio^+, is 0.000127. The 0PM  strategy results in a 89.06 percent
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reduction in the variance o f the option price changes where the percentage is computed as 

(1 - (0.000127/0.001161)).'- This result achieves the market makers’ goal of minimizing 

the risk of the option portfolio due to the futures price movement while preserving their bid- 

ask spread income.

3.3 Naive Hedge

The traditional approach for the naive model suggests that a spot position should be 

exactly offset by a futures position which results in a hedge ratio of one. The assumption is 

that price movements in the spot and futures position will be approximately equal. When 

the switch is made to an options framework, however, these assumptions are no longer valid. 

The relationship between the price of the option and the price of the underlying futures 

contract depends upon the extent to which the option is in- or out-of-the money. For an 

option that is deep in-the-money, the correspondence between the price o f the option and the 

price of the futures contract will be close to one. When the option is at-the-money, the 

option price move will be approximately half of the futures price move, and when the option 

is deep out-of-the money, the option price move may be close to zero.

A naive hedge ratio o f one would make sense only if the options in the portfolio are 

deep-in-the-money. Since the sample of options used for this study include in-the-money, 

out-of-the-money, and a preponderance of at-the-money cases, the hedge ratio chosen for the 

naive strategy is 0.50.

To measure the performance of the naive hedging strategy, a portfolio is formed by 

purchasing one call option and selling 0.50 futures contracts. The variance of the daily

'-The out-of-sample results are shown in Section 3.7.
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portfolio value change over the 1/2/90-5/15/92 within-sample period is 0.000376. This 

compares to the variance o f  the unhedged option position change of 0.001161 for a variance 

reduction o f 67.61 percent (I - 0.00376/0.001161).

3.4 Risk Minimization

The regression format for the option/futures portfolio is

where the error term is modeled as e,= a,e,., + a  , 6 + Op e,.p + . Results of the

minimum risk strategy on a within-sample basis over daily observations from 1/2/90-5/15/92 

are shown in Table 4. The Durbin Watson statistic at 1.8643 is insignificant, implying that 

there is no sign of autoregressive disturbances. The hedge ratio, p, is -0.4824 and is 

significant at the 0.1 percent level. This implies that 0.4824 contracts of the Eurodollar 

futures needs to be shorted for a long position of 1 call option to minimize the variance of 

the hedged position value change. Since the hedge ratio is considerably less than one, this 

indicates that the Eurodollar futures contract is more volatile than the Eurodollar option 

contract. The measure o f hedging effectiveness, R- at 0.6726, shows that there is a 

substantial 67.26 percent reduction in the variance of option price changes achieved with the 

futures hedge. That is, a portfolio of 1 call option (long) and 0.4824 contracts of the futures 

(short) should lead to a reduction of 67.26 percent in the variance of the portfolio value 

change. When keeping track of the actual portfolio value changes for the 1/2/90-5/15/92 

period, the variance is 0.000376 which implies a 67.61 percent variance reduction from the 

unhedged position (1-0.000376/0.001161). This is consistent with the regression result,
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where the discrepancy between 67.26 percent and 67.61 percent is due to rounding.

3.5 Bivariate GARCH

The GARCH model used for this study is the non-constant correlation 

parameterization used by Baillie and Myers (1991) and Lien and Luo (1994), where the price 

changes, R |, and R,., on options and futures are modeled as

Ri.t = Hi +

R]., = Hz 

e # , r N ( 0 ,H J

where e, is a (2x1) vector of residuals, is the information set at time t-1. and H, is a (2x2) 

conditional variance-covariance matrix of residuals. The within-sample results o f this model 

for 1/2/90-5/15/92 are shown in Table 5, where the coefficients are estimated using the 

Bemdt, Hall, Hall, and Hausman (BHHH) algorithm. The intercept terms for the options 

and futures price changes are 0.0019 and 0.0066 with only the futures showing significance 

at the 5.0 percent level. The constant term for the options variance, C,, is 0.0005, the 

constant term for futures variance, C3 , is 0.0008, and the constant term for the covariance, 

C2, is 0.0007. All of these terms are significant at the 0.1 percent level. One point of interest 

here is that the unconditional covariance and variance of the futures can be constructed as 

Ci/(1 -A2 2-B22) = 0.00163944 and C 3 /(I-A 33 -B3 3 ) = 0.00345153, respectively.'^ The 

unconditional hedge ratio is therefore 0.00163944/0.00345153 = 0.47498997 which is very 

close to the hedge ratio o f 0.4824 computed with the risk minimization model.

13

This holds if A,j + Bjj < 1. See The Econometric Modeling o f  Financial Time Series 
(1993) by Terence C. Mills, page 103.
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The coefBcients for the lagged error terms, A,„ A??, and A33 are 0.1000, 0.0742, and 

0.0430. All are significant at the 0.1 percent level. The coefficients for the lagged variance 

terms, B,,, B2 2 , and B33 are 0.4857,0.4708, and 0.7348. These are also significant at the O.I 

percent level. Since the covariance coefBcients, Â  ̂and B i,, are both significant, this model 

suggests that there is a high degree of interaction between futures and options prices. Post­

estimation diagnostics of the standardized residuals consist o f the Ljung-Box Q(24) statistics 

for up to 24th order serial correlation in the first moments and the Ljung-Box Q‘(24) 

statistics for serial correlation in the second moments. All are insignificant suggesting that 

there is no evidence of lingering serial correlation in either the first or second moments. 

Overall, the bivariate GARCH model seems to provide a good fit of the options and futures 

data.

To test the hedging efiectiveness of the GARCH model, the option/futures portfolio 

is formed using the daily time-varying hedge ratio, h,2_/h3 2 t, from the variance/covariance 

matrix o f residuals. Similar to the 0PM  delta hedge, the option/futures position is updated 

and held for one day. The variance of the change in the portfolio value for the period of 

1/2/90-5/15/92 is 0.000353. The percent reduction of the variance from the unhedged option 

position is 69.63 percent (1 - 0.000353/0.001161). This reduction is less than the 89.06 

percent o f the 0PM  but more than the 67.61 percent of the risk minimization hedge. It should 

be noted, however, that the GARCH and 0PM models assume daily rebalancing of the 

option/futures portfolio with the optimal hedge ratio that changes every day, whereas the risk 

minimization hedge does not rebalance during the 1/2/90-5/15/92 period, but remains 

constant. This incomparability issue will be addressed in section 3.7.

64



3.6 Bivariate E-GARCH

The bivariate E-GARCH model uses the same mean equations as the G ARCH model, 

but with a different specification of the error structure. The estimated model under the 

assumption of constant correlation on a within-sample basis over the period o f  1/2/90- 

5/15/92 is shown in Table 6 . Neither of the means, p, and p?, &re significant but all o f the 

coefBcients of the variance equations are highly significant. The lagged variance terms for 

the options and futures, a , , and a , , are 0.9191 and 0.8362, respectively. The terms that 

measure the magnitude of past innovations, a,, and â j,, are 0.3838 and 0.3129. Since these 

coefficients are positive, the innovations in log h,, and log h 22 are positive when the 

magnitude of z, is larger than its expected value. The sign terms, a, j  and a,^, are 0.2207 and 

-0.5556 for the options and futures, respectively. For the options, both the magnitude and 

sign effect terms are positive which suggests that negative price changes do not increase 

volatility. For the futures, the magnitude term is positive while the sign term is negative. 

In the bivariate framework, this measure of asymmetry suggests that the futures exhibit a 

larger degree of volatility when price changes are negative. The correlation coefficient is 

0.8827 and is significant at the 0.1 percent level. Tests of the residuals, Ljung-Box Q(24) and 

Q^(24) are insignificant for the first and second moments in both the futures and options. 

Based on these residual tests, the EGARCH model also appears to provide a good fit of the 

data.

The results of the bivariate EGARCH model under the assumption of non-constant 

correlation on a within sample basis are shown in Table 7. This model does not appear to 

provide as good a fit as the constant correlation model shown above, as evidenced by the
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Ljung-Box Q statistic for the residuals on the options. Both of the means are significant at 

0.0081 and 0.0160. The lagged variance terms for the options and futures, b,, and bjj, are 

0.8534 and 0.9973 and both are significant at the 0.1 percent level. The magnitude 

coefficients for the options and futures, c,, and 9 ,3 , are 0.1405 and 0.0588. The first is 

significant at the 5.0 percent level and the second at the 0. 1  percent level. The sign effect for 

the options and futures are 0.0985 and 0.1309, neither of which is significant. Since both the 

futures and options have positive magnitude and sign effects, negative price changes do not 

tend to cause increased volatility in this framework.

Turning now to the covariance, the lagged covariance term, b^i, is 0.9598, the 

magnitude coefficient, Cn, is 0.2963, and the sign effect, dji, is -0.8707. All three of these 

are significant at the 0 . 1  percent level which indicates a high degree of interaction between 

the futures and options. The magnitude and sign effect require a different interpretation than 

before, however, since the covariance term reflects the interaction between the markets. The 

relevant portion of the equation is shown below.

In this case, a negative numerator value occurs when the error terms for the options and 

futures are o f different signs indicating that prices have changed in opposite directions. Now 

the positive magnitude coefficient and negative sign coefficient suggest that volatility is 

higher when this opposite price change pattern exists.'"' As mentioned previously, this model

14

Referring to Table 1, this situation occurs when a, is positive, (J) is negative, and z,., is 
negative.
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does not seem to be as effective as the constant correlation EGARCH model shown above.

The hedging effectiveness of the bivariate EGARCH models can be assessed in the 

same manner as the bivariate G ARCH model. The optimal hedge ratio is available on a daily 

basis and the option/fiitures position is updated at the end of everyday with a holding period 

of 1 day. Over the period of 1/2/90-5/15/92, the variance o f the unhedged option position 

can be reduced by 79.67 percent (1-0.000236/0.001161) with the constant correlation 

EGARCH model, and a less impressive 67.36 percent reduction (1-0.000379/0.001161) with 

the nonconstant correlation EGARCH model. These compare to the variance reduction with 

the G ARCH model of 69.63 percent.

3.7 Out-of-Sample Hedging Effectiveness

A variety of methods have been utilized in previous research to compare alternative 

hedging strategies. Hancock and Weise (1994) construct difference t tests to determine if 

significant differences exist between the risk free rate and the returns on their hedged 

portfolios. They also test for differences in returns from one hedged portfolio to the next. 

Their analysis considers only returns and not risk. On the other hand, most of the G ARCH 

hedging literature considers only the reduction in variance as a measure of hedging 

performance. Baillie and Myers (1991) argue that the minimum variance objective is 

consistent with expected utility maximization provided that the expected return to holding 

futures is zero.

The previous sections have examined six hedging strategies, the Black 0PM delta 

hedge, the naive hedge, the risk minimization hedge, the bivariate G ARCH hedge, the 

bivariate EGARCH constant correlation hedge, and the bivariate EGARCH non-constant
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correlation hedge. The results are on a within-sample basis over the period of 1/2/90-5/15/92 

and the computations of hedge ratios utilize all of the prices as if they were known in 

advance. The optimal hedge ratio is updated at the end of every day for the 0PM  delta and 

bivariate G ARCH and EGARCH hedges,’* while the risk minimization model uses a 

constant hedge ratio during the within-sample period. The hedging effectiveness is measured 

by the percent reduction in the variance of the unhedged option position. This method is 

assumed to be the most appropriate since the option market maker’s objective is to generate 

profits from the bid/ask spread and not the returns generated from market moves. The goal 

is to keep the change in the portfolio value to a minimum. Daily hedging is assumed and the 

result of using the hedge is computed as (P„prio„.,., - PopuoJ - - Pfumrcs.t) where b,’is

the computed hedge ratio from each hedging method. For the Eurodollar, this results in a 

net position on a tick basis. The results are summarized in Panel A of Table 8 .

The mean of the daily net tick position for the unhedged call option for the sample 

period of 1/2/90-5/15/92 is 0.002662. The other means on a decreasing basis are. Black 

0PM  at -0.000425, EGARCH non-constant correlation at -0.000665, EGARCH constant 

correlation at -0.000749, G ARCH at -0.000888, risk minimization at -0.001158, and the 

naive hedge at -0.001297.

As explained above, the hedging effectiveness is measured by the percent reduction 

in the variance of the unhedged option position. If one call option is purchased with no

15

Since daily hedge ratios can be extracted from the G ARCH and EGARCH models on a 
within-sample basis, hedges are updated daily to be consistent with the 0PM model. In 
out-of-sample testing, weekly hedge ratio updates are employed for the G ARCH, 
EGARCH, and 0PM models.
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hedge, the variance of the option price changes for the sample period is 0.001161. The risk 

of the hedged position is substantially lower with the various strategies; in descending order,

89.06 percent by the 0PM delta hedge, 79.67 percent by the constant correlation bivariate 

EGARCH hedge, 69.63 percent by the bivariate GARCH hedge, 67.61 percent by the risk- 

minimization hedge, 67.53 percent by the naive hedge, and 67.36 percent by the nonconstant 

correlation bivariate EGARCH hedge.

These results are comparable to the spot/futures hedging results reported by Baillie 

and Myers (1991) and Kroner and Sultan (1993) who found that GARCH model hedges 

perform better than constant hedge ratio models with respect to reducing the variance of 

portfolio returns. The superior performance of the EGARCH-constant correlation model 

looks promising for extensions to spot/futures portfolios and cross hedging portfolios.

Although these results may be interesting in their own right, the true test is in the 

comparison of these models within a more realistic framework, namely on an out-of-sample 

basis. The hedger utilizes all information available at one point in time to compute a hedge 

ratio that will hopefully remain appropriate for future price movement. Ideally, the market 

markers should update the hedge ratio whenever new information arrives in the market, but 

the continuous updating requires prohibitively high transaction costs. The optimal frequency 

of the option/futures portfolio rebalancing should depend on the bid-ask spread and the cost 

of hedging, including the transaction costs involved in buying and selling the futures 

contracts. In this paper, the market maker is assumed to update the hedge ratio on a weekly 

basis.

As explained in section 1.3, the out-of-sample tests of hedging effectiveness use daily
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price changes for the computation of the parameter estimates. The hedge ratio is initially 

computed for the first half (1/2/90-5/15/92) of the entire sample. The hedge ratio is then 

used to form a portfolio of I call option and the optimal number of futures (short). The 

hedged position is kept in place for one day, at which time the position is liquidated and a 

new hedge is placed using the same hedge ratio as the previous day. This process continues 

on a daily basis, using the same hedge ratio for a period of one week (five days). After one 

week’s time, a new hedge ratio is computed utilizing a new moving window of information 

(1/9/90-5/22/92) that picks up the latest week of daily prices and removes the initial week 

of prices.'® In this manner, each computation is based on the same number o f days of daily 

price information. The hedge ratio is computed on the same day of each week except in 

those cases where the market is closed on that particular day. In that case, the hedge ratio 

is computed on the prior day, resulting in only 4 days of new price information. The next 

week once again reverts back, resulting in 5 days of new price information. The same 

number of trading days is maintained in both of these instances, however, whereby the first 

4 days are eliminated from the sample in the first case and the first 5 days are eliminated 

from the sample in the second case. This process results in a total of 129 hedge ratio 

computations over the sample period of 1/2/90-11/30/94.

For the within-sample testing, the hedge ratios for the 0PM, GARCH, and EGARCH 

models change on a daily basis, while the hedge ratio for the risk minimization and naive 

models remain constant. This implies that transactions costs are much greater for the time-
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The previous window of information covers the 1/2/90-5/15/92 period, while the next 
window is for the period of 1/9/90-5/22/92.
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varying models, and a market maker would need to factor in the additional cost when making 

comparisons of effectiveness among the alternatives. In the out-of-sample tests, each 

hedging model considered'^ is reestimated on a weekly basis for the rebalancing of the 

hedged position, i.e., the number of rebalancings is identical across the different hedging 

models. This method eliminates the problem of comparing the risk minimization and naive 

models with their constant hedge ratios to the time-varying 0PM and GARCH models. 

Furthermore, the same number o f updates means that any transaction costs involved in 

implementing the hedging strategies must be roughly of the same magnitude in the out-of- 

sample tests.

The weekly out-of-sample hedge ratios for each of the models are shown in Figure 

6 . Several points are worth noting. First, the naive hedge ratio of 0.50 provides a very good 

point of reference for all of the models. The risk minimization model shows the least 

variability as it hovers quite close to the constant naive hedge ratio. The Black 0PM  appears 

to have the most variability with hedge ratios ranging from a value o f virtually zero to a 

value of one. For the most part, the GARCH and EGARCH models do a good job of 

mimicking the Black 0PM, however, they provide hedge ratios with less extreme variation. 

One exception is noted in the vicinity of September and October of 1992.

Comparisons of the hedging models on an out-of-sample basis are shown in Panel 

B of Table 8 . For all of the models, the daily change in the value of the hedged
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Since the EGARCH model with non-constant correlation is considerably inferior to the 
constant correlation model on a within-sample basis, it is eliminated from the analysis on 
an out-of-sample basis.
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option/ftitures position has been traced with the optimal hedge ratio being updated weekly 

for the out-of-sample period which covers from 5/18/92 through 11/30/94.

The mean of the net tick position for the unhedged call option is -0.001080. The 

means o f the hedged portfolios in descending order are the Black 0PM  at -0.000610, 

GARCH a t -0.000820, constant correlation EGARCH a t-0.001060, risk minimization at 

-0.001700, and the naive hedge at -0.001550.

The variance of the unhedged option position during the period is 0.000707. The 

overall results show that the 0PM  delta hedge is the most effective strategy for market 

makers in the Eurodollar options on futures market. The 0PM  delta hedge reduces the 

variance of the unhedged position by 71.29 percent (1 - 0.000203/0.000707) even on an out- 

of-sample basis. Both the GARCH and EGARCH models, which incorporate time-varying 

volatility, perform better than the risk minimization and naive hedging models which assume 

constant volatility. Nevertheless, the risk minimization model still reduces the risk 

substantially at 60.11 percent. The bivariate EGARCH model outperforms the bivariate 

GARCH model, 65.77 percent versus 63.65 percent, probably due to its ability to control for 

an asymmetric response of volatility to new information. Although the option market 

makers in this framework can stick to their most popular OPM delta strategies, the 

outstanding performance of the most up-to-date bivariate EGARCH (65.77 percent versus 

71.29 percent) warrants further investigation and extension of its application to spot/futures 

portfolios and cross hedging portfolios.

3.8 Conclusions

This investigation differs from prior studies in many respects. First, hedging

72



strategies that have been used extensively in the spot/futures markets (i.e. risk m in im iza tion , 

risk/return optimization, and GARCH) are analyzed for the first time in the options/futures 

markets. Second, this is the first extensive hedging study applied to the Eurodollar market. 

Third, daily data is used rather than weekly data. Fourth, the analysis utilizes price changes 

whereas many previous studies have used returns. Fifth, the bivariate EGARCH model is 

applied for the first time to the hedging problem.

In the initial stage of this analysis, the price behavior o f the futures and options is 

examined to detect any possible long-run relationship between the two. The options price 

structure is stationary in nature. This pattern can be explained by the fact that the option 

price is a positive function of the time to maturity for the contract; therefore, as maturity 

approaches, the time value erodes. The pattern is most evident for an option that is out-of- 

the-money where the price gradually approaches zero. On the other hand, the futures prices 

exhibit a non-stationary pattern, precluding a cointegrating relationship between futures and 

options. Further study of the pattern of daily price changes in these two contracts reveals 

another difference in that the options exhibit significant ARCH effects while these same 

effects are only marginally detected in the futures contract. In a bivariate fi-amework, 

significant GARCH and EGARCH effects are detected in well-fitting models. The strong 

ARCH, GARCH, and EGARCH behavior in the options is probably the driving force behind 

the bivariate results.

Application of the hedging models on a within-sample and out-of-sample basis 

reinforce previous studies’ findings that time-varying hedge ratios are superior to constant 

hedge ratios. A graph of the weekly hedge ratios reveals that the GARCH models follow a
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pattern that is quite similar to the Black OPM. The similarity may be explained by the fact 

that both of these methodologies rely on time-varying variances. The differences may be 

explained by the fact that one utilizes conditional variances while the other utilizes 

unconditional variances. Another possible explanation is that the Black OPM is contract 

specific and the hedge ratio reflects the additional information in terms o f various option 

parameters.

While the Black OPM delta hedging strategy is somewhat challenged by the 

EGARCH model, it is still the most effective based on both within- and out-of-sample 

results. However, the superiority of the newly attempted bivariate EGARCH model over the 

bivariate GARCH model as well as the risk minimization model looks promising for 

extension to spot/futures portfolios and other derivatives markets.
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CHAPTER 4: HEDGING A SPOT POSITION WITH FUTURES

4.1 Cross Hedging - Considerations and Empirical Evidence

In this extension, it is assumed that an investor holds a spot position in Treasury bills 

and wishes to hedge his/her exposure through the use of a Eurodollar futures contract. This 

scenario therefore moves into the realm of cross-hedging. In general, a cross-hedge occurs 

when the cash market instrument differs from the underlying deliverable item for the futures 

contract. According to Chance (1991), a hedger must choose a contract with a high level of 

liquidity so that the contract can be closed easily. Obviously, the contract chosen should also 

have a high correlation with the commodity being hedged. Kawaller and Koch ( 1992) relate 

that a hedger wishing to hedge the risk of a short-term interest rate exposure could use either 

a three-month T-bill or a three-month Eurodollar futures contract since both satisfy the 

correlation requirements imposed by accoimting regulators.'* That being the case, the 

Eurodollar may be a better choice for hedging because of its higher level of liquidity. As 

an example, on November 15,1996, the total open interest in the December T-bill was 2,870 

contracts while the open interest in the December Eurodollar was 439,867 contracts. The 

total one-day voltune of trading in all T-bill contracts was 317 compared to 371,418 

contracts for the Eurodollar. A representative of the marketing department of the Chicago

IS

Statements of Financial Accounting Standards (SPAS) No. 80 specifies that cross­
hedging is permitted if  there is a clear economic relationship between the item underlying 
the future and the item being hedged, and if  high correlation is probable. According to 
Her and Tanker (1996), regression analysis is the most commonly used method to 
measure expected future correlation. An R- of 0.80 is generally considered to meet the 
test of high correlation. The from a regression of T-bill spot yields on Eurodollar 
futures yields is 0.9984 over the sample period of 1/2/90 through 12/31/94.
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Mercantile Exchange relates that hedging T-bill portfolios with Eurodollar futures is a 

common practice, although volume statistics are unavailable that would isolate hedging 

activity from TED spread activity.” Further confirmation o f T-bill/Eurodollar cross-hedging 

is provided by an officer of Harris Trust and Savings of Chicago'® who says that Eurodollar 

futures have two advantages; first, contract expirations extend out much further, and second, 

the contracts are highly liquid. He relates that traders recognize that some basis risk is 

assumed due to the use of Eurodollar futures rather than T-bill futures against the T-bill spot 

position, but if the basis risk becomes uncomfortable, it can be hedged with a TED spread.

Schwarz, Hill, and Schneeweis (1986) suggest that the London Interbank Offer Rate 

(LIBOR) is very similar to the prime rate in the United States and that Eurodollar borrowing 

can be done at rates competitive with U.S. short-term loan rates. However, Eurodollar 

deposit accounts tend to earn higher interest rates than those available in the U.S. bank 

Certificate of Deposit (CD) market due to such factors as liquidity, international crises, and 

other risk premium considerations. In addition, the spread between T-bill and Eurodollar 

deposit rates are related to the general level of short-term T-bill rates and to the value of the 

dollar. When interest rates are high, the LIBOR rate increases relative to the Treasury bill 

rate.

19

The TED spread is defined as (T-bill futures price - Eurodollar futures price) where both 
contracts have the same expiration month. The TED spread is believed to represent a risk 
premium which depends on the stability o f the world’s financial system. Trading the 
TED spread allows an investor to speculate on general economic conditions and the 
soundness of banks.

•®Tom Dickinson, Vice President, Treasurer’s Department, Fixed Income Portfolios.
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Empirical studies within the cross-hedging realm have explored many markets, 

however, the risk minimization model is used most prevalently with no extensions to 

GARCH frameworks. Hill and Schneeweis (1984) test the effectiveness o f hedging a spot 

position in corporate bonds with a position in GNMA or U.S. Treasury bond futures. In most 

cases, the use of interest rate futures reduces the variability of spot price changes by over 50 

percent. Figlewski (1984) uses an S&P 500 futures contract to hedge the underlying 

portfolios o f the S&P 500 index, the New York Stock Exchange composite, the American 

Stock Exchange composite, the National Association of Securities Dealers Automated 

Quotation System (NASDAQ) index of over-the-counter stocks, and the Dow Jones 

Industrials index. Figlewski reports mean returns and standard deviations for the unhedged 

and hedged portfolios. A further computation of hedging effectiveness based on the 

measure. I - (variance of the hedged position / variance of the unhedged position), shows a 

variance reduction of 94 percent for the S&P 500 index, 93 percent for the NYSE composite, 

65 percent for the AMEX composite, 62 percent for the OTC index, and 91 percent for the 

Dow index. Park, Lee, and Lee (1987) test the effectiveness of German mark futures 

contracts to hedge the seven currencies o f the European Monetary System, namely the 

German mark, French franc, Belgian franc, Danish crown, Italian lira, Irish pound, and Dutch 

guilder. They explore one-week, two-week, and four-week hedges in nearby, middistant, and 

distant contracts and find percentage reductions in variability in the spot position ranging 

from 5 percent to 94 percent. Saunders and Sienkiewicz (1988) cross-hedge nine individual 

currencies with the European Currency Unit (ECU) futures contract for three holding period 

lengths. The daily holding period results show hedging effectiveness ranging from 30.99
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percent to 74.96 percent. The effectiveness measure for each individual currency increases 

for the one-week holding period and increases further still for the two-week holding period.

4.2 Data Description, Sample Statistics, and Univariate GARCH Testing

New York money market interest rates are collected from the Daily Information 

Bulletin of the International Monetary Market of the Chicago Mercantile Exchange. The 

bulletin quotes T-bill yields based on bank discount rates. The bank discount rate is the 

interest rate used by market participants when they buy and sell bills and the IMM obtains 

the data from Telerate Corp. of New York on a real time basis and samples them hourly. The 

rates represent the average bid quotations of a sample of primary government securities 

dealers for the bills auctioned during that specific week. To ensure that the time until 

maturity represented by the series is approximately constant, a different bill is quoted each 

week from the Tuesday open to the following Monday close.

For the Eurodollar futures, four delivery months exist, March, June, September, and 

December, and the last trading day for each contract is the second London bank business day 

before the third Wednesday of the contract month. Tick-by-tick prices from the Chicago 

Mercantile Exchange are sampled on an hourly basis for the nearby contract with the sample 

running through the expiration date for each contract before switching to the next contract 

month. The futures price is then subtracted from 100 to obtain the annualized futures interest 

rate (three-month Libor).

The daily 2:00 p.m. rates of the U.S. 90-day Treasury bill and the Eurodollar three- 

month Libor are sampled for the period of 1/2/90 to 12/30/94. Figure 7 displays the Libor 

versus T-bill rate over the sample period. The two interest rates appear to be closely related
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with both exhibiting a decreasing trend from approximately 5/90 through 10/92 with an 

increasing trend starting aroimd 2/94. This pattern suggests that neither time series is 

stationary and that cointegration is also likely. In addition. Figure 8  shows that the basis 

(computed as Eurodollar yield minus T-bill yield) is consistent with Schwarz, Hill, and 

Schneeweis’ (1986) statement that the Libor rate increases relative to the T-bill rate when 

interest rates are high. When the rates are lowest (from 1/92 - 2/94), the basis at contract 

expiration is approximately 0.3 but when the rates are highest (from 1/90 -12/91 and 3/94 - 

12/94), the basis at expiration ranges from 0.4 to as high as 0.6.

Table 9 reports descriptive statistics for both the T-bill spot and Eurodollar futures 

yield. There are 1,172 observations over the sample period. The unit root tests on yields 

confirm non-stationarity for both with Phillips and Perron test statistics o f -1.6810 and 

-1.4454 for the T-bill spot and Eurodollar futures respectively. First differences of the T-bill 

yield and Libor are shown in Figures 9 and 10 with both suggesting that the trends have been 

eliminated.

The Phillips Zp statistic o f -47.4932 rejects the null hypothesis of no cointegration 

between the T-bill spot and Eurodollar futures.*' This result confirms previous studies of the 

relationship between Eurodollar rates and domestic interest rates. Fung and Isberg (1992) 

find significant cointegration in daily observations of three-month maturity yields on 

Eurodollar deposits and negotiable U.S. certificate of deposit rates over a sample period of

21

The coefficient (p) of the cointegrating regression (ATB, = a  + P AED, + e j  over the 
sample period of 1/2/90 through 12/31/94 is 0.9217. In the futures markets, Tse and 
Booth (1995) obtained a P of 0.92 over a sample period of 1/2/87 - 12/31/92 and a p of 
0.97 over a period of 1/2/88 - 7/30/93.
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1981-1988. Tse and Booth (1995) use daily prices ofT-bill and Eurodollar futures from 1/87 

through 7/93 and find cointegration with the TED spread as the cointegrating vector. Fung 

and Lo (1995) find cointegration in daily prices of Eurodollar and T-bill futures contracts 

over the sample period of 1982 through 1991. Booth and Tse (1995) test daily prices of 

Eurodollar and T-Bill futures over the sample period of 3/82 through 2/94 and find evidence 

of a cointegrating vector that possesses long memory suggesting a fractionally integrated 

type process.

As shown in Table 9, the mean yield change for the T-bill is -0.0024 and -0.0047 for 

the Eurodollar, with the latter being significant at the 1.0 percent level. The variance o f the 

T-bill yield change is 0.0020 compared to 0.0028 for the Eurodollar. A high degree of 

skewness and kurtosis is evident in both markets. The Ljung-Box Q statistic for serial 

correlation of 45.1911 for the T-bill is significant at the 1.0 percent level while the test 

statistic of 32.1632 for the Eurodollar is insignificant.

Engle’s test for ARCH effects shows insignificance at orders of 1 and 3, however, 

the 5th order is significant at the 5 percent level in the T-bill and at the 1 percent level in the 

Eurodollar. The 10th order is insignificant in the T-bill and shows 5 percent significance in 

the Eurodollar. The results of further univariate testing for ARCH, GARCH, and EGARCH 

effects are shown in Table 10. The ARCH(5) model coefficients for the T-bill are 0.1635, 

0.1333,0.0723, 0.0420, and -0.0069 for the five lags. The first three lags are significant at 

the 0.1, 1.0, and 5.0 percent levels respectively. The coefficients suggest that yesterday’s 

errors contain the most information for the determination of today’s variance with an 

obvious pattern of decay from the first lag to the 5th lag. The ARCH(5) model coefficients
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for the Eurodollar are 0.0048, -0.0297, 0.0474, 0.0609, and 0.0952 for the five lags. The 

2nd, 4th, and 5th lags are significant at the 5 percent level, but the first lag is insignificant. 

The coefficients increase in absolute value from the first to the 5th lag suggesting no decay 

in information.

The coefficients of the univariate GARCH (1,1) model for the T-bill are all 

significant at the 0.1 percent level. The coefficient of the lagged variance term is 0.5130 and 

the coefficient of the lagged error term is 0.1931. For the futures, the coefficient o f the 

lagged variance term is 0.9156 which is significant at the 0.1 percent level while the 

coefficient of the lagged error term is 0.0238 which is significant at the 5.0 percent level.

The results of the EGARCH model for the T-bill indicate a high level of significance 

on all of the parameters. The magnitude coefficient, a,, is 0.2592 and the coefficient that 

measures the sign effect, c, has a value of -1.1219. This combination suggests that a positive 

price change surprise reduces volatility while a negative price change surprise increases 

volatility. This result is consistent with Brenner, Haq'es, and Kroner (1996) who find 

asymmetric volatility reactions in weekly observations of the T-bill over a sample period of 

2/9/73 to 7/6/90. Bruimer and Simon (1996) also report volatility asymmetries for excess 

returns on 10-year Treasury notes and 30-year Treasury bonds and offer the possible 

explanation that inflation volatility tends to increase as the level o f inflation increases.

The Eurodollar futures magnitude coefficient is 0.1252 and the sign effect coefficient 

is 0.3574. Neither is significant, but the positive signs of the coefficients suggest that 

positive price changes result in higher volatility than negative price changes of an equal 

magnitude. The coefficient for the lagged variance term is -0.7336 which is significant at
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the 1.0 percent level. The likelihood ratio test statistic (LR) for the EGARCH vs. GARCH 

is 24 (=2(1531-1519)) for the T-bill, which is significant at the 0.1 percent level, and is -2 

(=2(1381-1382)) for the Eurodollar futures, which is insignificant. Therefore, the EGARCH 

model improves the measure o f fit for the T-bill spot but does not improve the fit for the 

Eurodollar futures.

Overall, these results in Table 10 indicate that ARCH, GARCH, and EGARCH 

effects are highly prominent in the T-bill spot, but are only marginally suggested for the 

Eurodollar futures.

4.3 Naive Hedge

Under the assumption of a naive hedge ratio of shorting one Eurodollar futures 

contract (principal value of $1,000,000) for each T-bill portfolio of $1,000,000 held, the 

variance of the daily portfolio value change over the 1/2/90-6/19/92 within-sample period 

is 0.002417. This compares to the variance of the unhedged T-bill position change of 

0.002117, resulting in a variance increase of 14.17 percent (1 - 0.002417/0.002117) for the 

hedged portfolio.

4.4 Risk Minimization

The regression format for the T-bill spot/Eurodollar futures portfolio is 

Ys., - = «0 + P(Yf,. - Yf,.,) + a.fYy., - ôYf,.,) + e,

where the error term is modeled as e,= + oke,.? + ... + ape,.p + ti,. The error correction

term is Y, ,., - ôYf ,., where 6  has a value of 0.9217. Results of the minimum risk strategy 

over the sample period of 1/2/90 - 6/19/92 are shown in Table 11. The coefficient o f the 

error correction term is -0.0187 with a significance of 5 percent suggesting that the term
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belongs in the model. The hedge ratio is -0.4607 and is significant at the 0.1 percent level.- 

Eurodollar futures should be shorted at 0.4607 contracts per $1,000,000 in T-bill spot value. 

The Durbin-Watson statistic of 1.9420 is insignificant which indicates no evidence of 

autoregressive disturbances. The measure of hedging effectiveness, R*, is 0.3249 implying 

that a 32.49 percent reduction in the variance of T-bill spot yield changes is achieved with 

the hedge.^

4.5 Bivariate GARCH

The GARCH model used for the T-bill spot/Eurodollar futures portfolio is 

Ri.. = Hi + ai(Ys.,., - ÔYf,.,) + e,,.

R,., =  P2 +  - Ô Yf,.,) +  62,

e , i û , . , ~ N ( G , H J

where R ,, and R2 , are the spot and futures yield changes, e, is a (2x1) vector o f residuals, 

Û,., is the information set at time t-1, and H , is a (2x2) conditional variance-covariance 

matrix of residuals. Y ,̂., - ôYf,., is the error correction term. The 1/2/90-6/19/92 within- 

sample results for this model are shown in Table 12. The intercept terms for the spot and 

futures yield changes are -0.0055 and -0.0022 with the futures having significance at the 5 

percent level. The coefficients for the error correction term, a, and %, are -0.0017 and

22

The higher volatility of the Eurodollar futures which results in a hedge ratio of less than 
0.50 explains why the naive hedge with a hedge ratio of 1.0 results in a variance increase 
over the unhedged position.
23

This is a relatively small improvement compared to the reductions of 70 percent in the 
Eurodollar option/futures hedges. It is also disappointing compared to the results of 
previously mentioned cross-hedging studies.

83



0.0566 for the spot and futures. The Eurodollar coefficient is significant at the 0.1 percent 

level while the T-bill coefficient is insignificant. Tse and Booth (1995) suggest that this 

result is consistent with T-bill yields Granger-causing Eurodollar yields.

The constant term for the spot variance, C|, is 0.0007, the constant term for the 

futures variance, C3, is 0.0030, and the constant term for the covariance, C,, is 0.0013. Both 

of the variance constants are significant at the 0 . 1  percent levels while the covariance 

constant is not significant. The unconditional covariance can be constructed as CVfl-Aii- 

B2 2) = 0.00153745 while the unconditional variance of the futures is C 3 / ( 1 -A 3 3 -B 33 ) = 

0.00331286. The unconditional hedge ratio is therefore 0.00153745/0.00331286 = 

0.46408565 which is consistent with the hedge ratio of 0.4607 computed with the risk 

minimization model.

The coefficients for the lagged error terms, A,|, A î, and A3 3 , are 0.2039,0.0051, and 

0.0885. The first is significant at the 0.1 percent level, the second is insignificant and the 

third is significant at the 1.0 percent level. The coefficients for the lagged variance terms, 

B||, B2 2, and B3 3 , are 0.4697,0.1601, and 0.0199 with only the T-bill showing significance 

at the 0.1 percent level. Since the covariance coefficients, Ati and Bji, are both insignificant, 

this model suggests that there is very little interaction between T-bill spot and Eurodollar 

futures yield changes. The Ljung-Box Q(24) and Q*(24) statistics for post estimation 

diagnostics of the standardized residuals are all insignificant so no lingering serial correlation 

is detected in either the first or second moments.

The hedging effectiveness of the GARCH model is tested by forming a portfolio of 

the T-bill spot and Eurodollar futures using the daily time-varying hedge ratio, hii /hii , from
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the conditional variance-covariance matrix of residuals. The variance o f  the change in the 

portfolio value for the period of 1/2/90-6/19/92 is 0.001392. The percent reduction of the 

variance from the unhedged spot position is 32.12 percent (1-0.001392/0.002117). This is 

only marginally better than the 32.11 percent shown with the risk minimization hedge. 

Given that the GARCH model results show insignificance on three of the four coefficients 

that make up the conditional hedge ratio, these results are not too surprising. Additionally, 

the variance reduction of 32.12 percent might be considered to be quite good given the 

insignificance of the GARCH model covariance coefficients implying very little interaction 

between the T-bill spot and Eurodollar futures yield changes.

4.6 Bivariate EGARCH

The bivariate EGARCH model with error correction term and constant correlation 

is shown in Table 13. The results are on a within-sample basis over the sample period of 

1/2/90-6/19/92. The mean of the T-bill spot is -0.0056 which is significant at the 1.0 percent 

level, and the mean of the Eurodollar futures is -0.0025 which is insignificant. The 

coefficients for the error correction terms, a, and q  are 0.0042 and 0.0487. Like the 

GARCH model, the T-bill term is insignificant while the Eurodollar term is significant. All 

of the variance equation coefficients are significant at either the 1 . 0  or 0 . 1  percent levels. 

The lagged variance terms for the spot and futures, a , , and a ,, are 0.8785 and 0.9439. 

respectively. The term measuring the magnitude of past innovations in the T-bill, a ,j . is 

0.2321 and the sign effect, a,j, is -0.6398. This suggests that the T-bill exhibits a larger 

degree of volatility when yield changes are negative compared to positive yield changes of 

the same magnitude. For the futures, the magnitude term, a,j, is 0.1186 and the sign term,
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Etj, is 0.6073. Since both are positive, negative yield changes do not increase volatility. The 

correlation coefficient is 0.6203. Tests o f the residuals, Ljung-Box Q(24), in the T-bill 

suggest some lingering serial correlation in the first moment. The other tests, Q(24) and 

Q'(24) are insignificant.

The hedging effectiveness of the EGARCH constant correlation model is determined 

in the same manner as the GARCH model. The optimal hedge ratio is computed on a daily 

basis and the spot/futures position is updated at the end of everyday. The variance of the 

unhedged T-bill position can be reduced by 32.59 percent (1-0.001427/0.002117). This 

compares to a variance reduction of 32.12 percent with the GARCH model, meaning the 

EGARCH and GARCH models are virtually identical in hedging effectiveness.

The results of the bivariate EGARCH model under the assumption o f non-constant 

correlation on a within sample basis are shown in Table 14. The means of the spot and 

futures are -0.0067 and -0.0053. The first is significant at the 1.0 percent level. Once again, 

only the Eurodollar error correction term, a?, is significant at the 1.0 percent level. The 

lagged variance terms, b|, and 6 3 3 , are 0.7193 and -0.9537 and both are significant at the 0.1 

percent level. The magnitude coefficients, c,, and C3 3 , are 0.2453 and 0.0449. The T-bill 

term is significant at the 0.1 percent level while the Eurodollar term is significant at the 5.0 

percent level. The sign effects for the spot and futures are -0.5663 and 0.2235 with the first 

showing significance at the 0.1 percent level. For the T-bill, the magnitude is positive and 

the sign effect is negative which suggests that negative yield changes tend to cause increased 

volatility compared to positive yield changes of the same magnitude. However, for the 

Eurodollar, both terms are positive, so negative yield changes do not cause increased
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volatility.

The lagged covariance term, k i, is -0.7964 and is significant at the 0.1 percent level. 

The magnitude coefficient, Cii, is -0.0296 and the sign effect, dni, is -0.2159. Since both 

are negative, this suggests that volatility is higher when the error terms for the spot and 

futures are o f the same sign, however neither the magnitude nor the sign coefficient is 

significant..

The hedging effectiveness of the non-constant correlation EGARCH model reduces 

the variance of the unhedged position by 30.00 percent (1-0.001482/0.002117) which is less 

than the 32.59 percent reduction achieved with the constant correlation EGARCH model. 

4.78 Out-of-Sample Hedging Effectiveness

The within-sample hedging results discussed in the previous sections are recapped 

in Panel A of Table 15. Daily hedging is assumed and hedging effectiveness is measured as 

the percent reduction in the variance of the unhedged spot position. The mean of the daily 

net tick position for the unhedged T-bill spot for the sample period of 1/2/90-6/19/92 is 

-0.007130. The others in decreasing order are the naive hedge at 0.001323, risk 

minimization at -0.003270, EGARCH at -0.003350, GARCH at -0.003440, and EGARCH 

constant correlation at -0.003500. The percentage reductions in variance for the hedged 

portfolios in decreasing order are: EGARCH constant correlation at 32.59 percent, GARCH 

at 32.12 percent, risk minimization at 32.11 percent, and EGARCH non-constant correlation 

at 30.00 percent. The naive hedge results in a variance increase of 14.17 percent. The risk 

of an unhedged T-bill spot position can be lowered by hedging with Eurodollar futures, 

although the improvements are rather small. In view of the cointegration results and the
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obvious linkage between these two markets, these results are rather disappointing.

Moving now to out-of-sample hedging results, the hedge ratio is initially computed 

for the first half (1/2/90-6/19/92) of the entire sample, with a recomputation of hedge ratios 

on a weekly basis. Each recomputation updates the information set through a moving 

window technique whereby the latest week of yields is included and the initial week of yields 

is deleted. Daily hedging of the portfolio is assumed with the results shown in Panel B of 

Table 15.

The mean of the net tick position for the unhedged T-bill spot is 0.001767. The 

means of the hedged portfolios in descending order are the naive at 0.003354, the risk 

minimization at 0.002622, GARCH at 0.002568, and EGARCH constant correlation at 

0.002285. The variance o f the unhedged T-bill position is 0.001690. The overall results 

show that the GARCH model is the most effective hedging strategy with a variance reduction 

of 34.88 percent (1-0.001101/0.001690). The EGARCH model is the next best with a 

variance reduction of 34.03 percent (1-0.001115/0.001690) followed by the risk 

minimization model with a variance reduction of 32.96 percent (1-0.001133/0.001690). 

Unlike the within-sample results where the naive hedge results in a variance increase, now 

there is a variance reduction of 20.30 percent ( 1 -0.001347/0.001690). These results are 

consistent with other studies that have found time-varying hedge ratio models (GARCH and 

EGARCH) to provide superior performance over the constant hedge ratio models (risk 

minimization and naive). Unlike the Eurodollar option/futures hedge, however, where the 

EGARCH model was significantly better than the GARCH model, in this T-bill/Eurodollar 

cross-hedge, the two models are virtually equivalent.

88



4.8 Conclusions

The primary motivation for this study of T-bill spot/Eurodollar futures hedged 

portfolios is to test alternative hedging models within a cross-hedging framework. In light 

of the excellent hedging results provided by the EGARCH model in the Eurodollar 

options/futures portfolio, this extension is warranted. This is the first application of the 

GARCH and EGARCH time-varying hedging models to the cross-hedging problem.

The price behavior of the T-bill spot and Eurodollar futures reveals that both have a 

unit root and that cointegration is confirmed. The T-bill exhibits a high degree of ARCH, 

GARCH, and EGARCH effects while the Eurodollar has only marginal evidence of the same 

effects. An error correction representation is used to account for cointegration with evidence 

that T-bill yields Granger-cause Eurodollar yields. In the bivariate GARCH framework, 

there doesn’t appear to be much interaction between yield changes in the two markets as 

evidenced by the insignificant covariance coefficients.

On both a within-sample and out-of-sample basis, the variance reduction for the 

hedged portfolio is in the low to mid-30 percent range for all of the models. The results of 

prior studies are confirmed whereby time-varying hedge ratios are more effective than 

constant hedge ratios. The hedging performance of the EGARCH model is virtually 

equivalent to the GARCH model in within-sample and out-of-sample testing. This result is 

inconsistent with the Eurodollar option/futures result where the EGARCH was superior in 

both cases.
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CHAPTER 5: DISSERTATION SUMMARY

This study explores various hedging strategies within two different environments. 

The hedging models are first analyzed from the perspective of market makers in the 

Eurodollar options who hedge with Eurodollar futures, and the second perspective moves 

into a cross-hedging environment where T-bill spot portfolios are hedged with Eurodollar 

futures. Hedging strategies used extensively in the spot/futures markets are included-the 

naive, risk minimization, and bivariate G ARCH models. In addition, a bivariate EGARCH 

model is developed and applied to the hedging problem, which is the first attempt in the 

literature. In addition to the previously mentioned models, the study also includes Black’s 

option pricing model (0PM) delta hedge which is the most frequently adopted strategy by 

market makers. All models include both within-sample and out-of-sample results.

In the Eurodollar options/futures framework, there is no evidence o f a long-run 

cointegrating relationship. G ARCH and EGARCH effects are detected in well-fitting 

bivariate models with evidence of a great deal of interaction between the options and futures 

price changes. Tests of the hedging models confirm that time-varying hedge ratios are 

superior to constant hedge ratios, both on a within-sample and out-of-sample basis. Variance 

reductions range from 67.53 percent to 89.06 percent on a within-sample basis and from 

57.57 percent to 71.29 percent on an out-of-sample basis. Although the Black 0PM  is the 

most effective hedging strategy, the EGARCH model looks promising for extension into 

other markets.

For the cross-hedge of a T-bill spot portfolio with Eurodollar futures, an error 

correction model is used to incorporate the long-run cointegrating relationship between the
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yields in the two markets. The bivariate G ARCH model suggests that there is little 

interaction between the T-bill spot and Eurodollar futures yield changes. Consistent with 

previous studies, time-varying hedge ratios are superior to constant hedge ratios, both on a 

within-sample and out-of-sample basis. Excluding the naive hedge, variance reductions 

range from 30.00 percent to 32.59 percent on a within-sample basis and from 32.96 percent 

to 34.88 percent on an out-of-sample basis. The EGARCH model provides only a 0.57 

percent improvement over the GARCH model on a within-sample basis, making the two 

virtually equivalent. The out-of-sample results are similar with the GARCH model 

providing a 0.85 percent improvement over the EGARCH. Cross-hedging effectiveness (in 

the 30 percent range) for the T-bill spot/Eurodollar futures portfolios is less than the direct 

hedging effectiveness (in the 70 percent range) for the Eurodollar option/futures portfolios.
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Figure 1 
Hedging Window

The information window is assumed to be 10 days. The first hedge ratio is computed at the 
close of trading on day 10, denoted t. The hedge is simultaneously placed at the close of day 
t and kept in place through the end of day t+1. At the close o f day t+1, the portfolio is 
liquidated and a new hedge is placed and kept until the close of day t+2. The portfolio 
liquidation recurs on a daily basis. The hedge ratio calculated on day t is used for each day 
through day t+5. A new hedge ratio is computed at the close of trading on day t+5, utilizing 
a new 10-day window which includes prices from day t-5 through day t+5. Again, the hedge 
is simultaneously placed at the close of day t+5 and kept in place through the end of day t+6.
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Figure 2
Eurodollar Futures Prices
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Figure 3
Eurodollar Options Prices
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Figure 4
Eurodollar Futures Price Changes
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Figure 5
Eurodollar Options Price Changes
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Eurodollar Futures/Options O ut-Of-Sam ple Hedge Ratios
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Figure 7
Eurodollar Futures Y ield Versus Treasury Bill Spot Yield
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Figure 8
Treasury Bill Spot/Eurodollar Futures Basis
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Figure 9
Spot Treasury Bill Yield Changes
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Figure 10 
Eurodollar Futures Yield Changes

0.8

0.6

0.4

0.2

W)
§
U
8 - 0.2c

eu

-0.4

- 0.6

- 0.8

Date

Page 106



Table 1 
EGARCH Parameters

Conditional variance computations based on the asymmetric relation term o f  the EGARCH 
model,

h = exp{a,((j)z,., + [ Iz ,., I - E k ,  I ])}  
are shown below for positive and negative variations of the parameters. Under the condition 
of normality, E Iz ,., I is equal to (2/71)' -.

—S i— (f)

+0.02

h

+0.20 +0.80 0.85866
+0.20 +0.80 -0.02 0.85318
+0.20 -0.80 +0.02 0.85318
+0.20 -0.80 -0.02 0.85866

-0.20 +0.80 +0.02 1.16460
-0.20 +0.80 -0.02 1.17208
-0.20 -0.80 +0.02 1.17208
-0.20 -0.80 -0.02 1.16460
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Table 2 
Descriptive Statistics

Eurodollar Options on Futures and Eurodollar Futures

The options data is the daily price change for the most liquid strike price over the sample 
period of 1/2/90 to 11/30/94. The option corresponds to the nearby futures contract. The 
futures data is the daily price change for the nearby contract. Price changes on both the 
options and futures are calculated as (P,-?,.,) where P equals price. Unit root tests are based 
on both raw prices and price changes while the other tests are based on price changes only. 
The Phillips and Perron (1988) test statistic for a unit root is used with a truncation lag of 4. 
where the null hypothesis is that a unit root exists. Q(24) is the Ljung-Box test for up to 24th 
order serial correlation. ARCH(x) is the Engle (1982) LM test for ARCH effects. *, **, *** 
indicate significance at the 5.0,1.0, and 0.1 per cent levels respectively.

Options Futures

Unit Root Test on Price -78.3810*** -1.8383
Mean 0.0008 0.0047**
Variance 0.0009 0.0028
Skewness 0.5941*** 0.4837***
Kurtosis 8.0069*** 4.8076***
Q(24) 48.7106** 26.6925
ARCH(l) 9.3201** 0.8538
ARCH(3) 16.4999** 1.7323
ARCH(5) 39.1389*** 12.1764*
ARCH(IO) 40.9826*** 18.7605*
No. of observations 1158 1158
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Table 3
Univariate Conditional Heteroskedasticity Models
Eurodollar Options on Futures and Eurodollar Futures

Univariate testing of ARCH, GARCH, and EGARCH effects are shown. The tests are run 
on price changes computed as (P,-P,.|) where P, is the price on day r. The models are:

ARCH(5):
GARCH(1,1):

EGARCH(l,l):

h, = ao + a,6 %, + a^e-,.; + 3 3 6 ^ . 3  + a^e-,_, + ajE^.j 
h, = ao + a,e^.i +b,h,.|
log ht = a<j + a , ( c z , . ,  +  [  Iz ,., 1 - E Iz ,., I]) + b,log h,..

*  * *  * * * :indicate significance at the 5.0, 1.0, and 0.1 percent levels, respectively.
Options Futures

ARCH(5):
3o
a,
32
33
3 4  

3s
Log Likelihood

0.0004***
0.0451
0.1326***
0.1802***
0.1045**
0.4975***

1670

0.0029***
-0.0097
-0.0376***
0.1095*

-0.0138
0.1277**

1350

GARCH(1,1)
3o
3,
b,

Log Likelihood

0 .0001 * * *

0.0800***
0.8737***

1676

0.0027
-0.0174
0.2088

1349

EGARCH(Ll)
3o

3,
b,

c
Log Likelihood

-0.4199***
0.1895***
0.9367***
0.7777***

1699

-4.2761**
-0.0936
0.2520
1.3357

1352
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Table 4 
Minimum Risk

Eurodollar Options on Futures and Eurodollar Futures 
(Within Sample)

Minimum risk hedge ratio and hedging effectiveness for the nearby Eurodollar futures is 
shown for the period from 1/2/90 to 5/15/92. The hedge ratio is derived from the OLS 
regression of daily options price changes on futures price changes.

Po.t - Po.t-i =  a  +  P(Pct - Pf.,-i) +  6.
Hedging effectiveness is measured by the R- of the regression. N is the number of 
observations and DW is the Durbin Watson statistic. *, **, and *** denote significance 
at the 5.0, 1.0, and 0.1 percent levels respectively.

Hedge Ratio -0.4824***
R- 0.6726
N 577
DW 1.8643
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Table 5
Estimation of the Bivariate GARCH Model

Eurodollar Options on Futures and Eurodollar Futures 
(Within Sample)

The following bivariate GARCH model is estimated:
Rl.t = 1̂1 + 6 ,,
Rit = ^2 + €2,,

e.h,.,~N(0,HO

^ 1 1/ Cl

^ 12f =Cz +

^2 2 < C3

‘11

0 X,, 0

0 0 ^ 3 3

2
G i r - i

^ U - 1^ 2/ - l +

^ 21-1

0 0 

0 B,, 0

0 0 5
3 3

h

h 12/-1

h221-1

R, t and R,, are the options and futures price changes.*, **, and *** denote significance at 
the 5,1, and 0.1 percent levels, respectively. LB is the Ljung-Box statistic for 24 lags.

Conditional Mean and Variance Equations

1̂1
^2
C,
C.
C3

A||
A22

■ ^ 3 3

B„

B 3 3

0.0019
0.0066*
0.0005***
0.0007***
0.0008***
0 . 1000***
0.0742***
0.0430***
0.4857***
0.4708***
0.7348***

Log Likelihood 3358

LB (24) for (e /o j  options 
LB(24) for (e/oj^ options 
LB(24) for (e /o j  futures 
LB (24) for (e /o j-  futures

35.5694
26.4625
15.5195
13.7010
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Table 6
Estimation of the Bivariate EGARCH Model

Eurodollar Options on Futures and Eurodollar Futures 
Constant Correlation 

(Within Sample)

The following bivariate EGARCH model was estimated:

h,„=exp{a,.o +a, ,logh„.,.,+a,,( Iz ,.,., l-E Iz ,. , . ,  h-a,jZ,,.,)}
h 22t = e x p { a 2.o "*'a2. | l o g h 22. , . , + a 2̂ (  Iz?.,., 1 -E1z2.,., M-a2j Z 2, . , ) }

h,2=p(h,„h22t)"^

R ,, and R2., are options and futures price changes. For a normal distribution, E Iz  1 =  ( 2 / 7 t ) ‘'^ . 
LB is the Ljung-Box statistic for 24 lags. *, **, and *** indicate significance at the 5.0,1.0, 
and 0.1 percent levels, respectively.

Conditional Mean and Variance Equations

P i
P2
1̂,0

ai.i
au
au
2̂.0

azi
^22
a u

Log Likelihood

- 0.0001
0.0028

-0.5048***
0.9191***
0.3838***
0.2207**

-0.8745***
0.8362***
0.3129***

-0.5556***
0.8827***
3464

LB(24) for (e /o j  options 22.6269
LB(24) for (e /o j-  options 14.6761
LB(24) for ( e /o j futures 12.1389
LB(24) for (e/oj^ futures 12.0873
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Table 7
Estimation of the Bivariate EGARCH Model

Eurodollar Options on Futures and Eurodollar Futures 
Non-constant Correlation 

(Within Sample)

R-2.t = P2 + e,.,

h.. a.11/ I

1̂2.» = exp «2 +

^22/

0 0

6 2 2
0

0
6 3 3

U.r-1  

log ̂ 12.,-I 
2̂2̂ -1

0 0

0 C2 2 0

0 0 3̂3

^ i,/- iV ^ ii/-i
< 1 0 0

abs - £ | z j £ | z j 0 ^22 0

\ ^2,/-iV^22,/-1 E\z^\ 0 0 *̂ 33

\  **, and *** indicate significance at the 5.0, 1.0, and 0.1 percent levels, respectively.

Conditional Mean and Variance Equations

0.0081** Cli 0.1405*
^2 0.0160*** 2̂2 0.2963***
a, -0.8689*** C33 0.0588***
&2 -0.1099 d„ 0.0985
33 -0.0079 2̂2 -0.8707***

bn 0.8534*** d33 0.1309
b22 0.9598***
b33 0.9973*** Log Likelihood 3167

LB(24) for (e /o j options 
LB(24) for (e/oj^ options 
LB(24) for (e /o j futures 
LB(24) for (e/oj^ futures

38.9488*
28.4892
17.2847
16.8818

For a normal distribution, E Iz I = (2/71)’'-
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Table 8
Comparisons of Hedging Effectiveness

Eurodollar Options on Futures and Eurodollar Futures

Variances of the net tick change in the hedged option/futures portfolio value as well as the 
unhedged option position value are reported. The net tick position is (P„ ,+, -Pg J  - b,’(Pf ,̂ , - 
Pft) where is the computed hedge ratio from each hedging method, jg is the options 
price, and P^ is the futures price. The within-sample results are computed based on daily 
hedge ratio updates for the 1/2/90-5/15/92 period and the out-of-sample results are based on 
weekly hedge ratio updates for the 5/18/92-11/30/94 period. The percent reduction in 
variance is computed as:

1 - (variance of the hedged position / variance of the unhedged position)

The values shown are the estimates times 10*.
Percent Reduction 

Method Mean Variance In Variance

Panel A: Within-Sample

Unhedged 0.2662 0.1161
Black 0PM -0.0425 0.0127 89.06%
Naive Hedge (b=0.5) -0.1297 0.0377 67.53%
Risk Minimization -0.1158 0.0376 67.61%
GARCH -0.0888 0.0353 69.63%
EGARCH
(Constant Correlation) -0.0749 0.0236 79.67%

EGARCH -0.0665 0.0379 67.36%

Panel B: Out-ofSample

Unhedged -0.1080 0.0707
Black 0PM -0.0610 0.0203 71.29%
Naive Hedge (b=0.5) -0.1550 0.0300 57.57%
Risk Minimization -0.1700 0.0282 60.11%
GARCH -0.0820 0.0257 63.65%
EGARCH
(Constant Correlation) -0.1060 0.0242 65.77%
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Table 9 
Descriptive Statistics

Treasury Bill Spot and Eurodollar Futures

Statistics are computed for the 90 day Treasury Bill spot and 3-month Eurodollar futures 
contract yields over the sample period of 1/2/90 to 12/31/94. Eurodollar yields are computed 
as (100 minus futures price). Yield changes on both the T-bill and Eurodollars are calculated 
as (Y,-Y,.|) where Y equals yield. Unit root tests are based on both raw yields and yield 
changes and the cointegration test is based on raw yields, while the other tests are based on 
yield changes only. The Phillips and Perron (1988) test statistic for a unit root is used with 
a truncation lag of 4, where the null hypothesis is that a unit root exists. The Phillips Zp 
statistic tests the null hypothesis of no cointegration. Q(24) is the Ljung-Box test for up to 
24th order serial correlation. ARCH(x) is the Engle (1982) LM test for ARCH effects. *, **, 
*** indicate significance at the 5.0,1.0, and 0.1 per cent levels respectively.

T-Bill Eurodollar
Sppt Futures

Unit Root Test on Yield -1.6810 -1.4454
Mean -0.0024 -0.0047**
Variance 0.0020 0.0028
Skewness -0.6026*** -0.5187***
Kurtosis 7.1490*** 4.3021***
Q(24) 45.1911** 32.1632
ARCH(l) 1.6079 2.8664
ARCH(3) 3.8594 4.3305
ARCH(5) 12.5910* 17.2425**
ARCH(IO) 18.0332 22.6319*
Cointegration Test -47.4932***
No. of observations 1172 1172
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Table 10
Univariate Conditional Heteroskedasticity Models

Treasury Bill Spot and Eurodollar Futures

Univariate testing of ARCH, G ARCH, and EGARCH effects are shown. The tests are run 
on yield changes computed as (Y,-Y,.|) where Y, is the yield on day t. The models are;

ARCH(5):
GARCH(1,1):

EGARCH(1,1):

h, = 3o + a,6-,., + a2 ^ \ . 2  + aje^o + a^e-^ + 
h, = Bo + a ,6 \, + b,h,.i
log h, = 3o +a,(cz,.| + [ b,., I - E b,., I]) + b,Iog h,.,

*, **, *** indicate significance at the 5.0,1.0, and 0.1 percent levels, respectively.

T-Bill Spot Eurodollar Futures

ARCH(5):
ao 0.0014*** 0.0027***
a, 0.1635*** 0.0048
ai 0.1333** -0.0297*
as 0.0723* 0.0474
34 0.0420 0.0609*
as -0.0069 0.0952*

Log Likelihood 1514 1379

GARCH(Ll)
ao 0.0007*** 0.0002*
a, 0.1931*** 0.0238*
b, 0.5130*** 0.9156***

Log Likelihood 1519 1382

EGARCH(1,1)
ao -2.3388*** -9.9179***
ai 0.2592*** 0.1252
b, 0.6233*** -0.7336**
c -1.1219** 0.3574
Log Likelihood 1531 1381
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Table 11 
Minimum Risk

Treasury Bill Spot and Eurodollar Futures 
(Within Sample)

Minimum risk hedge ratio and hedging effectiveness for the nearby Eurodollar futures is 
shown for the period from 1/2/90 to 6/19/92. The hedge ratio is derived from the OLS 
regression of daily T-bill yield changes on Eurodollar futures yield changes.

Ys., -  Y,_w =  Oo +  P(Yf.t - Yf,,.,) +  a ,(Y „ ., - ÔYf,,.,) +  e ,
Hedging effectiveness is measured by the of the regression. N is the number of 
observations and DW is the Durbin Watson statistic. *, **, and *** denote significance 
at the 5.0, 1.0, and 0.1 percent levels respectively.

Hedge Ratio -0.4607***
a, -0.0187*
R- 0.3249
N 586
DW 1.9420
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Table 12
Estimation of the Bivariate G ARCH Model

Treasury Bill Spot and Eurodollar Futures 
(Within Sample)

The following bivariate G ARCH model is estimated:
Ri.t = ai(Ys.,.i - ÔYf,.,) + 6„
R-2.t =  Hz +  OaCYs.,-! - ÔYf,.,) +  62,, 

e,lû..,~N(0,HJ

C,

^ 12/ =Cz +

^2 2 / C3

‘■n

0 A ,, 0

0 0 ^ 33

2
^ U - l

^ U - i ^ 2r - i +

2

22

0 0 5 33

‘ U / - I

' 12 / - I

*22r- l

R,, and R,, are the spot and futures yield changes.*, **, and *** denote significance at the 
5, 1, and 0.1 percent levels, respectively. LB is the Ljung-Box statistic for 24 lags.

Conditional Mean and Variance Equations

Mi
1̂2
a,
« 2

C,
C3

C3

An
A22

A 3 3

Bn
B22

B 3 3

Log Likelihood

-0.0055*
- 0.0022
-0.0017
0.0566***
0.0007***
0.0013
0.0030***
0.2039***
0.0051
0.0885**
0.4697***
0.1601
0.0199
3034

LB(24) for (e /o j spot 
LB(24) for spot 
LB(24) for (e /o j futures 
LB(24) for (e/oj^ futures

35.4629
10.0274
27.1731
17.9479
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Table 13
Estimation of the Bivariate EGARCH Model

Treasury Bill Spot and Eurodollar Futures 
Constant Correlation 

(Within Sample)

The following bivariate EGARCH model was estimated:

K i  = + ttiCYs.,., - ôYr.,.,) + e,.,
R i .  =  P 2 +  « 2(Y u -, -  ÔYf,,.,) +  € ,,,

h,„=exp{a,,o +a,,,logh,,.,.,+a,j(lz,.,., I-E Iz,,., i^-a,jZ,.,.,)} 
h22t=exp{a2,o , loghiî ,.,+a2,i( Izi.,., t-E ki,., t+â Ẑi,.,)}

h,2,=P(h,iW^

R ,, and Rj,, are spot and futures yield changes. For a normal distribution, E Iz I = (2/tc)‘̂ . LB 
is the Ljung-Box statistic for 24 lags. *, **, and *** indicate significance at the 5.0,1.0, and 
0.1 percent levels, respectively.

Conditional Mean and Variance Equations

Pi
P2
a,
«2

ai.i
a u
au
a2.o
a2.i
a24
a2j

P
Log Likelihood

-0.0056**
-0.0025
0.0042
0.0487***

-0.7425***
0.8785***
0.2321***

-0.6398***
-0.3131**
0.9439***
0.1186***
0.6073**
0.6203***

3055

LB(24) for (e /o j spot 
LB(24) for (e/oj^ spot 
LB(24) for (e /o j futures 
LB(24) for (e/oj^ futures

37.6670*
10.4636
20.9427
13.6105
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Table 14
Estimation of the Bivariate EGARCH Model

Treasury Bill Spot and Eurodollar Futures 
Non-constant Correlation 

(Within Sample)
Ri.t = «iCYs,,.! - ÔYf.,.,) + 6,.,
Rit = 1̂1 + «zCYu., - ÔYf,.,) + 6,, 

e,lQ,.,~N(0,H,)

A n ,
0 0

A iu - 1
0 0

An, = exp «2 + 0 A2 2
0 log Al2.f-1 + 0 ‘̂ 22 0

A2 2 ,. 0 0 A3 3 , Az2,-i 0 0 C3 3 .

/
dn 0 0 r \

^i, - iVAii, - i ^ 1 , - iV A i I , -1
abs ^ 1 , - 1 ^ 2 , - /A ,2 . , - , - E\z^\E\z^\ + 0 dn 0 ^1,-I^2,-/Aj2.,_, r

\ 0 0 3̂3, ^ 2 ,- /^ A 2 2 . ,_ i y

* **, and *** indicate significance at the 5.0, 1.0, and 0.1 percent levels, respectively.

Conditional Mean and Variance Equations

p, -0.0067** Cli 0.2453***
p, -0.0053 C22 -0.0296
a, -0.0014 C33 0.0449*
a, 0.0357** du -0.5663***
a, -1.7263*** d22 -0.2159
a, -11.6263*** d]3 0.2235
aj -11.1189***

b„ 0.7193***
6 , 2  -0.7964*** Log Likelihood 3045
6 3 3  -0.9537***

LB(24) for ( e /o j  options 36.8348*
LB(24) for (e/o j^  options 11.1699
LB(24) for ( e /o j  futures 26.1274
LB(24) for (e /o j-  futures 18.6169

For a normal distribution, E Iz 1= (2 / % ) ' / 2
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Table 15
Comparisons of Hedging Effectiveness
Treasury Bill Spot and Eurodollar Futures

Variances o f  the net tick change in the hedged spot/futures portfolio value as well as the 
unhedged spot position value are reported. The net tick position is (Ŷ ,+, -Y, J  - b, *(Yf ,̂ , 
- Yf J  where b,* is the computed hedge ratio from each hedging method, Yj , is the T-bill 
spot yield, and Yf, is the Eurodollar futures yield. The within-sample results are 
computed based on daily hedge ratio updates for the 1/2/90-6/19/92 period and the out- 
of-sample results are based on weekly hedge ratio updates for the 6/22/92-12/31/94 
period. The percent reduction in variance is computed as:

1 - (variance of the hedged position / variance of the unhedged position)

The values shown are the estimates times 10̂ .
Percent Reduction 

Method Mean Variance in Variance
Panel A: Within-Sample

Unhedged -0.7130 0.2117
Naive Hedge (b=1.0) 0.1323 0.2417 -14.17%
Risk Minimization -0.3270 0.1437 32.11%
GARCH -0.3440 0.1392 32.12%
EGARCH
(Constant Correlation) -0.3500 0.1427 32.59%

EGARCH -0.3350 0.1482 30.00%

Panel B: Out-of-Sample

Unhedged 0.1767 0.1690
Naive Hedge (b=1.0) 0.3354 0.1347 20.30%
Risk Minimization 0.2622 0.1133 32.96%
GARCH 0.2568 0.1101 34.88%
EGARCH
(Constant Correlation) 0.2285 0.1115 34.03%
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